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Preface

This book is a comprehensive summary of the 15th annual conference of the
International Association for Mathematical Geosciences (IAMG Madrid 2013)
held in Madrid (Spain). The IAMG Madrid 2013 has been an international forum
of scientific debate on the research progress made worldwide on theoretical
developments and practical applications of geomathematics. The theme of the
conference, ‘‘Frontiers of Mathematical Geosciences: New Approaches to
Understand the Natural World,’’ makes emphasis on the need for new paradigms,
methodologies, and detailed earth models at multiple scales in order to solve
important technological problems that the humankind is facing in relation to
sustainable water, energy, minerals, and multiple environmental resources con-
sidering climate and natural hazards concerns.

Planet Earth is a complex system where the lithosphere, atmosphere, hydro-
sphere, cryosphere, and biosphere interact among them to build products from
complex processes. Furthermore, the increase of human population is associated to
new issues in relation to fast lessening of earth resources and habitats;
e.g., depletion of nonrenewable resources, contamination of water, soils and air
pollution, environmental impact, deforestation, endangered species, climate
change, and geological hazards (e.g., earthquakes, tsunamis, volcanic eruptions,
flooding, potential loss of glaciers and ice caps, etc.). Some of these problems may
be also associated to the increase of urban settlements around the world. In con-
sequence, governmental agencies, the industry, and society in general are
demanding the scientific community to increase the quantitative understanding of
how the complex earth system works. Computers, satellite imagery, and new
geophysical techniques have been deployed to gather and process large amounts of
new data, expecting to facilitate the planetary monitoring and modeling. Never-
theless, the scientific basis for interpreting such data is well established in the
young discipline of geomathematics, some of the challenges in relation to earth
processes are very complex, and their solution will require the best of human
ability and creativity, through numerical models and associated methods. There-
fore, geomathematics has been raised as the essential science to model processes
and resources in geosciences for solving fundamental resource and planetary
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sustainability problems at multiple scales. Moreover, the application and use of
mathematics in geological research and technology is not only focused on dealing
with specific issues of our planet. Study findings on mathematical geosciences are
also extremely important for the planetary geology research.

The main duty of IAMG 2013 has been to discuss and disseminate the latest
trends in research about leading problems. This proceeding book contains 184
contributions grouped adequately in 27 sessions.
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Performance Evaluation of Swanson’s Rule
for the Case of Log-Normal Populations

Maryam Moghadasi and Jerry L. Jensen

1 Introduction

The arithmetic average (AA) and Swanson’s Rule (SR) are commonly used in the
petroleum industry to estimate the mean value of reservoir properties. The AA esti-
mates the mean based on assigning equal weight to all n samples, X1, X2, . . . , Xn :

xA = 1

n

n∑

i=1

Xi . (1)

Numerous studies, for example [1], prove the AA is unbiased with standard error
[var(X)/n]1/2, where var(X) is the variance of X .

SR is a discretization method and is based on unequally weighted sample per-
centiles to estimate the mean value by

xS R = 0.3 x10 + 0.4 x50 + 0.3 x90, (2)

where xi is the i th percentile. Swanson first introduced SR as an alternative mean
estimator in 1972 [2]. Subsequently, SR has often been used in the oil and gas
industry, perhaps because the 10th, 50th, and 90th percentiles have associations with
possible, probable, and proved reserves, respectively.

For the case ln(X) ∼ N (μ,σ2), Megill used the ratio x90/x50 (= e1.28σ) varying
from one to 15 (σ = 0 to 2.1) as a measure of the sample variability and showed
that SR underestimates the mean value [2]. He concluded that, for modestly skewed
distributions, SR estimates the mean with acceptable error but the bias becomes large
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as sample variability increases. Nevertheless, [3–5] advocate SR instead of the AA
without mentioning the potential for large bias. For example, according to Megill’s
results, SR underestimates the population means of Delfiner’s [3] and Hurst et al. [4]
data sets by 16 % and 10 %, respectively.

Besides Megill [2], others have reported on SR bias [6, 7]. Bickel et al. [7] found
the bias may be so large as to render the SR unacceptable for “professional practice”.
To our knowledge, however, other SR properties such as efficiency and uncertainty
have not been assessed. This study attempts a more balanced SR evaluation, compar-
ing it to the properties of the AA when the population is log-normal. We show that
SR has a smaller standard error than the AA when σ becomes large and SR becomes
more efficient when σ exceeds a value which depends on n.

2 Properties of the Arithmetic Average and Swanson’s Rule

In this study, X1, X2, . . . , Xn are assumed independent and identically log-normally
distributed (LND) with E[ln(X)] = μ and var [ln(X)] = σ2. Many reservoir para-
meters, e.g., drainage area, gross and net pay, reserves, recoveries, and permeability,
have been found to be LND [2, 8–11]. The uth sample percentile of X is assumed to
be distributed as

x̂u ∼ N

(
eμ+wuσ,

2πσ2

n
u(1− u)e2μ+2wuσ+w2

u

)
, (3)

where wu = �−1(u/100), and � is the standard normal cum. distribution function
[1].

A good estimator should have simultaneously small bias, good efficiency, and
small standard error (SE). Efficiency is evaluated based on comparing the root mean
square error (RMSE, S) of estimators. S incorporates the bias and SE of the estimator
and an estimator with small S is more efficient.

Analytical expressions of S for SR and the AA are [12]:

SS R = eμ

{(
0.3eσw50 + 0.4eσw50 + 0.3eσw95 − eσ2/2

)2 + (2πσ2/n)fS R

}1/2

,

(4)
where fSR = 0.0081(e2σw10

2 + e2σw90+w90
2
) + 0.04 + 0.012(eσw10

2/2 + eσw90

+ w90
2/2) + 0.0018e(w10

2+w90
2)/2, and

SA = eμ

{
eσ2/2

√
eσ2 − 1/

√
n

}
. (5)

Neither the AA nor SR emerges as the best for all conditions of variability and
sample size (Fig. 1). SR is biased, even for small σ whereas the AA is unbiased.
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However, SR has smaller SE than the AA when σ > 0.94 for any n. Setting SSR =
SAA gives the line in Fig. 1 which has the approximate form

σ = −3182.5/n2 + 1319.8/n3/2 − 97.05/n − 18.66/
√

n + 3.131. (6)

Fig. 1 σ versus n showing region in which SR is more efficient (SSR < SA) than the AA

Hence, SR becomes statistically more appropriate than the AA for some ranges of
variability and sample size. Moghadasi [12] proposes a bias-corrected version which
improves SR performance based on the RMSE.

3 Applications

We illustrate our findings using two data sets. One concerns North Sea prospect sizes
[4] and the other is a set of Cleveland Formation permeability measurements [10].

The oil prospect data set has n = 21 points, which are LND with sample
μ = 3.7 and sample σ = 1.1. xA = 76 and xSR = 67 million barrels (mmbbl).
The analyticallyderived bias for SR is 10 %, in close agreement with xSR = 0.91xA.
The AA and SR SEs are similar (29 vs. 25 mmbbl, respectively) and a hypothesis
test shows xA and xSR are not significantly different statistically. In economic terms
however, xA − xSR reflects a US$ 0.9 billion change in prospect value (at $100/bbl).
Thus, despite being somewhat less efficient, using the unbiased estimator AA may
be preferable.

The permeability dataset (n = 319) is LND with the sample μ =−3.6 and sample
σ = 1.7. This data set gives xSR = 0.09 md and xA = 0.18 md; there is a clear
preference for xSR as the SR bias (28 %) is compensated by the 55 % smaller SE. For
production prediction, the two-fold difference is relatively modest [3, 10], so SR is
preferable. The difference is important, however, for tax and regulatory purposes as
it changes the cleveland from a tight (<0.1 md) to a conventional classification.
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4 Conclusions

A good estimator should simultaneously have small bias and small SE. Zero bias is a
desirable property; however, other mean estimator properties such as efficiency and
uncertainty also require evaluation to assess more completely estimator merits. Some
reports have advocated the use of the SR in place of the AA but bias and efficiency
were apparently overlooked. We find that, although the AA is unbiased, it has larger
standard error and smaller efficiency than SR for large-variability cases. Hence, there
are statistical benefits to replacing the AA with SR under some conditions but the
SR must be used with care as its bias can diminish its other advantages. A modified
SR with bias reduction could be a better option to either the SR or AA in petroleum
reservoir characterization.

Acknowledgments MM was funded by the Natural Sciences and Engineering Research Council
of Canada. JLJ holds the Schulich Chair in Geostatistics.
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Modelling Ore Bodies of High-Nugget Gold
Using Conditional Probability

Evelyn June Hill, Nicholas H. S. Oliver, James Cleverley
and Michael Nugus

1 Introduction

In vein-hosted gold deposits, gold distribution typically shows very low spatial conti-
nuity, i.e., a very high-nugget effect, which makes it unreliable to model the ore-body
using traditional geostatistical techniques [1, 2]. In such situations geologists may
resort to using a proxy for gold, such as presence of alteration or deformation, to
outline the ore-body extents. The requirement is that the proxy is significantly more
spatially continuous than the distribution of high grade gold [3, 4]. We present a
method for evaluating and combining several geological features or geochemical
elements to provide a proxy for mineralisation using conditional probability.

The study is based on drill hole data (geological logging and geochemical analy-
ses) from Sunrise Dam Gold Mine. The mine lies within an Archaean greenstone belt
in the Yilgarn Craton of Western Australia. The host rocks of the gold mineralisation
are structurally complex and deposits include vein stockwork lodes and shear hosted
lodes [2, 5]. Gold grades tend to be elevated in regions of strong sericitic alteration
and are closely associated with high arsenic values. This geological information is
used to decide which geological and geochemical features may be useful proxies for
predicting the extent of the gold ore-bodies.
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2 Calculating Conditional Probability

Conditional probability provides a data-driven method for determining which rock
types and spatial regions are most favourable for mineralisation. Conditional proba-
bility is defined as the probability of an event occurring given that another event has
already occurred. In this case we calculate the probability of a sample returning a
gold assay value (Au) that exceeds a pre-determined cut-off value (v) given certain
features observed in the sample. This can be expressed in the form:

p(Au ≥ v|F1, F2, . . . , Fn) (1)

where F1, F2, . . . , Fn represents a set of geological features.
These features may be data logged by geologists in a categorical form, such as

alteration intensity or vein density. For categorical data the conditional probability is
calculated by creating an n-dimensional matrix of counts of samples; where n is the
number of features used in the calculation. Each cell of the matrix represents a class.
Conditional probability is calculated by dividing the number of samples in a class
with gold assay values exceeding the cut-off value (Au ≥ v) by the total number of
samples in that class [1, 2].

Features may also be in the form of continuous numerical data such as geochemical
data. For continuous numerical values the conditional probability is calculated using
the density of data points in feature space defined by F1, F2, . . . , Fn (FS):

p(Au ≥ v|F1, F2, . . . , Fn) = prior probability× density in FS (points Au ≥ v)

density in FS (all points)
(2)

The density of the data is calculated using a kernel density estimator [6]. The prior
probability is the ratio of the number of samples with Au ≥ v to the total number of
samples.

3 Results

In our first example we use conditional probability to predict favourable rock types for
gold mineralisation from categorical data: foliation intensity (F), alteration intensity
(A) and vein density (V) logged in drill holes. The prior probability value is used
as the value which divides regions of favourable rock type from unfavourable rock
type. Higher probabilities will delineate increasingly favourable regions. Figure 1
shows that the favourable regions in the drill holes are substantially more spatially
continuous than the original gold assays at a cut off of 1 ppm Au. An isotropic
interpolation has been performed on the conditional probability values, illustrated in
Fig. 1 as traces of isosurfaces, to provide a first-pass orebody outline. Alternatively,
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Fig. 1 F, A and V categories (left) are combined with gold assay data (top right) to generate
conditional probability (bottom right). F, A, V: warmer colours represent stronger intensity. Au
assay: orange >1 ppm, red >10 ppm. Conditional probability (of Au≥1ppm): yellow >0.08767
(value of prior), red >0.2

Fig. 2 Underground drill fan showing (left) distribution of gold assays and (right) conditional
probability values (blue = low values, red = high). Grey domain in right image is the interpolated
region where p> 0.308 (value of prior)

if the local structural trend was taken into account (left-to right horizontally across
the figure) then 2 distinct bands of favourable rock could be interpreted.

In the second example we present results using conditional probability to pre-
dict favourable rock types from multi-element geochemical data; arsenic (As ppm),
rubidium (Rb ppm) and potassium (K2O %) reflect mineralisation-related alteration
and are more spatially continuous than gold. The favourable rock types defined by
this method appear to be more spatially continuous than the original gold assay values
and should make the definition of the ore-body outline substantially easier (Fig. 2).
Traces of isosurfaces are shown for an interpolation using a strong anisotropy parallel
to the dominant structural trend in the region.
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The Extraction of Long-Term Distribution
Trends of Ore-Sourced Geochemical Elements
from an Drill Core in the Loess Covered Area

Deyi Xu, Hongwei Pei, Ningqiang Liu, Zhaoxian Yuan, Shuyun Xie
and Qiuming Cheng

1 Introduction

The vertical distributions of ore-forming related elements may statistically reveal the
transportation mechanisms of these elements. Apparently, to explore the mechanisms
may be helpful for us to detect deposits through surface geochemical anomalies.
That’s one of the main reasons that more and more scientists devote their efforts to
this study area [1–6]. In this paper, we tried to detach the long-term trends of ore-
sourced elements from a vertical drill-core of a loess cover to study the transportation
modes of deposit-related elements (Fig. 1).

2 Sample Collecting and Data Processing

Loess covers a very big area in the northwest of China, as well as other areas around
the world [7]. The resources under the loess cover are abundant. The thickness of the
cover varies from meters to kilometers. For the study of the transportation modes of
deposit-related elements, 106 samples were sequentially collected from a 106.5 m
vertical drill core of the loess cover on the Diyanqinamu Mo-Ag deposit in the
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Fig. 1 Loess cover Right:
cover profile Up-left: ground
surface Down-left: raw sample

grassland area in the Inner Mongolia of China. They were pounded to pieces and
filtered into 60-mesh powder. The contents of 33 elements were measured by a Niton
XL3t X-ray fluorescence analyzer (Fig. 2).

The vertical distributions of elements are determined mainly by two processes,
one is stochastic, and another is deterministic. We think that if the vertical distribution
of an element is dominated by a deterministic process, the contents of this element
should probably be correlated with the depth. The nonlinear Kendall τ correlation
coefficient method was used to test the correlations and we found that 18 elements
Mo, S, W, Te, Fe, Cu, Ni, Mn, Sb, Rb, Cs, Sn, Zn, Ti, V, Pb, Th and As are correlated
with the depth.

3 Long-Term Trends Detaching

A HP filter [8] is applied to detach the long-term trends of the 18 elements. The HP
filter is used to separate cycles and trends in a time series. We regard the vertical
distributions of the elements as spatial series and apply the HP filter to them as
applied in a time series to get the long-term trends. The trends of 18 elements are
shown in Fig. 3. The trends of Mo, S, W are approximately of exponential decreasing
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Fig. 3 Long-term distribution trends

with distance from ore body. The contents of these elements decrease from ore layer
to the surface, which in some extent indicate that the detached trends can reflect
the deterministic process for forming the distributions. The trends can be classified
into three clusters, C1 = {Mo, S, W, Te, Rb, Cs, Sn}, C2 = {Fe, Cu, Ni, Mn, Sb}
and C3 = {V, Pb, Zn, Ti, As, Th}. Statistically we verified that C1 is of exponential
decreasing mode, while C2 is of linearly decreasing mode. C3 is thought to be over-
affected by other stochastic processes, which need other methods to study.
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4 The Transportation Modes of the Ore-Forming Factors

Factor analysis was preformed to get two factors which were named as Mo-W factor
and Pb-Zn factor. Factor scores were calculated and the trends of these two factors
were detached as did in Sect. 3. Factor 1 is fitted with an exponential function very
well (Eq. 1, Fig. 4), the goodness of fit is R2 = 0.9569. Factor 2 can be fitted by a
polynomial model.

CFactor1 = 4.387e−0.06989h − 0.5917 (1)

5 Discussions

The ore-sourced or ore-related elements diffuse from the ore layer to the ground
surface could be regarded as one of the main transportation modes. However, random
factors, such as the heterogeneity of the cover medium, surface water infiltration,
other effects on the surface, may affect or conceal the main process (as seen in
Fig. 2). For the data collected from a long vertical drill-core of loess cover, to test the
contents of what elements may correlate with the distance from the ore, to detach the
main trends of the contents by a suitable filter and to fit the main trend with curves
might be a good line of thinking to help us to find the transportation modes of a
deposit-related elements. These modes are apparently useful for deposit detecting.
This study is only an experiment and detailed work should be done in the future.
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Evaluating Predictive Performance

Michael Scheuerer and Tilmann Gneiting

1 Probabilistic Forecasting

A probabilistic forecast is a prediction that takes the form of a probability distrib-
ution for a future quantity. What makes up a good probabilistic forecast? Gneiting
et al. [4] contend that predictive distributions should have maximal sharpness subject
to calibration. Sharpness refers to the concentration of the predictive distributions,
with very sharp distributions implying little uncertainty. It can be assessed via numer-
ical and graphical summaries of the width of prediction intervals.

While sharp predictions are desired, they are only useful if statistically consistent
with the values that materialize. The notion of calibration formalizes this property.
Denote by (Fi )i=1,2,... the sequence of probabilistic forecasts and by (yi )i=1,2,...

the associated sequence of observations. If the true data-generating process creating
the observations had the same distribution as the forecasts for all i , those would be
considered ideal. In practice, the data-generating distribution remains hypothetical,
and the predictive distribution Fi is an expert opinion, e.g. obtained from a statistical
prediction algorithm. Hence, the predictive distributions need to be assessed on the
basis of the forecast-observation pairs (Fi , yi ) only, regardless of their origins.

2 Assessing Calibration: Diagnostic Methods

Given such a sequence (Fi , yi )i=1,2,..., the notion of probabilistic calibration boils
down to the study of the probability integral transform (PIT) values, pi = Fi (yi ).
If the forecasts are ideal and Fi is continuous, then pi has a uniform distribution.
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Uniformity is usually assessed either by plotting the empirical CDF of the PIT values
and comparing it with the CDF of the uniform distribution (e.g. [6]), or by studying
histograms of the PIT values. A flat histogram is necessary but not sufficient for the
forecaster to be ideal. Nevertheless, PIT histograms are very useful to detect biases,
dispersion errors and other distributional misfits, and thus form a corner-stone of
forecast evaluation.

The notion of marginal calibration addresses a different facet of predictive per-
formance; it concerns the equality of forecast climate and actual climate. Gneiting
et al. [4] propose a comparison of the average predictive CDF F̄n with the empirical
CDF Ĝn of the observations:

F̄n(y) = 1

n

n∑

i=1

Fi (y), Ĝn(y) = 1

n

n∑

i=1

1{yi≤y}, y ∈ R. (1)

3 Proper Scoring Rules

If a more quantitative measure of predictive performance is sought, e.g. for com-
paring different forecasting methods, proper scoring rules are an attractive tool. A
negatively oriented score s(F, y) is assigned to each forecast-observation pair (F, y)

and interpreted as a penalty the forecaster wishes to minimize. A scoring rule is proper
if the expected value of s(F, y) for an observation y drawn from G is minimized if
F = G and strictly proper if the minimum is unique. Proper scoring rules encour-
age honest and sharp forecasts; in contrast, improper scores may result in misguided
scientific inferences as illustrated in [5]. The most popular and most important exam-
ples of proper scoring rules are arguably the logarithmic and the continuous ranked
probability score

LogS( f, y) = − log f (y), CRPS(F, y) =
∫ ∞

−∞
(
F(t)− 1{t≥y}

)2
dt, (2)

where the former requires that a density f of F exists, and the latter can be viewed as
an integral of the proper quadratic or Brier score [1] for probability forecasts of the
binary event that y exceeds the respective threshold value t . For further discussion
of these and other proper scoring rules see [5] and references therein.

4 Making and Evaluating Point Forecasts

In various applications, interest is still in single-valued point forecasts. These are
usually assessed by means of an error measure or scoring function, such as the mean
absolute error (MAE) or the mean squared error (MSE). Gneiting [3] argues that
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the scoring function ought to be specified a priori in order to permit the forecaster
to issue an optimal point forecast by the Bayes rule, minimizing the expected loss
under the forecaster’s predictive distribution. Or, conversely, if the forecaster receives
a directive in the form of a functional, her forecasts should be judged on the basis
of a scoring function that is consistent for it. For example, if the median of the
predictive distribution is used as a point forecast, it is consequent to use the MAE
for forecast evaluation, while the mean links up naturally with the MSE. Similar
relations also exist for quantiles and other functionals. The examples in [3] illustrate
how the use of inconsistent—though commonly used—scoring functions can lead
to grossly misguided inferences about predictive abilities.

5 Data Example

We illustrate the evaluating techniques reviewed above with a data example on one
day ahead predictions of ozone concentrations in downtown San Francisco [2]. We
first fit an ARM A(2, 2) time series model to daily maximum eight-hour ozone con-
centration measurements between January 1, 1980 and December 31, 1999 in ppm,
employing several covariates: the temperature on the forecast day, a linear function
of time, a sine and a cosine function of time to capture a seasonal cycle, and a sep-
arate offset for each weekday. Keeping the fitted parameters fixed and assuming a
Gaussian distribution, we then calculate one day ahead predictive distributions for
daily ozone concentrations between January 1, 2000 and December 31, 2012. Now,
since ozone concentration is a positive quantity, would it be more appropriate to
model its logarithm instead, thus obtaining a log-normal predictive distribution? We
implement and evaluate both options and draw conclusions.

Figure 1 shows PIT histograms for both normal and log-normal predictive distri-
butions. Neither of the two is ideally suited for ozone concentrations, which seem
to call for a distribution with positive excess kurtosis. The positive skew of the log-
normal distribution seems inappropriate, and in spite of violating the non-negativity
constraint, the normal predictions are better calibrated. This is confirmed by the con-
sistently better (lower) scores in Table 1, where in the case of the MAE the median
of the predictive distribution was used as point forecast, and in the case of the RMSE
the mean. For lognormal distributions, median and mean are distinct, with the mean
leading to an MAE of 0.00492 and the median to an RMSE of 0.00648. While the
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Fig. 1 PIT histograms for normal (left) and log-normal (right) predictive distribution
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Table 1 Average logarithmic and continuous ranked probability score, mean absolute error, root
mean squared error, average width and empirical coverage for 50 and 90 % prediction intervals

LogS CRPS MAE RMSE 50 % pred. int. 90 % pred. int.
Width Coverage (%) Width Coverage (%)

Normal −3.53 0.00329 0.00467 0.00622 0.0081 55.0 0.0198 86.9
Lognormal −3.28 0.00371 0.00485 0.00650 0.0116 65.7 0.0295 88.7

increase in the MAE could be expected, the slight decrease in the RMSE appears
to contradict the above guidelines for making optimal point forecasts. However, the
guidelines assume calibrated predictive distributions. In the present case the unwar-
ranted skew of the lognormal distribution might divert the mean from the optimal
point forecast. Moreover, it leads to noticeably wider prediction intervals.
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At the Interface Between Mathematical
Geoscience and Classical Statistics

Frits Agterberg

1 Introduction

The geosciences continually benefit from the use of mathematics. An important
objective of geology is to construct three-dimensional maps of the upper part of the
Earth’s crust with hypothetical delineation of various rock units including ore and
hydrocarbon deposits. Uncertainties in predictive geology are very large but need to
be quantified nevertheless. Use of geological concepts is essential in this endeavor
involving a good understanding of the underlying physical and chemical processes
with detailed knowledge of the ages of both rock units and processes. Classical
statistics is especially important because it helps to quantify the large uncertain-
ties geoscientists normally have to cope with. Geologists have had a long history of
interaction with mathematical statisticians. During his long and distinguished career,
William Krumbein regularly consulted with John Tukey. Krumbein also wrote one of
the first geomathematical textbooks together with Franklin Graybill [1]. John Grif-
fiths based much of his work on advanced statistical sampling techniques, especially
as they had been developed by Ronald Fisher. Andrew Vistelius worked closely
with Andrey Kolmogorov, already when he was preparing his PhD thesis in the
1940s. Felix Chayes developed modal analysis and took Karl Pearson’s admonish-
ment regarding spurious correlations that could result from closed-number systems
to heart. This later led John Aitchison to develop compositional data analysis, which
continues to be an important research topic within IAMG.

In turn, geoscientists have inspired statisticians to pursue new research direc-
tions. Georges Matheron introduced the idea of regionalized random variables and
this has helped to found the important field of spatial statistics. Ronald Fisher
became interested in statistics of directional features when a geophysics student at
Cambridge University asked him for help in dealing with greatly dispersed paleomag-
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netic measurements. It led to the cone of confidence for unit vectors. Geoffrey Watson
was instrumental in developing statistical significance tests for directional features.
Geoscientists often work with very large data sets to be subjected to exploratory data
analysis with use of jackknife and bootstrap techniques for uncertainty estimation.
John Tukey pioneered these approaches and advised mathematical geologists to use
them on many occasions. GIS and its 3-D extensions, for which credit is owed to
engineers and computer scientists, are widely used in geological map modeling and
image analysis. Promising new developments include projection pursuit, boosting
and applications of radial basis function theory.

2 History of Statistics from a Geoscientist’s Perspective

Ian Hacking [2] has pointed out that the concept of “probability”, which is a cor-
nerstone of classical statistics, emerged in the middle of the middle of the seven-
teenth century, gradually assuming its dual objective and subjective meanings. In
its objective sense, probability is related to stable experimental frequencies. Subjec-
tive frequencies aim to quantify degrees of belief. Advocates of these two types of
probabilities have often disagreed in the past. For example, Ronald Fisher strongly
opposed Bayesians who used Thomas Bayes’ rule to update initially subjective prob-
abilities in an objective manner. His colleague, the geophysicist Harald Jeffreys had
introduced inductive logic that was later refined by others such as Bruno de Finetti.
To-day, primarily deductive and subjective reasoning both continue to be practiced.
Possibility theory as developed by Didier Dubois and colleagues [3] takes a new
type of axiomatic approach in uncertainty theory. In many Bayesian approaches, the
starting point continues to be based on the concept of equipossibility as originally
used by Pierre, Marquis de Laplace.

A simple example of equipossibility followed by deductive reasoning based on
traditional axioms of probability theory is Weights-of-Evidence (WofE) modeling
to estimate probabilities of occurrences of discrete events such as mineral deposits
in a study area. The initial hypothesis of equipossibility is that the probability that
a mineral deposit occurs within a small unit area is the same everywhere within
the study area. It gives the prior probability that only depends on size of unit area.
Using Bayes’ rule, this prior probability is updated repeatedly by using as evidence
features of the unit area that differ from place to place in the study area. The final
WofE product is a map of posterior probabilities for occurrences of mineral deposits.

The geologist Georgius Agricola (in 1556) developed methods of reading signs
on the surface of the Earth such as occurrences of faults or anticlines as indicators for
the occurrence of mineralization. Nevertheless, as Hacking [2] points out, Agricola
had no idea that there could have been a process of mineralization that took place
millions of years ago. Such concepts had not yet been developed. In WofE theories of
process-modeling are taken into account when map layers are selected for improving
the posterior probabilities.
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It is well known that Blaise Pascal around 1650 was adept in solving problems
related to the rolling of one or more dice. In [2], Christiaan Huygens is credited with
introducing statistical inference in the first probability textbook published in 1657.
Statistical reasoning, however, became only slowly accepted by scientists and later by
the public. This is evident from the history of the arithmetic mean. Early calculations
that resemble the process of estimating the mean are reviewed in [4]. The first average
on record was taken by William Borough in 1581 for a set of compass readings. The
procedure of averaging numbers was regarded with suspicion for a long period of
time. Thomas Simpson in 1755 advocated the approach in a paper entitled: “On the
advantage of taking the mean of a number of observations in practical astronomy”,
stating: “It is well-known that the method practiced by astronomers to diminish
the errors arising from the imperfections of instrument and of the organs of sense
by taking the mean of several observations has not so generally received but that
some persons of note have publicly maintained that one single observation, taken
with due care, was as much to be relied on, as the mean of a great number.” The
invention of the normal distribution, originally derived from the binomial distribution
by Abraham de Moivre in 1718 and becoming more widely known after its use by
Friedrich Gauss (in 1809) and derivation of the central-limit theorem, helped to
popularize the idea that many different random errors combine to produce errors that
are normally distributed. The normal distribution became another corner stone of
mathematical statistics with the development of Student’s t-test, analysis of variance
and the chi-square test for goodness of fit. Many methods of mathematical statistics
were developed for statistical populations of independent (uncorrelated) identically
distributed objects from which random samples can be drawn to estimate parameters
such as the mean, variance and covariance. Generalization to multivariate analysis
followed naturally. In [1], the “general linear model” was introduced as a basic tool
of mathematical geology.

One of the early applications of the general linear model is trend surface analysis
[1]. In the late 1960s, this technique was competing with universal kriging originally
developed by Charles Huijbregts and Georges Matheron. To-day, both techniques
remain in use for describing spatial trends or “drifts” in variables with a mean that
changes systematically in two- or three-dimensional space. Simple moving averaging
as practiced by Daniel Krige or inverse distance weighting methods can be equally
effective when there are many observations.

Traditionally, the upper part of the Earth’s crust has been viewed as a complex
three-dimensional mosaic of numerous rock units with different compositions and
ages. However, as emphasized in this paper, many geological features display random
characteristics that could be modeled by adapting methods of mathematical statistics.

3 Nonlinear Modeling

A question to which new answers are being sought is: Where does the randomness in
Nature come from? Nonlinear process modeling is providing new clues to answers.
Benoit Mandelbrot discovered about 50 years ago that many objects on Earth can
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be modeled as fractals with non-Euclidean dimensions. Other scientists including
Donald Turcotte have pointed out that, as in chaos theory, otherwise deterministic
Earth process models can contain terms that generate purely random responses [5].
Well-known examples are the logistic equation and the van der Pol equation with
solutions that contain unstable fixed points or bifurcations. Multifractals, which are
spatially intertwined fractals and were anticipated by Henri de Wijs (in 1948), provide
a novel way of approach to problem-solving in situations where the attributes dis-
play strongly positively skewed frequency distributions. The standard geostatistical
model used in ordinary kriging assumes a semivariogram with both range and nugget
effect. The range extends to distances at which results from other deterministic or
random processes begin to overshadow local variability. The nugget effect often is
due to relatively wide sampling between points that hides short-distance variability.
The multifractal semivariogram shows sharp decrease toward zero near the origin.
Local singularity mapping uses this short-distance variability to delineate places with
relatively strong enrichment or depletion of element concentration on geochemical
maps and in other applications [6]. This method provides a new approach for mineral
exploration and regional environmental assessment. These nonlinear developments
are closely related to the statistical theory of extreme events.
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Estimating the Number and Locations
of Euler Poles

Florian Bachmann, Peter Jupp and Helmut Schaeben

1 A Model for a Single Euler Pole

In plate tectonics, the geometric evolution of plates is modelled in terms of rotations
about their Euler poles, i.e. axes (unsigned unit vectors). If a point r on the sphere,
S2, is rotated about an axis±p then the image of r traces out an arc of a small circle
which is tangent to p × r at r, and so the axis tangent to this small circle at r is
±u(p× r), where u(p× r) = ‖p× r‖−1p× r is the unit vector in the direction of
p × r. Data on Euler poles usually take the form (r1,±n1), . . . , (rn,±nn), where
r1, . . . , rn are positions on S2, and (for i = 1, . . . , n) ±ni is an axis tangent to S2

at ri . The data can be viewed as regression data, in which r1, . . . , rn are values of a
predictor on S2, while ±n1, . . . ,±nn are responses.

It is reasonable to assume that the observed tangential axes ±n1, . . . ,±nn are
observations on independent random axes. We propose the statistical model in which
±ni has the bipolar Watson distribution (see Sect. 9.4.2 of Mardia & Jupp [3], with
p = 2) with mean direction u(p × ri ) and concentration γ ‖p × ri‖2β for some
positive constants γ and β. Then the density of ±ni is

g(±ni ;±p, β, γ |ri ) =
{

eκi /2 I0(κi/2)
}−1

exp
{
κi [ni · u(p× ri )]2

}
, (1)

where
κi = γ ‖p× ri‖2β (2)
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and I0(·) denotes a Bessel function. Equation (1) formalises the intuitive idea that,
when ri is nearer±p, the small circles are smaller, and so±ni is more poorly defined.

The unknown parameters ±p, β, γ can be estimated by maximum likelihood.
Approximate 100(1− α)% confidence regions for ±p are

{
±p : p′ Î+pp·γβp ≤ χ2

2;α
}

and
{
±p : p′ Ĵ+pp·γβp ≤ χ2

2;α
}
, (3)

where Î+pp·γβ denotes the generalised inverse of the p-part Ipp·γβ of the Fisher infor-

mation evaluated at the maximum likelihood estimate, Ĵ+pp·γβ denotes the generalised
inverse of the p-part Jpp·γβ of the negative of the Hessian of the log-likelihood eval-
uated at the maximum likelihood estimate, and χ2

2;α denotes the upper α quantile of

the χ2
2 distribution.

The goodness of fit of the model to the data can be assessed using the residuals
δ1, . . . , δn , defined by

δi = 2× {anti-clockwise angle from±u(p̂× ri )to±ni },

where ±u(p̂ × r1), . . . ,±u(p̂ × rn) are the fitted tangential axes corresponding to
observations ±n1, . . . ,±nn . Inspection of the residuals can indicate how well the
model fits the data and how it can be modified to improve the fit. Assuming that most
of the estimated concentrations are large, goodness of fit can be measured using var-
ious standard statistics. Thus, at the cost of an additional assumption, corresponding
tests provide the quantitative assurance of p-values.

2 A Model for Several Euler Poles

For many data sets, model (2) fits badly and there is no reason to assume that there
is only one Euler pole. It may then be helpful to fit a mixture model, in which the
underlying population of potential observations is a mixture of c populations, with
population j (for j = 1, . . . , c) making up proportion π j of the total population and
having Euler pole ±p j . Then the density of ±ni given ri is

f (±ni ;±p1, . . . ,±pc, π1, . . . , πc, β, γ |ri ) =
c∑

j=1

π j g(±ni ;±p j , β, γ |ri ),

where g(·) is given by (1) and (2).
The maximum likelihood estimates of ±p1, . . . ,±pc, π1, . . . , πc, β, γ can be

found using the EM algorithm. (See, e.g., Sect. 1.4.1 of Everitt & Hand [2], or Sect.
4.3.2 of Titterington et al. [4].) Generalisations of (3) give approximate confidence
regions for the Euler poles ±p1, . . . ,±pc based on the Fisher information or the
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Fig. 1 Fabricated dataset with three given “true” Euler poles p1 = (45, 120),p2 = (57, 120),p3 =
(47, 137) (diamonds), uniformly distributed locations ri (dots) of observations ni tangential to S2

at ri , and subsamples of proportions π1 = 0.47, π2 = 0.37, π3 = 0.17 referring to Euler poles,
respectively

Fig. 2 Fabricated dataset with three given “true” Euler poles p1 = (45, 120),p2 = (57, 120),p3 =
(47, 137) (diamonds), uniformly distributed locations ri (dots) of observations ni (squares), and
subsamples of proportions π1 = 0.47, π2 = 0.37, π3 = 0.17 referring to Euler poles, respectively

Fig. 3 Estimated Euler poles with π̂1 = 0.22, π̂2 = 0.34, π̂3 = 0.45, locations ri (dots) of
observations ni and fitted normals n̂i tangential to S2 at ri

Hessian of the log-likelihood. Observations can be allocated to the estimated Euler
poles using probabilities provided by the EM algorithm.

Testing the null hypothesis that there is a single Euler pole (i.e. c = 1) versus a
non-trivial mixture of Euler poles (i.e. c > 1) can be carried out using the modified
likelihood ratio test of chen et al. [1]. If the hypothesis is rejected then c can be
estimated using a penalised likelihood.
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3 Examples

To check our approach we apply it to samples simulated with systematically varying
parameters, guided by geological experience, i.e. with varying (Figs. 1, 2, 3)

• the total number c of Euler poles pi , i = 1, 2, 3, and their relative location (close
to or apart of each other),
• their corresponding proportions of the sample πi , i = 1, 2, 3, for moderate sample

sizes n < 100,
• the locations r1, . . . , rn on S2 of the observations with respect to the Euler poles

(uniform or clustered around Euler poles),
• the shape parameter of a bipolar Watson distribution to draw ni j = ±u(p j × ri )

and generate (r1,±n1), . . . , (rn,±nn),

and compile the results. A typical example and its preliminary analysis is presented
as follows.

Comprehensive results will be presented in the oral presentation and published
elsewhere later.
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Testing for Microhomogeneity in Reference
Materials for Microanalytical Methods

Raimon Tolosana-Delgado, Aaxel D. Renno, Przemlaw P. Michalak
and K. Gerald van den Boogaart

1 Introduction

Homogeneity is a relative property of a sample in relation to the measurement
(analytical method), the analyte, and its intended purpose (e.g. the usage as a refer-
ence material). In a measuring batch, some reference material samples are interca-
lated between samples of unknown concentration, and the readings of the analytical
method for the reference are used to build a bottom line over which the unknown
concentrations of the samples are determined. Of course, the reference concentra-
tion must be known and homogeneous up to a precision level given by the analytical
method. Thus, the verification of homogeneity (at that precision) becomes essential
to prove that a reference material is fit-for-purpose. For microanalytical methods,
this becomes particularly tricky, because the reference material concentration must
be determined at spots where it cannot be measured, as most measuring methods at
such small scale are destructive.

This contribution proposes a solution to this problem. Consider the concentration
at any spot on the reference material as a random value. Then, one can determine
the whole distribution of the random concentration by taking a random sample of
spots and (destructively) measuring it. Finally, making use of the standard error of
the mean one can determine how many (unmeasured) spots of the reference material
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must be visited (and burnt) in a row during a measuring batch to derive a sufficiently
precise reading of the reference.

These calculations can be done in a first approximation considering that the con-
centration (and the sampling sequence) on the reference material is completely ran-
dom, but they can be greatly improved by considering realistic spatial patterns of
variation of the concentration. To show the fitness of any of these methods for pro-
viding reliable reference values one can statistically check values against further
measurements, as it is needed to prove the fitness of material through its values in
metrology with homogeneous materials.

2 Types of Microheterogeneity of Reference Materials

We consider four types of microheterogeneity [1–3], depending on which is the
source of spatial dependence exhibited (Fig. 1):

Random: The concentration varies as a random field around an average value.
Systematic: The material presents a consistent trend of enrichment in the element.

Periodic: The material presents banding or zonation of concentration with enrich-
ment zones surrounded by depletion zones and vice-versa; these zones
may be well-structured bands of different width, or else represent
growth periods of the crystal (in which case, the zones are quasi-
concentric).

Nugget: A relatively homogeneous material is spotted with small highly enriched
(or depleted) particles, internally homogeneous and of a totally differ-
ent nature.

3 The Complete Random Case

Consider first a reference material, which average concentration on the relevant ele-
ment has been adequately characterized. Its microscale variability has been character-
ized by a destructive method at a series of grid spots. From the obtained measurements
a mean z and a standard deviation σz are calculated. For this contribution we consider
these measurement error-free, and this mean and variance as fixed (not uncertain).
Then, the property of the standard erorr of the mean ensures that the average obtained
from a future sample z1, z2, . . . , zN will estimate z with a precision

σε = σz√
N
.

Thus, knowing the natural material variability σz and the desired minimal precision
level σε, the number of spots that one must visit in the future to determine one single
standard reaidng in a measuring batch is bounded by
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Fig. 1 Typical examples of microheterogeneity

N ≥
(
σz

σε

)2

. (1)

Note that this procedure is always valid, whenever the heterogeneity value distribu-
tion of the reference material has a variance, but at the price that N will be huge if
it is large. It may be thus convenient to reduce that number.
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4 Improving the Sampling Strategy

In this framework, the kind of microheterogeneity determines which should be the
adequate sampling strategy in both the characterization and the measuring batch step,
in order to minimize the number of spots to visit and burn.

Random, systematic and periodic heterogeneities can be modelled as random
fields, respectively with known mean, with a polynomial mean trend and with a
trigonometric mean trend. Standard results of Geostatistics allow thus to map the
concentration overall on the reference material from a sample z1, z2, . . . , zM of
observations at spots x1, x2, . . . , xM to a grid on interpolation spots, where the vector
of all kriging estimates ẑ0 is complemented with its kriging error covariance matrix
S0 [4], i.e. including estimation covariances between different locations. Consider
a selection of N of these interpolated spots through a vector w with 1 at the posi-
tion of a selected spot and 0 at a non-selected one. Then the reference value and its
uncertainty are obtained with

ẑ = wt · ẑ0/N , σ 2
z = wt · S0 · w/N 2.

This variance is the average of all kriging error variances and covariances between
selected spots, which must be necessarily smaller than the global variance (as covari-
ances are smaller than variances due to the Cauchy-Schwarz theorem).

Nugget: In the case of nugget heterogeneities, one has two populations, with a quite
different size: a spot falls in a nugget with quite a low probability p. To work around
this problem, one must also estimate this probability at the calibration step, together
with the true mean and variance. Robust methods [5] are the best choice in this case.
Once mean, variance and nugget probability are available, the reference material
can be used in the same way as with the complete random case, just that mean and
variance must be determined with robust methods with a cutoff of p. This roughly
corresponds to increasing the sample size N obtained from Eq. (1) by a factor 1/p.
In all cases, to reduce the effects of further drifts on the batch measuring methods,
spots should always be randomly visited, not orderly rastered.
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Recent Univariate and Multivariate
Statistical Techniques Applied to Gold
Exploration in the Amapari Area, Amazon
Region, Brazil

Luis Paulo Braga, Francisco José da Silva and Claudio Gerheim Porto

1 Introduction

Geochemical exploration in deeply weathered terrains is often faced with the
problem of strong modification of the geochemical signal at surface, making it diffi-
cult to identify primary mineralized source rocks from metal concentrations of soil
samples. This problem is very pertinent to the Amapari gold prospect where 14,263
soil samples were collected in a large gridded area covering nearly 500 km2. These
samples were analysed by ICP-MS after an Aqua Regia digest producing results for
51 elements. The effect of closure, in this particular case, may have little effect on
the outcome of most statistical procedures.

Subsequently, the samples were classified into five groups according to the geo-
logical domain: (i) the anomalous area (TARGET), centered around a gold deposit,
with 999 samples and (ii) the non-anomalous areas GRAN1 (115 samples), GRAN2
(47 samples) and GREEN (678 samples). The NONE code was attributed to the
remaining samples.
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2 Selecting Variables for the Multivariate Analysis

The EDA phase revealed that 12 out of 51 assayed metals show more than 20 % of
the results below the analytical detection limit where gold can reach as high as 74 %.
Within this percentage of non-detects or censored data a lot of information is hidden.
Efficient procedures for dealing with censored data combine the values above the
detection limit with those below it. The non-detects can be incorporated into boxplots
which maintain the percentiles data structure. The percentiles are estimated using
either the Kaplan-Meier or the more robust Regression on Order Statistics (ROS)
method [1].

Figures 1a and b illustrate the Au and Be censored boxplots for the five selected
areas. The horizontal line is drawn to represent the detection limit. Although most
data are under the detection limit in Fig. 1a, it was possible to estimate the quartiles
and where the lowest median is related to the GRAN1 area. In Fig. 1b most data is
above the detection limit and the medians of the GREEN, NONE and TARGET areas
are all very similar.

A censored boxplot was estimated for every variable and the medians of each area
were compared in order to pre-select the variables for the canonical discriminant
analysis. Variables which showed the highest or the lowest median value and are
clearly contrasting with the medians of each other areas were selected. Following
this criteria, Au was retained (Fig. 1a) and Be excluded (Fig. 1b). Based on trial and
error runs of the canonical analysis (see below) elements with more than 50 % of the
observations below the detection limit were also discarded.

3 Discriminant Canonical Analysis and HE Plots

Canonical discriminant analysis is a linear transformation of the response variable
into a canonical space in which (a) each successive canonical variate produces max-
imum separation among the groups and (b) are mutually uncorrelated. The response
variable is the non-metric areas of GRAN1, GRAN2, GREEN and TARGET and
the covariates the concentration of the selected 29 elements, the values below the
detection limits being computed as one half of these values.

The HE plot function draws a representation of the covariance ellipse for the
hypothesized model terms and linear hypotheses (H). It also shows the corresponding
error (E) for a response variable in a multivariate linear model. Yeo-Johnson power
transformations [2] were applied to the data in order to improve normality.

The first two canonical components explain approximately 95 % of the variance
and the null hypothesis were accepted. Figure 2a is the spatial representation of the
canonical variates including the centroids. The HE plot diagram in Fig. 2b shows
the centroids of the anomalous TARGET area as well as the non-anomalous ones.
The drawn ellipse encompasses about 65 % of the observations and, in support of the
model, the error circle does not contain any of the centroids.
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(a) (b)

Fig. 1 a Censored boxplot of Au. b Censored boxplot of Be

(b)(a)

Fig. 2 a Samples plotted in the canonical space and corresponding centroids of the areas. b The
ellipsoid represents the size and dimensionality of the variation in the group means regarding a
spherical error ellipsoid

4 Validating the Discriminant Predictive Model

In order to validate the model, the observations close to the centroids in the canonical
coordinates should be compared to their corresponding areas in the real world.

Figure 3a presents all 14,263 soil samples from where 1,839 were coded and per-
tain to the GRAN1, GRAN2, GREEN and TARGET areas accordingly. The TARGET
area alone contains 999 samples.

Based on the distance to the centroid of the TARGET area in the canonical
bi-dimension (search parameter = 3), the model was able to predict most TAR-
GET points (∼84 %) but with 179 of those falling into the other areas (Fig. 3b). The
identification of non-TARGET points was about 79 % while the overall matching
index of the model was approximately 82 %.
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(a) (b)

Fig. 3 a Geological map showing areas GRAN1, GRAN2, GREEN and TARGET plus the location
of soil sampling traverses. b Predictive model points coded TARGET for each area

5 Conclusions

The applied method was able to provide a discriminant function to select between
TARGET and non-TARGET areas. An applicable canonical search parameter
obtained by trial and error, and specific to the Amapari study area, opens the possi-
bility for exploration of new areas based on the presented methodology.

The canonical vectors (Fig. 2b) are divided into two main orthogonal groups.
The southwest group (Ti, Zr, Hf, Al, Ga, Fe, Sc and V) probably indicates a soil
derived from mafic rocks. Although not so evident, the southeast group (W, Bi
Ag, K) is probably associated to the TARGET mineralization. The independent Ce
and La vectors are related to the GRAN1 and GRAN2 rock types.
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Maximum Likelihood Inference of Spatial
Covariance Parameters of Large Data Sets
in Geosciences

Kanti V. Mardia and Eulogio Pardo-Igúzquiza

1 Introduction

The main advantage of maximum likelihood estimation (MLE) over other methods of
estimation such as method of moments and least squares is that the MLE gives directly
the estimates of the covariance parameters for a given model. This method is well
suited in practice since it also provides the uncertainty of the estimated parameters.
However, the main problem with MLE for large data sets is the computational burden
because a large matrix must be inverted many times which makes this approach
unfeasible in practice. Different methods have been proposed to approximate the
exact likelihood which then provides an “approximate” MLE (AMLE). A historical
background and review of AMLE as composite likelihood methodology can be found
in [1] and [2]. In spatial statistics, Vecchia [3] has proposed an AMLE which will
be extended below for large data sets (called Resampling AMLE method) though
[4] has given an algorithm for Vecchia’s AMLE which is applicable for relatively
moderately large data. [5] has extended the method of Vecchia to restricted AMLE
where as [6] has given the spectral AMLE to consider irregularly spaced spatial data
with the concept of gridding the data. A hybrid method using large and small blocks
is given in [7].
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2 Methodology

The AMLE of Vecchia (1988) relies on the multiplication theorem: the multivariate
probability density function for the data vector y = (y1, y2, . . . , yn) can be written
as:

p(y) = p(y1)

n∏

i=2

p(yi |y1, . . . , yi−1) (1)

Using the argument that some information provided by the data will be somewhat
redundant, Vecchia (1988) has suggested using the following approximation for the
above conditional probability:

p(yi |y1, . . . , yi−1) ∼= p(yi |y1, . . . , ym) (2)

with m < (i − 1). In fact, this expression can be generalized as:

p(yi |yi−1) ∼= p(yi |ym) (3)

where yi−1 = (y1, y2, . . . , yi−1) but ym has now any m elements, without repetition
from the set of values (y1, y2, . . . , yi−1). Thus for a fixed m, the procedure of
Vecchia can be repeated many times as a type of resampling or bootstrap procedure
where for each conditional term different m elements are taken without repetition
from the set of values (y1, y2, . . . , yi−1). To sum up, our approach for AMLE is
to take a random permutation of y = (y1, y2, . . . , yn) and treat this as a new time
series and work unilaterally. This procedure is repeated several times (the resampling
step) and then the empirical joint distribution is obtained of the estimates.

3 Results

We give a realization of a second order stationary Gaussian random field with an
isotropic exponential covariance in Fig. 1 (left) while the same realization plus a
second order drift m(x, y) = 10 + 0.1x + 0.1y + 0.01x2 + 0.01y2 + 0.01xy is
shown in Fig. 1 (right). The realizations are on a 200× 200 grid so using the exact
MLE with 40000 data points is impractical.

Figure 2 shows the results on applying our proposed resampling AMLE method
for a simulated random field with no drift (Fig. 2 left) and with a second order drift
(Fig. 2 right). The number of samples used here in resampling was 100. When there
is no drift, the estimates are unbiased and consistent (the variance decreases with
increasing m). The results are acceptable even for m = 1 so we can use m = 1 for
virtually any data size since the procedure requires only O(n) operations. On the
other hand, when a drift is present, the procedure gives good estimates of drift and
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Fig. 1 Left: Realization of a second order stationary Gaussian random field with isotropic expo-
nential semivariogram. Right: Realization of the left plus a second order drift

Fig. 2 Sampling distributions of the estimated range by our AMLE method for different values of
m with (1) no drift (left) and (2) the second order drift (right)

variance but the estimate of the range is biased (with a negative bias of a 14 % of the
true value of the parameter in the present example). However, the bias can be easily
corrected on following a computational procedure described in [8].

4 Conclusion

Different approaches of AMLE have been proposed in the scientific literature. We
have extended the approach of Vecchia through resampling; our approach can be
used for any large data sets (lattice data or irregularly spaced data). Further, our
approach provides some measures of uncertainty. In the drift case, the estimates are
biased (as it happens with exact MLE), and so some correction procedure needs to be
used, e.g., use the method of [8]. Although only one experiment has been described
here, some further experiments have given similar results. In future, we intend to
investigate analytical properties of our resampling AMLE method, and carry out a
comparison with alternative methods.
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A Cross-Polar Modeling Approach to Hindcast
Paleo-Arctic Mega Icebergs: A Storyboard

Reinhard Furrer, Nina Kirchner and Martin Jakobsson

Plow marks, observed at present water depths shallower than≈1000 m (Fig. 1a) and
caused by icebergs originating possibly from a large ice shelf complex confined to the
Amerasian sector of the Arctic Ocean roughly 135,000 years ago (Fig. 1b), provide
clear evidence of glacial erosion at the Arctic Ocean seafloor.

The statistical approach to assess the likelihood of such paleo-arctic mega ice-
bergs is based on estimating characteristic properties from 12 present day Antarctic
ice shelves (Fig. 2), for which estimates are pooled (Fig. 3). Assuming that similar
relations held for the Paleo-Arctic ice shelves, we predict the maximal draft (depth
below sea level) along the calving front of the paleo ice shelf complex (Fig. 4).

We do not claim present-day Antarctic conditions to be a modern analogue for
paleo-Arctic glacial conditions, yet our modeling approach provides a range of pos-
sible Arctic Ocean paleo ice shelf drafts, based on considering present dimensions of
Antarctic ice shelves as well as firm-based statistical techniques. To model extreme
draft values we use a peak over threshold modeling, illustrated here with the Amery
Ice Shelf (69◦45′S 71◦0′E, Fig. 2a). The draft values are cleaned from spurious out-
liers and only values larger than some threshold are considered (blue line, Fig. 2b).
To address the spatial dependencies in the values, we decluster the data (run length
2) and retain the cluster maxima (red dots, Fig. 2b) to which we fit a generalized
Pareto distribution (GPD; red line Fig. 2c). The choice of the GPD is mathematically
driven by limiting arguments of peak over threshold models. The fit is then assessed
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Fig. 1 a Iceberg scour marks on the Arctic Ocean seafloor (Moris Jessup Rise north of Greenland A
and Yermak Plateau north of Svalbard B), and b hypothesized ice shelf complexes in the Amerasian
sector of the Arctic Ocean, ca, 135,000 years ago
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Fig. 2 Modeling extreme drafts of a contemporary Antarctic ice shelf (Amery)

and validated (P-P and Q-Q plots, Fig. 2d and parameter estimates against thresh-
old, Fig. 2e) and the threshold may be adjusted (iteratively). Measured calving front
lengths are, due to their wiggliness, roughly 1.8 times longer (black dots, Fig. 2f)
compared to the sketched smooth fronts of the hypothetical paleo-arctic ice shelf
complex (Fig. 1b).

We have made a similar analysis for the following Antarctic ice shelves: Brunt,
Drygalski, Ekström, Filchner, Fimbul, Mertz Glacier, Riiser-Larsen, Ronne, Ross,
Shackleton and West. Estimates of the scale and shape parameters (including bivariate
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Fig. 4 Paleo-Arctic mega iceberg return drafts as a function of calving front length

uncertainty), mean cluster size (measured by the inverse of the extremal index),
threshold, number of clusters and relative calving front length are given in Fig. 3.

We assume that the draft can be modeled by a stationary series for which the D(u)

condition [2] is satisfied. Draft prediction is based on the concept of return levels
[2], where the return period is associated with length of calving front instead of time
and here termed return draft. Thus, the m-kilometer return draft is expected to be
exceeded on average once every m kilometers along the calving front. The return
draft quantifies thus the deepest reaching icebergs to have calved off a paleo-arctic
ice shelf front.

The return drafts strongly depend on the shape and scale parameters of the GPD.
Therefore, the 12 estimates are classified into three groups and each is represented by
an appropriate value for scale/shape and its uncertainty (colored dots and 75 % con-
fidence ellipses based on Gaussian approximation Fig. 3a). The remaining estimates
have a weaker influence and we use the mean values (dots Fig. 3b, c).

Figure 4 gives various return drafts that can be compared to calving front lengths
of hypothetical ice shelves. Figure 4a gives for an “average” parameter set (green,
cyan, magenta cases in Fig. 3) the return draft and pointwise symmetric confidence
interval approximations which are—by nature of extrapolation—quite large. The
vertical lines in Fig. 4a are front lengths from [1, 3].
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Figure 4b shows return drafts of 100 parametric bootstrap samples of three
different parameter settings (means and uncertainties given in Fig. 3a; color matches).
Fixing shape and scale but varying threshold, mean cluster size, number of clusters,
etc. (according to Fig. 3b, c) leads to tighter bounds compared to those in Fig. 4b.

Assuming large ice shelf complexes (in terms of long calving fronts) confined
to the Amerasian sector of the Arctic Ocean, and the cross-polar approach to be
a valid analogy [4], ice bergs with drafts larger than 800 m were likely to exist.
Obviously, some parameters in the statistical (frequentist) model are heuristically
determined. However, preliminary analysis suggests that reasonable priors assigned,
the conclusions would be very similar in a fully Bayesian model.
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Towards a Statistical Treatment of Images
Acquired by Automated Mineralogy

Sandra Birtel, Raimon Tolosana Delgado, Stephan Matos Camacho,
Jens Gutzmer and K. Gerald van den Boogaart

1 Introduction and Definitions

The aim of this contribution is to introduce a kind of statistical data to the mathemat-
ical geosciences community: image databases acquired by automated mineralogy.
Similar to compositional data, a deeper understanding of this kind of data is necessary
to develop an adequate treatment, as straight forward applications of standard tools
of classical statistic are misleading. The Mineral Liberation Analyzer (MLA) pro-
vided by the company FEI is a scanning electron microscope that functions largely
automated, collecting and processing data based on backscattered electron images
(BSE). An electron beam scans the samples at high resolution to define regions of
homogeneous grey tones (as a result of electron interaction with atoms of the sam-
ple). Each of these regions is then classified as a possible mineral, and additional
energy dispersive X-ray spectroscopic (EDS) sensor allows to qualitatively identify
the elemental content at the beam location. This combination allows a fast distinc-
tion of different minerals on a polished 2D surface. For further information of MLA
analyses see [1, 2].
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Two different types of samples are typically analyzed: The MLA was originally
designed for liberation analysis of processing products, e.g. granular material. Here,
particles are embedded into an epoxy matrix. This is called a particle sample. A par-
ticle is said to be liberated if it only consists of value minerals or waste minerals.
That is relevant because only liberated particles can be correctly sorted in mechanical
separation during ore processing, without wasting or diluting the value mineral. In
this usage, the MLA is often used to quantify the degree of liberation, and to investi-
gate, the reasons for the incomplete separation in the mechanical separation steps of
ore processing, hence the name liberation. Each single observation (in a statistical
sense) consists thus of an image of all particles and their identified minerals. How-
ever, measurements can be performed on samples before and after a certain sorting
or processing step, or at intermediate products along a process chain. Moreover,
for reasons mentioned later on, it is also often recommended to measure a single
size fraction, called a sized sample. Thus, multiple measurements can have complex
relationships among them, with several sized samples belonging together to a larger
meta-observation, or several observations with external control variables.

The automated mineralogy can also be applied to undisturbed samples, to charac-
terize the microstructure of the original ore, i.e. at the start of the processing chain,
leading to a 2D image of the undisturbed ore’s microstructure. These can be called in-
situ samples. Microstructure refers to the appearance of mineral grains and relation of
grains to each other, such as grain shape, grain boundaries, grain size, but not on their
crystallographic orientation (i.e. microtexture). The same dataset can thus include
several MLA-measurements of different data structure, different interpretations and
different observation-observation relations (e.g. different size fractions of the same
sample, or same size fraction along a process). Automated mineralogy generates a
hierarchy of different objects: A sample consists of particles, i.e. physically bounded
objects, which might consist of multiple minerals. A connected area of the same
mineral is a mineral grain. An in-situ sample consists exclusively of non-liberated
mineral grains, i.e. one particle. Mineral grains may consist of monomineralic crys-
tals, called (crystal) grains. Crystal grains can consist of grains with high angle or
low angle grain boundaries, the latter called ‘subgrains’. Moreover mineral grains
and crystal grains of the same phase can show intra-grain and inter-grain chemical
variations, through solid solutions (e.g. feldspar, sphalerite). These variations might
be identified relative to each other, however the mineral chemistry cannot be quan-
titatively characterized, neither can single crystals within crystal grains currently be
identified by MLA.

2 Stereological 2D Analysis of a Single MLA Image

Particles, mineral grains, and crystal grains are 3 dimensional objects. A mineral
particle is liberated if it only contains one type of mineral (value or waste). However
these 3D objects are only observed in a 2D section, considered random. A liberated
particle will always appear liberated in the 2D cross section, but a non-liberated one
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might appear as liberated. Inferring the proportion of actual liberation (3D) from
the proportion of apparent liberation (2D) is another important task of automated
mineralogy.

The stereological theorem [3] allows to map several 2D portions to corresponding
3D portions, on average. This theorem directly implies that volume percentage of
each mineral present in the 3D material (the modal mineralogy) can be estimated
from their expected area percentage. Under the additional assumption of isotropy
the theorem yields that the surface boundary proportions between minerals can be
estimated from the length proportions of boundaries between mineral grains observed
in the 2D sections. Finally, the 0-D version of the theorem provides a similar result
linking the apparent surface density of triple points in 2D to the volumetric density
of edges connecting three different minerals. Moreover, any kind of planar multiple
point statistics can be directly estimated from its apparent counterpart.

Some of these proportions and densities must be corrected to account for the
average projection area of a unit square,

∫ pi
2

0
2π sin t cos t dt = 2π

[
1

2
cos2 t

] π
2

0
= π.

Thus, to get the corresponding boundary surface density, the apparent contact
length density has to be multiplied by a factor of 1

π
in the in-situ samples; and reduced

even more in particle samples by multiplying it by the particle volume portion of
the grain mount, estimated by the area portion of the particles in the image. Other
2D averages typically do not correspond to interpretable 3D averages: the average
portion of liberated grains, the portions of neighboring grains of given types, the
average particle size, the proportions of particle sizes or grain sizes, correlations of
particle sizes and type, etc. The current data analysis software available for automated
mineralogy only covers some of these statistics, but none of the following issues.

3 Stochastic Inversion of the Stereological Problem

The properties relevant for processing like, e.g. the portion of particles liberated in
3 dimensions, the portion of mineral B getting into a concentrate of mineral A, the
relative chance that mineral A behaves more brittle than mineral B during a specific
milling process, etc. are not directly accessible by MLA or any other analytical
procedure. All this information is, however, in principle qualitatively available. The
challenge is to get quantitative information on such properties, which could e.g.
be used to optimize mineral processing chains, to prove an improvement through
a statistical test, or to predict material streams. Matos Camacho et al. [4] proposes
a method to predict the actual liberation from apparent liberation of a comminuted
(i.e. crushed and milled) rock.
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4 Subsample Recombination

A further issue is the combination of several subsamples of different typical particle
size fractions into a single observation. This can only be achieved with information
on the relative masses of each fraction, i.e. with the particle size mass distribution
(akin to the grain size distribution in sedimentology). However, even with that infor-
mation, the recovery of 3D global properties from 2D subsample properties might
not be a simple convex combination of the 3D properties inferred from each subsam-
ple, because many of them are ratios and may therefore be subject to compositional
analysis rules [5].

5 Particle Tracking and Process Prediction

Finally, several samples may be related through a process, a chain of processes
or a batch of alternative processes. In other words, we might have a set of MLA
runs where each of them has also some control variables recorded. It is thus natural
to devise explanatory models for the MLA output as a function of the explanatory
variables. In this way, regression can be used with respect to a milling time or milling
energy to predict the optimal milling. Or the output of several flotation treatments can
be compared within a typical ANOVA scheme, to determine significant differences
between treatments or perhaps interactions between controls.
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Distributional Assumptions and Parametric
Uncertainties in the Aggregation of Geologic
Resources

John H. Schuenemeyer and Ricardo A. Olea

1 Introduction

Concern over climate change has triggered modeling of the ability of porous saline
formations as well as exhausted oil and gas fields to store CO2 from industrial
processes in what are referred to as storage assessment units (SAUs) [1]. Most often
policy considerations call for the aggregation of these resources to a basin, regional
or national level. The first level of difficulty in a stochastic aggregation results from a
recognition that adjacent units are rarely independent or totally dependent. A second
level of difficulty results from a lack of hard data, which necessities that dependency
be estimated by expert judgment. Another complexity is the fact that the probability
distributions of resources made independently for each AU or SAU tend to be skewed.

2 Elicitation and Specification of Dependency

Expert judgment is used in the earth sciences in multiple ways. Among those is
specifying the form of the distribution of the size of frequency of an energy or
mineral resource within a play or basin. For example, the expert may know that the
same level of porosity permeates adjacent SAUs. Thus if the estimate of one is biased,
the other will also be biased, although not necessarily by the same amount unless the
two SAUs are totally dependent with respect to porosity. An approach we used in the
aggregation part of the CO2 assessment was to ask assessors independently, if say,
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the porosity in one SAU was misspecified, how would it affect their estimate in an
adjacent SAU [2]. If the answer is not at all, then it can be assumed that the two SAUs
are independent. If the answer is totally, then it can be assumed that the two SAUs are
totally dependent (again with respect to porosity). Unfortunately, the answer is often
somewhat. The next task it to try to have the assessor quantify “somewhat” by the
use of ordinals, low, medium, and high. Subsequently correlations will be assigned
to these ordinals.

It is our experience that when scientists think of correlation, it is the Pearsonian
correlation. This is appropriate when the correlation pattern is generated by a bivariate
elliptical distribution of which the bivariate normal is a special case. An alternative is
the Spearman correlation, which is based upon rank order, and sometimes is a more
appropriate measure of association for skewed distributions.

For the study of CO2 storage capacity recently completed [2], the approach to
specifying dependency was via pairwise correlation coefficients initially expressed
as ordinals. Of course, choosing pairwise correlation coefficients does not necessar-
ily yield a proper correlation matrix. An iterative projection procedure [3], which
minimizes a Frobenius norm using projections, made the needed minor adjustments
when the specified matrix was improper. There are several alternative procedures to
adjust an improper correlation matrix [4, 5].

3 Correlation and Conditional Probability

The perception of correlation for a skewed bivariate distribution is different and less
meaningful than for an elliptical distribution. The correlations for bivariate normal
and lognormal distributions are shown in Fig. 1a and b respectively. The correlation
from Gumbel copulas for normal and lognormal marginals is shown in Fig. 1c and
d respectively. A person viewing the above diagrams will recognize the association
between the variables in Fig. 1a as being moderate to high, while it is much more
difficult to make the same judgment for the other (Fig. 1b, c, and d) scatter plots.
Non-elliptically shaped bivariate distributions do not easily lend themselves to visual
interpretation of correlations.

There are also other issues associated with the relationship between marginals
and their joint distributions. Embrechts et al. [6], show that random variates from
two distributions with identical marginals can have different joint distributions and
patterns of dependency with the same correlation. Notice that the dependency in
the bivariate lognormal distribution (Fig. 1b) and Gumbel copula with lognormal
marginals (Fig. 1d) is mostly in the left tails (small values). The dependency in the
bivariate Gumbel with normal marginals (Fig. 1c) is stronger in the right tails. Thus,
if the dependence is correctly specified and the bivariate distribution is Gumbel, then
a large value in say variable V1G (Fig. 1c) would be accompanied by a large value
of V2G. For the lognormal distributions (Fig. 1b and d), the dependency occurs for
small values, and little if any inference could be made about the association between
large values from V1L and V2L or V1GLN and V2GLN. In some sense then the
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Fig. 1 Correlations: a Bivariate normal; b bivariate lognormal; c bivariate Gumbel copula with
normal marginal; d bivariate Gumbel copula with lognormal marginals, all with ρ = 0.7 and
n = 500. The variables identify the associated marginal distributions

bivariate normal distribution is a compromise between dependencies in the right and
left tails. (See Chen et al. [7]) for a discussion of copulas in petroleum resource
assessment.

4 Correlation for Lognormal Versus Normal Distributions

Consider g(X,Y) a bivariate normal distribution and arbitrary transformations T,U :
R → R, then Kendall et al. [8] showed that

∣∣∣ρ(T (X), T̃ (Y ))
∣∣∣ ≤ ρ(X,Y ). Tho-

mopoulos and Johnson [9] discuss this relationship as it applies to the bivariate log-
normal distribution. The specific relationships between correlations for the bivariate
lognormal and bivariate normal vary as a function of the bivariate normal standard
deviations, however, the inequality shown above is true for all. As an example, if the
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two standard deviations of the bivariate normal were both one and the corresponding
correlation was 0.8, the bivariate lognormal correlation would be 0.71. So that the
correlation supplied by an assessor with respect to a bivariate normal distribution
would serve as an upper bound on other distributions.

An obvious conclusion is that correlations can be misleading when dealing with
non-normal distributions. An important point made by Kat [10] is that for non ellip-
tical distribution, the range may not be between−1 and +1 but some much narrower
interval.
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Modeling Extremal Dependence Using Copulas.
Application to Rainfall Data

María I. Ortego, Juan J. Egozcue and Raimon Tolosana-Delgado

1 Introduction

Describing dependence between two or more variables is a key problem in applica-
tions. In this work, the dependence between daily rainfall in two nearby locations
(Vergel de Recons and Simat de Valldigna, Spain) is analysed. The dataset consists
of 30 years daily rainfall record [2, 7]. For each location, log-precipitation over a
high enough threshold (Fig. 1) has been modeled using a Generalized Pareto Distri-
bution (GPD) [1]. The dependence between these rainfall variables can be described
through copulas. A new family of copulas (CrEnC copulas) is introduced and applied
to the dataset.

The GPD provides a suitable model for excesses of X over a high enough threshold
x0, Y = X − x0 given X > x0 [6]. The GPD cumulative probability function is

FY (y|β, ξ) = 1−
(

1+ ξ

β
y

)− 1
ξ

, 0 ≤ y < ysup (1)

M. I. Ortego (B)· J. J. Egozcue
Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, C/ Jordi Girona,
1–3. Campus Nord UPC. Edifici C2, Barcelona, Spain
e-mail: maria.isabel.ortego@upc.edu

J. J. Egozcue
e-mail: juan.jose.egozcue@upc.edu

R. Tolosana-Delgado
Departament of Modelling and Evaluation, Helmholtz-Institut Freiberg fr Ressourcentechnologie,
Halsbrcker Strae 34, Freiberg, Germany
e-mail: r.tolosana@hzdr.de

R. Tolosana-Delagado
LIM-UPC, Barcelona, Spain

E. Pardo-Igúzquiza et al. (eds.), Mathematics of Planet Earth, 53
Lecture Notes in Earth System Sciences, DOI: 10.1007/978-3-642-32408-6_13,
© Springer-Verlag Berlin Heidelberg 2014



54 M. I. Ortego et al.

Joint excesses over thresholds
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Fig. 1 Joint excesses of log-rainfall over the selected threshold (R+2 scale) (left figure). Contours
of the estimated CrEnC copula density for a value of the sample of the posteriori distribution of
parameters (R2 scale) (center figure). Contours of the geometric average of the densities of the
estimated CrEnC copula density for the sample of the posteriori distribution of parameters (R2

scale) (right figure)

For ξ = 0, the cdf (1) is an exponential model. For ξ < 0 the support has the upper
limit ysup = −β/ξ (Weibull domain of attraction).

Copula distributions are a useful tool to describe dependence between two or
more random variables [4]. Copula functions join univariate cumulative distribution
functions to obtain their multivariate CDF. The use of copula functions allows to treat
separately the marginal distributions of the variables and the dependence structure
among them. Sklar’s theorem [10], ensures that under continuity hypothesis, the
bivariate distribution between two variables can be expressed in a unique manner
as a combination of the marginal distributions and their copula. The most popular
version of Sklar’s Theorem appears in [9]. This version of the theorem is expressed
in terms of random variables.

One of the most useful properties of copulas is their invariance for strictly monoto-
nous transformations of the random variables: the copula captures the form in which
Z1, Z2 are related, independently of the scale in which each random variable is mea-
sured. Copulas capture nonparametric aspects of the relationship between variables,
and therefore, association measures are properties of the copula.

2 CrEnC Copulas

Let Z1, Z2 be two random variables with joint density function f12 (z1, z2). Let
ϑ = {ϑ1, . . . , ϑJ } be a set of joint moments of these variables, with the conditions
of [8] and invariant for monotonous transformations of the variables [9]. If ϑZ1,Z2

is one of these moments and α and β are strictly monotonous functions (a.s.) over
Sup(Z1) and Sup(Z2), respectively, then ϑα(Z1)β(Z2) = ϑZ1,Z2 .

The mutual information of two r.v. Z1, Z2 is based on the Kullback-Leibler diver-
gence [3]. It measures de distance between both variables in the sense of information.
This measure is independent from the marginal CDFs.
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Given two absolutely continous r.v. Z1,Z2, with marginal densitiesϕ1(z1), ϕ2(z2),
the joint density of Z1,Z2 of minimum cross-entropy, given marginal densities
ϕ1(z1), ϕ2(z2) and a given set of invariant for monotonous transformations of the
variables moments ϑ has the form [8][Th. 3]:

f12(z1, z2) = ãα(z1)̃bα(z2) exp

[
J∑

k=1

αk Tk(z1, z2)

]
, (z1, z2) ∈ R

2, (2)

where {Tk(z1, z2), k = 1, . . . , J } are the corresponding statistics for these joint
moments, i.e., Tk(z1, z2) is the function that

∫ ∫

R2
T (z1, z2) f12(z1, z2|θ)dz1dz2 = ϑk .

Definition 1 (CrEnC Copula) The copula of minimum cross-entropy, given uni-
form marginal densities and a given set of invariant for monotonous transformations
of the variables moments ϑ has the form:

C12(c1, c2) = ãα(u1)̃bα(u2) exp

[
J∑

k=1

αk Tk(u1, u2)

]
, (u1, u2) ∈ [0, 1]2. (3)

3 Results

The main goal is to model dependence between log-rainfall in two locations (X1, X2)
through a CrEnC copula. Excesses of log-rainfall over a suitable high enough thresh-
old (Y1,Y2) are modelled using GPD variables, with marginal densities gpd1(y1),
gpd2(y2). The joint density of minimum cross-entropy of (Y1,Y2) given a set of
invariant for monotonous transformations of the variables moments ϑ and the mar-
ginal densities has the form of Eq. (2), and their CrEnC copula has the form of Eq.
(3). As variables with support in [0, 1] often have a relative scale [5], both variables
are transformed into R

2 through a probit transformation: Zi = �−1(Yi ), i = 1, 2
where �(·) is the CDF of the N (0, 1) distribution. In this way, the suitable scale
for data is taken into account, and due to the invariance property of copulas and
the selected moments, the expression of the joint density of (Z1, Z2) of minimum
cross-entropy, given the set of moments ϑ and the normal marginals has the form of
Eq. (2).

The parameters of the marginal GPD distributions (ξ, β) and parameters αk, k =
1, . . . , J of CrEnC copulas have been estimated using a Bayesian Gibbs sampler.
The estimated density for a set of simulated values of the posteriori distribution of
parameters are shown in Fig. 1. Figure 1 shows a geometric average of the densities
of the posteriori sample. CrEnC copulas are flexible and can describe different types
of dependence.
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Revisiting “Estimating and Choosing”

Jean Serra

1 Introduction

For most of the people who immerge themselves in Geostatistics, the work of Georges
Matheron gives the impression of a huge mathematical cathedral. Its large dome
rests on dense mathematical formulae, rarely followed by experiments, but often
associated with nice approximations which make them tractable.

Then the reader puts Matheron’s book back, and thanks the geostatistical softwares
which take all that staff in hands, and deliver well kriged maps or sound estimations.

However, when, 25 years after its publication, we reopen “Estimating and Choos-
ing” [1], it is a quite different personality which emerges from the reading. It is a
physicist who reveals himself, and neither a mathematician nor a geologist. It is a
man who strongly takes in each hand one extremity of a long chain, and tries to
discover what lies in the middle. The phenomena he studies are so erratic that it
becomes imperative to have recourse to probability, but on the other hand each geo-
logical phenomenon, each ore body is unique and will never be reproduced in the
future. How to conciliate both demands?

A physical concept is a formal relation between observable variables, called
regionals in [1]. It ranges from the simplest linear regression to the most sophis-
ticated minimizations. The three flashes presented below aim to illustrate G. Math-
eron’s physical approach.

2 The Range

Intuitively, the range a of the covariance C(h) of a stationary R. F. is the distance
after which correlations become negligible. Theoretically, the fluctuation variance
of the local mean z inside the domain S is:
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V ar(z − m) = 1

S2

∫
C(h)K (h)dh = 1

S2

∫
C(h)[K (0)+ hK ′(0)+ ε]dh

where K (h) stands for the geometric covariogram of the domain S. To say that the
covariance becomes negligible comes back to replacing the covariogram by its first
term V ar(z − m) � 1

S

∫
C(h)dh. By introducing then the range

A =
∫

C(h)dh, (1)

we obtain the very simple form

V ar(z − m) � 1

S

∫
C(h)dh = A

S
(2)

where A appears as the intrinsic scale of the regionalized variable.
A problem arises here. By using an integral over the whole space in Relation

(1), we are appealing to characteristics of the model which do not correspond to any
objective properties of the real phenomenon. Different covariance may be practically
identical inside S, but lead to completely different values of the range A, or even to
an infinite value.

Matheron overcomes the objection by carrying out an operational reconstruction
of the concept. Divide mentally the domain S into a certain number of elements s of
approximately equal size. It is then easy to define numerically the variance v(s/S)

of the finite population of mean values of the REV z over each of the elements s
whose union is equal to S. Associated with the regional v(s/S) there is as usual,
in the model, a random variable V (s/S) whose expectation E[V (s/S)] = σ2(s/S)

may be called the theoretical variance of s in S. The latter quantity is a parameter
of our stationary model, which can be easily expressed in terms of the covariance
alone, from Eq. (2):

σ2(s/S) = A

(
1

s
− 1

S

)

Therefore, if the model is good, we should expect to observe a relationship of the
form v(s/S) = A( 1

s− 1
S ). This relationship is a physical law since v(s/S) is a regional

magnitude. Since we can experimentally check (after the fact) whether beyond some
value of s this law is actually valid, we have succeeded in re-constructing the concept
of integral range σ2 A in operational terms. It is now the physical law v(s/S) that
constitutes itself the operational definition of the concept.
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3 Covariance or Variogram?

Certain physical phenomena can exhibit a quasi infinite range of fluctuations, and
present a variance which increases without limit with the size of the domain of
experiments (ore deposits, rains…). Then the estimated variance [σ2

0/Z ]∗ of a point
inside the domain Z increases indefinitely with Z , at any scale of analysis. This
means that the stationary model is just inadequate: σ2

0/∞ = C(0) being infinite, the
covariance no longer exists. However, the increments of f may still exist and have
a meaning. By assuming them stationary, we can study their variances, also called
variogram γ(h)

γ(h) = E[ f (x)− f (x + h)]2

Clearly, we always have γ(0) = 0 , and

σ2 <∞ ⇔ γ(h) = 2[C(0)− C(h)]

When σ2 = ∞, although the covariance vanishes, the variogram remains defined
and new behaviors at infinity appear. Of course, one could argue that numerical data
are always finite! We will answer the objection by means of a very suggestive model
that lends itself to easy calculations, namely the Poisson steps. Start from a Poisson
point process of variance λ in R

1, and place a jump of amplitude δ at each Poisson
point. The random variable δ follows a law of mean 0 and of variance σ2. In such
a model the increments only are defined, their average is equal to zero and their
variogram to

γ(h) = λσ2h.

When the data are known along a finite segment of length L , the variogram is
estimated from experimental data by the relationship

γ∗(h) = 1/2(L − h)

∫ L−h

0
[ f (x + h)− f (x)]2dx

where the right member admits for expectation E[γ∗(h)] = γ(h) = λσ2h. But
whereas the mean of the phenomenon does not exists, it is always possible to put
fL = 1/L

∫ L
0 f (x)dx , and to introduce the pseudo-covariance

Cov∗(h) = 1/(L − h)

∫ L−h

0
( f (x + h)− fL)( f (x)− fL)dx .

Such a pseudo-covariance admits for expectation

E[Cov∗(h)] = λσ2(L/3− 4/3.h + 2/3.h2/L) (0 ≤ h ≤ L)
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where the actual phenomenon (behaviors at the origin and at infinity, parabolic
increasingness instead of a linear one) is completely distorted. The physicist, here,
will begin by checking whether the law of Eq. (2) is satisfied, and when not, he will
adopt the variogram approach.

4 The Stationarity

In geostatistics, all local models involve stationarity, for the variable itself, or for
its increments, or for the residuals of order k. But what can mean stationarity. in
modelling a phenomenon which is not only unique, but moreover always bounded?
Here again, G. Matheron builds an operational reconstruction of physicist.

Consider for example, the linear estimate z∗(x) of the REV z at point x of the
type

z∗(x) =∑
iλ

i z(x + hi ) (3)

We have chosen a translation-invariant algorithm: the weights that appear in Eq. (3)
may depend on the vectors hi of a moving neighbourhood V but not on the point x to
be estimated. We will interpret the algorithm by choosing a moving neighbourhood
V , a domain S0 of the REV z and introducing the RF

Z(h) = z(x + h)

where x is the random point obtained by equipping S0 with the uniform probability
law. If the REV is is identically zero outside S0, then the RF Z is stationary over V ,
with the covariance

C(h, h′) = 1

S0

∫
z(x)z(x + h − h′)dx

By so doing, we make stationarity. a (restrictive) characteristic, chosen by us, of
the class of estimators to be used rather than considering it as a property of physical
reality, the REV, or an a priori characteristic of a RF model. The decision to only use
estimators that have a local character and are associated with translation-invariant
algorithms does not in any way presuppose either the stationarity. or the homogeneity
of the phenomenon in space. The decision appear rather judicious if the phenomenon
is actually homogeneous in space, but it will not by any means appear absurd if the
phenomenon is heterogeneous.
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Pragmatic Bayesian Kriging for Non-Stationary
and Moderately Non-Gaussian Data

Konstantin Krivoruchko and Alexander Gribov

1 Introduction

Development of reliable real time automatic statistical interpolation model is a com-
mon issue in the GIS community. In the Geostatistical Analyst, we regularly update
and improve the semivariogram model fitting algorithm and the most recent ver-
sion of the software performs much better than the first one released in 2001 and
described in [1]. However, there is little hope that the default semivariogram model
will be close to optimal because in practice the observations may include erroneous
values, measurement errors can be large and vary across space, the data are often
contaminated by trend, and the data are rarely Gaussian.

In practice, interactive data exploration and modeling allows the researcher to find
a reliable geostatistical model when the number of samples is relatively small, usually
less than a thousand. However, a large number of GIS users prefer non-interactive
interpolation for both small and very large datasets.

In the case of nearly perfect data (several hundred samples of nearly stationary
Gaussian data without errors), a known solution for the automatic data interpolation
problem is fully Bayesian kriging with non-informative or objective prior distrib-
utions for the parameters, although there are still some problems, including large
computational time and understanding of the meaning of the prior distributions.

Since there are many Geostatistical Analyst users who asked for automatic inter-
polation, our goal became the development of a series of semi-automatic empirical
Bayesian kriging models that work reasonably fast; do not require specification of
the prior distributions for the model parameters; produce reliable outputs with default
parameters; allow moderate local and large global data non-stationarity; allow for
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varying measurement error; locally transform data to Gaussian distribution, if needed;
use explanatory variables; work with counts and proportions collected in points or
polygons; simulate (transformed) Gaussian, binomial, and negative binomial fields;
and potentially can be used on supercomputers or clusters.

A non-technical description of Geostatistical Analyst’s empirical Bayesian krig-
ing models can be found in [2] and an article with mathematical details is under
review. In this paper we briefly describe our basic models and illustrate their usage
using 1.35 billion samples collected using LiDAR technology.

2 Empirical Bayesian Intrinsic Random Function Kriging and
Kriging with Local Data Transformation

There are several model candidates for semi-automatic interpolation, including
objective Bayesian kriging [3], low-rank kriging [4], approximations by Gaussian
Markov random fields [5], and Bayesian bootstrap [6]. Although all these models are
valuable, we found that they cannot be safely used in general purpose commercial
software for reasons specific to each model.

We decided to work on the Bayesian bootstrap model enhancements and general-
ization. The authors of [6] use informative priors simulated from the data by simple
kriging with estimated covariance model. It was assumed that the data are normally
distributed and the mean value is constant and independent from the covariance
model parameters. The main differences between our implementation and the model
discussed in [6] are the following:

• Our calculations are done locally on spatially-contiguous subsets, possibly over-
lapping, and the simulations from each subset are mixed together to capture the
local spatial structure. The authors of [6] do calculations globally (on the entire
dataset).

• All model parameters are estimated simultaneously.
• After each simulation, we do a Bayesian model update while the authors of [6]

keeps simulating from the same model without updating. The difference between
prior and posterior semivariograms is usually large as shown in Fig. 1.

• We support intrinsic random function kriging (IRFK) of order zero and one and
also simple kriging with or without first order trend removal. The authors of [6]
considers simple kriging without detrending. We use the following generalized
covariance models: linear, power, thin plate spline (with IRFK) and the K-Bessel
covariance model (with simple kriging.)

• The authors of [6] supports Box-Cox transformation. We support a much more
flexible data transformation described in [7].

• Our software is interactive (the user can see a large number of graphs at the specified
locations, including those that are shown in Figs. 1 and 2) and it works very fast
due to large effort spent on algorithms optimization.
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Fig. 1 An example of prior (left) and posterior (right) power semivariogram models. Red lines
show quartiles of the distributions. Prior models are weighted equally. The weight of each posterior
model is represented by line darkness

Fig. 2 Distributions of the data transformations (left) and the range parameter (right)

Prediction with variable model parameters is very useful when the number of
samples is insufficient for accurate model fitting. It can be even more useful in the
case of large datasets when the model is changing across space and the changes can
be non-smooth, as in the case study in [8].

When the dataset is large, the software creates subsets with specified number of
samples M (M can vary from 30 to 500) recursively by splitting the data locations on
two or three subsets. The division on two subsets is a straight line which divides the
data into two equal parts in such a way that the sum of the squares of the deviation of
each point from the corresponding center of mass is the lowest. In the case of three
subsets, three beams from the center of the area divide the plane. For each subset
with the number of samples not equals to M, the samples are added or removed to get
exactly M samples, if possible. When the prediction searching neighborhood includes
observations from several data subsets, the datum contribution to the prediction is
divided between the subsets.

Figure 3 shows an example of predictions and prediction standard errors produced
using more than a billion samples collected using LiDAR technology in part of Ohio,
USA [9]. We used a model with the least number of parameters, IRFK, with linear
semivariogram (this model describes Brownian motion, which can be relevant to
elevation formation). It is interesting that the variation of the prediction standard
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Fig. 3 Predictions using 1.35 billion samples collected using LiDAR technology in part of Ohio,
USA (left) and enlarged prediction standard errors in the central part of the data domain (right).
The data are from [9]. The units are feet. IRFK with linear semivariogram was used

errors is much larger than the variation of the predictions (however, the result of
elevation modeling, a DEM, is almost always available as a prediction surface only.)

Extensive testing using a large variety of data showed that our model is a reliable
automatic interpolator, which produces accurate predictions with non-stationary and
non-Gaussian data even when the data vary non-smoothly across space.
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Geostatistical History Matching Conditioned
to Seismic Data

Amílcar Soares, Leonardo Azevedo, Sara Focaccia and João Carneiro

1 Introduction

In both stages of hydrocarbon reservoir characterization and development it is
essential to get reliable and detailed reservoir models in terms of the spatial distribu-
tion of its internal petrophysical properties (e.g. porosity, permeability). To decrease
the uncertainty related with these models, and therefore better assess the associ-
ated risk, they should match all the available information from the subsurface: the
observed production data and the seismic reflection data. In both cases, to retrieve
reliable subsurface models we are facing highly non-linear inverse problems with
non-unique solutions. These inverse problems are commonly designated by history
matching and seismic inversion respectively.

History matching is based on two main features: the highly non-linear relationship
between the local petrophysical properties, the models parameters that one aims to
optimize and the dynamic response of the reservoir, the observed production data; and
the scale problem between petrophysical properties, simulated for the entire reservoir
grid, and the dynamic responses that are obtained locally at the wells location.

Seismic inversion methods are based on the physical relations between earth mod-
els (acoustic and/or elastic impedance models), which are intrinsic of the subsurface
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geology, and the seismic amplitudes (the seismic reflection data itself). The latter
are obtained through convolution of the reflectivity coefficients, easily derived from
the impedance models, with a known wavelet, estimated from each seismic dataset.
Seismic inversion problems may be posed in a geostatistical framework. Within this
basis one aims to simulate stochastic acoustic impedance models (and/or elastic
models), derive the corresponding synthetic seismic which is then compared with
the recorded seismic data. The objective is to iteratively minimize the differences
between the synthetic and the real seismic data until a threshold is reached.

However, if the physical nature of these inverse problems is very distinct, both
have the same parameter solution space: the reservoir grid itself.

We propose herein a new geostatistical methodology for history matching con-
ditioned to seismic data. With this approach the stochastic Earth models simultane-
ously match the production data for a given reservoir and produce a synthetic seismic
reflection data that matches the observed one.

2 Methodology

We propose a new methodology based on a genetic algorithm where the perturbation
of the models is done recurring to the simulation and co-simulation of the reservoir
properties using Direct Sequential Simulation (DSS) and co-Simulation (co-DSS)
[1]. Our iterative inversion process can be summarized by the following steps:

1. Sampling of the parameters space by simulation of Ns facies images using the
direct seismic inversion of facies algorithm [2]. Briefly, this stochastic inversion
algorithm starts by defining a certain number of lithofacies that may be identified
in a petrophysical domain such as Vp/Vs versus Density. Then, from available
well-log data and using DSS, we simulate Ns density images that are then used as
secondary images in the co-simulation of Vp/Vs models. For each duplet of images
we classify it into a new lithofacies volume (Fig. 1, stage 1). On a second stage, Vp
and Vs images are simulated conditioned to the previously computed facies cube
(Fig. 1, step2). For the simulated elastic models (Ns triplets of density, Vp and Vs)
we compute synthetic seismograms, following Shuey’s approximation [3], and
compare the synthetic seismic response with the observed one (Fig. 1, step 3). At
the end of the inversion process we are able to retrieve the best elastic models that
better match the recorded data as well as the corresponding petrophysical models
(derived from the facies model by an appropriate Rock Physics model [4]).

2. For each petrophysical model created in (1) compute the respective flow simula-
tions and compare the obtained dynamic responses with the observed ones from
the production data;

3. From previous steps we are able to calculate the deviations between inverted
seismic data and recorded one, and between simulated dynamic responses and
real ones;
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Fig. 1 Direct seismic inversion of facies workflow [2]

4. Compose new “best” elastic and petrophysical models, from the Ns set of simu-
lated images in (1), that simultaneously better match the production data and the
observed seismic data. This “best” model is a composite model created by select-
ing patches from the set of simulated models that locally ensure the lowest misfit
between observed and synthetic data. For the areas surrounding the wells location
the preference will go to the models best fitting the production data, while for the
other areas we choose the models best fitting the real seismic data. The selection
of these patches is done by normalizing both the deviations for all the simulated
models in a multidimensional scaling referential;

5. Using a genetic algorithm concept, use the “best” models created in (4) as sec-
ondary variables in the parameters perturbation process by using a co-simulation
methodology [5] and return to (1).

This optimization iterative inversion process stops when the global match, of
both inverse problems, reaches a pre-defined target. Notice that being a stochastic
approach the final reservoir models not only match the seismic and the production
data but in addition the uncertainty is part of the solution itself.

3 Final Remarks

From the preliminary results, this new simultaneous inverse methodology is able
to retrieve subsurface Earth models with less uncertainty when compared with the
individual solutions retrieved by the traditional geostatistical approaches for both
history matching and seismic inversion. Also of notice is that most of the times
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the elastic models inferred by the seismic inversion solution disagree with the ones
obtained by the history matching solution. Simultaneously solving both the inverse
problems we ensure a joint solution for the above mentioned problems. In addition,
using a stochastic approach allows a comprehensive sampling of the uncertainty
space, as revealed by the multidimensional scaling approach, when compared with
single linearized and optimization approaches.
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Handling Soft Probabilities in Multiple Point
Statistics Simulation

Pierre Biver, Gregoire Mariethoz, Julien Straubhaar, Tatiana Chugunova
and Philippe Renard

1 Introduction

Mutiple Point Statistics (MPS) simulation is a geostatistical technique to simulate
complex lithology architectures using Training Images (TI’s). The first generation
of efficient MPS algorithms (Strebelle [4]) is based on the storage of Multiple Point
Statistics in a search tree; these statistics are subsequently used in a sequential sim-
ulation process. A second generation of efficient algorithms (Mariethoz et al. [3])
is based on the direct sampling of the training image during the simulation process
conditional to the pattern of the neighboring nodes of a point to simulate. The core
of the method is that once an appropriate configuration is found, the central point is
pasted on the simulation grid.

Whatever the technique used, the reproduction of prior proportions Ptarget is
always a source of debates and approximations. Combinations between prior propor-
tions and probabilities according to neighbors are often envisioned (Allard et al. [1]).

Other authors are suggesting to use non stationary training images (Chugunova
and Hu [2]). In this paper we present a new coherent approach allowing to impose
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local or global proportions for the Direct Sampling simulation method. The efficiency
of the approach is illustrated in complex configurations and is proved to be operational
without the introduction of arbitrary parameters.

2 Distance Perturbation Methodology

2.1 Recall of Direct Sampling MPS Algorithm

Direct Sampling (DS) algorithm works as follows: for each simulated node (in the
simulation grid) a local data event is extracted from the nearest previously simulated
nodes. The training image is then scanned randomly with this data event. As soon
as the distance between the data event searched for and the one currently scanned
are below a given threshold, the corresponding training image value at the central
pixel is then pasted on the simulation grid location. A simplified pseudo-code of the
algorithm is given below. If no distance under the threshold is found after visiting
a maximal fraction of the TI, the scan is interrupted and the best candidate so far is
used. A simplified pseudo-code of the algorithm is given in Fig. 1. The key principle
is that as soon as the condition mentioned at point 4 is not honored, the corresponding
loop is interrupted, drastically accelerating the sampling procedure compared to an
exhaustive scan.

2.2 Adaptation to Honor Target Proportions

In the DS algorithm, the distance between data events d{N x, N y}, used in point 4, is
crucial. We propose to modify this distance criterion in order to honor prior propor-
tions Ptarget . It is assumed that Ptarget characterizes a support size corresponding to

Fig. 1 Simplified pseudo-code of the direct sampling algorithm
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a radius R. For any new node to assign in the sequential simulation process, all the
previously informed nodes that are inside a neighborhood of radius R are considered.

They are used to calculate an estimated current local proportions vector Pcurrent

for the central node to assign. The difference between Pcurrent and Ptarget vectors
is calculated using the following formula (some others could be envisioned):

di f f P=
K∑

k=1

Pk target . log
Pk target

Pk current
(1)

The data event is accepted only if the calculated difference is below a fixed thresh-
old. Hence two criteria are simultaneously considered to accept a TI node:

• the distance between simulation grid data event and TI data event,
• the distance between proportions vectors diff P.

If the scan of the TI does not yield any data event with both distances below
prescribed thresholds, the best event regarding the sum of the two distances is kept.
In addition, we define a minimum radius Rmin. If all the data event nodes are inside a
radius smaller than Rmin, the distance between proportions is not considered because
the estimated proportions vector Pcurrent is not representative of support size R.

2.3 Application Example

The modified Direct Sampling algorithm has been tested on several synthetic but
realistic cases. One example is shown in this extended abstract. The Training Image
is a stationary picture and represents a channelized system with 4 facies (channel
axis, channel margin, crevasses and matrix). The target proportion maps are issued
from seismic attribute and are complex maps with fine details.

Some results of the test are presented on Fig. 2. The parameters for this test are
the following ones: number of neighbors is set to 32, the radius for target propor-
tions is set to 12 cells, and the threshold for proportions vector difference is set to
0.1. Two realizations are shown where the extension of facies bodies is limited by
the target proportions fluctuations, maintaining however good pattern reproduction.
The posterior proportion maps are calculated on the basis of an ensemble of 100
realizations, they are compared to the prior proportion maps by the histograms of
differences. The method provides a good accuracy and allows reproducing detailed
features of proportion maps.
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0

1

Training Image

realization no 1 …       realization no 100 target proportion map for F0computed proportion map 
from 100 realizations, for F0

0.6-0.6
histogram of differences between 
prior and posterior proportions

Fig. 2 Simulation example of modified MPDS algorithm to fit to target proportion map

3 Conclusion and Future Work

We have presented a method to generalize the DS algorithm in order to reproduce
target proportions. It enables more flexibility to integrate, in MPS models, non sta-
tionary prior proportions (based on auxiliary data or conceptual geology), whatever
the Taining Image is (stationary or not). Importantly, since our method relies on
perturbing the distance used to compare data events, it can be applied to all algo-
rithms based on distances. This includes a number of patch-based approaches such
as FilterSim, SimPat, and CCSim.
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An Application of Equal-Area-Growing Window
for Calculating Local Singularity for Mapping
Granites in Inner Mongolia

Daojun Zhang, Qiuming Cheng and Frits Agterberg

1 Introduction

Local singularity analysis (LSA) was firstly proposed by Cheng (1997) based
on fractal/multifractal theory [1, 2], which can be seen as the application of the
concentration-area (C-A) model within a small window for local anomaly infor-
mation extraction [3]. LSA is essentially a spatial neighborhood-window statistical
method, considering not only the original value of each spatial location, but also the
variation trends of these values within a local window, which supplements classical
geological statistics. LSA has been confirmed as a powerful tool for information
extraction of geochemical data [4, 5], remote sensing data [6], and tectonics data [7].

The core of LSA is to calculate the local singularity index (LSI) for each location
(grid) on a map. LSI is obtained through a nonlinear metallogenic based theory that
complex geological processes can lead to anomalous amounts of energy release or
material accumulation, further resulting in a fractal/multifractal spatial distribution
of these anomalous amounts. A power-law model is used for the calculation of LSI
within a local window

ρ(ε) = cεα−2 (1)

where c is a constant, ε represents window size, ρ represents an average local
density within a local window with side of size ε, and α is the singularity index that
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Fig. 1 Multi-scale obtained using rules of (a) absolute maximum LSI and (b) maximum LSI

can be estimated by least square method as the slope of a straight line fitted to the
relation between log ρ and log ε. See [1, 2] for more details on the meaning of α.

2 A Modified Model for LSA

Although the initial concept of singularity index was developed on the basis of an
elliptical moving window determined by three parameters [2], it is more common and
easier to implement to use an isotropical window in GIS environment. In GeoDAS
[8], one should decide the maximum window size based on a global scale, with the
minimum window specified as 1 grid ×1 grid, and the step increase of window side
as 2 grids. There are some disadvantages with this approach, such as the number
of grids entered in a group is increasing exponentially with the increase of window
size, so that the weights of grids which are far from the currently processed grid
are reduced greatly; on the other hand, new entered grids may be of very different
distances from currently processed one, which becomes more serious with increased
window size. In this study, LSI is calculated based on equal-area-growing concentric
circular window, keeping grids entered simultaneously are at the same distance from
currently processed grid, so as to avoid these two problems.

The spatial U-statistic method was developed by Cheng and Agterberg (1996) for
the separation of different spatial populations [9, 10], and has been used to obtain
optimal anisotropic local window in LSA [2, 3]. Inspired by the spatial U-statistic
for LSA, a simple solution is provided to avoid the problem that a globally optimal
LSI may not accommodate each location. That is to calculate a series of LSI maps
based on different maximum size windows, and then integrate these maps through an
appropriate algorithm. The algorithm can be designed according to various criteria,
such as spatial U-statistic [2, 3], goodness of fit (R2) and F test in statistics. In
this study, LSI of each grid is determined by taking the maximum LSI (Fig. 1a)
and absolute maximum LSI (Fig. 1b) from a series of LSIs based on different local
window scales (Fig. 2).



An Application of Equal-Area-Growing Window 75

Fig. 2 The present (equal-distance, different colors indicate different groups of window) and
improved (equal-area, using the center point to represent the whole grid) method for window
division

Fig. 3 Spatial relationship between altitude and granite in study area in Inner Mongolia

2.1 Case Study

In Fig. 3, it can be seen that granite masses are generally located areas with altitude
values higher than in their neighborhood because of their physical and geochemical
characteristics; therefore, LSA can be used to delineate granite masses.
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Fig. 4 LSI maps, a–d are print screens calculated by equal-distance window with maximum lengths
of side of 4, 6, 8 and 10 km; and e–h are calculated by equal-area window with maximum diameters
of 4, 6, 8 and 10 km

3 Discussions and Conclusions

In Fig. 4 we can see that equal-area-growing window method results in smoother LSI
maps with less noise points. Each LSI map in Fig. 4 is obtained at a single scale:
more details can be reflected when the window size is small. In Fig. 1, multi-scale
LSI maps can be obtained by two different algorithms, which provide singularity
information at different scales, so both overall trend and local details can be captured
in Fig. 1. Based on Fig. 1 one can delineate covered granites more accurately and
efficiently.
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Semi-Variogram Model Inference Using
a Median Bootstrap Statistics

Eulogio Pardo-Igúzquiza, Ricardo A. Olea and Peter A. Dowd

1 Introduction

The increasing availability of powerful and affordable computers has opened up new
areas of research for processing-intensive procedures such as genetic algorithms,
neural networks, simulated annealing and the bootstrap. In particular, the bootstrap
is a well-known method to quantify the uncertainty of complex models [1]. Another of
its uses is as a method for obtaining estimates of statistical parameters. For example,
the median of the bootstrap distribution has been proposed as a robust estimate of
location [2]. The median of the predictive distribution is the optimal point forecast
when the loss function is linear [3, 4], which is sometimes a better estimate than
the mean. The bootstrap has been extensively used in classical statistics [5] and
introduced in geostatistics by Solow [6]. Olea and Pardo-Igúzquiza generalized the
bootstrap to attach confidence levels to the experimental semi-variogram [7, 8].

The objective is to formulate a method that: (a) offers performance advantages
over the classical approach in two stages of preparing an empirical semi-variogram
of mean values for various distances and then fit a model; (b) demands minimum
information from the user for finding the parameters of the semi-variogram model;
(c) provides a measure of performance besides empirical and analytical semi-
variogram fitting; and (d) works for any type of distribution followed by the attribute.
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2 Methodology

For each lag, the conventional empirical semi-variogram uses the mean of the square
differences for finding the model parameters. Here, we use the generalized bootstrap
to numerically model the distribution for such mean, then selecting the median as
the estimate for the true mean square difference. Implementation comprises eight
steps in two embedded loops for generating bootstrap resamples and modeling two
semi-variograms by successive approximations, one for the attribute and another one
for its normal scores. The steps are: (a) obtain the normal scores of the n data values;
(b) use the normal scores semi-variogram model from the previous iteration to cal-
culate the covariance matrix for all pairs of data locations. For the initial iteration, it
is assumed that the normal scores follow a pure nugget effect model; (c) using the
Cholesky method, spatially de-correlate the normal scores to provide a set of n inde-
pendent and identically distributed normal values; (d) take a bootstrap resample;
(e) restore the spatial correlation given by the semi-variogram by inverting the
Cholesky method; (f) calculate an empirical semivariogram for these spatially
correlated normal scores; (g) backtransform the resample values to the original data
space; (h) calculate the empirical semi-variogram for the attribute using the back-
transformed resample. Resampling steps (d) through (h) are repeated at least thousand
times yielding as a result an equal number of empirical semi-variograms. At the con-
clusion of this resampling loop, for each lag, prepare two empirical semi-variograms
given by the median of the set of values, one for the normal scores and another one for
the attribute. Complete the resampling loop by fitting semi-variogram models of the
types specified by the user. If the discrepancies with the previous models are larger
than a specified tolerance, go back to Step (b) to start another iteration of the model
loop, or stop after an arbitrarily specified number of maximum model iterations.

In practice, the procedure converges after a few iterations, but mathematical proof
of convergence is pending. The de-correlation in Step (c) works properly only if the
covariance matrix is the right one, which can be tested [9], offering modeling quality
control in the absence of an exhaustive sample.

3 Testing

A realization of a Gaussian random field with an isotropic exponential model with
range 10 units of distance (effective range 30 units), nugget variance 0.3 and partial
sill 0.7 was used as an exhaustive sample (Fig. 1a ). The realization was generated on
a 128 by 128 grid with unit spacing. From this realization four random samples of
sizes 50, 100, 150 and 200 were selected, where each sample includes the previous
sample plus 50 additional points. The semi-variogram model fitting was done using
program VARFIT [10]. The resampling loop was repeated two thousand times. The
model loop converged at most after 39 iterations. In the consistency testing at Step
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Fig. 1 a Exhaustive sample with isotropic exponential semi-variogram and nugget variance.
b Semi-variograms for the sample of size 50

Table 1 Estimated semi-variogram parameters using the median semi-variogram and the empirical
semi-variogram (values in brackets)

Sample size Nugget Variance Range Discrepancy
(Target = 0.3) (Target = 1.00) (Target = 10.0) (Target = 0)

50 0.010 [0.000] 1.059 [1.237] 11.88 [7.81] 1.39 [10.36]
100 0.428 [0.538] 0.913 [0.997] 13.76 [12.61] 1.67 [0.35]
150 0.399 [0.416] 0.999 [0.966] 7.409 [7.482] 0.40 [0.41]
200 0.215 [0.232] 0.928 [1.082] 7.85 [10.95] 0.74 [0.96]

The last column shows the discrepancy between target and fitted models according to Eq. (1)

(c), in all four cases, 19 out of the 20 lags passed a test for randomness at a 95 %
confidence level.

Figure 1b shows several types of semi-variograms and some confidence intervals
for the smallest sample. Table 1 shows the models fitted to each experimental sample
and the discrepancy between the target model and a fitted model according to the
integrated distance between models calculated according to the equation:

D(γ (h), γ ∗(h)) =
∫ ∞

0

[
γ (h)− γ ∗(h)]2

dh (1)

4 Summary and Conclusions

Extending previous results [7, 8], we apply generalized bootstrapping to automati-
cally estimate the parameters of a given type of permissible semi-variogram model.
The modeler needs only to specify the analytical type of model for the attribute and
another one for its normal scores. The method is independent of the data distribution
and provides a measure of modeling consistency based on the Cholesky decomposi-
tion of the correlation matrix. Performance is comparable to that of the conventional
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approach for generously sampled attributes (large sample size) and more accurate
for low density samples (small sample size). Future research includes mathematical
proof of convergence of approach used to automatically find the semi-variogram
model parameters, removal of the need to specify the analytical form of the semi-
variogram and additional case studies.
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Geometric and Statistical Modeling of Fractures
in the 3D Disturbed Zone of a Claystone Around
a Cylindrical Gallery (Meuse-Haute Marne
Underground Research Laboratory, France)

Rachid Ababou, Israel Cañamón and Adrien Poutrel

1 Statistical Network of Small Fractures
(Random Planar Discs)

The micro-fissures and small fractures around the drift were modeled as a statistical
set of planar discs, with randomly isotropic orientations, and with radially decreasing
density, diameters and apertures away from the drift wall. The resulting statistical
set is visualized in Fig. 1. Apertures are not depicted, but it can be clearly seen that
density and size decrease away from the drift wall.

The main hypotheses for generating this statistical set of fractures were as follows:

• The fissures are plane discs with statistically isotropic orientations in 3D space.
• Their planar size is a random variable (random radius R or random diameter D),
• Their thickness or ‘aperture’ is a random variable (random aperture ‘a’),
• Their euclidian positions (X, Y, Z) are random: they follow a modified Poisson

process such that the volumetric density of fissures (ρ03) is radially inhomogeneous
(decreasing).

The volumetric density ρ03(r) expresses the number of ‘objects’ per m3 of euclid-
ian space. For more details, the reader is referred to Appendix A1 of Ref. [1]. The
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Fig. 1 Front view of the statistical set of 10,000 planar disc fissures, shown on the transverse
vertical plane located at the drift entrance (3D view with hidden parts). The density and diameters
decrease radially from the drift wall (so do the apertures, although not visible in this view)

latter provides a “geometric probability” formulation of the radial inhomogeneity
of fissures around the drift, and particularly, of the relation between the volumetric
density ρ03 (r) and the Probability Density Function (PDF) of the random positions
(X, Y, Z) of fissure centers.

2 Deterministic Set of Large Curved ‘Chevron’ Fractures
(Parametric Surfaces)

In situ observations at the Meuse/Haute Marne Underground Research Laboratory
(URL), indicate the existence of a quasi-periodic set of large curved fractures orga-
nized as a 3D herringbone pattern (or chevron pattern) around each gallery and ahead
of the excavation front (they are caused by excavation). It was decided, in this work,
that each “chevron” fracture should be represented by a curved parametric surface,
resembling as much as possible the complex 3D shapes observed in situ.

The parametric surface model retained here is a “generalized elliptic conoïd”,
developed by us as an extension of other known conoïdal surfaces, such as the elliptic
conoïd of Isawi (it.wikipedia.org/wiki/Conoide_ellittico). The latter is itself derived
from the classical conoïdal surface of Wallis, which has the shape of the closed end of
a toothpaste tube. Wallis’ conoïd has been known for centuries under various names:

it.wikipedia.org/wiki/Conoide_ellittico
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Fig. 2 Morphology of the curved surfaces of large shear fractures (‘chevrons’). Above. Various
3D perspective views of the “generalized elliptic conoïd”, the surface model retained for describing
the curved ‘chevrons’ fractures at the claystone site (Meuse/Haute Marne URL). Below. Schematic
traces of chevron fractures, as observed at the in the GMR gallery (which is aligned with the minor
horizontal principal stress σh). The schematics show the traces projected on the axial vertical plane,
axial horizontal plane, and transverse plane, respectively
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“conical wedge”, “conocuneus”, and also, “arrière-voussure de Saint-Antoine” in
French architecture. The “generalized elliptic conoïd” proposed here for the shape
of chevron fractures has the parametric equation:

�S =
⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
(a · (1− u)+ c · u) · cos (ν)(

d · u(d1·(1−EX)+d2·EX)
) · sin (ν)

b · (1− u2
) · |cos (ν)|g + e · u(e1·(1−EX)+e2·EX) + f · u(f1·(1−EX)+f2·EX)

⎞

⎠

EX (ν, n) =
[
1−

∣∣∣(cos (ν))|tan(n·π+π/2)+1|
∣∣∣
]
· (1− n)+

∣∣∣(sin (ν))|tan(n·π+π/2)+1|
∣∣∣ · n

ν ∈ [0, 2π] ; u ∈ [0, 1]

where ‘n’ is a real number between 0 and 1 (we selected here the value n = 0.1). The
following parameters were finally selected after trial and error comparisons with the
observed chevron traces to represent typical chevron fractures for the GMR gallery
at the Meuse/Haute Marne URL:

a=2.75, b=0.4, c=4, d=4, e=1.5, f=2, g=3,

d1=0.5, d2=1.75, e1=2, e2=8, f1=1.25, f2=1.5, n=0.1.

The resulting fracture surface is depicted in Fig. 2, where it is also compared to
schematic representations of observed fracture traces. Note: these results reflect 2009
site-specific observations in the GMR gallery; the complete set of available geological
and geo-mechanical references used for these comparisons is listed in [1].
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Robust Regression with Compositional
Response: Application to Geosciences

Karel Hron, Peter Filzmoser, Matthias Templ, Karl Gerald van den Boogaart
and Raimon Tolosana-Delgado

1 Compositional Data and Their Geometrical Properties

Data sets in geosciences are frequently characterized by variables that quantitatively
describe parts of a whole, carrying exclusively relative information. We call them
compositional data [2, 7]. From this point of view, any representation of the variables,
for example in mg/kg, proportions, or percentages, should not alter the results of the
corresponding statistical analysis, even if the scaling is performed for a subcomposi-
tion of the original composition. This is due to the inherent property of compositional
data, where all the relevant information is contained in ratios between compositional
variables (parts). In other words, compositional data induce their own geometry,
nowadays called the Aitchison geometry. Unfortunately, most statistical methods
are designed for the standard Euclidean geometry in real space, thus compositional
data need to be expressed in orthonormal coordinates prior to their statistical analy-
sis. The orthonormal coordinates (one less than the number of parts in the original
composition) are obtained via the isometric logratio (ilr) transformation [4].
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The concrete choice of the coordinates for a D-part composition x = (x1, . . . , xD)′
usually depends on good interpretability of results of a statistical analysis. For the
purpose of this study, that is to test the influence of an explanatory variable on a
chosen compositional part as a response of a regression model, we introduce the
following coordinates,

x∗i =
√

D − i

D − i + 1
ln

xi

D−i
√∏D

j = i+1 x j

, i = 1, . . . , D − 1. (1)

In such a configuration, the first ilr variable x∗1 explains all the relative information
(log-ratios) about the original compositional part x1 with respect to the other parts,
and the coordinates x∗2 , . . . , x∗D−1 explain the remaining log-ratios in the composition
(after a permutation of parts in the composition, also any other part can play the role
of x1). Of course, these ilr coordinates can be inverted to recover a composition.
Expressions for this back-transformation are given in [4].

2 Robust Regression with Compositional Response

In geosciences, frequently situations occur where a compositional response depends
on one or more (non-compositional) explanatory variables. Similar to other standard
statistical methods, also linear regression cannot be applied directly to compositional
data. Although the regression model can be even expressed directly for the original
compositional data [3, 8], for the purpose of statistical inference it is necessary to
express the response variables in coordinates. Thus, we arrive at a multivariate linear
regression model with p explanatory and q response variables,

yi = b0 +
p∑

j = 1

(xi j · b j )+ ei , i = 1, 2, . . . , n (2)

(the errors ei are independent and identically distributed) whose interpretation
depends on the particular regression type. Accordingly, yi , i = 1, . . . , n, collected
as rows in an n × q matrix Y, stand for the coordinate representation (like (1) from
Sect. 1) of the corresponding compositional variables; xi = (xi1, . . . , xip)

′ form
the rows of the n × (p + 1) design matrix X (whose first column corresponds to
the absolute term parameters and is formed by vector of ones), and the parameters
b j = (x j1, . . . , x jq)′ are collected as rows in the (p + 1)× q matrix B.

Usually, the regresion parameters B are estimated by the standard least-squares
method [5]; the result is denoted by B̂. The above stated hypothesis that the coordinate
x∗1 from (1), explaining all the relative information on x1, does not depend on the
k-th explanatory variable, can be tested with the test statistic
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Fk = h′B̂mk(m′kY′MX Ymk)
−1m′kB̂′h

h′(X′X)−1h
n − p − 1

1
∼ F1,n−p−1, (3)

where the q-part vector mk has zero entries except a 1 at position k, and
MX = In − X(X′X)−1X′ In stands for the identity matrix of order n).

It is well known that outliers—deviating points from the main linear trend—in
either the response or the explanatory variables, or in both, can lead to biased least-
square estimates. For this reason, it is necessary to use a proper robust counterpart to
the classical regression estimator that tolerates a certain amount of outlying obser-
vations. For several reasons there exists no straightforward solution for the robust
regression problem with compositional response. Similarly as in the classical case,
the step from the multivariate to the multiple model is not possible if the response
ilr coordinates are not independent [3]. Even more, in the robust case, to regress the
response variables separately would result in ignoring the multivariate outliers. An
additional challange is the proper choice of the ilr transformation that is crucial for
an appropriate interpretation of the results. Finally, a simplified approach to imple-
ment robust methods to ilr transformed data may produce transformation-dependent
results, an undesirable characteristic.

A solution is provided by the multivariate least trimmed squares (MLTS) method
that fulfills all required concepts of robustness for regression with compositional data,
in particular equivariance properties that are necessary for a reasonable regression
model behaviour with any coordinate representation of the compositional response [1,
3]. With the MLTS estimates of B even the test statistic (3) can be used, nevertheless,
its F-distribution is achieved only approximatively.

To illustrate the above theoretical developments, we employ the Kola data set
which resulted from a large geochemical mapping project, carried out from 1992
to 1998 by the Geological Surveys of Finland and Norway, and the Central Kola
Expedition, Russia. An area covering 1,88,000 km2 in the Kola peninsula of North-
ern Europe was sampled (approximately 600 samples were taken) in four different
layers. The data are available in the package StatDA of the statistical software R.
For our study, 27 chemical elements (Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cu, Fe,
K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Sr, Th, Tl, V, Y, Zn) from the O-horizon are
taken [3]. Their concentrations were measured in mg/kg; however, not the absolute
values but the ratios among them are of interest. The concentrations of the elements
are primarily influenced by geochemical processes (water/rock interactions, pollu-
tion, etc.), however, elements like phosphor (P) are likely to depend on elevation,
because phosphor forms a nutrient base for plants. With higher elevation the climate
changes (for example temperature and presence of water) so that the presence of
plants decreases. The behaviour of P is also found for K, another fundamental nutri-
ent for plants. However, from the raw element concentrations it is not easy to detect
whether elevation is indeed a dominant effect here. By forming a regression model,
where the first response coordinate x∗1 explains the relative information (ratios) con-
cerning phosphor in the whole composition, we can use the statistic (3) to test for the
significance of elevation on the concentrations on this element. Even when using the
classical least-squares estimator, the elevation is highly significant, with a p-value
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of 1.60× 10−6. However, due to many outlying observations in the data set, robust
regression using the MLTS estimator is required. The variable elevation is then even
more significant (p-value 4.84× 10−9), the regression model was thus able to con-
firm our expectations that phosphor as plant nutrient indeed depends on the chosen
explanatory variable.
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Compositional Analysis in the Study
of Mineralization Based on Stream
Sediment Data

Renguang Zuo

1 Introduction

Compositional data with components measured as proportions or percentages of
some whole only carry relative and limited information [2]. The main problem
in compositional data analysis, referred as data closure problem or negative bias
problem, provides difficulty in the interpretation of correlation coefficients among
variables. There are three methods for reducing the effects of compositional data
closure problem, viz.: additive logratio (alr) transformation [1], centered logratio
(clr) transformation [2], and isometric log ratio (ilr) transformation [3].

Stream sediment geochemical data, often used in mapping of anomalies for min-
eral exploration, are typical compositional data that should be opened prior to any
analysis and interpretation even when only one variable is involved. However, few
studies focused on the effects of data closure problem on the geochemical explo-
ration. In this study, a stream sediment dataset from southwestern Fujian depression
belt (SFDB) was used to investigate this problem and to document results.

2 Data

The datasets used in this study consist of a geological map (1:200,000) and stream
sediment multi-element concentration data. The stream sediment samples were col-
lected at a density of one sample per 4 km2 and were selected, according to the min-
eral assemblages of skarn iron deposit in this study region, from the China National
Geochemical Mapping Project database that comprises 39 major, minor and trace
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elements. The vector points of the selected point stream sediment sample data are
almost regularly distributed and the distance between any two points is roughly 2 km.
The main ore-forming elements selected from the data are Au, Ag, Cu, Mo, Pb, Zn,
W, Sn, Sb, and Fe2O3.

3 Effects of Data Closure Problem

3.1 Univariate Analysis

Classical estimators like mean and standard deviation (SD) are sensitive to outliers,
resulting in unreliable estimates of the center and spread of data distribution due
to outliers. If the selected data is approximately symmetrical, various estimators
of original data and their transformations (log-transformed or ilr transformed) give
similar results [4]. Although the mean, median, SD, and median absolute deviation
(MAD) can be applied for the original and log-transformed data, they do not account
for the data closure problem. Therefore, the median and MAD of ilr transformed
data are recommended to characterize the center and spread of selected univariate
data.

3.2 Bivariate Analysis

In bivariate analysis, the concern is about the strength of relationship or correlation
between two geochemical variables. However, correlation coefficients estimated by
classical methods are unreliable because they do not account for the data closure
problem [5]. The variability and stability of the ilr transformed variables show the
largest variance for Cu and Sn and the smallest variance for Zn and Fe2 O3. The
largest correlation coefficient for log-transformed Pb and Zn does not result in the
smallest ilr variance for this pair of element data (Table 1). The classical linear or
nonlinear relationships between two variables are meaningless for compositional data
because the data points only present relative information. Therefore, it is imperative
to measure the variability and stability of ilr transformed data in bivariate analysis.

3.3 Multivariate Analysis

The robust principal component analysis (RPCA) based on robust statistical analysis
can obtain principal components that are not much influenced by outliers through
replacement of the classical covariance matrix with the minimum covariance determi-
nant estimator. Here, the RPCA based on the ilr transformed data is used to combine
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Table 1 Variability and stability of ilr variables. The first number denotes the variability, and the
inside parentheses number denotes the stability

Cu Pb Zn Sn Fe2O3

Cu 0 (1)
Pb 1.47 (0.23) 0 (1)
Zn 0.95 (0.39) 0.44 (0.65) 0 (1)
Sn 1.76 (0.17) 0.91 (0.40) 0.79 (0.45) 0 (1)
Fe2O3 0.82 (0.44) 0.838 (0.432) 0.37 (0.69) 0.92 (0.40) 0 (1)

Fig. 1 Biplot of results of
RPCA

multiple variables. The PC1 and PC2 obtained through the RPCA account for 27.67 %
of the total variances of ilr transformed data. The eigenvalues of either PC1 or PC2
are > 1, suggesting they are significant components. The PC2 of the ilr transformed
data show two geochemical assemblages. The first assemblage consists of Au, Ag,
Mo, Sb, and W with positive loadings on PC2, likely representing Au-related miner-
alization. The second assemblage consists of Cu, Pb, Zn, Sn, and Fe2O3 with negative
loadings on PC2 possibly representing Fe-related mineralization (Fig. 1).

4 Conclusions

Geochemical exploration plays a crucial role in discovering new mineral deposits.
However, the data closure problem of geochemical data is seldom addressed. In
this study, univariate, bivariate and multivariate data analysis of geochemical data
were investigated. The following conclusions were obtained from the results of the
study: (1) geochemical data, like any other compositional data, should be opened
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prior to analysis; (2) for univariate analysis, the robust estimators like median and
median absolute deviation should be used for measuring the center and spread of the
selected ilr transformed data; (3) for bivariate analysis, the ilr information should be
used to measure the variability and stability between any two variables; and (4) for
multivariate analysis, the ilr transformation and robust multivariate analytical tools,
such as RPCA, should be applied.
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Modelling World Energy Applying Simplicial
Linear Ordinary Differential Equations

Eusebi Jarauta-Bragulat, Carme Hervada-Sala and Juan J. Egozcue

1 Introduction

The evolution of a dynamic system, whose status evolves in time, can be approached
from different perspectives. The most usual one is to identify the elements or parts
of interest and consider relevant data for each element, with an appropriate scale to
the study of the process. The information (data) related to the process, in general
is a matrix of data, which may become assimilated to a role of vector function of
one real variable (time) and as much components as elements or interesting parts to
study. If we wish to apply a model which enables the characterization of the process
studied, usually the matrix of data is fitted to a certain model through the estimation
of some parameters and is analyzed by means of some criterion of goodness of that
adjustment. The model applied can be used not only to describe the process, but also
to predict the evolution of the studied dynamic system.

2 Methodologies

We consider a data set consisting on several rows (time values) and columns corre-
sponding to studied variables. We compute the corresponding proportions and then
we apply to these proportions the methodology of analysis of compositional data.
Proportions are in the simplex of n+1 parts �x (t) = (∈ x1 (t) , . . . , xn+1 (t)) Sn+1

and they can be modeled as evolutionary compositions with a simplex-valued
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function of one real variable, �x : [0, T ] ⊂ R
+ → Sn+1 following [1]. The iso-

metric log-ratio transformation (ilr-coordinates or balances) are calculated from the
proportions, accordingly with [2]. The simplicial linear ordinary differential equation
model in the simplex is:

D⊕�x (t) = [
M � �x (t)

]⊕ �c. (1)

Applying ilr transformation, this equation is transformed to a linear first-order ordi-
nary differential equation in a Euclidean space. The equation is:

d �u (t)

dt
= A�u (t)+ �b. (2)

In this equation, �u (t) = ilr (�x (t)) = V� log (�x(t)) , being V the chosen contrast
matrix (� indicates transposition), A = (

akj
)

1≤k, j≤n , satisfying M = V AV� and
�b = ilr (�c) . Developing this equation we obtain the linear system:

duk (t)

dt
= ak1u1 (t)+ · · · + aknun (t)+ bk, k = 1, 2, . . . , n. (3)

The estimation of the coefficients of the matrix and the independent applying (3),
presents some problems of numerical stability. To avoid this, we work with the
integral form of (3):

uk (t)− uk (0) = ak1U1 (t)+ · · · + aknUn (t)+ bkt, Uk (t)

=
t∫

0

uk (z) dz, k = 1, 2, . . . , n. (4)

We use linear regression to estimate coefficients, following the methodology
described in [3]. Three cases can be found: akj = 0, b j 	= 0 (Model 0); akj 	=
0, b j = 0 (Model 1); akj 	= 0, b j 	= 0 (Model 2). The simplest appropriate model is
adopted, following the parsimony principle.

3 The Data Sets

Data sets are taken from BP workbook [4]. For the first group, it consists of values
of total world energy production (Mtoe, mega tones oil equivalent) by five different
sources: hydraulic (HYD), nuclear (NUC), coal (COAL), oil (OIL) and gas (GAS),
from years 1965 to 2011. For the second group, it consists of values of total world
energy production (TWh, Terawatt-hours) by three different sources: solar (SOL),
wind (WIN) and others (OTH) from years 1990 to 2011.
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Table 1 Multiple regression coefficients R2 obtained for the three models and the corresponding
balances for each group

First group Second group
b1 b2 b3 b4 Param. b1 b2 Param.

Model 0 0.145 0.921 0.713 0.633 4 0.142 0.951 2
Model 1 0.653 0.985 0.995 0.973 16 0.773 0.993 4
Model 2 0.742 0.991 0.995 0.973 20 0.965 0.999 6

The number of parameters fitted in each regression is shown under Param

Fig. 1 Time evolution of energy production values (left) and their proportions (right), correspond-
ing to each group

4 Results and Discussion

Data have been processed according to exposed methodology. For both groups, model
1 seems to be the appropriate one, according to values of multiple regression coeffi-
cients R2 shown in Table 1. Predicted values are 2012–2030 for the first group and
2012–2025 for the second group (renewables). In both series, the ratio number of
years predicted / number of data is 0.40 (Fig. 1).

Figure 2 shows the prediction of balances and proportions for each group. For the
first one, an increasing proportion of oil can be detected and certain constant values
for coal, gas and hydraulic; a decreasing proportion for nuclear is obtained. In the
second group (renewables), a very appreciable increase in solar energy is obtained,
a certain stabilization of wind power after reaching a maximum about 2017 and a
significant decrease in the proportion of use of other renewable energy sources is
observed (Table 2).



98 E. Jarauta-Bragulat et al.

Table 2 Evolution in time of proportions of energy sources in each group

First group Second group
HYD NUC COAL OIL GAS SOL WIN OTH

1965 0.056 0.002 0.381 0.403 0.158 1990 0.003 0.029 0.968
2011 0.065 0.049 0.307 0.335 0.244 2011 0.065 0.508 0.427
2030 0.049 0.028 0.266 0.416 0.241 2020 0.185 0.614 0.200

Fig. 2 Time evolution of energy production balances (left) and their proportions (right), corre-
sponding to each group. Dots are data balances (left) and data values (right)
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Structural Analysis of the National
Geochemical Survey of Australia Data

Ute Mueller, Johnny Lo, Patrice de Caritat and Eric Grunsky

1 Introduction

A low-density geochemical survey, the National Geochemical Survey of Australia
(NGSA), covering> 6 million km2 has been completed for the first time in Australia
[1]. The NGSA was conducted between 2007 and 2009 by Geoscience Australia and
all States/NT (http://www.ga.gov.au/ngsa). Catchment outlet sediment samples were
collected at 1186 sites (ignoring duplicate sites) from both top (0−10cm) and bottom
(∼ 60−80cm) soil. These were sieved to two grain-size fractions (<2 mm, and<75
µm), resulting in four data sets. Here data for 51 elements (Al, As, Au, Ba, Be, Bi,
Ca, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, F, FeT, Ga, Gd, Ge, Hf, Ho, K, La, Lu, Mg, Mn,
Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, U, V, Y, Yb, Zn and
Zr) determined by total analysis, plus Loss on Ignition (LOI), were selected.

As geochemical data are compositional, the survey data form regionalised com-
positions and prior to any analysis a transform is applied to account for the constant
sum constraint and avoid spurious correlations. Following [2] the centered logratio
(clr) transform [3] was used. Caritat and Grunsky [2] applied Principal Component
Analysis (PCA) with subsequent ordinary kriging to the clr transformed data. They
found that the first four factors account for 59 % of the total variability of the data
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and that the smoothed maps obtained through ordinary kriging are suitable for the
identification of multivariate associations and patterns that are broadly consistent
with the knowledge of geological processes.

