


43

Topics in Organometallic Chemistry

Editorial Board:

M. Beller l J. M. Brown l P. H. Dixneuf

A. Fürstner l L. Gooßen l L. S. Hegedus

P. Hofmann l T. Ikariya l L. A. Oro l Q.-L. Zhou



Topics in Organometallic Chemistry
Recently Published Volumes

Organometallics as Catalysts

in the Fine Chemical Industry

Volume Editors: Matthias Beller,

Hans-Ulrich Blaser

Vol. 42, 2012

Modern Organoaluminum Reagents:

Preparation, Structure, Reactivity and Use

Volume Editors: Simon Woodward,

Samuel Dagorne

Vol. 41, 2012

Organometallic Pincer Chemistry

Volume Editors: Gerard van Koten,

David Milstein

Vol. 40, 2012

Organometallics and Renewables

Volume Editors: Michael A. R. Meier,

Bert M. Weckhuysen, Pieter C. A. Bruijnincx

Vol. 39, 2012

TransitionMetal Catalyzed Enantioselective

Allylic Substitution in Organic Synthesis

Volume Editor: Uli Kazmaier

Vol. 38, 2011

Bifunctional Molecular Catalysis

Volume Editors: T. Ikariya, M. Shibasaki

Vol. 37, 2011

Asymmetric Catalysis from a Chinese

Perspective

Volume Editor: Shengming Ma

Vol. 36, 2011

Higher Oxidation State Organopalladium

and Platinum Chemistry

Volume Editor: A. J. Canty

Vol. 35, 2011

Iridium Catalysis

Volume Editor: P. G. Andersson

Vol. 34, 2011

Iron Catalysis – Fundamentals and

Applications

Volume Editor: B. Plietker

Vol. 33, 2011

Medicinal Organometallic Chemistry

Volume Editors: G. Jaouen, N. Metzler-Nolte

Vol. 32, 2010

C-X Bond Formation

Volume Editor: A. Vigalok

Vol. 31, 2010

Transition Metal Complexes of Neutral

h1-Carbon Ligands

Volume Editors: R. Chauvin, Y. Canac

Vol. 30, 2010

Photophysics of Organometallics

Volume Editor: A. J. Lees

Vol. 29, 2010

Molecular Organometallic Materials

for Optics

Volume Editors: H. Le Bozec, V. Guerchais

Vol. 28, 2010

Conducting and Magnetic Organometallic

Molecular Materials

Volume Editors: M. Fourmigué, L. Ouahab
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Preface

Transition metal catalysis is a major driving force for development of new

approaches in organic synthesis, medicinal chemistry, preparation of biologically

active and pharmaceutical molecules, as well as in numerous applications related to

material science and molecular electronics. Recent advances in green and sustain-

able chemistry emphasized the key role of waste-free chemicals production. Espe-

cially critical in fine chemicals synthesis is that high values of E-factor are not

uncommon. Increasing demand in very complex molecular structures enforces

implementation of sophisticated multistep synthetic procedures and further com-

plicates the waste/product balance. On the other hand, so far most of the commodity

chemicals remain to be produced by classical procedures, which are not green.

A fundamental solution to the problem is to develop novel synthetic processes

that are “clean” by initial design. For carbon–heteroatom bond formation it is the

hydrofunctionalization process that opens the possibility for environmentally

friendly chemical transformations. Hydrofunctionalization of unsaturated organic

molecules via direct addition of H-X to multiple bonds is an atom-economical

addition reaction which does not produce wastes. In view of the need of green and

sustainable chemical procedures, the role of the metal catalysis is crucial to control

the reaction, in particular, regio-, stereo-, and enantioselectivity.

This volume highlights fascinating development of catalytic hydrofunctionali-

zation chemistry toward selective formation of C–X bonds (X = N, P, O, S, Se).

Discovery of new catalysts, impressive development of ligands, and optimization of

reaction conditions have made it possible to access molecular complexity in 100%

atom-economical manner. Broad scope of the reactions, high functional group

tolerance for a variety of substrates, and superior control over alternative pathways

of the addition process are characteristic trends in state-of-the-art catalytic hydro-

functionalization.

The mechanistic insight into the catalytic reactions is discussed for the key

insertion step [1] and catalytic hydrochalcogenation reactions [2]. Two chapters

of this volume review hydroamination reaction catalyzed by early/main group [3]

and late [4] metal catalysts. Synthesis of organophosphorus compounds via addition

ix



of P–H [5] and P(O)–H [6] bonds is described next. An important area of O–H bond

addition to unsaturated molecules is highlighted in three chapters depending on the

nature of the metal catalyst [7–9], followed by detailed overview of synthetic

pathways to organic chalcogenides [10]. Most of the hydrofunctionalization pro-

cesses covered in this volume were carried out under homogeneous reaction con-

ditions. With a noticeable exception of sulfur and selenium species, where a

significant contribution of heterogeneous pathway and competing homogeneous

vs. heterogeneous routes were reported. Therefore, two chapters were devoted to

C–S/C–Se bonds formation focusing on mechanistic aspects [2] and outstanding

synthetic potential [10].

Moscow, Russia Valentine Ananikov

Yokohama, Japan Masato Tanaka
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Alkyne and Alkene Insertion into

Metal–Heteroatom and Metal–Hydrogen Bonds:

The Key Stages of Hydrofunctionalization

Process

Valentine P. Ananikov and Irina P. Beletskaya

Abstract In this chapter we review mechanistic concepts of carbon–heteroatom

bond formation involving hydrofunctionalization of double and triple carbon–carbon

bonds via migratory insertion pathway. A variety of useful synthetic procedures were

developed within the scope of hydrofunctionalization reaction involving transition

metal catalysts to change the direction of the addition reaction and to improve the

selectivity of the process. Outstanding potential of multiple bonds activation and

insertion in the metal complexes is far from being fully explored. The key factors

determining insertion pathways into metal–heteroatom vs. metal–hydrogen bonds

and the influence on regioselectivity of the insertion remain to be revealed in nearest

future.
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1 Introduction

Development of efficient and sustainable procedures for carbon–heteroatom bonds

formation is the field of tremendous growth in recent decades. Discovery of new

metal catalysts and preparation of new ligands contributed to a great extent to this

process as a driving force in the construction of selective synthetic methods.

In transition-metal-catalyzed procedures carbon–heteroatom bonds can be cre-

ated involving either cross-coupling or addition reactions. Representative example

for the formation of CSP2–Het bonds of vinyl compounds is shown in Scheme 1

(in this chapter notation Het corresponds to heteroatom or heteroatom-containing

group). Cross-coupling reaction is a very powerful methodology with numerous

fascinating catalytic procedures developed [1–7]. However, it is a substitution

reaction and it is accompanied by the formation of by-product (i.e., HX, which is

typically captured by a suitable base). In contrast, addition reaction is completely

atom economic and does not suffer from by-products formation [6–13] (cf.

reactions 1, 3 and 2, 4; Scheme 1).

In principle, both methodologies (cross-coupling and addition reactions) can be

involved to efficiently create one or two C–Het bonds. Formation of two C–Het

bonds with cross-coupling approach is a sequential process (reaction 3, Scheme 1),

whereas it is a single step route in the addition reaction of Het–Het substrate to

alkynes (reaction 4, Scheme 1).

Not only intrinsic atom-economic nature but also easier availability of the

carbon substrate are the important sustainable advantages of the addition reaction.

Alkynes are usually commercially available, while corresponding vinyl halides

may require separate synthesis.

General mechanism of H–Het addition to alkynes involves oxidative addition of

H–Het to the metal center followed by multiple bond coordination and formation

of the p-complex (Scheme 2). The key point of the addition reaction is the direction

of alkyne insertion: insertion into the M–H or M–Het bonds and regioselectivity

determine the structure of the final product – anti-Markovnikov (linear) or

Markovnikov (branched). Reductive elimination of C–Het or C–H bonds is the

final product releasing step in the catalytic cycle (Scheme 2).

Oxidative addition, coordination, and reductive elimination are well-known

elementary steps of metal-mediated transformations [14–16]. However, insertion of

multiple bonds (or migratory insertion) appears to be comparably less studied stage

2 V.P. Ananikov and I.P. Beletskaya



with several challenging questions remaining concerning reactivity of different

heteroatoms, selectivity of the reaction, and the role of ligands.

In this chapter we discuss main mechanistic problems of the key insertion step

in transition-metal-catalyzed hydrofunctionalization of multiple carbon–carbon

bonds. We do not make an extensive comprehensive compilation; instead, we try

to focus on recent achievements and limitations in state-of-the-art understanding of

the insertion reaction. Efficient utilization of hydrofunctionalization of unsaturated

compounds and rational design of the catalytic procedures requires better insight

into the subject and stimulates further research on this topic. Results of theoretical

studies, which provided a valuable insight into the topic, are also highlighted and

discussed.

Scheme 2 Catalytic cycle of H–Het addition to terminal alkynes (Het–heteroatom)

Scheme 1 Cross-coupling and addition reactions in the synthesis of vinyl compounds

(Het–heteroatom, X–halogen or OTf)

Alkyne and Alkene Insertion into Metal–Heteroatom and Metal–Hydrogen Bonds... 3



2 Insertion of C═C and C�C Bonds in the Metal Complexes

2.1 Reactions of C═C and C�C Bonds in the Coordination
Sphere of the Metal Complex

Insertion of the multiple bonds usually is considered as an inner-sphere process that

takes place after binding of the Het group and after coordination of the unsaturated

organic molecule. Depending on the nature of metal complex and on the type of

reacting molecules, inner-sphere reaction can be depicted either as four-centered

“cycloaddition-like” process (A, Scheme 3) or as an attack of the Het group on the

coordinated multiple bond (B, Scheme 3). Preliminary coordination of the multiple

bond in the form of p-complex is usually required to carry out inner-sphere

reaction, and such coordination increases the reactivity of the unsaturated molecule

(i.e., activation of C═C and C═C bonds). In both cases the same syn-addition
product is expected and the reaction involving alkynes leads to vinyl derivatives

(C, Scheme 3).

It is generally assumed that the reactions involving alkynes (Scheme 3) and

alkenes (Scheme 4) proceed in the same framework. Alkene coordination followed

by insertion into the M–Het bond (A or B) results in the formation of saturated

compound (C) as a product (Scheme 4).

It should be noted that formation of trans-product can be achieved in an anti-
addition reaction through the outer-sphere mechanism. Theoretical studies have

demonstrated that syn-addition and anti-addition reactions may start from the same

p-complex, and direction of the multiple bond activation depends on the polarity of

solvent [17, 18]. Relative reactivity in the inner-sphere and outer-sphere

mechanisms contributes to the overall E-/Z- selectivity of the addition reaction to

alkynes (stereoselectivity issue). In some cases it is possible to switch the direction

of C–Het bond formation by finding a suitable ligand [19]. In case of alkenes syn-
addition and anti-addition processes do not necessarily result in different stereo-

chemistry (unrestricted rotation around the single C–C bond in the product).

Occurrence of these mechanisms for the N [20, 21], P [22, 23], O [24–26], S, Se

[27, 28] heteroatom groups and application of different metal catalysts are

discussed in detail in the other chapters of this book. Stereochemical pathways of

nucleometallation and development of enantioselective catalytic procedures were

reviewed [29]. In this chapter we focus our attention on the mechanism of inner-

sphere insertion reaction involving double and triple carbon–carbon bonds.

The question of much interest is the difference between the transient structures

A and B in the inner-sphere reactions of alkynes and alkenes (Schemes 3 and 4). On

the moment it is unclear whether it is the same process just depicted in different

ways or this really corresponds to a change in the mechanism depending on the

nature of the reacting system. Future studies on the subject are anticipated to shed

some light on this fascinating problem.

4 V.P. Ananikov and I.P. Beletskaya



2.2 Preliminary Activation of the Multiple Bonds upon
Coordination to the Metal

Depending on molecular system multiple bond coordination may result in the

formation of p-complexes of varying strength (Scheme 5). It is possible to distinguish

boundary conditions of strong p-complex, weak p-complex, and uncoordinated

system (several medium systems are also possible, but they are omitted on Scheme 5

for clarity).

Modern computational studies do provide an excellent opportunity to estimate

strength of the p-complexes by calculating binding energy of the unsaturated

compound [30–33]. In order to get more realistic picture of the binding process, it

is important to consider not only DE and DH values, but also to analyze DG surface

and effect of solvent. For example, weakly bound p-complex may become uncoor-

dinated on free energy surface due to disfavoring entropy contribution and/or

competitive coordination of solvent molecules.

Not only energetic data but also geometry parameters should be taken into

account for correct assignment of the nature of p-complexes. The key parameters

are reflected by relative changes of the length of metal–carbon bond (shorter bond

for stronger p-complexes) and the length of multiple carbon–carbon bond (longer

bond for stronger p-complexes). Determination of the absolute values of these bond

Scheme 3 Inner-sphere reaction of alkynes (Het–heteroatom)

Scheme 4 Inner-sphere reaction of alkenes (Het–heteroatom)

Alkyne and Alkene Insertion into Metal–Heteroatom and Metal–Hydrogen Bonds... 5



lengths may require precise experiments and sophisticated computational levels;

however, in most cases the relative change between coordinated and non-

coordinated molecules are enough to describe the binding process. Relative

changes in geometry parameters are well reproduced even at moderate computa-

tional levels [31].

As we mentioned above in Sect. 2.1, multiple bond coordination to the metal

center results in activation toward the reaction with heteroatom group. In the simple

approach multiple bond coordination initiates electron density redistribution and

positive charge transfer from the cationic metal center to the carbon atoms

(Scheme 5). Positively charged carbon atoms become more susceptible to reaction

with nucleophilic center located on the heteroatom group. In this simple description

stronger p-complex with larger degree of charge transfer should result in higher

reactivity. Indeed, such relationship between the strength of the p-complex and

exhibited reactivity was observed in several cases. However, stronger binding of the

unsaturated molecule furnishes formation of the p-complex with lower relative

energy and in certain cases may lead to higher activation barriers (Fig. 1). Thus,

various factors have to be taken into account for selection of metal complex

designed for multiple bond insertion into the M–Het bond.

In addition to energetic factors, the structure of the p-complex may play a crucial

role on the performance of the catalytic reaction (Scheme 6) [34]. Alkyne insertion

into the metal–sulfur bond via five-coordinated p-complex led to the formation of

intermediate metal complex capable for direct C–S reductive elimination to complete

product formation. In contrast, intermediate metal complex formed via alkyne inser-

tion through the four-coordinated p-complex suffered from improper geometry

configuration, which may block the whole catalytic cycle. An important issue related

to reactivity of coordinated alkynes in such catalytic systems is C–Het vs. Het–Het

bonds activation [35] and carbometallation vs. heterometallation pathways [36].

Scheme 5 Coordination of alkynes and alkenes to the metal center and reactivity of the

p-complexes (Het–heteroatom)
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Most of the catalytic reactions involving insertion of unsaturated compounds

into M–Het bond are based on M(0), M(I), or M(II) metal centers in the catalyst

active site. These metal centers are expected to possess medium or strong binding

energy upon coordination of multiple carbon–carbon bonds [37, 38]. The behavior

can be efficiently tuned by ligands, and in case of strong binding of unsaturated

compounds stable p-complex can be isolated. Insertion reaction also can be suc-

cessfully mediated in weakly bound systems, for example this was demonstrated in

case of Pt(IV) [18]. The possibility of direct reaction in bimolecular fashion without

preliminary coordination of unsaturated molecule (Scheme 5) remains a challenging

question.

Scheme 6 Ni-catalyzed C–S bond formation [34]

Fig. 1 Schematic representation of energy surface of insertion reaction involving strong and weak

p-complex; another case with different energies of the transition states is also possible (not shown)
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2.3 The Role of Orientation of Heteroatom Group

Typical simplified representation of the multiple bond insertion into the

metal–heteroatom bond commonly used in the modern literature (Schemes 3 and 4)

does not point out on possible influence of orientation of the heteroatom group.

Indeed, this factor is very often neglected and here we discuss it in more detail.

Spatial arrangement of heteroatom groups covered in this volume (N, P, O, S,

Se, Te) gives rise to different isomers of transition metal complexes. For nitrogen

and phosphorus (III) two isomers A and B may exist due to rotation around

metal–heteroatom bond (Scheme 7). In the A-TS the lone pair of the heteroatom

interacts with the multiple carbon–carbon bond, whereas in B-TS direct interaction

is unlikely. Such different interactions may become a reason for changing relative

stability of the transition states.

The factor of orientation of heteroatom group should be considered for both

types of mechanisms – “cycloaddition-like” process or attack of the heteroatom

group on the coordinated multiple bond (Scheme 3).

The products A-product and B-product can be interconverted between each

other due to rotation around carbon–heteroatom bond (Scheme 7). Both kinetic and

thermodynamic control may be realized in the system and complicate experimental

studies. Obviously, formation of either A-product or B-product cannot be consid-

ered as an evidence for involvement of A-TS or B-TS, respectively. Different

factors may influence relative stability of A and B, barrier heights to overcome

A-TS and B-TS, as well as relative stability of A-product and B-product. In this

topic computational studies have a great potential to construct the energy surface of

the reaction and to reveal the favoring pathway of the insertion reaction.

Scheme 7 Insertion of alkynes and alkenes with different orientations of heteroatom groups;

other isomers are also possible depending on the ligand environment (not shown)
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A variety of different geometry orientations are accessible for other heteroatom

groups as well (Scheme 8). Different isomers of the initial metal complex may

initiate alternative pathways of multiple bond insertion in the same manner as

described earlier (Scheme 7).

This effect can be expected for reactions involving chalcogen groups

(Scheme 8a), oxidized chalcogen groups (Scheme 8c, d), as well as -P(O)R2 and

-P(O)(OR’)2 groups with the phosphorus center (Scheme 8b). Varying degree of

interaction with the oxygen atom is an additional factor that influences potential

energy surface and reactivity in the systems (Scheme 8b–d).

As a representative example of the role of orientation of heteroatom group, we

can consider theoretical study of alkyne insertion involving Pd–PMe2, Pd–P(O)Me2,

and Pd–P(O)(OMe)2 bonds [39]. The insertion reaction related to hydropho-

sphination process was studied in the [Pd(Z2–HC�CH)(PMe2)(H)(PH3)] model

complex resulted from oxidative addition of the H–PMe2 to Pd(0).

Indeed, it was found that both isomers A and B do exist on the potential energy

surface and the isomer with anti-orientation of the phosphorus lone pair and

coordinated alkyne is slightly more stable by �0.9 kcal/mol (Fig. 2 and Scheme 9).

The isomers were connected by small rotational barrier of 2.8 kcal/mol, which can

be easily overcome at the room temperature.

Alkyne insertion via the A!A-TS!A-product pathway was calculated to be

exothermic by DG ¼ �18.2 kcal/mol and requires overcoming of the activation

barrier with DG 6¼ ¼ 15.9 kcal/mol (Fig. 2). The second route of the alkyne insertion

through the B!B-TS!B-product pathway was found much more exothermic

DG ¼ �30.4 kcal/mol and was characterized by significantly smaller activation

barrier DG6¼ ¼ 5.7 kcal/mol.

The products of both pathways were connected by the rotational transition state

TS-rotation-prod (Fig. 2). The difference in relative energy between these

products originated from suitable orientation of the phosphorus group. One of the

structures (B-product) allows stabilization of the metal center by coordination in

Scheme 8 Different orientations of the heteroatom groups in the initial complexes for insertion of

alkenes and alkynes into the M–Z bond (coordinated multiple bond is omitted); other isomers are

also possible depending on the ligand environment
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Scheme 9 Insertion of acetylene into the Pd–PR2 bond [39]

Fig. 2 Potential energy surface of the acetylene insertion into the Pd–PR2 bond calculated at

B3LYP level (L═PH3, R═Me; see Scheme 9 for structures); DG values are shown in kcal/mol [39]
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chelate fashion, whereas coordination of the phosphorus group in another case

(A-product) was not found.

Comparison of both pathways clearly suggested that the B!B-TS!B-product

pathway is more favorable from both kinetic and thermodynamic reasons for

acetylene insertion into the Pd–PMe2 bond.

The insertion reaction related to hydrophosphinylation process was studied in

the [Pd(Z2–HC�CH)(P(O)Me2)(H)(L)] model complex resulted from oxidative

addition of the H–P(O)Me2 to Pd(0). Theoretical calculations of the energy surface

have shown important influence of the orientation of the phosphorus group (Fig. 3

and Scheme 10) [39].

Analysis of both pathways A!A-TS!A-product and B!B-TS!B-product

again suggested that the latter is clearly favorable from thermodynamic reasons for

acetylene insertion into the Pd–P(O)Me2 bond and it is also slightly favorable from

kinetic reasons (Fig. 3). The relative stability of the products greatly depended on

the orientation of the phosphorus group. Coordination of the oxygen atom to the

metal center led to complex B-product, which was calculated to be more stable by

21.9 kcal/mol compared to the complex A-product.

The calculations highlighted the role of oxygen atom in phosphine oxide moiety:

all calculated activation barriers were increased with a noticeable change of

~4 kcal/mol for the A-TS and TS-rotation-init (cf. Figs. 2 and 3). Nearly threefold
increase of the activation barrier was calculated for the B-TS: DG 6¼ ¼ 5.7 kcal/mol

for the acetylene insertion into the Pd–PMe2 bond (Fig. 2) and DG
6¼ ¼ 16.8 kcal/mol

for the acetylene insertion into the Pd–P(O)Me2 bond (Fig. 3).

Fig. 3 Potential energy surface of the acetylene insertion into the Pd–P(O)R2 bond calculated at

B3LYP level (L═PH3, R═Me; see Scheme 10 for structures); DG values are shown in kcal/mol [39]
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Theoretical calculations have been also carried out to study acetylene insertion

into the Pd–P(O)(OMe)2 bond related to hydrophosphorylation process [39]. The

activation barriers for alkyne insertion were calculated to be DG6¼ ¼ 21.4 and

23.7 kcal/mol depending on the orientation of the phosphorus group. However,

much smaller difference in the relative stability of the products was found. The

presence of three oxygen atoms attached to the phosphorus center facilitated chelate

coordination to the metal in any orientation of the phosphorus group. Thus, the

influence of orientation of heteroatom group significantly depends on the number of

bonded oxygen atoms (see also Scheme 8).

Interesting to note that calculated Pd–P bond energy was shown to change in the

order P═P(O)(OMe)2 > P(O)Me2 > PMe2, whereas the reactivity in the acetylene

insertion reaction changed in the reversed order: Pd–P(O)(OMe)2 < Pd–P(O)

Me2 < Pd–PMe2.

2.4 Structural Reorganization of the Initial Complex

In order to reach proper initial structure to undergo insertion reaction, not only

orientation of the heteroatom group but also geometric arrangements of the multiple

bond is an important prerequisite. Structural reorganization required to achieve

Scheme 10 Insertion of acetylene into the Pd–P(O)R2 bond [39]
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initial complex and then the transition state involves geometry adjustment of

coordinated multiple bond and bound heteroatom group.

Several complexes arose due to different orientations of coordinated olefin and

reacting group were characterized in the theoretical study of ethylene insertion in

rhodium complexes (Fig. 4) [40]. The calculations were carried out for the model

system using [Rh(Z2–CH2═CH2)(Z)(PMe3)] complex, where Z ¼ CH3, NH2,

and OH.

Constrained geometry optimization with the ethylene in the square plane (same

double bond orientation as in the transition state) led to the olefin rotation

structures, which were higher in energy by 10.1, 14.4, and 16.6 kcal/mol compared

to the reactants for the complexes with Rh–CH3, Rh–NH2, and Rh–OH bonds,

respectively (Fig. 4). Changes in the orientation of the –NH2 and –OH groups

(geometric arrangement of hydrogen atoms and electron pairs) resulted in appear-

ance of several structural isomers with the energy difference in the order of

2–5 kcal/mol.

Calculated energy barriers for alkene insertion starting from the low energy

reactant changed in the order: 24.9 kcal/mol for Rh–CH3 > 22.1 kcal/mol for

Rh–NH2 and 22.5 kcal/mol for Rh–OH. However, the difference in the energy of

Fig. 4 Relative DE energies calculated at B3LYP level (in kcal/mol) for reactants (R), transition

states (TS), and rotational isomers for ethylene insertion into the Rh–CH3 (a), Rh–NH2 (b), and

Rh–OH (c) bonds [40]
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the transition state and initial structure obtained in constrained “TS-like” geometry

arrangement was more specific to heteroatoms: 14.8 kcal/mol for Rh–CH3 > 10.8

kcal/mol for Rh–NH2 > 6.3 kcal/mol for Rh–OH (Fig. 4) [40].

Thus, the study has demonstrated that structural reorganization of reacting

fragments in the coordination sphere of the metal makes a large contribution in

the order of 10–16 kcal/mol to the overall activation barriers of 22–25 kcal/mol.

2.5 Selectivity of the Insertion Reaction, Steric and Electronic
Effects

Experimental evidence for insertion of alkenes into the metal–nitrogen bond was

reported recently in the studies of aminopalladation reactions [41, 42]. Intramolecular

insertion reaction was confirmed to be a syn-addition process and was monitored by

NMR spectroscopy of the well-defined palladium(aryl)(amido) complexes

(Scheme 11) [41, 43]. The reaction proceeded as insertion into Pd–N bond with

complete chemoselectivity and the alternative route of alkene insertion into the Pd–C

bond was not observed. The activation enthalpy determined for the insertion step

DH6¼ ¼ 24.8 � 0.6 kcal/mol was comparable with the values reported for other

insertion reactions, and small activation entropy DS6¼ ¼ 4.6 � 1.8 eu is consistent

with intramolecular transformation [41, 43]. The final product of the reaction was

formed after C–C reductive elimination, which is known to be rather fast step if at

least one aryl group is involved [44, 45]. The mechanistic study of the alkene

insertion into the Pd–N bond has also pointed out on possible reversible nature of

such process [46].

Intermolecular alkene insertion into the Pd–N bond was shown to be a syn-
addition process as well (Scheme 12) [42, 47]. Amido complexes of palladium were

found to coordinate alkene, undergo migratory insertion and finally to form

enamine product after b-hydrogen elimination. Experimental evidence for the

ethylene amido intermediate and for syn-addition process was obtained by NMR

spectroscopy, including deuterium labeling study. The rate constant of the decay of

observed intermediate complexes leading to the formation of the enamine

corresponded to DG 6¼ of 17 kcal/mol (8.7 � 10�4 s�1, �40�C) [42].

Scheme 11 Intramolecular insertion of alkene into the Pd–N bond [41, 43]
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Important factors that govern reaction rates of the insertion process are heteroatom

basicity/nucleophilicity and steric/electronic effects in the ligands and substrates

[43, 47]. Particularly, it was reported that bulky ligands and electron-poor alkenes

lower the barrier of migratory insertion. The origin of the steric effect came from a

stronger influence of the ligand in the initial state of the complex, rather than in the

transition state (in the transition state alkene lies along the Pd–N bond, see Fig. 3).

The origin of the electronic effect was proposed due to electron density delocalization

between the metal center and double bond upon coordination and movement toward

the transition state.

In the case of alkynes obtaining the data on the stereoselectivity of the insertion

process is straightforward since Z/E-geometry of the double C═C can be easily

determined in intermediate complexes and in the products (cf. Schemes 3 and 4).

For example, the intermediate complexes dealing with metal–chalcogen bonds

transformations were isolated and structurally characterized [48, 49], as well as

the insertion pathway was characterized by theoretical calculations for homoge-

neous catalysis with molecular complexes [50] and for heterogeneous catalysis with

nanoparticles [51]. The topic is discussed in detail for various heteroatoms and

metal complexes in the other chapters of this book [20–28].

It is accepted that insertion reaction proceeds with complete intrinsic selectivity –

only syn-addition species are expected. However, the overall selectivity of the

catalytic reaction and the yield of the product nevertheless can vary in a wide

range. Considering the mechanism, the overall outcome of the catalytic procedure

depends on the regioselectivity of the insertion and on the M–Het vs. M–H insertion

pathways (Scheme 2). The latter issue is of principal importance to design new

catalytic systems and deserves a special note.

Catalytic hydrofunctionalization of the multiple bonds involves oxidative

addition of H–Het to low valent metal complex and intermediate formation of

H–MLn–Het complex. As a next step, either heterometallation (insertion into

M–Het) or hydrometallation (insertion into M–H) may take place (Scheme 13).

Involvement of both pathways was proposed in practical hydrofunctionalization

reactions with various substrates and different metal complexes [20–28].

Comparative theoretical study at density functional, MP2, and ONIOM levels

was carried out for H–M–P complexes to reveal the difference in reactivity of M–P

and M–H bonds toward the alkyne (Scheme 13) [39, 52, 53]. Theoretical analysis

was carried out for different metals, ligands [52, 53], and conformations [39]. The

computational study has clearly shown that alkyne insertion into the M–H bond is

much more kinetically preferred with calculated activation barriers of DE 6¼ ¼
1.0–6.1 kcal/mol, compared to higher barriers of DE 6¼ ¼ 15.1–28.2 kcal/mol

Scheme 12 Intermolecular insertion of alkene into the Pd–N bond [42, 47]
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for alkyne insertion into the M–P bond [52]. The scope of the reaction was verified

for different metals (M ¼ Ni, Pd, Pt, and Rh) and ligands (L ¼ PH3 and PPh3). The

relative reactivity of the metal complexes in the reaction with alkynes was

estimated in the calculations and was shown to decrease in the following order:

Ni > Pd > Rh > Pt. A relative trend in the reactivity was established for various

types of phosphorus groups: PR2 (most reactive) > P(O)R2 (intermediate) > P(O)

(OR)2 (less reactive), which showed a decrease upon increasing the number of the

oxygen atoms attached to the phosphorus center.

Such a large difference in the reactions of M–Het and M–H bonds with unsatu-

rated groups provides a valuable insight for design of novel catalytic systems. If

both reacting groups (hydrogen and heteroatom) are available for the insertion, the

reaction involving M–H bond should proceed first. Insertion into the M–Het bond

becomes possible only if M–H bond is not present in the complex or it is not

available for reaction. This provides a clear hint to control direction of the reaction

and to influence the selectivity by stabilization/destabilization of metal hydrides

and by ligand control over the available insertion channels in the coordination

sphere of the metal. An illustration on the ligand control over the M–H/M–Het

insertion has been reported recently for the hydrothiolation reaction catalyzed by

Rh–NHC complexes [54].

It is of much interest to reveal to what extent such significant difference in

reactivity of M–H/M–Het bonds will remain for other transition metal complexes

and heteroatoms.

3 Conclusions

In spite of very common mentioning of insertion process in a variety of modern

studies and in spite of widespread application of addition reactions in modern

organic chemistry, molecular picture of this fascinating transformation remains

unexplored. The aim of this chapter is to point on understanding at molecular level

of insertion (migratory insertion) of unsaturated organic molecules into

metal–heteroatom bond.

Scheme 13 Alkyne insertion through the hydrometallation vs. heterometallation pathways

[39, 52, 53]
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Detailed consideration of geometry/orientation of coordinated multiple bond

and heteroatom group provides a new look on the role of ligand environment and

opens new possibilities for catalyst design. Important factors for the reactivity

issue are: (1) stabilization of favorable structure of the initial complex (Fig. 4);

(2) adjustment of p-complex strength (Fig. 1); and (3) control over the spatial

movement of heteroatom group (Figs. 2 and 3). Improvement of selectivity of

catalytic synthetic procedures recalls for better understanding of: (1) heterome-

tallation vs. hydrometallation pathways (Scheme 13); (2) regioselectivity of the

alkyne insertion step (Scheme 2); and (3) steric and electronic effects of

substituents in heteroatom group and in substrate.

We anticipate further mechanistic studies and applications in organic synthesis

of these powerful metal-mediated transformations.
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The Mechanism for Transition-Metal-Catalyzed

Hydrochalcogenation of Unsaturated Organic

Molecules

Akihiko Ishii and Norio Nakata

Abstract In this chapter, discussions are focused on two types of mechanisms of

transition-metal-catalyzed hydrochalcogenation, Type I and Type II, which are

classified by the initial behavior of precatalysts. In Type I mechanism, precatalyst

M–X (M ¼ Pd, Ni, Zr, Ln, and An) first undergoes protonolysis with REH (E ¼ O,

S, and Se) to generate active catalyst M–ER, which then undergoes insertion of

alkyne into the M–ER bond (chalcogenometalation) to give 2-chalcogenovinyl

complex, followed by protonolysis of M–Cvinyl with REH to produce the product

and to regenerate active catalyst M–ER. Type II mechanism starts from oxidative

addition of REH (E ¼ S and Se) to complex [M] (M ¼ Pd, Pt, Rh, and Ir) to give

chalcogenolato–hydrido complex, [M]H(ER). In the next alkyne insertion, [M]–H

insertion (hydrometalation) to give [M](ER)(vinyl) or [M]–E insertion (chalcogen-

ometalation) to give [M]H(2-RE-vinyl) occurs and then reductive elimination of the

resulting vinyl [M] complexes yields the product and [M]. Reactions where transi-

tion metal catalysts exert as Lewis acid to activate unsaturated bonds and those

proceeding through vinylidene intermediates are mentioned only shortly.

Keywords Hydrochalcogenation � Oxidative addition � Protonolysis � Reductive
elimination � Transition metal
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1 Introduction

Introduction of organoelemento functionalities into organic molecules is an impor-

tant reaction to prepare useful synthetic intermediates [1–8]. This chapter concerns

the mechanism of transition-metal-catalyzed addition of chalcogenol (REH:

E ¼ O, S, and Se) to carbon–carbon unsaturated bonds. Conventional additions

of REH, catalyzed by Brønsted acids or initiated by radical species, and

chalcogenolate (RE–) to unsaturated bonds are out of scope of this chapter. In the

transition-metal-catalyzed hydrochalcogenation, discussions are focused on two

types of mechanisms, Type I and Type II, which are classified by the initial

behavior of precatalysts for convenience and involve at least one step of insertion

of carbon–carbon unsaturated bond to metal–chalcogen (M–E) or metal–hydrogen

(M–H) bonds. In some cases, this classification is ambiguous and there are hybrid

type mechanisms of them. Reactions where transition metal catalysts exert as Lewis

acid to activate unsaturated carbon–carbon bonds and those proceeding through

vinylidene intermediates are mentioned only shortly in this introduction part.

1.1 Type I Mechanism

In the initial stage of this mechanism (Scheme 1), transition metal precatalyst M–X

undergoes protonolysis of the M–X bond with REH to generate active catalyst

M–ER. The chalcogenolato–metal complex then undergoes insertion of alkyne into

the M–ER bond (chalcogenometalation) to give 2-chalcogenovinyl complex. In the

final stage, protonolysis of M–Cvinyl with REH produces the product and active

catalyst M–ER.

1.2 Type II Mechanism

Type II mechanism starts from oxidative addition of REH to transition metal

complex ([M]) to give chalcogenolato–hydrido metal complex, [M]H(ER)

(Scheme 2). In the next step of alkyne insertion, there are two possible pathways,

[M]–H insertion (hydrometalation) to give [M](ER)(vinyl) and [M]–E insertion

(chalcogenometalation) to give [M]H(2-RE-vinyl). In the final stage, reductive
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elimination of the resulting vinyl [M] complexes yields the product and [M]. The

[M]–H insertion corresponds to Chalk–Harrod Mechanism in hydrosilylation, and

the [M]–E insertion to modified Chalk–Harrod Mechanism in hydrosilylation. In

the hydrosilylation, theoretical study on the reaction of PtH(SiR3)PH3 with ethylene

showed that ethylene is inserted into the Pt–H bond with a lower activation energy

than into the Pt–SiR3 bond [9].

RE–H

M–E insertion

M–X

RE–H

HX

H ER

protonolysis of M–C

M ER

M–ER

protonolysis of M–X

Scheme 1 Catalytic cycle for Type I mechanism comprising of protonolysis of M–X by REH,

M–E insertion of alkyne, and protonolysis of M–Cvinyl by REH

RE–H

oxidative addition

M–E
    insertionM–H

 insertion

reductive elimination reductive
elimination

ER

[M]

H

ER

[M] H
[M]

H

ER

[M]

Scheme 2 Catalytic cycle for Type II mechanism comprising of oxidative addition of REH to

transition metal complex [M], insertion of alkyne into [M]–H or [M]–E, and reductive elimination

of [M](ER)(vinyl) or [M]H(2-RE-vinyl)
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1.3 Transition Metal Catalysts as Lewis Acids

Alkynes, allenes, and alkenes in the presence of Au, Ag, or Pt complexes undergo

intermolecular or intramolecular addition of X–H bond (X ¼ O, S, and N) to yield

respective hydroelementation products [10, 11]. Although mechanistic aspects are

not always clarified, activation of multiple bonds with these noble metal complexes,

as Lewis acids, by coordination, is proposed in some papers [12–18]. An example is

shown in Scheme 3 [16].

1.4 Mechanism Through Vinylidene Intermediates

This pathway involves cycloisomerization of Z2-metal–alkyne complex to a vinyli-

dene complex (Scheme 4) [19]. An example is shown in Scheme 5 [20]. The initial

Z2-Mo–alkyne complex rearranges to vinylidene–Mo complex intermediate that

undergoes an intramolecular nucleophilic attack of the hydroxy oxygen to give

cyclic anionic intermediate, protonation of which yields 2,3-dihydrofuran.

2 Type I Mechanism

In 1992, the first examples of Pd(OAc)2-catalyzed hydroselenation [21] and

hydrothiolation [22] were reported by Ogawa and Sonoda and their coworkers of

Osaka University. Extensive studies by the Osaka group on reaction mechanism

OH
( )n

LnM-Y

–Y

H

OH
( )n

LnM
LnM

HO (  )n O ( )nLnM

H

Scheme 4 Cycloisomerization of Z2-metal–alkyne complex to a vinylidene complex

O OH

hydrolysis

Au+

OH

Au+

+O
H

Au

Ph

Ph

Ph

Ph

OH

Ph

AuCl, K2CO3

MeCN, 25 °C
4h

O
Ph

82 %

Scheme 3 Proposed catalytic cycle for AuCl-catalyzed intramolecular cyclization of 5-hydroxy-

1-phenyl-1-pentyne
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have established Type I mechanism. Subsequently, Ni(II) and groups III and IV

transition-metals-catalyzed hydrochalcogenations categorized to Type I mecha-

nism were reported.

2.1 Group X Metal-Catalyzed Hydrothiolation
and Hydroselenation

2.1.1 Pd(OAc)2-Catalyzed Hydrothiolation and Hydroselenation

The reaction of 1-octyne with PhSeH in the presence of Pd(OAc)2 in benzene at

80�C for 15 h provided the Markovnikov-type adduct, 2-(phenylseleno)-1-octene

(1) in 62% yield (1) [21]. The reaction conducted in toluene with employing 40mol%

of pyridine or 2,20-bipyridyl as an additive produced 1 in 38 or 63% yields,

respectively. In addition, the solvent effect is remarkable and pyridine is the best

solvent to form 1 (2).

+  PhSeH

Pd(OAc)2
2 mol- %

n-C6H13
PhH, 80 °C

15 h
PhSe

n-C6H13

1 62 %

ð1Þ

Ph
OH

H
Ph

OH

H

OPh

OPh

Me3N: Mo(CO)5

Ph
OH

H

Mo(CO)5

OPh Mo(CO)5

HNMe3

Ph
O Mo(CO)5

H

H

:NMe3

NMe3

Mo(CO)6 (0.5 equiv)
Me3NO, Et3N
Et2O, 20 °C, 60 h

71 %

–

+

Scheme 5 Proposed catalytic cycle for Mo-catalyzed intramolecular cyclization of 4-hydroxy-4-

phenyl-1-butyne
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+  PhSeH
Pd(OAc)2

solvent

n-C6H13

SePh

n-C6H13

PhSe SePh

n-C6H13 SePh+ +
SePh

n-C5H11 +

solv.
46
23
77

15
29
0

10
34
0

5
0
0

THF
toluene
pyridine

1

n-C6H13

ð2Þ

These results strongly suggest that pyridine acts as a suitable ligand for an active

palladium intermediate. In the absence of pyridine, palladium selenide [Pd(SePh)2]

molecules, a key species for this hydroselenation of alkynes, easily react with each

other by the coordination of the selenide ligand to the other palladium center to

form polymerized complex, which is insoluble in usual organic solvent and loses

the catalytic activity. Therefore, pyridine is considered to inhibit the polymerization

and protect the catalyst from the poisoning [23].

A mechanism shown in Scheme 6 was proposed [23], which involves (i) ligand

exchange of the AcO group with the PhSe group to give Pd(SePh)2Ln as an

active catalyst and AcOH; (ii) coordination of alkyne to the selenolato Pd(II)

species; (iii) insertion of alkyne into the Pd–Se bond (syn-selenopalladation) to
form (Z)-(2-phenylseleno)vinyl Pd(II) intermediate 2; (iv) the protonolysis of the

Pd(OAc)2

2PhSeH + Ln

2AcOH

R

LL + PhSeH
(AcOH)

PhSe

R
Pd(SePh)2Ln

R

Pd(SePh)2Ln–1PhSe

R
Pd(SePh)Ln–1

2

(i)

(ii)

(iii)

(iv)

L = pyridine

Scheme 6 Catalytic cycle for Pd(OAc)2-catalyzed hydroselenation of alkynes
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vinyl Pd(II) complex 2 with PhSeH (or AcOH) to provide 2-phenylseleno-1-alkene

with regeneration of the catalyst.

In the case of Pd(OAc)2-catalyzed hydrothiolation of alkynes, THF was used as

the solvent. Thus the reaction of 1-octyne with PhSH in the presence of Pd(OAc)2 at

40�C gave 3, 4, and 5 in 85%, <1%, and <1% yields, respectively (3) [22].

+ PhSH

Pd(OAc)2
2 mol - %

n-C5H11

SPh

n-C5H11 SPh+
SPh

n-C5H11 +

THF, 40 °C

3 85 % 4 <1 % 5 <1 %

n-C6H13

ð3Þ

The reaction of Pd(OAc)2 with 3 equiv of PhSH in THF-d8 immediately gave

dark brown precipitates and ca. 2 equiv of AcOH. This precipitate scarcely

exhibited the catalytic activities for the addition of PhSH to 1-octyne. On the

other hand, the precipitates prepared in the presence of 1-octyne had a moderate

catalytic activity. cis-Addition of PhSH to 1-octyne was confirmed by the reaction

employing 1-octyne-1-d. The (E)-isomer, (E)-n-C6H13(PhS)C¼C(D)H, is the

kinetic product and gradually isomerized to the (Z)-isomer. A mechanism similar

to that shown in Scheme 6 was proposed [22].

2.1.2 PdCl2L2-Catalyzed Hydrothiolation and Hydroselenation

The reaction of terminal alkynes with a catalytic amount of PdCl2(PhCN)2 [24] or

PdCl2(PPh3)2 [25] in benzene at 80�C gave selectively 4 or 6, respectively [(4) and

(5)]. The stoichiometric reaction of PdCl2(PhCN)2 with PhSH (2 equiv) in benzene at

room temperature gave a reddish brown solid with the composition of [PdCl(SPh)

(PhSH)]n (n ¼ 1 or 2), which catalyzes the addition of PhSH to 1-octyne in benzene

at 80�C to lead to 4. The complex also catalyzed the isomerization ofMarkovnikov-type

adduct 3 to 4. Scheme 7 shows a proposed catalytic cycle for PdCl2(PhCN)2-catalyzed

hydrothiolation involving the isomerization of the initialMarkovnikov-type adduct [24].

A similar mechanism was proposed for PdCl2(PPh3)2-catalyzed hydroselenation [25].

+  PhSH
PdCl2(PhCN)2

SPh

n-C5H11
PhH, 80 °C

4 66 %
E /Z = 56/44

n-C5H11

ð4Þ

+  PhSeH
PdCl2(PPh3)2

SePh

n-C5H11
PhH, 80 °C

6 71 %
E /Z = 62/38

n-C5H11

ð5Þ
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The Pd(OAc)2-catalyzed hydrothiolation of 1-alkynylphosphines 7 was reported

in 2007 [26]. This reaction yields (Z)-1-phosphino-2-thio-1-alkenes 8 regio- and

stereoselectively in anti-hydrothiolation fashion (6). From the stereochemistry

observed, the following mechanism was proposed, where Pd(II) coordinates on

the phosphorus atom to induce the addition of RSH (Scheme 8).

R1 PR2
2 + R3SH

Pd(OAc)2
5 mol - %

EtOH, 25 °C R3S

R1 H

PR2
2

R1 = H, alkyl, aryl; R2 = Ph, c-C6H11
R3 = alkyl, aryl

55 %–93 %

7
8

ð6Þ

2.1.3 Ni(II)-Catalyzed Hydrothiolation and Hydroselenation

The hydrothiolation and hydroselenation of alkynes catalyzed by NiCl2 [27] or

Ni(acac)2 [28–30] under heterogeneous conditions and by CpNi(NHC)Cl

PdCl2L2 (L = PhCN)

2PhSH

HCl

R

PhSH

PhS

R

Pd(SPh)ClLn

PhS

PdClLn
R

PhS

R

Pd(SPh)ClLnPhS

PdClLn•Cl–R
+

PhS

PdClLn
R

+HCl

Scheme 7 Catalytic cycle for PdCl2(PhCN)2-catalyzed hydrothiolation of alkynes followed by

isomerization of the resulting Markovnikov-type adduct
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(Cp ¼ C5H5, NHC ¼ N-heterocyclic carbene) under homogeneous conditions

[31] have been reported.

The hydrothiolation of 1-heptyne with PhSH (2 equiv) was catalyzed by Ni

(acac) (2 mol%) at 40�C under solvent-free conditions to produce 9, 10, and 11 in

81%, 4%, and 4% yields, respectively (7). In the reaction, the formation of an

insoluble dark brown polymer [Ni(SAr)2]n was confirmed by elemental analysis

[28], and it was verified that the polymer served as the catalyst for the reaction of

HC�CC(OH)Me2 with PhSH to give the corresponding Markovnikov-type product

in 95% yield. The structure and morphology of the particles of [Ni(SAr)2]n were

studied by scanning electron microscopy (SEM) [28, 30, 32]. A catalytic cycle for

the Ni(acac)-catalyzed hydrothiolation was proposed as shown in Scheme 9

[28, 29]. The resulting syn-addition of thiols to alkynes was verified by the reactions
employing internal alkynes [28, 29]. A similar mechanism was proposed for the Ni

(acac)2-catalyzed hydroselenation [30].

+  PhSH

Ni(acac)2
2 mol- %

n-C4H9

SPh

n-C4H9 SPh+
SPh

n-C4H9 +

40 °C, 10 min

9 81 % 10 4 % 11 4 %

n-C5H11

ð7Þ

PR2
2

R1

R3SH

R3S

R1 H

PR2
2

[Pd]

PHR2
2R1

[Pd]

R3S+

H
PR2

2

R1 [Pd]–

PHR2
2R1

[Pd]

R3S–H

Scheme 8 Catalytic cycle for Pd(OAc)2-catalyzed hydrothiolation of 1-alkynylphosphines
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Homogeneous hydrothiolation of alkynes was achieved by using CpNi(IMes)Cl

(IMes ¼ N,N0-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Under the optimized

conditions (8), CpNi(IMes)Cl catalyzed the reaction of PhSH with 1-heptyne in the

presence of Et3N in toluene-d8 to give 9 (66%) and 11 (8%) without other byproducts.

This catalytic reaction (Scheme 10) starts from the formation of the thiolato Ni(II)

Ni(acac)2

R

ArSH

acacH

Ni
ArS

S

S
Ni

Ar

Ar
n

R

ArS

ArSH

R

SAr

Ni
ArS

ArS

S

S
Ni

Ar

Ar

n

⋅

.

.

.

Scheme 9 Catalytic cycle for Ni(acac)2-catalyzed hydrothiolation of alkynes

N N

R

ArSH + Et3N

ArSH

R

SAr

Ni

Cp

IMes Cl

Et3NHCl

Ni

Cp

SAr
12

Ni

Cp

IMes

IMes

13

SAr

R

IMes

Scheme 10 Catalytic cycle for CpNi(IMes)Cl-catalyzed hydrothiolation of alkynes
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complex 12. Indeed, 12 (Ar ¼ Ph) was prepared by the stoichiometric reaction of

CpNi(IMes)Cl with PhSH in the presence of Et3N (the structure was determined by

X-ray crystallography) and was verified to catalyze the hydrothiolation of 1-heptyne

with PhSH. Although the next intermediate 13, formed by the insertion of alkyne to

the Ni–S bond, was not observed by NMR in the reaction of 12 (Ar ¼ p-MeOC6H4)

with 1-heptyne, the authors proposed that 13, being very unstable and in equilibrium

with 12 and alkyne, was trapped by ArSH to give the product by protonolysis of the

Ni–Cvinyl bond [31].

+ PhSH
(1.5 equiv)

CpNi(IMes)Cl (3 mol- %)
Et3N (6 mol- %)

n-C4H9

SPh

n-C4H9 SPh+

toluene-d8, 60 °C, 6 h

9 66 % 11 8 %

n-C5H11

ð8Þ

2.2 Groups III and IV Metal-Catalyzed Hydrothiolation
and Hydroalkoxylation

2.2.1 Organoactinide- and Organolanthanide-Catalyzed Hydrothiolation

Organoactinide complexes catalyze the hydrothiolation of alkanethiols and

arenethiols into alkyl, aryl, and vinyl alkynes. The reaction catalyzed by

Me2SiCp
00
2An(CH2TMS)2 (14) (An ¼ U, Th; Cp00 ¼ C5Me4) yields

Markovnikov-type adducts regioselectively (9) [33].

R1 +   R2SH
R1

R2Stoluene-d8-C6D6, 90 °C

Me2SiCp" 
2An[CH2TMS]2 (14)

An = U, Th ð9Þ

Monitoring the reaction reveled that Me2SiCp
00
2Th(CH2TMS)2 (14: An ¼ Th)

underwent fast Th–CH2TMS bond protonolysis in the presence of excess thiol. The

rate-limiting step in the catalytic cycle is the alkyne insertion step into Th–SR bond

[Scheme 11, (i)], because kinetic study on the reaction of 1-pentanethiol with

1-hexyne in the presence of 14 (An ¼ Th) showed that the reaction obeyed first-

order in [14 (An ¼ Th)], first-order in [alkyne] at lower alkyne concentration and

zero-order at higher [alkyne], and zero-order in [thiol]. Kinetic analysis between 60

and 110�C gave DH{ ¼ +9.1(0.7) kcal mol�1 and DS{ ¼ �45(2) e.u., suggesting

a highly ordered (four-membered) transition state 15. The kinetic isotope effect is

kH/kD ¼ 1.35(0.1) in the reaction. In the reaction of n-C5H11SD with 1-hexyne in

the presence of 14 (An ¼ Th), deuterium was introduced at both E and Z positions

because deuterium exchange between n-C5H11SD with 1-hexyne occurred by

reversible alkyne C–H activation.

The Mechanism for Transition-Metal-Catalyzed Hydrochalcogenation 31



Marks and coworkers also reported in detail the Markovnikov-selective lantha-

nide-mediated, intermolecular hydrothiolation of terminal alkynes by aliphatic,

benzylic, and aromatic thiols using Cp*2LnCH(TMS)2 (Cp* ¼ C5Me5; Ln ¼ La,

Sm (16), and Lu) as precatalysts [34]. The Markovnikov selectivity and conversion

rate of this transformation depend on the bulkiness of substituents of thiols and

alkynes (10).

R1 +   R2SH
R1

R2SC6D6, 120 °C, 16 h

Cp*2SmCH(TMS)2 (16)
5 mol- %

R1 = n-C4H9, c-C6H11, c-C6H11CH2, PhCH2,
Ph, 3-pyridyl, 1-cyclohexenyl

R2 = Et, n-C5H11, c-C6H11, PhCH2, Ph

conversion: 11 % – >95 %
Markovnikov selectivity: 32 % – >99 %

ð10Þ

The proposed mechanism is shown in Scheme 12. The Cp*2SmCH(TMS)2 (16)-

mediated reaction between 1-pentanethiol and 1-hexyne was found to be first-order

in catalyst concentration, first-order in alkyne concentration, and zero-order in thiol

concentration by kinetic investigations. The reaction of 16 with >20 equiv of

1-pentanethiol and 1-hexyne in benzene-d6 was monitored by NMR to show the

formation of H2C(TMS)2 and 40–60% of Cp*H, indicating occurrence of the

protonolysis of not only CH(TMS)2 but also Cp* in 16 by thiol in the catalyst

activation stage to generate 17. The reactions employing thiols and terminal

alkynes bearing a sterically demanding substituent showed the decrease of the

An(CH2TMS)2Me2Si

Me2SiCp  2An(SR)2

HSR

2 CH3TMS

An(SR)Cp  2SiMe2

R

SR

R

Me2SiCp  2(RS)An S

R

R

RSH

R

RS

Me2SiCp  2(RS)An

RS
R

S H
R

When An = Th, R = n-C5H11, and R = Bu,
    rate = k [catalyst]1[alkyne]x[thiol]0

    ΔH‡ = +9.1(0.7)kcal/mol
    ΔS‡ = – 45(2) e.u.