2 Objectives

In [2] detailed structural analysis was performed on the PCA factors. Whilst PCA
factors are uncorrelated at separation distance 0, there is still remnant spatial correla-
tion between distinct factors, which require a treatment via multivariate geostatistical
techniques. The application of the method of minimum/maximum autocorrelation
factors (MAF) results in spatially decorrelated factors which will form the basis of
the structural analysis performed here. At the same time an assessment will be made
of the suitability of MAF factors for delineating geochemical regions.

3 MAF-Transform

Let Z(u) = [Z1(u), Z2(u), . . . , ZK (u)]T be the multivariate random function
with correlation matrix M where K is the number of attributes, and z(u) =
[z1 (uα) , z2 (uα) , . . . , zK (uα)]T , α = 1, . . . , n, be the corresponding sample vec-
tors.

For MAF it is assumed that the semivariogram function, �(h), of the multivariate
random function Z(u) can be modelled by a two structure linear model of coregion-
alisation �(h) = M1g1(h)+ (M − M1)g2(h) where the functions g1(h) and g2(h)
are permissible semivariogram models and the matrix M1 contains the sills of first
model structure [4]. The matrix M1 is approximated by the experimental semivari-
ogram matrix �̂(h1) at a suitably chosen lag h1, usually a vector whose length reflects
the sampling distance. To jointly diagonalise M and �̂(h1), a PCA is performed on
M followed by a spectral decomposition of V1 = �−1/2 QT �̂(h1)Q�−1/2. The
matrix Q is the PCA factor matrix and� is the corresponding diagonal matrix factor
variances. MAF factors derived in this way are ordered so that the strength of auto-
correlation decreases with increasing index with the last few factors often exhibiting
no spatial structure at all.

In the case of clr-transformed data the correlation matrix M is singular since the
sum of the clr-transformed variables is 0 by construction. One method that may be
used to avoid the singularity is to remove one of the clr-transformed variables from
the data set prior to the calculation of the MAF and this approach has been used here.



Structural Analysis of the National Geochemical Survey of Australia Data 101

4 Results and Discussion

To ensure nonsingularity of the correlation matrix, the clr-transformed LOI was
excluded from the calculation of the MAF factors. This is an arbitrary choice and any
other element could have been used instead. However, given that LOI was computed
as the difference between 100 % and the sum of major oxides and major trace elements
[2], its choice seemed the most appropriate. It is to be noted that LOI was included
in the calculation of the geometric mean (and so in the clr transformation), and
only discarded for the calculation of the MAF factors. As the sampling distance was
roughly 75 km, the lag distance at which �̂(h1) was calculated was set to 100 km
with a tolerance of 50 km. The angular tolerance was set to 90◦, so that effectively
�̂(h1) was calculated as omnidirectional.

An examination of the semivariogram maps and experimental semivariograms of
the MAF factors shows that the first 12 factors exhibit zonal anisotropy of decreasing
strength, followed by isotropic behaviour up to factor 40 and then finally pure nugget.
The relative contribution of the nugget component exceeds 80 % from factor 21
onwards for the coarse grain size, and from factor 25 for the fine grain size. For
MAF factors from 30 onwards, ranges are typically around 100 km.

Directions of greatest continuity for the first six factors are shown in Table 1.
These are reasonably consistent when considered across soil type and grain size.
Exceptions are factors two and three where Bc shows different continuity compared
to the others. Except for these two factors the direction of greatest continuity is
towards NW to NNW.

Linear kriging was used to generate spatial maps of the MAF factors. In the
first factor the western Yilgarn Craton stands out in warm colours. This area is
characterised by granites (and rare mafic dykes). The clarity of the appearance is
dependent on both soil layer and grain size. The fabric in the Yilgarn is compatible
with N155 shown on the variograms; that is the strike of the mafic/ultramafic dykes,
which are especially abundant in the eastern Yilgarn. The cool colours outline the
shape of the Eromanga (Great Artesian) Basin in Queensland and surrounding or
underlying basins (Bowen/Surat Basins).

In the second MAF factor positive values highlight the New England Fold Belt
(north of Sydney) and its extension into southeastern Queensland (north of Brisbane).

Table 1 Directions of greatest continuity for the first six MAF factors by soil layer and grain size
(B = bottom soil, T = top soil, f = fine and c = coarse)

Factor Tc Tf Bc Bf

1 N150 N120, N150 N120, N160 N115, N160
2 N10 N15 N90 N10
3 N95 N95 N5 N120
4 N145 N100, N130 N145 N110
5 N140 N145 N130 N145
6 N140 N140 N135 N125
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Lithologies there are mostly Palaeozoic to Mesozoic sediments and granites. Other
areas with positive estimates are in southern and southeastern Victoria, where the
Otway Basin is located (Mesozoic to Cainozoic sediments).

The higher factors can similarly be used for feature identification; however the
feature identification is sensitive to the soil horizon and grain size.

5 Conclusion

A comparison with the maps in [2] shows that the application of a MAF transform
results in more clearly delineated regions. It should be noted that in [2] a single
PCA for all soil layers was implemented, while here the layers and fractions were
treated separately. While the MAF transform allows for the generation of factors with
decreasing continuity, the factor loadings cannot be interpreted in the same manner as
those of a PCA, as was already observed in [4]. Notwithstanding this shortcoming the
results are promising, but further work on choice of separation distance and potential
combined layers is required.
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Discriminant Analysis of Palaeogene Basalt
Lavas, Northern Ireland, Using Soil
Geochemistry

Jennifer M. McKinley, Sam Roberson, Mark Cooper
and Raimon Tolosana-Delgado

1 Introduction

The Palaeogene, comprising basalt lavas of the Antrim Lava Group, formed between
circa 55 and 62 million years ago [1]. The Antrim Lava Group extends over an area
of 4,009 km2 in the north eastern corner of Northern Ireland [2] and is composed
of olivine tholeiite Lower and Upper Basalt formations (LBF and UBF) that are
separated by the Interbasaltic Formation. The latter represents a period of relative
volcanic quiescence, and includes the quartz tholeiitic Causeway Tholeiitic Member
(CTM) in north County Antrim. As a result there are mineralogical and geochemical
differences observed between the olivine tholeiites of the LBF and UBF and the
quartz olivine tholeiitic CTM.

1.1 Soil Geochemistry

A number of soil geochemical surveys have been completed across Northern Ireland,
most recently this includes the Tellus Project which was completed between 2004
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and 2006. This comprehensive soil geochemical dataset, comprising a total of 6,862
soil samples analysed by XRF for 52 elements, provides a means to characterise
the basalts and identify potential differences between the formations. Analysis of
trace metal concentrations in the shallow soils Tellus dataset revealed elevated Ni
and Cr concentrations across the Antrim Lava Group [3] that exceed current soil
guidelines values (SGVs), which represent generic assessment criteria with regard to
identified risks posed to human health by chronic exposure to contaminated soil. The
findings from bioaccessibility testing [3] indicated that trace element bioaccessibility
is specific to individual geologic formations. However, the contaminants of Ni and
Cr were not found to be readily bioaccessible, reducing the risk to human health.
Specific soil properties including parent rock material and the co-occurrence of major
element oxides can influence the mobility and bioavailability of PTEs. Therefore
greater understanding of the factors controlling the geochemical composition of
soils would elucidate the risks posed by elevated geogenic PTEs in soils overlying
the Antrim Lava Group. With this aim, we apply a linear discriminant analysis (LDA)
to the Tellus geochemical database. This is based on a logratio representation of
the components, to comply with the obvious compositional nature of the data set.
LDA provides a set of directions on the space of compositions which optimally
separate each pair of formations. These directions do not depend on which logratio
transformation was used to do the computations.

1.2 Spatial Variation in Total Concentrations
and Bioaccessibility

Spatial prediction using kriging reveals that the presence of the basaltic lavas of the
Antrim Lava Group has a strong control over the spatial distribution of several of
the PTE concentrations, though a detailed differentiation of UBF and LBF was not
possible. The olivine rich basalts (mostly the UBF and LBF) contain high concen-
trations of Ni (Fig. 1). Samples overlying the LBF contained the greatest amount of
bioaccessible Ni (Fig. 1a), while the UBF showed greater amounts of bioaccessible
Cr (Fig. 1b). This suggests that distinct bioacessibility fractions are associated with
different lithological controls [3].

2 Statistical Methods

2.1 Linear Discriminant Scores

Discriminant analysis (Fig. 2) indicates that there is no difference between the UBF
and LBF groups, as a reclassification table yields a misclassification rate comparable
to a random classification.
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Fig. 1 a Kriged output map (Ni mg/kg), b Bioacessibility (Ni BAF %) for the Basalt
formations [3]

Fig. 2 Histograms of the linear discriminant scores for the Basalt formations (UBF and LBF)

In Fig. 3a the areas represent the conditional probabilities that samples belong to
the two groups, the Basalt Formations, fixed a value of the logratio K/Mn (the most
informative pairwise ratio). It can be seen that the data are mixed and no separation
is possible. A comparison of the centered-log ratio-average composition of the soils
over each Basalt Formation (Fig. 3b) shows no difference between them.
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Fig. 3 a Non-parametric estimation of the probability that samples belong to either Basalt For-
mation given a certain value of the most informative pairwise ratio of the soil composition (in this
case, K to Mn), b A comparison of the centered-log ratio-average composition of the soils over
each Basalt Formation

Results show that any posterior statistical treatment, including mapping and sub-
sequent analysis of bioaccessibility, can be safely done with the whole data base.
The two main formations are geochemically equivalent.
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Chemical Equilibria in Compositional Data

K. Gerald van den Boogaart, Raimon Tolosana Delgado and Silke Konsulke

1 Introduction: The Chemical Master Equation

This contribution is concerned with the chemical composition of aqueous solutions,
which are typically observed compositionally, i.e. the total is not properly observed
and not all chemical species are quantified. For D molecular species S1, . . . , SD

equilibrium reactions might govern the interdependences between the various com-
ponents:

−ν1S1 + · · · + −νr Sr ↔ νr+1Sr+1 + · · · + νD SD

Here |νi | ∈ N denotes the stochiometric multiplicity in which a chemical species
Si is used in the equation. The left hand side constants (those of reactants) are defined
negative to keep notation simple hereafter.

Various approaches can be used to describe the equilibrium. The law of mass action
predicts the speeds of reaction based on collision theory and the molar fractions ni

by: s→ = c→
∏r

i=1 n−νi
i , and s← = c←

∏D
i=r+1 nνi

i , where c→ and c← are two
temperature-dependent constants. Consequently we reach equilibrium when s← =
s→, i.e. when the chemical master equation holds (see e.g. [1]):
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Keq := c→
c←
=

∏D
i=r+1 nνi

i∏r
i=1 n−νi

i

=
D∏

i=1

nνi
i (1)

A thermodynamic analysis shows the same result. A system is in equilibrium
when it shows the minimal Gibbs energy for its configuration. The derivative of the
Gibbs energy G with respect to each of these state variables is thus zero

dG = V · dp− S · dT +
D∑

i=1

μi · d Ni = V · dp− S · dT +
D∑

i=1

μi · νi dν0 = 0, (2)

where V , S, and N1, N2, . . . , ND are the extensive variables volume, entropy and
number of mols of each of the D species; p, T and μ1, μ2, . . . , μD are respec-
tively pressure, temperature and the chemical potentials, and ν0 = f (c→, c←) is
the one-dimensional parameter describing the extent of reaction, i.e. its degree of
completeness towards the right hand side (products). The chemical potential of each
species is linked to its activity ai through μi = μ0

i + RT ln ai , where μ0
i is a ref-

erence potential, and R the universal constant of gases. For this contribution we
assume a closed aqueous solution system at a constant temperature and pressure
(since they are controlled by the local geological environment, not by the chemical
reaction itself). In this case, dp = dT = 0 and the activities are often considered
proportional to a unit of concentration, e.g. molar fraction ai = γi ni . If activity coef-
ficients γi can be taken as (approximately) constant, then potentials can be rewritten
μi = μ∅

i + RT ln ni , with different reference levels μ∅

i . Feeding them into ( 2), this

gives 0 = dG = V · 0+ S · 0+ dν0 ·∑D
i=1

[
νiμ

∅

i + RT νi ln ni

]
which implies

− �G∅

RT
=

D∑

i=1

νi ln ni , with �G∅ :=
D∑

i=1

νiμ
∅

i (3)

thus again implying Eq. (1) with Keq := exp
(−�G∅/RT

)
. Note that the actual

value of �G∅ depends on which concentration units have been used to replace
activities, and equivalent expressions can be derived for molar volume Ni/V .

2 A Compositional View to the Chemical Master Equation

Equation ( 3) can be written in vectorial form, with ν = (ν1, . . . , νD) ∈ N
D ⊂

R
D , ln n := (ln n1, . . . , ln nD) and (·, ·) denoting a scalar product, as ln Keq =

(ν, ln n) , i.e. the equilibrium ondition is a known hyperplane in the vector space of
log-transformed molar fractions. When the concentrations are not given by molar
concentrations, but some other measure like mass density, the ni are rescaled and
replaced by ni = ki yi and thus:
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ln Keq =
D∑

i=1

νi ln(yi ki ) =
D∑

i=1

νi ln yi +
D∑

i=1

νi ln ki

i.e. with logs applied component-wise to the vectors (ν, ln y) = ln Keq−(ν, ln k) =:
ln K . Thus the same linear projection has again a fixed but different value.

However, in many natural systems, concentrations are observed compositionally,
i.e. only up to joint scaling constant, e.g. as equivalent to zi = yi/

∑
j y j . Due to the

scaling invariance requirement, the quantities ln zi are meaningless in general, and
should be replaced by the centered log ratio transform (see e.g. [2] or [3] for details),

clr(z) = ln z− (1D, ln z)
D

1D = ln y− (1D, ln y)
D

1D = clr(y),

where 1D is a vector of D ones, i.e. the clr and the log-transformed concentrations
differ only by a constant value ln g (y) = (1D, ln y)/D, which corresponds to the log-
geometric mean of the observed components, and is a form of total concentration.
Actually, the real concentrations y and their compositional representation z differ
only on that constant, so that their log-transformed vectors are different, but their
clr-transformed vectors are the same. We can then distinguish two kinds of reactions,
in the way they behave with respect to y and z.

3 Reactions Preserving the Amount of Matter

In the case of
∑

i νi = (1D, ν) = 0, the reaction preserves the amount of matter and
we get

(ν, clr (z)) = (ν, clr (y)) = (ν, ln y)− ln g (y) ·
=0︷ ︸︸ ︷

(ν, 1D) = (ν, ln y) = ln K

i.e. the scalar product of clr (z) with the stochiometric vector gives the same result
as for unclosed, unobservable concentration y. Moreover, the equilibrium condition
defines a hyperplane of the Aitchison geometry. The equilibrium constant can thus
be computed through (ν, clr (z)) = ln Keq − (ν, ln k), independently of further
unobserved components, other reactions, etc. That, for instance, allows to estimate the
temperature of a system using Eq. (3): T̂ (z) = �G∅/ (R ((ν, clr (z))+ (ν, ln k))) .
Of course, this may offer ways to derive thermodynamically based geothermometers,
though further research is needed to assess its practical relevance.
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4 Reactions Not Preserving the Amount of Matter

In the other case
∑

i νi = (1D, ν) =: κ �= 0, the projection of clr transformed
concentrations and compositions provide:

(ν, clr (z)) = (ν, clr (y)) = (ν, ln y)− ln g (y) · (ν, 1D) = ln Keq − (ν, ln k)− κ · ln g (y)

i.e. for systems in equilibrium at known temperature

τ̂ (z) := ln g (y) = 1

κ

(
ln Keq − (ν, ln k)− (ν, clr (z))

)

where the right hand side only contains information we typically have. It is thus
possible to reconstruct the total from the compositional data if the equilibrium
constant Keq is known. Knowing that total, one can then recover the individual
values of concentration from the proportions through their equivalence in clr’s:
ŷi = exp

(
clr (z)i + τ̂ (z)

)
. Note that this may allow to estimate the total matter

of species Si per unit of volume if the concentration yi is molar volume.

5 Conclusions

In simple aqueous systems, an iso-molar equilibrium represents a hyperplane in the
Aitchison geometry for compositional data. Its leading vector is the vector of sto-
chiometric coefficients of the reaction, and its position depends on the temperature,
standard Gibbs energy of the reaction and the units of concentration used. This may
allow to estimate temperature from the proportions, thus build a geothermometer.
In equilibrium reactions not preserving the total number of mols, the unobservable
amounts of matter of the elements in play can be inferred from their proportions,
if the equilibrium constant is known. In both cases, the leading vectors of the reac-
tions in play may define an appealing basis or coordinate reference system for the
composition.
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Analysis of Total Abundances of Phytoplankton
Compositions in a River

Vera Pawlowsky-Glahn, Juan J. Egozcue and David Lovell

1 Introduction: Theory and Methods

We deal with data x = [x1, x2, . . . , xD] in the real positive orthant (RD+ ). Taking log-
arithms on each component, RD+ has a D-dimensional real Euclidean vector space
structure [4]. The closure of the original data leads to a composition in the sim-
plex S D , where we assume the Aitchison geometry [3] is appropriate. The total is
described by a product or a sum and, in general, by a positive function of the original
components with a relative scale in R+ . Jointly, the total and the composition are ele-
ments of the product space R+×S D = T . A D-dimensional real Euclidean vector
space structure is obtained in T considering the Aitchison geometry in S D , and
logarithms in R+ [4]. To apply standard multivariate analyses, this product space T
must have Euclidean structure [2]. But not all total functions are compatible with the
assumed vector space structure in RD+ and S D . Inconsistencies typically manifest
when comparing the mean value calculated in T and in RD+ . For example, inconsis-
tencies arise with a total function that is the sum of all original components, but not

with a total function tp =
(∏D

i=1 xi

)1/
√

D
which ensures T and RD+ are isometric.

The following analysis is performed using (a) RD+ ; (b) Tp =
(
R+ ×S D

)
(with the

total tp); and (c) Ts =
(
R+ ×S D

)
(with the total ts = ∑D

i=1 xi ). The number of
parts is D = 8, and equivalences and differences of the three cases are shown.

V. Pawlowsky-Glahn(B)

Universitat de Girona, Girona, Spain
e-mail: vera.pawlowsky@udg.edu

J. J. Egozcue
Universitat Politècnica de Catalunya, Barcelona, Spain
e-mail: juan.jose.egozcue@upc.edu

D. Lovell
CSIRO-CMIS, Canberra, Australia
e-mail: David.Lovell@csiro.au

E. Pardo-Igúzquiza et al. (eds.), Mathematics of Planet Earth, 111
Lecture Notes in Earth System Sciences, DOI: 10.1007/978-3-642-32408-6_27,
© Springer-Verlag Berlin Heidelberg 2014



112 V. Pawlowsky-Glahn et al.

2 Phytoplankton Abundances

Phytoplankton abundances were measured over a period of 14 years in an Australian
river. Interest was in the evolution of the total abundance in time, and its possible
relation to taxa present. After removal of incomplete compositions, data consisted
of 173 samples of the following taxa: Anabaena (ana), Aphanizomenon (aph) and
Other Cyanophyceae (ocy) of the group of Cyanobacteria, and Actinastrum (act),
Cryptophyceae (cry), Ankistrodemus (ank), Aulacoseira distans (aud) and Aulaco-
seira granulata (aug) of the group of Algae. The exploratory analysis suggested two
different periods, before 1998 (labelled B, 58 samples), and after 1998 (labelled A,
115 samples). Our aim is to check whether there is a statistical difference in the
centre values [3] of samples B and A, as there is a suspicious increment of the total
abundance.

A first step is computing the centres for samples B and A, and considering all
the samples belonging to the same sample, labelled BA (Table 1). The upper part of
the table is the centre, Cen+, computed in RD+ , and given in abundances per liter.
Under the labels ts and tp, the totals corresponding to Cen+ are specified. The lower
part of the table shows the centre of the composition, which is common to the three
approaches RD+ , Tp, Ts , with the centre of ts and tp. The inspection of Table 1
reveals that the total sum of the centre in RD+ is not equal to the centre total in Ts .
However, tp of the centre in RD+ is equal to the centre tp, as predicted by the isometry
between RD+ and Tp. Moreover, the differences between the centres appear to be
substantial, thus announcing significant differences in the centres for all approaches.

Concerning metric variances in Table 2, RD+ and Tp have the same metric vari-
ances as expected which, in turn, differ from the metric variance in Ts .

The biplot representation in the three approaches Fig. 1 provides an insight about
the features of the samples. The comparison shows that the data points are exactly the
same in RD+ and Tp, as predicted by the isometry. The samples B and A appear quite
well separated. In Ts the obtained projection is different, and it represents a lower
percentage of metric variance. In Tp the first principal component is dominated by the

total
∏

x1/
√

D
i , whereas the total sum is relatively less important in the first principal

Fig. 1 Phytoplankton data biplots. Sample B: blue; A: green. Left: RD+ . Middle: Tp . Right: Ts
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Table 1 Centres for samples B, A, and joint sample (BA)

Centre in RD+
ts tp ana aph ocy aug aud act ank cry

B 4244 7573866 627 491 94 2373 67 193 287 111
A 7530 69151799 957 671 856 3597 108 320 715 305
BA 6079 32945104 830 604 408 3129 92 270 526 218
Centres in T

ts tp ana aph ocy aug aud act ank cry
B 5456 7573866 0.148 0.116 0.022 0.559 0.016 0.046 0.068 0.026
A 9654 69151799 0.127 0.089 0.114 0.478 0.014 0.043 0.095 0.041
BA 7973 32945104 0.137 0.099 0.067 0.515 0.015 0.045 0.087 0.036

Upper table: abundances (counts per liter) in RD+ and totals of the centre with the sum ts and product
tp . Lower table: compositional centre and centre of the totals, ts and tp . The composition of the
centre in RD+ equals to the compositional part of centres in the product space

Table 2 Metric variances in RD+ , Tp , and Ts , for the three samples B, A, BA

Sample RD+ Tp Ts Sample RD+ Tp Ts Sample RD+ Tp Ts

B 7.268 7.268 6.039 A 6.867 6.867 5.311 BA 8.705 8.705 6.241

component in Ts . This comparison is reinforced by the fact that the compositional
part coincides in Tp and Ts . In the biplots the totals appear almost orthogonal to the
separation of samples B and A, i.e. they play an important role in the discrimination
of the two samples, thus confirming that differences between B and A are not only
compositional but also in total abundances.

MANOVA techniques can be used for testing equal centres in samples B and
A. The vectors of abundances are represented in coordinates and then treated as
multivariate real variables. Certainly, in RD+ , Tp and Ts , the difference of the cen-
tres is clearly significant, as expected after the representation in the biplots. Also
biplots suggest coordinates with significant and non-significant different means. For
instance, the balance of ana vs. aud has means in B and A which are not significative
in an ANOVA F-test, while balances between variables pointing at opposite sides of
the axis ana-aud have significant different means. The log-totals also have significant
different means for the two samples. As a conclusion, the hypothesis of equal centres
for the samples B and A should be rejected with a very low significance, much less
than 10−4.

In the studied case, the relevant total was assumed to be the sum of the abun-
dances, and the approach in Ts provides appropriate information for the study of
the Phytoplankton data set. The approach in RD+ also provides similar information,
but the product total dominates the analysis, as the first PC is essentially the product
total.
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3 Conclusions

Data carrying compositional information plus a total are frequently analysed as vec-
tors in RD+ , taking logarithms and then using standard multivariate methods designed
for real space RD . This practice is not compatible with the also common idea that
the sum of all components, in R+, is a relevant total. Assuming the log-geometry in
RD+ , and, simultaneously, that closed data are compositions, implicitly implies that
the total is the product of all components to the power 1/

√
D.

As a conclusion, if a data set in RD+ is assumed compositional and the relevant
total is the sum, to perform the analysis in the product space Ts = R+ × S D is
advisable. Sometimes, an analysis in RD+ can give similar results to those obtained
in Ts , but circumstances in which they are similar are not clear.

One of the central issues in compositional data analysis is subcompositional
coherence [1]. Therefore, the question arises on how subcompositional coherence
is reflected in RD+ and Ts or Tp. Also, the basic approach to sampling zeros will
be analogous to the usual approach in S D , although a detailed study is needed
concerning the impact of substitution techniques on the total function chosen for
analysis.
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Recursive Upward Sweeping and Updating
Method on Ensemble Based Multiscale
Algorithm in Data Assimilation

Chen Li, Shihua Chen, Chunlin Huang and Wei Gong

1 Introduction

Multiple measurements at different scales may contain implicitly redundant infor-
mation which subdues the impact of model predictions or first-guess can lead to
over-calibration. The ensemble multiscale Kalman filter(EnMSF), an ensemble ap-
proach based on MAR presented in [1] provided a multiscale update in data assimila-
tion had been used for hydrologic data assimilation in [2]. However, the update at
different scales can counteract interactively due to random error in observation in-
formation to result in under-estimate. Another ensemble multiscale filter using a re-
cursive upward sweeping and updating method (Rec-EnMSF), is proposed to utilize
the observational information at different scales asynchronously to get precise esti-
mation. This improvement in upward sweeping steps is designed to utilize observa-
tional information hierarchically to avoid under-estimate. In this paper, EnMSF and
Rec-EnMSF are introduced and compared, and numerical experiments with two-
dimensional turbulent flow model with virtual measurements at different scales are
used to illustrate efficiency and effectiveness of the algorithms.
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2 Principles of the EnMSF and Rec-EnMSF Algorithm

A typical two dimensional multiscale tree can be delineated in Fig. 1a, more details
and properties can be found in [3, 4]. In traditional EnMSF in [1], model states
variables at the finest scale are decomposed to scales firstly, and updated with obser-
vations at the corresponding scale if available. Then coarser nodes are used to smooth
nodes at finer scales, namely downward sweep, see in Fig. 1a.

Then we propose an improved Upward Sweep steps, i.e. when nodes at scale m(sa)
are decomposed into coarse scale m(s), if observations are available, then update the
status of the nodes at scale m(s) and decompose them into coarse scale m(sγ ); else if
observations are not available, nodes at scale m(s) are decomposed into scale m(sγ ).
The cycle terminates until decomposition and update if available at the coarsest scale
is finished and traditional downward sweep steps are also used (to smooth fine scale)
This process is shown in Fig. 1c.

3 Results and Discussion

In this paper, the two-dimensional incompressible turbulent flow model (Re = 4000)
is simulated in a square domain range of [0,1]×[0,1] with a 64×64 grid, i.e.�x to
1/64 , and the number of total time steps is 100.

In the cases to compare EnKF and EnMSFs, multiscale tree is established as
shown in Fig. 1a. The measurements are generated from a synthetic data set when
the model runs forward sequentially without model error and assimilated into the
model integrated forward with model error later.

(a)

(b)

(c)

Fig. 1 a A typical multiscale tree; b Flow diagram for origin EnMSF; c Flow diagram for Recursive
EnMSF
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Fig. 2 a Evolution of model states at specific times for EnKF, EnMSFs, reference solution (true
states) and open-loop, with ensemble size equals to 60 and variance of observation error is 0.1;
b RMSE from initial time to the final are used to test the performance of these three assimilation
algorithms; c Mean RMSE for EnMSFs and EnKF with different ensemble size varies from 20
to 100 by 5 and different coefficient σ 2

R . d Mean RMSE for EnMSFs and EnKF with coefficient
σ 2

R = 0.1 and different ensemble size varies from 20 to 100 by 5

Experiments results in Fig. 2a indicate that both EnKF and EnMSFs can assimilate
the observational information effectively, i.e. estimated analytical states with three
methods can converge to the reference state gradually when models evolve forward
in time. In Fig. 2b, it is obvious that trends of both the RMSE and model evolution are
similar, and the EnMSFs has a better performance in this case with lower dispersion
of ensemble samples, faster convergence and less deviation at the final. In Fig. 2c, d,
mean RMSE declines with increasing ensemble size and the EnMSF also presented
a better result than the EnKF here with consistently less deviations when ensemble
size changes, and the EnMSFs also presented a better result than the EnKF here with
consistently less deviations when ensemble size changes. When the coefficient is
relatively large i.e. measurements are relatively inaccurate, the Rec-EnMSF is better
than origin EnMSF with less RMSE.
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Corrected Kriging Update Formulae
for Batch-Sequential Data Assimilation

Clément Chevalier, David Ginsbourger and Xavier Emery

1 Kriging Update Formulae for Batch-Sequential Data
Assimilation

Let us consider a real-valued second-order random field Z indexed by D ⊂ R
d . The

term kriging is often used when one aims at calculating a linear predictor Ẑn(x) and
the associated prediction variance σ 2

n (x) (often called kriging mean and variance), of
the field Z at a point x ∈ D, from a set of n observations, at locations x1, . . . , xn ∈ D.
Also, denote by σn : (x, y) ∈ D2 → σn(x, y) := E[(Z(x)− Ẑn(x))(Z(y)− Ẑn(y))]
the kriging covariance function, giving covariances between kriging errors. Krig-
ing means, variances and covariances can be computed using the so-called kriging
equations, given in, e.g., [2]. Recently, a lot of effort has been put in reducing the
cost for computing kriging means, variances and covariances when the observations
are assimilated sequentially. In particular, when n observations are available, one
may take advantage of previous computations to reduce the calculation cost of the
kriging predictors when k > 1 additional observations are available, at locations
xn+1, . . . , xn+k . In that setup, [3] recently proposed the following kriging update
formulae:

Ẑn+k(x) = Ẑn(x) +
k∑

i = 1

λn+i |n+k(x)
(

Z(xn+i )− Ẑn(xn+i )
)
, (1)
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σ 2
n+k(x) = σ 2

n (x) −
k∑

i = 1

λ2
n+i |n+k(x)σ

2
n (xn+i ), (2)

σn+k(x, y) = σn(x, y) −
k∑

i = 1

λn+i |n+k(x)λn+i |n+k(y)σ 2
n (xn+i ) (3)

where λn+i |n+k(x) denotes the kriging weight of Z(xn+i ) when predicting Z(x)
relying on Z(x1), . . . , Z(xn+k). In [3], Eqs. (2, 3) are proven only for k = 1. In
fact, for k > 1, a counterexample for Eq. (2) can be obtained with the Brownian
motion, as shown in a draft version of the present paper [1]. The next sections provide
corrected formulae and an application in Gaussian field simulation.

2 Corrected Kriging Update Formulae

We now propose corrected expressions that replace Eqs. (2, 3). To improve the read-
ability, we adopt the following simplified notations:

• Xold := {x1, . . . , xn}, and Xnew := {xn+1, . . . , xn+k},
• Zold := (Z(x1), . . . , Z(xn)), and Znew := (Z(xn+1), . . . , Z(xn+k)),
• λnew,old(x) := (λ1|n+k(x), . . . , λn|n+k(x))�,
• λnew,new(x) := (λn+1|n+k(x), . . . , λn+k|n+k(x))�,
• σ 2

old(x) := σ 2
n (x), σ

2
new(x) := σ 2

n+k(x), and similarly for the covariances.

For conciseness and coherence, Ẑn(x) and Ẑn+k(x) are also denoted by Ẑold(x) and
Ẑnew(x), respectively. The corrected update formulae are given below:

Proposition 1 (Corrected kriging update equations for the batch-sequential case)

Ẑnew(x) = Ẑold(x)+ λnew,new(x)�(Znew − Ẑold(Xnew)) (4)

σnew(x, y) = σold(x, y)− λnew,new(x)��newλnew,new(y) (5)

where �new := Cov[Znew − Ẑold(Xnew)] is the covariance matrix of kriging errors.

Note that Eq. 4 is exactly the same result as Eq. 1 (which original proof is correct).

Proof Subtracting Z(x) from both sides of Eq. 4, simple manipulations give

Ẑold(x)− Z(x) = (Ẑnew(x)− Z(x))− λnew,new(x)�(Znew − Ẑold(Xnew)).

Using the uncorrelatedness between kriging errors and observations, we then obtain

V ar [Ẑold(x)− Z(x)] = V ar [Ẑnew(x)− Z(x)] + V ar [λnew,new(x)�(Znew − Ẑold(Xnew))]
σ 2

old(x) = σ 2
new(x)+ λnew,new(x)��newλnew,new(x)
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which proves Eq. (5) for x = y. A proof with x �= y can be obtained similarly. �

Proposition 2 (Kriging update equations in terms of kriging covariance)

�newλnew,new(x) = σold(Xnew, x) (6)

Ẑnew(x) = Ẑold(x)+ σold(Xnew, x)T�−1
new(Znew − Ẑold(Xnew)) (7)

σnew(x, y) = σold(x, y)− σold(Xnew, x)T�−1
newσold(Xnew, y) (8)

Proof We prove Eq. (6) using a Gaussian assumption on the field Z . The formula
remains valid in non-Gaussian cases as the best linear prediction and the condi-
tional expectation coincide in the Gaussian case. Using the orthogonal projection
interpretation of the conditional expectation,

Z(x) = E(Z(x)|Zold,Znew)+
=:ε︷ ︸︸ ︷

Z(x)− E(Z(x)|Zold,Znew)

= λnew,old(x)�Zold + λnew,new(x)�Znew + ε,

with ε centered, and independent of Zold and Znew. Let us now calculate the condi-
tional covariance between Z(x) and Znew knowing the observations Zold:

σold(Xnew, x) := Cov(Znew, Z(x)|Zold)

= 0+ Cov
(

Znew,λnew,new(x)�Znew
∣∣ Zold

)
+ Cov(Znew, ε|Zold)

=�newλnew,new(x)+ Cov(Znew, ε|Zold)

Noting that Cov(Znew, ε|Zold) = 0, the latter equation proves Eq. (6). Equations (7,
8) follow by plugging in Eq. (6) into Eqs. (4, 5). �

3 GP Simulation, with Batch-Sequential Data Assimilation

A well known algorithm for simulating M Gaussian process (GP) realizations in p
points conditionally on n observations consists in adding to the kriging mean obtained
with the n real observations M kriging residual functions artificially obtained based
on non-conditional realizations [2, 4]. The kriging update formulae can be used in
this algorithm to reduce computation costs in the case where one aims at smoothly
“converting” GP realizations conditioned on n observations to realizations condi-
tioned on n+ k observations (see, Fig. 1, with n = 6 and k = 3). Computing kriging
means knowing n observations and k real or simulated new observations (denoted
by Znew and Zsim respectively) requires to use Eq. (4). It appears that the difference
between these two updated kriging mean functions (i.e. with k observations equal to
Znew and Zsim) only depends on Znew−Zsim and on λnew,new, which can be obtained
from Eq. 6. Then, the calculation of λ�new,new(Znew − Zsim) for p points has O(pk)
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Fig. 1 100 GP realizations conditioned on 6 data (black lines) and 9 data (red lines)

complexity and O(Mpk) for M simulations. This is faster than standard algorithms
based on a decomposition (e.g., LU or Cholesky) of the p × p covariance matrix
which require M matrix-vector product for a cost of O(Mp2). The gain of O(p/k)
can be substantial: in an application set up, with M = 1, 00, 000, p = 200, n = 6,
k = 3, the computation time is divided by more than 10.
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Analysis of the Parametrization Needs
of Different Land Cover Classifiers:
the Case Study of Granda Province (Spain)

Víctor F. Rodriguez-Galiano and MarioChica-Olmo

1 Introduction

The application of classification methods for the mapping and monitoring of land
covers is one of the most relevant remote sensing applications. The accuracy of the
generated mapping can be assessed quantitatively using the kappa index (K) or the
overall accuracy (OA) [1]. This accuracy is not only dependent on the classification
scene or the data themselves, but it is also strongly bound to the applied classifica-
tion method. The accuracy of models induced by means of ML classifiers strongly
depends of the combination of parameters used. Therefore, a detailed comparison
cannot be carried out without previously establishing the optimal parameterization
of each model.

Most studies focus on land cover mapping accuracy only, avoiding details about
the parameter setting used in the training of classifiers. Additionally, it is also frequent
to apply the default settings recommended by the commercial software used, or
only a very limited number of experiments are carried out to determine the optimal
parameters [5]. However, few are the studies based on remote sensing data which
analyse the effect of parameter selection in ML algorithms [3]. Hence there is a need
to study the impact of the parameterization of these algorithms for the classification
of land covers and land uses in depth. This chapter discusses the crucial issues
related to the parametrization of different up-to-date ML classifiers: classification
trees (CT), artificial neural networks (ANN), support vector machines (SVM) and
Random Forest (RF) [2].
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2 Data and Methods

Two Landsat Thematic Mapper-5 scenes of the same area in southeast Spain were
captured (spring and summer). Both, spectral and auxiliary variables were used.
On the one hand, spectral variables consisted of the Kauth Thomas multi-seasonal
components of the summer and spring images. On the other hand, the auxiliary
variables included in the analysis were elevation, slope and aspect, derived from the
digital terrain model of spatial resolution equal to 20 m. These auxiliary variables
were rescaled to the spatial resolution of the spectral variables (30 m). An exhaustive
database for training and testing was obtained by visual interpretation of digital true-
colour orthophotos (1:10000). The number of the training sites per class was kept
equal (100 training sites and 50 testing sites per land cover category).

3 Results and Conclusions

The parametrization of classification algorithms has a great influence on their
robustness and generalization capacity. Figure 1 shows significant differences in the
accuracy obtained by the different ML methods according to the parameter setting
used. CT classifiers were less accurate than the rest of methods, reaching moderate
accuracy levels (K < 0.85). However, RF was very robust, with K values over 0.89
for most parameter combinations studied. RF, apart from being an operative method
in terms of the simplicity of its parameters, also presented a greater stability against
variations in its internal configuration. SVM and ANN obtained values equivalent
to RF accuracy levels only for very specific parameter combinations. In the case
of ANN this effect was much more noticeable: of the 15,580 different classifiers
which were trained, only one reached a value for K equal to 0.89. Below mapping
accuracy is quantitatively analysed with relation to the different parameters used in
the building of each type of classifier [2].

The CT classification with a greater K index (0.85) was created by using the Gini
index as a measure of heterogeneity, six variables at least in each node, and a depth
of the tree of seven levels. The classification error increased, once a minimum of
about six levels in depth was obtained, until reaching a maximum around 10, from
which the error converged. Hence, it is preferable to limit the depth of trees so that
these do not overfit data and, hence, the model does not lose generality in turn.

Regarding RF, it incorporates an additional parameter which is not considered
in traditional decision trees: the m parameter. This m value remains constant while
the tree grows, and the selection of variables is random. From about 100 trees the K
value converged up to 0.91 and 0.89 for m equal to 1 and 9, respectively. The addition
of more trees neither increased nor decreased the generalization error. However, an
important increase in computation time was observed when a high number of trees
was considered. Ensembles made up of few classification trees produced poor results,
while greater ensembles produced more accurate classifications. The highest value
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Fig. 1 Mapping accuracy (K) of all classifiers considering different parameter combinations. RF is
the most stable classifier, reaching high accuracy values for most generated models. On the contrary,
CT and ANN were extremely sensitive to the chosen combination of parameters and overfitting.
SVMs show an average sensitivity to the chosen combination of parameters

for K (0.92) was obtained when 479 decision trees and only one random variable
were used.

The maximum value for K was obtained for neural networks with a number
of units in the hidden layer equal or over five. From this value the network error
converged and the addition of more units did not have a significant impact on the
accuracy of classifications. The initial value of weights had a significant impact on
the K index. For negative weight values a very low K was obtained, while for positive
values over 0.5 the highest K was obtained (Fig. 1). These results differ from those
recommendations by [4] who suggest setting the range of weight values between −1
and 1. ANNs reached a maximum K for very low weight decay values (0.01).

K maximum values were obtained for SVMs with costs below 10, which indicates
that the training and test data used in the calibration of the classifiers had a very low
number of outliers. SVMs underwent a decreasing tendency of the K index with
relation to cost. The best K values were obtained for very small gamma values of
between 0.05 and 0.1, from which a more important decrease than that of the cost
parameter took place. This parameter, gamma, is traditionally fixed to the value of
the inverse of the number of input variables into the classifier [5]. However, in view
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of our results, we believe the joint adjustment of both parameters, cost and gamma,
to be more suitable.
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Automatic Raman Spectra Processing
for Exomars

Isaac Hermosilla Rodriguez, Guillermo Lopez-Reyes, D. R. Llanos
and Fernando Rull Perez

1 Introduction

Raman spectroscopy is a spectroscopic technique used to study vibrational, rotational,
and other low-frequency modes in a system [1]. It is widely used to provide infor-
mation on chemical structures and physical forms, to identify substances from the
characteristic spectral patterns (fingerprinting). So, it is possible to identify these
materials through the study of their Raman spectrum.

The automated identification of Raman spectra is not an easy task due to the
variability between different spectral acquisitions of the same sample, influenced
by the different acquisition conditions (for example, spectra acquired with different
equipment or laser wavelength). The identification problem is even harder when the
spectrum corresponds to mixtures of more than one mineral. This work is developed
for its use with the RLS instrument of the ExoMars mission, in which the apparatus
function will be known and the necessary spectral corrections can be performed.
However, the algorithmic here presented is intended at identifying the mineral phases
of Raman spectra without the need to perform these corrections, providing a fast and
robust identification tool from Raman spectra.
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2 Pre-Processing of Raman Spectra

The pre-processing of Raman spectra is intended at extracting the spectral informa-
tion of interest from the spectra for its subsequent analysis and identification. Mainly,
the information that has to be extracted from the spectrum is the peaks Raman shift
(cm−1) and intensity. This task is divided into three steps: noise reduction, baseline
removal and peak detection, and it is performed automatically or with very little
interaction with the user.

Noise reduction main goal is to improve the signal-to-noise ratio. Depending
on the characteristics of the spectrum, different well-known smoothing filters as
Savitzky-Golay or local regression (also known as loess) can be used [2].

Raman spectra are characterized by the presence of a background that provides
the spectra a sample-dependent characteristic curvature which does not correspond
to Raman emissions. The background removal is necessary because it can hinder
the presentation, visualization and processing of the Raman spectral information.
Several methods of automatic baseline determination can be found in the literature [3]
or [4]. However, we have implemented a method to calculate the baseline based
on an algorithm with an adjustable window of delta points that provides accurate
results for spectra with different spectral characteristics. This algorithm calculates
the baseline at each point as a function of the closest delta surrounding points. This
delta value is adjusted depending on the spectral region to address for the different
peak characteristics in the different regions. Thanks to this adjustment, the algorithm
can provide very accurate baselines, as shown in Fig. 1. Its main advantages are a
low number of iterations and computation that make it suitable to be included in the
RLS instrument of the ExoMars mission [5]. The algorithm optimal configuration
was established by minimizing the error in several dozens of cases, and its robustness
was checked with Leave-one-out Cross-Validation.

The last step consists on the automatic location of the Raman peaks. This identifi-
cation is currently performed by finding relative maxima over a threshold within the
baseline corrected spectrum. This threshold is defined as a function of the spectrum

Fig. 1 Automatic baseline removal of a calcite + gypsum mixture
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noise, allowing the algorithm to automatically adjust its behavior as a function of
the spectral characteristics. The final product of the pre-processing routine consists
on a list of peak positions and intensities that will be used to uniquely identify the
materials the sample is comprised of.

3 Raman Spectra Identification

Once the spectral information of interest (peak positions and intensities) have been
correctly detected, the recognition process kicks-off. The aim is to identify a spectrum
of unknown materials, referred to as the problem spectrum. Our algorithm is based
on band comparisons as proposed in [6], but our proposal also includes the intensity
information (in addition to the Raman shift) to improve the identification accuracy.
The algorithm aim is to create a tree of solutions capable of identifying both pure
materials and mixtures in two steps.

The first step consists on retrieving the spectra that have a peak that matches
with the most intense band in the problem spectrum. If all the bands of the problem
spectrum match, it is therefore considered as a pure material, and the algorithm
ends. On the contrary, if there are still unmatched bands, the problem spectrum will
probably belong to a mixture of two or more materials, and the algorithm advances
to the next step.

The second step consists on a recursive search which retrieves all the spectra that
have coincidences with any of the unmatching bands from the previous step. Before
each new iteration, the spectrum problem peak set is modified taking into account
the results from previous iterations: if a band from the problem spectrum matches,
the corresponding intensity of the reference spectrum is subtracted to address for
mixtures in which there are overlapping bands. Once this has been made for all the
matching peaks, the spectrum is renormalized. The recursive search will finish when
all the problem spectrum bands are identified, or when there are not more candidates
in the database.

For testing purposes, the algorithm has been run with 100 randomly selected
spectra from the set of Crystal Sleuth software which is part of the RRUFF project [7],
with pretty relaxed parameters for the band matching conditions to validate in a more
realistic scenario. The results showed that 100 % of the spectra were included among
the possible spectra reference sets provided by the software. All results lists included
the original spectrum as a suggestion that matched with the Raman bands of the
problem spectrum. In 55 % of the cases only one suggestion was returned, so, in
these cases, the problem spectrum was unequivocally identified. However, in 21 %
of the cases the number of possible results was too large (ranging from 28 to 628
suggestions), but this only happened when the problem spectrum had only one or
two Raman bands. In the remaining cases, the number of suggestions was lower than
15. In contrast, when intensity was not taken into account (as in [6]), the results were
far worse: no unequivocal identifications, and 45 % (instead of 21 %) of results with
too many possible coincident spectra sets.
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4 Conclusion

The algorithms presented here are capable of processing and identifying Raman
spectra. Some of them will be used on-board or in the ground segment of the
ExoMars mission for the analysis of the Raman spectra provided by the RLS
instrument.

Besides the algorithms presented here, a software platform has been created to
test them and to provide users with a tool for processing Raman spectra.

The development of these algorithms is still in progress, but it has been shown
that this kind of analytical tools can provide reliable pseudo-automated means for
the analysis of Raman spectra.
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Fuzzy Parameterization of a Filtration Model
for a Non-homogeneous Sedimentary Rock

Elena Savelyeva and Aleksander Rastorguyev

1 Introduction

Usual procedure to fit parameters of a filtration model deals with inverse modeling
[1] under the assumption of homogeneity of the predefined sedimentary layers. It
means that each sedimentary layer is characterized by single values or tensors of so
called effective parameters. Such assumption can be crucial in the case of strongly
non-homogeneous sedimentary layers, as for example, an aquifer with rather large
crops of low conducting clay.

As an alternative to sedimentary layers one can consider lithological types (litho-
faces) forming the geological structure. The information on their vertical distrib-
ution together with samples can be obtained during borehole drilling. Laboratory
experiments allow estimation of the filtration parameters. Thus the parameterization
problem seems to transform into construction of a 3D model of lithofaces, or in
other words a 3D classification problem. But the real situation is more complicated
due to uncertainties: experimental (core permutations during drilling and extrac-
tion, non-accuracy of the laboratory devices, etc) and modeling (sparse distribution
of boreholes) causes. So, parameters still require fitting before modeling. So, this
fitting should also take into the account classification errors.

This work presents an approach uniting classification and fitting of the class related
parameters. The approach was tested and applied to real data.
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2 Description of the Approach

The parameterization is an iterative approach. It starts by identification of an initial
state defined by: (a) spatial distribution of lithofaces (classification); (b) intervals of
values for the filtration parameters.

The classification problem is solved by probabilistic neural network (PNN) [2].
PNN estimates a posteriori probabilities for all classes (3). Which are the basis of the
reclassification procedure—the substitution of lithological class-winner (class with
the maximum probability (2)) by a class second to the winner. Bootstrap approach
allows to identify the average number and positioning of reclassifications improving
the classification result. For example, for data from presented below case study, a
bootstrap approach with 1,000 repeats showed the best result was achieved after
changing ≈31 % of classes with probability ≤0.6 also considering the continuity of
classes.

Lithoface dependent filtration parameters are obtained by laboratory experiments
or from reliable references. They are given in the form of intervals of admissible
values accompanied by a likelihood function in a triangular form which in the math-
ematical theory of fuzzy sets is referred to as a grade of membership (μK 1(y)).
According to the value of μK 1(y) a value is attributed to one of fuzzy categories:
nearly impossible, low possible, possible and highly possible. As the problem is a
multiparametric one all intervals of values of parameters form a multidimensional
cube. The grade of membership for a multidimensional case is defined by algebraic
multiplication of the one-dimensional functions:

μK 1·K 2·····K n(y) = μK 1(y) ◦ · · · ◦ μK n(y) (1)

The first step of iteration procedure is to search a set of filtration parameters mini-
mizing a misfit function (5) in the multidimensional cube for the given geological
structure. For minimization of the misfit a rude regular grid is stretched over the
multidimensional cube of parameters’ values. Misfit function is estimated for all
nodes and those nodes where misfit’s decreasing is observed are noted. Around them
a finer grid is stretched, local minimums are discovered, and so forth till predefined
definition of the grid is obtained. A minimum (or several minimums) found out for
the finest grid is the result of minimization.

The second step deals with establishing the correspondence between the positions
of the misfit’s minimum within the multidimensional cube and a multidimensional
fuzzy categories due to the grade of membership (1). If minimum has possible or
highly possible category the fitting procedure finishes, otherwise the lithological
structure changes (reclassification) and process continues with the first step.
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2.1 Probability Neural Network

PNN is a supervised neural network constructing a classifier using Bayesian optimal
or maximum a posteriori decision rule:

C(X) = argmax
i,i=1,...,K

P(Ci )p(X |Ci ) (2)

where P(Ci ) is a prior probability of class Ci , p(X |Ci ) is density of class conditional
distribution for all locations X and K is a number of classes. The density p(X |Ci )

is estimated by non-parametric kernel method [3]. In this work 3-dimensional
anisotropic Gaussian kernel (W (X)) is used:

p(X |Ci ) = 1
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where N is a number of samples in the training part of data and σ j > 0, j = 1, 2, 3
are the scaling parameters (kernel bandwidths) incorporating anisotropic features.
Training of PNN is a procedure to adjust the optimal σ j ( j = 1, 2, 3) values for
current data, so as to minimize the classification error. It is performed by a cross-
validation approach.

2.2 Minimization of the Misfit Function

Filtration parameters of lithofaces are fitted basing on experimental data. Fitting
procedure includes numerical solution of the spatial filtration equation in terms of
decreasing of hydraulic heads using different values of parameters (filtration coeffi-
cients and coefficients of the resilient capacity) from the multidimensional cube:
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where x, y, z and t are spatial and temporal coordinates; S is a decrease of a hydraulic
head while pumping out; Q is a discharge of the pumping. Within a lithoface filtration
coefficients are considered as isotropic (kh = kv). The numerical solution of the
filtration problem (4) is performed by ModFlow program [4].

The solution of Eq. (4) allows estimating the misfit function—a subject of mini-
mization:

ϕ(k, η) = 1

N

N∑

i=1

(Si − S′i )2

|Si | (5)



134 E. Savelyeva and A. Rastorguyev

Table 1 Dynamics of misfit
function during
reclassification iterations

Iteration Case 1 Case 2

Starting geology 0.46 0.25
1st-iteration 0.34 0.31
2nd-iteration 0.27 0.12

where N is the total number of control measurements (in all wells for all temporal
interval), S is for measured head’s decrease, S′ is for estimated head’s decrease.

3 The Case Study

The proposed approach was applied to two real examples from the same place but
different depths. The both cases in general deal with three hydrogeologic layers (an
aquifer surrounded by aquitards), but the lithology is presented by six lithofaces: two
types of sands, a clay, coal, a product of the hard rock corrosion and a hard rock.
Classification was based on data from 118 wells, total number of samples—11386.

Filtration parameters are fitted on pumping-down experiments, which were per-
formed regularly during 20 days. Measurements of water level dynamics were made
in five adjacent wells five times per day. Initial filtration parameters were given by
minimal, maximal and the most probable values for corresponding lithofaces due to
laboratory experiments.

The both cases required two reclassification iterations for obtaining parameters
from probable fuzzy category. The dynamics of misfit function over these iterations
is presented in Table 1. Obtained filtration parameters differ from the most probable.
The resultant geology presents rather long high permeable riders within traditional
aquifers.
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Application of Multivariate Analysis Techniques
for the Identification of Sulfates From Raman
Spectra

Guillermo Lopez-Reyes, Pablo Sobron, Catherine Lefebvre
and Fernando Rull

1 Introduction

The Raman instrument (RLS) onboard the 2018 ExoMars rover will determine the
structural and compositional features of Mars’ surface and subsurface samples [1].
In its current configuration, samples will be collected using a drill, then crushed and
finally delivered to the analytical laboratory [1]. While such concept of operation will
enable adequate management of collected samples, geological and morphological
context will be lost. Thus, innovative spectral treatment methods must be developed
that will enable unambiguous qualitative and quantitative identification.

Multivariate analysis (MVA) techniques for the quantitative analysis of the Raman
spectra of several minerals and rocks show, for instance, that principal component
analysis (PCA) is capable of differentiating mineral species such as carbonates,
sulfates, oxides and silicates in geological samples [2]. Partial least squares regression
(PLS) has been used to determine the quality of biodiesel fuels [3]. Artificial neural
networks (ANN) have been designed for the identification and quantification of
inorganic salts in water solutions [4]. Also, Combinations of these techniques for
chemometrical analyses from Raman spectra have been attempted [5].

The aim of this study is to evaluate the aforementioned MVA techniques for the
analysis of mineral samples in the framework of the operation of the RLS instrument.
Sulfates are used because they are one of the two major types of secondary minerals
found on Mars that may provide potentially habitable environments. Due to the
relation of sulfate salts with ancient aqueous environments in which life might have
thrived, it is expected that sulfates will be priority targets of the ExoMars mission.
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A set of 17 spectra of sulfates were used as input for training all the three
techniques. The set was divided in four subsets, each grouping sulfates with different
hydration state: FeSO4 (1, 4 and 7w), MgSO4 (1–7w, and 12w), CaSO4 (0, 1/2 and
2w) and Na2 SO4 (0 and 10w). A set of mixed spectra was generated by computing
linear combinations of the original ones, parameterized with the expected proportion
of the mixture and the cross-section of the mixed materials. Random noise was added
to the synthetic spectra to guarantee differentiation. This set of mixtures was used
to validate the models, as well as spectra from a mixture of Anhydrite (dehydrated
CaSO4) and Thenardite (dehydrated Na2 SO4) powders in different proportions.

2 Principal Component Analysis (PCA)

PCA analysis of the samples showed that the first two components, PC1 and PC2,
represent∼80 % of the variance in the data set: 61 and 17 %, respectively. The scores
are plotted in Fig. 1. Dehydrated or poorly hydrated salts are somewhat differentiated
from the highly hydrated salts, for both the training and test samples.

3 Partial Least Squares (PLS)

The PLS responses were chosen to indicate the hydration level and the relative
abundance of the various cations. The criterion to optimize the model behavior was
to evaluate the Mean Square Error (MSE) of the difference between the expected
regression responses and those fitted by the model.

Model 1: When using all the points of the spectrum as input variables, the optimum
number of components in the PLSR model was found to be 7. In this case, a 93 %
mean correlation coefficient was achieved for the pure samples spectra, and 89 % for
the 1:1 mixtures.

Fig. 1 PCA scores for pure samples (color) and mixtures (triangles)
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Fig. 2 PLS scores for pure samples (left). Predicted versus real responses for mixtures (right)

Model 2: A new model was created based only on selected peaks from the spectra.
In this case, the optimum number of components was 4, and also provided good
prediction: linear unitary slope and 99 % mean correlation coefficients for all the
responses of the pure samples, and 95 % mean correlation for the 1:1 proportion
mixtures spectra (Fig. 2). However, the tail values for these mixtures are mostly
responsible for this figure (see Ca and Fe). This value is a worst case for binary
mixtures: the most unbalanced the proportion of the mixtures, the better correlation
is obtained (as the spectrum is more similar to the pure spectra used for training).

4 Artificial Neural Networks (ANN)

We have designed a three-layer Feed-Forward Back-Propagation network with 33
neurons in the input layer, 33 neurons in the hidden layer and 17 outputs correspond-
ing to each of the samples, with log sigmoid neuron transfer functions. The input
data for the ANN consisted on 33 Raman intensities at selected wavenumbers of
non-overlapping peaks (the same as in the second PLS model previously described)
to improve performance [6]. The training and validation sets consisted of the pure
samples spectra, as well as of computed mixed spectra in proportions 25:75, 50:50
and 75:25. The test sets consisted on computed binary mixtures in proportions rang-
ing from 5:95 to 95:5, as well as spectra from a binary mixture of Anhydrite and
Thenardite with varying proportions.

The results showed that, establishing a detection threshold of 0.05, the identifica-
tion was of 100 % for pure samples, and, for binary mixtures, a fail ratio of 3 % for
proportions between 10:90 and 90:10. In addition, the outputs of the network were
somewhat proportional to the actual concentration of the sample, providing some
kind of quantification of the abundance in binary mixtures. The results were outstand-
ing with computed mixtures, and provided a fair quantification when using spectra
obtained from the RLS instrument (Fig. 3), especially when taking into account that
the training spectra were obtained with a different spectrometer.
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Fig. 3 ANN output for spectra from real mixtures of Anhydrite and Thenardite with RLS

5 Conclusions and Acknowledgements

The application of unsupervised multivariate techniques for the processing of RLS
products is a must in order to provide science support to the ExoMars mission. These
techniques will provide fast identification of materials and quantification of mineral
species during the tactical operations of the rover-based mission. We have compared
the performance of three MVA mineral ID techniques. The results presented here are
encouraging, and demonstrate that these techniques can provide critical information
for the identification and quantification of mineral phases in geological samples rel-
evant for ExoMars, from Raman spectra. PCA differentiated hydrated sulfates from
dehydrated ones. PLS proved to be a good chemomentric tool for the detection and
quantification of binary mixtures, with better results when applied to unbalanced
mixtures or pure samples. ANN has proven to be a powerful tool for the identifica-
tion of sulfates: the model proved to be able to detect and somewhat quantify the
abundance of both elements in binary mixtures with promising figures and quite
unbalanced abundances in the mixtures.

The authors acknowledge the support for the project from R. Leveille, A. Wang and
A. Koujelev. GLR acknowledges the University of Valladolid (Spain) for providing
funding for the project. PS and CL acknowledge support from NSERC.
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Comparison of Micro X-ray Computer
Tomography Image Segmentation Methods:
Artificial Neural Networks Versus Least Square
Support Vector Machine

Swarup Chauhan, Wolfram Rühaak, Frieder Enzmann, Faisal Khan,
Philipp Mielke, Michael Kersten and Ingo Sass

1 Introduction

Determination of petrophysical rock properties at meso-, macro- and microscale is
an important process in geothermal reservoir evaluation. The analysis of the micro
pore network can effectively contribute to the forward modeling and history match-
ing, thereby enhancing the prognosis on reservoir exploitation. At this scale micro
X-ray computer tomography (XCT) serves as a powerful non-destructive method
for obtaining information about rock structures and mineralogy. However, obtaining
rock properties such as porosity and permeability from XCT digital images is still a
challenging task [9]. In this work artificial neural networks (ANN) and least square
support vector machine (LS-SVM) for image segmentation of 2D XCT images has
been exploited. The results will give insight in the correctness of pore-space clas-
sification by this two approaches and the uncertainty within which porosity can be
estimated. ANN and LS-SVM despite different operating principles are character-
ized by a great deal of modularity and flexibility and are well suited for demanding
large-scale and pattern recognition and pixel based classification applications [7, 8].
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2 Methodology

2.1 XCT Image

For this study a tuff rock sample was imaged using a high resolution XCT scanner
(www.hrxct.geo.uni-mainz.de), applying X-ray energy of 110 keV and pre-filter of
0.3 copper is used. During the reconstruction of the projections no noise filter was
used. The projections were Radon-transformed in sinograms, thereafter converted
through back-projection into tomograms. These stacked tomograms resulted in a
16-bit 3D imagery, with a resulting voxel resolution of 43.9µm. Later beam hard-
ening correction was performed using regression analysis using least squares 2D-
parabolid fitting. Finally, the data was stored in raw format and AVIZO software was
used for visualization.

2.2 Image Processing and Classification Techniques

The image pre-processing and segmentation of XCT images was done according to
[7]. The K-Means Clustering (KM) [4], Fuzzy C-Means (FCM) [1, 6] and Self Orga-
nized Map Algorithms (SOM) [6] were used for deriving feature vectors and image
clustering. The initial condition for KM, FCM and SOM clustering was followed as
described in [7].

ANN was used to classify rock images into pore space and solid space. The ANN
was tested for each segmentation method mentioned above. MATLAB� software
nftool box was used to setup ANN and perform classification.

SVM are well known binary classifiers and often known as “Kernel-based classi-
fiers” [8, 10], In our case, a least square support vector machine (LS-SVM), approach
is used for classification [8]. It uses a non-linear radial basis function (RBF) for
improving accuracy [10].

2.3 Image Segmentation

The 2D XCT images used for pore space classification have an image resolution of
43.9µm per pixel with an image size of 905 pixels × 905 pixels. Twenty images
were used to develop a feature vector (FV) comprising of a sum of 16,380,500
pixels. The FV was clustered and labeled using KM and FCM and SOM algorithm
and segmented into clusters of 5, 7 and 9. Figure 1 shows the preliminary results
obtained from KM and FCM clustering for seven classes. Further, ANN was used
for image classification.

www.hrxct.geo.uni-mainz.de
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Fig. 1 a Segmentation image with KM, b segemented image with FCM, c classfied image obtained
from ANN. Pores are represented by grey color and solid matrix as white

The ANN was trained using ten images (8,190,250 pixels), validated using one
image (81,9025 pixels) and a testing on ten images (8,190,250 pixels). The best
classification rate was obtained using the FV of KM algorithm.

In case of LS-SVM, 20 images were utilized to perform pixel-by-pixel classi-
fication. Based on this classification, segmentation of two classes: solid phase and
pore phase was obtained. Among twenty images the best representative image was
selected. From this image, certain regions were manually chosen for training, shown
in Fig. 2a and Table 1. Care was taken, such that, the chosen regions correspond-
ing to each class did not contain overlapping boundaries between solid and pore
phase, so as to restrict misclassifications. Furthermore, LS-SVM was trained using
the pixel values of the chosen classes. The training data contained 2,366 pixels (less
than 1 % of the total image pixels) and are validated with the remaining 59,4457
pixels of the same 2D image. The LS-SVM was trained until it reached optimal
performance thresholds. Thereafter, it was tested on the remaining 19 images.

3 Results

Artificial Neural Network: Figure 1c shows a reconstructed image obtained after
ANN classification. In the reconstructed image, the grey region corresponds to pore
space and the white region corresponds to solid minerals. Comparison with KM,
FCM and LS-SVM shows that ANN overestimates pore-space.

Least Square Support Vector Machine: The result of binary classification by LS-
SVM is illustrated in Fig. 2b. The performance of LS-SVM is verified by determining
the pore space which is 0.30 cm−3 (30 %).
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Fig. 2 a Trained data with regions marked by letters. b segmented data; with white color represent
pores (porosity = 30 %), grey color is solid matrix

Table 1 Selection of regions and pixels for training set data

Solid (minerals) Pores

Training region’s A1 A2 B1 B2 C1 C2 D1 D2 E1 E2
Pixels trained 195 171 600 400 40 24 400 400 72 64
Total trained pixels 1430 936

4 Conclusions

In this work we have used two classifiers ANN and LS-SVM for pore space detection
and classification in the CT images using data clustering and unsupervised machine
learning. In our case the LS-SVM classification was accurate but was computationally
slow. Whereas, ANN was used for classification but not for image segmentation and
labeling, and was computationally fast.

Within the scope of the study, the observed results are interesting. The example
presented here, shows that the result of LS-SVM is more accurate than that of the
ANN. In future work, ANN will be configured with a radial basis function (RBF)
function, this will help, to quantitatively compare between ANN and LS-SVM. ANN
will be configured to also perform image segmentation of 2D and 3D XCT images.

Additionally, the use of an ensemble learning algorithm [3] might give further
insight if such approaches improve performance and accuracy in comparison to
single classifiers (LS-SVM and ANN). The data mining software WEKA [5] is
a potential tool box for use of ensemble of classifiers.
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Learning Uncertainty from Training Images
for Reservoir Predictions

Temitocles Rojas, Vasily Demyanov, Mike Christie and Darn Arnold

1 Introduction

One of the largest uncertainties in reservoir modelling is the interpretation of the
sedimentary environment and the assumptions about its description. Uncertainty in
interpretation of a depositional environment affects the description of facies and
petrophysical distribution in a reservoir model. These factors become important in
assessing uncertainty of reservoir prediction and may impact reservoir development
decisions.

One of the contemporary challenges is to find a way to integrate multiple reser-
voir description concepts or multiple sedimentological interpretations of a model
using multipoint statistics or another algorithm for reservoir description. The pio-
neering work by [6] proposed a distance metric approach using multi-dimensional
scaling (MDS) to navigate in the space of reservoir realizations. The approach was
developed further in [3], where multidimensional scaling (MDS) was used to distin-
guish between the production responses of models generated with multiples training
images and the actual field production data. Later, [3] used MDS to compare different
production responses obtained from different simulations (discretized by the training
image that was used to generate the models) with the actual production history data.

In the present work we propose a way to quantify uncertainty of reservoir pre-
diction by differentiating between facies scenarios represented by multiple training
images. This is done by solving a classification problem in the metric space of the
reservoir model realisations using a multi-class Support Vector Machine classifier
[1]. SVM classifier provides a decision boundary in the metric space of stochastic
model realisations based on different training images and transformed by MDS.
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Fig. 1 MPS realizations with the corresponding training images mapped into the MDS space
(© depict locations of the initial realization (in a 2d projection) used for SVM training). SVM
classifier provides regions corresponding to each of the three training images used. Location of the
best HM model (©) and the region, where HM homed in, is identified in red

Multiple history matched models are then generated based on the likelihood in the
classified metric space. The approach was applied to a synthetic fluvial case study
also taking into account the variability of other geomodel parameters like channel
geometry and proportions.

2 Methodology of Classifying Realization
in the Model Space

Uncertainty in the interpretation of the depositional environment properties in reser-
voir modelling can be addressed within a multipoint statistics (MPS) approach by
using different training images and their modifications through rotation and scal-
ing (affinity) to vary the body size in geomodelling. Accounting for uncertainty in
training image modifications with rotation and affinity was proposed in [5], where
a machine learning technique (artificial neural network) was applied to predict the
range for geomorphic parameters of fluvial channels based on the MPS training
image transformation parameters—rotation and scaling.

In the present work MDS was applied to the MPS reservoir model realisations
based on different training images in order to map them into a unique model space
and then classify the model space according to the chosen training image concepts.
Classification in the model space is performed using Support Vector Machine (SVM)
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Fig. 2 Evolution of the reservoir model parameters in history matching: channel width (a), channel
amplitude (b), eigenvalues corresponding to the coordinates of the realizations in the MDS space
(c, d). Solid line depicts the parameter values for the truth case

trained on the initial set of realizations. SVM classifier contoured the regions where
the model realizations are based on one of the training images used. Then, it is possible
to search the classified space in order to obtain the model realization that would match
best the historical production data. This history matching (HM) task is performed by
using adaptive stochastic algorithms, such as Particle Swarm Optimisation [2].

MPS facies reservoir models were built based on three training image representing
different variations fluvial channels depositional environment: sinuous parallel and
two types of meanders (see Fig. 1). Three sets of stochastic reservoir model realiza-
tions were produced with the MPS algorithm SNESIM [7] and mapped into the MDS
Eigen vector space (see a 2D projection in Fig. 1). The dimensionality of the Eigen
vector space depends on the number of components being considered. The choice
of the detail (number of the Eigen vectors taken into account) is guided by the stress
which increases with the dimensionality of the MDS space [8]. SVM applied for
classification in the MDS space is good at tackling the high dimensionality problem
by controlling the complexity of the class boundaries.

3 History Matching Results

A history matching study was set up to illustrate how the approach helps to quantify
uncertainty between different training images. A simplified (3 facie only model) 3D
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Fig. 3 Evolution of the misfit function in history matching with adaptive sampling iterations: a
match quality improves with the decrease of the misfit as the sampling evolves in the model space;
b oil production from one of the well for 5 best HM models vs the history data

section from a synthetic Stanford VI reservoir (see Fig. 1) was selected as the truth
case to generate the history production profiles.

History matching was performed by varying the Eigen vectors to distinguish
between the three training images to choose from in the classified MDS space and the
channel geometry parameters (wavelength, amplitude, width and thickness). Chan-
nel geometry parameters are then used to estimate the MPS algorithm input (affinity)
to build realistic reservoir geomodels, which are consistent with the prior informa-
tion from modern river analogues [5]. Figure 2 shows the evolution of the uncertain
parameters while they are being optimized though the history matching. The points,
which correspond to each of the newly generated model, are homing in around the
better solutions close to the truth case parameter values. The decrease of the mis-
fit function (least square norm of the production history) is shown in Fig. 3 along
with production profiles for multiple good HM models. The region of the low misfit
models includes the models based on the two out of three training images (see in
Fig. 1).

4 Conclusions

The paper presents a way to account for different geological concepts in uncertainty
quantification study with multiple training images. Uncertainty quantification based
on multiple training images demonstrated that adaptive stochastic sampling is capable
of matching closer the observed production and finding more realistic range possible
model realizations.

Automated history matching with geologically realistic priors for the MPS para-
meterisation was able to identify a region of good fitting models, which corresponds
to the two out of the three training images used. This methodology can be seen as
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a way to select from different sedimentological interpretations by various geoscien-
tists, which is a common issue in reservoir characterization.
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A Particle Swarm Optimization for Parameter
Estimation of a Rainfall-Runoff Model

Frédéric Bardolle, Frédérick Delay, Francis Bichot, Gilles Porel
and Nathalie Dörfliger

1 Model Presentation

The hydrological model presented in this paper is based on a systemic approach estab-
lishing relationships between hydrological signals by means of transfer functions.
The first innovation is the versatile architecture which can associate three elementary
transfer functions in series along four parallel branches (Fig. 1).

Consequently, an output O(t) (e.g., river discharge) is the sum of up to four
convolution products:

O(t) = I1 ∗ Heq
1 (t)+ I2 ∗ Heq

2 (t)+ I3 ∗ Heq
2 (t)+ I4 ∗ Heq

2 (t) (1)

where is Ii (t) the ith input (e.g., rainfall) and Heq
i (t) is the ith equivalent transfer

function and equals the convolution of three elementary transfer functions:

Heq
i (t) = Ki .

(
H1

i ∗ H2
i ∗ H3

i (t)
)

(2)

where is Ki a gain factor, and Hα
i is the αth transfer functions of the ith branch.

Regarding transient systems, parallel branches may correspond to multiple simulta-
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Fig. 1 Model architecture in series and parallel branches of transfer functions

Table 1 Three transfer functions from our function library

Distribution Formula Physical meaning References

Gamma G(t) = tb−1. exp(−t/a)
ab.�(b)

Cascade of linear reservoirs [1]

Normal N(t) = exp
(−(t−a)2

b2

)
Convection and dispersion [2]

Power-law P(t) = 1
(1+a.t)b

Diffusion [3]

neous transfer mechanisms or to some kind of spatial variability, whereas a series
would link successive phenomena.

The other novelty is the possibility to choose for each problem the number of inputs
(branches), and the number and type of elementary transfer functions Hα

i . These
functions are selected from a library of parametric probability density functions with
some physical meaning regarding hydrological transfers (see examples in Table 1).
Unused transfer functions are replaced by a Dirac function δ(t) corresponding to the
identity element for convolution, i.e., f (t) ∗ δ(t) = f (t).

With one parameter per branch (the gain factor Ki ), and two parameters per
elementary transfer function, the model has between 3 and 28 parameters.

2 Particle Swarm Optimization

Parameter estimation is performed by a particle swarm optimization (PSO) algorithm.
Initially developed to simulate bird flocking [4], PSO consists in moving particles
(vectors of size the number of parameters) in the parameter space to find the minimum
of an objective function measuring a distance between simulated outputs and data. A
particle i is moved iteratively and randomly in the parameter space while keeping for
iteration t + 1 the memory of its best experienced position pt

i between [0, t] and the
memory of the best experienced position among all the individuals of the swarm gt .
After an initialization step assigning to each particle a random location and a velocity
in the parameter space, each iteration calculates the value of the objective function
for each particle and updates velocities (vt+1

i ) and positions (xt+1
i ) as follow:
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vt+1
i = w.vt

i + c1.r1(g
t − xt

i )+ c2.r2(p
t
i − xt

i ) (3)

xt+1
i = xt

i + vt+1
i (4)

where w is the inertia weight, c1 and c2 are acceleration constants, and r1 and r2 are
random number uniformly distributed in (0,1). PSO is often considered as well-suited
to ill-posed inverse problems because its global search through the parameter space
and the exchange of information between individuals lowers the risks of converging
toward a local minimum. The algorithm has been successfully applied to parameter
estimation of rainfall-runoff models ([5] and [6]) and shows good convergence rates
when compared to other global techniques [7].

3 Application

The systemic model and the PSO have been faced to data of river discharges (Sèvre
Niortaise—France). The PSO seeks the parameters of transfer functions over a cal-
ibration period, from 08/1994 to 08/1996. The best inverse solution is then used
to predict river discharge over two verification periods, from 08/1993 to 08/1994
and from 08/1996 to 08/1997 (Fig. 2). Only the first verification period contains dis-
charges higher than 30 m3/s, corresponding to flood events. The input data are a daily
effective rainfall rate and a daily groundwater level (i.e., two branches in the model),
and the output data is a daily discharge.

Five combinations of transfer functions were tested: G,G∗N,P,P∗N and G∗P∗N
where the letters G, N and P stands respectively for Gamma distribution, Normal
distribution and Power-Law distribution. The Nash-Sutcliffe efficiency (NSE) [8] is
calculated to compare precision of simulations for the various combinations men-
tioned above. It ranges between −∞ and 1, NSE = 1 being the optimal value.

NSEs reported in Table 2 show that each combination of transfer functions results
in pretty good simulations for both calibration and prediction periods but sophis-
ticated models like G∗P∗N do not necessarily produce better results than simple
models like G. Moreover, uncertainty of input data may be responsible for the lower
coefficients of the second prediction period.
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Fig. 2 Simulated and observed discharge for the gamma distribution Model
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Table 2 Nash-Sutcliffe efficiency (NSE) for different transfer function combination

G G∗N P P∗N G∗P∗N
Calibration 1994/95/96 0.945 0.944 0.840 0.911 0.945
Prediction 1993/94 0.912 0.912 0.882 0.931 0.911

1996/97 0.747 0.743 0.748 0.771 0.737

Finally, standard deviations of the NSE of the ten best solutions are always inferior
to 1E-3, attesting the good convergence of the PSO.

4 Conclusion

Multi-input versatile architecture and parametric transfer functions optimized by
PSO form a model that produces satisfying results. For now, only the best solution
is used but a stochastic model giving us an uncertainty measure of the simulation
could be conceived with the other solutions found by the PSO algorithm.
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Sequential Weights of Evidence as a Machine
Learning Model for Mineral Deposits Prediction

Qiuming Cheng

1 Introduction

The idea of weighted training sample treatment was initially developed and used in
AdaBoost which is an interesting algorithm developed in the mid-90s in machine
learning and has been quickly adopted in many fields for combining the performance
of multiple “weak” classifiers to produce a powerful “strong” classifier. Boosting
was proposed in the literature of machine learning [1, 2] and has since received
much attention and popularity not only in the computer science community for
classification but also in statistics for optimization [3, 4]. The ordinary weights of
evidence model with the assumption of conditional independence (CI) can be viewed
as a special non-sequential boosting model. However, this assumption has limited
its applicability in situations of noninsurance of CI [5, 6]. A new sequential weights
of evidence model has been developed by the author as a general boosting model
which can significantly reduce the influence of conditional dependency of evidential
layers [7].

2 BoostWofE: A New Sequential Weights of Evidence

Assume a number of training points in two groups: mineral deposits denoted as
di = 1, i = 1, . . ., m, (di = 1) ∈ (D = 1) and not mineral deposits denoted
as dj = 0, j = 1, . . . , n, (dj = 0) ∈ (D = 0). Assume a number of variables
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(evidences) of binary patterns Bk(k = 1, . . ., N) are associated with the point event
D. The new BoostWofE algorithm can be described as follows:

1. In the initial stage, an equal weight is assigned to each point,

w1(di = 1) = 1/(n + m), w1(d j = 0) = 1/(n + m). (1)

2. Repeat for evidence Bk with k = 1, 2, . . . , N:

(a) Calculate probabilities using the weighted training samples as

Pwk (D = 1) =
m∑

i=1

wk(di = 1), Pwk (D = 0) =
n∑

j=1

wk(d j = 0) (2)

Pwk (BkD = 1) =
m∑

(di=1)∈(BkD=1)

wk(di = 1), Pwk (BkD = 0)

=
n∑

(d j=0)∈(BkD=0)

wk(d j = 0) (3)

where (BkD) stands for the intersect of sets Bk and D.
(b) Compute the probabilities of misclassification of D after Bk applied

e1 = Pwk (Bk = 1 |D = 0), e2 = Pwk (Bk = 0 |D = 1) (4)

(c) Set the weights representing the relative importance of the two stages of
classifier Bk = 1 and Bk = 0

W (Bk = 1) = ln[(1− e2)/e1], W (Bk = 0) = ln[e2/(1− e1)] (5)

(d) Update the weights of training samples for the next step

wk+1(d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wk(d = 1)

Z1

{
1/(1− e2), i f (di = 1) ∈ (Bk = 1D = 1)

1/e2, i f (di = 1) ∈ (Bk = 0D = 1)

wk(d = 0)

Z0

{
1/e1, i f (d j = 0) ∈ (Bk = 1D = 0)

1/(1− e1), i f (d j = 0) ∈ (Bk = 0D = 0)

(6)
where Z1 and Z0 are normalization factors for probability definition. The
normalized weights of training points, wk+1(d), will be used in the next gen-
eration of boosting. Go back to the step 2 to implement the next generation.
When all evidences are added and k = N, then go to the step 3.

3. Calculate posterior logit

Logit (D |B1, . . . , BN) = W0 +W (B1)+ . . .+W (BN) (7)
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where W0 = ln[P/(1− P)] is the prior logit.
4. Calculate posterior probability with anti-logit transformation

P(D |B1, . . . , BN) = {1+ e−[W0+W ∗(B1)+...+W ∗(BN)]}−1 (8)

3 Application of BoostWofE for Prediction of Sn
Mineral Deposit

For comparison purposes, the author reanalysis the dataset being used previously
for prediction of Sn mineral deposits in Gejiu mineral district, China. The dataset
includes 11 Sn mineral deposits as training points and five binary layers of geolog-
ical features associated with occurrence of Sn mineral deposits in the same area in
Cheng (Figs. 3–7)[8]: (1) Gejiu formation of carbonates (GF); (2) the 6 km buffer
zone around the intersections of three groups of faults (DF); (3) local geochemical
anomalies in stream sediments (LA); (4) regional geochemical anomalies in stream
sediment samples (RA); and (5) buffer zones of 37 km around the center of intrusion
(DI) interpreted as the center of buried intrusions by gravity data. These five binary
layers are combined for calculating posterior probability maps by BoostWofE and
WofE and for evaluation of the influence of CI.

A set of 113 points (102 regularly distributed non-mineral deposits and 11 known
Sn mineral deposits) were used as training samples for implementation of both Boost-
WofE and WofE. In the calculation of weight, evidences are added in sequential. In
each step, the training samples are assigned weights according to their spatial rela-
tionship with the evidence previously considered. Figure 1a shows the weights of
training samples after the Gejiu Formation had been applied. These training samples
with the new weights will be used for calculating the weight for the next evidence
to be added. The results of weights calculated according to the order of patterns
GF, DI, RA, LA and DF are shown in Fig. 1b. The weights obtained by the WofE
are also calculated and shown in Fig. 1b. It can be seen from Fig. 1b that the two
corresponding weights calculated for the first evidence by WofE and BoostWofE are
equal, but the weights for the subsequent evidences are different. Other orders of
these five evidences were also considered and compared. Based on the new weights
obtained by BoostWofE and WofE we can calculate the posterior probabilities of
each training points as shown in Fig. 1c. Further in Fig. 1d, it shows the observed
numbers of mineral deposits and estimated numbers of mineral deposits from the
posterior probabilities obtained by WofE and BoostWofE.
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Fig. 1 a Map showing weighted training samples after applying the first binary classifier (GF).
Dots represent non-mineral deposits and squares for Sn mineral deposits. The sizes of symbols
corresponding to the weights calculated after GF being applied; b Plot showing comparisons of
weights (W+ and W−) obtained by the BoostWofE (triangles) and WofE (circles); c Posterior
probability calculated using the BoostWofE method. The size and color are corresponding to the
probability; and d Comparison between observed mineral deposits (solid line) and estimated points
by BoostWofE as triangles and by WofE as circles

4 Concluding Remarks

The case study has demonstrated that the estimated numbers of mineral deposits on
the basis of posterior probability obtained by BoostWofE are generally in agreement
with the observed results whereas the results obtained by WofE are notably overesti-
mated. Further the results calculated using the Omnibus Test (OT) [5] by comparing
the estimated number of points with the observed number of points, OT = 11/11.7
= 0.95 by BoostWof and OT = 11/12.9 = 0.85 by the ordinary WofE, also depict
that the results obtained by BoostWofE show significant less effect of conditional
dependency than those obtained by the ordinary WofE method. More case studies
are needed to validate the effectiveness of BoostWofE.
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Identification of Spatial Models of δ
18O in

Precipitation of the Wet Season Over Spain
Using Genetic Algorithms

Javier Heredia, Eulogio Pardo-Igúzquiza, Javier Rodríguez-Arévalo,
Silvino Castaño, María F Díaz-Teijeiro, José E Capilla, Aantonio Prado
and Lara Bardasano

1 Introduction

The water vapour in the clouds and water in precipitation alters their isotopic compo-
sitions because of the isotope fractionation: water vapour decreases its heavy isotopes
(18O,2 H) while precipitation water has a relative increase in that value. The Global
Network of Isotopes in Precipitation (GNIP) operates since 1961. Spain is part of
GNIP since 2000 with the Red Española de Vigilancia Isótopos en Precipitación
(REVIP) that has 14 stations in the Iberian Peninsula, one in Mallorca (Fig. 1) and
another one in Canarias Islands.
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Fig. 1 Monitoring network of isotopes in precipitation in Spain (modified of Google Earth)

In most of the Iberian Peninsula, the precipitation is concentrated between October
and April: the wet season. To know the spatial trend of δ

18 O in precipitation of
the wet season allows to characterize the hydrogeological systems: recharge and
residence times. The aim of this work is the statistical description of the spatial
trend of the average value of δ

18 O in precipitation of the wet season in the Iberian
Peninsula. These regression models use different kind of variables: geographical
(latitude, longitude, altitude, wind, distance to the sea) and climatic (temperature,
precipitation, relative humidity, wind speed, atmospheric pressure and NAO index).
The huge number of possible structures precludes an exhaustive search. Thus it
was used a soft-computing method like genetic algorithms to indentify the optimal
selection. A few geographical variables were used to model the global average annual
of δ

18 O in precipitation [1]. In Spain, the average annual of δ
18 O in precipitation

was modelling with geographical variables [2] and recently the time series of δ
18 O

in precipitation was modelling with climatological variables [3].

2 Methodology

Genetic algorithms (GA) are computer programs that simulate the process of bio-
logical evolution in order to solve optimization problems. They have been used to
solve many problems in geosciences. The general scheme of a GA is the following:
(i) To generate the starting population, where each individual is a solution to the
stated problem. Each individual is represented by a chromosome and each chromo-
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some is composed of genes where each gene represents some aspect of the solution;
(ii) To evaluate the fitness of each individual, that is, the value of some objective
function; (iii) To select the progenitors; (iv) To apply the operation of cross-over and
mutation to the progenitors; (v) The descendents joint the progenitors to form a new
generation; (vi) Go to step (ii) and repeat to advance another generation.

In the problem that we are dealing with, the optimization problem is a multiple
least squares regression where the task is to show the combination of variables that
best explain the spatial trend of δ

18 O. There are 10 variables, plus their logarithms,
their inverses, squares, cubes, square roots and the cross-products of any pair of
the previous 60 variables. The maximum number of variables in the regression has
been limited to 6. Thus, the chromosome has 24 genes, where four genes are used for
describing each of the six allowed dependent terms in regression. Each population has
been generated with 1000 individuals and it has been repeated for 1000 generations.
The procedure of ranking has been used for selecting the progenitors, 500 out of
the 1000, which produce 500 descendents in order to keep a constant size for the
population. The fitness function has been the total sum of squares of the differences
between experimental data and the value predicted by the model.

3 Results

The experimental data are the average monthly values of δ
18 O measured at 15 loca-

tions (Fig. 1) of the Iberian Peninsula and for 7 months (from October to April,
between 2000 and 2009) at each station. A calibration data set (53) and a valida-
tion data set (52) were selected from the total data set (105). The fitness function
selected has been the adjusted squared correlation coefficient, R2

adj. The R2
adj takes

into account: the goodness of fit of the model by the squared Pearson correlation
coefficient, R2, and the parsimony principle the number of the independent vari-
ables, m. The model validation was evaluated by least squares for each model. The
results for calibration by the genetic algorithm and validation are shown in Fig. 2.
The number of terms allowed has been changed from 1 to 6. There are two variables,
NAO index and distance to the sea, that never appear in the best solution equations.
The highest value of adjusted R2

adj has been 0.855 for the case of six terms. Though,
a similar value of 0.835 can be reached with tree terms. The best improvement can
be seen when the number of allowed terms is larger than two. On the other hand, the
validation results indicate that with more than 3 variables the models get worse.

4 Conclusions

The genetic algorithm has proven to be a very efficient method for best equation
selection in multiple regression applied to the problem of determining isotopic con-
tent of δ

18 O in precipitation from functionals of climatic and geographic variables.
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Fig. 2 R2
adj and least squares for different optimal models found by the genetic algorithm. T tem-

perature, R precipitation, H humidity, W wind speed, P atmospheric pressure, D distance to the sea,
L latitude, Lo longitude, A altitude, NAO NAO index

The number of possibilities is too large to be examined exhaustively and the genetic
algorithm offers an efficient solution in practical terms.
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Space-Time Prediction of Extreme Events
by Using Mathematical Logic Modeling
of Cause-Effect Relations

Susanna Sirotinskaya

1 General Concept

Extreme events are effects of the unusual combination of factors (causes) which may
be phenomena, processes or properties (structure, composition) of some objects. The
extreme events are rare and are separated from each other in space or/and in time. As
the environment is heterogeneous, manifestations (features) of the same factor may
differ in different points of it. Therefore, identical extreme events may be linked to
various feature sets related to the same combination of factors. These ideas can be
expressed more formally as the two following sentences:

• An extreme event happens if and only if a certain combination of factors is present;
• The action of any factor from this combination may be manifested by different

sets of non-alternative features, that is, the factor is present if and only if at least
one feature from such sets is observed.

The tools of mathematical logic, in particular those of Propositional algebra, Pred-
icate logic and Boolean algebra, allow expressing these two sentences in the form
of a single Boolean equation which is used as theoretical model in methods of the
cause-effect analysis. This equation is

F = (∨1
1 &...& ∨k

1) ∨ ... ∨ (u1
J &...& uk

S) ∨ ... ∨ (u1
t(1) &...& uk

t(k)), (1)

where F is the Boolean function characterizing the event under study; the variables
in brackets are the function F arguments corresponding to some features related to
different factors; k is the number of factors responsible for the event; t(1), ..., t(k)
are the numbers of features expressing these factors; &, ∨ are logical operations
of conjunction and disjunction corresponding to “and” and non-alternative “or” in
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natural languages. The arguments of the function F are unknown parameters, and
they are determined by processing of the given data. The values of the function F are
1 or 0, depending on the presence or absence of the event.

The solution of Eq. (1) is a formula of the same form in which the unknown
arguments of the function F are substituted by variables corresponding to concrete
features from the given data file. In accordance with the condition that only the most
essential features should be taken in account, this formula includes the minimum
number of variables (features) and the minimum number of variable conjunctions
(combinations of features in brackets) in comparison with those in other possible
formulas of the same form. The condition of minimizing both the number of indi-
vidual variables and variable conjunctions is used as the optimization criteria and
it is expressed mathematically by the requirement to minimize Disjunctive Normal
Form (DNF) which is exactly the form of Eq. (1). This requirement, together with
some conditions related to peculiarities of a study problem, makes possible the selec-
tion of the optimal solution corresponding to the most reliable cause-effect relation.
Equation (1) may have several optimal solutions.

The features which are selected on the basis of solving Eq. (1) are used as predictive
criteria. Combinations of these criteria in brackets represent favorable (unfavorable)
settings in the case of space prediction and favorable (unfavorable, dangerous) sit-
uations in the case of time prediction. The prediction is performed by change of
variables in the detected Boolean formula for the values 1 or 0, depending on the
presence or absence of respective features. The result of prediction is expressed by
values 1 (favorable) or 0 (unfavorable, dangerous) calculated by the derived formula.

2 Data Preparation and Processing

Primary data for performing the cause-effect analysis can be represented by conven-
tional and contour maps as well as by numerical tables and text descriptions. In the
case of the following construction of predictive maps, the specific range of original
map scales is 1:25,000 to 1:15,00,000. In other cases, it may be anyone. Preparation
of such data for computer processing includes three main procedures: creation of
feature system, selection of sample objects and representation of data in the form of
a binary table.

Creation of feature system represents the most laborious procedure of data prepa-
ration. This procedure differs for different types of primary data. In the case of
conventional maps, a set of analyzable phenomena are given by subdivisions of map
explanations, and a set of analyzable features is composed mainly by using units of
explanations. In addition, some features created on the basis of map contents (e.g.,
direction of faults) may be introduced in the feature set.

In the case of contour maps, a map displays an individual phenomenon (property)
which is described by quantitative characteristics in the form of contours. Therefore,
intervals of characteristic values can be considered as phenomenon features. This
idea is used just for the conversion of quantitative data into qualitative form [2], in
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particular, into the form of a binary table. The main condition for performing such
conversion is the availability of two classes of sample objects, one of them being
positive and the other negative relatively to the presence or possible occurrence of
extreme events.

The same conversion is also used in the case of numerical tables. In the case of
text descriptions, a feature system is created on the basis of professional knowledge.

The data preparation also includes the selection of sample objects. The perfor-
mance of this procedure is closely related to the representation of final results. If the
representation is a predictive map, the sample objects are selected on the basis of
cartographic material. Then, they are areas of a standard size and shape enclosing
the location of extreme events (e.g., mineral deposits, landslides). For example, a
sample area may have a circle shape of the radius 2 km. If only the evaluation of
some objects for the presence or possible occurrence of extreme events is required,
the use of cartographic material for the selection of sample objects is not necessary.

The preparation of data is completed with the construction of a binary table in
which the columns represent features and the rows correspond to sample objects.
The values 1 and 0 (or omission) designate the presence and absence of a feature,
respectively. A binary table can be converted further into compact form by the sub-
stitution of binary arrays for the strings of positive integers which are the codes of
features with value of 1 in the corresponding binary array.

The use of the same mathematical model for the space, time and space-time predic-
tion implies the identical way of data processing which includes detection of logical
dependencies consistent with the given mathematical model in a data file; selection of
optimal dependence; data analysis and data transformation (if necessary); introduc-
tion of knowledge of different categories in the data processing. These procedures are
carried out with the help of an expert system with artificial intelligence capabilities
[3]. Mathematical tools are Boolean algebra operations and transformations as well
as some algorithms of the Boolean function minimization.

3 Modes of Prediction

Despite the possibility to use the same method and software both for space and time
or space-time prediction, there is a difference in the mode of their application for
different types of prediction. This difference is due to the relative importance given
to the space and time parameters that, in its turn, depends on the research purpose.

The space prediction is the most suitable for study of phenomena having a low
velocity of change. While performing this kind of prediction, the time is assumed
fixed. Therefore, a data file does not include information referring to time. As study
objects (e.g., mineral deposits) are distributed spatially, they can be shown by some
symbol on original maps. In such case, the results of data processing, which are the
Boolean formulas describing favorable (unfavorable) settings, can be expressed by
predictive maps.
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The time prediction is the most appropriate for study of phenomena having a
relatively high velocity of change (e.g., weather events). In this case, a data table
includes time points (e.g., years) of observation as objects. It is clear that all obser-
vations must be related to one fixed territory (e.g., the same station, region).

A possible application of time prediction consists in the detection of regularity
in the manifestation of a phenomenon and identification of situations which deviate
from this regularity being linked to the occurrence of extreme events.

In the space-time prediction, neither space, nor time is considered fixed (e.g.,
location and time points of earthquake). This prediction may be performed by using
several cycles of space or time prediction. If the space prediction is performed,
several data files for the same set of areas but for different time points are created
(e.g., data file for one day before the earthquake, two days before it and so on).
The purpose of this prediction mode is to detect the situations which are linked to
time points preceding the extreme events. The identification of such situations in
the environment is aimed at determining the exact time point of the extreme event
occurrence. If the time prediction is used, several data files for the same range of time
points but for different areas are processed. This approach seems to be appropriate
for prediction of such extreme events as landslides.

Till now, the application of cause-effect analysis was limited to the space predic-
tion [1, 3] and was mainly intended for the assessment of mineral deposits which
apparently can be considered as extreme events. As regards to the time and space-
time prediction, its practical application encounters significant difficulties. The main
obstacle is the absence of data about the state of environment on the eve of extreme
events. Obviously, in order to obtain such data the permanent monitoring of the
environment in areas of possible extreme events is necessary.
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Local Clustering in Spatio-Temporal Point
Patterns

Jorge Mateu and Francisco J. Rodríguez-Cortés

1 Introduction and LISA Functions

LISA functions are built from local second-order characteristics of spatial point
processes through product densities. The term LISA was coined by Anselin [1], but
it was later when Collins and Cressie [2] developed theoretical properties, namely
first- and second-order moments, of these functions. Our focus here is in extending
the concept of LISA to the spatio-temporal context defining the LISTA functions.
We define these new functions, present edge-corrected estimators, and develop their
first theoretical moments.

A spatial point process X is a stochastic model governing the locations of events
{ui = (xi , yi )} in some Borel bounded set W of R

2 [3]. Assume we have a planar point
process X observed in a region W ⊂ R

2 of area |W | > 0. Let N (W ) be the number
of points of the process appearing in W , and define the spatial intensity ρ as the mean
number of events per unit area. For a stationary and isotropic point process in the plane
with intensity ρ, the K -function is defined by ρK (r) ≡ E[N (B(0, r) \ {0})|0 ∈ X ],
with r > 0. The K -function provides an interpretable measure of clustering in a point
process [4]. In particular, ρ2|W |K ′(r) is the expected number of pairs of events in the
observation region W with pairwise distance less than or equal to r . The K -function is
a cumulative function and investigation of its derivative leads to another interpretable
function, called the product density function, defined by ρ(2)(r) = ρ2 K ′(r)/2πr
with r > 0. Denote its non-parametric kernel-based estimator by ρ̂(2)ε (r), which
depends on a bandwidth ε.

Now consider individual contributions to the estimated function that are anal-
ogous to the local statistics called local indicators of spatial association (LISA).
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An individual LISA product density function ρ(2)i (r) should reveal the extent of
the contribution of the event ui to the global estimate of ρ(2)(r), and may provide
a further description of structure in the data. By analogy with the formation of the
global product density estimate ρ̂(2)ε (r), a localised version of the empirical product
density function is given by

ρ̂(2)iε (r) ≡ N (W )− 1

2π |W |
∑

j �=i

w(ui ,u j )
κε(||ui − u j || − r)

||ui − u j || , r > ε > 0,

where {u1,u2, . . . ,uN (W )} are locations observed in a window W , w(ui ,u j ) is a
spatial edge-correction factor [5], and κε is a kernel function with bandwidth ε. This
function provides a description of the local density of inter-event distances among
the observed locations.

2 Spatio-Temporal Point Processes: LISTA Functions

Following Møller and Ghorbani [6], consider a spatio-temporal point process with no
multiple points as a random countable subset X of R

2×R, where a point (u, s) ∈ X
corresponds to an event at u ∈ R

2 occurring at time s ∈ R. In practice, we observe
n events {(ui , si )} of X within a bounded spatio-temporal region W × T ⊂ R

2×R,
with area |W | > 0, and length |T | > 0. In the sequel, N (A) denotes the number
of the events of the process falling in a bounded region A ⊂ W × T . The intensity
function of a spatio-temporal point process X can be defined as

ρ(u, s) = lim|du×ds|→0

E [N (du× ds)]

|du× ds| ,

with (u, s) ∈ R
2×R and du×ds defining a small subregion around the event (u, s)

with volume |du × ds|. Further, for (u, s), (v, l) ∈ R
2 × R the product density is

defined as

ρ(2)((u, s), (v, l)) = lim
(|du×ds|,|dv×dl|)→(0,0)

E [N (du× ds)N (dv × dl)]

|du× ds||dv × dl| .

A process for which ρ(u, s) = ρ for all (u, s) is called homogeneous of first-order
stationary.

For a second-order intensity-reweighted stationary (SOIRS) point process X ,
Gabriel and Diggle [7] and then Møller and Ghorbani [6] define the spatio-temporal
inhomogeneous K -function by

K (r, t) =
∫

1 [||u|| ≤ r, |s| ≤ t] g0(u, s)d(u, s), r > 0, t > 0.
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with r > 0, t > 0. For a Poisson process, g0 = 1 and K (r, t) = 2πr2t . Both in the
stationary and isotropic case and the SOIRS and isotropic case, the spatio-temporal
pair correlation function is proportional to the derivative of K (r, t) with respect to r
and t . Thus for a SOIRS and isotropic spatio-temporal point process X

ρ(2)((u, s), (v, l)) = ρ(u, s)ρ(v, l)
4πr

∂2 K (r, t)

∂r∂t
, r > 0, t > 0.

Influenced by the idea of Fiksel [8], and under a SOIRS and isotropic point
process X , we propose a general edge-corrected kernel estimate of the product density
function by

ρ̂
(2)
ε,δ (r, t) =

�=∑

(ui , si ),(u j , s j )∈X

w(ui ,u j )v(si , s j )
κε,δ(||ui − u j || − r, |si − s j | − t)

4π |W |||T ||ui − u j || ,

where κ is a multiplicative kernel, ε and δ are the spatial and temporal bandwidths,
respectively, and v(si , s j ) is a temporal edge-correction factor. Then κ can be written
as

κε,δ(||ui − u j || − r, |si − s j | − t) = κ1ε
(||ui − u j || − r

)
κ2δ

(|si − s j | − t
)
.

A LISTA function can be constructed in the same manner as the global esti-
mate. In this context, we begin by considering local features of the spatio-temporal
K -function. Define for a spatio-temporal point process X

{ρK (r, t)}i ≡ E
[
N (C((ui , si ), r, t) \ {(ui , si )})|(ui , si ) ∈ X

]
r > 0, t > 0,

as the number of extra events from (ui , si ) with spatial distance less than or equal
to r , and time increment less than or equal to t . The expectation is conditional on
observing (ui , si ) ∈ X , and is calculated with respect to the reduced Palm measure.
Note that C((ui , si ), r, t) is a cylinder with center (ui , si ), radius r and height 2t .

3 Conclusions

In this work we propose a general edge-corrected kernel estimate of a LISTA function,
and develop close expressions for the theoretical first and second-order moments of
the global and local spatio-temporal product density. The global density function
detects large scale spatio-temporal interactions, while the local LISTA function is
useful to highlight local clusters.
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The Use of Remote Sensing Data in a Colombian
Andean Basin for Risk Analysis

Olga Lucía Ocampo López and Jorge Julián Vélez Upegui

1 Introduction

Colombian Andean Basins are particularly vulnerable to climate change and climate
variability; therefore, local studies are required for risk management. Understanding
extreme events triggered by rainfall is a prerequisite for determining how climate
events contribute to disaster occurrences, and for designing and implementing effec-
tive adaptation and disaster risk management strategies [1].

The estimation of hazardous event probabilities and associated return period at
different intensity levels can be simulated by models that use historical data. The
Intensity-Duration-Frequency (IDF) relationship has been a major focus of both
theoretical and applied hydrology. Precipitation Area Duration Frequency (PADF)
curves are used to model primary and secondary hazards such as non-hurricane rain
events and floods. These curves are the representation of storm events characteristics
that have occurred historically in a basin [2].

Without adequately accurate climate input information, it is extremely difficult
to establish models [3]. Within many developing countries, as Colombia, stations
are relatively sparse, the amount of missing data is high and the reliability of some
data is low. Remotely sensed meteorological data sets can be employed to extract
spatially explicit rainfall estimates to determine return period of events. Their power
lies in the continuous acquisition of data at relatively short temporal intervals for
large spatial extents at several spatial resolutions, which can therefore be used to
support data generation for disaster risk modeling [2].
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This paper presents a comparative analysis of the maximum rainfall in a
Colombian Andean Basin, using information from The Tropical Rainfall Measur-
ing Mission (TRMM) satellite rainfall estimates and rain gauge registers, which are
employed to generate PADF, in order to determine the return period of rain events.

2 Methodology

The Chinchiná River Basin has an approximate area of 1050 km2, it is located on the
western slopes at the central range in the Andes between 4◦48′ and 5◦12′N Latitude,
at the south central region of Caldas, Colombia, (see Fig. 1). This Basin extends
from the National Natural Park “Los Nevados” at 5400 m.a.s.l. to the Cauca River
at 780 m.a.s.l.

The maximum rainfall analysis was carried out using rain gauge and remote
sensing data. Daily rain gauge data was obtained from IDEAM (Institute of Hydrol-
ogy, Meteorology and Environmental Studies of Colombia), CENICAFE (National
Center for Coffee Research), CHEC (Caldas Hydroelectric) and Universidad Nacional
de Colombia sede Manizales. Remote sensing daily data was extracted from the
3B42-TRMM algorithm (3B42-TRMM—Adjusted Merged-Infrared precipitation)
which was taken from NASA [4]. The TRMM satellite provides space borne rain
radar and microwave radiometric data that measures the vertical distribution of pre-
cipitation over the tropics, where the bulk of the Earth’s rainfall occurs [2].

The Precipitation depth analysis was carried out by the incremental-isohyetal
method. Spatially explicit rainfall estimates are represented using PADF curves
which are determined by creating a relationship between the average maximum pre-
cipitation, the Area where this rainfall falls, the Duration of the precipitation event
and the Frequency of the rainfall episode. The PADF curves creation procedure is
shown in Fig. 2, which was suggested by Florida International University and its GIS
Center [2]. The PADF curve generation software, developed by CAPRA [5], was
used to obtain precipitation values for different areas and return periods. In this soft-
ware, the frequency is conducted using a Gumbel distribution, which can be accepted
as a good approach to rainfall distribution in Colombia.

Fig. 1 Chinchiná River Basin location
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Fig. 2 Processing steps of TRMM precipitation data. Adapted [2]

3 Results

The reported extreme events are: 99 mm in Paramos, 150 mm in the upper Basin,
192 mm in the upper middle Basin, 170 mm in the middle Basin and 118 mm in
the lower Basin. Regarding TRMM virtual stations, extreme precipitation fluctuates
between 128 and 72 mm.

PADF curves were generated with remote sensing data, using the CAPRA model
software; these curves, which are shown in Fig. 3, represent the probability of occur-
rence of maximum rainfall for different return periods and show the relationship
between area and average depth.

PADF curves were also generated using rain gauge station data, with lower pre-
cipitation values being obtained in this case. The precipitation differences in PADF
curves generated with remote sensing and rain gauge data, expressed in percentage,
are shown in Fig. 4; these differences, with a range of 59 to 24 %, are 37 % average.

Fig. 3 PADF Curves 3B42-
TRMM
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Fig. 4 Precipitation differ-
ences TRMM versus rain
gauge data
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TRMM-satellite captures the spatial variability of rainfall in Chinchiná River
Basin.

PADF curves for modeling primary and secondary risk in this Andean Basin
should be generated from TRMM-satellite because better distribution curves are
obtained with remote sensing data compared to rain gauge stations.

4 Conclusions

PADF curves are the representation of storm event that have occurred historically
in a basin. There are significant differences between the PADF curves obtained by
TRMM 3B42 daily rasters and rain gauge data in Chinchiná River Basin. Study
results support the conclusion that it is advisable that remote sensing datasets are
used for generating PADF curves for risk studies in this Colombian Andean Basin
in order to perform a conservative design.
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Spatio-Temporal Analysis of Earthquake
Occurrences Using a Multiresolution Approach

Orietta Nicolis

1 Introduction

The analysis and prediction of earthquake events is an important issue in environ-
mental science. Space-time point-process models for earthquake analysis have been
developed by [1–5]. In particular, the spatial-temporal Epidemic-Type Aftershock
Sequence (ETAS) models introduced by [2] are commonly used to describe modern
earthquake catalogs. Their basic assumption is that the risk of an earthquake occur-
rence at time t and location (x, y) consists in the contribution from the background
rateμ and the contributions from each previous event. Then, the conditional intensity
function can be written as

λ(x, y, t |Ht ) = μ(x, y)+
∑

i :ti<t

g(x, y, t |xi , yi , ti ;mi ) (1)

where Ht = {(ti , xi , yi ,mi ); ti < t} is the history of occurrence times {ti } up to
time t , with the corresponding epicenters {(xi , yi )} and magnitudes mi ;μ(x, y) is the
background seismicity rate, and the function g, called the triggering density, describes
the rate of aftershocks (with magnitude m > mc) at space-time coordinate (x, y, t)
following the i th earthquake (xi , yi , ti ,mi ). Functional forms for the background
rate μ(x, y) are not typically given. Nonparametric methods, such as splines and
kernels, were proposed by [3, 4], and [5], among others. These studies suggest
that smoothing the locations of past earthquakes provides a good estimate of the
spatial distribution of future seismicity. [4] and [5] proposed a variable (adaptive)
kernel estimator for spatially clustered point dataset. In particular, [5] found that
declustering the data prior to smoothing epicenters resulted in larger probability
gains than smoothing all quake locations. Alternatives to kernel estimation are the
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use of orthogonal expansions, and the use of splines (see, [6]). In this work we
propose an estimator based on directional wavelets for identifying the rupture zones
and estimating the background seismicity rate in Chile. Then, the resulting wavelet-
based spatial intensity function will be included in the estimation of the space time
ETAS model shown in Eq. (1).

2 Directional Wavelets for the Analysis of Point Processes

For x ∈ IR2, and any function f (x) ∈ IL2(IR2), the continuous directional wavelet
transform for a scale a and an orientation θ is given by

W f (a,b, θ) = 〈 f, ψa,b,θ 〉 =
∫

IR2
f (x)ψa,b(x, θ)dx. (2)

In literature, a variety of directional wavelets ψa,b(x, θ) have been proposed.
In particular, [7] introduced a flexible function called fully-anisotropic directional
Morlet wavelet, which is given by

ψa,b(x, θ) = eik0 ·Cxe1/2Cx ·AT ACx, (3)

where k0 = (0, k0) is a wave vector with k0 ≥ 5.5, A = diag(D, 1) denotes a
diagonal matrix, and D is the anisotropy ratio defined as the ratio of the length of
the elliptical envelope in the y-direction to the length of the elliptical envelope in the
x-direction. The matrix C is a linear transformation which rotates the entire wavelet
through an angle θ defined as positive in the counterclockwise direction. Two exam-
ples of this fully-anisotropic wavelet for directions θ = 30, 90 are shown in Fig. 1.
In order to identify the behavior of the process in different directions, [8] introduced
two new functions, η(a, θ) and ζ(a, θ), given by η(a, θ) = ∫ |W f (a,b, θ)|2db
and ζ(a, θ) = η(a,θ)∫

η(a,θ)dθ
where the component |W f (a,b, θ)|2, called directional

scalogram, gives the distribution of energy at location b, scale a and direction θ [9].
Since the method proposed by [7] can be used for detecting anisotropy in 2-D

images, we extended the wavelet transforms of point processes proposed by [10]
to spatial data. Then, the background seismicity rate of Eq. (1) can be written as
μ(x) = ∑

a
∑

b W f (a,b, θ)ψa,b(x, θ), where W f (a,b, θ) = ∫
x ψa,b(x, θ)d N (x)

and d N (x) = 1 if a point fall in dx and 0 otherwise.

3 Application to the Earthquake Catalogue of Chile

We consider the epicenter locations of 7249 earthquakes with a magnitude (M) 4.5
or larger for the period from 1903 through 2012, inside and around Chile, selected
from the USGS web site, http://earthquake.usgs.gov/earthquakes/eqarchives/epic/.

http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
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Fig. 1 Fully-anisotropic directional Morlet wavelet with parameters: a D = 0.8, k0 = 5.5, θ = 30,
b D = 0.1, k0 = 5.5, θ = 90

Figure 2 (left plot) show an example of the earthquake spatial distribution in Chile.
By applying the directional wavelet transform to the epicenter data we have the
scalogram shown in Fig. 3 (left plot) which identifies some dominant directions in
the data. For example, the direction of 40 degree represents the main rupture zone
given by the Nazca plate. The resulting hazard map using different directions are
displayed in Fig. 2 (middle and right plots).

Fig. 2 Earthquakes in Chile from 1903 to 2012 with magnitude greater than 6 (left plot) and
magnitude grater than 8 (right plot)
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Fig. 3 Application of directional wavelets (with D = 0.1) to the earthquake catalogue of Chile
with magnitude greater of 4.5 in the period 1903-2012: directional wavelet scalogram (left plot);
wavelet-based estimated background rate using all directions (middle plot); wavelet-based estimated
background rate of the Valparaiso area using angles of 40, 45, 90, 135, and 180◦ and earthquake
epicenters (black points)
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Statistical Complexity Analysis
of Spatiotemporal Dynamics

José M. Angulo and Francisco J. Esquivel

1 Entropy, Complexity and Multifractality

A variety of geophysical phenomena, among others, are characterized by certain
forms of scaling behaviour intrinsic to spatiotemporal dynamics. Complexity and
uncertainty inherent to such phenomena require the use of appropriate statistical
tools for assessment.

Among other methodological approaches, information-theoretic related measures
have been widely applied to quantify different structural aspects concerning evolution
of a system. These include, for instance, classical Shannon entropy, and deforma-
tion parameter based generalizations such as Réyi and Tsallis entropies, as well as
corresponding divergence and mutual information measures.

Formalization of measures quantifying complexity has received special attention
in the last two decades, leading to a number of definitions also in an information-
theoretic context, which have been applied in wide a variety of fields. Conceptually,
complexity measures are aimed to reflect richness of behaviour in a system, with a
balanced assessment between ‘inner uncertainty’ and ‘departure from equilibrium’
(see, for example, [1], and references therein).

As mentioned, dynamics of many natural phenomena is governed by scaling
powerlaws related with self-similarity (fractality) of possibly different orders. State
distributions associated to such systems are formally described in terms of multi-
fractal measures, characterized by the presence of different local Hölder exponents.
Generalized dimensions and multifractal spectrum, based on the scaling powerlaw
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limiting behaviour of global and local Rényi entropies for the distributions associated
to realizations at different resolution scales, constitute the main tools for multifractal
analysis (see, for example, [2]).

Connections between complexity and multifractality concepts can be established
based on the limiting behaviour according to scale of complexity measures. It can be
proved, in particular, that LMC complexity with exponential entropy factor satisfies
the limiting approximation in terms of the increment of generalized dimensions D1
and D2:

L MCexp(Pε) = eH(Pε) · D(Pε) = eH(Pε) ·
[

eH2(Pε) − 1

Nε

]
∼ ε−D1εD2 = εD2−D1 .

(1)
This result, which can be properly extended to some generalized forms of complexity,
shows the potential use of variational properties of the generalized dimension curves
for complexity assessment, in the multifractality context.

2 Application to Seismic Data

The above aspects are illustrated with application to a well known seismic data series
occurred between October 8, 1987, and September 10, 1990, in the region surround-
ing Agrón village in the province of Granada, South of Spain. Three segments of

Fig. 1 Agrón data epicenters on Andalusian region (top), and magnitude-time plot (bottom)
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Fig. 2 Agrón data 3D scatter plots for (X, Y, T ), corresponding to real and shuffled interevent time

equal size in number of events (551) are considered for comparative evolutionary
assessment, referred as ‘previous’ (P), ‘high activity’ (HA), and ‘subsequent’ (S)
subperiod, respectively (see Fig. 1). Figure 2 shows 3D scatter plots of (X,Y, T )
components for real time and shuffled interevent time. Corresponding values of
generalized dimensions D0 (capacity dimension), D1 (entropy dimension), D2 (cor-
relation dimension), and increments D1 − D2 and D−∞ − D∞ (multifractal step),
are given in Table 1 for the three subperiods, showing, among other significant differ-
ential aspects, a higher space-time structuring in the central HA subperiod. Finally,
evolutionary changes of multifractal step and limiting LMC exponential complex-
ity, also reflecting structural differences between the three subperiods, are displayed
in Fig. 3 based on sliding windows, and with and without considering the counting
effect of magnitude (weighting functions φ(m) = 1 and φ(m) = exp(m), resp.),
showing a high intrinsical association of the latter with spatiotemporal dynamics.

Table 1 Values of generalized Rényi dimensions D0, D1, D2, and increments D1 − D2 and
D−∞ − D∞, for X-Y-T, corresponding to real time and shuffled interevent time, for the three
subperiods

Subperiod Time D0 D1 D2 D1 − D2 D−∞ − D∞
P Real 2.6111 2.3895 2.1771 0.2124 1.6893

shuffled IT 2.6122 2.3921 2.1952 0.1969 1.6721
HA Real 2.4300 1.6363 1.0389 0.5974 2.7028

shuffled IT 2.3636 1.8461 1.5193 0.3268 2.2375
S Real 2.6399 2.4294 2.2091 0.2203 1.8299

shuffled IT 2.6561 2.4684 2.2854 0.1830 1.6838
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Fig. 3 Values of D−∞−D∞ (top) and D1−D2 (bottom) for X-Y-Treal and weighting specifications
φ(m) = 1 and φ(m) = exp(m), based on sliding windows of 100 events with 50 % overlap

3 Conclusion

Multifractal analysis provides a basis for complexity assessment, in terms of vari-
ational properties of generalized dimension curves, useful for evaluation of evolu-
tionary structural changes, as well as comparison between systems.
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Frequency Distributions and Scaling of Soil
Texture and Hydraulic Properties in a Stratified
Deep Vadose Zone Near Maricopa, Arizona

Alberto Guadagnini, Shlomo P. Neuman, Marcel G. Schaap
and Monica Riva

1 Introduction

We analyze the distributional and scaling properties of soil texture data measured to
a depth of 15 m over an area of 3600 m2 in a vadose zone near Maricopa, Arizona,
and of hydraulic properties estimated on the basis of these data with the Rosetta
[1] neural network pedotransfer model. The sampling network at the site comprises
a total of 1029 measurement locations distributed along several vertical wells and
a horizontal transect (Fig. 1). A complete description of the available data set and
details about the location of measurement points are found in [2].

Texture data include fraction fi, 0 ≤ fi ≤ 1, of one of three texture categories i
where i = sa, si or cl for sand, silt or clay, respectively. In addition we consider prin-
cipal components of these fractions as calculated by Schaap [2] and logit transform
of the fractions defined as li = ln[fi/(1− fi)]. Logit extends the domain of fi from
[0, 1] to the infinite domain [−∞,∞]. Hydraulic property estimates include porosity
and its logit transform, saturated hydraulic conductivity and parameters of the van
Genuchten-Mualem [3] constitutive moisture retention and relative hydraulic con-
ductivity model. In this extended abstract we illustrate selected results corresponding
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Fig. 1 Spatial distribution of sampling network at the Maricopa site (prepared by Yonggen Zhang)

to our analysis of some texture data and summarize our findings on the basis of all
data.

2 Selected Results of Analyzing Texture Data

We start by fitting theoretical stable probability density (pdf) functions to frequency
distributions of available fi data using maximum likelihood (ML). All distributions
exhibit slight asymmetry with tails heavier than those of the normal distribution. Few
pass the stringent Shapiro-Wilk test of normality at a significance level of 0.05.

The manner in which vertical increments of the fi data, at three different vertical
separation distances or lags, sv, vary spatially when arranged in a one-dimensional
sequence is illustrated in Fig. 2. The variation is seen to be highly intermittent, as is
that of logit transforms and principal components of the fi data (not shown). Though
the literature generally attributes such intermittency to multifractals, we suggest
below that this is likely not the case here.

Vertical increments of all variables are near-symmetric at all lags; an example is
shown for fsa and lsa in Fig. 3. They are generally heavy-tailed at small lags, with α
values that tend toward 2 as lag increases. Such asymptotic behavior notwithstanding
few of the increments pass Shapiro-Wilk tests of normality, at a significance level of
0.05, regardless of how close α is to 2.
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We complete our illustrative example by noting that structure functions of all
variables scale as a power of lag at intermediate lag values. As shown for some of the
variables in Fig. 4, the corresponding exponent inferred by the method of moments
varies in a nonlinear fashion with the order of the structure function. Though such
nonlinear scaling is attributed in the literature to multifractals or fractional Laplace
motions, our analysis of the Maricopa data suggests otherwise, as summarized below.

3 Summary of Findings

Vertical and horizontal spatial increments of both textural and hydraulic variables at
Maricopa exhibit Gaussian or symmetric heavy-tailed distributions, nonlinear power-
law scaling in a midrange of separation distances (lags), breakdown in power law
scaling at small and large lags, extended power-law scaling at all lags, and various
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Fig. 4 Dependence of power-law exponent ξ(q) on order q of structure function for a fsa and lsa ;
and b first two principal components PC1 and PC2 of fi . Straight lines have slopes equal to ξ(1),
defining Hurst exponents

degrees of vertical to horizontal anisotropy. Such behavior is attributed in the lit-
erature to multifractals or fractional Laplace motions. We find it to be consistent
with sub-Gaussian random fields subordinated to truncated (self-affine, monofrac-
tal) fractional Brownian motion (tfBm) or truncated fractional Gaussian noise (tfGn).
Each variable is characterized by one Hurst exponent, H, that varies little with direc-
tions in most cases. All our estimates of αH/2, except those corresponding to van
Genuchten’s [3] n parameter, are smaller than 0.5, indicating antipersistence.
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Cascade of Proppant-Sandwiched Silt Blocks
as a Double-Continuum: From Discovery
to Mathematical Modeling

Anvar Kacimov, Said Al-Ismaily, Ali Al-Maktoumi, Hamed Al-Busaidi
and Said Al-Saqri

1 Introduction

In the Barenblatt–Kazemi model of a double-porous compressible rock with regu-
lar blocks-fractures, containing oil, fluid is released to fractures-conduits in primary
recovery schemes [1]. We studied the hydropedology of soils inside and in the vicin-
ity of the Al-Khoud dam (area of 4 km2, 23◦37′ N latitude and 58◦10′ E longitude,
Muscat, Oman) using 33 pedons (with a textural analysis and lab-permeameter mea-
surements of soil samples from different depths) and infiltration tests by double-ring
and tension infiltrometers [2, 3]. A standard heterogeneity was detected in 31 of the
excavated pedons. At two sites within the dam reservoir (ponded occasionally for
several weeks per year) we found [2] an amazing soil (sedimentation) pattern geo-
metrically resembling [1], i.e. silt blocks of sizes 30 × 20 × 20 cm and horizontal–
vertical fractures of sandy apertures of 2–6 cm, sandwiched between the blocks. This
is attributed to the “geotechnical” factor in soil formation (see [4] for regular soil
genesis factors).

2 Mathematical Model of Infiltration

On a macroscale, a two-layered soil with a constant thickness d of the upper layer
and the subjacent layer indefinitely extending in the z-direction (Fig. 1a) is subject
to the Green–Ampt infiltration. The two layers in Fig. 1a are characterized by the
triads (k1, m1, h1) and (k2, m2, h2) where k1,2 are corresponding saturated hydraulic
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Fig. 1 Green–Ampt model in a two-layered soil and receding ponded water subject to infiltration
and evaporation. a Vertical section, b position of wetting front in the upper layer (1) and lower layer
(2–3) of two different capillary-hydraulic properties, H(t) = const

conductivities, m1,2 are effective porosities and h1,2 are water entry pressure heads.
At time td = 0, the plane z = 0 is ponded at a given depth H0. With time, the ponding
depth, H(t), is either maintained constant or (if no extra water added as the case with
the post-flash-flood events in Oman) decreases due to infiltration and evaporation of
a rate e(td) (retrieved from meteorological data). The wetting front position f0(td) is
a target.

Unlike the Barenblatt–Kazemi model, in our case water and soil skeleton are
incompressible and the hydraulic heads in the two layers are governed by two ODEs
with the front kinematic conditions for the Darcian velocities v1(td) = m1df0/dt
and v2(t) = m2df0/dt, when the front is in the upper (0 < td < Td) and lower
(Td < td < Tdi) layers, correspondingly, where Td is the instance of reaching the
interface and Tdi is the extinction time of ponding, if H(td) naturally vanishes. At
td > Tdi the second (drainage) front emerges [5].

We normalize all geometrical quantities to H0 and introduce dimensionless time
t = tdk1/H0, E = e/k1, kr = k2/k1. Then we solve ODE for the front:

{
m1

d fo(t)
d t = H(t)+h1+ f0(t)

f0(t)
, f0(0) = 0, 0 < t < T

m2
d fo(t)

d t = H(t)+h2+ f0(t)
d+( f0(t)−d)/kr

, f0(T ) = d, T < t < Ti
(1)

If no extra water is supplied to the reservoir we have an additional condition:

H(t) = 1− E(t)t − m1d − m2 f0(t), t > T .

Equation 1 was integrated by the NIntegrate routine of Wolfram’s Mathematica.
Results for H = 1, dating back to Polubarinova–Kochina’s explicit integration, are
shown in Fig. 1b where branch 1 corresponds to h1 = 5, m1 = 0.3 and d = 2 (front in
the upper layer), branch 2 matches this layer with h2 = 0.1, m2 = 0.4 and kr = 10
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Fig. 2 Infiltration rate as a function of time, curves correspond to the data of Fig. 1b

(c)

(b)

(a)

Fig. 3 Pore-scale model with a front and partial filling of the conduit

(coarser second layer) and branch 3—with h2 = 20, m2 = 0.3 and kr = 0.1
(finer second layer). The infiltration rates are shown in Fig. 2. They are discontinu-
ous functions at t = T. Curves 2–3 in Fig. 2 reach their horizontal asymptotes after
a very large time, far beyond the duration of double-ring experiments and reservoir
ponding in Oman. Clearly, if more than two layers are presented in the soil profile,
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then the infiltration rate will be a wiggling curve, with discontinuities smeared in
experimental observations [6]. Our own infiltration tests concur with Ref. [6] i.e.
with a wiggling shape of infiltration rates as functions of time and surmised lack of
a horizontal asymptote of these curves in essentially heterogeneous soils.

In order to explain macro-scale results like ones in Fig. 2 or in Ref. [6], we devel-
oped a pore-scale model, which combines the Averyanov concept of a partially filled
cylindrical pore channel [7] with the Washburn–Lucas meniscus-based front propa-
gation (Fig. 3 depicts the basic model features).
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Parameterization of Soil Thermal Diffusivity
Versus Moisture Content Dependencies
and Modeling Spatial Heterogeneity of Soil
Temperature

Tatiana Arkhangelskaya

1 Objects and Methods

The arable soils of the paleocryogenic complexes of the East European Plain were
studied in the Vladimir region (56◦23′N, 40◦25′ E, 126 m AMSL) and in the Moscow
region (54◦20′ N, 37◦37′ E, 177 m AMSL). The regular structure of the studied
complexes was formed during the late Pleistocene periglacial period [1]. At the
experimental plot in the Vladimir region the bulk density of the studied soils varied
from 1250 to 1610 kg m−3 in the plow horizon and from 1100 to 1610 kg m−3 in the
subsurface layer; the organic carbon content varied from 1.45 to 3.55 % in the plow
horizon and from 0.40 to 4.65 % in the subsurface horizons [2]. Sand, silt and clay
contents were 8–54, 30–74 and 14–35 % [3]. Soil thermal diffusivity was studied
using the unsteady-state method [4]. The highest values (1.93–5.90× 10−7 m2 s−1)

were obtained for the EB horizons and the lowest ones (1.69–3.37× 10−7 m2 s−1)

for the Ah horizons [2].
At the experimental plot in the Moscow region the soil bulk density varied from

1190 to 1490 kg m−3 in the plow horizon and from 1340 to 1720 kg m−3 in the
subsurface layer; the organic carbon content varied from 0.85 to 1.26 % in the plow
horizon and from 0.30 to 1.22 % in the subsurface horizons. Sand, silt and clay con-
tents were 6–42, 34–75 and 12–35 %. The topography of the studied 48× 48 m2 plot
had no specific features in the areas occupied by soils with different morphological
profiles [5].
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2 Parameterization of Soil Thermal Diffusivity

The experimental κ(θ) curves, where κ is soil thermal diffusivity and θ is water
content, were parameterized with the following approximating function [3]:

κ = κ 0 + a exp

⎡

⎢⎣−0.5

⎛

⎝
ln

(
θ
θ0

)

b

⎞

⎠
2⎤

⎥⎦ . (1)

The RMSE of approximation was 3.6 % for 33 undisturbed soil samples
(Fig. 1b) and 6.4 % for two compacted soil samples with a pronounced sigmoid
shape of the κ(θ) curve.

The suggested parameters can be interpreted quite clearly for the sigmoid-peak
κ(θ) curves: κ0 is the thermal diffusivity of dry soil, a is the difference between the
highest thermal diffusivity at the optional water content θ0 and the thermal diffusivity
of dry soil, b is the half-width of the peak of the κ(θ) curve (Fig. 1a). Formula (1)
can also be used to parameterize sigmoid experimental curves and even almost linear
ones (Fig. 1b). For linear and sigmoid curves the interpretation of κ0 parameter is the
same: it is the thermal diffusivity of dry soil. Parameter a is a measure of κ growth
with moisture, and b characterizes the width of moisture interval, where the main
growth of κ occurs. Parameter θ0 in the case of non-peak curves can be interpreted as
the coordinate of “virtual maximum”, which moves right as the κ(θ) curve becomes
less sigmoid and more linear-like.

Parameters κ0, a, θ0 and b depend on soil properties and for loamy soils can be
estimated from data on soil bulk density (ρ) and organic carbon content (C) [3]:
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Fig. 1 a Graph of the function (1). b The examples of approximation of the experimental κ(θ)

curves for the Ap (1), AE (2) and EB (3) horizons
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κ 0 = −1.06+ 0.00198 ρ+ 0.20C,

a = −0.58+ 0.00243 ρ− 0.08C,

b = 0.12+ 0.00012 ρ+ 0.12C,

θ 0 = −0.05+ 0.12a + 0.28b. (2)

where ρ is in kg m−3, C is in %, κ0 and a are in 10−7 m2 s−1, θ0 is in m3 m−3, b is
dimensionless. Equations (1–2) allow to estimate thermal diffusivity of loamy soils
with RMSE of 9–32 % [3].

3 Modeling Soil Temperature

The parameters of Eq. (1–2) were identified for soils from the Vladimir region and
then were used to model soil temperature in the Moscow region. The input data were
data on bulk density, organic carbon and soil moisture measured for the 8× 8 m2 grid
within the 48× 48 m2 plot [5]. These data were used to model vertical distribution of
soil thermal diffusivity in the gridpoints. The seasonal dynamics of soil temperature
was modeled using 1D-approach, i.e., temperature was calculated independently for
each gridpoint. The Fourier equation was used:

cv(z, t)
∂T (z, t)

∂t
= ∂

∂z

(
λ(z, t)

∂T (z, t)

∂z

)
, (3)

where T(z, t) is temperature, t is time, z is depth, cv(z, t) and λ(z, t) are volumetric heat
capacity and apparent thermal conductivity [6]. Thermal diffusivity κ(z, t) is related
with λ(z, t) and cv(z, t) by the formula λ(z, t) =κ(z, t)× cv(z, t).
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Fig. 2 Spatial distribution of organic carbon, %, at 30 cm depth (a), modeled (b) and measured (c)
temperature, ◦C, at 50 cm depth on June 17, 2002 within the plot in the Moscow region
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Soil temperature was modeled for the period from May 1 to June 17, 2002. The
upper boundary condition was specified using data on daily average air temperatures
at the Serpukhov weather station located within 14 km from the experimental site;
the lower one was the condition of zero temperature gradient at 2 m depth. The initial
soil temperature was set to 4 ◦C at all simulated depths in all gridpoints.

The pattern of simulated soil temperature spatial distribution was similar to the
experimental one [5]. The coolest were the areas occupied by the soils with the AE
subsurface horizon high in organic carbon (Fig. 2).
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A Packing Computational Method Relating
Fractal Particle Size Distribution and Void
Fraction in Granular Media

Carlos García-Gutiérrez, Miguel A. Martín, Francisco Muñoz Ortega,
Miguel Reyes and Francisco J. Taguas

1 Introduction: From Particle Size Distribution to Packing

Particulate systems are of great interest in many fields of science and technology
(see [1]). Packing of particles affects physical properties of the granular system.
The observed and expected influence of particle size distribution on random packing
structures increases the interest in relating both, either theoretically or by computa-
tional methods.

Modelling of PSD and the packing of particles of granular media produced by
grinding has been jointly addressed in [2]. In [3] the effect of type of distributions on
packing density is studied using dense random packing of sands, and in [4] a proba-
bilistic approach is used to determine the distribution of the volume of voids between
packed spheres once their size distribution is given. In [5] a three-dimensional Apol-
lonian packing is used as a model for dense granular systems to investigate the fractal
nature of packing. Packing of spheres with lognormal distribution of radii has been
studied in [6] by means of computer simulations. Monte Carlo simulations are used
in [7] to create the structure made of spherical particles of sizes obeying a given
distribution.

Fractal models used for PSD of different granular media may be useful to study
the packing structure. The goal of this work is to apply a version of the computational
method used in [7] to the fractal PSD model proposed in [8]. In particular, we have
been interested in studying the influence of the parameters defining of the fractal
model on the resulting void fraction.
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2 The Particle Size Distribution Model

In practical terms the statistical similarity property for a grain distribution might be
defined by the requirement that after sieving some amount of granular material with
sieves of different size, the structure of the grain distribution of the material sieved
is equivalent (in information terms) to the grain distribution of the initial one.

Let us suppose that the granular material is sieved retaining grains of size greater
than r (think r = 1/2). Suppose that the fraction of material sieved is p1 and the
retained part p2 = 1 − p1

Let w1 and w2 be the linear transformations w1 = x/2 and w2 = (x +1)/2 which
transform the interval [0, 1] into the subintervals [0, 1/2] and [1/2, 1] respectively.

Following [8], the invariant measure µ verifying

µ (I ) =
∑

piw
−1
i (I ) (1)

is proposed as a model for PSD. The measure of any subinterval J is easily com-
putable using Elton’s theorem [9].

3 The Packing Algorithm

The computer simulation of packing has been done following the algorithm described
in [7]. This algorithm, in a first step seeds (according to a uniform distribution) the
initial positions of particles within a square domain of area equal to the sum of the
areas of the particles multiplied by 4/3. In a second step, a process of rearrangement is
iteratively repeating. In this process the relocation of each particle, i, is performed as
follows: a search is made of all particles which overlap particle i, then a displacement
vector is calculate for each particle j which overlaps i, following the equation:

Ri j = R j + (
Ri − R j

) ·
(

ri + r j

di j

)
(2)

where Ri and R j are the vectors of the centers of the particles i and j , the parameters
ri , r j , are the radii of the particles i and j , and di j is the distance between the centers
of the particles i , j . If there are more than one particle which overlaps the particle i ,
then the arithmetic mean of all Ri j is calculated.
The algorithm takes into account the cases when a particle is not in contact with
another particle, then that particle is moved to contact its nearest neighbour.
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Fig. 1 Examples of the results of two simulations for a P1 = 0.1 and b P1 = 0.7

Table 1 Mean values and standard deviation of the porosity for the replications implemented for
P1 = 0.1, P1 = 0.4 and P1 = 0.7

P1 Mean porosity Standard deviation Number of samples

0.1 0.283 0.0146 10
0.4 0.279 0.0130 10
0.7 0.259 0.0170 10

4 Results

Following Sect. 2, different PSD have been generated for different values of p1
and p2. The packing algorithm has been applied with the simulated PSD’s with 10
replications for any of them. The influence of these parameters on the porosity have
been studied. Figure 1 shows the results of the simulations for two different values of
p1. The variation of the mean porosity of replications is shown in Fig. 2 as a function
of the sample size for three values of p1. Mean values and the standard deviation
values of the porosity measured over the replications implemented for the p1are
summarized in Table 1.

A first conclusion is the dependence of the variance on the value p1: for val-
ues showing a great variance, the number of particles used should be increased in
order to ensure the reliability of computer simulations in obtaining the representative
elemental volume of the porous medium. Results also seem to indicate the relation
between porosity and the value p1. Further simulations are planned.
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Fig. 2 The variation of the mean porosity as function of the sample diameter for P1 = 0.1 (contin-
uous line), P1 = 0.4 (dashed line), P1 = 0.7 (dots and dashed line). (the sample is a circle centered
on the mean value of the coordinates of all particles and the unit of length is the same as for the
particles)
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Parallel Sets and Morphological
Measurements of CT Images of Soil
Pore Structure in a Vineyard

Fernando San José Martínez, Francisco J. Muñoz Ortega, Francisco J.
Caniego and Fernando Peregrina

1 Introduction

The spatial arrangement of soil constituents—usually referred to as soil structure-
controls important physical and biological processes in soil-plant-microbial systems,
where microbial population dynamics, nutrient cycling, diffusion, mass flow and
nutrient uptake by roots take place across many orders of magnitude in length scale.
Therefore, a correct model of the geometry of soil pore structure is critical for under-
standing flow and transport processes in soils, creating synthetic soil pore space for
hypothesis and model testing, and evaluating similarity of pore spaces of different
soils.

Minkowski functionals provide computationally efficient means to measure four
fundamental geometrical features of 3D objects such as pore space, i.e. the vol-
ume, the boundary surface, the mean boundary surface curvature and connectivity.
Hadwiger’s theorem confers a fundamental status to these geometrical features as
morphological descriptors. Mecke [1] and Roth et al. [2] make use of the evolution
of Minkowski functionals due to threshold variation to characterize 2D porous struc-
tures. Also, 2D porous structures were investigated by Mecke [3] and Vogel et al. [4]
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with Minkowski functions based on dilations and erosions. These functions account
for the evolution of Minkowski functionals as the radius of dilation/erosion per-
formed to the object varies. Arns et al. [5] analyzed these Minkowski functions to
characterize 3D images of Fontainebleau sandstone. Vogel et al. [6] took advantage
of Minkowski functions based on openings (i.e. erosion followed by dilation) to
quantify soil 3D structure of arable soil and of repacked sand. Parallel sets, which
can be understood in terms of dilations and erosion, were introduced by Mecke [3]
to characterize and model 2D structures beyond two point correlation functions and
predict percolations threshold in porous media. Arns et al. [5] also made use of paral-
lel sets to determine the accuracy of the model they developed for the Fontainebleau
sandstone.

Some preliminary results on the geometrical features captured by the evolution of
Minkowski functionals of parallel sets of pore space will be presented here. We will
also explore their suitability to characterize the influence of conventional tillage and
permanent cover crop of resident vegetation on soil structure in a Spanish Mediter-
ranean vineyard.

2 Mathematical Morphology of Pore Space

We will analyze binary 3D images of soil (black and white images) from X-ray
computed tomography (CT) of intact soil columns. They contain two complementary
phases: the phase of voids (pores) and the phase of soil matrix (mineral particles).
Usually, a CT image of soil will be pictured as a set of points of a cube S where each
point is part of pore space P or is part of soil matrix. These points are voxels of a
three-dimensional image. The set Pr , also called parallel body of P at a distance r
or r-parallel body to P , is the set of all points within a distance smaller than r from
the object P. Roughly speaking, it is like a “skin” of thickness r was added to P. The
parallel set Pr can also be described in terms of dilation of P by balls of radius r ,
as the union of all balls Br (x) of radius r centered at points x of P . The erosion of
one phase is equivalent to the dilation of the complementary phase. Consequently,
the erosion of Pby a ball of radius r corresponds to the set of all positions of their
centers x within P where Br (x)fits completely into P . It is like a layer of thickness
r was removed from P . We may generalize the notion of parallel body as follows,
Pr is the dilation of P by balls of radius r when r > 0 and the erosion of P by balls
of radius r when r < 0.

Minkowski functionals are a complete set of geometrical features as established
by Hadwiger’s theorem [7]. In simple terms this theorem states that any functional
that assigns a number to any object and meets some very natural restrictions is a linear
combination of the Minkowski functionals. In space there are four Minkowski func-
tionals: volume, boundary surface area, mean breadth and Euler-Poincaré number.
When the boundary surface of the object is smooth, mean breadth is the surface inte-
gral of mean curvature [7]. Points on the boundary surface of an object with positive
curvatures settle on convex parts (protrusions) while points with negatives curvatures
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Fig. 1 View of 3D reconstructions of binary images of pore space (white) with voxel size of 50
µm in a box of 8.5 cm high (z-axis), 1.7 cm long (x-axis) and wide (y-axis) of samples from tillage
soils (Ti) and natural cover crop (Na)

belong to concave parts (hollows). The Euler-Poincaré characteristic is an index of
the topology of the pore phase and it quantifies pore connectivity. It can be computed
as the sum of the number of connected components and the number of cavities of the
object less the number of tunnels [1]. In this context a connected component of an
object is any part of it whose points are connected to one another by curves of points
contained in the object. Cavities are holes completely surrounded by the object, while
tunnels are holes through the object connected with the exterior or background. For
soils we may assume that pore space does not have cavities and, therefore, the con-
nectivity number is the number of connected components subtracted by the number
of tunnels. It is worth noting that the computation of Minkowski functionals reduces
to their evaluation on cubes (or voxels) and their intersections (vertices, edges and
faces) [9]. Finally, we have considered Minkowski functions build over parallel sets
of the pores space. They provide a way to investigate the morphology of the pore
space as it is dilated and eroded with balls of increasing radius.

3 Soil Samples and Image Acquisition

Soil columns were collected at the experimental farm “Finca La Grajera” property
of La Rioja region government (northern Spain) at December 2010. The soil was
classified as Fine-loamy, mixed, thermic Typic Haploxerepts according to the USDA
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soil classification. In this study we selected four columns collected between rows
of a vineyard that was established in 1996. Two types of soil cover management
in between rows were represented: (Ti) conventional tillage management between
rows, which consisted in soil tillage of 15 cm depth by cultivator once every 4–6
weeks; (Na) natural soil with permanent cover crop of resident vegetation, which was
dominated by annual grass and forbs common to La Rioja vineyards [9]. Columns
were extracted vertically by percussion drilling between rows, within PVC cylinders
of 7.5 cm interior diameter and 30 cm height from the upmost part of soil profile.

Columns were scanned with a PerkinElmer amorphous silicon (a-Si) detector
with a Feinfocus FXE 225.51 microfocus beam source tube that was operated at
190 kV (53 uA) and 20 W. Only the upper half of the column was scanned and the
region between 8 cm and 15 cm was selected. A stack of 1706 two-dimensional
16-bit grayscale images with a pixel size of 50 µm, 50 µm apart from one another
were obtained for each sample. We selected a global method to segment images—
the modes method—as we focused primarily on geometrical features evolutions and
pattern analysis (Fig. 1).

4 Results and Discussion

Minkowski functionals were evaluated on five cubes per column. Cubes had 340
voxels per edge and they were centered on the axes of the column. Consecutive
cubes shared a face, from top to bottom. The pore space P in cube ci (i = 1 ... 5) was
eroded/dilated to yield parallel sets. Diameters of balls took nineteen different values
for erosions and nineteen for dilation, as well; it was incremented from in steps of
the voxel size (i.e. 50 µm). We considered densities of Minkowski functionals. Thus,
we had volume fraction or image porosity, specific boundary surface area, specific
mean curvature and specific Euler number.

Fig. 2 displays the evolution of these geometrical densities as function of
erosion/dilation diameter. Differences between soil samples under natural resident
vegetation cover (Na) and samples under conventional tillage (Ti) are noticeable
even if samples Ti2 and Na2 have a similar evolution for dilations. Nevertheless, the
evolution of image porosity and specific boundary surface with erosions diverges.
It suggests that geometrical features of sample Ti2 are smaller than three voxels as
they vanish with erosions of diameter smaller than that size.

Samples with natural resident vegetation cover (Na) show a greater amount of
volume fraction and specific surface at any diameter of the balls used to erode/dilate as
compared to samples form tillage soil (Ti). Similar results were reported by Peregrina
et al. [9].

Evolution of specific mean curvature and connectivity seems to indicate that con-
ventional tillage and resident vegetation cover produces two different pore structures;
this difference is especially apparent when comparing samples Ti1 and Na1. Sam-
ple Na1 yields more specific mean curvature than sample Ti1 when dilated with
balls smaller than seven voxels. In this range of diameters, mostly small convex
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Fig. 2 Morphological functions of the pore space of soil columns: evolution of Minkowski func-
tionals densities as a function of erosion/dilation diameter R. Negative values of R correspond to
erosions while dilations correspond to positive values

voids should populate sample Na1 as compare to sample Ti1. High Euler numbers
of sample Na1 at small diameters seem to suggest this behavior. But large diame-
ters decrease specific mean curvature and Euler number of sample Na1 producing
negative values while these geometrical measurements stabilize for sample Ti1 as
diameter increases. This suggests that pore structure of sample Na1 contains a large
number of small features as the number of small voids (i.e. connected components)
overdue the number of soil materials tunnels through them; therefore, high values of
the specific mean curvature from these small features of the Na1 pore space should
be explained by the regularity of the surface that enclosed them. Na1 seems to dis-
play a richer structure as compared to sample Ti1. When the diameter of the ball
used to dilate the object is seven both samples have the same positive specific mean
curvature but sample Na1 has negative Euler number. Therefore, it suggests that geo-
metrical features similar in size should dominate sample Ti1 while the dilations of
sample Na1 show a more complex structure highly connected with tunnels through
it as it seems to indicate negative Euler numbers. Low variation of specific mean
curvature and Euler numbers of sample Ti1 is compatible with a pore structure made
up with small irregular geometrical features of similar sizes that vanish as diameter
of dilation increases and do not generate a complex and highly connected structure.

These results suggest that the evolution of morphological features with dila-
tion/erosion is a suitable indicator of soil structure for cultivated soil and it seems to
describe the influence of two different soil management practices (i.e. conventional
tillage and natural cover crop) on soil structure in a Spanish Mediterranean vine-
yard. It is worth noting here how these results reflect the different pore structures as
depicted by Fig. 1. The homogeneity of the pore space produced by tillage is obvious
as compared to the heterogeneity of samples under resident vegetation crop. Similar
geometrical features seem to dominate samples Ti2 and Na2; but, small structures
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discriminate between them and explain the behavior of specific image porosity and
boundary surface when sample Ti2 is eroded.

These findings provide means to simulate natural porous media. The geometrical
descriptors that seem to discriminate between these two types of samples could be
used as inputs for morphological models of natural soil structures. Further investiga-
tions are needed to understand the role of morphological parameters in discrimination
of a priori different natural soil structures and in determination of accurate models
to mimic pore structure of natural soils.
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Evaluation of Fractal Dimension in Karst
Aquifers

Pedro A. Robledo-Ardila, Juan José Durán-Valsero
and Eulogio Pardo-Igúzquiza

1 Introduction

The spatial heterogeneity of karst aquifers is widely recognized. The focus of this
paper is to apply a 1-D fractal method as tool to obtain complementary information
about internal structure of karst aquifers. The application of fractal geometry could
provide substantial information on the network of conduits of the karst aquifers and
may help us understand how the spatial distribution and temporal responses of their
discharge [2, 4]. In so far as its application extends our degree of understanding of
the internal organization of such aquifers and their hydrodynamic balance behaviour.
Four examples have been taken in different carbonate massifs on the basis of flow data
in springs with large discharges: the Tempul (Cabras range), La Cueva del Gato (Líbar
range), The Villa (El Torcal de Antequera) and Villanueva del Rosario (Camarolos
range) in Málaga and Cádiz provinces. For fractal dimension analysis the Scan Line
method is used applying the equation N ∝ d−D [2] using flow series (l/s) in a time
sequence for the flow springs. Thus, the fractal dimension of a network of conduits
of karst aquifer is a number such that 0–1 because the method is based in 1-D study
of the system (Fig. 1). The higher the fractal dimension more developed is the stage
of karst evolution. In this work we have simplified the analysis because de fractal
equation method assumes all the possible variables to obtain a reliable result of the
internal hierarchal of a karst aquifer. The differences of flows are considered here as
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Fig. 1 Schematic example of the fractal dimension using the 1-D method. a No Fractal system.
b Fractal system

the spatial distances en a line according the Hausdorff-Besicovitch dimension [3] and
the days of the flow series is the number of events scaled with a minimum distance.

2 Materials and Methods

In the examples studied we opted for the Scan Line method (1-D study). The l/s data
for each spring were considered in relation to the number of days. Fractal behaviour
in a series of events (N) with a property (P) fulfils the following equation:

N ∝ P−D (1)

where N is the number of objects, P is the property and D is an exponent related to
the fractal dimension system, obtained from the above equation by the application
of logarithms [2]. In the case of the aquifers studied, the temporal distribution of
flows (series of daily flows expressed in l/s-day) was analyzed so as to ascertain
whether or not their behaviour is fractal, and they may be classified by the fractal
dimension of the distribution of distances between flows (D)d. The method is based
on the measurement of daily flows in a 1-D cross-section. Daily flow was treated as a
dimensional space between 0 and 1. The flow difference (N) scaled with a minimum
distance (d) (which in this case is flow expressed in l/s) is hyperbolic (fractal) if it
fulfils the equation (potential law) N ∝ d−D, where N is the number of days and
d the flow difference. The D exponent in this case is related to the fractal system
dimension (the volume of flows considered) and is obtained from the above equation
by applying logarithms. In a double logarithmic graph with log (number of days
sampled)-distance log (daily flow difference), the fractal dimension D(d) is the slope
of the distribution curve fit.
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3 Results

A gradation of flow and time in the discharge response for each of the springs
is observed as regards the system fractal dimension. The Fig. 2 show the fractal
dimensions of the flow discharged is <1 in each one (0.4448, 0.3999, 0.3067 and
0.3457, respectively). These results are not close to the theoretical value of 1 (fractal
system).

The distribution trend line shows that in each of the systems analyzed there are
various sets of flows spaced in a great number of intervals. La Cueva del Gato
spring show a highly irregular gradation in their number of intervals. In Villanueva
del Rosario spring the behaviour is similar though the log-log relationship shows a
considerable decrease in the number of intervals, which are also more regular as to the
number of events repeated in them. The Villa spring also exhibits a smaller number
of intervals but similar to Villanueva del Rosario, though they are less homogenous
in their log-log correlation. El Tempul spring show a great sets of spaced intervals.
However, the relationship is highly regular, as the spacing shows few differences
in its log-log correlation, with many sets of discharged flow intervals but with little
difference between the flow volumes and the number of days on which these are
repeated.

Fig. 2 Fractal dimension which is >1 in the four examples springs studied: a Cueva del Gato,
b The Villa; c Villa Nueva Del Rosario: d The Tempul
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4 Discussion

According the result of fractal dimension of flow discharge could be a related with
their internal structure associated to a model in which some show a more inertial
behaviour and others a more hierarchal (karstic). However, the trend line for the
spatial distribution of flows show low values in all the cases (>0.5). If on the other
hand we consider the intervals established in the aquifers in detail we find that there
are specific sets of flows for which the steep slope of their distribution trend line is
substantially modified, thus showing fractal behaviour as the fractal dimension of this
particular set is notably close to 1 (self-similarity). Thus, the flow discharge analysed
may be asserted to have multifractal behaviour, according to the set of intervals in
which they are spaced, auto-scaling in their log-log correlation [1, 2]. The Fig. 3
shows the multifractal spectrum in the El Tempul spring. The method used has been
1D but in five different interval in the same data flow series.

Fig. 3 Multifractal spectrum of the Tempul spring. Tow intervals are equal to >0.73 and >0.64,
both close to 1 (good fractal system)

5 Conclusions

Fractal dimension method is a good complementary tool for its application in studies
of karst aquifers. The results obtained indicate that the set of flow discharged is not
highly fractal and this could be related with the internal organization degree of karst
aquifers. However, some interval of flow shows a fractal dimension close to 1. For
a more detailed study of fractal dimensions we should consider aspect such as, the
conducts geometry and thickness, recharge or water balance in karst aquifers.
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Fractal Modelling of Karst Conduits

Eulogio Pardo-Igúzquiza, Juan José Durán, Pedro Robledo,
Carolina Guardiola, Juan Antonio Luque and Sergio Martos

1 Introduction

A fractal is an object which in geometry can be described by a non-integer dimen-
sion. It was Mandelbrot [1] who conjectured the frequent occurrence of fractals in
nature. Fractals have been used in karst research to model cave roughness [2, 3],
cave distribution, fracture opening, fracture distribution, conduit distribution, con-
duit size, conduit morphology, conduit tortuosity, porosity and permeability [4]. The
fractal dimension of karst conduits has been used as a morphometric parameter to
describe three-dimensional karst conduit networks and it may be used to control
stochastic simulations of such networks [5]. Nevertheless, another interesting appli-
cation of fractal modelling is in the description of scale-invariant distributions and
when extrapolating to smaller and larger scales beyond the measured range. This
latter application is used here to calculate the conduit porosity and fracture porosity
of a karst massif.
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2 Methodology

Porosity in a karst system has a hierarchical structure involving matrix porosity,
fracture porosity and conduit porosity. It can be hypothesized that its distribution
follows a power law which is characteristic of parameters with fractal behaviour.
Pardo-Igúzquiza et al. [5] provides an analysis of the distribution of conduits in a
3D volume. In this work, the volume of conduits in relation to the diameter of the
conduit is considered. The hypothesis is that for conduits (V) that have a diameter
greater than (D) the volume follows a power law:

V (D) ∝ D−F D, (1)

where FD is the fractal dimension. When the experimental data are represented in
a log-log plot, they should produce a straight line that defines the power law. This
functional relationship can then be extrapolated to estimate the volume of conduits
that are larger than 3 mm, which are considered for conduit flow, and the volume of
conduits that are smaller than 3 mm that define the fracture porosity and are used
when calculating Darcy flow. The fitting procedure is illustrated below.

3 Results

Measurements were taken for over a thousand sections from conduits in the Sierra de
las Nieves aquifer in the province of Málaga in Southern Spain. The data were col-
lected by the speleologists of the Grupo de Exploraciones Subterráneas (Sociedad
Excursionista de Málaga). The speleologists use cave surveying to map conduits.
A conduit is defined by profiles and a profile is a number of successive topographic
stations. For each station the three-dimensional coordinates are known as well as the
section of the conduit at that location. The section can be modelled as circular with
a mean diameter. The spatial disposition of conduits is complex but can be charac-
terized by its fractal dimension, which can be determined using the box-counting
method as shown in Fig. 1. The resulting fractal dimension, 1.46, is similar to the
typical dimension of 1.67 found for karst conduits [6].

Furthermore, the volume of the conduit can be calculated as the volume of a
frustum of a right circular cone. In this way, for each diameter (D), it is possible to
calculate the volume of conduits (V) with a diameter larger than D. The results have
been plotted on a double-logarithmic scale in Fig. 2. The middle section of the plot
shows a straight line and at the ends artifacts caused by sampling bias can be seen
[4]. There are two kinds of sampling bias as a result of truncation and censoring.
Truncation bias is introduced by the incomplete sampling of small features. There is a
physical limit to cave exploration because the conduit must be large enough to allow
the passage of the speleologists. On the other hand, truncation bias is introduced by
the limited extent of the exploration, which could mean that some of the very large
features have not been mapped.
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Fig. 1 Log-log representation of the spatial disposition of conduits using the box-counting method

Fig. 2 Log-log representation of diameter of conduits versus accumulated volume of conduits with
larger diameter

The linearity in Fig. 2 suggests that the data are scale invariant, or fractal, and can
thus be extended beyond the limits of observed data. In doing so, it is possible to
calculate that the volume of conduits larger than 3 mm is 3 106 m3 and the volume
of the karst massif where the conduits have been mapped is 1.2 109 m3, giving a
conduit porosity of 0.25 %. In the same way fracture porosity can be estimated as
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0.25 %. The mean matrix porosity of the dolostone, which is the main constituent
of the aquifer, is 2.66 %. The total porosity is therefore 3.16 %, very similar to the
assumed mean porosity of karst aquifers in the Betic Mountains, which is 3 %.

4 Conclusions

Fitting a power law to experimental data of conduit sections can be used to obtain
estimations of conduit porosity and fracture porosity in a karst massif. This technique
provides quantitative measurements of otherwise difficult to evaluate parameters in
karst hydrogeology. These values can be used for the mathematical modelling of
flow in karst systems.
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Frequency–Area Distribution of Historical
Landslides in the Sannio Apennine
(Southern Italy)

Angelo Donnarumma, Paola Revellino and Francesco Maria Guadagno

1 Introduction

Landslides are examples of self-organized criticality (SOC) in nature [1]. In the
context of SOC models a system exhibits a quasi stationary state (critical state).
Moreover, the distribution of event sizes is scale invariant and the frequency dis-
tribution in time occurrence behaves as a 1/f noise [2]. First simple example of a
SOC process adopted in landslide studies was the ‘sandpile’ model [3], based on the
phenomenon that its slope keeps an angle of repose, but larger avalanche cannot be
excluded in presence of a further addition of a single grain.

Several studies have shown that the probability density of landslide area p(AL)

for many inventories exhibits a typical behavior (e.g. [4–7]): when plotted in bi-log
graph, it increases linearly with the landslide size up to a maximum value, after which
the p(AL) rapidly decreases with increasing landslide area, following a power law
too. This behavior can be explained in terms of scale invariance, i.e. fractal statistics
[8]. Different studies on frequency–area distributions of landslides agree on a power
law tail behavior with exponent of −2.3± 0.6, behind the roll-over.

Accurate statistic analysis of the frequency-size (area or volume) distributions, as
reported in many studies, is very important for several implications in the quantitative
assessment of landslide hazard, because it allows to quantify the number of landslides
that occur at different sizes but also the contribution of slope instabilities in landscape
morpho-evolution.
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This paper aims at performing a statistic analysis of the frequency–area distribu-
tion of historical landslides in the province of Benevento (Southern Italy) by using a
three-parameter ‘inverse-gamma’ Probability Density Function (PDF).

2 Landslide Inventory of the Study Area

The study area is the Benevento province (approximately 2,000 km2), located in one
of the most geologically complex sectors of mountain Apennine in Southern Italy.
The morphological shape of slopes is controlled by recurring landslide events, in time
and space [9, 10]. In the study area, 3,756 landslides were inventoried [11], covering
an approximate area of 360 km2, equal to about 18 % of the whole provincial surface.
The inventory have been performed by means of interpretation of historical aerial
photos of different time as from 1954, together with geological and field surveys
carried out between 2001 and 2010. The landslide inventory is composed of the
following types: 3,062 earth flows, 71 translational, rotational and composite slides,
596 falls and topples, 27 rock and debris avalanches, and debris flows.

3 Frequency-Area Statistics

In order to obtain the dependence of landslide frequency on landslide area, we use a
landslide inventory.

The data binning was preliminarily made with 1-size, non zero intervals and was
characterized by small dispersion. The p(AL) was obtained by dividing the area of
each interval by its own amplitude. More specifically, we fixed 10−3 Km2 as the
starting point of the binning procedure and then we extracted the counts in each bin
of a 5 · 10−3 Km2 amplitude.

Statistical distribution of landslide areas was obtained by using a probability
density distribution p(AL) defined according to:

p(AL) = 1

NLT

δNL

δAL
. (1)

with the normalization condition
∫ ∞

0
p(AL)d AL = 1. (2)

where AL is landslide area, NLT is the total number of landslides in the inventory,
and δNL is the number of landslides with areas between AL and AL+δAL. The PDF
was computed by applying a three-parameter inverse-gamma distribution [12, 13]
proposed by Malamud et al. [6] as general probability distribution for landslides:
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p(AL ; ρ; a; s) = 1

a�(ρ)

[
a

AL − s

]ρ+1

exp

[
− a

AL − s

]
. (3)

where �(ρ) is the gamma function of ρ; ρ controls the power law decay for medium
and large landslide areas; a primarily controls the location of the maximum of
the probability distribution; s primarily controls the exponential decay for small land-
slide areas. In our study, Maximum Likelihood iterative method were used to estimate
inverse-gamma parameters for the landslide data set. The best fit corresponds to the
following values: ρ = 1.42, a = 9 ·10−2Km2, s = −1.38 ·10−4Km2, �(ρ) = 0.89.
Figure 1 shows the probability density, p(AL), obtained using Eq. 3. The observed
distribution shows a distinct roll-over for landslide areas less than 10−1Km2. The
linear portion of the curve with landslide area> 10−1Km2 shows a power-law decay
with scaling exponent β = (−ρ + 1) as 2.42 (determination coefficient r2 = 0.97).
Finally, in order to verify the SOC behavior of the real landslides, we performed a
non-cumulative frequency–area distribution, for medium and large landslides, which
satisfies a PL distribution with an exponent of −0.92(NL = A−0.92

L , r2 = 0.99).

Fig. 1 Probability density of landslide area, p(AL), as a function of AL, shown in logarithmic
coordinates

4 Conclusions

Our study focused on the frequency distribution of AL in the area of the Benevento
province. Through a statistic analysis, we obtained the p(AL); its analysis indicates
that the dataset exhibits negative power-law scaling of p(AL) as a function of AL, for
landslides exceeding a threshold area. The slope of the power law tail is about−2.4.
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The analysis of landslide properties agrees with SOC model expectations, although
a further step (1/fα behavior) is needed in order to confirm the SOC system behavior.
The full SOC modeling will be discussed in a forthcoming paper.

The obtained result can have important implications in quantitative landslide haz-
ard assessments of the study area.
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A Spatiotemporal Remotely-Sensed Assessment
of Peat Covered Areas Using Airborne
Radiometrics

Jennifer M. McKinley, Antoinette Keaney and Alastair Ruffell

1 Introduction

Peat has a high proportion of soil carbon due to the relatively high carbon density
of peat and organic-rich soils. For this reason it has become increasingly important
to measure and model soil carbon stores and changes in peat stocks to facilitate the
management of carbon changes over time. The aim of this research is to improve
the assessment of carbon in organic-rich soil using remotely sensed airborne radio-
metric data of peat covered areas. The theory being applied is that saturated peat
attenuates gamma-radiation from underlying rocks. This relationship can be used to
estimate peat thickness, within certain limits. Irish peat is divided into blanket peat-
land (approximately 85 %) and raised peat bogs (approximately 15 % [1]). Raised
bogs develop primarily in lowland areas from the accumulation of peat in fens. Blan-
ket peat typically form on gentle slopes within upland regions. Two case studies,
a raised bog and a blanket peat area, are presented to validate the use of airborne
geophysical data to estimate peat thickness using the attenuation of bedrock geology
radioactivity by superficial peat cover.
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1.1 Airborne Radiometrics

This research uses radiometric data generated by two airborne geophysical surveys.
The Tellus Project [2] undertaken between 2004 and 2007 and the more recent EU-
funded Tellus Border project (2011–2013), which was a continuation of the Tellus
survey, covering the six bordering counties of the Republic of Ireland. As part of these
airborne surveys, terrestrial radiation was sampled every second using a gamma-ray
spectrometer (Explorium GR-820/3). Flight lines had a line spacing of 200 m and an
average flight altitude of 56–60 m [2]. Total Count (TC) measurements, comprising a
spectral summation including contributions from both natural and artificial radioac-
tive sources, measured in counts per second (cps), were collected across the energy
window from 0.41 to 2.81 MeV [3]. TC data provide a higher signal/noise ratio than
individual spectral radioisotope levels and are used for the outputs shown since the
signal/noise ratio is important when analysing attenuation and low count behaviour
in the radiometric data [3].

2 Methods

2.1 Coregionalisation

Variability exists in peat depth and radiometric values across the raised peat bog
(Fig. 1). Where the peat cover is thick the radiometric signal is reduced demonstrat-
ing the attenuation of the radiometric signal by saturated peat. The proximity of
ground-based peat thickness measurements with airborne radiometric data at suf-
ficient locations allowed the degree of spatial correlation between the datasets to
be investigated. Coregionalization uses the degree of spatial correlation between
measured peat depth and the attenuation of the radiometric signal to update a lim-
ited sampling regime of ground-based measurements with more densely remotely
acquired data (Fig. 1a). Utilising the inverse spatial relationship (correlation coeffi-
cient r value = −0.49), cokriging uses the coefficients from cross variograms between
ground-based peat thickness measurements and airborne radiometric data (Fig. 1b)
to produce an updated cokriged map (Fig. 1c). The benefits of using the airborne sur-
vey data are twofold. The use of remote sensed data to produce a spatial map of peat
thickness minimises destruction to a sensitive habitat. Secondly temporal changes to
peat thickness can be assessed, in that areas where radiometric data do not correlate
with previously measured peat depth may indicate drying out of the peat through
extraction or encroachment by invasive vegetation.
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Fig. 1 a Measurement grids for peat depth and radiometrics; b Kriged map of total radiometrics
(counts per second); c Cokriged output map of peat depth (metres) for the raised peat bog. Note the
inverse relationship between the radiometric data and peat thickness demonstrating the attenuation
of gamma-radiation by saturated peat (correlation coefficient r value = −0.49)

2.2 Using Remote Sensed Data to Update Peat Management
Strategies

Blanket peat can cover kilometres of upland areas and although peat survey assess-
ments may exist, peat depth measurements are limited. The use of remote sensed
airborne radiometric data can provide a spatial estimate of peat thickness and an
assessment of temporal changes in peat. Using parameters of fitted variogram mod-
els to the radiometric TC data (Fig. 2a), the kriged output map (Fig. 2b) illustrates

Fig. 2 a Measurement grid for airborne radiometrics; b Kriged map of total radiometrics (counts
per second) for blanket peatland
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the spatial variation of peat thickness across a blanket peatland using the inverse
relationship between peat depth and airborne radiometric data. Where the peat is
less thick, high radiometric total count values are expected and where the peat is
thicker lower total counts values are expected as the radiometric signal is attenuated
by the overlying peat. This provides a temporal assessment of peat changes for this
blanket peatland when compared with previously conducted peat surveys. While the
majority of the blanket peat remains unchanged (dark blue areas in Fig. 2b), areas
are indicated with high radiometric values that previously were recorded as ‘intact’
thick peat. The implication is that these areas have experienced a reduction in peat
thickness due to drying out, invasive species or illegal peat extraction. Ground-based
monitoring should be focussed in these areas.

The results from this research have a broader significance to promote the use of
remote sensing for spatial estimates of carbon stock, reduce the need for damaging
on site peat monitoring and to record temporal changes in peat covered areas due to
peat extraction and invading species.
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Monitoring of Urban-Damaging Landslides
with Satellite Radar Missions:
Arcos de la Frontera (Spain)

Guadalupe Bru, José Fernández, Pablo J. González and Kristy F. Tiampo

1 Introduction

In recent years, a number of newly constructed residential subdivisions located
in the Arcos de la Frontera suburbs suffered severe structural damage due to
slope instabilities which, in some cases, forced evacuation of the inhabitants. Wall
cracks in buildings have been reported and, after an intense precipitation period
in December 2009 and beginning 2010, slope failure caused the majority of dam-
age in La Verbena neighborhood, not only affecting buildings but also public
spaces and water supplies. Remediation efforts are still being carried out in order
to stabilize the landslide. However, in the case of Pueblos Blancos subdivision,
damages could be due to displacements of the earth fill on which it was con-
structed.

2 Geomorphological and Geological Setting

Arcos de la Frontera (Cádiz, southern Spain) is located in the Guadalete basin,
between the Guadalquivir basin and the occidental border of the Subbetic System.
The old city sits on top of a calcareous sandstone (commonly known as “caliza
tosca”) scarp with typical cross set dune structure. The substratum of the most recent
urban area affected by the landslide is composed of siliciclastic sandstones and sandy
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Fig. 1 Linear velocity map in LOS direction obtained by the processing of 10 SAR images for the
period April 2011–January 2012

marlstones facies [3]. All the materials are Miocene-age and their genesis is pelagic,
formed in an oceanic basin that actually constitutes the Guadalquivir depression. As
mentioned earlier, Pueblos Blancos subdivision was constructed on earth fill.

The geomorphology of the area of interest is dominated by the meander-shaped
channel of the Guadalete River. Both Verbena and Pueblos Blancos terrain slopes
are gentle, the first one dipping towards the SE and the second to the W (Fig. 1).

3 InSAR: Principles, Data and Methodology

DInSAR techniques have become a powerful method to detect and monitor slow
ground surfaces deformations at a relatively low cost. Although there are constraints,
such as decorrelation, terrain slope topography and very rapid movements [4], its
application to landslides studies is feasible [5–7]. On the one hand, classical differ-
ential interferometry can show displacements on the satellite Line of Sight (LOS)
between two different images acquisitions. On the other, advanced techniques can
compute displacement time series and velocity surface deformation using a stack of
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SAR images, based on amplitude (full resolution) or coherence (multilook) criteria
that are very useful to assess their activity.

A total of 22 descending ENVISAT SAR images, including the ENVISAT 2010+
mission, are processed with two techniques; the period covering March 2007–
September 2010 (12 images) with the Coherent Pixel Technique, CPT and April
2011–January 2012 (10 images) with STAMPS software. We intend to correlate
ground surface movements to intense precipitation periods and to evaluate the over-
all landslide behavior through displacement time series.

4 Results

The first linear velocity results obtained by the set of images from the period April
2011–January 2012 are shown in Fig. 1. It is seen that the southern affected area
exhibits subsidence (ground surface to satellite range increase) in its north part,
which according to the topography (Fig. 2), could correspond to the upper part of
the landslide. However, Pueblos Blancos exhibits movement towards the satellite in
the LOS direction. Daily precipitation data, obtained from the Spanish Meteorogical
Agency, is compared to the displacement time series and show correlation (Fig. 3).
On initial inspection, it could confirm our starting hypothesis (rainfall is correlated
with landslide velocity). More detailed studies would be necessary.

Our results illustrate the benefits of including remote sensing techniques as a com-
plementary tool for geotechnical engineering. In particular, they provide a significant
advantage in structural monitoring in urban areas affected by slow landslides.
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Multivariate Variogram and Madogram: Tools
for Quantifying Diversity/ Dissimilarity
in Spatiotemporal Data

Phaedon Kyriakidis, Dimitra Kitsiou and Dimitris Kavroudakis

1 Introduction

Multivariate measures of spatial association, such as the Mantel correlogram, are
frequently used, especially in ecology, for quantifying (dis)similarity among mul-
tiple attributes as a function of neighborhood specification [5, 7]. In geostatistics,
similar concepts are formulated under the umbrella term multivariable variogram,
a distance-based measure of multivariate (dis)similarity linearly linked to classical
auto- and cross-variograms [4]. The above statistics constitute average measures of
pairwise attribute association among all neighboring units; hence the term global
indices [6]. Local (site specific) univariate or bivariate indices of attribute associ-
ation (Moran and Geary indices) have been developed in spatial econometrics [1],
and are increasingly used to quantify spatially varying association in socio-economic
and environmental data [5, 6]. In remote sensing applications, local multivariate var-
iograms and madograms have been employed to quantify image texture, providing
additional feature layers for improved thematic classification [2, 8]. Multivariate
association indices, however, are not widely utilized in spatiotemporal settings. In
this work, both global and local multivariate variograms and madograms are linked
to Geary’s and Gini’s indices of association, and employed for elucidating spatiotem-
poral patterns in remotely sensed data within a marine science application context.
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2 Materials and Methods

The objective is to quantify spatiotemporal patterns in remotely sensed data of
chlorophyll-a (CHL) concentrations (in mg/m3) and sea surface temperature (SST)
values (in ◦C) acquired during the time period January 1998 through November 1999
over the North Aegean Sea in Greece. More specifically, CHL data were derived
from the SeaWIFS sensor with nominal spatial resolution 10466 m, and were down-
loaded in processed form as monthly averaged concentrations from NASA’s SeaWiFS
Project site. SST data were derived from NOAAs AVHRR sensor with nominal spa-
tial resolution 1600 m, and were download in processed form as monthly temperature
values from the German Aerospace Agency. To place both data sets at a common
spatial resolution, the SST data were interpolated (using only contemporaneous SST
measurements) to the nearest grid node of the CHL raster. The time-averaged spa-
tial distributions of SST and CHL are given in Fig. 1; the spatial extent of the study
region in terms of UTM coordinates is approximately 635911–1033604 in the E-W
direction and 4300642–4562281 in the S-N direction.

Multivariate measures of spatial association are constructed as a weighted aver-
ages of pairwise dissimilarities between data of multiple attributes measured at dif-
ferent locations or time instants; the weights are derived via an exogenous, e.g.,
distance-based, neighborhood specification as in classical variogram estimators. Pair-
wise multivariate attribute dissimilarity is quantified using some form of distance
metric, e.g., Euclidean, Manhattan, or Mahalanobis [7]. When the Euclidean and
Manhattan metrics are adopted, average dissimilarity between neighboring data pairs
of a single attribute reduces to the geostatistical variogram and madogram measures,
respectively [4]; these in turn correspond to Geary’s and Gini’s indices of association
[3, 6]. Focused (location or time specific) versions of multivariate association indices
are derived by restricting averaging of attribute dissimilarities to pairs of sites with
a common origin (each location or time), thus facilitating the local characterization
of spatiotemporal patterns from multivariate data.

Fig. 1 Time-averaged (Jan 1998 through Nov 1999) spatial distribution of SST (left) and CHL
(right) over the North Aegean Sea in Greece
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Fig. 2 Temporal evolution of different lag-1 spatial multivariate dissimilarities (left), and spatial
distribution of lag-1 temporal multivariate dissimilarities based on the Manhattan distance metric
(right) for SST and CHL data

3 Results

Figure 2 shows the temporal evolution of lag-1 spatial multivariate dissimilarities,
based on the Euclidean, Manhattan and Mahalanobis distance metrics, as well as
the spatial distribution of lag-1 temporal multivariate dissimilarities based on the
Manhattan distance metric, for the SST and CHL data over the study region and
period of interest. Here, a spatial lag of 1 is defined as the neighborhood of 8 nearest
pixels around any central pixel. One can deduce that periodic temporal variability
is more pronounced when multivariate association is quantified via the Euclidean
and Manhattan distance metrics, since in those cases one is simply computing sums
of univariate variograms and madograms, respectively. The spatial distribution of
temporal lag-1 multivariate dissimilarities pinpoints areas of high variability corre-
sponding to areas of increased ocean mixing in the region.

Figure 3 shows the spatial distribution of local lag-1 (with at least 4 informed
pixels) spatial multivariate dissimilarities based on the Mahalanobis distance metric
for January and February 1998. Areas of higher local dissimilarity indicate locally
increased ocean mixing for the specific month.

4 Discussion

Global and local multivariate variograms and madograms were employed for charac-
terizing the spatiotemporal distribution of satellite-derived sea surface temperature
and chlorophyll-a concentration in the North Aegean Sea, Greece. The results indi-
cate that such measures constitute useful tools for elucidating spatiotemporal patterns
in remotely sensed data pertaining to multiple environmental variables.
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Fig. 3 Local lag-1 spatial multivariate dissimilarities for Jan (left) and Feb (right) 1998
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Spatiotemporal Interactions for Daily Mapping
of PM10 with MODIS and Meteorological Data

Piero Campalani, Simone Mantovani and Peter Baumann

1 Aerosols Spatiotemporal Modelling

In recent years the modelling community has been increasingly exploiting spatiotem-
poral techniques for the Air Quality (AQ): despite the high spatial and temporal
variability, it has been proved how aerosols can show a temporal autocorrelation,
especially for secondary aerosols species (sulfate, nitrate, ammonium) [1].

Liu et al. (2009) successfully applied geostationary GOES AOT products in con-
junction with land use and meteorological fields to feed a two-stage space-time
additive model [2]; Gräler et al. in their recent report [3] showed that for the spatial
interpolation of AQ, a prediction gain is achieved by including temporal correlation
in the geostatistical (kriging) estimator.

The present paper—natural continuation of a previous study over the same area
[4]—aims at exploring a spatiotemporal regression-based kriging technique to predict
daily exposures of PM10. Temporal correlation is evaluated by comparison of the
same kriging estimator without time awareness.

Kriging represents a good trade-off between implementation ease, transferability,
computational requirements and predictive power, making it a fascinating option with
respect to chemical dispersion or dynamical coregionalization models [5]. It allows
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the inclusion of spaceborne imagery, whose usefulness for the AQ system is contin-
uously experimented while still awaiting to reach the “promised land” [6].

2 The Daily Kriging Estimator

Although the annual average constraints on PM10 exceedances tend to take the prece-
dence for being more restrictive, it is however over true that short-term peaks of PM10
can lead to equivalently dangerous effects on human health [7].

Validated [8] satellite Aerosols Optical Thickness (AOT) products from the polar-
orbiting MODIS sensor at 1 × 1 km2 of spatial resolution were used in conjunction
with 27 × 27 km2 meteorological fields to build a regression surface driving the
trend of the kriging daily predictor. Spatiotemporal interactions were accounted via
separable-covariance model, by means of the R gstat and spacetime packages.

Variogram fitting in time was done by selecting input data by month, this way
trying to collect stable statistics for lags of at least 4–5 days. Spatial variograms were
instead best chosen from the single daily observations, while usually a flattening of
the semivariances was experienced when enlarging the time window (see Fig. 1).

Daily full maps of PM10 estimations and model errors were ingested in the ras-
daman array database (http://www.rasdaman.org), whose open-standard OGC Web
Coverage Processing Service (WCPS) and new spatiotemporal CRS concept [9]

Fig. 1 Examples of variograms for both spatial and temporal pooling of scaled PM10 (Dec 2010).
For each of the two tables: the first column is for the direct variogram of PM10 and right column is
for the residual variograms after multiple regression; rows are respectively for the 1-month, 2-weeks
and 1-week pooling intervals

http://www.rasdaman.org
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allowed to go beyond the web-based raw visualization of maps, with on-the-fly ana-
lytics capabilities like spatial and temporal aggregation, traffic light indexing, or
exceedances identification with arbitrary confidence interval.

3 Results

A preliminary session of regression analysis led to a separation of the available mete-
orological features in two subsets: pressure and wind components for the intermediate
gap-filling of the AOT missing pixels; then humidity and mixing layer height—and
the spatialised AOT (AOTs)—for the PM10 mapping.

AOT regression observed an average adjusted goodness-of-fit (R2) of 0.779 (0.096
σ ) over the 3 years. Whereas pressure had a stable positive β (and an average
Pearson’s r of 0.37 with AOT), wind’s role was highly variable.

PM10 regression showed a good adjusted R2 too (0.785, 0.093 σ ), although 0.05-
significance was often not met. An ANOVA analysis revealed how AOTs normaliza-
tion via humidity and/or mixing layer height were not helping for a better fit, while
higher AOT availability did not translate to more robust models.

The key results were visible from the cross-validation scores (Table 1): kriging
paid off over mechanical inverse distance interpolation (9 % of error gain, not shown),
but a modest though systematic worsening of the kriging precision and bias was
observed when adding the temporal dimension to the model.

No relevant annual/seasonal variations occurred, except for a clear performance
decrease during the cold season due to higher PM10 variance (Fig. 2).

Daily spatial variograms were finally sometimes not suitable over noisy days, in
some cases with very short ranges (few km) or overly high nuggets. The monthly
temporal variograms did not show strong profiles, thus, despite the very rugged
topology of Austria, the complex wind profiles probably prevented the fine particles
to keep a good memory over preceding days.

Table 1 Leave-one-out cross-validation median statistics using pure spatial External-Drift Kriging
(KED), and separable covariance spatiotemporal (ST) KED (and relative % comparison)

RMSE [(µg/m3)2] ME [(µg/m3)]
year KED ST-KED % KED ST-KED %

2008 1.965 2.041 3.9 0.009 −0.059 556
2009 1.864 1.954 4.8 −0.013 −0.048 269
2010 1.835 1.927 5.0 0.002 −0.053 2550
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Fig. 2 Leave-one-out cross-validation chart of RMSE (2008) for ST-KED (—) and KED (- -)
estimators (left Y scales, [(µg/m3)2]), and PM10 standard deviations (—), (right Y scales, [µg/m3])

4 Conclusions and Outlook

The article presented an application of spatiotemporal kriging for the estimation of
surface-level daily exposure of PM10 with covariates from MODIS satellite sensor
and several meteorological fields.

The evidence of cross-validation scores again underlined the valuable contribution
of a geostatistical kriging modelling over univariate mechanical interpolation for the
PM10 estimation, as learnt from the preceding study over the same region [4].

Despite this, temporal correlation of the aerosols seemed to overly feed the pre-
dictor with uncertain data, which suffered a systematic performance loss when aug-
menting the input explanatory time frame from a single day to a set of days.

The relatively high uncertainty in the spaceborne pixels was forced to increase due
to the mandatory gap-filling for the kriging external drift, and at the same time the
pooled temporal variograms generally did not show a long memory of the aerosols
observations, sometimes reaching the sill already at the first day lag.

Before the launch of new satellites for the AQ—like the upcoming geostationary
NOAA GOES-R series—future models should probably try to avoid intermediate
fillings in the input data with more complex geostatistics, e.g. Bayesian hierarchical
space-time models; asymmetry in spatiotemporal covariance could also be addressed
with more comprehensive models, e.g. with vine copulas [3].
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Non Linear PS Time Series: Analysis
and Post-Processing for Landslides Studies

Davide Notti, Claudia Meisina, Francesco Zucca and Alessio Colombo

1 Introduction

The development of SAR interferometry and in particular of the Persistent Scatterer
Interferometry techniques (PSI) allowed mapping and monitoring extremely slow
and very slow landslides [1] from regional to local scale [2–4]. Up to recent time
PSI data was mainly exploited for spatial analysis of the movements. The temporal
analysis of the movement (i.e. time series analysis—TS) was developed more recently
[5, 6] when the non-linear processing algorithms were performed.

In this work we present a methodology to analyze the PS time series for the
study of landslides. We apply the proposed procedure on a study area located in
NW Italy (about 20000 km2). It presents an heterogonous geological setting (Alps,
Apennine, and Langhe Hills) and many landslides with a proper range of velocity
(slow flows, deep seated gravitational slope deformations—DSGSD, complex land-
slides). Radarsat data were processed by T.R.E. s.r.l. with SqueeSAR algorithm [6]
and cover the period 2003–2009. This allows us to have a wide number of time series
of landslides to analyze.
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2 Post-Processing Tools

Detection of false trends. The time series may be affected by trends or anomalous
measure not related to real ground movement of landslide but to other factors. It is
quite easy detect these trends because usually they affecting the whole dataset. For
instance, a problem may be related to a proper trend of the chosen reference point
that can affect reversely all the dataset in this case it is better to change the reference
point. Another problem may be related to an anomalous and spatially diffuse value of
TS caused, for instance, by atmospheric events that can affect SAR image (Fig. 1a).
In order to detect this kind of problems it is suggest to analyze very stable and high
coherence TS on some stable areas, so if more than 1/3 of TS show a high dispersion
value (> +/− 5 mm than standard TS) at the same date then it is an indication of
probable noise of SAR image. It is recommended to remove the anomalous date from
TS to avoid misunderstanding.

Detect and correct potential phase unwrapping mistakes. We propose a
methodology to detect and correct potential phase unwrapping mistakes in the time
series by only analyzing consequential displacement (Eq. 1). If the displacement (D)
between two consecutive acquisitions (tx, tx+1) is major or equal than +λ/4 (the
phase ambiguity) (e.g. 14 mm for C-Band) we correct the series by introducing a
shift of −λ/2 (e.g. −28 mm for C-Band).

IF D(tx+1)− D(tx) ≥ λ/4 mm→ D(tx+1)− λ/2 mm (1)

This tool presents some limitations. In order to validate the unwrapping it is necessary
to have other monitoring data available or a clear evidence from further sources (e.g.
monitoring, rainfall, literature,…) that the landslides had relevant accelerations in
the same period of potential phase unwrapping mistake (Fig. 1b).

Fig. 1 a More than 50 % of time series of stable PS of this dataset show a variance > |5 mm|
on 07/01/2009 related to snowfall in the same day of acquisition. b Planar slide in Langhe Hills:
a time series potentially affected by phase unwrapping in April 2009
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Averaging the time series for the areas with homogenous movement. In order
to reduce the noise of TS and to better detect the general trends of deformations,
we suggested averaging the time series. This can be made for the TS of PS over a
landslide, with a same range of velocity and in located the same geomorphological
setting.

Detect different trends on time series. The last step is to identify different trends
in time series. A simple method to analyze the TS is to derive the time series of
velocity. The velocity is the gradient of time series (dx/dt) calculated over an interval
of at least 6 months to reduce variability noise effects. The method of deviation index
(DI) [5] indicates how a trend after an event at time x, is different from previous
trend, the index include variability corrections. The variability (or noise) represents
the dispersion of the time series. The grater the DI, the more different are the trends.
Other works [6] propose a classification of TS using models. In Fig. 2 b it is calculated
the DI and the time series of velocity for a landslide in the Langhe Hills. The velocity
increased up to 15 mm/yr from 3/5 mm/yr the Deviation Index is 5.

3 Landslides Time Series Interpretation

TS Validation. A further step is the comparison between the time series of PS data
and time series of other instruments. This comparison it is important to make a cross
validation to detect errors of both the monitoring systems. One of the advantages
of PS time series is a sample frequency (e.g. 24 day for Radarsat) that is higher
than other non-continuous monitoring systems like GPS or inclinometers (usually
no more then 2–3 measures per year (Fig. 2). Another advantage is the possibility to
compare time series that cover the same time intervals of for many landslides and so

Fig. 2 Time series compared with 6 months cumulated rainfall and other monitoring instruments: a
Deep seated landslide of Brenvetto (Turin), NW Alps; b A planar slide of Paroldo (Cuneo), Langhe
Hills (DI is the Deviation Index; var is the variability)
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it is easier to detect regional events and compare the different behaviour of landslides
in relation with triggering events. The main con of time series of SAR data is related
to the impossibility of increasing the number of measures during critical events of
landslide accelerations. The other disadvantages are related to the small range of
velocity detectable (up to 10 cm/yr) and to the already known PSI limitations [3].

First results in study areas. In our areas of study we observed good results in the
description of landslides movements. It was possible to identify different behaviours
of landslides. Overall we observed that DSGSD of the Alps have linear deformations
with smooth changes related to rainfall or snow melting (Fig. 2a), wile the shallow
landslides (especially in the Apennines and Langhe Hills) show time series with more
abrupt change of trends (Fig. 2b). For instance, many landslides of Langhe hills are
characterised by accelerations, confirmed by other monitoring systems in the winter
and spring 2008–2009, in correspondence of a very rainy period.

Conclusions

The work provided to give some tools to analyze time series of PSI data for slow
landslide analysis. The post-processing tools try to solve some time series problems
in particular the detection of unwrapping errors and the identification of different
trends. The time series analysis of case histories landslides show that the added
value of time series is the good spatial and temporal sampling of PSI data.
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Observation of the Mining-Induced Surface
Deformations Using C and L SAR Bands:
The Upper Silesian Coal Basin (Poland)
Case Study

Marek Graniczny, Zbigniew Kowalski, Anna Pia̧tkowska
and Maria Przyłucka

1 Introduction

The Upper Silesian Coal Basin is located in the southern Poland and in the region of
Ostrava-Karvina in the Czech Republic (Fig. 1). It covers an area of 7, 250 km2. This
is the major hard coal basin in Poland, and also one of the largest in Europe. Mining
activities of Carboniferous hard coal deposits have been conducted over 200 years.
The Upper Silesia is a big metropolitan area occupied by 37 towns with almost
3 million inhabitants.

The Upper Carboniferous coal-bearing formations are the most significant in the
geological structure of the Upper Silesian Coal Basin. There are Precambrian, Cam-
brian, Devonian and Carboniferous formations in their basement. The Carboniferous
overburden includes Quaternary, Miocene and Triassic rocks, and in the southern-
most part also, rocks of the Carpathian overthrust; Permian and Jurassic deposits.
The coal-bearing formations of the USCB include several lithostratigraphic series,
reaching 8,500 m of depth. These series are featured by a gradual reduction of their
thickness toward the east and southeast [1].
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1.1 Hazards

The main hazard is related to mining subsidence due to underground coal mining. It
is estimated that in Upper Silesian Coal Basin about 600 km2 already suffers from
subsidence. The surface is characterized by numerous collapse cavities or basins
with depths over a dozen of meters. They may remain dry or may be filled with water
(inundation) depending on the local hydrogeological conditions. Subsidence areas
can be inundated during floods [2]. However, mining subsidence also causes severe
damage to linear structures like roads, railways, gas and water pipelines, electric
power lines and sewage systems. Around Sosnowiec area houses strengthened with
iron bars anchored in the walls are found to prevent further damage or collapse. How-
ever, even such reinforced buildings show cracks in the walls. Mining exploration
also causes several risks and hazards related to surface and groundwater, which are
mainly decrease of surface and groundwater quality due to anthropopression and
risks resulting from induced seismic shocks [3].

There are different methods for evaluating hazards caused by deep hard coal min-
ing. These methods include remote sensing techniques such as: very high resolution
satellite imagery, aerial photos, thermal imagery, laser scanning, radar interferom-
etry etc. and in situ conventional techniques such as geodetic surveying and GPS
measurements. Additionally, it is necessary to collect systematic information on the
extent of the mining works (including total thickness of exploited coal beds) as well
as reported dames on buildings and infrastructures.

2 Interferometric Data Characteristic

In the presented research two types of processing were used: the traditional differen-
tial interferometry (DINSAR) and Permanent Scatterer Interferometry (PSI). Each of
these methods has their advantages and limitations. Both allow covering a significant
area of research and thus can be a better alternative to traditional geodetic measure-
ment. Differential interferometry allows the registration of displacement with a size
about decimetres occurred in the time between recordings of two scenes (usually sev-
eral days). Changes on the surface are visualized as interference fringes. PSI method
on the other hand allows to obtain a cloud of points, named permanent scatterers
(PS). Each point contains information about the velocity of movement (mm/year)
and is recorded on the basis of a set of scenes from the period of a few years. A more
detailed description of the two methods can be found in the literature [4–6]. Both
methods have been successfully used to monitor ground displacements associated
with mining phenomena [7, 10], but also with earthquakes, volcanoes, landslides.

In this study three datasets were used: two PSI datasets and set of 5 differential
interferograms. PSI dataset were processed by Tele-Rilevamento Europa (TRE)
within DORIS project—the European Community’s Seventh Framework Programme
(FP7/2007–2013) Grant Agreement no. 242212 in 2011. The datasets consist of
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70 ERS-1 and ERS-2 scenes registered between 17.05.1992 and 20.12.2001 (71709
PS points) and 31 ENVISAT scenes registered between 05.03.2003 and 29.09.2010
(32341 PS points). PSI datasets are characterized by average annual motion rate
(VEL) in satellite Line of Sight (LOS) from −40, 5 to +7, 41 mm/year. Both datasets
reflect the movement of ground caused by coal mining within the study area. PS
points with negative VEL values are located on the edge of the area prone to vertical
ground subsidence caused by hard coal mining. The areas of a great risk are not cov-
ered by PS, mainly due to very high values of subsidence exceeding the PSI technique
detection threshold. Differential interferograms were received within Terrafirma
project (ESRIN/Contract no. 17059/03/I-IW). The set contains five differential inter-
ferograms from ALOS-Palsar satellite (with time span: 22.02.2007–10.07.2007;
10.07.2007–25.08.2007; 25.08.2007–25.11.2007; 25.11.2007–25.02.2008 and
25.02.2008–27.05.2008) and were processed by Gamma Remote Sensing. The results
show fringes exactly in the areas of the highest subsidence values caused by mining
exploitation (where there are no PS points). Performing the combined analysis of PSI
and DINSAR data the whole ground deformation patter of the mining subsidence
area was detected.

3 SAR Data Interpretation

3.1 General Results Obtain in Upper Silesian Coal Basin

Processed SAR datasets were analyzed and compared in GIS and geostatistical soft-
ware. In the first stage PSI datasets were compared with subsidence predictive models
[8]. The model result consists of the map of areas at risk according to the category of
mining areas. The map was made on the basis of recent and future mining activities
foreseen until 2020. On the map, two main groups of areas and four categories have
been distinguished (Fig. 1). First group (yellow color) includes category I (very small,
harmless destruction of objects may occur) and category II (destruction of objects,
easy to repair), with deformations that reach up to 3 m in 20 years’ time. Second
group (orange color) includes category III (big destruction of objects, protection is
needed) and category IV (serious damage, objects are almost destroyed), with defor-
mations varying from 3 to 12 m in 20 years’ time. The comparison with both ERS and
Envisat datasets indicates that the subsidence detected by PSI technique corresponds
with subsidence predictive models. PS targets allow identifying the boundaries of the
mining subsidence bowl areas, coinciding with those defined by Kowalski [8]. How-
ever it is observed a reduction of subsidence rate betweenERS and Envisat datasets,
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Fig. 1 Envisat PSI from period 05/03/2003–29/09/2010 on the background of ALOS-PALSAR
interferogram 25/02/2008–27/05/2008

which could be related to a reduction in the USCB coal exploitation. Since 1994 coal
mining exploitation has been reduced 50 % (in 1994 the production of hard coal was
134 million tons, whereas in 2010 the production is 77 million tons [9]). Additionally
in areas of inactive mines a slight uplift is detected, which is probably connected
with a rise of the groundwater level, previously pumped out during the exploitation
time.

PSI data from ERS and ENVISAT satellites very well illustrate subsidence occur-
ring in the active mining areas as long as the subsidence velocity does not exceed
−40 mm/year. Unfortunately within the USBC mining area subsidence reaches up
to 600 mm/year. This high subsidence rates explain why there are no PS points in
the central part of the test area. On the other hand L-band differential interferograms
allowed to detect deformation fringes that occurred between the acquisition of the
used SAR images. Comparison of PSI data and differential interferograms reveal that
they complement each other (Fig. 1). Fringes on the interferograms illustrate perfect
changes on the surface happened too fast to be registered by PS points. Whereas PS
points define boundaries of the area at risk and can be used to analyze subsidence
with small rates, undetectable with the interferograms.
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3.2 Interpretation of C and L-band SAR Data in Wujek
Mine Case Study

“Wujek” coal mine is one of the companies that operate since the end of nineteenth
century. In this area, five ALOS-PALSAR interferograms where compared with
each other to analyze subsidence related with coal exploitation. The comparison
is presented in Fig. 2.

Four areas of subsidence basins where defined and marked by numbers:
1—crossroad of Przodownikow and Szadoka Streets near Brynow railway station;
2—Tadeusz Kosciuszko Park in Brynow; 3—area near Katowice-Ligota railway
station in Ligota; 4—crossroad of Brynowska and Tadeusza Kosciuszki Streets in
Brynow. The analysis of the interferograms indicated that areas numbered 1 and
4 were strongly affected by subsidence between February and July 2007. Subse-
quently subsidence rate decreased and stopped in November 2011. Area number 2
was strongly affected by subsidence in July 2007, after that the subsidence decreased,
but still was visible in May 2007. Area numbered 3 was not affected until November
2007 to May 2008.

Fig. 2 Fringe on five ALOS-PALSAR interferograms illustrate the development of subsidence
basins in the “Wujek” coal mine. The sixth picture shows the interferogram and Envisat PS points
that complement each other
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4 Conclusions

From the presented study few main conclusions can be made. In the area of active
coal mining exploitation, differential interferograms processed from L-band data
were successfully used to analyze and describe subsidence basins rate and move-
ment. Singular C-band PSI datasets are insufficient to proper estimate subsidence
values in areas with high movements rates. Interferograms complement this infor-
mation. Data from the interferograms show subsidence in the range of decimeters
per year, occurring in 46, 92 or 138 days periods. On the other hand PSI data pro-
vide PS velocity values measured in mm/year in 7–8 years periods. In the former
deformation is derived from a raster where a significant error can be introduced in
the interpretation, whereas in the latter the deformation measurements are provided
point wise with a greater precision and accuracy. All these factors cause that the
combination of PSI data and the interferograms may not be straight forward. C-band
PSI datasets very well illustrate the trend of movements in the areas where these
movements do not exceed −40 mm/year and can be used to define the boundaries
of areas affected by subsidence. Whereas L-band interferograms detect subsidence
with a rate decimeters per month.

Further study should be focused on comparison SAR data with geodetic levelling
measurements and with maps of coal exploitation.
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Multi-Temporal Evaluation
of Landslide-Induced Movements and Damage
Assessment in San Fratello (Italy) by Means
of C- and X-Band PSI Data

Silvia Bianchini, Deodato Tapete, Andrea Ciampalini, Federico Di Traglia,
Chiara Del Ventisette, Sandro Moretti and Nicola Casagli

1 Introduction

Landslides can pose a serious threat to human lives and properties, especially in
populated areas characterized by a significant cultural heritage, where the socio-
economic losses and damages are stronger.

Detection of active ground movements on landslide-prone areas can greatly take
advantage from advanced remote sensing techniques i.e. Persistent Scatterer Inter-
ferometry (PSI) [1]. Furthermore, the combined use of radar satellite data with tradi-
tional geomorphological tools like field surveys and in-situ observations can ease the
mapping and monitoring of the impacts of such natural phenomena on buildings and
manufactures of affected areas. C-band satellites provide long historical archives of
motion rates and time series, covering wide areas at relatively low cost and medium
spatial resolution. Whereas X band data with higher spatial/temporal resolution allow
a more detailed investigation, even at the scale of a single building movement, in a
shorter spanning time (e.g. some months) [2].

In this paper landslide effects in San Fratello area were investigated up to 2012 by
exploiting an unprecedented availability of C- (ERS and RADARSAT) and X-band
(Cosmo-SkyMed) data, combined with field survey. Estimation of ground motion
rates and related impacts on cultural and social heritage led to a valuable and reliable
damage assessment.
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2 Study Area

San Fratello is located in the NE sector of Sicily Region (Italy) within Messina
province on the Nebrodi Mountains. The rocks cropping out in the area consist of
Cretaceous-Oligocene terrigenous-flyschoid to calcareous sedimentary sequences.
Messina province is extensively affected by hydrogeological hazard. San Fratello
is chronically affected by landslides, the most recent of which are the landslides
recorded in 1922, on the NW sector of the village, and on 14 February 2010 on
the SE slope, triggered by intense rainfall and causing huge damages and causali-
ties. C-/X-band radar data, shown in Table 1, were used to successfully update the
landslide inventory, enlarging the boundaries of most of the already mapped phe-
nomena (Fig. 1). In particular, PSI results highlighted ground motions in historical
(1992–2001), recent (2005–2010) and current (2011–2012) scenarios.

A projection of the measured satellite Line Of Sight velocities (VLOS) along the
most probable direction of real movement, i.e. the maximum slope direction, was
carried out within each available PSI dataset obtaining VSLOPE, in order to account
more specifically for topographic and geomorphological slope conditions for local
landslides analysis [3]. The directions of ground motion were subsequently confirmed
by comparing in-situ observations undertaken in November 2012 and January 2013
with the available vectors of displacement along the steepest slope.

Table 1 PSI data stacks analyzed in this study

Parameters ERS 1/2 RADARSAT 1 COSMO-SkyMed

Acquisition mode Desc. Asc. and Desc. Desc.
Temporal span 1992–2001 2005–2010 2011–2012
PS density (PS/km2) 2.25 112.73 400.62

Fig. 1 Geographical location and landslide mapping of San Fratello area
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Fig. 2 Distribution of PS CSK VSLOPE rates over 2010 (a) and 1922 (b) landslide areas
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3 Cross-Validation Between PSI Data and Field Survey

Most of the PS targets show up on housetops and facades of buildings, enabling a
highly detailed investigation of structural damages (Fig. 2a). The rapid radar mapping
and subsequent zoning of the unstable urban sectors were carried out by following
the object-oriented approach proposed by D. Tapete et al. [4] for applications on built
environment. In particular we multi-layered and compared PSI data, local cadastre,
the distribution of churches and sites of cultural interest, and the boundaries of
the 1922 and 2010 landslides (Fig. 2). The latter were retrieved by combining the
official zoning released in February 2010 and that drawn based on the interferometric
measurements from a Ku-band Ground-Based SAR currently monitoring the south-
eastern slope of San Fratello.

As the main outcome, the boundary of the 2010 landslide was updated, thereby
including further urban quarters previously not considered as being critical
(Fig. 2a). COSMO-SkyMed (2011–2012) descending data demonstrated their use-
fulness to precisely detect the single buildings affected by ground displacement. Four
main areas located close to the official zoning of the 2010 landslide were definitely
recognized as affected by ground motions in the last year of monitoring (black dotted
lines in Fig. 2b). Unexpected movements detected close to the old Cathedral dam-
aged by the landslide 1922 and the surrounding civil buildings (VLOS up to −10.2
and −3.9 mm/year away from the satellite measured in May 2012–2013 and corre-
sponding to VSLOPE −50.8 and−14.5, respectively) found strong spatial correlation
with the distribution and opening of the cracks along the pavement and wall surfaces
(Fig. 2b). That definitely proved the current critical condition of this sector of San
Fratello, thereby increasing the alert level for an area otherwise classified as stable.

4 Conclusions

The work provided a valuable cross-comparison between crack pattern survey
focused on damage analysis of buildings, and PSI motion rates, achieving a com-
plete and reliable investigation for an accurate impacts mapping and monitoring.
The updating of the landslide inventory and the detailed zoning of unstable buildings
supported local activities of civil protection and heritage conservation.
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Integration of Earth Observation
and Ground-Based HR Data in the Civil
Protection Emergency Cycle: The Case
of the DORIS Project

Paola Pagliara, Giuseppe Basile, Pierluigi Cara, Angelo Corazza,
Andrea Duro, Bruno Manfrè, Roberta Onori, Chiara Proietti
and Vincenzo Sansone

1 Introduction

The Italian national territory is exposed to a broader range of natural hazards,
landslides included, that cause every year fatalities and a large economic damage.
The vulnerability of its population and built environment is often severe and in
some cases has been exacerbated by human activities. In this perspective, within the
National Civil Protection Service the Department of Civil Protection (DPC) operates
according to the following lines: prevention, forecast and assessment, early warning
and alerting, emergency response and recovery from emergency.

The activities of DPC are daily supported by research efforts on the assess-
ment of vulnerability and exposure to landslide and hydrogeological risk of pop-
ulation, buildings and critical infrastructures. A strong effort is also provided by
European Earth Observation Programme Copernicus previously known as GMES
(Global Monitoring for Environment and Security) [1]. In this framework the DORIS
project (Ground Deformation Risk Scenario: an Advanced Assessment Service) is a
preoperative advanced downstream service for the detection, mapping, monitoring
and forecasting of ground deformations which integrates traditional and innovative
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Earth Observation (EO) and ground-based (non-EO) data and technologies to fos-
ter the ability of Environmental and Civil Protection authorities to manage the risks
posed by ground deformations and improve the understanding of these complex phe-
nomena [2]. The use of High Resolution (HR) data, both EO (optical and SAR) that
non-EO to support Civil Protection Authorities in landslide risk management is well
recognized [3–10]. In the DORIS project different sensor and data have been ana-
lyzed (COSMOSky-Med, TerraSAR-X, GB-InSAR, ERS and ENVISAT) and here is
presented an operative integration and application of the different data and products
in the whole emergency cycle.

2 The Test Site

The pre-operative service is tested in six study areas including two study areas in
Italy, and one study area in each of the following European Countries: Poland, Spain,
Hungary and Switzerland. The Messina Province, north-eastern part of Sicily, has
been selected as test area for the project due to the events occurred in the period from
October 2009 to March 2010, when the area was highly affected by more than one
thousands of landslides that caused intense damages and casualties. The town of San
Fratello in particular, on 14th of February 2010 a landslide of 20 millions of cubic
meters occurred and caused severity damaged the eastern part of the town and 2,000
people were evacuated. Analysis and interventions for landslide risk mitigation have
been performed since the first phase of the emergency and are still ongoing.

3 Data and Products

From the first phase of the emergency, the Civil Protection System has been activated
in order to manage the landslide risk and many activities and analysis based on
EO and non-EO data has been performed by the Civil Protection Departments, the
Environmental Department, Regional Order of Geologists in Sicily and other local
authorities and research centres.

The DORIS project took into account all the collected data and results to improve
the products and their value added, not only in the emergency phase. In the DORIS
project different monitoring techniques with HR data have been used, including
remote sensing (optical and SAR) and in situ (GB-InSAR) data. In particular for
SAR monitoring the images have been acquired from different satellites (ERS1/2,
ENVISAT, Radarsat, TerraSAR-X, COSMOSky-Med). The availability of long time
series of displacement obtained by combining ERS and ENVISAT data (1992–2010)
[11] and different sensors (C and X band) give the possibility to exploit all the
capability of the data referring to different types of landslide and to the different
phases of the emergency. The analysis of the EO and non-EO data has been performed
by the University of Florence-Earth Science Department and by the Research Institute
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of Geo-Hydrological Protection of the National Research Council (CNR-IRPI) as
service providers of DORIS.

The DORIS products are the followings: Ground-deformation PSInSAR map
and Ground-deformation PSInSAR time series, Ground-deformation velocity maps,
event map, susceptibility map, landslide inventory map. The integration of in situ
data (e.g. inclinometers, boreholes, geomorphological map, field surveys) provided
by the Civil Protection Departments, the Environmental Department, Regional Order
of Geologists in Sicily and other local authorities and research centres, allowed to
better exploit the data and to improve the quality of the products.

4 Integration in the Civil Protection Emergency Cycle

The activities of landslide risk management are performed both in real time that in
deferred time. The integration of the analysis performed in the first phase of the
emergency and the activities performed in the DORIS project allowed to realize and

Table 1 Applications of DORIS products in the Civil Protection emergency cycle

Phase Product Action

• Landslide Inventory Map; All products could be an input
Phase 1 • Ground-deformation PSInSAR map for the Hydrogeological
Prevention and • Ground-deformation PSInSAR time Management Plan and for the

Preparedness series; assessment of landslide
• Ground-deformation velocity maps; scenarios, which is part of the
• Susceptibility Map preparedness of civil protection

emergency plans

Phase 2 • Ground-deformation PSInSAR map; Velocity maps for residual risk
Emergency • Ground-deformation PSInSAR time evaluation, monitoring and early

series; warning; to define the
• Ground-deformation velocity maps; preliminary stabilization
• Event maps measures based on the

characterization of the
landslides,

event map to evaluate the
magnitude of the event

Phase 3 • Ground-deformation PSInSAR map; GB-InSAR and Satellite InSAR
Recovery • Ground-deformation PSInSAR time data for the evaluation of the

series; stabilization measures and
• Ground-deformation velocity maps; interventions. All products to
• Event maps; update the pre-existing landslide
• Landslide inventory maps; inventory maps and to assess the
• Susceptibility Map geomorphological hazard for

new settlements
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test the pre-operative services and products that can be a valuable tool in different
phases of the emergency cycle (Table 1).

5 Conclusions

The new and emerging technologies (EO, non-EO, aerial) integrated with the con-
ventional analysis and methods, can greatly support the landslide risk management
activities through all the phases of the emergency cycle, both in real that in deferred
time. In addition, the validation of the products and the pre-operative application
of the results have been made easier by the close collaboration between national,
regional and local authorities in charge of landslide risk management.

DORIS is a pre-operative downstream service for landslide risk management and
the products are still in the research phase and many test cases in the whole emergency
cycle are mandatory, in order also to define an operative procedure taking into account
the sustainability aspects.
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Geostatistical Analysis of PSI Radar Data:
A Methodology to Assess Serviceable
Limit State of Buildings

Margarita P. Sanabria, Carolina Guardiola-Albert, Roberto S. Tomás,
Geraint Cooksley and Gerardo Herrera

1 Introduction

Subsidence caused by water withdrawal is a well-known phenomenon which affects
worldwide areas. Structures built on these areas can suffer differential settlements
and distortions since the subsidence is not always a homogeneous phenomenon.
Monitoring subsidence is necessary in order to take remedial actions.

In the last decade Differential SAR Interferometry (DInSAR) has become an
alternative to classical surveying techniques for measuring infrastructure displace-
ments. DInSAR has shown a good capability for measuring small displacements
of structures with subcentimetric accuracy [1–3]. Using geoestatistical tools, it is
possible to create spatially exhaustive layers of displacements and the assessment
of the corresponding accuracy and precision. With these derived subsidence maps,
buildings serviceability limit state can be calculated. Serviceability limit states are
those conditions which are not strength based but can make the structure unsuitable
for its projected use. In foundations design, the most common serviceability limit
states are differential settlements and angular distortions, which must be less than or
equal to the corresponding limiting value stated for them.
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The city of Orihuela is located in the Vega Baja of the Segura River (province of
Alicante, SE Spain). According to [4] the geotechnical substratum is constituted by
Permo-Triassic rocks (carbonates, dolomites and quartzites) and Tertiary sediments
(marls, sandstones and conglomerates) that outcrop in the north and south of the
city respectively. The late Pleistocene-Holocene sediments (sand, silt and clay), that
fills the basin, are the most compressible sediments. In the past decades, a recent
subsidence phenomenon is affecting the city of Orihuela. Subsidence is related to
aquifer overexploitation during drought periods: 1993–1996 and 2006–2008 [5]. In
the local press, subsidence related damages were reported in the western part city in
1995. Several heritage buildings were repaired since 90s.

Using the serviceability limit state, the methodology presented here aims to set
buildings susceptible to suffer damage. Thanks to geostatistics, more specifically
Conditional Sequential Gaussian Simulation (CSGS) [6], the uncertainty of estimated
data can be associated. This information can be very useful for land management
and also as a complementary tool for forensic analysis of structures.

2 Methodology

In the proposed methodology, the Stable Point Network (SPN) InSAR algorithm has
been used to process SAR images (ERS-1/2 and Envisat ASAR) covering two differ-
ent periods from July 1995 to December 2005 and from January 2004 to December
2008. The input data for the analysis were the persistent scatterers points (PSs) with
the derived cumulative displacement along the satellite Line of Sight (LOS), a sim-
plified geology layer, a compressible sediment thickness model and a polygon layer
with 27 historical buildings of Orihuela City.

The first step is devoted to the statistical analysis of PSs and their spatial rela-
tionship with two of the conditioning factors of subsidence [5]: the geology and the
compressible sediments thickness. Regarding the geology, it has been determined
that it is a factor to be consider when performing an interpolation of PSs. There-
fore, and considering the second step (interpolation of the PSs), the data has been
divided into two populations based on geology. The first population include those PSs
placed within the geotechnical substratum, and the second one those PSs placed on
the compressible sediment areas. Regarding the compressible sediment thickness, it
has been determined that the two variables (i.e. subsidence and soft soil thickness) are
not directly correlated. Therefore, for the second step the thickness of compressible
sediments has not been taken into account.

The second step is focused on the interpolation of the normalized cumulative dis-
placement along the LOS of the four PSs data populations previously defined. The
interpolation method was the CSGS [6] and 100 equally probable realizations were
generated. The resulting products were percentiles maps (mean, 68th, 95th) and vari-
ance maps, with a resolutions of 20 m, that estimate the cumulative displacement in
the city of Orihuela and characterizes the uncertainty of the estimation. The different
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Table 1 Adopted βmax and δs criteria for the performed analysis

Expected damage level Angular distortion (βmax) Maximum differential settlement
(δs)

Low <1/3,000 <25 mm
Medium 1/3,000–1/2,000
High >1/2,000 >25 mm

percentile maps were analysed. For the period 1995–2005 the mean was selected as
the best estimator, while for the period 2004–2008 the 68th percentile was chosen.

The third step seeks to discriminate those buildings which can suffer damages due
to subsidence, according to the serviceability limit state criterion. Maximum differ-
ential settlements (δs) and maximum angular distortions (βmax) have been calculated
for each of the 27 historical buildings. Limiting criteria that classified the expected
damage level are showed in Table 1.

3 Results and Discussions

Analysing the different directional variograms, anisotropy has been detected, match-
ing the axis of the basin. This result, along with the analysis carried out in the first
step, confirms that geology is a conditioning factor for subsidence and therefore it
must be taken into account when performing the interpolation.

Furthermore, it appears that subsidence behaves as a different process in each
of the analysed periods. Descriptive measurements show a larger subsidence during
2004–2008 period. Analysing the percentiles and variance maps, 2004–2008 period
has less uncertainty in the estimations as well as more significant and continuous
subsidence than during the period 1995–2005. This different behavior is related to
the groundwater withdrawal during drought periods, like in 2004–2008, that caused
a piezometric level drop, and hence a larger subsidence.

Applying serviceability limit states to the 27 historical buildings, it stands out that
in most of them the expected damage level is medium or high. Considering maximum
distortion (βmax) four hot spots were identified. The validation of this methodology
has been carried out in one of the hot spots, the Church of Santa Justa and Rufina.
In the last 10 years, there have been damages (cracks and ground settlement) in
the NE and S of the church. The location of the two βmax calculated match with
these damages. Moreover, the maximum differential settlement (δs) direction for
both periods is NE-SW. This indicates that the church has tilted towards the SW. In
this case, the data obtained with this methodology are consistent with the damages
observed in the church.
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Using Modern Sensor Data and Advanced
Numerical Modelling for Slow Landslides
Motion Forecasting

José A. Fernández-Merodo, Juan C. García-Davalillo and Gerardo Herrera

1 Introduction

Slow-moving landslides are a wide-spread type of active mass movement that cause
severe damages to infrastructures and may be a precursor of sudden catastrophic slope
failures. In this context, modelling slow-moving landslide behaviour is an important
task in order to quantify and reduce the risk associated to this geological process.
Two broad categories of models can be distinguished to predict landslide mobility:
the phenomenological models and the physically based models. The first category
employs empirical relationships, statistical or probabilistic approaches and artifi-
cial neural networks to relate soil movements and their causes. The latter provides
relationships taking into account the mechanical soil behaviour.

Physically based models have been mostly used in practical cases to estimate
landslide occurrence and stability conditions for a given scenario through a stabil-
ity factor based on limit equilibrium analysis. Apart from earthquake studies, time
dependent analysis is requested when: (i) hydrological conditions change as in the
case of rainfall; (ii) resistant parameters are reduced as in the case of strain softening
or weathering processes and (iii) creep behaviour is taken into account.
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Three numerical models have been recently proposed by the authors to reproduce
the kinematics of the Portalet landslide (Central Spanish Pyrenees): (i) a simple 1D
infinite slope visco-plastic model [1], (ii) a 2D elasto-plastic finite element model
[2] and (iii) a 2D visco-plastic finite element model [3]. These models, ordered by
increasing level of complexity, are compared by applying them to the Portalet case
study.

2 The Portalet Landslide

The study area is located in the upper part of the Gállego River valley in the Central
Spanish Pyrenees (Sallent de Gállego, Huesca) close to the Formigal ski resort. This
is a structurally complex area, outcrops of Paleozoic material of Gavarnie mantle
were affected by the Hercynian folding phases and the alpine tectonics. Pyrenean
deglaciation and widespread structural relaxation shaped the landscape triggering
complex landslides. We focus our work on the “Portalet landslide”. It is a rotational
slide earth flows, 30–50 m thick. The mobilized materials involve sands and gravels
found within a clayey matrix with sandstone levels, greywackes and shales.

In summer 2004, the excavation of the foot of the slope carried out to build
a parking reactivated the existing slide surfaces generating a new small earth slide
called the “Parking landslide” 380 m long and 290 m wide. The occurrence of this new
local landslide prevented the digging to be finished and affected the connection road to
France. Constructive solutions were carried out to stabilize the hillside involving re-
profiling of the landslide toe, building of small retaining walls and drainage systems.
However, field observations indicate that the landslide is still moving.

An exhaustive and continuous monitoring campaign has been done since 2004,
it includes inclinometers, piezometers, differential GPS, ground-based SAR mea-
surements [1]. Advanced DInSAR processing of satellite SAR images from ERS
and Envisat satellites (2001–2007) and TerraSAR-X satellites (2008) were also per-
formed [4]. The monitoring reveals that the hillside moves following two patterns.
The first one corresponds to a slow continuous motion of constant speed of about
100 mm/year, the second one corresponds to accelerations of the moving mass when
water table rises during rain events. In the last eight years the cumulative surface
displacement exceeds two meters.

3 Modelling Slow Landslides

Three numerical models have been recently proposed by the authors to reproduce
the kinematics of the Portalet landslide: (i) a simple 1D infinite slope visco-plastic
model, (ii) a 2D elasto-plastic finite element model and (iii) a 2D visco-plastic finite
element model. Details of the proposed models can be found in [1–3].
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The 1D infinite slope visco-plastic model [1] is a simple model, it gives a first
approximation of the landslide kinematics. The model incorporates a simplified
hydraulic model that approximate the water table evolution from the recorded daily
rainfall intensity. The main advantage is that it takes very few parameters for the 1D
model to be defined. In this way, after calibrating the unknown model parameters
by back analysis in a fixed period of time, the simple model can be used to predict
the landslide mobility in another period of time. There are two substantial shortcom-
ings. The first one is that the model does not give spatial information, that means that
dimensions of the landslide cannot be predicted. The second is that small variations
in the input parameters produce large variations in the calculated solution, it is the
case for instance for the initial water table depth or the viscosity parameter.

The 2D elasto-plastic finite element model [2] improves the 1D model since the
geometry is better defined and the hydro-mechanical coupling is solved through
Biot’s equations. Nevertheless, the model is not able to reproduce the constant slow
motion during dry periods. Moreover, position of the water table depth is still having
a crucial role in the kinematics computation, if it reaches a level of 3.5 m below the
surface, the slope becomes unstable causing the final collapse of the landslide.

The last model presented [3] overcomes these drawbacks through the visco-plastic
constitutive relation of Perzyna’s type. The movements remain “controlled” in an
unstable situation. In the case of a safety factor less than one, deformations tend
to infinity, but not instantaneously as in the case of elasto-plasticity but gradually,
adjusting the deformation speed with the viscosity parameter. This model is able to
reproduce the measured Portalet landslide kinematics [3].

Figure 1 compares the computed and measured mid-slope horizontal displacement
and velocity from 05/10/2006 to 21/11/2006. Figure 2 shows the equivalent visco-
plastic strain and displacement contours at 31/10/2011 using the 2D visco-plastic
finite element model. It has to be pointed that a fairly well comparison between the
computed ant the measured displacements/velocities in the monitoring campaigns
has been checked in an extended period of time from 01/07/2004 to 31/10/2011 in
[3]. Influence of the rainfall intensity on the landslide kinematics can also be verified
in the original paper [3].
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Fig. 1 Computed and measured mid-slope horizontal displacement and velocity from 05/10/2006
to 21/11/2006
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Fig. 2 Equivalent visco-plastic strain and displacement contours at 31/10/2011 [3]

4 Conclusions

The comparison made in this paper provides that after a careful and difficult cal-
ibration, the proposed models reproduce qualitatively and quantitatively, more or
less accurately depending on the complexity of the model, the observed deformation
patterns. These models can give successful short-term and medium-term predictions
during stages of primary and secondary creep, i.e. at nearly constant strain rate.
However, long-time predictions remain uncertain, stability depends strongly on the
position of the water table depth and new failures during tertiary creep due to soil
temporal micro-structural degradation are difficult to calibrate.
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Characterization of Underground Cellars
in the Duero Basin by GNSS, LIDAR
and GPR Techniques

Miguel Angel Conejo-Martín, Tomás Ramón Herrero-Tejedor,
Enrique Pérez-Martín, Javier Lapazaran-Izargain, Jaime Otero-García,
Juan Francisco Prieto-Morín and Jesús Velasco-Gómez

1 Introduction

The underground cellars that appear in different parts of Spain are part of an
agricultural landscape dispersed, sometimes damaged, others at risk of disappearing.

This paper studies the measurement and display of a group of wineries located
in Atauta (Soria), in the Duero River corridor. It is a unique architectural complex,
facing rising, built on a smooth hillock as shown in Fig. 1.

These constructions are excavated in the ground. The cellars are nearly straight
and arranged in parallel. The access to the cave or underground cellar has a shape of
a narrow tube or down gallery. Immediately after, this space gets wider. There, wine
is produced and stored [1].
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Fig. 1 Underground cellars.
Atauta (Soria)

The measurement process and subsequent graph is addressed here and it aims to
develop a new methodology according to the instruments used.

Observation and detection of the underground cellar, both on the outside and
underground, it is essential to make an inventory of the rural patrimony [2]. The geo-
detection is a noninvasive technique, adequate to accurately locate buried structures
in the ground. Works undertaken include topographic work with the LIDAR tech-
niques (Laser Imaging Detection and Ranging) and integration with data obtained by
GNSS (Global Navigation Satellite System) and GPR (Ground Penetrating Radar).
The results obtained are used to identify construction elements which form the under-
ground cellar with an accuracy of centimeters. The graphic and cartographic results
enable an optimal visualization of the study area and can be used in the reconstruction
of the place.

2 Methods

In one of the cellars we made GPR prospecting from the surface and underground
LIDAR scanning. The joint use of both techniques facilitates the determination and
location of internal structures. LIDAR scanning provides the location of the internal
visible structures of the cellar and its position related with surface. Through their
fitting with the GPR profile, we estimate the Radio Wave Velocity (RWV) in the
ground, required for locating the GPR detections of the hollow parts and old hidden
structures.

The radar data were acquired using a Malå Ramac/GPR ProEx system equipped
with unshielded antennae of 100 and 200 MHz, in order to compare the behaviour
of different frequencies suitable for the area conditions and type of space [3]. Two
profiles were done at each frequency, one along the selected cellar (itinerary 1, Fig. 2),
and the second transversal to the selected and adjoining cellars (itinerary 2, Fig. 2).

The LIDAR used was a Faro Focus 3D. It was furnished with a telematic unit
ambiguity and interval of 153.49 m and a range of 0.5–120 m outdoor with low
ambient light. Point clouds registered by LIDAR and GPR where linked using GNSS
techniques [4]. Also GNSS was used for georeferencing the entire survey [5].
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Fig. 2 Itineraries (1) and (2),
both with GPR 100 and 200
MHz

3 Results

Figure 3 shows the 100 MHz GPR transparent profile obtained from the itinerary
1, superimposed on the LIDAR profile. The inner profile of the winery detected by
LIDAR is represented in blue (hidden cavities are not detected). The GPR detection
is shown in yellow and the road level in white.

We can observe that the dome rests on the road level. Other detectable structures
are the chimney pipe (in red), a wide cavity around it, and a discontinuity over the
structure that supports the roof stairs. The coupling of the results from GPR and
LIDAR lets us estimate a value of 0.13 m/ns for the RWV in the medium (soil
and rock), which is appropriate for a reasonably dry limestone. The radar detection
profile does not match with the inner cavity detected by the LIDAR. This is due to
the early GPR reflections in the hollow parts and old hidden structures, in addition
to the limited resolution capability of the 100 MHz GPR, of ca 50 cm. A resonance
effect appears in the staircase zone produced by multiple reflections between the stair
treads and the ceiling. Over the cellar roof there may be a layer of fractured rock,
which can produce a GPR reflection some centimetres above the roof.

Fig. 3 GPR transparent profile superimposed on the LIDAR profile
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4 Conclusions

The use of Geographic Information Technology allows better geovisualization of the
rural heritage, as shown on this article.

Using 200 MHz GPR the penetration depth was scarce, while with 100 MHz
we have obtained successfully results. It has detected the different cave-domes, the
cave-ceiling and most of the cave-floors. It is also possible to detect the presence of
other structures, as the entrance beam, the chimney or other close entrances.

The joint use of LIDAR and GPR techniques has revealed a faster method than
conventional techniques, such as total station or photogrammetry. Also the RWV
estimate is faster and more accurate than using only GPR. The accuracy obtained is
centimetric, and GNSS technique makes feasible the combined use of LIDAR and
GPR maintaining the accuracy and the survey speed.

The techniques described in this article are suitable to use on other natural cavities,
archaeological cavities or multipurpose constructed underground spaces.

This project can help the underground cellars to be declared as Cultural Interest
by the Comisión de Patrimonio Cultural de Castilla y León–Junta de Castilla y León
(Heritage Department of the Regional Government of Castilla y León).
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Study of Subsidence on Aquifers Having
Undergone Extraction and Inactive Cycles

Rubén Martínez-Marín, Pablo Ezquerro-Martín, Juan Carlos
Ibáñez-Carranza, Juan Gregorio Rejas-Ayuga and Maguel
Marchamalo-Sacristán

1 Introduction

Water supply for human consumption is and will be a serious problem in the man-
agement of the urban development. In countries where rain patterns are very variable
in in quantity and temporal distribution as well, the qualifier exploitation is a good
possibility to be implanted. This management has two main aspects, extraction and
inactive cycles when conditions allow them. During extraction cycles another prob-
lem to be considered is the affection produced on the ground surface due to the
anthropic decline of the water table. Form the point of view of the civil engineering,
the most relevant factor is the subsidence movements induced by the extraction on
the surface. Additionally, it is important to know the velocity of those movements
and their relationship with the piezometric level in the area. Studies of subsidence
have been carried out, not only in Spain [1, 2] but in other countries [3], where
overexploitation processes have been shown.

The ‘Madrid basin’ is a sedimentary basin with deposits from the Tertiary period.
Inside it, two different lithology sets from Neogene can be observed: One of them
with a high lacustrine character consisted of fine-grained sediments and sedimen-
tary chemical rocks located in the central area of the basin (south of Madrid). The
other set consists of detritic rocks on the highest edge of the basin, adjacent to the
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‘Range of Guadarrama’ (Fig. 1). This second set configures the area of interest, named
‘Tertiary Detritic Aquifer of Madrid’ (TDAM). From geotechnical and hydro-
geological points of view, these units are porous and usually not consolidated, clearly
anisotropic and heterogeneous with a thickness about 1,500 m. The most permeable
levels are composed of an aggregation of sand and gravel, constituting interleaf layer
with others less permeable, as clays, silts and clavey sands. Recarding the distance
to the bedrock, from where those deposits are generated, a subdivision in three sub-
facies can be done:near, central and distant, being the central the most permeable
(Table 1).

The well field of ‘Fuencarral’, located in the northwest area of Madrid, con-
sists of nine wells to withdraw water from the ‘TertiaryDetritic aquifer of Madrid’

Fig. 1 Regional geology
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Table 1 Hydraulics parameters

Parameter Average value

Transmissivity 1–852 m2/day
Vertical conductivity (kv) 0.089–0.31 m/day
Horizontal conductivity (kh) 0.9–10 m/day
porosity 1–20 %

Fig. 2 General location. Tertiary Detritic Aquifer

(Fig. 2), which covers a total area of 2,500 km2 and reneweable resources about
130–150 hm3/year. Canal de Isabel II Gestion, the water management company of
Madrid, has installed a network of 77 wells withdrawing in this aquifer, with depth
from 350 to 700 m. Its supply capacity is about 69–78 hm3 per one pumping year.
Additionally to the withdrawls make by canal deIsabel II Gestion, this aquifer is used
by industries, some municipal suppliers, residential areas and agricultural watering.
They represent a consumption of 54 hm3/year approximately (according to the offi-
cial information from the local Government of Madrid).

2 Methods

A set of 26 images obtained by ERS-1 and ERS-2 satellites have been processedto
calculate the vertical ground movement of the study area [4]. The images were
acquired between January of 1997 and November of 2000, and cover a 100 × 100 km
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Fig. 3 PS distribution and PS values from the beginning (left, 04/02/1997) to the end (right,
18/10/2000) of the data series

area centered in Madrid capital. Once the images have been processed the result is a
‘shapefile’(ESRI format) that content the PSs (Persistent Scatterers) determined by
the PSP-IFSAR methodology (Persistent Scattered Pair—SAR Interferometry) [5],
including:

• PSs Positions referred to the geographical Systerm based on WGS84.
• Average velocity of the movement for each PS, in mm/year for the study period.
• Displacement , in mm, referred to the origin image of the study period.

Based on the described data, investigation has been conducted under a combi-
nation of several factors:using absolute measurements, not only in movements but
interest area (ring shapes with 500–1000 m radius), and pizometric measurements
only from deep wells, which show, in a better way, the aquifer behavior Fig. 3.

3 Results and Discussion

Considering the whole period (1997–2000), Fig. 4 shows vertical displacements
(mm) and the evolution of the piezometric level. Analysing that figure, three clear
periods can be observed. The first one, from April 1997, to January 1999, is an
inactive period, where the soil is recovering and the piezometric level as well. The
second one, from February 1999 to March 2000, is an extraction period where the
piezometric level is clearly decreasing. Finally, the third period, from April 2000 to
December 2000, is another inactive period.

Several circles of influence have been defined and the correction coefficient
between the piezometric level and the vertical movement, have been caculated. Ana-
lyzing the result we can confirm a strong relation between both studied variables.
That relation decreases with distance, with correlation coefficients ranging from 0.97
to 0.62.
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Fig. 4 Vertical displacements (mm) versus distances and piezometrtic head (1997–2000)

4 Conclusion

A DInSAR technique has been applied to determine vertical movements on the
ground in ‘a posteriori’ process, since the studied period was from 1997 to 2000.
This methodology is suitable to be applied in areas and periods was were no data are
available. The study area is periurban zone with no other factors that can contribute
to vertical movements, therefore all the movements of the ground are due to the
water extraction. A strong relation between piezometric levels and vertical move-
ments has been detected. That relation has been quantified calculating the correlation
coefficients atseveral distances from the center of the study area.
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Advanced InSAR Techniques to Support
Landslide Monitoring

Fernando Bellotti, Marco Bianchi, Davide Colombo, AlessandroFerretti
and Andrea Tamburini

1 Introduction

Space-borne Synthetic Aperture Radar Interferometry (InSAR) is a widely used
remote sensing technique to get surface deformation measurements with high preci-
sion over large areas. It is based on the phase comparison of SAR images, gathered
simultaneously or at different times with slightly different looking angles from space
or airborne platforms. The phase of a SAR image contains the superposition of many
terms including the distance of the radar from the illuminated targets on the ground.
The phase difference of two SAR images gathered at different times contains a phase
term proportional to the target motion occurring along the sensor-target line-of-sight
(LOS) direction during that time interval.

The measured phase difference shows an ambiguity cycle of 2π that corresponds
to a 2-way travel path difference of λ (the used radar wavelength). Thus, in princi-
ple, InSAR has the potential to detect ground surface motion phenomena with the
accuracy of a small fraction of the radar wavelength (usually from 3 to 24 cm) on
large areas (thousands of km2)with high spatial resolution (up to 1 m with the space-
borne SARs of the last generation as the German TERRASAR-X and the Italian
Cosmo-SKyMed–CSK).
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However, apart from cycle ambiguity problems, the routine use of InSAR is limited
by the so-called temporal and geometrical decorrelation, as well as to atmospheric
artifacts. Temporal decorrelation appears where the electromagnetic signature of the
targets changes with time (e.g. in presence of dense vegetation or water basins).
Geometric decorrelation is generated by the target reflectivity variation as a function
of the incidence angle. Finally, atmospheric heterogeneity superimposes on each
SAR acquisition an atmospheric phase screen (APS) that could have the same spatial
pattern (low-pass with typically 1 km decorrelation length) and amplitude of the
surface deformation phenomenon under investigation.

2 Advanced InSAR Techniques

Persistent Scatterer Interferometry (PSI) is the collective term used inside the InSAR
community to distinguish between single interferogram DInSAR and the second
generation of InSAR technologies. The first of these to appear, in 1999, was the
Permanent Scatterers (PSInSARTM) technique [1, 2, 4]. It overcomes the above said
limitations of InSAR exploiting long temporal series of satellite radar data, acquired
over the same area of interest at different times, to identify “natural radar targets”
(Permanent Scatterers—PS), that return stable radar reflections over time back to the
satellite, where displacement information can be retrieved.

SqueeSARTM interferometry, the latest evolution of PSInSARTM technology [3],
developed by Tele-Rilevamento Europa and Politecnico of Milano, is one of today’s
most advanced technologies for ground deformation analysis and monitoring.

SqueeSARTM searches in the radar image set for targets that consistently reflect
radar signals throughout the entire dataset of images, exploiting both permanently
scattering ground targets (PS, e.g. buildings, pipelines, linear structures, open out-
crops, etc.) and homogenous distributed scatterers (DS, e.g. homogeneous ground
or scattered outcrops, uncultivated areas, debris covered areas).

Since its introduction, as the replacement to the widely accepted PSInSARTM

algorithm, SqueeSARTM has challenged the industry standard by identifying many
more ground points, increasing overall understanding of ground displacement occur-
ring in an area of interest.

Thanks to their capability in detecting millimetre level displacements over long
periods and large areas, PSInSARTM, and subsequently SqueeSARTM technique,
have become a standard monitoring tool in a number of applications: natural hazards,
geothermal, oil and gas, mining, urban and infrastructures monitoring.

3 Application to Landslide Monitoring

Thanks to its capability in detecting millimetre level displacements over long peri-
ods and large areas, SqueeSARTM analysis can be considered complementary to
conventional geological and geomorphological studies in landslide detection and
monitoring.
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Several Italian Regions were studied with SqueeSARTM in order to detect and
monitor slope instability phenomena. The Valle d’Aosta Region (NW Italy) analysis
represent one of the most successfully application. The study covered a time span
from 1992 to 2011. Aim of the study was supporting the landslide inventory per-
formed within the framework of the Italian Landslide Inventory (IFFI) Project. The
integration of the conventional geological-geomorphological studies with the results
of the SqueeSARTM analysis, improved the results of the IFFI inventory, in terms of
landslide areal extent, unmapped phenomena detection and activity assessment. The
increasing interest of Italian authorities in the application of SqueeSARTM resulted
in the Piano Straordinario di Telerilevamento (PST) project, founded by the Min-
istry of the Environment. The aim of the project was to create the first national-scale
database of interferometric information to map unstable areas. This was achieved
by processing more than 12,000 ERS SAR scenes acquired over Italy and updating
these results with the Envisat images available up to 2010.

SqueeSARTM analysis is particularly suitable for the study of Deep-seated Grav-
itational Slope Deformations (DGSD), characterized by large areal extent and low
surface displacement rate, ranging from few millimeters to tens of millimeters per
year.

The SqueeSARTM analysis realized over Huangtupo DGSD (China) provides
quantitative information on displacements occurred (Fig. 1), reveals zones affected by

Fig. 1 Average velocity of the measurement points identified with the SqueeSARTM over Huang-
tupo landslide
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movements related to slope instability phenomena and identifies two different zones
affected by velocities changes, consistent with landslide slip surfaces recognizes in
previous works.
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Estimation of Information Loss When Masking
Conditional Dependence and Categorizing
Continuous Data: Further Experiments on a
Database for Spatial Prediction Modelling in
Northern Italy
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and Chang-Jo Chung

1 Introduction

Prediction patterns are the result of modelling the spatial relationships between the
distribution of natural events, e.g., the occurrence of landslides of a specific dynamic
type, and that of map units that are assumed to represent the typical setting of the
events. A spatial database is reanalysed that has been the object of differing analyses
[2, 3]. Predictions are compared using either original categorical and categorized
continuous supporting patterns or uncategorized continuous ones.

A direct supporting pattern, DSP, of the spatial distribution of 28 complex land-
slides, shown in Fig. 1, was previously used to obtain their spatial relationships with
five categorical indirect supporting patterns, ISPs, representing the spatial context of
the landslides: geology,g, land use, l, and permeability, p (with 7, 6 and 9 map units,
respectively) in addition to internal relief, i and slope, s (categorized into 5 classes
each). The five ISPs were selected, among a few more, to minimize the effects of
conditional dependence. The same set of ISPs is reanalysed applying the Empirical
Likelihood Ratio model in experiments that used also uncategorized continuous ISPs:
namely aspect, A, curvature, C, digital elevation, D, in addition to internal relief, I
and slope, S. The patterns of the database occupy a study area of 1,133,490 pixels of
20 m resolution, within a frame of 1291 pixels×2045 lines. The scope of the com-
parison is to examine, using a spatial database constructed for landslide hazard in
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Fig. 1 Location of the Tirano study area in northern Italy and the distribution of the trigger areas
of 28 complex landslides that occupy 1382 pixels. The trigger areas are surrounded by grey borders
and are enlarged outside the study area frame

Fig. 2 ELR prediction-rate histogram (a) and cumulative curve (b) of the 20 % highest 0.5 % equal
area classes in the Tirano study area obtained with 28-1 cross-validations with sets of ISPs: glp-is
(black), glpIS (blue) and glpACDIS (red)
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Fig. 3 Target and uncertainty patterns by ELR and the 28-1 cross-validation using ISPs: glp-is
(a, b), glpIS (c, d) and glpACDIS (e, f). Ranked groups of classes are assigned pseudo-colours in
the legend. A NE trending valley crosses the area
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the Tirano study area in northern Italy, the effect of categorization of continuous data
layers and the avoidance of conditional dependence implicitly existing between the
spatial data layers.

2 Model and Strategy

Spatial relationships are modelled using an Empirical Likelihood Ratio function,
ELR, based on the comparison of the distribution functions of all areas affected by
landslide trigger zones and those of all areas not affected by landslides in the study
area. Chung [1] discussed the use of ELR in prediction modelling.

The analytical strategy used to cross-validate the ELR prediction patterns is to
sequentially iterate predictions using 28-1 landslides to predict the 28th. The resulting
28 prediction patterns are then analysed to obtain target and uncertainty patterns with
rank-based statistics: the target pattern represents the median rank of the 28 predicted
values for each pixel in the study area and the uncertainty pattern the corresponding
range of ranks.

3 Results and Conclusion

The generation of target patterns provides measures of relative quality, reliability
and comparability of spatial predictions. Figure 2 shows the 40 highest ranked 0.5 %
equal area classes of study area predicted as hazardous in histogram and cumulative
curve forms. Clearly using the continuous ISPs ACDIS provides classes with higher
proportion of landslides within the highest 5 % of the study area. Comparing target
and uncertainty patterns in Fig. 3, we can observe how the use of the continuous ISPs
IS slightly improves the prediction with respect to using categorized is. Furthermore,
using ACDIS improves it strongly and the uncertainty pattern indicates the effects
of D, the digital elevation.

No particular advantage is observed either in categorizing continuous ISPs or
in avoiding conditionally dependent ISPs, leaving out ACD, aspect, curvature and
digital elevation. We encourage exploring the generality of such observations.
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3D-GIS Analysis for Mineral Resources
Exploration in Luanchuan, China

Gongwen Wang, Shouting Zhang, Changhai Yan, Yaowu Song, Jianan Qu,
Yanyan Zhu and Dong Li

1 Introduction

Three-dimensional (3D) geological modeling is an important method for
understanding geological structures and exploring for mineral deposits. 3D–GIS can
be used as interactive tool for mineral resources exploration [1–3]. The main advan-
tages of 3D-GIS special analysis models are combining qualitative information of
geological knowledge (e.g., metallogenic genesis/model) and quantitative data of
geosciences to make decision of prospective targets in 3D space. Geoscience data
can be derived metallogenic information for building more complete, more realistic
geological and metallogenic models. Furthermore, these models can be modified at
any time by adding new data from ongoing drilling and field surveys.

2 Data and Methodology

Luanchuan ore district is the most important Mo region in China. It has three large
porphyry-skarn Mo deposits and more than 20 Pb–Zn deposits, ant it has measured
reserves of molybdenum metal in excess of 3,000,000 tonnes in 2010. Although
there are more than 50 years exploration data including geological, geophysical and
geochemical data in this district, exploration depth is not more than 700 m. This
paper presents 3D geological models visualization and spatial analysis methodology
for molybdenum resources exploration by combing geological, geophysical, and
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geochemical data to identify high potential targets for mineralization at depth in
Luanchuan district. Fig. 1 is the workflow of 3D-GIS for prospective targets and
mineral resources assessment, and the main three steps are as follow:
Step1 A: 3D geological model of Luanchuan district (40.0 km×20.0 km×2.5 km) are
constructed by one 1:10,000 scale geological and topographic map of good quality,
nine 1:2000 scale cross-sections which contain most important detailed observations
of geological objects, the logs of 358 boreholes, additional 978 litho-geochemical
samples. 3D geological model was optimized using 1:25,000 scale gravity and mag-
netic data inversion combining geological and geochemical datasets at depth (the
range is from 500 to 2000 m) for identifying main geological objects, e.g., the shapes
of Jurassic granite (150 Ma) and Neoprpterozonic gabbro (743 Ma), the dips and
strikes of ore-forming faults, and the thickness of metallogenic stratum. The 3D geo-
logical modeling progress includes geoscientific data acquisition, compilation, digi-
talizing and standardizing in a 3D coordinate system (x, y, z) [1]. Step1 B and C: On
basis of the metallogenic information combining 1:2000 scale litho-geochemistry,
1:25,000 scale gravity and magnetic image, and 1:5000 scale Controlled Source
Audiofrequency Magnetotelluric image in regional section Luanchuan district (Fig. 1
(Step1 A)), a new 3D model (17.0 km×12.0 km×2.5 km) (Fig. 1 Step1C) was derived
for identifying prospective targets of porphyty-skarn Mo deposit at depth. Step1 D:
Litho-geochemical information of Mo and Pb–Zn mineralization at the surface can
delineate concealed porphyry-Mo orebody which is associated with Jurassic pluton
in Luanchuan distric, the Step1 D section (Shibaogou, the location can be found in
Step1 C) is derived by auto-cutting from 3D geological model of Luanchuan district.
Step2 A: 3D block model of geological objects in Luanchuan district can be applied
to exploration targeting in Micromine software: (a) Extraction of zones within a
defined distance to granite porphyry. (b) Identification of altered, fault, and gravity
and magnetic anomaly zones favourable for Mo prospective target. Sept2 B and C:
Geoscience data integrated using probability net neural and fractal methods to delin-
eate prospective mapping in ArcGIS10.0 software with Spatial Data Modeller. The
calculation steps of the above methodology can be found in [3]. Setp2 D: Borehole
validation of prospective target within the above extracted zone.
Step3 A: Deposit-scale modeling for identifying new prospective targets of porphyry-
skarn Mo deposit at depth. The 3D model of three large porphyry-skarn Mo deposits
(4 km × 5.0 km × 2.5 km) are constructed by one 1:2000 scale geological and
topographic map of good quality, the logs of 288 boreholes, additional 458 litho-
geochemical samples. Step3 B and C: Step3 B is 3D model of the shapes of orebody,
granite porphyry, and skarn rocks in 3D model of three large porphyry-skarn Mo
deposits, and the orebody model is constructed by combining Mo grade ordinary
kriging interpolation and fractal method. The 3D grade model was used to identify
the centre or edge of Mo orebody and ore-forming fault, and the high grade value at
bottom of orebody can indicate the deposit has a continuous Mo orebody at depth
(Fig. 1). Step3 C and D: New Mo prospective targets identifying using queries in
3D-GIS environment. Nannihu and Shangfang porphyry-skarn Mo deposits have
potential targets at depth (from 800 to 2000 m) by granite anomaly interpretation
using gravity and magnetic data inversion. Deposit-scale borehole data were used
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(a) to delineate probable mineralized zones by multifractal concentration-volume
modeling of geochemical data and (b) to estimate metal resources by fractal model-
ing based on available orebody thickness and metal grade data.

3 Discussion and Conclusions

The prospective targets in Luanchuan district can be derived by three methods in the
above steps: 1 Step1 can be applied to recognize skarn-Mo deposit near to the Juras-
sic pluton (e.g., Shibaogou skarn-type prospective target around Shibaogou granite
stock, Fig. 1 Step1D), and the target has no known deposit both at the surface and sub-
surface; 2 Step2 can be applied to identify all potential targets of granite porphyry-
skarn deposits which have multiple geoscience data; and 3 Step3 can be used to
identify concealed orebody at depth of large porphyry Mo deposit, which show the
known orebody has continuous at depth, and the prospective target are constrained
by Jurassic pluton in the deposit (e.g., Nannihu porphyry-skarn Mo deposit, Fig. 1
Step3D). Based on the above prospective targets of luanchuan district, we conceptu-
alized the metallogenic genesis in the Luanchuan ore region as follows. The Mo and
Pb–Zn–Ag deposits/occurrences are controlled by the Jurassic tectonic-magmatic
activity, such that skarn-Mo and hydrothermal vein Pb–Zn–Ag deposits are found
mostly around granite (porphyry) pluton. Pb–Zn–Ag mineralization occurred in lay-
ered skarn or interlayer fracture zones which can be identified by litho-geochemical
survey information. Therefore, a detailed 3D study of the concealed granite (por-
phyry) and the association with the host rock of marine carbonate-clastic strata (i.e.,
Nannihu, Meiyaogou and Sanchuan Formations) is considered for the construction
of a 3D geological model and for prospective targets in luanchuan district.

The research results show that Luanchuan district has a complex geological set-
ting, which is located in the East Qinling orogen. Magmatism is common throughout
the geological evolution of the Qinling orogen. Neoprpterozonic gabbro intruded
Luanchuan Group, Jurassic magmas intruded as small-scale stocks, dikes, and pipes,
while the Cretaceous intrusions formed large-scale stocks and btholiths. The regional
tectonic framework trends WNW-ESE, the later NE-trending tectonic cuts them and
formed a network structure. The junctions between NW-trending and NE-trending
faults control the distribution of small Jurassic plutons, which are important ore-
bearing geological objects consisting of granodiorite, monzogranite and granite
porphyry. All the large granite porphyry-skarn Mo deposits are located in Neo-
prpterozonic Luchan Group comprising dolomitic marble of Meiyaogou Formation,
marble and schist of Nannihu Formation, metasandstone and biotite-bearing mar-
ble of Sanchuan Formation. Therefore, according to the porphyry-skarn genesis of
Luanchuan district, the 3D models of ore-bearing plutons and the NE-trending and
NW-trending faults are important information for identifying typical porphyry-skarn
deposit in high potential targets. The gravity and magnetic data inversion, cross-
sections and survey data (surface and borehole datasets) are integrated to construct
potential targets at depth.
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Fig. 1 Workflow of 3D-GIS for mineral resources exploration in Luanchuan district
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Animation of Groundwater Flow with STRING

Isabel Ostermann and Torsten Seidel

1 Introduction

In order to analyze 2D/3D simulation results for groundwater flow problems visu-
alization is an essential resource. Most existing visualization techniques are easy to
use and understand only for professionals. The intuitive representation of transient
flow on planar and curved surfaces with the help of pathlets (comet-like shapes rep-
resenting short parts of pathlines) which is used in STRING offers a novel tool to
assist professionals as well as nonprofessionals in creating expressive animations of
groundwater flow (see [3]). The length of a pathlet correlates with the local velocity
and its direction corresponds to the direction of the velocity. As not only the veloc-
ity field is important but also its interaction with scalar fields (e.g. concentration,
potential, pressure), scalar attributes can be optionally displayed in the background.
The ‘uniform’ distribution of the pathlets is achieved by a novel, mesh-independent,
intelligent, time-dependent seeding strategy based on the point management real-
ized in the Finite Pointset Method (FPM) (cf. [2] for a recent survey on geometric
flow visualization and, in particular, on seeding strategies). This innovative feature
distinguishes our method from existing ones leading to a unique illustration quality.
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2 Features of STRING

The pathlets move through the visualization plane with the flow velocity—Lagrangian
formulation. A ‘uniform’ distribution of the pathlets during the whole animation is
achieved by a novel, intelligent, time-dependent seeding strategy based on the point
management realized in FPM. FPM is a meshfree generalized finite difference algo-
rithm also employing a Lagrangian formulation with applications in continuum and
fluid mechanics (see e.g. [4–6]). The advantages of the chosen seeding strategy are
the independence of the seeding positions of the pathlets from the data mesh or
point cloud as well as the avoidance of optical holes and accumulations. In a given
geometrical 3D model the user can define horizontal as well as vertical 2D cuts as
visualization planes. These planes can be additionally restricted by time-dependent
clipping regions defined by polygonal lines, e.g. in case of saturated zones or large
data sets. STRING offers the opportunity to illustrate time-dependent scalar fields
in the background of the pathlet visualization either directly (continuous colormap
or isosurfaces) or as contour lines. Rendered images can be saved as single frames
together with geographic information as well as transparency. Afterwards, from these
images an animation can be created with any external video editor. The technical fea-
tures are: platform independence, graphical user interface for easy handling (default
values are set), fast data access, possibility of parallelization, hardware accelera-
tion by the use of standard OpenGL tools. The combination of the features described
above, implemented in a market-ready, fast, user-friendly, flexible, and intuitive visu-
alization tool, is novel and unique.

3 Visualization Process and Mathematical Tools

The visualization process—from given data set to resulting animation—consists of
the following three steps: Loading and processing the data given by the established
software system for groundwater and geothermal energy modeling called SPRING
(see e.g. [1]), mapping the data to the geometrical representation, and finally render-
ing the geometrical representation of the data. Note that a comparison of STRING
with traditional geometric visualization methods can be found in [3].

During the animation of the flow velocity we have the following iteration process:
(i) Movement of the pathlets in one time step; (ii) Readjustment of the pathlet
density through seeding and deletion; (iii) Saving the current position of the path-
lets; (iv) Rendering the current state; (v) Go to (i). The movement of the path-
lets is given by the solution of dx(t)/dt = v(x(t), t) with given initial condition
x(0) = x̂ ∈ R

3, where v(x(t), t) is the velocity at pathlet position x(t) ∈ R
3 at

time t > 0. In STRING the solution of this ordinary differential equation can be
performed either based on the classical Euler method or the classical (fourth order)
Runge Kutta method including an adaptive time step control. Velocities at posi-
tions not given by the data mesh or point cloud are interpolated with the help of
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the FPM-specific moving weighted least squares algorithm: For each velocity com-
ponent v� we are looking for a polynomial p satisfying the minimization problem

minp∈Πn
∑I

i=1 γ
( ‖x−xi‖

h

)
‖p(xi )− ν�(xi )‖2. Πn denotes the space of 1D polyno-

mials of maximum order n ∈ {0, . . . , 3}, I ∈ N denotes the number of available
neighbors xi of point x, h denotes the averaged, scaled distance to the available
neighbors, ‖ · ‖ denotes the Euclidean norm in 1D/3D, and γ denotes a weighting
function. The order of the approximation is given by the number of available neigh-
bors: at least 1 neighbor leads to order 0, at least 3 neighbors lead to order 1, at
least 6 neighbors to order 2, and at least 10 neighbors to order 3. This approach is
computationally efficient as the interpolation is done only locally and not based on
all points. The results of the FPM-specific moving weighted least squares approx-
imation of two neighboring time steps included in the original data set are used
to linearly interpolate between the given time steps. The movement of the pathlets
counteracts their ‘uniform’ distribution. In order to maintain the quality of the path-
let visualization, accumulations are collapsed and optical holes are filled. The filling
process represents a novel, time-dependent seeding strategy for pathlets also directly
applicable in 3D. It is characterized by a successive discrete hole search, where each
pathlet is a possible source for a new one. Discrete search points around a ‘source’
are determined and, subsequently, search spheres around these points are checked for
already existing pathlets. If there is none, the search point is added as a new pathlet.

4 Example

As an example we consider the 2D Elder problem to visualize transient convection
cells with STRING (see [3] for further details). The simulation data set—a density
driven flow in a porous, homogeneous, and fully saturated isotropic medium for a
vertical profile—is generated with the water systems modeling software SPRING
(see [1]). In Fig. 1 the transient flow is illustrated as pathlets in time with the con-
centration in the background. A series of transient convection cells is generated. The
intelligent seeding strategy guarantees a ‘uniform’ distribution of the pathlets.

Fig. 1 Pathlet visualization (colored with a continuous gradient from high magnitude of the velocity
in red to low magnitude of the velocity in white) and concentration (isosurfaces) after 1 (top left),
2 (top right), 4 (bottom left), and 8 (bottom right) years (see [3])
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5 Conclusion

STRING offers a novel, unique, and intuitive way to animate transient flow prob-
lems. The main mathematical tools are ‘uniformly’ distributed pathlets illustrating
the velocity on planar and curved surfaces of a 2D/3D model and the time-saving,
FPM-specific moving weighted least squares method used to approximate values
at positions not given by the original data set. Despite the original main focus,
i.e. groundwater flow, this concept is generally suitable to visualize transient flow
data in other application domains as well.
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SHEE Program, a Tool for the Display, Analysis
and Interpretation of Hydrological Processes
in Watersheds

Jesús Mateo Lázaro, José Ángel Sánchez Navarro, Alejandro García Gil
and Vanesa Edo Romero

1 Methodology

When the functionalities included in the SHEE package are combined together, the
construction, manipulation, analysis and comparison of the hydrological processes
which take place in a watershed are possible [1]. The program has been developed
in the Department of Earth Sciences of The University of Zaragoza and its interface
provides rapid and great quality OPENGL charts, in both RASTER and VECTOR
formats. The software has numerous applications for either DEM management or
hydrological processes simulation. Obtaining new coverages with the combination
of DEM and simulated processes is also possible.

The DEM management is achieved using the GDAL (Geospatial Data Abstraction
Library), which permits to import and export different archive formats and to make
new coverages from multiple archives (e.g. the global DEM in Fig. 1). The program
can combine coverages with different coordinate system thanks to the use of the
PROJ4 library from the USGS. Thousands of terrestrial geodetic systems can be rep-
resented, transformed and converted between them. To do that, the program is able to
obtain necessary Spatial Reference Organization parameters from the internet server
transfer. Downloading information from WMS remote server is also possible. The
program permits the use of available data sources during the hydrological processes
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Fig. 1 Interface of the SHEE program and three projections examples (Aitoff, Polyconic and
Bonne) of the SRTM 30 global DEM obtained with this package

modeling. Some of the data sources are the following: DEM’s coming from different
sources, rainfall frequency coverage, Curve Number coverage and real data. SAIH
data stand out from all real episodes data because they provide a complete dataset of
rainfall, discharge measurements and rain radar data.

A special case is the use of PLR (Parallel Linear Reservoir) models, where every
DEM cell is considered as a reservoir combination in parallel. Water flows through
each deposit at different flow rates [2]. These models are calibrated via the observation
of recession curves of real hydrographs and they are very interesting because they
allow the establishment of a precise water balance. The hydrological relations of a
lineal deposit are driven by two ecuations: flow or deposit Eq. (1) and continuity or
hydric balance Eq. (2). Their combination results in the runoff equation or discharge
Eq. (3):

Q = α · S (1)

R = Q + dS

dt
(2)

Q2 = Q1 · e−α�t + R · (1 − e−α�t) (3)

Another feature of the model is that it allows making simulations with snowmelt
models, introducing the runoff portion which comes from the snow into the recharge
term (R). The reservoirs represent the different hydric deposit systems of the water-
shed (surface, subsurface and subterranean reservoirs, vegetation cover, snow, sheet
flow, etc), whose evolution is presented in the simulated hydrographs.
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2 Applications

2.1 Real Episodes Research

The PLR models have been applied to real episodes of several watersheds
(a model of Bergantes river watershed in Fig. 2). A distributed model of total rainfall
has been created for the study; reservoir parameters have been adjusted (Qo and α)
starting from real hydrograph recession curves. The evolution of each reservoir dur-
ing the flood is a relevant feature: the fast reservoir (reservoir 2, dashed line) increases
and decreases rapidly, whereas the slow reservoir (reservoir 1, dotted line) takes part
secondarily in the most intense stretch but it persists during all the recession.

2.2 Study of the Role of Snowmelt in Floods

A real episode occurred in January 2009 in the Valley of Roncal (Spain) is studied.
In Fig. 3, the real hydrograph (blue) and the simulated hydrographs with and without
snowmelt (red lines, solid and dashed respectively) are shown. The two model reser-
voirs with snowmelt are presented in gray color and the snowmelt contribution is
observed in the hyetograph. When comparing the two simulations, the intervention
of the watershed snow reservoir proves decisive for the flash flood occurrence.

Fig. 2 Hyetographs and hydrographs for may 2003 episode in Bergantes watershed

Fig. 3 Hyetographs and hydrographs for January 2009 episode in Roncal Valley
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Fig. 4 Arás watershed with isohyets of standard event and hydrographs for process variation

2.3 Variability Analysis

Very severe flood flow occurred in the Arás watershed. Thanks to the simulations, a
variability study was performed taking into account the changes in the main hydrolog-
ical processes, such as the spatial and temporal rainfall distribution, the soil moisture
conditions and the routing through drainage networks (Fig. 4). It is concluded that
the soil moisture condition is the most determining process related to the magnitude
of the flood flows produced by a similar rainfall amount.

3 Conclusions and Outlook

The SHEE program permits to configure multiple models of different hydrological
processes such as spatial and temporal rainfall distribution, previous soil moisture
state and water routing thorough the basin. The use of PLR models for the simulation
of real episodes is very interesting for the works done. In the future, as more severe
episodes analyses are assessed, it is clear that this software will permit to have a
better knowledge of the responses of hydrological processes in extreme conditions.
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Mathematical Methods of the Data Analysis
in a Prospecting Database for Geological
Mapping

Oleg Mironov

1 Using Archive Data for Geological Mapping

Archives of geological prospecting data contain a large volume of geological infor-
mation that should be re-used for various tasks.

In Moscow the project of geological and environmental mapping of the city ter-
ritory at scale 1:10000 was fulfilled in 2007–2009 [1]. Twelve maps have been
compiled for an area of more than 1000 km2. The source information is the borehole
database of geological archive that has been collected during the last 100 years. About
91000 boreholes logs have been used. The mapping used no new field investigations.

Before using archive data must be re-interpreted according to new challenges and
modern geological concepts. This task is complicated because of following reasons.

1. Particular features in the geological structure admit an ambiguous stratigraphical
definition of the layers’ age even in contemporary investigations.

2. Borehole logs and other archive data expose a point of view of unknown specialists
and there is a problem if we can trust it.

3. Usually engineering-geological reports describe lithological layers well but do
not contain verified stratigraphical information.

4. Up to the last time the computer methods of data collecting and verification have
not been exploited, therefore there are lacunas and banal errors in the source
documents.