15

14

(i)

‡
‡

Scheme 11 Catalytic cycle for organoactinide-catalyzed hydrothiolation
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selectivity of Markovnikov addition to anti-Markovnikov addition, suggesting

a strong dependence of hydrothiolation activity on the steric hindrance in the four-

membered transition state 18. The formation of anti-Markovnikov adducts is

suppressed in the presence of g-terpinene as a radical inhibitor, indicating that a

free radical mechanism is operative for the anti-Markovnikov addition. The reaction

with deuterium-labeled alkyne (Ph–C�C–D) reveals a secondary kinetic isotope

effect [kH/kD ¼ 1.40(0.1)] and deuterium exchange between alkyne –C�C–D and

thiol RS–H. The kinetic isotope effect indicates that insertion of alkyne to Sm–SR

bond (i) is the turnover-limiting process followed by fast thiol-induced Sm–C bond

protonolysis (ii). Observed deuterium exchange between alkyne –C�C–D and thiol

RS–H shows the equilibrium between 17 and 19 (iii), favoring the Sm–SR species 17

under hydrothiolation conditions.

2.2.2 Organozirconium(IV)-Catalyzed Hydrothiolation

Organozirconium(IV)-catalyzed hydrothiolation of terminal alkynes was studied

with [Me2Si(Cp
00)N-t-Bu]ZrMe2 (Cp

00 ¼ C5Me4) (20), Cp*ZrBn3, Cp*ZrCl2NMe2,

Cp*2ZrMe2, and Zr(NMe2)4 as the precatalysts [35]. The choice of ligands on

zirconium is important for decongestion of the metal center for further reactions

and for preventing the aggregation of the resulting thiolato-zirconium complexes

leading to unfavorable precipitation. Thus, Cp*ZrCl2NMe2, 20, and Cp*ZrBn3,

which have one cyclopentadienyl-based ligand, showed high reactivity and

Cp*2ZrMe2 showed low reactivity. Zr(NMe2)4 exhibited high initial activity but

resulted in gradual precipitation. Equation (11) summarizes the hydrothiolation

with Cp*ZrBn3 as the precatalyst. The hydrothiolation is highly Markovnikov-

selective (up to 99%), and the formation of anti-Markovnikov products is

suppressed by the addition of a radical inhibitor.

R

LnSm S

R

R
‡

RSH

RLnSm

RSH

LnSm-SR

H

SRLnSm

H R

‡

SRR'

H
LnSm

R
S

R

SR

rate = k [catalyst]1[alkyne]1[thiol]0

18

17

19

(i)(ii)

(iii)R

Scheme 12 Catalytic cycle for organolanthanide-catalyzed hydrothiolation
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R1 +  R2SH
R1

R2SC6D6, 120 °C, 24 h

R1 = n-C4H9, c-C6H11, c-C6H11CH2, PhCH2,
Ph, 3-pyridyl, 1-cyclohexenyl

R2 = Et, CF3CH2, n-C5H11, PhCH2, Ph

conversion: 79 % – quant
Markovnikov selectivity: 66 % – 99 %

Cp*ZrBn3
5 mol- %

ð11Þ

The formations of dimer 21 or oligomer 22 of tris(thiolato) Zr(IV) complexes

were observed by 1H NMR [(12) and (13)]. Kinetic studies on 20-catalyzed reaction

of 1-pentanethiol with 1-hexyne showed the empirical rate low expressed as

rate ¼ kobs[20]
1[1-hexyne]1[1-pentanethil]x (x ¼ 1 for �0.3 M and x ¼ 0 for

�0.3 M) with DH{ ¼ +18.1(1.2) kcal mol�1 and DS{ ¼ –20.9(2.5) e.u. In addition,

a secondary kinetic isotope effect [kH/kD ¼ 1.3(0.1)] was observed in the reaction

of 1-pentanethiol with PhC�C–D catalyzed by 20. These and other findings are

consistent with the catalytic cycle shown in Scheme 13, involving alkyne insertion

into the Zr–SR bond (i), which is the turnover-limiting process, followed by

protonolysis of Zr–C in 23 by thiol (ii).

Cp*ZrBn3
RSH

C6D6, r.t.
[Cp*Zr(SR)3]2

21
ð12Þ

ZrSi
N

t-Bu

Me

Me

Me
Me RSH

C6D6, r.t.
ZrSi

NH

t-Bu

SR

SR

Me

Me

SR

n

2220

ð13Þ

R

L(RS)2Zr S

R

R
‡

RSH

LZr(SR)3

H

‡

SRR

H
L(RS)2Zr

R
S

R

SR

rate = k[catalyst]1[alkyne]1[thiol]xSRL(RS)2Zr

H R x = 0–1

L = C5Me5, Me2Si(C5Me4)(NH-t-Bu)

23

(i)(ii)

Scheme 13 Catalytic cycle for organozirconium(IV)-catalyzed hydrothiolation
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2.2.3 Organolanthanide-Catalyzed Intramolecular Hydroalkoxylation

Marks and coworkers have reported the syntheses of oxygen-containing

heterocycles by organolanthanide-catalyzed intramolecular hydroxyalkoxylation

since 2007 (14)–(16) [36–41].

Ln[N(TMS)2]3

C6D6, heat
HO

R

O

R ð14Þ

O
+

Ln[N(TMS)2]3
C6D6, heat

HO
O ð15Þ

Ln(OTf)3

C6D6, heat

HO R

R

(  )n

n = 1, 2

O
R

R
(  )n

ð16Þ

In the cyclization of g-hydroxyalkynes [36–39], precatalyst, Ln[N(TMS)2]3
(Ln ¼ La, Nd, Sm, Y, and Lu), is activated by alcohol-mediated protonolysis to

give Ln(OR)3 (Scheme 14, (i)), followed by intramolecular alkyne insertion (ii) that

is the turnover-limiting process. The cyclization by alkyne hydroalkoxylation pro-

ceeds through p-complexation of the carbon–carbon triple bond [38] with high exo
and E-selectivity as considered from the structure of the transition state 24. Theoreti-

cal investigation was reported for this lanthanide-catalyzed cyclization, where a

significant effect of metal ion size was obtained [38]. The activation parameters

were DH{ ¼ +20.2(1.0) kcal mol�1, DS{ ¼ –11.8(0.3) e.u., and Ea ¼ 20.9(0.3) kcal

Ln[N(TMS)2]3

HO3

3 HN(TMS)2

Ln(OR)2

O
O

O

(RO)2Ln

O(RO)2Ln

‡

O

(RO)2Ln
RO H

‡

OH

(i)

(ii)(iii)

24

25

Scheme 14 Catalytic cycle for Ln[N(TMS)2]3-catalyzed intramolecular hydroalkoxylation of g-
hydroxyalkyne (Ln ¼ La, Nd, Sm, Y, and Lu)
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mol�1 in the cyclization of HO(CH2)3C�CH with La[N(TMS)2]3 (40–80�C),
indicating a highly-ordered transition state. The resulting cyclic vinyl ether 25 rapidly

undergoes protonolysis by ROH (iii) to provide the product and the active catalyst.

However, the structures of the active catalysts Ln(OR)3 were not well-defined [42].

b-Hydroxy and g-hydroxyallenes yield five-membered and six-membered rings,

respectively, by La[N(TMS)2]3-catalyzed reactions [36]. As shown in Scheme 15,

the addition of hydroxyl oxygen atoms takes place to the central allene carbon

through 26. The activity decreases compared with the case of hydroxyalkynes,

which is explained in terms of the larger enthalpic barrier in the turnover-limiting

process of the intramolecular insertion step [42]. A theoretical study by Tobisch

[43] supports this mechanism and showed that reactive La(OR)3 (R ¼
CH2CH2CH¼C¼CH2) undergoes energetically favorable coordination of ROH to

form La(OR)3(ROH)n (n ¼ 1–6), where the forms having three Z1-RO ligands and

those having one or two chelating Z2-RO ligands have almost similar stability in

the range of 3.3 kcal mol�1. Furthermore, the observed 5-endo cyclization

(DG{ ¼ 19.7 kcal mol�1) is much more favorable than the unobserved 4-exo
cyclization (DG{ ¼ 37.5 kcal mol�1) to give 2-vinyloxetane, and the 5-endo
cyclization is followed by the protonolysis with the already coordinated ROH

through a metathesis-like transition state (DG{ ¼ ca. 10 kcal mol�1).

Cyclization by hydroalkoxylation of g- and d-alkenols is achieved by lanthanide
triflates as catalysts at 60–120�C in ion-liquids [40, 41]. In the cyclization of C6H4-

o-(OH)(CH2CH¼CH2) 27 to 28 catalyzed by Yb(OTf)3 in [C2mim][OTf] (17), the

activation parameters were DH{ ¼ +18.2(9) kcal mol�1, DS{ ¼ –17.0(1.4) e.u.,

and Ea ¼ 18.2(8) kcal mol�1, suggesting a highly organized transition state.

A primary kinetic isotope effect of kH/kD ¼ 2.48(9) was observed for the cyclization

La[N(TMS)2]3

3

3 HN(TMS)2

La(OR)2

O

O(RO)2La

‡

OH

HO

O
+

O

O

(RO)2La

26

Scheme 15 Catalytic cycle for La[N(TMS)2]3-catalyzed intramolecular hydroalkoxylation of

g-hydroxyallene
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of CH2¼CHCH2CH2CH2OH(D) catalyzed by Yb(OTf3) at 120�C, suggesting a

catalytic pathway that involves kinetically significant intramolecular proton trans-

fer. Proton scavenging experiments suggested the participation of an acidic proton

in the catalytic cycle that originates from the hydroxy functionality. A free TfOH-

catalyzed process as a major pathway was ruled out. An NMR study indicated

hydroxyl and olefin coordination to Yb3+ (29 in Scheme 16). Based on these

experimental results, a catalytic cycle was proposed as shown in Scheme 16,

which involves hydroxy and olefin activation by the electron-deficient Ln3+ center,

followed by alkoxide nucleophilic attack with ring closure.

OH

Yb(OTf)3

NN
+ MeEt TfO–, 120 °C

O

27 28

ð17Þ

3 Type II Mechanism

3.1 Pd(0) and Pt(0)-Catalyzed Hydroselenation of Alkynes

In 1992, when Pt(PPh3)4 was used instead of Pd(OAc)2 [22], vinyl selenide 4,

derived from the Markovnikov-type product, was obtained as the major product in

80% yield. In this reaction, the generation of PtH(SPh)(PPh3)2 was considered.

During the study on the hydrothiocarboxylation employing PhSH, 1-octyne, CO,

and Pt(PPh3)4 as the catalyst [44], hydrido-thiolato Pt(II) complex 30 was isolated

by the stoichiometric reaction of Pt(PPh3)4 with PhSH in acetonitrile at room

HO R

R

(  )n

n = 1,2

O
R

R
(  )n

O

R

R

H

(TfO)3Ln
(  )n

‡

Ln(OTf)3

29

Scheme 16 Catalytic cycle for Ln(OTf)3-catalyzed intramolecular hydroalkoxylation of g- and
d-alkenols (Ln ¼ La, Nd, Sm, Yb, and Lu)
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temperature (18). The complex was assigned as trans-PtH(SPh)(PPh3)2 (30) by
1H

NMR spectroscopic analysis [in CDCl3: d –10.01 (Pt–H, JP–H ¼ 14 Hz, JPt–H
961 Hz) [45]. The reaction of 1-octyne with PhSH and CO in the presence of

3 mol% of 30 gave the hydrothiocarboxylation product 31 in 77% yield (19).

Pt(PPh3)4 + PhSH
CH3CN, r.t.

trans-PtH(SPh)(PPh3)2

30
ð18Þ

+ PhSHn-C6H13 + CO
3 mol - %

CH3CN, 120 °C

n-C6H13

PhS O
31 77 %

30

ð19Þ

In 2003, Ananikov and Beletskaya and their coworkers proposed

hydroselenation of terminal alkynes catalyzed by Pd(PPh3)4 and Pt(PPh3)4 [46].

In the case of Pd(PPh3)4, Markovnikov-type adducts 32were obtained together with

bis(selenide)s 33 (20).

PhSeHR +
R

PhSe

Pd(PPh3)4
3 mol- %

PhCH3, 80 °C, 13 h

R

PhSe SePh
+

R = HOCH2, Bu, Me2NCH2, c-C6H10(1-OH) 20 %: 36 % – 49 %: 25 %
32 33

ð20Þ

The reaction of Pd(PPh3)4 with PhSH took place rapidly with evolution of H2,

which was observed in 1H NMR (d 4.5). In the 31P NMR, complexes assigned to

dinuclear complexes trans- and cis-{Pd(SePh)(PPh3)}2(m-SePh)2 (34) at d 28.2 and
26.8 in the relative ratio of 3:1. A mechanism involving both trans-PdH(SePh)
(PPh3)2 (35) and dinuclear Pd(II) complexes 34 was proposed (Scheme 17). Two

pathways are shown for the formation of vinyl selenide 32 there. Although they did

not rule out the alternative pathway completely [3], Beletskaya and Ananikov

proposed that the dominating pathway was protonolysis of selenovinyl Pd2 complex

36 by PhSeH, based on observations: (1) hydrido Pd complex 35 was not observed

in NMR experiments and (2) the reaction of HC�CCH2OH with a mixture of

dinuclear Pd(II) complexes 34 in the presence of CF3CO2H yielded both bis

(selenide) 33 (31%) and Markovnikov-type product 32 (15%).

On the other hand, the hydroselenation catalyzed by Pt(PPh3)4 provided only

Markovnikov-type product 32 (21) [46].

R +  PhSeH
R

PhSe

Pt(PPh3)4
3 mol- %

PhCH3, 80 °C, 13 h

R = HOCH2, Bu, Me2NCH2, c-C6H10 (1-OH) 51 % – 60 %

32

ð21Þ
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A key intermediate, trans-PtH(SePh)(PPh3)2 (37), was observed by 1H NMR

spectroscopy in the reaction of PhSeH with Pt(PPh3)4 in C6D6 (Pt–H: d –8.77, JPt–H
999.8 Hz, and JSe–H ¼ 44.1 Hz). In 31P NMR, signals assigned to trans- and cis-Pt
(SePh)2(PPh3)2 (38 and 39) were observed at d 20.8 (JPt–P ¼ 2,842 Hz) and d 18.5

(JPt–P ¼ 2,966 Hz), respectively, along with minor signals at d 20.8, 23.7, and 30.6.
cis-Pt(SePh)2(PPh3)2 (39) very rapidly isomerized to trans-Pt(SePh)2(PPh3)2 (38) at
80�C. Thus, a catalytic cycle shown in Scheme 18 was proposed [46]. Hydrido Pt

(II) complex 37 undergoes insertion of alkyne into the Pt–Se bond to give syn-
selenoplatination intermediate 40, the reductive elimination from which yields the

vinyl selenide 32 and Pt(PPh3)2. Incidentally, in a review [3], Beletskaya and

Ananikov mentioned that the isomerization from trans to cis geometry of

hydrido-(2-selenovinyl) Pt(II) complex 40 may be required for C–H reductive

elimination.

PdL4

PhSeH

R

SePh

R

– 2L2L

PdL2

L
Pd

SePh

LH

R

Pd SePh

H

L

L

Se
Pd

Se
Pd

Ph

Ph

L

SePhL

R

PhSe

Se
Pd

Se
Pd

Ph

Ph

L

SePhL

PhSe

R
PhSeH

PhSeH

H2

R

SePhPhSe

R

SePh

L = PPh3

33
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Scheme 17 Catalytic cycle for Pd(PPh3)4-catalyzed hydroselenation
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Scheme 18 Catalytic cycle for Pt(PPh3)4-catalyzed hydroselenation
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Importantly, while the reaction of PhSeH with 1-hexyne in the presence of trans-
Pt(SePh)2(PPh3)2 (38) gave H2C¼C(SePh)Bu in 60% yield, the reaction of

HC�CCH2OH with 38 in the presence of CF3CO2H gave only a trace amount
(~0.5%) of H2C¼C(SePh)CH2OH. The latter result is quite in contrast with the case
of the catalytic reaction with dinuclear Pd(II) complexes 34 (vide supra), ruling out
the pathways involving protonolysis of vinyl Pt(II) intermediate 40 with acid.

In relation, Pringle and coworkers reported the reaction of PH3 with acrylonitrile

catalyzed by Pt[P(CH2CH2CN)3]3 to yield P(CH2CH2CN)3 [47]. They proposed

that the reaction proceeds through oxidative addition of the P–H followed by

insertion of acrylonitrile into the Pt–P bond (not Pt–H) bond and a C–H reductive

elimination (Scheme 19) [45].

3.2 Stoichiometric Reaction of Hydrido-Chalcogenolato Pt(II)
Complexes with Alkynes

Kuniyasu and Kurosawa reported that, while hydrido-thiolato Pt(II) complex,

trans-PtH(SC6H4-p-Cl)(PPh3)2 (41), did not react with phenylacetylene in C6D6

at room temperature, 41 did react with phenylacetylene in the presence of
p-ClC6H4SH under photoirradiation to furnish (Z)-42 in 77% yield (cis/trans ¼
73/27) in C6D6 or 85% yield (cis/trans ¼ 85/15) in acetone-d6 (22) [48]. In this

reaction, (Z)-42 is the kinetic product and the insertion of phenylacetylene to the

Pt–H bond occurs in a trans-fashion (anti-addition). The reaction of

phenylacetylene with 41 in the presence of AIBN and p-ClC6H4SH gave (Z)-42
in 77% yield. trans-PtH(X)(PPh3)2 (X ¼ Cl, Br, and I) also lead to similar reactions

under photoirradiation or in the presence of AIBN to furnish the corresponding (Z)-
insertion products. Although a pivotal role of thiyl radical is considered in this

trans-insertion, the mechanism remains unclear.

R1R2PH

[Pt]

[Pt]

H

PR1R2

H

[Pt]

CHR3CH2PR1R2

R1R2PCH2CH2R3

CH2=CHR3

Scheme 19 Catalytic cycle for Pt[P(CH2CH2CN)3]3-catalyzed hydrophosphination
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Ph +

PPh3

PtH

PPh3

SAr + ArSH
(0.05 mmol)

500W tungsten lamp

(0.05 mmol)

(0.01 mmol)

Pt
ArS

PPh3

PPh3

Ph

Ar = p-ClC6H4 (Z )-4241

(22)

In the case of dithiolato Pt(II) complex, trans-Pt(SAr)2(PPh3)2, Kuniyasu and

Kambe succeeded in the observation of stepwise double insertion of terminal

alkynes followed by reductive elimination to give (Z,Z)-1,4-diarylthio-1,4-disub-
stituted-1,3-butadienes [49, 50]. They also obtained (2-chalcogenovinyl)-selenolato

Pt(II) [51] and Pd(II) complexes [52] by other methods.

Ishii and coworkers investigated stoichiometric reaction of hydrido-selenolato Pt

(II) complexes, cis-PtH(SeTrip)(PPh3)2 (43) (Trip ¼ 9-triptycyl), with alkynes

[53]. The hydrido-selenolato Pt(II) complex 43 is obtained by the reaction of

TripSeH with Pt(C2H4)(PPh3)2 (23) [54].

SeTrip

Pt
Ph3P

Ph3P

H

TripSeH
[Pt(C2H4)(PPh3)2]

43

ð23Þ

The reaction of 43 with activated alkynes, dimethyl acetylenedicarboxylate

(DMAD), or methyl propiolate (MP), in benzene at 60�C, gave syn-adducts (E)-44
and (E)-45 in 24% or 36% yield, respectively, together with byproducts, selenapla-

tinacycle 46, 1H-2-benzoselenin derivative 47 (in the case of DMAD), (TripSe)2, and

[Pt(alkyne)(Ph3P)2] (alkyne ¼ DMAD or MP) (24). The selenaplatinacycle 46 is a

thermal reaction product of 43 as observed in other hydrido-selenolato Pt(II) [55–57],

hydrido-thiolato Pt(II) [58], and hydrido-selenolato Pd(II) [59] complexes. 1H-2-
Benzoselenin 47 is a carboselenation product of DMAD with 46 or TripSeH [53].

H

MeO2C

SeTrip

R

MeO2C–C

PhH, 60 °C

SeTrip
Pt

Ph3P

Ph3P

H

Se
Pt

PPh3
Ph3P

Se

CO2Me
MeO2C

43 R = CO2Me  (E )-44  24 %

R = H  (E )-45 36 %

46 47

C–R

ð24Þ

The Mechanism for Transition-Metal-Catalyzed Hydrochalcogenation 41



This result is in contrast with the report by Ananikov and Beletskaya on the

reaction of PhSeH with methyl propiolate in the presence of Pt(PPh3)4 in toluene at

80�C to give a 1:7 mixture of the corresponding (E)- and (Z)-vinyl selenide

(PhSCH¼CHCO2Me) by a non-catalytic reaction [46]. The reaction of cis-PtH
(SeTrip)(PPh3)2 (43)with 1-hexyne, phenylacetylene, diphenylacetylene, or methyl

2-butynoate did not yield hydroselenation adducts, which is probably due to the

steric hindrance of the bulky 9-triptycyl group and strong coordination ability of

this alkaneselenolato ligand compared with benzeneselenolato ligand.

The regio- and stereoselective formation of (E)-44 and (E)-45 supports the syn-
insertion of DMAD or MP into the Pt–Se bond of 43 to give (Z)-2-selenovinyl Pt(II)
complex (48 in Scheme 20), followed by reductive elimination. On the other hand,

the reaction of PtH(SeTrip)(dppe) (49) [dppe ¼ 1,2-bis(diphenylphosphino)eth-

ane] with DMAD in benzene was sluggish at 60�C, and heating in refluxing

benzene for 38 h was necessary for complete consumption of 49 to yield (E)-44
(11%), (Z)-44 (21%), 1H-2-benzoselenin 47 (3%), and (TripSe)2 (31%) (23). These

products are considered to be formed by the reaction of TripSeH, generated by

reductive elimination of 49, with DMAD.

SeTrip
Pt

P
Ph2

Ph2
P

H

DMAD
(7.5 equivs)

PhH, refl., 38 h
+

H

MeO2C CO2Me

SeTrip

49
(E )-44 11 %
(Z )-44  21 %

47
3 %

+ (TripSe)2
31 % ð25Þ

The difference between cis-PtH(SeTrip)(PPh3)2 (43) and PtH(SeTrip)(dppe) (49)

in the reactivity toward DMAD is attributed to the weaker coordination ability of

PPh3 than that of dppe, that is, the dissociation of one phosphine ligand (PPh3) from

43 is essential for the hydroselenation reaction. The reaction of 43with DMAD in the

presence of additional PPh3 (2 molar equiv) to impede the formation (E)-44 and to

give (TripSe)2 (39%), 43 (35%), and Pt(dmad)(PPh3)2 (53%). Thus, as depicted in

Scheme 20, dissociation of one of the PPh3 ligands from 43 occurs first to give

coordination-unsaturated intermediate 49, where the ligand trans to H would be

–PPh3

H
Pt

Ph3P

Ph3P

MeO2C CO3Me

SeTrip

SeTrip

CO2Me

H

MeO2C
+  Pt(PPh3)2

43 49

DMAD
PPh3

48

(E)-44

PPh3 H
Pt

Ph3P

SeTrip

H
Pt

Ph3P

Ph3P

SeTrip

reductive elimination

Scheme 20 Formation mechanism of syn-adduct (E)-44 by the reaction of cis-PtH(SeTrip)
(PPh3)2 (43) with DMAD
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detached owing to the stronger trans effect of the H than that of the selenolato ligand.

Then, 49 undergoes insertion of DMAD and re-coordination of PPh3 to yield hydrido-

(2-selenoalkenyl) Pt(II) intermediate 48, from which reductive elimination provides

the syn-adduct (E)-44 and Pt(PPh3)2. Similar prior dissociation of a phosphine ligand

was reported for the insertion of an alkyne into the Pt–S bond in trans-Pt
(SAr)2(PPh3)2 [49, 50]. cis-PtH(SeTrip)(PPh3)2 (43) did not work as the catalyst for

the reaction of TripSeH with DMAD because it would undergo coordination of

DMAD preferentially furnishing Pt(dmad)(Ph3P)2 persistent under the conditions.

cis-PtH(Se-t-Bu)(PPh3)2 (50) is an alternative isolable hydrido-alkaneselenolato
complex, which is stable at room temperature in the absence of air and moisture

[60]. Heating 50 in benzene at 50�C, two dinuclear hydrido Pt(II) complexes 51 and

52were formed (26). The stoichiometric reaction of 50with methyl propiolate gave

a mixture of (E)- and (Z)-adducts in 28% and 6% yields, respectively, which are

probably produced by the reaction of t-BuSeH, formed by the reductive elimination

of 50, with methyl propiolate. This low reactivity of 50 toward alkynes is similar to

that of cis-PtH(SeTrip)(PPh3)2 (43) as mentioned above. The reactions of the two

dinuclear hydrido Pt(II) complexes with methyl propiolate gave complex mixtures.

Se-t-Bu
Pt

Ph3P

Ph3P

H

Se

Pt

Se

Pt

t-Bu

t-Bu

H

Ph3P

H

Ph3P

Se

Pt

Se

Pt

t-Bu

t-Bu

t-BuSe

Ph3P

H

Ph3P
+ +

50 °C

C6H6, 3 h
52 %

50

51 26% 52 5%

50

(26)

3.3 Hybrid Type of Type I and Type II Mechanisms:
Rh(I) and Ir(I) Complex-Catalyzed Hydrothiolation

3.3.1 RhCl(PPh3)3-Catalyzed Hydrothiolation

The addition of PhSH to 1-octyne catalyzed by RhCl(PPh3)3 (Wilkinson catalyst)

gives (E)-5 (anti-Markovnikov adduct) as the main product together with 3 (27)

[24]. The reaction carried out in EtOH provided the highest product selectivity [(E)-
5 58%; 3 0%]. When the reaction in EtOH was examined in the presence of

galvinoxyl as a radical inhibitor, only (E)-5 was formed in 73% yield, suggesting

that a non-radical mechanism is operative for the formation of (E)-5.

+  PhSH

RhCl(PPh3)3
5 mol- % n-C6H13

SPh

n-C6H13 SPh +
PhH, 80 °C

3  29 %
(E )-5 50 %

n-C6H13 ð27Þ
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The stoichiometric reaction of RhCl(PPh3)3 with PhSH in dichloromethane at

20�C under argon atmosphere gave a hydrido-thiolato complex, trans-Rh(Cl)H
(SPh)(PPh3)2 [61]. The reaction of PhSH with 1-dodecyne in the presence of

trans-Rh(Cl)H(SPh)(PPh3)2 as the catalyst (3 mol%) gave 53 in 55% yield (26).

n-C10H21 +  PhSH

trans-Rh(Cl)H(SPh)(PPh3)2
3 mol- % n-C10H21 SPhEtOH, 30 °C

53 55 %

(28)

The proposed mechanism is shown in Scheme 21, where hydrido-thiolato Rh

(III) complex 54 undergoes the stereoselective insertion of alkynes into the Rh–H

bond to form the trans-vinyl Rh(III) complex 55 and the following reductive

elimination of the complex in the presence of excess PhSH yields anti-
Markovnikov-type, syn-adducts 53 and 54. This catalytic cycle is based on the 1H

NMR observations. Thus, the 1H NMR spectrum of a stoichiometric mixture of

trans-Rh(Cl)H(SPh)(PPh3)2 with 1-dodecyne exhibited a doublet d 5.1, probably

due to a vinylic proton of trans-vinylrhodium intermediate (corresponding to 55)

with disappearance of signals due to Rh–H (d –16.4) and n-C10H21C�C–H. This
doublet disappeared by the addition of PhSH giving the vinylic sulfide 53 after 6 h

at room temperature. This observation supports that the insertion of alkynes occurs

to the Rh–H bond and not to Rh–S bond of trans-Rh(Cl)H(SPh)(PPh3)2 and that the

RhClLn

R
H

R
SPh

R

RhCl(H)(SPh)Ln
H

R
RhCl(SPh)Ln

PhSH

RhCl(H)(SPh)Ln

PhSH

54

oxidative addition

insertion

53

55

(R = n-C10H21)

Scheme 21 Catalytic cycle for RhCl(PPh3)3-catalyzed hydrothiolation of alkynes to give the anti-
Markovnikov-type product
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final product is produced not by a sole reductive elimination of trans-vinylrhodium
intermediate 55 but by a PhSH-assisted reductive elimination.

In 2007, Love and coworkers reported the hydrothiolation of alkynes with

alkanethiol using RhCl(PPh3)3 [62]. Under optimized conditions (in 1,2-dichloro-

ethane at room temperature), the reaction of CF3CH2SH with phenylacetylene in

the presence of 3 mol% of RhCl(PPh3)3 furnished anti-Markovnikov (56) and

Markovnikov (57) adducts in a ratio of 9:1 in 90% yield (27), the regioselectivity

of which is similar to the case of PhSH [see (28)].

Ph + CF3CH2SH
DCE, r.t.

RhCl(PPh3)3
3 mol- %

Ph

SCH2CF3

Ph
SCH2CF3 +

90 % (9:1)

56 57
ð29Þ

In the reaction employing deuterium-labeled phenylacetylene (PhC�CD), only

syn-addition product 58 was obtained (30), excluding the vinylidene pathway. Love

suggested that the reactions involve alkyne insertion into the Rh–H bond of the

intermediate, formed by oxidative addition of thiol to RhCl(PPh3)3, from steric reason.

Ph + PhCH2SH
toluene-d8, r.t.

RhCl(PPh3)3
(3 mol- %)

Ph
SCH2Ph

D

D (99 % D)

(98 % D) 58

ð30Þ

Love also reported Tp*Rh(PPh3)2-catalyzed hydrothiolation of alkanethiol to

alkynes (31) [63–65], in which the regioselectivity was opposite of that obtained

with other Rh(I) catalysts mentioned above. In the reaction of arenethiols (ArSH:

Ar ¼ Ph, p-Tol, p-BrC6H4) with Ar0C�CH (Ar0 ¼ Ph, p-MeOC6H4, and o,
p-F2C6H3), the selectivity is lowered (1.4:1 to 6:1) [63].

B
NN

H N

N

N

N

Rh
PPh3

+– PPh3

Tp*Rh(PPh3)2

R2SHR1 +

Tp*Rh(PPh3)2
(3 mol- %) R1

R2S
56 %– >95 %

DCE-PhCH3, r.t.

R1 = Ph, p-MeOC6H4, 1-cyclohexenyl, t-Bu, n-C6H13
R2 = PhCH2, Pr, cyclopentyl, PhO(CH2)2, CF3CH2

R1

+
SR2

(3:1 – 100:0)

ð31Þ

While the reactions of PhCH2SH with para-substituted phenylacetylenes

(Ar0C�CH) in the presence of Tp*Rh(PPh3)2 provided Markovnikov-type adducts
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PhCH2S(Ar
0)C¼CH2 regioselectively in moderate to high yields, 2-pyridylacetylene

was unreactive in hydrothiolation [66]. The stoichiometric reaction of Tp*Rh(PPh3)2
with 2-pyridylacetylene in toluene-d8 was investigated to reveal the formation of

acetylido-hydrido complex 59 (32), the formation of which is rapid and irreversible to

preclude the reaction of thiol with Tp*Rh(PPh3)2. The reaction of PhCH2SH with

ethyl propiolate catalyzed by Tp*Rh(PPh3)2 yielded 60 and 61 in the ratio of 2:1 (33).

Tp*Rh(PPh3)2 +
toluene-d8N

59

N

Rh
N

Ph3P

H
N

N

N
B

N
H

N ð32Þ

EtO2C +  PhCH2SH

Tp*Rh(PPh3)2
3 mol- %

DCE-PhCH3

EtO2C
SCH2Ph

+

EtO2C

SCH2Ph

68 % (2:1)

60

61

ð33Þ

3.3.2 Cationic Rh(I) and Ir(I) Complex-Catalyzed Hydrothiolation

Hydrothiolation with cationic ([M(CO)2(L)]BX4; L ¼ N,N and N,P bidentate

ligands; bim, PyP, bpm, ImP2, ImP1a, IMP1b; X ¼ Ph, F) or neutral ([MCl(CO)

(bpm)]) Rh(I) and Ir(I) complexes as the catalysts were reported by Messerle and

coworkers (34) [67, 68]. The catalytic reaction gave a mixture of (E)- and (Z)-anti-
Markovnikov adducts 62 as the main products. Monitoring the course of the

reaction by 1H NMR showed that the (Z)-isomer was the kinetic product [67].

Although mechanism was not shown in the literatures, a mechanism similar to the

cases of neutral Rh(I) and Ir(I) complexes described above may be operative.

L =
N

N PPh2N

N N

N

N N

N N

Me Me
PyPbpm bim

Ph + PhSH
THF-d8 or CDCl3, 25 °C

Ph

SPh

[M(CO)2(L)]BX4 or [MCl(CO)(bpm)] (1mol- %)
M = Rh or Ir; X = Ph or F

ImP2: n = 2, R = Ph

PR2

N

N

Me

ImP1a: n = 1, R = Ph

ImP1b: n = 1, R = i-Pr

n

62

ð34Þ
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4 Conclusion

Since the first reports of Pd(II)-catalyzed hydroselenation and hydrothiolation

1992, considerable investigations have accumulated experimental evidence for

the mechanism, in particular for Type I mechanism. Each step of Type I mecha-

nism, structures of active catalysts, the reaction of alkynes with the active catalysts,

and the protonolysis of the resulting vinyl metal complexes, has been verified for

Pd, Ni, Zr, Ln, and An-catalyzed hydrochalcogenations by isolation of

intermediates, isotope-labeled experiments, and kinetic studies. With regard to

Type II mechanism, while the initial oxidative addition of REH (E ¼ S, Se) to a

low-valent transition metal catalyst (metal ¼ Pd and Pt) has been verified by direct

(for Pt) or indirect (for Pd) experimental evidence, the following steps of alkyne

insertion to chalcogenolate-hydrido complex and reductive elimination of resultant

vinyl metal complexes leave room for further mechanistic investigations to obtain

direct evidence. On the other hand, a hybrid mechanism of Type I and Type II has

been clarified for the hydrothiolation with Rh(I) complexes.
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Early Transition Metal (Group 3–5, Lanthanides

and Actinides) and Main Group Metal (Group 1,

2, and 13) Catalyzed Hydroamination

Alexander L. Reznichenko and Kai C. Hultzsch

Abstract The hydroamination of alkenes, dienes, allenes, and alkynes by early

transition metal catalysts has seen significant progress over the last decade,

especially with respect to control of regio- and stereoselectivity and the synthesis

of more complex nitrogen-containing skeletons. This article provides an overview

over the application of catalyst systems based on the 17 rare earth elements, as

well as group 4 and group 5 metals. These electropositive metal catalysts operate

via activation of the amine to form catalytic active metal-amido or metal-imido

species, although the true nature of this species is not known with certainty for

all systems and may vary for different substrate classes. This mode of activation

differentiates early transition metal catalysts from many late transition metal

catalysts that operate via activation of the unsaturated C–C linkage (alkene,

1,3-diene, allene, or alkyne). Alkali metals, alkaline earth metals and aluminum

are included in this overview as well, as they show strong similarities in their

reactivity and mechanistic pathways to aforementioned early transition metals.

While the structure-reactivity principles are well understood for certain hydro-

amination processes, e.g., in the intramolecular hydroamination of aminoalkenes

or the intermolecular hydroamination of alkynes, other transformations, in parti-

cular the intermolecular hydroamination of alkenes, remain highly challenging.

Due to the potential of the hydroamination process for the synthesis of pharma-

ceuticals and other industrially relevant fine chemicals, a strong emphasis is given

on the application of chiral catalysts in stereoselective processes.
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1 Introduction: General Features

The addition of an amine N–H bond across an unsaturated carbon–carbon linkage,

the so-called hydroamination, allows a facile and highly atom-economical access

to industrially relevant nitrogen-containing basic and fine chemicals as well as

naturally occurring alkaloid skeletons [1–6]. Significant research efforts over the

last two decades have led to the elucidation of novel powerful catalysts based

on various main group and transition metals for the hydroamination of alkenes,

alkynes, allenes, and dienes (Scheme 1) to form amines, imines, and enamines with

diverse topologies in an inter- and intramolecular fashion.

This chapter will cover the development of catalysts based on main group metals

(alkali and alkaline earth metals, as well as aluminum) and early transition metals

(groups 3–5, as well as lanthanides and actinides). Complexes of the rare earth

metals (comprising of group 3 metals and the lanthanides) and group 4 metals

belong to the most intensively studied and most active and selective catalyst

systems for the hydroamination reaction. While alkali metal catalysts have been

known for a long time [7], catalyst systems based on alkaline earth metals and

aluminum have been introduced only recently and studied less extensively.

Several important features are common for all catalysts described in this chapter.

First, the metals covered are highly electrophilic and “hard” binding partners

typically operating via activation of the amine rather than via activation of the

alkene (or other unsaturation, e.g., diene, allene, or alkyne moiety), as the early

transition metals lack d electrons for effective p-backbonding. Metal-carbon
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s-bonds of early transition metals (as well as alkali and alkaline earth metals) are

typically very reactive and short lived, contrary to late transition metals. An addi-

tional consequence is the high basicity of some of the complexes (in particular that

of alkali and alkaline earth metals), which might result in unexpected side reactions

such as alkene isomerization or hydroaminoalkylation. Last but not least, the high

electrophilicity and basicity of the complexes makes them generally rather air

and moisture sensitive, which requires the use of inert atmosphere techniques, dry

solvents, and certainly limits the number of tolerated functional groups.

Rare earthmetal andmain groupmetal catalysts share similar reactionmechanisms

involving the insertion of the unsaturated C–C bond into ametal-amide bond, which is

sometimes referred to as the “lanthanide-like” mechanism. Group 4 (and potentially

also group 5) metal catalysts predominantly operate via a mechanism involving

a [2 þ 2]-cycloaddition of the unsaturated C–C moiety to a metal-imido species,

also in some cases it has been proposed that also a lanthanide-like mechanismmay be

operational. A similar chameleon-like behavior has been found for actinide catalysts,

which have been postulated to operate via a lanthanide-like mechanism for reactions

involving alkenes, while a metal-imido [2 þ 2]-cycloaddition mechanism was

suggested for reactions involving alkyne substrates.

Multiple efficient catalysts were reported for the intramolecular process, while

the intermolecular process has been studied predominantly for alkynes. The reac-

tivity of the unsaturated fragment decreases in the order alkyne > allene ~ diene>
vinyl arene � unactivated alkene with the intermolecular hydroamination of

simple alkenes representing the most difficult transformation. The hydroamination

of all types of carbon–carbon unsaturated fragments will be covered in this chapter.
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Scheme 1 The catalytic hydroamination of alkenes (a), alkynes (b), allenes (c), and dienes

(d) leads to amines, imines, and enamines. The reactions may also be performed in an intramole-

cular fashion (not shown)
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Although hydroamination reactions are regiospecific in most cases, the stereo-

selective synthesis of pharmaceutically relevant chiral amines via hydroamination

remains challenging despite significant progress for asymmetric intramolecular

reactions and some initial reports on asymmetric intermolecular hydroamination.

Selected examples of asymmetric hydroamination will be covered in this chapter

due to the volume limitations, and the reader should refer to available specialized

reviews for a more comprehensive coverage of the stereoselective aspects [8–15].

2 Mechanisms

Contrary to late transition metals, polar organometallic catalysts do not exhibit

a significant degree of mechanistic diversity. The metals involved are in the d0 state,
so neither oxidative addition nor reductive elimination is feasible. Instead, the

mechanisms involve insertion steps, cycloadditions, and ligand redistributions via

s-bond metathesis during which the oxidation state of the metal does not change.

Two general mechanisms are being discussed for main group and early transition

metals.

2.1 Insertion Mechanism

The insertion pathway was established via experimental [16–18] and theoretical

[19] studies on rare earth metal catalyzed hydroamination/cyclization of amino-

alkenes. It is believed to proceed through a metal amido species, which is formed

upon protonolysis of a metal amido or alkyl bond (Scheme 2). The first step of the

catalytic cycle involves insertion of the alkene into the metal amido bond with

a seven-membered chair-like transition state (for n ¼ 1). The roughly thermo-

neutral [17, 19] insertion step is considered to be rate determining, giving rise to

a zero-order rate dependence on substrate concentration and first-order rate depen-

dence on catalyst concentration. Although the protonolysis step is considered to be

fast, a strong primary isotope effect as well as an effect of the isotope substitution

on diastereoselectivity [17] have been observed, which is indicative of a significant

N–H bond disruption in the transition state of the rate-determining alkene insertion

step. A plausible explanation involves partial proton transfer from a coordinated

amine to the a-carbon in the four-membered insertion transition state (Scheme 3).

However, some experimental data, in particular the observation of sequential

hydroamination/bicyclization sequences (see Sect. 4) catalyzed by organolan-

thanide [20–23] and organolithium [24] species is in conflict with this scenario,

as the sequential reaction requires a finite lifetime for the rare earth metal alkyl

intermediate. Therefore, the intermediacy of the metal-alkyl species and its poten-

tial lifetime is unclear at present and probably strongly depends on catalyst and

substrate structure. Unfortunately, involvement of concerted insertion/protonolysis
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pathway in a catalytic cycle has only been addressed computationally for amino-

allenes [25] and aminodienes [26]. Although classical stepwise insertion/proto-

nolysis was found to be more energetically accessible, a concerted process might

also contribute depending on the spatial demands around the rare earth metal center.

The resting state of the catalyst is believed to be an amine adduct of the catalytic

active metal–amide of the type Cp*2Ln(NHR)(NH2R), which has been spectro-

scopically and crystallographically characterized for the lanthanocene catalysts

[17]. Amines, coordinating solvents, and other external bases may adversely affect

the reactivity of the rare earth metal center, in particular if the metal center is

readily accessible.

The intramolecular hydroamination reaction of aminoalkenes and other sub-

strates involves two key steps in the catalytic cycle. Although the insertion step is

generally perceived as the rate-determining step of the process, this may not be true

for all substrate classes. The hydroamination/cyclization of aminoalkenes differs

significantly from reactions involving aminoalkynes, aminoallenes, and conjugated

aminodienes from a thermodynamic point of view. The alkene insertion step of the
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Ln-amide into the carbon–carbon double bond is approximately thermoneutral for

terminal aminoalkenes and it is only slightly exothermic for an internal aminoalkene

with a 1,2-disubstituted alkene (Fig. 1a) [17, 27]. The subsequent protonolysis of the

primary rare earth metal alkyl species is quite exothermic, to a lesser extent also for

the secondary rare earth metal alkyl species. In marked contrast, insertion of an

alkyne, allene, or 1,3-diene into the Ln-amide bond is very exothermic (Fig. 1b–d)

[28–31]. Protonolysis of the resulting vinyl (in case of alkynes and allenes) or

�3-allyl (in case of conjugated dienes) rare earth metal species is about thermo-

neutral (for the vinylic species) to slightly endothermic (for the allylic species) due

to the significant stabilization of these species. Despite these significant differences,

it has been proposed that in all these cyclization reactions the insertion step is rate

determining [19, 32], followed by a rapid protonolysis step. However, recent DFT

analyses of the catalytic cycle of the rare earth metal-catalyzed hydroamination of

dienes and allenes suggest that protonolysis of the rare earth metal �3-allyl species
(in the hydroamination of dienes), respectively vinylic species (in the hydro-

amination of allenes), is the rate-determining step [33, 34].
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A mechanism similar to that of the rare earth metals was proposed for the

hydroamination/cyclization of aminoalkenes using alkali metals [35], alkaline

earth metals [36], and aluminum [37], although much less kinetic and mechanistic

data is available in these cases. Some experimental evidence for a concerted

insertion and protonolysis step for certain magnesium catalysts has been obtained

recently [38, 39].

The intermolecular hydroamination is significantly less feasible than the intra-

molecular process as the C–C unsaturated moiety is not tethered in the vicinity of

the catalytic center. The mechanism is believed to be analogous to the intramolec-

ular case, with insertion being less favorable [20]. The insertion step was identified

to be rate limiting in the intermolecular lithium-amide–catalyzed hydroamination

of vinyl arenes by detailed DFT-analysis [40].

2.2 Imido Mechanism

The mechanism of the group 4 metal-catalyzed hydroamination of alkynes

(Scheme 4) and allenes has been thoroughly investigated in detailed kinetic and

mechanistic [41–46] as well as computational studies [47, 48]. The catalytically

active species is believed to be a metal imido complex, which undergoes a revers-

ible, rate-determining [2 þ 2]-cycloaddition with an alkyne, respective allene,

to yield an azametallacyclobutene species. Subsequent protonolysis leads to the

imine hydroamination product. Isolation and characterization of intermediate

azacyclobutene species, which are catalytically competent themselves, is a strong

support of the mechanism [41, 43, 49–51]. Although no direct experimental [52, 53]
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or theoretical [54] evidence was obtained, the same mechanism was proposed

for the intramolecular hydroamination of aminoalkenes (Scheme 5). The fact that

secondary amines do not undergo the hydroamination reaction with most group

4 metal catalysts was interpreted in terms of prohibited formation of the imido

species, thus being supportive to the imido mechanism.

More recently, neutral zirconium-based catalysts capable of performing reac-

tions with both primary and secondary amines in intra- [55–57] and intermolecular

[57, 58] reactions were reported. The imido mechanism is obviously impossible,

and an insertion mechanism, similar to the lanthanide-like mechanism shown in

Scheme 2 was proposed [55]. The isolation of an insertion intermediate in an

intermolecular alkyne hydroamination reaction is compelling evidence in favor

of the insertion mechanism [58].

Pronounced kinetic isotope effects were observed in group-4-metal-catalyzed

reactions and have been interpreted in terms of either rate-determining metal-imido

formation [59] or concerted insertion/protonolysis [60] similar to that shown in

Scheme 3. A large isotopic perturbation of stereoselectivity indicates N–H bond

breakage during C–N bond formation [60] and strongly supports the second argu-

ment. However, it is not yet clear whether such phenomena are common for all

group 4 metal catalysts.

It should be noted that cationic titanium and zirconium catalysts, which are

isoelectronic to neutral group 3 metal complexes, cyclize only aminoalkenes with

a secondary amino group, whereas primary amines are unreactive [61, 62]. It has

been proposed that the lanthanide-like insertion mechanism is operating in these

systems, which is in agreement with DFT calculations [63].

3 Intramolecular Hydroamination

3.1 Hydroamination/Cyclization of Aminoalkenes

Intramolecular hydroamination of aminoalkenes is by far the most intensively

explored subfield of hydroamination, which is apparently determined by a relative

accessibility of this transformation compared to the intermolecular reaction.

Significant progress in catalyst design has been made during the last two decades,

in particular rare earth and group 4 metals saw most development while group 1 and

2 catalysts started to emerge more recently. Due to the large amount of material, the

catalysts will be discussed separately based on the metal employed.
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3.1.1 Lanthanides and Actinides

Among numerous catalytic applications of organolanthanides [64], hydroamination

is arguably the most extensively studied transformation. Rare earth metal com-

plexes have proven to be very efficient catalysts for intramolecular hydroamination

reactions involving aminoalkenes [5, 18]. They are significantly less efficient in

intermolecular hydroamination reactions and only a limited number of examples

are known [20, 65–68]. The difficulties in intermolecular hydroamination reactions

originate primarily from inefficient competition between strongly binding amines

and weakly binding alkenes for vacant coordination sites at the catalytically active

metal center.

Initial studies on the intramolecular hydroamination of aminoalkenes were focused

on lanthanocene-based catalyst systems that proved to be efficient in the exo-specific
cyclization of terminal aminoalkenes to form 5-, 6-, and 7-membered azacycles

(Scheme 6) [17]. The reactions are predictably faster for the formation of smaller

five-membered rings and in the presence of gem-dialkyl substituents [69]. An incre-

asing metal ionic radius and a more open coordination sphere, e.g., in ansa-
lanthanocenes, are also beneficial for higher cyclization rates [17]. A further increase

in catalytic activity was observed when sterically more open and more electrophilic

constrained-geometry catalysts (CGC) 1 (Fig. 2) were applied [70]. Notably, sterically

open ansa-lanthanocenes and constrained-geometry catalysts [27, 31, 72] and more

recently also sterically readily accessible non-metallocene catalysts [67, 73, 74] have

displayed significant product inhibition (leading to apparent first order kinetics) or
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substrate inhibition (resulting in self-acceleration) due to amine coordination to the

rare earth metal center.

Although lanthanocene catalysts initially developed for aminoalkene hydro-

amination are air and moisture sensitive and not readily commercially available,

their catalytic activity remains unsurpassed as of now and only a few post-

metallocene rare earth metal complexes can reach comparable levels of catalytic

efficiency. Besides constrained geometry (Fig. 2) [70, 71] and other half-sandwich

[66, 75, 76] rare earth metal complexes, a large number of cyclopentadienyl-free

catalyst systems have been developed over the last decade, ranging from simple

trisamides Ln{N(SiMe3)2}3 [74, 77, 78] or bisamide Sm{N(SiMe3)2}2 [79] to

more elaborate ligand frameworks, such as chelating diamides [78, 80–82], diamido-

amine [74], aminotroponiminato [83], bis(phosphinimino)methanide [84–88],

salicylaldiminato [89, 90], b-diketiminato [89, 91], triazacyclononane-amide [92],

benzamidinate [92], tridentate triamine [93], amidate [94], and tris(oxazolinyl)borato

[95] ligands. Some catalyst systems are depicted in Fig. 3 and catalytic results

are compiled in Table 1. Additionally, many chiral catalyst systems for

Fig. 3 Selected examples of achiral, non-metallocene rare earth metal-based catalysts for hydro-

amination of aminoalkenes [74, 89, 91, 92, 94]
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asymmetric hydroamination reactions have been developed (see Sect. 6) in order

to overcome significant drawbacks of chiral cyclopentadienyl-containing rare

earth metal complexes.

Only a limited number of organoactinide catalysts have been investigated for

the hydroamination/cyclization of aminoalkenes (Fig. 4, Table 2) [55, 96–98]. The

constrained geometry catalysts 11-An (An ¼ Th, U) show high activity comparable

to the corresponding rare earth metal complexes and can be applied for a broad

range of substrates [55, 96, 97]. The ferrocene–diamido uranium complex 12 was

also catalytically active for aminoalkene cyclization, but at a somewhat reduced

rate [98]. Mechanistic studies suggest that the actinide-catalyzed reaction occurs

via a lanthanide-like metal-amido insertion mechanism and not via an imido

mechanism (as proposed for alkyne hydroaminations), because also secondary

aminoalkenes can be cyclized [55, 98].

Table 1 Hydroamination/cyclization of aminopentenes using post-metallocene rare earth metal

catalysts

NH2

R R cat.

H
N

R
R

R Catalyst [cat.]/[s], mol% T, �C t, h Conv., % Ref.

Me 1-Nd n.r. 25 –a –a [70]

Me Y{N(SiMe3)2}3 2.7 24 6 >95 [78]

Me 3 1.3 60 6 quant. [84]

Me 4 1 50 0.8 >99 [92]

Me 5a 3 25 3.65 95 [74]

Me 7 5 65 24 >90 [89]

Me 8 0.5 60 1 98 [91]

Me 9/[PhNMe2H][B(C6F5)4] 1 50 12 >99 [92]

Me 10 10 25 2.5 93 [94]

Ph 2 4 r.t. 0.05 quant. [71]

Ph 6 10 65 2 >95 [89]

Ph 7 5 25 2 >95 [89]

Ph 10 10 25 <0.25 93 [94]
aTOF ¼ 200 h–1. n.r. ¼ not reported
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Fig. 4 Actinide catalysts
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Catalyst systems obtained in situ from rare earth metal trisamides

Ln{N(SiMe3)2}3 and various chelating diamines (e.g., 13a–c, Fig. 5) have shown

good activity in the cyclization of aminoalkenes (Schemes 7 and 9) [78, 80–82].

The more challenging cyclization of the chiral aminoalkene 14 can be accom-

plished with high trans-diastereoselectivity (up to 49:1) at 60�C [82]. The preferred

formation of trans-15 can be explained with minimal 1,3-diaxial interactions in the

chair-like cyclization transition state [17, 99]. Unfortunately, the structure of most

of the chelating diamide catalyst systems is not known. Structurally characterized

diamidoamine complexes 5a–c have shown higher reactivity that allows the reac-

tion to proceed at 25�C with up to 23:1 trans-selectivity [74].

Table 2 Actinide-catalyzed hydroamination/cyclization of aminoalkenes

NH2

R R
cat.

H
N

R
R

R Catalyst T, �C TOF, h�1 Ref.

Me 11-Th 25 15 [96, 97]

Me 11-U 25 2.5 [96, 97]

Ph 11-Th 25 1460 [96, 97]

Ph 11-U 25 430 [96, 97]

Ph 12 70 96a [98]
a2.5 mol% cat, 88% conv., 22 min

HNNH

R

R′

R

R′

13a R = iPr, R′ = H
13b R = R′ = Et

HNNHP P
iPr

S
iPr

iPr

iPr

S

13c

Fig. 5 Chelating

diamines used as ligands

for non-metallocene

hydroamination catalysts

NH2
cat.

trans-15 cis-15

+

14

5 mol % Sc{N(SiMe3)2}3

+ 5 mol % 13a

cat. conditions trans:cis yield, %

60 °C, 1.5 h

25 °C, 8 h

49:1

23:13 mol % 5b

>95

89

La{N(SiMe3)2}3 90 °C, 13 h 4:1 >99

H
N

H
N

Scheme 7 Diastereoselective cyclization of 14 [74, 82]
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The highly diastereoselective hydroamination catalyzed by 13a/Sc{N(SiMe3)2}3
was applied as a key step in a preparation of (�)-xenovenine (Scheme 8) [100].

Xenovenine is also accessible via a bicyclization of an aminoallene–alkene sub-

strate in both racemic and enantiopure form [101]. Both approaches involve hydro-

amination with a secondary amine, a reaction that often requires a sterically more

open rare earth metal catalyst [17].