A large volume of data requires mathematical and computer methods for formal
data verification. Such methods can find controversial points in data and show them
to geologists who must take a final decision. It is not correct to use mathematics
instead of the geological analysis and fix a database independently.
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Mathematical methods are based on some formal rules that have their origin
in theoretic concepts of the geological structure in considered area. Observed data
deviations from those rules should be interpreted as:

1. A geological anomaly (e.g. a fault or a buried erosion valley).
2. An occasional deviation due to local specific (very rarely).
3. An interpretation mistake.
4. An error in the source data.

Two applications for Moscow borehole data are considered below. Moscow is
situated in the centre of the Russian platform. The sediment formation was smooth,
therefore concordant bedding is assumed as a primary approximation for the geo-
logical structure. There are no tectonic faults. The main geological features at the
Moscow territory are erosion valleys of Carboniferous and pre-Quaternary (Juras-
sic) age which are fulfilled with posterior sediments. For example, at some places
Holocene deposits are situated just over Jurassic or Carboniferous deposits.

At other regions analogous approaches may detect faults or unconformities.

2 The Analysis of the Correlation Diagrams
for Borehole Logs

The formal definition of a correlation diagram for two boreholes is as follows [2].
Let x be the absolute height of the roof of some layer in the first borehole and y be
the absolute height of the roof of the same layer in the second borehole. We attach a
point (x,y) in the coordinate plane to this layer. The correlation diagram consists of
all points attached to common layers in two boreholes. Layers that present in one of
boreholes and miss in another one are displayed with vertical or horizontal lines.

Suppose the rate of the sediment formation at various points was the same or
proportional. Then at a geological cross-section the layers marks are situated at the
parallel or perspective lines (see Fig. 1a, b) and the points at the correlation diagram
will lie on a straight line. The local fluctuations should be stochastic and small.

If one of boreholes is positioned in the buried erosion valley (Fig. 1c), then the
upper point at the correlation diagram will deviate from a line drawn through other
ponts. Upper layers from in another borehole may be absent in that borehole.

Visual analysis of correlation diagrams is straightforward. Various estimations
may be used for straightness of the correlation diagram, e.g. a correlation coefficient
between x and y or eccentricity of the first two principal components ellipse. Marks
in boreholes are correlated; therefore thresholds for essential estimations should be
established according analysis of practical data.

An example is shown at Fig. 2. The borehole 113459 is situated near the thalweg
of a buried erosion valley. The mark of C3rt layer roof in it is lower than predicted
with preceding layers. Moreover, layers C3nv and C3pr are absent in this borehole.
The correlation coefficient in this example is equal to 0.9.
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Fig. 1 Variants of layers
position in boreholes

Fig. 2 Correlation diagram
for boreholes 112132 and
113459

Correlation diagrams are useful to data verification. Pairs of boreholes with small
values of correlation coefficients should be analyzed thoroughly, especially if the
distance between boreholes is small too. It is reasonable to consider the scatterplot
“distance—correlation coefficients”.

More than 3000 boreholes that exposed pre-Quaternary deposits were selected
from the Moscow borehole database and correlation coefficients were calculated
for pairs of boreholes with distance between them less than 1.5 km. About 85 % of
pairs have correlation coefficients more than 0.95. Values less than 0.6 correspond
to obvious data errors.

To test the hypothesis about the effect of geological anomalies 230 boreholes
positioned in buried erosion valleys were selected. The minimum of their correlation
coefficient with other boreholes situated at distance less than 500 m was calculated.
Larger frequency of small values in this selection supports the hypothesis.

Statistics is purely descriptive. There is no statistical model for this problem yet.

3 The Trend Surface Analysis

We assume that the surface of deposits of fixed age in Moscow region was flat during
the sediment formation. Tectonic movements may change its position in space but
as a first approximation did not disturb the flatness. The fluctuations of flatness are
caused by erosion processes but erosion zones occupy a small part of total area.



312 O. Mironov

Suppose the trend plane for some deposits is found. Then large fluctuations of
height marks in boreholes up from it should be interpreted as data errors or a wrong
interpretation of drilling data. Large fluctuations of height marks in boreholes down
from the trend surface may be interpreted as buried erosion valley.

Iteration process is used to find trend surface. The idea is to use the interpolated
surface for the linear trend approximation only at those zones where a good quality
of an interpolation can be guaranteed. At each step a set of boreholes is fixed (all
data at the first step). The iteration consists of five steps.

1. Delaunay triangulation of source data point set is created.
2. “Large simplexes” are eliminated from the triangulation according the extended
α-shape method [3, 4]. The result is called a shape.
A “size” of a simplex is defined with a special function. The simplest geometry
definition for a “size” is the minimal diameter of a disk that can cover the given
simplex. Special “size” functions may be defined as a combination of geometry
size of a simplex and variance of various kinds of data at its vertexes. Examples
of shapes are demonstrated on Fig. 3.

3. Piecewise linear interpolation is used to build the surface over the selected shape.
4. The trend plane is the least-squares linear approximation for the surface built at

step 3.
5. Differences between the trend plane and source height marks in the boreholes are

calculated. Boreholes with large absolute values of differences are eliminated of
the source data and investigated to explain fluctuations.

Steps 1–5 repeat until the trend plane stabilizes. In practice, 3 or 4 iterations are
sufficient.

Algorithms described above are useful in the verification process for Moscow
database. The majority of disputable data detected was explained later as a wrong
data interpretation at the preceding stages of investigations or lack of information in
the source documents.

Fig. 3 The Delaunay trian-
gulation of a point set and 2
α-shapes of this set (shades of
a gray color)



Mathematical Methods of the Data Analysis 313

References

1. Osipov, V. I., Burova, V. N., Zaikanov, V. G., Molodykh, I. I., Pyrchernko, V. A., & Savis’ko,
I. S. (2012). A map of large-scale (detail) engineering geological zoning of Moscow territory.
Water Resources, 39(7), 737–746.

2. Guberman, Sh. I. (1987). Informal data analysis in geology and geophysics. Moscow: Nedra (in
Russian).

3. Mironov, O.K. (2007). A shape of a point set. Applications to environmental and engineer
geological cartography. Geoecologiya, inzhenernaya geologiya, hydrogeologiya, geocriologiya,
2, 173–179 (in Russian).

4. Edelsbrunner, H., & Mucke, E. P. (1994). Three-dimensional alpha shapes. ACM Transactions
on Graphics, 13, 43–72.



Geoprocessing Tool Regenerat: Characterization
of Mineral Resource Quality of Renewable
Sediment Deposits

Heinz Reitner, Sebastian Pfleiderer, Maria Heinrich, Irena Lipiarska,
Piotr Lipiarski, Julia Rabeder, Thomas Untersweg and Ingeborg
Wimmer-Frey

1 Introduction

In mountain regions, sand and gravel deposits of alluvial fans and debris cones can
represent valuable mineral resources of aggregates if they constitute reasonable vol-
umes and show good quality with regard to building material requirements. While
quantity can often be estimated from the surface area of the deposit and thickness
information from boreholes, the quality aspects are difficult to handle because sed-
iment quality analyses are rarely available. Taking samples and analyzing them is
often too expensive and time consuming, especially at a regional scale for a multitude
of deposits.

Quality parameters of these deposits are largely controlled by morphology and
geology of their provenance areas. The delineation of a certain provenance area and
information about the morphology parameters can be derived utilizing digital eleva-
tion models (DEM). Information on the geology of the area can be found in existing
geological maps of the study region, unfortunately the maps often do not describe
the lithological properties of the sediment deposits. Therefore, by combining both
information layers using a Geographic Information System (GIS) [1], an automated
method was developed to provide a tool for deriving quality proxies.

The results of the GIS analysis were compared to the results of sedimentary
analyses of samples at selected test sites [2].
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2 Methods

To establish a connection between sedimentary deposits, provenance area morphol-
ogy and geology, digital elevation models (DEMs) and geological maps were ana-
lyzed using a GIS. A geoprocessing tool was developed which proceeds as follows
(Fig. 1):

After selection of sedimentary deposits in the digital geological map (1), the DEM
was used to delineate the morphological catchment area of the sedimentary deposit
(2) and to derive morphological parameters of the catchment area. Subsequently the
geological units within the catchment area were selected (3) and their area percentage
calculated (4).

For GIS analysis a raster based approach was chosen. The DEM was already
available in raster format, but local depressions (so called sinks) had to be removed
for the GIS algorithm to run smoothly. The DEM data then were used to generate

Fig. 1 Method of GIS analysis
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flow accumulation and flow direction grids of the study area. For the geological maps
a rasterization step was integrated into the geoprocessing tool.

For development the software ArcGis 10 [3] with its visual geoprocessing and
programming environment ModelBuilder was selected. Within ModelBuilder a set
of geoprocessing tools can be connected and the output of one geoprocessing tool
can be used as input for the next tool. The ArcGis extensions “Arc Hydro Tools” and
“Hydrology” provide geoprocessing routines for delineating a watershed by utilizing
the raster calculation extension “Spatial Analyst”.

The ModelBuilder environment was extended using the programming language
Python to provide additional functionality for accessing input parameters. A new
graphical user interface was added to the ArcGis toolbox to serve as input form for
geoprocessing parameters (Fig. 2).

Using ModelBuilder, the different steps of the analysis were combined into a
single geoprocessing tool, called “Regenerat”.

The Regenerat geoprocessing tool can be applied to a multitude of selected sedi-
mentary deposits at once. The tool processes the list of selected sedimentary deposits
one by one, storing the resulting spatial objects and calculated attributes in a geo-
database for further evaluation.

For verification, the parameters were correlated with sediment properties derived
from sediment analysis of samples taken in the field at selected sediment deposits [4].

Fig. 2 Input form for geoprocessing parameters



318 H. Reitner et al.

3 Results

For each selected sedimentary deposit the provenance area and the according rele-
vant parameters are calculated, such as surface area value, altitude range, mean and
maximum values of flow length, minimum, mean and maximum of slope angle and
the percentage of surface area of the lithostratigraphic units of the provenance area.

The results provide a quantification of the morphological and geological properties
of the provenance area to support the evaluation of the potential quality of the deposit.

4 Discussion

If the morphology of the terrain exhibits a distinctive alpine relief, the geoprocessing
tool is successful in the delineation of the provenance areas. Detailed geological maps
of the study areas are essential for a successful interpretation of results in terms of
sediment properties and resource quality. A regional study of aggregate resource
quality in Austria is planned to further enhance the correlation of the GIS results
with the results of conventional sediment analysis of samples taken in the field.

Acknowledgments The study was funded by the Austrian Academy of Sciences.
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Spatiotemporal Data Model for Multi-Factor
Geological Process Analysis with Case Study

Gang Liu, Xiang Que, Xiaonan Hu, Shanjun Tian and Jiacheng Zhu

1 Introduction

A spatiotemporal database can presents spatial, temporal, and spatiotemporal
database, it captures spatial, attribute and temporal aspects of data. All the individual
spatial and temporal concepts must be considered to construct the data conceptual
model [6], which can be used to support the corresponding spatial analysis [3]. Many
GIS data models have been designed to incorporate temporal information into spatial
databases, such as the Snapshot Model [1], the Space-Time Composite Model [4],
Event-based Model [5] and Object-oriented Data Models [2].

Current event-based or event-driven spatiotemporal data model (ESTDM) can
express causality of space-time changes during the spatiotemporal process. How-
ever, it cannot convey many interior factors that causing event changes or relationship
between events, even hard to extract event types from specific process. A spatiotem-
poral data model for multi-factor geological process analysis is proposed to better
support complex process simulation and analysis.

2 Spatiotemporal Data Model for Multi-factor Geological
Process Analysis

The concept of process is used in many fields, here means the event (activity)
sequences of a spatial object during its life cycle. Spatiotemporal process is the
evolution course of a spatial object along with the time progress during a period.
Geological spatiotemporal process is the evolution progress of geological object or
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object set along with time, which is the process with multi-granularity responding
to effective events.

Figure 1 shows the conceptual model of spatiotemporal data model with four
layers considering the expression of geological spatiotemporal process.

For the design of spatiotemporal data model, it is composed of spatiotemporal
class, geological object class, event class, status class, feature class, observation class
and geological model class, corresponding to the expression of geometry, attribution,
spatial relationship, semantics and behavior of geological spatial objects. The event
is generated by the object regularly or irregularly according to observation data or
other logical judgment.

The so-called extended spatiotemporal data model for geological process is Geo-
logical Event Multi-factor Driven Model, as depicted in Fig. 2.

Main operation mechanism of this GEMDM model is described as follows:
(1) Application analysis model loaded into simulation model base by user;

Fig. 1 Conceptual model of spatiotemporal data model with four layers considering geological
spatiotemporal process (The basic model within gridlines is given by Wu Huayi from Wuhan
University, China)
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Fig. 2 Geological Event Multi-factor Driven Model (GEMDM)

(2) Creating corresponding event filter in the event filtering layer; (3) Registering
related events to the receiving event queue; (4) When all the necessary events are
received by event filters, corresponding events in the receiving queue are transferred
to simulation model; (5) The simulation results are given out in the form of new
events and registered into event pool for further processing.

3 Case Study

An example of the supervision and control on typical coal mine production of China
is given to test the data model. Generally, there are more than 30 types sensor data
included in coal mine monitoring in China, such as sensors about carbon monoxide,
wind speed, wind pressure, temperature, gas, negative pressure, water level, coal
level, flow, active power, reactive power, current, power factor, frequency, voltage,
active energy, reactive energy, volume of production, Coal bunker full or empty,
position, fault detection and so on. Most of these sensors are related to gas and
device monitoring. However, some of them are associated with geological events,
such as water level, tunnel roof pressure and working surface status.

Gas supervision plays a key role in the coal mine safety production. For the coal
seam pressure prediction model, multi-factor driven model will receive following
events: gas density change, gas gushing amount change, change and mining depth
change. By means of model calculation and prediction, higher level events will be
generated: normal gas density, abnormal gas density, normal gas gushing amount,
abnormal gas gushing amount, normal gas pressure, abnormal gas pressure, etc.
which can be used in subsequent processing. The time series process is shown in
Fig. 3.
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Fig. 3 Timing diagram of gas supervision and simulation process

Based on coal mine sensor network, system will receive many types of supervision
events, such as tunnel extending event, mining surface change event, gas density
change event, gas gushing amount change event and gas pressure change event. By
the evaluation and analysis of multi-factor driven model, higher level events will be
generated, such as multi-factor geological and environmental normal or abnormal
events. According to the result of spatiotemporal process simulation, synthesize
anomaly information can be used in mine safety production decision-making.

4 Conclusion

Geological process is a complex spatiotemporal evolution process. A spatiotemporal
data model with extended multi-factor driven model is proposed in order to better
support geological process analysis. Geological event multi-factor driven model is
setting up event filter, constraint rule and simulation model to satisfy multi-level geo-
logical event processing. An example of coal mine supervision application focusing
on gas supervision process is described to show the mechanism and feasibility of
this model. Further researches include time granularity consistency and semantics
model of geological phenomenon.

This work is supported by National High Technology Research and Development
Program of China (No. 2012AA121401) and NSFC (No. 41172300).
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Use of Variational Methods in Geological
Mapping

Andrey N. Sidorov, Andrey G. Plavnik, Andrei A. Sidorov
and Michail S. Shutov

1 Introduction

Splines have been used in geological mapping since 1970s, when some fundamental
studies on the topic [1–3] were published. Initial use of spline-functions in geology
[4] discovered a great potential in modeling of geological surfaces and fields. The
spline-smoothing method became the most popular, because underlying geological
data contains inherent ‘noise’. Suppose that X, Y, Z are Gilbert spaces. An element
x∗ ∈ X is called smoothing spline if:

x∗ = arg min
x∈X

(‖Tx‖2Y + ρ‖Lx-z‖2Z). (1)

L—being the linear operator, which describes a measurements model, z—being the
measurements values, T—being the energy operator, which describes the physical
nature of the mapping field and ρ > 0—being the smoothing parameter. For volun-
tary T—operator we are suggesting the approximal solution, based on Ritz-Galerkin
method. By applying bicubic b-splines as the basis functions, we transform problem
(1) into a system of linear algebraic equations with a dispersal symmetric matrix.
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This approach, applied in GST (Geo-Spline Technology) software, allows usage
of not only values of geological field in the given points, in the mapping process, but
also derivatives (gradients or curvatures), differential equations and integral values.

2 Regional Mapping Problems

Today, one of most topical problems in geological mapping is construction of detailed
digital surface and property field models for large regions. One of the principal factors
in mapping of large territories is reliance on raw data of varying type and quality.
For example, it is in principle impossible to perform a new interpretation of all
seismic surveying carried out in Western Siberia over the past 50 years, applying same
methodology and parameters and achieve an accurate result. In reality we have to use
the interpretation made during this period by different specialists applying different
methods. For example, for some territories instead of a full seismic interpretation
we only have fragments of time, depth or contour maps, whereas for other regions,
only maps of different seismic horizons may be available. Our experience in surface
modeling in Western Siberia region with the spline smoothing method is described
in further detail below.

If we construct a grid model in an ordinary way using misaligned seismic inter-
polation, the result will be as shown in Fig. 1a. We have discovered that, the use of
this horizon shape, i.e.—first derivatives (gradients) along the seismic line, in the
mapping process, is more appropriate than the use of values of geological surface
in shot points. A ‘shape’ is a more reliable parameter than t0 values, as it is not
dependent on a seismic phase or any adjustments that may be made.

In the suggested approach (1) L—operator can be modified in a way that the values
in shot points should be considered as first derivatives along the seismic line. The
mapping result made with this method is shown in Fig. 1b.

Fig. 1 a ‘Structure noise’ appears when seismic interpretation, made by different specialists is
used in mapping process at ones in the ordinary way; b If the shape of horizon (first derivatives)
along the seismic line is used, ‘noise’ caused by regular discrepancies in interpretation, disappears
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We have used more than 2000 seismic surveys, approximately 10000 wells and
other additional data (grids, contour maps etc.) to build a detailed structural map of
the basis seismic horizon in Western Siberia that corresponds to the top of Jurassic
deposits (Fig. 2).

If the seismic or well data used for the mapping of certain geological surfaces
is insufficient, it is possible to use a relationship between the surface being mapped
and an existing geological field. This relationship is described by T-operator and
expressed as a set of differential equations: we call it—model of knowledge. In
general there are inhomogeneous, up to second order, differential equations with
coordinate depending coefficients.

The suggested approach makes it possible to construct maps of properties that
correspond to the physical behavior of the mapping parameter. For example, we can
modify T-operator as a Poisson equation to simulate a static fluid pressure field. We
are using a simple model of knowledge to build inner Jurassic surfaces, which are
not supported by detailed seismic interpretation:

∂Ha-t

∂x
= a

∂Ha-b

∂x
,
∂Ha-t

∂y
= a

∂Ha-b

∂y
. (2)

Fig. 2 Top of Jurassic deposits structure map for Western Siberia and detailed fragment of this
map; Grid size is 1500× 2000 km. approx., grid cell size—1× 1 km
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Fig. 3 Early Jurassic deposits thickness map; ‘red’ wells were used in a mapping process as data,
‘blue’ wells were used as test points; in more than 95 % of test points the model predicts zero early
Jurassic thickness, as it should be

Ha−b—is a Jurassic deposits thickness map: we have built this detailed map using
all available seismic interpretation and well data. Ha−t —is a thickness map between
a mapping surface and bottom of Jurassic deposits, a—coefficient of conformity.
When a = 1 the mapping surface has a shape as a top of Jurassic deposits, a = 0
when the inner horizon has a shape of a basement. This coefficient can be calculated
during a mapping task solving: in this case it will be the most appropriate to satisfy all
initial data. Despite its simplicity, model (2) is very reliable for mapping of Jurassic
horizons in Western Siberia, because it demonstrates good predictability (Fig. 3).

Therefore, we can conclude that due to the T-operator, mapping is not a simple
interpolation between data points, but a process of real mathematical modeling. In the
simplest case T-operator can be transformed in to a well-known minimum curvature
condition or if the mapping field can be described by a set of differential equations,
a specialist may apply a more complicated model of knowledge.
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Comparison of Methods for Depth
to Groundwater Calculation in Hard
Rock Areas

Ronny Laehne, Dorothee Altenstein and Wolfgang Gossel

1 Introduction

There are several methods for depth to groundwater calculation based on different
information. Information about geology or creeks are used to calculate the depth to
groundwater in an easy way. On the one hand, there are some methods which directly
calculate the depth to groundwater. On the other hand, many methods calculate
the groundwater surface at a first step. These results got subtracted by the DEM
information for calculating depth to groundwater.

Armbruster et al. [1] just used information about the geological units and set some
fixed values for the depth to groundwater. For the depth to groundwater they defined
a value for some aquifers like the Middle and Lower Bunter about 40 m (Fig. 1). This
is a direct method for depth to groundwater calculation. The result correlates with
the input data. Due to the simplified assumptions, the result looks non-realistic in
some parts of the investigation. This method can be used to set these fixed values at
a fist step of modeling.

In many other methods, an indirect way for calculating the depth to groundwater
got used. Therefore at a first step, a groundwater surface is calculated [2, 3]. The
following comparison describes the results of this first processing step. The chosen
methods base on the assumption, that all creeks are connected to the groundwater.
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Fig. 1 Digital Elevation Model of the hard rock investigation area without any observation well
(near Eschwege, Hesse, Germany)

2 Dataset

Based on one dataset, different opportunities to calculate the groundwater surface and
the depth to groundwater were tested. The dataset just contains DEM information,
shape of the creeks, creek direction and DEM slope. For the method of [1] additional
information about the geology and the unit thicknesses are necessary. For the last
mentioned method, fixed values for depth to groundwater are defined, e.g., for the unit
Muschelkalk 20 m got considered. The result for the depth to groundwater calculation
reflects the data input (Fig. 2). The method is a opportunity to get a fast overview
about the depth to groundwater, but the result is not sufficient.

Fig. 2 Depth to groundwater, based on the method of [1]
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3 Comparison of Different Methods

By comparing the indirect methods, the results mainly depend on the chosen inter-
polation method, in this case Nearest Neighbor interpolation, Triangulation, IDW
and Kriging.

In a fast way, a Nearest Neighbor interpolation should be performed to generate
the groundwater surface. [3] describes a method based on the creek dataset and later
Triangulation. This method gives a non-realistic result. But it is useful to take this
result as a first step in groundwater modeling e.g., as an input for some groundwater
recharge calculations (Fig. 3). If it is necessary to create a more realistic result for
the groundwater surface, interpolation methods like IDW or Kriging or the method
Hydro-FaBer should be preferred.

If the dataset (DEM information, shape of creeks) is just interpolated by the
IDW method, the result is more realistic, but there are some poor results in special
parts of the investigation area. This method and the method based on the Kriging
interpolation, don’t take into account, that there can be made some assumptions for
optimizing the result. Usually the creeks are under effluent conditions and the shape
of groundwater surface depends on the DEM slope and the geology. The method
Hydro-FaBer integrates the effluent conditions and the DEM slope to calculate the
groundwater surface.

Based on these information and the assumptions a point based calculation for the
depth to groundwater was done. The result (Fig. 4), e.g. the shape of the groundwater
isolines is more realistic than the results of the other methods. A comparison to
measured values was not possible due to the lack of these information.

Fig. 3 Groundwater elevation, based on the method of [3]—TIN interpolation (dataset: creek
elevation)
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Fig. 4 Groundwater elevation, based on Hydro-FaBer method [2] and Kriging interpolation
(dataset: creek elevation, creek direction, creek slope)

4 Conclusion

The method Hydro-FaBer can be used in areas with poor data amount about the
groundwater surface. Thus, an overview and an input parameter for the hydrogeolog-
ical modeling process got generated. Especially for assessing groundwater recharge,
vulnerability mapping or as data input for numerical groundwater models in hard
rock areas this method produces very good results for the groundwater surface.

For Hydro-FaBer only information about the creek slope, the creek direction and
a DEM are needed. Therefore, the developed method studs for generating reasonable
depth to groundwater, represented by a poor database. As a result, the comparison
of different opportunities for calculation depth to groundwater shows the significant
advantages of the method Hydro-FaBer.
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Line-Geometry-Based Inverse Distance
Weighted Interpolation (L-IDW): Geoscientific
Case Studies

Wolfgang Gossel and Michael Falkenhagen

1 Introduction

In geosciences parameter distributions and surfaces play an important role for the
understanding of spatial processes. This information is, in most cases, represented
by a point or cell data set in regular distances, a raster or grid. The values have to
be interpolated to get this distribution. For certain topics, the basic information is
given as isoline maps. This is advantageous compared to point data sets because
additional expert knowledge can be inserted in the construction of the isolines. This
method is used in geomorphology as well as in other geosciences. Topographical
maps, geological structures, and contaminant distributions are drawn by experts not
only based on point information but also on knowledge about coastlines, remote
sensing images, the general directions of geological features (e.g. glacial channels
or other erosive structures) or preferential groundwater flow directions.

Interpolation techniques can support the workflow from an isoline map to a qua-
sicontinuous regular raster only to a certain extent. They are based on point data and
use geometry based algorithms such as the triangulation method, the nearest neigh-
bor method, the inverse distance weighted method or the spline method. Another
approach is the use of spatial statistics: Geostatistical methods are used first to calcu-
late the spatial correlation of the measured data, based on this parameter the interpo-
lation is carried out. There are a few methods available to generate a raster directly
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based on isolines: (1) Triangulation takes the line parts as arms of the angle so that a
fit to the lines is to a certain extent guaranteed. (2) Point interpolation methods can
also be used by transferring lines to points but, in this case, line geometries are not
persistent.

The utility of this method can be tested by applying it to certain processes such
as flow paths, catchments as well as erosion, and sedimentation are processes that
can be easily understood and estimated based on a visual analysis.

2 Methods

The L-IDW method is described in [1] in detail. In this method, the two nearest
isolines are taken to calculate the value for a raster point or grid cell. In case of
geometrical complications, other line parts are used for the estimation of the value
as described in [1].

The L-IDW method provides the best interpolation results especially in “valleys”
and “hills”.

To test its practicality in geomorphology, flow path analysis derived from a digita
l elevation model is used to compare the results, obtained with the L-IDW method
with those achieved by some other approaches. The isolines of a topographical map
of scale 1 : 25,000 have been digitized and interpolated with the L-IDW method
to a 10 m raster. The midrange mountain area at the river Saale in Saxony-Anhalt,
Germany, that was analyzed has heights between 98.75 m above sea level (masl) and
191.79 masl.

Another test has been focused on the outline of glacial channels. The erosional
structures should be consistent in the interpolation result.

3 Results

In Fig. 1 a part of the resulting raster of the midrange mountain area is shown. The
overlay of the flow paths is generated automatically by a GIS module. It is clearly
visible that the flow paths meet the outline of the valley and also have nearly no
breakdown in the current of the valley, as would be the case for flattened valleys in
case of interpolation with triangulation.

In Fig. 2 the result for the base of the Quaternary in a part of Lower Saxony
(Germany) is shown. One possibility for proving the result is the analysis of cross
sections. The cross section perpendicular to the channel shows that there is no over-
shooting or undershooting with this method. The cross section along the glacial
channel also shows the dominance of the isolines, that yields a smooth bottom of the
valley without any “bulls eyes”.



Line-Geometry-Based Inverse Distance Weighted Interpolation (L-IDW) 335

Fig. 1 Result of the L-IDW interpolation in a midrange mountain area. The flow paths were
generated automatically
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Fig. 2 Result of the L-IDW interpolation for the base of the Quaternary in Lower Saxony. The
cross sections along and perpendicular to a glacial channel are a good evaluation method

4 Discussion

The results of the interpolation method for the two case studies are convincing.
The comparison to the results of other interpolation methods shows a better fit to
processes for the L-IDW method. The workflow for data input and visualization of
results focuses common GIS data formats and the exchange via ASCII data. This
makes data preparation not always easy but transparent and the result reliable.
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Two-Dimensional Hydraulic Modeling and
Analysis of Morphological Changes in the
Palancia River (Spain) During a Severe Flood
Event on October 2000

Beatriz Nácher-Rodríguez, Ignacio Andrés-Doménech, Carles Sanchis-Ibor,
Francisca Segura-Beltrán, Francisco J. Vallés-Morán and Eduardo Albentosa
Hernández

1 Introduction

In October 2000, the Palancia River underwent a large flood, which substantially
modified the morphology of the river channel. These changes took place on a river
bed previously altered by public works aimed at cleaning and channelizing the river
section. The flood partially restored the original braided morphology, reconstructing
bars and channels [1]. Moreover, river incision processes increased, particularly
downstream of bridges. The aim of this work is to analyze the morphosedimentary
changes through the development of a two-dimensional hydraulic model based on
information of the recent flood event. The use of these tools is widely used for several
purposes, such as urban flooding, environmental issues, or riparian vegetation or
studies [2].
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2 Regional Settings

The Palancia River is 85 km long. The river basin (910 km2) is regulated by the
Regajo (6.6 hm3) and Algar (6.3 hm3) reservoirs. The mean annual flow is 1.3 m3/s
in the Regajo dam, but in the lower 25 km long reach the river bed is usually dry. The
study encompasses the lowermost 6 km section of the river.

3 Materials and Methods

Channel morphology changes were analyzed comparing orthophotographs from
dates previous and subsequent to the event (2000 and 2004), and oblique aerial
photographs taken some days after the flood. Oblique images were rectified using
ArcGIS TM version 9.3 (ESRI, Redlands, California, 2009), selecting between 10
and 12 ground control points (GCPs). The image distortion was assumed to be par-
abolic and, for this reason, a 2nd order polynomial was employed for georectifying.
A DEM obtained from 2003 LiDAR data and field works contributed to improve the
morphological analysis. River channel forms and textures were separately mapped.

The hydraulic numerical simulation was performed using GUAD 2D [3]. This
software is a two-dimensional simulation model for the analysis of flood events. The
water movement is governed by the laws of mass and momentum conservation under
shallow water hypothesis. This implies that the variables are depth averaged, and a
vertical hydrostatic pressure distribution is assumed.

In order to run the model, three basic inputs are needed. First of all, a 1 × 1 m2

Digital Elevation Model (DEM) of the study area was developed from vector topo-
graphic data. Then, surface resistance to the flow had to be estimated and introduced
in the mathematical model by means of the Manning’s roughness coefficients. The
assessment of these coefficients was performed taking into account both grain size
distribution in the river bed and vegetation features along the reach, with the help of
historical ortophotographs, according to Cowan’s estimation procedure [4]. Finally,
the boundary and initial conditions were set. A hydrological study was performed
to obtain a 35 hours long hydrograph (24–25 October 2000), which was assigned as
the upstream boundary condition. Downstream, the water sea level was set.

4 Results

The main results obtained from the mathematical model are water depth and velocity
in each cell of the model. These values can be used to perform a hydraulic-hydraulic-
sedimentological analysis, in order to establish the mobilization zones of the bed
material.
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This kind of analysis requires not only the hydraulic variables, but also the grain
size distribution of the river bed material, as the capacity of the flow to mobilize a
granular material is closely bound to the average diameter of its particles (from 40
to 80 mm in the studied reach). Bedrock, concrete protections and roads were not
included in this analysis.

Once the grain size was established, the hydraulic-sedimentological analysis was
applied. This standard procedure is only valid outside the area of influence of bridge
structures. It is based on the comparison of the shear stress produced by the flow,
and the critical shear stress. Shear stress can be computed at each cell by means of
the shear velocity (u∗) as shown in Eq. (1), while critical shear stress for a certain
diameter (D) can be obtained applying Eq. (2). ρ is water density, γ and γS water
and sediment specific weighs, respectively.

τ0 = ρ u2∗ (1)

τc = 0.047 (γS − γ ) D (2)

These results were compared with field observations. The flood created a new
braided pattern along the studied reach. Four different processes were identified:
central bar and transverse bar formation (deposition), and chute cutoff and lobe
dissection (erosion). Severe scour was also identified downstream two bridges.

5 Discussion

From the sedimentological analysis performed, two main conclusions arise. First,
regarding the general behavior of the reach, the wider zones of mobilization coincide
with those areas where the river has recovered the original braided pattern. On the
other hand, it can be observed that the analysis does not reproduce accurately the
scouring that occurred downstream the bridges. Indeed, severe erosion occurred at
the Canet bridge (Fig. 1), but the model does not predict such mobilization of bed
material. This is due to local tridimensional effects on the flow, like those related
to the bridge piers, or also due to local changes in velocity as a consequence of
variations in the bed material rigidity. The methodology presented in this paper does
not take into account those effects, and further research is now being carried out in
order to study local effects on scouring downstream bridges due to flow contraction
and changes in the bed material rigidity [5].

6 Conclusions

The comparison of model results and channel morphological changes, reveals that
these models constitute a powerful tool for the prediction of the river bed evolu-
tion. Further research is needed to improve calibration and to assess impact of the
infrastructures.
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Fig. 1 Mobilized and non-mobilized areas in the Palancia river basin as predicted by the hydraulic-
sedimentological analysis performed in the studied reach. The detailed view shows the effects of
sediment scour downstream the Canet bridge

References

1. Segura-Beltrán, F., & Sanchis-Ibor, C. (2011). Efectos de una crecida en un cauce antropizado.
La riada del Palancia de octubre de 2000. Cuadernos de Geografía, 90, 145–167.

2. Néelz S., & Pender G. (2010). Benchmarking of 2D Hydraulic Modelling. Bristol: Environment
Agency. ISBN: 978-1-84911-190-4.

3. Inclam SOFT (2012) Software modules Guad Creator (v1.1.1), Guad Gui (v1.2.0) and Guad
View (v1.8.15), http://www.inclam.com/INCLAMSOFT/is_descargas.php

4. Cowan, W. L. (1956). Estimating hydraulic roughness coefficients. Agricultural Engineering,
37(7), 473–475.

5. Nácher Rodríguez, B. (2012) Influencia de la contracción y de los cambios de rigidez del lecho
en las condiciones críticas de inicio del movimiento aguas abajo de puentes sobre cauces. Tesina
de Máster. Universitat Politècnica de Valencia. http://hdl.handle.net/10251/27858.

http://www.inclam.com/INCLAMSOFT/is_{}descargas.php
http://hdl.handle.net/10251/27858


Stream Length-Gradient Index Mapping
as a Tool for Landslides Identification

Jorge Pedro Galve, Daniela Piacentini, Francesco Troiani
and Marta Della Seta

1 Introduction

Landsliding may have significant impact on the drainage network of montanious
areas, where pronounced knickpoints can develop along the stream thalweg, influenc-
ing long-profile shape and trends. Moreover, marginal spillways, epigenetic gorges
and terraces can be produced by subsequent stream adjustments. The effects of land-
slides over the hydrography are generally superimposed to other factors that control
stream-profiles and landscape evolution, such as active tectonics, climate changes,
lithology, and base-level variations. Hence, a better understanding of how landslides
influence drainage networks and stream profiles is needed before either slope land-
forms or channel morphology can be used to infer the effects of external forcing
on landscape evolution. Many quantitative geomorphic parameters like the Stream
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Length-Gradient (SL) index1 [1], have been demonstrated to be suitable for detecting
in homogeneous lithologies anomalies on stream-profiles related to active tectonics
[2] and other sub-surface and surface processes [3]. A recent study conducted in
a small catchment of the Central Apennines (Italy), [4] pointed out the influence
of active deep-seated landslides on the occurrence of extreme anomalies of the SL
index.

Nowadays, the availability of high-resolution Digital Terrain Models (DTMs) and
the rising use of GIS software have led to a substantial improvement of the quantita-
tive geomorphic methods to analyse large areas in a short time and cost-effectively.
Therefore, it is fundamental to assess the sensitivity of geomorphic parameters of
drainage networks and relief, such as the SL index, to suitably detect surface and
sub-subsurface processes, which are, in turn, helpful to unravel the geomorphological
evolution of a given area.

This work focuses on the spatial analysis of the SL Index within the piedmont
area of the southern portion of the Emilia-Romagna Region (north Apennines, Italy)
to test its suitability as a tool to support landslide detection.

2 Study Area

The study area covers ca. 2300 km2 within the southern sector of the Emilia-Romagna
Region in the Northern Apennines (Italy), including the mountain range, and the asso-
ciated piedmont areas. The bedrock generally consists of terrigenous rocks belonging
to the Miocene hemipelagic turbiditic sequence. The formation consists of arenites
and pelites considerably varying in thickness and frequency within the area. The
different rheological behaviour of the outcropping lithologies (arenites vs pelites), as
well as the local litho-structural factors (i.e., downslope dipping of strata), favour the
occurrence of frequent large deep-seated landslides (rock slides, earth flows, deep-
seated gravitational slope deformations, and composite landslides). Large landslides
within tributary basins, or reactivation of pre-existing landslides, often reach the
streambeds and have generated knickpoints, epigenetic gorges, and in some cases
stream-blockages.

3 Materials and Methods

The input dataset for the SL index computation derives from a 10 × 10 m gridded
DTM. The point values have been interpolated with the Ordinary Kriging method to
obtain the map of the areal distribution of the index. Successively, SL index anomaly
maps have been elaborated and analyzed (Fig. 1a).

1 The SL index derives from the Hack’s equation: SL = (dH/dL)×L, where: dH is the elevation
difference between the extremes of a given stream-reach, dL is the length of the reach, and L is the
distance from the mid-point of the reach upstream to the divide.
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4 Results

The first result of the processing is a map of the areal distribution of the SL index.
This map has been filtered to discard background values related to the different
outcropping lithologies and, finally, the anomaly map of Fig. 1a has been obtained.
This map and the profiles produced from it show the points/areas around the stream-
segments where the extreme index values occur (Fig. 1b). At a regional scale, the
alignments of this anomalies often coincide with the main active tectonic structures,
highlighting knickpoints or knickzones related to the activity of the main faults or
indirectly generated by the adjustment of streams to the local litho-structural setting.
On the contrary, along tributary streams the main anomalies lie in correspondence
with, or immediately downstream, large mass movements reported in the regional
landslide inventory or in areas where the presence of landslides has been inferred by
an initial aerial photo-interpretation (Fig. 1d). These points/areas have been checked
in the field by a detailed geomorphological survey (Fig. 1c). After the survey, the 90 %

Fig. 1 Some examples of the aspects analyzed in the work. a SL index anomalies map indicating
the knickpoints generated by landslides. b Example of one of the longitudinal and SL index profiles
analyzed in the study area (Savio River). The number of anomalies related to landslides is marked.
c Photo of a knickpoint generated by a landslide (Acquacheta Fall). d Geomorphological setting of
the Acquacheta Fall and SL index points. The anomalous values are indicated by green and yellow
points. L Landslide; D Lacustrine deposits accumulated because of the landslide dam responsible
of the knickpoint
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of the identified anomalies (27 out 30 anomalies) resulted to be connected to stream
modifications due to active or partially reactivated large deep-seated landslides.

5 Discussion and Conclusions

This study shows that the stream-profile metrics may have a high potential in different
geological studies when wide areas have to be studied with limited resources in a
very short time. In particular, the application of the SL index mapping as a tool
to detect landslides has demonstrated to be useful along tributary streams network,
where the method provided the best results. On the contrary, in agreement with the
current literature, along trunk valleys the SL index mapping was a useful tool to detect
active tectonic structures. Finally, the SL index mapping can be a helpful method to
detect those landslides that directly reached the streambeds and whose magnitude
and activity was high enough to generate stream perturbations.
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Quantitative Method on Historical
Reconstruction of Coastal Geomorphological
Change on Wave-Dominated Coast:
A Case Study of the Pomeranian Bay,
Southern Baltic Sea

Junjie Deng, Jan Harff and Joanna Dudzinska-Nowak

1 Introduction

Sea coasts are highly sensitive to the on-going global climate and environment
changes, such as accelerated sea level rise and intensification of extreme storm
events [1]. This is the case at the southern Baltic Sea coast, where eustatic change
and glacio-isostatic land subsidence illustrated by [2] cause a relative sea level rise
of up to 2 mm/y, and where strong storms events lead to continuous coastal retreat
along the Polish coast [3]. Coastal protection and defense are required increasingly.
Therefore, quantitative methods are needed to estimate coastal geomorphological
changes including the reconstruction for the last centuries and the projection by
2100 AD (time span of climate modelling projection). The methods are applied at
the Pomeranian Bay, southern Baltic Sea. One of selected key areas is shown in Fig. 2.
This paper generally describes this methodological approach and its application.

2 Summary of Methodological Studies

The overview of the methodology is illustrated in Fig. 1 as a flow chart consisting
of input data, methods and the outputs. There are three key methods including Geo-
graphical Information System, Dynamic Equilibrium Shore Model and complex long
term morphodynamic model BS-LTMM that is described in detail in [4].

J. Deng (B) · J. Harff · J. Dudzinska-Nowak
Institute of Marine and Coastal Sciences, University of Szczecin,
ul. Mickiewicza 18, 70-383 Szczecin, Poland
e-mail: junjie.deng@univ.szczecin.pl

J. Harff
e-mail: jan.harff@univ.szczecin.pl

J. Dudzinska-Nowak
e-mail: jotde@univ.szczecin.pl

E. Pardo-Igúzquiza et al. (eds.), Mathematics of Planet Earth, 347
Lecture Notes in Earth System Sciences, DOI: 10.1007/978-3-642-32408-6_77,
© Springer-Verlag Berlin Heidelberg 2014



348 J. Deng et al.

Fig. 1 The flow chart (of usage) of research methods

High resolution bathymetrical profiles are interpolated by Kriging that can pro-
vide Best Linear Unbiased Estimation. The accuracy of the historical maps (i.e.
Messtischblatt maps) is quantitatively estimated by Root Mean Square Error of spa-
tial differences of fixed points between historical maps and modern maps.

A mass balanced three dimensional source-to-sink model based on a generaliza-
tion of Bruun rule model [5], named as Dynamic Equilibrium Shore Model (DESM),
is elaborated. The main hypothesis of the model is that Lateral sediment source-to-
sink transport dominates sediment flux in the Pomeranian Bay coastal system. The
impact of rivers is limited at the vicinity of river mouth. The coast can thus be clas-
sified into two types in terms of sediment budget: semi-enclosed coast and open
(boundary) coast. The research coastal area is subdivided into n zones with uniform
width along the coast (Fig. 2). Based on recent DEM, for any time point t ≤ 0, the
depth of cross-shore profile representing each zone is described by the exponential
function with the origin at the shoreline and the end point at closure depth:

y = a(l− e(b0+�bt)(x+�ct))− st, t ≤ 0. (1)

where a is the exponential limit of the profile; b0 is modern curvature coefficient;
�ct is the known coastline displacement and St is known relative sea level change
compared with recent time 2000 AD (t = 0). The geomorphological change is thus
described by the change of parameter �bt that is calculated by numerical iterations
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Fig. 2 Coastline changes with error bars in the past (reconstruction) and in the future (projection)
with sea level rise scenarios of 12 and 24 cm by 2100AD

until the sediment budget of the research coast is balanced. The model DESM is vali-
dated by a comparison with long-term morphodynamic forward model (BS-LTMM)
that starts with ∼1900 AD DEM approximated by DESM, and by using nautical
chart made in 1980s AD. The detail of description and validation of DESM is given
in [6].

The sediment budget calculated by DESM can be simplified into a function of
coastline change, sea level rise and other variables that can be obtained from recent
DEM. The governing equations for bed level changes [7] connect the sediment budget
functions with wind-wave climate driving lateral sediment flux. Therefore, the future
coastline change can be projected when future wind-wave climate is stationary by
2100 AD.
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3 First Results and Conclusions

The result at Swina Gate area of the Pomeranian Bay has led some preliminary
conclusions. In Fig. 2, the historical coastline changes are quantified including the
accuracy error bars. Besides, it also shows that DESM is also able to project (predict)
reasonable coastline changes based on future sea level rise scenarios. The method-
ology proposed as a general flow chart in Fig. 1 can be a sufficient tool to study
the historical geomorphological changes and the projection (prediction) of future
changes, despite the fact that this methodology is limited at the sandy coast with
continuously rising sea level and relatively stationary wind-wave climate.
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Linfo: A Visual Basic Program for Analysis
of Spatial Properties of Lineaments

A. C. Dinesh, Vipin Joseph Markose and K. S. Jayappa

1 Introduction

Spatial properties of lineaments such as length, orientation, density and frequency
have attracted research interest in the past few decades. Recent developments in
remote sensing, geospatial technologies and computational algorithms will con-
tribute to overcome the difficulties encountered in traditional lineament mapping.
Major application of lineament studies are site selection for construction of dams,
bridges, roads etc., as well as landslide risk assessment [1]; structural geological
studies [2] and tectonic geomorphology [3]. Several computer programs such as
SAL [4] and LINDENS [5] were developed for analyzing the spatial properties of
lineaments. All these programs explained the detailed methodology for data process-
ing and visualization. Geographical Information System (GIS) is the primary tool
used for visualization of lineaments; hence a computer program which supports the
GIS data formats will give an easy way for lineament analysis and interpretation.
This paper describes a visual basic program called Linfo, which can be used for
calculation of spatial properties of lineaments.
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2 Program Development

The program was developed in visual basic 6 which supports GIS platform and its
structure. The primary aim of Linfo is to provide input for generating spatial maps
of various lineament parameters such as length, density, frequency and intersection
density. Direction of lineaments is usually represented by bearing, which divides
direction (0–360◦) into four quadrants of 90◦. In this system, north and south are the
dominant directions and measurements are determined in degrees from one of these
directions. Figure 1 shows a typical lineaments in which (x1, y1), (x2, y2), (x3, y3)

and (x4, y4) represent starting and end point coordinates of two lineaments. The
following equation is applied for calculating the direction.

θ = Atan2(Sin(x2−x1).Cos(y2), Cos(y1).Sin(y2)−Sin(y1).Cos(y2).Cos(x2−x1)

(1)
where, x1, y1 and x2, y2 are longitude and latitude of starting and end points, respec-
tively.

In order to find the intersection points (X, Y) of lineaments; the following equation
is applied (Fig. 1):

X = x1 + ua(x2 − x1) (2)

Y = y1 + ua(y2 − y1) (3)

ua = ((x4−x3)(y1−y3)−(y4−y3)(x1−x3))/((y4−y3)(x2−x1)−(x4−x3)(y2−y1))

(4)
ub = ((x2−y1)(y2−y3)−(y2−y1)(x1−x3))/((y4−y3)(x2−x1)−(x4−x3)(y2−y1))

(5)
If the denominators of the Eqs. (4) and (5) are 0, then the two lines are parallel. If
the denominators and numerators of the equations for ua and ub are 0, then the two
lines are coincident.

Fig. 1 Methodology for cal-
culation of lineament orienta-
tion, length and intersection
point (see text for explanation)
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Lineament density is defined as the total length of lineaments per unit area. Fre-
quency indicates the total number of lineaments per unit area. Intersection density is
the total number of intersection points per unit area. The Linfo is designed to obtain
unit areas by regular square grids defined by the user. After establishing the grids,
the program calculates the total length, number of lineaments and number of inter-
section points within each grid and divides those values by the grid area. In order to
check the efficiency and accuracy of Linfo, the results are validated by using linea-
ment data of Kerala state, southwest India. A total of 175 lineaments were extracted
from a lineament map of south India published by the Geological Survey of India
and determined their spatial properties using Linfo. The lineament directions were
determined and a rose diagram was generated using the program (Fig. 2a). A fixed

Fig. 2 a Location and lineament map of Kerala state. Spatial maps of lineament parameters: density
b, frequency c, and intersection density d. These maps are prepared in ArcGIS 3D analyst by using
the data calculated in grids covering 25 km2 area in Linfo
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grid size of 25 * 25 km is used to calculate the spatial properties of lineaments. All
the three spatial maps (density, frequency and lineament intersection density), pre-
pared by using Inverse Distance Weighted (IDW) interpolation method are shown in
Fig. 2b, c, d.

3 Conclusion

An attempt has been made to develop the GIS utility program ‘Linfo’ that allows users
to derive basic spatial properties of lineaments with greater accuracy. The lineament
parameters such as orientation, length, density, frequency and intersection density
can be easily calculated using the program. Linfo generates the regular square grids
over lineament data and calculates the spatial properties in each grid. The program
can handle large number of lineaments at a time and calculates the results faster than
any other software. Testing of the program in a specific area shows that Linfo is
effective in calculating lineament parameters such as density, frequency, intersection
density, using the text data of ESRI line shapefile as an input. The program is a
freeware that can be obtained from the corresponding author.
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Numerical Karst: Spatio-Temporal Modelling
of Karst Aquifer Systems

Eulogio Pardo-Igúzquiza, Sergio Martos, Juan Antonio Luque,
Juan José Durán, Carolina Guardiola-Albert and Pedro Robledo

1 Introduction

Karst aquifers are very important as groundwater resources and as valuable environ-
mental systems both on the surface and underground. However, their study requires
approaches that go beyond those applied to typical detrital aquifers for two impor-
tant reasons. First, karst aquifers usually correspond to positive relief features with
limited or no pumping test data. Second, the karst aquifer is a very complex system
where three kinds of porosity interact: matrix porosity, fracture porosity and con-
duit porosity. Hence, information is usually very scarce for such complex system.
Because of this, the traditional approach has been to use black-box models where
the main empirical data are the discharges from the karst springs. A transfer function
is then created that relates rainfall to spring discharge. However, processes in karst
systems are subject to significant spatio-temporal variability (rainfall, recharge, con-
duit and fracture density, unsaturated zone thickness, etc). The key of a transparent
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box approach is the integration of all the available and reliable information, while
the information that is uncertain can be simulated using an inverse procedure as
described below.

2 Methodology

The inverse methodology for karst modelling is shown in Fig. 1. The main difficulty
is the estimation of the location and density of conduits inside the karst massif.
The only data available are provided by speleological exploration. However, this
information is limited because not all the existing conduits have been explored or
mapped and there is a limit to the size of conduits that can be explored. Nevertheless,
they provide very valuable information that, together with a map of potholes and
caves, can be used to create a map of conduit density. The sections that cannot be
directly observed can be estimated through a procedure of karst conduit simulation
that has been developed [1] to this end. However the conduit network is just one
part of the karst system which has four additional important layers that must be
estimated: the soil layer, the epikarst layer, the vadose layer and the saturated layer.
The soil layer and the uppermost part of the epikarst layer must be determined for

Fig. 1 Flowchart of the proposed methodology for a transparent box approach to the study of karst
aquifers
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water soil storage and recharge assessment. A method to estimate spatio-temporal
recharge has been proposed in [2]. Furthermore, the epikarst may be well developed
and may even be thick enough to form a perched aquifer. A method for mapping
the epikarst using remote sensing and field data has been described in [3]. Another
problem is the delineation of hydrogeological basins when the aquifer is drained by
more than one important karst spring. Nevertheless, the most challenging problem
is karst system flow simulation. First of all there are two kinds of flow. A fast flow
that circulates through conduits that is responsible for peaks in the hydrogram after
rainfall events. This flow can be simulated from the equations of open channel flow
and pipe flow depending on the hydrodynamic conditions. Slow flow includes vertical
flow through the vadose zone and flow along the saturated zone until the infiltrated
water is discharged at the spring. There is also an interaction between the water from
the pores and fractures and the conduits. Because the hydrograms of the springs are
available, they can be used to calibrate the final spatio-temporal model of the karst
system using an inverse procedure, whereby the characteristics of the different layers
and conduits are changed until the simulated discharge fits the measured discharge.

3 Results

The Sierra de las Nieves is a high relief karst massif that hosts an important karst
aquifer. It covers around 100 km2 and it is drained by three main karst springs: Río
Grande, Río Verde and Río Genal. The structure of the aquifer is composed of two
blocks, one uplifted (Torrecilla block) with respect to the other (the Nava block), and
separated by the Turquillas fault zone. Figure 2 shows recharge at one location in

Fig. 2 Effect of the epikarst on percolation
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the Torrecilla uplifted block and the effect of epikarst thickness on water percolation
through a significant vadose zone of 1000 m (which is the case for the Sierra de las
Nieves). The graph shows that the epikarst has the effect of delaying and attenuating
the percolation wave. The routing of water from recharge to discharge is the main
challenge of this project and, in order to address this issue, a spatially distributed
description of the aquifer must be available. In order to achieve this, maps of spa-
tially distributed recharge, epikarst development, vadose zone thickness, porosity
and conduit density have been designed. The integration of all of the information
together with the use of flow modelling (Richards’ equation for unsaturated flow,
Manning’s equation for conduit flow, Darcy’s equation for saturated flow, and the
coupling between the different kinds of flow) is performed following the flow chart in
Fig. 1, in order to gain understanding of the hydrogeological behaviour of the Sierra
de las Nieves Aquifer.

4 Conclusions

Kart aquifers are complex systems and modelling them is a challenging task. This
is even more complicated when the karst aquifer is in a high relief karst massif with
a well developed network of conduits. Modelling a well-developed karst aquifer
requires resolving several challenging problems, including creating a numerical
model for the karst media itself and mathematical modelling of flow through the
karst aquifer. The modelling of data layers using GIS technologies and an inverse
approach are being used in order to provide a practical and cost-effective solution.
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Surface Insights of Structural Relief Distribution
Within the Madrid Cenozoic Basin from Fluvial
and Terrain Morphometric Index

Julio Garrote and Guillermina Garzón

1 Introduction and Methods

In this paper we present the results of a morphometric analysis of the drainage net-
work and relief of the Madrid Basin [1], aimed at checking whether they have been
controlled by the distribution of lithologies or the stress field. The basin consists
[2] of Late Miocene to Pliocene exorheic sediments overlying Oligocene to Mid-
dle Miocene deposits (Fig. 1). Some authors [3] have proposed that an extensional
deformation has acted parallel to the NNW compression from the Miocene, not as
a distinct extensional setting, but rather as result of flexural bending due to regional
compression.

2 Results

The various indexes calculated (Fig. 2d–f) show a spatial distribution along the study
area, which must be controlled either by the underlying lithology either by the pres-
ence of structural elements within the basin associated with recent tectonic stresses
field; compressive stress field according to N-S to NW-SE and extensional stress
field ac-cording to NW-SE [3]. The morphometric indexes results were compared
first with the spatial distribution of lithologies within the basin, with the objective of
determining possible relation-ships between the different variables. Two aspects can
be highlighted, on the one hand the existence of a certain correlation between index
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Fig. 1 Madrid Basin location map (a). HI map for the Madrid Basin (b) and its relationship with
spatial distribution of lithologies (c). Example used lithologies legend: 5a: Limestones, marls and
dolomites (Miocene–Pliocene); 5c: Gypsum and marl (Miocene); 5d: Arkosic sands (Neogene)

Fig. 2 Twelth order polynomial fit for the Madrid Basin (a) and residual map from DMT—
Poli-nomial model (b). Twentieth order Harmonic model for the study area (c). Morphometric
indexes of the basin (BL, Dd and HI) and relationship with high and low elevation areas of the
harmonic model (d, e and f)

values and each lithologic unit defined. Furthermore, and more importantly, that the
spatial distribution of morphometric index values is not adjusted to the distribution
of lithologies, since there is a significant variability in the values within the same
lithological unit, as reflected in Fig. 1.
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The structural control on the relief of the basin has been previously pointed out
[4] through the harmonic analysis of the relief. Here, we also show the results of a
polynomial analysis (Fig. 2a) and its comparison with the DTM in order to separate
the regional component of the relief (Polynomial model) and the map of residuals
or local variations (Fig. 2b) [5, 6]. The latter shows a similar distribution of high
value anomalous areas pointed to by the harmonic analysis (Fig. 2c). Based on these
results, 20th order harmonic surface will be used as a model of deformation within
the basin.

3 Discussion and Conclusions

After confirming that morphometric index results could not be satisfactorily
ex- plained by the distribution of lithologies in the region, we have compared the
differ- ent indexes with the basin deformation model obtained from the harmonic and
polynomial analysis. In all cases (Dd, BL and HI), it can be observed the relationship
between the uplifted and subsided areas of the harmonic model and the magnitude
of the values that the morphometric indexes show (Fig. 2d–f). The uplifted areas of
harmonic model are related with high BL and HI values, and low Dd values.

It can be also seen from the harmonic model results, the existence of lineaments in
a NE-SW preferred direction [4], which are playing an important role in the configu-
ration of the relief and deformation within the basin. However, the results shown
by the morphometric analysis, point to the presence of other important directions
that are not clearly reflected by the harmonic model. Following this idea, we derived
the residual value map (Fig. 3a), which highlights the presence of lineaments within

Fig. 3 Structural lineaments interpreted from Harmonic model residual map (a). Overlapped over
the Harmonic model (b), three different situation can be identified for the lineaments
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the basin, with a wider directional range than that shown directly by the harmonic
model; and confirming what has been noted previously by morphometric indexes.
This lineament scheme is more complex than previously proposed [1] from the T
Factor index, even though some similar features and lineaments could be observed.

Lineament overlapping on the harmonic model (Fig. 3b) can be summarized
in three situations: NE-SW lineaments observed clearly in the harmonic model;
NE-SW lineaments which after interpretation in residual map could be easily defined
over harmonic model; or NE-SW lineaments which have not clearly reflected in the
harmonic model. In the latter two cases, it is necessary the presence of active struc-
tures responsible for some relief deformation beyond those defined from the harmonic
model [6]. In summary, the morphometric indexes derived for several variables of
the relief and drainage network of the Madrid Basin show the presence of a structural
control on its evolution, which together with the erodability of sediments comprising
the Tertiary basin fill, has been responsible for the present relief spatial distribution
as well as for the shape and development of the main drainage system.

Acknowledgments This work has been funded by the project CGL2011-23857 of the Spanish
R&D National Plan (FECYT).

References

1. Garrote, J., Heydt, G. G., & Cox, R. T. (2008). Multi-stream order analyses in basin asymmetry:
A tool to discriminate the influence of neotectonics in fluvial landscape development (Ma- drid
Basin, Central Spain). Geomorphology, 102, 130–144.

2. Alonso-Zarza, A. M., Calvo, J. P., Silva, P. G., & Torres, T. (2004). Cuenca del Tajo. In J. A.
Vera (Ed.), Geologia de España (pp. 556–561). Madrid: SGE-IGME.

3. De Vicente, G., & Muñoz-Martín, A. (2012). The madrid basin and the central system: A tec-
tonostratigraphic analysis from 2D seismic lines. Tectonophysics. doi:10.1016/j.tecto.2012.04.
003.

4. Tejero, R., González-Casado, J.M., Gómez-Ortiz, D., & Sánchez Serrano, F. (2006). Insights
into the “tectonic topography" of the present-day landscape of the central Iberian Peninsula
(Spain). Geomorphology, 76, 280–294.

5. Grohmann, C. H. (2005). Trend-surface analysis of morphometric parameters: A case study in
southeastern Brazil. Computers & Geosciences, 31(8), 1007–1014.

6. Garrote, J. (2013). La asimetría de la cuenca fluvial y otros índices morfométricos. Implicaciones
para la Cuenca de Madrid. PhD Thesis. UCM, Madrid.

http://dx.doi.org/10.1016/j.tecto.2012.04.003
http://dx.doi.org/10.1016/j.tecto.2012.04.003


Reinterpretation of Teide 2004–2005 Gravity
Changes by 3D Line Segments Approximation

Peter Vajda, Ilya Prutkin and Jo Gottsmann

1 Data Reduction and Inversion

During the seismic unrest at the central volcanic complex (CVC) on Tenerife bulk
gravity increase was recorded across a network at the CVC between May 2004 and
July 2005 [5]. Here we aim at interpreting the gravity signal in terms of multiple
sources using a non-linear inversion based on line segments approximation. The
gravity changes were corrected for water table changes [5] and kriging-extrapolated
onto an equidistant grid with a step of 500 m (Fig. 1). A trend, determined as a 2D
harmonic function within the survey area, coinciding with the observed data on the
boundary [6] was removed, in order to minimize the edge effects and truncation
errors. Residual gravity changes after the removal of trend are shown in Fig. 2. Hor-
izontal coordinates in the figures are UTM easting and northing, gravity is given
in mGals (1 mGal = 10−5 m/s2). The residual gravity changes (Fig. 2) were then
best-fitted with the gravitational effect of line segments, each being defined by seven
sought parameter, twice the triplet of coordinates and a line density [7]. These para-
meters were determined by minimizing residuals in L2 norm by means of non-linear
minimization procedure, using the gradient method of [4]. The line segments repre-
sent sources of temporal mass changes. With three line segments we achieve a fit of
3 µGal rms. Two of our segments, located to the NW of the Pico Viejo–Pico Teide
(PV–PT) complex correlate with the NW seismogenic zone of [3].
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Fig. 1 Observed gravity
changes (mGal)

Fig. 2 Residual gravity
changes (mGal)

They are located at depths 0–2 km b.s.l. The shallower SW line segment lies
at the SW section of the caldera rim, and correlates with the SW seismogenic
zone of [3].

We suspect that these line segments are composite sources representing shallower
hydrothermal fluids and deeper magma injection. To test this hypothesis, we separate
these composite sources into shallow and deep sources as follows. We decompose
the residual gravity changes (Fig. 2) into a “shallow field” generated by presumed
shallow sources and a “deep field” generated by deep sources. The division level of
4 km below sea level (b.s.l.) was chosen to match roughly the upper boundary of the
two seismogenic zones of Ref. [3]. The decomposition procedure, based on stepwise
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Fig. 3 Shallow field (mGal)

upward, downward and upward sequential harmonic continuations, is described in
Ref. [6]. The shallow and deep fields resulting from the decomposition are presented
in Figs. 3 and 4, respectively.

Again, both the shallow and deep fields are inverted in terms of their respective
line segments. The inversion results in three shallow segments and two deep short
and connected segments (one bent segment), see Fig. 5. The shallow and deep fields
are approximated with rms of 2.3 and 0.7 µGal, respectively.

Fig. 4 Deep field (mGal)
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Fig. 5 The three shallow line segments and the short deep bent line segment

2 Interpretation of Inversion Results and Conclusion

Although the depth of the two NW segments found by inversion prior to signal
decomposition matches the petrologically determined depth of phonolitic magma
reservoirs beneath the PV–PT complex [1, 2], we do not interpret them as magmatic
sources. We suggest that they represent a superposition of shallower hydrothermal
water and deeper magma injection triggering the rise of the fluids. This is why we car-
ried on with their decomposition into shallow and deep sources. Upon decomposition
the inversion yields shallow and deep line segments. Due to the spatial distribution
of the shallow segments and the position of the deep one, as well as their spatial cor-
relation with the seismogenic zones of Ref. [3], we interpret the shallow segments as
sources of hydrothermal fluids, while the short deep segment as a magma injection
at a depth of about 6 km, within the NW zone of VT events swarm identified by
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Ref. [3]. This hybrid nature of the observed unrest is best explained by the migra-
tion of hydrothermal fluids as a result of magma injection. Our inversion results and
interpretation appear to be in fair agreement with the model of the tree-like magma
intrusion proposed by Ref. [3].
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An Update GPS Velocity and Strain Rate Fields
for the Iberian Region

Mimmo Palano, Pablo J. González and José Fernández

1 Introduction

The geodynamic setting of the Iberian Peninsula and the surrounding regions in
the Mediterranean and the Atlantic is the result of the NW-SE directed convergent
process between the Eurasian and African plates with simultaneous extension and
formation of young oceanic basins in a back-arc setting due to the rapid roll-back of
narrow slabs of subducting oceanic lithosphere [1]. One of these basins, the Alboran
Sea is enclosed on three sides by the westernmost Alpine fold-and-thrust belt, the
Betic Mountains to the N and NW and the Rif to W, SW and S. These mountain belts
and the basin, together form the Gibraltar Orogenic arc, straddling the present-day
Eurasia-Africa plate boundary (Fig. 1).

The region is marked by the occurrence of shallow depth (h<40 km; Fig. 1)
earthquakes of moderate magnitude. Along the Algerian margin, seismicity occurs on
regional-scale WSW-ENE-trended structures with prevailing thrust focal mechanism
solutions. Along the orogenic Arc and the Alboran Sea, seismicity is distributed over
a wide area and occurs also at intermediate depth. Intermediate depth seismicity
is focused along a N-S trend across the Alboran Sea and dipping southward from
crustal depths beneath the Western Betics to a depth of ∼150 km beneath basin
centre and occasionally deeper (∼600 km) under the Central Betics. In the Rif, focal
mechanism solutions depict complex seismotectonics with a mixture of solutions
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Fig. 1 Simplified tectonic map of Iberia. Crustal seismicity (M≥2.0) in the studied area since 2000
and focal mechanism solutions (since 1951, M≥3.0) are also reported. Focal mechanism solutions
are colored according to rake (red for pure thrust faulting, blue for pure normal faulting, and yellow
for strike-slip faulting)

including prevailing strike slip with subordinately reverse and few normal faulting
solutions. In the Alboran Sea, crustal seismicity shows again prevailing strike-slip and
subordinately normal faulting solutions. In the Betics, faulting is also complex with
tectonic regime varying from normal (Central) to reverse (Eastern Betics) faulting
along the mountain belt. Other intermediate-depth seismicity occurs SSW off Iberia
(Gulf of Cadiz) where faulting is characterized by reverse solutions. Limited clusters
of crustal seismicity can be recognized in NW Iberia and along the Pyrenees where
focal mechanisms show normal faulting features.

2 GPS Data Processing, Velocity and Strain Rate
Fields Computation

To study the crustal deformation pattern over Iberia region, we analyzed an extensive
combination of GPS measurements carried out since 1999. In particular, we updated
the results reported in [2] by extending the data processing up to the 2012.80 epoch
and including into the processing additional data coming from networks developed
mainly for mapping, engineering and cadastre purposes. GPS data were processed
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Fig. 2 a GPS velocities and 2-σ associated errors in a fixed Eurasian plate: blue arrows for sites
analyzed in this study and red arrows for those coming from published solutions. b Geodetic strain-
rate parameters: the color in background shows the magnitude of the maximum shear strain-rate,
while arrows represent the greatest extensional (red) and contractional (blue) horizontal strain-rates

using GAMIT/GLOBK software [3, 4]. We estimated a consistent set of positions
and velocities in an ITRF2008 frame [5] and in a fixed Eurasian reference frame [2].

To improve the detail of the geodetic velocity field for the studied area, we also
performed a rigorous integration of our solutions with the ones reported in [6, 7] and
[8]. In particular, since our solutions and the published ones share several common
stations, we aligned their velocities to our fixed Eurasian reference frame by applying
a Helmert transformation, obtained by finding the transformation that minimizes the
RMS of differences between velocities of common sites. The average discrepancies
are small, and the RMS for the 7–9 common stations is less than 0.4 mm/yr. The
resulting velocity field, aligned to the Eurasian fixed reference frame is reported
in Fig. 2a. In addition, by taking into account the observed GPS horizontal velocity
field and associated covariance information we derived a continuous velocity gradient
tensor on a regular 0.35× 0.35◦ grid using a “spline in tension” technique [9]. The
velocity field was interpolated by removing from the computation all sites with fewer
than 2.5 years of data and/or because of their suspicious movements with respect
to nearby sites. As a final step, we computed the average 2D strain-rate tensor as
derivative of the velocities at the nodes of each grid cell. The estimated strain-rates
are shown in Fig. 2b.

3 Discussion and Conclusion

Geodetic data reveals that significant deformation occurs prevailing along the NW
and SE margins of the Iberian Peninsula and along the Gibraltar arc, while on the
inner parts of the peninsula, the crustal deformation occurs locally at rate <15
nanostrain/year. Along the NW margin, geodetic data evidences an E-W oriented
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contraction up to 55 nanostrain/year while along the SE margin a prevailing
NNW-SSE-oriented contraction up to 30 nanostrain/year can be recognized. Along
the Gibraltar arc, ∼2–5 mm/year WSW motion can be detected. In particular, Al-
Hoceima region shows a E-W-oriented elongation up to 90 nanostrain/year pass-
ing to a ca. E-W-oriented shortening of about −50 nanostrain/year in the Rif. The
Alboran domain is characterized by elongation strain-rate axes WSW-ENE ori-
ented coupled with shortening strain-rate axes, having the same magnitude (∼25–
40 nanostrain/year).

In conclusion, although on large areas of Iberia, the crustal deformation pattern is
currently sampled or by few geodetic observations or by measurements hampered by
large uncertainties (due to the short observation period), the observed framework is in
good agreement with geological and seismological observations. The deployment of
permanent GPS stations in the region will provide in the next years a better resolution
of the crustal deformation pattern, providing new contributions to understanding the
pattern of active deformation in this area exposed to a relevant seismic hazard.
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The 2012 Kilauea Volcano, Hawai’i, Slow-Slip
Event Captured by cGPS and Satellite Radar
Interferometry

Pablo J. González, Sergey V. Samsonov and Mimmo Palano

1 Introduction

Seismogenic fault systems accumulate stress along the locked portions of faults,
which are subsequently or suddenly released during earthquakes. Slow-slip events
(SSEs) are a complex processes occurring near the fault plane that release stress by
producing atypical low slip-rates (lasting for days to months, or even years). SSEs
have been detected along tectonic areas in subduction and strike-slip faults systems.

At subduction zones slow-slip phenomena have been detected at deep portions
of the subduction megathrust zones (Cascadia, Guerrero in Mexico and Japan), but
also at shallow depth (e.g., Nicoya in Costa Rica and the Hikurangi trench in New
Zealand) [1]. Those two regions are assumed to bound the transition between different
fault friction regimes, deep and shallow creep bounding the locked and seismogenic,
stick-slip areas. However, slow slip phenomena seems to be not only an active process
in subduction zones, but widely present at other fault systems [1], such as in deeper
sections of major strike-slip fault systems such as the Parkfield segment of the San
Andreas Fault in California.

Beneath the south flank of Kilauea volcano (Hawaii, USA) several SSEs have been
detected using GPS and tiltmeter stations [2–4]. But, until now, differential radar
interferometry has not been conclusive about the spatial pattern of vertical motion
associated to these events, although GPS time series show a slight subsidence signal
on the vertical component. Kilauea volcano is a very active volcano developed south
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Fig. 1 Kilauea volcano map illustrating the major fault systems (thin black lines) and volcanic
rift zones (gray areas). Gray dots represent the 2000–2012 located seismicity. Red dots are the
epicenters of the earthquake during the 2012 SSE. Lower inset shows the Hawaii Island, white
rectangle is the surface projection of the fault model

of Mauna Loa volcano in Hawaii Island. It rises above a∼5 km deep seafloor, and its
southern flank shows continuous seaward deformation (Fig. 1). The seaward motion
is assumed to occur due to slip at the interface of prevolcanics sediments laying over
the oceanic crust and the volcanic succession [5]. This detachment surface has also
produced large earthquakes and associated tsunamis such as the M7.2 1975 Kalapana
earthquake [6].

In late May 2012, the most recent SSE began and it lasted until early June 2012.
Following previous slow slip events, the SSE was accompanied by decollement
(∼8–10 km depth) earthquakes [4], but on June 5th, a relatively unusual very shallow
earthquake swarm occurred across the Koa’e fault system, with two events having
magnitudes around 3.5.

2 Ground Deformation Data Analysis and Modeling

A dense geodetic network of GPS stations is located in the Kilauea volcano for
monitoring and research purposes. GPS data were processed using GAMIT/GLOBK
software. We estimated a consistent set of positions and velocities in an ITRF2008
frame using additional far-field stations to define a local reference system using an
established approach [7]. A network subset of 30 stations shows significant seaward
displacements between May 27th and June 1st, 2012. GPS displacements range from
∼5 cm near the coastline to almost no motion far from the coast (Fig. 2a). In addition,
multiple different tracks from the Radarsat-2 satellite allowed us to generate nearly
continuous ground deformation maps [8], around the summit caldera, south–west rift
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Fig. 2 GPS displacements (arrows) and fault slip distributions (redish colored patches). a 2012
SSE GPS observed (blue), and predicted (red) in cm, from the estimated slip [m]. b 2005–2012
estimate of the long-term flank motion: GPS observed (blue), and predicted (red) in cm/year, from
the estimated fault slip-rate (m/year)

(SWR) and Koa’e fault system (Fig. 1). We detected a vertical (∼2 cm, subsidence)
signal along the coast is associated to the 2012 SSE.

Following, previous modeling approaches to understand the SSEs at Kilauea
southern flank, we used a gently NNW-dipping thrust fault geometry corresponding
to the decollement detachment structure [9]. We solved for the fault slip distribution
occurred during the 2012 SSE by dividing the fault plane into 1× 1 km dislocations.
A fault slip model was obtained adopting a regularized linear inversion scheme con-
strained only by the observed GPS displacements (Fig. 2a). Spatial coverage of the
interferograms is rather limited.

3 Discussion and Conclusions

The best-fitting fault slip model shows good agreement with the observed defor-
mation (Fig. 2a). This model is consistent with a coast-parallel continuous patch of
slip.

The model results present up to 40 cm of seaward displacement at depth ranging
of 8–9 km and approximately 15 km off-shore beneath the southern flank. This slip
pattern presented in Fig. 2a is in contrast with the long-term fault slip model obtained
using the GPS stations with a linear and steady-state flank motion for the 2005–2012
period (Fig. 2b). Long-term flank motion seems to focus on two separated fault areas.
The first fault segment depicts a narrow band with high slip rates (∼70 cm/year)
between the caldera and rift zones (ERZ and SWR) and the Hilina Pali fault system.
A second segment is continuously sliding at a lower rate with max. 40 cm/year off
the coast along the central Hilina Pali faults (Fig. 2b). The second fault segment only
partially overlaps with the inferred SSE source area (Fig. 2a). Therefore, the 2012
SSE seems to have occurred along the fault plane at shallower depths, than long-term
stable sliding segments that driven the flank motion.



376 P. J. González et al.

These results illustrate that the seismo- and tsunamigenic decollement fault plane
is segmented with spatially variable frictional areas, which varies from steady creep-
ing to fully locked segments, and with patches of transient conditional friction prop-
erties. The definition of the fault segments with different sliding properties may
contribute to define the seismic potential of the southern flank of Kilauea.
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Spatiotemporal Analysis of Ground Deformation
at Campi Flegrei and Mt Vesuvius, Italy,
Observed by Envisat and Radarsat-2 InSAR
During 2003–2013

Sergey V. Samsonov, Pablo J. González, Kristy F. Tiampo,
Antonio G. Camacho and José Fernández

1 Introduction

Two active volcanoes, Campi Flegrei and Mt Vesuvius, are located in close proximity
to the City of Naples, the third largest municipality in Italy with a population close
to one million inhabitants. Previous studies have identified this region as one of the
highest risk volcanic areas on Earth [1]. For monitoring volcanic hazards, surveillance
networks are established to closely monitor changes in seismicity, gas emissions and
active ground deformation as indicators of renewed volcanic/magmatic activities,
potentially culminating in eruption. An alternative and complementary approach
is to monitor ground deformation from space using InSAR [2, 3]. In this study
we demonstrate a new advanced MSBAS InSAR processing technique that reveals
signals at both Campi Flegrei and Mt Vesuvius. These signals are observed with a
remarkable precision and resolution that have not been achieved before.
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2 Data and Processing Methodology

For this study we collected and processed five independent InSAR data sets described
in Table 1 with uninterrupted coverage from 2003 until 2013. We applied 2× 10
multilooking to four standard beams and 4× 5 multilooking to F6 fine beam and
processed each data set independently with GAMMA software [4]. All possible
interferometric pairs with perpendicular baseline less than 400 m were computed
and the topographic component was removed using 90 m resolution SRTM DEM [5].
The orbital refinement was performed to remove residual orbital ramps and minor
interpolation was applied for filling gaps in moderately coherent regions. The final
filtered, unwrapped and interpolated interferograms were geocoded on a 90× 90 m
grid.

For the time series analysis we limited data to the Naples Bay area and re-sampled
all interferograms to a common grid with GMT scripts [6]. Our final interferograms
had dimensions of 724× 603 pixels with the original resolution of about 90× 90 m.
We calculated the average interferometric coherence of the filtered products for each
interferogram and selected only those with the average coherence above 0.5 for
further processing. Over one thousand highly coherent inetrferograms were used in
the MSBAS processing.

The MSBAS methodology was described in detail in [7, 8]. In the case of a single
SAR set acquired by a sensor with an azimuth θ and an incidence angle φ, the time
series of deformation can be reconstructed by applying the Small Baseline Subset
method (SBAS) [9, 10]

AVlos = �obs, Vlos = A+�obs, di+1
los = di

los + V i+1
los �t i+1, (1)

where A is a matrix constructed from the time intervals between consecutive SAR
acquisitions, Vlos is a vector of the unknown line-of-sight velocities, �obs is a vec-
tor of observed interferogram values, A+ is a pseudo-inverse of matrix A found
by applying the Singular Value Decomposition (SVD), and di

los is a line-of-sight
displacement at the time t i .

Table 1 Five InSAR data sets used in this study with uninterrupted coverage from 2003 until 2013

InSAR set Orbit Coverage φ◦ θ◦ N M

ENVISAT, Track 129 asc 2003–2012 23 354 55 276
ENVISAT, Track 036 dsc 2003–2012 23 196 58 196
R2, S3 asc 2009–2013 35 349 39 156
R2, S3 dsc 2009–2013 35 190 50 422
R2, F6 asc 2008–2013 48 351 48 407

Incidence φ and azimuth θ angles and number of available SAR images N and number of computed
interferograms M is provided
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In the case of K multiple SAR sets acquired by sensors with different orbital
parameters (e.g. azimuth and incidence angles), the Eq. (1) can be rewritten in the
following form for each set k = 1, . . . , K

| Sk
N A Sk

E A Sk
U A | · | VN VE VU |T= �k

obs (2)

assuming that Vlos = SV = SN VN + SE VE + SU VU and S = {sin θ sin φ,
− cos θ sin φ, cosφ}, where S is a line-of-sight unit vector with north, east and up
components SN , SE , SU , and V is a velocity (ground deformation rate) vector with
components VN , VE , VU .

Then the MSBAS method that includes all K sets of independently acquired SAR
data can be presented in the following form

⎛

⎜⎜⎝

A1

A2

. . .

AK

⎞

⎟⎟⎠

⎛

⎝
VN

VE

VU

⎞

⎠ =

⎛

⎜⎜⎝

�1

�2

. . .

�K

⎞

⎟⎟⎠ or ÂV̂los = �̂obs (3)

where the new matrix Â [as in (2)] has dimensions 3(�K
k=1 N k − 1) × �K

k=1 Mk ,
the new vector V has dimensions 1 × 3(�K

k=1 N k − 1), and the new vector �obs

has dimensions 1 × �K
k=1 Mk , where Mk is a number of interferograms and N k is

a number of SAR images in k data set.
We further assumed that our data is not sensitive to the motion in the NS direction

and the northern component was excluded from the computation. For smoothing the
solution we applied Tikhonov regularization [11] with λ = 0.25.

3 Results

Results of the MSBAS processing are presented in Fig. 1. The linear deformation rate
was calculated by fitting a straight line to the computed time series. The horizontal
map (Fig. 1a) shows an expansion-like signal centered on the Campi Flegrei caldera
with a rate in 2003–2013 of<1 cm/year and the slow westward motion in the eastern
part of the region, east of Mt Vesuvius. The vertical map (Fig. 1b) shows well defined
uplift at the Campi Flegrei caldera with the maximum 2003–2013 rate of 1 cm/year
located near the coastal area. Subsidence with rate <1 cm/year is observed around
and at Mt Vesuvius.

The time series of deformation show with remarkable precision the temporal
evolution of ground displacement in both the vertical and horizontal directions. Two
episodes of uplift occurred at Campi Flegrei during this time period (Figs. 1c–e),
one in 2007 and the other which began in 2009–2010 and is currently ongoing. The
second has reached a maximum observed rate of more than 10 cm/year in 2012–2013.
The horizontal time series display steady motion in the E-W directions.
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(a)

(b)

(c) (d) (e)

(f) (g) (h)

Fig. 1 Deformation rates and time series of ground deformation observed in Naples Bay area
during 2003-2013. Horizontal east-west (a) and vertical up-down (b) deformation rates calculated
by fitting linear model to computed time series. For points CF1-CF3 (c–e) located at Campi Flegrei
caldera and V1-V3 (f–h) located at Mt Vesuvius we provide time series of ground deformation.
Point R is reference assumed to be stable during observation period
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A more unusual signal is observed at Mt. Vesuvius (Figs. 1f–h) that consist of
steady subsidence with a sub-centimeter rate and seasonal oscillations with an ampli-
tude of about 0.8 cm. These oscillations have a well-defined seasonal pattern with a
maximum observed during the summer and a minimum observed during the winter.
The amplitude and phase of those oscillations located within a few coherent patches
at an altitude of about 700 m seems are nearly identical.

4 Discussion and Conclusion

In this work we applied for the first time the advanced MSBAS methodology to
mapping ground deformation in the Naples Bay area that covers the Campi Flegrei
caldera and Mt Vesuvius. We used ENVISAT and RADARSAT-2 data and achieved
uninterrupted temporal coverage during 2003–2013.

Computed deformation maps show uplift at the Campi Flegrei caldera that started
in 2009–2010 and continues until now. It is unknown if this uplift continues offshore
but it seems likely. The temporal pattern of deformation demonstrates uplift with
constantly increasing rate reaching over 10 cm/year presently. Due to its location,
the proximity to the city of Naples, the more active monitoring for the signs of
possible eruption is warranted.

The signal observed at Mt Vesuvius shows seasonal oscillations with an excellent
temporal resolution and precision that has not been achieved before. Such perfor-
mance can be attributed to the Singular Valued Decomposition (SVD) analysis that
is capable of filtering the signal from noisy data. Our initial analysis suggests that
these oscillations can be at least partially explained by the seasonal fluctuation in the
water vapor pressure and other climate parameters.

The further work is under way to extend the temporal coverage to 1992-2013 by
including ERS-1/2 data and also to include recent Cosmo-SkyMED data in order to
achieve unprecedented temporal resolution for studying the observed signals. The
source modeling using methodology proposed in [12] will be performed next in order
to explain the origin of ground deformation observed at the Campi Flegrei.
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Anthropogenic and Natural Ground
Deformation Near Bologna, Italy Observed
by Radarsat-2 InSAR During 2008-2013

Sergey V. Samsonov, Pablo J. González and Kristy F. Tiampo

1 Introduction

The over-exploitation of ground water resources in the Bologna region causes
wide-spread ground subsidence. The rate of subsidence increased through time from
0.2–0.3 cm/year during 1897–1957 to 0.4–0.6 cm/year during 1957–2001 [1]. This
area is also susceptible to seismic hazard. Recent 2012 Emilia seismic sequence with
two M5.8 and M6.0 mainshocks caused casualties and damages to infrastructure and
produced over 15 cm of ground uplift [2].

In this study we apply for the first time the advanced Multidimensional Small
Baseline Subset (MSBAS) InSAR technique to map ground deformation during
2008–2013 period based on one hundred ascending and descending images acquired
by the Radarsat-2 satellite. Produced deformation map and time series clearly map the
spatial and temporal patterns of ground deformation and observe a further increase
in subsidence rate up to −2.0 cm/year.

2 Data and Methodology

We collected and processed one ascending and one descending Radarsat-2 data sets
described in Table 1 with coverage from 2008 until 2013. We applied 2× 10 mul-
tilooking and processed each data set independently with GAMMA software [3].
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Table 1 Two Radarsat-2 (beams Standard S3) InSAR data sets used in this study with coverage
from 2008 until 2013

InSAR set Orbit Coverage φ◦ θ◦ N M

Radarsat-2, Standard 3 asc 2008–2013 35 349 59 127
Radarsat-2, Standard 3 dsc 2008–2013 35 190 38 90

Incidence φ and azimuth θ angles and number of available SAR images N and number of computed
interferograms M is provided

All possible interferometric pairs with perpendicular baseline less than 400 m were
computed and the topographic component was removed using 90 m resolution SRTM
DEM [4]. The orbital refinement was performed to remove residual orbital ramps
and minor interpolation was applied for filling gaps in moderately coherent regions.
The final filtered, unwrapped and interpolated interferograms were geocoded on a
90× 90 m grid.

For the time series analysis we re-sampled all interferograms to a common grid
with GMT scripts [5]. Our final interferograms had dimensions of 2050× 1734
pixels with the subsampled resolution of about 60× 60 m. We calculated the average
interferometric coherence of the filtered products for each interferogram and selected
only those with the average coherence above 0.35 for further processing, which
resulted in 127 ascending and 91 descending interferograms. We applied MSBAS
methodology [6–8] that produced vertical and horizontal deformation rate maps and
time series of deformation.

3 Results

Vertical deformation rate calculated with the MSBAS technique is shown in
Fig. 1a. Wide spread subsidence is observed near the City of Bologna with rates
up to −2 cm/year. Time series (Fig. 1b–g) show steady subsidence until early 2012.
Since the second half of 2012 until present time series at points P3-P6 show a
moderate reversal to uplift. A very slow westward motion is observed at points
P4-P6. Since this methodology maps only relative to selected reference region motion
a further analysis is needed in order to ensure its stability.

Co-seimic displacements produced by the 2012 Emilia sequence are observed NW
of the epicenter area and shown as extent in the upper-left corner in Fig. 1. However,
this region is severely decorrelated (due to dense vegetation), which does not allow
for the automated phase unwrapping. The loss of fringes during the phase unwrapping
produces incorrect estimation of co-seimic displacements (observed∼6 vs. expected
∼15 cm).
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(a)

(b) (c) (d)

(e) (f) (g)

Up-Down rate

Point P1 Point P2 Point P3

Point P4 Point P5 Point P6

Fig. 1 2008-2013 vertical rate of deformation calculated with MSBAS method (a). For points P1-P6
we produce time series of vertical and horizontal deformation (b–h) that show steady subsidence
and westward (relative to reference point R) motion. Locations of 2012 Emilia M5.8 and M6.0
mainshocks are shown as red stars. Vertical component of co-seismic displacements calculated by
differencing 20121015 and 20120430 cumulative displacement maps is show as extent in upper-left
corner
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4 Conclusion

We present for the first time 2008-2013 deformation maps for the Bologna, Italy
region calculated from one hundred Radarsat-2 images. We applied the fully-
automated MSBAS methodology and produced vertical and horizontal deformation
rates and time series. Observed signal corresponds to the anthropocentric ground
subsidence near the City of Bologna and co-seimic deformation produced by the
2012 Emilia earthquake sequence. Due to severe decorrelation an accurate estima-
tion of co-seismic surface displacements using the fully-automated approach was
not possible but for urban regions located near the City of Bologna coherence was
significantly larger resulting in a higher precision.

Acknowledgments We thank the Canadian Space Agency (CSA) for providing RADARSAT-2
data. Figures were plotted with GMT and gnuplot software. The work of PG was supported by
Banting Postdoctoral Fellowship. The work of KFT was supported by an NSERC Discovery Grant.

References

1. Stramondo, S., Saroli, M., Tolomei, C., Moro, M., Doumaz, F., Pesci, A., et al. (2007). Surface
movements in Bologna (Po Plain - Italy) detected by multitemporal DInSAR. Remote Sensing
of Environment, 110, 304–316.

2. Tizzani, P., Castaldo, R., Solaro, G., Pepe, S., Bonano, M., Casu, F., et al. (2013). New insights
into the 2012 Emilia (Italy) seismic sequence through advanced numerical modeling of ground
deformation InSAR measurements. Geophysical Research Letters. (in-press).

3. Wegmuller, U., & Werner, C. (1997). Gamma SAR processor and interferometry software. In
Third ERS Symposium on Space at the Service of our Environment. Florence.

4. Farr, T., & Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data.
EOS Transactions, AGU, 81, 583–585.

5. Wessel, P., & Smith, W. (1998). New, improved version of the generic mapping tools released.
EOS Transactions, AGU, 79, 579.

6. Samsonov, S., & d’Oreye, N. (2012). Multidimensional time series analysis of ground deforma-
tion from multiple InSAR data sets applied to virunga volcanic province. Geophysical Journal
International, 191(3), 1095–1108.

7. Samsonov, S., d’Oreye, N., & Smets, B. (2013). Ground deformation associated with post-
mining activity at the French-German border revealed by novel InSAR time series method.
International Journal of Applied Earth Observation and Geoinformation, 23, 142–154.

8. Samsonov, S., González, P., Tiampo, K., Camacho, A., & Fernández, J. (2013). Spatiotemporal
analysis of ground deformation at Campi Flegrei and Mt Vesuvius, Italy, observed by Envisat
and Radarsat-2 InSAR during 2003–2013. Lectures Notes in Earth System Sciences, 1–4.



Surface Displacements, Deformations
and Gravity Changes Due to Underground
Heat Source

Ladislav Brimich and Igor Kohut

1 Analytical Solution

The thermo-visco-elastic model presented in Hvoždara [4] was applied to estimate
the volcanic ground deformations. Fundamental equations for the uncoupled thermo-
visco-elastic problem for a point heat source located at depth ζ are given in Nowacki
[6]. Thermo-visco-elastic gravity anomaly on the surface is given by Brimich [2].

Charco et al. [3] propose a simple method for including topographic effects in a
3D thermo-visco-elastic model that allows source depth to vary with the relief. On the
Figs. 1, 2 and 3 are given horizontal, vertical thermo-viscoelastic displacement (in m)
as well as the gravity changes computed for different relaxation times and the static
value (thermoelastic case) considering (a) a flat surface, and (b)–(d) axis-symmetric
volcanic cone with an average slope of the flanks of 15 ◦, 20 ◦ and 30 ◦ respectively.
The influence of the topography is visible as the horizontal shift of maximal values
of the both displacement components and particularly gravity changes.

2 Numerical Solution

To include the topography effect in the thermoelastic solution we have used the finite
element method computation. The principles and basics of finite-element method
are generally known and are described in numerous monographs (e.g., [1, 5]). All
the computations are obtained by the COMSOL Multiphysics© software. Although
numerical methods are time consuming, their results are more precise than the ana-
lytical approximate solutions since they allow to include structural characteristics of
the medium as the topography.
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(a)

(b)

(c)

(d)

Fig. 1 Radial displacements

The models are homogeneous, isotropic, axi-symmetric with respect to vertical
axis. In this way, the 3D rock massif has been modeled by an axi-symmetric section
with respect to vertical axis passing through the heat source with 2 versions—with
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(a)

(b)

(c)

(d)

Fig. 2 Vertical displacements

and without topographical feature modeling the volcano cone (of 2 km height). The
summit of the volcano is located over the thermal source. The domain horizontal
length is 120 km and the vertical span is from +2 to −38 km in order to minimize
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(a)

(b)

(c)

(d)

Fig. 3 Gravity changes

the influence of the external boundaries. The heat source is modeled by the spherical
body in the 5 km depth. In the computation only the forces of thermal origin are
considered.
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Fig. 4 Mesh with the position
of the heat source

Fig. 5 Radial displacements

At first step, the domain was divided into finite elements. The mesh corresponding
to each plane section is formed by 19568 triangular elements. In the neighborhood
of the thermal source, the mesh is refined into smaller elements due to the large
gradients of computed fields in this area (see Fig. 4). On the Figs. 5 and 6 are given
radial and vertical displacements obtained using FEM.

3 Discussion

The methods described in this work can be very suitable to more complex models that
consider sources of different geometries and allow elastic properties of the medium to
vary with depth. While the analytical approximate methodology can be very attractive
for solving the inverse problem, the numerical method described above may be used
to include the topography when accurate solution is desired since it permits the
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Fig. 6 Vertical displacements

consideration of non-uniform elastic and thermal properties of the medium and the
local shape of the Earth’s surface.
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Polarization Persistent Scatterer InSAR
Analysis on the Hayward Fault, CA, 2008–2011

Kristy F. Tiampo, Pablo J. González and Sergey S. Samsonov

1 Introduction

In northern California, relative motion of∼39 mm/year between the North American
and Pacific is accommodated along a series of well-developed sub-parallel, primarily
strike-slip faults including, but not limited to, the San Andreas, Hayward, Greenville,
Concord and Rodgers Creek faults [1, 2]. Estimates suggest that while as much
as 60 % of the relative motion is accommodated by the San Andreas alone [2],
almost half of the strain accumulation is apportioned onto secondary faults. The
Hayward fault, a right-lateral fault paralleling the San Andreas for nearly 100 km,
accommodates much of the remaining motion and can be divided into two segments.
The northern segment of the Hayward fault has not ruptured in approximately 300
years and the southern was responsible for the M ∼ 6.8, 1868 earthquake [3, 4].
Aseismic creep varies from 3 to 9 mm/year along the length of the Hayward, resulting
in a slip deficit that will affect the magnitude of future large events [4, 5].

Earlier studies of the motion along the Hayward fault incorporated geodetic data
from both continuous GPS and alinement arrays [2, 5, 6] differential InSAR (DIn-
SAR) analyses that employed from 13 to 49 SAR images acquired over eight or
more years [3, 4, 7, 8]. In addition, the DInSAR results were affected by the lack of
coherence from the topographic relief on the eastern side of the fault.

Here we demonstrate the effectiveness of a new DInSAR technique [9] by estimat-
ing the deformation along the northern Hayward fault using fifteen quad polarization
RADARSAT-2 SAR images acquired from April 2008 until March 2011. This new
method selects persistent scatterers (PS) based on the polarization phase difference
(PPD) in HH and VV polarized SAR images. PPD selects pixels with predominantly
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even or odd bounce scattering properties, where odd bounce scattering occurs due
to reflection from a flat, rough surface and even bounce scattering is from the inter-
action of the radar wave with standing objects. PPD requires a much smaller set of
SAR acquisitions over a shorter time period than other PS techniques and is a pow-
erful method for identification of PS candidates, producing a more complete spatial
distribution than alternative DInSAR techniques.

Earlier work compared the results of the original PS technique with the PPD
technique and showed that the PPD technique successfully identified a greater per-
centage of pixels in areas of low coherence [9]. Here the PPD method is used to
reliably estimate the deformation along the Hayward fault with fewer acquisitions
and increased spatial coverage over a shorter time than earlier DInSAR studies.

2 Data and Methods

PS analysis has emerged as an effective alternative where two-pass DInSAR method-
ology is limited by temporal decorrelation where pixels are selected based on iden-
tification of a predominant scatterering mechanism that is consistent over a long
period of time [10]. PS candidates are selected based on their amplitude dispersion
through time, D = σ/A, where σ is the standard deviation and A is the mean ampli-
tude calculated for the coregistered set of SAR images. However, the selection of PS
pixels with a high degree of accuracy requires at least thirty SAR images. It can be
expensive and difficult to acquire large numbers of images and inevitably span longer
time periods, making it difficult to identify short-term changes in deformation.

The PPD method does not require a large number of acquisitions for PS selec-
tion [9]. Using HH and VV polarized RADARSAT-2 SAR images, PS are selected
based on their PPD, �ϕ = ϕH H − ϕV V . ϕH H is the phase of a wave transmitted
and received in horizontal polarization and ϕV V is the phase of a wave transmitted
and received in vertical polarization, relative to Earth’s surface. PPD values of zero
and ±π correspond to scatterers with a dominant reflective mechanism, determin-
istic odd and even bounce scatterers. Generally, odd bounce scattering is caused
by reflection from a flat, rough surface and even bounce scattering is produced by
interaction of the wave with anthropogenic structures or other standing objects. �ϕ
diverges from these extremes as the contribution from diffusive scattering increases
[11, 12]. Diffusive scattering from vegetation results in values randomly distributed
in [−π, π ].

For each pixel we can calculate a normalized average of absolute values of PPD,
χ =∑K

k=1 |�ϕk |/Kπ , where K is the number of SAR images, and select pixels with
values close to 0 and 1 [9]. Threshold values of χ ≤ 0.2 and χ ≥ 0.8 are applied in
order to select for those scatterers dominated by odd and even bounce mechanisms.
If we investigate those pixels, after the removal of pixels over the water surface,
approximately 131,000 pixels are recovered. 62.5 %, are the odd bounce scatterers
and the remaining 37.5 %, are the even bounce scatterers.
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Fig. 1 a Pixels over the waterfront (O—Oakland) and the surrounding hills selected with a PS
analysis (blue) and b pixels selected by the PPD analysis in the same region, where odd bounce
pixels are blue and even bounce pixels are red. Modified from [14]

Figure 1 compares the PS and PPD method for a small region along the San
Francisco waterfront and the surrounding hills. Pixels were selected by a PS analysis
Fig. 1a and a PPD analysis Fig. 1b. In Fig. 1a the PS pixels are blue while in Fig. 1b
the PPD odd bounce pixels are blue and the even bounce pixels are red. The total
number of PS pixels is approximately 107,000, while the total number of PPD pixels is
approximately 132,000, a significantly larger number. Visual inspection confirms that
these correspond to roads, bridges, rocks and open surfaces. Surface displacements
near the Hayward fault south from Point Pinole to just north of the city of Hayward,
CA, were calculated using this PPD technique applied to 15 descending HH and VV
polarization RADARSAT-2 SAR (FQ7) images acquired between April, 2008 and
March, 2011. Processing techniques are detailed in [14].

3 Discussion and Conclusions

The final slip distribution associated with the surface deformation is in accordance
with the broad velocity pattern obtained from regional continuous GPS and the
alinement array [2, 14, 15]. Detailed sensitivity tests identify the importance of the
additional information from the improved spatial coverage to the east obtained from
the PPD analysis [14]. For example, deformation identified between ten and fifteen
kilometers east of Point Pinole provided by that additional coverage significantly
improves our understanding of slip at depth. For the first time, using this advanced PS
technique, we map the displacement field on the vegetated hills to the east in addition
to the urban are to the west of the fault. This additional information is obtained from
only fifteen polarimetric acquisitions, less than half as many as previous DInSAR
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studies, at approximately half the cost. This can be used to estimate short-term
shallow creep and with better spatial coverage on both sides of the fault [14]. Although
the current availability of quad polarization data is significantly less than that of other
acquisition modes of SAR data, the success of the PPD algorithm provides a new
and innovative advance in the field of DInSAR.
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Earth Models at the Low Andarax River Valley
(SE Spain) by Means of Cross-Correlation
of Ambient Noise
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Francisco Sánchez-Martos and Francisco Luzón

1 Introduction

Surface wave tomography has proven to be very useful in imaging the crust and
uppermost mantle on regional and global scales across much of the globe. Surface
waves of different periods are sensitive to seismic shear wave speeds at different
depths, with the longer period waves sampling the deepest structure. By measuring
the dispersive character of surface waves, strong constraints can be placed on the
shear wave velocity structure of the crust. Ambient noise cross-correlation can be
regarded as a cheap and non-intrusive way of obtaining subsurface models. In this
work, we want to improve our knowledge of the elastodynamic properties of the low
andarax valley (LAV). The LAV is enclosed by the Sierra Alhamilla, with metapelitic
outcrops, and by the Sierra de Gádor, which is a limestone-dolomite massif formation.
The depression is filled by Miocene and Pliocene detrital deposits (marls, sandy
silts, sands and conglomerates). Limestone–dolomite materials with a formation of
phyllites quartzite form the basement of the depression (Fig. 1a) [1].
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Fig. 1 a Geological section North/South across the low Andarax river valley completed by borehole
data. Legend 1 Marls, sandy silts, sands and conglomerates. 2 Limestones and dolomites. b Location
geological cross-section and profiles from 0 (South) to 5 (North)

2 Data Analysis

The profiles we will study are perpendicular to the river bed (Fig. 1b), from the
lower part (profile 0) to the upper part (profile 5). The data points are deployed
every 500 m along the lines. We used CMG-3ESPD three-component broadband
recorders manufactured by Guralp with reliable response bands from 120 s to 50 Hz,
and Güralp CMG-6TD three-component broadband recorders with response bands
from 30 s to 100 Hz, with independent GPS–based timing. The sampling rate was
100 samples/s. In this first analysis, the vertical components of motion have been used
to invert the fundamental mode of the Rayleigh waves. For each pair of stations, we
calculate the coherence (or SPAC) function. It has been shown (e.g., [2]) that:

Re
⌊〈

uz(x, ω
〉〈

u∗z (y, ω
〉⌋

√〈|uz(y, ω)|2
〉√〈|uz(y, ω)|2

〉 = J0(kr) (1)

where the SPAC function [3] equals the Bessel function of zero order. The hypothe-
ses considered are: (i) predominance of the fundamental mode for Rayleigh-wave
propagation, and (ii) the medium can be locally approximated by a layered halfspace.
Both hypotheses are reasonable and commonly assumed in velocity structure inver-
sions based on surface waves. The experimental SPAC functions have been obtained
as follows: first, we divided the traces into 1 min windows, and corrected them from
baseline and trend. After that, we filtered the traces with a Butterworth band-pass
filter with two poles between 0.1 and 5 Hz, and considered only 1 bit signals [4].
Then, we applied a 5 % cosine-tapered window, performed a temporal normalization
for each trace [5], and calculate the FFT. Finally, the SPAC functions were computed
between every pair of stations [2], and a Genetic Algorithm [6] was used in order to
invert the S-wave structure. We applied GEOPSY [7] programs to calculate the theo-
retical dispersion curves, which are introduced in the argument of the Bessel function
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to obtain the theoretical SPAC coefficient. Evaluation of misfits was performed in
terms of coherences.

3 Results and Conclusions

In Fig. 2 we represent the structural models obtained along the West-East profiles
from this frequency-domain analysis. For each pair of consecutive points of the pro-
file, all the couples of stations connected by paths passing through it were considered

Fig. 2 Earth models, for profiles from 0 (South) to 5 (North). The colorbar represents the S wave
velocities in m/s
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in the ground model inversion. The influence of their respective SPAC curves, were
weighted by using their fitness. The colored patches in Fig. 2 show the inverted mod-
els, where the maximum and minimum resolved depths have been calculated using
the criterion of λ/3 penetration depth for Rayleigh waves. For profiles 0, 1, 2 and 5,
a shallow soft layer with S wave velocity around 1 km/s has been prospected down
to 500–700 m, overlying materials with significantly higher velocities. Although the
computed depth of this layer reaches 800 m in profile 4, we could not get a large
enough number of reasonably fitted paths to guarantee the reliability of this value.
Our results at profile 3, which crosses the LAV 1 km upstream from Viator village,
show a thickness of about 200–250 m for this soft layer. By comparison with a geolog-
ical cross-section (see Fig. 1a), we observe that this depth approximately matches the
rock basement formed of limestones and dolomites. The velocities of such materials
are about 2 km/s. This important result lets us gain confidence in our methodology
and makes possible to delineate the rock basement along the other profiles, taking
those depths where these high S wave velocities are reached. Finally, the correspon-
dence between the observed shallow detrital deposits in the LAV and the calculated
soft layer with mean velocities ∼1 km/s should be remarked.
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Some Insights About Volcano Deformation
Interpretation

María Charco and Pedro Galán del Sastre

1 Introduction

In volcanic areas, it is expected that changes within magma system leading to erup-
tion will result in precursory deformation measurable by geodetic techniques. In
this way, deformation interpretation provides the link between the observed defor-
mation and the inaccessible sources of such effects. The interpretation of geodetic
data requires both modeling techniques and inversion approaches to characterize
processes (pressure/volume changes), geometries and location at depth of magma
chamber. Within the elastic frame, a variety of models have been proposed. The most
commonly used is the Mogi model [1] that represents the simplest close analytical
solution for a spherical expansion source embedded in a homogeneous isotropic
elastic half-space with free surface. The computational simplicity of Mogi’s model
make it very suitable for geodetic data inversion. However, the internal structure of a
volcano controls the details of the deformation field and in the case of fully 3D rhe-
ologies as well as complicated geometrical structures, a numerical method is required
to simulate volcano deformation. The aim of this study is to provide a numerical tool
for solving very fast and with appreciable degree of accuracy the inverse problem
to characterize spherical sources. We show that the efficiency of this approach is
more substantial when quantitative interpretation of volcanic deformation becomes
of major importance in related geodetic monitoring efforts.
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2 Problem Statement

Our intention is to study the response of an elastic media to an internal load that can
reflect magmatic and/or hydrothermal processes at depth that results in strain. This
problem can be formulated as a boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ · σ + fP = 0 inΩ
σi j = λ∑3

k=1 εkkδi j + 2μεi j inΩ

εi j = 1
2

(
∂ui
∂x j
+ ∂u j

∂xi

)

u = 0 on Γ2
σ · n = 0 on Γ1

(1)

where σ is the stress tensor; ε is the strain, that is related with the displacement
field, u; δi j is the Kronecker delta; μ = μ (x) represents the shear modulus, also
called the rigidity modulus or the second Lamé coefficient;λ = λ (x) is the first Lamé
coefficient; and n being the unit outward normal vector to the boundaryΓ = Γ1 ∪ Γ2,
Γ1 ∩ Γ2 = ∅.

The inflation/deflation of magma reservoirs caused by pressure changes is usually
modeled by considering a cavity with radius a inside the medium. In this case the
problem domain depends on the cavity location. Thus, solving this problem via
FEM implies mesh rebuilding when the source location or geometrical features of
the source changes. The rebuilding of the mesh can be a limitation for solving the
inverse problem through explorative schemes since they require to solve repeatedly
problem (1) and therefore to change the source location and its geometric features
on each realization. To overcome this limitation, we can take into account that the
solution for the spherical cavity can also be obtained assuming three orthogonal
force dipoles or center of dilatation, e.g., [2], when the source is much smaller that
its depth. Thus, we propose the body force, fp, to be applied in (1) as the gradient of
a Gaussian function whose variance is selected a priori depending on the size of the
Finite Element discretization. Since this is an elastic system, the displacement field
throughout the domain is a linear function of the source strength, a3	P .

Here, we use 3D models solved by FEM that simulate the volcano deformation as
described above for the estimation of pressure changes, a3	P , and source location,
(x ′1, x ′2, x ′3), that characterize volcano deformation sources. We refer to extensive
literature for the formulation of the problem (1) via FEM [3]. To efficiently handle
with non-linear inversions, the method we propose combines both a gradient based
technique as least squares optimization and a sampling technique in an explorative
scheme similar to the one proposed by [4].

3 Application

We study Teide stratovolcano (Tenerife, Canary Islands, Spain). For such as task,
we perform two inversions to estimate the best-fitting sources for the synthetic data
that could be observed at the GPS network stations that cover Tenerife island in case
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(a) (b) (c)

(d) (e) (f)

Fig. 1 a, d Synthetic vertical displacement, u3, in cm (both graphics represent the same synthetic
field); b uTenHeT

3 and e uTenHoF
3 considering the parameters obtained by inversion; model residuals:

c u3−uTenHeT
3 and f u3−uT enHoF

3 . The marks indicate the location of GPS stations located around
Teide

of intrusion beneath Teide summit. The synthetic data were obtained considering a
heterogeneous domain with the real topography of the island that is contiminated
with Gaussian noise of 1 cm standard deviation. The distribution of elastic parameters
were estimated from previous gravimetric and seismic studies carried out in the island
[5, 6].

One inversion is performed considering the structural model of the island used
for the simulation of synthetic data (model TenHeT). The other one is performed
with the same set of synthetic data but considering a flat free surface homogeneous
domain and a reference elevation located at 3000 m above sea level (model TenHoF).
Model TenHoF is representative of the analytical models, such as the Mogi model.
While the first inversion allows to validate the inversiontechnique, the comparison
between the results from model TenHeT and TenHoF reveals sensitivities to TenHoF
assumptions.

Figure 1 shows the differences between the synthetic vertical displacement and
the vertical displacement retrieved by TenHeT with the source parameters obtained
from the inversion process. Predicted deformation from TenHeT (Fig. 1b) practi-
cally recovers the synthetic field (Fig. 1a). The differences are of order 10−5 cm
(Fig. 1c). Considering the GPS precision attainable nowadays, we can conclude that
the developed inversion methodology of geodetic deformation data observed at the
GPS network of the Tenerife island is very accurate. Nevertheless, the quality of the
inversion results is unreliable for TenHoF model since the influence of the medium
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assumptions retrieves residuals that are out the range of the observation precision
with values around 3 cm (Fig. 1f). The magnitude and pattern of these systematic
prediction differences suggest forward model assumptions should be carefully con-
sidered when designing a conceptual model of volcano deformation. Furthermore,
the residuals show that the spatial distribution and the number of the GPS stations
located nearby Teide volcano, could not be ideal for understanding the deforma-
tion field caused by a magma intrusionbeneath its summit when a typical model as
TenHoF is used for the inversion of geodetic data.

Other authors have proposed a methodology for the estimation of the deformation
source parameters taking into account structural medium heterogeneities [7]. They
focus on the automation of the mesh generation process in response to perturbation of
a spherical cavity position within the domain. We take advantage of our methodology
and the total analysis time for 9,000 realizations of the forward model is about
17 h whereas [7] employees about 7 days in a similar machine (3 GHz quad core
CPU) for 12,000 realizations. It is worth mentioning that their mesh contains 13,870
nodes versus the 108,990 nodes that integrates Tenerife mesh. Since our code is
parallelized and the scalability is very good in this kind of problems were many
independent forward models are computed, the CPU time can be reduced using as
many processors as available. As an example we also perform an inversion in 4 quad
core CPU and, as expected, the CPU time reduced by 4, i.e, we spent 4.5 h. Therefore,
the inversion method with heterogeneous models could be considered as a semi-real
time method of quantitative interpretation due to its scalability.
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Ensemble Kalman Filter Assimilation
of Transient Groundwater Flow Data: Stochastic
Moment Solution Versus Traditional Monte
Carlo Approach

Marco Panzeri, Monica Riva, Alberto Guadagnini and Shlomo P. Neuman

1 Introduction

Assimilating temporal data with Kalman Filter (KF) related algorithms is a wide-
spread inverse modeling technique in many areas of the earth sciences. The increasing
popularity of this approach finds its origin in the simplicity of the associated first-
order-based updating scheme, which is relatively easy to implement, computationally
efficient and allows integrating dynamic data sequentially as soon as they become
available (e.g., [1]). The ensemble Kalman filter (EnKF) is appropriate for large and
nonlinear models of the kind required for realistic subsurface fluid flow simulations.
It has traditionally entailed the use of a (numerical) Monte Carlo (MC) approach
to generate a collection of interdependent random model representations. These are
referred to in the literature as an ensemble, a term we use here in a more traditional
stochastic context by relating it to ensemble moments of quantities of interest. The
collection enables one to estimate the ensemble statistics (mean and covariances)
of parameters and state variables that are used during the updating step. In practi-
cal problems, the computational burden associated with the MC framework requires
keeping the number of MC realizations much smaller than the size of the system
state and parameter covariance matrix. This often leads to spurious correlations and
incorrect updates of the model parameters. Previously in Ref. [3] we proposed to cir-
cumvent the need for MC through a direct solution of approximate nonlocal moment
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equations (MEs) that govern the space-time evolution of conditional ensemble means
and covariances of hydraulic heads and fluxes. Here, we compare the accuracy and
computational efficiency of our newly proposed EnKF approach against the tradi-
tional MC framework. We do so for a scenario involving a pumping well operating
in a two-dimensional randomly heterogeneous aquifer.

2 Numerical Model

We consider convergent flow to a well pumping at a constant rate Q P = 3 (all quan-
tities are given in consistent space-time units) from the center of a two-dimensional
square domain measuring 40 × 40 and discretized into grid cells of uniform size
1 × 1. Deterministic head values of 1 and 0 are prescribed on the left and right
boundaries while the top and bottom boundaries are impervious (Fig. 1). Storativity
is set equal to a uniform value of 0.3.

The reference log-conductivity (Y) distribution (Fig. 1) has been generated using
the sequential Gausian geostatistical simulation software SGSIM [2] as an uncon-
ditional statistically homogeneous and isotropic multivariate Gaussian field having
zero mean and isotropic exponential covariance with variance 2 and integral scale
4. We solve the corresponding deterministic flow problem for a time period of 80
units to obtain a corresponding reference head distribution in space-time. We sample
the reference Y field at 9 spatial locations and the reference head, h, at 20 locations
(see Fig. 1) and 10 observation times (Tk = 5 × k with k = 1, 2, . . . , 8; T9 = 60
and T10 = 80). The Y and h measurements are perturbed by adding white Gaussian
noise having a standard deviation of 0.1 and 0.01, respectively. This renders, e.g.,

Fig. 1 Flow domain, bound-
ary conditions, reference
log-conductivity distribution,
pumping well (•), head (�)
and log conductivity (♦) mea-
surement locations in the
synthetic test case
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perturbed Y values which are characterized by a relative difference ranging between
0 and 71 % with respect to their reference values at the nine Y sampling locations.

MC-based EnKF requires the initial generation of NMC realizations of equally
likely Y fields conditioned on the noisy measurements. Initial head fields are obtained
by solving the corresponding NMC deterministic steady state flow problems without
pumping. The MEs approach is based on an initial mean Y field and corresponding
covariance matrix which are constructed by projecting the nine Y noisy measurements
onto all remaining grid elements via kriging. The steady state MEs are solved in the
absence of pumping to obtain an initial mean h, corresponding h covariance, and
cross-covariance between h and Y.

3 Results and Discussion

Figure 2 displays scatter plots of estimated mean (〈Y 〉) versus reference (Yre f ) log-
conductivity values at the largest assimilation time Tk = 80 obtained through MEs-
and MC-based approaches for different values of NMC. The results obtained with
the two approaches tend to converge as NMC increases. This is also highlighted by
the tendency to coincide of the linear regression lines fitted to the results.

As seen in Fig. 3a, slopes of regression lines fitted to the simulation results increase
sharply with Tk at early assimilation times. Increasing NMC leads to improved per-
formance of the updating scheme until the MC solution reaches convergence. This
occurs at about N MC ≈ 10, 000 for the test case considered and no further sig-
nificant improvement is noted for NMC up to 100,000 (Fig. 3). Figure 3a shows that
MC-based slopes tend to their MEs-based counterpart with increasing NMC. The
slopes of regression fits associated with MEs are generally larger than those related
to MC. Figure 3b displays temporal dependence of the coefficients of determination
(R2) of the linear fits. Our results show that R2 (a) is very low and does not improve
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Fig. 2 Scatter plots of estimated mean (〈Y 〉) versus reference (Yre f ) Y values at Tk = 80.0
obtained by MEs (blue symbols) and MC (red symbols) approaches with NMC = a 100, b 1,000,
c 10,000. Linear regression fits to the data (blue and red lines for MEs and MC approaches, respec-
tively) are also shown
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Fig. 3 Slopes (a) and coefficients of determination, R2 (b) of regression lines fitted to scatter plots
of estimated mean and reference Y values versus Tk for assimilations performed through ME (solid
black) and MC approaches with NMC = 100 (dashed), 500 (dashed-dotted), 1,000 (solid grey),
10,000 (solid blue), and 100,000 (solid red)

with Tk when NMC is relatively small (NMC = 100), (b) it increases with NMC, and
(c) its value is close to its MEs-based counterpart for N MC ≥ 1, 000.

Our reliance on MEs allows circumventing the drawbacks which are commonly
observed in traditional (MC-based) applications of EnKF, such as the filter inbreed-
ing and incorrect updates due to spurious covariances. In terms of computational
efficiency of the two approaches, the CPU time required for each time interval on
10 standard 2.80 GHz Intel i7-860 processors working in parallel is 13,650 and
0.375 × N MC seconds respectively for the MEs- and the MC- based approach.
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New Analytical Solutions for Phreatic Darcian
Flows Over Non-Planar Bedrocks

Anvar Kacimov, Yurii Obnosov and Osman Abdalla

1 Introduction

Groundwater flow in unconfined aquifers is characterized by a free (phreatic) surface
and nonlinear boundary conditions there [1, 2]. Common catchment-scale reconnais-
sance models or regular annual assessment of aquifers’ resources utilize a hydraulic
Dupuit–Forchheimer (DF) approximation, which in steady regimes requires solving
a boundary-value problem for a second-order ordinary differential equation. A more
general, potential theory (PT), solves Laplace’s equation, provided the aquifer is
homogeneous. In the arid climate of Northern Oman, with a periodic occasional
rainfalls of 200–300 mm/year in mountains (2–3 km high) and 100 m/year in the
valley zones of catchments, which are several tens of kilometers long, recharge from
the vadose zone to the water table can be neglected everywhere but the fractured rock
in upper reaches of North Oman Mountains (NOM). The main factor controlling the
shape and locus of the phreatic surface is the subjacent bedrock whose geometry is
commonly inferred from geological data.

In the study area (Northern Oman), for which our model is developed, the geology
ranges from the Precambrian basement rocks, mainly phyllites and slates, at the bot-
tom of the succession occupying the core of NOM to karstified carbonate rocks (Hajar
Supergroup, HSG) at the elevated areas to fractured ophiolitic sequence overlain by
porous medium of Tertiary limestones and Quaternary alluvium gravel at the top of
the geologic section. Recent monitoring of the water table, whose slope is steep in
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the mountains and relatively mild in the valley part of the catchment, revealed a puz-
zling spatial variability, detected in direct borehole observations and reconstructed
geophysical (mostly TDEM) surveys. The degree of this steepness, position of the
water table and other aquifer characteristics are vital because groundwater is the
main resource for agriculture and other sectors of Omani economy.

In standard DF or PT models the bedrock boundary of an unconfined aquifer
is assumed to be planar [2]. In Refs. [3, 4] steep slopes of the free surface were
attributed to a “groundwater fall” geometry of the bedrock, i.e. a non-planar aquifuge
boundary making a step-down. In hillslope hydrology, both the DF and PT models
are used but explicit closed-form solutions (like ours below) to phreatic-surface flow
problems are rare. Here we extend the model of Ref. [4] and consider the following
bedrock “anomalies”: (a) an aquifer with an underlying aquifuge whose inclination
changes abruptly from aquifer’s upflow to downflow (Fig. 1) and (b) an aquifuge with
a continuously varying slope. Correspondingly, we apply two different techniques:
the hodograph method [4] and boundary-value problem method [5]. We assume a
Darcian flow, ignore the capillary fringe, accretion or evapotranspiration to/from the
vadose zone and any sinks-sources (e.g. pumping wells) in the flow domain.

Fig. 1 Phreatic flow over a corner-shaped aquifuge; physical, complex potential, hodograph,
inverted and auxiliary domains
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2 Flow Over Non-Planar Aquifuge

The bedrock AOD makes a corner (Fig. 1). The origin of a Cartesian coordinate sys-
tem coincides with the vertex O. The flanks of the wedge, OD and AO, dip at angles
απ (counted from Ox positive clockwise) and β π (positive counterclockwise), cor-
respondingly. Without any loss of generality we consider here the “hillslope” case
of 0 < α = const < 1/2, 0 < β = const < 1/2. If α > β, flow decelerates
downstream of the transition zone near point O, otherwise it accelerates. The flow
rate (per unit length perpendicular to the plane of Fig. 1) is Q. A PT-based solu-
tion was obtained in Ref. [1] for α = −1/2, β = 1/2; in Refs. [3, 4] the case of
α = 0, β = 1/2 was studied, in Ref. [2] winding seepage in domains with sharp-
edged impermeabilities was considered.

If α > 0 and β < 1/2, then BC far upflow and downflow of O is parallel to
the bedrock i.e. a 1-D unidirectional flow is “normal” of saturated thicknesses H0
and H1 far above and below point O, respectively. The corresponding zones are
schematically demarcated by dotted lines in Fig. 1. In these zones flow is aligned
with the bedrock, the 1-D DF approximation works well and gives exactly the same
solution as PT. In the conjugation zone of Fig. 1, the free surface BC is essentially
non-straight. Dashed lines in Fig. 1 represent the “primitive” phreatic surface cor-
responding to two “normal” flows at constant slopes απ and βπ, i.e. the straight
lines y = −tan απx + H0/cos α π and y = −tan β πx + H1/cos βπ. The “primitive”
lines intersect at the point M and the corresponding “phreatic corner” BMC would
be a simplistic Dupuit replica of AOD, translated. The angularity of AOD affects the
shape of BMC in PT.

We introduce a complex physical coordinate z = x+iy, hydraulic head h(x, y),
Darcian velocity vector V = −k∇h, velocity potential φ = −kh, stream function ψ,
complex potential w = φ+i ψ and complexified Darcian velocity V = u + iv. φ,ψ

and h are harmonic functions. φ + ky = 0 along BC. In the w-plane we have a strip
Gw (Fig. 1) corresponding to the flow domain Gz. In the hodograph plane, we have a
circular triangle GV. In Fig. 1 the case of α > β is illustrated with O being a stagnation
point. If α < β then VO = ∞ i.e. the hodograph trigon is infinite. The magnitudes
of velocities in the “normal” flow zones of Fig. 1 are |VA| = |VB| = ksinαπ and
|VC| = |VD| = ksin β π. From the mass balance, Q = H0|VA| = H1|VD|. We use the
method of inversion [2] and invert GV into a trigon Gω where ω = dz/dw (Fig. 1). If
α < β then Gω in Fig. 1 is a standard triangle. We map conformally Gw onto Gω via an
auxiliary plane ζ = ξ + i η using the Schwarz–Christoffel formula twice. After some
algebra we obtain equations of BC. Fig. 2 represents the results of computations for
α = 0.35, β = 0.1. This and computations for other tilt angles illustrate the accuracy
of the DF approximation as compared with a full 2-D model.

The case of AOD in Fig. 1 as an arbitrary curve is tackled by the method from
Ref. [5]: the Gw domain remains the same as in Fig. 1 but the shape of both boundaries
of Gz is reconstructed by the so-called “inverse” technique. For this purpose, the
pore pressure as a function of ξ in the auxiliary half-plane is given. Unlike the
case of the wedge-shaped bedrock, the mathematical solution is written in terms of
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Fig. 2 Phreatic surface for
α = 0.35, β = 0.1 (solid
curve) computed by PT,
dashed lines are DF asymp-
totics

singular (Cauchy-type) integrals. Like on Fig. 2 the phreatic surfaces are plotted but
the confining boundary also emerging as a part of solution.

Similarly to Ref. [6] our groundwater system if gravity-controlled. However, con-
trary to a humid climates (e.g. Canada), the water table in arid climates and catch-
ments with a tick vadose zone is a “hydraulic” replica of the bedrock rather than of
land topography.
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When Steady-State Is Not Enough

J. Jaime Gómez-Hernández, Teng Xu, Haiyan Zhou and Liangping Li

1 Introduction

It is important to give a proper characterization of subsurface hydrogeological
properties for groundwater forecast, environmental risk assessment and subsurface
resource management . However, in real word, a good characterization of subsur-
face hydrogeological properties is difficult to achieve from a sparse set of parameter
observations. To solve this problem, stochastic inverse modeling methods are com-
monly used to improve the characterization making use of more abundant state data,
such as piezometric heads. In order to complement a previous study [1] in which we
show that enough transient piezometric head could be enough to give detailed char-
acterization of the underlying hydraulic conductivity spatial heterogeneity, we have
performed a study to show that steady-state piezometric information is not enough
to properly characterize the conductivity field.

In this work, we will use a localized version of the normal-score ensemble Kalman
filter (NS-EnKF) method developed by Zhou et al. [2] to study the power of time-
invariant piezometric head observations in the characterization of a bimodal hydraulic
conductivity field under steady-state flow conditions.
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2 The Formulation of the Normal-Score Ensemble Kalman
Filter for Steady-State Flow

The Normal-Score EnKF can be summarized as follows:

1. Initialization step. An ensemble of hydraulic conductivity fields is generated.
2. Normal-Score transformation step. A normal-score transformation is applied to

the conductivity vector.
3. Forecasting step. Piezometric heads are calculated.
4. Analysis step. Normal-score transformed conductivities are updated by Kalman

filtering.
5. Back transformation step. Back transform the updated normal-score transformed

conductivities into conductivities using the inverse of the previously computed
normal-score transform functions.

Besides, covariance localization is used to eliminate the effect of spurious corre-
lations in the experimental covariance, and covariance inflation is used to avoid filter
collapse [1].

In this work, the groundwater flow is assumed to be at steady-state. The governing
equation for steady-state flow with external sinks/sources is

∇ · [k∇h] + q = 0 (1)

where k is hydraulic conductivity [LT−1], h is hydraulic head [L], q denotes sinks
and sources per unit volume [T−1], and ∇ stands for (∂/∂x , ∂/∂y, ∂/∂z).

2.1 Synthetic Example and Analysis

In this work, the construction of the synthetic bimodal confined aquifer, the boundary
and initial conditions, conditions, the total simulation time and the positions of the
111 observation piezometers are the same as in the work by Xu et al. [1]. The reference
log-conductivity field is shown in Fig. 1. The difference between the two works is
that the observation piezometers in this work are time invariant. The flow simulator
MODFLOW [3, 4] is used as the forward model.

In this work, three scenarios, shown in Table 1, are used to analysis the power of
steady-state piezometric head in the characterization of a bimodal hydraulic conduc-
tivity field. The difference between the scenarios is in the use of the localization and
variance inflation.

Figure 2 shows the ensemble mean (left column) and ensemble variance (right
column) of the updated log-conductivity fields after 60 iterations in the assimilation
step for the three scenarios.
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Fig. 1 Reference log-conductivity field

Table 1 Definition of
scenarios

Scenario Case 1 Case 2 Case 3

Observation piezometers (111)
√ √ √

Localization
√ √

Variance inflation
√

Comparing Fig. 2 with 1, we can see that steady-state piezometer heads fail to
characterize the hydraulic conductivity field.

In contrast, in the work by Xu et al. [1], it has been proved that the transient piezo-
metric heads carry enough information about the conductivity spatial heterogeneity,
as long as a sufficiently large number of piezometers are available, that is, condi-
tioning to transient piezometric head data could produce an ensemble of realizations
that captures the main patterns of the non-Gaussian reference field, even when there
is no prior information about the aquifer spatial heterogeneity patterns.

3 Summary

Steady-state piezometric head data are not enough to characterize the type of
hydraulic conductivity heterogeneity displayed in Fig. 1.
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Fig. 2 Scenarios Case 1–3. Log-conductivity ensemble mean and variance computed after 60
iterations
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Hydrogeological and Thermal Modelling
of an Underground Mining Reservoir

Clara Andrés Arias, Almudena Ordóñez Alonso and Rodrigo Álvarez García

1 Introduction

Since the profitability of using mine water as a geothermal resource has been
demonstrated, many studies have been carried out in different countries to assess
the potential of its exploitation.

Due to mining in the Central Coal Basin (CCB) of Asturias (Spain), original
small multilayer aquifers in sandstones have given way to ‘pseudoaquifers’ with
a behaviour similar to a karstic aquifer. Closed and inundated mining voids act as
underground reservoirs, so they can be used as a geothermal source.

The efficient use of this type of resource can be optimized by applying thermal
models. In this case, we chose the reservoir constituted by the Barredo and Figaredo
flooded coal mines.

2 Area of Study

The area of study is located inside the CCB of Asturias (see Fig. 1a). The mean
temperature in this area is 14 ◦C and the average yearly precipitation within the
Barredo–Figaredo basin (Fig. 1a) is 874 mm.
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Fig. 1 Area of study: a Barredo–Figaredo basin; b Geological section

This basin was defined considering the superficial watershed and the extension
of the mine voids that induce fractures and water filtration. It constitutes the unit
that has been considered for modelling. It is crossed by the Turón River, which loses
some of its flow by infiltration in the most mined area [1].

Figure 1b shows the existence of a synclinal structure (synclinal of Barredo).
Hydrogeologically the materials are characterized by low porosity and permeability.
The synclinal structure corresponds to a cyclic succession of parasequences formed
by shales, sandstones and coal layers, with interbedded conglomerates and breccias
[2]. Studies in the area show that the unaltered materials have permeabilities around
10−7 m/s [3].

Mining activity at the CCB started with “mountain mining” galleries and it con-
tinued by extraction wells to exploit the layers below the valley. At the studied area,
when both shafts finished their mining activity, the water level was at −180 m.a.s.l.
Then, pumping was stopped for 295 days, allowing the water level to increase up to
+150 m.a.s.l. Now, pumping is resumed and water level is maintained at that height.
Currently, water pumped from Barredo shaft is being geothermically used, with an
average temperature of 20 ◦C at a depth of 100 m.a.s.l. For more information of this
system consult the PhD thesis [4].

3 Numerical Model Description

For the simulation of the example presented in this paper, FEFLOW [5] was used.
The 2D model developed is based on a cross-section according to the line that joins
Barredo and Figaredo shafts, considering the mine works (Fig. 1b).
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Fig. 2 Material hydraulic conductivities defined after calibration

The conceptual model is composed of isotropic, heterogeneous, porous and uncon-
fined medium, and simulations were performed with a saturated/variably saturated
model. As the materials in the study area are not permeable, lateral inflow was
neglected. A Type 2 Neumann boundary condition was used for rainfall infiltration
(variable flow, obtained from a previous hydrological study of the fraction of the
effective rainfall which infiltrates into the basin [1]). The recharge coming from the
river was modelled by injection wells with an average infiltration flow from Turón
River in the stretch intercepted for the modelled section.

A previous calibration of the hydrogeological parameters (hydraulic conductiv-
ity, porosity and retention coefficient) was performed, comparing the water level
measured during the flooding process of the mine with the simulated values.

The thermal model starts after the flooding period, when pumping (3.5 m3/day)
is re-established in the reservoir to keep a constant flooded level. Extractions have
been considered in both wells, maintaining a zero water flow balance in the system
(inflow = outflow).

Additionally, the temperature of the infiltrating water was used as boundary
condition, and at the bottom edge a constant geothermal heat flow of 65 mW/m2

was defined. As initial condition, the temperature of the geological massive varies
between 14 ◦C at the surface and 25 ◦C in the deepest area of the model, considering
the Earth’s geothermal gradient of 0.03 ◦C/m.

Once the model was defined and calibrated (Fig. 2), several scenarios of function-
ing of the geothermal system were tested to assess the long-term viability of it: (i)
30 years of simulation without reinjection, (ii) 60 years of simulation without rein-
jection and (iii) 30 years of simulation with reinjection of used water (1.4 m3/day)
in Figaredo shaft.

4 Results

The calibration was considered valid once the Pearson correlation coefficient between
the simulated and the real water level values recorded during the flooding period
reached a value of 0.75.

Figure 3 shows a 2D vertical cross section of the model and the calculated tem-
peratures after 30 years without reinjection of water (case i). The water mainly flows
through the galleries which remain colder, whereas a more constant temperature is
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Fig. 3 Temperature in the reservoir after 30 years of simulation, without reinjection

maintained in the massif. After 30 years of simulation, there is a similar distribution
of temperatures for the third scenario (with reinjection), reaching a temperature of
18 ◦C in Barredo shaft at a depth of 100 m.a.s.l. This value is a bit lower than the
current average temperature, but still within the limits of the natural fluctuations of
the system throughout a year. For longer simulations (case ii) there are not significant
changes. Once the equilibrium is reached, colder water remains mainly on the top
of the reservoir, because it is constantly renewed by the pumping at Figaredo and
Barredo shafts. In the lower areas of the system, water is kept at higher temperatures.

5 Conclusions

The defined model efficiently represents the temporal evolution of the water table in
the mine reservoir during the flooding period with a correlation coefficient of 0.75.

Regardless of the simulation time and the different scenarios studied, the evolution
of the underground reservoir temperature always follows the same patterns. There-
fore, it can be concluded that the geothermal system under the current demand and
environmental conditions, would be able to supply water at the required temperature
during more than 30 years.

Acknowledgments The authors thank the company HUNOSA the information provided for the
realization of this work and also thank at DHI-WASY for its help and support using the information
package FEFLOW. (Grant: UNOV-09-BECDOC-S).

References

1. Ordóñez, A., Andrés, C., Álvarez, R., Jardón, S. (2010). Aprovechamiento de las Aguas Subter-
ráneas como Recurso Hídrico y Energético. In Seguridad y Medio Ambiente, vol 28 (pp. 46–60).
Spain: Fundación Mapfre.

2. García-Loygorri, A., Ortuño, G., Caride de Liñán, C., Gervilla, M., Greber, C.H., Feys, R.
(1971). El Carbonífero de la Cuenca Central Asturiana. Trabajos de Geología, Universidad de
Oviedo, vol 3, pp. 101–150.



Hydrogeological and Thermal Modelling of an Underground Mining Reservoir 423

3. Fandos, P., Rodríguez, F., Gutiérrez, A. M., Álvarez, J.J. (2004). El Yacimiento de HUNOSA
en la Cuenca Carbonífera Central. Servicios de Geología del Caudal y del Nalón.

4. Jardón, S. (2010). Aprovechamiento de las Aguas de Mina en la Cuenca Central Asturiana como
Recurso Energético. Aplicación al Embalse Minero Barredo-FIgaredo. PhD Thesis.

5. Diersch, H.-J. G. (2005). FEFLOW finite element subsurface flow and transport simulation
system. Reference Manual. Berlin: WASY, Institute for Water Resources Planning and Systems
Research.



Effect of Entrapped Gas Below the Phreatic
Surface on Pressure Propagation and Soil
Deformation

Héctor Montenegro, Oliver Stelzer and Bernhard Odenwald

1 Introduction

An essential characteristic in transient groundwater flow problems is the phenomenon
of storage capacity. The water storage is governed by three processes: change in void
volume of the skeleton, change in fluid saturation and change in fluid density. Due
to the negligible compressibility of water the storage in (fully saturated) aquifers is
assumed to be dominated merely by soil deformation. The presence of entrapped gas
below the phreatic surface, for example as a result of natural water level fluctuations,
in combination with “rapid” external changes in head and/or stress can substantially
affect pore pressure propagation dynamics [2, 3]. The expression “rapid” must be
considered in regard to the soil’s hydraulic conductivity and involves accordingly a
wide range of time scales [3].
The altered dissipation dynamics is the result of the increased storage volume due
to the gaseous phase compressibility [2]. Retarded excess pressure enhances the
occurrence of large hydraulic gradients and seepage forces which in turn may affect
the effective stress, leading to soil deformation and eventually to a reduction of soil
stability [2].
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2 Gas Entrapment and Storage Capacity

Assuming the porous medium as rigid, the entrapped pore gas as immobile and any
gas volume change being followed by storage or release of pore water the storage
capacity C [1/L] is numerically equivalent to a volume of soil gas dVg [L3] com-
pressed or expanded (i.e., water stored or released) by a unit volume of aquifer V0
[L3] under a unit head dh [L] (or likewise pore pressure duw [F/L2]) decline.

C = 1

Vo
· dVg

dh
= 1

Vo
· dVg

duw
· duw

dh
= 1

Vo
· dVg

duw
· γw = dθg

duw
· γw. (1)

Hilf [1] related a change in gas content dθg = dVg/V0 [-] to a gas pressure change dug

[F/L2] considering the porosity n [-], the initial (i.e., at atmospheric conditions) water
saturation S0 [-], the atmospheric pressure ua [F/L2] and the volumetric coefficient
of solubility h* [-] quantifying the dissolved gas:

dθg = dVg

Vo
= dug

(ua + dug)
· (1− So + h∗ · So) · n. (2)

Assuming equilibrium between gas ug and water pressure uw below the phreatic
surface (i.e., ug = uw) and substituting dθg in Eq. 1 yields the storage capacity term
C as the derivative of the gas content- pressure head curve (see Fig. 1, left) which, in
contrast to the specific storage Ss is pore pressure dependent [3]:

C = dθg
duw
· γw = (1− So + h∗ · So) · n · γw

ua + duw
(3)

Figure 1 shows the gas content θg (left) and the capacity C (right) with increasing
pressure head uw/γw (or likewise depth below phreatic surface for hydrostatic con-
ditions) for an initial gas content θg0 = 0.02 vol %. The right graph reveals the huge
specific storage and the non-linear pressure head dependence in the presence of even
small volumes of entrapped gas (customarily used specific storage Ss < 1 · 10−5

1/m).

3 Coupled Flow-Deformation Analysis Considering Gas
Entrapment

To examine the effect of entrapped gas on excess pore pressure dynamics in a
deformable soil a coupled groundwater flow-deformation (consolidation) analysis
was performed with Plaxis FE-Software version 2D 2012. Gas entrapment was con-
sidered by assigning a saturation-pressure relationship according to Fig. 1 (left). The
configuration of the numerical 1D column experiments is given in Fig. 2 and con-
siders two different loading situations. In the first case a static load at the top of the
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Fig. 1 Gas content (left) and storage capacity C (right) as function of pressure head uw/γw

Fig. 2 Experimental set up for the fully coupled consolidation analysis

column is increased to �p = 100 kPa during 0.1 day. In the second case the water
level is increased by �h = 10 m during the same time period.

Calculations for two linear elastic soils with different stiffness values E1 and E2
were performed. The results are presented in Fig. 3. In the static loading case the
change in total stress results in a rise of pore pressure. Without entrapped gas the
excess pore pressure immediately (t < t0) rises to the corresponding load �p and
dissipates with time accompanied by settlements. Considering gas entrapment the
initial excess pressure is lower and settlements already start during loading.
In the hydraulic loading case without gas entrapment the pore pressure reacts instan-
taneously on the pressure head change�h showing only negligible displacements as
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Fig. 3 Calculated settlements and excess pore pressures for static (left) and hydraulic loading

the effective stresses remain essentially unaffected. Entrapped gas bubbles enhance
storage which retards the propagation of the increased pressure head producing seep-
age forces at the top which in turn induce an instant settlement. In the course of time
the initial excess pore pressures dissipate until reaching steady state and the elastic
deformation, in contrast to the static loading case, is completely reversed. The magni-
tude of initial excess pore pressure and settlement during loading depends on the soil
stiffness. The implications of altered pore pressure dissipation due to gas entrapment
will be displayed with examples from engineering practice in the presentation.
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Time Series Analysis of Groundwater
Hydrographs: Case Study From a Hardrock
Area

Wolfgang Gossel and Ronny Laehne

1 Introduction

Time series analyses are used manifold in sciences: Registrations of starobservations
with a telescope in astronomy as well as temperature values in meteorology and water
levels in hydrology and hydrogeology are only a few examples for applications of
analyses of trend, periods and autocorrelation. The method itself is generally an a
posteriori method to estimate parameters, search for correlations etc. Time series
analysis of groundwater hydrographs is a challenging task. Data loggers avoid the
former problems of irregular registration and computers speed up every year so that
the analysis is improved. The question of finding, proving and interpreting trends,
periods and autocorrelation in hydrographs, hydrochemical data sets and meteoro-
logical observations is of high interest for hydrogeologists. Based on groundwater
level measurements in a porphyry aquifer in Halle (Germany) the time series analy-
sis with the proposed methods of trend identification and period scanning method is
compared to the Fast Fourier Transformation (FFT). Therefore an evenly sampled
hydrograph (see Fig. 1) is used although period scanning is capable of analyzing
unevenly sampled time series. The results for an extended unevenly sampled data
set will be presented in an additional publication. First steps of this analysis are
presented in [1].

In cases of gaps in the hydrograph the analysis was carried out by interpolation
of values in the past. The methods for this step are manifold and not only linear
interpolation between two measurements. After this step the analyses of trend and
periods are applied.
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Fig. 1 Hydrograph and results of trend analysis and a superposition of the 10 highest correlating
detected periods marked in Fig. 2

2 Methods

The unevenly recording of groundwater data with gaps and periods with high res-
olution measurements makes the application of the classical time series analysis
ineffective, as it is described in [2] and [3]. Therefore a new set of methods was
developed that consists of two of the three steps, the analyses of trend and periods,
which seem to be more important than the autocorrelation.

The trend analysis is simply carried out via a linear regression line. The advan-
tage is that an information about the coefficient of determination and therefore the
correlation For the identification of periods in a time series the period scanning was
developed. Here the measured time series is (after elimination of a significant trend)
correlated to synthetic periodic signals of plain cosine functions. For the correlation
the Pearson correlation coefficient is used:

rXY = Cov(X,Y )

σ (X)σ (Y )

wi th

rXY = Correlation Coe f f icient

Cov(XY ) = Covariance(XY ) =
∑n

i=n
(xi − x)(yi − y)
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σ(X) = Standard deviation(X) =
√∑n

i=n
(xi − x)2

σ(Y ) = Standard deviation(Y ) =
√∑n

i=n
(yi − y)2

Compared to the Fast Fourier Transformation (FFT) it has three advantages: (1)
All possible periods in a time series can be identified. (2) The correlation coefficients
instead of intensities are calculated and therefore the significance of a certain period
can directly be outlined (two sided significance T-test). (3) Time series with temporary
unevenly sampled data can be analyzed. Disadvantages are the low velocity of the
analysis and the possible non-uniqueness of the identified periods.

The tested frequencies have to be set by the user and should be between the
Nyquist frequency (double of the average sampling rate) and the statistically neces-
sary frequency (half of the total time range of the measurements).

3 Results

The results of the analysis of a 4 years hourly registered groundwater hydrograph
show a highly significant trend with a very small gradient. The equation of the trend
is given by y =−0.00043×+0.104.

In Fig. 2 the results of the period scanning as well as with an FFT are shown.
The period scanning shows results also in shorter periods than the FFT. The advantage
of the period scanning is very clear therefore. The significance level for the 95 %
confidence interval is 0.00797 so that several short periods can be identified clearly.
The challenge is additionally to find out the independence of the periods from longer
ones and in the case of the two indicated periods this can be proven.

4 Discussion

The application of the new methods to the groundwater hydrograph analysis is a
clear improvement. The comparison of the period scanning with the FFT shows at
certain ranges of the periodogram a higher resolution of the period scanning method.
The identification of the significance prevents from misinterpretation. This is already
helpful for the trend analysis, but especially for the analysis of periodicities.

More practical advantages are obvious for the period scanning method compared
to the results of a FFT: If the hydrograph has gaps of a few days due to changes of
the data loggers etc. there is no problem to work with the whole unevenly sampled
time series and not only with Short Time Fourier Transformation or wavelet analysis
as described in [4]. Another case that has been proven at other hydrographs is the
measurement in shorter time steps within the time series of low resolution [5]. The
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Fig. 2 Result of the period scanning and the FFT. The correlation coefficients on the y-axis indicate
the significance (limit of the 95 % confidence interval: 0.008)

correlation coefficients help also in this method to identify the significant periods
and separate them from insignificant periods.

The workflow takes in general more time than the classical time series analysis,
especially the period scanning, but with a high optimization and the use of parallel
processing the calculation times are also reduced and amount to a few minutes for
50,000 measurements.

The source code of the calculating kernel is OpenSource and can be downloaded
via www.mo2geo.org together with the manual.
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Coupled Hydrogeophysical Simulation
of a Pumping Test in an Unconfined Aquifer
and its Associated Gravimetric Anomaly

Andrés González-Quirós and José Paulino Fernández-Álvarez

1 Introduction

The difficulty to measure subsurface water content and hydrologic properties has led
to a growing number of geophysical methods. It is presented here an application of
time-lapse gravity for hydrological purposes, a field known as hydrogravimetry. This
technique provides a direct field measure since a change in water content causes a
change in terrain bulk density, leading to variations in local gravitational acceleration.

This relation was highlighted first by [1]. The development of new instruments
with higher resolutions (<1 μGal) and precisions and (<5 μGal), has increased
the interest of gravity measurements for hydrological purposes. [2] showed how a
pumping test in an unconfined aquifer could be monitored with gravity measurements
and [3] performed a coupled hydrogeophysical inversion, extended by [4] to more
complex conditions. All of them, however, used different simulation codes for the
hydrogeological and geophysical forward problems. A coupled hydrogravimetric
problem of a pumping test in a confined aquifer with a unique Finite Element Code
was performed by [5].

The same code, COMSOL Multiphysics, is used here to reproduce a coupled
hydrogravimetric problem of a pumping test in an unconfined aquifer. We illustrate
how a gravity profile on the surface can help to estimate a transient flow parameter.

Given only two observation points of the stationary phreatic level, we show how
the corresponding coupled gravity simulation provides information about the specific
yield with no need to perform transient flow tests.
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2 Methodology

2.1 Relation of Gravity with Aquifer Storage Changes

In an aquifer, changes in hydraulic head lead to mass changes. If the aquifer is
unconfined the coefficient of storage is called specific yield, Sy[-]. The change in
gravity (Δggw) due to changes in storage could be approximated to a slab (h [m]
is the water table elevation, ρ [kg/m3] the density of water, and, t1 and t2 [s] the
beginning and the end of the interval):

�ggw = 2πGρSy�h = 2πGρSy (h (t2)− h (t1)) . (1)

The shape of the water table is here different from a slab and the gravitational
response of the drawdown cone is calculated with a superposition of finite disks [6].

2.2 Simulating the Gravitational Response of a Pumping Test

2.2.1 Hydrogeological Models

Two hydrogeological models have been performed. A 2D horizontal model of a pump
in an unconfined aquifer was developed under Dupuit assumptions of horizontal flow
following the methodology proposed by [7].

In order to simulate fluxes both in horizontal and vertical directions, we used
the Arbitrary Lagrangian-Eulerian (ALE) method explained in [8]. In ALE mode
the whole domain (2D-axisymmetric) is free to deform (Free Deformation option in
COMSOL) and the water table boundary moves matching the atmospheric pressure.

2.2.2 Modelling a Gravimetric Anomaly

COMSOL does not have a proper module for gravity calculation. However, a gravity
module can be created from an electrostatics one since both processes are governed
by Poisson’s equation [9].

2.2.3 Coupling the Gravity to the Hydrogeological Models

In the 2D hydrogeological problem a variable called “equivalent density” has been
created (change in mass per unit surface of aquifer (kg · m−2)), which relates the
drawdown with the change in mass:
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�mu = ρ ·Sy ·�h. (2)

The solution of the hydrogeological model is coupled with a linear extrusion oper-
ation to a 3D domain for the gravity calculations. The variable “equivalent density”
is implemented in the surface change density submenu in COMSOL.

In ALE model the “equivalent density” is change in mass per unit of volume
(kg · m−3):

�mu = ρ ·Sy· (3)

The gravity is here directly calculated over the hydrological model with the “equiv-
alent density” implemented via the space change density submenu.

3 Results, Discussion and Conclusions

Two different methods for the calculation of the gravimetric anomaly related with
water extraction in steady-state conditions have been successfully implemented in a
unique coupled simulation code.

The results have been checked satisfactory with analytical solutions. The result-
ing gravity profiles (Fig. 1) represent microgravity measurements over the surface.

Fig. 1 Change in gravity (in absolute value) for different values of specific yield (Sy) obtained
with the hydrogeological model (at the bottom). Initial water table was 5 m depth from the surface
(dashed line)
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The gravity anomalies vary between zero (beyond the radius of influence) and the
maximum value near the pumping well.

It has been observed that, under adequate circumstances (depth of water table,
enough drawdown cone) changes in position of hydraulic head and in value of specific
yield cause gravity anomalies that are higher than the resolution and precision of
actual micro-gravimeters (see point 1).

Under steady-state pumping conditions, and having enough observation wells, it
is possible to know the shape and volume of the drawdown cone. Given the gravity
data of mass change, and given a known water density, it is possible to estimate a
specific yield value.

The use of a unique simulation code allows the method to be used for more com-
plex situations and is a first step to perform a complete hydrogeophysical inversion.
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Towards a More Efficient Simulation
of Surface-Groundwater Interaction
in Conjunctive Use Systems: Selective
Compression and Modal Masking
in the Eigenvalue Method

Oscar David Álvarez-Villa, Eduardo Cassiraga and Andrés Sahuquillo

1 Introduction

During the last decades, some mathematical techniques have been widely used to
reduce large groundwater flow models. In general, three main families of reduction
approaches have been recognized: driven by data, driven by model and combined.
In driven by data reduction, the main objective is to reproduce some available infor-
mation of the aquifer’s flow variables using a black box reduced model. Combined
reduction uses some specific model results or empirical data to define the patterns
and build an orthogonal subspace that reduces the size of the original model. Proper
orthogonal decomposition has been the most widely used approach to achieve a com-
bined groundwater reduction [1]. On the other hand, the main goal in model oriented
reduction is to build an orthogonal subspace that captures the mathematical structure
of the groundwater flow model. This can be done via the eigenvalue method [2, 3].
In this paper, we present a new reduction methodology called eigenvalue method
with selective compression and modal masking (EVM-SCMM) as a tool to execute
a modal reduction of oversized groundwater flow models. The mathematical frame-
work to solve the groundwater flow PDE via EVM-SCMM is presented and some
relevant results of applying EVM-SCMM on rectangular aquifers are shown.
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2 Mathematical Framework of the EVM-SCMM

Let’s assume a linear, time invariant aquifer, whose spatial domain has been dis-
cretized in n active nodes using finite differences (FD) to solve the groundwater flow
PDE. This assumption implies that aquifer’s hydraulic parameters and boundary con-
ditions don’t change in time and it allows to use the superposition principle. Also,
let’s define h (t) ∈ Rn as the vector of piezometric heads in the active nodes [L].
These heads can be written as h (t) = u+ w (t), defining that u ∈ Rnare the steady
state heads subjected to the boundary conditions imposed to the original groundwater
model and w(t) ∈ Rnare transient heads that satisfy the following equation:

Aw (t)+�r (t) = S
dw (t)

dt
(1)

where A ∈ Rn×n is the conductances matrix [L2/T], S ∈ Rn×n is the matrix of
storages [L2], � ∈ Rn×na is the matrix of time invariant elemental excitations, na is
the number of external actions (EA) and r (t) ∈ Rna is the vector of EA intensities
[L3/T]. The boundary conditions for Eq. (1) are zero and its initial condition is
w(0) = h(0) − u [2]. The EVM-SCMM’s reduction procedure acts over (1) as
follows. First, let’s assume that the intensities of each EA are zero and w (t) =
V�(t), where is V ∈ Rn×n an orthogonal eigenvectors matrix �(t) ∈ Rn and is a
vector of time dependent continuous functions. It can be shown that the solution for
w (t) is [2]:

w (t) = VEV∗Sw (0)+ v
(

I− E
�

)
V∗�r (t) (2)

where � ∈ Rn×n is the diagonal matrix of eigenvalues. � and V can be obtained
using general eigenvalue problem’s solvers and the general solution for the transient
heads is w (t) = VE�(0), where E is a diagonal exponential matrix, whose diagonal
components are eii (t) = ϕ (0) e−λi t . Assuming that the simulations are carried out
in discrete time intervals of duration �t , from Eq. (2), the states of the aquifer are:

�(t) = E|�t�(t − 1)+
(

I − E|�t

�F

)
Br (τ ) (3)

where F ∈ Rn×n is a diagonal matrix that contains the volumes enclosed by the
eigenvectors and B = FV∗� ∈ Rn×na is the matrix of the allocation coefficients.

According to (3), the allocation coefficients, bi, j , represent the direct influence
of each EA on the changes of the aquifer’s dynamic. Hence, if the modal allocation
coefficient corresponding to any given EA is small, then the changes on the aquifer’s
states, due to such excitations, are also small. Based on the above mentioned concept,
for any EA, let’s define that an effective mode contributes effectively to the changes
in the aquifer’s states. Also, the changes on the aquifer’s states due to EA acting on a
residual mode are negligible. Accordingly, the selection of effective modes is based
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on the concept of participation limit, blim, using the following criteria:

{
If bi, j ≥ blim (λi , vi ) is effective for EA j
If bi, j < blim (λi , vi ) is residual for EA j

(4)

which allows to build the effective states mask, Z ∈ Nn×na . Z is a boolean matrix
that indicates which modes are excited by any given EA. The localization of the
zi, j = falseelements is defined in accordance to the indexes contained in the masking
set P C

{
(i, j) : bi, j < blim

}∀i = 1, . . . , n and j = 1, . . . , na . Applying (4) on (3),
the size of the matrixes involved on the aquifer’s state are reduced because only p+1
modes are effective for, at least, one of the EA considered. Therefore:

�̂ (t) = Ê|�t�̂ (t − 1)+
(

Î− Ê|�t

�̂F̂

)
B̂r (τ ) (5)

are the reduced or effective states of the aquifer, where F̂, �̂, Î, Ê|�t ∈ R(p+1)×(p+1)

are the reduced diagonal matrices defined for Eq. (3), B ∈ R(p+1)×na is the reduced
matrix of allocation coefficients and �̂ (t) ∈ Rp+1is the vector containing the
aquifer’s effective states. The last effective state, ϕp+1 (t), contains the conserva-
tion mode defined in [3] and [4] to preserve the equation of continuity on the aquifer.
The mask of effective modes, Z ∈ N(p+1)×na , acts decreasing the number of arith-
metic calculations on the matrix operation B̂r(τ ) because: (i) B̂ can be stored using
a sparse matrix format, saving virtual memory, (ii) operations are performed only
regarding to the effective modes and (iii) the matrix-vector multiplication has to
be done using sparse algorithms. This scheme of calculation improves the EVM-
SCMM’s performance when many EA are acting. Finally, the control parameters
(heads, volumes, surface-ground water fluxes, etc.) required by the conjunctive use
model are calculated using the expressions proposed by [4].

The main limitation of the EVM-SCMM is that the efficient generation of effective
modes demands the use of iterative algorithms to solve the generalized eigenvalue
problem. However, the computational and storage requirements in such generation
can be diminished using a physically based stopping criterion in the right way. For
instance, the modal accumulated allocation factor can be used. These factors represent
how accurately the reduced model preserves the conservation equation and allows
to avoid unnecessary iterations during the modal generation.

3 Application of the EVM -SCMM on Rectangular Aquifers

The EVM-SCMM was applied to reduce groundwater flow models on homogeneous
rectangular aquifers subjected to uniform recharge and punctual pumping. The effects
of changing the parameterization of the river-aquifer connection on the reduction’s
scheme of the EVM-SCMM were analyzed. The results of the reduced model are
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compared to those obtained using classical FD simulation, discretizing time and
space. To test the accuracy of those reduced simulations, the root squared mean
error (RSM), the Nash’s efficiency (E2) and the bias coefficient (BIAS) have been
estimated. The estimations for punctual and distributed EA show that, when the
number of effective modes increases, RMS and BIAS decreases to zero and E2
approximates to 100 %. It has been found that decreasing the riverbed conductance
improves the EVM-SCMM’s performance because fewer modes are needed to obtain
more accurate results. The efficiency of the flow simulation via EVM-SCMM is
similar to the observed using embedded multi-reservoir models [5]. Considering
either homogeneous or heterogeneous rectangular aquifers, the accuracies exhibited
by the simulations via EVM-SCMM were comparable to those obtained via the EVM
or DF, but its execution was much faster. To simulate the interactions between a river
and a rectangular aquifer discretized in 75000 blocks during 5000 daily intervals,
classical DF took around 1 h while EVM-SCMM finished in less than 2 min.

4 Concluding Remarks

The main advantage of the EVM-SCMM is that, increasing the number of cells in the
FD representation of the aquifer’s spatial domain, it is possible to consider a more
detailed description of the spatial variability of the aquifer’s hydraulic parameters and
EA in the groundwater flow modeling. It also increases the computational efficiency
of the simulations, especially when a conjunctive use system is modeled.
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Rational Lanczos Reduction of Groundwater
Flow Models to Perform Efficient Simulations
of Surface-Ground Water Interaction
in Conjunctive Use Systems

Oscar David Álvarez-Villa, Eduardo Cassiraga and Andrés Sahuquillo

1 Introduction

The Rational Lanczos method (RLANRM) [1] has been used in the last 20 years
to reduce groundwater flow models of several kinds of aquifers. Generally, those
aquifers have been spatially discretized via finite elements [2], but in this paper we
present an adaptation of RLANRM to simulate surface-ground water relationships via
finite differences (FD) in conjunctive use systems. First, the mathematical framework
to solve the partial differential equation (PDE) of groundwater flow via RLANRM
is presented. Later, the algorithm for the reduced simulation is discussed. Finally,
relevant results of applying RLANRM on rectangular aquifers are shown.

2 Mathematical Framework of RLANRM

Let’s consider a linear, time invariant aquifer, whose spatial domain has been dis-
cretized in n active FD nodes to solve the groundwater flow PDE. Accordingly, the
aquifer’s hydraulic parameters and boundary conditions do not change in time and
the superposition principle applies. Also, let h(t) ∈ Rn be the vector of piezometric
heads in each active FD node of the model [L]. By superposition, it can be written
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that h(t) = u + w(t), where u ∈ Rn is the steady state solution subjected to the
boundary conditions imposed to the original groundwater model and w(t) ∈ Rn is
the transient solution for the following dynamical system:

Aw(t)+�r(t) = S
dw(t)

dt
(1)

where A ∈ Rn× n is the conductances matrix [L2/T], S ∈ Rn× n is the matrix
of storages [L2], � ∈ Rn×na is the matrix of time invariant elemental excitations
acting over the aquifer, na is the number of external actions (EA) and r(t) ∈ Rna

is the vector of intensity for those AE [L3/T]. The boundary conditions imposed
to (1) are zero and its initial condition is w(0) = h(0) − u [3]. Assuming that
the intensities of the EA are zero and w(t) = V�(t), where V ∈ Rn×n is an
orthogonal projection matrix and�(t) ∈ Rn is a vector of states, substituting w(t) in
(1) and applying the variable’s separation technique, two problems are obtained [3]:
(i) a generalized eigenvalue problem and (ii) a time dependent first order differential
equation. Applying the inverse transformation combined with a spectral shift [2, 4],
the previously mentioned generalized eigenvalue problem can be expressed as:

(A − σS)−1SV = �V (2)

where � ∈ Rnxn is the diagonal matrix of shifted eigenvalues. Executing m steps of
the rational Lanczos iteration [4], the Eq. (2) can be expressed as follows [2]:

X∗S(A− σS)−1SX = �;X∗SX = I (3)

where X ∈ Rnxm is the matrix of Lanczos vectors, � ∈ Rmxm is the tri-diagonal
matrix of Lanczos coefficients. The m eigenvalues of � are good approximations of
m eigenvalues of (2). The participation factor for the i th Lanczos vector is defined
as the proportion which contributes to the aggregate volume of the EA, as follows:

pi, j =
(

n
�

k=1
sk,k xk,i

)
x∗i � j (4)

with i = 1, . . . ,m and j = 1, . . . , na, x and s are the elements of X and S, xi ,
ψ j are the i th and j th column vectors of X and �, respectively. The accumulated
participation factors, pa j with j = 1, . . . , na, are calculated as criteria to stop the
Lanczos iteration, because they have unitary upper limits. Thus, when pa j is close
enough to one for all EA acting over the aquifer, the generation of the Krylov’s
reduction subspace is stopped.

Replacing (3) in (2), defining that Aσ = A− σS and using the S-orthonormality
of Lanczos vectors, the equation for the aquifer’s states (�(t)) ∈ Rm is obtained [2]:

�
d�(t)

dt
−Gr(t) = (σ�− I)�(t) (5)
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where G = X∗SAσ� ∈ Rmxna and w(t) = X�(t) is the approximated solution
for transient piezometric heads. The Lanczos states are also approximated using an
implicit FD for the time dependent derivative. Therefore, assuming that transient
simulations are performed using time intervals of equal duration �t and the EA’s
intensities are constant during those intervals, the following expression is obtained:

(
�

�t
+ I+ σ�

)
�t+1 = �

�t
�t +Gr(τ ) (6)

which is a tri-diagonal system of linear equations where the vector of Lanczos states
at time t + 1 is unknown. Equation (6) is solved using bi-conjugate gradient solvers.

Finally, to calculate the integrated volumes of surface-ground water interaction,
the time integration of Lanczos’ states is executed numerically via Simpson’s rule.
During such process, the τ th interval is divided in h subintervals of equal duration,
with h even. Hence, the integrated Lanczos states are computed as follows:

�(τ ) =
∫ t+1=t f

t = t0
�(t)dt ≈ �t

3h

⎡

⎣�t0 + 2
h/2−1∑

j=1

�2 j + 4
h/2∑

j=1

�2 j−1 +�t f

⎤

⎦ (7)

where �(t) ∈ Rm is a vector containing the integrated Lanczos states of the aquifer.
Finally, the control parameters (piezometric heads, accumulated volumes, ground-
surface water fluxes and volumes, etc.) required by the conjunctive use model can
be obtained efficiently using the expressions proposed by [5].

3 Application of the RLANRM on Rectangular Aquifers

The RLANRM was applied to reduce groundwater flow models on rectangular
aquifers. The effect of changing the riverbed’s conductance (RC) on the RLANRM
reduction scheme was quantified comparing the results from the reduced models with
those obtained using classical FD simulation. To test the accuracy of the reduced sim-
ulations, root squared mean error (RSM), Nash’s efficiency (E2) and bias coefficient
(BIAS) have been estimated. Figure 1 exhibits the estimated E2 for the surface-
ground water interactions simulated with RMLANRM in an homogeneous rectan-
gular aquifer for recharge and punctual pumping, considering six RC values.

Results show that as the size of the Krylov subspaces increases, E2 approximates
to 100 % and, simultaneously, RSM and BIAS decrease to zero. Thus, when the
RC is low, the RLANRM’s performance improves because fewer Lanczos vectors
are needed to obtain more accurate simulations. On the contrary, when river-aquifer
connection is almost perfect, the reduced model’s accuracy decreases and the cost of
building the Lanczos’ vectors augments. Numerical experiments have shown that the
classical eigenvalue method (EMV) [3] is more efficient than RLANRM to perform
the simulation of the transient river-aquifer interactions because it possesses a simple
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Fig. 1 E2 estimated for the surface-ground water relationships simulated with RMLANRM in
homogeneous rectangular aquifer for recharge and pumping

explicit state equation. This disadvantage is more evident for monthly simulation
because the integration of the Lanczos’ states using Eq. (7) is more demanding.

4 Concluding Remarks

The RLANRM is more efficient than classical FD to simulate groundwater flow
in complex conjunctive use systems, but its performance is slightly lower than the
exhibited by the EVM. It also allows to deal with very large groundwater flow models,
when many cells are used in the FD representation of the aquifer’s spatial domain.
Consequently, it is possible to consider more detailed descriptions on the spatial
variability of the aquifer’s hydraulic parameters and the imposed EA.
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Efficient Generation of Effective Modes and
Spectral Masks to Build Reduced Groundwater
Flow Models Using the Eigenvalue Method with
Selective Compression and Modal Masking

Oscar David Álvarez-Villa, Eduardo Cassiraga and Andrés Sahuquillo

1 Introduction

The most computer demanding step in the modal reduction of a groundwater flow
model via the eigenvalue approach with selective compression and modal masking
(EVM-SCMM) is the generation of the effective modes. In this paper we propose:
(i) physically based criteria to the selection of those effective modes, (ii) efficient
algorithms for the generation of those effective modes and (iii) physically based
criteria to stop the modal generation. The proposed generators are based on iterative
methods to solve a symmetric generalized problem of eigenvalues (SGEVP).

2 EVM-SCMM and Physical Criteria to Modal Generation

Assuming that the reduced groundwater flow simulations are carried out in discrete
time intervals of equal duration �t, the EVM-SCMM obtains the following expres-
sion for the effective states of the aquifer (recall that w(t) = V�̂(t),w(t) ∈ Rn are
transient piezometric heads and V ∈ Rn×n is the eigenvector matrix) [1, 2]:
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�̂(t) = Ê|�t�̂(t − 1)+
(

Î− Ê|�t

�̂F̂

)
B̂r(τ ) (1)

where �̂ ∈ R(p+1)×(p+1) is the diagonal matrix of effective eigenvalues, r(τ ) ∈ Rna

is the vector of intensity for the external actions (EA) in the τ th interval of simulation
Ê ∈ R(p+1)×(p+1), is an effective diagonal exponential matrix, F̂ ∈ R(p+1)×(p+1)

is a diagonal matrix containing the volumes enclosed by the effective eigenvectors,
B̂ = F̂V̂ ∗ ψ ∈ R(p+1)×na is the matrix of the effective allocation coefficients and
�̂(t) ∈ Rp+1 is the vector of the aquifer’s effective states. As defined by [1], the last
effective state, ϕp+1(t), is used to preserve the equation of continuity on the aquifer.

According to Eq. (1), the allocation coefficients, bi, j , represent the direct influence
of the j th EA on the changes of the aquifer’s flow dynamic. Consequently, if the
allocation factor of the i th mode corresponding to the j th EA is small, the changes
of the aquifer’s states due to such EA are also small. Therefor, let’s define that: (i)
an effective mode contributes effectively over the changes in aquifer’s states, (ii) the
changes on the aquifer’s states due to EA acting on a residual mode are negligible
and (iii) defining that vi is the i th eigenvector, the selection of effective modes is
based on the concept of participation limit, blim , using the following criteria:

If bi, j ≥ blim(λi ,Vi ) is effective for EA j (2)

which also allows to build the effective modes mask, Z ∈ R(p+1)×na . Z is defined
as a boolean matrix that indicates which modes are excited by any given EA and its
zi, j = false elements are defined according to the indices contained on the masking
set PC{(i, j) : bi j < blim}∀i = 1, . . . , p + 1 and j = 1, . . . , na . Thus, Z indicates
the location of the effective and residual modes in the matrix B. Z also diminishes
the computational charge of B̂r(τ ) because the operations can be done using sparse
algorithms. Now, the accumulated allocation factors for the j th EA are defined as:

ba j =
∑

i

bi, j (3)

where ba j has an upper unitary limit and it represents the percentage of mass conser-
vation on the aquifer. The stop of the effective modes generation process is evaluated
calculating the accumulated allocation coefficients and comparing them with a lower
limit imposed to the reduced model, called level of continuity, balim .

Incorporating the previously defined physically based criteria on iterative methods
to solve a SGEVP, it is possible to generate efficiently effective modes for modal
reduction via the EVM-SCMM. The advantage of using iterative methods is that the
sparse structure of the groundwater flow model is exploited to save operations and
storage. Two iterative sparse generators of effective modes have been implemented.

The first generator is based on a modification of the algorithm proposed in [3], it
uses ILU preconditioning to accelerate the vector iterations and conjugate gradient
to minimize the Rayleigh quotient. This vector generation works very fast when a
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small amount of the lesser magnitude effective modes are needed. The algorithm
generates sequentially each mode, calculates the allocation coefficients to check if it
is effective and, finally, computes the accumulated allocation coefficients and checks
if bai, j > balim for all EA to stop the generation. The second one is based on
the rational Lanczos iteration with explicit restart [4] to calculate sequentially sets
of modes. The explicit restart deflates a new initial Lanczos vector to prevent the
convergence to one of the already available eigenvectors. Once each restart has built
a new set of modes, the generator calculates the allocation coefficients for all the
modes to check which ones are effective. This process is repeated for all obtained
modes. Then, the accumulated allocation coefficients are calculated and the generator
checks if bai, j > balim for all EA to stop the generation. If the stopping criterion is
not achieved, another restart is performed using a new spectral shift to improve the
convergence.

3 Application to Heterogeneous Aquifers

Results of several numerical experiments have shown that the rational Lanczos gener-
ator is very efficient, even for large scale groundwater flow models where the spatial
domain of the aquifer has been discretized using tens of thousands of nodes belong-
ing to a finite differences (FD) network and many EA are imposed. For instance, an
heterogeneous irregular aquifer, connected with a sinuous river has been analyzed.
Its geometry, hydraulic parameters and EA are presented in Fig. 1.

The aquifer’s domain has been discretized via FD using 21850 active nodes.
For the heterogeneous aquifer shown in Fig. 1, the Rayleigh minimization generator
wasn’t efficient enough because a lot of effective modes were needed. As stated in [3]

Fig. 1 From left to right: transmissivity field, storage coefficient field, regions of homogenous
pumping and zones of homogenous recharge for the heterogeneous irregular aquifer
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Fig. 2 Effective modes generated by Lanczos’ iteration on a highly heterogeneous aquifer

this method has the problem that the cost of the vector deflation augments as long as
the execution advances. Consequently, the effective modes were obtained applying
the rational Lanczos generator. Such effective modes are presented in Fig. 2 for each
EA and different values of riverbed’s conductance (RC). The results show that the
iterative generation of modes, combined with physical criteria, is more efficient than
calculating the complete spectra of the eigenproblems to apply the classical modal
truncation [1] and it allows to reduce efficiently large groundwater flow models. It is
also clear that high values of RC augments the number of required effective modes
for any imposed blim . This observation implies that, for high RC, the computational
charge of the implemented effective modes generators increases.
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Application of Eigenvalue Method with Selective
Compression and Modal Masking and Rational
Lanczos Reduction Method to the Efficient
Simulation of Surface–Ground Water
Interactions in Heterogeneous Aquifers

Oscar David Álvarez-Villa, Eduardo Cassiraga and Andrés Sahuquillo

1 Introduction

We present an application of the eigenvalue method with selective compression and
modal masking (EVM-SCMM) and rational Lanczos method (RLANRM) to reduce
efficiently the groundwater flow models of two highly discretized linear hetero-
geneous aquifers. We have performed a sensitivity analysis about the influence of
changing the riverbed’s conductance (RC) and the reduction parameters on a more
accurate representation of the surface-ground water interactions. In this analysis,
the modal participation limits for the EVM-SCMM and the size of the Krylov’s
subspaces for the RLANRM have been the sensitivity parameters of study.

2 Short Descriptions of the Reduction Methods

The EVM-SCMM and RLANRM are model oriented reduction techniques; it means
that, in both methods, orthogonal subspaces that capture the mathematical structure
of the groundwater model are built. Once the reduction subspace is available, the
groundwater flow model is projected, its size is largely reduced and the transient
simulation is more efficient. The main differences between the EVM-SCMM and
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RLANRM are the following. First, EVM-SCMM uses a subspace generated by the
eigenvectors of the model, while RLANRM uses an easy to obtain Krylov’s subspace
that implicitly approximates such eigenvectors. Second, the EVM-SCMM’s equation
of state is explicit, while the RLANRM’s states have to be obtained numerically.
Consequently, the simulation via EVM-SCMM is faster than using RLANRM.

3 Configuration of the Aquifers

A rectangular aquifer with three bands of homogenous hydraulic properties is con-
nected to a straight river. The length between the river and the opposite impervious
wall is 5000 m and the distance between the impervious walls perpendicular to the
river is 7500 m. The transmissivities in the bands of the aquifer vary between 2500
and 250 m2/d and their storage coefficients vary from 0.2 to 0.07. The RC decreases
from 5000 to 20 m2/d. The aquifer is subjected to: (i) an uniform, time varying
recharge and (ii) time varying punctual pumping in five locations. The aquifer’s spa-
tial domain has been discretized via finite differences (FD) using 3285 active nodes,
the block’s length is 100 m. and the simulation horizon is 1000 days.

Also, a highly heterogeneous aquifer with irregular boundaries connected with a
sinuous sloped river has been analyzed. Its geometric configuration, hydraulic para-
meters and the external actions (EA) are presented in Fig. 1. The integrated intensities
of those EA vary on time according to Fig. 2. 21,850 active nodes were used to dis-
cretize the aquifer’s spatial domain via FD, the length of each square block’s side
was 100 m and the simulation horizon was 5100 days. The corresponding transmis-
sivity field was obtained via Gaussian sequential stochastic co-simulation [1] using
a sample extracted from the Walker Lake data set [2]. In both aquifers, the control

Fig. 1 From left to right: transmissivity field, storage coefficient field, homogeneous zones of
recharge and homogenous regions of pumping for the heterogeneous irregular aquifer
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Fig. 2 Integrated volumes of recharge and pumping for the heterogeneous aquifer

parameters consisted of surface-ground water interchange fluxes on the drainage net-
work. The obtained results are compared to the analog simulations performed using
classical FD models, in which time and space were discretized.

4 Simulation’s Results and Analysis

To solve the problem of eigenvalues for the rectangular aquifer, a Rayleigh quotient
minimization generator [3] has been used. Applying such generator, the first 30
effective modes were calculated for four RC values. Also, the eigenproblems for
the highly heterogeneous aquifer was solved using a rational Lanczos generator [4].
Using such generator, the first 2,000 effective modes were calculated for six RC’s
values. The rational Lanczos iteration was applied to obtain Krylov subspaces formed
by 200 and 2,000 Lanczos vectors for the rectangular and the highly heterogeneous
aquifers, respectively. Then, using those effective modes and Krylov subspaces, the
transient simulations of surface–ground water relationships have been performed via
EVM-SCMM and RLANRM. To test the accuracy of the reduced simulations, root
squared mean errors (RSM), Nash’s efficiencies (E2) and bias coefficients (BIAS)
were estimated using FD simulated reference hydrographs.

The estimated RSM, BIAS and E2 for the rectangular aquifer are presented in
Table 1. In general, the reduced simulations were more accurate for the lowest RC.
Nevertheless, the simulations via EVM-SCMM have been more accurate than those
obtained applying RMLANRM, particularly for the highest imposed RC values.

The results from the sensitivity analysis for the surface–ground water interactions
on the highly heterogeneous aquifer, simulated with EVM-SCMM and RMLANRM
are shown in the Fig. 3. These graphs exhibit the behaviors of estimated RSM, BIAS

Table 1 Performance indexes for surface–ground water fluxes in a rectangular aquifer

RC = 5000 m2/d RC = 200 m2/d RC = 100 m2/d RC = 20 m2/d

Index (%) EVM-
SCMM

RM-
LANRM

EVM-
SCMM

RM-
LANRM

EVM-
SCMM

RM-
LANRM

EVM-
SCMM

RM-
LANRM

RMS 0.56 1.57 0.22 1.09 0.13 0.51 0.29 0.071
E2 99.86 98.84 99.95 99.03 99.98 99.68 99.99 99.96
BIAS 0.20 0.26 0.153 0.203 0.125 0.11 0.09 0.02
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Fig. 3 BIAS, E2 and RSM estimated for the surface–ground water relationships simulated with
EVM-SCMM and RMLANRM in the highly heterogeneous aquifer

and E2 as a function of: (i) blim is the participation limit, a parameter that allows
to select the effective modes in the EVM-SCMM (if blim is low, a bigger amount
of effective eigenvectors are used in the reduction, therefore the size of the reduced
model is bigger), (ii) the size of the Krylov’s subspace or, equivalently, the amount of
Lanczos’ vectors used by the RMLANRM and (iii) six different RC values. In general,
the estimations diminish when the larger reduced models are used. These results prove
the power of both techniques to reduce efficiently groundwater flow models and to
obtain accurate simulations. Although EVM-SCMM obtains accurate aggregated
surface–ground water interactions more efficiently, RMLANRM calculates more
accurate the aquifer’s distributed variables. Numerical experiments have shown that
RSM, BIAS and E2 estimated for piezometric heads and partial water balances over
fractions of the drainage network are more optimal for RMLANRM than for EVM-
SCMM. In summary, the choice of the reduction methodology depends on the desired
control parameters to be better represented.
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A Multipoint Flux Domain Decomposition
Method for Transient Flow Modeling
in Complex Porous Media

Andrés Arrarás, Laura Portero and Ivan Yotov

1 Introduction

Let us consider a single-phase Darcy flow on a domain Ω ⊂ R
2, i.e.,

pt +∇ · u = g in Ω × (0, T ],
u = −K∇ p in Ω × (0, T ], (1)

with initial condition p = p0 in Ω × {0} and boundary condition p = 0 on ∂Ω ×
(0, T ], where ∂Ω denotes the boundary of Ω . Here, u is the Darcy velocity, p is
the pressure, and K is a symmetric and positive definite tensor representing the
rock permeability divided by the fluid viscosity. Homogeneous pressure boundary
conditions are chosen for the sake of simplicity in the exposition, but alternative
boundary conditions can also be considered.

In this work, we present a combined multipoint flux domain decomposition tech-
nique for solving problem (1). More precisely, we extend the so-called multipoint
flux mixed finite element (MFMFE) method (cf. [1]) to evolutionary diffusion prob-
lems by introducing a domain decomposition time-splitting scheme (cf. [2]). In the
sequel, we describe in detail how the method is constructed and provide a numerical
illustration of its performance in a practical setting.
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2 The Multipoint Flux Mixed Finite Element Method

Let Th be a conforming, shape-regular and quasi-uniform partition ofΩ into quadri-
lateral elements, where h = maxE∈Th diam(E). The velocity and pressure finite
element spaces are denoted by Vh and Wh , respectively. On any element E , they
are defined via a suitable transformation of the lowest order Brezzi–Douglas–Marini
spaces on the reference element (cf. [3]). As a result, the MFMFE approximation to
(1) reads: Find (uh, ph) : [0, T ] → Vh ×Wh such that

( ṗh, w)+ (∇ · uh, w) = (g, w) ∀w ∈ Wh,

(K−1uh, v)Q = (ph,∇ · v) ∀ v ∈ Vh, (2)

with a suitable ph(0) to be specified below. The inner product (K−1·, ·)Q represents
the trapezoidal quadrature rule, which is defined as the sum over all E ∈ Th of

(K−1q, v)Q,E = 1
2

∑4
i=1 |Ti |K−1(ri )q(ri ) · v(ri ),

where {ri }4i=1 are the vertices of E , and each |Ti | is the area of the triangle formed
by the two edges sharing ri .

Let us define Ph = (Ph,1, Ph,2, . . . , Ph,Ne )
T , where Ph,i = ph(ci ), ci is the

centroid of Ei , and Ne denotes the number of elements in Th . Hence, the MFMFE
method (2) can be reduced to a cell-centered pressure system of the form (cf. [1])

Ṗh(t)+ Ah Ph(t) = Gh(t) t ∈ (0, T ], (3)

with Ph(0) = P0
h , where each component (P0

h )i = 1
|Ei |

∫
Ei

p0(x) dx and |Ei | is the

area of Ei . In (3), the discrete diffusion operator is given by Ah = D−1 B M−1 BT .

If we denote by {vi }2N f
i=1 and {w j }Ne

j=1 the basis functions of Vh and Wh , respec-

tively, then (B)i j = −(∇ · v j , wi ) and (M)i j = (K−1v j , vi )Q , with N f being
the number of edges in Th . Furthermore, D = diag(|E1|, |E2|, . . . , |ENe |) and
(Gh)i = 1

|Ei | (g, wi ).

3 The Domain Decomposition Splitting Method

Let Ω be decomposed into two overlapping subdomains Ω1 and Ω2 such that Ω =
Ω1∪Ω2. Each subdomainΩk ⊂ Ω is chosen to be an open disconnected set involving
mk connected components, i.e., Ωk = ∪mk

l=1Ωkl , for k = 1, 2. Such components are
pairwise disjoint, thus satisfyingΩki∩Ωk j = ∅, for i 
= j . Under this decomposition,
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we construct a smooth partition of unity consisting of two non-negative functions
{ρk(x)}2k=1. These functions fulfill, for any x ∈ Ω , the conditions: (a) supp(ρk(x)) ⊂
Ωk ; (b) 0 ≤ ρk(x) ≤ 1; and (c) ρ1(x)+ ρ2(x) = 1.

In this framework, recalling the semidiscrete problem (3), we introduce the oper-
ator splittings Ah = Ah,1+ Ah,2 and Gh = Gh,1+Gh,2. The split terms are given by
Ah,k = D−1 BΓk M−1 BT and Gh,k = Γ̂k Gh , for k = 1, 2, where Γk and Γ̂k are two
diagonal matrices of the form Γk = diag(ρk(r1)I f1 , ρk(r2)I f2 , . . . , ρk(rNv )I fNv

)

and Γ̂k = diag(ρk(c1), ρk(c2), . . . , ρk(cNe )), respectively. In this case, fi is the
number of edges that share the i th vertex point, I fi denotes the identity matrix of
order fi , and Nv is the number of vertices in Th . Note that 2N f =∑Nv

i=1 fi .
In order to solve system (3), we consider a domain decomposition variant of the

classical Peaceman–Rachford alternating direction implicit method (cf. [4]). To this
end, the time interval [0, T ] is partitioned as tn = nτ , for n = 0, 1, . . . , NT , where τ
is the (constant) time step and NT = [T/τ ]. The fully discrete scheme is thus given,
for n = 0, 1, . . . , NT − 1, by

Pn+1/2
h = Pn

h + 1
2τ Fh,1(tn, Pn

h )+ 1
2τ Fh,2(tn+1/2, Pn+1/2

h ),

Pn+1
h = Pn+1/2

h + 1
2τ Fh,1(tn+1, Pn+1

h )+ 1
2τ Fh,2(tn+1/2, Pn+1/2

h ), (4)

where Fh,k(tn, Pn
h ) = −Ah,k Pn

h +Gh,k(tn), for k = 1, 2. Note that Pn
h is an approxi-

mation to the solution Ph(t) of (3) at time t = tn . The linear system to solve at the kth
internal stage of (4) involves the system matrix (I + 1

2τ Ah,k), for k = 1, 2. Recalling
that supp(ρk(x)) ⊂ Ωk , the elements of Ah,k are null outside Ωk . Since Ωk further
consists of mk disjoint connected components, the preceding linear system is indeed
a collection of mk uncoupled linear subsystems which can be solved in parallel.

4 Numerical Illustration

Let us consider a single-phase flow through a porous medium containing a low-
permeability streak. In particular, (1) is posed on [0, 1]×[0, 1]×[0, 2], with g(x, t) =
0 and p0(x) = cos(πx/2). Pressure is specified to be equal to 1 on the boundary
{0}×(0, 1) and equal to 0 on {1}×(0, 1). In turn, zero flux is set on [0, 1]×{0, 1}. The
flow domain contains a low-permeability region which is delimited by the bold lines
in Fig. 1. The permeability throughout the domain is uniform and isotropic (K = I2),
except in the low-permeability streak, where the parallel and normal components to
the local streak orientation are equal to 0.1 and 0.001, respectively. A stationary
version of this problem is studied in [5]. Here, we use a strip-wise decomposition of
Ω , considering two subdomains with two disjoint components each.
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Fig. 1 Geometry of the flow domain and logically rectangular grid

Fig. 2 Calculated pressure distributions (contour maps) and velocity fields at times t = 0.02 (left),
t = 0.2 (center), and t = 2 (right)

In Fig. 2, we show the pressure distribution and velocity field obtained at different
times. The method considers the logically rectangular grid displayed on Fig. 1, with
200×200 elements, and a time step τ = 5E-03. Note that, as time evolves, the pres-
sure gradient above the streak increases near the boundary x = 0, while decreasing
as we approach x = 1. As a result, the velocity gets larger in the upper-left corner
of the flow domain, and diminishes as we move towards the right end. The change
in the pressure gradient—and, thus, in the velocity—is much more subtle below the
streak. As expected from the physical configuration, no flow enters the streak.



A Multipoint Flux Domain Decomposition Method 461

References

1. Wheeler, M. F., and, Yotov, I. (2006). A multipoint flux mixed finite element method. SIAM
Journal on Numerical Analysis, 44, 2082–2106.

2. Mathew, T. P. A. (2008). Domain decomposition methods for the numerical solution of partial
differential equations. Lecture Notes in Computational Science and Engineering., (Vol. 61).
Berlin: Springer, p 764.

3. Brezzi, F., Douglas, J, Jr, & Marini, L. D. (1985). Two families of mixed finite elements for
second order elliptic problems. Numerische Mathematik, 47, 217–235.

4. Peaceman, D. W., & Rachford, H. H, Jr. (1955). The numerical solution of parabolic and elliptic
differential equations. Journal of the Society for Industrial and Applied Mathematics, 3, 28–41.

5. Durlofsky, L. J. (1993). A triangle based mixed finite element-finite volume technique for mod-
eling two phase flow through porous media. Journal of Computational Physics, 105, 252–266.



Optimal Reconstruction of 3D Fracture
Networks (FEBEX Field Test, Grimsel Site,
Swiss Alps)

Israel Cañamón, Rachid Ababou and F. Javier Elorza

1 Introduction

Many studies have developed methodologies to infer fracture size distributions out of
planar [4] or more recently curved [2] trace maps, although there are some precautions
to be taken when doing that. We found some works dealing with the estimation of
trace length statistical parameters in cylindrical boreholes sampling, or with the
comparison between analytical and simulated trace length histograms for various
disk or elliptical fractures synthetic distributions. In this paper, however, we describe
a methodology to use the statistical information of the traces left on a cylindrical
gallery to simulate a real fractured network. The granitic medium reconstructed in
this paper is located at the Grimsel Test Site (GTS, in Switzerland) in the southern
part of the Central Aar Massif, around 400 m below the surface. The cylindrical
gallery from which fracture trace data have been collected corresponds to the FEBEX
experiment, and has been excavated in the northern part of the Laboratory tunnel of
the GTS.

I. Cañamón (B) · F. J. Elorza
Escuela Técnica Superior de Ingenieros de Minas y Energía,Universidad Politécnica de Madrid,C.
/Ríos Rosas 21,28003 Madrid, Spain
e-mail: israel.canamon@upm.es

R. Ababou
Porous Media Group, Institut de Mécanique des Fluides de Toulouse,University of Toulouse, 1
Allée Camille Soula,Toulouse 31400, France
e-mail: franciscojavier.elorza@upm.es

E. Pardo-Igúzquiza et al. (eds.), Mathematics of Planet Earth, 463
Lecture Notes in Earth System Sciences, DOI: 10.1007/978-3-642-32408-6_102,
© Springer-Verlag Berlin Heidelberg 2014



464 I. Cañamón et al.

2 Geomorphological Data

Some of the parameters necessary to generate the fracture network have come directly
from field data available in the literature [3]. Other ones have been computed indi-
rectly, and the remaining ones are to be fitted by the optimization algorithm:

• Fracture orientation. Two exploratory boreholes (FEBEX-95001 and FEBEX-
95002) were drilled and intersecting fractures were measured [3] and classified
according to the different discontinuity systems identified in [6]. To simplify the
generation process, genetically and morphologically similar fractured systems
have been grouped in the stereonet ‘space’ (Fig. 1a). Thus, only 4 fracture families
were simulated, with uniform distributions for dip and plunge angles.

• Fracture aperture. Measurements in exploratory boreholes only distinguish qual-
itative aperture data: ‘filled’, ‘open’ and ‘open-wet’ fractures (Fig. 1b). For the
network generation, arbitrarily increasing apertures have been assigned accord-
ing to this classification, but they have been adjusted at a later stage to fit field
hydraulic measurements. Final aperture values were 3.5E-9, 6.65E-6 and 1.65E-
5 m for ‘filled’, ‘open’ and ‘open-wet’ fractures respectively.
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Fig. 1 Geomorphological data from the exploratory boreholes and the drift wall: a Stereonet of the
fractures intersecting the exploratory boreholes (Fracture systems described in [6]: ductile (S1, S2
and S3), brittle (S4/K4, K2/L, K1, K3 and S5) and tensile (ZK1 and ZK2)) and the 4 families used
in the simulation; b Number of discontinuities ‘filled’, ‘open’ and ‘open-wet’ from each fracture
system in the exploratory boreholes; c Measured trace map of the drift wall with the division into
five different density zones; and d Seventeen main fractures from deterministic simulation
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• Fracture density. We have used as a calibration parameters the p21 density (trace
length/intersecting plane surface) coming from the cylindrical trace map of the
FEBEX drift. Moreover, an inhomogeneous p21 density has been reproduced indi-
rectly by considering five different zones in the trace map (Fig. 1c).

• Fracture location. A homogeneous Poisson process has been used to define the
center coordinates (xcf , ycf , zcf) for each fracture ‘f’ within the bounds of the gen-
eration domain. This distribution has been locally modified by a specific algorithm
to adjust the inhomogeneity of fracture density along the gallery.

• Fracture size. The power law distribution (Pareto PDF) was adjusted for fracture
size. From the three parameters of this distribution (RMIN, RMAX, and exponent b),
only one was fixed. Indeed, the maximum radius RMAX was set to 100 m to ensure
the existence of large ‘domain-crossing’ fractures. The other two parameters were
fitted by the optimization algorithm. The main fractures observed in the near field
(those with full traces in the gallery wall trace map) were simulated deterministi-
cally to reproduce the hydraulic behavior in the tunnel (Fig. 1d).

3 Optimization Method and Results

A Monte-Carlo algorithm has been implemented to reconstruct stochastically the
synthetic fractured medium. An optimization procedure based on simulated anneal-
ing [5] has been used to adjust fracture size distribution so as to minimize the dis-
crepancy between the synthetic fractured medium and the real one, according to the
geologic data available. A new approach for adapting the search interval for possible
new points which takes into account number of rejected and accepted points over a
number of iterations has been implemented [1]. This approach obtains global minima
with a lower computational cost (less number of objective function evaluations).

The objective function minimizes theχ2 error measure of the discrepancy between
the observed and simulated tunnel trace histograms (both trace lengths and 3D chord
lengths). Due to the stochastic nature of the objective function, we have averaged the
statistics of 3 realizations (fracture networks) to evaluate each value of the objective
function. The final simulated fracture network has a total of 2 906 474 fractures,
and has been obtained as one of the best realizations out of 750 generated with the
optimal parameters found in the optimization process. Figure 2 shows the trace map
of the simulated fractured medium, in good agreement with the measured one.

Fig. 2 Trace map of the optimally reconstructed fractured medium
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4 Conclusions

We have developed a methodology to simulate a 3D fractured network that opti-
mally fits the cylindrical tunnel trace map and other geomorphological data. The
optimization procedure is based on the Simulated Annealing technique and opti-
mizes histograms with both 2D and 3D information of the measured trace map. A
good agreement between the simulated and the real fractured medium was obtained.
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Numerical Analysis of Stream-Groundwater
Exchange in a Floodplain Following a Dike
Opening

Héctor Montenegro

1 Introduction

For over a decade dike opening has been discussed as a measure to improve the
connectivity between river and floodplain. Dike opening initiates intense changes
in floodplain hydraulics (velocity, ponding duration etc.). Despite the importance of
stream-groundwater interactions for matter and energy fluxes their dynamics are yet
not well understood [1]. Their study demands for surface-subsurface observations of
heads, exchange volumes before, during and after flooding events at a relevant scale.

2 Lenzen Dike Opening

The dike opening near the village of Lenzen at the River Elbe is among the largest
floodplain restoration schemes in Germany. In 2009 more than 4.2 km2 of cultivated
land till then protected from inundation by levees were reconnected to the stream
by a series of breaches and flood chutes cut in the existing dike. With flood rise at
900 m3/s the stream steps from its bed and starts inundating the floodplain. Beyond
a discharge of 1200 m3/s through flow along the whole floodplain up to the new built
levee occurs. An Array of 12 groundwater and 8 surface water monitoring stations
were installed (see Fig. 1). Large surface flow velocities and water level changes
during flooding imposed particular robust monitoring stations.
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Fig. 1 Elevations (blue: low, red: high), flood chutes (green) and arrays of groundwater (GWM)
and surface water (OWM) monitoring stations in the study area

2.1 Specific Floodplain Hydraulic Features

For centuries the fertile floodplains were protected from periodic inundation by dikes.
An arrangement of irrigation and drainage ditches supported the balance between
water drainage and water retention needs. The good hydraulic link between the
surface and subsurface water bodies due to the permeable gravel and sand fluvial
aquifer the river bed is cut into is typical in the study area. Another feature are
the loamy fluvial deposits on top of the permeable sediments in the floodplains.
Fluctuating river stages in such a layered system generate transitions from confined
to unconfined groundwater flow conditions depending on the stage rise and loamy
layer thickness. These shifts have an effect on groundwater flow dynamics. The reach
of groundwater fluctuations in response to river stage rises, and their propagation
velocity (or lag time) from the shore into the adjoining fluvial aquifer depend on
the aquifer’s current condition and thus varies in the curse of time depending on the
actual river stage (Fig. 2).
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Fig. 2 Aerial view of the study site during floodplain inundation

Fig. 3 Finite element discretization of the study area
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3 Groundwater FE Modelling

A transient 2D groundwater flow model was set up to interpret the surface/subsurface
head measurements in terms of water exchange dynamics. Exchange processes were
limited to the river shores, the flood chutes and the ditch system, due to the limited
permeability of the loamy layer. Based on a digital elevation model (see Fig. 1) the
study site was discretized by triangular finite elements with an spatial resolution of
approx. 10–100 m permitting a precise representation of the complex geometry of
shoreline, flood chutes and the ditch system (see Fig. 3). The representation of the
transition between confined and unconfined conditions proved essential. A suitable
consideration required the spatial distribution of the loam layer thickness which was
interpolated from existing soil boring logs.

Conductivity and storage properties as well as leakage coefficients were esti-
mated based on observations from a period with no surface water inflows. Based on
that parameter set a flooding event was simulated. The event consisted of a stage
with increased groundwater exfiltration to the chutes/ditches (rising flood) followed
by a surface inflow from the Elbe (wave peak) and a final infiltration phase from
the chutes/ditches to the aquifer. The surface inflow from the Elbe was treated as
an external boundary condition according to the observed surface water heads [2].
Despite considerable simplifications the model was able to reproduce the general
groundwater and exchange dynamics reasonably.
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Models of Parallel Linear Reservoirs (PLR)
with Watershed Traversal Algorithm (WTA)
in Behaviour Research of Hydrological Processes
in Catchments

Jesús Mateo Lázaro, José Ángel Sánchez Navarro, Vanesa Edo Romero
and Alejandro García Gil

1 Introduction

Here we present a computer procedure of identifying and routing of basins in digital
elevation models, whether grid or raster type. The method can be useful in hydrology
and geomorphology applications, among other disciplines, because inside its general
structure, it supports models of hydrological processes such as PLR models, allowing
an accurate investigation of actual episodes.

2 Methodology

The WTA algorithm intends to cover all cells in the DEM in an ordered way. These
cells within a given catchment differentiate or distinguish the watershed and its cells
from the rest of the DEM. The flow chart in Fig. 1 shows the structure of the algorithm
(in [1] there is a further explanation). For a given root node, all nodes in its catchment
must be run orderly. In Fig. 1, for the node 1, the algorithm follows the path indicated
by the arrows, blue arrows for up direction and red arrows for down direction.
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Fig. 1 Graphic routing of a watershed and its flow chart (blue boxes) are represented. Inside the
structure, models of hydrological processes are introduced (green boxes). The C process is the curve
number model, whereas A represents the PLR model, both applied to the grid cells. R is a routing
model (e.g. Muskingum), applied to the nodes connections

With this procedure, all cells have been covered following a logic sequence with
the following qualities: (1) Other algorithms can be created by introducing models,
placing them in the right places. (2) These new models will be able to obtain the
necessary data from the right places and provide data to other models. (3) There are
two traversal directions, upslope and downslope. Depending on the type of calcula-
tion which performs a particular procedure, one direction or another will be the most
representative of the hydrologic processes. (4) When a node is passed for the last
time in a downward direction, all nodes in the watershed which were located above
it will be covered; when applying measures or models, the influence of all nodes is
thus perceived. (5) When a node is reached in an upward direction, the influence of
all nodes of the main flow to the first point in the watershed is perceived.
A special case is the use of PLR (Parallel Linear Reservoir) models, where every
DEM cell is considered as a reservoir combination in parallel. Water flows through
each deposit at different flow rates [2]. These models are calibrated by observing
the recession curves of real hydrographs and they are very interesting because they
allow the establishment of a precise water balance. The hydrological relations of a
lineal deposit are driven by two equations: flow or deposit equation and continuity or
water balance equation. Their combination results in the runoff equation or discharge
Eq. (1):

Q2 = Q1 · e−α�t + R · (1− e−α�t) (1)
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With regard to DEM characteristics, the used program, SHEE [1], can manage any
format, size, accuracy and reference system. E.g., Global DEM has been used like
STRM30 (3.6 Gb and 30′′), MDT5 of spanish territory (120 Gb and 5 m), Lidar, etc.

3 Application to Actual Events in the Bergantes River

The Bergantes watershed has been selected because of its data availability and its
natural state of conservation. It is a Mediterranean 1,050 km2 basin, with a 84 km
long main channel. A GRID size of 20 m was used.
The investigation of real episodes followed these steps: (1) creation of a total rain-
fall distributed model, (2) determination of the reservoir parameters, (3) determi-
nation of the effective rainfall, which can be deduced from rainfall and stream-
flow measurements of the rainfall and flow registers, (4) establishment of the water
balance, (5) deduction of the Curve Number model, (6) generation of effective
rainfall hyetographs, and (7) obtaining of simulated hydrographs. Figure 2 shows
hyetographs and hydrographs for two episodes.
The fast reservoir (dash line) increases and decreases quickly, whereas the slow one
(dotted line) is secondarily involved in the most intense stretch but it persists during
the whole recession.
The slow reservoirs in the stretch with higher discharge have a significant influence.
The subsurface and groundwater flows and other characteristics of the basin are
relatively quickly activated and produce a significant contribution to the discharge.
For example, there are cases where one-third of the discharge is produced during the
peak flow.

Fig. 2 Hyetographs of total and effective rainfall, and real and simulated hydrographs for two real
events in Bergantes watershed
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4 Conclusions

The main tool presented runs the entire drainage network of a watershed in both
directions, upwards and downwards, which is suitable for entering inside its structure,
models of hydrological processes that occur in basins or assessing its characteristics.
The main attribute of this method is that information about hydrological processes
and properties is transmitted during the routing from one area to another of the basin.
The simulation using PLR models represents and divides the different hydrological
processes (e.g., surface and groundwater flow, snow reservoirs), which allows an
observation of the different contributions from each reservoir. This type of observa-
tion makes it possible to define a partial hydrograph for each reservoir in addition
to the total hydrograph. The partial hydrograph analysis and its relation to the total
hydrograph provide relevant information relating to the hydrological behaviour of
the watersheds and their processes.
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An Analytical Solution of Tide-Induced Head
Fluctuations in an Inhomogeneous Coastal
Aquifer

Luis Guarracino and Leonardo Monachesi

1 Introduction

The interaction between groundwater and seawater induced by sea tides has been
extensively analyzed through analytical solutions. Since the 1950s, many analytical
solutions have been obtained for both single confined aquifers and two-layer aquifer
systems (e.g. [1, 2]). However, the analysis of heterogeneity has been limited to
piecewise constant values of hydraulic parameters (e.g. [3, 4]). In a recent work
by Monachesi and Guarracino [5], exact and approximate analytical solutions are
derived for a confined aquifer with hydraulic conductivity that linearly increases with
the distance to the coastline. The continuous increase of hydraulic conductivity can
be useful for studying alluvial coastal aquifers. In this type of aquifer, progressively
finer sediments are usually deposited on the downstream part of the depositional zone,
giving as a result a continuous increase of hydraulic conductivity in the upstream
direction. To the authors’ knowledge, these analytical solutions are the only ones
that consider a continuous variation of hydraulic properties with distance.

2 Mathematical Model

Consider a confined aquifer that ends at the coastline and extends landward infinitely
as shown in Fig. 1. In order to derive an analytical solution, the following assumptions
are made: the datum of the induced head fluctuation is the mean water level; water
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Fig. 1 Schematic represen-
tation of the confined coastal
aquifer. The x-axis is horizon-
tal and positive landward with
its origin at the coastline

Impermeable roof

Impermeable bottom

Mean water level

Borehole
Ground surface
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flow is horizontal and obeys Darcy’s law; the effect of density variations on water flow
is neglected; the hydraulic conductivity K increases quadratically with the distance;
the specific storativity Ss is constant.

According to the above assumptions, tide-induced head fluctuations are described
by the following boundary-value problem:

∂

∂x

(
K (x)

∂h

∂x

)
= Ss

∂h

∂t
, x ∈ [0,∞) , t ∈ (−∞,∞) (1)

h(0, t) = A cos(ωt), t ∈ (−∞,∞) (2)

lim
x→∞ K (x)

∂h

∂x
= 0, t ∈ (−∞,∞). (3)

where h(x, t) is the water head, A the amplitude, and ω the angular frequency of the
sea tide. Note that only the periodic solution is considered, so no initial condition
is needed to solve the differential problem (1)–(3). The hydraulic conductivity is
assumed to have the following expression:

K (x) = K0 (1+ bx)2 (4)

where K0 is the hydraulic conductivity at the coastline and b is the rate of increase.

3 Analytical Solution

Let H(x, t) be a complex function that satisfies (1)–(3) after the boundary condition
(2) is replaced by H(0, t) = Aeiωt . Because h(x, t) is the solution of (1)–(3), it
follows that h(x, t) = � [H(x, t)], where � denotes the real part of the complex
expression.
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Substituting H(x, t) = Ay(x)eiωt into (1)–(3) yields

(1+ bx)2
d2 y

dx2 + 2b (1+ bx)
dy

dx
− i2a2 y = 0 x ∈ [0,∞) (5)

y(0) = 1 (6)

lim
x→∞ K0 (1+ bx)2

dy

dx
= 0 (7)

where y(x) is a complex function and a =
√
ωSs
2K0

is the tidal propagation parameter.
The solution of the differential problem (5)–(7) leads to the solution of the original

differential problem (1)–(3):

h(x, t) = Ae−0.5(p+1) ln(1+bx) cos (0.5q ln(1+ bx)− ωt) (8)

where p = 1√
2

√√
1+ 26

( a
b

)4 + 1 and q = 1√
2

√√
1+ 26

( a
b

)4 − 1.

Note that when b→ 0 the analytical solution (8) becomes

h(x, t) = Ae−ax cos (ax − ωt) (9)

which is the classical solution for a homogeneous aquifer obtained by Jacob [1].
Figures 2 and 3 show, respectively, the amplitudes and time-lags of (8) for dif-

ferent rates of increase of hydraulic conductivity b for a hypothetical example. In
comparison with the homogeneous model, the quadratic heterogeneity produce more
dampened amplitudes near the coastline. The dampening effect is almost negligible

Fig. 2 Amplitude versus
dimensionless distance ax for
different rates of increase of
hydraulic conductivity. The
sea tide is considered semi-
diurnal (period of 12.4 h) with
an amplitude A = 1 m. The
hydraulic parameters of the
aquifer are assumed to be
Ss = 10−3 m−1, K0 = 0.8
m/h
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Fig. 3 Time-lag versus
dimensionless distance ax
for different rates of increase
of hydraulic conductivity.
The sea tide is considered
semi-diurnal (period of 12.4
h) with an amplitude A = 1
m. The hydraulic parameters
of the aquifer are assumed to
be Ss = 10−3 m−1, K0 = 0.8
m/h
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for small values of b. The time-lags are smaller that the time-lag of the homogeneous
aquifer, which shows a linear increase with the distance.

The proposed solution is used to estimate the hydraulic conductivity field in a
coastal aquifer on Sapelo Island, Georgia [6]. The dataset consists of amplitude
and time-lag values estimated from water level fluctuations recorded in 8 monitoring
wells. The parameters of the hydraulic conductivity model (4) are estimated by fitting
the amplitude and time-lag of (8) to the field dataset using an exhaustive search
method. The estimated parameters are K0 = 0.3632 m/h and b = 0.9572 m−1,
which are consistent with the high degree of heterogeneity reported in the study site.

4 Conclusions

A new analytical solution that predicts tide-induced head fluctuations in a hetero-
geneous coastal aquifer is presented. The analytical solution provides closed-form
expression for both the amplitude and time-lag. The conceptual model assumes a
hydraulic conductivity field that increases quadratically with the distance to the coast-
line. This type of heterogeneity produces dampened amplitudes near the coastline
and a faster transmission of induced fluctuations into the aquifer. The applicability
of the proposed solution is demonstrated using field data from literature.
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Mapping of Flood-Plain by Processing
of Elevation Data from Remote Sensing

Viviana Aguilar Muñoz and Márcio de Morisson Valeriano

1 Introduction

The relief is a key component in studies of the physical world, since this is both
an indicator and a condition of environmental processes (geological, hydrological,
climatic, etc.), besides influencing the availability and distribution of resources nec-
essary for survival (soil nutrients, water, etc.) [1]. Thus, the contribution of mathemat-
ical modeling of the topographic surface for application in environmental research
can be valued in a wider sense than merely geometric [2]. Relief metric descriptors
like slope and vertical curvature have been reported in the literature as topographic
variables [3]. These can be obtained by computational manipulation of elevation
data, represented in Digital Elevation Models (DEM), by means of geomorphomet-
ric techniques [4].

A specific methodology was developed to compute topographic variables related
to soil distribution: dissection deepness, dominancy, internal relief and topographic
height [5], which can be adapted to calculate the relief-elevation index [6]. The
pur-pose of this experiment is to apply that methodology for relief mathematical
model-ing of a Brazilian watershed where every year are recorded numerous losses
from floods, and to evaluate the potential of each of these variables for mapping of
floodplain areas.

V. A. Muñoz(B) ·M. de Morisson Valeriano
National Institute For Space Research—INPE, Av. dos Astronautas 1758,
São José dos Campos, CEP 12201-970, Brazil
e-mail: viaguila@dsr.inpe.br

V. Aguilar Muñoz
PhD CAPES/CNPq—IEL National—Brazil, São José dos Campos, Brazil

M. de Morisson Valeriano (B)

CNPq Researcher, São José dos Campos, Brazil
e-mail: valerian@dsr.inpe.br

E. Pardo-Igúzquiza et al. (eds.), Mathematics of Planet Earth, 481
Lecture Notes in Earth System Sciences, DOI: 10.1007/978-3-642-32408-6_106,
© Springer-Verlag Berlin Heidelberg 2014



482 V. A. Muñoz and M. de Morisson Valeriano

2 Materials and Method

This experiment was developed on Itajaí River basin, located in the Brazilian South
Atlantic hydrographic region. This site is bounded within the coordinates from
50◦21’17”W to 48◦39’04”W and from 26◦22’44”S to 27◦51’02”S. The basin’s re-lief
is characterized by steep hills at the south, west and northwest and plains bound-ed
by the Atlantic Ocean at the northeast. Elevation ranges between zero and approxi-
mately 1700 m.a.s.l. DEM from Topodata database [7] was taken as input. This model
represents a geo-statistic refinement (90–30 m) of SRTM-C, available to Brazilian
territory [8].

The methodology for computing the topographic variables [6] using Geographic
Information Systems (GIS) tools consisted on applying differential filters, followed
by arithmetic and logical operations on the DEM. New elevation surfaces were re-
constructed from maximum, medium and minimum quotas identified over the DEM
by mathematical inequalities of elevation quotas, selected within radial distances of
approximately 810 m (27× 27 pixels windows mobile). The arithmetic combination
of these information layers (surfaces) follows the equation set of the Table 1.

3 Results and Discussion

Figure 1 shows an excerpt of topographic variables of the Itajaí basin. It is noted that
each of these descriptors enhances some particular characteristic of relief. Flood-
plains were recognized in this work as lower, deeper and wider lands, with low
dominance and less volume of available material for erosion.

Table 1 Mathematical models for computing the topographical variables of this work

Variable Description Equation

Dissection deepness Vertical distance from the elevation
maximal surface to a point on the
topography surface

Dp = Zmax − Z (1)

Dominancy Vertical distance from a point on the
topography surface to the average
elevation surface

P = Z − Zmed (2)

Internal relief Vertical distance from a point on the
elevation maximal surface to a point
on the elevation minimal surface

I = Zmax − Zmin (3)

Relief-elevation index Ratio between the vertical distance from
the average elevation surface to the
minimal and the internal relief

E = Zmed−Zmin
Zmax−Zmin

(4)

Topographic height Vertical distance from a point on the
topography surface to elevation
minimal surface

H = Z − Zmin (5)
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Fig. 1 Excerpt of topographic variables extracted from elevation data of Itajaí basin, Brazil

Figure 2 shows an excerpt of the topographic height besides an urban grid within
the basin. It is possible to observe that Río do Sul has been developing along a
floodplain. This city is frequently affected by floods, and for this reason the Civil
Defense has declared public emergency several times [9].

4 Conclusions

It was possible to extract new information from relief, important for environmental
studies, by the manipulation of elevation data through algorithms based on rela-
tively simple mathematical models. Its observation allows us to conclude that the
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Fig. 2 Excerpt of the topographic height (left) beside of Rio do Sul urban grid (right)

topographicBreak height highlights the floodplains better than the other variables,
although each contributes to its mapping. Development of urban areas on the flood-
plain basin indicates a high degree of public exposure to flooding in the Itajaí basin.
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Effect of Spatial Heterogeneity on Rate
of Sedimentary O2 Consumption Reaction

Tanushree Dutta and Simonetta Rubol

1 Introduction

Quantification of soil hotspots and hot-moments is one of the main challenges to
understand the variability encountered in soils in terms of respiration activity and
trace gas emissions [1]. At the current state of the art, determination of the link
between the biological and soil heterogeneity is a challenge [2]. The latter is also a
function of the scale at which the phenomena are observed [3]. However this target is
difficult given the lack of instrument to measure spatial variability in bacteria activity
at high frequency. In order to fill this gap and to improve the current knowledge,
our work aim in studying the temporal evolution of oxygen (O2) consumption maps
resulting from the addition of DI water, humic acid and glucose. The overall objective
of this study is to investigate the link between the spatial average consumption rate
and land use and also to trace the spatial variability of O2 for a given time point.

2 Materials and Methods

2.1 Study Sites

For this study, fresh sediments were collected from sites under contrasting land
use namely forest (three, old, well developed and recent forests), cropland (two,
conventional and non-conventionally treated), swamp, riverbed and a fallow land
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(with weeds) adjacent to one of the croplands. In addition to land use, the sites differ
in their location, vegetation and soil properties. Details of the location of the sites,
vegetation and management are not shown here (available on request).

2.2 Sediment Characterizations and Sample Preparation

Fresh samples were brought to the laboratory and stored at 4 ◦C. For analysis, fresh
un-sieved sediments were used to avoid the soil disturbances caused by sieving. The
sediments were screened for roots and gravels and homogenized to obtain replicate
samples for analysis. A sub-sample was oven-dried (105◦) for 24 h for the measure-
ment of gravimetric moisture content. Another subset of samples were airdried and
sieved (<2 mm) for analysis of organic C, total N, pH, cations and anions . For ionic
analysis, soils were extracted by shaking a 3 g (fresh wt) subsample with 30 mL of
2M KCl for 1 h and filtering through Whatman no. 1 filter paper following the method
described in [4].

2.3 Preparation of Substrate Media

Substrate media capable of providing 100 mg NO−3 − Nkg−1 and 40 mg glucose or
humic acid kg−1 soil were prepared using DI water. The concentration of the sub-
strates corresponded to the substrate concentration used for measuring the maximum
activity of the biomass of denitrification enzymes [5]. DI water with no substrate was
used as control treatment for comparison.

2.4 Experimental Set Up

Visisens sensor foils were glued on the bottom of the BD FalconTM six-well plates
(area = 9.6cm2), which were then filled with 3 g of fresh homogenized (un-sieved)
soil. Each well was placed on the top of the Visisens (Presens) optical sensor for
monitoring O2 consumption. Soil O2 maps (1 pixel = 9.2 µm) were obtained using
the time drive measurement feature of the Visisens analytical software every 30 s
for 40 mins after the addition of substrate. Replicated were also performed with oven-
dried soil, to check that no O2 consumption was detected by the Visisens instrument
(data available upon request). Each sediment type (representing different land use)
was replicated three times for each substrate. Substrate media was added homoge-
neously to the surface of the soils into the wells using pipette.
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3 Results

3.1 O2 Spatial Variability for Different Substrate
and Land Use

Oxygen consumption was in general highly variable among replicates, indicating
the fundamental role of spatial variability across the field site. However, for all
the replicate, the O2 consumption following glucose addition resulted in a greater
reduction (80 %) of the initial O2 values than the one measured after DI and humic
acid addition. The latter resulted respectively in no reduction and 20 % reduction
of the initial value. In addition, for each treatments, the O2 consumption for the
cropland (soil E) and the fallow land (soil G) were significantly higher than the ones
measured in river sediment, forest and swamp, although the initial oxygen content
was in general higher in the forest and the river sediments (about 100 %) than in the
other soil types (around 80 %). Fig. 1 illustrates the spatial variability measured across
land use after adding glucose, where each points of the curves has been obtained by
averaging the values of the O2 map recorded every 20 s for 40 mins.

3.2 O2 Maps and Soil Heterogeneity

Figure 2 shows the oxygen maps measured at t = 0, 10, 20, 30 and 40 mins after
glucose addition for all the soil types. The figure clearly shows that the oxygen is
consumed non-uniformly in the area of soil investigated, with hotspots in which the
oxygen values span along a wide range, thus permitting the coexistence of aerobic
and anaerobic condition within a small portion of the soils. Since the diameter of
the hotspots is in general bigger than the size of bacteria (i.e. 0.1–1 µm), our results
suggest that this O2 gradient may indicate the presence of different colonies which
can be tolerant to rapid change in O2 values. To the best of our knowledge, this is the
first work, which is able to investigate the spatial variability of O2 in sediments at

Fig. 1 Temporal evolution of spatial average O2 map consumption following, a no substrate addi-
tion, b humic acid addition and c glucose addition
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Fig. 2 O2 maps showing spatial variability and hotspots of O2 consumption following glucose
addition at time (T) = 0, 10, 20, 30 and 40 mins

high frequency. The data suggest that even on a very small spatial scale the O2 may
vary in the soil. Determining a model to predict the soil variability is challenging,
however the averaging operation in modeling has to be done with caution, since in
a small portion of soil (e.g. 1 cm2), respiration rate may span on a wide range of
values. We believe that these types of analysis may provide the range of variability
across soil type. In our specific analysis, we found that the cropland soil presented
more homogenous oxygen consumption along the soil surface with respect to the
other soils. This may indicate the presence of a more homogeneous soil, where the
substrates diffuse more uniformly.

Acknowledgments SR acknowledges the support of the Provincia Autonoma di Trento and the
European Commission within the 7◦ Programma Quadro–Azioni Marie Curie Cofund, PAT.
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Optimal Development of Regional Rain Network
Using Entropy and Geostatistics

Hadi Mahmoudi-Meimand, Sara Nazif and Hasan-Ali Faraji-Sabokbar

1 Introduction

Rainfall is hydro-meteorological variable with drastic spatial and temporal varia-
tions. In recent years, more attention is paid to application of entropy theory and
geostatistical method in rain gauge network design.

Karamouz et al. [1], utilized the measure of transinformation in entropy theory for
selecting the best water quality monitoring stations from a set of potential monitoring
sites along a river. Yeh et al. [2] introduced a model composed of kriging and entropy
with probability distribution function to relocate the rainfall network and to obtain
the optimal design with the minimum number of rain gauges. Chen et al. [3] proposed
a method composed of kriging and entropy that can determine the optimum number
and spatial distribution of rain gauge stations in catchments.

In this study the entropy and geostatical methods are used in combination to
improve the rain gauge network density.

2 Materials and Methods

In this paper, the optimal locations of rain gauges development in a monitoring net-
work are determined using the entropy theory by considering the maximum uncer-
tainty (minimum redundant information in the system) and the maximum rainfall
estimation error based on Kriging method.
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Fig. 1 Location and rain gauge of the study area

2.1 Calculating the Rainfall Estimation Variance Using Kriging
and the Transformation Entropy

In this study, the rainfall is spatially interpolated using ordinary kriging. In kriging
the error associated with the estimates in points with no measurements are calculated.
Rainfall Kriging Variance is calculated by the following formula:

2
σ
z̃
= μ+

∑N

i=1
λiγi0. (1)

where σ2
z̃ is the kriging variance, which provides a measure of the error associated

with the kriging estimator, μ is the Lagrange parameter and γi0 is Variogram values
i between the i sample and estimated spot and λi is the weight of rain gauge i. Due
to high variability of rainfall in different months, the weighted average of monthly
rainfall is estimated. The final layer of rainfall estimation error at the basin for the
maximum kriging error as a measure of choice in network structure optimization
model for locating new stations rain guage used.

The transferable information T(X,Y) of two rain gauge stations X and Y is the
mutual information or overlapped information of X and Y, where f(x, y) is the joint
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Fig. 2 The final layer of the variance estimates at the basin

entropy of x and y, f(x) and f(y) are the probability density function of the variables
x and y, respectively.

Transinformation (T(x, y)) in the discrete form can be expressed as follows:

T(x, y) = T(y, x) = −
∫ ∞

−∞

∫ ∞

−∞
f(x, y)Ln

(
f(x, y)

f(x)f(y)

)
. (2)

Equation (2) for variables with normal distribution can be simplified as follows [4]:

T(x, y) = −1

2
Ln

(
1− r2

xy

)
(3)

where rxy is the correlation coefficient between x and y. The final layer of entropy
transfer at the basin for the minimum transformation entropy as a measure of choice
in network structure optimization model for locating new stations rain guage used.
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Fig. 3 The final layer of entropy transfers at the basin level

3 Rain Gauge Network Optimization Model

The objective of this model is combination of maximizing the minimum transinfor-
mation entropy and minimizing the maximum Error variance which is quantified as
follows:

Min Z =
∑n

j=1

∑m

i=1
aij

{
α1

(
Errsij − Errsmax

)2 + α2
(
Entsij − Entsmin

)2
}

.

(4)
The main constraints are as follows:
{

aij = bij × cij, bij >
r1−Entsij

r1
, bij < r1

Entsij
, cij >

Errsij−r2
r2

, cij <
Errsij

r2
,
∑2

i=1 αi=1,

aij, bij, cij ∈ [0, 1] .

(5)
To standardize these criteria, the following relations are used:

Entsij = Entij − Entmin

Entmax − Entmin
Errsij = Errij − Errmin

Errmax − Errmin
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Fig. 4 Location of 17 selected rain gauge stations of the study area

where Entij and Errij are the real value of entropy and error kriging, respectively.
Errmax = max(Errij) and Entmin = min(Entij). Errsmax = max(Errsij), Entsmin =
min(Entsij).

r1 is the threshold value for the selected range of data entropy and r2 is the threshold
value for the selected range of data error kriging. aij, bij and cij are auxiliary binary
variables. α1 and α2 coefficients are between 0 and 1. Their values are determined
by the decision maker.

4 Results and Discussion

Rainfall data of the 49 stations in the Karkhe located at the south western part of
Iran (Fig. 1) in months October to April calculated for each month. The developed
layers of rainfall estimation variance are weighted based on monthly rainfall and
overlaid. The final layer of the overlapping layers are obtained and as a measure
of the objective function be considered (Fig. 2). The transformation entropy layer is
developed in the similar way (Fig. 3). The estimation variance and entropy layers
are combined based on the objective function and the optimal points of rain gauges
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development are determined based on the optimization model. In the considered
case study, the application of the proposed method to an existing rain network over
the Karkhe catchment region under a minimum transformation entropy of 30 % and
maximum Kriging error of 60 % resulted in 17 new rain stations to be added to the
original network (Fig. 4).
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Application of Drastic Methodology
for Evaluation of Guarani Aquifer
Vulnerability: Study Case in Ribeirão
Bonito, SP, Brazil

Rafael Gonçalves Santos, Mara Lúcia Marques, Gabriela Trigo Ferreira
and José Ricardo Sturaro

1 Introduction

The Guarani Aquifer System (GAS) consists in one of the biggest freshwater reserves
in the world, comprising parts of Brazil, Argentina, Paraguay and Uruguay, being
not only a source for supply to the population but also a means in order to develop
economic activities and leisure. Areas where the aquifer is outcropped require studies
that aim to a better protection and spatial planning, once they are intimately connected
to direct recharge of the aquifer.

This study presents a Vulnerability mapping through the application of DRAS-
TIC method. Today the DRASTIC method is a standardized system for evaluating
groundwater pollution potential. DRASTIC has been widely used in many countries
because the inputs required for its application are generally available or easy to obtain
from public agencies [1].

1.1 Study Area

The study area is a mosaic of topographic charts in scale 1:10,000, covering the entire
city of Ribeirão Bonito and parts of other neighboring municipalities located in the
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center of São Paulo state. Most extension is comprised by outcrop and recharge areas
of Guarani Aquifer, which presenting a layered system composed of sandstones of
the Triassic period (Pirambóia Formation) and Jurassic (Botucatu Formation) over
there aquifer outcropped. A minor extension is covered to Serra Geral (basaltic)
and Adamantina Formations (fine sandstones and very fine) from the Cretaceous
period, both structures are located above the aquifer and confined or semi-confined
the Guarani Aquifer [2].

2 Methodology

DRASTIC is an established aquifer vulnerability mapping methodology, developed
by the U.S. Environmental Protection Agency (EPA) [3]. This method defines seven
parameters that contribute to intrinsic aquifer vulnerability. The DRASTIC PESTI-
CIDE system is designed to be used where the activity of concern is the application
of pesticides to an area. The pesticide DRASTIC differs from general DRASTIC in
the assignment of weights (Table 1).

The seven parameters were assembled and combined using a weighted sum
equation to produce the final intrinsic vulnerability map:

DRASTIC = Dr∗Dw+Rr∗Rw+Ar∗Aw+Sr∗Sw+Tr∗Tw+Ir∗Iw+Cr∗Cw (1)

Fig. 1 Location of the study area in Ribeirão Bonito, SP, Brazil
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Table 1 The DRASTIC Parameters and their relative weights [1]

Parameters (experimental data) General weight Pesticide weight

D: Depth to water [4] 5 5
R: Recharge [2] 4 4
A: Aquifer media [4] 3 3
S: Soil media [2] 2 5
T: Topography 1 3
I: Impact of the vadose zone [4] 5 4
C: Conductivity (hydraulic) of the aquifer [4] 3 2

where r is the rating for the parameter and w is an assigned weight for the parameter.

3 Results and Discussions

The analysis results of the mapping and vulnerability Index of the Guarani Aquifer
in the region of Ribeirão Bonito are shown in Fig. 2.

The results prove that the DRASTIC method presented a more homogeneous area
than the DRASTIC PESTICIDE. This fact is due to the greater weight of the soil and

Fig. 2 Vulnerability of the Guarani Aquifer through the drastic and drastic pesticide methods
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topography variable in the final summation. The areas of greatest vulnerability are
concentrated where the aquifer is outcropped (Pirambóia and Botucatu Formations)
and along watercourses (alluvial sediments) that make direct recharging the aquifer.

Areas of sedimentary rocks consisting mainly of sandstones and sandy soils,
also presented higher vulnerability. Areas with low vulnerability are located where
the aquifer presents a confining layer with the presence of igneous rocks (Serra
Geral Formation). The results indicate that the majority of the study area, showed a
moderately high vulnerability DRASTIC index; the index has presented the results
PESTICIDE moderately high and moderate.

4 Conclusion

The GAS vulnerability map, obtained through the application of DRASTIC method,
demonstrates the fragility of recharge areas and aquifer outcrop, enabling the identi-
fication of those areas with most vulnerability index to contamination from potential
agents of pollution. The vulnerability mapping also allows electing the most appro-
priate areas for installation of economic activities with high potential to contaminate
water resources. The DRASTIC method demonstrates to be an important tool for the
management of water resources in the study area and other areas located under the
same lithology.

The index DRASTIC and DRASTIC PESTICIDE presented similarities in vul-
nerability mapping, both pointed that most vulnerable areas are mostly located on
sandstone formations and sandy soils. The study area is an agricultural region typ-
ically with large monoculture production and, in this sense, the DRASTIC PESTI-
CIDE method exposes the vulnerable areas that require more attention due to the use
of agricultural inputs.

The results indicate that most vulnerable areas are located on sandstone forma-
tions, also highlight the need for protection and management along the watercourses,
since they supply the aquifer directly. The DRASTIC method demonstrated to be an
efficient tool in planning and analyzing the intrinsic vulnerability, since it proved
vulnerable areas requiring protection and areas in which different activities can
be installed, thus contributing to the management and spatial planning in Ribeirão
Bonito.
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A Case Study of Geometric Modelling via 3-D
Point Interpolation for the Bathymetry of the
Rabasa Lakes (Alicante, Spain)

África de la Hera, Enrique López-Pamo, Esther Santofimia,
Guillermo Gallego, Raquel Morales, Juan J. Durán
and José M. Murillo-Díaz

1 Introduction

In a partnership between the Geological Survey of Spain and the Regional Government
of Alicante, a study of the wetlands in the province is being carried out. The Rabasa
Lakes, located North-East from the city of Alicante, have been formed as a conse-
quence of the rising of the groundwater level in a quarry (Fig. 1) that was abandoned
in the 1970s. There are three lakes of size 0.5, 1.5 and 3 ha. The largest lake has been
selected to carry out a bathymetric study.
The methods to obtain bathymetric maps of rivers, lakes, ocean floors, etc. are diverse.
Acoustic, visual and computer technology, as well as Global Positioning Systems
(GPS) are at the foundations of modern bathymetry systems. Single beam echo
sounders (SBES), on ships infer the topography of the sea floor by emitting an
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Fig. 1 Location and view of the Rabasa Lakes in the province of Alicante, Spain

acoustic pulse and measuring the travel time it takes the wave to return to the ship
after being reflected by the sea floor. Multibeam echo sounders [1] (MBES) provide
higher accuracy and angular resolution by correcting for the movements of the ship.
Bathymetry in shallow waters (depth < 50 m) can be measured from aircrafts by
means of airborne laser radar (LIDAR) [2]. Such systems infer the water depth by
sensing the echo of emitted laser light pulses that are reflected by the water surface
and the water bottom. Optical bathymetry methods are usually cost effective and
efficient over large areas of clean water bodies.

2 Methodology

In this work, a bathymetry technique based on acoustic technology is presented. The
estimation of the topography of the Rabasa lake bed consists of two stages. First, in
situ measurements are obtained by means of sonar and GPS equipment. A Garmin
160C Fishfinder sonar probe and a Garmin 76S GPS receiver working in differential
mode were used to collect a total of 335 points measurements spatially distributed
throughout the lake. In a second stage, the data is processed by scientific software [3]
that, by means of the method of ordinary kriging, returns and estimate of the wetland
bathymetry.

Kriging [4, 5] is widely used in hydrogeology as the preferred method for con-
structing datasets, usually over unstructured 2-D grids, suitable for contouring. It is
a method closely related to the best linear unbiased estimation (BLUE) in Statistics.
Given the observed depths Z(xi) at locations xi ∈ R2, i = 1, . . . , N , the kriging
method interpolates the depth at an unobserved location x0 using a linear combina-
tion of the known depths: Ž(x0) = ∑N

i=1 wi(x0)Z(xi). The weights wi (x0) depend
on the distance from x0 to the known locations xi, i.e., ‖x0 − xi‖, and are calculated
based on hypothesis of the ordinary kriging method.
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of the largest Rabasa Lakes. b Corresponding bathymetric chart (i.e., contour map) obtained by
ordinary kriging

3 Results

The geometric modelling of a lake basin by means of an interpolated surface through
a set of scattered 3-D points allows us to analyze the lake bed as a whole. For
the largest Rabasa Lakes 335 points were measured, out of which 217 belong to the
flooded area. Figure 2a shows the location of the collected field points. The minimum,
median and maximum water depths are 0, 8.4 and 18 m, respectively. The mean water
depth and the standard deviation are 8.49 and 5.33 m, respectively. The average
distance between nearest neighbor points is 5.93 m. The corresponding topographic
map estimated using ordinary kriging is shown in Fig. 2b. The lake shows an elliptical
morphology with an almost flat lake bottom. The distance between adjacent points
of the generated grid is 2.93 m in each axis. This is approximately half the average
spacing of the input data. The estimated minimum depth by kriging is 18.16 m, which
is very close to the observed depth.
The knowledge of the morphology of the lake allows us to establish aquifer-lake
connections (in case the groundwater level is known) and to compute the storage
capacity of the lake. Other statistics, such as the area and volume of the basin at
different depths (Fig. 3) can be computed. The resulting values are paramount in
hydrological studies to characterize and forecast the behaviour of the lake depending
on other environmental variables. For example, they can be used in balance equations
to predict the response of the water stored in the wetland to several input and output
water flows such as rain, springs, runoff, evaporation, water pumping, etc. According
to the fourth report of the Intergovernmental Panel on Climate Change [6] forecast,
considered climate change scenarios suggest a decrease of the water inputs due to
fewer precipitations and lower groundwater level, and possible runoff due to isolated
rainfalls.



506 A. Hera et al.

0

2

4

6

8

10

12

14

16

18

20

0 100000 200000 300000 400000

Volume (m 3)

D
ep

th
 (m

)
0

2

4

6

8

10

12

14

16

18

20

0 10000 20000 30000 40000

Area (m 2)

D
ep

th
 (m

)
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4 Conclusion

In this work, a case study of the application of least squares interpolation of scattered
3-D points (kriging) has been presented for a hydrological characterization of a lake.
The sonar technology used to acquire the physical measurements to be interpolated
was selected based on technical considerations (lake size, accuracy, etc.) as well as
economical ones. The proposed methodology is mathematically well founded and
reliably describes the bathymetry of the lake bed in agreement with the observations.
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Analysis of Groundwater Monitoring Data Sets
with Non-Detect Observations: Application to
the Plana de Sagunto (Valencia, Spain)
Groundwater Body

Juan Grima, Juan Antonio Luque-Espinar, Juan Ángel Mejía-Gómez
and Ramiro Rodríguez

1 Introduction

European countries are facing the problem of significant pollution of soil and
groundwater resources [1]. The current legislative framework, i.e. the Water Frame-
work Directive (WFD) and the Groundwater Directive (GD) require Member States
(MS) to establish groundwater monitoring networks and design a monitoring plan
as part of a programme of measures for achieving WFD environmental objectives.
Groundwater data frequently evidence that many non-commonly monitored synthetic
or naturally occurring chemicals, are present in aquifers. In other cases a fraction of
the monitoring data shows no detection of such contaminants, what does not nec-
essarily means that the contaminant is not present at any level. In order to address
the uncertainty associated with the unknown mean concentration of data sets with
observations qualified as non-detects, statistical methods for handling left censored
data have to be applied.
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1.1 Study Area and Data

In the framework of the Common Implementation Strategy (CIS) of the WFD all
Member Satates and Norway agreed to develop a number of Pilot River Basins to
check the various issues developed in Guidance Documents (GDs). In Spain, the GDs
were evaluated in the Júcar River Basin District (JRBD), aiming to provide tools for
the management of its hydraulic resources [2]. The main pressures identified are
water abstraction, point source and diffuse pollution and saline intrusion [3]. Plana
de Sagunto Groundwater Body (Fig. 1) has been selected as a case study due to
the fact that is at risk of not achieving good chemical status. All the information
about pollutants concentration has been downloaded from the web page of the JRBD
Authority by means of its direct download utility. In Plana de Sagunto there are 13
stations with values above the threshold value for nitrates (50 mg/L). Historical data
have been compared until 2010.

2 Methodology and Data Analysis Techniques

The first step to take in the process of time series analysis is to make a visual repre-
sentation of data [4] to identify patterns, trends or seasonal variation. If observations
are independent and identically distributed random variables, linear regression can
be used to model the relationship among a dependent variable and several explana-
tory variables. However, applying linear models to groundwater data is not suitable,
because of its intrinsic characteristics. In fact, many qualitative groundwater vari-
ables neither are normally distributed nor have even a symmetric distribution [5]. To
avoid such a difficulty [6], local regression (LOESS) or locally weighted scatterplot
smoothing (LOWESS) are used. In Fig. 2 time series (with 8 values at least) for
nitrates of Plana de Sagunto are displayed jointly with its smoothed line. An upward
trend is clear at station JUIG003940.

To deal with censored data various methods have been developed. The simplest
one is substituting a constant for all observations below the detection limit. Distrib-
utional methods depend on the assumption that the data fit a given distribution while
non-parametric alternatives are based upon the survival function, commonly used in
medical research. It does not require knowing the distribution of data and can handle
multiple detection limits. In this paper three substitution methods (assigning zero,
half of the detection limit and the detection limit respectively to the censored values),
two distributional methods (Maximum likelihood estimation and Robust regression
or ROS) and one non-parametric approach (Kaplan-Meier) have been tested to esti-
mate the distribution parameters for nitrates in Plana de Sagunto Groundwater Body.
Different censoring degrees have been artificially imposed to data sets and confi-
dence intervals calculated afterwards. Resampling techniques (bootstrap) are used
to set confidence intervals for the original data and for ROS estimates. To check com-
pliance with a standard the lower confidence limit is used. All results (Table 1) have
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Fig. 1 Location of Jucar River Basin and Plana de Sagunto GWB
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Fig. 2 Time series and smoothed lines at Plana de Sagunto GWB

been elaborated within the framework of the R software environment for statistical
computing [7].

3 Results and Discussion

Sample size has great impact on confidence intervals. With small sample sizes (less
than 10) maximum likelihood estimation performs poorly as a consequence of assum-
ing distributional assumptions (provides larger confidence intervals relative to other
procedures). Substitution methods (half the detection limit) can provide an indication
of compliance (although further sampling is definitely required to assess chemical
status). On the other hand, when there is more than one detection limit (or it is
expected as a consequence of changing analytical precision over time) it is necessary
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to use particular techniques to meet these requirements. In summary, ROS and K-M
are the recommended methods, as they provide more precision and are capable of
dealing with several detection limits. Furthermore, a minimum of 10-15 samples
above detection limit is suggested to obtain accurate results. Upward trends must be
tested before any statistical analysis, removing its influence.

When values qualified as non-detected exceed 50 % results are not accurate and
other alternatives must be explored. The assessment has led to the conclusion that
Plana de Sagunto GWB shows poor chemical status as a result of nitrate pollution.
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The Mesh Optimization of the Environmental
Investigation Applied to the Diagnosis of the
Quality of the Basement (Algerian Experience)

Abderrahim Gheris

1 Introduction

Potentially polluted site is made to be sampled at different stages of its
characterization or remediation, to meet various objectives. In all cases, the problem
of the sampling strategy in terms of “how to reach a sufficient level of knowledge
relative to study objectives, with a minimum data positioned better?” Speaking of
sampling strategy means then also take into account financial constraints or dead-
lines, decide of the sample sizes appropriate to the objectives of study, to program
the sampling phases in order to best resolve uncertainties or to integrate all existing
data to determine the number and location of additional samples. Currently, sampling
strategies most often result of a reflection of practitioners based on their experience,
knowledge of the site as well as common sense. The objective of this work is to show
what can be the contribution of geostatistics to rationalize sampling of polluted sites.
Through the use of database collected during a project of research estimation and
evaluation of the risk of spreading the pollution of ground water, emitted by a plant
of paintings [2]. The Algerian regulations do not provide specific recommendations
on the sampling methodology. The Algerian methodological guide recalls the differ-
ent approaches of the points location and refers to the recommendations developed
by the U.S. EPA in 1991 [5] and by the european standardization [1]. The site in
question has a multiple pollution (three pollutants) on an area of about 5 ha of land.
It is a plant of paintings located in north eastern Algeria, where various chemicals
containing heavy metals were dumped for many years from the 80 s. Between the
years 2008 and 2010 a study was carried out on this site to locate and study the spe-
cial distribution of soil contamination by heavy metals. For this purpose a systematic
sampling campaign (soil and water) has been executed, the results of this campaign
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Fig. 1 Location on the site plan of sampling (36◦17′19, 89′′N; 7◦56′20, 71′′E)

were mustered in a database [2]. Therefore, over a period of 2 years, successive cam-
paigns have resulted to the realization of surveys using a mechanical auger. From the
beginning the sampling strategy was to perform systematic surveys with an advanc-
ing from south to north, the boreholes are shown in Fig. 1. Laboratory analysis of 47
soil samples collected during this campaign showed high levels of three substances:
lead, cadmium, and chromium [3]. The groundwater level is located at about 10 m
depth at the right site. The sands clay aquifer is a very productive aquifer (perme-
ability greater than 10−3 m/s). The basement consists of yellowish sandy clay, silty
sand with pebbles, yellowish clay and limestone concretion.

1.1 Production of Maps of Contamination

The criterion of rationalization of the selected sample assumed to estimate, from
the available data on each pollutant, a 3D map of the probability of exceeding its
guideline value. Several geostatistical methods allow estimating a probability of
exceedance. Include the estimation by kriging, usually after data transformation (eg.,
log transformation log, Gaussian) [4]. According to the study [2, 3] and for each of
the three pollutants, it has been deduced from the 3D map of probability of exceeding



The Mesh Optimization of the Environmental Investigation 515

Fig. 2 Probability map derived from existing data

a 2D map synthetic for the highest probabilities calculated on the vertical (from 0
to 6.0 m depth). For example, Fig. 2 shows the resulting map for lead. As expected,
the first polls in the region of higher probability showed high soil that impregnated.
As and progresses to the northward the impregnations were less important. The area
of highest probability corresponds to an area incineration of packaging waste for
raw materials; she occupies about 8 % of the total surface. Therefore the map of
probabilities reflects the spatial representation of the spread of pollution.

2 Probabilistic Simulation and Results

Now using the database of test results in the laboratory [2], we performed a series
of simulation under various scenarios, to test the performance of different types of
sampling strategies used to detect circular source occupying 8 % of the total site area
(area highlighted by the previous study). The first simulation scenario is to consider
only a certain number of polls (between 15 and 40) disposed according to a layout
random, the second scenario, activation of the same points, but according to a layout
stratified random, and finally a transverse and longitudinal profile which forms a fish
bone. The results of the performance of these themes are shown in the graph in Fig. 3.



516 A. Gheris

Fig. 3 Performance of the different strategies

3 Conclusion

We can say that the least costly strategy in financial term is the diagnostic by profiling.
Then comes the geostatistical analysis exploratory, which allows developing through
the integration of all the information collected a risk mapping. Additional sampling
is recommended to minimize the uncertainty about the levels of pollutants in the
uncertain zones, for example using methods of linear or non-linear kriging.
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Data Archives: Development and Application
in Environmental Management

Konstantin Alexeev

1 Introduction to the Problem

The presented technology was conceived because of existing problems of information
support of geological and nature-use management in the territory of Russia. Today
large volumes of geodata aren’t systematized and aren’t provided to the uniform
standard, that significantly complicates their use, because of huge territory and dis-
unity of various departments and the working groups. Unlike existing GIS-projects,
the described technology unites all types of the data, which are storing in different,
not connected with each other directly, systems, in uniform metabase. And, as the
independent system, it allows and assumes integration with existing (Russian and
international) information systems for providing the unified access to data.

Rapid development of geology in Soviet period led to accumulation of a great
volume of the data obtained during carrying out field researches [1]. At the same
time this information in most cases is not structured and even not transferred to a
digital form. Natural consequence of the described situation is the dissociation of
the information resources which is strongly complicating processing and use of the
saved-up scientific potential.

For the solution of this problem development of the structured data archive is
offered. The scheme of carrying out offered works is defined by the following stages:

• Organization of structure of storage
• Definition of a necessary minimum of the description of object
• Expansion of signs of search and description of objects if necessary
• Creation and introduction of regulations of granting the signs given on the basis

of the created list
• Collecting and specification of information on stored data
• Metadatabase creation
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• Control of a condition of data (planned and on demand)
• Gradual copying of data from various sources on a local resource in the ordered

form

2 Process and Main Problems of the Structured Data Archive
Development

The main problem of the organization of structure of data storage in environmental
management is ignorance, and often and misunderstanding by users of information
fullness of available materials and inability, and as a result–difficulty of allocation
from all volume of the presented data of really necessary sets of data.

The impossibility of structurization following from here is explained by absence
of data as those.

Usually, the array of information used in work becomes data to the end of per-
formance of work and can be presented in the structured set only at the last stage–a
stage of formation and representation of reporting materials. Unfortunately, at this
moment data any more aren’t of interest to further use and further are stored in a
type of backup copies on remote resources, without the distinct description of the
executed structurization and an essence of the carried-out works. For this reason the
subsequent works performed on the basis of these data, begin again with processing
of an initial material.

Due to the problems of association of resources described above and elaboration of
uniform vision of an information field in environmental management at the first stage
of creation of archive the database comprising information on processed objects,
will comprise only two fields of records. The first field will comprise an object name
which, as a rule, is a file name. Thus, the first field will define at the same time
location of object. The second field will contain the text description of object in
any form. On the basis of this initial database by the analysis and specification of
the text description information base of archive and the rule of management will be
created by it. Further the quantity of fields will be increased but in view of the fact
that objects will actually not be stored in base, its volume won’t be catastrophically
great. Also possibility of change of structure of base as addition of new fields for
objects again arriving in archive, and base recalculation as a whole is supposed. Full
recalculation and recreation of archive is possible both at the direction, and in the
course of planned procedural works.

The specified way of collecting and storage of information has many advantages.
Let’s list the main:

• lack of need for the big massif of means of storage at physical level and, as a result,
the small cost of the project at the initial stage and at further development;

• possibility of participation in archive practically all interested the organization and,
probably, individuals in view of the fact that for providing data needs only exis-
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tence constant (or the archive regulated by means) connections to the international
Internet network;

• overcoming of a psychological problem of some organization to “lost” the acquired
material. In fact, all materials remain with “owner”.

3 Examples of Applications

Now presented technology of data archives creation are used for systematization and
gathering of cartographic data using during scientific researches (geological, geo-
physical and etc.) in SSC VNIIgeosystem. The data types, collected in the archives,
are as follows

• rasters of thematic maps (source and referenced)
• rasters of geological and seismic profiles (source and referenced)
• thematic vector layers (source and resulted)
• GIS-projects collecting source or/and resulting data
• text documents–reports, describing results of scientific projects

Main steps of development of the application and loading process included :

1. Verification of the register of cartographic materials, correction of mistakes,
reduction to the set requirements

2. Verification of the register of digital materials, correction of mistakes, reduction
to the set requirements

3. Creation of the uniform array of the spatial data displaying a geographical bind-
ing of digital materials

4. Coordination among themselves register of cartographic materials, register of
digital materials and data on their geographical position.

5. Loading of the created interconnected data file in Internet GIS, control of a
workplace of the user, debugging.

The project providing to the authorized user (as showing at Fig. 1):

• viewing of materials of the geologic-geophysical contents, including bibliographic
data and technological stages of their processing,

• search of necessary materials both in spatial criteria, and in keywords,
• downloading of a demanded set of materials on its local computer.

As technological platform of the system we used multifunctional geoinformation
server—technological platform for compilation of web-GIS application [2].

In an ideal, all data on which the link metabase have to be moved on a local
resource. Thus, the backup copy of archive as a whole will be created. But the
assessment of possibility of realization of this stage will be possible only after some
time after project start.
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Fig. 1 Example of the window shown in the database

Using of the presented system will allow to significantly reduce of time of search
and preparation of data for carry out of various works in the field of environmental
management. Now the project is at a development and testing stage. We are planning
to finish approbation and to make of the full-function version of archive of geodata
to the middle of 2014.
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Ecological Remediation Volume (ERV)
in Coastal Aquifers Affected by Seawater
Intrusion. Methodology and Application
in the Oropesa-Torreblanca Plain (Spain)

Arianna Renau-Pruñonosa, Ignacio Morell, David Pulido and Jorge Mateu

1 Introduction

The coastal aquifers present hydrodynamic and hidrogeochemical peculiarities that
add complexity to the correct groundwater resources management [9]. In them, the
balance water could be modified (sometimes very notably) on a natural or anthropic
way, due to variations produced in the water balance components. That process would
produce the advance of the seawater intrusion [1, 4].

In the last years in Spain, and following the application of the Water Framework
Directive [7, 8], research on groundwater management and sustainable use of ground-
water has increased [2, 3, 5]. Such reports tend to define and quantify the submarine
groundwater discharge of coastal aquifers and present interesting methodological
frameworks to determine it. However, it is well known that the submarine ground-
water flow is the result of all the actions taken on an aquifer. Therefore, the study of
marine intrusion should not be solely focused on determining the optimal ground-
water discharge, but also on quantifying, and rectifying if possible, the actions that
led to the problem. The objective of this research is to define a new methodology to
determine the Ecological Remediation Volume (ERV). ERV is the volume of pumping
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reduction that has to be reached in an aquifer, or a sector of it, to yield an intrusion
flow lesser or equal to the estimated intrusion for the system’s natural state (reference
intrusion).

2 Methodology

The methodological proposal for the calculation of ERV stems from a constant-
density mathematical flow model calibrated on a steady-state (MODFLOW). It con-
sists in the iterative reduction of pumping involved in the intrusion process, until
the water table yields an intrusion equal or lower than the estimated value for the
system’s natural state (reference intrusion). The following steps should be followed:

– Phase 1: Modelling the system’s natural state to establish the reference intrusion.
The resulting model will be named reference model in a natural state (NS model).

– Phase 2: Delimiting the areas affected by marine intrusion and trying to reduce
their surface by iteratively reducing the pumping involved in the process, until the
water table yields flows from the constant head level (intrusion flows coming from
the sea) equal or lower than the estimated value for the system’s natural state. The
initial model in this phase will be named reference model in an influenced state
(IS model).

– Phase 3: Calculating the ERV from the IS model and the last scenario of Phase 2
(the one associated to a flow intrusion equal or lower than the estimated value for
the natural state).

The use of a constant-density model is due to their simplicity. They require less
information. Nevertheless, the use of variable-density codes might give more exact
results with a higher degree of complexity.

3 ERV of Plana de Oropesa-Torreblanca Aquifer

The Oropesa-Torreblanca Plain, a pliocuaternary coastal aquifer, is located in Eastern
Spain (Fig. 1). The Plain is approximately of 80 km2. It supports seawater intrusion
due to overexploitation from the last decades of the last century (Fig. 2).

The mathematical model, used to calculate ERV, is a constant-density mathemat-
ical flow model calibrated on a steady-state (MODFLOW). The aquifer was built
with two active layers that represent the Plain and the cretaceous aquifer (underly-
ing). The grid was regularly spaced, 500 m × 500 m. The hydraulic conductivity and
storage coefficient vary from 5 to 200 m/day, and from 1 to 10 %, respectively. The
Plain borders with aquifers in the northern, western and southern part. They present
hydraulic connections with the study area, which will be simulated a constant head
boundary condition (CHD). The Mediterranean Sea is located to the east and it will
be approached with a constant head boundary condition (CHD). The humid zone will
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Fig. 1 Location map of Oropesa-Torreblanca Plain (Eastern Spain)

Fig. 2 Piezometric evolution of Oropesa-Torreblanca Plain according to the simulation of the
groundwater flow (MODFLOW) calibrated in transitory-state (1973–2009) [6]
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Table 1 ERVh , ERVm and ERVs Plana de Oropesa-Torreblanca aquifer

Pumping (hm3/year) ERV (hm3/year)
IS model Last scenario (Phase 2)

Humid year (h) 34.5 33.5 1.0
Medium year (m) 34.5 32.8 1.7
Dry year (d) 34.5 30.8 3.7

be simulated by means of drain boundary conditions (DRN). The recharge (RCH)
comes from rainfall infiltration (66.4 mm/year) and irrigation returns (20 mm/year).

The Ecological Remediation Volume (ERV) can be calculated for humid (ERVh),
medium (ERVm), and dry (ERVd) years. The mean rainfall in humid (h), medium (m)
and dry (d) years is 884.6 mm/year, 520.3 mm/year and 337.5 mm/year respectively.
In the three proposed scenarios, the NS model indicates that the intrusion of reference
is inexistent (phase 1). In case of the humid year, the ISh model (phase 2) shows that
the marine intrusion affects on the Southern sector and there are nine wells involved
in the process. To reach there reference intrusion it is necessary to reduce 1 hm3/year
(ERVh) the pumpings in this sector (Table 1). The IS model corresponding to the
medium year (ISm model) shows that the marine intrusion, like in the previous case,
affects to the Southern sector, but in this case there are 14 wells involved in the
advance of the seawater intrusion. The ERVm (medium year) is of 1.6 hm3/year
(Table 1). Finally, the study of a dry year ERV reveals that the marine intrusion (ISs
model of the phase 2) concerns the Southern and the Central sectors, where the wells
involved in that process are 24 and 7, respectively. In the phase 3, the ERV for a dry
year (ERVs) is of 3.7 hm3/year, 2.8 hm3/year correspond to the Southern sector and
0.9 hm3/year to the Central sector (Table 1).

4 Conclusions and Suggestions

The Ecological Remediation Volume (ERV) can be calculated for humid (ERVh),
medium (ERVm), and dry (ERVd) years. The application of this methodology in
the Oropesa-Torreblanca Plain shows that the advance in seawater intrusion (with
respects to the natural state intrusion), in any of the three scenarios (humid, medium
or dry years) is mainly due to pumping. On average, in humid years the sector affected
by a higher intrusion is the Southern sector, and the corresponding ERV is 1 hm3/year.
In medium years, the ERVm is 1.7 hm3/year and the process affects exclusively the
Southern sector. In dry years the process affects the Southern and Central sectors; in
this case, the ERVd would be 2.8 and 0.9 hm3/year respectively. The EVRs total is
3.7 hm3/year.

For the groundwater management, it proposes to use, in any case, the maximum
restriction, the ERVs, to guarantee goundwater discharge to the sea that it would
prevent the seawater intrusion and it would preserve the sustainability of the resource.
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Alternatively, it would apply the reduction corresponding to the ERVm and to use
the higher pumping reductions (ERVs) in case of periods abnormally dry. Following
these recommendations, it proposes in case of Oropesa-Torreblanca Plain to apply
the maximum restriction (ERVs) being this of 2.8 hm3/year in the Southern sector and
0.9 hm3/year in the Central sector. In case of applying the reduction corresponding to
the ERVm, in the Southern sector the pumping reduction will be of 1.6 hm3/year and
in case of dry periods it would be necessary to apply the restrictions corresponding
to theERVs.
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A Radon Risk Map of Germany Based
on the Geogenic Radon Potential

Peter Bossew

1 Introduction

Indoor radon (Rn) is believed an important risk to human health. Therefore Rn
monitoring programs have been initiated in many countries. Currently the European
Commission is discussing Basic Safety Standards for protection against ionizing
radiation, requiring inter alia to establish radon action plans and to identify so-
called radon prone areas. Risk is commonly defined as probability that indoor Rn
concentration exceeds a threshold.

In Germany datasets of Rn concentration in soil air, of soil permeability and of
indoor Rn concentrations exist linked to geology. However indoor Rn has not been
surveyed representatively, thus the data cannot be used directly for risk assessment.
Instead it was decided to use geogenic radon as predictor in a probabilistic “transfer”
model soil-indoor Rn. Indoor data shall be used to “calibrate” the model. Known
geogenic Rn shall allow estimating the mean Rn risk in rooms and buildings with
given physical characteristic as regards Rn infiltration and accumulation.

2 Materials and Methods

Data are taken from the German GIS-based Rn database which includes indoor Rn
concentrations together with information on relevant house-related control parame-
ters (floor level, year of construction, etc.), soil radon, soil permeability and geology.
This study restricts to indoor Rn values of dwellings in ground floor levels of houses
with basement.
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Radon potential is defined RP := CS/(−10log(k)−10), based on a concept sug-
gested by [1]; CS = Rn concentration in soil air (kBq/m3), k = permeability (m2).
For geological classification a simplified geological map is used (after [2]).

Local probability that indoor Rn concentration C exceeds a threshold is derived
from geogenic Rn, quantified by the RP. As first step, a map of the RP is generated;
Second, a “transfer” model RP(x)→prob[C(x)>c] is established. Here the fact that
RP and C are not observed at the same locations poses a particular challenge. For
the transfer model a Gumbel copula model of the bivariate joint distribution of RP
and C is estimated.

3 Results

3.1 The predictor Map

Geology is considered as a categorical predictor. This was done as in [3] as a simpli-
fied regression kriging scheme, but with Gaussian sequential simulation instead, in
order to recover local conditional distributions. The raw values RPi are transformed
into Yi := ln(RPi / RPG), with RPG the mean RP over geological class G. Yi is
subjected to spatial modelling, which results in realizations of the simulation algo-
rithm. Each is back-transformed which yields the wanted conditional distributions
FRP(x)(rp). The resulting map is shown in Fig. 1. (Empty cells: no geological unit
covered by observations could be assigned to the centre of the cell.)

This method is simple but has drawbacks: (1) RPG are simple means which may be
biased because usually the observations are not uniformly (e.g. randomly) distributed
within each geological class, but may be clustered; (2) The variogram is estimated
for the variable Y, although no continuity of Y(x) or RP(x) across geological borders
can be anticipated.

3.2 Model of Bivariate Distribution

We want to estimate the local exceedance probability p(x) = prob[C(x)> c|RP(x)
= rp] which can be derived from the bivariate joint distribution FC,RP. Introducing
a copula �C,RP, we find 1−p = ∂�C,RP(FC(c),FRP(rp))/∂FRP(rp). The marginals FC
and FRP were determined by spatial de-clustering of the data.

As copula model a Gumbel type is chosen for several reasons. (1) It seems appro-
priate to strongly right-skew data, as typical for Rn related quantities. (2) Its para-
meter ϑ is related to Kendall τ by τ = 1−1/ϑ, and thus easy to estimate from data.
(3) It allows upper tail dependency, other than binormal copulae, which do not allow
conditional prediction of high extremes. Alternatives will be explored in the future.

Inserting the Gumbel copula leads to an analytic expression of p in dependence
of ϑ and the marginals FRP(rp) and FC(c) which can be evaluated once ϑ is known.
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Fig. 1 Estimated expectation of the radonpotential, based on 100 realizations of sequential Gaussian
simulation. Domain: territory of germany; axis units: m

3.3 Lagged Correlation

The lagged Kendall correlation τ(h) for lag h is computed for subsets of the data
allowing estimation of uncertainty. The wanted value for h = 0 is estimated by
extrapolation of τ(h) towards h = 0. (The method corresponds to estimating a nugget
from an empirical variogram.) For the Rn data we find τ(0) = 0.16 which is a rather
weak correlation; this reflects the fact the indoor Rn (C) is controlled also by other
factors than soil Rn (RP). The value was confirmed by correlating a collocated dataset
generated by estimating (ordinary kriging) RP at the locations of C.
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Fig. 2 Probability that indoor Rn concentration exceeds 100 Bq/m3, estimated from the radon
potential; expectation over realizations of the RP

3.4 The Rn Risk Map

The local (at unsampled x∗, a grid node) expectation of the wanted exceedance
probability p is calculated as

Espat[prob(C(x∗) > c)|RP(x∗)] =
∫

ω∈�
dWRP(x)(rp(ω, x∗))p(rp(ω, x∗)),

where WRP (x∗) denotes the local conditional distribution of predictor RP (result
of Sect. 3.1), rp(ω, x∗) its ω-th realization at x∗ and � the sample space of the
simulation, whose realizations are indexed by ω and p(rp) the exceedance probability
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as function of the RP (from the model Sect. 3.2). In practice this is simply the mean
over realizations. The resulting map is shown in Fig. 2. Similarly the local expectation
of C at x∗ can be calculated, involving a second integration over F(c|RP(x∗) =
rp(ω,x∗)), with F = 1−p, to be performed numerically.

Since the transform RP→ p(RP) is not linear, Espat[prob(C(x∗) > c)|RP(x∗)] �=
p(C(x∗) > c|Espat(RP)(x)] which would be easier to calculate, but contains a bias.

4 Discussion and Conclusions

The transfer model is global in that the same model for the joint distribution of
indoor and soil Rn is assumed over the domain (the territory of Germany). This
may be considered an analogue to second-order stationarity in RF theory. However
factors which control indoor Rn which have a regional trend may invalidate the strict
assumption and render the proposed solution an approximation.

Validation of the probabilities p(x) is not easy because only relatively few cells
with sufficient data are available. For those cells with higher mean RP (i.e. stronger
geogenic control) the empirical probabilities lie well within a 95 % confidence inter-
val (also recovered from the realizations, as above) of the estimated p(x).

The results turn out sensitive against choice of the marginal distributions FRP
and FC resulting from data de-clustering while sensitivity against the Gumbel ϑ is
relatively low.

“Complete” bivariate geostatistical modelling, e.g. by cokriging or co-simulation,
has not been performed because (1) a relatively simple (in comparison) transfer
model geogenic→ indoor Rn was requested, and (2) because co-variography has
been considered prohibitive. Simplifications such as the “Markov M1” assumption
suffer from non-collocated data.