The formation of seven-membered rings constitutes another significant challenge

for post-metallocene catalysts, but can be accomplished utilizing the bis(amidate)

yttrium catalyst 10 (1) [94].

82 %

NH2

PhPh

C6D6, 110 °C, 19 h

10 mol % 10

H
N

Ph
Ph

(1)

While most rare earth metal-based catalyst systems are neutral, only a few

cationic catalyst systems have been investigated. For example, the b-diketiminato

scandium complex 7 [89] and the triazacyclononane-amide complex 9 (after treat-

ment with [PhNMe2H][B(C6F5)4]) [92] display improved catalytic activity over

their neutral congener. However, this trend is not general, as the opposite result,

higher activity for the neutral over the cationic species, was found for the benzami-

dinate complex 4 [92], Quite generally, it is expected that the metal-amide bond is

stronger for the more electron deficient species, thus impeding the insertion process

of the olefin into themetal-amide bond.However, the reduced steric strain around the

cationic metal center in case of 7 and 9 (after activation with [PhNMe2H][B(C6F5)4])

NH2

10 mol % Sc{N(SiMe3)2}3
10 mol % 13a

toluene-d8,
10 °C, 12 h

HN
R

1) 10 mol % Sc{N(SiMe3)2}3
    10 mol % 13a
     toluene-d8, 60 °C, 18 h

N

nC7H15

R

SR =
95 %, dr > 49:1

2) Raney Ni, EtOH

90%
Xenovenine

Scheme 8 Preparation of (�)-xenovenine via diastereoselective bicyclization of an amino-

bisalkene [100]
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could compensate for this impediment and result in an overall net rate increase

in comparison to the neutral, sterically more congested analogs.

Cyclization of 1,2- and 1,1-disubstituted alkenes requires elevated temperatures

and sterically more open and more reactive catalysts [27, 78, 80, 81, 94, 99, 102,

103], such as constrained geometry catalysts Me2Si(C5Me4)(t-BuN)LnN(SiMe3)2
(1), ansa-lanthanocenes Me2Si(C5Me4)2LnCH(SiMe3)2 (16), or non-metallocene

complexes with chelating bis(amides) (Schemes 9 and 10), while trisubstituted

alkenes remain challenging.

Compared to homogeneous catalysts, heterogeneous catalysts have the signifi-

cant advantage that the catalyst may be easily removed from the reaction mixture

and can potentially be recycled. Lanthanocene complexes may be attached to

amine-functionalized cross-linked polystyrene supports (2) [104]. The supported

catalysts, e.g., 18, displayed activities similar to their homogeneous analogs and

could be recycled at least two times with moderate loss of activity (Table 3). The

immobilized form of the catalyst is released from the support via transamination by

the aminoalkene substrate and the catalytic cycle proceeds then homogeneously in

solution. After all the substrate has been consumed, the catalyst can return to the

polymer support in order to allow catalyst separation and recycle.

Interestingly, homoleptic trisamides grafted on partially dehydroxylated meso-

porous zeolites exhibited activities higher than that of the trisamides in homo-

geneous solution. The activity decreases in the row Y > La > Nd and is also

dependent on the pore size and particle morphology [105].

NH2

5 mol % cat.

125 °C

H
N

>95 % conv.

1-Sm

16-Sm

Nd{N(SiMe3)2}3 / 13b

cat. t, h TOF, h-1

3.59

21.6

~5.5

~1

6.5

Scheme 9 Catalytic hydroamination/cyclization of an aminoalkene with an internal double bond

[27, 80]

NH2

3 mol % cat.

70 °C

H
N

[CpTMS
2SmMe]2

cat. t, h yield, %

2

8

93

94Y{N(SiMe3)2}3

Scheme 10 Cyclization

of a 1,1-disubstituted

aminopentene [78, 102]
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N
H

Ph Ph

Sm CH(SiMe3)2 +

17

18

H2N 10

N
H

Ph Ph

N
H

10Sm

(2)

3.1.2 Main Group Metal Catalysts

Although organolanthanide catalysts possess unsurpassed reactivity in intra-

molecular hydroamination, the development of more robust, environmentally

benign, and readily available catalysts remains an important target. Main group

metal complexes resemble organolanthanides in key parameters such as high

electrophilicity and the ability to mediate C¼C insertion as well as s-bond meta-

thesis. Thus, it is not too surprising that main group metal derivatives also catalyze

hydroamination/cyclization of aminoalkenes.

Table 3 Hydroamination/cyclization of dimethylaminopentene catalyzed by homogeneous and

supported rare earth metal catalysts

Catalyst [cat.]/[s], mol% Cycle T, �C TOFa t, h Ref.

17 5 1 60 30 0.6b [104]

18 5 1 60 20 0.9b [104]

18 5 2 60 11 1.6b [104]

18 5 3 60 7 2.5b [104]

Y{N(SiMe3)2}3 3 1 50 16 1.9 [105]

Y{N(SiMe3)2}3@SBA-15LP 3 1 50 36 0.9 [105]

Y{N(SiMe3)2}3@SBA-15LP 6 1 70 >200 0.05 [105]

Y{N(SiMe3)2}3@SBA-15LP 6 2 70 49 0.33 [105]

Y{N(SiMe3)2}3@SBA-15LP 6 3 70 1 15 [105]
aAverage turnover frequency, h�1

bTime required for 90% conv
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Organolithium compounds would be extremely desirable catalysts since the

organometallic precursors such as alkyllithiums are readily available. It was

found that intramolecular hydroamination of aminoalkenes can be mediated by

a catalytic amount of n-butyllithium [35, 106]. The obvious drawback is the

high basicity of lithium amides, which can result in double bond isomerization

side reactions. Optimal conditions were found using a solvent mixture of THP and

toluene at 110�C (3) although the reaction also proceeds at lower temperatures.

NH2
16 mol % nBuLi

NH2

H
N

+

19 20
19 + 20 99 %
19 : 20 >95 :5

THP / toluene (1:1),
110 °C, 5 d

(3)

Despite some success in the design of stereoselective organolithium-based

catalysts which are more active and less prone to side-reactions (see Sect. 6.1.2),

it is not yet clear whether a general and efficient alkali metal catalyst can be

designed in principle, considering the fundamental limitations of these compounds.

Alkaline earth metal complexes are typically less basic than organolithiums and

they are therefore promising candidates for the development of efficient catalysts.

Recently, several catalytic systems have been introduced (Fig. 6). A summary of

the catalytic results is presented in Table 4.

Calcium and magnesium b-diketiminates were shown to catalyze hydroamination/

cyclization of terminal primary and secondary aminoalkenes with reasonable reac-

tivity (Table 4, entries 1–5) [36, 39, 107]. While the reactivity of calcium species

O

N

N

Mg

N

Me Me

Me THF

DiPP DiPP
N

M

N

Me Me

(Me3Si)2N THF

DiPP DiPP

2221 M = Ca (a), Sr (b), Ba (c) 23

N

M

N

H2
B

N N

(Me3Si)2N
(THF)n

tBu
tBu

24a M = Ca, n = 1
24b M = Sr, n = 2

SiPh3

tBu

O
Mg

N

N
Me2

NMe2

26

N

O

Ph

O
N

Mg Me

25

B

N

N

Ca N(SiMe3)2

THF

THF

Fig. 6 Selected alkaline earth-metal-based catalysts (DiPP ¼ 2,6-diisopropylphenyl) [36, 38, 39,

107–111]
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21awas superior to that of its magnesium analog 22, only 22 could serve as a catalyst

for more challenging substrates such as aminoheptene (Table 4, entry 5) since 21a

was undergoing fast ligand redistribution accompanied with catalyst deactivation at

elevated temperatures [36]. The aminotroponiminato calcium complex 23 showed

activity comparable to 21a for the formation of pyrrolidines (Table 4, entry 6) [108,

109]. The influence of the size of the ionic radius is less straightforward for alkaline

earth metal catalysts compared to the lanthanides. The highest activity is commonly

observed for the calcium catalysts with magnesium and strontium being less active

[36, 39, 109, 112]. However, the bis(imidazolin-2-ylideneyl)borate complexes 24

seem to be an exception, as the strontium complex 24bwas found to be superior to its

calcium analog 24a [110] (Table 4, entries 7–10).

In general, the feasibility of Schlenk-type equilibria for most alkaline earth metal

species poses a remarkable challenge to design well-defined species that are stable

under catalytically relevant conditions. The unwanted ligand redistribution is more

facile for larger alkaline earth metal ions, thus magnesium complexes are probably

the most promising candidates to obtain stable catalysts. In addition, stereo-

electronic factors of the ligand framework may implement the feasibility of

unwanted side reactions. Thus, ligand redistribution was reported to be suppressed

for the chelating polydentate oxazolinborate 25 [38] and aminophenolate 26 [111],

although both displayed reactivity lower than that of 22 (Table 4, entries 11 and

12 vs. entry 3). The Schlenk equilibrium may also be suppressed by utilizing

a bidentate imine-amido ligand [113].

Table 4 Alkaline earth-metal-catalyzed hydroamination/cyclization of aminoalkenes

H
N

R1 R2

cat.
N

R2

R1

( )n ( )n
R3

R3

Entry n R1, R2 R3 Cat. [cat.]/[s], mol% T, �C t, h Yield, % Ref.

1 1 H, H H 21a 10 25 21 90 [36]

2 1 Ph, Ph H 21a 2 25 0.25 99 [36]

3 1 Ph, Ph H 22 2 25 2 99 [36]

4 1 H, H allyl 21a 10 25 48 60 [36]

5 3 Ph, Ph H 22 5 80 132 88 [36]

6 1 H, H H 23 10 25 40 >90 [108, 109]

7 1 Ph, Ph H 24a 5 25 0.3 95 [110]

8 1 Ph, Ph H 24b 5 25 0.15 >99 [110]

9 2 Ph, Ph H 24a 5 25 24 60 [110]

10 2 Ph, Ph H 24b 5 25 4 88 [110]

11 1 Ph, Ph H 25 10 50 12 99 [38]

12 1 Ph, Ph H 26 3 25 3 99 [111]
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The importance of suppressing the ligand redistribution is also of relevance

for asymmetric hydroamination reactions catalyzed by chiral alkaline earth metal

catalysts (see Sect. 6.1.3).

Several examples of organoaluminum-catalyzed hydroamination of amino-

alkenes have been reported recently. The neutral amido bis(anilide) 27 [37] and

the aluminum pincer diolate complex 28 [114] displayed low catalytic activity and

were only applicable to gem-disubstituted aminopentenes (Fig. 7).

These examples illustrate that main group metal-based catalysts have the poten-

tial to be viable alternatives to rare earth metal catalysts. However, significant

research efforts are necessary to improve these systems further.

3.1.3 Group 4 Metal Catalysts

The application of group 4 metal complexes to intramolecular alkene hydro-

amination has become a vibrant and quickly developing field since the first reports

appeared around 2004 [52, 53, 61, 62]. Several important features of these cata-

lysts strikingly differentiate those systems from rare earth or alkaline earth metal

catalysts. First, despite some significant improvements, the reactivity of group 4

metal catalysts (Fig. 8) remains low compared to rare earth metals, thus demanding

higher catalyst loadings and temperatures (Table 5). Most catalysts are restricted

to gem-dialkyl-activated substrates and terminal alkene moieties. Harsh reaction

conditions often result in side reactions, namely double bond isomerization

and hydroaminoalkylation [120]. In addition, only a few systems are capable of

cyclizing both primary and secondary aminoalkenes as opposed to rare earth

metals (see Sect. 2.2).

NN ArAr

Al
Me2NH NMe2

27

Al OO
Ar Ar

Me Me

28

Ar =
tBu

tBu

NH2

Ph Ph
10 mol % cat.

C6D6, 150 °C

H
N

Ph
Ph

27: 38 h, 81 % yield
28: 100 h, 75 % yield

Fig. 7 Aluminum-catalyzed intramolecular hydroamination
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Simple homoleptic amides of titanium [53] and zirconium [56] can be used as

catalysts for the cyclization of activated aminopentenes (Table 5, entries 1 and 2).

Nonactivated substrates and larger rings are not accessible, and only sterically

shielded and more reactive catalysts are capable of cyclizing the more challenging

substrates. It should be noted that zirconium catalysts are significantly more

reactive than their titanium analogs in hydroamination of aminoalkenes in contrast

to the reactivity scale found for the hydroamination of alkynes (Sect. 5.4). The

bis(thiophosphinic amidate) 29 was active in the cyclization of the aminopentene

lacking gem-dialkyl-substituents (Table 5, entry 5), although a reaction temperature

of 150�C was required [52]. The zirconium amidate 30 [115], the [OSSO]-type bis-

(phenolate) 31 [116], and the NHC-supported pincer complex 32 [117] exhibited

lower reactivity than Zr(NMe2)4 (Table 5, entries 2 and 6–8) and were not appli-

cable to substrates without gem-dialkyl-substituents. Similarly, the bis(indenyl)

N
N

Zr

OiPr2N

O

iPr2N

NMe2

NMe2

HNMe2

35

O
N

Ph

O N
Zr

NMe2

B

NMe2 ZrSi
Me

Me

N

tBu

NMe2

Cl

N

N
P

P S

S

iPr iPr

iPriPr

Zr
NMe2

NMe2

S

S

O

O

Zr
NMe2

NMe2

CMe2Ph

PhMe2C

CMe2PhPhMe2C

Ph
N

O

Zr

N

O2

Zr
Me

NN

NN Zr
tBu tBu

NMe2

I I

3029 31

32
33 34

36

MeB(C6F5)3

–

+

PPh3

Fig. 8 Selected group-4-metal-based catalysts for hydroamination/cyclization of aminoalkenes

[52, 55, 57, 61, 115–118]
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complexes Ind2MMe2 (M ¼ Ti, Zr, Hf) were less active than Ti(NMe2)4 and the

activity generally decreased in the order Ti > Zr > Hf [119].

A dramatic increase in reactivity was observed for the zwitterionic zirconium

cyclopentadienyl-bis(oxazolidinyl)borate complex 33 [118]. The hydroamination

reactions proceeded readily at room temperature, thus significantly exceeding the

reactivity of most zirconium analogs. Despite the high reactivity, cyclization of

the unsubstituted aminopentene did not proceed to high conversion even at high

catalyst loading (Table 5, entry 10) possibly due to an autoinhibition [118].

It is noteworthy that neutral group 4 metal hydroamination catalysts are limited

to primary aminoalkenes, while they are generally unreactive toward secondary
aminoalkenes. Only a few catalyst systems, for example, the constrained geome-

try complex 34 [55] and the bis(ureate) 35 [57], among others [56, 119], are

capable of cyclizing both primary and secondary aminoalkenes, which apparently

marks the mechanistic difference displayed by these catalysts (Sect. 2.2).

35 is one of the few zirconium catalysts allowing facile chemoselective seven-

membered ring closure (Table 5, entry 13). The cationic zirconocene 36, which is

isoelectronic to lanthanocenes, showed good activity in the hydroamination/

Table 5 Group-4-metal-catalyzed hydroamination/cyclization of aminoalkenes

H
N

R2

R1R1
cat. N

R1
R1

R2

nn
benzene or

toluene

Entry n R1 R2 Catalyst [cat.]/[s], mol% T, �C t, h Yield, % Ref.

1 1 Ph H Ti(NMe2)4 5 110 24 92 [53]

2 1 Ph H Zr(NMe2)4 5 100 1 92 [56]

3 1 Ph H Ind2TiMe2 5 105 24 96 [119]

4 1 Me H Ind2TiMe2 5 105 24 74 [119]

5 1 H H 29 10 150 10 91 [52]

6 1 Ph H 30 5 110 4 98 [115]

7 1 Ph H 31 5 105 24 82 [116]

8 1 Ph H 32 5 160 0.83 98 [117]

9 1 Me H 33 10 23 11 85 [118]

10 1 H H 33 10 23 33 62 [118]

11 1 Ph Me 34 n.r. 90 –a 95 [55]

12 1 Ph Me 35 10 100 4 90 [57]

13 3 Ph H 35 10 145 20 90 [57]

14 1 H Me 36 2 80 7 98b [61]
aTOF 0.4 h�1

bReaction in C6D5Br. n.r. ¼ not reported
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cyclization of secondary aminoalkenes (Table 5, entry 14), but was unreactive

toward primary aminoalkenes [61].

Diastereoselective cyclizations of chiral aminoalkenes were also achieved

for zirconium catalysts (Table 6). Interestingly, the cyclization of primary amino-

alkenes gave predominately trans-disubstituted pyrrolidines in accordance to

observations for rare earth metal-based hydroamination catalysts [17, 67, 74,

80–82, 99, 121, 122], while the cis–diastereomer was favored in case of the secondary

aminoalkene. Plausible transition states are shown in Fig. 9. The chair-like transition

state leading to the trans-isomer of the primary aminoalkene is less encumbered due

to reduced 1,3-diaxial interactions, whereas gauche interactions of the N-substituent
make the cis-pyrrolidine the preferred product in case of secondary aminoalkenes.

Internal and even trisubstituted double bonds can also be involved in group-

4-metal-catalyzed hydroamination/cyclization; however, harsher reaction condi-

tions are typically required (4) [57].

M

H
N

Me
‡ ‡ ‡ ‡

M

H
N

Me

trans cis

disfavoredfavored

H
N

H
N

H

M
N

Me
Me

M
N

Me

Me

N

Me

N

Me

trans cis

favoreddisfavored

Fig. 9 Stereomodels for observed diastereoselectivity in the cyclization of a-substituted amino-

pentenes (shown for insertion mechanism)

Table 6 Group-4-metal-catalyzed diastereoselective hydroamination/cyclization of chiral

aminopentenes

H
N

R
cat. N Me

R

Me

Me N Me

R

Me+

cis trans

R Cat. [cat.]/[s], mol% T, �C t, h Yield, % cis:trans Ref.

H 29 5 150 22 96 1:1.3 [52]

H 30 10 110 96 72 1:11 [115]

Me 36 2 80 15 97 3:1 [61]
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PhPh

NH2

1. 10 mol % 35
    toluene-d8, 145 °C, 55 h

N
(4)

Ph
Ph

64 %, dr >20 : 1

2. TsCl, NaOH

Ts

3.2 Hydroamination of Aminoalkynes

3.2.1 Rare Earth Metal Catalysts

The rare earth metal-catalyzed hydroamination/cyclization of internal and terminal

aminoalkynes is a facile process, as shown by experimental [28, 29] and theoretical

[32] studies. In general, the reaction proceeds via the same mechanism as amino-

alkene hydroamination (Scheme 2) with some notable difference arising from a

different insertive reactivity of the triple bond. The insertion of the C–C triple bond

proceeds much faster than that of a double bond due to the exothermic nature of the

insertion step (Fig. 1). Overall, the cyclization of an aminoalkyne is commonly

1–2 orders of magnitude faster than that of an analogous terminal aminoalkene.

However, the insertion step is still considered to be the rate-determining step, based

on aforementioned DFT calculations and experimental observations.

Interestingly, the reactivity pattern in rare earth metal-catalyzed hydroamination/

cyclization reactions of aminoalkynes with respect to ionic radius size and steric

demand of the ancillary ligand follows the opposite trend to that observed for

aminoalkenes, namely decreasing rates of cyclization with increasing ionic radius

of the rare earth metal and more open coordination sphere around the metal. This

phenomenon can be explained by a negligible sterical sensitivity of a sterically less

encumbered triple bond, as sterically less open complexes and smaller metal ions

provide more efficient reagent approach distances and charge buildup patterns in

the transition state [32].

Selected examples of intramolecular aminoalkyne hydroamination are shown

in Scheme 11, Table 7, and Fig. 10. Formation of 5-, 6-, and 7-membered cyclic

imines has been achieved in excellent yields.

N

N

N(SiMe3)2
Y

N(SiMe3)2

37

Fig. 10 An

aminotroponiminato catalyst

for hydroamination of

aminoalkynes [83]
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Catalyst systems derived from Ln{N(SiMe3)2}3 and chelating diamines (e.g.,

13a, Fig. 5) are also active in the cyclization of aminoalkynes with quite remarkable

activity and functional group tolerance (5) [123].

NH2

Me3Si

OBn

N

Me3Si

BnO

5 mol % 13a
5 mol % Y{N(SiMe3)2}3

C6D6, 25 °C, 0.2 h

98 %

(5)

The rare earth metal-catalyzed cyclization of aminoalkenes, aminoalkynes,

and aminodienes generally produces exclusively the exocyclic hydroamination

products. The only exception was found in the cyclization of homopropargylamines

leading to the formation of the endocyclic enamine product via a 5-endo-dig
hydroamination/cyclization (6) [124], most likely due to steric strain in a potential

four-membered ring exocyclic hydroamination product. Interestingly, the 5-endo-
dig cyclization is still preferred even in the presence of an alkene group that would

lead to a 6-exo hydroamination product [124].

NH2
Cp*2SmCH(SiMe3)2

n

N

n

n R T, °C TOF, / h-1

1
1
1
1
2
3

H
Me

SiMe3
Ph
Ph
Ph

21
21
21
60
60
60

580
96

>7600
2830
328
0.11

R
R

C6D6

Scheme 11 Samarocene-catalyzed hydroamination/cyclization of aminoalkynes [28, 29]

Table 7 Rare earth metal-catalyzed hydroamination/cyclization of aminoalkynes

N

PhNH2

Ph

cat.

Catalyst [cat.]/[s], mol% T, �C t, h Conv., % Ref.

3
a 1 60 1 quant. [84]

5ca 3 60 0.25 93 [74]

6a 10 25 0.75 >95 [89]

7
a 10 25 0.75 >90 [89]

Y{N(SiMe3)2}3/13c 5 60 1.5 96 [123]

37 2 21 100 quant. [83]
aSee Fig. 3
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3 mol %
Cp*2YbCH(SiMe3)2

C6D6, 60 °C, 1 h

N

Ph

95%

(6)
H
N Ph

3.2.2 Other Metals

As discussed in Sect. 5, the intermolecular hydroamination of alkynes catalyzed by

group 4 metal complexes is a well-documented process. The less challenging

intramolecular transformation can be achieved efficiently with various titanium-

based catalysts [51, 125–130]. The cyclization proceeds analogously to the rare

earth metal-catalyzed process with exclusive exo-selectivity and often requires

elevated temperatures. However, the homoleptic titanium tetraamide Ti(NMe2)4
catalyzes the cyclization of both terminal and internal aminoalkynes at room

temperature (7) [126, 127].

R

NH2

5 mol % Ti(NMe2)4

C6D6, rt
R = H; 41 h

R = Ph; 30 min

N

R

quant.

(7)

Catalysts based onmetals other than rare-earth or group 4 elements are significantly

less explored. Several interesting examples employing robust basic alkali metal deri-

vatives as mediators of alkyne hydroamination were disclosed [131, 132]. The cycli-

zation of 2-alkynyl anilines proceeded smoothly in the presence of KH or CsOH,

although often stoichiometric amount of basewas employed. Notably, many functional

groups sensitive to organometallic catalysts are tolerated (8) [132]. However, the

method is apparently restricted to more acidic amine derivatives, such as anilines.

NH2

Ph

EtOOC 1.8 equiv KH

NMP, rt, 2h N
H

Ph

78 %

(8)

EtOOC

3.3 Hydroamination of Conjugated Aminodienes

Organolanthanide-catalyzed hydroamination of conjugated dienes is a facile

process due to the transient formation of an �3-allyl intermediate, which forms

E/Z-vinylpyrrolidines and vinylpiperidines upon protonation, and, under certain

conditions, also allyl isomers (Fig. 11, Scheme 12). Cyclizations with lanthanocenes
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lead preferentially to the E alkene in up to 98:2 E/Z ratio [30, 31]. The allylpyr-

rolidine becomes the prevailing product at a dramatically reduced reaction rate for

the sterically more congested Cp*2YCH(SiMe3)2. Generally, the reaction rates are

higher for aminodienes compared to the corresponding aminoalkenes, despite

increased steric encumbrance of the cyclization transition state. DFT calculations

indicate that the high stereo- and regioselectivities result apparently from kinetically

impeded protonolysis of the more substituted atom of the stabilized allyl intermediate

(Fig. 11) [26, 33, 133]. According to these studies, the protonolysis step might be rate

determining due to the facile insertion step. Hydroamination/cyclization of amino-

dienes shows a rate dependence on the Ln3+ ionic radius and coordinative unsatu-

ration that is even more pronounced than in the case of aminoalkenes [31].

Early transition metals or main group metals other than the rare earth elements

have been scarcely used in intramolecular diene hydroamination. However, the

lithium amide-catalyzed cyclization of aminodienes was recently reported [134,

135] in the context of asymmetric hydroamination and will be discussed in Sect. 6.2.

[Ln]

H
N

[Ln] N

N
[Ln]

H
N

NH2

ΔH ~ -19 kcal / mol

H
N

+

minor major H ‡
 ΔH ~ +7 kcal / mol  ΔH ~ +4 kcal / mol

Fig. 11 Mechanism of rare earth metal-catalyzed aminodiene cyclization [30, 31]

3–11 mol %
cat.

cat. T / °C I : II : III TOF / h-1

25
60
25
25

84 : 16 : 0
30 : 19 : 51
59 : 41 : 0
87 : 13 : 0

40
0.05
3.1

~0.08

NH2

H
N

H
N

+

IIII

E +

H
N

II

Z

Cp*2LaCH(SiMe3)2

Cp*2YCH(SiMe3)2

1-Sm
1-Y

≥90 % conv.

Scheme 12 Cyclization of aminoheptadiene [30, 31]
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3.4 Hydroamination of Aminoallenes

3.4.1 Rare Earth Metals

The rare earth metal-catalyzed hydroamination of aminoallenes proceeds faster than

cyclization of aminoalkenes, but slower than that of aminoalkynes. Two insertion

pathways are feasible to yield a mixture of exo- and endo-products in case of

monosubstituted allenes (9) [136, 137]. The cyclization of 1,3-disubstituted allenes

on the other hand proceeds exclusively via the exo route to generate the vinylic amine

(10) and a-substituted aminoallenes cyclize with high diastereoselectivities to give the

2,5-trans-pyrrolidines exclusively (11). However, in the latter case the E/Z ratio is

lower in comparison to the high selectivities observed for aminodienes. This potential

disadvantage becomes irrelevant if the amine is subjected to subsequent hydrogenation

[101], providing an alternative synthetic access to 2-alkyl azacycles instead of a more

sluggish cyclization of an aminoalkene with a 1,2-disubstituted double bond [27].

•

H
NCp*2LaCH(SiMe3)2

NH2

Me NMe
Me

C6D6

+

exo

(9)

endo : exo 87 : 13
95 % combined yield

endoexo

endo

•
NH2

H
N

0.8 mol %
Cp*2YCH(SiMe3)2

C6D6, 23 °C
TOF 31 h-1

E:Z 14:86
93 %

(10)

•
NH2

C6D6,23 °C
TOF 630 h–1

nPr

H

H
N nPr

>95 % conv.
Z : E  67 : 33

(11)

0.8 mol %
Cp*2SmCH(SiMe3)2

The kinetic analysis demonstrated an unusual dependence of the cyclization rate

on the rare earth metal ion size, with maximum turnover rates observed for the

medium-sized yttrium and slower rates for the larger lanthanum and smaller

lutetium [137]. As for aminoalkynes, catalysts with more open ligand frameworks

are less active. DFT calculations indicate that protonolysis is the rate-determining

step of the process [25, 34], although this notion is contrary to some experimental

observations [136, 137].
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3.4.2 Group 4 Metals

Aminoallenes can be readily cyclized using various group 4metal complexes. Similar

to rare earthmetal catalysts, control of regio- and stereoselectivity is a central problem.

However, strikingly different patterns are observed in the case of titanium and

zirconium catalysts (Table 8). The hydroamination of terminal aminoallenes resulted

in the regiospecific endo cyclization to form the six-membered cyclic imine 38a using

Ti(NMe2)4 as catalyst (Table 8, entry 1) [126, 127]. The same product, albeit with

significantly enhanced productivity, was also obtained exclusively employing the bis-

(sulfonamidate) titanium precatalyst 39a (Table 8, entry 2) [126, 127]. Disubstituted

allenes required more forcing conditions, and remarkably, the regioselectivity was

inverted in case of the zirconium complex 39b, yielding vinylpyrrolidine 38b pre-

dominately (Table 8, entry 3 vs. 4). Interestingly, while the regioselectivity remained

relatively moderate, the vinylpyrrolidine was obtained with high Z/E selectivity.

Trisubstituted aminoallenes are significantly less reactive (Table 8, entry 5). The

zirconium bis(thiophosphinic amidate) 29 (Fig. 8) displayed high regioselectivity

for disubstituted allenes, yielding the vinylpyrrolidine specifically (Table 8, entry 6)

Table 8 Group-4-metal-catalyzed hydroamination of aminoallenes

R2

R1 NH2 cat.

C6D6

H
NN

R2

R1

R2

R1

+

N

N

M

SO2Ar

SO2Ar

NMe2

NMe2

39a M = Ti, Ar = 4-MeC6H4
39b M = Zr, Ar = 2, 4, 6-Me3C6H2

38a 38b

Entry R1 R2 Cat.

[cat.]/[s],

mol% T, �C t, h Yield, % 38a:38b 38b, Z/E Ref.

1 H H Ti(NMe2)4 5 75 3 quant. 100:0 – [126, 127]

2 H H 39a 5 25 5 quant. 100:0 – [126, 127]

3 Et H 39a 5 75 2 70 100:0 – [127]

4 Et H 39b 5 75 n.r.a 62 25:75 >20:1 [127]

5 Me Et 39b 10 135 n.r.a 88 1:11 1.8:1 [127]

6 Me H 29 5 75 2 96 0:100 2:1 [138]

7 H H Cp2ZrMe2 5 135 18 19 16:3 – [127]

8 H H 36 5 135 18 quant 34:66 – [127]
an.r. ¼ not reported
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[138]. Interestingly, the amount of vinylpyrrolidine can also be increased by using

the cationic zirconocene 36 (Fig. 8; Table 8, entries 7–8). Computational studies

suggest that neutral [48] and cationic [63] catalyst systems operate via different

mechanisms.

4 Hydroamination/Bicyclization

The hydroamination/bicyclization of dialkenylamines, dialkynylamines and alken-

ylalkynylamines opens a straightforward route to a family of bicyclic amines

in a tandem C–N and C–C bond-forming process. An important prerequisite for

the success of this reaction sequence is a sufficient lifetime of the metal alkyl

intermediate formed in the initial insertion process of the alkene/alkyne in the

metal-amide bond in order to permit the carbocyclization step. Close proximity of

the unsaturation to the metal-amide moiety allows facile bicyclization over

protonolysis leading to the “normal” hydroamination product. Lanthanocene

catalysts have been found applicable for this transformation (Scheme 13) [23, 139].

The scope of this process has been extended in a more detailed investigation to

the synthesis of quinolizidines [21] and the influence of alkyl substituents in various

positions of the dialkenylamine substrate on product diastereoselectivity was

probed. Neodymium-based catalysts are particularly efficient for six-membered

ring formation (12). The methodology has found further application in the synthesis

of tri- and tetracyclic alkaloidal skeletons (13) [22].

10 mol %
Cp*2NdCH(SiMe3)2

H
N

C6D6, 50 °C
Me

N

Me

(12)Me

HH

90 %
>20:1 dr

2 mol %
Cp*2SmCH(SiMe3)2

H
N

n C6D6, 21 °C N

‡

Sm
Cp*

Cp*

n

N

> 95 %

n

1

2

TOF, h-1

55

5
n

Scheme 13 Synthesis of pyrrolizidines (n ¼ 1) and indolizidines (n ¼ 2) via hydroamination/

bicyclization [23, 139]
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N
Bn

N
H

N
Bn

(13)
N

Me

83 %, dr 2.3 : 1

10 mol %
Cp*2NdCH(SiMe3)2

C6D6, rt, 21h

The carbocyclization step needs to be intramolecular in order to afford the

desired product while the hydroamination step may also be intermolecular. Thus,

a sequence of inter- and intramolecular hydroaminations and carbocyclizations of

the alkenylalkynylamine 40 substrate allows the facile assembly of the tricyclic

polyheterocycle 41 with exclusive trans diastereoselectivity (14) [23].

14 mol %
Cp*2SmCH(SiMe3)22 HN

N

N

SmCp*2

N

N

H

H

via
(14)

40

C6D6, 60 °C
TOF 1 h-1

41
93 %

Trivinylbenzene may be utilized in a hydroamination/carbocyclization process

that is initiated by an intermolecular anti-Markovnikov addition of n-propylamine

followed by an intramolecular hydroamination and a highly diastereoselective

carbocyclization step (15) [20].

N
nPrH

5 mol %
Cp*2LaCH(SiMe3)2

88 %

(15)+ NH2
C6D6, 90 °C, 24 h

2 equiv

More recently the catalyst scope was extended to organolithium species [24];

however, the reaction is confined to activated (alkenyl)aminostilbenes and yields

pyrrolizidine and indolizidine derivatives. A toluene–THF mixture was used as

reaction medium and the presence of excess amount of lithium tert-butyltritylamide

was required to obtain the bicyclization product (16). In the presence of substoi-

chiometric amounts of the lithium-amide, only the hydroamination product was

observed.
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tBu(Tr)NLi
1.5 equiv

Ph

N
H

+toluene-THF 7:1,
rt, 14 h

N

H Ph

Me
N

H Ph

Me

83 % 2 %

(16)

5 Intermolecular Hydroamination

5.1 Hydroamination of Unactivated Alkenes

While the intramolecular hydroamination of aminoalkenes is catalyzed efficiently

by a variety of catalyst systems, the intermolecular hydroamination of alkenes is

significantly more challenging. For rare earth metal-based catalysts only a limited

number of reports utilizing either lanthanocene [20, 65], phenylene-bridged

binuclear half-sandwich [66], or binaphtholate [67, 68] complexes have been

documented in the literature. The Markovnikov-addition to an unactivated alkene

requires large excess of the alkene in order to overcome the competition between

strongly binding amines and weakly binding alkenes, even if the sterically open

ansa-lanthanocene Me2Si(C5Me4)2NdCH(SiMe3)2 (16-Nd) is employed (17) [65].

NH2

60 °C, TOF 0.4 h-1
(17)

70 equiv

+
HN

20 mol % 16-Nd

The intermolecular hydroamination of unactivated alkenes with alkali metal

catalysts has been known for a long time and a comprehensive review is available

[7]. Reactions with ammonia or primary amines catalyzed by elemental lithium

[140], sodium [141–144], potassium [141], alkali metal hydrides [141], and amides

[145, 146] with ethylene typically require high reaction temperatures (250–500�C)
and pressures (up to 1000 bar) and result in mixtures of mono-, di- and triethy-

lamine in moderate yields.

Reactions of secondary amines are more practical (18) [147]. The selective

formation of tertiary amines can be achieved by employing alkali metals in their

elemental form [144, 147], as alkali metal amides [148–152], which can also be

generated in situ from the corresponding metal alkyls, or frommetal hydrides [153].

H
N

+
30 atm, 100 °C
4.8 mol % Na N

77–83 %

(18)

80 A.L. Reznichenko and K.C. Hultzsch



Alkali metal-catalyzed hydroaminations of unactivated higher alkenes is signifi-

cantly less feasible [148, 152].

The double bond in vinyl arenes is activated as a result of its conjugation to the

aromatic ring system. Hence, vinyl arenes generally react more smoothly in hydro-

amination reactions in comparison to simple, unactivated alkenes, especially

in intermolecular processes.

Contrary to simple aliphatic-substituted alkenes, the metal-catalyzed hydro-

amination of vinyl arenes proceeds usually with high anti-Markovnikov selectivity

to give b-phenethylamine derivatives (Fig. 12). This reversal of regioselectivity

may be explained with the alkene insertion step proceeding through the sterically

more encumbered transition state which is favored due to attractive metal–

arene interactions and resonance stabilization of the benzyl carbanion. The same

selectivity pattern is observed for alkali [40] and alkaline earth [154, 155] metal

catalysts and is also explained by metal-aryl interactions as shown by DFT-

calculations [40].

Due to the high reactivity of vinyl arenes, a broader range of catalysts

is available, including very robust and readily accessible compounds. Sodium

metal readily catalyzes the hydroamination of styrene with secondary [156–160]

or primary [161, 162] aliphatic amines at ambient or slightly elevated

temperatures. The anti-Markovnikov addition of the amine moiety is favored

(19) [160].

20 mol % Na,
10 mol % napthalene NEt2

95 %

(19)Et2NH

1.7 equiv

+
THF, rt

88 %

NH2

C6D6, 90 °C
+

NHR
‡ ‡

Cp*2Ln

favored over

LnCp*2RHN

2,1-insertion 1,2-insertion

F
F

H
N

2 equiv

5 mol %
Cp*2LaCH(SiMe3)2

Fig. 12 Rare earth metal-catalyzed anti-Markovnikov hydroamination of vinyl arenes [20]
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Lithium alkyls can also be used as homogeneous base-type catalysts for anti-
Markovnikov addition of primary [163, 164] and secondary [163, 165, 166] amines

to vinyl arenes. The reactions typically proceed in good to excellent yields to give

b-phenethylamine derivatives (20) [165]. Unfortunately, ammonia does not exhibit

the same reactivity as primary and secondary amines.

5 mol % nBuLiPh PhN

NH

F

N

N

F

+

99 %

(20)
THF, 120 °C, 20 h

The simple lithium amide LiHMDS catalyzes the addition of aliphatic and

(notably) aromatic amines to vinyl arenes [40]. The catalytic activity is increased

by addition of TMEDA and the reaction can be carried out in bulk without

additional solvent. More reactive primary aliphatic amines also form a bis-

hydroamination product, although the formation of the latter may be suppressed

by using an excess of amine (21). Less reactive aromatic amines and a- and

b-substituted styrenes give the monohydroamination adducts selectively [40].

Other readily available alkali metal-based catalysts include NaH [166], t-BuOK
[164, 167, 168] and CsOH [169].

2 mol % LiN(SiMe3)2
2 mol % TMEDA

Ph

Ph

OMe

H
N

PMB

+ H2N

2 equiv

+
Ph

N
PMB

78 % 6 %

(21)

C6D6, 120°C, 2h

Ph

Although alkali metal amides cannot catalyze intermolecular hydroamination of

higher unactivated alkenes, allylbenzene derivatives react smoothly via base-

catalyzed isomerization into b-methyl styrene derivatives, which are active enough

to form hydroamination products (22) [170].

H
N

2 equiv

20 mol % nBuLi
Ph

NH2 Ph
+ THF, 50 °C, 20 h

65 %

(22)
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5.2 Hydroamination of Conjugated Dienes

Conjugated dienes can serve as reactive substrates in both inter- and intramolecular

hydroamination processes since the reactivity of the conjugated system is signifi-

cantly higher than that of an isolated double bond.

The hydroamination of dienes with basic primary and secondary amines can be

achieved with a variety of catalysts including alkali metals and their readily

available derivatives. Reactions of acyclic 1,3-dienes catalyzed by alkali metals

[159, 160, 171], metal hydrides [172], and metal amides (generated from metal

alkyls) [163, 173, 174] result in regioselective formation of the sterically less

hindered 1,4-addition product in most cases (23) [174]. Primary aliphatic amines

are capable of performing double hydroamination in these conditions, typically

leading to complex mixtures of mono- and bis-allyl amines, whereas reactions with

secondary amines are more practical [160].

5 mol % nBuLi
nPr2N+ nPr2NH

86 %
E : Z = 12 : 88

(23)
C6H12, 50 °C, 1 h

Isolated double bonds are significantly less reactive than the conjugated

diene moiety which is illustrated by the base-catalyzed regioselective hydro-

amination of myrcene to form diethylgeranylamine (24) [171]. This reaction is

performed industrially on a multi ton scale as part of the Takasago menthol

synthesis [175].

NEt2 (24)
35 mol % Li

benzene,
55 °C, 5 h 74 %

>92 % selectivity

+ HNEt2

Myrcene

A few examples of rare earth metal-catalyzed diene hydroamination have

been reported. The reaction apparently proceeds in line with base-catalyzed inter-

molecular hydroaminations to give the 1,4-addition product when using the ansa-
neodymocene Me2Si(C5Me4)2NdCH(SiMe3)2 (16-Nd) (25) [20, 65].

1.8 equiv

C6D6, 21 °C, 4d

H
NnBu

90 %

(25)
nBuNH2+

3.7 mol % 16-Nd

DFT-calculations suggest that the exclusive 1,4-regioselectivity results from

regiospecific insertion and protonolysis steps (see also Sect. 3.3) [176].

While the intermolecular hydroamination of butadiene derivatives with group

4 metal catalysts has not yet been reported, an interesting 1,2-addition of diethyl-

amine to the Buckminsterfullerene C60, which can indeed be seen as a conjugated

polyene, was described (26) [177].
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20 mol %
Cp2TiCl2

H

NEt2
+ Et2NH

90 %

(26)toluene,
rt, 48 h

5.3 Hydroamination of Allenes and Methylenecyclopropanes

The intermolecular hydroamination of allenes is readily catalyzed by early transi-

tion metal complexes to yield imines. An addition of aromatic and aliphatic amines

to allene requires high reaction temperatures (90–135�C) and long reaction times

(1–6 days) when mediated by zirconocene- [41] and tantalum-imido [178] catalysts.

The more efficient titanium half-sandwich imido-amide complex 42 operates under

significantly milder reaction conditions (27) [179]. Because the metal-imido spe-

cies are prone to dimerization, sterically more hindered aliphatic and aromatic

amines are more reactive. Simple, sterically unencumbered aliphatic amines add

to allenes in the presence of the bis(amidate) titanium complex 43 (28), although

higher reaction temperatures are required [180].

H

H

H

H
+

NH2

Ti

N

N

NH

10 mol % 42 N

C6D6, 45°C,
t½< 30 min

>95 %

(27)

+ iPrNH2

10 mol % 43 N

C6D5Br,
120 °C, 24 h

97 %

(28)

N
Ph

O

Ti
NEt2

NEt2
2

Ph

PhH H

H
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The intermolecular hydroamination of allenes with rare earth, alkaline earth and

alkali metal catalysts has not been reported. However, another interesting and

versatile class of unsaturated substrates closely related to allenes has been reported

to undergo rare earth metal-catalyzed intermolecular hydroamination. Methylene-

cyclopropanes utilize the ring strain of the cyclopropane ring as the driving force

for the reaction. Ring opening of the unsymmetrical phenylmethylenecyclopropane

proceeds with high regioselectivity to generate the linear product predominantly

(Scheme 14) [20].

Group 4 metal complexes, such as Ti(NMe2)4, Zr(NMe2)4, and the

bis(aminopyridinato) complex 45, were shown to catalyze the intermolecular

ring-opening hydroamination of methylenecyclopropanes (Table 9) [181]. Analo-

gous to rare earth metal-based catalysts, hydroamination reactions involving the

unsymmetrical phenylmethylenecyclopropane (PhMCP) led to the linear

regioisomer 44a (R1 ¼ Ph) when titanium-based catalysts were applied. The steri-

cally more encumbered 45 exhibited superior activity in case of sterically unde-

manding aliphatic and aromatic amines, while Ti(NMe2)4 exhibited better activity

with bulky anilines. Interestingly, Zr(NMe2)4 was not only significantly less reac-

tive than its titanium analog, but also exhibited opposite regioselectivity in the ring-

opening to yield the branched isomer 44b predominantly. The authors attributed

this phenomenon to a different protonolysis/ring-opening pathway in case of

the zirconium catalyst [181].

5.4 Hydroamination of Alkynes

A variety of catalyst systems have been developed for the facile intermolecular

hydroamination of alkynes, in particular employing early transition metal catalysts

based on group 4 metals (Fig. 13). Important issues such as reactivity, reaction

5 mol %
Cp*2LaCH(SiMe3)2

NH2

Me

N

Ph

Ph

+ C6D6, 60°C, 25 h
TOF 0.22 h-1

1,2-insertion

95 %

HN

[Ln]

H

NH

[Ln]

H

+ H2N

Cp*2SmNHPr

Ph

HN

Scheme 14 Intermolecular hydroamination of phenylmethylenecyclopropane [20]
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scope, and selectivity were addressed using multiple approaches, which has been

extensively reviewed in recent general [5] and specialized [4, 192, 193] reviews.

The first group 4 metal catalysts for alkyne hydroamination were introduced in

1992 [41, 194, 195]. The bis(amido)zirconocene complex 46 [41] was restricted to

bulky arylamines, and the reaction proceeded rather sluggishly (Table 10). Tita-

nium catalysts are significantly more reactive than zirconium analogs, and even the

homoleptic tetraamide Ti(NMe2)4 [196, 197], which lacks a bulky spectator ligand,

showed enhanced activity in the hydroamination with aniline. However, aliphatic

amines, including tBuNH2 gave poor or no yield when using Ti(NMe2)4 [196, 197].

The readily available titanocene Cp2TiMe2 (47) reacted efficiently with sterically

demanding aliphatic and aromatic amines with good yields but sterically less

demanding amines, such as n-hexyl amine or benzyl amine reacted very sluggishly,

supposedly due to facile formation of bridging imido dimers [182]. The

metallocene 47 exhibited a significant induction period in catalytic hydroamination

reactions and the presence of free cyclopentadiene was observed in the reaction

Table 9 Ring-opening hydroamination of methylenecyclopropanes with group 4 metal cata-

lysts [181]

NR2

R1

NR2

R1

+

R1

+ R2NH2

44a 44b

cat.

toluene,
110 °C

Ti
NEt2

NEt2

N

N
Ph2P N

N PPh2

45

R1 R2 Cat. [cat.]/[s], mol% t, h 44a:44b Yield, %

H Et 45 2 36 –a 90

Ph nBu Ti(NMe2)4 2 258 90:10 25

Ph nBu 45 5 20 100:0 90

Ph Ph Ti(NMe2)4 2 24 83:17 100

Ph Ph 45 5 17 87:13 83

Ph Mes Ti(NMe2)4 2 96 86:14 100

Ph Mes Zr(NMe2)4 2 380 8:92 89

Ph 2,6-iPr2C6H3 Ti(NMe2)4 2 22 80:20 100

Ph 2,6-iPr2C6H3 Zr(NMe2)4 2 215 29:71 100

Ph 2,6-iPr2C6H3 45 5 120 100:0 24
aFor R1 ¼ H: 44a ¼ 44b
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mixture. The monocyclopentadienyl amido-imido complex 42 was obtained from

the reaction of 47 with 2,6-dimethylaniline followed by addition of pyridine [179].

42 was significantly more reactive without any induction period, suggesting that 42

could resemble the actual resting state also for the metallocene precatalyst 47 [179].

The sterically more encumbered titanocene 48 showed superior reactivity com-

pared to 47 for the less bulky amines, such as n-propylamine; however, 48 was

not applicable to bulkier aliphatic and aromatic amines [183]. Further optimization

of the ligand structure led to the bis(indenyl) complex 49, which appears to be

the most versatile catalyst of the titanocene family [184] applicable even to the

sterically least hindered amines, such as ethyl and methylamine [185].

Reactions of unsymmetric internal alkynes are more challenging, since two

hydroamination products can be formed. The feasibility to control regioselectivity

depends on the steric properties of both substrate and catalyst and a universal

regioselective catalyst remains to be elaborated. When anilines are employed as

reactants, high anti-Markovnikov selectivity is obtained with titanocene catalysts

47 and 48 (Table 11) [182, 183] while aliphatic amines gave poor results. Again,

the bis(indenyl)titanium catalyst 49 showed superior anti-Markovnikov selectivity

Ti

N

N

NH

Ar

Ar

Ti
Me

Me

R
R

R

R

RR

R R
R TiZr

NHAr

NHAr

46 47 R = H

48 R = Me

49

Me

Me

N

Ti NMe2

NMe2N

NMe2Ti

N
Me

NMe2
N

N

Ti

SiMe3

SiMe3

50

51

N
Ph

O

Ti
NEt2

NEt2
2

43

52

N
N

Zr

OiPr2N

O

iPr2N

NMe2

NMe2

HNMe2

35 42

R

O Ti

2

53

NEt2

NEt2

Fig. 13 Group 4 metal catalysts for alkyne hydroamination (Ar ¼ 2,6-Me2C6H3) [41, 179,

182–191]
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for aromatic and aliphatic amines of various steric bulk. Slow amine addition

is beneficial for both reactivity and regioselectivity [184].

Terminal alkynes are in general more reactive than their internal analogs,

and even Ti(NMe2)4 can serve as a catalyst in some cases providing high regio-

selectivity under relatively mild reaction conditions (Table 12) [196, 197]. How-

ever, the di(pyrrolyl) amine complex 50 (Fig. 13) was a more generally applicable

Table 10 Group-4-metal-catalyzed hydroamination of symmetric internal alkynes

R1 R1 + R2 NH2
cat.

R1 R1

NR2

R1 R2 Cat. [cat.]/[s], mol% T, �C t, h Yield, % Ref.

Ph 2,6-Me2C6H3 46 3 120 312 60a [41]

Ph Ph Ti(NMe2)4 10 75 57 92b [196, 197]

Ph Ph 47 3 100 72 92b [182]

Ph Cy 47 3 100 72 86c [182]

Ph 2,6-Me2C6H3 42 3 75 –d 95a [179]

Ph nPr 48 6 114 4 86b [183]

Ph nPr 49 5 105 3 89b [184]

Ph Me 49 5 105 7 92c [185]

Ph tBu 49 5 105 5 84b [184]
nPr 2,6-Me2C6H3 49 5 105 24 92b [184]
aEnamine tautomer
bYield of ketone after hydrolysis with HCl
cYield of amine after reduction
dt½ ¼ 15 min

Table 11 Group-4-metal-catalyzed hydroamination of unsymmetric internal alkynes

R1 R2 + R3 NH2

cat.

R1 R2

NR3

R2R1

R3N

+

A M

R1 R2 R3 Cat. [cat.]/[s], mol% T, �C t, h Yield, % A:M Ref.

Ph Me Ph 47 1 100 40 99a 100:0 [182]

Ph Me 4-MeC6H4 48 6 114 24 92b 97:3 [183]

Ph Me Bn 48 6 114 24 94b 75:25 [183]

Ph Me Bn 49 5 105 2 76b,c 97:3 [184]

Ph C3H5 C5H9 49 5 105 24 89b 95:5 [184]

Ph Me 4-MeC6H4 49 5 105 24 99b 98:2 [184]
aYield of ketone after hydrolysis with HCl
bYield of amine after reduction
cSlow amine addition

88 A.L. Reznichenko and K.C. Hultzsch



catalyst than Ti(NMe2)4 with excellent Markovnikov selectivities for the hydro-

amination of terminal alkynes [186, 187]. The substrate scope included sterically

less demanding amines, such as benzyl amine, and even the electron deficient

pentafluoroaniline. However, the isopropylidene-linked di(pyrrolyl) complex 51

showed far superior reactivity, catalyzing the rapid and exothermic addition of

aniline and cyclohexylamine to terminal alkynes with Markovnikov selectivity

at room temperature [188].

The anti-Markovnikov hydroamination of terminal alkynes, which is providing

relevant aldimine derivatives, has been studied intensively and a range of catalysts

have been developed. The �2-alkyne titanocene Cp2Ti(�
2-Me3SiC�CSiMe3) (52)

was found to efficiently catalyze the anti-Markovnikov addition of the steri-

cally demanding tert-butyl amine to terminal aliphatic alkynes with high (>98%)

regioselectivity [189]. Sterically less demanding aliphatic amines also produced

anti-Markovnikov adducts, albeit with reduced regioselectivity, while aromatic

amines led predominantly to the Markovnikov product in which the regioselectivity

correlated with the steric demand of the aniline derivative. A computational study

revealed that the regioselectivity is determined by the relative stability of the imido

Table 12 Group-4-metal-catalyzed hydroamination of terminal alkynes

R1 + R2 NH2
cat.

R1
N

R2

A

+
R1

N
R2

M

R1 R2 Cat. [cat.]/[s], mol% T, �C t, h Yield, % A:M Ref.

Ph Ph Ti(NMe2)4 10 75 2 49a 1:2 [196, 197]

Ph tBu Ti(NMe2)4 10 75 10 53 50:1 [196, 197]
nBu 4-MeC6H4 Ti(NMe2)4 10 75 2 87b 1:4 [196, 197]
nBu Ph 50 10 75 6 90b 1:50 [186, 187]
nBu C6F5 50 10 75 72 51b 1:50 [186, 187]
nBu Cy 50 10 75 72 73b 1:2 [186, 187]

Ph Cy 51 5 25 0.17 54 1:20 [188]
nBu Ph 51 5 25 0.08 57 1:40 [188]
nBu tBu 52 2.5 85 2 90 99:1 [189]
nBu sBu 52 5 85 24 86 3:1 [189]
nBu Ph 52 5 100 24 94 1:3 [189]
nC6H13

sBu 53 10 100 24 98 10:90 [190]
nC6H13 Ph 53 10 100 24 99 22:78 [190]
nBu tBu 43 5 65 6 82a 49:1 [191]
nBu Bn 43 5 65 24 88a 49:1 [191]
aYield of amine after reduction
bAfter acid hydrolysis
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alkyne complex that precedes the [2 + 2] cycloaddition step (Scheme 15) [198].

The preference for anti-Markovnikov addition for tert-butyl amine can be based

on a repulsive steric interaction of the tert-butyl substituent with the aliphatic

substituent of the alkyne in the imido alkyne intermediate M leading to the Marko-

vnikov product. The Markovnikov regioselectivity for aromatic amines on the

other hand is based on the favorable alternating positive and negative charges

in the Markovnikov imido alkyne intermediate M’.