Among issues to be addressed in future are inclusion of further predictors such as
geochemical quantities, extension to other categories of indoor Rn data and higher
spatial resolution.
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Quantitative Risk Management of Groundwater
Contamination by Nitrates Using Indicator
Geostatistics

Mario Chica-Olmo, Eulogio Pardo-Igúzquiza, Antonio Luque-Espinar, Víctor
Rodríguez-Galiano and Lucía Chica-Rivas

1 Introduction

Groundwater Daughter Directive of the European Union (Directive 2006/118/EC,
2006) recognizes that groundwater is a valuable natural resource, and as such should
be protected from deterioration and chemical pollution. Mainly because of agri-
cultural practices, and also demographic growth and economical development, the
amount of nitrogen released to the subsurface from fertilizers, sewage and animal
wastes has increased during the last decade. Due to the high solubility and mobility
of nitrate, it leaches through the soil and vadose zones to reach the water table. Thus
there is an important threat that groundwater resources will become contaminated
by nitrates. This is the case of the Vega de Granada aquifer in Southern Spain; a
detritic aquifer that has suffered from the increase of urbanization and intensive agri-
culture and cattle raising. Then it is important to assess the risk of contamination
of the aquifer by drawing maps of the content of nitrates in groundwater. However,
the groundwater is only accessible at a finite number of wells and furthermore no
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all those wells are monitored for nitrate content. As a result, the practical problem
becomes to draw maps of the probability of exceed given thresholds of nitrate con-
tent like the drinking water nitrate regulatory limit using that limited experimental
information only. This assessment of where and to what extent the groundwater is at
risk of contamination by nitrates will help the environmental managers to adopt the
appropriate strategies for aquifer protection [1, 2] . Geostatistics provides the right
tools of spatial statistics for estimating those probabilities taking into account the
spatial correlation of data. Particularly there are various forms of indicator kriging
(e.g. median indicator kriging, multiple indicator kriging and various forms of indi-
cator cokriging) that allow to estimate the probability of exceeding a threshold. In
Europe the normative establishes a limit value of 50 mg/l for drinking water and a
value of 37.5 mg/l for starting points for trend reversal initiatives.

2 Methodology

Giving a continuous variable like nitrate content Z(u) at a particular spatial location,
the indicator variable I (u) at the same location is defined for a given threshold zc as:

I (u) =
⎧
⎨

⎩

1 if Z(u) ≤ zc

0 otherwise
(1)

Given an experimental sample of n data of nitrate contents {Z(u1), Z(u2), . . . ,

Z(un)} by applying (1) it is possible to have the n data of indicators {I (u1),

I (u2), ..., I (un)}. At a location u0 where the nitrate content has not been monitored,
the nitrate content Z(u0) is obviously unknown. For risk evaluation and the design
of managements strategies, more relevant than estimating the value of Z(u0), it is to
estimate the probability of exceeding the threshold of interest zc,which can be eval-
uated by estimating the corresponding indicator value I ∗(u0) that can be interpreted
as an estimate of the probability P(Z(u0) ≤ zc} and thus the probability of excess
being 1 − I ∗(u0) and where the star as superscript means estimated value. The value
I ∗(u0) may be obtained by using different kriging approaches like: median indicator
kriging (Me-IK), multiple indicator kriging (Mul-IK), median indicator cokriging
(Me-ICoK) and linear coregionalization model indicator cokriging (LCM-ICoK).
Indicator kriging uses only the threshold of interest zc while indicator cokriging
uses several thresholds (10, 37.5, 50, 75 and 100 ppm in our case study) including
the one of interest. Median indicator kriging uses the variogram estimated for the
median threshold as the variogram for any threshold appropriately scaled for vari-
ance (variogram sill) while LCM-ICoK uses the linear model of coregionalization,
[3].
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3 Results

There are 198 monitoring wells homogeneously distributed across the Vega de
Granada aquifer where nitrate was measured during the year 2003. This is a detritic
aquifer in Southern Spain [4] which is highly nitrate vulnerable zone (NVZ) because
of a very important agricultural land use which implies diffuse contamination. Oth-
ers sources of nitrate are related to a high density of population and to industrial
activities. The indicator maps for thresholds of 10, 37.5, 50, 75 and 100 ppm where
estimated by the four kriging methods and the results for the threshold of 37.5 are
shown in Fig. 1. It may be seen how Mul-IK gives the smoother map of probabilities.
Me-IK and Me-CoIK give similar maps and with a high contrast for high probabil-
ities. Finally LCM-CoIK gives a high contrast in the low probabilities. In order to
compare the methods quantitatively, a validation procedure has been performed in
which ten data are taken away from the experimental data and the indicators are esti-
mated are those locations. The validation procedure is repeated 10 times. The four
methods were ranked according to their performance (mean squared error, MSE)
and a scoring of 3, 2, 1 and 0 were given to each method depending on its ranking
in MSE. The total score was 60 for Me-IK, 100 for Mul-IK, 50 for Me-CoIK and 87
for LCM-CoIK. Thus Mul-IK is the best. The methods that use the median indicator
give the worse results, with Me-CoIK being the worse. In fact observing the map of

Fig. 1 Indicator probability for a threshold of 37.5 ppm of nitrate
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Fig. 1b, it is possible to see the clear spatial anisotropy of nitrates in groundwater
with larger continuity along the direction of the groundwater flow and with a good
correlation with the permeability of the soil.

4 Conclusions

Different kriging approaches are available to estimate the probability that the con-
tent of nitrate at an unsampled location will exceed a threshold of interest. Using
a validation technique it has been possible to rank the methods according to their
performance, Mul-IK has given the best results and the map produced by Mul-IK
is more easily interpretable. The second best method is LCM-CoIK which from a
theoretical point of view should be the best because it takes information from several
thresholds. However, LCM-CoIK has almost double order violations than Mul-IK
and further research is needed in order to have a conclusive proof.
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Geologically Constrained Groundwater
Monitoring Network Optimization in Halle
(Germany): A Case Study with Saltwater
Intrusion Along a Fault System

Thomas Horschig, Ronny Lähne, Michael Falkenhagen and Wolfgang Gossel

1 Introduction

The foundation of Halle in 806 A.D. was based on geological phenomena, i.e. brine
springs. The study region of Halle (Saale) covers 135 km2 in the urban region. A major
fault, the Halle-fault, separates two large-scale tectonic units: the Merseburg-block
and the Halle-Wittenberg-block. Both blocks have a completely different structure
belonging to different regional tectonic blocks. The Merseburg-block is built of units
from the Zechstein (Upper Permian), the Bunter (Lower Triassic) and the Muschel-
kalk (Middle Triassic). The Halle-Wittenberg-block is built of permo-carbon sed-
iments and vulcanits [3]. In the Cretaceous around the area of the halle-fault the
earth crust began to fracture. The Halle-Wittenberg-Block was uplifted several hun-
dred meters and therefore the Halle-fault enables the upcoming of high mineralized
deep water. The improvement of groundwater monitoring in the urban area of Halle
according to higher ranked structures is the content of this work.

2 Methods

The spatial optimization in the present work has been done using Geostatistical
Temporal Spatial algorithm (GTS) [1] and the MSN Spatial Sampling Optimization
software [4]. The MSN Spatial Sampling Optimization software can be used to
increase the accuracy of a long term monitoring network, determining a number
of points that can be added to the existing grid. In contrast GTS can be used to
determine redundant wells while maintaining an appropriate level of accuracy as
well as determining new sites for monitoring wells. The data set is part of the long
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time monitoring network of Halle (Saale). In the study area 282 wells were observed
in different temporal periods while measuring different parameter. For the spatial
optimization the electric conductivity was chosen to be the observed parameter.

2.1 Spatial Optimization with GTS

To optimize an existing monitoring network means to sustain the information and
data quality, maybe improve the quality, from the monitoring network but to reduce
the cost and effort. The aim is a balance between cost saving and a loss of accuracy.
GTS can be used for long time monitoring optimization (LTMO). It works with a
decision-logic framework arriving an optimal design by using known semi-objective
statistical and geostatistical techniques in a novel manner [1]. Those techniques are
i.e Kriging and the Locally Weighted Quadratic Regression (LWQR).

2.2 Spatial Optimization with MSN

Another optimization method bases on the Mean of Surface with Nonhomogenity
(MSN) theory [4]. This method combines the qualities of spatial stratification and
Kriging Variance. The MSN-method decomposes a nonhomogeneous surface into
smaller subareas that are locally homogeneous in the mean and calculates the spa-
tial mean of the surface and its variance afterwards. Hu and Wang [2] developed a
software package for spatial sampling optimization using the MSN theory. It can
determine if a monitoring network is set up at the optimum or if additional moni-
toring wells are needed. To accelerate the optimization progress a Monte Carlo and
Particle Swarm Optimization algorithm is implemented. The software package is
freely available to download.

3 Application of the Methods

3.1 MSN: Spatial Sampling Optimization Software (MSN-SSO)

The dataset consists of 282 wells that monitored the electric conductivity. The Mean
is 2392 ± 177.40 with α = 0.05 and a standard error of the mean of 90.52. The
software estimates the adding points for an optimal sampling design. The MSN-SSO
software suggests adding two new monitoring wells to the network. The result is
mapped in Fig. 1.
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Fig. 1 LTMO Optimization result of study area
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3.2 GTS: Geostatistical Temporal Spatial Optimization

While 282 wells were monitored the optimization result suggests that the monitoring
of only 16 wells is essential. This conclusion results from only one variable, the
electric conductivity. Choosing more variables for the optimization will decrease the
number of redundant wells. Like the MSN-SSO software GTS suggests adding two
new monitoring wells to the network.

4 Conclusion

Both LTMO software tools suggested locations for new monitoring wells. The sug-
gested new monitoring wells of the MSN-SSO as well as one new monitoring well
suggested by GTS are in the south of the main fault system at a west–east-line. The
other suggested new monitoring well of GTS is in the southeast of the study area.
That indicates similarities in the used algorithms as well as significant differences.
The wider spectrum of optimization possibilities makes GTS to the more complete
optimization tool. [4] announced to develop a further version that will include more
functions like optimally deleting. This will make another comparison more balanced.
Of course the results of the LTMO are only suggestions and would have to be proved
by experts that are familiar with the study area.
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Informative Trace-Element Features
of Cassiterite from Tin Mineralized Zones
and Breccias in the Russian Far East:
Application of Logic-Informational Analysis

Nina Gorelikova, Irina Chizhova and Filipp Balashov

1 Introduction

An important informative feature of ore minerals is the association of their trace
elements (Be, Ta, Nb, In, Ga, Sc, W, Fe, Mn, Ti, and Cr) that depends on the geo-
logical situation, the genetic type of the deposit, and the productivity of the mineral
assemblages. The statistical analysis of trace elements in cassiterite by techniques
of multivariate statistics testifies that the trace-element composition of cassiterite is
controlled by such factors as the regional metallogeny, the character of magmatism,
the lithology of the host rocks, and the genetic type of the deposits [1]. The analysis of
geochemical associations of minerals in magmatic rocks and ores makes it possible
to solve a broad range of geological problems.

2 Geology of the Vysokogorskoe Deposit and Associations
of Trace Elements in Its Minerals

The Vysokogorskoe tin deposit in accretionary folded system of the Sikhote Alin
was produced within a broad time span from the Cretaceous through Paleogene in
relation to multiple alternating environments of Andean-type suprasubduction and
a Californian-type transform continental margin [1]. Along with mineralized zones
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and veins, tin is concentrated in economic dyke-shaped orebodies of fluid-magmatic
breccias. These are extended veins and mineralized breccia zones. The veins are
replaced by mineralized breccias at a depth of ∼500 m. Our investigation of trace
elements in cassiterite from the Vysokogorskoe deposit was conducted to clarify their
distribution in the ore veins and breccias and to use these elements as indicators of
ore-forming processes. No consensus is reached so far on the distribution character
of trace elements in cassiterite. Our study was aimed at elucidating the distribution
character of trace elements in the mineral depending on the type and composition of
the ore zones and at identifying indicative elements that can characterize similarities
of and differences between the ore zones and fluid-magmatic breccias and eventually
provide insight into the specifics of the mineral-forming processes.

3 Mathematical Processing

In order to reveal trace-element differences inherent in cassiterite from the ore veins
and breccias, we applied logical-information analysis, which is underlain by a spe-
cialized algorithm of the pattern recognition method based on studying variation
sequences of objects and the similarity concept. In its core, this method is underlain
by distinguishing various groups of datasets with the aim of describing objects to
be tested and to estimate their significance and similarity. The identification of the
informative indicators is based on the principle of the common features of objects
belonging to the same class. To distinguish indicators that are informative for describ-
ing class Ak and to separate it from other classes, we use a function based on the
probability that indicator j is present at the sites of class Ak and is not present at the
sites of any other class, and the probability that indicator j is not present at the sites
of class Ak but is present at the sites of other classes.

Specialized functions are used to develop a decision rule for site identification:
a site belongs to a class that has the maximum value of the function. As a result,
we have a relation between coefficients for any examined site that characterizes the
degree of similarity of this site with other classes.

Our database comprises eleven-element compositions of 37 cassiterite samples
from ore veins and fluid-magmatic breccias collected from levels 179 m up to 435 m.
The parameters used herein are In, Sc, W, Nb, V, Cr, Be, Ti, Fe, and Mn.

4 Results of Mathematical Processing

Our study was focused on the following two major tasks: (1) to conduct comparative
analysis of the mineralized zones in order to reveal their similarities and distinctions;
(2) to identify representative distinctive signs of the ore veins and ore breccias. In
solving the former task, we revealed ranges of indicators of the primary meanings of
signs (elements) that characterize every class (zone) and are based on distinguishing
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the intervals and informative weights of signs; we conducted the recognition of the
studied objects (Fig. 1). Every mineralized zone shows unique features of its ore-
forming processes, and all of the zones compose a homogeneous family. The most
informative signs for the recognition are W, Fe, Mn, and V.

When solving the second task, we found signs characterizing ore veins (class I)
and fluid-magmatic breccias (class II). Intervals-indicators and informative weights
are established for every class, and two classes are then identified on this ground.
The informative signs for the recognition of the two classes are W, Zr, Fe, and also
the content of chlorite in the ores (Fig. 2).

5 Conclusions

Our comparative mathematical analysis revealed significant differences between the
studied classes of the database, with these differences manifested in specific interval-
indicators of elements (signs). The established intervals-indicators and informative
weights of signs permitted us to conduct the identification of the objects. The dif-
ferences in the cassiterite composition from ore veins and breccias testify that the
mineral deposition parameters (T◦, redox-potential, pH and Eh, etc.) were different.
This method can be applied to assay ore veins and conduct predictive metallogenic
analysis of unexplored areas.
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A Spatial statistical Approach for Sedimentary
Gold Exploration: A Portuguese Case Study

Pierre Goovaerts, Teresa Albuquerque and Margarida Antunes

1 Introduction

In Portugal, ore extraction and processing has been an important economic activity
and mines were actively developed until the early 1970s. The recent spike in gold
prices and technologic development make extraction and processing more effective,
leading to a regain interest in abandoned gold mining areas with a few experimental
explorations in Alentejo, southern Portugal.

Geochemical cartography is a goal in mining prospection since the late 1920’s.
Recent development of analytical methods and computational resources facilitates
the implementation of geochemical mapping and its use in natural resources manage-
ment [1]. Geochemical modeling in environmental applications is mostly oriented
to the recognition and quantification of anthropogenic impacts. An accurate charac-
terization of the natural background values is an essential and unavoidable step to
evaluate the influence of mining activities on the environment.

The aim of this manuscript is the development and application of a spatial statisti-
cal approach for sedimentary gold exploration in an old abandoned mining region—
Monfortinho region. The analysis focuses on heavy metals (Fe, Ba, Cu, Cr, B, Zn,
Sb, Pb, Sn, Ni, Mn, Be, Mo, Co, Y, Cd, Ag, V, As, W, Nb and U) and is based on a
point support dataset of 376 stream sediment samples.
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2 Methodology

2.1 Sampling

Around mine tailing sites, the mineralogical content of the material exploited consists
of inert materials from the gangue constituent’s mineralization or mineral constituents
of rocks [2]. The presence of anomalies in some chemical elements in the surround-
ing areas of tailings or mineralized areas indicate the action of dominant wind and
transport of fine dust from the superficial layers of the heap [3]. The stream sediments
resulting from the alteration of rocks by various physical and chemical processes are
mobilized, transported and deposited along the water lines.

The geochemical composition of stream sediments and their spatial distribution
in the study area, were characterized using a total of 376 representative samples,
collected in a narrow region ranging from 50 m upstream to 100 m downstream the
streams’ confluences [4] (Fig. 1). Almost all water lines correspond to open valleys, so
our point-support stream sediments samples correspond to incipient and not evolved
soils. All the samples were collected on schist and were prepared through reduction,
drying and grinding. Total concentration of As, B, Cu, Ba, Pb, Zn, Ni, Sb, Mn, Be,
Mo, V, Co, Y, Cd, Nb, Fe, Cr, Ag, Au, W and U were analyzed by ICP-AES, with a
precision of 20 ppm for As and 10 ppm for the other elements [4]. Tin and W were
analyzed by X-ray fluorescence spectrometry and plasma emission with a precision
of 10 ppm [4].

Gold was determined only for the 12 samples collected inside the old mine area.
Its value was predicted at other locations using linear regression (R2 = 0.46) and four

Fig. 1 Location map of sediment samples. The size of yellow dots is proportional to the gold
concentration
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metals (Fe, As, Mn and W) which are known to be mostly associated with the local
gold’s paragenesis. Fig. 1 shows the location of samples with the gold content that
was either measured directly or estimated by regression. In the subsequent analysis,
these values were assumed to be known with certainty. Indeed, the main objective
of the present study is the visualization and delineation of potential zones of low
and high values for future prospections instead of the accurate estimation of gold
content.

2.2 Geostatistical Methodology

The delineation of zones of high and low contents in gold was conducted through
the application of local cluster analysis (LCA) [5]. The basic idea is to compute at
each grid node a local indicator of spatial autocorrelation (LISA) and test whether
this statistic is significantly positive, indicating the existence of an aggregate of grid
nodes with similar gold content. Since the data are not gridded, the first step is the
derivation of gold content at all grid nodes. Kriging is not recommended for this step
because its smoothing effect will cause the detection of artificial clusters. Following
Goovaerts [6], gold content was first simulated using sequential Gaussian simulation
and each of the 100 realizations underwent a LCA to identify each grid node that
belongs to a cluster of small gold content (low value surrounded by low values) or a
cluster of large gold content (high value surrounded by high values). The one hundred
classified maps were then processed to derive the most likely classification of each
node and the associated likelihood (i.e. frequency of occurrence of that class). This
approach has the advantage of incorporating the uncertainty attached to the gold map
through the local cluster analysis.

3 Results and Conclusions

Figure 2b shows the average of 100 simulated maps of gold content which indicates
higher values along the Erges River and downstream the abandoned gold mines. Each

Fig. 2 a Average simulated map of gold content; b Likelihood map for the classification into
clusters of low or high values; c Classes with the highest frequency of occurrence
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simulated map underwent a LCA, leading to the allocation of some grid nodes to
clusters of low gold content (Low-low) or high gold content (High-high), whereas the
LISA statistic was not significantly different from zero at other grid nodes. Figure 2b
shows the frequency of the most likely class that is displayed in Fig. 2c. Lower
frequencies indicate zones of changes (i.e. boundaries) or transitions between classes
of values. The location of hot and cold spots shows a clear Au enrichment along the
Erges River downstream the old abandoned sedimentary mineralization.

Acknowledgments We are grateful to Instituto Geológico e Mineiro (Portugal) for the data on
sediments.

References

1. Antunes, I. M. H. R., & Albuquerque, M. T. D. (2013). Using indicator kriging for the evaluation
of arsenic potential contamination in an abandoned mining area (Portugal). Science of the Total
Environment, 442, 545–552.

2. Maroto, A. G., Navarrete, J., & Jimenez, R. A. (1997). Concentraciones de metales pesados
en la vegetación autoctona desarrollada sobre los suelos del entorno de una mina abandonada.
Boletín Geologico y Minero, 108–1, 67–74.

3. Santos Oliveira, J. M., Pedrosa, M. Y., Canto Machado, M. J., & Rochas Silva, J. (1998). Impacte
ambiental provocado pela actividade mineira. Caracterização da situação junto da Mina de Jales,
avaliação dos riscos e medidas de reabilitação. Actas do V Cong. Nac. Geol. 84/2, E74–E77.

4. Instituto Geológico e Mineiro (1988). Reports from a Prospecting project for tungsten, tin and
associated minerals from Góis-Segura. Metalic Mineral Prospecting Section. Porto, Portugal
(pp. 10).

5. Anselin, L. (1995). Local indicators of spatial association-LISA. Geographical Analysis, 27,
93–115.

6. Goovaerts, P. (2006). Geostatistical analysis of disease data: visualization and propagation of
spatial uncertainty in cancer mortality risk using Poisson kriging and p-field simulation. Inter-
national Journal of Health Geographics, 5, 7.



Coalbed Methane Production Analysis
and Filter Simulation for Quantifying
Gas Drainage from Coal Seams

C. Özgen Karacan and Ricardo A. Olea

1 Introduction

Coal-seam degasification, or coalbed methane (CBM) production, prior to coal
mining is an indispensable practice for reducing gas-in-place (GIP) in the coal for
controlling methane emissions during underground mining, for controlling green-
house gas emissions from coal seams and also for using produced methane as an
unconventional energy source [1]. In order to be able to take full advantage of the
benefits of CBM production, however, properties of coal, heterogeneities in the field
and the coal-seam reservoir properties should be well understood.

Gas and water production rate analysis of CBM wells help determining dynamic
reservoir properties of the coal seam, which change during degasification, at a given
well location. Therefore, the ability to determine coal reservoir properties at spatial
well locations is important for predicting high-flow-capacity areas of the reservoir and
for estimating GIP and its change between particular production periods. Moreover,
geostatistics can be used to determine the values of GIP at intervening spaces between
these well locations for evaluating gas drainage efficiency spatially, and for benefits
to miner safety, greenhouse gas reduction and energy production.

This paper presents an application that combine filter simulation with time-varied
reservoir properties obtained from history matching of gas and water production from
86 degasification wells in a 12,900-acre field in Alabama. GIP in the Jagger seam
of the Mary Lee coal group was simulated between 1987 (initial time) and 2011 to
estimate degasification efficiency in this coal and its uncertainty.
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2 Technical Work and Results

This work has three main phases; (1) Production history matching of gas and water
rates from 86 vertical CBM wells to determine time-dependent reservoir properties,
(2) Calculation of volumetric GIP at spatial well locations, and (3) Modeling of
GIP in the coal seam using filter simulation technique. Production history matching
analyses were completed using Fekete’s F.A.S.T. CBMTM software version 4.7. The
data obtained from history-matching results were used to calculate volumetric GIP
values and CBM production at each well location [2]. For geostatistical simulations
of this data, Stanford Geostatistical Modeling Software (SGeMS) [3] implementation
of the filter simulation, FILTERSIM, was employed [4, 5].

Methane GIP for the Jagger seam was calculated using reservoir data obtained
from production history matching. The GIP values at wellbore grids (0.92 acre each)
were calculated for grids corresponding to each of the 86 degasification wells. Table 1
provides basic statistics of these data (in million cubic feet (MMscf) per 0.92 acre).
The values given in Table 1 show that initial mean GIP of Jagger seam, at borehole
locations, was 1.29 MMscf, which decreased to 0.81 MMscf in 2011, as a result of
degasification in the study area between start of degasification and 2011.

The univariate statistical GIP data given in Table 1 refer to the potential amount
of methane capacity of Jagger seam at a given date from a 0.92 acre area, if GIP is
assumed to be constant throughout the study area. Although point-wise data and eval-
uation of GIP can be helpful, this approach is a simple average and does not account
for spatial differences between data locations. Therefore, geostatistical simulation
was used to assess spatial properties of CBM production efficiency.

The spatial data locations for FILTERSIM are shown in Fig. 1. For modeling, 86
data points were used in simulation grids that had 115 and122 columns and rows,
respectively. Each grid cell was 200 ft in x- and y-directions to give a grid area of
0.92 acre. Thus, each simulation grid had 14,030 grid cells and represented a total
area of 12,900 acres.

FILTERSIM aims to capture patterns or structures from training images (TI)
and condition them to local data. There are no strict rules regarding generation of
TIs. In this work, we aimed for statistical and spatial representation of data and
the presence of geological discontinuities in the TIs. For this purpose, first order
Voronoi decomposition (nearest neighbor) was employed by placing faults into grids
as discontinuities based on their spatial locations. Figure 1 shows initial GIP and its
TI generated for the Jagger seam. The TIs for each case were further examined using

Table 1 Basic statistics of GIP values calculated at 86 wellbore locations for Jagger seam.

Time Min. Max. Mean Std. D. Q5 Q50 Q95

Initial 0.821 1.688 1.292 0.200 0.979 1.284 1.635
2011 0.256 1.589 0.810 0.274 0.387 0.787 1.312

Q values are at the specific quantiles of the distribution
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Fig. 1 Initial GIP values of Jagger seam calculated for the CBM well locations and the TI repre-
senting this data. Black lines show the faults in the area

Q–Q plots and semivariograms for statistical and spatial representativeness before
using them in FILTERSIM.

The FILTERSIM simulations were conditioned to hard data only by optimizing
simulation parameters and by checking the Q50 realizations against TIs. These plots
were also compared with the Q–Q plots of hard data and TI and their statistics.
Eventually, 100 realizations were generated for quantifying initial and the 2011 GIP
values of the Jagger seam in the study area. Figure 2 shows the Q50 realizations of
GIP for these two periods, and also GIP histograms from all realizations.

Simulation results and their distribution indicate that Jagger seam had an initial
methane quantity between 16 and 18 Bscf. Due to degasification activities in the area,
methane quantity in the coal seam decreased by∼6 Bscf to values between 10.5 and
12 Bscf (∼35 % decrease) in 2011. Furthermore, realizations spatially show where
the most efficient degasification was achieved. Based on Q50 realization shown in
Fig. 2, most of the methane was produced from Northern margin of the area, as well
as regions in the northeast outside of the faults.

Fig. 2 Q50 (50 % quantile) realizations of initial and 2011 GIPs, as well as GIP histograms from
all 100 realizations. Red lines show the faults in the area
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3 Remarks

In this paper, an integrated study of CBM production history matching and geosta-
tistical simulation was presented to estimate GIP quantity and production efficiency
from coal seams. An example was given for the Jagger seam of Alabama by using
filter simulation as the geostatistical method. It was shown that statistically and spa-
tially representative TIs were able to reproduce both the patterns and the data for
a given period in degasification history. The data obtained from these simulations
can be used to estimate GIP, its change in time, and the uncertainty associated with
predictions.
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The Relationship Between Skin and Apparent
Wellbore Radius in Fractal Drainage Areas

Tom Aage Jelmert

Nomenclature

B : Fluid volume factor
kw : Permeability at the reference length

p : Pressure
q : Production rate
μ : Viscocity
D : Fractal dimension
h : Thickness

p′w : Ideal pressure
S : Skin factor
θ : Connectivity index

1 Theory

Barker [1] proposed a generalized radial flow model for flow in a sparse fracture
network. Chang and Yortsos [2] proposed an alternative model based on the additional
assumption of fractal geometry. We use the fractal model. Predictions based on this
model give a single answer, but the model is not deterministic. Many realizations
are possible. A prediction may be regarded as an average or the expected value for
known fractal dimension and conductivity index.
Consider steady state flow in a fractal drainage area with Euclidian dimension d = 2,
which corresponds to cylindrical geometry. Then, the flow coefficient [2] is:

β = D− θ − 1. (1)
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The permeability- and porosity functions are: k (r) = kwrβ−1
D and ϕ (r) = ϕwr D−2

D .
A homogeneous reservoir is characterized by β = 1, D = 2 and θ = 0. The radial
flow equation for a fractal reservoir, Jelmert [3], is:

p(r) = p′w +
qμB

2πkwh

(
1

1− β
(

r1−β
D − 1

))
. (2)

The model has extensions to high velocity flow [4].
The value β = 1is not included in Eq. (2). This case must be solved for separately.

Then, D − θ = 2. Use of L’Hospital’s rule leads to the conventional (logarithmic)
result, see Eq. (5). There is a continuous transition over the singularity. The limit is
akin to the homogenous reservoir solution. If in addition, θ = 0, then the limiting
behavior is the homogeneous reservoir solution.

The apparent wellbore radius may be thought about as the fictitious wellbore
radius which makes the ideal wellbore pressure (without skin) equal to that of an
equivalent actual well with skin, pw. See Fig. 1.
The left and right hand triangles have the same slope, m, hence:

�pS

1− r1−β
aD

= �pe

r1−β
eD − 1

. (3)

Radial distances ra and re are the apparent wellbore radius and distance to the external
boundary respectively. After a short calculation, we obtain:

S = − 1

1− β
(

r1−β
aD − 1

)
. (4)

The dimensionless distance is: rD = r/rw. Note that ra = rw for S = 0
The traditional logarithmic relationship is included in Eq. (4) as limiting behavior.

Fig. 1 Pressure versus radial
distance profile
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Fig. 2 Apparent radius versus
the skin factor

Sβ→1 = − lim
β→1

(
1

1− β
(

r1−β
a D − 1

))
= − ln raD. (5)

2 Discussion

The skin factor, which may be obtained by well testing, has influence on the produc-
tivity of wells in fractal drainage areas [3, 5]. For a negative skin factor, the wellbore
pressure, pw, is higher than on the reservoir side of the skin, p′w. Such behavior is not
a natural phenomenon. It is problematic to include a negative skin directly into an
analytical well test simulator. Use of an apparent wellbore radius avoids this problem.

Mathematical model equations for well test interpretation can be solved for a
limited number of unknowns. These depend on many variables. Hence, information
or estimates from other sources are necessary. A numerical estimate can be plugged
into the equation or used as check on a value obtained by well test interpretation.

The reference length for the permeability, kw, is arbitrary. We recommend the
wellbore radius, rw. Then, it may be possible to estimate kw by core analysis and
well logging.

There is a theoretical lower limit for the skin factor. The apparent wellbore radius
cannot by larger than the external radius, re. Then:

Smin = − 1

1− β
(

r1−β
eD − 1

)
. (6)
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The skin factor may assume large positive values when β ≥ 1. There is a theo-
retical maximum value for β < 1, which is given by the condition ra ≥ 0, which
yields:

Smax = − 1

1− β . (7)

3 Conclusions

The traditional (logarithmic) relationship between the apparent wellbore radius and
skin is included in the generalized equation as limiting behavior.

The relationship between the dimensionless apparent wellbore radius and skin
depends on the flow coefficient, β.

The traditional (logarithmic) pressure profile is included in the generalized equa-
tion as limiting behavior.

A fractal drainage area gives rise to pressure behavior like a homogeneous reser-
voir when D− θ = 2.

The reference length, rw is arbitrary. We recommend use of the wellbore radius
since the rock properties may be estimated from core analysis and logs.

The generalized apparent wellbore radius may be used to generate well test type
curves for negative values of the skin factor.
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Parameterization of Channelized Training
Images: A Novel Approach for Multiple-Point
Simulations of Fluvial Reservoirs

Mohamed M. Fadlelmula, Serhat Akin and Sebnem Duzgun

1 Introduction

The scarcity of geological subsurface information is one of the most significant
sources of uncertainty in a reservoir modeling process. Thus, stochastic simulation
techniques are developed to systematically take such kind of uncertainty into account.
These techniques generate multiple equiprobable reservoir models while maintain-
ing the geological structure. The traditional two-point based geostatistical modeling
techniques, such as the sequential indicator simulation, fail to capture complex geo-
logical structures [1, 2]. In contrast, the multiple-point simulations (MPS) technique,
which is based on a training image (TI) concept, is proven to be a powerful tech-
nique in modeling such complex structures [3]. The simulation carried out by the
MPS technique is taking the patterns from the training image and anchoring them to
the actual hard data [4].

Selection of the right TI that represents the target spatial phenomenon is crucial
for an effective use of MPS technique [5], but it involves uncertainty. In their works
Boisvert et al. [5] and Arslan [6] addressed this type of uncertainty. However, the
construction of TIs involves uncertainty too. Some of the parameters that are respon-
sible for such type of uncertainty are investigated by Strebelle [1] where he studied
the sensitivity of MPS to the size of the TI, width of the structure displayed by the
TI, and the rotation of the TI. Nevertheless, the literature addressing the issue of
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TI construction and the uncertainty associated is very limited. Thus, this paper was
developed with the aim of analyzing the impact of such uncertainty on simulated
reservoir models.

2 Methodology

To analyze the impact of TI uncertainty on reservoir modeling, a synthetic fluvial
channel reservoir model (original reservoir) is generated utilizing the dataset of Stan-
ford VI project of Remy et al. [7]. The modeling is performed with a proposed MPS
methodology. This methodology is summarized as follows:

1. Generate a reservoir facies realization using the facies hard data and MPS algo-
rithm; the Single Normal Equation Simulation (SNESIM) of Stanford Geosta-
tistical Modeling Software (SGeMS)

2. Calculate the experimental variogram (in 3D) of the generated realization
3. Fit a variogram model to the experimental variogram
4. Generate the corresponding porosity file (in 3D) using the Sequential Gaussian

Simulation (SGSIM) of SGeMS
5. Extract the porosity data out of SGeMS
6. Upscale the data
7. Calculate the corresponding permeability values using defined logarithmic rela-

tions
8. Construct a reservoir model using the Builder tool of CMG software then input

the porosity and permeability data calculated into the model
9. Run the model by CMG’s black oil simulator IMEX

10. Extract OOIP and ROIP values.

After modeling the original reservoir, the channel structure of the original TI
is represented mathematically in two dimensions (2D) with a Sine function. The
parameters of the sine function (i.e. amplitude and phase) are modified to generate
different 2D TIs. Next, the number of channels in each generated TI is modified to
generate more 2D TIs. Then, the third dimension (Z-direction) slices are added to
generate three dimensional TIs of the 2D ones. Note that, although the Z-direction
slice is a gridding parameter it also controls the size of the structure (i.e. channel)
since the added slices are identical to the first one (i.e. 2D TI). As a result, a TI
becomes a function of four parameters, namely, the number of channels, the number
of waves in each channel which is controlled by the phase value, the amplitude value
of waves, and the number of Z-direction slices.

In this study 368 TIs are generated. The values of parameters considered in the
generation of these TIs are summarized in Table 1. The generated TIs are then used
to simulate the original reservoir model utilizing the proposed MPS methodology.
Next, the uncertainty impact of the TI parameters on the cumulative oil production,
the original and recoverable oil in place (OOIP and ROIP) are analyzed.



Parameterization of Channelized Training Images 559

Table 1 The values of the TI’s parameters that are used in the generation of the 368 TIs

Number of
channels

Number of
waves

Number of Z slices Amplitude level
(value in pixels)

Number of TIs
generated

1, 2, and 3 1 1, 2, …, 7, and 8 High (75) 3×1×8 = 24
1 and 2 2 1, 2, …, 7, and 8 High (75) 2×1×8 = 16
1 and 2 3 1, 2, …, 7, and 8 High (75) 2×1×8 = 16
1, 2, 3, 4, and 5 1, 2, and 3 1, 2, …, 7, and 8 Medium (57) 5×3×8 = 120
1, 2, …, 7, and 8 1, 2, and 3 1, 2, …, 7, and 8 Low (30) 8×3×8 = 192

3 Results and Discussions

Based on the analysis of the parameters’ impact on the cumulative oil production it
is found that TIs having less than 5 Z-direction slices (Fig. 1), three channels, and
two waves in each channel, produce erroneous models. Thus, these values are set
as thresholds for accurate modeling practices. In addition, the results show that as
the number of channels and waves in a TI increase the uncertainty in the cumulative
oil production of the simulated reservoir decreases. For example, the uncertainty
range decreases from 435 MSTB to 70 MSTB when the number of channels having
medium-amplitude waves increases from 1 to 3 in an 8 Z slices TI. However, the
increase in the number of Z slices from 5 to 8 and in the amplitude level have no
noticeable effect on the uncertainty of the reservoir. So, it is unnecessary to generate
TIs with more than 5 Z slices when modeling 3D reservoirs. Furthermore, it is
noticed that the number of channels in a TI, the amplitude level of their waves, and
the number of the Z slices in the TI have no defined effect on the OOIP and ROIP.
In other words, their effect is random. However, the amount of the OOIP and ROIP
are directly proportional to the number of waves in the channels of the TI.

Based on aforementioned observations thresholds are defined as 5 Z-direction
slices, three channels and two medium or low amplitudes waves in each channel. To
verify that the defined thresholds provide the most representative reservoir models
the uncertainty range of the OOIP prediction is considered. The OOIP values of the
reservoirs modeled using all the generated TIs are plotted and their uncertainty range
is found to be between +1.549 and 0.345 %. However, this range is reduced to 0.382
– 0.104 % when only the OOIP of the reservoirs developed with TI that meet the
defined thresholds are plotted.
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Fig. 1 Comparison of the cumulative oil productions between the original reservoir and reservoirs
generated with TIs having different numbers of Z-direction slices (i.e. 1Z, 2Z, 3Z …, 8Z). The TIs
used are those having three channels, each with a medium amplitude wave. Where, (m): medium
amplitude, (1): one wave, (3): three channels and (1Z): one Z slice
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Mathematical and Physical Models
for the Estimation of Wind-Wave Power
Potential in the Eastern Mediterranean Sea

George Galanis, George Emmanouil, Christina Kalogeri
and George Kallos

1 Introduction

In the last decades, the estimation and monitoring of renewable energy resources are
in the front line of interest of the scientific and technical community worldwide since
a variety of important issues that surpass the borders of pure scientific research are
affected. In the present work a high resolution study for the wind and wave energy
potential is presented for the area of Eastern Mediterranean Sea focusing especially
in the Levantine Basin and the Aegean Sea area. An integrated atmospheric-wave
modeling system is utilized and ten year (2001–2010) simulation runs are performed.
Observations from different sources (meteorological stations, buoys and satellites)
are assimilated into the models for improving the initial conditions used [3, 6]. The
relevant outcomes are analyzed by means of a complete statistical system employ-
ing conventional statistical measures, probability distribution fitting tools, as well
as postprocessing modules based on Kalman filters for the elimination of possible
systematic biases. For the latter, new advances obtained from the Information Geom-
etry framework are utilized providing new ideas on the way that the discrepancies
between model and observed data should be measured.
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2 The Modeling Systems Employed

Two state of the art atmospheric models are employed performing simulations for
a ten year period (2001–2010): The Skiron/Eta regional forecasting system [5] and
the open source atmospheric model WRF [9]. The former has been developed at the
University of Athens by the Atmospheric Modeling and Weather Forecasting Group.
It is based on the Eta/NCEP model and consists of a full physics non-hydrostatic
model with sophisticated convective, turbulence and surface energy budget scheme.
The horizontal resolution used for the present study was 0.05 x 0.05 degrees covering
the whole Mediterranean region while 45 vertical levels up to 50 hPa have been uti-
lized. Initial and boundary conditions are obtained from a high-resolution reanalysis
(15 x 15 Km). On the other hand, the WRF model has been a collaborative part-
nership between NCAR, NOAA-NCEP, US military laboratories and Universities.
It is a numerical weather prediction system suitable for a broad spectrum of appli-
cations from meters to thousands of kilometers. For the present study a horizontal
resolution 0.02 x 0.02 degrees over the area of interest have been applied with 35
vertical levels up to 50 hPa. Initial and boundary conditions are obtained from the
GFS high-resolution reanalysis (15 x 15 Km).

The wave parameters that are necessary for the estimation of wave power monitor-
ing are simulated by the wave model WAM [7]. This is a third generation wave system
that solves the wave transport equation with-out any presumptions on the shape of the
2d (frequencies/angular) wave spectrum. For the present study, the ECMWF version,
CY33R1 [2], has been adopted. The horizontal resolution used for the wave model’s
simulations were 1/60 x 1/60 degrees, while the wave spectrum was discretized in
25 frequencies and 24 directions.

The estimation of the wind and wave power potential over the areas of interest is
based on the following formulas:

Pwind = 1

2
pv3 [W ] Pwave = ρg

∫ 2π

0

∫ ∞

0
f−1E(f, θ)dfdθ = ρg2

64π
H2

s Te[W/m]
(1)

[8] where p stands for the wind and ρ the water density, v for the wind speed, E(f,θ)
denotes the two dimension wave spectrum, Hs the significant wave height, Te the
wave period and g the gravity acceleration.

In addition to the above modeling systems and targeting to the elimination of
biases that numerical simulation systems usually exhibit when focusing on local
applications, a postprocess module has been developed. It is based on a non-linear
version of Kalman filter [3] that estimates the bias of the modeled data as a polynomial
of the modeled parameter:

yi = a0,i + a1,i · mi + a2,i · m2
i + a3,i · m3

i + ...+ εi (2)

where mi denotes the direct output of the model and yi the corresponding bias. The
estimation of the involved covariance matrices [3, 6] is based on new techniques
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that have been developed within the framework of Information Geometry. The latter
recognizes the distributions of modeled and corresponding recorded data as statistical
manifolds categorized in non-Euclidean spaces [1]. In this context, the underlying
geometry may differ significantly from the classical one and the distances between
the data sets—the discrepancies of the models—are estimated by minimum distance
curves (geodesics) avoiding simplifications adopted by the classically used least
square methods. A detailed presentation of this approach can be found in [4].

3 Statistical Analysis: Results

The statistical analysis of the modeled results for the wind/wave power outputs and
the environmental parameters that affect their evolution, is based on a variety of
statistical measures including average values, deviation and asymmetry measures
as well as the kurtosis (the fourth moment of the data), providing information for
the most frequent values, their expected deviation but also for the exposure of the
data under study to extreme events. On the other hand, the model outputs and the
corresponding observations have been studied by a probability density function (pdf)
point of view: This approach gives the full package of information and is further
exploited in order to estimate the discrepancies between modeled and observed data
using techniques of Information Geometry, as mentioned in the previous section.
Some indicative results are presented in Figs. 1, 2. The former depicts the 10-year
main wave statistical parameters over the Cyprus sea areas, while the latter provides
the full package of the statistical analysis at a point in Aegean Sea (Cyclades islands).

The south-western sea area of Cyprus seems to keep the primary role in wind
and wave power potential being exposed to long period waves (swell) that favor
rather smooth evolution of the wave power with low exposure to extreme events and
available amounts of energy even in the absence of winds. On the other hand, the

Fig. 1 Mean values and deviation of wave energy potential in the Levantine Basin
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Fig. 2 The analysis of the significant wave data for a central Aegean point

Aegean Sea is a wind dominated area where the wind and wave power potential are
closely related.
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Geostatistical AVO Direct Facies Inversion

Leonardo Azevedo, Pedro Correia, Rúben Nunes and Amílcar Soares

1 Introduction

One of the main challenges in geophysics is retrieving high resolution seismic inverse
elastic models (e.g. acoustic and elastic impedance modes) with high reliability
along with their intrinsic uncertainty. Seismic inverse problems are nonlinear with
non-unique solutions due to their intrinsic properties: the limited bandwidth of the
seismic reflection data, noise and assumptions on physical models. For these reasons
the degree of uncertainty related with the inverted best-fit elastic models may be
considerably high and it should be integrated on the solution.

Due to the nature of seismic inverse problems, a probabilistic framework is a very
valid approach to pose the inverse problem. Stochastic, or geostatistical, seismic
inversions are a common practice in any seismic reservoir characterization playing a
key role in the reservoirs’ uncertainty and risk assessment. The most common inver-
sion algorithms allow one to retrieve reliable acoustic impedance (AI) and elastic
impedance (EI) models along with their intrinsic uncertainty. Herein, we present
a new iterative geostatistical methodology for seismic AVO inversion based on sto-
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chastic simulations and co-simulations. From the proposed inverse methodology one
is able to retrieve at once density, p-wave velocity (Vp), s-wave velocity (Vs) and
facies models while the uncertainty space associated with each model is still con-
siderably explored. In addition to the elastic models, and as part of the solution,
we can also derive the corresponding R-zero and Gradient volumes [1]. The great
advantage of this new algorithm is the ability to retrieve, directly from the inversion
process a facies model, which was previously defined from the available well-log
data, conditioned by both the available well-log and seismic data.

We successfully applied this new inverse methodology to a pre-stack synthetic
seismic dataset, built based on a real dataset and denominated from now one as real
seismic data, where random noise was added. The final best fit inverse elastic models
of Vp, Vs, and density produced a synthetic pre-stack seismic that has a correlation
coefficient with the observed pre-stack seismic data of about 0.8

2 Methodology

The direct AVO facies inversion workflow (Fig. 1) is an iterative and convergent
process based on two key main ideas: on each iterative step, the density, Vp, Vs,
and facies models are perturbed towards a desired match between the real and the
synthetic pre-stack seismic data is reached. At each iteration, the match between real
and inverted data is evaluated for the entire set of simulated models. Then, the best
parts of each are selected recurring to a genetic algorithm and used as secondary
images on the co-simulations of the next iteration. We propose the use of Direct

Fig. 1 Geostatistical AVO direct facies inversion workflow
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Sequential Simulation (DSS) with Joint Probabilities (DSS with joint probability
distribution) [2, 3] to generate the density, Vp, Vs and facies volumes, ensuring
in this way the reproduction of their bivariate distributions. A facies classification
needs to be performed a priori from, for example, the density versus Vp/Vs domain
recurring to the available well-log. All the inverted models reproduce both the main
spatial patterns, as revealed by the variograms, the probability distributions and bi-
distributions estimated from the original well-log data and the well-log data at the
well location. The develop algorithm may be briefly described as:

(1) Simulation of Ns density models recurring to DSS. Then, for each model the
intermediate variable (e.g. r = Vp/Vs) is co-simulated (co-DSS with joint prob-
ability distribution) using the density volume as a secondary variable. For each
duplet of images we classify it into a new facies volume (Fig. 1, step 1);

(2) On the second step, Vp is simulated with DSS conditioned to the previously
derived facies cube. Vs models are then co-simulated with DSS with joint prob-
ability distributions (Fig. 1, step2);

(3) For all the simulated elastic models (Ns triplets of density, Vp and Vs) we
compute synthetic seismograms, following Shuey’s linear approximation [1],
and compare their synthetic seismic responses with the observed one (Fig. 1,
step 3);

(4) A “best” model is then built from the areas of models that produce the best local
correlation coefficients between synthetic and real seismic;

(5) Return to (1) using the “best” density, Vp and Vs models as secondary variables
in the co-simulation process.

Fig. 2 Available pre-stack
seismic and well-log data.
Wells in black where not
used to constraint the direct
facies inversion but used
exclusively used as blind tests
to assess the convergence
of the methodology. Yellow
line shows the location of
the vertical sections shown in
Fig. 3
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Fig. 3 Mean of all inverted model at the last iteration (on the left) and real elastic models (on the
right), from top to bottom: density, p-wave velocity, s-wave velocity and facies model. For section
location please see Fig. 2

3 Synthetic Seismic Example

The available dataset comprises a pre-stack 3D seismic volume (built from known
density, Vp and Vs models) and a total of 32 wells from where only 15 were used to
constraint the stochastic inversion (Fig. 2).

The best-fit inverse density, Vp, Vs and facies models produced a synthetic seis-
mic with a global correlation coefficient of about 0.8 when compared against the
real seismic. The mean model from all the simulated elastic models during the last
iteration were compared with the original properties (Fig. 3), from where the real
seismic was derived, and the reproduction of both large and small scale for all the
properties is very accurate.

4 Conclusions

This inversion methodology is able to successfully invert pre-stack seismic data
directly for density, Vp, Vs and facies models. Notice that the facies model is not
derived from the inverted density, Vp and Vs models but is part of the inverse solution
itself and therefore is constraint by both the well-log and the seismic data.
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Optimized History Matching with Stochastic
Image Transforming of a Deltaic Reservoir

Maria Helena Caeiro, Amilcar Soares, Vasily Demyanov
and Mike Christie

1 Introduction

One of the major difficulties in modeling petroleum reservoirs is the characteriza-
tion of the porosity and permeability of the reservoir, in spite of the impossibility to
check results directly with the reality. The history matching is an inverse procedure
that allows having a better knowledge of the reservoir and has a high importance for
producer fields, because it enables the match of the reservoir properties (e.g. porosity
and permeability) with the production from the wells. Many authors have been work-
ing in different history matching developments that contribute to the improvement of
different methodologies [1–3]. Complex cases as a deltaic reservoir are interesting to
explore and produce, but they require an exhaustive analysis and non-stationary mod-
eling. Characterize the connected channelized structures is a compound task. The
difficulty increases while perturbing at the same time the value of the variable and
the shape of the channels. In this paper is presented a hybrid method encompassing
the optimization firstly in the space of the anisotropy model parameters and secondly
refines it in the space of the static models through global perturbation technique.
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2 Hybrid Optimization for Geostatistical History
Matching. Deltaic Application

In this paper is presented an iterative methodology for optimized history match-
ing, using the adaptive stochastic sampling in the multiparameter space, and direct
sequential simulation with local anisotropy correction (DSS-LA) [4] as the engine
for the image transforming of the internal properties of the reservoir. Therefore it can
be considered has having a double optimization done in two distinguished phases,
the former optimization the multiparameter space and the latter optimization in the
models space. For case application was chosen a deltaic 2D slide of Stanford VI
reservoir [5]. The optimization in the multiparameter space is based on the work
presented by Ref. [6]. It consists in the creation of a model of anisotropy, defined
by the main trends of the channels (direction of maximum anisotropy − θ and the
ratio between the major and the minor amplitude distances −r), considering regions
based on prior beliefs, integrated with the DSS-LA in a global iterative algorithm
that also contains the dynamic simulation (Eclipse Black Oil Simulator) and the
Neighborhood Approximation Algorithm (NA) [7]. This integrated iterative process
is looped until the lowest misfit is achieved. The misfit value represents how well
a model fits the data and the applied misfit function is the standard least square.
The misfit function depends of well, dynamic match variables (well oil production
rate—WOPR and the well water production rate—WWPR) and time step. The data
standard deviation (σ) is 10 % of the average of history data values for each variable
of each well and the history period corresponds to 5–387 days. Although the spa-
tial patters parameters are optimized locally in the multiparameter optimization, the
space of solutions of the local values of the internal properties can be still quite large.
Therefore, was performed an optimization refinement based on the direct transfor-
mation of images approach with a method of global perturbation. The perturbation is
performed by coDSS-LA based on the influence regions of each well. In the first iter-
ation the coDSS-LA is conditioned to the porosity and permeability models obtained
from the optimization in the multiparameter space. The dynamic responses of each
of the realizations are obtained by Eclipse Black Oil Simulator and the respective
mismatches evaluated through the standard least square objective function. Then, are
composed the porosity and permeability models by merging the “best” parts from
the respective realizations with lower local misfit. A correlation coefficient cube is
also composed based on the local misfit values for each well. These models are going
to constrain the next iteration and it loops until the stopping criterion is reached.

3 Results

Figures 1 and 2 show the comparison between the porosity and permeability models.
Well P25 was chosen as reference to illustrate the production curves matches (Fig. 3).
The improvement from multiparameter optimization to refinement
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Fig. 1 Porosity Models: a True Case, b Multiparameter and c Refining optimizations

Fig. 2 Permeability Models: a True Case, b Multiparameter and c Refining optimizations

optimization is observed but there is still space for enhancement. The reproduc-
tion of the major geological features is achieved, however with less consistency for
the permeability. The application was only done for a four models in the multipara-
meter optimization and three iterations with ten simulations for the refinement. This
can be a drawback for this specific application due to time consuming problems of
the methodology implementation.

4 Remarks

The goal of this paper is to demonstrate the impact of the optimization refinement,
iteratively performed by conditioning the stochastic simulation with the porosity
and permeability models. Globally, the results are promising and show the feasibil-
ity of the methodology to reproduce meander structures, like a delta front honor-
ing the history production rates. Future work should consist in computation work,
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Fig. 3 Well P25 oil a and water b rate matches

namely increase the number of models produced so that optimization and conver-
gence improves. Furthermore, a 3D application and the uncertainty evaluation of the
obtained multiple models should be considered.
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Conditioning 3D Object Based Models
to a Large Number of Wells:
A Channel Example

Jeff B. Boisvert and Michael J. Pyrcz

1 Introduction

Object-based methods (OBM) provide an important alternative to the cell-based
geostatistical methods. With cell-based methods simulation proceeds by first assign-
ing data to cells that coincide with hard data and then sequential conditional sim-
ulation along a random path over the remaining cells. Cell-based methods ensures
perfect conditioning to hard data and good conditioning to trends given they do not
contradict the data. Yet, such a method is limited in its ability to reproduce specific,
crisp geometries and the resulting simulation does not preserve geometric informa-
tion necessary for building internal trends within geometries.

Nevertheless, crisp, complicated geometries exist in some settings. Isolated sand
filled channels encased in overbank shales are common to slope valley reservoirs
in West Africa and Gulf of Mexico. Moreover, lateral accretion sets with consistent
external geometries and complicated hierarchies of internal trends are common in the
oil sands region of Canada. Comprehensive descriptions of these and other examples
of hierarchies of reservoir geometry are available [1–3].

Conditioning remains a significant challenge in the application of OBM and meth-
ods have been proposed. References [4, 5] proposed two step processes. First objects
are fit to the conditioning data and then objects are placed away from conditioning
to honor trends. Reference [6] suggests rejection sampling followed with local cor-
rections for conditioning. Care must be taken to prevent bias in the model, such as
distinct statistics near and away from wells [7]. In this work, this is controlled using
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a multi-stage objective function. Also the well data interpretation should be checked
to ensure it does not contradict the inferred object-based geometries. Checks include
distributions of well element thickness and comparison of adjacent wells. Wells that
fail to condition precisely may indicate contradictions.

At times object-based models are constructed without honoring local data. These
unconditional models may be applied as TIs for MPS simulation. Nevertheless
improved conditioning is needed for OBM. Further developments with parameteri-
zation and optimization provide a promising opportunity.

2 Optimization Methods

Four optimization techniques used are briefly reviewed. Note that the eventual goal
of this optimization is to find a local minimum, which would be one channel, the
global minimum is not required as there would only be one optimum channel.

(1) Fminunc, Matlab: A quasi-Newton method with an approximated hessian matrix.
Specifically the Broyden–Fletcher–Goldfarb–Shanno method is used [8].

(2) Hooke–Jeeves optimization: The objective value is assessed in different direc-
tions. The direction with the minimum objective value is approximated [9].

(3) Implicit filtering: The only technique that includes constraints on the input vari-
ables. The algorithm uses coordinate searches as well as gradient approximation
to generate parameters with a lower objective function value [10]

(4) Simplex search method: The Matlab function, fminsearch, implements [11].

The optimization techniques are referred to as Option 1, 2, 3, 4. None of the
techniques require the specification of a gradient. Any object can be optimized. The
methodology assumes wells have been coded into gross facies categories.

3 Methodology

A large number of objects, consistent with the data, are generated. Realizations are
created by selecting an appropriate number of objects. First, objects are constructed
from a set of parameters OBJ(x1, x2, . . . , x p) where p < 100 for computational
reasons. The objective function is a weighted combination of: well mismatch c f ·
f (o, v); conditioning cg · g(o, v); and closeness bias penalty ch · h(o, v).

obj (o, v) = c f · f (o, v) + cg · g (o, v) + ch · h (o, v)

f (o, v) =
n∑

i=1

d (o, vi ); g (o, v) = −
n∑

i=1

w (o, vi ); h (o, v)

= rw

n∑

i=1

(
1 − b (o, vi )

cb

)
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Fig. 1 Distances used for calculation of the objective function

where d(o, vi ) is the distance between the object (o) and intersection i in the con-
ditioning data (vi ). The objective function rewards objects that match conditioning
data w(o, vi ), the length of conditioning data matched. A penalty to objects, b(o, vi ),
not intersected by a well, but come close to the well, controls the bias for placing
objects just outside well data (Fig. 1f). Object parameters are randomly initialized
and an optimization algorithm is applied to condition .

4 Example

Channels are represented by two parabolas that meet at a thalweg. Channel center
lines are defined by a cubic spline fit to a number of initial control points. The elevation
of the channel is considered constant as modeling is conducted in depositional space;
the extension to variable thicknesses is trivial. Crevasse spalys are added at locations
where the derivative of the center line = 0 and a well indicates a crevasse splay. To
demonstrate the methodology, a reasonable number of conditioning data (47) is used
(Fig. 2) but similar results are seen for 100+ wells.

An issue in conditioning is that objects can be placed close to a well without
a channel facies. The effect of introducing a penalty on this closeness is shown in
Fig. 3; channel thickness is reduced to honor the well distance bias. The bias checks
presented in Ref. [7] could be used to tune the penalty magnitude.

Figure 4 compares the generation of objects based on time and the ability of the
algorithms to condition. There is some difference in the performance of the algorithms
when weight is given to the conditioning data; option 1 seems to better match the
constraints of the well data (Fig. 4) however, it is not able to obtain the same level of
well conditioning as options 2 and 4. Option 4 performs nearly as well as option 2
for well conditioning, but takes considerably longer.
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Fig. 2 Conditioned object (black) initial object (red). Add the optimized object with pen

A

B

C

Fig. 3 Including a penalty (right) on the closeness of objects to non-channel wells

Fig. 4 CPU times and conditioning quality for the different optimization methods

5 Conclusion

The proposed objective function is simplistic but captures many aspects important
for placing objects. Current optimization techniques can generate objects efficiently
(order of seconds). Dense data slightly increases CPU time, but the proposed algo-
rithms are effective for 100+ wells. Previous views have been that conditioning with
dense data is not computationally efficient; this was not the case but further work is
required for more complex objects and secondary data.
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Modeling Channel Forms Using a Boundary
Representation Based on Non-uniform Rational
B-Splines

Jeremy Ruiu, Guillaume Caumon, Sophie Viseur and Christophe Antoine

1 Introduction

In most clastic reservoirs channels are prominent features and control the spatial lay-
out of the main architectural elements which impact flow behavior [1, 2]. Modeling
of these elements is typically achieved using object-based [3, 4] or multi-point geo-
statistical simulations [5, 6]. These methods often use simple objects descriptions
which are not fully representative of the true 3D geometries encountered in nature.
We propose a 3D channel object with a compact parametrization which allows for
representing asymetric channel geometries and provides a curvilinear framework
for modeling internal heterogeneities. This representation is based on Non-uniform
Rational Basis Splines(NURBS) which consist in a smooth interpolation between a
set of points [7]. NURBS are interesting for modeling abundant sedimentary struc-
tures because they can be edited with a small number of parameters and have a small
storage footprint and interactive computation times. As an example, this method is
applied to generate 3D training images, which can be used for MPS.
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Fig. 1 Modeling of an asymmetric channel using 3 NURBS surfaces. Black lines are the control
point net and the grey points are control points. a Top view of channel b Side view of the asymmetric
channel c Side view of the channel with inversion of the asymmetry corresponding to the change in
the channel curvature

2 Representing Channels with NURBS

To represent a channel form we propose to use three connected NURBS surfaces.
Each surface is defined by a set of control points that represents a coarse approxima-
tion of the actual body geometry. The top surface control net is constructed around a
backbone (Fig. 1a). The lateral surfaces are constructed starting from the top one and
their points are placed along a quadratic shape (Fig. 1b). Common points between
surfaces must remain colocated in order to maintain channel shape during deforma-
tions.

Using this representation, the seven following parameters define a channel shape:

• the length
• the width
• the height
• symmetric aspect ratio (formulated as a ratio of the width, i.e. if the value is 0.5

the channel is symmetric)
• the amplitude of the sinuosity orthogonally to the global channel direction
• the wavelength of the sinuosity orthogonally to the global channel direction
• a tortuosity factor used to obtain meandering aspects(i.e. if the value is 1, it autho-

rizes meanders to be closed).

The first four parameters are used to construct the 3D geometry of a channel and the
other ones enable a stochastic simulation of the channel back bone (Fig. 1a).

To stochastically generate several channels we propose to simulate the middle
line (Fig. 1a) using the method developed by [3]. At first the amplitudes of displace-
ment are calculated by performing an unconditional Gaussian simulation (Fig. 2a).
Meandering aspects are then obtained using a growing factor (Fig. 2b) calculated by:

k
−→
Gi = α.−→Ti + β.−→Ci + γ.−→Fi (1)
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Fig. 2 Stochastic generation of channels. a The channel path is generated using an unconditional
Gaussian simulation. b A growing factor is applied to obtain a meandering aspect. c Generation of
10 channels

Fig. 3 3D MPS training image built from stochastically generated channels using NURBS. a Map
view of the rasterized channel. b Transversal section view. c A zoom on the transversal section view
shows that the rasterization is done according to the deposition order of channels

where
−→
Ti is the tangent and

−→
Ci the curvature at the projection of the control point i

on the corresponding curve and
−→
Fi the vector representing the global flow direction.

The constants α, β and γ are function of the tortuosity factor and the wavelength.

3 Application to Training Image Generation

Stochastically generated channels (Fig. 2c) are used to construct 3D training images
by painting them on a regular Cartesian grid (Fig. 3). The bounding surfaces of each
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channel are transferred to the grid using the Brensenham rasterization method [8]. A
scanning process fills the channel spaces in the grid (Fig. 3a, b). These two steps are
performed following the depositional order to take into account the erosion processes
(Fig. 3c).

4 Conclusion

A method is presented in this paper for effciently (1 s for 40 channels) generating
geobodies from few parameters. It has potential for building training images in a
very easy way. Future developments concern the reproduction of different geobodies
geometries such as levees, point-bars, etc. as their spatial relationships (e.g. spatial
organisation of these different bodies). They also have to deal with connection and
hierarchic rules between these objects.
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Moving Away from Distance Classifications
as Measures of Resource Uncertainty

Ricardo A. Olea , James A. Luppens and Susan J. Tewalt

1 Introduction

For decades, the predominant practice in the characterization of uncertainty in coal
mining assessments has been to use classifications based on distance from cells to
the closest drill hole(s) as the criterion to report uncertainty in the estimation of
resources [1, 2]. The main reason the practice has been accepted for such a long time
is simplicity, despite not being able to provide accurate answers to critical issues
such as: How good is my estimate of in-place tonnage? Theoretically and practically
it has been illustrated multiple times that distance alone fails to adequately model
uncertainty in coal and other mineral deposits because uncertainty depends only
partly on distance to the closest data [3]. Other important factors are: (a) the geometry
of the entire sampling, (b) the complexity of the geology, closely determined by the
depositional environment and tectonic evolution, (c) internal discontinuities in the
form of channels, erosional features and faults, and (d) complexity of the outer
boundaries.

After tessellating the deposit into cells, distance classifications provide a break-
ing of total tonnage into four distance classes of cell tonnage: measured, indicated,
inferred, and hypothetical. These four cumulative tonnages are used as the basis for
personal conjectures about uncertainty in the assessments. This approach to char-
acterizing uncertainty is overdue to be replaced by some mathematical formulation
tested to provide a universal and realistic measure of uncertainty. Here, we propose
superseding distance classifications as measure of uncertainty by two probability
distributions based on stochastic simulation.
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2 Methodology

Geostatistical stochastic simulation models uncertainty by generating multiple sce-
narios, called realizations in geostatistics, which honor the data and other important
spatial styles of fluctuation that may be different for different methods [4, 5]. Despite
a number of successful applications of geostatistics, its use in characterizing coal
resources has moved slowly [6]. Stochastic simulation typically requires tessellation
of the study area into small units, here called cells, which should not be sized less than
the smallest detail of interest to model and not too large that, in too many instances,
two or more data land in the same cell [7].

After reviewing the results of statistically experimenting with three deposits
of completely different geologic characteristics [3, 8, 9], we recommend to even
avoid mixed approaches [10], fully substituting distance classification methods with
two probability distributions: one to characterize uncertainty of total resources and
another to appraise uncertainty at the cell level. Both distributions are prepared from
the same set of realizations; hence they are fully consistent and compatible.

The numerical distribution to model the uncertainty in total resources is straight-
forward to prepare. Each realization has an equal probability to be the true tonnage in
the deposit. Thus, the addition of all cell tonnages in a realization provides one value
for the numerical distribution of likely values of total tonnage. Collectively, a large
number of realizations allows the modeler to numerically define the distribution.

The second distribution of interest is more laborious to prepare. This time, instead
of working with the realizations individually, the first step requires choosing a loca-
tion and collecting from all realizations the value at this selected site. Such values
numerically define another distribution that now completely characterizes uncer-
tainty in the tonnage at such cell. By repeating this process to all of the usually
thousands of cells tessellating a study area, it is possible to have one distribution
for every cell. However, it is not practical to present all these distributions as the
final result. We simplified the modeling by retaining from each distribution only the
length of the confidence interval defined by the 5th and the 95th percentiles, the 5–95
spread for short, which is a statistics characterizing dispersion in the values, and thus
a measure of uncertainty. The collection of these thousands of cell spread values
numerically defines the distribution of the 5–95 spread for the study area. One more
step allows linking cell uncertainty to cell tonnage. For that purpose, the 5–95 spread
values are ranked in increasing order and then each 5–95 spread value is paired with
the tonnage for all cells with a less than or equal spread than the value being paired.

3 Example

Figure 1 shows results for the Canyon coalbed, Wyoming, taken from one of the test
studies [9]. The extent of the study area is 945 km2 (365 sq mi), with data at a fairly
regular spacing of approximately 4.8 km (3 mi) in 7 columns and 11 rows. The cells
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Fig. 1 Measures of uncertainty at two different scales: a histogram of likely values for total tonnage
with bst standing for billion short tons; b distribution of the 5–95 confidence interval for all cells
comprising the study area, with kst standing for thousand short tons

are squares with 122 m (400 ft) on the side. The realizations were generated using
sequential indicator and Gaussian simulation. The range of the semivariogram for the
indicators is 22.1 km (13.8 mi) and for the normal scores 14.2 km (8.9 mi). Certainly
any other adequate simulation method could have been used.

Advantages offered by the two distributions are significant:

• Distance classifications leave it up to individual speculation to figure out the mag-
nitude of the uncertainty in total resources according to the breaking of the total
tonnage into four bins. A probability distribution such as the one in Fig. 1a allows
the analysis of uncertainty in multiple ways, all according to standards universally
accepted and understood across multiple disciplines. Distance classifications do
not provide, for example, a direct answer to a question as simple and important
as: What is the minimum tonnage to expect?

• Figure 1b links tonnage to a true measure of uncertainty: the length of a 90 %
confidence interval. Under most practical circumstances, distance provides poor
to no discrimination in terms of uncertainty [3].

• Figure 1b can be used to break the tonnage into classes, if desired. The cumulative
distribution offers the advantage of allowing selection of the two main parameters
that define a classification: number of bins and location of the dividers. Four bins
can still be selected, but the choice is no longer compulsory. More or fewer bins
can be chosen, if more meaningful in the analysis.

• Freedom to place the dividers implies that there is nothing equivalent to the inflex-
ibility of placing the dividers at 0.16, 0.47 and 1.9 km (1/4, 3/4 and 3 mi) in the
current USGS system for classifying coal resources [1]. For example, taking the
5-95 spread boundaries at 180 and 210 kst in Fig. 1b, the total tonnage is divided
into a low uncertainty class with 2.4 bst, a medium class with 3.4 bst and a high
uncertainty class with 4.1 bst. Mapping the 5–95 spread can help planning selec-
tive drilling to reduce uncertainty at high uncertainty areas in the deposit, which
may be the result of poor control or more complex geology.
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• Tonnage in bins based on distributions such as the one in Fig. 1b discriminates in
terms of uncertainty without any overlapping in uncertainty from bin to bin. It has
been illustrated more than once that errors in different distance-based bins may be
hardly different one from each other [3].

• In our proposed approach, additional drilling has confirmed that new values indeed
land about 90 % of the time inside the 5–95 confidence intervals [8].

4 Conclusions

Distance classification methods for appraising uncertainty are ad hoc approaches
only acceptable in the mining of coal and a few other commodities. Distance meth-
ods fail to provide an effective, quantitative, or objective measure of uncertainty.
Characterization of uncertainty in coal tonnages in terms of probability distributions
is grounded in a standard body of knowledge long used in science and technology.
Stochastic methods allow reaching numerous well tested and accepted conclusions,
including many that are not possible to obtain from distance methods, such as: What
is the smallest tonnage to expect for a given study area?
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Reliability Analysis of Least Squares Estimation
and Prediction of a Non-parametric Discovery
Process Model

Mi Shi-yun and Zhang Qian

1 Introduction

A nonparametric discovery process model (NDPM) which uses empirical distribution
to characterize the probability distribution of field sizes was proposed by Kaufman
[1]. Wang and Nair [2] proposed maximum likelihood techniques to estimate the
parameters of NDPMs. Chen [3] developed a least squares approach to estimation
of NPDM parameters. Unlike maximum likelihood techniques, the least squares
approach has the advantage of allowing graphic display of goodness of fit between
model predictions and real discovery sequences in a conventional way and provides
graphic visualization to help the resource assessor to judge the accuracy of LSA
parameter estimators. Chen’s NDPM is indexed by two parameters (λ, β) defined
above. We provide graphs of simulated estimators (λ̂, β̂) of (λ, β) as a functions
of both sample size and population shape; i.e. in particular, we study their behavior
when the in place size distribution is unimodal and when it is a mixture of two distinct
in place size distributions. In both cases estimators appear to be robust.

2 Simulation

In addition to studying the behavior of (λ̂, β̂) as functions of population shape and
sample size, our simulation design includes a study of the sensitivity and precision
of LSA projections of undiscovered deposits sizes as functions of population shape
and sample size.
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2.1 Sample Sizes

Discovered field size data is simulated from a lognormal population with parameters
μ = 0 and σ 2 = 1. Datasets with sample sizes 20, 50, 200 are generated. Figure 1a, b
and c display typical simulated empirical discovered field size histograms. For each
simulated data set the two unknown parameters, (λ, β) are estimated by LSA of the
NDPM. To understand the aggregate behavior of (λ̂, β̂) we investigate the presence
of possible local minima in target function space: we employ a grid search of target
function values as λ ranges from 0.5 to 5 in increments of 0.025 and β ranges from
0.55 to 2.2 in increments of 0.055. This yields the target function contour plot in
Fig. 1b. One can see from Fig. 1b that when sample size is 20, the target function
minimum is located in a neighborhood of λ = 2.75, β = 1.1. Similarly, Fig. 1d
shows that when sample size is 50, the target function minimum is located in a
neighborhood of λ = 1.5, β = 0.55. For sample size 500, Fig. 1f shows a minimum
in the neighborhood of λ = 3, β = 0.7 These contour plots lead us to conclude that
a LSA of NDPM yields a unique target function minimum close to the center of the
dark blue area of each contour map.

2.2 Mixed Population

Discovered field size data is simulated in two ways: first, from in place deposit sizes
generated by successive sampling of datasets generated by a Lognormal distribution
and second, form in place deposit sizes generated from a mixture of Lognormal
population densities:

f (y) = 0.75√
2π

e−(lny)2/2 + 0.25√
2π × 0.5

e−(lny+3)2/(2×0.52). (1)

Figure 2a shows a histogram composed of log transformed deposit sizes generated
by a sample of size 200 from mixed population dataset; Fig. 2b is the map of the
calculated target function; Fig. 2c shows that projections of undiscovered deposit
sizes for a mixed population dataset matches actual undiscovered deposit sizes quite
well; Fig. 2d shows that this is true for population datasets of size 200 generated
from a single Lognormal distribution as well. Figure 2c and d, lead us to conclude
that the NDPM can handle data sets that obey mixed distribution as well as those
from a single distribution.

2.3 Sensitivity Analysis

In order to study Chen’s NDPM sensitivity to changes in parameter values and to
changes in the structure of the model we conducted two simulation studies. The aim
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Fig. 1 Simulated logtransformed field size distribution and map of calculated target function

is to evaluate the sensitivity of (λ, β) to changes in model structure. The detailed
procedure is given in the following.
Step 1 Simulate discovered field size data from a Lognormal population with para-
meters μ = 0 and σ 2 = 1, and sample size = 200;
Step 2 Estimate parameters (λ, β) using Step 1 data;
Step 3 Fix λ, and vary β in a local area, then plot a prediction of resource potential
yet to be discovered;
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Fig. 2 Mixed population simulation results

Step 4 Fix β and plot the same prediction as in Step 3.
Results are shown in Fig. 3. Figure 3a shows results when λ is fixed at 0.1 and

β ranges from 0.9 to 1.6 in steps of length 0.1. It can be seen from Fig. 3a that the
results vary slightly. Similarly, Fig. 3b shows the results when β is fixed at 1.3 and λ
is varied from 0.05 to 0.35 in steps of length 0.05. While Fig. 3b variability is modest,
variability is larger than that shown in Fig. 3a.
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Fig. 3 Sensitivity analysis

3 Conclusions

Our sensitivity analysis of LSA of NDPM leads us to conclude that : (1) LSA of
NDPM is effective over a rather large range of sample sizes. (2) It is robust in the
sense that it yields rather accurate predictions of undiscovered potential for both
univariate Lognormal in place size populations and for a mixture of Lognormal in
place size populations; (3) figures for the changes of the parameters sensitivities.
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Application and Comparison of Discovery
Model and Others in Petroleum
Resource Assessment

Guo Qiu-Lin, Yan Wei and Chen Zhuo-Heng

1 Introduction

Three methods have been used in PetroChina’s third National petroleum resource
assessment in China: the Simple Pareto Model (SP), the Shifted and Truncated Pareto
Model (STP) and the Lognormal Discovery Process Model (LPD). Results from the
third national wide assessment were analyzed recently at PetroChina as preparation
for its fourth coming resource assessment. The analysis presented here is based on
a comparison of model outputs: the largest predicted field size (S), number of total
fields (N) and total play resource (R) in a play. Some interesting findings provide
useful insights for determination of methods to use in the forthcoming assessment
exercise. In this paper, we briefly review of these methods and discuss merits and
drawbacks of each via application to Zagros Basin plays.

Three Zagros Basin plays are selected to represent various exploration stages,
field size distribution characteristics and exploration efficiency. The L play with
26 discovered fields and total discovered recoverable reserves of 8,102 MMBOE
represents a relatively immature play. The largest field found is 933 MMBOE. The
K play has a total of recoverable reserves of 47,973 MMBOE in 50 fields and the
largest field size is 8,709 MMBOE, representing an intermediate level in exploration
efficiency. The D play has 56 discoveries with largest discovered field of 29,165
MMBOE and total recoverable reserves of 13,349.9 MMBOE, representing the most
mature play in this comparison.
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2 Methods

2.1 SP Distribution Model

The SP model is a simple transformation of a well-known distribution, the
two-parameters Pareto distribution. Chen and Sinding-Larsen (1994) [1] define the
representative size of the mth largest field in the finite population as

xm = a
( m

N

)− 1
θ
, (1)

where a is the lower economic cut off size and θ is the shape parameter. The ratio of
the nth largest field to the mth largest field is

xn

xm
=

(m

n

) 1
θ
, (2)

By using (1) and (2), the number of fields in the play and total resources R are
respectively ⎧

⎨

⎩
N =

(
x1
xN

)θ = ( x1
a

)θ

R = x1
∑N

m=1

( 1
m

) 1
θ

(3)

A deterministic method of Chen and Sinding-Larsen [1] works well for immature
plays. Guo et al. [2] developed an iteration method based on an idea of Zhao [3] to
capture prediction uncertainty.

2.2 STP Distribution Model

The density function for the STP is parameterized by Houghton [4] and Houghton
et al. [5]. Based on a dataset of 2,600 oil & gas pools in the West Siberia Basin, Jin
[6] derived the following version of STP density and cumulative functions:

⎧
⎨

⎩
f (q) = λ(q0+r)λ

(q+r)λ+1

F(q) = 1−
(

q0+r
q+r

)λ +
(

q0+r
qmax+r

)λ (4)

Xu [7] developed a method for computing r and shape parameter . We can get as
follows,

λ = 1

2
e−

γ−4
e·σ + 0.5 (5)

where σ is the standard deviation.
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2.3 Discovery Process Model

The LDP can be written in terms of a joint density function in Eq. (6) with an
underlying lognormal field size distribution.

⎧
⎪⎪⎨

⎪⎪⎩

L(θ) = N !
(N−n)!

∏n
j=1 fθ (x j )Eθ

[∏n
j=1

xβj

b j+Y βn+1+,··· ,+Y βN

]

fθ (x j ) = 1
x jσ
√

2π
exp

[
− 1

2

(
ln x j−μ
σ

)2
] (6)

where L is the likelihood function and β is the exploration efficiency parameter. The
mathematical details of this method can be found in Lee [8, 9].

3 Results and Discussion

All three methods are applied to three selected Zagros Basin plays. Output from the
three methods are listed in Table 1. Assuming a lognormal parent distribution, Table 2
provides estimates of model parameters of the parent population in the three plays
and to show general field size characteristics and exploration efficiency. Methods
are compared in terms of total play resource(R), number of fields(N) and the largest
field size (S) in the play. Results suggest that:

(a) The LDP model has the lowest estimates of total play resource and number of
fields in general, but the largest predicted largest field size;

(b) The STP gives the largest play resource potential estimate in general and a
moderate forecast of both number of fields and size of the largest field in a play;

Table 1 Comparison of the assessment results from the three different method in three petroleum
plays of the Zagros Basin

Estimates Method Play L Play K Play D Sum

Play resource SP 14,623 80,560 225,034 320,217
STP 16159 68,727 489,743 574,629
LDP 15,430 78,047 208,900 302,377

Remaining resource SP 6,611 32,589 91,284 130,484
STP 8,057 20,754 355,993 384,804
LDP 7,328 30,074 75,150 112,552

Number of fields SP 86 330 683 1,099
STP 63 79 256 398
LDP 60 85 90 235

Largest field SP 1,682 8,709 29,165 39,556
STP 1,607 10,213 29,242 41,062
LDP 2,051 18,890 30,730 51,671
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Table 2 Estimated distribution parameters from the Lognormal Discovery Process Model (LDP)
showing general characteristics of field distribution, discovery efficiency of the three plays in Zagros
basin

Play L Play K Play D

β 0.57 β 0.68 β 0.71
μ 4.75 μ 5.1 μ 6.5
σ 2 1.6 σ 2 3.9 σ 2 2.5
N 60 N 85 N 90

(c) The SP projects a large number of fields, particularly when both the number
of discoveries and exploration efficiency are high, while the largest field size
estimate is the smallest among the three models.

4 Conclusions

In general, the SP model appears to be suitable for immature exploration plays while
the STP model performs better for mature plays. The LDP model is applicable to
a wide scope of situations when number of discoveries is greater than 20. Here are
some interesting findings that provide useful insights for determining which method
to use in PetroChina’s fourth national wide petroleum resource assessment:

(a) The SP model does not require a large amount of data and computation is straight-
forward. However, it typically leads to projection of a large number of fields.

(b) The STP model’s probability of finding a field is proportional to a power of field
size shifted by a parameter. This model forecasts a reasonably large number of
fields. However, a large sample size is required to achieve a reasonable forecast.

(c) The LDP model appears to provide a reasonable projection of total resources R
when the number of discoveries is greater than 20. However, it may project a
conservative N along with an optimistic S, the largest field size in the play.
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Handling Seismic Anomalies in Multiple
Segment Prospects with Graphical Models

Gabriele Martinelli, Charles Stabell and Espen Langlie

1 Introduction

Bayesian Risk Modification (BRM) [4] is a standard statistical framework for
de-risking exploration targets using seismic anomalies. When an anomaly is observed
it translates exploration team assumptions into an increase or decrease in the Chance
of Success (COS). A unique advantage of the Bayesian approach is that it pro-
vides a statistical framework for assessing COS along with resources generated by
prospects with multiple targets with seismic anomalies (see [3]). This paper presents
a new prospect-level BRM approach by introducing a parameter that captures the
degree of dependence among seismic anomalies on targets in a prospect. We compare
this new BRM approach with the classical risking framework. BRM fits well into
any graphical model risking framework such as those presented in [1] and [2]. This
allows straightforward Monte Carlo simulation of our risking procedure.

2 Methodology

In what follows, a discrete exploration target is a segment and a prospect is a collection
of segments. Prospect COS is the chance that at least one segment contains hydro-
carbons. A seismic anomaly indicator is defined to be a direct fluid indicator (DFI).
Graphic models are designed to capture dependencies among seismic anomalies.
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A DFI dependence parameter is introduced to measure the degree of dependency
among them.

2.1 A Graphical Model for Exploration Risk Factors

Consider first a single segment with r risk factors. If we assume mutual independence
of risk factors, the segment’s COS is the product of risk factor probabilities. Each
risk factor is represented by a binary random variable. In turn, the segment’s COS
is a random variable whose multiple states represent success along with all possible
failure scenarios (See [1]) whose conditional distribution (conditional probability
table (CPT)) given the risk factors depends of course on the type of risk factors
chosen.

In most geologic risk software (GeoX for example) up to 20 failure scenarios can
be considered. Here we present an example with three risk factors—reservoir pres-
ence (RP), source presence (SP) and trap and seal (TS)—and two failure scenarios.
Bottom nodes represent the segment’s state. Top nodes in Fig. 1 below represent risk
factors, i.e. the presence or absence of hydrocarbons (HC). The absence of either
trap and seal or source, combined with presence of reservoir, leads to a water-filled
reservoir, or brine case. Success of all three risk factors is essential for an oil (success)
case. Figure 1, Left, shows the structure of CPT as described by Table 1. This is the
risk dependency structure for the single risk factor reservoir presence (RP). The risk
dependency group is composed of segments A, B and C.

Segments that belong to the same play or to the same petroleum system may
share geological risk dependencies. It is useful to define a prospect as a group of
segments that share risk and volumetric dependencies and can be developed as a sin-
gle economic project. Risk dependencies among risk factors in different segments
are encoded via an additional node with a shared probability that tunes the degree of
dependency among segments. If the shared probability is equal to 1.0, risk elements
are independent. If the shared probability is equal to the largest of risk factor prob-

RPA SP

HC

A TSA

 

  SHRP

A                                               RPA                             RPB                                                                            RPC

Fig. 1 Left: risk model for a single segment. Top nodes represent main risk factors reservoir presence
(RP), source presence (SP) and trap and seal (TS). Bottom nodes represent a segment’s state, i.e.
the presence or absence of hydrocarbons (HC). On the right: risk dependency structure for a single
risk factor reservoir presence (RP)
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Table 1 Probabilities of success and failure cases

Risk factor P(case)

RP SP TS Oil Brine Shale
1 1 1 1 0 0
0 1 1 0 0 1
1 0 1 0 1 0
0 0 1 0 0 1
1 1 0 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 0 0 0 0 1

abilities, dependencies are maximized. A simple model structure is shown in Fig. 1
Right.

2.2 A Graphical Model for Integrating Seismic Anomalies

Often identification of a seismic anomaly is what leads the exploration team to
consider risking of a specific target. We treat identification of a new anomaly as
information that modifies our original risk estimate. This new information appears
as an added set of variables labeled Direct Fluid Indicators (DFIs). Given a segment,
the conditional distribution of a DFI is assessed by the exploration team (Table 2).
The probabilistic model is shown in Fig. 2.

Consider again multiple segments belonging to a prospect in which several anom-
alies are observed or not. A standard assumption is that DFI anomalies are inde-
pendent given segment states. This assumption is often not valid: geological risk
dependencies influence probabilities of outcome anomaly outcomes. For this reason
we introduce probabilistic dependencies among DFI signals via a parameter k that
captures the degree of dependency among seismic anomalies observed on segments
within a defined DFI dependency group. The range of values of k is [0, 1]. k = 0

Table 2 CPT with the
likelihood for all the success
and failure scenarios

Case P(DF I |case) P(noDF I |case)

Oil 0.8 0.2
Brine 0.3 0.7
Shale 0.5 0.5

Fig. 2 Model that integrates
the information provided from
seismic anomalies. The related
CPT is in Table 2

   HCA DFIA
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Table 3 CPT for the DFI
nodes, with the likelihoods
for success and failure
scenarios integrated and the
correlation parameter k

Case DFIref P(DFI | case, DFIref)

Success Present 0.8 + k∗(1–0.8)
Failure Present 0.3 + k∗(1–0.3)
Success Absent 0.8 – k∗0.8
Failure Absent 0.3 – k∗0.3

corresponds to a group whose seismic anomalies are mutually independent. Seismic
anomalies in a group with k = 1, are, on the other hand, functionally dependent, so
observation of more than one of them provides no additional information. A group
with k = 0.5 means seismic anomaly signals are probabilistically partially depen-
dent. The larger the joint dependence among anomalies, the more these signals will
resemble a reference anomaly indicator.

The parameter k is designed to capture the degree of dependency among seismic
anomalies observed on segments via linear interpolation as shown in Table 3. Given
likelihood values (for example 0.8 for the success case and 0.3 for the failure case)
we weight each scenario (see Table 3).

This particular interpolation scheme does not imply that COS is necessarily a
linear function of state probabilities.

The method can easily be extended to the case of multiple failure scenarios. The
choice of the reference DFI indicator is automatic: the reference node is sampled
uniformly among all the segments that belong to the prospect, in order to avoid

SHSP
SHRP

A RPB RPC

 SPA SPB SPC

 RP

HCA HCB HCC

DFIA DFIB DFIC

Fig. 3 Graphical representation of the whole risking model
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biases. A representation of a typical entire risking model is shown in Fig. 3. In this
example we have two risk factors with a different dependency group for each of them
(source presence in C is independent), and three seismic anomalies. Two of them are
correlated within a DFI dependency group that includes segments A and B.

3 From the Graphical Model to a Complete Monte Carlo
Framework

A main benefit of a model that represents all risking components within the same
graphical model, is that we can compute the probability of each possible scenario and,
as a consequence, Monte Carlo sample efficiently to generate empirical probability
distributions of volumetric parameters and risked and success volume distributions.

4 Summary and Conclusions

In conclusion, the new procedure extends BRM applicability to seismic anomalies in
multiple segment prospects within any graphical model framework. Our procedure
leverages benefits of Bayesian analysis. Computations are transparent and repro-
ducible and easy to interpret and use.

References

1. Martinelli, G., Eidsvik, J., Hauge, R., & Drange-Forland, M. (2011). Bayesian networks for
prospect analysis in the north sea. AAPG Bulletin, 95(8), 1423–1442.

2. Martinelli, G., Eidsvik, J., Hauge, R., & Hokstad K. (2012). Strategies for petroleum exploration
based on bayesian networks: A case study. SPE Paper 159722, SPE ATCE 2012.

3. Stabell, C.B., & Langlie, E. (2008). Handling seismic anomalies on multiple targets. In Back to
Exploration, 2008 CSPG CSEG CWLS Convention.

4. Stabell, C.B., Lunn, S., & Breirem K. (2003). Making effective use of a dfi: A practical bayesian
approach for risking prospects for seismic anomaly information. In SPE HC Economics and
Evaluation Symposium, SPE 82020.



The North American Shale Resource:
Characterization of Spatial and Temporal
Variation in Productivity

Qudsia Ejaz and Francis O’Sullivan

Between 2005 and 2012, U.S. natural gas production from ultra-low permeability
hydrocarbon-prone mud rock formations, often referred to as the “shale resource”
[1], increased 20-fold to more than 570 Mm3 per day, and now accounts for ≈33%
of total U.S. gas output. These developments have had a profound impact on the
U.S. energy sector. Despite it’s rapid rise, the exploitation of the shale resource is
still in it nascency, and knowledge of the precise production mechanisms remains
limited [2]. A consequence of this is that the accurate economic characterization
of the resource remains difficult. This paper examines spatial and temporal trends
in the productivity of contemporary horizontal, hydraulically fractured wells within
and between the major U.S. shale plays.

1 Shale Resource Performance: Intra- and Interplay Variability

The choice of shale well productivity metrics depends on available data. One widely
used metric is the peak production rate.1 It is a natural choice for assessing produc-
tivity since there is a strong correlation between a well’s peak production rate and
its economic performance. Such metrics report total gas production in some fixed
period, hence we refer to them as absolute metrics. As gas production increases in
proportion to a well’s horizontal length, and these lengths vary significantly across
the contemporary well ensemble, we define a corresponding specific metric. Specific
productivity metrics reflect a well’s performance normalized by the length of its hor-
izontal or completed interval. By considering both absolute and specific metrics in

1 Peak production rate refers to the highest recorded monthly output from a well. For the vast
majority of horizontal shale wells, the peak production rate will be recorded during the first or
second month of production.
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Fig. 1 Illustration of vintage-to-vintage and intra-vintage well-to-well variability in both the
absolute and specific productivity of the Barnett shale’s 2005–2011 horizontal well ensemble.
a 2005–2011 vintage absolute peak production rate CDF’s. b 2005–2011 vintage specific peak
production rate CDF’s

juxtaposition we are able to decouple the affect of changing horizontal lengths from
underlying patterns in the shale resources’ productivity.

In this paper we show that there is large intra-shale play variability in horizontal
well absolute peak production rates, with the P80:P20 ratio lying between 2.5–3.5
in all major plays. Further, when disaggregated by vintage, the mean absolute peak
production rate in each play generally increases year-on-year. However, intra-vintage
well-to-well variability does not differ markedly from that of the overall well ensem-
ble. These features, which are illustrated in Fig. 1a are important as they could be
reasonably interpreted as evidence that there is a stochastic aspect to shale resource
productivity, at least within the boundary of the current development paradigm.

The year-on-year increase in the mean absolute peak production rate shown in
Fig. 1a is often presented as evidence of improving well productivity. Such interpre-
tations are naive, primarily because an absolute metric fails to account for changes
in horizontal well lengths over time. In this paper we argue that any assessment of
shale resource productivity using horizontal well data should use specific metrics, as
defined above. To support this, we show that in the contemporary U.S. shale plays,
specific peak production rates are falling. Figure 1b shows the per-vintage specific
peak production rate CDFs for the same ensemble. Interestingly, the figure shows
that the mean specific peak production rate of the 2011 vintage is 29 % lower than in
2005. This result may support the notion that creaming also occurs over the lifetime
of an unconventional resource play.
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2 Spatial Patterns of Well Performance

We explore if there are portions of the active plays where clustering of higher per-
formance wells is statistically significant. We use the Getis-Ord* tests [3] for this
study, though the analysis can also be conducted using Anselin’s index. As well
productivity is reasonably represented by a lognormal distribution [4], we use the
natural logarithm of the specific first 12 month production as the input parameter.
The results of the Getis-Ord* test in the Barnett at the 10 km length scale show the
“core” area where the higher Z -values are clustered. Wells are usually drilled at an
80 acre spacing.2 The results of performing the analysis at a distance of 10 km, i.e. a
circle of area 77630 acres, are shown in Fig. 2. These hot and cold spots persist when
the data is partitioned by vintage, and when we use specific peak gas for a month
or specific peak daily gas. Furthermore, as the neighborhood size of each well is
increased beyond 10 km, e.g. to 100 km, the hot and cold spots persist and grow.
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Fig. 2 Results of the local Getis-Ord* test at a scale of 1 km of all active horizontal gas wells drilled
between 2005–2011 in the Barnett. a Map of Z -scores at 10 km scale. b Histogram of Z -scores at
10 km scale. c QQ-plot of Z -scores at 10 km scale

2 1 acre = 4046.856 m2; so A square of 80 acres will have a side of 570 m.
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Fig. 3 Results of the local Getis-Ord* test at a scale of 1 km of all active horizontal gas wells drilled
between 2005–2011 in the Barnett. a Map of Z -scores at a scale of 1 km. b Histogram of Z -scores
at 1 km scale. c QQ-plot of Z -scores at 10 km scale

However, as shown in Fig. 3, when we decrease the size of the neighborhood of
each well to a circle of radius 1 km (area of approx. 776.5 acres), we find that the
hot and cold spots diminish significantly. Now most of the wells in the play have
Z -scores that suggest that at this scale the observed, spatially indexed values of gas
produced cannot be distinguished from a random pattern. This is seen as a widening
band of yellow between the hot and cold spot in Fig. 3a. Also, the histogram in
Fig. 3b shows all the Z -scores centered on zero with one very small peak at values
below −5 (cold spot) and a small set of values outside 2σ . The QQ plot relative to
a normal distribution in Fig. 3c shows that except for the tails, most of the Z values
are normally distributed. The deviation at the lower end is due to the small peak and
a truncation in observed values, most likely driven by economic considerations of
the operators and producers.

This presence of clustering at large length scales, which diminishes at shorter
scales leads us to the hypothesis that the large scale pattern can be described as a
smooth mean process,μ(t, x). With this mean description, the productivity at a given
location, Y (t, x), is just a fluctuation, ε about the mean value, and is described by
a lognormal distribution: Y (t, x) = μ(t, x)+ ε(t, x). In this paper, we will explore
the validity of such an assertion, with a characterization of the properties of ε(t, x).
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A Pyramid Scheme: Integrating Petroleum
Systems Analysis into Probabilistic Petroleum
Resource Assessments

Kirk G. Osadetz and Zhuoheng Chen

1 Introduction

The identification and appraisal of discovered (reserves and contingent resources)
and undiscovered (prospective resources) petroleum resources are important for val-
uation and policy. The Petroleum Resource Management System (PRMS) provides
reserve and resource valuation categories acceptable to the Security and Exchange
Commission [7]. While the PRMS provides is useful for valuation it does not convey
how technological improvement provides access to a larger resource-base. That is
more effectively conveyed by the “resource pyramid” [6] that because of the power-
law relationship between pyramidal height and volume, suggests that larger resource
volumes occur in less commercial and more challenging reservoirs.

Petroleum supply has been transformed and revitalized by production from low
permeability reservoirs using horizontal drilling and multiple-stage hydraulic frac-
turing [9, 11]. These technologies applied to low permeability reservoirs represent
a major supply augmentation that challenges both reserve valuation methods and
resource assessments. Current discussion focuses on developing an “appropriate
technology” that classifies and values reserves and contingent resources hosted in low
permeability plays. These accumulations are commonly described as “shale-hosted”
with some proposing that value should be recognized even where the drilling has not
occurred, because of the resource “continuity”.
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We confirm that shale-hosted petroleum accumulations are previously discovered
discrete contingent resources. We propose to model contingent resource charac-
teristics of the unconventional accumulations considering petroleum system con-
straints in combination with a geographically based probabilistic resource assess-
ment method [2] to define unconventional pools/fields that augment or modify the
discovery sequence.

2 Shale-Hosted Petroleum Accumulations

Shale is an ambiguous term—it describes a fissile mudstone, but it is also used in
place of group or formation to describe stratigraphic units, as in Colorado Shale
or Bakken Shale. As a result shale gas and shale oil are ambiguous terms refer-
ring to low permeability reservoirs exploited using horizontal drilling and multiple
stage hydraulic fracturing. Shale-hosted resources are often inferred “continuous”.
However, commercial reservoirs are generally not shale and the resources are not
“continuous” [3, 11]. Shale-hosted resources have much well data available and
unconventional fields may include conventional pools and production [4]. Assuming
continuity, many assessors propose “unit-cell” assessment models. This approach
does not consider: spatial reservoir variations resulting from geological processes;
well performance variations that are large compared to the mean; and the many
discrete small pools that cannot be assumed to be part of a continuous accumu-
lation. By treating the accumulations as discrete we infer that pool class volumes
follow a power-law relationship. Using petroleum system observations we constrain,
the smallest pool size classes, unconventional accumulations and the total resource
volume. If the discovered pool sizes are considered uncertain, but inferable, then
probabilistic resource assessment methods. Including discovery sequence methods
can be adapted to assess them.

3 Modeling Discovered Pool Sizes

Discovered conventional resources have, a discovery well, a geographic limit (petro-
leum/water contact), and an initial in-place volume estimate. These data are the key
inputs to a discovery process analysis. The same data for previously non-commercial
shale-hosted accumulations must be inferred to augment or modify the discovery
sequence. Accumulation size “growth”, “multiple imputation” and “modeling” pro-
vide three perspectives for characterizing these accumulations. Growth is an impor-
tant feature of petroleum accumulations [5]. Reinson et al. [8] attempted to employ
drill stem test data to augment the discovery sequence, but they could not associate
pool volume estimates with test results. We also suggest that “growth” is inappro-
priate because there is no basis to infer that “growth” factors from the conven-
tional resources apply to unconventional resources. Nor is multiple imputation [10]
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appropriate for estimating missing accumulation data, both because the previously
non-commercial accumulation data are not missing randomly and because the avail-
able data sources are well-based, whereas the missing data is accumulation-based.
Additionally, the boundaries of unconventional accumulations may include wells or
accumulations thought part of the conventional discovery sequence, but which might
be deleted once unconventional accumulations are recognized.

Modeling appears the best approach to estimating the contingent resource outside
conventional accumulations. We propose the following inference method:

1. The general extent of accumulations is inferred using a geographical-based model
[2], constrained by available data resulting in multiple equally probable petroleum
distribution simulations. The method can be modified using wire-line log data, to
include (1) discovered and developed conventional accumulations, together with
wells indicating (2) presence for, or (3) lack of contingent resources.

2. Accumulation boundaries and size can be constrained: in the dip direction, by
reservoir physical conditions and material properties such that the petroleum
column pressure neither disrupts the top seal nor exceeds the trapping mechanism;
and in the strike direction, from stratigraphic and lithologic constraints from
conventional pools and stratigraphic analysis.

3. Additional constraints on accumulation boundaries and sizes are available from
petroleum system data, such as extractable petroleum content. Where reliable
pressure data indicates either a petroleum/water contact or a continuous petroleum
column this can refine descriptions. Unfortunately data availability and quality is
limited.

4. Potential accumulation characteristics are then estimated for each equally proba-
ble resource realization of the geographically based assessment. The realizations
can be grouped by discovery well location and used to augment or modify the
accumulation discovery history sequence.

4 Discussion

The advantage of the method proposed is that it uses petroleum system character-
istics to infer discrete accumulations in unconventional reservoirs. Buoyancy from
density differences between water and petroleum is a source of reservoir energy.
By considering potential reservoir pressure the method indicates the best prospects
for commercial development. This cannot be obtained from unit-cell “continuous”
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resource appraisal, as the inferred continuity does not extend to reservoir pressure if
the seals are to remain un-fractured. The inferred accumulations augment or modify
the discovery history, so that a discovery process analysis can vindicate the resource
predictions. We hope to present an example application at the meeting.

5 Conclusions

Pressure data suggests that shale-hosted petroleum resources are not continuous and
there are alternatives to “unit-cell” based resource assessment methods. Probabilistic
methods can be employed to infer contingent resource volumes and accumulation
boundaries that are additionally constrained by petroleum system information. If
these inferred accumulations are used to update the discovery sequence the resource
assessment can be vindicated using a discovery process analysis.
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Application of a Least Square Non-parametric
Discovery Process Model to Colorado Group
Mixed Conventional and Unconventional Oil
Plays, Western Canada Sedimentary Basin

Zhuoheng Chen, Kirk G.Osadetz and Gemai Chen

1 Introduction

“Halo” shale oils of the Western Canada Sedimentary Basin (WCSB) are uncon-
ventional “shale-hosted” oil resources [1] that differ from “sandwich” style shale
oil found in the Middle Member of the Bakken Formation. “Halo oil” occurs either
at the fringe of or between existing conventional discrete sandstone reservoirs and
is commonly associated with conventional oil and gas pools in stratigraphic traps.
These reservoirs are “tight” with porosity and permeability characteristics transitional
between those of conventional pools in sandstones and true shales (i.e., mudrocks).
Exploration and production in the WCSB have focused on high porosity and perme-
ability conventional reservoirs during the last century. With rapid decline of conven-
tional oil supply, halo oil plays have become a focus for new North American reserve
growth due to application of horizontal drilling coupled with advanced multi-stage
hydraulic fracturing. Halo oil reservoirs in the upper Cretaceous Colorado Group
are among the most attractive exploration targets in the WCSB in recent years. A
mixture of halo reservoirs with conventional reservoirs geographically and vertically
makes resource assessment of the halo oil play a challenge.

In a recent methodological study, the Geological Survey of Canada developed a
least squares non-parametric discovery process model, which is in principle suitable
for assessing petroleum resource potential in a mixed play comprising petroleum
accumulations with distinct size characteristics. The non-parametric model makes
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no assumptions about the shape of a parent pool size distribution, and so permits
flexibility in pool size distribution shape. This resolves the problem of how to handle
multi-modal distributions arising from a set of petroleum accumulations composed
of mixed populations that could come from both conventional and unconventional
reservoirs within the same geographically restricted stratigraphic unit. It allows visu-
alization of the goodness-of-fit between predicted and observed “creaming curves”
and produces a parameter map that provides visual guidance for assessors enabling
the selection among alternative parameter sets in order to generate assessments that
are more consistent with available geological and geophysical constraints. Derivation
of the methodology and its application to examples of single (uni-modal) population
petroleum plays are described by Chen et al. [2]. The study presented here empha-
sizes application of the non-parametric model to a mixed petroleum play comprising
conventional oil pools and halo oil accumulations in the Cardium Formation of the
Colorado Group in WCSB.

2 Geological Setting and Data

The middle Cretaceous Colorado Group of the Western Canadian Sedimentary Basin
(WCSB) consists predominantly of mudstone deposited during major marine inunda-
tions interspersed with relatively thin sandstone, siltstone and conglomerate beds [3].
The Colorado Group petroleum system contains a large portion of the light-medium
oil and natural gas reserves within the Middle Jurassic to Cretaceous foreland basin
succession in the WCSB. It is a supercharged, high efficiency, high impedance petro-
leum system. Where it is mature, source rocks of interspersed marine mudstone gen-
erate large volumes of crude oil. Crude oil and natural gas reserves are found in
discrete conventional pools of high porosity-permeable sandstone reservoirs as well
as in continuous extremely low porosity-permeability “tight” or “shale” reservoirs
- so called “halo reservoirs”. Since the first multi-stage fracturing horizontal well
in the Cardium Formation of Colorado Group in 2007, a few hundred horizontal
wells coupled with multi-stage fracturing were completed, some targeted at halo oil
reservoirs at the end of 2011. To assess Cardium Formation oil resource potential,
we define oil pools in conventional reservoirs and unconventional tight reservoirs in
it as belonging to a single play with areal extent limited by stratigraphy and source
rock maturity.

The discovery sequence comprises conventional pools recorded in ERCB’s sta-
tistical data base [4] and a Cardium Formation ultimate halo oil reserve estimate
(EURs). In this study, a conventional pool is defined as an oil accumulation with a
common oil/water contact sharing the same reservoir pressure system, while a “halo
pool” is defined by the drainage volume surrounding a horizontal well, whose bound-
ary is determined by the envelope of the stimulated reservoir volume (SRV) created
by hydraulic fracturing around a horizontal well. The “pool size” of a single halo oil
pool is the EUR derived from extrapolation of production rates from the horizontal
well. We have 378 conventional pools from ERCB’s statistics [4] and 285 halo oil
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pools in tight reservoirs estimated from production data with production longer than
12 months. Total discovered oil in-place is 1, 616.3 × 106 m3 in the 664 pools of
the Cardium Formation. Assuming 10 % recovery, the total reserve in place of the
285 halo pools is 83.43 × 106 m3, contributing about 5 % to the total discovered oil
in-place.

3 Results

A mixture of conventional and unconventional pools in ascending order of time of
discovery defines a time series as input to the non-parametric model (Fig. 1a). Uncon-
ventional halo oil pools from tight reservoirs show distinct size characteristics as
compared with the conventional pools in Fig. 1a. Application of the least square non-
parametric discovery process model to the Cardium mixed oil play results in a point
estimate of 4, 111.9 × 106 m3total of oil in-place. The creaming curve in Fig. 1b com-
pares discovered cumulative reserve growth with the model prediction. The model
predicts a large number of small pools (>67,000), most <0.1 × 106 m3, presumably
representing single well defined pools in tight reservoirs (Fig. 1c). The estimated
total oil in-place resource is comparable to a recent estimate of 4, 600 × 106 m3 of
total oil in-place derived from a geological model-based simulation approach [5]. It
is likely that the non-parametric discovery process method provides a conservative
estimate of total oil resource in-place because it assigns weight only to observed (dis-
covered) pool sizes. An undiscovered pool with size either greater than the largest or
smaller than the smallest discovery is not predicted, a drawback of the non-parametric
approach.

Acknowledgments The authors thank Prof. Gordon Kaufman of MIT and Peter Hannigan of GSC
for their useful comments. This is ESS contribution # 20130042.

References

1. Clarkson, C. R., & Pedersen, P. K. (2011). Production analysis of Western Canadian uncon-
ventional light oil plays. CSUG/SPE Paper 149005.

2. Chen, G., Chen, Z., & Tzeng P. (2010). A non-parametric discovery process model – A
least squares approach. Geological Survey of Canada Open File # 6253 (pp. 9, 10 Figures, 3
appendixes).

3. Creaney, S., Allan, J., Cole, K. S., Fowler, M. G., Brooks, P. W., Osadetz, K. G., et al. (1994).
Petroleum Generation and Migration in the Western Canada Sedimentary Basin. In G. D.
Mossop & I. Shetsen (Eds.), Geological Atlas of the Western Canada Sedimentary Basin (pp.
455–468). Calgary: Canadian Society of Petroleum Geologists and Alberta Research Council.

4. ERCB. ST98–2009. Alberta’s energy reserves 2010 and supply/demand outlook 2010–
2020(EB/OL). http://www.ercb.ca/docs/products/STs/st98_current.pdf

5. Chen, Z., & Osadetz, K.G. (2013) An assessment of tight oil resource potential in the Upper
Cretaceous Cardium Formation, Western Canada Sedimentary Basin, Petroleum exploration
and development, (in press)

http://www.ercb.ca/docs/products/STs/st98_current.pdf


A Further Investigation of Local Nonparametric
Estimation Techniques in Shale Gas Resource
Assessment

Emil D. Attanasi, Timothy C. Coburn and Philip A. Freeman

1 Introduction

As the industry’s development strategies for shale gas resources continue to evolve,
operators struggle to find ways to more precisely identify the drilling sites of high-
est productivity. So far, there is still considerable diversity and no universally rec-
ommended analytical procedures to remove the risks associated with drilling site
selection. Operators may rely on ensembles of statistical procedures that can use the
available data to predict potential productivity of undrilled sites.

This paper examines the application of one such set of tools to two mature shale
gas plays in different geologic settings. The analysis uses location and expected
ultimate recovery (EUR) of well and derived cell data from the Devonian Antrim
Shale of the Michigan Basin, Michigan and the Mississippian Barnet Shale of the
Fort Worth Basin, Texas to evaluate models that may be used to predict EURs at
undrilled sites.

2 Local Nonparametric Predictive Models

Local nonparametric regression is a pragmatic approach to predictive modeling when
the true distribution of some characteristic or phenomenon is not well understood.
Such models can take many forms [1]. In this paper local nonparametric regression
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models are used to predict remaining shale gas resources in undrilled areas, where
the predictions are weighted averages of the values of estimated ultimate recovery
(EUR) associated with drilled “neighboring” sites. The components of the local
nonparametric regression models consist of a weighting scheme (kernel) and the
number of nearest neighboring points used in the calculation. The analytical form of
the weighting schemes and the number of neighboring sites are generally chosen by
cross-validation [1]. Analytic forms that have been tested include inverse distance,
inverse distance squared and Stone regressions (see Table 1 in [2]); and sets of six,
nine, and twelve neighboring points have been tried.

3 Shale Gas Study Areas

Two different shale gas study areas have been investigated: the Devonian Antrim
Shale of the Michigan Basin and the Mississippian Barnett Shale of the Fort Worth
Basin. The Antrim is relatively shallow and considered by some to have generally
low productivity. The gas is considered to be biogenic in origin and the presence of
natural fractures is crucial to its production. A recent review of some of the geological
literature pertinent to the Antrim is given in [3].

The Barnett is deeper in comparison to the Antrim and the gas is thermogenic in
origin. Natural fractures do not appear to be essential for production, and in some
cases the presence of such fractures reduces well performance. On the other hand,
geochemistry does appear to play a central role in reservoir performance.

.

4 Data

The Devonian Antrim study area encompassed Otsego and Montmorency Counties
in Michigan. There were 5,890 producing and dry Devonian Antrim Shale wells
(all vertical) in these counties. The wells were collected into 4,391 80-acre cells:
3,158 single-well cells, 1,013 two-well cells, 180 three-well cells and 40 cells having
more than three wells. The 80-acre cell size was consistent with state well spacing
regulations. The cell EURs were simply the sum of the EURs of the wells in each
cell ([1] discusses the determination of well EURs). The maximum EUR per cell was
2.65 Bcf and the expected total recovery from all the drilled cells was 2.23 Tcf [3].

The Barnett data consisting of 1,385 wells (all vertical or deviated but not hori-
zontal) were provided by an owner operator. The actual EURs (Bcf) were masked by
a scaling factor and relative well locations were provided instead of actual locations.
The wells were collected into 1,237 40-acre cells: 1,096 single-well cells and 134
two well-cells. The 40-acre cell size was consistent with recommended spacing, and
maximum cell recovery was 6.8 EUR units.



A Further Investigation of Local Nonparametric Estimation 623

5 Estimation Procedure and Performance

Selection of the best predictive model is based on a variation of the cross-validation
procedures described in Ref. [2]. A random sample of 40 % of the observations
was used as the training sample with the remaining 60 % used as the test sample.
Predictions based on each of models were recorded along with statistics that indi-
cate predictive performance. This procedure was repeated 101 times and the model
chosen for further study was the one with the best predictive performance in terms
of minimum root mean square predictive error (rmspe). For both the Antrim and
Barnett data, the inverse distance model using twelve nearest neighbor points had
the minimum rmspe.

The predictive accuracy of the procedure can be partially assessed from the cross-
validation step. The average cell value in the Antrim was 0.508 Bcf and the average
cell value in the Barnett was 1.674 (scaled Bcf). For the 101 test samples, the errors
tended to average out to less than 3 % of the average cell value in both cases.
The absolute values of the out-of-training-sample point prediction errors were also
retained over the 101 iterations and amounted to 0.206 Bcf for Antrim cells and
0.658 (scaled Bcf) for Barnett cells. In summary, while the out-of-sample point
prediction errors are not trivial, at many of the locations the bias in the total volumes
is remarkably small.

6 Drill Site Selection and Extension to Horizontal Wells

Drill site selection is a logical application that follows from the estimation procedure
described here. Three different decision strategies related to the siting of the next
500 wells were considered to illustrate the benefits of the approach. To start, 101
training sets of randomly selected cells were chosen to provide the ‘observed data’
to which these procedures could be applied. Each Antrim training set contained 439
observations and each Barnett training set contained 124 observations (in each case,
10 % of total cells).

Assuming a totally homogeneous and ubiquitous resource, one obvious strategy
would be to avoid any model predictions altogether and drill in random order. This
strategy (random drilling) can be operationalized by simply taking 10 random sam-
ples of 50 undrilled cells without replacement from the ‘observed data’ pool. Strategy
2 (static predictions) is to rank the set of undrilled sites on the basis of their model-
predicted values. This strategy is invoked by selecting ten sets of 50 undrilled cells
according to the size of their predicted values.

A third strategy (updated prediction) involves choosing a first set of 50 undrilled
cells according to the size of their predicted values (Step 1, as in Strategy 2). For
the remaining cells, revised predicted values are calculated (Step 2) by applying the
algorithm to a combined file containing the first 50 values (Step 1 predictions) plus
the original values in the training set, yielding predictions that are ‘updated.’ The next
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Fig. 1 Average cumulative EUR identified with three site selection strategies using increments of
50 cells: a random drilling, b static prediction, and c updated prediction. All results are based on the
inverse-distance-squared / 12-nearest-neighbor-prediction algorithm, with a training set consisting
of 10 % of total cells. For the Antrim (lower set), EUR is stated in Bcf. For the Barnett (higher set),
EUR is a scaled value of Bcf

50 drilling locations are then chosen (Step 3) after rank ordering these recalculated
predictions. This is repeated for 10 sets of 50 cells.

The three strategies were implemented on each of the 101 training samples.
Figure 1 shows that more gas is found with static or updated prediction than with
random drilling. The difference in results between the static and update strategies
declines as the training set increases to 25 % of total observations. The difference
grows when the training set represents only 5 % of the total.

The application of these tools may be extended to horizontal wells by judicious
selection of cell sizes. EURs assigned to horizontal wells are shared by multiple
contiguous cells, the allocation of which is accomplished in the gridding and data
preparation stages. Model structures remain unchanged.
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Fractal Analysis of AVO Seismic Attributes
for Oil/Water Contact Identification

Sid-Ali Ouadfeul and Leila Aliouane

1 Introduction

The fractal analysis has been widely used for reservoir characterization, we cite for
example the paper of Ouadfeul and Aliouane [1], it shows an application of the
Wavelet-based multifractal analysis called the wavelet transform modulus maxima
lines (WTMM) for lithofacies segmentation from well-logs data. Ouadfeul et al. [2]
have published a chapter that contains many applications of the fractal analysis in
exploration geophysics. In seismic field, the fractal analysis has been widely used.
Ouadfeul and Aliouane [3] have analyzed the 3D Amplitude Versus Offset (AVO)
data for heterogeneities analysis. Ouadfeul et al. [4] have used the fractal analysis
for facies identification from 2D seismic data.

In this paper, we show that the fractal analysis can be used for fluid contact
identification from seismic attributes. We start the paper by an introduction, after
that we show the processing algorithm, the proposed idea is applied then to the
synthetic AVO seismic data of a well located in the Algerian Sahara. We finalize the
paper by results interpretation and conclusion.

2 Methodology

The proposed method is based on the estimation of the local Hölder exponent at
maxima of the modulus of the continuous wavelet transform. Let us consider a
signal S(t), the continuous wavelet transform CWT(a, b) is defined by:
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CW T (a, b) =
∫ +∞

−∞
S(t)Ø∗

(
t − b

a

)
dt

where a> 0 is the scale and b is a translation.
Ø is the analyzing wavelet, it must check the admissibility condition:

∫ +∞

−∞
Ø(t)dt = 0

For some requirements, the analyzing wavelet should have a sufficient number of
vanishing moments; it means that Ø is orthogonal at any polynomial of N−1 degree.

The local Hölder exponent (h) is related by a power law to the modulus of the
continuous wavelet transform for low scales.

|CW T (a, b)| = ah

3 Application to Real Data

The proposed method is applied to the seismic synthetic AVO attributes of the Well
OMP 80 located in the Algerian Sahara. The Oil/Water fluid contact is confirmed
by the deep resistivity well-log. Synthetic seismic AVO attributes are firstly calcu-
lated using the Velocity of the Primary wave (Vp), Velocity of the Shear wave (Vs)
and density logs (Rhob). These logs are presented in Fig. 1a, b and c respectively.
The depth interval (2410 and 2500 m) is processed since it is the reservoir depth
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Fig. 1 Sonic (a,b) and density (c) logs of the well OMP80 in the depth interval (3410 and 3500 m)
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Fig. 2 Intercept, Gradient and Fluid Factor AVO synthetic seismic attributes

Fig. 3 Local Hölder exponents of the AVO attributes: a intercept, b gradient, c fluid factor

interval and it contains the fluid Oil/Water contact. The Ricker wavelet is used with
a listening time of 12s. Figure 2 presents the Intercept, the Gradient and the Fluid
Factor attributes. Local Hölder exponents estimated at maxima of the modulus of the
continuous wavelet transform using linear fit of logarithm the modulus of the CWT
versus logarithm the scales. Obtained results are presented in Fig. 3.
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Fig. 4 Raw well-logs data of Well OMP80: 1, Depth; 2, Gamma ray; 3, Deep resistivity; 4, Com-
pression and shear waves slowness; 5, Density and neutron

4 Results Interpretation and Conclusion

Oil/Water contact is confirmed at the depth Z = 3460 m by the Deep resistivity
(Rt) log (see Fig. 4), Gamma ray log clearly show that the main target is a sandy
reservoir while Density and neutron porosity logs show the absence of Gaz. Rt log
shows the presence of oil/water fluid contact. Estimated local Hölder exponents of the
Intercept and the Fluid Factor AVO attribute show an increase of this exponent at the
Depth Z = 3460 m, however no variation of the local Hölder exponent is observed
for the Gradient AVO attribute. Obtained results show that the fractal analysis of
seismic attributes can be greatly used to improve detection of fluid accumulations
from surface seismic data.
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Upscaling on Anelastic Vertically Heterogeneous
Reservoirs

Alexey Stovas

1 Introduction

When considering numerical acoustic or elastic wave propagation in media
containing small heterogeneities with respect to the minimum wavelength of the
wavefield, being able to upscale physical properties (or homogenize them) is valu-
able for mainly two reasons: first, replacing the original discontinuous reservoir unit
by a smooth and more simple one; second, it helps to understand what properties
of a medium are really “seen” by the wavefield propagating through, which is an
important aspect in an inverse problem approach. Upscaling means to replace of a
heterogeneous volume with a homogeneous volume having effectively equivalent
elastic or anelastic properties. Heterogeneity occurs at many scales, from pore scale
to reservoir scale. Usually, the upscaling is related to the effective medium theory. To
upscale the well log data measured at sonic frequencies is assumed that the medium
is layered with layer thickness given by the logging step (commonly, 0.15 m). The
standard method for upscaling was proposed by Backus [1] that gives the exact solu-
tion to compute the effective properties for a layered medium using assumptions
that all constituents of the medium are linearly elastic and isotropic and there is no
source of energy dissipation because of friction or viscosity. In this paper, I consider
the Backus averaging method and the high frequency (HF) method to compute the
effective properties from anelastic finely layered media. I propose the method to
upscale the quality factor properties in zero-frequency and infinite-frequency limits.
The proposed method is illustrated on the real well log data from the North Sea.
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Fig. 1 Intrinsic and effective (Backus) quality factors inverse computed for P- (left) and S-wave
(right) from anelastic well-log data

2 Low-Frequency Upscaling in a Finely Layered Medium

To perform Backus averaging for an anelastic isotropic medium with constant values
for P- and S-wave quality factors, Q P and QS , I need to link these factors to the
stiffness coefficients ci j . First, I reduce a VTI medium (transversely isotropic medium
with a vertical symmetry axis) to an isotropic medium by setting

c11 = c33, c13 = c33 − 2c44. (1)

Therefore, the Backus averaging properties A j , j = 1, 4, are reduced to

A1 = 4
〈

c44(c33−c44)
c33

〉
, A2 =

〈
1− 2 c44

c33

〉

A3 =
〈

1
c33

〉
, A4 =

〈
1

c44

〉
, ρe f = 〈ρ〉

. (2)

By using the definition of the quality factor from Carcione [2] for a standard linear
solid model

1

Q
= ImV 2

ReV 2 , (3)

the complex stiffness coefficients c̄33 and c̄44 can be defined as

c̄33 = c33

(
1+ i

Q P

)
, c̄44 = c44

(
1+ i

QS

)
, (4)
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where i = √−1. It might be more appropriate for frequency-independent treatment
of Q to choose 1/2Q = ImV 2/ReV 2 [14] instead of Eq. (3). In this case, we expect
the smaller effect of attenuation.

Substituting (4) into (2) and computing the effective medium parameters results in
complex vertical P- and S-wave velocities and anisotropy parameters. The effective
quality factors can be defined as

1

Q̃ P
=

〈
Q P

c33
(
1+Q2

P

)
〉

〈
Q2

P
c33

(
1+Q2

P

)
〉 ,

1

Q̃S
=

〈
QS

c44
(
1+Q2

S

)
〉

〈
Q2

S
c44

(
1+Q2

S

)
〉 . (5)

3 Well-Log Example

To analyze the effect of intrinsic anelasticity, I choose the real well-log dataset from
the North Sea. Figure 1 shows the intrinsic and effective Backus values for 1/Q P and
1/QS . The strong contrasts in the inverse quality factors nicely fit with the largest
values for effective anelastic properties. The difference in Q inverse between these
two limits is illustrated in Fig. 2. The larger difference is, the stronger contrast in
elastic parameters is related to a given formation. The importance of using intrinsic
anelasticity depends on the particular problem to be solved with a blocked effective
model.
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Fig. 2 Difference between the quality factors inverse from high- and low-frequency limits computed
from anelastic version of well-log data
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4 Conclusions

I developed the upscaling procedure for finely layered anelastic media and derived
equations for computing of effective quality factor for P- and S-waves both in zero-
frequency and infinite-frequency limits. The derived equations are applied for the
real well-log data from the North Sea. The formations with strong vertical hetero-
geneity produce the largest effective attenuation. The proposed method can be used
in computation of effective properties in heterogeneous anelastic reservoirs.
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Lithofacies Prediction from Well-Logs Data
Using Hybrid Neural Network Model: A Case
Study from Algerian Sahara

Sid-Ali Ouadfeul and Leila Aliouane

1 Introduction

The Artificial Neural Network (ANN) has been largely used for reservoir
characterization from well-logs data. Ouadfeul and Aliouane [2] have combined
between the Self-Organizing Map (SOM) and the Multilayer Perceptron (MLP) for
better lithofacies classification from well-logs data. Obtained results show that the
combined ANN machines are able to give more precise lithology. Ouadfeul et al.
[3] have published a case study showing an application of the SOM for lithofacies
classification from well-log data in the Trias Argilo-Gréseux. In this article, we used
hybrid neural network model for lithofacies classification from well-logs data, the
whole process will be applied to data of two wells located in Algerian Sahara.

2 The Self-organizing Map

The Self-organizing Map (SOM) is a kind of a neural network invented by the profes-
sor Teuvo Kohonen [1], it is constituted of two layers (Fig. 1). The SOM is based on
an unsupervised learning based on the Euclidien distance and a neighborhood func-
tion, this function is generally given as a Gaussian. For better information about the
training algorithm of the SOM machines, we invite readers to the paper of Kohonen
[1] or the paper of Ouadfeul et al. [3].
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Fig. 1 Graphic schematization of the self-organizing map

Fig. 2 An example of MLP with one hidden layer

3 The Multilayer Perceptron

The Multilayer Perceptron (MLP) is a kind of network based on a supervised learning,
in this case we need a desired output for each input vector. The MLP is constituted
of input and output layers and N hidden layers. It has been shown that one hidden
layer is sufficient to resolve many scientific problems (see Fig. 2).

4 The Processing Algorithm

The proposed idea is based on the training of the MLP using the output of the SOM,
the first step consists of training the Kohonen’s map using the raw well-logs data as
input. Well-logs data to be used are: The natural gamma ray (Gr), Slowness of the
P wave (DT), neutron porosity (NPHI), Bulk density (RHOB) and the photoelectric
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Raw Well-logs data as an input of the SOM

Training of the SOM in an Unsupervised learning mode (Desired 
outputs are not required)

Self-Organizing Map (SOM) indexation
At this step the core rocks information (lithology) is required

Calculated Weighs of connection will be used for generalization of 
lithology for the full depth interval (where core rocks information does not 

exist)

Training of the MLP machine using the couple (raw well-logs data, 
Output of the SOM)

The weights of connection of the MLP will be used for lithofacies 
classification from well-logs data for wells that are located in the 

neighborhood of the training well

Fig. 3 Flow chart of the proposed processing algorithm of well-logs data

absorption coefficient (Pe). The obtained weights of connection by the training of
the SOM will be used for propagation of the input and generalization of the lithology

Fig. 4 Raw well-logs data of A1 and A2 wells: 2 Gamma ray (Gr) 3 Slowness of the P wave (DT)
4 Bulk Density (RHOB) 5 Neutron Porosity (Nphi) 6 Photoelectric absorption coefficient (Pe)
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Fig. 5 Lithofacies classification in well A1 using: 1 Gama ray 2 SOM 3 SOM and MLP

for the full depth interval. The couple raw well-logs data, generalized lithology will
be used for the training of the MLP. Figure 3 shows a detailed flow chart of the
processing algorithm.

5 Application to Real Data

The proposed combination is applied to the raw well-logs data of two wells A1 and
A2 located in Hassi Messaoud field (Algerian Sahara). Gamma ray and Slowness
logs clearly shows that the main interval target is constituted of shale and sandstone
intercalations. Four classes will be used for the SOM indexation which are: (1)
Sandstone (2) Shaley Sandstone (3) Sandy Shale (4) Shale (Fig. 4).

6 Results, Interpretation and Conclusion

Application to wells A1 and A2 is down, well A1 is used as a pilot. At this step the
weights of connection for the SOM and the hybrid MLP SOM are calculated. Figure 5
show four tracks, the first one is the depth, the second is the classification based only
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Fig. 6 Lithofacies classification in well A2 using: 1 Gama ray 2 SOM 3 SOM and MLP

on the Gamma ray log, the third track is the classification after the propagation
of the input (raw well-logs data) in the SOM machine, while the last one is the
lithofacies model after propagation in the MLP based on the output of the SOM as
a desired output. To check the efficiency of each neural model we have generalized
each of them for the second well A2, at this step we use the weights of connection
calculated for each machine in the training step in A1 well to propagate the raw
well-logs data of the second well. Obtained results clearly show that the MLP based
on the SOM output as a desired output is able to give better results and a lithofacies
model which is not very far from the lithofacies model based on the natural gamma
ray log. By consequence, the proposed hybrid model can greatly enhance reservoir
characterization and improve oil recovery (Fig. 6).



638 S.-A. Ouadfeul and L. Aliouane

References

1. Kohonen, T. (1998). Self organization and associative memory springer series in information
sciences. 2nd ed. Berlin: Springer.

2. Ouadfeul, S., & Aliouane, L. (2012). Lithofacies classification using the multilayer perceptron
and the self-organizing neural networks. Lecture Notes in Computer Science, Vol. 7667, pp.
737–744. doi:10.1007/978-3-642-34500-5_87

3. Ouadfeul, S., Aliouane, L., Hamoudi, M., & Boudella, A. (2012). Lithofacies recognition from
well-logs data using the self-organizing map neural network. A case study from the Berkine
basin (Algeria), presented in EGU 2012.

http://dx.doi.org/10.1007/978-3-642-34500-5_{}87


Stochastic Simulation of the Morphology
of Fluvial Sand Channel Reservoirs

Alexandra Kuznetsova, José A. Almeida and Paulo Legoinha

1 Introduction

The characterization of fluvial-type oil reservoirs using stochastic simulation
algorithms [1] is a complex problem, because the morphologies of the channels
are complex and are not fully characterized by the two-point statistics of geosta-
tistical models [2, 3]. Among these morphological features, for example, are delta
morphologies and meander-form floodplains where the channels form a complex 3D
pattern of sediment accumulation representing the former waterway system.

To generate realistic 3D morphological models for fluvial sand channels reser-
voirs, the proposed methodology combines object and geostatistical simulation mod-
els to generate a set of equally probable scenarios. Those scenarios can be filled with
petrophysical properties in a second step [4].

The workflow of the proposed methodology involves the following steps: (a)
Construct histograms of the length, width, and height of sand channels and a 2D
image of local orientations; (b) Simulate widths and heights of the hypothetical
sand channels along their paths; (c) Generate random skeletons of the hypothetical
channels and associate them with the width and height dimensions generated in the
previous step (Boolean vector model); (d) Convert the Boolean vector model into a
raster model and link regions of uncertainty according to distance to the skeletons;
and (e) Using the method of Probability Field Simulation (PFS) [5], condition the
Boolean model with a variogram and resolve the regions of uncertainty. The outputs
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are sets of binary images (channel—sand/not channel—shale). A synthetic case study
for demonstrative purposes is presented in the next section.

2 Case Study

2.1 Initial Data and Stochastic Simulation of Width and Height

Reliable statistical starting data are a pre-requisite for the successful probabilistic
modeling of fluvial reservoirs. Starting data for the proposed morphology consist
of: (a) A histogram of lengths; (b) A histograms of widths (Fig. 1 Left) and heights
and a ratio or a correlation coefficient of width–height; (c) An image of the local
orientation angles (azimuths, 2D and dips, 3D) (Fig. 1 Right). In real case studies, this
information should be provided by geological expertise, seismic or other sources.

The first processing step consists of the simulation of the widths and heights of
the channels. This was performed here using conditional simulation (DSS) with the
histograms of width and height, and a correlation coefficient of 0.7 between the two
variables. Several realizations of 250 channels were simulated (Fig. 2 shows one
example, in which each column of data represents a hypothetical channel).

2.2 Boolean Model of the Channels

The simulation of channels begins with a Boolean model. Again, several realizations
of 250 skeletons/channels were simulated. After the simulation of the skeletons,
width and height dimensions were applied and three regions (sand, transition, and

Fig. 1 Left cumulative histogram of channel widths. Right local orientation angles of the channels.
Flow direction angles are calculated from a digital terrain model
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Fig. 2 Left simulated values of widths for 250 channels. Right simulated values of heights for 250
channels. A spherical variogram model with a range of 1200 m was used

Fig. 3 Left One simulation of the skeletons for 250 channels. Right The corresponding three-region
block model (blue—sand; red—transition sand/shale)

shale) were generated. Figure 3 illustrates one image of the skeletons and the corre-
sponding block model.

2.3 Post-processing Using Probability Field Simulation

In a final step, PFS was applied for the simulation of shale/sand geometry conditioned
to the previous object model regions (Fig. 3 Right) and a table of a priori probabilities
of each region being sand/shale (Table 1) via the simulated probability maps with a
uniform distribution, following the orientation angles of Fig. 1 Right.

The theoretical model of variogram used in PFS was defined in accordance with
the proposed channel sizes: a spherical model with 3000 m in the direction of the
channels, 200 m in the horizontal direction perpendicular to the channels, and 10 m
in the vertical dimension. Figure 4 shows the final image of the channels.
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Table 1 A priori probabilities of each region being sand/shale

Object model region Sand Shale

I-Shale 0.02 0.98
II-Transition 0.50 0.50
III-Sand 0.98 0.02

Fig. 4 Left one final simulation of the channels. Right intermediate cross-section view illustrating
the distribution of channels and their half-ellipse shapes

3 Final Remarks

The obtained results for simulated scenarios of channels shows advantages over
other methods: (a) The Boolean model imposes statistics of channel shape (half-
ellipse section), size, and local orientation in a very efficient way; (b) Post-processing
using PFS transforms the previous morphology obtained after the first stage of the
method according to a variogram model, thereby adding realism. These morpholog-
ical images, in a second step, can be filled with petrophysical property values, such
as porosity and permeability.
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Sorting Reservoir Models According to Flow
Criteria: A Methodology, Using Fast Marching
Methods and Multi-Dimensional Scaling

Gaétan Bardy and Pierre Biver

1 Introduction

With the development of powerful computers, it is become very easy to generate a
large number of reservoir models (named realizations), using geostatistic algorithms
[1]. The aim is to assess the uncertainty on the flow performance. But as the models
become larger and complex, only a small number of realizations can be simulated
dynamically. In practice, due to the flow simulation computing time, only a base
case, sometime a low case and high case are simulated.

The principle of the methodology we propose is to use an alternative to full physics
flow simulator: the proxies. They are faster because they use simplified physics and
provide approached results. After that we compute the distance between all models,
directly on the response curves or on a selected part of them. Using these distances,
we propose to perform Multi-Dimensional Scaling and kernel clustering to select a
small number of models which are representative of the entire set. At the end, we
perform reference flow simulation on the selected realizations and some statistical
analysis of the results to get quantiles (Q10, Q50 and Q90).

We illustrate our methodology on a real field case composed of a 130 × 100 × 61
grid, 7 wells (3 injectors and 4 producers) and a set of 200 different models.
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2 Approximation of the Flow Simulation

A lot of proxies are envisioned to approximate flow simulation. We will use two
different ones: a proxy based on front propagation according to a connectivity cutoff
and another proxy based on front propagation using Fast Marching Methods.

2.1 Connectivity Proxy

The connectivity proxy is very simple. A “front” is propagated from well perforations
into all grid cells linked to the well with permeability above a given value [2]. The
front starts with a numerical value equals to 0 and increments of 1 cell by cell. At the
end, we are able to plot a curve of the hydrocarbon volume repartition as a function
of the front index value. It is also possible to delay some wells by imposing their
start value, which allows having different production phases.

2.2 Fast Marching Methods Proxy

The second proxy is based on the Fast Marching Methods (FMM) first described by
J. A. Sethian [3]. FMM is used to solve the eikonal equation that describes the front
propagation travel time.

In our approach, as in [4], we propagate a front from well perforation to the entire
reservoir and we choose a pseudo-velocity equal to:

v = (k × ρ × g)/(Ø × ν) (1)

where k is the permeability, ρ the fluid density, g the gravity acceleration, Ø the
porosity and ν the fluid viscosity. After computation we got some curves of cell
volume investigated by the front as function of a pseudo-time.

3 Model Selection

After getting all proxy simulation results, we propose to select a small number of
models that are representatives of the initial set. For that we will use the workflow
proposed by Scheidt [5].
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Fig. 1 a Cumulative curves get with the connectivity to well proxy for the 200 models. Ordinate
represent the cumulative oil connected volume and abscise, the front value. b Result of the clustering:
we choose 10 clusters and get their centers. c Eclipse� simulations for the 200 models (gray curves)
and the 10 selected (red curves). d Comparison of the quantiles calculated with the original set of
200 Eclipse� models (dot lines) and quantiles computed on the 10 selected models (red lines)

3.1 Distance Computation and Multi-Dimensional Scaling

The first step of the workflow is to compute distances matrix of the models. For
that, we use different distances such as Hausdorff distance, maximal square dis-
tance between each proxy response curve. Then the matrix is used by Multi-
Dimensional Scaling to map each model into a Euclidian space [6]. As we use
distances between curves, we got metric properties which allow us to use the classi-
cal Multi-Dimensional Scaling (MDS).
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3.2 Kernel Transformation and Clustering

The main problem with MDS is that the result is not linear, in most cases, that is
not convenient for analysis algorithms. To solve that, we use a basis kernel trans-
formation to transform the Euclidian space in a feature space where the variations
between models are more linear and then we use clustering method [7]. For the kernel
transformation, we use a simple Gaussian function as Radial Basis Function (RBF)
kernel. For the clustering we use a K-medoïd algorithm. The goal is to segregate the
realizations in k groups or clusters and get the point close to the center. Finally we
simulate dynamically the K centers and compute Q10, Q50, Q90.

4 Result Analysis and Further Work

The case presented in Fig. 1 has been realized with the connectivity proxy. To quantify
the quality of our results, we compare the quantiles we get with our selection and
those we get with the entire set of 200 Eclipse� profile. It shows that even with this
very simple proxy we get results closes to the original quantiles.

Improving the velocity function of the proxy base on Fast Marching and integrat-
ing other production data (well fluid rate, pressure) will be the objects of a further
work
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Integrate Facies Clustering Feature
Information in Reservoir Modeling

Yupeng Li and Lihui Geng

1 Introduction

As the facies spatial distribution is of major concern due to their influence on fluid
flow, and thereby the production of oil and gas, a detailed facies model will be built
first and then guide the modeling of the petrophysical properties [1].

Facies modeling can be done in a deterministic or a stochastic way. The indicator
simulation, one of the geostatistical methods, is a common stochastic one [2]. For
deterministic modeling, the geologist usually defines facies boundary lines over plan
or cross sections based on the outcomes at well sites. In this view, facies modeling
can be looked as a classification of the un-sampled locations based on the outcomes
of surrounding locations. Hard and well known boundaries between different facies
categories will be obtained after doing that kind of manually spatial classification. It
would be a better approach in exploration stage and could integrate the geologists’
conceptual understanding into the final facies distribution models. While, in mature
reservoir, plenty of wells are drilled and it would be a challenge for geologists to
integrate all the information together. Here, many clustering or classify algorithms
in machine learning or artificial intelligence can be used in facies modeling [3]. The
Ward’s clustering approach based on the Mahalanobis distance is proposed for facies
modeling in a mature reservoir in this study [4].
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2 The Clustering Method

In traditional facies modeling procedure, detailed sedimentological analysis is done
before geostatistician step in. The facies types are defined for each single sand along
the well path profile by sedimentologist. Then the geostatistical facies modeling
approach such as cell based approach or object based approach will be used to con-
struct the numerical facies model [5]. While, various information such as facies
stacking pattern, thickness information, sedimentary background available for sed-
imentologist in the facies defining stage should also be used for geostatistician to
build a geological realistic facies model which is more close to the true heterogeneity
of underground reservoir. How to integrate all various information together as sedi-
mentologist did in defining facies type along well path is a critical step. Thus, in this
study, the facies modeling procedure starts from the facies classification in the single
well vertical profile by using the Ward’s clustering in facies modeling procedure.

It is assumed that each well has P features to support its facies type classification.
For example, the possible classification features are: sand thickness, net-to-gross,
buffer ratio, and/or well log profile shape which are noted as xi, i = 1, . . . ,P. Here
the Ward’s method is used to do the classification based on the features. The Ward’s
clustering method is a hierarchical agglomerative method. If there are N wells in
the domain, it begins with N types. Then searching the feature matrix for the most
similar pair of types and reduce the number of types one by one through merging the
most similar pairs. Perform those steps until appropriate types are obtained.

Assuming at certain clustering stage, the merged facies type total number is K
types. And the groups are defined as Gk, k = 1, . . . ,K. Then, each class Gk would
have a specific feature matrix which is written as:

1 2 … P

1 x (k)11 x (k)12 … x (k)1p

2 x (k)21 x (k)22 … x (k)2p
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

nk x (k)n1 x (k)n2 … x (k)np

Mean x̄ (k)1 x̄ (k)2 … x̄ (k)p

The object in the Ward’s clustering procedure is to find at each stage the two
merged clusters will give the minimum increase in the total within group error sum
of distance between the centroids of the merged clusters which is written as:

E(K) =
K∑

k=1

(

P∑

p=1

(

nk∑

n=1

(xnp
(k) − x̄(k)p )2)) (1)

If a new unclassified well or sand along vertical profile which has a feature as
X = (x1, x2, . . . , xp) the Mahalanobis distance of this well to each of the facies type
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Table 1 The predictor feature matrix from the study area

Facies Mean thickness (m) Net-to-gross (%) Buffer ratio (%) Porosity (%) Permeability (mD)

Channel 5–12 0.6–0.8 0.3–0.5 0.12 200
Mouth bar 3–10 0.3–0.7 0.2–0.3 0.3 300
Over bank 1–4 0.2–0.5 ≤0.2 0.1–0.15 100
Plain mud ≤1 ≤0.2 ≤0.1 0.1 ≤100

Gk center is calculated as:

D2(X,Gk) = (X − X̄(k))′(�(k))−1(X− X̄(k)) (2)

where X̄(k) = x̄(k)1 , x̄(k)2 , . . . , x̄(k)P and�(k) is the covariance of the feature matrix for
facies type Gk. Then the facies type with the minimum distance to the type centroid
will be picked as the facies outcome for this feature vector X.

3 Work Flow and Implementation Example

The proposed method is implemented in one region of a well-developed reservoir
in west–north China. After nearly 70 years development, the wells in the reservoir
are in a highly density. The average well departure is about 50–150 m away in this
region. First, the Ward’s cluster approach is applied in facies classification based on
12 wells with core samples. The input information for the classification are facies
thickness, net-to-gross ratio, barriers thickness ratio along vertical direction, average
porosity and permeability. Finally, four facies types are recognized from the input
data. The feature of each facies is listed in Table 1.

It has a highly consistence with the detailed sedimentary research results which
shows that the study zone has a braided river delta background. Type A is recognized
as channel deposits. Type B is mouth bar inside of channel deposits. Type A and
type B have a close thickness distribution but mouth bar shows a coarsening up well
log profile. As there are too many wells to do facies analysis and also in order to
avoid the objective bias in manually facies analysis, all the other nearly 500 wells are
analyzed through calculating the Mahalanobis distance to each facies type centroid
based on Eq. (2).

Using the feature distances of all the well locations as hard data, the cells of the
research area are interpolated using the inverse distance interpolation approach. The
variogram based kriging interpolation approach such as IK3D could also be used [6].
But, the inverse distance approach will take advantage of the highly sampled well
data and doing spatial interpolation without variogram modeling. The interpolated
distance maps for each facies are shown in Fig. 1. The final facies outcome for each
location is the minimum distance to its cluster centroid which is shown in Fig. 1.
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Fig. 1 The distance map of four facies and the final facies map

4 Conclusion and Discussion

It is proposed to do facies modeling before the facies assignment to the well location.
The facies modeling approach should integrate the information provided to geologists
when they do facies analysis along vertical well profile. Some spatial clustering
artificial intelligence could be used to integrate those information in geostatistical
facies modeling. The facies segmentation obtained by proposed approach will be used
as constrain in the later petrophysical modeling for flow simulation. As for each facies
spatial segment, the porosity and permeability macro heterogeneity characters are
already characterized in the procedure of the spatial facies segmentation, it will ease
the history matching works in flow simulation. Another advantage of this approach
is using the inverse distance algorithm saves a large of variogram modeling work in
facies modeling and petrophysical modeling.

References

1. Damsleth, E., Tjolsen, C. B., Omre, H., & Haldorsen, H. H. (1992). A two-stage stochastic
model applied to a North Sea reservoir. Journal of Petroleum Technology, 44(4), 402–408, 486.

2. Deutsch, C. V. (2006). A sequential indicator simulation program for categorical variables with
point and block data: BlockSIS. Computers and Geosciences, 32(10), 1669–1681.

3. Harff, J., & Davis, J. C. (1990). Regionalization in geology by multivariate classification. Math-
ematical Geology, 22(5), 573–588.

4. Hervada-Sala, C., & Jarauta-Bragulat, E. (2004). A program to perform Ward’s clustering method
on several regionalized variables. Computers and Geosciences, 30(8), 881–886.



Integrate Facies Clustering Feature Information in Reservoir Modeling 651

5. Koltermann, C. E., & Gorelick, S. M. (1996). Heterogeneity in sedimentary deposits: A review of
structure-imitating, process-imitating, and descriptive approaches. Water Resources Research,
32(9), 2617–2658.

6. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical software library and user’s guide
(2nd ed.). New York: Oxford University Press.



Permeability Prediction Using Artificial Neural
Networks. A Comparative Study Between Back
Propagation and Levenberg–Marquardt
Learning Algorithms

Leila Aliouane, Sid-Ali Ouadfeul, Noureddine Djarfour and Amar Boudella

1 Introduction

Permeability governs the movement of fluids, gas and liquid, through pore spaces
and networks in porous media. Its applications include enhancement of oil/gas recov-
ery, management of water resources, CO2 geological storage and geothermal energy
extraction [6]. Most commonly, permeability is estimated from various well logs
using either an empirical relationship or some forms of statistical regression (para-
metric or nonparametric). The empirical models may not be applicable in regions
with different depositional environments without making adjustments to constants
or exponents in the model. Also, significant uncertainty exists in the determination
of irreducible water saturation and cementation factor in these models [3].

In recent years, nonparametric regression techniques such as Neural Network
have been introduced to overcome the limitations of conventional methods [1] .
In this context, a Multilayer Perceptron model has been used with two training
algorithms for permeability estimation: back propagation and Levenberg Marquardt
where petrophysical measurements and cores data of two wells from Algerian Sahara
have been exploited. Well-logs data of the well well-A are used for the training of
the two neural machines, at this step this well is used as a pilot and weights of
connection are calculated and raw well-logs data of the depth reservoir interval
[2195.8 m, 2223.5 m] are investigated. In this paper we present only data and results
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Fig. 1 Petrophysical parameters recordings of well-B

of the generalization well. Figure 1 is the petrophysical parameters recordings of this
well (well-B).

2 Permeability Estimation Using Timur’s Empirical Relationship

Different empirical approaches are used to describe the observed highly non-linear
dependence of permeability to porosity by exponential or power-law relationships.
[3] has presented the state of the art of permeability prediction by empirical mod-
els which are based on the correlation between permeability, porosity, and irre-
ducible water saturation. In this paper, the Timur’s relation is used [5, 7]. Figure
2c presents the core rocks permeability (CPERM) and the Timur’s relation results
(PERM_Timur). Comparison between PERM_Timur and CPERM clearly shows
that this kind of empirical model is not able to provide good results. For this reason,
we suggest the use of Artificial Neural Network (ANN) techniques to resolve this
ambiguity; ANN does not require the knowledge of a permeability relationship.
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Fig. 2 Permeability prediction of a reservoir of well-B: a by Back propagation algorithm; b by
Levenberg Marquardt algorithm; c by Levenberg-Timur’s relation

3 The Multilayer Perceptron

Neural network is basically a parallel dynamic system of highly interconnected inter-
acting parts based on neurobiological models. Neural network mimic somewhat the
learning process of a human brain instead of using complex rules and mathematical
routines. Here, the nervous system consists of individual but highly interconnected
nerve cells called neurons. These neurons typically receive information or stimuli
from the external environment. There are many types of network such as Multi Layer
Perceptron (MLP) that commonly used in many practical applications. In this case,
the structure of MLP is constituted with one input layer, one hidden layer and one
output layer, inputs are the recordings of two wells well-A and well-B. The out-
put is the calculated permeability using two learning algorithms: Back Propagation
(Perm_BP) and Levenberg-Marquardt (Perm_LVM).
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4 Back Propagation Algorithm

This training method uses Back Propagation to calculate derivatives of performance
with respect to the weight and bias variables of the network. The network training
function updates weight bias values according to gradient descent momentum and an
adaptive learning rate. The adaptive learning starts with an initial value, then increases
or decreases by multipliers in order to keep fast and stable learning. By adjusting
its learning rate the network converge faster, thereby increasing the accuracy of
predictions and shortening the training time. The learning process terminates when
either the maximum and number of epochs is completed or the network sum-squared
error drops below the min error goal set. Detailed explanation regarding this training
method can be found in [2]. Obtained results (Perm_BP) using this kind of learning
algorithm are shown in Fig. 2a.

5 Levenberg Marquardt Algorithm

The Levenberg Marquardt (LM) algorithm was designed to approach second-order
training speed without having to compute the Hessian matrix [4]. When the per-
formance function has the form of a sum of squares, the Hessian matrix can be
approximated as follows [4]:

H = JT.J

The gradient can be computed as: g = JT.e
Where ”J” is the Jacobian matrix, it contains the first derivatives of the network

errors with respect to the weights and biases, and ”e” is a vector of network errors.
Predicted values of permeability (Perm_LVM) using the LM learning algorithm

are presented in Fig. 2b.

6 Results, Interpretation and Conclusion

Figure 2 shows the core rocks permeability (CPERM), predicted permeability using
the Back propagation and Levenberg–Marquard algorithms and finally the Timur’s
relationship results. It is clear from this figure that the Timur’s formula has not given
good results. Calculated Root Mean Squares show a value of 0.17 for the Levenberg–
Marquardt and 0.05 for the Back Propagation. By consequence the Back Propagation
algorithm has proven its robustness to resolve this kind of petrophysical problem.
We suggest the use of this kind of learning algorithm for permeability prediction
from raw well-logs data rather than the Levenberg–Marquardt. By implementing
our method, we have suggested an ANN scheme that can be used for permeability
prediction of wells located in the neighborhood of the pilot well well-A.
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A Method for Multi-Level Probabilistic History
Matching and Production Forecasting:
Application in a Major Middle East
Carbonate Reservoir

Marko Maučec, Ajay Singh, Gustavo Carvajal, Seyed Mirzadeh,
Steven Knabe, Richard Chambers, Genbao Shi, Ahmad Al-Jasmi,
Harish Kumar Goel and Hossam El-Din

1 Introduction

Optimal improved oil recovery depends on the ability to use historical data to estimate
volumes and locations of bypassed oil. In the description of geologically complex
reservoirs, the geo-models’ parameters are usually reconciled with pressure and
multi-phase production data during history matching (HM) [1]. As an inverse prob-
lem, HM is highly non-linear and ill-posed, which means that, depending on the prior
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information, we can obtain a set of non-unique solutions that honor both the prior
constraints and the conditioning data. To quantify the uncertainty associated with the
reservoir parameters, one must sample from the posterior distribution. The Bayesian
methods [2] provide an efficient framework for performing this operation. Herewith,
the posterior model pm|d(m|d)(i.e., the conditional probability of model parameter,
m, given the observed data, d) is represented as proportional to the product of the
prior pm(m) and the likelihood pd|m(d|m)models:

pm|d (m|d) = pd|m (d|m) pm (m)

pd (d)
(1)

In HM problems, the prior model corresponds to the static (geo-cellular) model
and the likelihood model represents the dynamic response of reservoir simulator
to the given static model. The normalization factor pd(d) is usually treated as a
constant.

2 Methodology

The sequential Markov chain Monte Carlo (MCMC) algorithms provide the most sta-
tistically rigorous sampling of the posterior distribution, but when deployed in direct
simulation, impose high computational cost. We implement a two-stage MCMC
algorithm [3] that calculates an approximate likelihood by using streamline sensitiv-
ities [4]. These are obtained as derivatives of streamline time-of-flight with respect
to reservoir parameter m, in our case the matrix permeability. Such an approach
significantly increases the acceptance rate of traditional MCMC [5].

A pre-screening based on approximate likelihood calculations eliminates most of
the rejected proxy models, and the exact MCMC is only performed on the accepted
proposals, with improved acceptance rates. The approximate likelihood calculations
using streamline sensitivities are fast and involve a linearized approximation around
an already accepted state rather than an expensive flow simulation. Detailed mathe-
matical derivations related to two-stage MCMC algorithms are given in [5, 6].

By design, probabilistic HM workflows can produce model realizations with non-
geological features, and geological parameters may have an insignificant effect on the
reservoir recovery. We identify optimal number of representative reservoir models
and maintain the inherent uncertainty by dynamic model ranking [4] based on fore-
casted oil recovery factors (ORF) using the following steps:

• Forecast the ORF and quantify the (dis)similarity Di j =
√∑

(O RFj − O RFi )2

between two model realizations i and j using multi-dimensional scaling and
distance-based modeling [6].

• Group (cluster) the models with highly similar ORF using kernel k -means clus-
tering [6] with an optimized number of data clusters.



A Method for Multi-Level Probabilistic 661

• Identify lower, median, and higher oil-recovery models (i.e., P10, P50, P90) using
the centroids of each cluster as representative models for production forecasting
with the full physics simulator.

3 Case Study

The workflow is applied by HM in the pilot area of a major, structurally-complex,
anticlinal Middle East carbonate reservoir, operated by Kuwait Oil Company (KOC).
An ensemble of diverse high-resolution geo-model realizations with 1.4 million grid-
cells was generated by honoring known geo-statistical semi-variograms and well-log
constraints. The 3D, 3-phase, black-oil, single-porosity reservoir simulation model
combines 49 real-time instrumented wells in five waterflood patterns to match 50
years of oil production and 12 years of water injection. In the first-level HM, the
reservoir model is tuned to match reservoir pressure and oil production by adjusting
rock-type properties and modifying pore volume and well transmissibility at well
locations. The second level HM uses two-stage MCMC stochastic optimization to
minimize the watercut misfit on a well-by-well basis. Our approach significantly
accelerates the process by parameterizing permeability in the wave-number domain

Fig. 1 Results of assisted HM: panels a and b show the watercut profiles from prior simulation
(light blue) and posterior (dark blue) HM, panel c outlines the mean profiles averaged over 40 prior
and posterior watercut curves. The red dots indicate the observed data. Panel d visualizes flow
communication between the injector well and five associated producers
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Fig. 2 Results of the production forecasting: oil rate (left) and watercut (right) forecasted profiles
correspond to P10, P50 and P90 models identified by dynamic ranking of history-matched models
based on 8-years of production forecasting

using Discrete Cosine Transform [6], implementing rigorous convergence diagnos-
tics and deploying parallel and cluster computing.

4 Results

More than 2,000 probabilistic model inversion scenarios were executed, combining
approximately 50 MCMC iterations with 40 geo-model realizations.

Figure 1 demonstrates a significant reduction in the watercut misfit between the
calculated and observed data for a selected producing well. A dramatic improvement
is achieved, relative to the base case static geo-model that initially did not pro-
duce water due to inconsistencies in reservoir connectivity. The flow communication
established between the injector well and producer #4 is visualized using streamline
trajectories labeled with water saturation in panel (d). The history matched models
are dynamically ranked [6] based on forecasted oil recovery factors and models with
P10, P50, and P90 oil recovery probability are identified. Figure 2 indicates the water-
cut and oil rate profiles, for selected models during the HM and 8-year production
forecasting. Further results of this case study are presented in [7].
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5 Conclusions

The workflow is implemented at the North Kuwait Integrated Digital Field (KwIDF)
Project. It automatically interfaces the geo-modeling application with reservoir sim-
ulator and preserves the geological detail by updating high-resolution models with
no upscaling. Traditional approaches do not incorporate such functionality. The
workflow delivers a history matched reservoir model for waterflood optimization,
automatically updates the model with production, completion and geological infor-
mation quarterly, identifies the areas that require more data capture and selects the
optimal number of models for production forecast.
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Causal Analysis and Data Mining of Well
Stimulation Data Using Classification
and Regression Tree with Enhancements

Srimoyee Bhattacharya, Marko Maučec, Jeffrey Yarus, Dwight Fulton,
Jon Orth and Ajay Singh

1 Introduction

The well treatment program is an important part of the field development plan and
certain variables like Job Pause Time (JPT) and fracture screen-out, can affect its
efficiency. JPT is the time during which pumping is paused in-between subsequent
treatments of a job and screen-out occurs when the fluid flow is restricted inside the
fracture or throughout the perforation. We utilize data mining with Classification
and Regression Tree (CART) [1] to find significant variables that affect the response
variables and rank the predictor variables in the hierarchal order of their importance
to control high JPT or screen-out. We validate with well-stimulation case studies and
enhance the predictive capability by implementing normal score transform [2] and
by dividing the large dataset into smaller groups, using k-means clustering [3].
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2 Methodology

The steps for applying CART on a particular dataset are outlined as follows:

(a) Define the response (output) variable y and input variables xi and pre-process
the data by de-noising and removing outliers. Assuming the normal distribution,
outliers are identified as observations deviating by more than 3σ from the mean.

(b) Perform CART analysis. For the regression tree the splitting criteria is the
minimized mean square error [1] and for the classification tree it can be for
example, the maximized entropy [1]. The optimal level of tree-splitting is chosen
such that cross-validation error is minimized at each node.

(c) Quantify variable importance as the measures for the contribution of a par-
ticular predictor variable in the tree formation. The data are divided into ν sub
samples of equal size N1, N2, . . . , Nv and the V-fold cross-validation error (εCV )

for classification tree is defined as misclassification probability:

εCV = 1

Nv

Nv∑

i=1

I (ŷi(N−N v) �= yi ) (1)

and for the regression tree as the mean square error:

εCV = 1

Nv

Nv∑

i=1

(yi − ŷi(N−Nv))
2 (2)

where ŷi(N−N v) is the predicted value of sample i computed from the tree that is
constructed using N − Nν samples.

3 Application and Results

3.1 Classification Tree for the Fracture Screen-Out

The objective was to predict if a particular job would have screen-out or not, and
to identify the critical causal factors. Both types of predictor variables are defined:
categorical (engineer, customer, and crew) and continuous (depth, average rate and
pressure, mass of proppant and clean volume). The corresponding tree is shown in
Fig. 1. The tree growth continues until maximum purity is achieved or minimum
samples constraint of 20 is reached in the terminal nodes. The analysis indicates that
3/10 terminal nodes have predicted screen-out occurrence. This is a very significant
result since CART has separated cases of screen-out occurrence even though overall
percentage of screen-out is only 7 %. Although the average pressure is the first split-
ting variable, it is below customer in ranking. This suggests high misclassification
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Fig. 1 Classification tree for screen-out with information for each node given in the text box.
The generic elements of the tree structure and terminal nodes with identified fracture screen-out
(occurrence labeled with “y”) are also indicated

probability of customer over average pressure and indicates the possibility that the
customer has a particular choice of proppant or is operating in a region which is not
included in the analysis contributing towards its significance.

3.2 Regression Tree for the Job Pause Time

To predict Job Pause Time (JPT) and to find variables that influence or cause JPT, we
define three categorical variables (customer, job configuration and first job year) and
continuous variables as bottom-hole temperature and pressure, treatment pressure,
slurry rate, acid rate and proppant concentration. This study results in a regression
tree problem because response variable is continuous in nature. The tree consists
of 113 terminal nodes and the optimum tree length of 7 nodes was found using V-
fold cross-validation (see Fig. 2). One key observation is that the standard deviation
is very high in most of the nodes making prediction unreliable. This is related to
the distribution of the average JPT which is highly skewed (see insert a in Fig. 2).
Normalizing the data prior to CART using a method like the Normal Score Transform
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Fig. 2 Cross-validation error as a function of tree size (number of terminal nodes). The inserts
represent the distribution of average JPT: a original dataset, b post-NST dataset

(NST) [2] results in a normal (Gaussian) distribution of average JPT (see insert b
in Fig. 2). After performing k-means clustering [3] on the post-NST dataset, further
improvements are observed: when using 5, 6 and 8 clusters the re-substitution error
is reduced by 10, 14 and 18 %, respectively.

4 Conclusions

The application of CART analysis on well-stimulation data was successful in finding
patterns in significant variables that affect the extreme values of JPT and in identifying
the critical variables causing fracture screen-out. CART is a data driven, deterministic
model and cannot calculate the confidence interval of the predicted response but the
prediction capability can be enhanced by implementing normal score transform and
by data clustering.
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Seismic Data Interpretation Improvement
by the Multiscale Analysis of Gravity Data
Using the Wavelet Transform: Application to
Algerian Sahara

Sid-Ali Ouadfeul and Leila Aliouane

1 Introduction

The wavelet transform has becoming a very useful tool for interpretation of gravity
and magnetic potential field data. [1] have used the 2D continuous wavelet transform
for structural boundaries delimitation from geomagnetic data. Another paper pub-
lished by [2] shows an application of the 2D directional continuous wavelet transform
(CWT) for mapping of geological contact from aeoromagnetic data, obtained results
are compared with the 3D Analytic signal solutions and show clearly robustness
of the 2D CWT. [4] have analyzed the amplitude of the 3D analytic signal by the
2D continuous wavelet transform. The proposed method is versatile in case of high
remanence of geomagnetic data. [3] have analyzed the amplitude of the horizontal
gradient by the 2D CWT; the proposed combination is less sensitive to noise. In this
paper, we show the role of multiscale analysis of a 2D gravity data of an area located
in the Algerian Sahara for enhancement of petroleum exploration.

2 Wavelet Transform and Potential Field Data

The analogy between the continuous wavelet transform and upward continuation has
been widely used for mapping of structural boundaries from potential gravity and
magnetic data [2, 4]. By choosing an appropriate wavelet: for example the Poisson’s
Kernel [4], measurement of a potential field or its spatial derivatives can be processed
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as a wavelet transform. Indeed, this analysis unifies various classical techniques: it
process gradients that have been upward to a range of altitudes. The expressions of
various conventional operations on the potential field are well-designed in the wavelet
domain. The most important is the equivalence between the concept of scaling and
the upward. Indeed, the wavelet transform of a potential field F0 (x, y) at a certain
scale a = Z/Z0 can be obtained from measurements made on the level Z0 by:

1. Upward continue the measured field a level Z = a*Z0
2. Calculation of the horizontal gradient in the plane (x,y)
3. Multiplication by a.

For a multiscale analysis of contacts, it is sufficient to look for local maxima of the
modulus of the continuous wavelet transform (CWT) for different scales to get exact
information about geological boundaries [1].

3 Application to Real Data

We have applied this idea to the gravity data of an area located in the Algerian Sahara.
Figure 1a shows the Bouguer anomaly processed with a regular grid of 500 × 500 m.
Firstly a 2D continuous wavelet transforms has been applied, the analyzing wavelet
is the Poisson’s Kernel [4]. Modulus of the 2D DCWT is presented for the smaller
scale a = 705 m in Fig. 1b. The maxima of the modulus of the continuous wavelet
transform are mapped for full range of scales. Figure 1c shows the map of these
maxima.

4 Results Interpretation and Conclusion

Mapped maxima of the modulus of the 2D CWT are linked (see Fig. 2), obtained
results are compared with the interpretation of the 2D seismic profile TGT06, Fig. 2
shows the location of this profile. It is clear that the 2D CWT is able to identify
seven faults (F1, F2, F3, F4, F5, F5, F6 and F7) and the direction of F1 and F2, by
consequence the multiscale analysis of the gravity data is a powerful tool that can
greatly improve seismic data interpretation and enhance hydrocarbons exploration
(Fig. 3).
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Fig. 1 Multiscale analysis of gravity data using the 2D DCWT. a Bouger anomaly in mGal, b
modulus of the 2D DCWT for the lower scale a = 705 m, c mapped maxima of modulus of the 2D
CWT



672 S.-A. Ouadfeul and L. Aliouane

Fig. 2 Obtained structural boundaries by linking maxima of the modulus of the 2D CWT

Fig. 3 Interpretation of the 2D seismic profile TGT06, faults are mapped from F1 to F7
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History Matching of Channelized Reservoir
Using Ensemble Smoother with Clustered
Covariance

Kyungbook Lee and Jonggeun Choe

1 Introduction

Ensemble Kalman filter (EnKF) has been researched for solving an inverse problem
in history matching because it has lots of advantages over other optimization meth-
ods [1–4]. However, it has computational issues to apply to real fields because of
many ensembles needed for reliable results [5]. Furthermore, it has shown overshoot-
ing and filter divergence problems when there are not sufficient ensembles, especially
applied to non-Gaussian fields or improper ensemble designs [5–7].

Many researchers have emphasized the importance of Kalman gain to settle these
problems and have researched to improve cross covariance in Kalman gain [8, 9].
Clustered covariance is also aimed at obtaining a more representative cross covari-
ance.

Ensemble smoother (ES) has been focused after Skjervheim et al. [10] introduced
it for history matching in reservoir parameters. It assimilates all available observation
data at a time. Recent researches showed that ES reduces simulation time significantly
with acceptable history matching results over EnKF [8, 11]. In this study, clustered
covariance method is coupled with ES for channelized fields.
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Fig. 1 The concept of EnKF, ES and the proposed method. Flow chart of (a) EnKF, (b) ES, (c) the
proposed method, and (d) key idea of the proposed method for kalman gain

2 Methodology

The two standard ensemble methods, EnKF and ES, use the same principle equa-
tions and one Kalman gain for updating all ensembles. The difference is the way of
assimilation. EnKF assimilates dynamic data whenever they are available (Fig. 1a),
while ES does it once (Fig. 1b).

Many researchers have reported that the first iteration of Gauss—Newton method
is similar to the equation of EnKF and ES [8, 9]. Covariance matrix has a role of
sensitivity matrix in Gauss—Newton method. Therefore, it is difficult to set a repre-
sentative covariance matrix for whole ensembles, especially for channelized fields.
Small differences in initial ensembles make huge different responses in dynamic
variables since channel streams have great effects on reservoir performances.

The proposed method is based on the ES algorithm with clustered covariance
method. It separates initial ensembles using a distance-based method before assimila-
tion (Fig. 1c). Hausdorff distance and k-means clustering method are used. Figure 1d
shows the concept of the clustering method for initial ensembles. EnKF and ES use
all initial ensembles to get Kalman gain even though they differ from each other.
However, the proposed method groups analogous ensemble members in the same
cluster, which results in more reliable Kalman gain for each cluster.

3 Results

The two standard ensemble methods and the proposed method are applied to a syn-
thetic 2D channelized reservoir. Multipoint statistics is used to make a reference field
and 200 ensembles. Training image has low sinuosity channel with sand facies ratio
of 0.14 in 250 by 250 grid system. In the synthetic field, the channel streams have
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Fig. 2 The mean of all permeability models and the histogram of a single ensemble member at the
end of assimilation. a The reference field, b EnKF, c ES, and d the proposed method

Fig. 3 The estimated oil production at 1,800 days. Ensembles size is changed from 100 to 400

2,000 md and background facies has 20 md. It is more realistic assumption comparing
with previous research: 100, 1 md [7]. The three methods utilize 30 times available
data until 600 days and predict production to 1,800 days.

The reference field has binomial distribution of values about 7.6 and 3 after log-
transformation (Fig. 2a). The EnKF’s result has overshooting values (Fig. 2b). The
histogram of the model parameter loses binomial distribution and has a tendency to
be a Gaussian distribution. In the case of ES method, there is obvious overshooting
problem in the both of permeability map and histogram (Fig. 2c). However, the pro-
posed method manages the overshooting problem (Fig. 2d). It keeps channel streams
preserving prior information of geology. Moreover, the proposed method has the
advantage of simulation efficiency over EnKF.

Predicted total oil productions are divided by true values to make box plots (Fig. 3).
Default case (200 ensembles) shows that ES cannot predict reservoir performances
properly. ES shows oscillating results upward and downward even though it contains
the reference’s results for 300 and 400 cases. The proposed method is less sensitive
for ensembles size and it is still covering true performances at 100 ensembles case.

4 Conclusions

The standard EnKF, ES, and the proposed method are applied for history match-
ing of a channelized reservoir. The standard ES loses channel distribution with
severe overshooting problem and shows improper estimation of future production.
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It cannot apply to channel field despite fast simulation time. EnKF cannot preserve
the binomial distribution of permeability model with slightly overshooting values.

The proposed method successfully classifies initial ensembles into cluster groups
based on similarity of geology model. It results in obtaining a more reliable cross
covariance and updating model parameter without overshooting problem while pre-
serving binomial distribution. It predicts oil production with reliable uncertainty
for different ensemble sizes. Furthermore, ES and the proposed method spent about
4.5 % of the EnKF’s computational time for 200 ensembles case in this study. The pro-
posed method enables ES to apply to history matching of channel fields by enhancing
accuracy of covariance matrix.

Acknowledgments The authors thank to research projects (2010201010092C, 2011201030001C,
10042556, 10038618).
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Assessing the Probability of Training
Image-Based Geological Scenarios
Using Geophysical Data

Thomas Hermans, Jef Caers and Frédéric Nguyen

1 Introduction

A training image (TI) depicts the conceptual geological patterns and should be
representative of the spatial heterogeneity. The construction of TIs is one of the
most critical and important step of multiple-point statistics. If the geological context
is generally known (e.g. alluvial aquifer), there remains in most cases considerable
uncertainty on the characteristics of facies elements and on their relationships.

Geophysical methods may provide spatially distributed information on subsurface
petrophysical properties, but due to their larger resolution, provide only indirect
information on smaller scale features present in these TIs. In this work, we develop
a methodology to verify the consistency of potential TIs with geophysical data. We
demonstrate our proposed method in a case of electrical resistivity tomography (ERT)
data within the context of the alluvial aquifer of the Meuse River in the area of Liege,
Belgium.
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Fig. 1 Two examples of the six training image-based geological scenarios. a Alluvial aquifer with
big gravel channels and big clay lobes. b Alluvial aquifer with small gravel channels and small clay
lobes

2 Training Images as Geological Scenarios

Based on prior knowledge of the alluvial system, we describe geological heterogene-
ity using three facies (gravel, gravel in a sandy matrix, and clay/silt). We assume that
gravel is present in the form of channels whereas clay is present in the form of lobes
or lenses. Borehole analyses provide a prior proportion for each facies. From prior
geological understanding on alluvial systems [e.g. 1], we generate training images
with three different sizes for channels and two different sizes for lobes (six different
geological scenarios or training images) (Fig. 1).

3 Evaluating Consistency with Geophysical Data

In each TI, we select randomly 12 sections (2D) and transform them into electrical
resistivity models. Each facies is given a constant but uncertain electrical resistiv-
ity. Three different scenarios of resistivity distribution are offered to model this
uncertainty. From these models, synthetic geophysical data sets (resistance data) are
simulated. Next, these data sets are inverted with a least-square smoothness con-
straint algorithm to obtain TI-based inverted models. The inversion process causes
loss of information inherent to geophysical methods. However, even if the models
are smoothed, their specificity should still be apparent after inversion.

To verify the consistency of the TI-based inverted models, we compare them with
two ERT inverted field datasets representative of the Meuse River alluvial aquifer. We
calculate the Euclidean distance between any two inverted models (both TI-based and
field-based) and visualize the results in a 2D space using multidimensional scaling
(MDS) [2]. This represents about 60 % of the total variance. The field data models
fall among the distribution of the synthetic models on the MDS-map (Fig. 2a), hence
the presented TIs provide geophysical models close to observed field models. TIs
are thus consistent with the available geophysical data.

In a second step, we perform a cluster analysis on the MDS-map to highlight
which parameters are most impacting the geophysical response. In cluster 1 and 3,
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Fig. 2 a Multidimensional scaling map of TI-based and field models zoned in six clusters. b
Proportion of models with big, medium and small gravel channels in each cluster. c Proportion of
models with big and small clay lobes in each cluster

where field models are located, small channels are more abundant, suggesting that
this kind of training image is more consistent with field data (Fig. 2b). In contrast,
the size of clay lobes (Fig. 2c) is not a sensitive parameter since the proportions of
models with big lobes and small lobes are close to 0.5 in clusters 1 and 3.

4 Assessing Probability of Scenarios

Based on this analysis, the probability of each geological scenario in the case of field
data response is computed through kernel smoothing of the densities of models in
the 2D MDS-map [3]. The aim is to calculate, through Bayes’ rule, the probability
P(Θ = θi |D = d) of a TI-based scenario θi given specific geophysical data d, i.e. a
model of electrical resistivity in this example.

The likelihood of observing a specific geophysical data response d given a
TI-based scenario θi , needed to apply Bayes’ formula, is computed through ker-
nel smoothing, where the kernel density estimation functions are approximated
by a bivariate normal distribution using the coordinates of models of the 2D
MDS-map.

The probability of each TI-based scenario is computed for the two selected ERT
field models and shown in Table 1. The prior probability of each TI-based scenario
is equal to 1/6, i.e. 0.1667. Scenarios with probabilities inferior to this value, e.g.
scenarios with big channels, are less likely to occur. Geophysical data enable us to
derive the most probable TI-based scenario for each particular field case: small
channels and small lobes for the first; medium channels and big lobes for the
second.
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Table 1 Conditional probabilities for the 6 TI-based scenarios according to two different true field
models based on the 2D-MDS map

Field data BC/BL BC/SL MC/BL MC/SL SC/BL SC/SL

Field model 1 0.0472 0.1061 0.1618 0.0613 0.1951 0.4285
Field model 2 0.0157 0.1497 0.4259 0.0252 0.1624 0.2211

(BC: big channels, MC: medium channels, SC: small channels/ BL: big lobes, SL: small lobes).
The most probable TI-based scenarios are shown with italic values

5 Conclusion and Perspectives

We developed a methodology to verify the consistency of TI-based geological sce-
narios with geophysical models. This requires the specification of realistic values for
the considered geophysical parameters and the choice of an adapted distance calcu-
lation to compare models using multidimensional scaling. In this case, we chose the
Euclidean distance between models, but any measure, or combination of measures,
or other geophysical attributes could be used.

For a single geological scenario, if a field model falls in the distribution of synthetic
models, we state that this scenario is consistent with geophysical information. If it is
not the case, one should try different scenarios to obtain a consistent training image.
For multiple scenarios, a sensitivity analysis can be carried out through clustering
to derive the most sensitive parameters. The probability of each geological scenario
can be computed, giving some highlights for the selection of the best TI(s) to use for
further simulations.

The methodology could be easily extended to 3D models, enabling to evaluate the
consistency of more complex scenario. For example, it may be used to distinguish sce-
narios with channels from scenarios with elongated bars. However, it would require
3D field models which are more time consuming and more expensive to acquire.

If the consistency between TI and geophysics is confirmed, geophysical data may
be further used as soft conditioning data in multiple-point statistics simulations or,
the given training images and their posterior probabilities can be used on a Markov
chain type inversion.
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Reservoir Modeling Combining Geostatistics
with Markov Chain Monte Carlo Inversion

Andrea Zunino, Katrine Lange, Yulia Melnikova,
Thomas Mejer Hansen and Klaus Mosegaard

1 Introduction

Reservoir modeling conditioned by recorded seismic reflection data is the most
prominent geophysical technique to investigate the unknown properties of the sub-
surface. However, even if seismology produces good quality tomographic images,
it still remains challenging to obtain a good picture of some particular properties
such as porosity or permeability that are of most interest for oil and gas explo-
ration. The link between elastic parameters and such properties lies in the complex
relationships between, among others, intrinsic properties of rocks, mineralogy, and
interaction with fluids which are usually described by a rock physics model [1]. Since
these relationships are usually nonlinear and affected by uncertainty, it is difficult
to invert seismic data directly for, e.g., porosity employing the standard optimiza-
tion approaches because they generally rely on linearised models and simple scaling
laws. Here we propose an approach based on a Markov chain Monte Carlo (McMC)
technique which is able to combine rock physics modeling and reflection seismology
to invert for porosity and facies of the subsurface. It takes into account the nonlinear-
ities deriving from the rock physics model and moreover it provides an estimation
of uncertainties on the unknown properties. Similar approaches have been studied
before, see e.g., [2–4].

2 Overview of the Markov Chain Monte Carlo Inverse Method

We follow a probabilistic approach, in which all information is represented by prob-
abilities, as described in [5], where the inverse problem consists in performing an
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indirect measurement of unobservable parameters of the subsurface given some mea-
sured quantities on the surface of the Earth. The solution to the inverse problem is the
posterior distribution, a combination of the prior and likelihood functions describing
all possible models and relative probabilities.

Our aim is then to explore the model space in order to obtain a collection of mod-
els which all fit the measured data and are consistent with the a priori information.
Moreover we are interested in estimating the uncertainty on unknown model para-
meters. Markov chain Monte Carlo algorithms represent a natural choice to fulfill
these requirements, so we construct a multi-step algorithm capable of sampling the
posterior distribution. The ingredients necessary to sample solutions to this inverse
problem are essentially two [6]: (I) an algorithm generating samples from a proposal
distribution according to the available prior information and (II) a sampler of the like-
lihood function. The prior geological information is represented by one or multiple
training images which supply the necessary information about geological patterns to
the algorithm. The posterior distribution is finally sampled employing the extended
Metropolis algorithm [6, 7] based on the degree of fit between measured and cal-
culated seismograms. We consider Gaussian uncertainties and hence we utilize an
L2-norm for the misfit function.

Importance of Informed Priors: Geostatistics

One difficulty arising in high-dimensional space sampling is that a tremendous com-
putational effort is needed to properly sample the posterior distribution. The huge
size of model space, in fact, hampers the adoption of this kind of methodology in
several cases. However, the use of proper informed priors can significantly improve
the situation, reducing drastically the size of the model space to be sampled. This is
obtained by employing an algorithm which generates models adhering to the prior
knowledge so that only plausible models are taken into account in the sampling
process. One recently introduced technique consists in generating realizations of a
model exploiting the multiple-point statistics contained in prototype models. Specif-
ically, the sequential Gibbs sampling method (see [8] and references therein) uses
a sequential simulation approach where the algorithm learns the statistics from a
training image which is scanned searching for recurring patterns. In principle, to
increase the number of patterns, multiple training images may be used. A randomly
selected hyper-rectangular volume of the model is then chosen to be re-simulated
at each iteration of the Markov chain to propose a new model, where voxels are
re-computed using sequential simulation conditioned on the rest of voxels [9].

3 Numerical Experiments

The target of our study is a synthetic reservoir model derived (but modified) from the
Stanford VI-E model [10]. It consists of a 3D arrangement of 38×50×20 voxels with
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size of 100, 100 and 4 m each respectively. Each voxel is parameterised with facies
and porosity as the unknown parameters. Using the reservoir model derived from the
Stanford VI-E model we constructed some “synthetic observations” by computing
the seismograms to be inverted. In our case the forward model calculation consists
of several steps. The first is the computation of the elastic properties from the facies
and porosity of the subsoil. Then we compute the synthetic seismograms using a
convolution approach.

The target zone of the reservoir is constituted by two facies, one representing sand
(channel in a fluvial deposition system and oil-saturated) and the other representing
shale (floodplain and brine-saturated). We assume the mineralogy to be known and
describe it as consisting of four minerals (clay, quartz, feldspar, rock fragments)
with known volume fraction in each facies but unknown porosity. The link between
porosity and other petrophysical properties with the elastic moduli of the bulk rock
for sand facies is modeled using the constant cement model [11] and the usual formula
for isotropic VP . An empirical law from [12] is used instead to compute VP for shale
facies.

Seismic modeling is carried out in the framework of the acoustic approximation,
where the basic ingredients are the P-wave velocity and the density model. The
seismic data are “recorded” at the surface on top of each pixel column as a zero-offset
section. This in reality can correspond to data recorded at different source-receiver
offset that have been processed such that they represent an equivalent zero-offset
section which is easier to interpret. The wavelet is constructed from a Ricker function
with 50 Hz peak frequency and is assumed to be known in the inversion process.

4 Results and Discussion

We ran 2 · 106 iterations, obtaining about 7 · 105 models, of which only one every
102 was retained to ensure independence of samples. Figure 1a shows one partic-
ular model from the solutions. We ended up with a collection of models repre-
senting samples of the posterior distribution which can be used to estimate sub-
surface properties and their relative probabilities/uncertainties. The solutions are
used as a database that can be queried to obtain information on several different
aspects since it represents the complete solution of the inverse problem. Here we
show two examples of the kind of information which can be retrieved from the
collection of models. The first is to compute the value of porosity at two different
locations, obtaining histograms of possible values (Fig. 1b). The histogram tells us
which range of values is most probable and, moreover, gives us an estimation of
the uncertainty. The two histograms show a different behavior, one having a more
pronounced peak, reflecting the different degree of resolving power. The second
example is a map of the probability of having the sand facies on a slice of the 3D
model at z = 40 m (Fig. 1c). The continuity of structures depicted in Fig. 1c is due
to the prior information deriving from the geostatistical algorithm which takes into
account the spatial continuity present in the training image. This example shows
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(a)

(b) (c)

Fig. 1 a An example of a two-facies reservoir model from the collection of solutions with some
slices through the volume of observed seismograms plotted on top. b Histogram of porosity for
two voxels, one located at (x, y, z) = (1500, 3500, 20) m and the other at (1000, 1000, 48) m. c
Probability of having sand (and hence a channel) on a 2D slice of the model at z = 40 m

how it is possible to retrieve more sophisticated information from the database of
solutions that can result very useful for real problems applications. Again, the uncer-
tainty, clearly imaged in this probability plot, is an integral part of the answer we were
searching for.
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Geostatistical Inversion of 3D Post-stack Seismic
and Well Data for the Characterization of
Acoustic Impedance in Oil Fields

Fernando Alves, José A. Almeida and António Ferreira

1 Introduction

The 3D seismic inversion of petroleum reservoirs is a challenging problem, because
the reservoirs are extensive in area, are often geologically complex, and in the early
stages of characterization are sampled with a very limited number of wells where
the seismic data are the only source of information [1].

Seismic inversion based on a model begins with a set of initial values of acoustic
impedance, which are then modified until a good balance (correlation) between the
actual seismic traces and the synthetic ones is found. This synthetic seismic trace is
also known as a 1D convolutional model and is the basis of the proposed approach.
Stochastic inversion based on geostatistics is recognised to be the best way to combine
the seismic data and the data from the wells to obtain a cube of acoustic impedances
that better represents the geology at depth.

In the present work a new geostatistical inversion approach, based on co-
simulation from a cube of acoustic impedances obtained using a deterministic
method, is formulated and tested. The initial deterministic solution is considered
the optimal solution for the problem of the spectrum of acoustic impedance values
available in the wells, seismic models, and real wavelets. In this context, we highlight
the previous studies of [2, 3] and [4].

The approach involves the following steps: (1) Generate an initial determinis-
tic acoustic impedance image (AI) and compute coefficients of reflection trace by
trace (optimal solution); (2) A modified version of the sequential simulation and
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co-simulation algorithm [5, 6] is applied to generate AI images conditioned on
the reflection coefficients calculated via the deterministic image of AI and the AI
observed in the wells; (3) The results are validated with particular regard to the
correlation between the actual seismic data and synthetic seismic data obtained by
convolution of the simulated AI images with the wavelet.

A modified version of the sequential simulation/co-simulation algorithm is the
key feature of the proposed methodology namely the definition of the random path.
As the seismic amplitudes are dependent on the entire trace of AI, simulation of AI
within each trace begins in a random location at depth but the remaining nodes in the
trace are selected up or down from the previous simulated nodes. If the node is the first
of the trace a simulation of AI is performed, otherwise a co-simulation is conducted.
The local value (soft data) is estimated via the homologous local reflection coefficient
of the deterministic image taking into account the value at the node immediately up
or down the previously simulated plus a local noise introduced as a local correlation
value in co-simulation. This constraint in the path makes it possible to impose local
reflection coefficients calculated from the deterministic solution maintaining the
purpose of simulation in following a random path.

2 Case Study

2.1 Initial Data and Deterministic Inversion of AI

The initial dataset consisted of a 3D cube of seismic amplitudes (Fig. 1, Left),
acquired through a campaign of seismic reflection and logs of 10 wells with AI,
density, velocity, and porosity with a vertical resolution 1 ms, the same as the seis-
mic data. The deterministic solution of the AI model based is illustrated in Fig. 1,
Right.

Reflection coefficients were extracted from the AI deterministic solution (Fig. 2,
Left). Synthetic seismic data obtained from AI well data were computed at well

Fig. 1 Left 3D cube of seismic amplitudes. Right Deterministic model-based solution of AI
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Fig. 2 Left Reflection coefficients of the deterministic AI. Right Aerial map of local correlation
coefficients

locations and the local correlation between synthetic and actual data was calculated.
Local correlation coefficients values were estimated by kriging over the entire area
of the reservoir (Fig. 2, Right).

2.2 Stochastic Seismic Inversion of AI

A set of 200 AI realizations were simulated conditioned on AI well data and the
reflection coefficients of Fig. 2 (Left). Figure 3 (Left) illustrates a 3D view of one
realization of AI. For each image, local correlations between synthetic seismic data

Fig. 3 Left One stochastic simulated image of AI. Right Average local correlation coefficients
between synthetic seismic from AI simulated images and actual data
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Fig. 4 Left Average image of the 200 realizations of AI. Right Image of variance of the 200
realizations of AI

and actual seismic data were also calculated and averaged (Fig. 3, Right). It is impor-
tant to emphasize that the map of local correlations illustrated in Fig. 3, Right is
similar to the objective map of correlations displayed in Fig. 2, Right.

Figure 4 shows an average image of AI from the 200 realizations (Left) and the
corresponding image of variance (Right). The average image of AI is independent
of the deterministic image but they coincide in the neighbours of the well data. It is
important to remark that the AI solutions are very sensitive to reflection coefficients
of the deterministic solution but it is not sensitive to the AI solution itself witch is a
key issue in what concerns the efficient exploitation of the uncertainty space.

3 Final Remarks

The advantages of this proposed methodology include the following: (1) It is an
efficient method. For a simulated image of AI it is necessary to make only a single
simulation run. (2) The method explores the space of uncertainty. This is because the
simulation is partly conditioned on the reflection coefficients obtained from the deter-
ministic image. (3) It produces the general characteristics of a simulation, including
histogram data, the variogram, and the coincidence of grid data with the well data at
well locations.
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The Effect of the Noise and the Regularization
in Inverse Problems: Geophysical Implications

José Luis García Pallero, Juan Luís Fernández-Martínez, Zulima
Fernández-Muñiz and Luis Mariano Pedruelo-González

1 Effect of the Noise in Nonlinear Inverse Problems

It has been shown in Fernández Martínez et al. [2] that in the case of nonlinear
inverse problems the nonlinear region of equivalence has a curvilinear valley shape,
and depending on the injectivity of the forward operator several basins of low misfit
can coexist in the cost function landscape. To explore in detail how the noise affects
the cost function landscape for this kind of problems, let us adopt a linearization of
the forward operator F in a model m0 that belongs to the nonlinear equivalent region
of value tol:

Vtol =
{

m : cp (m) = ‖F (m)− dobs‖22 ≤ tol2
}
, (1)

where F : Rn → R
s , m ∈ R

n , dobs = dtrue + δd ∈ R
s , and δd represents the noise.

We have
F (m) = F (m0)+ JFm0 (m−m0)+ o (‖m−m0‖2). (2)

Substituting Eq. (2) into Eq. (1) the linearized hyper-quadric Ltol of value tol in m0
is

ΔmT JFT
m0

JFm0Δm+ 2 (Δd− δd)T JFm0Δm+ ‖Δd− δd‖22 < tol2, (3)
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where Δm = m−m0, JFm0 is the Jacobian of F in m0, and Δd = F (m0)− dtrue.
Taking into account [1] the singular value decomposition JFm0 = U�m0 VT ,

Eq. (3) can be written as

ΔmT
V�

T
m0
�m0ΔmV + 2ΔbT

U�m0ΔmV + ‖ΔbU‖22 < tol2, (4)

where ΔbU = ΔdU − δdU = UT
[
F (m0)− dtrue − δd]

and ΔmV = VTΔm.
Calling r = rank

(
�m0

)
and μk the corresponding singular values of �m0 , the

linearized equivalent region of value tol in model m0 is then

r∑

k=1

(μkΔmV k +ΔbUk)
2 = tol2 −

s∑

k=r+1

Δb2
Uk, (5)

and for the free-noise case δd = 0

r∑

k=1

(μkΔmV k +ΔdUk)
2 = tol2 −

s∑

k=r+1

Δd2
Uk . (6)

The tol equivalent region in the noisy case, called now tol∗ (m0), will have the
same size as the tol region for the free-noise case under the condition

tol∗2 (m0)−
s∑

k=r+1

Δb2
Uk = tol2 −

s∑

k=r+1

Δd2
Uk, (7)

then

tol∗ (m0) =
√√√√tol2 +

s∑

k=r+1

(
δd2

Uk − 2ΔdUkδdUk
)
. (8)

This analysis depends on the level of the noise and on the model m0 that is
considered. By continuity of the cost function there might exist a neutral line where
tol∗ (m0; δd) = tol (m0), so along it no deformation takes place. Inside the region
limited by this line we will have tol∗ (m0; δd) > tol (m0), and regions decrease
in size; and outside tol∗ (m0; δd) < tol (m0), that is, regions increase in size. In
conclusion, noise deforms the topography of the cost function non-homogeneously,
decreasing regions of low misfits and eventually increasing the regions of medium-
high misfits. The higher order terms (particularly the Hessian) that have not been
taken into account in Eq. (2) also induce a non-homogeneous deformation of the
nonlinear equivalence region.

In the case of linear inverse problems the deformation due to noise is homoge-
neous, and tol∗ does not depend on any model m0. Eq. (8) becomes
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tol∗ =
√√√√tol2 +

s∑

k=r+1

(
δd2

Uk + 2dobs
Uk δdUk

)
, (9)

2 Effect of the Regularization in Nonlinear
Inverse Problems

The nonlinear equivalent region of value tol for the zero-order Tikhonov regularized
inverse problem is

Vtol =
{

m : cp (m) = ‖F (m)− dobs‖22 + ε2‖m−mre f ‖22 ≤ tol2
}
, (10)

where ε2 is the regularization parameter, and mre f is a reference model. Performing
a similar analysis as in Sect. 1, we arrive to the expression for the linearized hyper-
quadric Ltol

r∑

k=1

⎛

⎝
√
μ2

k + ε2ΔmV k − ε
2Δmref

V k − μkΔbUk√
μ2

k + ε2

⎞

⎠
2

+ ε2
s∑

k=r+1

(
ΔmV k −Δmref

V k

)2 =

= tol2 +
r∑

k=1

(
ε2Δmref

V k − μkΔbUk

)2

μ2
k + ε2

− ‖ΔbU‖22 − ε2
r∑

k=1

Δmref
V k

2
.

(11)

Taking into account that the hyper-quadric for the non-regularized problem cor-
responds to Eq. (5), the tol equivalent region in the regularized case, called now
tol∗ (m0), will have the same size than the tol region for the non-regularized case
under the condition

√
tol∗2 (m0)+�√

μ2
i + ε2

=
√

tol2 −∑s
k=r+1Δb2

Uk

μi
, (12)

where

� =
r∑

k=1

(
ε2Δmref

V k − μkΔbUk

)2

μ2
k + ε2

− ‖ΔbU‖22 − ε2
r∑

k=1

Δmref
V k

2
. (13)
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Then we arrive to

tol∗ (m0)i =
√√√√tol2 + ε2

μ2
i

(
tol2 −

s∑

k=r+1

Δb2
Uk

)
+

r∑

k=1

ε2

μ2
k + ε2

(
ΔbUk + μkΔmref

V k

)2
, (14)

showing that the deformation of the linearized region of equivalence for the regu-
larized problem is non-homogeneous and anisotropic, depending on the values of
each principal axis stated by μi , and also on the selected model m0. Tikhonov’s
regularization might also be responsible for the introduction of local minima in the
cost function landscape [2].

3 Implications in Applied Geophysics and Conclusions

The typical situation in geophysical inversion is to deal with data that has finite
dimension, is insufficient in number, and always inaccurate due to the effect of noise.
These features together with the modelling and numerical errors cause the inverse
solution to be uncertain, and the geophysical inverse problem has to be solved in two
different stages: solution optimization/search and appraisal. The appraisal stage (or
uncertainty analysis of the solution) is motivated by the fact that the observed data
does not contain enough information to determine a geophysical plausible unique
solution. Practitioners tend to underestimate the uncertainty of inverse problems
solutions relying on the fact that: (1) Uncertainty has in any case a random structure
impossible to be known. (2) Regularization techniques are the panacea and cause the
disappearance of the equivalent solutions. (3) Linearization techniques can provide
a precise idea about the solution that has been adopted. All these three assumptions
are not very precise, motivating in some cases the decisions that are taken based on
these solutions are also incorrect, inducing big economic loses.

This paper provides new insights to understand uncertainty in the solution of
inverse problem from a deterministic point of view. Further research is needed to
improve the understanding about the uncertainty of the solution in inverse problems.
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A Generalized Local Gradual Deformation
Method for History Matching

Benjamin Marteau, DidierYu Ding and Laurent Dumas

1 Introduction

There is a large number of physical phenomena which lead to the presence of multiple
scale heterogeneities in an oil field. Erosion and sedimentation for instance can be
responsible for the creation of large geological structures such as large channels and
meanders whereas lateral accretion and meter-scale cross-bedding can be observed
more locally inside these structures. At the same time, the data available to charac-
terize petrophysical properties of the reservoir are very sparse. In consequence, the
complexity resulting from the numerous heterogeneities is very difficult to model.
To improve the quality of a geological/geostatistical model, one can use dynamic
data to reduce the uncertainty through history matching. To optimize the geostatis-
tical model, parametrization techniques are usually used. In this work, we will give
a very brief review of the gradual deformation method [3] and the domain deforma-
tion technique [2] and then propose a new approach which generalizes the gradual
deformation by combining its advantages with those of the domain deformation.
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2 A Generalized Gradual Deformation Technique

Geostatistical methods such as the Fast Fourrier Transform Moving Average [4]
allow us to uncouple uncorrelated realizations from structured information (mean,
variance, correlation length,...). A realization M of the geostatistical model is linked
to a Gaussian white noise Z by an operator G: M = G(Z).

2.1 Gradual Deformation Method

The local gradual deformation method [3] consists in combining locally several
Gaussian white noises to obtain a new one. For example, when combining two
realizations associated to the independant Gaussian white noises Z0 and Z1, we get:

Z = cos(t)Z0 + sin(t)Z1 (1)

where Z is still a Gaussian white noise and can legitimately be used to generate a
realization of the reservir model. This method can be extended to combine (m + 1)
Gaussian white noises by introducing m gradual deformation parameters.

2.2 Domain Deformation Method

Instead of combining two realizations in a given zone R1, the domain decomposition
method [2] uses one realization inside the zone, the other outside, and we parame-
terize the shape and size of the domain (Fig. 1) with a set of parameters t . The new
Gaussian noise is therefore written by

Z(X) = cos
(π

2
αX,1(t)

)
Z0(X)+ sin

(π
2
αX,1(t)

)
Z1(X) (2)

Fig. 1 Domain deformation
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for each grid cell X with αX,1(t) = V1(t)
V0(t)+V1(t)

, V1(t) the volume of the grid cell X
inside the zone R1 and V0 its complementary. αX,1(t) is proportional to the volume
of the grid cell X inside the domain. In particular, αX,1(t) = 0 if the grid cell is
completely outside the domain, αX,1(t) = 1 if the grid cell is completely inside the
domain. A new model realization is therefore created depending on the variation of
the shape and size of the domain. This method is generalizable to n domains.

2.3 Generalization of the Local Gradual Deformation Method

The local gradual deformation method is only efficient if the local domains are well
defined. However, there is currently no way to choose automatically good domains,
the method is therefore dependant on an initial expert guess to define domains. On
the other hand, the domain deformation method is a good approach to define suitable
domains as shown in [2].

Our new method allows the optimization process to combine several realizations
inside a domain while having the possibility to modify its shape and size. Let’s start
with a simple case where we want to combine 2 Gaussian white noises Z0 and Z1 in
a single domain R1 parameterized with t . αX,1(t) is defined for each grid cell X as
in the previous section. Similarly to the gradual deformation method, we define ρ1

1
the parameter controlling the combination of the realizations inside R1. We propose
to optimize ρ and t for the following combination :

Z(X) = cos(παX,1(t)ρ
1
1)Z0(X)+ sin(παX,1(t)ρ

1
1)Z1(X) (3)

Here, the parameter αX,1 controls the shape and size of the domain while ρ1
1 controls

the combination of Z0 and Z1. Let’s analyse some cases, consider a grid cell X :

• If X is completely outside R1 then αX,1 = 0 and Z(X) = Z0(X).
• If X is completely inside R1, αX,1 = 1 and Z(X) = cos(πρ1

1)Z0(X) +
sin(πρ1

1)Z1(X), which is exactly the gradual deformation method.
• If R1 partially contains X , then a combination similar to the domain deformation

method is applied.

In this simple case, we can see that this method actually allows a deformation of the
domain simultaneously to the combination of 2 realizations inside R1.

We can extend this one to deform m + 1 model realizations inside n domains.
Let’s introduce αX,i (t) = Vi∑n

j=0 Vj
for each domain Ri and a gradual deformation

parameter ρ j
i for each couple domain/Gaussian white noise Ri/Z j (i = 1, . . . , n and

j = 1, . . . ,m). We then obntain a new model realization through the new Gaussian
white noise Z :
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Z(X) =
m∏

j=1

cos(π
n∑

i=1

αX,i (t)ρ
j
i )Z0(X)+

m∑

j=1

sin(π
n∑

i=1

αX,i (t)ρ
j
i )

m∏

k= j+1

cos(π
n∑

i=1

αX,i (t)ρ
k
i )Z j (X) (4)

We have here a new method which succesfully generalized the gradual deformation
method and allowed a greater flexibility on the definition of the domains. By setting
some of the gradual deformation parameters to constants, we can choose which
domain to deform and which Gaussian white noise to combine in each zone. In
addition, this approach is helpfull to initialize the model realization for optimizations
in history matching.

This method was applied to a synthetic reservoir case. It was shown that in a given
number of simulations, the greater flexibility of the method allowed us to decrease
more the objective function despite having more parameters. Moreover, we can use
optimization techniques adapted to partially separable functions to further decrease
the computational cost [1].
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History Matching with Geostatistical Prior: A
Smooth Formulation

Yulia Melnikova, Katrine Lange, Andrea Zunino, Knud Skou Cordua and
Klaus Mosegaard

1 Introduction

History matching—inversion of reservoir production data for rock properties—is
an ill-posed inverse problem with computationally expensive forward simulation.
Highly non-linear relationship between data dobs and model parameters m result in
non-uniqueness of solutions. With the aid of geostatistical prior information (usually
in the form of training images TI) it has become possible to restrict the solution space
drastically [1, 3]. The main challenge in history matching consists in minimizing the
amount of forward simulations needed to achieve attractive solutions. In this work
we present a new method for solving history matching problem using a probabilistic
framework [7], searching for solutions deterministically.

2 Methodology

Our approach consists in integrating production data and prior information into a
single differentiable objective function, minimizer of which has a high posterior
value:

mHighPosterior = argmin
m

{
1

2
||dobs − g(m)||2CD

+ f d(m, TI)
}

(1)

where the first term is a conventional data misfit term [7] and g represents forward
simulation; the second term is the prior information misfit explained below (super-
script d stands for differentiable). Solving Eq. 1 by a gradient-based technique for an
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ensemble of starting models, we obtain a set of solutions with high-posterior value
running a small number of forward simulations.

Lange et al. [4] define the prior misfit as the chi-square distance between multi-
point statistics of the model and the training image, assuming both images to be
discrete. Essentially, the statistics is the frequency distribution of multi-point pat-
terns defined by a template. Contrary to Lange et al. [4], our formulation implies
gradual change of the model parameters, therefore the prior misfit f d(m, TI) should
be defined for any continuous image. A continuous image can not be represented
by the frequency distribution, however its differentiable approximation (a pseudo-
histogram) can be computed.

Consider a set of size K of all unique discrete patterns observed in the train-
ing image. Then the pseudo-histogram of a continuous image is Hd,image

j =
∑N image

i = 1 pi j , j = 1, · · · , K , where N image is the number of patterns in the con-
tinuous image and pi j is a measure of similarity between continuous and discrete
patterns:

pi j = 1

(1+ Adk
i j )

s
. (2)

Here di j = ||pat image
i − patTI,unique

j ||2 (Euclidean distance between pixel values
of the corresponding patterns ) and A, k, s are adjustable parameters. Per definition
statistically similar images will have similar pseudo-histograms. Therefore we define
the prior misfit as follows:

f d(m, TI) =
K∑

j=1

(Hd,TI
j − Hd,m

j )2

Hd,TI
j

. (3)

Use of the pseudo-histogram of the training image as a weight factor in Eq. 3
results in proper reproduction of the pattern statistics.

3 Numerical Example

We perform history matching on a 2D synthetic oil reservoir model. The goal is to
obtain a set of permeability models having high posterior values. Others parameters,
such as porosity, relative permeabilities and initial saturations, are assumed to be
known. The reservoir model has 50 by 50 cells of size 10 by 10 m. Figure 1a shows
the true permeability and locations of injectors (down-triangles) and producers (up-
triangles). Production data are generated by running a forward simulation with the
true model and applying 5 % Gaussian noise to the calculated water and oil rates.
Physics of the flow (two-phase immiscible displacement) allows us to use few obser-
vations to perform history matching and spend less time computing sensitivities.
We use only two measurements for each well (at 100 and 200 days), therefore 52
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Fig. 1 a True permeability model (channels—500 mD, background—50 mD); b Training image
(channels—500 mD, background—50 mD)

Fig. 2 a Starting permeability models; b Models after 30 iterations; c Solutions for each of the
starting models above

measurements in total. However, we show the full history to assure the quality of
history matching.

The prior information is given by a training image (Fig. 1b), which is an upscaled
part of the Strebelle image [6]. A square template of 6×6 pixels is used for collecting
pattern statistics. Parameters A, k and s (Eq. 2) are set to 100, 2 and 2 respectively
(empirically optimal values). Starting models (Fig. 2b) are smoothed, upscaled parts
of the Strebelle image [6]; after 30 iterations they are turned into models shown in
Fig. 2b ( LBFGS optimization algorithm was used [2]). Figure 2c shows final equally
good solutions.

In all cases the pattern statistics of the training image is successfully reproduced,
and the expected prior misfit value of 100 is achieved. Production data are resolved,
since the data misfit value is everywhere ≈N /2, where N is the number of measure-
ments [5]. Data matching and convergence plots (for the first solution) are shown
in Fig. 3a, b respectively. Naturally, the convergence properties of the algorithm are
dependent on the initial guess and quality of the production and statistical data.
Multiple solutions found in this example is a natural consequence of the fact that
the history matching problem is a strongly underdetermined problem. Thoroughly
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Fig. 3 a History matching: water injection rates (left column) and oil production rates (right column)
of some wells, m3/day; b Convergence for prior and production data misfits. Expected values of
the misfits are shown by red lines

chosen initial guesses, obtained, for instance, from seismic data inversion, would be
helpful in minimizing divergence of the solutions.

4 Discussion

We demonstrated how an ensemble of starting models can be gradually transformed
into valuable solutions of the history matching problem. The suggested formulation
has several advantages: (1) it guarantees prior-consistent solutions by including com-
plex a priori information, (2) it allows using gradient-based optimization techniques,
which save computational time, (3) it provides quantitative estimates of the data and
prior information misfits and therefore allows us to distinguish between solutions as
well as to choose the most reliable ones.
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Factor Analysis for Metal Grade Exploration
at Pallancata Vein in Peru

Jorge E. Gamarra-Urrunaga, Ricardo Castroviejo and Jesús Domínguez

1 Introduction

The epithermal Pallancata Vein is located ∼520 km SE of Lima (Ayacucho depart-
ment), at ∼4,200 MASL. It crops out along 1.5 km, with N70◦W strike and has a
subvertical dip. Vein thicknesses are structurally controlled, both horizontally and
vertically, varying from 1 m in areas of narrowing to 35 m in dilational areas [1]. The
mine went into production in September 2007 and ranks sixth worldwide in silver
production. It is the second largest silver mine in Peru and produced 263 t of Ag in
2011 (8.77 Moz [2]). The aim of the present study is to examine the geological infor-
mation that can be gathered from the chemical data collected during the exploration
of the deposit. The data are made of 35 elements which were analysed from cores of
the 52 boreholes interesecting the vein. Only reliable analytical data from the vein
have been used: 17 elements (Ag, As, Au, Ba, Cd, Co, Cr, Cu, Hg, Mo, Ni, P, Pb, S,
Sb, Sr, Zn) have been selected, and logarithm values are used.

Two issues are relevant to this study. The first one is whether the analyses can
provide a realistic picture of the evolving geochemistry of the ore solutions. The
second one is the interpretation of this scenario from a metallogenic point of view
and its use to support exploration. To answer the first question, a geological analy-
sis of the vein, as well as a Factor Analysis study of the chemical data have been
carried out [3]. Results from both approaches are consistent with a major mineral-
izing episode tightly relating Ag, Au, Pb, and Sb (F1: Factor 1), while Zn, Cd, and
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Fig. 1 Ag (logaritm of ppm) isocontent contours plotted on longitudinal section along the vein.
Contour values: 2.2, 2.4, 2.6, 2.8, 3.0

Cu (F2: Factor 2) show no relationship to the Ag grades. A discussion of the spatial
distribution of Factor 1 metals shall help answer the second question.

2 Element Distribution in the Vein

The spatial distribution in the vein of selected (log)metal contents shows that the Ag
grade (Fig. 1) is consistent with Au and Pb values, but not with Zn or Cu values. To
explain this, a statistical analysis of all data has been carried out. Factor analysis,
computed with the programme R, defines two factors: F1, with loadings Ag: 0.875,
Au: 0.896, Pb: 0.618, Sb: 0.855. F2, with loadings Cu: 0.603, Zn: 0.723, Cd: 0.808,
and S: 0.734. The spatial distribution of F1 (Fig. 2) is similar to that of Ag (Au) but
differs from F2, suggesting unrelated events for Ag (Au) ores and for Cu, Zn sulfides
(chalcopyrite, sphalerite); even if the predictive value of these plots is limited, the
conclusion is consistent with textural analysis of the ores (photomicrographs: [1, 3]).

3 3 Metal Ratios, Flow Paths and Exploration

Plotting ore metal distribution in a hydrothermal vein may show the flow paths of min-
eralisation, particularly if (log) metal ratios are used [4, 5]. These plots are suggested
to assist exploration [5, 6], since subtle changes in metal ratios may point to unknown
metal concentrations. Fluid chemistry variations of the evolving hydrothermal sys-
tem can be related to fluid flow, under the assumptions that (i) metal precipitation
will not begin until saturation is attained; (ii) saturation and therefore precipitation
will be enhanced by cooling, and this is favoured by flow of the fluids to shallower
levels or by lateral flow away from the source; (iii) pressure drops or other changes
related to this process may act in the same way; (iv) the temperature, and therefore
the time, of precipitation of a particular metal depends not only on its solubility, but
also on its concentration: the precipitation of a very diluted metal will be delayed, as
compared with the saturated metal. Under these assumptions, the resulting scenario
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Fig. 2 Factor 1 (log) isovalue contours plotted on longitudinal section along the vein. Contour
values: −1.0/0.0, 0.2, 0.4, 0.6, 0.8− 1

Fig. 3 Ratio logAg /logPb isovalue contours plotted on longitudinal section along the vein. Contour
values: 0.9, 1.0, 1.1, 1.2, 1.4. (From chemical data in ppm)

(Fig. 3 for logAg/logPb) suggests a consistent upward flow of the hydrothermal flu-
ids, progressing from the center and from both sides of the structure—arrows—and
selectively precipitating Pb at lower levels, with a relative Ag enrichment at higher
levels, consistent with known models based on experimental data [1, 7].

The spatial distribution of the ore is also reflected by the logAg/logPb ratio distri-
bution (comp. Figs. 1 and 3). Au occurs as electrum or uytenbogaardtite, (Ag3AuS2),
so it is tightly related to Ag [3], and log Au grade and logAu/logAg ratio show the
same distribution as logAg grade and logAg/logPb ratio, respectively. The open loops
in these log metal ratios suggests further ore to be expected in the lower center (pos-
sibly a Ag-impoverished, Pb-enriched core, consistent with current ore petrological
models [1, 7]); in addition Ag is suggested westwards at deeper locations.

4 Conclusions

Factor analysis of all the data is consistent with a main event of Ag deposition (Factor
1, Fig. 2), and fits with the space distribution of metal ratios—compare Figs. 1, 2,
3,—as well as with current metallogenetic models [1, 7]. Overall geochemistry and
fluid paths of the ore solutions are reflected by metal ratios (Fig. 3).The lower, open
loop of the logAg/log Pb ratio distribution hints to a blind, deeper resource open for
exploration.
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Compositional Block Cokriging

Raimon Tolosana-Delgado, Ute Mueller, K. Gerald van den Boogaart
and Clint Ward

1 Illustration Data: The K Pit Deposit (Western Australia)

The Koolyanobbing greenstone belt (Southern Cross Province; Yilgarn craton)
strikes NW and is approximately 35 × 8 km large. It is composed of a folded
sequence of amphibolites, metakomatiites and intercalated banded iron formations
(BIF) [1], and hosts at least 7 high-grade Fe deposits. The total pre-mining resources
are estimated at more than 150 million metric tons at 58 % iron cutoff grade [2].
The K-deposit accounts for about 100 million tons thereof. It occurs where the main
BIF horizon, striking 300◦ and dipping 70◦ NE, is offset by younger NNE striking
faults [1]. The K deposit comprises high-grade (> 55 % Fe) magnetite, hematite and
goethite hard ores and medium grade fault-controlled hematite-quartz breccia (45–
58 %) and hematite-magnetite BIF (45–55 %)[2]. For ore reserve modeling the ore
body was subdivided into seven domains. The definition of the domains took account
of the north-northeast trending fault system. The domain considered here lies to the
west of the through going faults, and is mainly formed by magnetite-hematite.
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2 Compositional Data Analysis

A D-part composition z = [z1, z2, . . . , zD] can be identified with a vector of D
positive components with total sum equal to or less than a fixed constant, usually
κ = 100 %. The set of all D-part compositions is called the D part simplex, denoted
by S

D . Compositional data are known to be prone to the spurious correlation problem
[3], which can be bypassed by analysing the data after a log-ratio transformation
[4]. A simple option is to take one of the components as common reference, and
compute the log-ratios of each variable against it. This transformation is known as
the additive log-ratio transformation (alr) [4], and it corresponds to a representation of
compositions in an oblique vector basis of the simplex S

D in the Aitchison geometry.
The scores so obtained can be analysed with classical tools, as long as they are based
on second-order moments.

In the case presented here, components Al2O3, Fe, SiO2, P and loss on ignition
(LOI) are considered. Although making up the major part of the total mass, they do not
account for 100 %. A filler variable, fill = 100− (Al2O3 + Fe+ SiO2 + P + LOI),
is defined to complete the composition, thus D = 6. In the alr transformation the filler
is chosen to be the common denominator. Each original variable is associated a log-
ratio score y j = ln(z j/zfiller). The transformation is invertible through the additive
generalized logistic transformation (agl): with j ∈ {Al2O3,Fe,SiO2,P,LOI},

z j = 100 · exp(y j )

α
, zfiller = 100

α
, α = 1+

∑
exp(y j ). (1)

3 Point Support-Geostatistics

We follow the log-ratio approach to geostatistics for point support compositional
data proposed in [5]. Experimental direct- and cross-variograms of alr-transformed
scores were calculated using 7 lag distance classes at a nominal spacing of 25 m
and along several directions. The global rotation was determined to be a strike of
300◦, a dip of 45◦ and a pitch of −10◦ (equivalent to rotations of 160◦ about Z, 10◦
about Y, and 45◦ about X, in mathematical convention). This zone dips slightly less
than the deposit overall. Experimental variograms were recomputed for the rotated
coordinates. A three-structure linear model of coregionalization was fitted to the
experimental variograms, with a nugget effect and two spherical structures with
ranges 30–150 m, and vertical anisotropy ratios of respectively 11/15 and 8/15. This
is not shown for lack of space.

Following the formulation of cokriging in [6] isotopic cokriging estimates of the
five alr scores were calculated. This approach provides, for each interpolation loca-
tion x0, a cokriging estimate y∗0 and a cokriging covariance matrix S0. Assuming
multigaussianity, the true value Y0 follows a multivariate normal distribution with
mean vector y∗0 and covariance matrix S0. This also fully specifies the distribution
of Z0 = agl(Y0) to be an additive logistic normal (ALN) [4]. According to [7] the



Compositional Block Cokriging 715

conditional distribution of Z0 does not depend on the choice of log-ratio transfor-
mation , as long as the transformation is one-to-one, and a full cokriging is applied,
with a complete set of direct and cross-variograms. The conditional distribution can
be used to derive several point estimators, such as the direct inversion agl(y∗0) or the
conditional expectation of Z0. The latter requires numerical integration [8].

4 Block-Support Cokriging Through Local Simulation

The preceding scheme can be applied to block-supports V too. The conventional
multigaussianity assumptions underlying linear block cokriging provide an estimate
of the average log-ratio within a block, denoted by Y0(V ). That would be obtained
with any block cokriging algorithm. However, in mining applications one requires the
conditional distribution of the mass m(V ) = ∫

x∈V agl(Y(x))dx of each component
m(V ) in a block V . In general, the mass is not given by the volumetric scaling of the

average log-ratios: m(V ) = |V ||V |
∫

x∈V agl [Y(x)dx] �= |V |·agl
[

1
|V |

∫
x∈V Y(x)dx

]
=

|V | · agl [Y0(V )] .
However, the target quantity m(V ) can be approximated by Monte Carlo simu-

lation on a dense grid {x1, . . . , xB} ∈ V within the target block. For each simula-
tion {Y(s)(x1), . . . ,Y(s)(xB)} the mass m(s)(V ) can be approximated by summing
the agl-transformed simulated values within the block. If a family of S simula-
tions is available, then one obtains a set of values of {m(s)(V ) : s = 1, . . . , S},
which can be used to estimate its expectation, E[m(V )] ≈ 1

S

∑
s m(s)(V ) ≈

|V |
S·B

∑S
s

∑B
j agl(Y(s)(x j )).Any geostatistical simulation procedure could serve, but

LU decomposition is particularly suitable, since the number of simulation points is
relatively small, as it must only be representative of the variability within the block,
not of the regional variability; and with LU one can obtain a large number of simu-
lations at once. As a result a very good approximation of E[m(V )] and even of the
whole distribution of m(V ) can be generated.

Fig. 1 Comparison of estimates of the conditional expectation of Z at point and block support with
the original data for 3 out of the 6 variables considered. Point support estimates were obtained in a
10-fold cross-validation scheme. Vertical lines show each distribution mean. Horizontal scale in %
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Figure 1 shows the results of this procedure for the study of selective mining unit
blocks (SMU) of the data set, compared with the available data and point-support
cokriging interpolations. Though this does not validate the goodness of the method
in itself, it shows the expected averaging of block kriging, and the smoothing and
information effects of kriging. Only block estimates for P show a certain bias with
respect to the data.
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Milling Result Prediction

Stephan Matos Camacho, Thomas Leißner, Petya Atanasova, Andre
Kamptner, Martin Rudolph, Urs Alexander Peuker and
K. Gerald van den Boogaart

1 Introduction

The choice of the optimal milling parameters is a key problem in the first steps of
mineral processing. If the milling is too coarse a large portion of the value mineral and
waste minerals are still connected and effective separation is impossible. Finer milling
will lead to particles consisting almost entirely of value or waste minerals, which
can then be separated but costs to achieve finer grind sizes often rise exponentially
and usually require additional milling capacity. This separation of valuable materials
from gangue is called liberation and measured by the portion of valuable mineral
that can effectively be separated from waste minerals in a given process. The precise
definition of liberation varies from process to process, but it always depends on the
3D structure of the particle.

Usually the optimal milling parameters are determined experimentally. The exper-
imental results usually include some measures of the ground product e.g. analysis
using the MLA (Mineral Liberation Analyzer). One of the limitations of this approach
is that the images only show a 2D section of the particles. Particles with a waste
mineral attached above or below the 2D section will still be counted as liberated.
Stereological corrections for this problem, relaying on simple grain shape, are e.g.
discussed in [2] or [3].
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Here we propose an alternate paradigm. It allows prediction of the effect of milling
to any size of liberation from a single MLA measurement on a coarsely milled sample
of the material. This would make it possible to take small samples in a mining block,
mill them with an analytical mill, take a single MLA sample and determine the
optimal milling parameters for the local block within hours. This could help to
introduce adaptive processing of the ore on a day to day basis.

2 The Two Mosaics

Our method is based on two random tessellations of the examined ore. One tessel-
lation describes the partition of the ore into mineral grains. The other depicts the
separation of the ore into particles during the milling process. In a first simplified
model we could assume both tessellations being independent. However, in principle
it is possible to model the second tessellation dependent on the first one.

The microstructure is modelled by a Bayesian statistical model i.e. as a parametric
class of random mosaics in the sense of stochastic geometry, like e.g. in [7] or [6]. The
prior distribution should represent the variability in the deposit. In our first synthetic
example with three mineral phases we use Laguerre mosaics [5]. These mosaics are
based on a marked point process representing “centers” of minerals. For simplicity
we have chosen a Poisson process with an unknown density parameter λM . The prior
for λwas modelled by a lognormal distribution. Another marked point process could
be used to model the structure more precisely. A mineral phase is assigned to each of
the points with a given probability, which forms a second parameter represented by
the additive log ratio transform of the probabilities for the three phases, this allows
the modelling of a different content of the different phase. To each of the centers
we assign a normally distributed mark, modelling the different sizes of the different
mineral phases. The expected value of the mark depends on the mineral phase. The
contrasts between them form a third group of parameters that allow the modelling of
the different mean sizes of the different mineral phases. A Laguerre mosaic is then
formed by assigning each point in space to the center for which the squared distance
minus the mark of the center is minimal.

The Laguerre mosaic model is extremely flexible (see e.g. [4], Theorem 2.4.3),
and provides a basis for modelling far more complex microstructures In practice one
should find appropriate mosaic models to model the microstructures in the deposit.
Figure 1a shows a 2D slice of a modelled grain structure. This structure could be
identified with EBSD imaging. Figure 1b shows the same structure with the three
phases assigned. Such a figure could be seen in insitu MLA [1].

The milling or particle mosaic was modelled by a simple Poisson Voronoi mosaic,
with the density parameter λP representing the coarseness of milling. The properties
of the particle mosaic depend on the grinding parameters. Figure 1c shows the particle
mosaic in the same area.

After milling these particles are free to move and can adopt any orientation. A
sample is collected and they are embedded into epoxy resin in a random orienta-
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Fig. 1 Examples Mosaics: a grain structure, b microstructure with mineral phases, c the puzzle of
particles after milling, d a resulting observable particle with internal mineral phase structure

tion and randomly oriented 2D sections of them can be observed in particle MLA
images. Figure 1d shows such a particle as it could be seen. We assume that all fur-
ther inference has to be made from a dataset of such 2D sections, typically several
thousand.

It is suggested that coarsely grained material rather than insitu MLA images of
the undistorted microstructure are used to get a representative sample of a larger ore
volume, while still seeing enough local structure.
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3 Estimation

To model the mosaic parameters must be estimated. For this spatial summary statistics
observable on the 2D milled image are computed. Examples are: area portion of the
phases, mean area of particle, mean area of continued mineral phases on a particle,
apparent liberation in 2D. The key idea is to create a stochastic simulation of the
parameters of the statistical mosaic model according to the prior distribution, in
order to make a conditional simulation of the mosaic, and then to compute such
characteristics of a 2D image of milled material. This creates a multivariate dataset
with two stochastic dependent parts: The parameters and the observed characteristics.
To this we fit a multivariate regression analysis for creating a mapping from the
observed characteristics to the estimated parameters.

The prediction of 3D liberation is carried out in a similar way to the parameter
estimation. For each simulated parameter a second simulation of the same random
mosaic for the microstructure and a second simulation for a milling mosaic are cre-
ated, which can however represent different milling parameters. Typically a much
finer milling is used to ensure liberation. This gives rise to a dataset with two sto-
chastic dependent classes of variables: the Liberation—according to any definition
appropriate for further processing—and the observed characteristics. Again we use
a regression model to predict the liberation from the observed characteristics.

Figure 2 shows the similarity of estimated and true 3D liberation in the simulated
dataset, in (a) for the training dataset used to fit the linear model, and in (b) for an
independently simulated dataset.

Fig. 2 Comparing the predicted with the actual liberation in the models. Note that this predicts the
liberation for a different portion of the material and for a much finer milling
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4 Discussion

This contribution offers a paradigm how liberation could be predicted from MLA
measurements based on a stochastic geometric model of the microstructure and the
milling process, and furthermore shows that this approach works well with a sim-
ulated example. For an application of the method a decent stochastic model of the
microstructure and the milling is required. This might include more complex mod-
els, e.g. including dependence between neighbouring phases, complex inter growth,
multiple domains, milling circuit operation and removing some particles during oper-
ation. It might also include the development of more sophisticated estimation pro-
cedures and tests.
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A Geostatistical Study of Tertiary Coal Fields
in Turkey

Fırat Atalay, A. Erhan Tercan, Bahtiyar Ünver, Mehmet Ali Hindistan and
Güneş Ertunç

1 Introduction

Tertiary fields of Turkey cover an area of approximately 110,000 km2 and are of great
importance in terms of coal potential since the majority of lignite and subbituminous
coal beds of Turkey was deposited during this period. Tertiary fields make up about
67.5 % of the total coal resources of Turkey which is 8,374 M tons. Tertiary fields
are subject to a number of studies related to coal. Pasamehmetoğlu et.al. [1] carried
out coal prospecting studies in various sites and determined target locations for coal.
Görür et. al. [2] made an attempt to classify tertiary basins into seven categories
according to their tectonic characteristics and discussed the geological evolution and
coal potential of each basin. Tuncalı et.al. [3] studied the chemical and technological
properties of tertiary coals. Temur et.al.

Tuncali et al. [4] studied Tertiary coals from the point of statistical view by using
data generated by Tuncalı et. al. [3]. Toprak [5] studied petrographic properties of
coal samples collected from a number of coal seams in Tertiary fields.

The purpose of this study is to describe the spatial distribution of Lower Calorific
Value (LCV), Ash Content (AC) and Moisture Content (MC) for the Tertiary coals
of Turkey at a global scale from a geostatistical perspective. Data subjected to this
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study are taken from the study of Tuncalı et. al. [3] who collected the 187 samples
primarily from the relatively big coal areas which belong to the government and pri-
vate companies and then analyzed them for various quality variables. In this study,
the tertiary field is divided into the 15,445 blocks each having 4000×4000 m dimen-
sions and LCV, AC and MC of the each block are estimated by using geostatistical
tools. In addition to the estimation, probability of LCV of each block being lower
than the pre-determined cut-off value (1,600 kCal/kg) is calculated by using direct
sequential simulation and areas with high uncertainty are determined.

2 Geostatistical Estimation and Simulation of the Tertiary Fields

In this study only terrestrial Tertiary fields are taken into consideration. For this pur-
pose, geological map of Turkey ( Fig. 1.) is digitized, only Tertiary fields are retained
and then geostatistical estimation and simulation on these fields are performed by
using SGeMS software.

Descriptive statistics for the LCV, AC and MC are given in Table 1. Experimental
variograms for LCV, AC and MC are calculated and models are fitted. Parameters of
the fitted variograms are given in Table 2.

Tertiary field is divided into the 15,445 block each having dimension 4000×4000 m
and mean qualities of the blocks are estimated by ordinary kriging method. We did
not consider co-kriging. To estimate one block minimum three, maximum 16 con-
ditioning data are used. The conditioning data consist of coal quality analyses in
Tertiary field. The results show that 99 % of the estimated values are in the range of
2,000 kCal/kg and 4,000 kCal/kg. Coals in Turkey have mid-calorific value. Ash con-

Fig. 1 Tertiary regions of Turkey (in black)
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Table 1 Descriptive statistics of LCV, AC and MC

LCV (kCal/kg) Ash (%) Moisture (%)

Number of data 187 187 187
Minimum 1185 5.21 1.20
Maximum 5574 56.09 57.66
Average 3186 20.39 25.45
Median 3103 18.42 24.49
Standard deviation 921 9.56 11.20
Skewness 0.30 0.29 0.19
Kurtosis −0.21 0.79 −0.31

Table 2 Variogram model parameters of LCV, AC and MC

LCV Ash Moisture

C0 (Nugget) 400,000 41 50
C1 (Sill) 450,000 48 75
Range(m) 140,000 33,000 120,000
Model Spherical Spherical Spherical

tent generally ranges between 20 and 30 %. Ash content is relatively low in Thrace
Region and Mersin region. Moisture content is the lowest in Manisa and Bolu regions.

Most of the coals produced in Turkey are sent to thermal power stations for the
purpose of electrical energy production. In addition to estimation, LCV was simulated
geostatistically to calculate the probability of Tertiary coals below mean LCV of coals
fed to the thermal power stations. Mean LCV is equal to 1,600 kCal/kg and obtained
from the study of Şenguler [6]. For this purpose Direct Sequential Simulation was
used. For simulation of a single block a maximum of 16 conditioning data was used.
LCV was simulated 100 times. For each block probability of LCV being lower than
1,600 kCal/kg is determined by using distribution function of 100 simulated values.

3 Results

Variogram of the LCV shows that spatial relation between the data disappears at
1,400 km distance. Estimation results shows that LCV is higher in western and central
regions of Turkey than in the eastern and northern regions. The estimations show that
LCV for 99 % of the coals in Turkey ranges from 2,000 kCal/kg to 4,000 kCal/kg.
Therefore the probability of Tertiary coals being below than the LCV mean of coal
fed to the thermal power plants is very low. When only LCV is considered, coals
in Turkey are suitable as feed to thermal power stations. By using geostatistical
simulation results, 95 % symmetric probability intervals for LCV were constructed
for 15,445 blocks. Comparing the estimation results with the probability interval
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gives areas with high uncertainty. These are generally in central region of Turkey. Still
there is no exhaustive research made in the areas of high potential coal occurrence in
Tertiary areas. When considering this situation, there are yet potential undiscovered
coal basins in Southeastern and Eastern regions of Turkey. Study in these regions
will probably increase the number of coal occurrence in Turkey.
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Placer Deposit: From Modeling to Evaluation

Nikolay Laverov, Irina Chizhova and Elena Matveeva

1 Introduction

The features of created multifactor multitag models (MMM) for search and estima-
tion of ore placer deposits, first of all, are caused by specificity of the researched
object—gold placer deposit grew out of durable evolution of ore deposit (occur-
rence), got to a field of exogenous processes activity. Therefore it was necessary to
accept the originally division of all tags and criteria on the membership into two
systems (Fig. 1):

• endosystem (ore hosted) represents a set of criteria and the tags, routed on revealing
of potential ore objects—provinces, zones, ore regions, ore fields;

• exosystem (ore placer located) is put in correspondence to that level, where influ-
ence exogenous processes starts to play an appreciable role (field level).

2 Methodology of the Investigation

Methodology of the investigation included the following:

(1) compiling of a table containing all potentially informative tags;
(2) forming the database—coding the sites based on the principle of presence or

absence of the analyzed tags;
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Fig. 1 Metallogenic taxa for placer objects

(3) choosing of the standard sites and compiling of the training populations;
(4) mathematical processing of data using various algorithms and pattern recognition

programs, accounting the frequency and/or character of correlation of the tags;
(5) compiling of mathematical models of the determined classes from the most infor-

mative tags selected and calculation of their weights based on logic-informational
analyses;

(6) checking the stability of the compiled models on the independent control popu-
lations;

(7) forming the knowledge base for the computer expert system. Previously this
methodology was used while designing of computer expert system for epithermal
gold-silver deposit prognostication (Okhotsk-Chuckchee Volcanic Belt, North-
east Russia). All algorithms for mathematical processing of data are published
in [1].

3 Logic-informational Analysis

We have applied logic-informational analysis [1, 2]: a special algorithm of the pattern
recognition method, based on the study of variation object range and the similarity
concept. The essence of this method is to outline the informative tags to distinguish
different groups of data sets and estimate their significance for evaluation of this
difference and similarity. The identification of the informative tags is based on the
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principle of the common features of sites, belonging to the same class. To distinguish
the tags that are informative for description of class Ak and separate it from other
classes, we have used the functions, based on: probability that tag j presents at the
sites of class Ak and does not present at the sites of other classes; probability that tag
j does not present at the sites of class Ak and presents at the sites of other classes.

They are used for construction of the decision rule for the site identification: the
site belongs to that class which has the maximum value of the function. As a result,
we have a relationship of coefficients for an examined site, which characterizes the
similarity degree of this site with other classes.

4 The Region of Investigation

The area of researches covers a southeast part of the Aldan shield (the southeast of
Siberian platform, Russia).

The gold mineralization manifestations, to which the gold placer linked on
researched territory, are caused by a mesozoic stage of tectonic magmatic activa-
tion.

Purposely in the given investigation the attempt was made to rank the known
ore placer objects and to define the complex of criteria and tags for productivity
estimation.

5 Multifactor Multitag Models and Evaluation
of Placer Deposit

While evaluation of area prospects the basic moment is the degree of manifestation
of tectonic magmatic activation (TMA) and the presence of its direct and indirect
tags.

Therefore the metatag “basis” was determined, which has included the various
characteristic of a substratum: the age of host rocks, disjunctive violations, injectives,
material constitution.

Further the object description was made taking into account that it was necessary
to show specificity of TMA manifestation in the area under study. The following
characteristics have been considered: “activation structures”, “disjunctions”, “injec-
tions” (the structure and the form of bodies), “ore”, “material constitution”, “size”.
The special sense is put in a metatag “morpho structure” as in offered model it occu-
pies intermediate position on the junction of two systems according to the accepted
definition of morphostructure.

Further the specific metatags are entered, which described the own features of
exosystem and united with its formation as the placer located system:
geomorphological characteristic of relief, specification of its parameters, structure
of valleys, age and substance.
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The evaluation of gold placers is carried out consistently by solution of following
tasks:

1. An estimation of prospects of area;
2. In case of revealing of a prospecting area the estimation of productivity of per-

spective area is spent.

The mathematical processing of data has allowed us to compile logic-informational
models (the set of tags, informative for indicated tasks, with weights of theirs impor-
tance for solving of the problem). For example, solving the first task, we have received
the model “prospecting area” as the set of 14 tags from metatags: basis, ore, mor-
phostrusture, substrat, structure of valleys—with weights in diapason from 0.046 to
0.58. The rule for making decision have allowed to determine correctly all placer
deposits from database.

6 Conclusion

The technique has been developed. Using it the MMM for gold placer objects were
developed. For receiving of models for placer fields of various productivity, the
logic-informational modeling was carried out. Results are represented numerically,
allowing its automated usage for creation of the knowledge base of the predicting
expert system.
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Uncertainty Assessment of the Orebodies
Geometry by Using Block Indicator Simulation

Julia Carvalho, Pedro Correia, Sofia Menezes, Cláudia Peixoto
and Amilcar Soares

1 Introduction

For the geological control of reserves estimation deterministic models are used to
define the geometry and the boundaries of the oretypes within which geostatistical
methodologies are applied for grades estimation. These oretypes morphology and
boundaries are usually defined by expert geological knowledge or any deterministic
polynomial interpolation that do not provide any measure of uncertainty which entails
subjectivity to the uncertainty of the estimated grades inside them.

In this paper a new methodology is proposed—Block Indicator Simulation, BIS—
to account for the uncertainty of the deterministic geological model, by incorporating
the geometrical/geological model as a reference image, a block data with a given
uncertainty attached, and the point hard data from drill holes and sampling.

2 Case Study Data

Neves-Corvo is an underground copper-tin mine, which is located in southern Portu-
gal, a world-class massive sulphide deposit and one of the most important in Europe.
The case study data comes from Zambujal, one of the five deposits of the mine, con-
sisting of a 2× 2× 2 m grided geological model of the deposit and point data from
surface and underground drill holes and sampling. Zambujal consists of copper-poor,
pyritic mineralization, which includes some zinc-rich massive sulfide lenses, with a
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Fig. 1 Zambujal’s 3D orebody with drill holes and sampling (left) and representative 2D section
of the orebody—the reference image (right)

thickness of 53 m and plan dimensions of 550 m along strike and 600 m along dip
[2]. Zambujal’s orebody presents 9 different ore types, from massive (M) and stock-
work (F) mineralisations of copper (C), zinc (Z), lead (P) and barren (E, waste with
sulphides).

The oretypes geometry is defined with geological control and a polynomial inter-
polation (leapfrog3D�). From the 3D model of the orebody geometry, a represen-
tative 2D section was selected to test the proposed algorithm (Fig. 1).

3 Block Indicator Simulation with a Reference Image

A deterministic model of different oretypes is obtained by a polynomial interpola-
tion (lipfrog) after the geological control. In this paper this 3D model is interpreted
as a reference image (RI) to condition the uncertainty assessment of the oretypes
geometry (Fig. 1). In a first step, this model, obtained with point “hard” data of the
boreholes, is transformed into blocks, each with an attached uncertainty.

3.1 Block Indicator Simulation

A geostatistical simulation BIS is proposed to generate high resolution images of
oretypes morphology, by integrating the previously defined “block” data (RI) and the
“point” data from the experimental borehole samples. BIS follows the basic outline
of Direct Block Sequential Simulation [1] for continuous variables.

The set of N oretypes are transformed in a vector of indicator random functions
Xi, i = 1, N. The block indicator simulation follows the sequential path of regular
grid of points. At each grid node location x0, the following probabilities p(x0 ∈ Xi),
i = 1, N, are estimated (block indicator kriging) with block and point data. The
uncertainty attached to each block data is taken into account in the left hand side
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Fig. 2 Hard point data (red points in (a) and the representation of the block dataset (b)

indicator kriging matrix (point to point, point to block, block to block covariances in
which the error from the blocks are introduced in the main diagonal of the block to
block sub matrix). After the estimated probabilities, indicator values are drawn for
the node x0, and the method proceeds until all nodes are simulated. Uncertainty on
the oretype boundaries are assessed at the “point” high resolution scale, based on the
set of simulated 2D images.

3.2 Point and Block Data

BIS uses two datasets with different supports to produce simulations. The first is
the “point” hard data (drill holes samples), the second the block data retrieved from
the RI. The following methodology to characterize the blocks size and error was
developed, based on the octrees concept, using a series of iterations (levels) as can
be seen on Fig. 2. The idea is to produce smaller blocks with low uncertainty in the
areas near the hard data and larger blocks with high uncertainty in the areas further
from them.

Various methods can be used to attach uncertainty to a block. Since the larger
blocks are farther from the “hard” data a linear function such as “larger the size,
bigger the error” can be used. Also the (ordinary) indicator kriging variance (just
with the “hard” data) can be used to attach uncertainty to each block.

4 Results and Conclusions

For the present study 100 block indicator simulations were performed and several
results were retrieved, like the most likely oretype after 100 realizations (Fig. 3b). In
order to map the spatial uncertainty and indentify what locations are more prone to
uncertainty an error map was produced (1 minus the probability of the simulations to
reproduce the same value as the RI). The error values range from 1 (all simulations
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Fig. 3 a Reference Image (deterministic geological model); b the most likely simulated oretype;
c RI with the identification of the most uncertain pixels in white; b error map

missed the value of the RI) to 0 (all simulations reproduce the value of the RI)
(Fig. 3d). For a “hot spots” map an error of 0.8 and above was considered, i.e. where
at least 80 % of the simulations produce a different oretype of the RI (Fig. 3c). An error
(or contingency) table was also drawn between the RI (the deterministic geological
model of the oretypes) and the most likely simulated map. The most likely map only
delivers a different oretype than the one in the RI in 9.9 % of the pixels.

As expected this methodology has provided a map of the problematic areas (2.5 %
of the study area in Fig. 3c) where there is greater difficulty to assert that a specific
oretype should be present, such as in border zones or areas with many different small
oretypes, or even a complex spatial pattern (highly variable local anisotropy).
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“Horse-Shoe” Cu-Au Porphyry Orebody
Modeling Based on Blasthole Data Using
Unfolding Technique

Mohamad Nur Heriawan, Loya Jirga and Anton Perdana

1 Introduction

Mineral exploration methods are intended to reveal the information regarding mineral
resource, geological conditions and other associated information completely and
accurately. This information enables the process of modeling and estimation, which
in turn will help to improve the certainty level of mineral resource. Modeling and
estimation processes vary greatly in terms of methods and problems. One of the
problems is the folded (“horse-shoe”) deposit. The folded form of deposit caused the
estimation process to yield less accurate results. This is because of not stationarity
distribution and also the significant differences of sample grade values will cause
data misread. The solution to overcome this problem is a method called unfolding
technique; see [1] and [2]. This process can be roughly described as an attempt to
transform the coordinate system in which the folded deposit is relocated into a new
one where the deposit is reformed into its original unfolded form. The unfolded
deposit estimation result is known to yield more accurate result than the folded one,
especially to generate the data to be more stationary.
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Fig. 1 a Geometric and stratigraphic distance between two points [2], b principle of unfolding
technique, c projection and rotation coordinates transformation system, and d folding boundary on
a “horse-shoe” likefolded deposit

2 Materials and Method

Fifteen meters data which originates from 3,585 m to 3,600 m elevation of a blasthole
data in Grasberg Mine, Papua, Indonesia are examined. The sampled data are then
prepared for the modeling and estimation process. Figure 1a illustrates two samples,
i.e. A and B where each is located on one side of folded deposit. By using XYZ
coordinate system, standard geometric distance of point A and B is gotten and is
shown by the straight line. However from geological point of view, the real distance
between these two points is shown by the broken line which follows the folded
structure. In order to unfold the deposit, initial step is to know how the unfold process
will be done. In this case, the unfolding process follows a simple guidance in form
of boundaries (Fig. 1b).

How the folded boundaries transformed into unfolded lines are controlled by two
methods of coordinate transformation. The first one is rotation and the second is
projection (Fig. 1c). The boundaries are created firstly by following the rough form
of folded deposit and then by using offset method, the boundary are duplicated on a
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Fig. 2 a-b Mean of relative error for all Cu and Au estimates, c-d for high grade data only of Cu
and Au estimates

set of distance until it covers the entirety of folded deposit such as shown in Fig. 1d.
Each blasthole datum will then fall into one boundary. The blasthole data in each
boundary will then undertake the unfolding process that transforms each folded form
boundary into a straight line (in 2D plane). This process is then repeated for each
0.1 m drop in elevation until all 15 m is covered. Both the original blasthole data and
the unfolded ones then undertake modeling and estimation processes.

3 Results and Discussion

The result of research shows that the original data set has larger variogram range than
the projected unfolding data set and smaller than the rotated unfolding data set. This
means that the rotated unfolding data set has a more homogenous data distribution
compared to original data set and projected unfolding data set.

After variogram analysis was completed, kriging estimation can be performed
to estimate the block. For original data set, grid was drawn following the extent
of data distribution. For the two folded data, a different approach is required. For
the unfolding rotated data, the grid were not drawn, instead the original grid data
were unfolded and used for estimation. The purpose of this approach is so that the
unfolding rotated grid can be refolded and then coincided to the original one. The
estimation for unfolded projected data used grids that were drawn in the same way
as the original data grids.

The statistical analysis shows that overall data with the smallest mean error (krig-
ing variance) is unfolding projected data, while unfolding rotated data follows as
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second best. Variance kriging result from the unfolding processes and original data
were analyses to know their relative error. Relative error can be used to define which
modelling method is the most optimum. Figure 2a, b show that the smallest mean
of relative error is owned by projected unfolding model. The mean of relative error
for high grade data was also compared separately. Figure 2c, d show that the mean
of relative error for high grade data were different compared to the all grade data.
In high grade comparison, the lowest mean of relative error is owned by rotated
unfolding model. Seeing data type aspect, high grade data were more representative
to be used for determining the most optimum method. This is because the aim of this
research is to estimate the “horse-shoe” deposit which is formed by these high grade
data. By specifically observing mean of relative error of high grade data, it is known
that the most optimum estimate derived from rotated unfolding model.

4 Conclusions

Some conclusions can be drawn from this research. Smallest mean kriging variance
is owned by projected unfolding data with 11.55 ppm2 for Au, 1.17 %2 for Cu,
11.50 ppm2 for high grade Au and 1.14 %2 for high grade Cu. Statistical analysis
from high grade data relative error showed that rotated unfolding method resulted
the lowest relative error. The mean of relative error for that method was ±4.42 % for
Au and ±1.30 % for Cu, while for the projected unfolding was ±8.05 % for Au and
±1.41 % for Cu, and for the original data was ±5.09 % for Au and ±1.46 % for Cu.
From these results it is concluded that the optimum estimate of “horse-shoe” deposit
derived from the rotated unfolding model.
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A New Mathematical Approach to Model
Trophic Dynamics of Mammalian
Palaeocommunities.
The Case of Atapuerca-TD6

Guillermo Rodríguez-Gómez, Jesús A. Martín-González, Idoia Goikoetxea,
Ana Mateos and Jesús Rodríguez

1 Introduction

Trophic resource availability is one of the main constraints for the survival and
dispersal of any species and it is generally accepted that animal resources were
also essential to Pleistocene hominins in Europe [1, 2]. The ability of hominins to
obtain animal resources from their environment is conditioned by the abundance of
prey, their ecological characteristics, and the intensity of the competition with car-
nivores for these resources. Thus, several authors linked the survival opportunities
of the first European hominins to their ability to compete with carnivores [3–5].
Two main factors should be taken into account to evaluate food resource availabil-
ity for early Palaeolithic hunter-gatherers: (1) the amount of biomass that can be
extracted from the populations of large herbivores and (2) the intensity of competi-
tion within the carnivore guild for those resources. Quantitative studies of the trophic
dynamics of palaeocommunities have been used by palaeoecologists to understand
trophic relationships in mammalian palaeocommunities from the Miocene [6] and
the Pleistocene [7–9] and to evaluate the effects of extinctions and faunal turnover on
ecosystem functioning during the mid-Pliocene [10]. Here we present a model that
quantifies trophic resource availability for secondary consumers in a large mammal
community, simulates resource distribution among those consumers and provides
information about the intensity of competition inside the carnivore guild. We show
the application of our model to the TD6 assemblage from the Atapuerca Gran Dolina,
Burgos, Spain.
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2 The Model

Our aim is to investigate the distribution of resources, primary consumer biomass,
among secondary consumers in different scenarios and evaluate if the last may they
reach viable densities. In order to achieve this aim, we propose a mathematical
model. It provides the estimation of the biomass of primary consumers available to
secondary consumers, i.e. the Total Biomass Output (TBO). Moreover, it is necessary
to estimate the requirements of secondary consumers or Total Demanded Biomass
(TDB). A detailed description of this model is provided in Rodríguez Gómez et al.
[11] (Fig. 1).

2.1 Total Biomass Output (TBO)

2.1.1 Input

Physiological Variables

Input data are physical and physiological variables (adult body mass, body mass
at birth, litter size, breeding interval, age at reproductive maturity, growth rate and
lifespan) which are species specific. The values of these physiological variables are
taken from the literature or estimated through allometric equations.

Fig. 1 Flow Diagram showing the components of the model used to evaluate trophic resource
availability and intraguild competition
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Expected Density

The model solutions are not dependent on population size, thus, an estimate of
population density is needed to estimate the sustainable Biomass Output. Allometric
equations are used to estimate primary consumers density e.g. [12–14].

Body Size Category

Each individual of a primary consumer species is classified into one of six body size
categories according to its body mass at the age of death: 10–45, 45–90, 90–180,
180–360, 360–1,000, >1,000 kg see [15].

Wastage factor

We use the wastage factors from Viljoen [16] to account for the fact that a carcass
includes a variable amount of non edible tissues (horns, bones, hide…).

2.1.2 Process: Leslie Matrix

Our model is developed under the assumption that all the variations in population size
and composition may be taken as oscillations around a mean value that is constant
through time, an assumption widely accepted in population dynamics studies [17].
We represent the average long term condition of every population using the Leslie
Matrix [18, 19]:

Xt+1 =

⎡

⎢⎢⎢⎣

a1 az · · · an

b1 0 · · · 0
...
. . .

. . .
...

0 · · · bn−1 0

⎤

⎥⎥⎥⎦ Xt (1)

where ai is fecundity, the per capita number of female offspring and bi is the
proportion of individuals that survive from age class i to age class i+1. The number
of individuals of age class i died each year, whatever the cause is given by 1 −
bi. The interval between age classes is one year and only female individuals are
represented in a Leslie matrix. Leslie Matrix Inputs are physiological variables of
section Physiological Variables. We assumed that sex ratio is equal to 1:1, that
population profile is the same for males and females and that the survival rate is
equal for both sexes. A further assumption is that sub-adult survival rate should be
lower than adult survival rate [11].
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Two additional conditions are introduced: (1) The population should be stable (i.e.,
the population size should be constant from year to year); (2) The population should
be stationary (i.e., the age structure should be constant from year to year). These
restrictions can be interpreted as the condition that makes the population structure
stable and it occurs when the net reproduction rate (NRR) is equal to one.

The population profiles obtained from this model for every primary consumer
population provide an estimation of the average sustainable biomass output by age
classes (mortality profile), which are eventually translated into biomass per body size
intervals. Total Biomass Output (TBO) is obtained as the sum of the biomass output
in each size category from each primary consumer population.

2.1.3 Output

Combining the mortality profiles obtained in from the Leslie Matrix with the mean
body size per age class, the estimated population density of the species and the
wastage factor, the Total Biomass Output (TBO) is computed.

2.2 Total Demanded Biomass (TDB)

2.2.1 Input

Expected Density

Estimated using allometric equations e.g. [12–14].

Annual Intake

Carnivore intake rate was estimated using allometric equations e.g. [20].

Prey Preference

Six predation body size categories, equal to the primary consumer categories are
defined and the preferences of each carnivore recorded: 10–45, 45–90, 90–180,
180–360, 360–1,000, >1,000 kg see [15].

2.2.2 Process: Requirements

The annual energetic requirements of a carnivore population by km2 are obtained
multiplying the individual annual intake by population density.
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2.2.3 Output: Total Demanded Biomass (TDB)

Combining the Prey Preferences and the Requirements of each secondary consumer,
Total Demanded Biomass (TDB) per body size categories is obtained.

2.3 Distribution of TBO Between Secondary Consumers

2.3.1 Input

Total Biomass Output (TBO) and Total Demanded Biomass (TDB) are the inputs for
this process.

2.3.2 Process

Distribution of TBO between secondary consumers is based on the Proportional Pre-
dation Pressure (PPPij) of each species in each body size category. PPPij represents
the relative amount of biomass demanded by the j th carnivore species from the i th
prey body size category. It is calculated as the proportion of the total amount of bio-
mass demanded from a prey body size category by all carnivores that corresponds
to the requirements of a single carnivore species. See a detailed description of the
computation of resource distribution in Rodríguez-Gómez et al. [11].

2.3.3 Output

This process provides estimated densities for the secondary consumers as output.

3 Application

We selected the TD6 assemblage from the Atapuerca Gran Dolina site (Burgos,
Spain) (approximately 0.8 Ma.) because it has been considered as a key sample in
resolving several palaeoeconomic issues related to the populations that inhabited
Europe approximately one million years ago [21] and references therein. This is
the single European site from this period where hominin remains have been found
together with abundant faunal remains and a rich collection of lithic artifacts. Thus,
the TD6 assemblage provides both biological information about the first European
settlers and evidences of their nutritional and cultural activities.

We applied our model in TD6 to know if there was enough resources to maintain a
stable human group in this ecosystem. Our results show that meat resources covered
all secondary consumer requirements. Our results support the interpretation of a rich
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ecosystem at Atapuerca at the end of the Early Pleistocene that boasted a level of
secondary production sufficient to maintain a well diversified guild of secondary
consumers including a human population.

4 Conclusion

Mathematical modelling of palaeocommunity trophic dynamics is a useful tool for
investigating food resource availability for Palaeolithic populations. Our model deter-
mines the age structures that make the populations of primary consumers stable, the
average biomass that can be sustainably extracted in the long term and its distrib-
ution in body size categories. Thus, our model provides insights into competition
for resources among secondary consumers. When the model is applied to the TD6
assemblage, the results suggest that resources were abundant enough to support the
carnivore guild at maximum densities, i.e. it was a rich ecosystem for secondary
consumers, including Homo.
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Multifractals and Capacity Dimension
as Measures of Disturbance Patch Dynamics
in Daedalus Ichnofabrics

Carlos Neto de Carvalho and Andrea Baucon

1 Introduction

Behavior is the set of strategically and flexible responses of any phenotype for
purposes of protection and transmission of its genetic legacy. This programmed
responses allow the homeostatic development necessary to an organism exert some
control over its ecosystem, which is intrinsically unpredictable. The fossilized
remains of biological activity or ichnofossils are, in this context, the preserved
solutions for the chaotic and aperiodic ecological constraints that define the evo-
lution of behavior. The resulted programs were developed and modified by genetic
pre-adaptations and by ecological parameters originally prevailing, that may have
been preserved or even changed in the geological record by diagenesis imprint and
tectonics. Ichnology, the discipline of paleontology focused on organism–substrate
interaction dynamics (description, classification and interpretation), is a fundamen-
tal link between the evolutionary biological mechanisms and geological processes.
In fact, ichnofossils represent the functional morphology and behavior of organ-
ism producers as well as the physical–chemical properties of the substrate where
they were generated [1]. As ichnofossils are fossilized snapshots of behavioral and
physiological functions, they translate organism producers condition to specific eco-
logical situations. An ichnofabric includes all sediment structure and textural changes
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resulting from bioturbation and bioerosion at all scales [2]. Methods have been devel-
oped to improve quantification of past and present biological sedimentary reworking.
Quantifying bioturbation has been a very useful tool for supporting evolutionary the-
ories of ecological radiation, among many other applications (see for example [3]).
Descriptive or semi-quantitative methods were developed for analysis of ecospace
used by benthic communities in shifting substrate environments based on bioturba-
tion percentual indices, e.g. Refs. [3–6]. Our research is based in new methods
for quantifying bioturbation and ichnofabrics, based on fractal geometry, which
permits, at the same time, to recognize with precision the ways in which benthic
communities organize and explore their ecological niches and the ecological succes-
sion with the temporal evolution of environmental parameters. As application, we
used fossil domiciliary/feeding behavior patterns classified as Daedalus halli, occa-
sionally very abundant in siliciclastics deposited in sandflat subtidal marine bottoms
almost 480 million years ago that are commonly present in the Floian-age Armorican
Quartzite Formation from Portugal. For this study we quantified dense ichnofabrics
of Daedalus in the sections of Serra de Barreiras Brancas [7], and Angueira valley,
near Serapicos. Daedalus ichnofossils are burrows of a still unknown worm-shaped
producer that reworked sands in the three spatial directions by the coiled, protrusive
or retrusive displacement of a vertical-to-oblique J-tube [8, 9] intersecting bedding
planes normal or at high-angle, and reaching 50 cm deep.

2 Fractal and Multifractal Estimation of Bioturbation Spatial
and Temporal Heterogeneities

One of the primary goals in the use of fractals is that statistically descriptive methods
were developed in order to better describe natural forms. In this way, the measure of
fractal dimension of certain ichnofossils is of particularly interest in more quantita-
tive approaches to ichnotaxonomy [10–12]. Meanders, spirals or branches in feeding
biogenic structures are ways of food processing and foraging that increase extraordi-
narily the explored area in a restricted volume, as well as collecting information from
environmental stimuli. Fractal dimension in the ichnological context determines the
probability of sediment to be covered by the producer’ behavioral activity. Capacity
fractal dimension estimation is particularly useful in the study of ichnofossils with
complex patterns, which occur in sedimentary bedding planes. For fractal determina-
tion it is used the Box Counting theorem as described in Refs. [10, 11]. We used the
free software FRACTALYSE 2.4.1 to estimate capacity dimension of monochrome
sketches (.bmp) of Daedalus halli. Those images are covered with a grid of side a,
the software counting the minimal number of squares N(a) which includes bioturba-
tion. Counting should be repeated M times for different a sizes (M > 2 orders of
magnitude). The absolute value of slope of the regression line adjusted to Richardson
plot of logN(a) versus loga corresponds to Fractal Dimension by the relation
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log N (a) ∝ log(const)+ D log (1/a) (1)

Standard deviation of error describes the adjustment quality of regression line.
Approaching to 0, logN (a) and log(1/a) both reach a very high value when compared
with log(const). In the limit when a tends to 0, it is obtained the exact definition of
Hausdorff or Capacity Dimension

D0 = limn→0
log N (a)

log (1/a)
(2)

Multifractal describes several processes with fractal signatures (fractals or
pseudofractals) when characterized at multiple levels of information. Multifractal
spectra can be used as a measure of spatial or sequential ichnofabric heterogeneities.
It is based on the box counting method thus enabling quantitative analysis of ecospace
occupation strategies translated for behavioral forms preserved on the bedding planes.
The heterogeneity measure is given by a probability distribution which can be esti-
mated, according to [13], as

Pv (a) = Nv (a)

N
(3)

where Nv(a) is the number of identified bioturbations within the v-square grid and
N is the total number of Daedalus in the digitalized image. This probabilityv fits in
the equation that quantifies density distribution in Ref. [14],

D (q) = logn→0
1

q − 1

log
∑N (a)

v=1 [pv (a)]

log a
(4)

where v identifies the square of side a and pv(a) registers the relative weight of
v-square as expression of the total density. Generalized fractal dimensions spectra,
D(q), quantify non-uniformity in ichnofossil distribution density, which is dependent
of q momentum [13].

3 Discussion: Evaluating Community Strategies in Space and
Time for the Daedalus Producer

Multifractal D(q) anisotropies along the 40 m2 bedding plane at Martim Preto shows
spatial heterogeneity (1, 61 ± 0.07 ≤ D(q) ≤ 1.89 ± 0.14). A non-uniform
distribution of ichnofossils may be consequence of intraspecific low competition for
resources, which actually does not promote the regular distribution of organisms.
Otherwise, discrimination of a faint clustering by multifractal analysis could be a
sign of stable and favorable environmental conditions during Daedalus fabrication
by producers’ population. This patchy distribution pattern opens the possibility for a
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model of meiofauna harvesting to explain Daedalus halli architecture based on the
subtidal pump mechanism of interstitial water exchange by wave action.

Recurrence of tempestitic phenomena and its persistent effects in ecological suc-
cession can be evaluated from fractal data obtained in the Serapicos stratigraphic
section. We measured bed-by-bed fractal frequence of Daedalus for 36 bedding
planes. About 75.5 % of observed layers are bioturbated, with a Capacity Dimension
mean value of D0 = 1.62 ± 0.15. Data shows that subtidal substrate settlement after
each tempestitic event by Daedalus producers was intense, mostly multigenerational,
with an exclusive and significant occupation of the emptied ecospace.

The presence of only one preserved behavioral strategy, the substrate depth
affected by these structures, the high density of burrows and passive patchiness
rates are characteristics of r-selected populations. Such large-scale and frequent dis-
turbance events as storms, extreme on a gradient of disturbance intensities, were
responsible for some of the earliest opportunistic behaviors in the fossil record.
Daedalus was among the most resilient of them in the Early Paleozoic.
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Non-Linear Thermo-Mechanics of Folding
in Geomaterials

Martin K. Paesold, Ali Karrech, Tim Dodwell, Klaus Regenauer-Lieb,
Andrew P. Bassom, Alison Ord and Bruce E. Hobbs

1 Introduction

Geologists and engineers rely on the anomalies within the Earth’s crust to predict its
history and content in terms of profitable resources. The mechanisms that produce
anomalies such as folds, boudinage, fractures and/or faults are the subject of con-
siderable research efforts. In particular, the mechanics of folding has been studied
extensively [1–4]. However, most of the existing approaches ignore the variations of
temperature, large transformations (deformations and rotations) and/or the coupling
between the different processes that are involved.

In this paper, a non-linear thermodynamics description of folding in geomaterials
under external loading is presented. The coupled equations of motion and heat trans-
fer are integrated numerically using the finite element method. To this end, a novel
frame indifferent material description suitable for finite strain and large rotations is
employed [5, 6]. Hence, the temporal evolution of folds under various conditions is
studied.
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2 Problem Definition

The problem at hand consists of solving the fully coupled thermo-mechanical behav-
iour of geomaterials subjected to external loading. At high temperatures, these mate-
rials exhibit permanent elasto-visco-plastic deformations due to plate tectonics. In
this paragraph, we describe the governing equations as well as the constitutive mate-
rial behaviour within the context of frame indifferent finite strain and large rotations
(see also [5, 6]). The differential equation describing the stress distribution reads:

∇ · σ+ ρf = 0 with σ · n = Td at Γσ, u = ud at Γu (1)

where ρ is the material density, f is the body force, Γu and Γσ are the surfaces
where the Dirichlet and Neumann boundary conditions are applied: ud , prescribed
displacement, and Td , prescribed surface traction.

The equation of heat transfer can be derived from the conservation of energy
[5, 6], which results in:

ρC p
dT

dt
= ∇κ∇T + χσ : h̊p with ∇T = qd at Γq , T = Td at ΓT (2)

where C p is the heat capacity, κ is the thermal conductivity, χ is a coefficient which
describes the fraction of dissipation generating heat, hp is the plastic deformation
and �q and �T are the frontiers with prescribed heat flux qd and temperature Td ,
respectively. The notation ˚(·) refers to the corotational rates which will be explained
in detail in the next paragraph.

The motion of a deforming body is described by the deformation mapping
ϕ(X, t) = x that relates points in a reference configuration, X, with points in the
current configuration x at time t . Based on the deformation mapping, the Hencky
strain tensor is defined:

h = (
ln FFt) /2 with F = ∂ϕ/∂X. (3)

An independent observer of the deforming materials would measure a corotational
rate of the strain tensor h̊ = ḣ+hΩ−Ωh withΩ a spin. A spin that gives objective
corotational rates is:

Ω = w +
∑

A,B=1,A �=B

(
λA + λB

λA − λB
+ 2

ln λA − ln λB

)
pADpB, (4)

with pA = nA⊗nA the eigenprojection of FFt , λA is the corresponding eigenvalue,
and w and D are the classic spin and rate of deformation, respectively.