The sterically demanding bis(aryloxide) catalyst system 53 was found to be

a highly efficient catalyst for the Markovnikov addition of sterically nonhindered

amines, such as benzyl amine, n-alkylamines, sec-butyl amine, cyclooctyl amine,

or aniline derivatives [190, 199, 200]. A broad screening of catalysts with various

aryloxide ligands revealed that the regioselectivity can be reversed from high

Markovnikov selectivity to high anti-Markovnikov selectivity by decreasing the

steric demand of the aryloxide ligand [190].

The increased Markovnikov selectivity in the hydroamination of aliphatic

terminal alkynes with aniline derivatives seems to be universal for a number of

titanium-based hydroamination catalysts, such as Ind2TiMe2 (49) [184], the di-

(pyrrolyl) amine complex 50 [186, 187], and the di(pyrrolyl)methane complex 51

[188]. The bis(amidate) titanium complex 43 exhibited enhanced catalytic activity

compared to titanocene catalysts, thus combining high anti-Markovnikov selecti-

vity with high catalytic activity [191].

It is noteworthy that all group-4-metal-based catalysts described above can only

be used for primary amines, as opposite to most late transition metal-based systems.

While the stoichiometric reaction of Ti(NMe2)4 with phenylacetylene was shown to

produce some enamine hydroamination product [196], a catalytic process was only

facilitated using the tethered zirconium bis(ureate) complex 35 (29) [57].

Ti N

H3C

Cp

L
tBu

Ti N

Cp

L tBu

H3C

Ti N

H3C

Cp

L
tBu

Ti N

Cp

L

‡

‡

Ph

CH3

Ti N

Cp

L tBu

CH3

disfavored
M

Ti N

Cp

L
Ph

CH3

anti-Markovnikov

Markovnikov

favored
anti-M

Ti N

Cp

L

CH3
δ–

δ–

δ+

δ+

vs.

favored
M′

Scheme 15 Reaction pathway of [2 þ 2] cycloaddition leading to predominantlyanti-Markovnikov

addition for sterically demanding amines and Markovnikov addition for aromatic amines
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Ph +

N
H

O

2 equiv

10 mol % 35

C6D6,
100°C,16 h

Ph
N

O

97 %

(29)
+ NPh

O

<2 %

Poly(unsaturated) substrates can be used for sequential hydroamination/5-endo-
cyclization reactions, which can be formally – but not mechanistically – seen as

sequential inter/intramolecular hydroamination, to yield heterocyclic products, e.g.,

pyrroles from 1,4-diynes (30) [201].

nBu

+ PhNH2
10 mol % 50

C6D6,
100°C, 24 h

H
NnBu Me

56 %

(30)

Cyclization reactions triggered by intermolecular alkyne hydroamination reac-

tions provide straightforward access to structurally diverse heterocyclic motifs as

summarized in a recent general [5] and specialized [202] review.

Only a few studies of group-5-metal-catalyzed alkyne hydroamination

reactions have been reported. The imido-bridged dimer [V(m2-NPh)(NMe2)2]2
[203], the tantalum alkyl imido complex [(Me3CCH2)3Ta ¼ NCMe3] [178,

204], and its cationic analog [Bn2Ta ¼ NCMe3]
+[B(C6F5)4]

– [178, 204] were

shown to be active hydroamination precatalysts, although the reactivity is signifi-

cantly lower than that of group 4 metal catalysts. Mechanistic studies on tantalum

catalysts were unable to confirm an imido-mechanism analogous to group 4

metals [205].

A number of actinide complexes have been investigated with respect to their

catalytic activity in the intermolecular hydroamination of terminal alkynes with

primary aliphatic and aromatic amines [98, 206–209]. Secondary amines generally

do not react and the reaction is believed to proceed via an metal-imido spec-

ies similar to that of group 4 metal complexes. The reaction of Cp*2UMe2 with

sterically less-demanding aliphatic amines leads exclusively to the anti-
Markovnikov adduct in form of the E-imine (31) [207]; however, sterically more

demanding amines, e.g., t-BuNH2, result in exclusive alkyne dimerization. The

ferrocene-diamido uranium complex 12 (Fig. 4) catalyzes the addition of aromatic

amines very efficiently (32) [98].

tBu tBuH + MeNH2 C6D6, 78°C,17 h
TOF 4 h–1

N

H

90 %

(31)
1.4 mol % Cp*2UMe2
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Me3Si H + PhNH2 C6D6,
70 °C, 32 min

Me3Si
NPh

H

90 % conv.

(32)
10 mol % 12

Organolanthanide catalysts were explored less broadly compared to group

4 metal complexes. Intermolecular hydroamination of internal alkynes with inequi-

valent substituents gives the corresponding imines in a regioselective fashion (33)

using the ansa-lanthanocene Me2Si(C5Me4)2NdCH(SiMe3)2 (16-Nd) [20, 65].

Ph Me NH2+ C6D6,60°C
TOF 2 h–1

Ph
N

Me

85 %

(33)

1.9 mol % 16-Nd

2.6 equiv

6 Asymmetric Hydroamination

The asymmetric hydroamination constitutes a facile and atom-economical approach

to chiral amines. The rational design of efficient, configurationally stable and highly

selective catalysts has become an area of intense research activity. Significant progress

has been made in the area of intramolecular enantioselective hydroamination, while

intermolecular hydroamination remains highly challenging [8–15, 210, 211].

6.1 Intramolecular Hydroamination of Alkenes

6.1.1 Chiral Rare Earth Metal Catalysts

Chiral C1-symmetric lanthanocenes (Fig. 14) have achieved enantioselectivities of

up to 74% ee (34) in various intramolecular hydroamination reactions [72, 212,

213]. Complexes 54–56 are better suitable for the formation of five-membered

rings, while complexes 57 are optimized for six-membered ring formation (35)

thanks to the extended wingspan of the octahydrofluorenyl ligand.

NH2

H
N

pentane, –30 °C

100 % conv.,
74 % ee

(34)
(S)-55-Sm

(S)
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NH2

H
N

95 %, 67 % ee

(15 % ee (R) using (S)-55-Sm)

(35)

(S)-57-Y

(S)

The asymmetric hydroamination of internal 1,2-disubstituted alkenes is much

less feasible and requires significantly harsher reaction conditions. The formation of

pyrrolidines and piperidines often proceeds with comparable rates (Table 13),

contrasting the general trend of significant faster five-membered ring formation

Si

R*

Si

R*

Cp

Ph

Cp Cp

(S ) (R )

Ln E(SiMe3)2 Ln(Me3Si)2E

R* =

(+)-neomenthyl (–)-menthyl (–)-phenylmenthyl

54-Ln 55-Ln

Ln = La, Nd, Sm, Y, Lu E = CH, N
56-Y

Si Ln N(SiMe3)2

(S )-57-Ln

H

Fig. 14 C1-symmetric chiral lanthanocene catalysts for asymmetric hydroaminations (R* ¼
(þ)-neomenthyl, (�)-menthyl, (�)-phenylmenthyl); E ¼ N, CH) [72, 212, 213]

Table 13 Asymmetric hydroamination of internal alkenes [27]

NH2
n

5 mol % (S)-57-Y
H
N

>95%

o-xylene-d10,
100 °C n

n TOFa, h�1 % ee

1 0.07 26 (+)

2 0.30 58 (�)
aTOF ¼ turnover number per hour
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observed with terminal aminoalkenes [27]. Despite these harsh reaction conditions,

moderate enantioselectivities of up to 58% ee at 100�C (up to 68% ee at 60�C) have
been observed.

Unfortunately, the chiral lanthanocenes undergo facile epimerization under the

conditions of catalytic hydroamination via reversible protolytic cleavage of the

metal cyclopentadienyl bond [27, 72, 213, 214] leading to an equilibrium mixture

of the two possible diastereomeric complexes. Thus, the enantioselectivity of

product formation is limited by the catalyst’s epimeric ratio in solution and the

absolute configuration of the hydroamination product is independent of the diaste-

reomeric purity of the precatalyst.

This limitation of chiral cyclopentadienyl-based hydroamination catalysts has

stimulated the development of a large number of cyclopentadienyl-free rare earth

metal-based catalyst systems [67, 68, 73, 121, 122, 215–239]. A detailed discussion

of the large number of catalytic systems is beyond the scope of this review and the

interested reader should refer to one of the comprehensive reviews on this topic

[9–14]. Some prominent catalyst systems are shown in Fig. 15 and a brief survey of

catalytic results is listed in Table 14.

A variety of bisoxazolinato rare earth metal complexes such as 58 have been

studied with regard to their hydroamination/cyclization catalytic activity [219]. The

precatalysts show similar enantioselectivity and only slightly reduced catalytic

activity when prepared in situ from [La{N(SiMe3)2}3] and the bisoxazoline ligand.

In this ligand accelerated catalyst system, the highest rates were observed for a 1:1

metal to ligand ratio.

Based on a molecular modeling study, the preferred formation of the (R) pyrro-
lidine product was explained by an approach of the alkene to an empty equatorial

coordination site of the bisoxazolinate complex with the amide being bound in the

apical position (Fig. 16). The approach of the alkene to an apical coordination

site with an equatorial La–N bond is expected to slightly favor formation of the

(S) enantiomer. Interestingly, catalysts with aliphatic substituents (iPr, tBu) in the

4-position of the bisoxazolinate ligand produced products with opposite configura-

tion, potentially due to a change in the mode of approach of the alkene moiety.

The ate-complexes [Li(THF)4][Ln{(R)-1,1´-{C10H6N(R)}2}2] ((R)-59; Ln ¼
Yb, Y; R ¼ iPr (a), Cy (b), C5H9 (c)) [11, 14, 223–225, 227, 229, 230] are unusual

hydroamination catalysts as they lack an obvious leaving amido or alkyl group that

is replaced during the initiation step by the substrate. It is very likely that at least

one of the amido groups is protonated during the catalytic cycle. The best catalytic

results were obtained using a small rare earth metal (Yb) and a large cyclopentyl

substituent on the diamidobinaphthyl ligand, but the low catalytic activity of 59

restrains them to activated gem-dialkyl substituted [69] aminoalkenes. A variety of

diamidobinaphthyl alkyl and amido complexes, e.g., (R)-60 and (R)-61, have been
shown to exhibit better catalytic activity while retaining comparable enantioselec-

tivities [227, 228, 231, 232]. The high activity of the bisalkyl ate-complex (R)-61
allowed facile cyclization of 1,2-disubstituted aminoalkenes with enantioselec-

tivities of up to 77% ee (36) at temperatures ranging from 40 to 110�C [233].
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OO

PhPh
(Me3Si)2N N(SiMe3)2

PhPh
N

La

N

58

N

N N

N
R

R

R

R

Ln

Li(THF)4
+

–

N

N
Y N(SiMe3)2

S

S

R

Me

Me

R

SiAr3

SiAr3

O

O
Ln

Me2N

Me2N
Ph

(R)-63a Ar = Ph
(R)-63b Ar = 3, 5-Me2C6H3

(R)-62a R = SiMe3
(R)-62b R = SiMe2Ph

(R)-59a R = iPr

(R)-59b R = Cy

(R)-59c R = C5H9

N

NPh
Lu

N(SiMe3)2

(S)-64

Ph

Ph

N

N

Ph

Ph

Ph

N

N

THF

THF

Y

(R)-60

CH2SiMe3

N

N

PMB

PMB

Y

(R)-61 PMB = CH2C6H5-4-OMe

CH2SiMe3

CH2SiMe3

Li(THF)4
+

–

La

N

N

N
N

N

iPr
iPr

iPr

iPr

SiMe3Me3Si

(R, R)-65

Fig. 15 Selected examples of post-metallocene rare earth metal catalysts for asymmetric

hydroamination/cyclization of aminoalkenes [67, 121, 219, 220, 225, 227, 230, 233, 238, 239]
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Table 14 Asymmetric intramolecular hydroamination of aminopentenes using post-metallocene

rare earth metal catalysts

NH2

RR H
N

R
R

cat.

C6D6

Cat. R, R [cat.]/[s], mol% T, �C t, h Yield, % % ee (config) Ref.

58 H, H 5 23 ~222a >95 40 (R) [219]

58 Me, Me 5 23 ~0.8b >95 67 (R) [219]

58 Ph, Ph 1.3 23 ~0.12c >95 34 (R) [219]

(R)-59a-Y –(CH2)5– 7 25 20 quant. 67 [227]

(R)-59b-Yb –(CH2)5– 6 25 18 94 65 [225]

(R)-59c-Yb –(CH2)5– 6 25 20 90 87 [230]

(R)-60 Me, Me 6 25 144 94 77 [228]

(R)-60 –(CH2)5– 6 25 3.3 89 75 [228]

(R)-62b H, H 5 60 8 95 81 (S) [220]

(R)-62a Me, Me 5 30 552 95 89 (S) [220]

(R)-63b-Sc H, H 5 22 17 93 90 (S) [67]

(R)-63a-Sc Me, Me 2 60 6 93 73 (S) [67]

(R)-63a-Sc Ph, Ph 2 25 0.6 94 95 (S) [67]

(S)-64 Me, Me 5 60 35 92 75 (S) [238]

(R,R)-65 Me, Me 9.6 25 ~50d >95 76 (R) [239]
aTOF ¼ 0.09 h–1

bTOF ¼ 25 h–1

cTOF ¼ 660 h–1

dTOF ¼ 0.2 h–1

La

NH

NHR

La

HN

RHN

(R)
H
N

H
N (S)

favored

disfavored

Fig. 16 Stereomodel

for enantioselective

hydroamination/cyclization

using bisoxazolinate

lanthanum catalyst 58 [219].

The structure of the

bisoxazolinate ligand

is simplified for clarity
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NH2

6 mol % (R)-61
H
N

83 % conv., 77 % ee

(36)

Ph
Ph

PhPh

C6D6,
40 °C, 36 h

Good to high enantioselectivities for a wide range of aminoalkene substrates,

including internal alkenes or secondary amines, were achieved using the in situ

generated aminothiophenolate catalyst system (R)-62 [220]. Variation of the steric

demand of the silyl substituent attached to the thiophenolate moiety allowed facile

fine-tuning of the enantiomeric excess, providing an increased selectivity with

increasing steric hindrance. While the larger bite angle of the amino(thio)phenolate

ligand is believed to improve enantiofacial differentiation as the chiral ligand

reaches further around the metal center [217], the multidentate nature of the ligand

also electronically saturates the metal center, effectively diminishing catalytic per-

formance. Enantiomeric excess of up to 89% can be achieved at 30�C, although
reactions at this temperature require a long period of time to reach completion.

Significantly higher catalytic activities were observed when more electron

deficient ligand sets are employed. Binaphtholate complexes (R)-63, (Ln ¼ Sc,

Y, Lu) [67, 121] with sterically demanding tris(aryl)silyl substituents in the 3 and 3´

position show high catalytic activity at room temperature, comparable in magnitude

to lanthanocene catalysts. Enantioselectivities of up to 95% ee were achieved in the

hydroamination/cyclization of aminoalkenes, which are among the highest selecti-

vities observed so far. The sterically demanding tris(aryl)silyl substituents in the

diolate complexes play a pivotal role not only to achieve high enantioselectivities

but also to prevent undesired complex aggregation [215]; furthermore, they reduce

detrimental amine binding of the substrate and product to the catalytic active metal

center [67]. Complexes with organophosphine oxide or sulfide substituents in the

3,3´-position of the binaphtholate ligand showed significantly reduced rates and low

to moderate enantiomeric excess (up to 65% ee) [234], presumably as a result of

organophosphine oxide/sulfide binding to the metal. Thus, the electronic environ-

ment for the catalytic active metal center needs to be carefully balanced.

Aminoalkenes with secondary amino groups generally cyclize slower and com-

monly also with diminished enantioselectivity in comparison to substrates with

primary amino groups, presumably as a result of steric interference of the N-alkyl
substituent in the stereodetermining cyclization transition state (Table 15). The

diamidobinaphthyl complex (R)-60 and related complexes seem to be an exception

[240], as they tend to provide slightly higher enantioselectivities (up to 83% ee)

and faster reaction rates for secondary aminoalkenes in comparison to the corres-

ponding primary aminoalkenes (compare Tables 14 and 15).

The binaphtholate complexes (R)-63 were successfully applied in the efficient

kinetic resolution of chiral aminoalkenes (Table 16) [67, 121, 122]. Racemic
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aminopentenes can be kinetically resolved with resolution factors f as high as 19.

The resolution factor value depends dramatically on the nature of the substituent R.

Mechanistic studies have revealed that diminished efficiencies in the kinetic reso-

lution of aminoalkenes with aliphatic substituents are caused by an unfavorable

state of the Curtin–Hammett-preequilibrium that favors the mismatching substrate–

catalyst complex. In case of the significantly more efficient kinetic resolutions of

aryl-substituted aminoalkenes, the matching substrate–catalyst complex predo-

minates in the Curtin–Hammett preequilibrium [122].

Table 16 Catalytic kinetic resolution of chiral aminopentenes

NH2

C6D6, 22 °C
R

+

trans cis

ca. 50 % conv.

NH2

R
+

2 mol % cat.
H
N R

H
N R

I

R Cat. t, h Conv., % trans:cis % ee of recov. I f a Ref.

Me (R)-63b-Y 26 52 13:1 80 16 [67, 121]

Cy (R)-63a-Lu 23 47 8:1 51 6.0 [122]

Ph (R)-63a-Lu 15b 52 � 50:1 83 19 [67]

Ph (R)-63a-Lu 15c 64 n.d. 99 n.d. [67]

4-ClC6H4 (R)-63b-Y 10b 51 � 50:1 80 19 [122]

4-MeOC6H4 (R)-63a-Y 8b 50 � 50:1 78 19 [67]
aResolution factor
bAt 40�C
cUsing 1.3 mol% catalyst at 45�C. n.d. ¼ not determined

Table 15 Asymmetric intramolecular hydroamination of aminoalkenes with a secondary amino

group using post-metallocene rare earth metal catalysts

H
N

RR Me
N

R
R

cat.

C6D6

Cat. R, R [cat.]/[s], mol% T, �C t, h Yield, % % ee Ref.

(R)-60 Me, Me 6 rt 0.17 95 80 [240]

(R)-60 –(CH2)5– 6 rt 0.17 95 83 [240]

(R)-62 H, H 5 60 30 95 69 [220]

(R)-63b-Sc H, H 2 60 44 93 53 [67]
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6.1.2 Chiral Alkali Metal Catalysts

There have been only a limited number of studies on the application of chiral alkali

metal complexes in asymmetric hydroamination of nonactivated aminoalkenes

[135, 241, 242].

The proline-derived diamidobinaphthyl dilithium salt (S,S,S)-66, which is

dimeric in the solid state and can be prepared via deprotonation of the corres-

ponding tetraamine with n-BuLi, represents the first example of a chiral main-

group-metal-based catalyst for asymmetric intramolecular hydroamination reac-

tions of aminoalkenes [241]. The unique reactivity of (S,S,S)-66, (Fig. 17) which
allowed reactions at or below ambient temperatures with product enantioselec-

tivities of up to 85% ee (Table 17) [241, 243] is believed to derive from the close

proximity of the two lithium centers chelated by the proline-derived substituents.

More simple chiral lithium amides required significantly higher reaction tempera-

tures and gave inferior selectivities.

The diamidobinaphthyl dilithium salt (R)-67 was generated in situ from the free

diaminobinaphthyl ligand and 2.5 equiv. of LiCH2SiMe3 [135]. This system lacks

a chelating sidearm and gave predominantly low enantioselectivities except for the

gem-diphenyl-substituted aminopentene. Unfortunately, the cyclization of amino-

alkenes seems to be limited to activated gem-dialkyl substituted [69] aminopentene

NLi

NLi

(R )-67

N

NMe

N NMe

Li

Li

2

(S, S, S )-66

Fig. 17 Chiral lithium-based

catalysts for asymmetric

hydroaminations of

aminoalkenes [135, 241]

Table 17 Lithium amide-catalyzed asymmetric hydroamination of aminopentenes

cat.

C6D6

H
N

R
R

RR
NH2

Entry R, R Cat. [cat.]/[s], mol% T, �C t, h Yield, % % ee Ref.

1 Me, Me (S,S,S)-66 2.5a 22 45 93 67 [241]

2 –(CH2)5– (S,S,S)-66 5a 20 2 82 74 [241]

3 –(CH2)5– (S,S,S)-66 2a �10 22 84 85 [243]

4 Ph, Ph (R)-67 10 25 2 90 56 [135]
aCalculated with respect to the dimeric unit found in the pre-catalyst 66
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substrates for catalysts 66 and 67. However, a broader substrate scope can be found

for the more reactive aminodienes (see Sect. 6.2).

The asymmetric hydroamination/cyclization of aminostilbenes has been studied

utilizing chiral bisoxazoline lithium catalysts [242] and enantioselectivities reach-

ing as high as 91% ee were achieved (Scheme 16). The reactions were performed

in toluene at �60�C to give the exo-cyclization product 69 under kinetic control.

However, the hydroamination/cyclization reaction in THF solution is reversible,

producing the thermodynamically favored endo-cyclization product 70 when

the reaction time was extended to 24 h.

Overall, although it has been clearly demonstrated that organolithium-catalyzed

asymmetric hydroamination is accessible, further development is essential, in

particular in terms of increasing the substrate scope.

6.1.3 Chiral Alkaline Earth Metal Catalysts

Similar to alkali metals, only few chiral alkaline earth metal complexes have

been applied in asymmetric hydroaminations of nonactivated aminoalkenes [155,

244–248] and one of the greatest challenges has been the development of a chiral

catalyst system that can resist facile ligand redistribution processes leading to

achiral catalytically active species. Therefore, it is not too surprising that many

systems are plagued with low enantioselectivities (Fig. 18, Table 18).

N N

O O

H H

NHMe

68

N Me

Ph

Ph

10 mol % 68
5 mol % nBuLi

5 mol % HNiPr2

toluene
–60 °C, 5 h

N Me

Ph

68: 99 % yield
91 % ee

N
Me

endo-productexo-product

10 mol % nBuLi
15 mol % HNiPr2

THF
–78 °C to rt

+

15 min 94 % 5 %
24 h 32 % 67 %

Ph

69 70

Time

Scheme 16 Kinetic vs. thermodynamic control in the lithium-catalyzed cyclization of amino-

stilbenes [242]
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The bis(amido) magnesium complex (S,S,S)-71 [244] as well as the chiral diketi-
minato calcium compound 72 [245], which is a chiral analog of 21a (Fig. 6),

showed very low selectivity for the intramolecular hydroamination, apparently

as a result of facile ligand redistribution reactions (Table 18, entries 1 and 2).

Although the tris(oxazolinyl)borate 73 was reported to be stable, only low selecti-

vities of up to 36% ee were obtained (Table 18, entry 4) [246]. In a marked contrast,

the chiral magnesium phenoxyamine complex 74 [155] displayed selectivities of up

to 93% ee as well as reactivity superior to that of the achiral analog 26 (Table 18,

entries 5–7; compare with Table 4). This promising example illustrates that

O

N

N

Ca

N

Me Me

(Me3Si)2N THF

N

O

Ph

O
N

Mg MeB

tBu

tBu

tBu

N

Mg

N
Me

H

Me
Ph

H

Ph
Me

72

NMe2

tBu

SiPh3

N

O Mg

Me

Bn

73 74

N

Mg

N
Me

(R, S, S)-71

Fig. 18 Selected examples of chiral alkaline earth metal catalysts for asymmetric hydroamination/

cyclization of aminoalkenes [155, 244–246]

Table 18 Alkaline earth-metal-catalyzed asymmetric hydroamination/cyclization of amino-

pentenes

NH2

R1 R1

cat.

H
N

R1

R1

R2

R2

Entry R1, R1 R2 Cat. [cat.]/[s], mol% T, �C t, h Yield, % %ee (config) Ref.

1 Ph, Ph H 71 10 22 0.17 99 14 (R) [244]

2 Ph, Ph H 72 10 20 1 98 10 (R) [245]

3 Me, Me H 73 10 80 120 80 27 (R) [246]

4 –(CH2)5– H 73 10 60 26 93 36 (R) [246]

5 Me, Me H 74 5 22 10 97 79 (S) [155]

6 –(CH2)5– H 74 2 22 4.5 99 85 (S) [155]

7 Ph, Ph Ph 74 2 �20 12 h 98 93 (S) [155]
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reactivity and selectivity levels of rare earth metal catalysts can also be achieved

with alkaline earth metal-based catalysts.

6.1.4 Chiral Group 4 Metal Catalysts

The development of group-4-metal-based catalysts for intramolecular hydro-

amination of alkenes has also led to several advanced systems for asymmetric

hydroamination (Fig. 19). Most group 4 metal catalyst systems exhibit inferior

reactivity and substrate scope (Table 19) in comparison to most rare earth metal-

and alkaline earth metal-based catalyst systems. They typically require high cata-

lyst loadings and elevated reaction temperatures. However, the recent development

of zwitterionic zirconium catalysts with significantly improved reactivities and

selectivities [60, 118] promises to close this gap.

The cationic aminophenolate complex (S)-75 readily cyclizes secondary amino-

alkenes with enantioselectivities of up to 82% ee (Table 19, entries 1–3) [62]. For

catalyst solubility reasons, reactions are commonly performed in bromobenzene

and require reaction temperatures of 100�C and catalyst loadings of 10 mol%.

The mechanism of this cationic system is thought to proceed similar to the s-bond
metathesis mechanism of rare earth metal-based catalyst systems (Scheme 2) [61, 62].

B(C6F5)4
-

Ph
N

N
Zr

O

O

tBu

tBu

tBu

tBu

+

N

N
P

P
Ar

O

Ar

Ar
Ar

O

Zr
NMe2

NMe2

N

N
Zr

NMe2

O

O

Mes

Mes

NMe2

(S)-75 (R,R )-76 (S )-77

O
O

N

N
Mes

Mes

Zr
NMe2

NMe2

(NHMe2)2

(S )-78 79

O
N

Ph

O N
Zr

NMe2

B

NMe2

Fig. 19 Selected group 4 metal catalysts for asymmetric hydroamination of aminoalkenes

(Mes ¼ 2,4,6-Me3C6H2; Ar ¼ 3,5-Me2C6H3) [60, 62, 249–254]
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Primary aminoalkenes do not react under these conditions, presumably due to a facile

a-deprotonation of the catalytic active cationic metal-amido species leading to an

unreactive metal-imido species [255]. The cationic catalyst systems are also prone to

double bond isomerization via C–H activation (Table 19, entry 2) that can signi-

ficantly diminish product enantioselectivity and yield [62].

In contrast to cationic group 4 metal hydroamination catalysts, their neutral

counterparts will generally react only with primary aminoalkenes and reaction

temperatures are typically higher (110–135�C). The chiral bis(phosphinic amido)

zirconium complex (R,R)-76 exhibits superior reactivity and enantioselectivity for

the cyclization of primary aminoalkenes in comparison to a wide range of diamido,

diolate, and aminoalcoholate titanium, zirconium, and hafnium complexes [249].

The cyclization of aminopentenes proceed with enantioselectivities as high as

80% ee, but formation of piperidines (Table 19, entry 7) is somewhat less selective.

Unfortunately, mechanistic studies indicate that this catalyst system undergoes

slow ligand redistribution reactions, leading to chiral catalytically inactive as well

as achiral catalytically active species.

Table 19 Asymmetric hydroamination of aminopentenes catalyzed by zirconium complexes

10–30 mol % cat.H
N

R1 R1

n

R3
N

R1

R1
n

R3
R2

R2

C6D6 or C6D5Br

Entry Cat. n R1 R2 R3 T, �C t, h Yield, % % ee (config.) Ref.

1 75 1 H Me H 100 4 100 60 [62]

2 75 1 Me Me H 70 48 70a 14 [62]

3 75 2 Me Me H 100 3 100 82 [62]

4 76 1 Me H H 115 24 95b 80 (S) [249]

5 76 1 H H H 135 72 33b 62 [249]

6 76 1 Me H Ph 135 24 93b 62 [249]

7 76 2 Me H H 85 24 99b 51 [249]

8 77 1 Me H H 110 3 80 93 (R) [250–252]

9 77 1 –(CH2)5– H H 110 3 96 82 (R) [250–252]

10 77 1 Allyl H H 110 4.5 88 74 (R) [250–252]

11 77 1 Ph H H 110 1.3 93 74 (S) [250–252]

12 77 2 Me H H 110 3 n.r. 21 [250]

13 78 3 Ph H H 120 51 94 60 [254]

14 79 1 Me H H rt 7 89 89 (R) [60]

15 79 1 –(CH2)5– H H 23 1.25 88 90 (R) [60]

16 79 1 –(CH2)5– H H 23 n.r. n.r. 97 (R)c [60]

17 79 1 Ph H H �30d 120 >95 98 (R) [60]

18 79 2 Ph H H rt 30 65 46 (R) [60]
a30% double bond isomerization
bIsolated as N-trifluoroacetamide
cReaction of the N-deuterated substrate
dReaction in THF-d8. n.r. ¼ not reported
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Higher enantioselectivities of up to 93% ee were achieved using the chiral

bis(amidate) zirconium complex (S)-77 (Mes ¼ 2,4,6-Me3C6H2), [250–253, 256],

but again the high selectivities are limited to the formation of pyrrolidines, and

unlike 75 and 76, only gem-disubstituted substrates were reactive.

Although the binaphthalenedicarboxamide zirconium complex (S)-78 [254]

closely resembles the structure of complex (S)-77, the altered connectivity of the

two amidate moieties to the axially chiral ligand backbone favors a more open k1

binding mode [257] of the N-mesityl amidate ligands that renders the metal more

electron deficient and the catalyst system more active. The increased reactivity may

be utilized to reduce catalyst loadings down to 0.5 mol% and reduce reaction

temperatures to 70�C in the formation of pyrrolidines. Unfortunately, the more

remote arrangement of the N-aryl substituents results in significantly diminished

selectivities in comparison to 77. However, the increased reactivity allows cycliza-

tion of a gem-diphenyl-substituted aminoheptene to give an azepane in 60% ee

(Table 19, entry 13). This result is particularly noteworthy, as aminohexenes and

aminoheptenes are frequently observed to undergo hydroaminoalkylation (via

a–C–H activation) instead of hydroamination (via N–H activation) [120].

A significant breakthrough in both catalytic activity and selectivity was achieved

with introduction of the chiral zwitterionic cyclopentadienyl-bis(oxazolidinyl)

borate zirconium complex 79 [60], which enjoys enhanced reactivity like its achiral

analog 33 (Fig. 8) [118] that allows reactions to be performed at temperatures

as low as �30�C. Enantioselectivities of up to 98% ee were achieved for amino-

pentenes, but not for aminohexenes (Table 19, entries 14–18). The catalysts exhibit

a significant primary kinetic isotope effect and an isotopic perturbation of enantio-

selectivity resulting in higher enantioselectivities for the N-deuterated substrates

(Table 19, entry 15 vs. entry 16). However, despite an incredible reactivity impro-

vement, 79 is also confined to gem-dialkyl-activated substrates and the unsub-

stituted aminopentene reacts only sluggishly even at 110�C.

6.1.5 Chiral Group 5 Metal Catalysts

Asymmetric hydroamination of aminoalkenes catalyzed by binaphtholate tantalum

complexes, e.g., 80 (Fig. 20), was reported recently [258]. Enantioselectivities of up

N

N
V

NMe2

O

O

Mes

Mes

NMe2

(R )-81(R )-80

O

O

SiPh3

SiPh3

Ta
NMe2

NMe2

NMe2

HNMe2

Fig. 20 Selected group 5 metal catalysts for asymmetric hydroamination of aminoalkenes

(Mes ¼ 2,4,6-Me3C6H2) [258, 259]

104 A.L. Reznichenko and K.C. Hultzsch



to 81% ee (37) were achieved with reactivity comparable to group 4 metal

complexes. Similar to most group 4 metal catalysts only aminoalkenes with

a primary amino group were cyclized. Interestingly, the tantalum and analogous

niobium complexes catalyzed the asymmetric intermolecular hydroaminoalky-

lation of terminal alkenes with N-methyl anilines with great chemoselectivity and

enantioselectivities of up to 80% ee [258]. The chiral bis(amidate) vanadium(IV)

complex (R)-81 showed also appreciable catalytic activity and enantioselectivity

(38) [259]. It is unclear if the catalyst retains theþ4 oxidation state and also related

vanadium(III) complexes showed comparable activity. However, the corresponding

bis(amidate) niobium(V) and tantalum(V) complexes were catalytically inactive.

NH2

H
N

>95 % conv.,
81 % ee (S)

(37)
C6D6,

120 °C, 30 h

5 mol % (R)-80

NH2

H
N

89 % conv.,
76 % ee

(38)
C6D6,

140 °C, 24 h

10 mol % (R)-81

6.2 Intramolecular Hydroamination of Dienes

As discussed in Sect. 3.3, the hydroamination of 1,3-dienes is quite facile due to the

transient formation of an Z3-allyl intermediate. Protonation usually leads to E/Z
vinylpyrrolidines and vinylpiperidines, while allyl isomers are observed less fre-

quently. Cyclizations with chiral lanthanocenes generally produce the E olefins

with high E selectivity (E/Z � 93:7, Scheme 17) [30, 31]. The reaction rates are

higher for aminodienes in comparison to the corresponding aminoalkenes, despite

increased steric encumbrance of the cyclization transition state. However, in most

cases, the increased reactivity goes at the expense of enantioselectivity. The amino-

octadiene 82 is an exception with 63% ee observed in a benzene solution at 25�C
(71% ee in methylcyclohexane at 0�C) using (S)-57-Sm (Fig. 14), which gave facile

access to (þ)-coniine 84 after hydrogenolysis of the Cbz-protected vinylpiperidine

83 (Scheme 18) [31].

The hydroamination/cyclization of terminal aminodienes can also be catalyzed

by chiral diamidobinaphthyl dilithium salts with up to 72% ee (Scheme 19) [134,

135]. Although the E/Z selectivity of the product is moderate in most cases, both

diastereoisomers can be obtained with comparable enantiomeric excess.
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6.3 Intramolecular Hydroamination of Allenes

Although hydroamination of allenes can be easily achieved with group 4 and group

5 metal catalysts, the stereoselectivity of these systems is rather limited. Several

attempts to perform asymmetric hydroamination/cyclization of aminoallenes

employing chiral aminoalcohols [260, 261] and sulfonamide alcohols [262] as

chiral proligands for titanium- and tantalum-based catalyst systems have produced

vinyl pyrrolidines with low selectivities only. While the titanium catalysts were

R*R*

H
N Ln

R

‡

R

H
N

Ln

(S)

(R)

H
N

R
R′NH2

(R)

H
N

+

R=H, not observed with
lanthanocene catalysts

Scheme 17 Stereomodel for the lanthanocene-catalyzed hydroamination/cyclization of amino-

dienes. The silicon linker bridging the two cyclopentadienyl ligands was omitted for the sake

of clarity

H2N

(R)

N

Cbz

(S )

N
H HCl

1) 5 mol % (S)-57-Sm
    C6D6, RT, 7d

2) Cbz-Cl, 2N NaOH,
    C6D6/ Et2O (3:2)

83: 91 %
E / Z = 97:3
63 % ee

1) H2, Pd / C,
    EtOH, RT

2) HCl, EtOH
    0 °C

84: 94 %
(2S )-(+)-Coniine·HCl

82

Scheme 18 Synthesis of (þ)-coniine�HCl via enantioselective aminodiene hydroamination/

cyclization [31]
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slightly more active, the tantalum catalyst system formed by reaction of Ta(NMe2)5
and one equiv of the sulfonamide alcohol 86 achieved the highest enantioselectivity

of 34% ee. (39) [262].

NH2
H
N

86

5 mol % Ta(NMe2)5
5 mol % 86

C6D6, 125 °C,
71 h

100 % conv.
34 % ee

NH OH

(39)

S

O

O
F3C

F3C
Ph

Thus, early transition metal catalyst systems have yet to reach the nearly perfect

degree of stereoselectivity (up to 99% ee) achieved with late transition metal cata-

lysts [263–266] and dithiophosphoric acids [267]. However, it should be noted

that these systems are confined to N-protected (tosylates, ureas, carbamates) amines

with reduced nucleophilicity, and the highly selective asymmetric hydroamination

of aminoallenes with simple amino groups remains a challenge.

6.4 Intermolecular Asymmetric Hydroamination

The asymmetric intermolecular hydroamination is arguably the most challenging

transformation in the context of hydroamination chemistry. Despite significant

progress over the last two decades in the development of hydroamination catalysts

in general, this particular area has seen little to no progress for early and late

NH2

10 mol % 85,
40 mol % MeLi

C6D6, 50 °C, 21 h

H
N

H
N

+

72 % ee 55 % ee

E: Z = 89:11, 62 % combined yield

85

NH
Bn

NH
Bn

Scheme 19 Lithium-amide catalyzed asymmetric hydroamination of an aminodiene [134, 135]
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transition metal catalysts. The main reason lies in the challenge presented by

intermolecular hydroamination of unactivated 1-alkenes (excluding ethylene) for

which only a limited number of examples are known [20, 65, 152]. On the other

hand, intermolecular hydroamination of alkynes or vinyl arenes is much more

feasible (Sect. 5) but the products are commonly achiral.

Recently, the intermolecular Markovnikov addition of simple aliphatic pri-

mary amines to unactivated 1-alkenes was achieved using the binaphtholate

yttrium complex 63a-Y (Fig. 15) [68]. The reaction requires high temperatures

and a 9–15-fold excess of the alkene was employed (Table 20). Secondary

amines and internal alkenes are unreactive; moreover, sterically hindered termi-

nal olefins also displayed significantly diminished reactivity (Table 20, entry 5).

Enantioselectivities of up to 61% ee were achieved despite the harsh reaction

conditions.

Although detailed mechanistic studies have not yet been performed, it is note-

worthy that the reaction exhibits first order rate with respect to the concentration of

catalyst and both reagents. This feature remarkably contrasts lanthanide-catalyzed

intermolecular hydroamination of alkynes [20] and base-catalyzed intermolecular

hydroamination of ethylene with secondary amines [152], which were both first

order with respect to the concentration of the alkene/alkyne and the catalyst, but

zero order in amine.
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Late Transition Metal-Catalyzed

Hydroamination

Naoko Nishina and Yoshinori Yamamoto

Abstract This chapter describes late transition metal complexes-catalyzed hydro-

amination, the formal addition of an H–N bond across a C–C multiple bond. Late

transition metal catalysis has been intensely developed in the hydroamination and

additions of various kinds of amines to C–C multiple bonds have been achieved.

The reaction pathways strongly depend on the choice of metal complexes,

substrates, and reaction conditions. This chapter is organized primarily based on

the difference in the mechanisms of hydroamination reactions, and in the scope

section concise summary of the hydroamination reaction is shown.

Keywords Carbon–carbon multiple bonds � Hydroamination � Late transition

metal � Mechanism � Nitrogen nucleophiles
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1 Introduction

+ H-NR2

+ H-NR2

H NR2

H NR2

Hydroamination, the formal addition of a H–N bond across a C–Cmultiple bond,

is considered to be a highly valuable and atom-economical process for the prepara-

tion of nitrogen-containing compounds [1–12]. This chemistry has been widely

studied with (1) organolanthanides, (2) alkali metals, (3) early [Ti, Zr] and (4) late

[Ru, Rh, Ir, Ni, Pd, Pt, Cu, Au] transition metals, and (5) heterogeneous systems.

Depending on the catalytic system, activation of either the C–C multiple bond or

the N–H bond takes place; the former activation occurs in the case of (4) late

transition metals, and the latter type takes place in the cases of metals (1)–(3) and

also (4). Accordingly, the reactions catalyzed by late transition metals have possi-

bility of taking the two different mechanisms, and the pathway strongly depends on

catalysts, substrates, and reaction conditions. Additionally, there are two other

important aspects of hydroamination; (a) the relative difficulty in achieving inter-

molecular hydroamination as compared to the intramolecular version and (b) the

relative difficulty in achieving the hydroamination of alkenes compared to that of

alkynes. To overcome the difficulty mentioned above and to make the mechanism

much clearer, the hydroamination catalyzed by late transition metals is still one of

the major topics and has been studied widely.

Consequently, the late transition metal-catalyzed hydroamination is focused in

this chapter. In general, the late transition metal catalysts are relatively stable in air

and tolerant of most of the polar functional groups. Accordingly, the catalysts are

convenient to handle and perhaps applicable to many industrial syntheses.

2 Thermodynamics in Direct and in Late Transition

Metal-Catalyzed Addition

2.1 Direct Addition

Theoretical studies indicate that the direct addition of amines to C–C multiple

bonds is feasible under standard conditions, because the process is slightly exothermic

or approximately thermoneutral [13–18]. For the intermolecular direct addition of

ammonia to ethylene, theoretically estimated free energy is �14.7 kJ/mol, but the
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reaction is hampered by a high activation barrier caused by electrostatic repulsion

between the electron-rich p-bonds and the amine nitrogen bearing a lone pair. For the

[2+2] cycloaddition of N–H to alkenes, it would be an orbital symmetry-forbidden,

and unfavorable due to the high energy gap between p(C¼C) ands(N–H). In addition
to these facts, increasing temperature tends to shift the equilibrium of the reaction to

the starting materials because of its highly negative entropy (�127.3 J/mol K).

Therefore, nonactivated C–C multiple bonds and nonactivated amines are inert to

the addition and a certain activation for the substrates is required. The hydroamination

can be mediated or catalyzed by various metal complexes capable of decreasing the

activation barrier.

2.2 Late Transition Metal-Catalyzed Addition

Ph + HNMePh

2 mol%
(tBuXantphos)Pd(OTf)2 (3)

Ph

NMePh

toluene-d8
at several temperatures

1 2 4

(80 °C ~ 110 °C)

ð1Þ

Recently, the thermodynamics for the additions of arylamines to vinylarenes

have been directly measured in palladium complex catalysis (Eq. 1) [19]. The

progress in reaction was monitored by 1H NMR at several different temperatures,

and the corresponding values of equilibrium constants are obtained. A van’t Hoff

plot using these values derives the values of enthalpy and entropy. For example, the

addition and retro-addition reactions of styrene (1) with N-methylaniline (2) in the

presence of (tBuXantphos)Pd(OTf)2 (3) were monitored; for the addition process at

80 �C, the equilibrium constant was found to be K ¼ 1.5 � 0.1 M�1, the enthalpy

DH ¼ �10.0 � 0.8 kcal/mol, and the entropy DS ¼ �27 � 4 cal/mol K, thus the

free energy DG ¼ �0.28 � 0.05 kcal/mol. This means that the reaction has favor-

able enthalpy and unfavorable entropy, but its free energy balances to nearly zero.

Due to a wide variety of reaction manners, it is not easy to give a generalized simple

scheme which incorporates all the reaction types. However, in most cases energetic

balances similar as mentioned above operate successfully pushing forward the

catalytic cycle.

3 The Reaction Patterns and Mechanistic Details

The mechanism of hydroamination catalyzed by late transition metals is classified

on the basis of the first elemental process, in which either a C–C multiple bond or an

amine is activated by the metal center (Scheme 1) [1, 3, 12, 20]. In the former type

(A, outer-sphere pathway), the nucleophilic attack of an amine occurs to the
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coordinated C–C multiple bond from outside of the metal complex. In the latter

type (B, inner-sphere pathway), the first process is the formation of metal amide

species, which is followed by coordination and insertion of a C–C multiple bond. In

either case, the catalytic cycle is terminated by the M–C bond cleavage. For late

transition metal catalysis, hydroamination may occur through various pathways,

and the detail strongly depends on the choice of metal catalysts, substrates, and

reaction conditions. It is known that Lewis acidic metals of d8 or d10 electron

configuration exhibit particularly high catalytic efficiency [21–23].

The reaction patterns mentioned in the following sections are classified into two

categories, A and B, and the studies on mechanistic details are mentioned in each

section for better understanding.

As complementary information, the M–C cleavage process makes the under-

standing of the catalysis difficult because organometallic intermediates of late

transitionmetals have strong tendency to undergob-hydride elimination (Scheme 2).

Actually, this type of reactions, oxidative amination, has been reported by

rhodium and palladium catalysis [24–26]. To preferentially promote hydro-

amination, the undesired b-hydride elimination should be suppressed, and the

use of chelate ligands is thought to be effective by preventing formation of any

[M]
NR2

[M]
NR2

or

-hydride elimination

direct protonolysis

protonation

reductive elimination

[M]

H

[M]

+ NR2

H
NR2

+

oxidative amination

hydroamination

[M]
NR2

H

H

path a

path b

Scheme 2 The outline of M–C bond cleavage
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[M]
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[M]
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[M] R4
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R2N R1R2
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A; Outer-sphere pathway

B; Inner-sphere pathway

Scheme 1 The outline of outer- and inner-sphere pathways
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coordination sites at metal [27], though several reactions including reversible

b-hydride elimination process are possible to release hydroamination product.

Although the details are remaining ambiguous, the protonolysis of M–C bond is

well studied by platinum complexes, and this process is thought to proceed by

following either way [28, 29]: path (a), a stepwise protonation at the central

metal of alkyl-Mn+ species by using nonbonding d-orbitals to give alkyl-Mn+2-

hydride species, which can be generated by aminometallation reaction discussed

in Sect. 3.2.2, followed by reductive elimination or path (b), a concerted proto-

nation at the s-bonding molecular orbital of M–C bond in nonoxidative manner

often called as direct protonolysis.

3.1 C–C Multiple Bond Activation Pathway

3.1.1 Outer-Sphere Pathway

There are many examples in which late transition metal-catalyzed hydroamination

is initiated by activation of a C–C multiple bond followed by nucleophilic attack.

Two types of initial coordination of a C–C multiple bond are conceivable; the direct

Z2-coordination of a C–C multiple bond and the more extended p-coordination
system such as a Z3-allyl system (or a Z6-arene system).

A symmetrically Z2-coordinated olefin is deactivated to nucleophilic attack; thus

it should be noted that slippage and deformation to Z1-coordination plays a crucial

role in activating for the nucleophilic addition (Eq. 2) [20, 30–32]. The theoretical

studies predicted that in the slipped Z1-coordinated olefin, a lowest unoccupied

molecular orbital (LUMO) is lowered in energy and localized on the b-carbon. The
slipping to Z1-coordination enables the interaction with external nucleophile and

the transition state would be Z1-like structure.

[M]

Nu

[M]

Nu
Nu

[M]

ð2Þ

The direction of nucleophilic attack was proved to be trans (from anti side of

metal) using platinum complex bearing a prochiral olefin. The diastereomerically

pure alkene-complex 5 reacted with an amine 6, to generate, after acid hydrolysis,

(S)-amine salt 7 corresponding to trans-addition (Eq. 3) [33–35].

H Et

Pt Cl

Cl

H2N
Ph

Me

Et2NH

1) Et2NH (6)

2) HCl Me

Et2HN Et

Cl
5 7

ð3Þ
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3.1.2 Nucleophilic Addition on Coordinated Alkenes or Alkynes

As a typical example, the intramolecular hydroamination of 6-aminohex-1-yne (8)

catalyzed by [Pd(Triphos)](OTf)2 (9) is shown in Scheme 3 [36]. By coordinating

directly to a Lewis acidic metal center (A), the C–C multiple bond turns feasible for

nucleophilic addition. After the nucleophilic addition to Z2-coordinated alkyne

occurred, the M–C bond of metal-vinyl intermediate C was cleaved to afford

hydroamination products. A remarkable enhancement of catalytic efficiency was

achieved by addition of a Brønsted acid as cocatalyst [37].

As detailed below, the evidences of the catalytic processes were brought out by

several methods utilizing rigorous systematic comparison of the mixtures of sub-

strate (aminoalkyne 8, 1-hexyne as an alkyne analogue, or 1-hexylamine as an

amine analogue), palladium complex (9 or its acetate analogue), and/or additive

(acid or base). (1) By titration calorimetry and in situ IR spectroscopy, it is suggested

that the initial interaction of 8 with palladium occurs at an amine moiety (B).

(2) From the NMR analysis of various reaction combination, the predominant inter-

mediate was fully assigned as C, which would be generated from the nucleophilic

addition of coordinated alkyneA, indicating that the intermediateAwould be brought

about through the isomerization of B and that the M–C cleavage ofC is rate limiting.

(3) In the deuterium labeling experiment, all the deuteriums of 8-d3 in the above

reaction were transferred to the product 10-d3, indicating that hydrogen shift occurs

more likely in intramolecular way probably by palladium assistance throughD,E, and

F [22]. (4)When an additive acid exists, it would act as cocatalyst in the following two

ways: (a) increase the coordination probability at alkynemoiety in 8 (A) by decreasing

the coordination ability of the amine moiety which would be converted into ammo-

nium salt, and (b) promote the protolytic cleavage of the M–C bond by utilizing

intermolecular way, such as protonation ofM–C bond or that of metal center [38–40].
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Scheme 3 An example of intramolecular hydroamination of aminoalkyne
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3.1.3 Nucleophilic Addition to Other p-Coordination Systems

Intermediacy of Z3-Allyl System

In addition to Z2-coordinated alkenes or alkynes, the Z3-coordinated allyl metals

undergo hydroamination. Z3-Allyl metal species of palladium and nickel are

considered to be generated as major species during hydroamination of allenes,

dienes, and trienes. Alkynes are also possible to produce Z3-allyl species via

isomerization process. In the reaction of vinylarenes, Z3-benzyl metal species is

generated as an intermediate.

For producing Z3-coordinated allyl metal species, two pathways are proposed as

shown in Scheme 4, and in either case an acid is involved, often added as a

cocatalyst or in situ generated; path (a) formation of metal hydride species followed

by coordination of C–C double bond and subsequent migratory insertion into M–H

bond [hydrometallation], and path (b) coordination of C–C double bond followed

by protonation of the coordinated alkene [41]. To the terminal carbon of the Z3-allyl

system, an amine attacks from external side. This type of hydroamination has

different characteristics in that the formation of C–H bond precedes by the forma-

tion of C–N bond, by contrast to the reactions of other mechanisms which have the

opposite bond-forming order, that is, the formation of C–N bond occurs first.

Pd
P P

Me

H
Pd

P P

MeH

OTf

NH2Ar2

Pd0

P

P
Ar1 , HOTfAr1

NHAr2

14 11

Ar2NH2 12

, HOTf

OTf
I H

G

Tol2
P
P
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PdII OTf
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Scheme 5 Hydroamination of vinylarene through Z3-benzyl palladium
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Scheme 4 Two pathways for producing Z3-coordinated allyl metal species in hydroamination
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As an interesting and informative example, the intermolecular hydroamination

of vinylarene 11 with arylamine 12 in the presence of pre-catalyst [(R)-Tol-
BINAP]Pd(OTf)2 (13) is shown in Scheme 5 [41–46]. Although �2-olefin com-

plex formation appears possible, the isolated and crystallographically

characterized species was syn-�3-benzyl metal complex H. Complex H leads to

the benzylic amine p-complex I through external nucleophilic attack of 12

directly to the benzylic carbon without pre-coordination to palladium. Finally

hydroamination product 14 is extruded through the ligand exchange with

vinylarene 11.

As detailed below, some of the elementary processes involved in the catalysis

were supported or substantiated experimentally. (1) An active catalyst appears to

be Pd(0) species G, which can be derived by Wacker-type oxidation with the Pd

(II) pre-catalyst 13, and it is well supported by the detection of oxidized

byproduct [41, 42]. (2) A syn-�3-benzyl metal complex H (and 18) was unam-

biguously determined. (3) In Eq. (4), treatment of a �3-benzyl complex 15, which

cannot generate olefin, with aniline (16) furnishes a benzylamine derivative 17 in

a high yield, and verifying nucleophilic attack of an amine to �3-benzyl
complexes is a facile process. (4) The steric course of the C–N bond-forming

process in stoichiometric reaction of enantio- and diastereomerically pure 18

with amine 16 gave (R)-19 predominantly, indicating that the nucleophilic attack

occurs from external side (Eq. 5). However, in the catalytic reaction, the config-
uration of predominant product was (S), opposite to the stoichiometric reaction.
The detection of minor species other than 18 proposed that the reaction of the

major species 18 with amine is slower than that of the minor isomers which lead

to (S)-19. This sort of phenomena has been frequently observed in asymmetric

hydrogenation [47].

[Pd] + PhNH2
NHPh

1615 17 87%)(87%)

ð4Þ

*

Me

H
Pd

P P

*

PhNH2 (16)
18 (major species)

Ar

NHPh

H
(R)-19

H

Me
Pd

P P

*

PhNH2 (16)

Ar

NHPh

H

(S)-19

Me Me

Me

H

Pd
P P

and/or

(minor isomers)

OTf

OTf

OTf

stoichiometric reaction

catalytic reaction

Nu

ð5Þ

Depending on the catalyst, alkynes can undergo hydroamination via prior

isomerization to allene followed by generation of �3-allyl intermediate (Scheme 6)
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[48–50]. To a hydridopalladium species J generated from Pd(PPh3)4 and benzoic

acid, hydropalladation of alkyne 20 and subsequent b-hydride elimination occur to

give allene 21 and to regenerate the active catalyst J (cycle I). Subsequent

hydropalladation of 21 with J affords the Z3-allyl palladium K, and external

nucleophilic attack gives hydroamination product 23 (cycle II). Intramolecular

version is also documented in Sect. 4.1.

Intermediacy of Z6-Arene System

A totally different approach for hydroamination of vinylarene is realized by inter-

mediacy of Z6-arene metal complex, facilitating nucleophilic attack of amines at

the vinyl linkage due to the electron-withdrawing effect of metal. This type of

activation might be brought by the use of d6 metals, such as Cr0, FeII, and RuII

which are relatively easy to form Z6-arene complexes [51].

An intermolecular hydroamination of vinylarene 1 with alkylamine 22 was

achieved by Ru(cod)(2-methylallyl)2 (25) with DPPPent and TfOH (Scheme 7)

[52, 53]. Two isolated and crystallographically characterized species were L andM

of Z6-arene metal structure. The vinyl group in L is in approximately the same

plane with the coordinated phenyl ring leading to the desirable conjugation for the

activation by remotely positioned metal. The intermediate M has a structure just

after the nucleophilic addition, also indicating the process of arene exchange to L.

The experiments illustrated in Eqs. (6) and (7) clearly indicate that the reaction

proceeds in an irreversible and direct manner. (1) In Eq. (6), the coexistent

hydroamination adduct 29 afforded neither free styrene nor crossover products,

indicating that the hydroamination is an irreversible process. (2) In the reaction

of 2,5-dimethylstyrene (27) with morphorine (28) in Eq. (7), an additive,

Markovnikov-type adduct 31, did not isomerize to anti-Markovnikov-type adduct.

(3) The kinetic study on the amination process revealed a large negative DS{

of �213 J mol�1 s�1, which is similar to the value of the nitroalkene amination.

The first-order rate constant of the arene exchange process is comparable to that of

the amination process. (4) The conjugate addition nature was confirmed by using

H-[Pd]-Y
H

Ph

[Pd]
H

HH

Y

Ph

Ph

[Pd]
Y

Ph NR2 Ph Me 20

21

23

HNR2

cycle Icycle II

22

J

K

Scheme 6 Isomerization–hydroamination process of alkynes
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3,5-dimethoxyphenyl analogue of DPPPent as an electron-deficient catalyst to

enhance the catalytic ability and the higher performance was observed. It is also

likely to be associated with the larger steric demand, which is envisioned to

facilitate the arene exchange process.

Ph
N

Ar
N

O

Ar
N

NBoc

NBoc

Ph
N

O

Ar +

O

H
N

29
(1 equiv.)

27
(2 equiv.)

28
(1 equiv.)

cat. Ru

[Ar=2,5-Me2C6H4]
30 (78%)

29 (93%)

+
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Ph

ð6Þ

Ph N
O

Ar +

O

H
N

Ar
N

O
Ph

N

O
31

(1 equiv.)

27
(2 equiv.)

28
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cat. Ru

30 (76%)

31 (99%)

+

not observed

ð7Þ

3.2 Amine Activation Pathway

3.2.1 Inner-Sphere Pathway

Activation of an amine by a coordinatively unsaturated late transition metal, which

leads to metal amide species, is also proposed as a potential pathway (Scheme 8).

Ru
Ph2P PPh2H

Ru
Ph2P PPh2H

NR2

HNR2
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L

22

126
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Scheme 7 Hydroamination pathway by Z6-arene ruthenium
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Amine activation pathway has been well studied in catalysis by lanthanides, early

transition metals, and alkali metals. In metal amide chemistry of late transition

metals, there are mainly two pathways to synthesize metal amide complexes

applicable under hydroamination conditions [54]. One is oxidative addition of

amines to produce a metal amide species bearing hydride (Scheme 8a). The other

gives a metal amide species by deprotonation of an amine metal intermediate

derived from the coordination of amines to metal center, and it often occurs as

ammonium salt elimination by the second amine molecule (Scheme 8b). Although

the latter type of amido metal species is rather limited in hydroamination by late

transition metals, it is often proposed in the mechanism of palladium-catalyzed

oxidative amination reaction, which terminates the catalytic cycle by b-hydride
elimination [26]. Hydroamination through aminometallation with metal amide

species demands at least two coordination sites on metal, one for amine coordina-

tion and another for C–C multiple bond coordination. Accordingly, there is a

marked difference between the hydroamination via C–C multiple bond activation,

which demands one coordination site on metal, and via amine activation.

3.2.2 Aminometallation Initiated by Oxidative Addition of Amines

In this type of reaction, the oxidation number of the metal changes by�2; therefore,

this pathway works well through the redox couple of metals such as Pd0/PdII,

Pt0/PtII, RhI/RhIII, IrI/IrIII, or Ru0/RuII. For the reaction to occur, active catalysts

should be compatible with all the changes of oxidation, coordination, and valence

electron numbers.

An intermolecular hydroamination using pre-catalyst IrCl(PEt3)2(C2H4)2 (32)

has been elucidated as an overall cis-addition of the N–H bond across norbornene

(33) (Scheme 9) [55]. The intermediate was crystallographically characterized as

complex P, which was derived from migratory insertion of 33 into Ir–N bond of O,

and both of its newly formed Ir–C and C–N bonds occupied the exo-face of 33.

[M]

[M]
NR2

H
NR2 H-NR2

[M]
H

NR2
H

Oxidative addition of aminesa

[M]

[M]
NR2

H
NR2 H-NR2

[M] NR2

H+

H+

Coordination-deprotonation process of aminesb

Scheme 8 Two pathways to generate metal amide species and successive hydroamination
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The isotope labeling experiments indicate that this reaction involves the elemen-

tal processes of oxidative addition and reductive elimination. (1) The reaction using

N,N-d2-aniline (16-d2) afforded Ir-D analogue (P-d2) as an intermediate, and finally

the product 34-d2 was produced in which deuterium labeling took place exclusively

at 3-exo position together with ND labeling. (2) The reaction using a mixture

of singly labeled intermediates P-d2 and P-15N, 34-d2 and 34-15N proceeded

quantitatively, though the crossover products such as non-labeled product 34 and

doubly labeled product 34-15N-d2 (in which two hydrogens of 34-15N were

converted to two deuteriums) were not obtained. These results have proved that

the N–H addition occurs oxidatively and the elimination of product reductively, not

involving deprotonation and protonation processes. The efficiency of catalysis was

improved using bisphosphine ligand with fluoride additive [56].

3.2.3 Aminometallation Initiated by Coordination of Amines

An alternative mechanism starts from the coordination of an amine, and the

successive deprotonation gives a metal amide species (Scheme 8b). Coordination

of a C–C multiple bond to this metal center is followed by migratory insertion into

the M–N bond. The newly formed M–C bond is cleaved by protonolysis to

regenerate the active metal species. The advantage of this pathway is that it does

not require the change of oxidation number of metal, and it looks similar in

mechanism to hydroamination of other group metals (for group 4 metals, metathet-

ical reaction takes place at the step of C–N bond formation) and partially similar in

mechanism to oxidative amination of late transition metals. However, so far, most

hydroamination reactions catalyzed by late transition metals can be explained by

the mechanisms discussed in Sects. 3.1 and 3.2.2. If the activation of the C–C
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Scheme 9 Hydroamination of norbornene catalyzed by iridium
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multiple bond is very difficult for some reasons and also the efficient redox cycle of

metal is difficult, the reaction might proceed in this pathway.

4 Scope of Late Transition Metal-Catalyzed Hydroamination

In the above sections, the mechanisms of the late transition metal-catalyzed

hydroamination have been discussed mainly. In this section, the scope of the

reaction is summarized concisely with selected examples. Due to space limitation,

not all the examples are covered and the detailed reaction sequences/processes are

not shown, but the catalysts used in the reactions are shown attached with reference

number (the “*” attached references report enantio-/diastereo-selective or chirality

transfer reactions). We hope that readers may understand what types of catalysts are

used in the hydroamination, in addition to what type of molecular transformation is

feasible in the hydroamination.

4.1 The Reaction Pathway Depending on Catalyst Species

As shown in Eq. (8), the reaction is able to proceed through either Z2-coordination

or Z3-coordination pathway, and it depends on the catalyst species used in the

reaction. In the reaction directed to left, Z2-coordination of alkyne followed by

nucleophilic attack to carbon-a occurs [22, 23]. On the other hand, in the reaction

directed to right, alkyne isomerization to allene takes place first, followed by Z3-

allyl coordination, and subsequent nucleophilic attack to carbon-b (the terminal

carbon of Z3-allyl metal species) takes place [48].

In the hydroamination of aminoallene, the product of Eq. (9) is comparable to that

of Eq. (8) through Z3-allyl coordination. It should be noted that the reaction of chiral

aminoallenes gives racemic products in the case of Z3-allyl metal system [49];

however, high chirality transfer occurs in the case of Z2-coordination system [57].

R

NHR'
N

R N
R'

R
Pd(MeCN)4(BF4)2

80 C,83%

Pd(PPh3)4 / PhCO2H
100 C,82%

R' = Ts etc.R' = H

b a

a
b

2-coordination 3-allyl coordination

ð8Þ
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NHTs

R

axially chiral allene

N
Ts

R

Pd2(dba)3.CHCl3
PhCO2H / L*

racemic;
no chirality transfer

AuCl
rt, 99%N

Ts
R

*

chirality transfer
ratio; 98%

PPh
2

PPh
2

100  C, 85%
L*

(9)

4.2 Intramolecular Hydroamination of Alkynes

The cyclization reactions of aminoalkynes proceed in endo- or exo-manner, and the

reactions are catalyzed by various kinds of metal complexes as shown below. When

the substrates of primary amine are used, the hydroamination products often

isomerize to cyclic imines. Most reactions afford 5- or 6-membered ring products.

• 5-endo cyclizations and the catalysts; Eqs. (10) and (11)

N
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NH2
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CO

CO

N

N

BPh4

[58]

N
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R1
NHR2 endo

Et2Zn [59]

ð11Þ

• 5- or 6-exo cyclizations and the catalysts; Eqs. (12)–(15)
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Y = B(C6F5)4 Y = SO3CF3 Y = SO3CF3 Y = SO3CF3

• 5- or 6-endo cyclizations of aminoalkynes bearing o-alkynylbenzene structure

and the catalysts; Eqs. (16) and (17)
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• 5- or 6-exo cyclizations of imidates and the catalysts; Eq. (18)
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ClAuP(C6F5)3 + AgSbF6AuCl3

[80] [81]

ClAuPPh3 + AgBF4

[81]

4.3 Intramolecular Hydroamination of Allenes
and Conjugated Dienes

The cyclization reactions of aminoallenes proceed also in endo- or exo-manner.

In the case of hydroamination of dienes, there are only limited examples.

• 5- or 6-endo cyclizations of aminoallenes and the catalysts; Eq. (19)
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N
R3

R2endo

R1

NHR3
( )n

R2
( )n

R1 ð19Þ

[84*]

AuCl + pyridine

[85]

AuCl3 AuCl

[84*][82] [82]

Ru3(CO)12 + Et3N Cu(OTf)2

[83]

AgNO3

• 5- or 6-exo cyclizations of aminoallenes and the catalysts; Eq. (20)

N
R3

exo

R1

NHR3

R2 R1

R2( )n
( )n ð20Þ

(1) Z2-coordination mechanism:

Chirality of allenes, ligands, and even anions can be well recognized.

AuCl3
AuBr3
AuCl

[57*, 88]

P

+ AgOTf

P

P

Au Cl

Au Cl

MeO

MeO

Ar2

Ar2

P

P

Au Cl

Au Cl

Ar2

Ar2

+ AgClO4 + AgY (Y = p-nitrobenzoate)

NH

R2N
Au Cl

[89*] [90* , 91*] [92*, 93*]

+ AgOTs

[94]

[87*]

AgBF4

[86]

AgNO3

ClAuPR3 + AgY*
O
O

P
O
O

R

R[95*] Y*

Au Cl
tBu2

(2) Z3-allyl coordination mechanism

Pd2(dba)3 CHCl3
+ L
+ PhCO2H

[49]

PPh2

PPh2L

Pd
Cl

Pd
Cl

+ dppf + AcOH
[96]

PdCl2 + L'
+ NaOAc + MA

(MA = maleicanhydride) N N

PhPh

L'
[97]

• Cyclizations of aminodienes and the catalysts; Eqs. (21)–(23) (see also Sect.

3.1.3.1)

The nucleophile addition occurs at either terminal or internal carbon of dienes.
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NH2
N
H

+
N
H

ð21Þ

Rh

[98]

BF4

NCMe

NCMe O
(R2N)2P P(NR2)2

R R

+ L
L

NHR2

R1

N
R2

R1 ð22Þ

Pd2(dba)3 CHCl3
+ L
+ PhCO2H

[49]

PPh2

PPh2L

NHR

( )n
exo

( )n

NR

ClAuPPh3 + AgOTf   [99]

ð23Þ

4.4 Intramolecular Hydroamination of Alkenes

The cyclization reactions of aminoalkenes proceed in exo- or endo-manner. Gener-

ally, higher reaction temperatures with increased catalyst loading and longer

reaction times are needed in the reactions of aminoalkenes, compared to those of

aminoalkynes or aminoallenes.

• 5- or 6-exo cyclizations and the catalysts; Eq. (24)

N
R3

exo
NHR3

( )n
( )n

R1R2

R2

R1 ð24Þ
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FeCl3
6H2O

[100]

Rh

[101]

Rh

[98]

BF4

NCMe

NCMe

+ L1 or L2

BF4

+ L1 or L3

N

PPh2

PPh2

Pd Cl Cl

+ AgBF4 + Cu(OTf)2

[27, 105]

Pt
Cl

Pt
Cl Cl

Cl

[106]

+ PPh3

[107]

Cu(OtBu)

O
(R2N)2P P(NR2)2

R R

R2N
PR2 PR2 NR2

PR2

OR
PR2

L1 L2 L3 L4 (S )-L5 (S )-L6

Ir

[103, 104]

Ir
Cl

Cl

[102*]

+ (S )-L5 or (S )-L6

+ L4 + L2

[108]

ClAuPR3 + AgOTf

[109, 110]

L4

[111]

O
R2P PR2

R R

[101]

+ L3

N
Zn

N

R

R

R
O

Zn
N

R

Zn
O

N

R

R

R

[65, 67] [65]

+ NEt3

[112]

BF4

O

Ar3PAu
AuPAr3

Ar3PAu
N

N

Ar

Ar

Au Cl

+ AgOTf

[113]

PPh3

PtCl2

• Cyclization of ammonium salts; Eq. (25)

N
R

exo
NH2R Y

( )n
( )n ð25Þ

ORRO

R2
P + AgOTf

[114]

Au Cl

• 5- or 6-endo cyclization and the catalysts; Eqs. (26) and (27)

N
R

endoNHR Ar

Ar

ð26Þ

Pd(OAc)2
+ L + ox
+ RCH2OH

N N

PhPh

L

N
PhO2S

PhO2S
F

ox
[115]

FeCl3 6H2O

[100]
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endo
NHR

Ar

N
R

Ar

ð27Þ

Rh

[116]

BF4

+ Ph2P
PPh2

4.5 Intermolecular Hydroamination

The intermolecular hydroamination reactions of alkynes and alkenes occur with

Markovnikov or anti-Markovnikov selectivity. The nucleophilic addition to allenes

occurs at terminal carbon of allenes not at central one.

• Markovnikov addition to alkynes and the catalysts; Eq. (28)

R1 + HNR2R3
R1

NR2

R1

NR2R3

[R3 = H]

[R3 H]

ð28Þ

Ru Ru

Ru3(CO)12

[117]

+ NH4PF6

[118]

Rh
BF4

+ PR3

[119]

P
Ph2

R
N

Pd OTf

[120]

PtBr2

+ nBu4PBr

[122]

MeAuPPh3

+ H3PW12O40

[123]

Au
N
Ar

B(C6F5)4

[124]

N

N

N
Au Cl

R

R'

[125]

Zn(OTf)2

[126]

Si

OC
OC

COH

Si

[127]

P
Ph2

Pd

Ph2
P OH2

OH2
OTf

2

[ ]2

[121]

Ir
N

Ph2
P CO

H

Cl

[71]

BF4

+ NaBAr4
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• Anti-Markovnikov addition to alkynes and the catalysts; Eq. (29)

Catalysts [128] and [129] gave Z-enamines as a minor product.

A vinylidene rhodium intermediate was supposed in the reaction of catalyst

[130].

NR2R3R1
R1 + HNR2R3

[R3 = H]

[R3 H]

NR2
R1

ð29Þ

N

N N

NN

N

H
B

Rh

[130]

+ PPh3

RuRu3(CO)12

+ PCy3 + PnBu3 + DMAP
N

NMe2

DMAP

[129][128]

• Nucleophilic addition to terminal carbon of allenes and the catalysts; Eqs. (30)

and (31)

The nucleophilic attack occurs often at less substituted terminal carbon like in

Eq. (30); however, the hindered terminal carbon can be attacked as shown in

Eq. (31).

+ HNR3R4

R1 NR3R4R1 R2

R2
[R2 = H or R] ð30Þ

Pd2(dba)3 CHCl3

[132]

AuBr3

[134*] [135]

Ph3PAuNTf2

[136*]

Au
N
Ar KB(C6F5)4

[137]

Cl
+ PPh3

+ Et3NHI

[131]

Cu(OTf)2

[83]

+ dppf

+ AcOH

AgOTf

[133]

ClAuPAr3

+ AgOTf

+ H2NR4

R1 NHR4
R1 R2

R3

R2 R3

ð31Þ

N

N
Au Cl

Ar

Ar [138]

+ AgOTf
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• Nucleophilic addition to terminal or internal carbon of dienes and the catalysts;

Eq. (32) (see also Sect. 3.1.3.1)

+ HNR1R2
NR1R2

NR1R2

and/or ð32Þ

Ni

+ dppf + CF3CO2H

[141][140]

Ru
R3P

PR3OC

Cl BF4
Ru

R3P

PR3OC

Cl
H

+ HBF4 OEt2

[139] [139]

O

P
Ph2

Ph2
P

Pd Cl

[41, 45]

Pd
Cl

Pd
Cl

+ (R,R)-L

[141*]

P

P
Ar

Ar

Ar

Ar

Pd OTf

[142]

Pd(PPh3)4

+ CF3CO2H

[Cu(MeCN)4]PF6

+ Bi(OTf)3 + dppe

[143]

ClAuPPh3 + AgOTf

[144]

ClAuP(OPh)3 + AgOTf
(microwave)

[145]

O
NH HN

O

P
Ph2

P
Ph2

(R,R)-L

• Markovnikov additions of alkenes and the catalysts; Eq. (33)

R1 R1

NR3R4

R2 + HNR3R4
[R2 = H or R]

R2 ð33Þ

R

PR2

PR2

R

RO
RO

PR2

PR2

PR2

PR2

PR2

O

O

O

O

R

R

(R)-L6 (R)-L7 (S)-L8L4

[152] [153]

Pt
OTf

OTf

[151]

P

P

Au

Au

Cl

Cl

Ru3(CO)12

[117]

ClAuPR3 + AgOTf

PPh3

[109, 110]

P(OPh)3

(microwave)

[145] [154*]

FeCl3

[146]

Cl
Ir

Cl
Ir

+ (R)-L6 or (R)-L7
+ base

[147*] [148*]

Pd
MeCN

solv

P

P
*

solv = MeCN
(S)-L6 or (S)-L8

OTf

2

[ ]2

Cu(OTf)2

+ L8

PtBr2

+ nBu4PBr (S)-L7
+ AgOTf

PR2

L10

L4 or L10

[154]

Fe

PR2

PR2

[149]

solv = H2O

L9

Pt
Cl

Pt
Cl Cl

Cl

+ AgBF4+ PR3

[150] [151]

L9
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• Anti-Markovnikov additions of alkenes and the catalysts; Eq. (34)

+ HNR2R3
R1 R1 NR2R3 ð34Þ

Rh BF4

[155]

O

Ph2
P

P
Ph2

P
R2

Cu

R2
P

NHPh
N
Ar2

Cu

Ar2
N

NHPh

[156] [156]

Ru
Ar2P PAr2H

OTf

R

[52, 53]

5 Conclusion

This chapter summarizes the late transition metal-catalyzed hydroamination focus-

ing on the mechanistic discussion and on the catalyst species. A great number of

metal complexes have been designed and they exhibit excellent catalytic properties.

Significant progress has been made in this research field; however, there still remain

difficult problems which should be overcome from synthetic point of view. For

example, the intermolecular reactions of simple alkenes and alkyl amines are not

able to proceed nicely. Further mechanistic studies and deep understandings for

reaction pathways and catalytic systems may solve such remaining problems.
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Chiral Metal Complex-Promoted Asymmetric

Hydrophosphinations

Sumod A. Pullarkat and Pak-Hing Leung

Abstract This chapter provides an account of the synthesis of a series of chiral

tertiary phosphines via the metal complex-assisted asymmetric hydrophosphination

methodology which involves secondary phosphines as the nucleophiles. Chiral aza-

and phosphapalladacycles are found to function as highly efficient templates or

catalysts for the asymmetric P–H addition reaction. The versatile protocol allows

for the asymmetric hydrophosphination of olefinic C¼C bonds of monophosphines

thus yielding a family of tertiary C*-diphosphines as well as C*P*-diphosphines,

depending on the nucleophile employed. The addition of two equivalents of HPPh2
to symmetrical bifunctionalized alkynes leading to generation of two new C*

centers is also supported. The air-sensitive nucleophiles and the unsaturated

substrates containing unprotected functionalities such as aldehyde, keto, ester,

cyano, and alcohol can be utilized directly under this mild and facile reaction

conditions. The methodology is equally efficient when applied to the generation

of P–N ligand systems via hydrophosphination of unsaturated pyridyl-based

substrates as well as systems with C¼N moieties. The protocol has also the added

advantage of allowing the selective formation of 1,1-, 1,2-, and 1,3-diphosphines

simply by judicious control of reaction conditions. This reaction can also be

extended to the synthesis of chiral triphosphine systems. This synthetic strategy

therefore promises to be a versatile approach for the generation of a wide range of

chiral tertiary phosphine ligands with potential applications in catalysis.
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1 Introduction

Over the past few decades, enantiomerically pure tertiary phosphines have attracted

considerable interest by virtue of the fact that they have proven themselves as

important ligands in asymmetric synthesis and catalysis [1–4].In spite of the

continuing interest in the development of analogous ligand systems such as those

involving carbenes, chiral phosphines have maintained their role as the most

frequently employed class of ligand auxiliaries in transition metal-catalyzed asym-

metric reactions. One of the most important type of phosphine ligands in this field

has been diphosphines bearing C-, P-, or both P- and C-stereogenic centers as well

as those incorporating planar chirality [5].

In the field of organophosphorous chemistry dealing specifically with the syn-

thesis of new phosphine moieties, the addition of P–H bonds to unsaturated

substrates assumes enormous significance in terms of synthetic value as well as

atom economy. However, due to the lack of a natural chiral pool and the inherent

configurational instability of phosphorous stereocenters (especially at the elevated

temperatures often required in their synthetic protocols), the direct synthesis of

tertiary chiral diphosphines containing P- and C-stereogenic centers has posed

considerable challenges to scientists working in the field. Asymmetric hydropho-

sphinations have therefore become a potentially effective, albeit enormously chal-

lenging, synthetic strategy for the preparation of chiral phosphines for potential

applications in asymmetric synthesis and biological studies. Such additions to

unsaturated carbon–carbon moieties can typically proceed via thermal [6–8], acidic

[9, 10],basic [11–13], or free radical [14–18] pathways leading to the formation of

a wide variety of phosphines including a wide array of diphosphine substrates.

Chiral metallacycles have been employed as auxiliaries for the promotion and

control of asymmetric reactions such as Diels–Alder cycloadditions involving

phospholes [19]. This synthetic methodology can be extended to the synthesis of

diphosphine motifs via asymmetric hydrophosphination of vinylic and other unsat-

urated phosphine-functionalized substrates. The advantages offered by these metal

complexes are listed below:

1. They are robust in a wide range of reaction conditions used for hydropho-

sphinations including the presence of bases.

2. They are easy to prepare in large scale and typically takes about a week’s time in

synthesis and purification.
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3. The stereochemistry and electronic properties exerted by these complexes in

scenarios such as Diels–Alder reactions have proved beyond doubt that they are

efficient at controlling the stereochemistry of chiral centers formed via the

intramolecular (exo cycloadditions) as well as intermolecular (endo cycload-

ditions) pathways, in predictable manners [19].

4. When used in hydrophosphination reactions where air-sensitive secondary

phosphines are employed, they afford simultaneous protection and assistance

in deprotonation of these species by coordination and subsequent activation of

the P–H bond, thus priming them for the subsequent attack on C¼C centers.

5. These complexes in most cases also provide the avenue for isolation via frac-

tional crystallization or column chromatography of the diastereomeric chiral

diphosphines and their comprehensive characterization while coordinated to the

metal center using 1H (1D and 2D ROESY), 13C, and 31P NMR as well as by

single-crystal X-ray diffraction.

6. The coordinated diphosphines are quite robust and can be stored for a long

period of time in air, and they provide easy access to the free chiral phosphine

ligands via a simple liberation procedure. This also allows the synthesis of

various transition metal derivatives for purposes such as catalyst screening.

The aim of this chapter is to review the work conducted on the asymmetric P–H

addition reactions involving secondary phosphines controlled, promoted, and

catalyzed by palladacycles. A recent comprehensive review covering P–H additions

has been published by Glueck et al., and this review will not replicate topics

discussed in that work [20]. Other aspects of P–H additions such as those involving

addition of phosphine adducts or phosphine oxides are dealt with in a separate

chapter of this volume [21]. The chapter has been categorized based on the kind of

substrates on which the P–H addition was undertaken.

2 Asymmetric Hydrophosphination of 1-Alken-1-ylphosphines

Since the pioneering work by Knowles, Sabacky, Horner, and coworkers in the late

1960s [22, 23], the development of optically pure P-chiral phosphorous ligands

with the aim of incorporating them as auxiliaries for the design of chiral metal

catalysts has attracted significant attention. The fact that the very first P-chiral

diphosphine, DIPAMP, proved to be a very efficient motif in the design of metal

catalysts for hydrogenation reactions further fuelled this interest [24]. On the other

hand, diphosphines with chiral carbon center(s) in their backbones, such as DIOP

and ChiraPhos, are another class of phosphine ligands that have shown their

potential in asymmetric catalysis [25–27]. In this context, the asymmetric addition

of a P–H moiety across the C–C double bond of an unsaturated compound such

as an alkene is one of the most straightforward reactions that can produce such

compounds.
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In terms of understanding the mechanistic aspects involved in such additions on

vinylic substrates via organometallic catalysts, analogies have been drawn to the

hydroamination reactions [28–30]. Chiral metal complex-promoted asymmetric

hydroaminations have been proposed to follow two different pathways. The first

involves a sequence that commences with the oxidative addition of the N–H bond

onto the metal ion followed by the insertion of the olefin and subsequent reductive

elimination of the chiral substrate. An alternative pathway has also been proposed

which involves the nucleophilic attack by the free amine on a coordinated olefin

and a final protonolysis sequence, which leads to the release of the final product.

Similar studies on metal ion-induced hydrophosphinations have been reported, and

the mechanisms suspected to be in play include those proposed by Glueck and

coworkers which basically involves the oxidative addition of a secondary phos-

phine followed by an olefin insertion [31]. Togni and coworkers have also observed

in certain scenarios the coordination of the olefin to the catalyst metal center

followed by the addition of a secondary phosphine across the C–C double bond

[32].

Chiral cyclometallated complexes have proven to be effective in asymmetric

C–C bond forming reactions, and this body of work has been reviewed previously

[19] with extensive amount of data added subsequently [33–38]. In view of the

efficacy of that methodology in the activation and subsequent stereocontrolled C–C

bond formation reaction (of what in most cases were essentially two phosphine

moieties), it seemed logical to explore the possibility of using a similar protocol for

P–C bond formations.

Diphosphine ligands such as 1,2-bis(diphenylphosphino)propane (ProPhos) and

1-phenyl-1,2-bis(diphenylphosphino)ethane (PhenPhos) have been traditionally

prepared from naturally occurring chirons via tedious manipulations. PhenPhos,

for instance, was first synthesized from chiral mandelic acid via a 3-step transfor-

mation [39, 40]. These two diphosphines are good illustrations for the efficacy of

the chiral palladacycle-based methodology for the synthesis of C-chiral dipho-

sphines in their enantiomerically pure form. The general synthetic protocol adopted

for the synthesis of ProPhos and PhenPhos is shown in Scheme 1. One of the very

first reactions on which the methodology was tested was the hydrophosphination of

diphenyl-1-propenylphosphine [41]. It needs to be noted in this context that

under ambient conditions, both (E)- and (Z)-diphenyl-1-propenylphoshines do not

exhibit any reactivity toward typical hydrophosphinating agents such as diphenyl-

phosphine when treated directly in the absence of a metal ion. The vinylphosphines

were therefore coordinated to the chiral auxiliary (S)-1 thus selectively generating

the monophosphine palladium complex 2. The kinetically inert Cl ligand trans to
the C of the cyclopalladated ring was subsequently replaced by a labile moiety such

as perchlorate in order to allow simultaneous coordination of both phosphine

moieties on the metal center.

Subsequent addition of diphenylphosphine to the solution under nitrogen at �78�C
led to the generation of the hydrophosphination products in 16 h as evident from

the 31P{1H} NMR spectrum of the crude reaction mixture. The cis-trans
regioisomeric pairs 4a,b and 5a,b are the four possible stereoisomeric products of
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the hydrophosphination reactions. Regioisomers 4a,b have the same S abolute

configuration at the newly generated chiral carbon whereas 5a,b have the

R absolute configuration on the C-chiral center. For the reaction involving

(Z)-diphenyl-1-propenylphosphine bearing Pd complex 3a, the 31P NMR spectrum

in CDCl3 exhibited three pairs of doublets in the ratio of 8:3:1. However, when

monitored over several days, it was found to form an equilibrium mixture in which

a fourth stereoisomeric product was also detected as a minor component with a new

product ratio to 25:25:4:1. This is attributed to the steady state attainment in a cis-
trans isomerization process which has been known to occur in similar diphoshine

chelates with retention of absolute configuration [42]. It is noteworthy that the ratio

of the two major products had changed from 8:3 to 1:1. Subsequent isolation of the

major isomers via fractional crystallization in 64% yield led to their identification

by single-crystal X-ray diffraction analysis, as regioisomers 4a,b. Further treatment

of the regioisomers with hydrochloric acid led to the chemoselective removal of the

naphthylamine auxiliary yielding the optically pure neutral dichloro palladium

complex (S)-6 in 92% yield (Scheme 2).
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Treatment of the dichloro complex with aqueous cyanide under mild reaction

conditions led to the isolation of the optically pure (S)-(�)-ProPhos in 95% yield in

2 h. This protocol also allows the opportunity to confirm whether the isolated free

phosphine’s optical purity has been compromised during the liberation process.

This is a standard protocol which is used in all subsequent reactions discussed in

this chapter. As seen in Scheme 2, 7a and 7b are the enantiomers of complexes 5a

and 5b and, therefore, in the absence of any chiral shift reagent, they exhibit exactly

the same chemical shifts. It is important to note that enantiomer (R)-(+)-ProPhos
can also be prepared in a similar efficient manner by using the equally accessible

complex (R)-1 as the chiral auxiliary.

In order to get a better understanding of the manner in which the stereochemical

control is exerted during the course of this reaction, we studied a similar reaction

involving the (E)-isomer 3b and found that the predominant products were 5a and

5b with R absolute configuration at the chiral carbon center. It was also found

during the course of this study that strong bases led to the erosion of stereose-

lectivity possibly due to a hydrogen abstraction process.

A similar protocol as detailed above was also later used in the asymmetric

synthesis of PhenPhos using the same chiral auxiliary [43]. For the reaction of 3c

with diphenylphosphine (Scheme 1), three products were formed in the ratio 12:2:1

and, for 3d, two were formed in the ratio 6:1 with 4d and 5d being the major

products (21% yield) and only trace amounts of 4c and 5c being formed. The

optically pure 4d was subsequently isolated by fractional crystallization.

The synthetic methodology is not limited to diphosphines and could easily be

extended to the asymmetric synthesis of triphosphine ligands such as 1,1,2-tris

(diphenylphosphino)ethane (Scheme 3) [44]. Although the free triphosphine itself

is not chiral in this instance, a chiral center is generated once it is chelated to

a metal. Nucleophilic addition of diphenylphosphine to the metal template activated

1,1-bis(diphenylphosphino)ethane proceeds smoothly to give a (solvent indepen-

dent) equilibrium mixture of four diastereomeric products in an equilibrium ratio of
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17:5:2:3. The nucleophilic addition is believed to proceed through a sterically

unfavorable and kinetically labile four-membered chelate complex which subse-

quently rearranges to the less-strained five-membered products. In order to confirm

this, the preformed triphosphine ligand was directly used (Path B, Scheme 3), and it

led to the formation of the five-membered chelate in the same equilibrium ratio.

Subsequent to the attainment of equilibrium (via either Path A or B) over

a period of one day, a stereoselective oxidation of the complex was attempted

using aqueous hydrogen peroxide (30%) with the aim of obtaining a chiral mixed

phopshine–phosphine oxide ligand. The monooxidation products were obtained in

the ratio of 14:3:3:1. Subsequent to removal of the chiral auxiliary, the major

isomer was crystallized out in 40% yield and comprehensively characterized.

The efficacy of the chiral auxiliary is not limited to the generation of the C-chiral

centers in these systems and can very well be extended to simultaneous generation

of both P- and C-chiral centers during the asymmetric hydrophosphination. The

asymmetric hydrophosphination of (E)/(Z)-diphenyl-1-propenylphosphine using

the racemic secondary phosphine (�)-PhEtPH and employing the same chiral

auxiliary (R)-1 has also been studied [45]. It needs to be noted that since the

hydrophosphination agent itself in this instance is a racemic secondary phosphine

with an unstable configuration. The coordination of (�)-PhEtPH to the metal center

can therefore generate two different stereocenters on the phosphorous, thus

generating up to eight stereoisomeric products in the absence of chiral control.

This is indeed a very challenging scenario in phosphine chemistry. However, the

reaction of (E)-diphenyl-1-propenylphosphine with (�)-PhEtPH showed excellent

selectivity with only four products formed in the ratio 9:5:1:1 (9:5 being subse-

quently confirmed as the regioisomeric ratio) with the major product being isolated

via fractional crystallization in 60% yield (Scheme 4). The high yield is due to the

crystallization-induced asymmetric disequilibration [46]. A similar reaction carried

out with (Z)-diphenyl-1-propenylphosphine formed four stereoisomeric products in
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the ratio 24:13:2:1. The major product in this instance was isolated in 40% yield.

In order to understand the chiral directing influence better, a hydrophosphination

reaction involving (�)-PhEtPH and diphenylvinylphosphine was carried out using

(S)-1. The reaction yielded the two possible diastereomeric complexes in the ratio

14:1. A chromatographic separation of the diastereomeric mixture gave the major

product in 20% yield (Scheme 5).

The ability of the chiral auxiliary for simultaneous control of P and C chirality was

also seen in the asymmetric hydrophosphination of phenyldi[(Z)-prop-1-enyl]phos-
phine with high regio- and stereoselectivity under mild conditions (Scheme 6) [47].

The hydrophosphination reaction generated only two diastereomers in the ratio

of 1:1. Both 9a and 9b adopt the same absolute configuration at the C-chiral center.

The reaction exhibited high regioselectivity with the diphenylphosphino group

being added exclusively to the b-carbon of the phenyldi[(Z)-prop-1-enyl]phosphine
to form five-membered rings exclusively. It is noteworthy in this instance that only

one of the two 1-propen-1-yl groups in (R)-8 reacted with diphenylphosphine. In

contrast to the reaction involving 1,1-bis(diphenylphosphino)ethene, the dangling

vinyl group in diastereomeric complexes 9a and 9b did not react further with excess

diphenylphosphine to form the triphosphine. This is further indication that the

hydrophosphination reaction requires both the secondary phosphine and the sub-

strate to be coordinated simultaneously onto the palladium template during the

course of the addition reaction. The kinetic stability of the five-membered

diphosphine chelate and the sterically congested environment around palladium

deter the excess secondary phosphine from approaching the palladium center. This

results in excellent regioselectivity in instances where multiple centers of

unsaturation are present for a nucleophilic attack.
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3 Asymmetric Hydrophosphination of Functionalized

Phosphines

It is conceivable that the presence of selected functionalities on diphosphine

skeletons can have an impact on both reactivity and enantioselectivity when

employed in catalysis and also on their biological activity when used in fields

such as chemotherapy [48–53]. Addition of P–H bonds to functionalized substrates

with C–C multiple bonds continue to pose considerable challenges in view of the

potential effects on the integrity of the functional group (especially in protocols that

require thermal activation, strong bases, Brønsted acids, or radical initiators). The

unique electronic and steric factor brought into play by these functionalities during

the hydrophosphination process also needs to be taken into account. In view of

the abovementioned factors, metal complexes offer superior reactivity, regio-

selectivity, and stereocontrol in hydrophosphination reactions in comparison with

other reaction promoters such as strong bases, acids, and free radicals. The mild

conditions required also means that many functional groups can be tolerated on

substrates without any elaborate protection deprotection sequence.

One of the first functionalized substrates subjected to the asymmetric P–H

addition promoted by metal complexes were phosphine-functionalized alkenols,

viz., 3-diphenylphosphinobut-3-en-1-ol and 2-diphenylphosphinoprop-2-en-1-ol

(Scheme 7) [54]. The target was the diphosphine ProPhos which had previously

been prepared by tedious organic manipulations extending to 14 steps from a chiral

pool consisting of malic and L-ascorbic acid [55, 56]. The hydrophosphination

reaction employing (R)-1 was carried out as shown in scheme 7 and showed exc-

ellent selectivity in the case of 3-diphenylphosphinobut-3-en-1-ol (four isomeric

products in the ratio 2:18:1:4) and moderate selectivity in the case of 2-diphenyl-

phosphino prop-2-en-1-ol (1:2:5:8). Isomer 12a was the major product in the case

of 3-diphenylphosphinobut-3-en-1-ol (n ¼ 1), and for 2-diphenylphosphinoprop-2-

en-1-ol (n ¼ 2), 11a and 11b co-crystallized out. The two analogous substrates

gave products that differ in the chirality at the newly formed carbon center.
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The contrasting product stereochemistry may be due to the formation of a pseudo 5-

coordinated intermediate with an axial Pd–O interaction as seen in the solid-state

X-ray structure of the longer chain complex (R)-10 (n ¼ 2) (Fig. 1).

The Pd–O interaction therefore imposes a steric directing effect during the

subsequent nucleophilic attack. This Pd–O interaction is less favorable in the shorter

chain complex (n ¼ 1) and leads to a significantly lower chiral discrimination.

This protocol can be extended to cyano-, ester-, and keto-functionalized mono-

phosphines (Scheme 8). For the ester and keto protocols, the allylic and homoallylic

monophosphines were synthesized via a versatile one-pot process [57]. Subsequent

asymmetric hydrophosphination of the coordinated substrates promoted by the

chiral auxiliary gave the corresponding functionalized chiral 1,2-bis(diphenyl-

phosphino)ethane and 1,3-bis(diphenylphosphino)propane ligands in high yields.

For the cis-ester-functionalized monophosphine palladium complex (n ¼ 1),

only two regioisomeric products were observed and isolated in 87% yield with S
absolute configuration being formed exclusively at the newly generated carbon

center. For the trans-ester monophosphine palladium complex (n ¼ 1), three iso-

meric products were formed with again S absolute stereochemistry at the newly

formed chiral center with absolute stereoselectivity of 10:1. For the analogous

trans-keto monophosphine palladium complex (n ¼ 1), the hydrophosphination

gave three isomers in the ratio 1:16:2. The major regioisomers, again with
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S absolute stereochemistry indicative of the efficacy of stereocontrol by the tem-

plate complex, could be isolated in 78% yield. Similarly for the trans-ester
monophosphine palladium complex (n ¼ 2), four products were formed with

stereoselectivity of 4:1, and the major regioisomeric products with R absolute

Fig. 1 Molecular structure of (R)-10 showing the Pd-O interaction. Reprinted with permission

from Pullarkat SA, Yongxin L, Tan GK, Leung PH (2006) Inorg Chem 45:7455. Copyright 2006

American Chemical Society
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configuration were isolated in 66% yield. For the trans-keto palladium complex

(n ¼ 2), the isomers were formed with stereoselectivity of 7:1, and the major

regioisomers with R absolute configuration at C isolated in 75% yield.

The asymmetric hydrophosphination of the cyano-functionalized phosphine has

also been undertaken in view of the potential for further manipulation of the cyano

moiety to formyl and hydroxyl functionalities [58]. This will serve as an elegant

method for accessing these functionalized diphosphines. The diastereoselective

hydrophosphination reactions of the cis-cyano-functionalized phosphine complex

(n ¼ 1) gave the chiral 1,2-bis(diphosphino)ethane products in high yield (90%)

and stereoselectivity (S isomer formed exclusively). For the trans analogue, the

absolute stereoselectivity was 10:1 with the S isomer being the major product.

The subsequent organic transformations of the cyano group of the chelated diphos-

phine product posed unique challenges due to the inherent kinetic and chemical

instability issues. However, reduction using DIBAL-H yielded the formyl-func-

tionalized complexes, and further reduction of the regioisomers with DIBAL-H

could chemoselectively yield the hydroxyl-functionalized products (Scheme 9).

During all these manipulations, the stereochemical integrity of the diphosphine

remains intact. This synthetic method therefore provides access to a wide range of

functionalized chiral 1,2-diphosphine ligands with high enantioselectivity.

The flexibility of the protocol is not limited to the generation and subsequent

transformations of functionalized 1,2-diphosphine systems in an asymmetric man-

ner. The same methodology can also be used to access optically pure diphosphines

containing the 1,3-bis(diphenylphosphino)propane backbone analogous to
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(S)-ChairPhos, a class of ligands that have proven to be powerful bidentate ligands

in transition metal-catalyzed asymmetric reactions (Scheme 9, n ¼ 2) [59]. While

the chiral complex controls the stereochemistry of the intermolecular hydropho-

sphination reaction, the dangling functional groups probably play an important role

in the activation of the C¼C bonds in these long chains. The Pd–P coordination in

this instance would be too far to effectively activate the olefin moieties for nucleo-

philic attack. Accordingly, ester-, keto-, and cyano-functionalized 1,3-diphosphines

can be generated via the addition reaction. Transformations of the cyano moiety in a

procedure similar to that employed for the 1,2-diphosphines to obtain formyl- and

hydroxyl-functionalized 1,3-diphosphines have also been achieved [60]. As part of

this library of functionalized 1,3 diphosphines, hydrophosphination of 3-(diphenyl-

phosphino)propanal (Scheme 10) to afford hydroxyl-functionalized 1,3-

diphosphines directly has also been studied [59]. This work assumes significance

in view of the fact that addition of a secondary phosphine to an aldehyde is usually

rather complex, as the process has been proven to be reversible, and the

corresponding adducts are prone to isomerization to form phosphine oxides.

Metal chelation, however, rendered the system stable, and the solution of the

enantiomerically pure complex can be kept for 15 d in dichloromethane without

loss of optical purity. However, the lack of stability rendered the usual ligand

liberation protocol redundant in this case, unless the hydroxyl group is transformed

into other functionality such as an ester prior to liberation.
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4 Asymmetric Hydrophosphination of Pyridylphosphines:

Access to Chiral P–N Ligands

Chiral pyridylphosphines which incorporate a soft p-acceptor and a relatively

harder s-donor have been attracting interest in view of their applications in

asymmetric catalytic scenarios such as allylic substitution, hydrogenation,

hydrosilylation, hydroboration, etc., [61–68]. The hydrophosphination of (E)-1-
phenyl-3-(pyridin-2-yl)-2-propenone and methyl (E)-3-(pyridin-2-yl)-2-propenoate
has been conducted as shown in Scheme 11 [69]. Interestingly, the former gave

stereoisomeric five-membered P–N bidentate products in the ratio of 8:1 (major

isomer shown in Scheme 11) while the latter gave exclusively one chiral

six-membered P–N chelate product.

The difference in regioselectivity seen at the site of attack of the nucleophilic

phosphido moiety during its addition to the activated alkene can be explained by

the difference in coordination mode of the phenyl (E)-1-phenyl-3-(pyridin-2-yl)-2-
propenone and methyl (E)-3-(pyridin-2-yl)-2-propenoate. It has been previously

reported that the palladium site which is trans to the strong p-accepting naphthylene
ring show high preference toward the ketone but not the ester [70]. As shown

in Scheme 12, the attack of the phosphido moiety on the O-coordinated
ketone substrate gives the P–O chelate which subsequently rearranges into the ther-

modynamically more stable five-membered P–N ring. On the other hand, the N-
coordinated ester substrate leads directly to formation of the stable six-membered

P–N ring. Clearly, the unique electronic properties of the palladacycle direct the

different modes of substrate coordination efficiently and generate the P–O and P–N

six-membered rings with opposite configurations.

This body of work was the first efficient asymmetric synthesis of the keto-

and ester-functionalized C-chiral pyridylphosphine ligands via an asymmetric

hydrophosphination reaction. The methodology has also been extended to generate

P chirality in such P–N ligand motifs. The reaction of 2-vinylpyridine with

(�)-PhEtPH as shown in Scheme 13 proceeded smoothly and generated two
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diastereomers in the ratio 1.5:1, and the major and minor products can be separated

by a single crystallization to give the products in 51% and 31% yield, respectively

[45]. The exclusive formation of the six-membered P–N ring in this case is
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consistent with previous observation wherein pyridine N-coordinates to the Pd

center during the course of the nucleophilic addition reaction (Scheme 12).

Recently it has been demonstrated that the methodology can also be used

on (E)-N-(pyridin-2-ylmethylene)-based substrates wherein it involves the addition

of the nucleophile across the imino C¼N bonds with diastereoselectivities up to

1:20 in favor of the S isomer (Scheme 14) [71, 72]. The presence of the imino

nitrogen in this instance is the predominating electronic factor which dictates

the regioselectivity of the nucleophilic addition reaction and leads to the exclusive

generation of the five-membered chelate.

5 Asymmetric Hydrophosphination Involving Other Substrate

Systems and Development of a Catalytic Protocol

The generation of a phosphine-functionalized substrate and its coordination to the

chiral metal template in order to activate the unsaturated C¼C bond toward

nucleophilic attack is a prerequisite for the hydrophosphination reactions seen in

previous sections. However, in the case of activated alkynes such as dimethyl

acetylenedicarboxylate or its diketone analogue, this pre-preparation of the

phosphinoalkene is not necessary, and a direct hydrophosphination using two

equivalents of diphenylphosphine in the presence of trace amounts of base was

found to promote the two-stage hydrophosphination in a one-pot process with

diastereoselectivity of 6:1 and in quantitative yield (Scheme 15) [73].

The one-pot synthesis of the difunctional diphosphine may also be modified to

allow the synthesis of chiral heterobidentates. The addition reaction with alkynes

occurs via a stepwise mechanism, and the phosphinoalkene intermediates can be

generated chemoselectively when stoichiometric amount of diphenylphosphine is

used. A second portion of selected coordinating nucleophile, such as dialkyl

amines, can then be added directly into the reaction mixture to form the

corresponding hetero-P–N bidentates in technically quantitative yields with high

diastereoselectivity (19:1) (Scheme 16) [74].

When a carboxylate or ketone-substituted alkyne was used for the hydropho-

sphination reaction, the corresponding monophosphine-substituted intermediate

exists as a classical enol–keto equilibrium mixture, which is sensitive to the pH

of the reaction. Therefore, by regulating the amount of triethylamine as a

noncoordinating external base, the (1,1)- and (1,2)-addition pathways could be
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controlled chemoselectively [75]. In the instance of the addition of diphenyl-

phosphine to 3-butyn-2-one, for example, (Scheme 17), the reaction can be con-

trolled effectively to specifically yield either the (1,1)- or (1,2)-addition products

depending on the amount of external base used (2 mol % vs. 20 equiv). The 1,1-

addition product can be converted efficiently into the enantiomerically pure

diphosphine monoxide by a simple treatment with hydrogen peroxide.

Unlike the unsaturated systems seen so far, allenes by virtue of the presence of

two p-orbitals perpendicular to each other exhibit reactivities as well as selectivities
which are very different from the aforementioned unsaturated systems in a catalytic

scenario [76–78]. Reports on the hydrophosphination of allenes (even the non-

asymmetric version) are quite rare and plagued by poor chemoselectivity [18]. The

chiral metal-mediated asymmetric hydrophosphination methodology has been able

Me

Me

CMeO2C C CO2Me
NMe

Pd

Cl

P
Ph2

NMe

Pd
N

P

CO2Me

CO2Me

R2

Ph2

+

ClO4
-

Me

Me

N

Me Me

Me

Pd

Cl

2 CO2Me

CO2Me

PPh2H

AgClO4 NR2H

KCN

R = Me, >98%; R = Et, >90%

MeO2C
CO2Me

PPh2

NR2

Scheme 16 Sequential hydrophosphination and asymmetric hydroamination protocol for the

synthesis of P-N ligands

NMe
Pd

NCMe

NCMe

Me2

P
Ph

H
Ph

2
+

C CH R

excess NEt3

NMe
Pd

P

P

Me2
R

Ph2

Ph2

trace NEt3

NMe
Pd

P

P

Me2 Ph2

Ph2

R

R =COMe,COOEt

Scheme 17 Effect of base in the formation of 1,1 and 1,2-additions products

Chiral Metal Complex-Promoted Asymmetric Hydrophosphinations 161



to achieve the first reported asymmetric hydrophosphination of cumulated unsatu-

rated bond systems as shown in Scheme 18 [79].

The presence of ester or keto functional group is a critical factor, and nonconju-

gated allenes tested did not undergo this hydrophosphination reaction under the

same conditions. The amount of triethylamine in this instance was also found to

have an impact on selectivity with 10% of amine (based on diphenylphosphine)

being the optimum for achieving the desired regio- and stereoselectivity.

The flexibility and potential of this chiral auxiliary continues to show scope for

expansion, and recently they have proven to be extremely efficient in certain catalytic

versions of the asymmetric P–H addition process (Table 1) [80]. Very few catalytic

asymmetric syntheses of chiral tertiary phosphines by hydrophosphination have been

Table 1 Palladacycle promoted catalytic hydrophosphination of enonesa

+ Ph2PH
Cat. (5mol %)

R1 R

O

R1
*

R2

OPh2P H Me N

Me Me

Pd

NCMe

NCMe
ClO4

Cat =

Entry R1, R2 Temp �C Time Yieldb (%) ec (%)

1 Ph, Ph �80 23 h 65 (99) 98 (77)

2 Ph, 2-Naph �80 50 h 53 (99) 94 (74)

3 2-Naph, Ph �80 60 h (99) (86)

4 2-Naph, 1-Naph �80 6 d 48 (97) 96 (57)

5 4-ClC6H4, Ph �80 40 h 70 (99) 98 (77)

6 Ph, 4-ClC6H4 �80d 6 d (96) (57)

7 4-BrC6H4, Ph �80d 7 d (92) (51)

8 4-NO2C6H4, Ph �80 6 d 67 (99) 88 (70)

9 3-NO2C6H4, Ph �80 4 d 41 (99) 85 (55)

10 4-OHC6H4, Ph �80 7 d 40 (98) 99 (73)

11 4-MeOC6H4, Ph 20 40 h (97) (33)
aConditions: 0.35 mmol Ph2PH, 5 mol % of catalyst, 5 mL THF, 1.1 equiv of enone, 0.5 equiv of

Et3N were reacted at the given temperature, unless otherwise noted
bYields of isolated products after a recrystallization. In parentheses are the yields of isolated

products before recrystallization
cee after a recrystallization determined from 31P{1H} NMR integration of the signals. In

parentheses are the ee’s before recrystallization
dTemperature raised gradually to 0�C for another day after indicated time
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reported in literature [81, 82]. Among the few asymmetric catalyses reported,

Pt(0)-(Me-Duphos) and Pt(0)-(diphos) complexes catalyze hydrophosphination of

a,b-unsaturated esters and nitriles with low enantioselectivity [83–86], Ni(II) com-

plex catalyzes hydrophosphination of methacrylonitrile [32, 87], and organocatalysts

catalyze hydrophosphination of nitroalkenes and a,b-unsaturated aldehydes [88–91].
However, phosphine oxides, phosphine sulfides, or phosphine boranes were usually

obtained as products instead of tertiary phosphines due to the fact that these

phosphines are quite air sensitive and difficult to handle and achieve [92]. Reduction

or removal of borane is therefore necessary in order to get the desired tertiary

phosphines.

Apart from being air sensitive, the generally stable M–P coordination renders

technical difficulties in the elimination of the tertiary phosphine product in catalytic

process involving transition metal ions as catalysts. However, the asymmetric

hydrophosphination of aromatic enones could be catalyzed by the same organo-

palladium (II) complex with high yields and stereoselectivity (Table 1).

It is noteworthy that some of the tertiary phosphine products could be purified to

100% optical purity by a simple recrystallization from dichloromethane/acetone.