The materials studied here undergo elasto-visco-plastic deformations. The elastic
behaviour is given by σ = C : (h− hp), where C denotes the fourth-order elasticity
tensor which is a function of Young’s modulus, E , and Poisson’s ratio, ν. The onset
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of visco-plastic behaviour is defined by the elasticity envelope:

f (σ, ε̇v) = σ
eq
− σ

0
−ψ−1(ε̇v) = 0. (5)

Here, ψ−1 is the inverse of the considered power-law rheology ε̇v = ψ(σ) =
Ap σn exp (−Q/(RT ))where the factor Ap, the exponent n and the activation energy
Q are material constants. The temperature is denoted with T and the gas constant
with R. The equivalent stress and yield stress are denoted by σeq and σ0, respectively.

3 Numerical Application

In order to study the temporal evolution of folds, we simulated a feldspathic vein
embedded in quartzite using the finite element method as implemented in ABAQUS.
The frame indifferent material description outlined above was implemented in the
Fortran user material subroutine UMAT. The samples studied are 5 km long, 2 km
thick and subjected to a strain rate of 10−12 Hz. The material properties used in our
study are listed in Table 1. The heat capacity depends polynomially on temperature.To
initialize the simulations, elements were chosen randomly and the assigned Young’s
modulus, E , and yield stress, σ0, perturbed. The prescribed boundary condition are
a 30 K/m geotherm, geostatic pressure, gravity and the load due to the weight of the
overlying material. The element type CPE8T with approximate size 30 m was used.
The simulation time was set to 9 × 1011 s (∼ 28′000 a).

In our simulations, the depth of the sample is varied and therefore pressure and
temperature. The thickness of the feldspathic layer is chosen to be 2 m, 10 m, 20 m
or 40 m. As an example, Fig. 1 shows a folded feldspathic layer buried at a depth of
10 km. The resulting fold is aperiodic and irregular.

Table 1 Typical material properties as documented in literature

Parameter Ap n Q ρ α E ν κ

unit (MPa−n /s) - (kJ/mol) (kg/m3) (10−5/K) (GPa) - (J/(m s K))

Feldspar 3.3×10−4 3.2 238 2620 1.53 103 0.3 1.7
Quartz 6.32×10−12 4 135 2648 2.43 75 0.125 1.6

The thermal expansion coefficient is α

Fig. 1 Folded feldspathic vein (blue) embedded in quartzite (green). The initial thickness of the
feldspathic vein is 2 m. The sample was buried at a depth of 10 km. The lateral dimension of the
deformed sample is 500 m
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4 Conclusions

A material description was presented that is suitable for finite strain and large rota-
tions, and therefore for geological scenarios. Implementing this material description
in the finite element method enabled us to simulate the temporal evolution of folds
in geomaterials. Based on these simulations, the bifurcation behaviour of folding
in dependence of temperature and pressure was investigated. Aperiodic folds were
observed.
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Analytical and Numerical Investigation
of 3D Multilayer Detachment Folding

Naiara Fernández and Boris Kaus

1 Introduction

Folding is a common mode of deformation in geology when mechanically layered
rocks are subjected to compression. They occur on a wide range of scales from
mm-scale to 10’s of kilometers in places where upper crustal rocks are compressed
as a result of tectonic plate convergence (such as in the Zagros mountains, Iran).
The physical instability that results in the formation of folds has been studied for
different rheologies: e.g. elastic, viscous and visco-elastic [1], power law [2] and more
recently, also for visco-elasto-plastic [3]. However, most of the studies focus on the
problem of a competent layer embedded in a matrix [1] or the case of a multilayer
system embedded in a matrix [4], and therefore they consider only two different
material properties. This is appropriate for small-scale folds, but on a crustal scale it
was recently demonstrated that the viscosity contrast between various sedimentary
layers also plays an important role [3]. Here, we therefore focus on the case of a
multilayer system overlying a matrix or lower detachment layer [4, 5] affected by
gravity with three different material viscosities: lower detachment or salt layer (ηs),
overlying weak layers (ηw) and competent layers (ηc).
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2 Methods

The equations that describe slow moving geological processes are the incompress-
ible Stokes equations for layers with strongly varying (Newtonian) viscosity. These
equations can be solved analytically for a multilayer set up (assuming small defor-
mations), and numerically using a (parallel) finite element method.

The analytical solution we use is a thick plate stability analysis [6]. While thin
plate is a valid approximation for one layer problem in which the shear stresses
between the competent layer and matrix can be omitted in certain cases, the thick
plate is a more suitable approach for the multilayer case where the shear stresses
occurring at different interfaces cannot be ignored.

The numerical models are performed using Lithosphere and Mantle Evolution
Model (LaMEM), which is a 3D finite element code that solves the governing
equations in a velocity-pressure formulation on massively parallel supercomput-
ers using iterative multigrid preconditioners. In the simulations shown here, we use
higher-order elements in a Lagrangian manner and do not remesh which assures high
accuracy.

3 Multilayer Folding Phase Diagrams

The 2D semi-analytical solution is used to create mechanical phase diagrams in the
parameter space defined by two viscosity ratios (R1 = ηc /ηs and R2 = ηc /ηw) that
are larger than one in nature (Fig. 1). Such diagrams show that different multilayer

(a) (b)

Fig. 1 a Model setup. b Phase diagram of normalized wavelength in the R1−R2 space for ηs =
1019 Pas, based on over 6000 results of the analytical solution. Parameters are defined in text
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folding modes occur, each characterized with a scaling law for dominant wavelength
(λ) and growth rate (q) that accounts for all model parameters (salt viscosity ηs ,
competent layer viscosity ηc, weak layer viscosity ηw, background strain rate ėbg ,
density difference between rocks and air �ρ, gravitational acceleration g, salt layer
thickness Hs , and overburden thickness Ho). Four non-dimensional parameters occur:
R1 = ηc /ηs,R2 = ηc /ηw,Hs/Ho and the Argand number [5] Ar = (�ρg Ho)/(2 ηc

ėbg).
Seven folding domains have been defined (Fig. 1). The three domains with the

highest R1 values are independent of the Argand number, and thus independent on
gravity, but require unrealistically large viscosity contrasts (which are most likely
limited to 104−105). The other four folding domains within the low R1 range all
depend on the Argand number, and only two of them depend on R2. In the Argand
number dependent domains the lower detachment layer must be below a critical value
for the real detachment-folding mode to occur (defined as the folding mode controlled
mainly by the Hs/Ho ratio). These results are in agreement with the folding modes
defined for a two-layer system in [5]. For Earth-like viscosity contrasts if R1 < 105,
gravity is thus likely to play a role and as a consequence of the dependence in the
Argand number, the deformation rate with which the mountain belt was deformed
has an effect on the dominant wavelength that formed.

4 3D Numerical Simulations

We tested the validity of the phase diagrams beyond the initial folding stages by
performing several 2D and 3D numerical forward simulations using LaMEM. The
topography from the numerical simulations was extracted and analyzed during strain
evolution, using both curvature analysis and 1D Fourier analysis both parallel and
orthogonal to the compression orientation. The dominant wavelength predicted with
the analytical methods was compared to the one obtained in the simulations, which
shows that the calculated dominant wavelength is well preserved and clearly observ-
able after a shortening of 30 % (Fig. 2). Somewhat more pronounced than in 2D
simulations, there is a range of wavelengths around the dominant wavelength that
occurs. Moreover, the folds that develop have a range of aspect ratios that vary
from elongated and sinuously perturbed to nearly egg-shaped. In addition, several
high-resolution 3D numerical simulations were performed to study the evolution of
3D multilayer detachment folds under conditions that might be relevant to natural
examples of fold-belts and study the interaction between different individual folds.
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Fig. 2 Example of a 3D detachment folding simulation performed with LaMEM on 1024 cores.
Resolution is 513×513×27 nodes (high order Q2P-1 element). Inset shows the spectral analysis,
as well as a histogram of fold spacing of the obtained topography

5 Conclusions

Several folding modes, that are applicable in a multilayer system overlying a lower
detachment layer, have been defined. The equations of the dominant wavelength and
growth rate for each of those domains and their boundaries were extracted using a
2D analytical solution. Analytically derived results were tested beyond the initial
stages of folding by using numerical methods.

Numerical simulations show that the fold wavelength selected during strain in
3D multilayer folding is in agreement with the analytically calculated values. Fur-
thermore, statistics of the numerical simulations exhibit a normally distributed fold
wavelength around a dominant one in the direction parallel to the main compres-
sion and a large range of fold aspect ratios due to lack of wavelength selectivity in
the direction orthogonal to the main compression. The different ways of interaction
between folds as they laterally propagate, further influences the wide variety and
range of final fold geometries.
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Mechanics of Fold Development
in Pure- and Simple Shear

Maria-Gema Llorens, Paul D Bons, Albert Griera and Enrique Gomez-Rivas

1 Introduction

Folds are structures commonly used to unravel rock deformation history. They
typically indicate orientation and amount of shortening (e.g., [1–4]). However, much
more information can potentially be extracted from fold analysis, like the viscosity
contrast between folded layers and matrix, kinematic vorticity and non-linearity of
the viscosity [5]. Additionally, one can find indications on whether folds have been
shortened and stretched again [6, 7]. In this contribution we investigate the rela-
tionships between the different parameters that determine fold geometries and their
mechanical implications, in order to be able to improve the use of folds to unravel
rock mechanics, kinematics and rheology.

The viscosity or competence contrast between folding layers and matrix (m) is
assumed to be the main factor determining the initial wavelength and amplification
rate of the developing folds [8–10]. Additionally, non-linear viscous behaviour when
the strain rate is proportional to the stress to the power n, also influences fold geometry
[10–12].
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2 Numerical Simulation Method and Experimental Setup

We use the 2D numerical modeling platform ELLE, including the finite-element
module BASIL [13], to simulate the development of single-layer folds. Layer and
matrix are defined by a contiguous set of polygons, to which mechanical properties
are assigned. All the boundaries of the model are periodic, so that it is a unit cell that
can be repeated infinitely in all directions. In simple shear experiments, rigid-plate
velocity conditions are applied to the horizontal boundaries with a constant incremen-
tal shear strain of�γ = 0.025. Contrary to simple-shear simulations, the pure-shear
models are initially not square but rectangular. Velocity boundary conditions (∼1%
incremental shortening) are applied to all boundaries. All the simulations presented
in this paper have an initial random noise of layer thickness to noise amplitude ratio
of 40, as in [5, 7], a constant viscosity contrast of m = 50 and a strain-independent,
power-law viscous rheology with a stress exponent (n) of either 1 or 3.

In simple shear simulations, the layer is originally inclined 14◦ with respect to
the shear plane, and sheared to γ = 4, which results in 75 % shortening of the layer.
In pure shear it is parallel to the maximum shortening direction. Simulations with a
linear viscosity (n = 1) reached 75 % shortening and those with n = 3 reached 55 %
shortening.

3 Results

Stress distribution for n = 1 simulations are shown in Fig. 1a, b (simple shear) and
Fig. 1c, d (pure shear), and the maximum deviatoric stress in the layer as a function
of layer shortening is shown in Fig. 2a. Maximum deviatoric stresses are higher in
power-law materials than in linear-viscosity materials. Maximum deviatoric stress in
pure shear is initially double than that of simple-shear folding, but decreases markedly
towards the simple-shear value after about 20 % strain. In case of n = 3 (Fig. 1e, f,
simple shear, and Fig. 1g, h, pure shear) the difference in maximum deviatoric stress
between pure shear and simple shear is less pronounced and both decrease steadily
during the first 30 % of shortening (Fig. 2b).

Stress localizations are not regularly distributed at the initial stages of folding.
After a certain amount of shortening stress concentrations determine the future fold
hinges.

4 Discussion and Conclusions

Although similar final fold geometries are developed in simple and pure shear
conditions (Fig. 1), differences in stress evolution can be observed (Fig. 2). Pure
shear is characterized by an initial stage of high stress followed by a strong
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Fig. 1 Plots of maximum deviatoric stress of the simple shear experiment with linear viscosity
at a 35 % and b 75 % of shortening. Pure-shear experiment with linear viscosity at c 35 % and
d 75 % of shortening. Simple shear with non-linear viscosity at e 35% and f 55 % of shortening and
the same for pure shear at g 35 % and h 55 % of shortening

Fig. 2 Maximum deviatoric stress in the folded layer as a function of layer shortening in Psh
and Ssh, and for a linear (n = 1) and b power-law (n = 3) viscosity models. Stress values are
normalized with respect to the maximum layer-averaged deviatoric stress in the linear and non-linear
simulations, respectively

weakening after fold perturbations develop. An increase of stress at large strain
indicates that folds become locked and shortening is now accommodated by fold
limb stretching. In case of pure shear, the folded layer is always parallel to the max-
imum shortening direction, whereas the fold train rotates relative to the maximum
shortening direction in simple shear. Folding in simple shear shows relative lower
stresses and the geometrical strain weakening is less pronounced. For the linear
case, a strain hardening-softening behavior in the stress evolution is observed. Peak
stresses are not observed at the beginning, but when the layer envelope is at∼45◦, the
maximum shortening strain rate is reached. The non-linear case shows an evolution
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similar to the pure shear cases, without a stress maximum at∼45◦, maybe due to the
strain-rate softening behavior of power law materials with n > 1. Further studies are
still required.

Although similar in geometry, the folds are less regular in simple shear than in
pure shear. This appears to be related to the organization of stress perturbations
that seed the folds. In pure shear, the folded layer maintains a constant orientation
with respect to the bulk deformation. Stress perturbations are organized earlier and
more regularly than in simple shear, where the folding layer continuously changes
its orientation relative to the bulk deformation.
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Stochastic Modelling of the 3D Geometry of a
Faulted and Folded Deep Carbonate Aquifer:
Loma de Úbeda (Southern Spain)

Javier Heredia, Eulogio Pardo-Igúzquiza and Antonio González-Ramón

1 Introduction

The olive plantations in Úbeda (Spain) stand out in the world. Because of it, the
irrigation has grown strongly, increasing the water demand. At the beginning
the water was taken from the unconfined part of the Jurassic carbonate aquifer of the
Loma de Úbeda, then it started the exploitation of the deep confined sector and later
the underlying Triassic aquifer was exploited. The impact of pumping was notable
due to the lack of a management plan. The Geological Survey of Spain (IGME) has
carried out hydrogeological studies to define a sustainable exploitation of the aquifer
system. Flow modelling has allowed the sustainable management of the resources
[1]. Such flow modelling required a geometrical model of the carbonate aquifer.

The carbonate aquifer, together with the underlying Triassic formations (Keuper
and Buntsandstein), constitute the Deep Aquifer System of the Loma de Úbeda. The
extension of the carbonates is 880 km2 and one third, located in the north, is the
unconfined sector, which is strongly eroded and is crossed by the Guadalimar river.
The carbonates have a slight dip, from 5 to 15◦, towards the S–SE and 1–2 km to the
south of its outcrop they are at 100 m depth. 40 % of the confined sector lies between
400 and 800 m. The carbonates are very tectonized by large fractures, regional faults,
folds and flakes that compartmentalize and connect it with the Triassic formations
(Fig. 1). The mean thickness of the confined sector is 96 m.
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Fig. 1 Geology of the Úbeda Deep Aquifer System

2 Methodology and Data

The geometric modelling of the carbonates deals with two complex aspects: (1)
beds are not flat-lying but dip due to folds and (2) the lack of spatial continuity
because of large regional faults whose displacements are of the order o larger than
the layer thickness. The three-dimensional geometrical model constructed tries to
simulate the “geological evolution” of the carbonates: (a) geometrical reconstruction
of folded beds without discontinuities; (b) introduction of discontinuities because of
the regional faults and (c) erosion process.

First of all, the top and base surfaces of the studied stratigraphic units were recon-
structed using the kriging interpolation algorithm without taking into account the
faults. Next, the following steps were performed: (1) study of the changes in dip of
the surface employing surface variograms, (2) obtaining a directional experimen-
tal variogram according to the dip variations, (3) fitting of a theoretical variogram
model, (4) checking the fitted model by cross-validation and (5) interpolation using
the variogram fitted model. The thickness of the carbonates was obtained by the sub-
tracting the height of the top and the base surfaces. Later on the reconstructed top was
redefined considering the regional faults. Using the beds’ dip and the displacement
along the faults, new preliminary coordinates of the cut off points of the top surface
in the hangingwall and footwall of the faults were estimated. The final position of
the top surface was calculated using steps 1 to 5 above. The coordinates of the points
within the base surface affected by the faults was calculated subtracting the calcu-
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Fig. 2 a Surface variogram and b directional variograms along direction N86.5E

Fig. 3 Reconstruction of the carbonates top surface considering the regional faults

lated thickness to the top surface by the faults. Finally, digital elevation model was
superimposed onto the limestone outcrops depicted on a topographic map.

The data available were 143 drill holes and the positions of the top and base of
the carbonates contact at the outcrops of the carbonates. The geostatistics software
Gstat [2] and Idrisi ANDES [3] were used for the algebraic operations.

3 Results

Only a brief synthesis is presented here regarding the application of the method-
ology above to the top of the carbonates. In the reconstruction without taking into
account the faults, the experimental variogram indicates a range of 20 km with a
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direction of minimum variability along the direction N86E. The fitted model was
an spherical model with a range of 35 km and a sill of 8400 m2. The theoretical
variogram describes the experimental one up to a distance of 12 km. This restriction
is imposed when interpolating the top of the carbonate. When the faults are taken
into account (Figs. 2 and 3) the experimental variogram has a range of 22 km and
minimum variability along the direction N86E. The fitted model was an spherical
model with a range of 10.55 km and a sill of 4300 m2. The theoretical model fits
very well the experimental model up to 11 km.

4 Conclusion

The geometrical model of the carbonates has allowed the development of a numeri-
cal model of the carbonate formation and the Deep Aquifer System of the Loma of
Úbeda that comprises the underlying Triassic formations. Both models have been effi-
cient tools in water resources management and as support of other research projects
involving hydrochemical and isotopic techniques.
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3D Geometry of an Active Shale-Cored Anticline
in the Western South Caspian Basin

Idaira Santos-Betancor, Juan Ignacio Soto, Lidia Lonergan,
Ismael Sánchez-Borrego and Carlos Macellari

1 Introduction

The South Caspian Basin (SCB) is a back-arc Neogene basin dominated by the
Arabia-Eurasia convergence and the Tethys closure during Cenozoic (e.g., [1]). Sev-
eral active fold-thrust belts of arcuate form encircle the basin, which is floored by a
Jurassic oceanic crust and contains a thick sedimentary section (>20 km). Remark-
able oil and gas deposits are generated in the Maykop Unit (Early Oligocene to
Early Miocene) and stored in the Productive Series (PS; Late Messininan to Early
Pliocene,∼5.9–3.1 Ma). In the western SCB the PS is up to 10 km thick and is buried
by the post-Productive Series: Akchagyl, Apsheron and Gelasian units (post-PS; Late
Pliocene to Present; <3.1 Ma) [2].

Buckle folds of Pliocene-to-Present age deform the sedimentary cover of the SCB.
Rapid sedimentation, folding and subsidence generated overpressure in the shale-rich
Maykop Unit and triggered mud diapirism and volcanism (e.g., [1, 3]).
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Our aim is to reconstruct the 3D shape of an anticline through seismic interpreta-
tion and with nonparametric regression methods estimate the folding history. One of
the singularities of this structure is that the fold core is cut by complex mud-diapir
structures.

2 3D Geometry

We reconstruct the 3D geometry of the fold and of the mud-diapir structures through
seismic interpretation of a post-stack, depth-migrated seismic volume settled in the
western margin of the SCB, in offshore Azerbaijan. Interpretation has been tied with
well and logging data. Repsol has provided this dataset.

Structural depth-contour maps of the different seismic horizons allow us to depict
the internal geometry of the fold, alike the shape of the mud diapirs and the position
and nature of the associated faults, as double-vergence reverse surfaces in the core
and syn-sedimentary collapse normal faults along the crest (cf. Fig. 1).

The studied fold is a non-cylindrical, NNW-SSE anticline with curved axial sur-
faces and deforms up to the seafloor (Fig. 1). Fold vergence and shape change along
strike from symmetrical box-like profiles to asymmetric. It has two culminations
pierced by teardrop mud diapirs connected with sub-vertical welds. The internal
geometry shows two contrasting sequences, separated by a regional and erosive
unconformity: (1) the PS units, with an approximately constant thickness between
fold flanks, which corresponds mostly to the pre-growth sequence; and (2) the post-
PS units with progressive thinning towards the fold crest that correspond to the
syn-growth epoch (Fig. 1).

3 Shortening Estimates

To evaluate the deformation history, we have used a key seismic section where
the fold profile is non-pierced by mud (Fig. 1). In this section the geometry of the
different sedimentary layers is fitted by nonparametric methods. With these results
we compute subsequently two shortening magnitudes: curvimetric shortening (SC)
and planimetric shortening (SA) (e.g., [4]). SC compares the actual length of the
folded surface with its original length in the undeformed situation, whereas SA uses
the area of structural relief of the deformed horizon and the horizon height above a
reference surface. The results are expressed in Fig. 2 that compares SC with SA for
the overall set of seismic horizons.

Figure 2 contains most of our findings regarding the folding history. (1) It is
confirmed that the PS and post-PS units correspond to the pre- and syn-folding
sequences, respectively, although shortening seems to initiate towards the end of PS
(H9 to PS-top) as is evidenced by thinning of these sequences towards the fold crest
and the slight change in slope obtained by SC and SA trends. (2) There are some
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Fig. 1 Seismic inline in depth to show the profile across one of the fold culminations. The fold
geometry here illustrates a box-like profile with associated, double-vergence reverse faults. Inset
shows the geographic situation of the South Caspian basin (SCB). PS: Productive Series, PS-b and
PS-t: bottom and top of the PS sequences, respectively; Ak: Akchagyl; Ap: Apsheron; sf: seafloor

Fig. 2 Left Comparison between SC and SA estimates against height of the horizons above the PS-
bottom (Hi). Right Best polynomial and linear fits for the PS units. Results correspond to section
shown in Fig. 1. Abbreviations like in Fig. 1
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discrete folding pulses during the syn-sedimentary or post-PS period (<3.1 Ma). (3)
Curvimetric shortening minimizes the deformation magnitude computed through the
planimetric shortening (SA ≈ SC + 0.5 km), thus suggesting a significant material
influx during folding. These results need to be extended to other fold sections, but the
abundance of mud-escape structures in the fold culminations reinforces that volume
does not maintain constant during deformation.

4 Conclusions

The structure resembles a detachment fold-type with a low-dipping decoupling layer.
We have implemented the standard length and area-balanced algorithms for detach-
ment folds to estimate the shortening magnitudes and rates, also inferring that the
décollement surface is at 9.4 km depth, presumably located within the thick and
weak Maykop Formation. The 3D geometry configuration departs from the clas-
sic detachment-fold model mostly because: (1) folding occurred simultaneously to
mud diapirism, whilst tilting and differential subsidence toward the basin centre, (2)
deformation has a probable strike-slip component partitioned along the axial surface;
and (3) volume does not remain constant during deformation.

Maximum shortening estimates are obtained in regions perforated by the overpres-
sured mud. We document two pulses of folding: (1) an early, minor event towards
the end of the deposition of the PS (∼3.4–3.2 Ma) and (2) fold-growth occurred
during post-PS with a significant pulse near the end of the deposition of Akchagyl
(∼1.7 Ma).
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Gravity-Instabilities Processes and
Mass-Transport Complexes During Folding:
The Case of a Shale-Cored Anticline in the
Western South Caspian Basin

Idaira Santos-Betancor, Juan Ignacio Soto, Lidia Lonergan and Carlos
Macellari

1 Introduction

Mass-transport complexes (MTCs) are failed mass of sediments mobilized from
unstable slopes towards deepwater areas (e.g.,[1]). Seismic reflection data evidences
that seafloor on the western South Caspian Basin (SCB) has been unstable since
the Pliocene, subjected to different gravity instability processes induced by active
tectonics, high and rapid sedimentary loading and mud diapirism (e.g.,[2]).

We analyze the uppermost sedimentary section (<2 km) in a single anticline
where widespread MTCs are registered. The sedimentary package is composed by
the Akchagyl (Late Pliocene to Pleistocene; <3.1 Ma), Apsheron (Early Pleistocene
to Late Pleistocene; <1.7 Ma) and Gelasian (Late Pleistocene to Holocene; <0.8 Ma)
units [3]. Basinal deposition within Akchagyl and Apsheron units comes from turbid-
ity currents and deepwater lacustrine deposits. Sedimentation during deposition of
the Gelasian Unit corresponds to prograding clinoforms and deepwater fans in large
shelf-edge deltas. These units lie above a regional unconformity that corresponds to
the top of the Productive Series (PS; Late Messinian to Early Pliocene,∼6–3.1 Ma).
Here we referred collectively Akchagyl to Gelasian units as the post-PS sequence.
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Fig. 1 Detailed shallow structure of the studied fold in its western flank showing a MTC within
the Akchagyl Unit. Inset shows the geographic situation of the South Caspian Basin (SCB). Ak-t
top of the Akchagyl Unit, Ap-t top of the Apsheron Unit, PS Productive series, PS-t top of the PS
sequences

This study is conducted through the detailed interpretation of a depth-migrated
seismic cube. Our research aims to unravel the most-recent evolution of a shale-cored
anticline in the western margin of the SCB. We look for establishing the relationships
between sedimentation, folding, and gravity-instability processes on the seafloor.

2 Mass-Transport Deposits and Processes

We have inspected the detailed geometry of the most-recent sedimentary sequences
of a single anticline located in offshore Azerbaijan, in the west of the SCB. Seismic
interpretation has been conducted in a 3D seismic cube through horizontal slices,
vertical sections, and reflection attributes maps. The cube is a post-stacked, depth
migrated dataset that has been provided by Repsol.

The folded structure deforms congruently most of the PS sequences, whereas
the post-PS units thin progressively towards the fold crest (Fig. 1). This observation
demonstrates that deposition of the post-PS units (i.e., during the last 3 my) accom-
panied fold growth, i.e. they correspond to syn-growth sequences. It is a NNW-SSE
sigmoidal anticline that varies along strike from symmetric to asymmetric shapes.
This fold presents two culminations, both cored by mud diapirs.

Within the post-PS sequences there are packages with an overall sigmoidal geom-
etry and an internal laminated seismic fabric with imbricate elements (Fig. 1). These
bodies correspond mostly to mass-transport complexes (MTCs), in where the down-
slope migration of unconsolidated sediments develop internally normal faulting in
proximal areas and thrusting in the down-slope, frontal domains. We have identi-
fied different MTCs, associated with the high-slope region of SE-prograding deltas
(sub-perpendicular to the section shown in Fig. 1). These complexes are developed
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Fig. 2 Left plot with the Ai –Hi relationship and trend of the planimetric shortening. Dots corre-
spond to seismic horizons within the PS and post-PS sequences. Right detailed plot for the post-PS
sequences showing a change after deposition of the Akchagyl Unit. sf seafloor

particularly in three major intervals: near the top of the Akchagyl Unit and within
the Apsheron and Gelasian units.

Accordingly to their geometry and internal fabric, we have identified three major
types of sediment instability processes and MTCs: (1) large slides, with concave
erosive scars in the uphill domains and limited imbrications in the convex down-
slope front; (2) debris flows, that document movement of disaggregated and probably
unconsolidated sediments from curved headwall scars; and (3) slides, seen as isolated
and small bodies with incoherent seismic facies. Numerous MTCs of type 1 are
developed within the Akchagyl Unit, with maximum thickness of 350 m, whereas
debris flows are more dominant in the Apsheron and Gelasian units, especially along
the eastern fold limb.

3 Folding History

Shortening has been calculated to unravel the fold growth history and to precise the
most-recent deformation history, with particular attention to the fold-growth during
the last 3.1 Ma, epoch that corresponds to the sedimentation of the post-PS sequences.

We have calculated the planimetric shortening magnitude in a representative fold
section, by means of the known relationship in folds between structural relief of the
deformed horizons (Ai ) and the horizon height above a reference surface (Hi ) [4].
The shape of the different seismic horizons has been fitted through nonparametric
statistics to obtain a complete distribution across the fold profile. The results are
shown in Fig. 2. These plots summarize most of our findings regarding the folding



778 I. Santos-Betancor et al.

history. (1) The pre- and syn-growth sequences correspond mostly to PS and post-
PS, respectively. Folding started probably at about 3.4 Ma (corresponding to the
interval H9 to PS-top). (2) The best fit (polynomial) of the Ai –Hi relationship for
PS suggests a deep detachment level at about 9.4 km depth that occurs when Ai =
0. (3) Detailed inspection of the post-PS series evidences a change in the slope
of the planimetric shortening, indicating a decrease in the shortening magnitude
and associated fold growth after deposition of the Akchagyl Unit (Late Pliocene to
Pleistocene; <1.7 Ma).

4 Conclusions

Following these results, we infer that the abundance and maturity of the MTCs devel-
oped within the Akchagyl Unit are triggered by an important episode of fold uplift
(3.1–1.7 Ma), which deformed the seafloor. In contrast, other MTCs, like isolated
debris flows and slides, registered during Apsheron and Gelasian units (<1.7 Ma),
were developed in periods of relatively folding quiescence and may be related to
instability processes linked to delta progradation and shelf edge migration.
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Domaining Bi-modal Data Sets Geostatistically
Using a Directional Neighborhood Search

Steffen Brammer

1 Introduction

Given is an area that hosts a broad N-S orientated system of relatively low values
(domain 1), and a narrow, obliquely cross-cutting system of relatively high val-
ues (domain 2)—see Fig. 1a. When sampled on a regular grid (here 5 × 5 units),
the resulting data set is bi-modal with the populations of the two domains mixed
together (Fig. 2a). Domaining is required prior to any estimation or simulation run.
However, domaining with conventional methods (e.g. manually digitized regions or
by selected cut-off values) can be sometimes difficult or misleading. For instance, in
this example, the N-S trend of the low graded domain 1 might not be recognized (see
Fig. 1b). Geostatistical methods exist that offer applicable solutions. References [1,
2], for example, give overviews over possible approaches with cluster data analysis.
This paper proposes to split the mixed population with statistical methods, based
on the assumption that, if the individual underlying populations are normally dis-
tributed, the resulting domains have to be normally distributed, too. Since purely
statistical methods do not consider the spatial properties of the individual samples
and misallocations are consequently inevitable, a geostatistical component such as a
directional neighborhood search would need to be factored into the algorithm.

2 Split of Mixed Populations by Statistical Methods

The statistics disciplines offer several methods to identify and split mixed populations
(see e.g. [3]). This study follows in principle the method described by [4, 5]. It requires
the underlying populations to be normally distributed—which, in this example, is
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Fig. 1 a (left) Bi-modal system of a N–S orientated low grade domain and an obliquely cross-
cutting high grade domain; b (right) Samples taken on a regular grid of 5× 5 units

Fig. 2 Histograms of log-transformed sample data: a (left) Single data set with population 1 (pale
green) and population 2 (dark green); b (middle) Population 1; c (right) Population 2

Fig. 3 Histograms of log-transformed sample data after split showing original domain 1 (pale
green) and original domain 2 (dark green): a-b Population 1 (left) & 2 (middle left) without
neighborhood search; c-d Population 1 (middle right) and Population 2 (right) with directional
neighborhood search

achieved by log-transformation of the original data—and is based on an initial visual
estimate of means and spreads of the two populations. Normal fits are forced over the
data, and the respective density probabilities and the probability ratio calculated. The
probability ratio of each sample is compared with a randomly generated dummy and
the sample assigned accordingly to one of the two domains. This process is repeated
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with iterative optimization of the input parameters until the two resulting domains
are both normally distributed. This can be tested with a goodness-of-fit analysis.
Figure 3a, b show the data set after the split. Although the statistical moments mean,
standard deviation and number of samples of the resulting domains are very similar
to those of the original domains, 175 or 17.5 % of the samples have been assigned to
the wrong domain.

3 Directional Neighborhood Search

To improve the allocation of samples during the split, a directional neighborhood
search has been introduced into the process. Appropriate search parameters were
determined by calculating the mean of the variances of the neighborhoods for various
search ranges, directions and anisotropy ratios. In this case, best results were obtained
with a search direction of 112.5◦ which is approximately parallel to the orientation
of the high grade domain, an anisotropy ratio of 3:1 and a range of 15 units. For each
sample, the mean grade of the (log-transformed) samples within this search ellipse
was then calculated and compared with the means of the two domains to establish
the coefficient Cm as follows:

Cm = ((X2 − X1)/2)− XN (1)

Fig. 4 Bi-modal data set showing domain 1 (light dots) and domain 2 (dark dots): a (left) after
split without neighborhood search; b (middle) original data; c (right) after split with neighborhood
search
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where X1 is the mean of population 1, X2 the mean of population 2 and XN the mean
of the neighborhood. Cm decreases with increasing means of the neighborhood and is
factored into the splitting algorithm. This way, samples of relative high grade within
a neighborhood of low values are penalized and vice versa. Figure 3c, d show the
data after the split using a directional neighborhood search.

Comparison with the original data (Fig. 4) suggests that the introduction of a direc-
tional neighborhood search improves the domaining process significantly. Applica-
tions for the proposed method are 2-dimensional, bi-modal data sets such as geochem-
ical soil samples (e.g. for environmental studies or mineral exploration), particularly
when the data is only quantitative without any additional qualitative information that
could otherwise assist in conventional domaining.
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FRISER-IRMIX Database: A Web-Based
Support System with Implications in Planetary
Mineralogical Studies, Ground Temperature
Measurements and Astrobiology

Jesús Martínez-Frias, María Serrano Rubio, F. Javier Martín-Torres, María
Paz Zorzano, José A. Rodríguez-Manfredi, Javier Gómez-Elvira and REMS
team

1 Introduction

Web-based databases are used as “real” support systems to help to decide how to
proceed with respect to a specific (or a set of) scientific subject at different levels.
This is the case of the FRISER-IRMIX database: a web-based support system with
implications in planetary mineralogical studies, ground temperature measurements
and astrobiology, which is developed in the framework of the scientific activities of
the NASA-MSL-Rover Environmental Monitoring Station (REMS).

The Mars Science Laboratory (MSL) payload is composed of a set of instruments
including REMS, which is a contribution of Spain. The Centro de Astrobiología
(CAB) led the development of the instrument. REMS is a suite of different sensors
to record pressure, humidity, air and ground temperature, UV radiation and wind
speed and direction [1] REMS is an instrument composed of four modules. Two
modules, located on the Remote Sensor Mast (RSM) of the MSL (Curiosity) rover,
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Fig. 1 FTIR reflectance spectra of basaltic powder and gypsum (mixed different amounts). Purple
basalt. Green Gypsum (5 %). Light Blue Gypsum (10 %). Red Gypsum: 20 %. Dark Blue Gypsum:
20 %

are devoted to measuring the wind vector, the ground and air temperatures and the
relative humidity of the air. The third module, located on the rover deck, is dedicated to
measuring the flux of solar ultraviolet radiation at various bands. The fourth module,
located in the rover body, is measuring the atmospheric pressure [2]. REMS started
collecting data on sol 1 (a Mars solar day has a mean period of 24 h 39 min 35.244 s,
and is customarily referred to as a “sol” in order to distinguish this from the roughly
3 % shorter solar day on Earth), and has been operating continuously since sol 10,
with the exception of sol 28 which focused on engineering activities [3]. Specifically,
the FRISER-IRMIX database was build in connection with the science related to the
REMS-Ground Temperature Sensor (GTS). Nevertheless, the spectroscopic results
(Fig. 1) and their systematic arrangement in the database can also be useful for other
more general mineralogical and astrobiological studies [4, 5].

2 FTIR Spectra. Interpretation of Mars’ Surface Temperature
Measurements

The currently used IR spectral data of Martian dust, rocks and sediments allow the
interpretation of Martian spectra accounting for the spectra of different minerals
and lithologies, and those of their alteration and weathering products, but these are
terrestrial spectra. These spectra were measured, considering different mineralogical
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Table 1 Example describing one of the samples: CAB-GY-20CS a mixture of gypsum and basalt

Features Description

Label Official label of the powder sample in the database (CAB-GY-20CS)
Basalt/Mineral mixture Gypsum (GY)
% Basalt 80 (mixing amount)
% Mineral 20 (mixing amount)
Wt - Basalt 1.2007 (weight of the powder)
Wt - Mineral 0.3016 (weight of the powder)
Origin/Locality Sorbas cave (interior), Almería
FTR spectrum Hyperlink to the spectrum (in jpg format)
Other information e.g. texture, sampling, etc.

mixtures (Fig. 1), and covering the specific working wavelength range of the REMS-
GTS in the NASA’s MSL (Curiosity) rover, which is currently operating on Mars.
This research was performed taking into account the size of the Martian regolith
(<45 µm) and the wavelength range of the REMS’ GTS, from 3.34 to 25 microns,
with a resolution of 2500000 nm. Wider percentages of each mineral (0–100 %) were
considered in a previous study [5]. In a second stage, all measurements were restricted
to small amounts (<20 %) of the water-related minerals.

The IR emission of the ground depends on the kinetic surface temperature of the
ground and the emissivity of the materials in the area of observation of the detector.
The basalt reflectance percentage increases or decreases, even up to 100 %, depending
on the mixing ratios of the different minerals [5].

Thus, an accurate knowledge of the emissivity is essential to retrieve the ground
temperature correctly. This unequivocally confirms the need for considering the
chemical–mineralogical assemblages (and their textures) for any investigation and
interpretation of Mars surface environment, and hence the scientific significance of
the database as a web-based support system with implications in planetary miner-
alogical studies, ground temperature measurements and astrobiology.

3 FRISER-IRMIX Database

The FRISER-IRMIX (http://auditore.cab.inta-csic.es/friser-irmix) contains FTIR
spectra of a set of selected minerals (oxides, oxi/hydroxides, sulfates, chlorides, car-
bonates, sulfides, opal, clays, etc) and basalt (as the main and widespread volcanic
Martian rock), that are more representative of Martian conditions.

At present, FRISER-IRMIX comprises more than 400 FT-IR reflectance spectra
and circa 3,000 cells of data. All minerals are included into two general groups (by
alphabetical order): 1) minerals from A to H, and 2) from J to Z, facilitating the rapid
search for the specific spectrum or set of spectra in the database.

http://auditore.cab.inta-csic.es/friser-irmix
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The FRISER-IRMIX database is in continuous development, and it is planned
to incorporate new minerals and mineral mixtures. It is fully available for scientific
collaboration. The following features are described for each mineral (or mixture)
sample (see Table 1).
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Spectral Analysis for Anomaly Detection
in the Central Volcanic Range, Costa Rica.
Implications for Planetary Geology

Juan Gregorio Rejas, Ruben Martínez, Miguel Marchamalo, Javier Bonatti
and Jesús Martínez-Frías

1 Introduction

Image spectrometry has proven to be efficient in the characterization of miner-
als based on statistical methods using specific reflection and absorption bands.
Hyperspectral configurations in SWIR and VNIR have been successfully used for
mapping hydrothermal alteration materials in different geological scenarios [1]. Pre-
vious works have shown the applications of ranges of the spectrum in MIR (Medium
Infrared) and TIR, combined with other sources [2].

On the other hand, detection of spectral anomalies aims at extracting automati-
cally pixels that show significant responses in relation to their surroundings. Several
methods have been developed over the last decades, allowing a better understanding
of the relationships between hyperspectral data dimensionality and the optimization
of search procedures [3, 4] as well as the sub-pixel differentiation of the spectral
mixture and its implications in anomalous responses.
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In the current work, we present a new approach to the study of absorption and
reflection spectra bands, as well as spectral outliers significance in anomaly detection,
as a tool for automated spectral analysis in Planetary Geology, based on a case of
study in the Central Volcanic Mountain Range (Costa Rica).

2 Hyperspectral Data and Test Site

Costa Rica is emplaced on a triple union point of tectonic plates in which the Nazca,
Cocos and Caribean plates converge. As a result, this zone is a very active volcanic
region defined by a set of faults, which generate different tectonic blocks. The Central
Volcanic Mountain Range runs NW–SE and is formed by a row of volcanic cones,
comprising by pyroclastic rocks, andesitic, pyroxenic and basaltic lavas [5].

We used reflectance images of the HyMAP sensor [6] and the MASTER sensor
[7], acquired on March 7, 2005, on the CVR and surroundings. The scene HyMAP
(125 channels between 0.4589 and 2.491 µm) has a dimension of 710 × 2415 pixels,
with a spatial resolution of 15 m. The MASTER scene is 1650 × 4466 pixels, with
spatial resolution of 9 m and radiometric resolution of 16-bit. The 50 MASTER image
channels are grouped in a port of 25 channels in the VNIR-SWIR (0.463–2.427 µm),
and 25 channels between 3.075 and 13 µm in the MIR and TIR.

2.1 Pre-Processing

An algorithm MNF (Minimum Noise Fraction) has been applied to reduce noise of
the MASTER and HyMAP images. Channels sensors presenting a high signal/noise
ratio were rejected, channels ranging from 62 to 65 and 125 in the case of HyMAP,
and from 16 to 19, 25 to 41 and 50 in the MASTER images.

Up to 49 mineral samples were collected during two sampling campaigns carried
out in August 2010 and February 2012. Spectral measurements were performed in situ
and at laboratory by an USB400 and an ASD FieldSpec Hi-Res spectroradiometers.
The spectra allowed the minerals in the samples to be identified, and were utilized to
check the HyMAP (Fig. 1) and MASTER reflectance images by an empirical linear
regression.

3 Spectral Analysis and Anomaly Detection

Several minerals were detected remotely by their spectral responses (absorbance
and reflectance) in the Turrialba Volcano area [1]. The channels of the HyMAP
enabled minerals such as illite (6, 25, 105, 108), alunite (6, 25, 105, 116), kaolinite
(6, 81, 108, 116) and kaolinite + smectite + monmorollonite (6, 81, 108, 119) to be
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Fig. 1 Location of the study area (map) and HyMAP rgb 81, 6, 119 combination of the Turrialba
volcano detail in the CVR (left) with a spectral measurement point example (red frame). Spectral
signature extracted from the hyperspectral image (right)

detected. In the case of the MASTER images, alunite (4, 8, 21, 24), illite (4, 13, 22,
24) and kaolinite (4, 13, 22, 24) were identified.

Anomalies obtained for RX algorithm have been verified by using a method
based on projection pursuit [4] and a subspace RX method [3]. The computation
in all methods has been carried out separately for spectral ranges of reflective and
emissive channels. For MASTER images we calculated a thermal index [1] profiting
from the capability of the sensor to discriminate between different covers in the
emissive spectrum.

The relationship between the spectral anomalies and the diagnostic bands has
been studied. In order to do that, it has been linearly adjusted a sample space of 35
pair of tie points, which had spectral anomaly and diagnostics bands of minerals.
All regressions have been calculated at a confidence level of 95 %, removing in each
adjustment the sample values that showed unusual residues and which correspond
mainly with clouds and shadows. Among all linear models obtained, the RX shows the
highest R-squared value (73.12 %), for the absortion bands of illite from MASTER.
The P value obtained was less than 0.05 in all cases, except for RX and absortion
bands of the kaolinite and montmorollonite from HyMAP, suggesting great statistical
significance of the method. The highest correlation coefficients from the regressions
(−0.83 and 0.85) indicate a moderately strong relationship.

The difference between spectral anomalies with and without VNIR diagnostic
bands for the HyMAP case is 0.75 %, and for the MASTER case (Fig. 2) is 0.84 %,
while the difference with respect to the background was −2.52 and −2.32 %, respec-
tively.
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Fig. 2 RX anomalies from VNIR (left) and TIR MASTER chs. (middle). Comparison of RX
anomaly detection methods for MASTER: 1, All channels; 2, VNIR; 3, Only VNIR diagnostic
bands; 4, VNIR without diagnostic bands; 5, TIR

4 Conclusions

Results of the standard RX, projection pursuit and subspace anomaly detectors were
compared in spectral ranges of different image technologies into a terrestrial analog
for Planetary Exploration. Higher concentrations of clay minerals, in scenarios where
the sources of error are minimized, are correlated with the anomalies calculated in
the reflective spectral range. The spectral mixing associated directly with the spatial
resolution, has an impact in a significantly way on the characterization of the natural
and semi-urban backgrounds, and thus in the spectral anomalies.

This paper improves the prospection processes searching areas and automatically
detecting minerals of interest by virtue of their surface material characteristics, which
is highly relevant for Planetary Geology.
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A Mathematical Algorithm to Simulate the
Growth and Transformation of Framboidal
Pyrite: Characterization of the Biogenic
Influence in Their Size Distributions

Raúl Merinero Palomares, Rosario Lunar Hernández, Francisco-Javier
González-Sanz, Luis Somoza Losada and Jesús Martínez-Frías

1 Introduction

Framboidal morphology represents the most dominant pyrite texture observed in
sedimentary environments [1]. Framboids are microscopic spherical clusters of
equidimensional and equimorphic microcrystals. The formation of framboidal pyrite
is explained by extremely high supersaturation levels [2]. The limited microcrystal
size (0.1–2µm) and the multiple (up to 106) pyrite nuclei evidence that a high nucle-
ation rate/crystal growth rate ratio is necessary for framboid formation [3, 4]. The for-
mation of micro-environments with high pyrite supersaturation could be related with
the close relationship observed between organic matter and sedimentary framboidal
pyrite [3]. Many experimental works has been achieved to explain the formation of
framboidal pyrite being the models of aggregation of iron monosulfide microcrystals
and their subsequent replacement into pyrite the most accepted [2]. The main prob-
lem of these models is the explanation for the spherical morphology and the role of
microorganisms in their development. Although some authors explain the spherical
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shape by interaction forces, including gravitational, electrostatic, van der Waals and
magnetic forces [3], other authors consider that the presence of biogenic spherical
surfaces supports the development of spherical framboids [5].

The crystal-size distributions (CSD) or frequency-size distributions have distinc-
tive shapes which can convey information about growth and subsequent transforma-
tions of framboids [6]. In particular, biogenic framboidal pyrite presents narrower
CSD with lower size variability than abiogenic framboids [5].

To resolve the subject about the spherical shape and the role of microorganisms and
organic matter in the formation of framboidal pyrite we implemented a mathematical
algorithm to model the growth of framboidal pyrite by microcrystal aggregation. The
algorithm was executed under diverse conditions simulating natural mechanisms with
the aim of explain the role of spherical organic surfaces as the origin of the framboidal
morphology and the base of the microcrystal aggregation. We also stressed the role
of organic matter in the formation of narrow CSD.

2 Algorithm Details and Results

The mathematical algorithm subject of this research was implemented in C pro-
gramming language. The thousand of calculated data was subsequently managed
with Microsoft Excel and the statistical R software. The growth of a large number of
framboids was simulated varying the following basic parameters: an initial diameter
(D) that simulate the microcrystal aggregation on a pre-existent spherical surface,
the packed factor (f), the diameter (d), the habit (h) and the number (n) of micro-
crystals. The volume and the diameter of each framboid were calculated from these
basic parameters. An initial diameter of D = 0 implies aggregation without control
of pre-existent surfaces, whereas values of D similar to microorganisms involved
in framboidal pyrite formation simulate their role in the microcrystal aggregation
inducting the spherical shape of framboids. The f and d parameters was introduced
as variables to simulate some natural conditions. In sedimentary conditions it is
expected that f was lower than cubic close packing because of the high amount of
organic matter and other small substances trapped inside framboidal structure [7].
The high pyrite supersaturation level required to form framboids implies the devel-
opment of microcrystals with small diameter. However, in sedimentary conditions,
the formation of thousands of microcrystals decrease drastically the pyrite satura-
tion and therefore it is expected that d decrease as the growth of the framboids
advances [4]. Additional typical growth processes observed in natural framboidal
pyrite are implemented: dissolution and subsequent overgrowth by aggregation of
microcrystals, the formation of radiating elongated outer crystals around framboids
and homogenization processes by interstitial spaces infilling [7].

The algorithm consists of two main stages: growth in open system followed by
growth in closed system (constant volume) simulating dissolution and the subsequent
processes described above. Growth in open system was implemented according to the
Law of Proportional Effects that consists of a size dependent growth [8]. Growth in
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Fig. 1 Standard deviation variation in function of the initial diameter (D), microcrystal diameter
and closed system growth mechanisms. In open system (left) initial values of D near microorganism
sizes generated populations with lower variability. In closed system (right) infilling of interstitial
voids generated populations with the lowest variability and microcrystal aggregation generated
populations with the highest variability

open system generated CSD with lognormal shape. Simulations with D>0 generated
CSD with lower variability but the same shape than that obtained with D = 0 (Fig. 1).
Similar CSD was obtained decreasing the f and d parameters during growth, but with
lower variability for the same average size.

Growth in closed system implies that the volume was constant, and therefore the
growth of framboids is controlled by the dissolution of previously formed microcrys-
tals. In each step of growth a critical radius was estimated according with Ostwald
ripening [8] and framboids with lower size than critical radius were dissolved. A
supply of reactants equivalent to the microcrystals dissolved was incorporated into
framboids by one of these processes: infilling of interstitial voids, overgrowth by
microcrystal aggregation or formation of outer elongated crystals. Growth in closed
system transformed the shape of CSD into symmetric or negatively skewed and
decreases the variability (Fig. 1). The infilling of interstitial voids generated the CSD
with the lowest variability for the same average framboidal size.

3 Concluding Remarks

The microcrystal aggregation on a pre-existent spherical surface generates theoretical
populations of framboids with narrow CSD similar to that observed in sedimentary
conditions. Organic matter-rich environments (simulated decreasing the packed fac-
tor) produce narrower CSD than microcrystal aggregation on a pre-existent spherical
surface. The same effect is obtained by the decay of pyrite supersaturation (simulated
decreasing the diameter of microcrystals). Growth under constant volume conditions



796 R. M. Palomares et al.

(closed system) also reduces the variability of sizes, although in this case the shape
of CSD changes from lognormal to symmetrical or negatively skewed. Under these
conditions the infilling of interstitial voids is more effective generating narrow CSD
than other simulated mechanism in closed system. Mathematical computer simula-
tion of the growth of framboidal pyrite is a useful and easy tool to generate large
populations simulating natural sedimentary conditions where framboidal is the most
dominant pyrite texture. Our results show that the presence of pre-existent spheri-
cal surfaces with sizes similar to that of microorganisms involved in the formation
of sedimentary pyrite and the growth in organic matter-rich conditions can control
the development of the narrow lognormal CSD observed in nature and the spherical
shape of framboids.
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Computational Models and Simulations of
Meteor Impacts as Tools for Analysing and
Evaluating Management of Crisis Scenarios

Jesús Martínez-Frías and Alain Leppinette Malvite

1 Introduction

The Earth is in constant interaction with outer space, and we must do our best to
understand the scientific and social implications of this fact. The geological record
evidences that cosmic impacts have accompanied the geobiological evolution of our
planet (Fig. 1). Astronomic and astrogeological studies indicate that around 70 % of
potential impactors are of asteroidal type (the rest is cometary). Numerous studies
[1–8] allow to estimate that the amount of the potentially dangerous NEO (Near
Earth Objects) which could close up to our planet are: (a) circa 150 million of 10
m; (b) around 300,000 of 100 m; (c) 10,000 of 500 m, and (d) approximately 2,000
massive objects of 1 km of diameter. Fortunately, 75 % of the large asteroids (of more
than 1 km) are already localized and none of them has a dangerous orbit.

There is a general agreement that the largest risk of impact (and the highest
difficulty of observation and monitoring) is focussed on “small objects” with sizes
ranging from 10 to 300 m [3–6]. The energy released is huge: around 10 Mt TNT
for an object of 50 m (in its atmospheric entry). The transition from 100 to 200 m
practically multiplies by 10 the final value (from 75 to 600 Mt). Computer simulation
and modelling offer new insight into the formation of impact craters, not only helping
to understand ancient impact events (Fig. 1), but also providing a way for analyzing
and evaluating management issues related to future crisis scenarios.
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Fig. 1 Map of confirmed impact structures on the Earth surface (180 structures) and on the oceanic
bottom (24 structures). Size of circles is proportional to the crater diameter. White stars depict the
epicenters of two largest air blasts of the twentieth century - Tunguska (1908) and Brasil (1930).
Courtesy of Expert Database on the Earth Impact Structures (EDEIS), Tsunami Laboratory, ICMMG
SD RAS, Novosibirsk, 2006 [9]

2 Computerized Simulations and Evaluation of Crisis Scenarios

A set of 20 possible crisis scenarios, related to different types of impactors, have
been simulated and evaluated. In our model, two compositional types of impactors
have been considered (silicate-rich -stony and metallic - irons). We have considered:
(a) different sizes of the impactors, ranging from 10 to 300 m (10, 50, 100, 200 and
300 m as their terminal size (striking earth’s surface); (b) vertical impacts, and (c)
a velocity of 12 km/s. Regarding the substrates, they were simulated as (dry) rocky
substrate and rocky substrate (with water). In order to estimate the energy (Mt) and
seismicity (Richter scale), which correspond to each impact scenario, the results
were combined with the simulation data from the model of Collins et al. [10].

As a reference for assessing the management of the social crisis scenario [11]
originated by the collision, it is important to note that the atomic bomb of Hiroshima
had an explosive energy equal to 13 kt TNT [12]. It wiped out 90 % of the city and
approximately 80,000 people were killed as a direct result of the blast. Figures 2 and
3 displays two examples of computerized simulated impact craters.

In the same way that it is extremely important to monitor the Near Earth Objects,
it is also crucial to study the effects of these collisions by the characterization of the
terrestrial impact craters and by their computerized simulation. Very recent events,
such as the Chelyabinsk meteor event (Russia, 15 february, 2013) [13] confirm the
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Fig. 2 Impact crater generated by a silicate-type asteroidal object. Ø = 10 m. v = 12 km/s. Rocky
substrate (dry). Energy of impact = 0.32 MegaTons. Ejecta: mostly blocked by the atmosphere.
Associated seismicity: 4,3 Richter scale. No thermal radiation. Scarce vaporization. Simple crater

Fig. 3 Impact crater generated by a metallic-type asteroidal object. Ø = 300 m. v = 12 km/s. Rocky
substrate (with water). Energy of impact= 9.83×102 MegaTons. Ejecta: they would create a layer
of 32,8 m thick., and their mean average size would be 98.8 m. Associated seismicity: 6.8 Richter
scale. No thermal radiation. Scarce vaporization. Crater in transition from simple to complex

significance of being aware about these astrogeological hazards, as well as of having
appropriate tools and protocols which help us minimize their effects.
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In-situ Raman Analysis of the Precipitation
Sequence of Sulphate Minerals Using Small
Droplets: Application to Rio Tinto (Spain)

Fernando Rull, Francisco Sobrón, Julia Guerrero, Jesús Medina, Gloria
Venegas, Fernando Gázquez and Jesús Martínez-Frías

1 Introduction

Rio Tinto (Huelva, SW Spain) is considered a modern model of formation of
sulphates, linked to significant acidophilic biogenic activity [1]. The river’s basin
lies on the Iberian Pyrite Belt (IPB) that is an arcuate belt, 250 km long and
25–70 km wide, in the southwest of the Iberian Peninsula. The IPB is one of the
largest volcanogenic massive sulphide provinces over the world. Sulphates come
from aqueous alteration of iron-rich sulphide minerals of the IPB. To understand
the mineral precipitation sequence and the role of the bacterial activity on this
process a detailed study of the Rio Tinto physicochemical system has been under-
taken. This study comprises chemical composition, chemical species distribution at
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equilibrium and mineral precipitation sequences using mainly spectroscopic tech-
niques. Experiments at the field using portable instruments have been compared with
those performed at the laboratory using a simulator of the riverbank evaporation con-
ditions and also using small droplets of acidic water deposited on different substrates.
In addition, computer simulation methods allowing chemical speciation, chemical
equilibrium and sequence precipitation calculations have been developed to compare
with the experimental results.

2 Spectroscopic Results at the River

In-situ Raman spectroscopy performed at the riverbanks (Fig. 1) allowed up to 10
minerals, mainly hydrated sulphates, to be identified in the Rio Tinto efflorescences
(Table 1). In particular, Copiapite and Coquimbite group minerals were found, in
addition to other low hydrated sulphates, such as rhomboclase, rozenite and szomol-
nokite.

3 Spectroscopic Results at the Evaporation-Precipitation
Simulator

In Fig. 2a it is depicted the simulator used for evaporating natural waters from the
river.

Fig. 1 a and b In-situ Raman spectroscopy. c and d Examples of sulphate efflorescences on the
riverbanks



Application to Rio Tinto (Spain) 803

Table 1 Minerals found by
Raman spectroscopy in the
Rio Tinto efflorescences and
experiments carried out from
natural water

Time (days) Minerals

1 Ferricopiapite
3 Coquimbite
5 Copiapite
7 Magnesiocopiapite
13 Hematite
16 Rozenite
16 Szomolnokite
18 Rhomboclase
30 Metavoltine

Fig. 2 a Evaporation-
precipitation simulator used
in the laboratory. b Efflo-
rescences generated after
evaporation of the Rio Tinto
water

The mineralogy of the efflorescences formed in the evaporation simulator
(Fig. 2b) was similar to that of the natural samples taken from the riverbanks in
the Rio Tinto setting (Table 1). Additionally, magnesiocopiapite, Al-copiapite and
szomolnokite were found in the simulator experiments. Nevertheless, the exact pre-
cipitation sequence of these minerals was difficult to be described because of some
of them precipitated at the same time.

4 Spectroscopic Results on Small Droplets

We have designed a new series of experiments in which small droplets of natural
waters from the river evaporated at room temperature on different substrates (Fig. 3),
giving rise to a mineralogical sequence as a function of time. The results obtained at
the micro-scale have enabled to simulate the precipitation sequence occurred in the
riverbanks (Table 2) in a more detail.
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Fig. 3 Small droplets on glass
a, aluminum b, pyrite c and
zinc d substrates

5 Computer Simulations of Evaporation Processes

In order to check the experimental results obtained and to produce new and powerful
tools for the simulating the precipitation, computer simulations of the evaporation-
precipitation processes was undertaken. Fig. 4 illustrates an example the computer
simulation process of the precipitation of a double salt of Mg and Fe sulphate in a
small droplet of water. The initial volume is 5 mm3 at 23 ◦C and the drop geometry is
shown in Fig. 4a. Figure 4b shows the evolution of the molar fraction of the different
chemical species in solution as function of time. Remarkably, the behavior of Fe and
Mg is different, therefore illustrating the differences in the precipitation sequence.

Table 2 Precipitation sequence obtained from micro-scale evaporation experiments of a Rio Tinto
water sample on glass substrate along 30 days

Minerals Formula

Baryte BaSO4

Copiapitea, b Fe2+Fe3+
4 (SO4)6(OH)2 · 20(H2O)

Coquimbitea, b Fe3+
2 (SO4)3 · 9H2O

Epsomite MgSO4 · 7H2O
Ferricopiapiteb (Fe3+

2/3Fe3+
4 (SO4)6(OH)2 · 20H2O)

Gypsum CaSO4 · 2H2O
Halotrichite Fe2+Al2(SO4)4 · 22H2O
Jarositea (KFe3+

3 (OH)6(SO4)2)

Melanterite (Fe2+SO47H2O)
Rhomboclase H5Fe3+O2(SO4)2 · 2H2O
Rozenitea, b (Fe2+SO4 · 4H2O)
a Minerals detected by in-situ Raman
b Minerals found in the simulator experiments
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Fig. 4 a Initial geometry
of the small drop of 5 mm3

aqueous solution at 23 ◦C.
b Molar fraction evolution
as a function of time of
the different chemical species
during the evaporation process
(dark blue water; purple SO2

4;
green Mg2+; light blue Fe2+)

6 Conclusions

The application of Raman spectroscopy to the analysis of precipitation process is a
powerful tool for the in-situ study at the molecular scale of the different processes
leading to the mineral phase sequences. The results obtained with the simulators at
the laboratory using acidic waters from Rio Tinto allow identifying all the minerals
previously found in natural conditions at the riverbanks. Nevertheless, the small
droplets system is more reliable, providing very precise time-information on the
mineral sequence precipitation. The micro-Raman analysis of these small systems
in combination with computer simulation tools represents a very promising way to
analyze the mineral evaporation-precipitation processes in aqueous solutions.
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Signal Analysis by Means of Multi-Scale
Methods

Christian Blick

1 Introduction

The multi-scale method to decorrelate seismic data sets such as 3-D velocity and
density models as well as the corresponding migration results of a possible site for
a geothermal power plant is based on the inhomogeneous wave equation [2]

(Δ+ k2)V (x) = F(x). (1)

The variable k = ω
c is calledwavenumber and is defined as angular veloci ty ω

divided by the veloci ty o f the medium c. Further on, the functions F and V are
linked by the integral equation

V (x) =
∫

Γ

F(y)G(Δ+ k2, ‖x − y‖)dy, (2)

where the f undamental solution G(Δ + k2, ‖x − y‖) of the inhomogeneous
Helmholtz equation is given by

G(Δ+ k2, ‖x − y‖) = −exp(ik‖x − y‖)
4π‖x − y‖ . (3)
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2 Decomposition of Seismic Data Sets

In general, we have two options to decompose a seismic data set given as a sample of
a function F(x), x ∈ R. We can either calculate and decompose the function V (x)
given via Eq. (2) or we can decompose the function F(x) directly.
Further on, the choice of the wave number k plays an important role and depends on
the type of the data set, which should be decorrelated. If we are faced with velocity
or density models, k should be chosen as equal to zero. On the other hand, if we want
to decorrelate a migration result, k should be chosen as a positive real number. Here,
the most important part is that by choosing different wave numbers, we are able to
highlight different rock formations in the ground as can be seen in Fig. 1c. In the
following, we concentrate on the case k > 0.

2.1 Decorrelation of V

In order to decorrelate the function V , we use a regularization technique [3] on
the fundamental solution of the Helmholtz equation (Eq. 3) by applying Taylor
Expansion of order n + 2, n ∈ N in a ball of radius ρ around x leading to the
scaling function

Sn
ρ(Δ+ k2, ‖x − y‖) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− exp(ik‖x−y‖)
4π‖x−y‖ , ‖x − y‖ ≥ ρ

− exp(ik‖x−y‖)
4π

(
1

‖x−y‖ + (ρ−‖x−y‖)n+2

‖x−y‖ρn+2

)
, 0 < ‖x − y‖ < ρ

− n+2
4πρ , ‖x − y‖ = 0

.

(4)

Hence,

V (x) = lim
ρ→0

∫

Γ

F(y)Sn
ρ(Δ+ k2, ‖x − y‖)dy (5)

and we can decorrelate the function V by

V (x) =
∫

Γ

F(y)Sn
ρ j
(Δ+ k2, ‖x − y‖)dy +

∞∑

m= j

∫

Γ

F(y)Ψ n
m(Δ+ k2, ‖x − y‖)dy,

(6)
where ρ j is a null sequence and the wavelet f unction Ψ n

m(Δ + k2, ‖x − y‖)
regarding the scalling parameter m is given by

Ψ n
j (Δ+ k2, ‖x − y‖) = Sn

ρ j+1
(Δ+ k2, ‖x − y‖)− Sn

ρ j
(Δ+ k2, ‖x − y‖). (7)
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2.2 Decorrelation of F

In order to decorrelate the function F directly, we calculate the corresponding scaling
function

Bn
ρ (Δ+ k2, ‖x − y‖) = (Δ+ k2)Sn

ρ(Δ+ k2, ‖x − y‖)
‖(Δ+ k2)Sn

ρ(Δ+ k2, ‖x − y‖)‖L1(R3)

(8)

given by

Bn
ρ (Δ+ k2, r) =

⎧
⎪⎨

⎪⎩

exp(ikr)(ρ−r)n(n+2)(n+1+2ki(r−ρ))
4πrρn+2‖(Δ+k2)Sn

ρ (Δ+k2,‖x−y‖)‖L1(R3)
, |r | ≥ ρ

0 , else

. (9)

The normation of the function Bn
ρ (Δ+ k2, ‖x − y‖) is important in order to be able

to compare different scaling functions. The decomposition can now be obtained by
substituting the functions V by F and S by B in Sect. 2.1.

Fig. 1 Migration result (a), interpretation of the Marmousi data set (b) [4, 5] and exemplary detail
function (c) of the decomposition of V for parameters k = 0.099, j = 4 and ρ = 1500 · 2− j m [7]
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3 Numerical Results

In order to test the 3-D multi-scale method, we used the 2-D Marmousi model [4,
5] and created our 3-D data set by putting the 2-D data behind each other. A 2-D
method was already discussed in [4, 6]. Figure 1a, b shows the migration result of
the Marmousi data set and it’s interpretation, Fig. 1c an exemplary detail function of
the decomposition of V corresponding to the parameters k = 0.099 and j = 4 given
our 3-D data set as input. Our results show, that by choosing different wave numbers,
we are able to repress different rock formations while highlighting a specific one.
Further on, the method is able to filter out the noise in the upper left corner of the
initial data set. Specifically, for the chosen parameters, we are able to highlight the
formation above the salt structure in the lower left corner, which extends above the
marl dome in the center of the figure (red box).
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Modeling and Simulation of Forest Fire
Spreading

Sarah Eberle

1 Mathematical Modeling

We consider a similar model of forest fire spreading as Asensio and Ferragut [1].

∂T

∂t
= −v∇T + D�T + A

(
Y exp

(
− B

T − T∞

)
− h(T − T∞)

)
, (1)

∂Y

∂t
= −bY exp

(
− B

T − T∞

)
, (2)

with temperature of fuel T , time t , wind velocity v, diffusion coefficient D, pre-
exponential factor of reaction A, mass fraction of fuel Y , coefficient due to modified
Arrhenius law B, natural convection coefficient h, disappearance rate of fuel b, and
ambient temperature T∞.

2 Numerical Solution

2.1 Space and Time Discretization

We use for the space discretization a collocation method based on the sums:

u =
I∑

i=1

φ(x, zi )ui , y =
I∑

i=1

φ(x, zi )yi , x ∈ X, z ∈ Z , I number of points,

(3)
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where φ is the trial function, X a grid representing the collocation points and Z a grid
consisting of the centers of the trial functions (for more details the reader is referred
to Eberle et al. [2]). Then, we apply the ansatz (3) for the temperature T and mass
fraction Y and plug it in Eqs. (1) and (2):

∂u

∂t
=

I∑

i=1

(−v∇φi + D�φi − Ahφi ) ui + AhT∞ + A
I∑

i=1

φi yi exp

(
− B

T−T∞

)
,

(4)

∂y

∂t
= −b

I∑

i=1

φi yi exp

(
− B

T − T∞

)
. (5)

The time discretization is done by a Crank-Nicolson-scheme.

2.2 Stabilization

The above introduced solution scheme yields strongly oscillating results in the con-
vection dominated case (Gibbs phenomenon). Thus, the method needs to be stabi-
lized. Here, we follow the procedure of flux corrected transport of Kuzmin, Löhner,
Turek [3]. In doing so, we apply the stabilization exemplary for the temperature T .
Step (1) We start with the approximation of the initial conditions and determine the
according coefficients u0 by solving the system

Mu0 = T0, (6)

where M = mi j is the mass matrix given by mi j = φ(xi , z j ).
The coefficients are needed for the space discretization within the time-stepping

scheme.
Step (2) Next, we consider the so-called "low-order" problem and define the lumped
mass matrix MLby

mii =
∑

j

mi j for i = j. (7)

Step (3) After that we have a look at the "high-order" problem, which means we
construct the operator K H given by

k H
i j (φ) = −v∇φ(xi , z j )+ D�φ(xi , z j ), (8)

which describes the convection and diffusion.
Step (4) Artificial diffusion is added now and we define the diffusion operator in the
same way as by Möller [4]
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dii = −
∑

j �=i

di j , di j = d ji = max{0,−k H
i j ,−k H

ji } for i < j (9)

and the low-order operator K L = K H + D.
Step (5) The right-hand side of our convection-diffusion-reaction-problem (1) is
represented by the reaction term q and we call its coefficients qn−1.

q = A

(
Y exp

(
− B

T − T∞

)
− h(T − T∞)

)
. (10)

Step (6) Following the procedure in [4] we make an approximation of the coeffi-
cients of the collocation method by

u = un−1 − �tn
2

M−1
L (K Lun−1 − qn−1). (11)

Step (7) Next, we modify the right-hand side of problem (1) by applying
Zalesak’s algorithm [5] for which we need to calculate the residuum r and the weights
α to get q∗n−1. The algorithm considers only the next neighbors i of every collocation
point

P+j =
∑

i �= j

max
i=1,...,N

{0, ri j }, P−j =
∑

i �= j

min
i=1,...,N

{0, ri j }, (12)

Q+j = max{0, max
i=1,...,N

(u j − ui )}, Q−j = min{0, min
i=1,...,N

(u j − ui )}, (13)

R+j = min
i=1,...,N

{
1,

mi Q+i
P+i

}
, R−j = min

i=1,...,N

{
1,

mi Q−i
P−i

}
, (14)

αi j = min
i=1,...,N

{
1,

R+i
R−j

}
for ri j > 0 andαi j = min

i=1,...,N

{
1,

R−i
R+j

}
else. (15)

Step (8) Now we are able to determine the coefficients

un = un−1 − �tn
2

M−1
L (K Lun−1 − qn−1 − q∗n−1) (16)

Step (9) Finally, we use these coefficients to get solutions for the temperature T and
the mass fraction of the fuel Y with the stabilized method.
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Fig. 1 In the first row the temperature of fuel T in [K ] is plotted for the initial temperature, after
400 and 800 time steps and accordingly in the second row we see the mass fraction of fuel Y

3 Numerical Simulation

Figure 1 shows first simulations for two different fuel types (type 1 on the left-
hand side and type 2 on the right-hand side) and wind directed to the south. We
can see the fire spreads faster for the fuel type 1 and due to the wind its shape is
elliptic.
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The Finite Pointset Method (FPM)
and an Application in Soil Mechanics

Jörg Kuhnert and Isabel Ostermann

1 Introduction

The numerical idea of the meshfree Finite Pointset Method (FPM) is the use of a
generalized finite difference algorithm solving PDEs in fluid dynamics and contin-
uum mechanics based on a cloud of numerical points with simple neighborhood
relationship using balls of interaction (see, e.g., [1, 5–7]). These points carry the
required physical information (such as temperature, velocity, or pressure) and move
with flow velocity in a Lagrangian approach. The partial time derivatives are repre-
sented by first or second order time integration. The spatial derivatives are modeled
by weighted moving least squares (WMLS) approximations. There are major advan-
tages of the method. The Lagrangian approach on the point-cloud-basis gives rise
to efficiently solve free surface, multiphase, and moving domain applications. No
additional computation effort is required for mesh generation and adaptation. For
each point, only neighborhood lists, given by the balls of interaction, are required.
Moreover, the independence of the character of the PDEs allows an easy handling
of a large variety of material laws (viscous, elastic, plastic, mixture of the previous,
hypoplastic/barodetic).

Laboratory tests—such as the triaxial test—are typically used in soil mechanics
to test new material laws, such as the nonlinear barodesy model developed by the
Division of Geotechnical and Tunnel Engineering at the University of Innsbruck,
Austria (see [2, 3]). The nonlinear barodesy model for the stress tensor necessitates
a specific local linearization in order to be integrated within the FPM framework.
Furthermore, the constant confining pressure acting on the soil sample during the
test has to be properly incorporated as a numerical boundary condition.
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2 Technical Idea of FPM

In classical finite element methods, meshes consist of connected node points in order
to provide elements of various types, which represent a topological basis for the
simulation. Compared to this, meshfree FPM is based on unconnected points filling
the computation area. The neighborhood relationship is defined by balls of influence
of radius h, also called smoothing length. h may be space and time dependent.
The neighborhood graph is recomputed in each time cycle and used for the WMLS-
approximations. The maintenance of the point cloud consists in adding and removing
points (hole filling, point clustering) in order to provide a convenient local point
pattern. This is crucial for achieving best approximation quality.

The meshfree approximation of partial derivatives is given by ∂ i f /(∂x j )
i ≈∑N

k=0 ci j
k · fk . The stencil entries ci j

k , k = 0...N are determined by the WMLS
procedure with the help of Lagrange multipliers. The fk are the discrete neighbor
function values and N is the number of neighbors of the point under concern. Together
with the time integration scheme, they enable the discretization of the considered
PDEs.

3 Integration of Barodesy in FPM

The integration of the nonlinear barodesy model (cf. [2, 3]) in FPM for a 3D triaxial
test is one of the latest developments (see [4] for the details). The triaxial test is a
common method to extract and classify mechanical parameters of granular materials.
These are useful to predict the soil behavior in engineering applications. A typical tri-
axial test apparatus (see Fig. 1) is characterized by a cylindrical soil sample enclosed
in a thin rubber membrane which is placed inside a pressure chamber between two
plates. The bottom plate is fixed; the upper plate can move vertically and apply a
load to the sample.

The starting point of the numerical model in FPM is the discretized equation of
motion for the velocity v, the current time step sizeΔt , the density ρ, the stress tensor

T, and the vector of body forces g:
vn+1

i −vn
i

Δt = 1
ρi
(∇TTn+1

i )T + gi with i denoting
the index of the numerical point and n, n + 1 denoting the considered time steps.
As the stress tensor at time level n + 1 is unknown, an adequate estimation of this
quantity is required. We use the local linearization of the nonlinear law of barodesy
based on estimated future compression and shear moduli (C and μ, repsectively)
given by Tn+1

i = Tn
i + Δt · 1

3 Cn+1
i (∇Tvn+1

i )I + Δt · 2μn+1
i Dn+1

i , where I is the
identity matrix and D is the symmetric part of the velocity gradient. Combining the
above equations with the penalty formulation we employ in FPM, with the discretized
barodesy model, and with the discretized formulation for the void ratio e, we obtain
the following system:
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Fig. 1 Triaxial test apparatus (see [4])

vn+1
i − vn

i

Δt
+ 1

ρi
∇εn+1

i − 1

ρi

(
∇T(2η̂n+1

i Dn+1
i )

)T = ĝi , (1)

∇Tvn+1
i + ∇T

(
Δtvirt

ρi
∇εn+1

i

)
− 1

ρi

(
∂ρ

∂p

)n+1

i

εn+1
i

Δt
= 0,

Tn+1
i = Tn

i +Δt ·H(Tn
i ,Dn+1

i , en+1
i ),

en+1
i = Δt · tr(Dn+1

i )+ en
i

1−Δt · tr(Dn+1
i )

.

We have the identity C = 3ρ(∂p/∂ρ). The numerical viscosity is η̂ = η + Δt · μ
(η being the dynamic viscosity) and the resulting body forces are ĝ = 1

ρ
(∇TTn)T+g.

Δtvirt = O(ρh2/η̂) is a penalty term (choosing Δtvirt = 0 results in a direct scheme
of weak compressibility, which however is more difficult to solve). H represents the
nonlinear model of barodesy. The first two equations are solved simultaneously for
the unknowns vn+1 and εn+1. In the following two steps, they are used to determine
the new (future) stress tensor and void ratio at time level n + 1. Further details on
estimations of the compressibility and shear moduli can be found in [4].

Apart from the local linearization of the barodesy model the incorporation of the
physical boundary condition at the free surface of the sample is crucial. During the
simulation, the free surface is subject to a constant confining pressure. We represent
this by the determination of the required symmetric part of the velocity gradient at
the free surface such that the pressure condition is satisfied and, subsequently, the
determination of the required velocity at the free surface (for details see [4]).
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We compare the results of our simulations with laboratory tests. Furthermore, the
comparison with the stress-strain curves obtained by the simulated element test in
1D as well as the comparison of the 3D simulated normal component of the stress
tensor with the given confining pressure are of special interest.

4 Conclusion

The basic numerical and technical ideas of the meshfree simulation tool FPM for
applications in computational fluid dynamics and continuum mechanics are pre-
sented. One of the latest applications of FPM is the simulation of a standard lab-
oratory test, namely the triaxial test, used in soil mechanics to classify granular
materials and test new material laws such as the barodesy model. The integration of
the nonlinear material law of barodesy in FPM necessitates the local linearization of
this material law. Furthermore, the reflection of the setup of a triaxial test leads to
a specific formulation for the velocity boundary condition at the free surface of the
soil sample.
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Geostatistical Estimation of the Crustal
Thickness Inferred from the Geometry of
Monogenetic Volcanoes (Central Mexico Case)

Raúl Pérez-López, Carolina Guardiola-Albert and José Luis Macias

1 Introduction

Monogenetic volcanic field is a dense population of volcanoes that occur in a single
eruption. In general, these volcanic fields are related with forearc basins in tectonic
convergence boundaries and mostly it encompasses hundreds to thousands of square
kilometers. The Michoacán-Guanajuato Volcanic Field (MGVF) is located at the
central part of the Trans-Mexican Volcanic Belt (TMVB) (Fig. 1). This volcanic arc
is related to the subduction of the Rivera and Cocos tectonic plates underneath the
North America Plate. The middle geometrical axis of the TMVB does not trend with
a direction parallel to the Middle American Trench (MAT, NW-trending), but trends
with a NW-SE direction from the west Pacific margin to the central part of the TMVB
(Morelia city), turning to E-W from Morelia to the East Atlantic coast of Mexico
(close to Veracruz city), and showing a deviation of 15◦W from the MAT (Fig. 1). This
orientation is related to the shape of the 100 km depth of the subducted plate [1, 2].

The TMVB represents the largest monogenetic field around the world. More than
one thousand of monogenetic edifices were mapped and studied (petrological and
geochemical analysis) by [3]. The TMVB shows a complex spatial pattern of migrat-
ing mafic pulses from Middle Miocene (11 Ma) to Pliocene (3.5 Ma) [1]. The main
eruptive style of the TMVB is bimodal, active polygenetic volcanoes building stra-
tovolcanoes as Popocatépetl and Quaternary monogenetic fields mainly composed
by cinder cones.
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Fig. 1 Spatial distribution of monogenetic volcanoes within the Michoacán Guanajuato volcanic
field (Mexico)

1.1 Geometry of Monogenetic Volcanoes

Most of the MGVF cinder cones are spatially distributed across a flat area [3] in a
database of 1,042 cinder cones within the central part of Mexico (mainly Morelia,
Guanajuato Estado de Mexico and Queretaro). The estimated morphometric para-
meters which define the volcanic cone are: (a) the basal diameter (Wco), (b) the
crater diameter (Wcr) and the height of the edifice from the bottom to the top (Hco).
The [3] database comprises these values from: (1) 1:50,000 scale topographic maps
from the INEGI (Instituto Nacional de Estadística y Geografía Mexicano), series
E13B, E14A and F14C. The contour interval for these maps is 20 m. The resolution
of theses maps is 50 m, lesser than the minimum Wco value (200 m). (2) Field work
to take measures of petrology and morphometric parameters for minor cones [3]. For
further explanation of the morphometry of cinder and scoria cones (monogenetic)
see [3].
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1.2 Relationship Between m-Volcanoes and Crustal Thickness

We have obtained a power law empirical relationship between the basal diameter of
a monogenetic volcano and the continental crustal thickness from the data of [5] and
[6]. The Eq. (1) shows this empirical relationship:

Wcrust = 5.81∗Wco2.59. (1)

where Wcrust represents the thickness of the continental crust and Wco represents the
basal diameter of the monogenetic vent. Other authors have related the special vent
distribution of monogenetic volcanoes with the crustal thickness [7]. In this sense,
we highlight that the spatial distribution of Wco obey a power law [8], suggesting a
natural phenomena.

2 Geostastitical Analysis

Wcrust values are a function of spatial position. In the realm of geostatistics, these
Wcrust values can therefore considered as values of a “regionalized variable” [9].The
variogram, which originates from the theory of regionalized variables developed by
Matheron [9], is used to measure the spatial dependence of neighboring observations
for any continuously varying phenomenon. In this study experimental variograms are
used to model the underlying spatial structure for Wcrust data. The variogram analysis
has revealed one main geometric anisotropy structure within the NW trending. This
direction is parallel to the MAT.

With the modeled variograms the geostatistical techniques of kriging [9] and direct
sequential simulation [10] are applied to discrete the crustal thickness over all the
studied area. For this last approximation Wcrust values are taken to be the median
of 300 equiprobable realizations. Resulting Wcrust maps are shown in Fig. 2.
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3 Conclusions

Geoestatiscal analysis is a power tool for searching spatial anisotropies related with
geodynamic processes. The empirical relationship between the basal diameter and the
continental crustal thickness allows mapping a discrete population of single Wcrust
values in a wide area. In the particular case of the Michoacán Guanajuato Volcanic
field, we have obtained a population data set of Wcrust bounded between 5 and 33 km
width. These values area lesser though congruent which those obtained by [11].
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Mathematical Modelling of Geochemical
Processes Applied to Cenozoic Iberian Volcanics:
A Review

Raúl Benito and Jesús Martínez-Frías

1 Introduction

Cenozoic volcanism of the Iberian Peninsula is mainly of two types: alkaline basaltic
volcanism in four provinces (Central Spain, NE Spain, SE Spain and Gulf of Valencia)
and calc-alkaline to ultrapotassic volcanism (SE Spain) [1].

Volcanic rocks formed by the crystallization of magmas generated by partial melt-
ing of source materials, which have mostly been affected by previous contamination
processes. In some cases, later magma mixing (and/or assimilation of crustal mater-
ial) occurred. The mathemathical modelling of such processes, by trace elements and
isotope geochemistry, has allowed to establish genetic hypotheses to each province.

2 Volcanic Rocks: Origin and Main Geochemical Signatures

Melilitites, nephelinites and alkaline basalts occur in Central Spain. Their origin is
explained as the result of variable degrees of partial melting of a rather homoge-
neous mantle source, which is enriched in highly incompatible trace elements [2].
The geochemical signatures of this mantle resemble the European Asthenopsheric
reservoir (EAR) [3].

Basanites and alkaline basalts crop out in NE Spain. They are considered the prod-
uct of partial melting from a lithospheric enriched mantle source. It is assumed the
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Fig. 1 La/Nb-La diagram for the primary magmas of NE Spain (triangles: leucite basanites;
squares: nepheline basanites; circles: olivine basalts). The composition of the LVC/EAR-derived
liquids is the average of calatrava samples [2]. The composition of the mantle lithosphere A (La
= 2,6 ppm; La/Nb = 0,54) is from [5]. Lines represent the calculated partial melting model (per-
centages indicate degrees of melting) from a hybrid source made up of the A starting lithospheric
composition and ≈5 % of LVC/EAR-derived liquids (after [4])

Fig. 2 87Sr/86Sr-δ18O and 87Sr/86Sr-1/Sr x 103 diagrams of the metasomatism of the mantle and
crustal contamination model for the high-K calc-alkaline lavas of El Hoyazo (diamonds) and Mar
Menor (crosses), and shoshonites of Vera (inverted triangles) (SE Spain). Numbers indicate the
percentages of participation of the sediment-derived fluids and the crustal liquids, respectively
(after [7])
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Fig. 3 Nb/La-Nb diagram for the petrogenetic model by the alkali basalts from SE Spain. Partic-
ipation of pelagic sediment fluids is 5 %. Degree of melting of mantle lithosphere source is 1 %
(after [9])

existence of previous metasomatism related to liquids derived from a sublithospheric
mantle source similar to EAR (Fig. 1) [4].

Calc-alkaline to ultrapotassic magmas occur in SE Spain. They formed by partial
melting of a lithospheric mantle source after metasomatic processes by fluids coming
from subducted pelagic sediments [6].

It is assumed an interaction of melts with Betic basement-bearing crustal liquids
(Fig. 2) to generate the high-K calc-alkaline and shoshonitic magmas [7, 8].

Alkali basalts (the latest volcanics in SE Spain) result from the interaction between
primitive melts produced from a sublithospheric mantle source, similar to EAR and
liquids derived from the overlying lithospheric mantle, heterogeneous with metaso-
matized portions by fluids derived from sediments (Fig. 3) [9].

Nevertheless, this model does not consider other processes which have probably
intervened, such as mixing with shoshonitic or ultrapotassic magmas and assimilation
of metamorphic rocks by the basaltic magma [10–12].
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Management of Geological Field Data:
The Open Solution MO2GEO FieldModule

Lars Schimpf and Wolfgang Gossel

1 Introduction

Today’s high-performance mobile devices make it possible to use them for geological
data-acquisition in the field. A few companies already developed different software
solutions for this field of application, often combined with special hardware. There
are three main reasons for the development of a new and separate application:

1. All of the commercial software is proprietary. Therefore it is impossible to cus-
tomize them for the special demands of users or working groups.

2. Another problem of commercial software are the expenses.
3. The data acquisition itself causes different issues. Geological data are managed

heterogeneously based on diverse national standards. These standards differ tech-
nically and in their recording structure of geological features.

A platform independent Open Source software which allows the use of differ-
ent common standards leads to the improvement according to local specifications
and even the setup of own symbolizations. Of course it follows the philosophy of
Open Source and so it also enables the possibility of a science oriented usage for
everyone who is interested. These reasons led to the development of the MO2GEO
FieldModule which is part of the modular MO2GEO (move to geological modeling
[1]) framework.
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Table 1 Standards implemented in the MO2GEO FieldModule

Standard Application

Symbolschlüssel geologie [2] Stratigraphy, different attributes
BoreholeML [4] Borehole description
Hierarchical classification of rocks [5] Consolidated and unconsolidated rocks
Guidelines for soil description [6] Soil description
International stratigraphic chart [7] Stratigraphy
BGS vocabularies [3] Structural geology, different attributes
Digital cartographic standard for geologic map

symbolization [8]
2D/3D drawing, signatures

GeoNames [9] Geography

2 Standards

The advent of electronic data management in the earth sciences and herewith related
digital storage and processing of geological data made it necessary to develop appro-
priate data models. This includes a standard glossary of definitions and issues. Usu-
ally geological data are saved as understandable plain text in the field. However the
individual phrases lead to difficulties during the digital storage and recognition. To
avoid these problems different national vocabularies were developed (e.g. Symbol-
schlüssel Geologie [2] in Germany or British Geological Survey vocabularies [3] in
Great Britain). But in the scope of increasing international collaboration it becomes
necessary to develop international standards to facilitate data exchange and collab-
oration (OneGeology-Europe [10], GeoSciML [11]). However there is no generally
accepted international standard. For this reason it was decided for this project to let it
up to the user which standards should be used. So the preinstalled standards (Table 1)
can be substituted by the user preferred ones if necessary.

3 FieldModule

The MO2GEO FieldModule is a complex Open Source tool for management (stor-
age, handling and visualization) of geological data. The basic concept of the soft-
ware is the project related management of different data (e.g. boreholes, outcrops).
To accomplish this, all of the data are stored and managed in a particular objectre-
lational PostgreSQL database. The MO2GEO FieldModule is not only a database
management tool but also capable to visualize the collected field data. Reworking
geological data for a two- or three-dimensional representation is also the basis for
the creation of cross sections, which may constitute a significant improvement of he
field work and following static geological modelling processes.
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Fig. 1 A cross section created from two lithological profiles in the shown 2D

3.1 Database

As described before, the MO2Geo FieldModule database (m2gfm-DB) is the
backbone of the application. The project oriented design of the program and the
typical dependencies of geological data require an adapted data model. An optimal
solution seemed to be the usage of an object-relational database combined with hier-
archical structures. At the moment the database consists of 69 different tables which
can be divided into two main categories: attribute and object tables. Attribute tables
contain standardized single information and are used to describe user-defined objects
to accomplish comparable base data.

3.2 User Interface and Visualization

The usage of standards for a controlled input in the context of avoiding formal and
technical mistakes requires sophisticated database- and program structures and often
results in complex user interfaces. Another problem is also the common discrepancy
in applications to be either user friendly or convenient. Splitting the input mask into
several forms and sub-forms offers a satisfying solution. This results in having a
single input form for every corresponding database table. The outcome of this is a
clear data frame showing only the most necessary information but with the possibility
to show the relevant sub-forms.



830 L. Schimpf and W. Gossel

Another aspect of the development of the FieldModule was the ability to visualize
the recorded data. This includes 2D and 3D views of borehole profiles, spots and
outcrops and connecting cross-sections in up to four viewports where each can display
varying data or the same data from different camera positions like it is used by
common CAD- or 3D-software (Fig. 1). This allows the user to compare and control
the geological data in a practical way. The possibility to create cross-sections opens a
wide field of applications. These cross-sections can be used to get an overview of the
geological settings of the studied area or to ease the examination of territories which
are hard to access. But they are also suitable as data basis for three-dimensional
geologic underground modeling which is becoming increasingly important.

4 Discussion

The tool MO2GEO FieldModule includes features provided by many commercial
solutions. Furthermore it offers the ability of customizing standards and visualization
of the collected data. The further development of FieldModule will be an embedding
into GIS and the static and dynamic modelling of geological structures.
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Swiss Data Models for Geology: from 2D Data
Towards Geological 3D Models

Cristina Salomè Michael, Nils Oesterling, Stefan Strasky
and Roland Baumberger

1 Introduction

After more than 80 years of traditional geological paper map production, geological
vector datasets became increasingly important. The growing interest in geological
GIS applications in the field of earth sciences, such as natural hazards prevention,
resource management, land use planning, has heightened the need for well-structured
vector data and their proper documentation. Moreover, according to the Swiss Legis-
lation [1] geological surveying data belong to the official basic geodata. Therefore it
has to be supplied to the broad public and minimal data models have to be developed.

In order to do so, the following two-step approach was applied. In a first step
geological paper maps were scanned and georeferenced for use in GI-Systems. For
such raster graphics meta-information (type, perimeter etc.) is organised by a data
model and will be provided in XML-format along with the map data. In a second
step the raster graphics were vectorised using a simple data model, which is opti-
mised for data acquisition. However, this data model does not efficiently support
data analyses. Moreover, due to the following reasons, semantic homogeneity of the
existing geological vector data is poor: (a) geological mapping was carried out by
a large number of geologists with different styles of interpretations. (b) geological
theories have changed over time. (c) guidelines for well-structured geological data
were missing.

To overcome these restrictions, the Swiss Data Model Geology (SDMG-2D) was
developed. This data model not only defines the structure (geometries, attributes,
data types etc.) of geological vector datasets but also defines a standard vocabulary.
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Since subsurface potentials like geothermal energy, carbon dioxide storage and
other underground activities shift into the focus of public interest, also 3D models are
getting an indispensable tool for subsurface planning. The transition from 2D to 3D
has a direct influence not only on technical requirements but also on existing data,
their structure and semantics. Therefore, for geological 3D models the SDMG-2D
has been extended to 3D (SDMG-3D).

2 Swiss Data Model Geology: 2D Data

The development of a conceptual data model for geological vector data in 2D has
started in 2008. It is mainly based on the objects of the existing paper maps of the
Geological Atlas of Switzerland 1:25,000 and its symbol description.

The primary focus of geological data, which are structured by the SDMG-2D, is to
allow users to analyse seamless vector data for entire Switzerland in GIS applications.
Therefore, the SDMG-2D provides a description of all relevant object types as well as
their characteristics and relationships. In order to meet such customer requirements
as best as possible, swisstopo has involved external experts from the main target
groups of geological vector data (e.g. cantonal and federal administration, private
offices, universities) in the modelling process.

The multilingual (German, French, Italian, English) documentation of the SDMG-
2D [2] consists of an object catalogue, which describes geological object types
together with their attributes and attribute values. The object types are structured in
eight themes and 50 classes (Fig. 1). Additionally, lookup tables with a standardised
vocabulary for rock types, tectonic units and the geological time scale is included.
Standardised lithostratigraphic terms are under preparation.

In addition to a “prosa” description, the SDMG-2D is documented in UML format
and INTERLIS. The latter is prescribed by Swiss Legislation [1], so that basic geodata
and their data models have to be provided in INTERLIS-format.

In order to facilitate data acquisition according to the SDMG-2D and to guarantee
data consistency swisstopo has developed in collaboration with Centre de Recherche
sur l’Environnement Alpin (CREALP) the ToolMap2-software [3].

3 Swiss Data Model 3D Geology: 3D Models

Also for geological 3D models a description of their geometric and semantic structure
are required. For this reason the SDMG-3D [4] was developed. In contrast to 2D,
where geological formations are represented as polygons in planar view, in 3D they
appear as volumetric bodies in space. Therefore, the “shell”, describing the envelope
of a discrete “geo-body”, and the “volume”, describing the sum of a finite number of
subdivisions (e.g. Voxel) of a “geo-body”, were introduced as new geometry types.
Figure 2 shows the applied geometry changes.
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Fig. 1 The SDMG-2D is organised in eight themes. Each theme contains several classes, as illus-
trated for the theme “Tectonics”. Further, each class comprises various attributes, whose valid values
are listed in lookup tables (e.g. “Kind”)

Apart from geometry, modifications of specific thematic classes and attributes
were performed. Basically, the number of existing classes of the SDMG-2D was
reduced to 25. Additionally a new theme for subsurface bodies, comprising two
classes, was created. The newly introduced classes describe natural (e.g. caves) and
artificial (e.g. tunnels) subsurface objects, respectively.

Fig. 2 Geometry changes from 2D to 3D
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4 Outlook

The development of the above described data models is an important basis for various
topics and activities of swisstopo. The following mid- to long-term activities are
planned:

• Storing seamless geological 2D vector data in a spatial database and provide it to
the brought public.

• Developing a portrayal model for system neutral description and exchange of
geological symbology.

• Adjust the Swiss data models with data models on the European and international
level.

• Storing geological 3D models in a spatial database (GST framework [5]) and
provide it to the brought public.

• Developing a geological information system in order to face future challenges in
relationship to subsurface planning.

• Extending the existing data models to the fourth dimension, in order to model
kinematic evolutions over time.
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Virtual Collaboration of Geoscientists
of Russian Academy of Sciences in the Far
East of Russia

Vera V. Naumova, Mike I. Patuk and Valentin V. Nichepkov

1 Introduction

Scientific organizations in the Russian Academy of Sciences in the Russian Far East
are located in Vladivostok, Khabarovsk, Blagoveshchensk, Magadan, Petropavlovsk-
Kamchatsky and Yuzhno-Sakhalinsk. The large-area dispersion requires that infor-
mation that obtained from widely-separated research groups and scientists must be
integrated for joint research, discussions, conferencing, and sharing of analytical
equipment. Modern information technologies provide means for integration of data
from widely-disperesed scientists [1]. Following are proposed solutions.

1. Virtual science laboratories: virtual toolkits for research and experiments; topical
virtual labs; and remote access to analytical equipment.

2. Virtual science environments: Internet, including E-libraries, data infrastructure
and data centers; data-processing infrastructures; video conferencing; scientific
data sharing and processing; scientific management.

This article describes a system to design and implement a virtual science envi-
ronment to allow widely-separated scientists to communicate for joint research. The
system will enable research by utilizing various information technology methods
to integrate telecommunication, data sharing, data-processing, media environment,
geographic informational systems, data centers, applied applications, and analytical
equipment.
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2 System Goals

1. Support widely-separated scientists with modern communication, such as instant
messaging or group conferencing;

2. Provide basic solutions for synchronous processing of files;
3. Enable remote access to scientific equipment in the Far Eastern Branch of Russian

Academy of Sciences (FEB RAS);
4. Enable remote access to computer processing resource, library catalogs,

E-libraries, databases, satellite images, GPS databases, and remote-monitoring
systems.

The System will be based on: Microsoft unified communications solutions; Polycom
video conferencing; and Internet science services.

With the use of modern video conferencing, remote access to databases, and data
processing, we will be able to build a virtual environment for collaboration between
widely-dispersed scientists (Fig. 1).

3 Hardware- and Software-Solutions for the System

For creating the System, Polycom-Microsoft solutions video conferencing will be
employed at varous levels: desktop, laboratories, and conferences This type of
integration combines various Microsoft solutions, such as Lync, Exchange Server,
Sharepoint Server, and Polycom solutions for use of HD voice and video communica-
tion,and flexible image sharing. The quality of communication will be similar to face-
to-face contact for both within-institution interactions and for a B2B environment.

Base hardware software equipment includes: Polycom RMX-200 server for video
conferencing; Polycom RSS 2000 server for video conference recording and stream-
ing; and Polycom CMA 4000 solution for video conferencing.

A preliminary version of the System is stre gthened with the Microsoft server
components, such as Exchange Server for E-Mail, Lync Server for unified commu-
nication, and Sharepoint for Intranet portals. These software systems utilize Active
Directory service for all users. The Microsoft Lync Server 2013 enables efficient
communication for interaction, which considerably simplifies dialog and improves
quality of collaborations. It combines standard communications for users.

The primary function of Microsoft Sharepoint 2013 is rapid creation of internal
websites for virtual laboratories, collaborative projects, programs, and events, and
personal cabinets for scientists. A test version of the System is based on a server with
VMWARE ESXI virtualization system supporting five virtual machines.
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Fig. 1 Schematic virtual science environment for collaboration between widely-dispersed earth
scientists in the FEB RAS

4 Remote Access Services to Science Resources

A virtual scientific environment with remote access to computational, analytical and
information resources (using servers of the Far Eastern Branch of RAS) will allow
widely-separated scientist to share scientific resources for investigations. Research
scientists of the FEB RAS institutes have accumulated enormous amounts of scien-
tific information. It is critical that institutes systematize and archive available data
into databases, GIS files, information retrieval systems, and E-libraries. Because new
methods of data acquisition are readily accessible and because efficiency increases,
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the bulk of data steadily grows. Therefore transition to new digital technologies of
data collecting, processing, and distribution is needed. This will enable reception of
original data from ground based remote sensing, from the field sites, from satellites,
from surface or airborne laser scanning , from digital and electronic geodetic mon-
itors, and from aerial cameras. New digital environments for scientific data storage
will lead to state-of-the-art information processing.

Significant informational resources are owned by the Far Eastern Branch of RAS:
E-libraries and repositories; archives of satellite images; and GIS spatial databases
for geology, volcanology and geography.

Organization of a common entry point to widely-distributed and heterogeneous
science information resources will offer new opportunities for scientific research
between widely-dispersed earth scientists. For a preliminary version of the System,
a Subsystem is proposed for remote access to the analytical equipment of the FEB
RAS Centers for collective use. Proposed technological solutions imply transition
from remote monitoring devices to conducting remote analyses with analytical equip-
ment. This type of access will be enabled through a Common entry point to FEB
RAS analytical equipment. Authorized users will be able to: be trained with analyt-
ical equipment; conduct experiments with their own samples with remote access to
equipment, or by orders without personal participation; monitor experiment perfor-
mance as a distant observer; and choose a remote access mode to perform research.
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Geological 3D Modeling (Processes) and Future
Needs for 3D Data and Model Storage
at Geological Survey of Finland

Eevaliisa Laine

1 Introduction

At the Geological Survey of Finland (GTK), geological 3D modeling has traditionally
been related with ore modeling. Presently, regional 3D bedrock models are being
built from different parts of the Precambrian bedrock of Finland. Similarly, the 3D
modeling of Quaternary deposits overlying Precambrian bedrock is going on. In
future, it will be important to be able to to build and present combined 3D models
of the Precambrian crystalline rock overlaid by the Quaternary deposits in many
engineering and environmental geological investigations.

Different approaches and software are needed because of differences in data and
modeled 3D geometries. 3D modeling process have been divided into data processing
and import to 3D modelling tools, actual 3D modeling and visualization and, finally,
to the 3D model storage associated with a description of a modeling process and
evaluation of the reliability of the model.

2D data, such as geological observations and geological maps, and 3D data, such
as drill hole data, geological sections and elevation models, are already available and
stored directly in digital format. At GTK, researchers are searching and extracting
these data using ArcMap (ESRI product) for their target areas. In future, GTK also
needs a 3D database for storing 3D objects from geological, geophysical and geo-
chemical modelling. It should be possible to extract geometrical objects in simple
ASCII data with the meta-data, links to reports describing the 3D modeling process
and properties of the used data and applications. In addition, the grids should be
transformable into hexaedric grids for physical modeling such as 4D modeling in
thermal and geomechanical applications. In general, there are needs for interchang-
ing 3D information between GTK and mining companies, state organizations and
consulting firms.
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There has been thoughts for building geotechnical 3D database in Finland (e.g.
[5]). Gustavsson [1] made a report of 3D storage possibilities at GTK.

2 Present 3D Modeling at GTK

Computerized 3D ore modeling has been done since 1980 at GTK. One of the recent
3D models of Koistinen is presented in the Fig. 1.— a solid model of Syväjärvi
lithium deposit. The used software was GEMS.

Nowadays, important 3D modeling applications are done within many different
applications such as groundwater modeling, 3D modeling of the subsurface in urban
areas, 3D modeling in evaluation of environmental risks and damages, 3D modeling
of dimension stones and 3D modeling of stone aggregate resources.

In addition to the geometrical geological models, 3D grids presenting distribu-
tion of physical and chemical properties are important for example in computation
of groundwater flow, ore resource estimates and thermal capacity of the bedrock.
Figure 2 illustrates Ni distribution in the Vuonos ore in Eastern Finland.

The important task is also to popularize geological research results using illustra-
tive 3D models.

Fig. 1 A solid model of the Syväjärvi lithium deposit seen downwards to north Length of the
deposit is 500 m. [4]



Geological 3D Modeling (Processes) and Future Needs 841

Fig. 2 Vuonos ore and gridded Ni content [2]

3 3D Modeling Processes and Future Need
for the 3D Data and Model Storage

At GTK, the planning of the 3D model storage is based on the analysis of the 3D
modeling processes that begin by data import and organization. The main other
components in 3D modeling are actual 3D model building, analyzing and present-
ing uncertainties and finally data storage, reporting and possibly publication of the
models in web.

The data import process is perhaps the most time consuming phase in 3D mod-
elling. This is not because it is not well documented but because it is always difficult
to combine data from different sources having different resolutions and aims than
the ongoing 3D modelling work. A good example is the simplification of detailed
drill core information for regional scale geological 3D models. 2D data (and 3D
data∼drill hole data, elevation models) are already available at GTK and stored
directly in digital format and it is managed in different data systems from which
information is mainly shared as different digital information products.

3D bedrock modeling process depend on the scale and purpose of the study. In
3D regional modeling the geological ideas and theories are essential because the
data are sparse and in greater depths the only data sources are deep geophysical
soundings that may be interpreted in many different ways. In mining sites, dense
drilling gives a possibility to build more reliable models. Even then, the structures
between drill holes can be drawn in many different ways according to different
geological interpretations. In many practical applications, such as in nuclear waste
site investigations, groundwater modeling or rock engineering, it is important to
estimate rock fracturing in 3D. Connected rock fractures act as water conduits and,
in general, fracturing affects the rock mechanical properties. Each specific geologic
3D modeling process will need its own workflow.

3D modeling of Quaternary deposits differs from the Precambrian formations
with the fact that, in most cases, it is possible to define a soil layer stratigraphy as
nearly horizontal layers young upwards. However, this is not always the case, for
example, along the moraine ridges soil structures are very complicated. 3D models
for several practical applications require the combination of bedrock models with sur-
ficial formations. Examples of such applications are groundwater and environmental
modeling.
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In Finland there are already organized data storage for 3D models in mines
and within nuclear waste site studies. For example, within nuclear waste studies at
Olkluoto there exists already 3D geological data storage (e.g. [3]). In general, there
will be needs for interchanging 3D information between GTK and mining companies,
state organizations and consulting firms.

Based on the preliminary studies of GTK 3D processes it seems reasonable to
begin with saving 3D models directly using specific 3D formats from the used 3D
modeling software together with metadata and 3D modeling report. In the future,
more general 3D database should be built but it is possible that software based
and general 3D database should both exist so that the general 3D database could
represent more scientific 3D model storage with carefully analysed uncertainties and
publications.
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Estimation of Parameters in Random
Dynamical Systems

Silke Konsulke, K. Gerard van den Boogaart, Fellix Ballani, Markus Franke
and Martin Sauke

1 Introduction

In ecology and other geosciences we are often confronted with random dynamical
systems such as forest systems [4], limnic systems [7], ground water reactive trans-
port systems, …whose dynamic is created from a complex interaction of different
parts and is only partially deterministic. Typically these situations are modelled
through a computer simulation. These models are, however, typically still dependent
on some parameters such as the survival probability of seedlings under certain given
conditions, coefficients describing the dependence of a bacteria population growth
on nitrite concentration, variogram parameters of the hydraulic conductivity,….

Our aim is to propose a general technique for the estimation of parameters of such
system models where, on the one hand, least squares fitting is not feasible because
of the random character of the systems and, on the other hand, likelihoods are not
computable due to the algorithmic character of the best available model.
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Our introductory example is a simple stochastic predator-prey model as the
archetype of an ecological model. In this model the different development of the
numbers of predators (Y (t)) or prey (X (t)) depend on the number of individuals
already present and on the interaction of the different individuals. Like in [1] and [3]
the system is modelled by a stochastic differential equation adding some disturbance
(dW ) to the usual ordinary differential equations predator-prey model:

d X = (a · X − b · X · Y )dt + σdWX (1)

dY = (c · X · Y − d · Y )dt + σdWY

For a general introduction to stochastic differential equations as one of the pos-
sible examples of random dynamical systems see e.g. [5]. Here the parameter
θ = (a, b, c, d, σ ) describes birth and death rates, the interaction of the two species
and the disturbance. The numbers of predators and prey can be observed with some
observation error, the parameters cannot. Therefore it is necessary to estimate the
parameters.

2 The SystemsStat-Package

We have developed an R-package (SystemsStat) which is intended to work flexi-
bly with various kinds of system models. The central idea is to provide a standard
interface allowing different system models as input. It provides different estimation
algorithms only depending on simulations. One example of such an approach is:
Create a Bayesian statistical model by adding a simulatable prior distribution for the
parameters. Define a linear space of candidate functions for estimators and get the
optimal estimator in the subset by some sort of stabilized linear model estimation
[6]. This approach has been motivated by research on nonlinear geostatistics and is
related to an approach of approximated Bayesian computation [2].

For applying the package we need to define a simulation function sim which
simulates the system in question Then we need to define the parameter space object
(ParSpace) through a simulation function of the prior distribution of the parame-
ters. The prior used for the simulations shown in Fig. 1 is a lognormal distribution.

In order to model incomplete observations and measurement errors we define an
observation simulation function Obs transforming a simulated situation to corre-
sponding observations, in our case by adding a normally distributed “measurement”
error to the simulated population sizes.

In order to integrate our predator-prey model into the package the three ingredients
described above are put together into a model object, with a simple instruction:

SysMod <- SysModel(X=sim, theta=ParSpace, obs=Obs)

For the before mentioned simple estimation scheme we need to define a set of
informative statistics mystats as a function of the observation. In our example
we selected the estimated coefficients of a multivariate linear model predicting each
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Fig. 1 The lower right figure shows an example simulation of the model. The other panels show
the performance of the estimator for the different model parameters. The estimation of σ from the
small data set of population observations with random errors at 101 time points is difficult. The
prior is thus used more heavily in the approximation of a Bayesian estimation leading to the usual
bias of Bayesian estimators weighting bias against estimation error

observation from its preceding observation and the entries of the estimated variance
matrix of the residuals of these model. Defining a good set of statistics typically
requires some experience. An estimator can than be generated by a simple command

est <- SysLMEstimator(SysMod,stat=mystat)

Here all the necessary simulations and the model fitting are done automatically
based on the model information provided through the system model SysMod. The
computed estimator can than be applied to a set of observations by a simple command:

thetaHat <- SysEstimate(est,TheRealWorldObservations)

Other more elaborate estimation techniques based on the (generalized) method of
moments and quasi-likelihood inference will also be available as part of the package.
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For this paper we drew 200 realizations from the model, applied the estimator to each
of the realizations and compared the estimated parameters θ̂ with the parameters θ
actually used. The result can be seen in Fig. 1. An example simulation is shown in
the bottom right panel. There can be seen that the parameters a, . . . , d are estimated
quite well. The parameter σ has a bias which can be explained with the Bayesian
character of the approach.

The actual R-code used, as well as directions where to find the SystemsStat-
package, can be requested from the authors.

3 Outlook

The new SystemsStat package shall provide a uniform way to analyse data from
random systems without closed form likelihoods. The idea is to make the statistical
analysis of random systems as easy as linear model analysis was in the 1960s by
providing a general toolbox including descriptive analysis, estimation, parameter
tests, goodness of fit tests, and diagnostics.
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Nonlinear Estimation with Gaussian Kriging
and Riemann Sums

K. Daniel Khan

1 Introduction

The objective of this paper is to introduce a practical way of constructing nonlinear
spatial estimates of geological random variables (RVs) from kriging estimates. Indi-
cator Kriging (e.g., [1]) and Disjunctive Kriging (e.g., [2]) are existing approaches,
but both methods are practically demanding [1, 3]. This paper presents a more direct
way to compute nonlinear conditional expected values, including all (Gaussian)
higher-order moments. Furthermore, a new general solution to nonlinear change
of support is developed through the proposed approach.

2 Gaussian Kriging and Riemann Sums

The unbiased expected value E[·] of a nonlinear function ϕ(y) with respect to the
probability density function (pdf) f (y) is given by

E [ϕ(y)] =
∞∫

−∞
ϕ(y) f (y)dy. (1)

Spatial estimations of E [ϕ(u)] are computable by applying Riemann sums to Eq. 1
using Gaussian kriging estimates, y(u). This approach was proposed for powers of
Gaussian variables in [4] as
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E
[
z(u)m

] = E
[
ϕ(y(u))m

] =
∞∫

−∞
ϕ(y)m f (y(u))dy. (2)

Equation 2 is not useful if the function ϕ(y) is unknown. A practical method is given
here for general application. The normal scores transform, or Gaussian anamorphosis,
is an empirical tabulation of the function z = ϕ̃(y) (e.g., [1]), which can be embedded
into the discretized Eq. 2 as

E
[
z(u)m ≈ ẑm(u)

] =
∑

i

[
ϕ̃(y)

]m
i f (y(u))i�yi. (3)

This process is simply Kriging followed by Riemann Sums (KRS). KRS yields
the conditional moments E

[
z(u)m |y(uα);α = 1, . . . , n

]
of any order, m, of the

conditional nonlinear function f (z(u)|·) of the Gaussian pdf f (y(u)).

2.1 A Generalized Nonlinear Solution for Change of Support

The nonlinear expectation theory expressed in Eq. 2 applied to the problem of esti-
mating blocks from point samples can be expressed as [5],

E
[
ϕ(y(u))m

] =
∞∫

−∞

⎡

⎣
∞∫

−∞
ϕ(y) fBK V (y(u))dy

⎤

⎦ c fv(y(u))dy. (4)

Equation 4 suggests two Gaussian pdfs are needed: fBK V (y(u)) is the pdf of the
blocks with the block kriging conditional mean ŷ(u) and the block kriging variance
σ̂ 2

BK V , and fv(y(u)) is the pdf accounting for the additional ensemble variance
component σ 2

v of points within the blocks. To express Eq. 4 as a single integral, a
convolution of the pdfs in Eq. 4 is proposed and tested for the first time here.

Suppose f (y(u)) ∗ g(y(u)) is a convolution of the two pdfs in Eq. 4 such that
f (y(u)) = fBK V (y(u)) and g(y(u)) = fv(y(u)), with mean μg = 0. The convolu-
tion f (y(u)) ∗ g(y(u)) is done following the convolution theorem

F−1 [F( f (y(u)))F(g(y(u)))] = f (y(u)) ∗ g(y(u)), (5)

where F and F−1 here represent the Fourier and inverse Fourier transforms, respec-
tively, and F [ f (y(u))] is the characteristic function of f (y(u)). Equation 5 is solved
for the following product of Gaussian characteristic functions:
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F−1

[(
1√
2π

eiπ f ω−
ω2σ2

f
2

)(
1√
2π

e−
ω2σ2

g
2

)]
= 1

2π
√
σ 2

f + σ 2
g

e
− (y−μ f )

2
(
σ2

f +σ2
g

)

. (6)

Equation 6 yields a convolved Gaussian function which requires normalization by a
factor

√
2π to provide a pdf that integrates to unity, as

√
2π( f (y(u)) ∗ g(y(u))) = 1

2π
√
σ 2

f + σ 2
g

e
− (y−μ f )

2(σ2
f +σ2

g ) . (7)

The convolved Gaussian pdf of Eq. 7 has a mean equal to the Gaussian block kriging
mean ŷ(u) = μ f and total variance, (σ 2·v + σ 2

BK V (u)) = σ 2
f + σ 2

g . Eq. 2 is then
directly applicable as KRS from Gaussian block kriging as

E
[
zv(u)m

] = √2π
∫ ∞

−
ϕ(y)m f (y(u)) ∗ g(y(u))dy. (8)

Equation 8 yields unbiased volume-averaged moments of the nonlinear averaging
variable z(u).

2.2 Verification

A 1-D lognormal random field profile was used for the KRS tests (Fig. 1). The
analytical benchmark is obtained by kriging the Gaussian data and applying the well-
known lognormal corrections for points (see e.g., [6]) and blocks [5]. The nonlinear
estimates obtained from KRS are identical to the analytical solutions (Fig. 2). An
important result is that heteroscedasticity is reproduced as a general outcome of the
KRS algorithm.

3 Discussion and Conclusion

The idea of KRS is to “directly” obtain unbiased expected values of nonlinear trans-
formations of Gaussian RVs. The practical value of the approach is that nonlinear
estimates of stochastic parameters with any shape of conditional pdfs are available
from a single Gaussian kriging. The power of the KRS approach is its generality,
which is shown to extend to nonlinear upscaling of Gaussian block estimates via
a new solution for non-linear change of support. The main advantage of KRS over
direct kriging (e.g., [7]) is that KRS returns estimates that have the correct het-
eroscedasticity. The new solution for non-linear change of support in Sect. 2.1 is
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Fig. 2 Plots of kriging mean versus kriging variance to verify point KRS (left) and block KRS
(right) against analytical lognormal corrections

an ensemble upscaling solution applicable to nonlinearly-averaging heterogeneous
fields used in stochastic geological systems models, such as permeability fields in
groundwater or petroleum flow models.
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Modeling Trace Element Concentration in
Vertical Regolith Profile Over Mineral Deposits

Qiuming Cheng

1 Introduction

There have been substantial efforts in the literature to study formation mechanisms
of geochemical anomalies in deeply weathered and transported terrains with regolith
or other land cover [1–5]. Several mechanisms that assume the upward migration
of ions or fine particles to the surface have been suggested, including electrochem-
istry, diffusion-and-convection, evaporation-transpiration-convection, cyclical dila-
tancy pumping, vegetation and biochemistry, and nanoparticles in geogasses. Studies
have also reported experimental and applied research on the migration of elements
from mineral deposits and through fractures [6, 7]. There are, however, relatively
few quantitative studies of concentration distribution of elements in regolith caused
by vertical element migration.

2 Differential Equations for Modeling of Element Concentration

There are many types of dynamic processes observed in earth system such as ocean
waves, clouds, and cascade subduction of plate tectonics that can be considered
as multiplicative cascade processes (MCM). MCM can cause irregular energy and
density distribution of multiscale singularities that can be characterized by multi-
fractal models [8]. The geochemical patterns observed in the surface media or long
vertical profile of regolith over mineral deposits, can be viewed as the end products
of “cascade geo-processes” of various types of geochemical mechanisms operated in
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a region with upward migration of ore materials from depth to the surface [9]. From a
nonlinear dynamic point of view, the element concentration profile, C(x), in regolith
over mineral deposit can be characterized by the following nonlinear differential
equation [9]

dC (x)

dx
= − 1

λ (x)
Cγ (x) (1)

where the coefficient λ(x) is a function of scale (vertical distance) x and γ is an index
of nonlinearity. The coefficient function 1/λ(x) can be approximated by means of a
Taylor series expansion of 1/[λ(1/x)] which gives a combination of four different
functions: Gaussian exponential, normal exponential, power-law and exponential
with inverse time, as the solution of model (1):

C (x) = ce−λ−1x2
e−λ0xx−λ1 eλ2/x (2)

where C(x) is a function with five parameters that can be can be readily estimated
by multivariate linear regression.

3 Data from a W-Mo Mineral Deposit in Inner
Mongolia, China

Two areas with the cover being deserts and grasslands were chosen for this study.
Here we will only show an example from the Dalaimiao district, northeastern Inner
Mongolia, China. In this mineral district, about 70 % of the area is covered by up
to 100 m Tertiary to Quaternary sediments. Mesozoic intrusions are associated with
the hydrothermal mineralization of W and Mo in the area. There are extensive zones
of hydrothermal alteration in the sedimentary rocks around the buried intrusions of
finegrained granite. The topography of the area is relatively flat. Several drill cores
were selected to study the migration of elements in the regolith. Figure 1a shows the
main lithologic units observed in drill hole #WRZK520-11 including approximately
10 m soil at the surface section (yellow colored section in Fig. 1a). The main ore
bodies are found at a depth of approximately 400 m below the surface. The drill core,
including soils in the top section, was systematically analyzed using pXRF on-site
and in the lab. Approximately 33 samples from the 10-m section of regolith were
analyzed using the pXRF device for multiple elements S, K, Fe, Zn, Pb, Ca, Ti, Mn,
Cu, V, Zr, Sr, Rb, Th, As, Ni, Ba, Cs, Te, Sb, Sn, Mo, V, Au, and Ag. Some samples
have missing data for Mo, W, Au and Ag which were excluded in the following data
analysis.

The plot in Fig. 1b shows the data of Cu with horizontal axis representing the
vertical distance from the surface of weathered rocks beneath the regolith. Dots
represent the actual values of Cu and curves are fitted by Least Squares (LS) with
different functions: red curve is from a combined exponential and power-law func-
tion, Cu = 32.16x−1.09e0.08x, R2 = 0.504; black solid line is from a power-law
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Fig. 1 a Lithologic units in drill hole #WRZK520-11 in the Wurinitu mineral deposit in Dalaimioa
district; b trend of Cu values. The horizontal axis represents the vertical distance from the surface of
weathered rocks beneath the regolith; c loadings of elements on the first principal component (PC);
and d trend of scores on the first PC with a constant 2.5 added to scores in order to avoid negative
values. Dots represent actual values and red curves are fitted by LS with a combined function, black
solid lines with power-law functions, and dashed lines with exponential functions, respectively

function, Cu = 34.27x−0.57, R2 = 0.438; and dashed line is from an exponential
function, Cu = 31.14e−0.134x, R2 = 0.258, where R is the correlation coefficient of
LS. It can be seen that the combined function gives a slightly better fit in comparison
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with the results obtained from a power-law function. Most of the selected elements
associated with W and Mo mineralization including Cu, Pb, Zn, Fe, Th, Mn, V,
As, and Sb depict similar trends which can be fitted by LS with either combined
powerlaw and exponential function or power-law function along. Ca and S do not
show systematic changes in the profile. Furthermore, applying principal component
analysis to the dataset gives three main components (PCs) {Cu, Pb, Zn, Fe, Th, Mn,
V, As, Sb}, {Mn, As, -K, -Sn}, and {K, Mn, -Cu, -Pb, -V, -Th}. The first PC is related
to Mo and W mineralization in the area. The scores on the first PC show a similar
trend as observed from Cu as shown in Fig. 1b, d. In order to avoid negative values
for logarithmic transformation, a constant 2.5 was added to the value of scores. The
scores on other two PCs do not show clear trend.

4 Concluding Remarks

The combined form of solution derived from nonlinear differential equation (1) not
only shows the association of the four types of functions: Gaussian, exponential,
power-law, and exponential with inverse distance, but also can be used to describe
element concentration distribution in vertical regolith over mineral deposits. The
dataset obtained from the regolith over the Wurinitu W-Mo mineral deposit in Inner
Mongolia has demonstrated that the vertical distribution of W-Mo mineralization
associated elements can be fitted either by a combined power-law and exponential
functions or by power-law functions along.
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Unified Principles for Nonlinear Nonstationary
Random Fields in Stochastic Geosciences

José A. Vargas-Guzmán

1 Introduction

A motivation for solving stochastic partial differential equations (spde’s) is the mod-
eling of clastic sedimentary basins, which are relevant to hydrocarbon resources.
Sedimentology and stratigraphy are related to diffusion processes starting from for-
mulations with Markov chains [4]. Furthermore, sedimentary clastic deposition can
be modeled with flow and transport spde, containing diffusion terms. The results of
spde’s are usually non-stationary models.

An issue is that spde Monte Carlo solutions for large models are slow. For exam-
ple, spde’s are routinely used for hydrocarbon and water flow modeling. Monte
Carlo is still the most popular method because it is simple. Several realizations of
a geostatistically predicted parameter field are input to a numerical nonlinear algo-
rithm, repeatedly. Although spde’s are essential to handle uncertainty and risk, Monte
Carlo solutions may become unmanageable in high-resolution models containing bil-
lions of cells, and hundreds of realizations. Furthermore, the statistical information
is extracted by computing ensemble averages. Unfortunately, the convergence of
moments to ensemble parameters in non-stationary models is slow.

Another complex issue for flow and transport spde models in sedimentary basins is
that matching observed rocks at wells is non-trivial. A similar difficulty has also been
observed in reservoir flow modeling, where the multiple Monte Carlo realizations
conditional to the input parameter data do not match simultaneously the response
data (e.g., pressure and flux) observed at wells. Although “iterative” inverse problem
solutions are available from hydrology and geophysics (e.g., [1, 7]), large number
of cells and multiple realizations, may preclude such computer intensive iterative
approaches.
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Alternatives to Monte Carlo methods need to be examined, in order to speed up
spde solutions for gigantic high resolution models. As a consequence, using Itô’s
integration [2, 3] appears very attractive; however, Itô did not develop corrections
for multiple integrations. Therefore, a generalization of higher-order integration is
needed, for handling geostatistics. In addition, unification with Riemann–Stieltjes
averaging is necessary for direct estimation of conditional probability density func-
tion (PDF) parameters, at each spatial location. Proper stochastic integration might
enable faster and unbiased stochastic solutions of PDFs, integrating data for the input
and the response, allowing for large models.

2 Itô’s Stochastic Integration Generalized

It is well known that y1(x) =
∫ x
−∞ ∂W (x) is a Wiener process [10], the increments

∂W (x) represent Gaussian white noise. The Itô’s stochastic integral is y2(x) =∫ x
−∞ y1(x) · ∂y1(x). If the (domain) increments were constant, classic calculus would

hold as y2(x) = 1
2

(
y2

1 (x)
)
, see also [5] for generalized covariances and kriging

for integrated spatial processes. It is also known that direct classic integration is
inapplicable to heterogeneous differentials. Itô [2] solved the problem adding a linear
correction term 1

2σ
2·x to the traditional (one dimensional) result 1

2

(
y2

1 (x)
)
, at location

it x, where σ 2 ∼ var (�y1(x)), and�y1(x) ≈ ∂y1(x). Itô’s integration should not be
applied recursively with successive 1

2σ
2 ·x linear corrections. Itô’s general solution is

his famous lemma or bivariate truncated Taylor series [3], where one domain variable
is time, and the second is the random component. It is hard to apply such lemma to
spde (e.g., flow/transport) and unknown non-stationary models.

Following another venue, the response differentials for a spde can be predicted
from input data, using case specific relations with stationary parameter models. Fur-
thermore, heuristic successive integral extensions beyond y2(x) are as follows:

y3(x) =
∫

−∞

(∫

−∞
y1(x).∂y1(x)

)
· ∂y1(x) =

∫

−∞
y2(x).∂y1(x)

yields

y3(x) = 1

2 · 3
(

y3
1(x)+ 3〈y1(x)〉σ 2 · x

)
(1)

This result is integrated again,

y4(x) = 1

2 · 3 · 4
(

y4
1 (x)+ 6〈y1(x)〉2σ 2 · x + 3σ 2σ 2 · x2

)
(2)

and again
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Fig. 1 Stochastic integration of a geostatistically simulated stationary difference model

y5(x) = 1

2 · 3 · 4 · 5
(

y5
1(x)+ 10〈y1(x)〉3(x)σ 2 · x + 15〈y1(x)〉σ 2σ 2 · x2

)
(3)

The angular brackets represent the conditional average, (over the realization). The
correction terms behave as drift functions of the spatial coordinates, with parametric
coefficients. A generalization represents

yn =
∫ ∞

−∞
· · ·

∫ ∞

−∞

(∫ ∞

−∞

(∫ ∞

−∞
y1(x) · ∂y1(x)

)
· ∂y1(x)

)
.∂y1(x) · · · ∂y1(x)

Successive derivatives of yn(x) with respect to the domain variable reboot to
y1(x).

Flow and transport in 3D space can be integrated along 1D streamtubes, e.g., [6].
Streamtubes are enabled by considering a collection of streamlines, allowing fast
integration using Eqs. 1, 2, 3 and so forth.

Furthermore, Itô’s integration has been generalized as a Principle of Stochastic
Integration (PSI), which is fundamental for computing expected values and higher-
order moments of non-stationary models following spde.

3 Numerical Verification

The integration of geostatistically simulated second order difference random vari-
ables enables the construction of a non-stationary folded structural model with ele-
vation boundary conditions, Fig. 1.

An example for a fifth order integral of proportions is provided in Fig. 2. One
Monte Carlo numerical trapezoidal summation (yellow) can be compared to the
numerically direct, and therefore faster, almost overlapping result from Eq. 3 (red).
Just for illustration, the other curves are the classic calculus integral (black), plus the
small effect of the linear correction (brown). Note the quadratic function of space (or
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Fig. 2 Fifth order stochastic integration for a random variable

time) carries on a significant correction for this order of integration. Since Eq. 3 is
a function of mean and variance, this model is based on second order statistics, but
can be applied to integrate non-Gaussian noise by including cumulant terms using
polynomials [9].

4 Polynomials from Riemann Stieltjes Integration

Equations 1, 2 and 3 contain monomial nonlinear terms ϕ(y(x)). The nonlinear
averaging of a “conditional” input random variable is computed by integration
E [ϕ (y(x))] = ∫∞

−∞ ϕ (y(x)) ∂F (y(x)), where ∂F (y(x))
/
∂y(x) is the conditional

probability density function (PDF) with input kriging parameters. For example,
the exponential is decomposed as Taylor series yielding a combination of kriged
moments

E
[
exp

(
y1(x)

)]
= 1 + E

[
y1(x)

]
+ 1

2
E

[
y2

1 (x)
]
+ 1

2! · 3! E
[

y3
1(x)

]

+ 1

2! · 3! · 4! E
[

y4
1(x)

]
· · · (4)

Polynomial solutions for the Gaussian kriging moments E
[
yn

1 (x)
]

are in [8].
Expectations of nonlinear monomial terms in Eqs. 1, 2, and 3 are consistent with
each term in Eq. 4 from Riemann–Stieltjes integration. The expressions for non-
Gaussian moments are in [9]. This result couples nonlinearity to non-stationarity
principles.
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5 Conclusion

This study has unified stochastic integration and nonlinear averaging principles
enabling an approach for stochastic geoscience models. Heterogeneous differences
are calibrated to match the response data, at boundary conditions. The solutions
contain nonlinear and drift terms. The drift components are functions of space (or
time), and probability distribution parameters, of the differentials (i.e., noise). The
nonlinear expected values follow Riemann–Stieltjes averages. If the drift terms are
eliminated, the models resort to classic nonlinear collocated transformation models.
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