Table 2 Improved Phosphapalladacycle catalyst for the hydrophosphination of eneonesa

+ Ph2PH
Cat. (5mol %)

R1 R2

O

R1
*

R2

OPh2P H Me P

Ph Ph

Pd

NCMe

NCMe
ClO4

Cat =
-80 oC

Entry R1 R2 Time (h) Yieldb (%) eec (%)

1 Ph Ph 2 99 (90) 98 (>99)

2 4-NO2C6H4 Ph 2 99 (89) 98 (>99)

3 3-NO2C6H4 Ph 8 99 (85) 96 (>99)

4 4-ClC6H4 Ph 4 99 (90) 98 (>99)

5 4-F C6H4 Ph 5 99 (91) 99 (>99)

6 4-CF3C6H4 Ph 2 99 (91) 96 (>99)

7 4-MeC6H4 Ph 12 99 (90) 99 (>99)

8 4-MeOC6H4 Ph 30 99 (92) 99 (>99)

9 2-Naph Ph 7 99 (91) 99 (>99)

10 2-Naph 4-FC6H4 7 99 (89) 97 (>99)

11 Ph 4-ClC6H4 4 99 (89) 97 (>99)

12 4-FC6H4 4-ClC6H4 5 99 (90) 97 (>99)

13 4-ClC6H4 4-FC6H4 4 99 (90) 98 (>99)
aConditions: 0.30 mmol Ph2PH, 5 mol % of cat, 5 ml THF, 1.0 equiv. of enone, 0.5 equiv. of Et3N

were reacted at �80�C, unless otherwise noted
bYield was calculated from 31P{1H} NMR. In parentheses are the yields of isolated products after a

single recrystallization
cee was determined from 31P{1H} NMR integration of the signals. In parentheses are the ee’s after

a single recrystallization
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From the mechanistic standpoint, the catalytic cycle is carried forward due to the

labile nature of the products in the presence of excess secondary phosphine. This is

consistent with the observation in which the generally inert P–Pd coordination in

the trans N–Pd–P moiety becomes kinetically labile when it is treated with even

slight excess of tertiary phosphine ligand. Following this concept, a new phos-

phapalladacycle-based C–P catalyst has been recently developed (Table 2) [71, 72].

The new C–P catalyst is indeed found to be superior to its C–N analogue, as the

substrate–Pd coordination is weaker in the trans P–Pd–P coordination moiety and

the P–Ph groups in the catalyst are able to control the stereochemistry of the

addition reactions better than the N–Me counterparts. Selected examples of hydro-

phosphination reactions catalyzed by this phosphapalladacycle catalyst is given

in Table 2.

In summary, asymmetric P–H additions leading to the direct enantioselective/

diastereoselective formation of optically pure mono- and polydentate tertiary

phosphines are thus a field that has more room for development. This is true

especially in the realm of catalytic P–H additions as illustrated in the preceding

sections wherein design of better catalysts is currently attracting much attention.

It is thus foreseeable that in the near future even more types of enantiomerically

pure tertiary phosphines with a large range of functionality will be soon available

via the asymmetric hydrophosphination reaction.
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Recent Progress in Transition Metal-Catalyzed

Addition Reactions of H–P(O) Compounds

with Unsaturated Carbon Linkages

Masato Tanaka

Abstract Organophosphorus compounds are playing important roles in our daily

life covering a wide range of applications from medicinal use to flame-retardant

materials. Although classical synthetic methodologies are still used to synthesize

them, the addition reactions of H–P(O) compounds such as H-phosphonates,
H-phosphinates, and sec-phosphine oxides have been developed to partially replace
the classical methods and are envisioned to be an indispensable tool in the near

future. This chapter intends basically to provide recent progress in the field, but

not a full scope on the reaction since the same subject was already written by the

author in 2004.

Keywords H-phosphinate � H-phosphonate � Hydrophosphinylation �
Hydrophosphorylation � Secondary phosphine oxide
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1 Introduction

Synthesis of organophosphorus compounds still depends on the classical

methodologies such as Michaelis–Arbuzov reaction, Grignard reactions, and radi-

cal addition of H–P compounds. However, since the middle of 1990s, transition

metal-catalyzed addition of H–P(O) compounds to unsaturated carbon linkages has

become a powerful alternative. The new procedure is particularly useful in terms

of regioselectivity, since the long-known radical addition to unsaturated carbon

linkages produces linear products mainly [1]. The review article published in

2004 [2] summarized the development since the first scientific report on this

type of reactions, covering the reactions of H-phosphonates, H-phosphinates,
hypophosphorous acid derivatives, and sec-phosphine oxides with alkynes, alkenes,
and dienes (Scheme 1). This chapter intends to cover the progress since the review

although radical and base-catalyzed processes will not be mentioned. Major efforts

made over the period comprise detailed understanding of the catalysis, elucidation
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of the mechanism, development of new catalysts, expansion of the scope of the

reaction (new substrates and the reagents), and application of the catalysis to

prepare useful products. This chapter is categorized basically according to the

structures of the substrates and reagents. Occasionally, however, the categorization

will be neglected since it is not always easy to distinctly separate. The reaction has

been the subject of several review articles [3–6].

2 Addition Reactions of H-Phosphonates and Related

Reagents with Alkynes

According to the detailed results [7] on the nickel-catalyzed addition of

H-phosphonate to terminal alkynes [8], the reaction of HP(O)(OMe)2 with 1-octyne

run in ethanol at room temperature gives the linear isomer as major product

(Scheme 2). As is anticipated in view of the influence of acidic additives found

with palladium catalysts [9], the same reaction run with diphenylphosphinic acid

added as an additive reverses the regioselectivity (branched/linear ¼ 92/8). HP(O)

Ph(OEt) and HP(O)Ph2 behave similarly.

In mechanistic study, the species 1 (Scheme 3), generated upon treatment of Ni

(PEt3)4 with Ph2P(O)H (2 equiv.) at 0�C, reacts readily with 1-octyne to afford the

same products as in the catalytic reaction. Species 1 appears to adopt a trigonal

bipyramidal configuration, but has not been characterized by X-ray analysis.

Beletskaya and coworkers have made a detailed look at the catalysis by palla-

dium and nickel [10]. As has been well known, palladium-catalyzed addition of HP

(O)(OEt)2 with aryl- and heteroarylalkynes proceeds to form branched products. As

far as phenylacetylene is concerned, the highest regioselectivity is achieved when

+

n -C6H13

HP(O)(OMe)2

Ni(PPh2Me)4 (0.5 mol %)

EtOH, 20 °C, 5 h

Ni(cod)2 (1 mol %)
PPh2Me (4 mol %)
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n-C6H13
P(O)(OMe)2

96 %  (branched/linear = 7/93)

n-C6H13
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91 % (branched/linear = 92/8)

Scheme 2 Ni-catalyzed hydrophosphorylation of 1-octyne in the absence and presence of

Ph2P(O)OH

Ni(PEt3)4

+
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P O

H
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dppb ligand is used. An attempted reaction of HP(O)(OSiMe3)2, in view of easy

transformation of the possible silyl ester product to free acid, failed. Although they

have made mechanistic arguments on the two possibilities, either Pd–H or Pd–P(O)

insertion, they have not given a conclusion.

They have also examined in detail the effect of reaction variables, solvents, and

additives such as NEt3, g-terpinene, and various acids, in the palladium-catalyzed

reaction of HP(O)(OiPr)2with 1-heptyne to search for an optimized procedure [11].

Then, they ran a series of reactions of HP(O)(OiPr)2 and longer-chained congeners

with various alkynes using Pd2(dba)3 (3 mol%), Ph3P (12 mol%, P/Pd ¼ 2), and an

acidic additive CF3COOH, resulting in preferential formation of branched products.

Nickel-catalyzed addition of H-phosphonates with alkynes was also revisited

using mainly HP(O)(OiPr)2 and 1-heptyne [12]. Among the catalyst systems tested,

the combination of [Ni(acac)2] (Ni(acac)2 can be in situ reduced to Ni(0); see [13])

and dppe appears best performing and affords branched products as major products

(Scheme 4), at �100�C depending on the structures of H-phosphonate and alkyne.

Use of monophosphines and other diphosphines did not display catalytic activity.

A mechanistic possibility involving coordination of the C�C bond to the Ni

center followed by external attack of H-phosphonate in its P(III) tautomeric form

is excluded because of the cis-adduct formation. Mechanistic study by DFT calcu-

lation on the insertion of a C�C linkage into a Ni-P(O) bond has suggested

that the process is thermodynamically feasible (Scheme 5). They considered two

possibilities, one involving dissociation of a phosphorus end in dppe and the other

taking place without dissociation. The former appears kinetically favored, and the

TS involved in the latter process appears to be less favored from the kinetic view

point. DFT analysis to compare hydronickelation and phosphonickelation will be

discussed in the following section.

Comparison of the catalytic performance of Pd and Ni complexes in the addition

of HP(O)(OiPr)2 with 1-heptyne has also been examined in detail [14]. Although

the performance varies depending on the structures of the catalyst precursors and

the substrates, the variation of the performance may have come from the complica-

tion due to (a) the difference in the ease of generation of active species from

+

70 %

n-C5H11 HP(O)(OiPr)2

Ni(acac)2 (9 mol %)
dppe (18 mol %)

THF, 100 °C, 24 h
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Scheme 4 Ni-dppe-catalyzed hydrophosphorylation of 1-heptyne
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precursors and (b) involvement of side reactions such as oligomerization. They

have concluded that the genuine catalytic performance of Ni- and Pd-based systems

estimated after excluding these two factors is quite comparable. DFT calculation to

compare hydrometalation and phosphometalation for the nickel catalyst (Scheme 6)

has suggested that hydronickelation appears to be a no barrier spontaneous process

while phosphonickelation has to go through a low barrier, although the process is

also exothermic.

Further theoretical study to clarify alkyne insertion into various M–P and

M–H bonds generated as intermediate in H–P bond addition reactions has

suggested the following general trends [15]; (1) insertion into M–H is more

facile and (2) the relative reactivity decreases in the orders of Ni > Pd > Rh >
Pt and PR2 > P(O)R2 > P(O)(OR)2. These conclusions appear to agree with

most of the experimental results, although the detailed mechanism in real cataly-

sis can be variant, depending on the specific cases.

HP(O)(pin), a five-membered H-phosphonate, reacts with terminal alkynes to

afford dehydrogenative double addition products in the presence of PdCl2 or other

Pd(II) compounds used as precatalyst without phosphine ligand at 100�C for

16–22 h (Scheme 7) [16]. Although a similar reaction of HP(O)Ph2 forming

(E)-adducts has already been reported (Sect. 4) [17], the new reaction of pinacol

phosphonate using Pd(II) is totally different in which it affords (Z)-adducts, for
instance, 2 from n-octyne. Simple H-phosphonate like (MeO)2P(O)H does not react

H H

Ni P(O)(OMe)2

H

H

Ni

P(O)(OMe)

H
H

H
Ni

PH3

P(O)(OMe)2

H

H OMe

H H

Ni P(O)(OMe)2H

H H

Ni P(O)(OMe)2H

0.00< 1.0

- 26.7 - 26.0

14.5

TS

TS

H3P

H3P

H3P

H3P

R
el

at
iv

e 
en

er
gy

(k
ca

l/
m

ol
)

Scheme 6 Thermochemical profile of hydrometalation and phosphometalation

+ HP(O)(pin)

2 51 %
HP(O)(pin) =

O
P

O

O

H

n -C6H13

(h3-allylPdCl)2
(3 mol % Pd)

toluene, 100 °C
-H2

(pin)(O)P P(O)(pin)

n -C6H13

Scheme 7 Dehydrogenative double phosphorylation of alkyne

Recent Progress in Transition Metal-atalyzed Addition Reactions 171



under the same conditions. The reactions using Pd(PPh3)4 or PdCl2/Ph3P (PPh3/

Pd ¼ 4) ends up with simple addition, and the double addition product is not

formed as major product. As anticipated by the stoichiometry of the reaction,

addition of hydrogen acceptors such as styrene, acrylonitrile, and methyl acrylate

boosts the yield of 2 up to 74%.

A mechanism involving a Pd(II)/Pd(IV) catalytic cycle is proposed for the

dehydrogenative double addition (Scheme 8). Isolation of dimeric Pd(II) complex 3

upon treatment of HP(O)(pin) with (�3-allylPdCl)2 and its reaction with 1-octyne

forming 76% of 2 support the mechanism. A model complex of a structure

somewhat different from 3 shows phosphopalladation with 1-octyne, which is

provided to rationalize the transformation from 3 to 2 via the elemental steps

shown in Scheme 8.

Hypervalent H-spirophosphorane 4a has been found to add to alkynes

(Schemes 9 and 10) [18]. However, H-spirophosphoranes 4b and 4c having

catecholate and ethylene glycolate residues in place of pinacolate do not furnish

similar adducts even under forcing conditions. For instance, a reaction of 1-octyne

with 4a effected using 3 mol% Pd(OAc)2 at 80
�C for 2 h forms hypervalent adduct

5 in 95% yield. Other alkynes, inclusive of internal ones, also afford >73% yields
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(�96% regioselectivities), while alkenes are unreactive. The products can be

hydrolyzed to plain alkenylphosphonates or further to alkenylphosphonic acids

in 77–86% yields. A mechanism via hydropalladation shown in Scheme 11 is

proposed.

Hydrophosphorylation of alkynes via external attack of H-phosphonate to an

(alkyne)metal complex is a possible pathway, although the possibility has been

concluded to be less likely as far as the nickel-catalyzed reaction is concerned [12].

However, such a process appears to proceed in early transition metal carbonyl-

catalyzed reactions [19]. For instance, refluxing a mixture of phenylacetylene,

HP(O)(OEt)2, and Mo(CO)6 (10 mol%) affords the trans-addition product

P
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O
H+ P
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O

O

O
5 95 %n-C6H13
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Scheme 10 Addition reaction of H-spirophosphorane with terminal alkynes
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quantitatively (Scheme 12), suggesting the mechanism illustrated in Scheme 13,

which involves an external nucleophilic attack of the H-phosphonate. An inter-

mediate (alkyne)Mo(CO) species can be isolated. Due to the lack of the details of

the reaction, however, it is premature to further discuss the mechanism.

Due to the successful development of the catalyzed hydrophosphorylation, its

extension to functionalized alkynes is becoming of interest. Nickel-catalyzed

addition of H-phosphonate (and also H-phosphinate and sec-phosphine oxide) to

propargylic alcohols is an interesting example, as discussed later (Sect. 4).

Another interesting example is nickel-catalyzed addition of H-phosphonate to

ynamides [20]. The reaction of HP(O)(OEt)2 shown in Scheme 14 does not proceed

in the presence of potential promoters (catalysts) such as TfOH, AIBN, and Lewis

acidic metal salts of Ag, Au, Cu, and Pt. Pd(PPh3)4 does display a weak activity, but

NiBr2 has proved to be the catalyst of choice affording (E)-aminovinylphosphonate

6 in 75% isolated yield under optimized conditions in refluxing toluene. Other

H-phosphonates also react similarly, showing that HP(O)(OiPr)2 is most reactive

giving 97% yield under nearly the same conditions, while HP(O)(OPh)2 is totally

unreactive. As for the ynamides, various aromatic ones can participate in the

reaction successfully, but an alkyl ynamide affords a much less yield.

Ph + HP(O)(OEt)2 reflux

Mo(CO)6
(10 mol %) Ph P(O)(OEt)2

quantitative

Scheme 12 Mo-catalyzed hydrophosphorylation of terminal alkynes
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Scheme 13 Proposed

mechanism of Mo-catalyzed
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Since the reaction is efficiently promoted by Ni(II) bromide, the mechanism is

envisioned to be very much different from those catalyzed by Pd(0) and Ni(0).

Presumably, an alternative mechanism shown in Scheme 15, in which NiBr2 works

as a Lewis acid, is most probable.

Compound 7, a proposed structure for the antibiotic A53868, has been synthesized

via a sequence of reactions involving nickel-catalyzed hydrophosphorylation of a

propargyl amine derivative in the presence of diphenylphosphinic acid (Scheme 16)

[21]. Although the compound is not identified with the natural A53868, it also

displays antimicrobial activity against Escherichia coli.
Another synthetic application starting with functionalized alkynes is the tandem

addition-cyclization process. Such processes in the presence of radical initiators have

been reported. The first metal-catalyzed version is exemplified by the following

experiments [22]; thus, when 1,6-heptadiyne is treated with HP(O)(OMe)2 in the

presence of Pd(OAc)2 and dppben [1,2-bis(diphenylphosphino)benzene] at 130�C,
cyclized product 8 is formed in 76%yield (Scheme 17).N,N-dipropargyl-p-tosylamide

reacts similarly, but the major product is pyrrole derivative 9 due to extensive double

bond isomerization. Extension to H-phosphinate and sec-phosphine oxide is also

N R

R
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R

EWG

R
+

HP(O)(OR  )2 

N
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R

N R
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+

–

P(OH)(OR )2

P(OH)(OR )2

P(O)(OR )2

Br
6

[NiII]
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(EWG = Ts or other electron-withdrawing groups)

Scheme 15 Proposed mechanism of NiBr2-catalyzed hydrophosphorylation of ynamide
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+
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Ph2P(O)OH

P(O)(OBn)2
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Scheme 16 A synthetic application of Ni-catalyzed hydrophosphorylation
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possible. These reactions are not so high yielding due to the formation of various

side products. However, addition of Brønsted acids like Ph2P(O)OH in the reaction

of HP(O)Ph2 improves the yields dramatically (Sect. 4).

3 Addition Reactions of H-Phosphinates and Related H–P(O)

Compounds with Alkynes

The addition reaction of H-phosphonate with terminal alkynes in the presence of a

monodentate phosphine-palladium complex proceeds to form branched products,

while the reaction of HP(O)Ph2 gives linear products unless acidic promoters such

as Ph2P(O)OH is present in the reaction system. Because of the conflicting nature of

branched-directing alkoxy and linear-directing phenyl groups bound to the phos-

phorus center, the addition of ethyl phenylphosphinate HP(O)Ph(OEt) ends up with

a nonselective mixture of the possible two isomers. Interestingly, however, highly

branched-selective addition has been realized simply using dppe and related ligands

in the place of monodentate phosphines (Scheme 18) [23]. It is also interesting to

note that the reaction using a large excess of PtBu3 in the place of dppe in toluene or

run using PPh3 in ethanol forms the linear product preferentially. The new recipe

using dppe is applicable to the reaction of HP(O)Ph2 to switch the regioselectivity

from the linear to the branched (Sect. 4).

CuI (10%) in conjunction of amine ligands, typically ethylenediamine, catalyzes

the addition of Ph(EtO)P(O)H to phenylacetylene to afford the linear product 10b in

82% yield with >99% regioselectivity (Scheme 19) [24]. The same procedure also

works for sec-phosphine oxides (Sect. 4).
Hydrophosphorylation of alkenes and alkynes with phosphinic acid derivatives

such as alkyl phosphinates [H2P(O)(OR)] and anilinium phosphinate [PhNH3�OP
(O)H2] is successfully catalyzed by palladium complexes, in particular those ligated

by xantphos and dppf [25]. Polymer-bound palladium catalyst 11 has proved to

catalyze the same reactions with phosphinic acid to give good yields, although the

H-P(O)(OMe)2

P(O)(OMe)2

N +
N

Ts

Ts

9 57 %

+ 8 76 %

Pd(OAc)2 (5 mol %)
dppben (7.5 mol %)

130 °C, 3 h

H-P(O)(OEt)2

P(O)(OEt)2

Scheme 17 Tandem addition-carbocyclization involving hydrophosphorylation
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scope of alkenes and alkynes as substrates is somewhat narrow as compared with

homogeneous counterparts (Scheme 20) [26].

In view of reusability of the catalyst and easy separation/purification of the

products, the new procedure is advantageous in practical applications, e.g., the

synthesis of fosinopril sodium (Scheme 21).

Although nickel complexes are able to catalyze the addition of alkyl

phosphinates to alkenes and furnish acceptable yields under optimized conditions,

palladium catalysts are generally better in performance. In contrast, for alkynes,

both terminal and internal, nickel catalysts, inclusive of phosphine-free NiX2

(X¼Cl, Br, I), have proved to promote the reaction efficiently [27], whereas

palladium catalysts are poor in the reaction of internal alkynes. The Ni-catalyzed

addition of alkyl phosphinates to internal alkynes proceeds under rather mild

conditions (refluxing CH3CN, 3 h) even in the presence of moisture and air

(Scheme 22). Terminal alkynes also undergo the addition reaction, but they furnish

a mixture of regioisomers. Microwave irradiation is beneficial to reduce the reac-

tion time to a few minutes. Mechanistic detail has not been disclosed yet. H2P(O)

(OR) is likely to reduce NiX2 to catalytically active Ni(0) species, which can be

ligated by alkyl phosphinate present in the reaction mixture. The reaction of D2P(O)

(OEt) confirms that cis-addition has taken place.

HP(O)Ph(OEt) ++
toluene
100 °C, 3 h

10a 10b
Ph

P(O)Ph(OEt)Ph

P(O)Ph(OEt)

yield

10a 10b

*Run in ethanol

52 28

89 1

79 16

10 82

13 57

Ph

Pd(OAc)2
ligand

ligand(P / Pd)

PPh3 (3)

dppe (3)

xantphos (3)

PtBu3 (20)

PPh3 (3)*

Scheme 18 Ligand effect in hydrophosphorylation of phenylacetylene with ethyl

phenylphosphinate

HP(O)Ph(OEt)+
DMSO

90 °C, 10 h 10b 82 %
Ph

P(O)Ph(OEt)

Ph

CuI (10 mol %)

H2N(CH2)2NH2 (1.5 equiv)

Scheme 19 Cu-ethylenediamine-catalyzed hydrophosphorylation of phenylacetylene with ethyl

phenylphosphinate
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Scheme 20 Use of polymer-bound palladium catalyst in hydrophosphorylation
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Scheme 21 A synthetic application of polymer-bound palladium catalyst to hydrophosphorylation
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Ph Ph+
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+
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(* Generated by treating H2P(O)(OH) with (EtO)3Si(CH2)3NH2 and CF3COOH)

Scheme 22 Ni-catalyzed addition of ethyl phosphinate with alkynes
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Unlike the high reactivity of alkyl phosphinates, both phosphinic acid

(hypophosphorous acid, H3PO2) and its anilinium salt fail to undergo the nickel-

catalyzed reaction efficiently.

Using 1-octyne as a probe, the regioselectivity in palladium-catalyzed addition

of ethyl and butyl phosphinates was examined using various phosphine ligands

(Scheme 23) [28]. The highest linear selectivity can be seen using PdCl2-xantphos

in CH3CN, while Pd2(dba)3-dppf in toluene has proved to be most branched

selective. There is no clear trend in the regioselectivity depending on the bite

angle of the ligand. Reactions of various terminal alkynes have revealed that

more electron-donating substituents favor the formation of the branched products,

while electron-withdrawing substituents favor the linear isomers, although the

results can be variant, depending on the solvent and the ligand.

4 Addition Reactions of sec-Phosphine Oxides with Alkynes

Rhodium-catalyzed addition of HP(O)Ph2 to terminal alkynes is an efficient process

forming linear adducts [29]. Under solvent-free and microwave irradiation

conditions, the reaction proceeds efficiently to give the adducts (>75% yields) in

a few minutes (1.6 mol% of homogeneous or polymer-bound rhodium catalyst,

microwave conditions ¼ 25 W, temp ¼ 120�C) (Scheme 24) [30]. When alkynes

are allowed to react with 3 equiv. of HP(O)Ph2 in the presence of 2 mol% of the

catalyst, double addition proceeds to give satisfactory yields of dppe oxide

derivatives, typically in 40 min at 120�C. The first addition is promoted by the

catalyst, but the second is an uncatalyzed thermal process, in this case facilitated by

the microwave irradiation. Similar double addition, reported using Pd(PPh3)4 by

Lin and coworkers, requires longer reaction times (19–71 h, 110�C) [31].
Further study on the rhodium-catalyzed reaction under microwave irradiation

has disclosed the effect of the structure of starting diarylphosphine oxides and alkynes

on the selectivity and on the competition with oligomerization and/or polymerization

of alkynes [32]. Terminal alkynes are reluctant to undergo hydrophosphinylation

n-C6H13 n -C6H13
+   H2P(O)(OEt)* P(O)H(OEt)Pd catalyst (1 mol %)

reflux, 12 h

* Generated in situ by treating H2P(O)(OH) with (EtO)3Si(CH2)3NH2 and CF3COOH

catalyst solvent branched/linear total yield (%)

Pd2(dba)3 + xantphos

Pd2(dba)3 + dppf

CH3CN

toluene

1/10

16/1

99

100

Scheme 23 Pd-catalyzed addition reaction of ethyl phosphinate with terminal alkynes
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with sterically demanding phosphine oxides, such as dimesitylphosphine oxide, and

mainly give oligomers and/or polymers of the alkynes.

Various new catalysts, some of which are superior to the existing ones, have

been documented.

Tp*Rh(PPh3)2 [Tp*¼hydrotris(3,5-dimethylpyrazolyl)borate] displays high cat-

alytic performance in hydrothiolation of alkynes to afford branched adducts. The

complex and a related complex Tp*Rh(cod) (Scheme 25) have proved to be linear-

selective in the addition reaction of HP(O)Ph2 to terminal alkynes [33]. Their

activity is somewhat low as compared with RhCl(PPh3)3, giving, for instance,

51% yield in the reaction with 1-octyne (3 mol% of Tp*Rh(cod), 110�C, 3 h).

When Tp*Rh(PPh3)2 is exposed to 10 equiv. of HP(O)Ph2 for 12 h at room

temperature, an unusual dinuclear complex is generated. However, its role in the

catalysis is ambiguous.

Br + HP(O)Ph2

HP(O)Ph2

HP(O)Ph2

[Rh(cod)Cl]2
(2 mol % Rh)

[Rh(cod)Cl]2
(2 mol % Rh)

solventless
MW 25 W
120 °C, 2min

Br

P(O)Ph2

P(O)Ph2

P(O)Ph2

P(O)Ph2

87%

+
polymer-boundRh*

solventless
MW 25 W
120 °C, 7min

91%

[* Rh-oligo (vinyldiphenylphosphine-co-vinyldiphenylphosphine oxide-co-vinyl chloride)]

Br +
solventless
MW 50 W
120 °C, 40 min

Br
76%

(3 equiv)

(1 equiv)

(1 equiv)

Scheme 24 Rh-catalyzed microwave-promoted hydrophosphinylation with diphenylphosphine

oxide
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Scheme 25 Trispyrazolylborate rhodium complexes for hydrophosphinylation with diphenyl-

phosphine oxide
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As already described (Sect. 2), copper catalysts, typically CuI, combined with

ethylenediamine, catalyze addition reactions of HP(O)Ph(OEt) [24]. These catalysts

are active as well in hydrophosphinylation with not only HP(O)Ph2, but also HP(O)

(CH2Ph)2, a dialkyl phosphine oxide that has been known to be much less reactive

than diarylphosphine oxides (Scheme 26). PhC�CH appears to be an exceptionally

reactive alkyne, but other alkynes, inclusive of diphenylacetylene, also participate in

the reaction under more forcing conditions. The yields are acceptable in most cases,

but unfortunately the major products are linear adducts, which can be synthesized by

radical addition. Functional groups such as OH and C¼C are tolerated.

The Pd-dppe catalyst, which is highly branched-selective in the addition of

H-phosphinate [23], has also proved to induce branched-selective hydrophosphi-

nylation with HP(O)Ph2 (Scheme 27) [17]. Thus, the reaction of p-tolylacetylene
with HP(O)Ph2 using Pd(OAc)2 (5 mol%) and dppe (1.5 equiv. relative to Pd

(OAc)2) in propionitrile at 100�C for 3 h furnishes the branched product in 88%

yield with 98% regioselectivity. Other diphosphines such as dppp and dppb

afford high branched-selectivity as well and other alkynes behave similarly. Very

interestingly, near the same procedure using di(o-tolyl)phenylphosphine in place of
dppe and toluene as the solvent induces dehydrogenative double addition leading to

CuI (10 mol %)
H2N(CH2)2NH2 (1.5 equiv)

+  HP(O)R2
2

DMSO
R1

P(O)R2
2

R1 R2 conditions yield (branched / linear)

Ph

n-Hex

Ph

Ph

PhCH2

PhCH2

Ph

n-Hex

60 °C, 3 h

90 °C, 12 h

60 °C, 18 h

90 °C, 18 h

99 (< 1/99)

75 (15/85)

76 (< 1/99)

86 (< 1/99)

+  regioisomerR1

Scheme 26 Cu-ethylenediamine-catalyzed hydrophosphinylation with sec-phosphine oxides
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P(O)Ph2
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total yield (branched/linear)

90 (88/2)
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100 °C, 3 h

48%

Pd-PPh(o -Tol)2
(5 mol %)
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S

methyl acrylate
(1 equiv)
toluene
100 °C, 3 h

Scheme 27 Ligand-dependent reactivity in Pd-catalyzed addition of diphenylphosphine oxide

across terminal alkynes
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the formation of (E)-1,2-bis(diphenylphosphinyl)ethene derivatives as the major

product. Addition of hydrogen acceptors can be beneficial to enhance the

dehydrogenative double addition. The selective formation of the (E)-isomer is

in good agreement with complex 12 being transformed to 13 upon treatment

with 1 equiv. of phenylacetylene (Scheme 28) [34] (in view of trans-Pd[P(O)
(OMe)2]2(PPh2Me)2 being generated upon treatment of cis-Me2Pd(PPh2Me)2 with

HP(O)(OMe)2, an analogous species like trans-[Ph2P(O)]2PdL2 can be involved in

the present reaction; see [35]). However, the mechanism of the dehydrogenative

double hydrophosphinylation and also the branched-directing nature of dppe

remain to be further studied.

Mizuta and coworkers have synthesized early–late heterodinuclear transition

metal complexes Cp2M(m-OPPh2)2PdMe2 (M¼Ti (14), Zr (15), and Hf (16))

(Scheme 29) and found that 15 and 16 catalyze, highly efficiently when a phosphine

ligand (PPh2Me, PPhMe3) is added, double addition of HP(O)Ph2 to 1-octyne to

mainly give 1,2-bis(diphenylphosphinyl)octane 17 in >95% yield under mild

conditions (typically 5 mol% catalyst, 40�C, 1 h) (Scheme 30) [36]. The activity

decreases in the order of Hf > Zr > Ti, which is partially associated with the

(MeO)2(O)P Pd P(O)(OMe)2

PPh2Me

PPh2Me
Ph

25 °C

P(O)(OMe)2

(MeO)2(O)P

Ph

Pd(PPh2Me)2

1312

Scheme 28 Possible elemental process behind dehydrogenative double phosphinylation

Cp2MCl2 + 2LiOPPh2 -LiCl
Cp2M

O PPh2

PPh2O PdMe2(tmeda)

- tmeda
Cp2M

O P
Ph2

Pd

Ph2
PO  Me

 Me

14: M = Ti
15: M = Zr
16: M = Hf

Scheme 29 Preparation of early-late heterodinuclear complexes as precatalysts for double

hydrophosphinylation of alkynes

toluene
40 °C, 1 h

n -C6H13
+

HP(O)Ph2

15 or 16 (5 mol %)
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(5 mol %)

n -C6H13

+

< 4 %

17 > 95 %

P(O)Ph2
n -C6H13

P(O)Ph2

P(O)Ph2

Scheme 30 Double hydrophosphinylation of alkynes using early-late heterodinuclear complexes

as precatalysts
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solubility of the catalyst. Irrespective of the catalyst and the conditions, the forma-

tion of the single addition product is very little.

The beneficial role of the addition of a phosphine ligand is rationalized by the

formation of trinuclear complexes 18–20 (Scheme 31), which are believed to be the

real active species. The same trinuclear complexes are generated by simply mixing

Cp2MCl2, PdMe2(tmeda), HP(O)Ph2, and an appropriate phosphine, and the in situ-

generated species have proved to catalyze the addition reaction as well.

The mechanism of the catalysis by the trinuclear species has been proposed as

shown in Scheme 32. The first P–C bond forming process is basically the same as

Cp2M

O P
Ph2

Pd

Ph2
PO Me

Me

HP(O)Ph2
PMePh2

Ph2

M

OP

Pd

P O O P

Pd

POH
Ph2
P

O

O
P

H

PMePh2

Ph2MeP Ph2

18: M = Ti, 19: M = Zr, 20: M = Hf

Ph2
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Scheme 31 Generation of early-late trinuclear complexes, candidate active species
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Scheme 32 Proposed mechanism of double hydrophosphinylation of alkynes
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the well-known single addition process. In the mechanism, intermediate 21

after the hydropalladation process is proposed to have a linear alkenyl structure,

and the subsequent species thereof are also formulated in line with this assumption.

In view of the foregoing highly branched-selective addition displayed by the

Pd-diphosphine (diphosphine ¼ dppe, dppp, dppb) catalyst systems [17], however,

branched alkenyl species like 210 and relevant species that follow appear to deserve

serious consideration. At this moment, the branched/linear ratio among the minor

single addition products is not available to consider further. In any event, the

intriguing role played by the group 4 metals lies in retaining the single addition

product in the coordination sphere through its interaction with the oxygen in the

O¼P functionality, which allows the product to readily undergo the second addition

of HP(O)Ph2. The time course of the reaction followed by 31P NMR spectroscopy has

verified that the single addition product does not accumulate significantly throughout

the reaction, but appears to react further as soon as it has been formed, which is

somewhat different from the other double phosphinylation reactions [30, 31].

Toffano and coworkers applied the hydrophosphinylation of alkynes to the

synthesis of chiral phosphines starting with chiral trans-2,5-diphenylphospholane
oxide (R,R)-22 (Scheme 33) [37]. The Pd-dppe catalyst system, highly branched-

selective for hydrophosphinylation with diarylphosphine oxide [17], does not

promote the reaction. However, use of Pd(PPh3)4 (toluene, 80�C, 15 h) affords

branched adducts selectively in >95% yields from a variety of terminal alkynes,

while [Rh(cod)Cl]2 gives linear adducts preferentially.

Mixing [Rh(cod)Cl]2 and (R,R)-22 (2 equiv.) generates complex 23 immediately

(related complexes have been isolated; see [38]) (the structure of the product may

be dependent on the starting secondary phosphine oxide. For a related work, see

[39]), which does not display a Rh-H signal in 1H NMR spectroscopy (Scheme 34).

P
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Ph

Ph

+  R

Pd(PPh3)4
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[RhCl(cod)]2
(6 mol %)

P
O
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O
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R
R

toluene
80 °C, 15 h

toluene
80 °C, 15 h

> 95 % (R = Ph, n-Hex) > 95 % (R = Ph, n-Hex)(R, R)-22

Scheme 33 Synthesis of chiral alkenylphospholane oxides via hydrophosphinylation of alkynes
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However, addition of phenylacetylene to this complex displays new signals assign-

able to the linear product. Complex 23 is presumed to be in equilibrium with a

hydride species, and the latter is likely to be a minor but very reactive component

that carries the catalysis. Normal hydrorhodation followed by reductive elimination

leads to the linear product.

Despite extensive study on addition reactions of diarylphosphine oxides, HP(O)

Ph2 in particular, extension to dialkylphosphine oxides has been rather neglected

and grown at a sluggish pace. However, a great advancement has been made

recently using palladium and Brønsted acid in the presence of chelating phosphines

[40–42]. Thus, addition reactions of HP(O)Bu2 with a variety of terminal alkynes

run at 130�C using dppe or dppben [dppben¼1,2-bis(diphenylphosphino)benzene]

as ligand and [3,5-(CF3)2C6H3]2P(O)OH as Brønsted acid complete in 30 min to

mainly afford branched isomers in good yields (Scheme 35). Diphenylacetylene

also gives the corresponding adduct in 97% yield although completion requires

21 h. HP(O)PhtBu, a bulky alkylarylphosphine oxide, also adds to 1-octyne in the

presence of PhtBuP(O)OH as acid to achieve 72% (130�C, 4 h) of the corresponding
branched adduct.

A mechanism that involves a zwitterionic intermediate 25 that is featured

by hydrogen bonding interaction between its P(O)R2 moiety and a Brønsted acid

(X-OH) is proposed (Scheme 36). Formation of such a complex has not been

substantiated with palladium due to the difficulty of isolation of species 24.

However, platinum analogues HPt[P(O)R2](dmpe) have been found to react

+    H-P(O)Bu2R1 R2
R1 R2

CpPd(h3-allyl) (5 mol %)
chelating ligand (5 mol %)
[3, 5-(CF3)2C6H3]2P(O)OH
(5 mol %)

Bu2(O)P
ethylbenzene
130 °C, 30 min

R1 R2 ligand yield (%)

n-Hex H dppe 95

Ph H dppben 80

Ph Ph dppben 97 (21 h)

+    H-P(O)tBuPhn-C6H13

n-C6H13

CpPd(h3-allyl) (5 mol %)
dppben (5 mol %)
tBuPhP(O)OH (5 mol %)

PhBut(O)P
ethylbenzene, 130 °C, 4 h

72 %

Scheme 35 Pd-Brønsted acid-catalyzed hydrophosphinylation with alkylphosphine oxide
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with a series of diarylphosphinic acids to generate similar zwitterionic species

displaying hydrogen bonding interaction. Treatment of HPt[P(O)Ad2](dmpe) (Ad ¼
adamantyl) having a more basic dialkylphosphinyl ligand, P(O)Ad2, with strongly

acidic [3,5-(CF3)2C6H3]2P(O)OH (1.0 equiv.) allowed isolation of a zwitterionic

complex similar to species 25, the structure of which was confirmed by X-ray

analysis (Scheme 37). Its phosphine-like PAd2[OH
. . .OP(O)(3,5-(CF3)2C6H3)2]

is coordinatively labile to readily undergo ligand exchange with t-BuNC, while
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neutral HPt[P(O)Ad2](dmpe) is totally unreactive. The more protonic nature of the

cationic “hydridopalladium” moiety is envisioned to direct the reaction in favor of

Markovnikov addition (branched-selective). A mechanism involving phosphopal-

ladation has been proposed for the reaction of terminal alkynes with HP(O)Ph2
using the palladium-Ph2P(O)OH catalyst system [9]. On the basis of the new

findings, however, the mechanism, the role of Ph2P(O)OH in particular deserves

further detailed study.

The addition-cyclization reaction of HP(O) compounds catalyzed by palladium-

diphosphine catalyst systems [22] proceeds more selectively by the addition of

Brønsted acids. For instance, the Ph2P(O)OH-assisted reaction of 1,6-heptadiyne or

analogues with HP(O)Ph2 affords the cyclized products in high yields (Scheme 38)

[40]. A similar cyclization reaction with HP(O)Bu2 also proceeds in an acceptable

yield (Scheme 39) [41].

The favorable effect of a Brønsted acid on the addition reaction of HP(O)

compounds is also seen in the nickel–diphosphine complex-catalyzed addition of

dibutylphosphine oxide to give the branched product as near the sole product

(Scheme 40) [43].

An oxaphosphapalladacycle 26, which is obtained by the treatment of Pd(OAc)2
with Ph2P(O)OH (1.5 equiv.) in THF at 60�C, has proved to catalyze, in combina-

tion with dppe or dppp, high-yielding and branched-selective addition of various

H–P(O) compounds, inclusive of somewhat less reactive HP(O)Me2 (Schemes 41

and 42) [44].

+
chlorobenzene
130 °C, 2 h

Pd2(dba)3·CHCl3
(5 mol % Pd)
dppben (P / Pd = 2)
HOP(O)Ph2
(acid / Pd = 2)

P(O)Ph2

91 %

92 %

85 % 79 %

P(O)Ph2

P(O)Ph2

N

P(O)Ph2

Op-Ts

MeO OMe

O O

E

[E = CH2, C(COOMe)2, N(p-Ts), O]

HP(O)Ph2

Scheme 38 Enhanced catalytic activity in hydrophosphinylative carbocyclization boosted by

Brønsted acid

P(O)Bu2Pd-dppben
HOP(O)[3,5-CF3)2C6H3]2

ethylbenzene
130 °C, 30 min

63 %+  HP(O)Bu2

Scheme 39 Hydrophosphinylative carbocyclization with dibutylphosphine oxide
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Complex 26 forms a D3 symmetric hexamer in crystalline state, which reacts

with dmpe or dppe (1.0 equiv. relative to Pd) to degrade the hexamer aggregate to

give monomeric complex 27 ligated by the chelating phosphine (Scheme 41).

Complex 27-dmpe reacts with HP(O)Ph2 to be transformed to complex 28-dmpe,

as confirmed by X-ray analysis. Upon heating, a solution of complex 27-dppe

(0.015 mmol), HP(O)Ph2 (0.1 mmol), and 1-octyne (0.11 mmol) at 70�C overnight

gives the branched adduct (99% yield) in addition to 27-dppe recovered. On the

basis of these experiments, a mechanism shown in Scheme 43 has been proposed.

Although phosphopalladation is proposed, intermediate 29 has not been confirmed

in the experiment.

Besides exploration for new catalysts and new mechanistic possibilities, applica-

tion of the hydrophosphinylation to synthesize more practically useful phosphorus

THF

n-C6H13

P(O)Bu2

+    HP(O)Bu2

Ni(cod)2 (4 mol %)
Ph2P(O)OH (8 mol %)
dppben (4 mol %)

50 °C, 1 h

n-C6H13

99 %

99 %25 °C, 3 h

Scheme 40 Highly efficient Ni-catalyzed hydrophosphinylation of alkynes with

dibutylphosphine oxide

Ph2P(O)OH

Pd(OAc)2

+
60 °C

Pd

O
P

Ph O
L

L Pd

P(O)Ph(OH)

P(O)Ph2

LL

28

Pd

O
P

Ph O

27
LL

Ph2P(O)H

26

Scheme 41 Generation of candidate active species from Pd(OAc)2 and Ph2P(O)OH

HP(O)R2
2 toluene

R1

P(O)R2
2

+

Compex 26 (5mol %)
chelating phosphine

+R1

P(O)R2
2

R1

R1 R2 ligand yield(%)

n-Hex Ph dppp 99

tert-Bu Ph dppe 97

Ph Ph dppp 99
n-Hex Me dppp 99

tert-Bu Me dppe 96

conditions

70 °C, 3 h

70 °C, 10 h

70 °C, 20 h
110 °C, 5 h

110 °C, 25 h

branched / linear

98 / 2

99 / 1

98 / 2

95 / 5

Scheme 42 Hydrophosphinylation of terminal alkynes in the presence of hexamer of complex 26
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compounds is another direction of the research. Among these, propargyl alcohols

have attracted special attention.

The reaction of 1-aryl-2-propynols (propargylic alcohols) with HP(O)Ph2 in

the presence of dinuclear ruthenium complexes 30 produces 2,3-bis(diphenyl-

phosphino)propene derivatives in high yields (Scheme 44) [45].

Propargylic substitution forming propargyldiphenylphosphine oxide [46] is likely

to be the first process, which is followed by isomerization to allenylphosphine oxide

and branched-selective addition of a second HP(O)Ph2 (Scheme 45). Direct addition

to the propargyldiphenylphosphine oxide is less likely since allenylphosphine oxides

can be isolated and other simple alkynes such as 1-hexyne and phenylacetylene are

inert toward hydrophosphinylation.

The reaction of propargyl alcohols, when run using a nickel–phosphine complex

catalyst at room temperature, affords linear products 31 as is well known for

Pd(HO)Ph(O)P
L

L

28

Pd
O

P
Ph

O

27

L

L Pd(HO)Ph(O)P
L

L

29

R1

R1

R1

P(O )Ph2

HP(O)Ph2

Ph2(O)P

Ph2(O)P

Scheme 43 Proposed mechanism of hydrophosphinylation of terminal alkynes in the presence of

hexamer of complex 26

Ph

OH

+ HP(O)Ph2
Ph2(O)P P(O)Ph2

Ph
Complex 30 (5 mol %)

NH4BF4 (10 mol %)

dichloroethane
60 °C, 18 h

Ru

RS

Ru

SR

Cp* Cp*

Cl Cl

R = Me (30a), n-Pr (30b), i-Pr (30c)

90 % (30a)

49 % (30b)

44 % (30c)

Scheme 44 Ru-catalyzed reaction of propargylic alcohol with diphenylphosphine oxide
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terminal alkynes. The products can be dehydrated by heating with H2SO4 (e.g., at

70�C, 20 min, 88%). However, using the same nickel–phosphine complex in the

presence of diphenylphosphinic acid, the addition and dehydration proceed in a

single step to give an isomeric mixture of phosphinylated butadiene derivatives

even at room temperature (Scheme 46) [47]. Since the linear compound 31 does not

undergo dehydration under the diphenylphosphinic acid-assisted conditions, the

formation of the butadiene derivatives via dehydration of 31 is not a likely pathway.

Another sequence comprising dehydration and subsequent addition of HP(O)Ph2 to

the resulting enyne compound may be a real route. Besides HP(O)Ph2, HP(O)

(OMe)2 and HP(O)Ph(OEt) also furnish regioisomeric mixtures of butadiene

derivatives in moderate yields.

Similar dehydrative addition of HP(O) compounds also proceeds with rhodium

catalysts. Thus, the reaction of Ph2P(O)H or H-phosphinates with propargyl

alcohols using (Ph3P)3RhCl, [Rh(cod)Cl]2, or (Me2PhP)3RhMe3 for 15 min at

150�C under microwave irradiation affords corresponding adducts and relevant

dehydration products (Scheme 47) [48]. Both products are linear-structured. Unlike

simple propargyl alcohols, steroidal propargy1 alcohols undergo addition with Ph2P

(O)H and other HP(O) compounds without extensive dehydration.

As another direction of applications, phosphorus-containing polymers

(Mn ¼ 1.0–7.2 � 104, polydispersity ¼ 1.4–2.4) are synthesized using the

known procedures to the combinations of bis[HP(O)] compounds and a,o-diynes
(Scheme 48) [49].

Ar

OH

Ar

P(O)Ph2

Ar

P(O)Ph2

HP(O)Ph2 HP(O)Ph2

P(O)Ph2

P(O)Ph2

HP(O)Ph2

less likely route

Ar

Scheme 45 Possible pathway involved in Ru-catalyzed reaction of propargylic alcohol with

diphenylphosphine oxide

OH

+ HP(O)Ph2

Ni(PPhMe2)4
(5 mol %)

Ph2P(O)OH
(10 mol %)

THF, 20 °C, 16 h
–H2O

P(O)Ph2 P(O)Ph2

+

21 % 74 %

P(O)Ph2

HO

31

Scheme 46 Ni-Ph2P(O)OH-catalyzed dehydrative addition of diphenylphosphine oxide with

propargylic alcohol
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5 Addition Reactions of H–P(O) Compounds with Alkenes,

Dienes, and Isocyanides

Addition to olefins has not made an epoch-making progress since the publications

on hydrophosphorylation using pinacol phosphonate [50] and unsubstituted

phosphinic acid (hypophosphorous acid) derivatives [25], inclusive of the extension

to rhodium-catalyzed reactions of pinacol phosphonate [51]. No publication

has appeared to disclose addition reactions of a phosphine oxide except for

cyclopropenes (vide infra).

The rhodium-catalyzed addition of pinacol phosphonate has been revisited,

focusing on the effect of the ligands using nonconjugated terminal-internal dienes

[52]. Only the terminal double bond participates in the reaction to furnish linear

products. At high substrate-to-rhodium ratios, e.g., �400, the catalytic activity

diminishes gradually, which is associated with the oxidative deterioration of the

phosphine ligand (PPh3, PCy3). Addition of a large quantity of the phosphine ligand

improves the catalyst life and allows full conversion. Among the ligands screened,

dpph [1,6-bis(diphenylphosphino)hexane] displays high performance as far as

OH
+

HP(O)Ph2

HP(O)Ph2

RhCl(PPh3)3 (3 mol %)

water, 150 °C, 15 min
MW power 70-100 W

P(O)Ph2 P(O)Ph2

P(O)Ph2

+

40 % 25 %

O

RhMe3(PPhMe2)3
(3 mol %)

same conditions

OH

86 %

+

OH

HO

Scheme 47 Rh-catalyzed microwave-assisted reaction of propargylic alcohol with diphenyl-

phosphine oxide

[R1 = (CH2)5, 1, 4-phenylene; R2 = Ph, OMe; R3 = (hetero)arylene]

P P

OO

n

P P

O

R2R2

R2R2

O
R1

R1

R3

R3

n

R1

+

P R3 P

O

R2R2

H

O

H

RhBr(PPh3)3 (1.5 mol %)

Ni(PPhMe2)4 (5 mol %)
Ph2P(O)OH (10 mol %)

THF reflux, 18 h

CH2Cl2 (3 mL), 40 °C, 22 h

Scheme 48 A synthetic application of hydrophosphinylation to polymer synthesis
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dioxane solvent is concerned and allows the yield, TOF and TON up to 96%,

250 h�1 and 4,550, respectively (Scheme 49). The optimized recipe can be applied

readily to introduce phosphoryl groups to a polymer to produce functional

elastomers starting with poly(isoprene-co-1,3,7-octatriene) copolymers [53].

Since palladium-catalyzed hydrophosphorylation of styrene with pinacol

phosphonate is exceptionally branched-selective, its asymmetric version has

attracted a special interest (Scheme 50) [54–56]. Among the ligands screened,

BINAPHOS 32 used in conjunction with CpPd(�3-allyl) displays better perfor-

mance (branched/linear ¼ 93/7, 56% ee). The stereoselectivity can be boosted to

74% ee by the introduction of a trifluoromethanesulfonyl group to the ligand like 33

although the branched/linear ratio decreases to 76/24. Use of a Josiphos family

ligand 34 and Pd(OAc)2 shows similar stereoselectivity (73% ee) and a higher

branched/linear ratio (>94/6) at a lower temperature. Asymmetric hydropho-

sphorylation of norbornene also affords a high stereoselectivity (89% ee) under

optimized conditions using Pd(OAc)2 and another Josiphos-type ligand 35 in the

presence of NEt3 as an additive although the reaction is quite slow (Scheme 51).

Microwave irradiation accelerates the reaction, but does not improve the

stereoselectivity.

Cyclopropenes participate successfully in the addition reactionwith various HP(O)

compounds under mild conditions [57]. Catalyst screening using pinacol phosphonate

and 3-methyl-3-phenylcyclopropene has revealed that Pd(PPh3)4 and Pd2dba3/dppf

appear the catalysts of choice giving the isomeric mixture of the desired adducts 36,

mainly comprising the trans-adduct, in high yields, while other catalysts are less

active and/or less selective and can form a side product, allylphosphonate 37

(Scheme 52) more extensively. Functionalized cyclopropenes also react success-

fully. Furthermore, even diphenylphosphine oxide undergoes addition to

cyclopropenes, providing one of the first examples of successful addition of a sec-
phosphine oxide with an alkene (Scheme 53).

O
P

O

O

H
+

O
P

O

O

dioxane, 100 °C, 12 h

RhCl(PPh3)3
(0.1 mol %)

dpph (0.2 mol %)

n m

O
P

O

O

H
+

dioxane
100 °C, 12 h

RhCl(PPh3)3
(2.5 mol %)

dpph (10 mol %) n m

O
P

O O

3
3

Scheme 49 Rh-catalyzed hydrophosphorylation of monomeric and polymeric non-conjugated

dienes with pinacol phosphonate
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A mechanism similar to those well established has been proposed (Scheme 54).

An experiment using 1,2-dideuterio-3-methyl-3-phenylcyclopropene verifies

stereospecific cis-addition having taken place. The formation of allylphosphonate

O
P

O

O

H
Ph +

Ph

O
P

O

O
+

O
P

O

O

O
P

O
O

PPh2

(R,S)-BINAPHOS 32

P(p-An)2

3'-Sulfonyl (R,S)-BINAPHOS 33

O
P

O
O

SO2

CF3

Fe[3,5-(CF3)2C6H3]2P
P[3,5-(CF3)2C6H3]2

Me
H

catalyst ligand conditions % ee branched/linear

CpPd(η3-allyl) (5 mol %) 32 (5 mol %) 100 °C, 12 h 56 93/7

33 (5 mol %)[Pd(η3-allyl)(MeCN)2]OTf
+ NaCH(CO2Me)2 (5 mol %)

100 °C, 18 h 74 76/24

Josiphos 34

34 (7.5 mol %) 80 °C, 90 h 73 94/6Pd(OAc)2 (5 mol %)

Ph*

Scheme 50 Asymmetric hydrophosphorylation of styrene with pinacol phosphonate

O
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O

O
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dioxane, 100 °C, 81 h

O
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O

O
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Pd(OAc)2 (5 mol %)
ligand 35 (7.5 mol %)

NEt3 (20 mol %)
+

FeCy2P

PtBu2

Me

H

Josiphos 35

Scheme 51 Asymmetric hydrophosphorylation of norbornene with pinacol phosphonate
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37 is rationalized by b-carbon elimination generating �3-allylpalladium species

[58], followed by P–C reductive elimination thereof.

Palladium complexes like Pd/xantphos are known to efficiently catalyze addition

of alkyl phosphinates to terminal olefins to give linear adducts as the major products

[25]. When the reaction of (�)-8-phenylmenthyl phosphinate with olefins is

run using the Pd/xantphos catalyst, enantioselective addition proceeds to give

diastereomeric mixtures of P-chiral (�)-8-phenylmenthyl alkylphosphinates

(Scheme 55). Stereoselectivities up to 66% and 71% de are observed for 1-octene

O
P

O

O

H

R

+

Pd-catalyst

dioxane
50 °C, 18 h

R

cis-36

+ +

R

O
P

O

O
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O
P

O

O O
P

O

O

R catalyst 36 yield(%) (trans / cis) 37 yield(%)

89 (19 / 1)Ph

COOMe 97 (9 / 1)

6Pd(PPh3)4

Pd2dba3/ dppf 0

37trans-36

Scheme 52 Hydrophosphorylation of cyclopropenes
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+
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Scheme 53 Hydrophosphinylation of cyclopropenes
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Scheme 54 Mechanism of hydrophosphorylation of cyclopropene
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and 2-bromostyrene, respectively [59]. Phosphinates having other chiral alkoxy

groups are inferior. Asymmetric hydrophosphinylation of 1-octene with ethyl

phosphinate in the presence of a series of chiral ligand–palladium catalyst systems

affords only marginal stereoselectivities.

A modified procedure of the addition of unsubstituted phosphinic acid

(hypophosphorous acid) has realized a one-pot synthesis of alkylphosphonic

acids [60]. Alkylphosphinic acids [(alkyl)HP(O)OH] resulting from the addition of

phosphinic acid is known to be readily oxidized to form corresponding

alkylphosphonic acids, which are useful in diverse applications. In the modified

procedure, reactions are run under air to in situ oxidize the initially formed

alkylphosphinic acids, using Pd2dba3 (1 mol%) and xantphos (2 mol%) at 110�C
(Scheme 56). Undried reagent grade DMF has proved to be a convenient reaction

medium. The reaction of 1-octene under the conditions affords n-octylphosphonic
acid 39 selectively, while another reaction under nitrogen in anhydrous DMF is

reluctant to oxidize n-octylphosphinic acid 38, which is obtained as the major product

(82% yield). When a smaller quantity of the catalyst is loaded (0.05 mol%) using

undried DMF solvent, the phosphinic acid is obtained quantitatively even under

air, suggesting that palladium species is participating in the oxidation process.

OP(O)H2

Ph

R +

O

Ph

Pd2(dba)3 / xantphos
(2 mol %)

acetonitrile reflux
7-14 h

R = n-Hex: 100 % yield
66 % de

R = t-Bu:    88 % yield (branched-linear mixture)
46 % de

P

O

R

H

Scheme 55 Enantioselective addition of chiral dihydrophosphinate with terminal alkenes

+

Pd2(dba)3/xantphos
(2 mol % Pd)

undried DMF
under air
110 °C, 20-24 h

n-C6H13

H2P(O)OH
P

OHO

H
n-C8H17n-C8H17 P
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O

OH

(concentrated)

Remarks

(standard conditions)

38 39

38 (%) 39 (%)

0 74

anhydrous DMF,under N2 82 10

catalyst loading: 0.05 mol %
2 equiv of H2P(O)OH used 100 0

2 equiv of H2P(O)OH used 0 100

Scheme 56 Pd-catalyzed addition of hypophosphorous acid with terminal alkenes under air

Recent Progress in Transition Metal-atalyzed Addition Reactions 195



Other alkenes inclusive of functionalized ones and also an alkyne (4-octyne) conform

to the new procedure successfully. The reaction mechanism under air is not clear. It

may involve initial activation of molecular oxygen to generate highly reactive radical

species.

Allenes and dienes also react with phosphinic acid or its anilinium salt, typically

in the presence of Pd2(dba)3/xantphos (1 mol%) at 110�C (Scheme 57) [61].

Acetonitrile and DMF are the solvents of choice for phosphinic acid and DMF

for the anilinium salt. 3,3-Disubstituted allenes and phenylallene react with

phosphinic acid regioselectively and with a high E-selectivity to furnish allylic

H-phosphinic acids in moderate to high yields. On the other hand, the regio- and

stereoselectivities observed for 3-alkylallenes are low, but can be significantly

improved using the anilinium salt.

Unlike allenes, conjugated dienes are inert toward hydrophosphinylation except

for isoprene and its analogues (Scheme 58). Nonconjugated a,o-dienes react

selectively at one of the terminal C¼C bonds forming a linear product. Enyne

compounds react at the C�C bond selectively although they furnish unselective

mixtures of regio- and stereoisomers.

As already mentioned (Sect. 2), Mo(CO)6 catalyzes hydrophosphorylation of

phenylacetylene [19]. Similar addition reaction of H-phosphonates to cyclohexene

proceeds when a mixture of cyclohexene (4 equiv.), HP(O)(OR)2 (R¼Me, Et, iPr),

metal carbonyl (10 mol%; Fe(CO)5, W(CO)6, Mo(CO)6 or Cr(CO)6), and a cata-

lytic quantity of triethylamine is refluxed for 5 h under argon (Scheme 59) [62]. The

yield is low (<30%). Treatment of Fe(CO)5 or W(CO)6 with HP(O)(OEt)2 appears

to generate M-P(O)(OEt)2 species (M¼Fe, W), on the basis of 31P NMR spectros-

copy, which displays, for M¼W, a satellite band possibly arising from coupling

R1

R2

P(O)H(OH)

R2

R1
Pd2(dba)3 / xantphos

(1mol % Pd)

CH3CN reflux or DMF 85 °C
8-14 h

then acidic workup

+

R1 + R2 = –(CH2)5– 64 %

R1 = Ph, R2 = H 98 %

M = H

M = PhNH3

M = PhNH3

R1, R2 M solvent

DMF

DMF

CH3CN 100 %

yield( %)

H2P(O)(OM)

Scheme 57 Hydrophosphorylation of allenes with dihydrophosphinic acid derivatives

Pd2(dba)3 / xantphos
(1 mol %Pd)

DMF 85 °C, 10 h
then acidic workup

+ H2P(O)(O•NH3Ph) P(O)H(OH)

57 %

Scheme 58 Hydrophosphorylation of isoprene with anilinium dihydrophosphinate
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between 183W and 31P nuclei (J ¼ 353 Hz). Furthermore, treatment of the tungsten

complex with cyclohexene and HP(O)(OEt)2 triggers a vigorously exothermic

reaction affording diethyl cyclohexylphosphonate in 80% yield. However, the

structure of these complexes has not been characterized further and mechanistic

details remain to be clarified.

The reactions of 2-allylmalonates with various HP(O) compounds disclosed by

Reznikov and Skvortsov (Scheme 60) are quite amazing [63], in view of the lack of

reactivity of olefinic bonds toward H-phosphonates except pinacol phosphonate

[50]. In the presence of Pd(PPh3)4 (2 mol%), dimethyl 2-allylmalonate reacts with

HP(O)(OMe)2 at 120�C for 20 h to produce the branched adduct 40 and the

demethoxycarbonylation product of the branched structure 41 in 49% and 26%

yields, respectively (since the total yield is not reported, the yield is calculated

on the basis of the conversion of the phosphonate and the selectivity). Diphenyl-

phosphine oxide also reacts under similar conditions, but the major product was

branched demethoxycarbonylation product 42 in 66% yield together with linear

demethoxycarbonylation product 43 in 34% yield. This reaction provides another

successful example of addition of a sec-phosphine oxide to alkenes.

Isocyanides have proved to react with sec-phosphine oxides to give 1,1- and/or

1:2 adducts in good yields [64]. For instance, a toluene solution of 2,6-Me2C6H3NC

and Ph2P(O)H (1 equiv.) gives, after heating at 60�C for 24 h in the presence of

Pd2(dba)3 (5 mol%), the corresponding 1:1 adduct in 99% yield together with

a trace of 1:2 adduct (Scheme 61). Alkylarylphosphine oxide and dialkylphosphine

oxide also participate in the reaction similarly. Other palladium(0) complexes

ligated by phosphines catalyze the addition as well, while Pd(II) species, Ni

(cod)2, Ni(cod)2/4PPh3, and [Pt(PPh3)2(CH2¼CH2)] display only a weak or no

+ HP(O)(OR)2

P(O)(OR)2
M(CO)n (10 mol %)
NEt3 (1.7 mol %)

reflux, 5 h

< 30 %(M = Fe, Cr, Mo, W; R = M, Et, iPr)

Scheme 59 Matal carbonyl-catalyzed hydrophosphorylation of cyclohexene
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P(O)(OMe)2

MeOOC COOMe

+

COOMe

P(O)Ph2

42 66 % 43 34 %

40 49 % 41 26 %

120 °C, 20 h

Pd(PPh3)4
(2 mol %)

120 °C, 20 h.
+ COOMe

P(O)Ph2

P(O)(OMe)2

COOMe

COOMe  +  HP(O)(OMe)2

COOMe

COOMe + HP(O)Ph2

COOMe

Scheme 60 Addition reaction of dimethyl phosphonate or diphenylphosphine oxide with

allylmalonate
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activity. Unlike the palladium-catalyzed reactions, the 1:2 adduct can be obtained

as the major product when the reaction is effected at 80�C over 4 days using

rhodium catalysts (5 mol%) such as Rh(PPh3)3Cl (95%), Rh(PPh3)3Br (88%),

Rh(PPh3)3I (69%), and [Rh(cod)Cl]2 (94%) (Scheme 62). Apparently, the second

addition of Ph2P(O)H forming 1:2 adduct is promoted by rhodium but not by

palladium. Bu2P(O)H is near unreactive in the rhodium-catalyzed reaction under

similar conditions. The reaction using the palladium catalysts is rationalized

by an intermediate like (iminoformyl)(phosphinyl)palladium species generated by

insertion of isocyanide into H–Pd bond. However, convincing evidence has not

been provided.

6 Conclusion and Future Prospects

After 15 years have passed since the first publication on the metal complex-

catalyzed addition of H-phosphonate, almost all possible variations in the H–P(O)

bond addition reactions have already been published. After the overview of the

progress since some 8 years ago herein summarized, the remaining area for future

research has become clear and can be summarized as follows:

Pd2(dba)3
(2.5-5 mol % )

toluene
60 °C, 12-24 h.

R1NC  +  HP(O)R2
2

NR1

R2
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2, 6-Me2C6H3 99
Cy 90

t-BuCH2 74

2, 6-Me2C6H3

Ph

Me 43

n-Bu 81

R1 R2

Ph

Ph

2, 6-Me2C6H3

yield ( % )

Scheme 61 Palladium-catalyzed 1,1-addition between sec-phosphine oxides and isocyanides

HP(O)Ph2+

RhCl(PPh3)3
(5 mol % )
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80 °C, 96 h.

HN

Ph2(O)P P(O)Ph2
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95 %

Scheme 62 Rhodium-catalyzed 2:1-adduct formation from diphenylphosphine oxide and 2,6-

dimethylphenylisocyanide
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1. Search for more ubiquitous metal catalysts for the transformation: Although
nickel catalysts have been used quite successfully depending on the structure

of the H–P(O) compounds, the coverage is still rather limited. Also, nickel is

still near the only one non-noble metal that is active for the transformation.

The successful progress in cross-coupling chemistry provides a good example,

which shows the direction of the research toward the use of more ubiquitous

metals. There is no reason why H–P(O) bond addition cannot be a next example.

2. Mechanistic understanding: A central question lies in the insertion process,

which can proceed by either hydrometalation or phosphometalation. Although

theoretical study has boosted our understanding, mechanistic proposals are not

always substantiated by experiments. Also, P–C reductive elimination, which

can be rate-determining, has not been well studied either. Why is only pinacol

phosphonate, among dialkyl phosphonates, reactive toward the addition to

alkenes? Why unsubstituted phosphinic acid and its derivatives are also reactive

toward the addition to alkenes? These questions await our answers to expand the

scope of the addition reaction.

3. How to control the regioselectivity: In most of the H–P(O) bond addition

reactions to terminal alkynes and alkenes, the branched products are more

valuable since the linear products can be synthesized by classical radical pro-

cesses. Some of the metal-catalyzed processes are branched-selective or allow

regiochemical flexibility by tuning the procedure. In view of problematic sepa-

ration of the isomers, however, we still have a long way to go before we perfect

the regiochemical control for practical use.

While these tasks are being successfully accomplished, we have more opportunities

in asymmetric additions, wide-ranging use of the products in the synthesis of practi-

cally important phosphorous compounds, and further extension of the reaction concept

from H–P(O) to heteroatom-P(O) bonds.
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Group 8 Metals-Catalyzed O–H Bond Addition

to Unsaturated Molecules

Christian Bruneau

Abstract The formation of carbon–oxygen bond upon addition of O-nucleophiles
to unsaturated molecules is very attractive as it represents an atom economical

strategy to prepare a variety of saturated compounds from olefins and vinylic

derivatives from alkynes. Group 8 metals, especially ruthenium have provided an

important contribution in this field. We report here on iron- and ruthenium-

catalyzed addition of nucleophiles to unsaturated systems. As additions to alkenes

are still scarce with these metals and the use of iron catalysts is limited, the main

part of the chapter is dedicated to addition of carbamates, carboxylic acids, alcohols

and water to triple bonds with ruthenium catalysts.

Keywords Anti-Markovnikov addition � Enol esters � Hydration � Nucleophilic
addition � Ruthenium catalysis � Unsaturated cyclic ethers � Vinyl carbamates

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

2 Addition to Olefins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

2.1 Addition of Alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

2.2 Addition of Carboxylic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

3 Addition of O-Nucleophiles to Alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

3.1 Addition of Carbamates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

3.2 Addition of Carboxylic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

3.3 Addition of Alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

3.4 Addition of Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

C. Bruneau (*)
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1 Introduction

Modern chemistry requires synthetic methods able to perform transformations with

high efficiencies and selectivities. For cost and environment issues, these processes

have also to be as clean as possible and must therefore offer the possibility of

performing transformations with atom economy. Catalytic reactions promoted by

transition metal complexes are able to fulfil these characteristics. Among the group

8 transition metals, ruthenium catalysts have attracted much attention during the

last 25 years. Indeed, due to their high versatility, ruthenium catalysts can promote

carbon–carbon or carbon–heteroatom bond formation via a wide range of mecha-

nistic processes including carbon–carbon multiple bond activation. After a long

period when they were mainly used as Lewis acid catalysts, iron catalysts are now

in a phase of intense development and a few examples in the field of addition of

nucleophiles to unsaturated C–C bonds have recently appeared. As far as osmium is

concerned, the creation of C–O bonds mostly involves oxidation mechanisms with

the use of oxidant such as N-methylmorpholine oxide for classical dihydroxylation

for instance.

The main part of this chapter we will be devoted to ruthenium-catalyzed additions

of O-nucleophiles to alkynes, including carbamates, carboxylic acids, alcohols and

water. Ruthenium-catalyzed nucleophilic additions to alkynes are possible via differ-

ent activation pathways with respect to the alkyne (Scheme 1). Several ruthenium

complexes are able to promote the addition of O-nucleophiles to alkynes via Lewis

acid-type activation of triple bonds leading to Markovnikov addition. Starting from

terminal alkynes, the anti-Markovnikov addition to form vinyl derivatives is less

common and requires selected catalysts. This regioselectivity corresponding to the

addition of the nucleophile at the less substituted carbon of the carbon–carbon triple

bond is expected to result from the formation of a ruthenium vinylidene intermediate

featuring a highly reactive electrophilic Ca atom. This mechanism was first consid-

ered in 1986 to rationalize the formation of vinyl carbamates. Examples of nucleo-

philic addition of O-nucleophiles to alkenes in the presence of ruthenium and iron

catalysts, even though they are not very common, will also be included in this review.

It is noteworthy that reviews covering or including carbon–oxygen bond forma-

tion via metal-catalyzed additions to unsaturated molecules and involving a wide

range of metals have appeared during the last decade [1–8].

2 Addition to Olefins

2.1 Addition of Alcohols

Very few reports on group 8 metal-catalyzed addition of nucleophiles to

carbon–carbon double bonds exist. The first example with the hydroxy functionality

was probably the cyclization of 2-allylphenol, which regioselectively leads to the
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formation of 2-methylbenzodihydrofuran [9]. The catalytic system was based on

the association of several metal salts (ruthenium chloride, silver and copper triflate)

in the presence of triphenylphosphine and operated under mild conditions (80�C)
(Scheme 1a). The exact nature of the catalytic species was difficult to determine as

it was shown later that triflic acid [10, 11] and copper triflate [11] alone were also

efficient hydroalkoxylation catalysts. A combination of [RuCl2Cp*]2/AgOTf/phos-

phine also performed the same cyclization [12]. The intermolecular addition of 2-

phenylethanol to styrene was investigated in details with [RuCl2Cp*]2 and

RuCl2Cp*(PPh3) as catalyst precursors. The most efficient system was based on

RuCl2Cp*(PPh3) in the presence of AgOTf at 70�C in toluene and regioselectively

led to the formation of the branched Markovnikov hydroalkoxylation product [13]

(Scheme 1b). This catalytic system also made possible the regioselective addition

of 2-phenylethanol to other olefins such as 1-octene and 2-norbornene [13].

The intramolecular hydroxyalkoxylation of 1,5-alk-1-enol has been reported

with a catalytic system prepared from FeCl3 (10 mol%) and silver triflate (30 mol%)

and the reaction was carried out at 80�C in 1,2-dichloroethane (Scheme 2) [14].

Primary and secondary alcohols have been regioselectively added to functiona-

lized olefins such as acrylonitrile, crotonitrile, methacrylonitrile and other unsaturated

nitriles in the presence of a ruthenium catalyst precursor containing an amido ligand

(Scheme 3) [15, 16]. It is assumed that this Michael addition is facilitated by coordi-

nation of the nitrile group to the ruthenium centre.

OH

Ph

Ph

O

Ph
PhFeCl3 (10 mol %) / AgOTf (30 mol %)

CH4Cl2, 80 °C

Scheme 2 Intramolecular hydroxyalkoxylation catalyzed by iron catalyst

OH

O C6H13

O

O

RuCl2Cp*(PPh3)(2 mol %) / AgOTf (4 mol %)

toluene, 70 °C, 48 h
+

2.5 eq. 83 %

66 % 89 %

RuCl3·nH2O (10 mol %) / AgOTf (30 mol %)
PPh3 (20 mol %), Cu(OTf)2(50 mol %)
MeCN, 80 °C, 24 h

OH O

a

b

[RuCl2Cp*]2(1 mol %) / AgOTf (4mol %) / ref [12]

ref [9]

Scheme 1 Hydroalkoxylation of olefins in the presence of ruthenium catalyst precursors
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2.2 Addition of Carboxylic Acids

The catalytic system developed by Oe et al. for the addition of alcohols to olefins

was slightly modified to obtain high efficiency for the addition of aromatic acids to

olefins. Thus, the addition of various benzoic acids to norbornene with

[RuCl2Cp*]2/AgOTf/ diphenylphosphinobutane (dppb) as catalytic system led to

high yields in the corresponding esters [17] (Scheme 4). Some limitations have

appeared in this reaction as an aliphatic acid such as acetic acid was not reactive,

and linear olefins required specific electronic properties. Indeed, 2-allylanisole gave

the benzoate ester resulting from Markovnikov addition in 50% yield using

triphenylphosphine instead of dppb, but allylbenzene was not reactive.

The addition of carboxylic acids to olefins, especially cyclic olefins has also been

reported in the presence of Fe(OTf)3 (2 mol%) without solvent [18]. In the same

paper and others, it was shown that triflic acid that could arise from catalyst

decomposition, also promoted the addition of carboxylic acids to alkenes but with

lower efficacy [19, 20].

3 Addition of O-Nucleophiles to Alkynes

In most cases, the addition of nucleophiles to alkynes involves as the first step the

electrophilic activation of the triple bond. With many Lewis acid metals, this

process leads to Markovnikov addition (Scheme 5a). With metals able to facilitate

ArCO2H

O

OMeO

OMe

O

O

O

O

MeO

O

O

OMe

OAr

O[RuCp*Cl2]2 (1 mol %) / AgOTf (6 mol %)
dppb (2 mol %)

toluene, 85 °C, 18 h
63-91 %

+

63 % 70 % 90 % 91 %

Scheme 4 Ruthenium-catalyzed addition of carboxylic acids to olefins

CN
R1

RuHN

Cy3P CO

PCy3

H

O H
O

R1

CN
ROCH2Cl2, rt

95%

+

ROH

Scheme 3 Ruthenium-catalyzed hydroxyalkoxylation of acrylonitrile derivatives
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the isomerization of the Z2-alkyne into the Z1-vinylidene metal species, the anti-
Markovnikov addition can take place. This is mainly the case with group 6 metals

(molybdenum, tungsten, chromium), rhodium and especially with ruthenium

(Scheme 5b) [21]. Other mechanisms for catalytic addition of O-nucleophiles
to alkynes involving first activation of the nucleophile with formation of a

metal–oxygen bond followed by insertion of the triple bond into the metal-O
bond and protonolysis have also been proposed [16, 22] (Scheme 5c).

3.1 Addition of Carbamates

Ru3(CO)12 [23] and more efficiently mononuclear ruthenium complexes [24]

catalyze the anti-Markovnikov addition of ammonium carbamates generated in

situ from secondary amines and carbon dioxide to terminal alkynes, and selectively

produce vinyl carbamates with the (Z)-product as major stereoisomer (Scheme 6)

[24–26].

The most efficient catalyst precursors for simple alkynes were found in the

RuCl2(arene)(phosphine) series. These complexes are known to produce ruthenium

vinylidene species upon reaction with terminal alkynes under stoichiometric

conditions, and thus are able to generate potential catalysts for anti-Markovnikov

addition [27]. In 1986, the possibility of the involvement of an active metal

vinylidene in a catalytic cycle was suggested for the first time to rationalize the

formation of these regioisomers [23]. Dienylcarbamates could be selectively

prepared from conjugated enynes and secondary aliphatic amines but in this case,

the best catalyst precursor was Ru(methallyl)2(diphenylphosphinoethane) [26].

Nu H

RH

RH

LnRu
Nu

LnRu C C
H

R

RH

 RH 

H+

LnRu

Nu R

H

R

LnRu Nu

H

LnRu Nu

RH

H

H

Nu

R

H+

H+

R

H

Nu

H

R

NuH

H

H

H Nu

R

LnRu

LnRu

Nu-H

Markovnikov addition

LnRuX

Anti-Markovnikov addition

δ+ Nu-

a

b

c LnRu

+

X-

Scheme 5 Proposed mechanisms for the addition of nucleophiles to triple bonds
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The addition of carbamates to acetylene itself was also possible in the presence

of ruthenium catalysts, namely RuCl3.3H2O and the polymeric [RuCl2(norbor-

nadiene)]n but in relatively modest yields of 10–46% [28, 29]. The formation of

vinyl carbamates is restricted to terminal alkynes, which is in line with the forma-

tion of a metal vinylidene intermediate, and also to secondary amines. However,

a catalytic reaction also took place under similar conditions with primary aliphatic

amines but it led to the formation of symmetrical ureas [30, 31]. The catalytic

system generated in this case is thought to proceed via a ruthenium vinylidene

active species and is very efficient for the formal elimination of water by formation

of an organic adduct. The proposed general catalytic cycle, which applies for the

formation of vinyl carbamates and ureas, is shown in Scheme 7.

These transformations under carbon dioxide pressure have been reinvestigated

recently in supercritical CO2 without any other solvent [32]. In particular, the

selection of appropriate experimental conditions and the evaluation of other

ruthenium precursors such as trans-RuCl2(P(OEt3))4 [33], RuCl2(pyridine)4 or

RuCl2(benzene)(PMe3) [34] have led to improvements in terms of yield and

stereoselectivity.

A catalytic transformation also occurs starting from tertiary propargylic

alcohols and leads to the formation of b-oxopropylcarbamates in moderate yields.

These products might result from Markovnikov addition of carbamate to the

terminal triple bond followed by transcarbamatation taking place in the presence

of secondary amines (Scheme 8) [35]. It is noteworthy that propargylic alcohols

also promote the formation of ureas from primary amines in the presence of

ruthenium catalysts [30].

Interestingly, cyclic a-methylene carbamates were also produced via

Markovnikov intramolecular nucleophilic addition of O-carbamates, generated in

situ from a propargylic amine and CO2, in the presence of Ru(cod)(cot)/PPh3 as

catalyst precursor (cod: cyclooctadiene; cot: cyclooctatriene) (Scheme 9) [36].

R H

O
C

NEt2

O

Ph

R1
2NH CO2

50 bar

O
C

N

O

O

[Ru] (cat.)
RCH C

H

O
C

N
R1

O

R1

O
C

N

O

++

67 % (Z/E: 82/16) 62 % (Z/E: 84/16) 50 % (Z/E: 94/6)

MeCN, 100- 125 °C

[Ru] (cat.): RuCl2(PMe3)(arene), Ru(methallyl)2(dppe)

Scheme 6 Ruthenium-catalyzed synthesis of vinyl- and dienylcarbamates
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3.2 Addition of Carboxylic Acids

3.2.1 Markovnikov Addition

Initial studies had shown that Ru3(CO)12 and [Ru(CO)2(O2CCH3)]n were able to

promote the addition of carboxylic acids to diphenylacetylene at 145�C in toluene

[37, 38]. Then, a number a catalytic systems based on ruthenium catalysts have been

R1NH NHR1

O

H R
LnRu C C

R

H

C CHR
O

LnRu

C
R1R2N

O

CH
O

C
R1R2N

O

CHR

2R1R2NH + CO2

R1R2NCO2
-, R1R2NH2

+

R1R2NH2
+

R2 = H
R1NH3

+

LnRu

Scheme 7 Proposed mechanism for the formation of vinyl carbamates and ureas

R1

R1

HO
R2NH CO2

50 bar
R

N O

R

O

O

R1R1
+ +

R = Et, R1 = H, 40 %

R1 = Me, 30 %

[RuCl2(norbornadiene)]n

MeCN, 70 °C, 20 h

Scheme 8 b-Oxopropyl carbamates from addition of carbamates to propargylic alcohols

NHR
CO2 O N

O

R
+

Ru(cod)(cot) (0.2 mol %)
PPh3 (0.4 mol %)

toluene, 100 °C, 8 h

R = nPr (80 %)
       PhCH2 (63 %)
       iPr (73 %)

Scheme 9 Intramolecular Markovnikov addition of a carbamate to a triple bond
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discovered, which have made possible the Markovnikov addition of carboxylic acids

to terminal alkynes to produce geminal enol esters according to Scheme 10.

The first generation of efficient and selective catalyst precursors for the

Markovnikov addition were based on Ru(II)(bis(Z5-cyclooctadienyl) in the presence

of a trialkylphosphine (PBu3 or PCy3) and maleic anhydride [39–43], and

RuCl2(PPh3)(arene) [44–47]. A variety of enol esters have been prepared from

aromatic, aliphatic alkynes, diynes and enynes [48, 49] and functionalized carbox-

ylic acids such as aromatic and unsaturated acids [41, 46], N-protected amino acids

[50, 51], diacids [52], a-hydroxy acids [53]. It is noteworthy that the addition takes
place with retention of configuration from optically pure amino acids and hydroxy

acids, and that polymers containing enol ester units have been obtained by diaddition

of diacids to diynes [54]. These activated enol esters show interesting acylating

properties as they liberate only a ketone as by-product under neutral conditions, and

they have been used for the acylation of amines and alcohols [55, 56], the prepa-

ration of dipeptides [51], formates [57], acylamides, acylcarbamates, acylureas

[58, 59], and oxalic acid derivatives [52].

Recently, new types of ruthenium catalyst precursors, which perform

Markovnikov addition of carboxylic acids to terminal alkynes have been developed.

Themost representative examples are [RuCl2(p-cymene)]2/P(furyl)3/base [60], [RuCl

(PPh3)2(MeCN)3]BPh4 [61], Ru vinylidene complexes such as RuCl2(PCy3)2(¼C¼
CHtBu), RuCl2(PCy3)(bis(mesityl)imidazolylidene)(¼C¼CHtBu) and the corres-

ponding salts [RuCl(L)2(¼C¼CHtBu)]BF4 [62], and ruthenium complexes with

a chelating iminophenolate [63–65], a chelating phosphinoarene ligand [66], an

imidazol(in)ium-2-thiocarboxylate [67] as shown in Scheme 11. The phosphinoarene

complexes reported by Demonceau [66] lead to excellent regioselectivity in favour of

the Markovnikov addition with turnover numbers of 5,000, which represents a very

good efficacy. The catalytic behaviour of [RuCl(PPh3)2(MeCN)3]BPh4 can be moni-

tored by additives. Indeed, the presence of a base such as Na2CO3 promotes the

formation of enynes resulting from dimerization of the terminal alkyne, the classical

concurrent reaction of enol formation, whereas the addition of BF3.Et2O that helps

creation of vacant site by removal of one phosphine, triggers the selective formation

of geminal enol esters in good yields [61]. A beneficial effect of activation by

microwaves is usually observed during this addition using various ruthenium

precursors [66–68].

In the presence of the previous types of catalysts, propargylic alcohols did not

afford hydroxy enol esters but b-ketoesters according to Scheme 12 [41, 69]. It has

been shown that the first step of the reaction is actually the nucleophilic

Markovnikov addition of the carboxylate to the triple bond, which is followed by

an intramolecular transesterification [70, 71].

R1 O

O R

[Ru]1R1 OH

O

+ R

Scheme 10 Markovnikov addition of carboxylic acid to alkyne
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The best catalyst to perform this reaction is the binuclear [Ru(O2CH)

(CO)2(PPh3)]2 complex, which makes possible the transformation of bulky acids

such as steroid derivatives [72] with retention of configuration of the starting

reagents, and the preparation of b-oxopropyl esters from propargylic alcohols as

well as g-oxobutyl esters from butynol [70] (Scheme 13).

This catalyst is also very efficient to perform the addition of bulky acids to simple

alkynes as shown in the synthesis of the ferrocenylcarboxylic styryl ester [73]. The

mononuclear bis(carboxylate)ruthenium(II) complex cis-[Ru(OAc)2(PPh3)2] has also
shown good catalytic activity for the addition of carboxylic acids to propargylic
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Scheme 12 Ruthenium-catalyzed addition of carboxylic acids to propargylic alcohols
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alcohols to afford b-oxopropyl esters [74]. Ruthenium complexes featuring a

phosphoramidite ligand such as [RuCl2((Binol)P(NR2)))(p-cymene) (R¼Me, iPr)]

are also catalytically active for the formation oxo esters from propargylic alcohols

and acids at 90�C in cyclohexane as solvent [75].

The preparation of b-oxopropyl esters has been efficiently performed in water

using hydrosoluble ruthenium catalysts containing a water-soluble ligand

such as PTA (1,3,5-triaza-7-phosphaadamantane), DAPTA (diacyl 1,3,5-triaza-7-

phosphaadamantane) and TPPMS (sodium triphenylphosphine monosulfonate)

[76, 77]. The best results illustrated by 35 examples from various carboxylic acids

and propargylic alcohols at 100�C for 2–6 h in water were obtained with

RuCl2(C6H6)(TPPMS) as catalyst precursor. It is worthwhile noting that various

catalysts immobilized on polystyrene [78] and inorganic supports [79, 80], as well

as thermomorphic catalysts [81] have been prepared, which offer the possibility of

catalyst recycling.

3.2.2 Anti-Markovnikov Addition

In contrast with the previous ruthenium catalysts, some p-allyl ruthenium

complexes containing a chelating diphosphine ligand were the first metal

complexes, which favoured the anti-Markovnikov addition of carboxylic acids to

terminal alkynes to form (Z) and (E)-enol esters with high regio- and stereose-

lectivity [82–84] according to Scheme 14 . It is postulated that the catalytic cycle

accounting for this regioselectivity involves a ruthenium vinylidene intermediate.
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The best catalyst precursors are Ru(methallyl)2(dppb) (A) and Ru

(methallyl)2(dppe) (B), the choice of the appropriate complex depending on the

steric demand of both the alkyne and carboxylic acid. A large variety of carboxylic

acids and alkynes have been used, including N-protected amino acids, a-hydroxy
acids and functionalized alkynes such as enynes and propargylic ethers (Scheme 15)

[84, 85].

The regioselective anti-Markovnikov addition of benzoic acid to phenylacetylene

has also been carried out with success at 111�C in the presence of ruthenium

complexes containing a tris(pyrazolyl)borate (Tp) ligand, [RuCl(Tp)(cod) (C),
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Scheme 14 Anti-Markovnikov addition of carboxylic acids to terminal alkynes
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Scheme 15 Selected examples of anti-Markovnikov addition with catalysts A and B
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RuCl(Tp)(tmeda) (D) RuCl(Tp)(pyridine) (E)], with a stereoselectivity in favour

of the (E)-enol ester [86]. The s-enynyl complex Ru(Tp)[PhC¼C(Ph)C�CPh)]

(PMeiPr2) (F) efficiently catalyzes the regioselective cyclization of a,o-alkynoic
acids to give endocyclic enol lactones (Scheme 16) [87].

More recently, new catalysts precursors (Scheme 17) derived from

[RuCl2(p-cymene)]2 such as the RuCl2(triazol-5-ylidene)(p-cymene) (G, H) [88]

or the in situ generated catalytic system based on [RuCl2(p-cymene)]2/P

(p-C6H4Cl)3/DMAP [60] have revealed their potential to perform the anti-
Markonikov addition of a variety of carboxylic acids to phenylacetylene and

terminal aliphatic alkynes. RuClCp(CO)2 and [RuCp(CO)2]2 catalyze the addition

of carboxylic acids to phenylacetylene in toluene at 110�C with good efficiency

and high regioselectivity towards the anti-Markovnikov products (in most cases

>95%). It is also noteworthy that these catalysts provide the (E)-enol esters, which
contrasts with the majority of previous catalysts, and that strong acids such as

CF3CO2H are not reactive [89]. The same authors have developed new Ru–Re

bimetallic complexes based on the RuCp(CO)2 fragment. They are also active in

hydrocarboxylation of terminal alkynes and regioselectively afford the anti-
Markovnikov product even though with lower stereoselectivity than the mononuclear

complex [90]. Complexes I [91] and J [92] featuring bidentate iminophosphine and

diphosphine, respectively, exhibited modest reactivities for the addition of benzoic

acid to terminal alkynes but excellent regioselectivity and stereoselectivity in

favour of the (Z)-anti-Markovnikov products. The metathesis catalyst K was also

able to catalyze the addition of aliphatic acids to 1-octyne and 1-heptyne at 65�C
with a regioselectivity depending on the nature of the acid. Most of the acids led

to Markonikov addition products as major products, but with trichloroacetic and

trans-2-octenoic acid, the anti-Markovnikov products appeared to be the major enol

esters [93]. With this catalystK, the addition of carboxylic acids to internal alkynes

was tested but at 65�C with 4 mol% catalyst loading, only trichloroacetic acid

reacted to give a mixture of (Z) and (E)-isomers.

The ruthenium hydride precursor RuCl(H)(CO)(PCy3)2 (2 mol% loading) was

found to be a highly effective catalyst for the addition of aliphatic and aromatic

carboxylic acids to a variety of terminal alkynes at 90–95�C leading to complete

conversion within 8–12 h. With this catalyst precursor, a strong influence of the

solvent was observed. Indeed, almost perfect Markovnikov addition was obtained

when the reactions were carried out in dichloromethane for both aliphatic and

aromatic terminal alkynes. In contrast, in tetrahydrofuran aryl-substituted alkynes

led to anti-Markovnikov products with high (Z)-selectivity, whereas aliphatic

alkynes gave geminal enol esters, exclusively [94]. This catalyst was also very

OH
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n
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n O

Ru(Tp)[PhC = C(Ph)CCPh](PMeiPr2)
(2 mol%)

n = 1 (97%)
      2 (95%)
      3 (45%)
      7 (84%)

toluene, 100 °C

Scheme 16 Endo-cyclization of acetylenic carboxylic acids
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efficient for the addition of carboxylic acid to propargylic alcohols to form

oxopropyl esters. A fine mechanistic study led the authors to propose a catalytic

cycle based on the initial formation of the 16 electron species RuCl(Z3-O2CR)(CO)

(PPh3), which activates the alkyne. Then depending on the solvent, Markovnikov

products would be formed after insertion of the alkyne into a Ru–O bond followed

by protonolysis, or formation of a ruthenium vinylidene intermediate would lead to

the anti-Markovnikov product. The influence of the solvent was also pointed out

with some catalysts containing a phosphinoarene ligand as the reaction performed

in water-saturated toluene were faster than those performed in dry toluene, but with

the same regioselectivities [66]. It was recently shown that mononuclear ruthenium(0)
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complexes were efficient catalysts for the direct formation of enol esters from

terminal alkynes and carboxylic acids. A strong influence of the electronic

properties of the ligands (CO, diene, phosphine) on the regioselectivity of the

addition was observed, the most s-donating ligands leading to Markovnikov

addition, whereas the most p-accepting ones gave the (E) anti-Markovnikov addi-

tion, preferentially [95].

Finally, it can noted that recyclable ruthenium catalysts supported on cerium

oxide prepared from [RuCl2(p-cymene)]2 have been used successfully at 130�C.
They favoured the formation of anti-Markovnikov enol esters but with moderate

stereoselectivity [96].

At 65�C, the addition of carboxylic acids to propargylic alcohols in the presence
of catalysts favouring the anti-Markovnikov addition such as Ru(methallyl)2(dppe)

(B) led to hydroxylated alk-1-en-1-yl esters (Scheme 18) [97, 98].

These esters can easily be cleaved under thermal or acidic conditions to give

conjugated enals, corresponding to the formal isomerization products of the starting

alcohols (Scheme 19).

It was recently shown that Ru(0)cyclopentadienone precursors made possible

the formation of hydroxylated alk-1-en-1-yl esters in good yields with selective

formation of the (E)-isomers from tertiary terminal propargylic alcohols

(Scheme 20) [99]. On the other hand, secondary terminal propargylic alcohols led

to mixtures of Markovnikov and anti-Markovnikov products, namely b-ketoesters
and enol esters, respectively.

Up to now one example of ruthenium-catalyzed addition of phosphinic acid to

terminal alkynes has been reported. The Markovnikov addition of diphenyl-

phosphinic acid took place at 140�C with Ru3(CO)12 (2.5 mol%) as catalyst

precursor and geminal enol esters were obtained from phenylacetylene and various

aliphatic acids in high yields (Scheme 21) [100].
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3.3 Addition of Alcohols

3.3.1 Addition of Allylic Alcohols

Among many methods, the addition of alcohol to alkyne is a potential method of

choice to prepare vinylethers [101]. However, even though the addition of methanol

to electron-deficient alkynes such as acetylene dicarboxylates is easy, the intermo-

lecular addition of alcohol to unactivated alkynes in the presence of metal catalysts

is not straightforward. With ruthenium catalysts, the only reported examples con-

cern the addition of allylic alcohols to terminal alkynes. Thus, in the presence of a

catalytic amount of RuCl(tris(pyrazolyl)borate)(pyridine)2, allyl alcohol adds to

phenylacetylene in refluxing toluene to produce a 1:1 mixture of allyl b-styryl ether
and 2-phenylpent-4-enal (resulting from Claisen rearrangement) in 72% overall

yield. (Scheme 22) [86].

A remarkable selective reaction involving first C–O bond formation followed by

rearrangement and C–C bond formation occurred when Cp-containing ruthenium

complexes were used as catalytic precursors. With RuCl(Cp)(PPh3)2 in the pres-

ence of NH4PF6, AgOTf or In(OTf)2 additives, which are known to facilitate

chloride abstraction from the metal centre, the addition of allylic alcohols to

terminal alkynes afforded unsaturated ketones [102, 103]. The key steps of this

reconstructive coupling reaction are the nucleophilic addition of the allylic alcohol

R + Ph2P(O)OH
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O
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Scheme 21 Addition of phosphinic acid to terminal alkynes
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to a ruthenium vinylidene species followed by formation of an allyl-metal interme-

diate via sigmatropic rearrangement (Scheme 23) [103].

This transformation of terminal alkynes via coupling with allylic alcohol and

formation of a C–C bond with atom economy has been applied to the synthesis and

modification of natural compounds such as rosefuran and steroids [104, 105].

As an extension of this reaction, the selective intramolecular nucleophilic

addition of an hydroxy group at Cg of a ruthenium allenylidene species generated

by activation of propargylic alcohol by RuCl(Cp)(PPh3)2/NH4PF6 provides a ruthe-

nium vinylidene intermediate, which reacts with allylic alcohol via a second

nucleophilic addition as described above (Scheme 24) [106]. This unprecedented

tandem reaction makes possible the construction of tetrahydrofuran derivatives in

good yields and has been used in the multistep synthesis of (_)calyculin A [107].

3.3.2 Intramolecular Addition of Hydroxy Group to Triple Bond

The intramolecular addition of an hydroxy group to a triple bond has been

performed successfully in the presence of RuCl2(PPh3)(p-cymene) as catalyst

precursor under mild conditions [108, 109]. The Lewis acid properties of the

ruthenium active species provide the activation of the triple bond and the

Markovnikov addition of the hydroxy group to form 2-methylfuran derivatives

after 1,5-proton shift and aromatization (Scheme 25).

All the ruthenium-catalyzed cycloisomerizations of acetylenic alcohols that will

be described from now on involve only terminal triple bonds. They correspond to
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Scheme 23 Addition of allylic alcohol to alkyne followed by skeleton rearrangement
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endo cyclization processes that have been rationalized by the intermediate forma-

tion of ruthenium vinylidene as active catalytic species.

Starting from pent-4-yn-1-ols (bis-homopropargylic alcohols), the catalytic

system [L] based on RuCl(Cp)(tris(p-fluorophenyl)phosphine)2 (5 mol%), tris

HO

n
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(p-fluorophenyl)phosphine (20 mol%), Bu4NPF6 (15 mol%) and N-hydroxysuc-
cinimide sodium salt (50 mol%) led to the selective formation of cyclic enol ethers

via intramolecular anti-Markovnikov addition of the hydroxy group to the terminal

carbon of the triple bond [110].

However, in the presence of (cyclopentadienyl)ruthenium complexes bearing an

electron-rich ligand such as tris(p-methoxyphenyl)phosphine in the presence of a

large excess of the same ligand (catalytic system M), the selective formation of

lactones was obtained. The elimination of the organic ligand as a six-membered

lactone was made possible by oxidation of an intermediate cyclic alkoxycarbene-

metal with N-hydroxysuccinimide, a mild oxidant which did not destroy the catalyst

(Scheme 26) [110].

Both oxidative cyclization and cycloisomerization were applied to a variety of

substrates including sugar derivatives, the only restriction to the formation of

lactones was the presence of a tertiary alcohol functionality. The presence of a

heteroatom at the propargylic position also inhibited both catalytic reactions.

4-Amino-bis-homopropargylic alcohols have been recently cyclized to form

dihydropyrans with a catalytic system inspired from (L) in Scheme 26 [111].

RuClCp(PPh3)2 (5 mol%) was used as catalyst precursor in association with

Bu4NPF6, N-hydroxysuccinimide and NaHCO3 in DMF at 80�C and led to excel-

lent yields. The amino functionality that would lead to a five-membered pyrroline

upon cyclization was not reactive in the presence of the hydroxy group, whereas it

was when the OH group was protected. This fact reveals the high chemoselectivity

of this endocyclization (Scheme 27).

An organic base such as butylamine or pyridine has been associated as the

only additive to the same ruthenium precursor to generate another active catalyst.

It was used to perform the endo-cyclization of 2-ethynylbenzylalcohols and

2-ethynylphenols into the corresponding isochromenes and benzofurans

(Scheme 28) [112]. It is noteworthy that from an acetylenic substrate containing

both benzyl alcohol and phenol functionalities, a high chemoselectivity in favour of

the formation of furan via 5-endo-cyclization was observed.

Surprisingly, from homopropargylic substrates incorporating a cyclopentanol

unit, the Markovnikov addition affording a bicyclic [3,3,0] structure, was observed

when RuCl2(PCy3)2(¼CHPh) was used as catalyst in toluene at 80�C [113].
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Recently, the cyclization of pent-4-yn-1-ols and but-3-yn-1-ols via anti-
Markovnikov addition of the hydroxy group to the terminal carbon of the triple

bond with a ruthenium catalyst in THF at 80�C and no other additive has been

reported. All types of acetylenic alcohols, purely aliphatic and including a

phenylacetylene fragment have been cycloisomerized in excellent yields. The

catalyst is a cationic ruthenium(II) complex has depicted in Scheme 29 [114].

OH
Ar

BocHN

O
BocHN

O
BocHN

Me2N

O
BocHN

MeO

O
BocHN

Cl

O
BocHN

Ar

O
BocHN

FF

RuCl(Cp)(PPh3)2 (5 mol %)
Bu4NPF6 (13 mol %),
N-hydroxysuccinimide (50  mol%)
DMF, 80 °C, 8 h 

87 % 86 % 84 % 85 % 89 %

Scheme 27 Endo-cyclization of bis-homopropargylic alcohols with RuClCp(PPh3)2 as precursor

RuCl(Cp)(PPh3)2 (10 mol %)
nBuNH2
90 °C

OH

R2

O

R2
R1 = H, Cl, MeO

R2 = H, Me, CH2CH = CH2

R1 R1

60-86 %

OH

R

RuCl(Cp)(PPh3)2 (10 mol %)
pyridine
90 °C

O

R

R = Ph (84 %), CN (54 %), CO2Me (59 %)

Scheme 28 Endo-cyclization of acetylenic benzylic alcohols and phenols

Ru

N

N N

O
O

PPh2

+BPh4
–Scheme 29 Efficient

ruthenium catalyst for

acetylenic alcohols

cyclization
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Homopropargylic alcohols (but-3-ynols) as well as propargylic epoxides and

pentynols readily form cyclic ruthenium alcoxycarbenes upon intramolecular

nucleophilic addition of the OH group to the electrophilic a-carbon of ruthenium

vinylidene species. Their oxidation in the presence of N-hydroxysuccinimide leads

to the formation of pentalactones. The best catalytic system reported up to now for

this transformation of but-3-ynols is based on RuCl(C5H5)(cod), tris(2-furyl)phos-

phine, NaHCO3 as a base, in the presence of nBu4NBr or nBu4PF6, and

N-hydroxysuccinimide as the oxidant in DMF-water at 95�C (Scheme 30) [115].

The double addition of catechol to alkynes appears as an unpredicted intermo-

lecular reaction. Indeed, in the presence of 2 mol% Ru3(CO)12 in toluene at

100–150�C in a sealed tube the double addition of the 2 phenolic ortho-OH took

place at the same acetylenic carbon of the triple bond to form 1,3-benzodioxoles in

good yields from terminal and internal alkynes as well (Scheme 31) [116]. When

the alkyne is terminal, the final product results from Markonikov addition.

3.4 Addition of Water

The catalytic hydration of alkynes with a variety of ruthenium catalysts has been

recently reviewed [117]. The addition of water to terminal alkynes catalyzed by

HO

R1

R2 H

O

R1

R2

O
RuCl(Cp)(cod) (5-10 mol %)

Trifurylphosphine (7.5-20 mol %)
Bu4NPF6 (45-60 mol %), NaHCO3 (2 eq)
N-hydroxysuccinimide (3 eq)
DMF: H2O = 7:1, 95 °C

O
O

76 %

O
O

74 %

O
O

51 %

O
O

O

62 %

n-C12H25

OH

Scheme 30 Formation of pentalactones from homopropargylic alcohols

OH

OH

+ R1
R2

O

O

R1

R2

Ru3(CO)12(2 mol %)
toluene
100-150 °C, 12 h

R1 = Ph, MeC6H4, nC5H11, Et, Pr, nBu,

R2 = H, Ph, Et, Pr, nBu, Me, CO2Me

Scheme 31 Double OH addition of catechol to alkynes
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ruthenium(III) complexes leads to ketones following Markovnikov’s rule

[118–120]. The use of RuCl2(C6H6)(PPh2(C6F5)) in the presence of 3 equivalents

of PPh2(C6F5) (N) , or [RuCl2(C6H6)]2 associated to 8 equivalents of the water-

soluble ligand P(3-C6H5SO3Na)3 (TPPTS) (O) in alcohol at 65–100�C provides

the selective formation of aldehydes resulting from anti-Markovnikov addition

(Scheme 32) [121].

A variety of linear aliphatic terminal alkynes were transformed into aldehydes

with good selectivity. The efficiency, regioselectivity of the addition, substituent

tolerance were improved by using RuCl(Cp)(phosphine)2 (P) (Scheme 34) or RuCl

(Cp)(diphosphine) as catalyst precursor [122]. The best results were obtained with

diphenylphosphinomethane (dppm) as ligand, which made possible the preparation

of aldehydes from bulky aliphatic alkynes (tert-BuCH2CHO (81%)), aromatic

alkynes (PhCH2CHO (90%)), diynes (OHCCH2(CH2)6CH2CHO (89%)) and func-

tional terminal alkynes (NC(CH2)3CH2CHO (88%), PhCH2O(CH2)2CH2CHO

(94%)).

The mechanism of this reaction was investigated in details by isolation of

intermediates, deuterium-labelling experiments and DFT calculations [123]. The

postulated catalytic cycle involves first protonation of a ruthenium(II)-alkyne

species to give a Ru(IV)-vinylidene intermediate via a Ru(IV)-vinyl species. The

nucleophilic addition of water to the a-carbon of the vinylidene ligand followed by

reductive elimination affords the aldehyde (Scheme 33).

The indenyl complex RuCl(Z5-C9H7)(PPh3)2 (Q) (Scheme 34) also provides an

efficient catalyst precursor for the anti-Markovnikov hydration of terminal alkynes

in aqueous media and micellar solutions in the presence of surfactants such as

sodium dodecylsulfate (SDS) or hexadecyltrimethylammonium bromide (CTAB)

[124] (Scheme 35). Notably, this system can be applied to the hydration of

propargylic alcohols to selectively produce b-hydroxyaldehydes.
In contrast, the reaction of secondary propargylic alcohols in 2-propanol/H2O at

100�C in the presence of 5 mol% of RuCl(Cp)(PMe3)2 leads to conjugated enals

with (E)-stereoselectivity (formal Meyer Schuster rearrangement products)

(Scheme 36) [125].

The formation of b-hydroxyaldehydes from propargylic alcohols has also been

observed in aqueous media in the presence of a catalytic amount of water-soluble

ruthenium sulfophthalocyanine complex and the heterogeneous ruthenium hydroxy-

apatite catalyst [126].

R O
R H +

[Ru] (cat.)

[Ru] : RuCl2(C6H6)(PPh2(C6F5)) + 3 PPh2(C6F5)
           in 2-propanol

or

[RuCl2(C6H6)]2 + 8 P(3-C6H4SO3Na)3
in 2-methoxyethanol

H2O

R = C4H9 71 %
       C6H13 75 %
       PhCH2 65 %
       PhCH2O(CH2)2 67 %

Scheme 32 Anti-Markovnikov hydration of terminal alkynes
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Recently, a new class of supramolecular CpRu-containing catalysts for anti-
Markovnikov hydration of alkynes has emerged [127–135]. The remarkable activ-

ity of catalytic systems such as R–T (Scheme 34) in terms of reactivity and

selectivity is based on the principle of cooperative catalysis between the metal

centre, the functional groups of the ligands, and the substrates driven by hydrogen

bonding. Recent investigations by Grotjahn have shown that a bifunctional mecha-

nism is involved in which the formation of the vinylidene and the addition of water

are accelerated by hydrogen bonding interactions [129, 132–134]. In complexes

such as T, the self-assembled monophosphine ligands behave as a diphosphine with

large bite angle [135] and confer a high reactivity to the ruthenium centre. Based on

the same concept, active catalysts have been formed upon treatment of the air-stable

ruthenium(naphthalene)(cyclopentadienyl) hexafluorophosphate with 2 equivalents

of pyridine–phosphine or triazine–phosphine ligand (U). With this system, very

high efficiencies and selectivities were obtained for a wide range of functional

terminal alkynes at moderate temperature (45–65�C) [131]. The anti-Markovnikov

hydration of terminal alkynes with catalysts prone to supramolecular interactions

has been used in sequential hydration–alkynylation reactions for the synthesis of

polyols (Scheme 37) [136, 137].

The ruthenium catalysts obtained by grafting [RuCl2(p-cymene)] units onto

dendrimers have been used in aqueous media to perform hydration of terminal

alkynes. A slightly positive dendritic effect was observed on selectivity towards

ketone formation when the reaction was performed in water [138].

The stoichiometric hydration of terminal alkynes to form ketones was carried out

with FeCl3 in dichloromethane at room temperature [139]. Only recently, the

utilization of FeCl3 (10 mol%) in 1,2-dichloroethane under air gave access to a

R2

X

R1

R2

X

R1 O
H

+ H2O

X = H, R1 = H, R2 = C4H9, 97 %

X = OH, R1= H, R2 = Me(CH2)4, 93 %
     R1-R2 = cyclohexyl, 88 %

RuCl(C9H7)(PPh3)2 (5 mol %)

water / SDS, 60 °C

Scheme 35 Hydration of alkynes in aqueous medium

C5H11

H

HO

O

(Q) (5 mol %) HO

C5H11 O
H

C5H11RuCl(Cp)(PMe3)2
(5 mol %)

H2O / iPrOH
100 °C, 12 h

93 %

H2O, SDS
60 °C, 24 h

93 %

Scheme 36 Two hydration processes involving ruthenium vinylidene intermediates
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catalytic procedure [140]. A variety of acetophenone derivatives with various

substituents in para-position on the phenyl group were thus prepared in excellent

yields.

4 Conclusion

Among group 8 metals, ruthenium catalysts appear to be the most efficient organo-

metallic species able to perform addition of O-nucleophiles to olefins and alkynes.

Starting from olefins, the addition of alcohols and carboxylic acids is essentially of

Markovnikov type, and requires the presence of additives, especially silver triflate,

to generate active species. Starting from alkynes, Markovnikov and anti-
Markovnikov additions can take place, depending on the nature of the ruthenium

precatalyst. Markovnikov addition of carboxylic acid and water are driven by the

Lewis acidity of the ruthenium centre and lead to geminal enol esters and ketones,

respectively. The umpolung of terminal triple bonds via ruthenium vinylidene

formation is a unique tool to trigger the addition of nucleophiles at the terminal

carbon atom of the triple bond. This mechanism has been evoked for most of the

anti-Markovnikov additions to terminal alkynes. Thus (Z)- and (E)-enol esters from
carboxylic acids, aldehydes from water, (Z)- and (E)-vinyl carbamates from ammo-

nium carbamates and cyclic vinyl ethers were prepared with selected ruthenium

catalysts. It is noteworthy that intermolecular addition of alcohols to alkynes has

not been successful with group 8 metals, whereas several ruthenium catalysts

efficiently perform intramolecular addition leading to cyclic unsaturated ethers

via endo-cyclization. Group 8 metal catalysts complement the metals of the other

groups, and ruthenium offers an additional possibility of fine tuning the

Markovnikov and anti-Markovikov additions of O-nucleophiles to triple bonds

thanks to easy modification of the properties of catalyst precursors via coordination

of suitable ligands.

Ph H

O

ZnBr

Ph

AcO

OTBS

OTBS

OTBS

Ph
OAc

Ph

AcO

OH

Ph

AcO
O

ZnBr

.i)
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cat. U, 70 °C

•

Scheme 37 Iterative sequences involving anti-Markovnikov hydration
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Groups 9 and 10 Metals-Catalyzed O–H Bond

Addition to Unsaturated Molecules

Giorgio Abbiati, Egle M. Beccalli, and Elisabetta Rossi

Abstract Progress in the field of inter- and intramolecular additions of oxygen

nucleophiles (water, alcohols, phenols, and carboxylic acids) to alkenes, allenes,

alkynes, and nitriles catalyzed by Co, Rh, Ir, Ni, Pd, and Pt is critically reviewed.
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1 Introduction

Transition-metal complexes continue to play a relevant role in organic synthesis.

They can realize selective transformations that would be either difficult or impossi-

ble to attain by conventional organic chemistry. The addition of heteroatom-

hydrogen (Het–H) bonds across the carbon–carbon bond of unsaturated molecules,

under transition-metal catalysis is a very important process from the synthetic point

of view because these addition reactions can be performed with 100% atom

efficiency, and for this reason they fulfill the requirements of atom economy.

Contrary to the broad application of nitrogen nucleophiles in metal-transition

catalyzed reactions, the use of oxygen nucleophiles has remained a less explored

area due to the diminished nucleophilicity of this atom compared to nitrogen. The

formation of carbon–oxygen (C–O) bonds continues to stimulate considerable

interest considering the wide presence of oxygen-containing heterocyclic structures

in natural products and medicinally important compounds.

The literature reports several general reviews on this topic [1–8] regarding all the

transition metals. In this chapter, we consider the use of catalysts of 9–10 group

metals, Co, Rh, Ni, Ir, Pd, and Pt with the aim to provide an update of methodolog-

ical progresses. When appropriate, references to older works have been added.

Different types of C–O functionalities may be formed by addition of oxygen

nucleophiles to unsaturated bonds. The reaction typologies considered are:

hydrations, hydroalkoxylations, and hydroacyloxylations of alkenes, allenes,

alkynes, and nitriles, reported as both intramolecular and intermolecular processes.

The nature of the transition-metal complex plays a key role in all these reactions

and the main problem is to find the proper catalyst, which should be not only

efficient but also relatively cheap and stable.

Hydration reactions are of great interest to the chemical industry when

performed on functionalized alkynes because the resultant ketones are useful as

chemical intermediates. Thus, in order to develop nonmercury alkyne hydration

catalysts, the metals of the nine and ten groups were studied, in particular Ir, Rh, Pd,

and Pt. Nucleophilic attack on a C–C multiple bond by the OH group of alcohols or

phenols results in an hydroalkoxylation reaction. In this field, the palladium

catalysts dominate by far. For example, the comparison between Pd and Pt catalysts

in the activation of alkynes toward the intermolecular addition of alcohols showed a

much slower reaction with the homologous Pt complex, probably due to the higher

stability of the Pt–C bond in the vinylplatinum complex. The use of carboxylic

acids as nucleophiles on the C–C multiple bonds results in hydroacyloxylation

reaction (hydroacetoxylation when acetic acid is used). This reaction is one of the

most important processes for the synthesis of unsaturated and saturated carboxylic

esters as well as for the achievement of saturated and unsaturated lactones starting

from a wide range of acyclic alkenoic and alkynoic acids.

In comparison with other addition reactions, the C–O bond formations proceed

under milder conditions, giving higher yields of the products, proceeding with good

or excellent regio- and stereoselectivities. The reaction mechanisms can be quite
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different depending on the unsaturated substrate and the transition metal involved.

Considering the alkenes, two potential mechanisms are most commonly accepted.

The key step is the reaction of a metal–olefin complex with a nucleophile to give a

b-substituted metal–alkyl species. This transformation can in principle proceed

through an inner-sphere or an outer-sphere mechanism, with opposite stereochemi-

cal outcomes, and with different implications for catalyst design. Mechanistic

studies, both experimental and theoretical, have demonstrated that either pathway

in fact can be operative. Scheme 1 depicts the coordination of a C–C double bond to

an electrophilic metal center activating the unsaturated system toward outer-sphere

attack by a protic nucleophile NuH. The newly formed M–C bond is then cleaved

by protonolysis to regenerate the catalyst.

Scheme 2 shows an alternative inner-sphere mechanism, first involving the initial

oxidative addition of NuH to the metal followed by olefin insertion into the M–Nu

bond. The resulting M–C bond is cleaved by a C–H reductive elimination or by

protonolysis (Scheme 2).While this mechanism is generally preferred for more

electron-rich metals such as rhodium and iridium, several studies suggest that plati-

num and palladium-catalyzed additions of N–H or O–H nucleophiles more likely run

by the outer-sphere electrophilic activation mechanism shown in Scheme 1.

M

M
Nu

Nu H

Nu

M0

oxidative
addition

reductive elimination

H

Nu 1,2-migratory
insertion

H

Scheme 2 Inner-sphere mechanism

+M

M
Nu

Nu H

H+

Nu

M+

H+

outer-sphere
nucleophilic attack

protonolysis

Scheme 1 Outer-sphere mechanism
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Both palladium(II) and platinum(II) catalysts are quite efficient in the promotion

of nucleophilic addition to a coordinated olefin, but their distinct properties often

lead to complementary M–C bond cleavage, pathway required to obtain product.

Specifically, as palladium complexes are reactive toward ligand substitution, thus

facilitating the b-hydride elimination, in contrast, platinum complexes are rela-

tively inert toward ligand substitution. This facilitates the development of alterna-

tive pathways for M–C bond cleavage, such as protonolysis, and reduces the

problems caused by competing olefin-isomerization reactions.

Starting from alkynes, the formation of allene intermediate was proposed

followed by the intermediacy of the p-allyl-metal complex, which undergoes the

attack of the oxygen nucleophile to give allyl ethers (Scheme 3).

The utilization of carbon–carbon unsaturated compounds containing proximate

oxygen nucleophiles, exploiting the carbon–oxygen bond formation, represents one

of the most versatile and efficient methods for the preparation of oxygen-containing

heterocycles such as furan, pyran, benzofuran, and benzopyran derivatives among

others. In this case, the intramolecular attack of the heteroatom to the electron-

deficient unsaturated system produces a new heterocyclic organometallic

intermediates, converted to product by protonolysis (Scheme 4).

A particular mention regards the impact of the transition-metal catalysis on the

regioselectivity. In the presence of Ir, Pd, Pt, and Rh, a particular regioselectivity

was reported, 5-exo-dig vs 6-endo-dig, depending on the substrate, the transition-

metal and the reaction conditions (Scheme 5).

Y H

Y = O, NR

M

Y H

M

Y

M

H+

Y + M

Scheme 4 Intramolecular mechanism of addition to alkynes

M
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H M
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X
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M
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Ph
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Ph OR Ph Me

Scheme 3 Intermolecular mechanism of addition to alkynes
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Finally, the coordination and reactivity of nitriles with low-valent late transition-

metal complexes is of interest because catalytic hydration of nitriles to amides

remains a challenging goal. The development of catalytic reactions that employ

transition-metal complexes as catalysts under neutral and mild conditions has been

proposed as a particularly important alternative for the nitrile hydration process and

considerable efforts have been spent in this direction.

2 Cobalt

Several cobalt compounds are widely used as oxidation catalysts. Cobalt-based

catalysts are also important in some industrial process such as the Fischer–Tropsch

process [9] and the hydroformylation of alkenes [10]. Also, the cross-coupling reac-

tions promoted by this metal have been recently highlighted [11]. Conversely, cobalt

is not a suitable metal catalyst for the O–H addition to alkynes, alkenes, and nitriles.

2.1 Hydration

Catalytic activity on alkynes has not been reported, whereas some isolated and

peculiar examples of hydration of alkenes and nitriles have been reported promoted

by aminocomplexes of this metal.

2.1.1 Alkenes

Sargeson and coworkers studied the hydration of coordinated carboxyalkenes using

bis(alkanediamine)cobalt(III) complexes with either methyl maleate or ethyl fuma-

rate cis coordinated to a water molecule [12] (Fig. 1).

The authors established, by 18O-tracer experiments and three-dimensional X-ray

crystallographic analysis, that the reaction involved an intramolecular cyclization

reaction with the exclusive formation of a five-member ring in the chelated

products and suggested that [(1,3-propanediamine)2Co(OH)(OH2)]
2+ ion could be

an effective reagent to hydrate alkenes of this type.

2.1.2 Nitriles

Seminal works involved the base promoted hydration of acetonitrile to acetamide in

the presence of substitutionally inert [Co(NH3)5]
3+ as coordinating agent. Related

MOH

R

M
O

R

5-exo adduct

O
R

6-endo adduct

Scheme 5 Regioselectivity on intramolecular reaction of alkynols
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studies suggested that the hydrolysis occurs by attack of free hydroxide anion on the

nitrile carbon atom. The hydrolysis of coordinated acetonitrile showed a 106-fold

rate acceleration with respect to simple alkaline hydrolysis [13, 14] (Fig. 2).

However, Co(III) complexes tend to be poor catalysts giving little or no catalytic

turnover because of slow ligand exchange rates, but they often provide valuable

mechanistic information by forming stable intermediates. An example of a real

effective Co(III) catalyzed hydration of nitriles has been reported by Chin and

coworkers [15, 16]; [Co(cyclen)(OH2)2]
3+ efficiently catalyzes hydration of aceto-

nitrile to acetamide in a three-step cycle (cyclen ¼ 1,4,7,11-tetraazacyclo-

dodecane). The mechanism involves coordination of the nitrile to the cobalt

complex followed by intramolecular metal hydroxide attack on the nitrile and

dissociation of the chelated amide. Interestingly, the simultaneous Lewis acid

activation and metal hydroxide activation provides over a 1010-fold rate accelera-

tion for the hydration reaction (Fig. 2).

3 Rhodium

3.1 Hydration

3.1.1 Alkynes

The first study on Rh catalyzed hydration of acetylene was published in 1969 by

James and Rempel. They found that aqueous acid solutions of some Rh(III)

chloro complexes such as [Rh(H2O)Cl5]
2- were able to promote the reaction

Co
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NH2

O

H2N OH2

H2N O

H

H
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O O
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Fig. 1 Bis(alkanediamine)cobalt(III) complexes with maleate and fumarate
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under mild conditions [17]. The kinetics and the mechanism were similar to that

reported for a Ru(III) chloro system [18, 19] but the reaction demonstrated to run

three times faster. Nevertheless, deactivation was a problem for this Rh(III)

system. The proposed mechanism involved the presence of a water molecule

as ligand on the Rh center and the formation of a p-complex of the metal with

alkyne (Scheme 6). The coordinated water ligand is somewhat acidic. The

acidity of a p-complex [Rh(H2O)Cl4(C2H2)]
2- is likely to be greater than that

of [Rh(H2O)Cl5]
2-, and the ionization probably occurs with the acetylene com-

plex. Nucleophilic attack by the coordinated OH- at the C atom finally yields the

s-complex, which is then decomposed by electrophilic attack by a proton at

the C atom attached to the metal to regenerate the Rh(III) catalyst and give the

hydration product.

A related study was reported in 1992 by Blum and Alper [20]. The authors

showed that the ion pairs generated from RhCl3 and a quaternary ammonium salt

(Aliquat 336®) promoted the hydration of alkynes (Scheme 7).

They demonstrated that the catalytic species is the ion pair [CH3N

(C8H17)3]
+[RhCl4(H2O)2]

-. The solvent of choice was THF, but haloalkanes were

preferred when the recovery of rhodiumwas desired. The reaction on terminal alkynes

was regiospecific yielding only theMarkovnikov product. The quaternary ammonium

ions seemed to act not only as a phase-transfer agent but also as essential part of the

catalytic system. Unfortunately, due to the competitive cyclotrimerization process

of alkynes, the yields are not good enough for preparative purposes. Some years

later, the same group reported that polystyrene supported ion pairs generated from

RhCl3 and Dowex® 1 ion exchanger were able to efficiently hydrate aromatic

terminal alkynes yielding selectively the corresponding Markovnikov product in

good yields [21] (Scheme 8).

Unfortunately, under these conditions, aliphatic acetylenes proved to undergo

only catalytic oligomerization.

Rh

OH2
H

H

+ Rh

OH H

H

Rh

HO H

H

Rh
H+

+
OH

OH

+ H+

Rh

Scheme 6 Proposed mechanism for Rh catalyzed hydration of acetylene

R R

O

THF, 5-50 °C, 2-4 h

RhCl3 ·3 H2O 0.1 mol %
Aliquat 336 0.15 mol %

13-23 %

R = CH3(CH2)5, CH3(CH2)7, Ph, Ph(CH2)2, Ph(CH2)3

+ H2O

Scheme 7 RhCl3/Aliquat 336
1 catalyzed hydration of alkynes
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3.1.2 Nitriles

In the literature, there are some examples of Rh(III) promoted hydrolysis of simple

nitriles such as acetonitrile and benzonitrile. Ford and Zanella studied the base

hydrolysis of some metal complexes of nitriles and found that the hydration of

Rh(NH3)5(N�CCH3)
3+ was approximately 106 faster than the free acetonitrile but

102 times slower than the analogous Ru (III) complex [22]. The authors suggested

that the hydrolysis rates are related to the acidities of metal centers and that such

effects are function of both electronic and electrostatic factors [23]. On the other

hand, the same system was studied by Sargeson and Curtis [24], who suggested that

the addition of nucleophile is not the rate-determining step, and that the effect of

polarization of the ligand by the metal ion is therefore obscured. More recently,

Kukushkin and Isobe reported a novel type of metallocyclic dirhodium complex

[Rh2Cp2
*(m-CH2)2(m-O2CO)] that readily hydrolyzes acetonitrile to give the

corresponding amidato complex [25].

3.2 Hydroalkoxylation

3.2.1 Alkynes

Based on the well-known ability of Rh to form vinylidene complexes from terminal

alkynes [26, 27], Trost and Rhee tested a series of Rh(I) phosphine complexes as

catalysts for the cycloisomerization of homo- and bis-homopropargylic alcohols to

obtain dihydrofurans and dihydropyrans under neutral conditions [28] (Scheme 9).

Best results were obtained with Rh(PR3)3Cl and [Rh(COD)Cl]2 catalysts in the

presence of an excess of electron-poor triaryl phosphines to avoid undesirable

dimerization/oligomerization processes. The proposed reaction mechanism involves

the formation of the Rh-vinylidene complex followed by the intramolecular endo-dig
cyclization. The protodemetallation of intermediate I seems to be the more plausible

path, whereas the formation of the Rh-oxacarbene complex II was excluded because

all attempts to generate lactones by using N-hydroxysuccinimide failed and the

cycloisomerization product was the only product obtained (Scheme 10).

Four years later, within a more in-depth study on the Rh-catalyzed synthesis of

indoles starting from o-alkynylanilines, the same group successfully extended this

approach to the preparation of benzofurans starting from o-alkynylphenols [29].

Ar Ar

Ocat. 0.05 mol %
EtOH aq. 92 %

50 °C ,N2, 5 h
64-97 %

Ar = Ph, 4-Br-Ph, 4-Me-Ph
cat. = [polystyrene-(CH2NMe3)n]n+[RhCl4(H2O)m]n

n-

+ H2O

Scheme 8 RhCl3/Dowex
1 1 catalyzed hydration of alkynes
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Also in this case, best results were obtained with 5 mol% [Rh(COD)Cl]2 and an

electron-poor triaryl phosphines in 60 mol% (Scheme 11).

The authors reported also one example that demonstrated the suitability of the

method also for the synthesis of enol lactones starting from alkynyl carboxylic

acids. Also in this case, due to the mechanism involving a Rh-vinylidene complex,

the approach is limited to terminal alkynes.

An analogous mechanism that probably involves a Rh-vinylidene intermediate

has been very recently proposed by Kakiuchi and coworkers in the first example of

anti-Markovnikov intermolecular hydroalkoxylation of terminal acetylenes [30].

The approach gave enol ethers in good yields with a remarkable Z-stereoselectivity.
The reaction between acetylenes and an excess of methanol gave best results in the
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Scheme 10 Proposed reaction mechanism for Rh(I) catalyzed cycloisomerization of alkynyl

alcohols
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presence of 2 mol% dicarbonyl(2-methyl-8-quinolinolato)rhodium in DMA at

70�C (Scheme 12).

The hydroalkoxylation was catalyzed specifically by dicarbonyl

(8-quinolinolato)rhodium complexes, in fact the substitution of a CO ligand with

PPh3 or both with COD ligand were unsuccessful. Simple Rh, Ir, and Ru carbonyl

complexes were also ineffective. Aryl and heteroaryl acetylenes gave the best

yields and selectivities, whereas the reactions of alkenyl and alkyl acetylenes

gave unsatisfactory results. Also, the use of higher alcohols such as ethanol and

iso-propanol was tolerated but increasing of catalyst loading and reaction times was

necessary, whereas the reaction with phenols needed a catalytic amount of the weak

base 2,6-lutidine, and gave modest yield and stereoselectivity.

The group of Messerle studied in depth the cationic Rh(I) catalyzed cyclization

of alkynyl alcohols and alkynyl carboxylic acids. In 2000, they reported the

cyclization of 4-pentynols to five-member cyclic acetals in which a molecule of

alcohol (either from the solvent or from a second molecule of the starting alcohol) is

incorporated into the products [31]. The reactions were performed in the presence

of [Rh(bim)(CO)2]
+BPh4

- (bim ¼ bis(N-methylimidazol-2-yl)methane), in ace-

tone-d6 at 60
�C in a nuclear magnetic resonance (NMR) tube (Scheme 13).

The cyclization did not work well with 4- or 6-carbon terminal alkynols or with

compounds containing nonterminal alkynes. The proposed mechanism involved

initial oxidative addition of the OH group to the rhodium center with loss of CO

and coordination of the pendant acetylene. Migratory insertion in a 5-exo-dig mode

produces the coordinated cyclic vinyl ether, which could add an alcohol to the vinyl

group and reductive elimination of the organic product regenerates the reactive metal

complex. Alternatively, reductive elimination from the metal vinyl ether would

produce a vinyl ether, which would be trapped by the alcoholic solvent (Scheme 14).

Ar(Het) + H3C OH Ar(Het) O CH3

N

Rh O
OC CO

2 mol %

DMA, 70 °C, 48 h

25-65 %

Z / E = up to 95 / 5

Scheme 12 Rh(I) catalyzed anti-Markovnikov intermolecular hydroalkoxylation of terminal

acetylenes

O
H

ROH, 60 °C, 4hORO OO60 °C, 4 h

bim = bis(N-methylimidazol-2-yl)methane

[Rh(bim)(CO)2]+BPh4
-

0.7 mol %
[Rh(bim)(CO)2]+BPh4

-

0.7 mol %

Scheme 13 Rh(I) catalyzed cyclization of alkynyl alcohols
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The same catalyst was used for the double intramolecular hydroalkoxylation

reaction for the synthesis of a series of spiroacetals starting from internal and

terminal alkynediols [32] (Scheme 15).
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Scheme 15 Rh(I) catalyzed double intramolecular hydroalkoxylation of alkynediols
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The efficiency of the rhodium catalyst was compared with that of the iridium

complex [Ir(PyP)(CO)2]BPh4 (PyP ¼ 1-[2-(diphenylphosphino)ethyl]pyrazole).

The latter resulted more effective for the cyclization of aliphatic substrates, whereas

the Rh-complex was significantly more efficient in the reaction of aromatic

substrates. The mechanism was studied by low-temperature NMR spectroscopy

and deuteration experiments. Unlike what is reported in their previous work [31],

the authors postulate an alternative catalytic cycle in which the initial step of the

reaction cycle involves the association of the alkyne with the metal center, but

unfortunately the mechanistic studies were done only on the Ir-complex.

The synthesis of spiroacetals was improved by using new simple and readily

accessible Rh(COD)2 complexes that allowed excellent conversions and an overall

reduction of reaction times [33]. Moreover, very recently a dual metal catalytic

system (Rh(I) and Ir(I)) was successfully utilized for these reactions on alkynediols,

and in some cases it works more efficiently than the single metal catalyst [34].

The combination of the two metal complexes ([Rh(bpm)(CO)2]BAr4
F and [Ir

(bpm)(CO)2]BAr4
F (bpm ¼ bis(1-pyrazolyl)methane, BAr4

F ¼ tetrakis[3,5-bis

(trifluoromethyl)phenyl]borate) acted cooperatively to promote an efficient dual

activation pathway for both the 5-exo and 6-endo cyclization in which the Rh(I)

preferentially promotes the 6-membered ring formation, while the Ir(I) in prefer-

ence promotes the 5-membered cyclization of alkynediols.

3.2.2 Allenes

Only recently, an example of rhodium-catalyzed allene hydroalkoxylation has been

reported by Nishimura, Haysashi, and coworkers [35]. The asymmetric addition

of phenols to diphenylphosphinylallenes was achieved in high yields and ee in the

presence of the hydroxorhodium complex [Rh(OH)(cod)]2 coordinated with the

hindered chiral bisphosphine ligand (R)-DTBM-segphos in tert-butyl alcohol

(Scheme 16).

Ph2(O)P

R

t-BuOH, 80 °C, 24 h

[Rh(OH)(cod)]2 5 mol %
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+  ArOH Ph2(O)P
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51-99 %
74-97 % eeR = Me, Et, Bu, Ph

O

O

O

O

P

P

t-Bu

MeO
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Scheme 16 Rh(I) catalyzed hydroalkoxylation of allenes
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The allene/phenol ratio had a significant influence on the enantioselectivity; best

results were obtained with a 2:1 ratio. Ortho-substituents and electron-withdrawing

groups on the phenol increased the enantioselectivity. The reaction of allenes

substituted with Et, Bu, and Ph groups also took place to give the corresponding

vinyl ethers, the enantioselectivity being lower with more bulky substituents. The

mechanism was carefully investigated by means of 1H and 31P NMR studies and

involved two different Rh-complexes. First, treatment of the catalyst with phenol

brought about the selective formation of a p-phenoxorhodium complex, after

that when the allene was added a new p-allylrhodium was observed. Finally,

protonolysis of the p -allylrhodiumwith phenol gave the hydroalkoxylation product,

regenerating phenoxorhodium complex (Scheme 17).

3.3 Hydroacyloxylation

3.3.1 Alkynes

The chemistry of hydroacyloxylation (also called hydrooxycarbonylation) of

alkynes is dominated by intramolecular reaction to form enol lactones bearing

exocyclic double bonds. In 1987, Chan, Marder, and coworkers designed a new

specific Rh-catalyst for the intramolecular addition of carboxylic acid to alkynes

[36, 37]. The catalytic system was designed taking into account that electron-rich

metal complex could activate the acid moiety via oxidative addition, and the

intermediate should cyclize because the oxidized metal could act as a Lewis acid.

Thus, high regioselective lactonizations were accomplished in the presence of

O
–

Ph2(O)P
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Scheme 17 Proposed mechanism for Rh(I) catalyzed hydroalkoxylation of allenes
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[(cyclophos)RhCl]2 (cyclophos ¼ 1,2-bis(dicyclohexylphosphino)ethane) under

mild conditions in high yields (Scheme 18).

The catalyst showed superior activity when compared to other transition-metal

complexes or Hg salts. Starting from internal alkynes, exclusive Z stereochemistry

was observed in the product, due to a selective trans-addition of the carboxylate to

the alkyne. When the size of the substituent on the acetylenic moiety was increased,

a strong reduction of reaction rate was observed indicating that the coordination of

the triple bond to the metal center plays a pivotal role in cyclization. The proposed

mechanism involves the initial OH activation by the low-valent metal complex,

followed by nucleophilic attack of the carboxylate on the coordinated acetylene and

finally by the reductive elimination to give the lactone and regenerate the catalyst as

shown in Scheme 3.

Similar results were obtained by Messerle, Field, and coworkers using the

cationic Rh-complex [Rh(bim)(CO)2]BPh4 (bim ¼ bis(N-methylimidazol-2-yl)

methane) in acetone-d6, at 50
�C [31]. The advantages of this catalyst with respect

to [(cyclophos)RhCl]2 [36, 37] were lower catalyst loading (0.35–0.7 vs 2.0 mol%),

and shorter reaction times (i.e., 15.5 vs 24 h). Conversely, the temperature required

was higher and the yield for cyclization of internal 4-hexynoic acid was poorer

(26 vs 79 %). In contrast with that observed by Chan and Marder, the cyclization of

the latter resulted in the exclusive formation of the E-isomer. This suggested a

mechanism in which the carboxylate was not lost from the metal prior to attack on

the alkyne and the migratory insertion delivers the oxygen to the coordinated triple

bond frommetal center, ensuring the E-stereochemistry in the product (Scheme 19).

4 Iridium

The major reason why the development of iridium-catalyzed reactions is far behind

that of rhodium-, palladium-, and platinum-catalyzed reactions is connected to the

high stability of the iridium complexes.

A breakthrough in the study of iridium-catalyzed reactions was reported by

Crabtree in 1977 regarding the hydrogenation reactions of alkenes [38, 39]. Only

recently, iridium complexes have been utilized on alkynes for other reactions than

the hydrogenation.

OH
R

O

n

OO

n

R

H

n = 1, 2; R = H, Me, Ph
76-93 %

[(cyclophos)RhCl]2

CH2Cl2, rt, 24-200 h

Scheme 18 Rh(I) catalyzed intramolecular addition of carboxylic acid to alkynes
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4.1 Hydration

4.1.1 Alkynes

The hydration of alkynes with water-soluble iridium complexes was studied in

detail for the first time by Chin and coworkers. In particular, (TPPTS)2(CO)

IrCl·H2O (TPPS ¼ m-trisulfonated triphenylphosphine) was found to catalyze the

hydration of terminal alkynes to give ketones at room temperature and in MeOH as

solvent (900 turnovers). The hydration did not occur in the presence of TPPTS only

and occurred very slowly in the presence of other water soluble complexes. The

hydration of acetylene was much faster than those of terminal alkynes probably due

to steric hindrance, whereas internal alkynes did not react at all [40] (Scheme 20).

The addition of water in the presence of alcohols to nonactivated terminal

alkynes to give ketones was promoted also by the precursor complex [Ir(cod)2]

BF4, in combination with ZrCl4 or other chloride containing Lewis acids and P(Oi-
Pr)3 as co-ligand [41]. The reaction in the absence of alcohol resulted in low yield;

this may suggest that the reaction proceeded through the formation of a ketal

followed by hydrolysis with water (Scheme 21).

The reaction of a,o-diynes with water afforded cyclized carbonyl derivatives

in good yields (Scheme 22). The formation of cyclic carbonyl compound was
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Scheme 19 Proposed mechanism for Rh(I) catalyzed intramolecular addition of carboxylic acid

to alkynes
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rationalized by assuming the intramolecular aldol condensation of the dione obtained

by Lewis acid catalysis during the reaction. Alternatively, in the case of too large

rings, diketones were isolated.

A valuable insight into the regioselective hydration of a terminal alkynes was

provided by isolation of different intermediate complexes, depending on the pH of

the solution, as shown in Scheme 23. By starting from the same water-soluble

iridium(III) aqua complex [Cp*IrIII(bpy)(H2O)]
2+ (Cp* ¼ Z5-C5Me5, bpy ¼ 2,

20-bipyridine), at pH 8 the alkynyl intermediate [Cp*IrIII(bpy)CCPh]+ was

synthesized; by changing the pH of the aqueous solution from 8 to 1, the acyl

intermediate [Cp*IrIII(bpy)C(O)CH2Ph]
+ was formed giving the aldehyde as result

of the anti-Markovnikov hydration. The ketonyl intermediate isolated at pH 4 gave

Markovnikov hydration with the formation of the ketone [42].

Further elucidations on the mechanism of alkynes hydration arise from

the isolation of both enol and keto tautomers of organometallic intermediates,

starting from an alkyne-carboxylic acid ester as tetrolic acid ethyl ester [43].

HR +   H2O

Ir
PAr3

Cl

OC

Ar3P

25 °C, N2 R CH3

O

R = Ph, CH3(CH2)4, CH3OCH2, ClCH2; Ar = m-NaO3SPh

10-100 %

Scheme 20 Hydration of alkynes

HR +
70 °C, 15 h R CH3

O

R = Ph, Bn, n-Bu, i-Pr, CH2Cl

OH +   H2O

[Ir(cod)2]+BF4
-(1 mol %)

P(O-i-Pr)3 (2 mol %)
ZrCl4 (10 mol %)

ratio: 1 3 2.8
35-86 %

Scheme 21 Hydration of alkynes in presence of alcohols

n 70 °C, 15 h

O
OH +   H2O

[Ir(cod)2]+BF4
–(1 mol %)

P(O-i-Pr)3 (2 mol %)
LA (10 mol %)

+
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O
+

O
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n-3

n = 4, 5, 6
47-96 % 34-87 %

Scheme 22 Hydration of a,o-diynes
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The Ir-complex [Cp*IrIII(bpy)(H2O)]
2+ (1) catalyzes the syn addition of the H2O

ligand of Ir-aqua complex 1 into the carbon–carbon triple bond. It can be

assumed that the p-complex A is formed between the two possibilities because

the product of the hydration is ethyl acetoacetate but not ethyl 2-oxobutanoate

(Scheme 24).
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4.1.2 Nitriles

Nitrile complexes [Cp*Ir(�3-CH2CHCHPh)(NCMe)]OTf (Cp* ¼ C5Me5- and

OTf ¼ �OSO2CF3) and [Cp*Ir(�3-CH2CHCHPh)(NCCH ¼ CHMe)]OTf

catalyzed the hydration of the nitriles (acetonitrile, crotononitrile, benzonitrile) in

the presence of Na2CO3 to produce amides. Plausible mechanism for these catalytic

reactions involved the amido-ether complex formation [44]. Also, unsaturated

nitriles were treated under these catalytic conditions [45] (Scheme 25).

More recently, the iridium complexes [Ir(PMe3)4]Cl, as well as the more elec-

trophilic peroxo derivative [Ir(O2)(PMe3)4]Cl, were catalyst precursors for a variety

of nitriles RCN (R ¼ Me, p-NH2C6H4, p-OHC6H4) giving up to 800 turnovers in

the hydration reaction realized at 140�C. Various general mechanisms for the

hydration of nitriles are possible, two of which involve insertion into a metal-

hydroxo bond (Scheme 26a) or nucleophilic attack of water upon coordination of
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the nitrile group (Scheme 26b). The activity of the iridium catalyst is comparable to

those of nickel, ruthenium, palladium, and platinum systems using phosphines as

auxiliary ligands [46].

4.2 Hydroalkoxylation

4.2.1 Alkynes

Cyclic acetals were produced from terminal alkynes and a,o diols with cationic

iridium(III) complex [Ir(CH3)(OTf)(CO)(H2O)(PPh3)2](OTf), exclusively in the

absence of water at room temperature. Whereas direct catalytic hydration of the

alkynes was not possible, the cyclic acetals were hydrolyzed separately to methyl

ketones [47] (Scheme 27).

A plausible mechanism involved a Z2-alkyne complexA, which was attacked by

alcohol to give a b-alkoxy-alkenyl complex B. Proton transfer and attack by another

alcohol molecule produced intermediate C that finally yielded the acetal

(Scheme 28). It has been found that bulky substituents on alkynes caused a decrease

in the rate of diol addition.

Intramolecular hydroalkoxylation of internal alkynes containing proximate

oxygen nucleophiles was catalyzed by iridium hydride complex [48] (Scheme 29).

The cyclization of 2-alkynylbenzyl alcohols follows highly selective 6-endo-dig
regiochemistry for both alkyl and aryl substituents on the multiple bond. Cycliza-

tion of substrates having two OH groups gave spiroacetal derivatives. When
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the same substrates are treated under Pd catalysis, the regioselectivity is dependent

on the reaction conditions, in particular depending on the solvent used [49].

An efficient and interesting route for the construction of useful building blocks,

furanyl and pyranyl derivatives, was developed starting from bis-homopropargylic

alcohols. The [Ir(cod)Cl]2 dimer complex was used for the first time to promote a

tandem cyclization/hydroalkoxylation reaction, with total 5-exo-selectivity [50]

(Scheme 30).

The proposed reaction mechanism may be initiated by the formation of the

p-alkynyl complex A by the complexation of the unsaturated triple bond to the Ir

(I) catalyst. Subsequent addition of the alcohol, which was supposed to occur anti to

the p-complex A, would lead to a s�complex B, which is favored in polar protic

solvents such as MeOH, through a transient zwitterionic intermediate. Proton

transfer may then be followed by the intermolecular addition of MeOH to give

the cyclic ketal (Scheme 31).

The Ir-complex [Ir(PyP)(CO)2]BPh4 (PyP ¼ 1-[2-(diphenylphosphino) ethyl]

pyrazole) also led to products resulting from an exo-dig intramolecular cyclization

of alkynols in the presence of an excess of methanol to form cyclic acetals [51]

(Scheme 32).
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Mechanistic investigations showed that the catalytic cycle proceeded via p
coordination of the alkyne to the metal center followed by the sequential addition

of two hydroxyl groups to form O,O-acetals. Very recent computational study

showed the key C–O bond forming cyclization step is greatly facilitated by the

presence of an external H–bonded MeOH molecule that stabilizes the positive

charge that develops at the hydroxyl proton of the bound alkyne [52] (Scheme 33).

The efficiency of a series of rhodium and iridium complexes as catalysts for the

cyclization of terminal and nonterminal alkynes to give O,O-acetals and spiroketals
was tested using [Ir(PyP)(CO)2]BPh4 and [Rh(bim)(CO)2]BPh4 (bim ¼ bis

(N-methylimidazol-2-yl)-methane [32–34]. The iridium complex was more effi-

cient than rhodium in promoting the reactions of aliphatic alkyne diols. The

rhodium was more effective for promoting the reactions of aromatic substrates

(Scheme 15).
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A particular question was regarding the catalytic activity of the clusters. Their

use in catalytic organic synthesis has not yet been explored extensively, although

multinuclear complexes with sulfur-based ligands are of special interest for indus-

trial processes considering the strong bridging ability of sulfur ligands to prevent

fragmentation of the multimetallic cores and several efforts have been devoted to

the synthesis of multinuclear transition-metal sulfur complexes.

If PdMo3S4 cubane-type cluster showed excellent catalytic activity for the

stereoselective addition of alcohols [53] or carboxylic acids [54, 55] to electron-

deficient alkynes, it failed with unactivated alkynes.

Hidai group studied multinuclear complexes of groups 8–10 noble metals with

bridging sulfur ligands [56, 57]. The heterobimetallic cluster of Ir2Pd catalyzed

the addition of alcohols to nonactivated alkynes to give the corresponding acetals.

The 1-aryl-1-alkynes with methanol were transformed into the corresponding

2,2-dialkoxy-1-arylalkanes with high regioselectivity up to 99:1 (Scheme 34).

No other products such as enol ethers and ketones were detected. Since neither
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monometallic palladium complexes with sulfur donor ligands nor iridium

complexes were effective, the authors are inclined to believe that the catalysis

was performed by the Ir2Pd cluster whose core structure is retained during the

reaction. Interestingly, the cluster can be recovered in 85% yield after the catalytic

reaction. On the contrary, the Ir2Pt cluster displayed good catalytic activity for the

addition reaction, but the regioselectivity was much lower than that of Ir2Pd.

4.3 Hydroacyloxylation

4.3.1 Alkynes

Enol and vinyl esters were successfully obtained starting from aliphatic and aro-

matic carboxylic acids with terminal alkynes, 1-hexyne or phenylacetylene. The

addition reaction took place principally in the Markovnikov fashion to give 1-

alkenyl esters, and it was facilitated by the use of catalytic amounts of [Ir(cod)Cl]2
combined with small amounts of P(OMe)3 and Na2CO3 [48, 58] (Scheme 35).

4.3.2 Allenes

Regioselective hydroacyloxylation of 1,1-dimethylallene with carboxylic acids

exploiting iridium catalyst to prenyl ester was reported in 74–82% isolated yield

[59] (Scheme 36).
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Scheme 35 Alkynes hydroacyloxylation
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5 Nickel

Nickel catalyzed O–H additions to unsaturated systems are limited to the hydration

reactions of nitriles for the synthesis of amides. These reactions have been widely

studied by Prof. J. J. Garcı́a and his research group and their results recently

reviewed [60]. They reported the isolation and characterization of Ni(0) complexes

of type [(dippe)Ni(Z2-NCR], R ¼ aryl, heteroaryl or alkyl, derived from the reduc-

tive interaction of [(dippe)NiH]2 with organic cyanides. The catalytic and synthetic

utility of these complexes was demonstrated first in the catalytic hydration of

benzonitrile and acetonitrile [61] and then extended to dicyanobenzenes [62], to

mono- and dicyanoalkanes [63] and finally to cyanopyridines [64].

6 Palladium

Palladium is still the most used transition metal for catalytic addition of oxygen

nucleophiles toward alkenes and alkynes, and this reactivity is one of the funda-

mental pathways in the organic reaction promoted by palladium.

6.1 Hydration

The Wacker process, an oxidative addition reaction, performed with Pd(II)-catalyst

in the presence of an oxidant is out of scope of this review. Nevertheless, some

representative references concerning Wacker reaction are given [65–72].

6.1.1 Alkenes

The hydration of C–C multiple bonds is a reaction with prevalent industrial interest

due to the usefulness of the products as chemical intermediates. The wool-Pd

complex is an economical and highly active catalyst for hydration of olefins. It is

very stable and can be reused several times without any remarkable change in the

catalytic activity [73, 74]. In particular, to convert alkenes to the corresponding

alcohols in excellent enantioselectivity, a new biopolymer-metal complex

constituted of wool-supported palladium-iron or palladium-cobalt was prepared

and used, such as allylamine to amino-2-propanol, acrylonitrile to lactonitrile and

unsaturated acids to a-hydroxycarboxylic acids [75–77]. The same catalytic system

was also used for hydration of substituted styrenes to produce chiral benzyl

alcohols. The simple and cleaner procedure, mild reaction conditions, high stability

and recovery rate of catalyst made these catalytic systems an attractive and useful

alternative to the existing methods (Scheme 37).
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6.1.2 Alkynes

The ketones resulting from the hydration of alkynes are useful chemical

intermediates. For these reasons, attempts to develop nonmercury alkyne hydration

were pursued. The system Nafion(Pd2+) resin catalyst was the first reported to

be active for the hydration of alkynes, including a-hydroxy alkynes, giving in

high selectivity a-hydroxy-ketones [78]. At the same time, Cacchi and coworkers

described the Pd(II)-catalyzed hydration of enynes as key-step involved in

a sequential process starting from vinyl triflates and affording g-hydroxy-a,
b-enones [79].

6.1.3 Nitriles

A new catalytic system based on Pd nanoparticles for the hydration of various

nitriles to amides was investigated. Copper compounds containing oxygen acted as

effective promoters in the catalytic system. Chloride ions significantly inhibited the

catalytic performance [80] (Scheme 38).

An efficient palladium-catalyzed protocol for the hydration of alkyl and aryl

nitriles to amides has been disclosed, employing acetaldoxime as efficient

water delivering surrogate to nitrile. A plausible mechanism was suggested

involving Pd(II)-catalyzed nitrile–oxime coupling followed by disruption of

the intermediate into benzamide and acetonitrile in a concerted manner

[81–83] (Scheme 39).

H

R1

COOH

R2

+    H2O
R1

COOH

OH

R2

R1 = H, Me, COOH; R2 = H, Me
75-98 %

wool-PdCl2-CoCl2

alcohol, 90 °C, N2, 24-36 h

Scheme 37 Alkenes hydration

R – CN + H2O
PdNP 10 mol %, Cu(acac)2 20 mol %

EtOH, 16h 180 °C R

O

NH2

25-75 %

R = Ph, Pr, BnCH2, 2-py, 4-MeOPh

Scheme 38 Nitriles hydration
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6.2 Hydroalkoxylation

6.2.1 Alkenes

In connection with the interest on the hydroalkoxylation of terminal alkenes bearing

electron-withdrawing substituents [84, 85], the kinetic and mechanism of alcohols

addition to MVK using PdCl2(CH3CN)2 has been investigated in detail, showing

selective addition to the b-carbon, with formation of the anti-Markovnikov product.

The most consistent mechanism involved substitution of an acetonitrile ligand by

MVK in a preequilibrium step followed by nucleophilic attack of alcohol. The

reaction was sensitive to steric hindrance of the alcoholic nucleophile: 1> 2 > 3

[86] (Scheme 40).

The same catalyst was used in anhydrous THF at room temperature for the

tetrahydropyranylation of primary alcohols in the presence of various functional

groups as phenols, secondary and tertiary alcohols. The protecting group could be

efficiently removed in CH3CN using the same catalyst while other protection

groups remained intact under these conditions [87] (Scheme 41).

Intermolecular hydroalkoxylation of vinylphenols has been developed by

Sigman using Pd(II) and primary, secondary or tertiary alcohols. The key break-

through was the use of sec-phenetyl alcohol as the sacrificial reagent as the hydride
source promoting the formation of Pd-H intermediate. The subsequent olefin

insertion, the formation of an o-quinone methide intermediate and the addition of

PdII
Ph CN

Ph CN [PdII]

N
OH

N
O

N

P h

[PdII]
H

H

MeCN

Ph-CO-NH2

Scheme 39 Mechanism of nitriles hydration

Cl Pd

Cl
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NCCH3 +
O

Cl Pd

Cl

NCMe

O
MeCN

Ph OH
O

O Ph  + Cl Pd

Cl

NCMe

Scheme 40 Alcohol addition to MVK
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a second equivalent of the alcohol to the o-quinone methide leads to product

formation [88, 89] (Scheme 42).

The first synthesis of saturated hydrofluoroethers was realized in 2005, through

the addition of various alcohols to a fluorinated alkene in the presence of Pd(PPh3)4
under neutral conditions, at room temperature. With poor acidic alcohols, catalytic

activity was increased in the presence of cocatalytic 1,4-bis-(diphenylphosphino)

butane (dppb) [90] (Scheme 43).

Methylenecyclopropanes were particular substrates object of several studies by

Yamamoto [91]. The interest in the addition of alcohols was due to the formation of

allyl ethers with high regioselectivity, through the distal bond cyclopropane cleav-

age of the hydropalladate intermediate as shown in Scheme 44. Combination of Pd

R OH
DHP 1 eq.

PdCl2(CH3CN)2
THF,rt

R O

O

49-90 %

R = CH3(CH2)6, Ph, p-NO2Ph, PhCH2

Scheme 41 Tetrahydropyranylation of primary alcohols
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Scheme 42 Hydroalkoxylation of vinyl phenols
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(PPh3)4 and P(o-tol)3 was the best catalytic system [92]. The proposed mechanism

is in accordance with the sequence showed for other alkene substrates.

The addition reaction of phenols across cyclic and acyclic dienes with Pd(PPh3)4
occurred at room temperature without cocatalyst to give allyl aryl ethers in good

yields [93] (Scheme 45). Similarly, carboxylic acids react with dienes affording

allyl esters.

An electrophilic Pd(II) source, the dicationic pincer complex Pd(PNP)(BF4)2
(PNP ¼ 2,6-bis(diphenylphosphanylmethyl)pyridine), was exploited in a cascade

polycyclization of 1,5- and 1,6-dienes bearing an –OH nucleophile to give polycy-

clic systems. The diastereoselectivity was consistent with the hypothesis of a

cationic intermediate [94]. The stability of the metal species intermediate prevented

b-elimination. Similar result was obtained with a Pt dicationic pincer complex

(Scheme 46) [95].

F3C CF CF2 + R-OH

Pd(PPh3)4 5 mol %
dppb 10 mol %

CH3CN, rt
F3C CHF CF2OR

78-86 %

R = CF3CH2, CF3CF2CH2, (CF3)3CH, Me, Et, Bn

Scheme 43 Hydroalkoxylation of fluorinated alkene

+     R3-OH

Pd(PPh3)4 5 mol %
P(o-tolyl)3 10 mol %

THF or toluene
100 °C, 3 days

28-69 %

R1 = C7H13, n-Bu, CH2-CH2-Ph

R2 = H, n-Bu, CH2-CH2-Ph

R3 = n-Bu, s-Bu, C6H11, CH2-CF3, Ph, Bn, CH2-CH = CH2

R1

R2

R3
O R1

R2

R1
R2

Pd
H

R3O

R1
R2

H
R3O-Pd

Pd0

Scheme 44 Hydroalkoxylation of methylenecyclopropanes

R1

R2 R3

+   Ar-OH
Pd(PPh3)4 1 mol %

toluene, 24 h, rt
R1

R2 R3

OAr

47-73 %

R1 = H, Me; R2 = H, Me, MeO; R3 = H, MeO
Ar = Ph, 4-t-Bu-Ph, 3,5-diMe-Ph, 4-MeO-Ph, 4-F-Ph, 4-Cl-Ph, 3-CF3-Ph, 3-MeOOC-Ph

Scheme 45 Addition of phenols to dienes
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Sigman reported a particular hydrochlorination/hydroalkoxylation reaction

catalyzed by Pd(II) in combination with Cu(II), starting from styrenes. The first

formed hydrochlorinated product in the presence of an alcohol was converted in situ

to benzylic ethers [96] (Scheme 47).

The proposed mechanism initially showed the formation of a Pd hydride inter-

mediate by an alcohol oxidation. The styrene substrate is then coordinated to Pd,

followed by insertion of the double bond into the Pd hydride. Both Pd alkyls a and b

are formed; however, b can be stabilized through a p-benzyl intermediate, and thus

is likely formed predominantly. Reductive elimination or nucleophilic attack by an

exogenous chloride ion gave the halogenated product, which only in the case of

electron-rich substrates was transformed into the ether product, through a metal-

assisted SN1 reaction (Scheme 48). In the case of more electron-poor aromatic

substrates, the rate of this step is slow enough to allow for isolation of the chloride.

6.2.2 Alkynes

Few reports are known for hydroalkoxylation of alkynes compared to

hydroamination partly due to the diminished nucleophilicity and the weaker

O

H

Ph2NMe

cat.
O

(PNP)Pd

97: 3 d.r.

NaBH4

MeOH

O

H

90 %, > 99 : 1 d.r.

N

Pd2+ PPh2Ph2P

NC-C6F5

P

Pt2+ PPh2Ph2P

Ph(BF4
–)2 (BF4

–)2

cat = or

+

Scheme 46 Pincer Pd-complex for cascade polycyclization of 1,5-dienes

R R

OPd(MeCN)2Cl2 5 mol %
Cu(bc)Cl2 5 mol %

CuCl2 20 mol %

3 Å MS 0.5 g/m mol
10 % i-PrOH/DCE, 60 °C, O2

R = Me, MeO, BocHN

55-78 %

NN

PhPh

bc =

Scheme 47 Styrenes hydroalkoxylation
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Lewis base character of oxygen nucleophiles. Yamamoto was the pioneer in the

addition reactions of alcohols pronucleophiles to alkynes to give allylic ethers

[97–99]. In general, the reaction of the internal alkyne with alcohols in the presence

of a catalytic amount of Pd(PPh3)4 and benzoic acid in dioxane at 100�C gave the

allylic ethers in good yields (Scheme 49). The presence of AcOH enhanced the

yields supporting the formation of the hydridopalladium intermediate species (see

mechanism in the introduction). Furthermore, the intramolecular reaction of

alkynes having a hydroxyl group at the terminal carbon gave five- and six-mem-

bered cyclic ethers in good yields.

In the case of conjugated diynes, the hydroalkoxylation reaction in the presence

of phenol afforded alkoxylated enyne products. Aliphatic alcohols do not add to the

diyne system indicating the necessity of an acidic alcohol (phenols, naphthol or

2,2,2-trifluoroethanol). The mechanism supposed the formation of a s-cumulenyl

palladium complex intermediate is consistent with the absence of the double

addition of phenol to the starting diyne or the second addition of phenol to the

resulting enyne [100] (Scheme 50).

Among the intramolecular processes aimed to the heterocyclic synthesis,

a tandem procedure realized through Pd(PPh3)4 catalysis was applied to the

Ph CH3  +  R-OH
Pd(PPh3)4

H+ Ph O
R

82-96 %

R = n-Bu, isobutenyl, n-C8H17, Ph(CH2)4, cyclohexyl

Scheme 49 Alkynes hydroalkoxylation
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Scheme 48 Mechanism proposed for styrenes hydroalkoxylation
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formation of 3-trifluoroethylfurans, consisting on the addition of terminal alkynes

to 2-substituted trifluoromethyl allylic alcohols followed by cyclization and

subsequent isomerization [101] (Scheme 51).

In a similar economical process, dihydropyrans were obtained in good yields

using Pd(OAc)2 and TDMPP (tris(2,6-dimethoxyphenyl)phosphine), through a

6-endo-dig cyclization process. The regioisomeric tetrahydrofuran adduct arising

from 5-exo-dig cyclization was in some cases observed as minor product [102]

(Scheme 52).

R

Pd(PPh3)4,
Ph3PO

toluene, rt,
1-2 days

46-99 %

R = Me, Ph, Bn, cyclohexyl
Ar = Ph, CF3CH2, 2-naphtyl, 4-MeO-Ph, 4-CF3-Ph

R  +  Ar-OH

R
H

OAr

R

Pd
Ph3P

Ph3P

R

R

R

R

Pd+
Ph3P

Ph3P

H+
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Scheme 50 Diynes hydroalkoxylation
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Scheme 51 Intramolecular hydroalkoxylation/isomerization processes
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The construction of 2-substituted 5-formyl-oxazoles was performed starting

from aryl, heteroaryl, and alkyl propargylamides through treatment with Pd(II)

salts with tolerance of various functional groups [103] (Scheme 53).

The proposed mechanism hypothesized the nucleophilic attack of the oxygen to

the Pd-complexed C–C triple bond, through the enol amide form, producing the

oxazole skeleton by formation of the s-alkenylpalladium complex. The interven-

tion of water provided, through its enol form, the 4,5-dihydrooxazole-

5-carbaldehyde. The oxidizing system also promoted the dehydrogenation step

(Scheme 54).

Recent studies related to Pd-catalyzed competitive exo- vs endo-cyclizations of
alkynols were reported by Ramana group [104, 105]. Cycloisomerization of

3-C-alkynyl-allo- and ribofuranose derivatives was investigated in detail to under-

stand the influence of electronic factors on the regioselectivity in ring closure

reaction. The reactions in general are influenced by the electronic nature of the

substituent on the alkyne unit. A preference for endo-dig cyclization over exo-dig is
noted, if the alkynyl substituent is not sufficiently electron withdrawing. In the

O
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R CHOC NH
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R
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homologous 3-C-propargyl furanose derivatives, the competitive 6-exo-dig vs

7-endo-dig cyclization leading to a six- or seven-membered ring was investigated

(Scheme 55).

The cyclization of 2-alkynylbenzyl alcohols promoted by the catalytic system

PdI2-KI, led to the formation of 1,3-dihydroisobenzofurans and/or isochromenes.

The preference toward the 5-exo-dig cyclization or the 6-endo-dig cyclization was

dependent on the substitution pattern of the substrate as well as reaction conditions.

On the basis of experimental results, some generalizations can be highlighted to

favor 5-exo-dig-cyclization: (a) aryl rather than alkyl substitution on the triple

bond; b) a dialkyl substitution to the hydroxyl group; (c) higher solvent polarity;

(d) lower reaction temperature [49] (Scheme 56).

1,3-Dihydroisobenzofurans are obtained also in a one-pot procedure, without the

isolation of 2-alkynyl benzyl alcohols, in a domino process that comprises a

Sonogashira coupling followed by an intramolecular hydroalkoxylation, starting

from 2-halobenzyl alcohols and phenylacetylene, using only NHC-Pd-pyridine

complexes prepared to this aim [106]. The choice of the catalyst was fundamental,

very low reactivity in the hydroalkoxylation step was observed performing the
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reaction with Pd(OAc)2 or PdCl2(PPh3)2. The study tried to find a useful balance of

the electronic properties of the ligands to afford a catalyst that is active in both

reactions at the same time.

A one-pot sequential Pd/Cu catalyzed alkynylation followed by intramolecular

hydroalkoxylation was reported to achieve furo[3,2-c]chromen-4-ones starting

from easily available 3-bromo-4-acetoxycoumarins and 1-alkynes [107]. The key

step involved alkynylation with in situ prepared dialkynylzinc reagents followed by

intramolecular hydroalkoxylation, without isolation of the 3-alkynyl-4-acetoxy

coumarin intermediate (Scheme 57).

Bicyclic furo[3,2-b]pyrrole and furo[3,2-b]pyridine systems were prepared

through a cycloisomerization reaction of cis-4-hydroxy-5-alkynylpyrrolidinones and
cis-5-hydroxy-6-alkynylpiperidinones using Pd(II)-complex [108] (Scheme 58).

A highly active heterogeneous palladium nanoparticle catalyst for the hydroalk-

oxylation of 2-phenylethynylphenol was developed and employed in a continuous

flow reaction system. The best of the catalyst efficiency was observed when

employed in conjunction with PhICl2 [109] (Scheme 59).
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Scheme 58 Intramolecular hydroalkoxylation to achieve bicyclic systems
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Double cycloisomerization of dihydroxy-substituted dialkynylbenzenes

utilizing Pd(OAc)2 and Cs2CO3 was a convenient synthetic route to construct

disubstituted benzodifurans [110] (Scheme 60).

In the presence of the chiral palladium catalyst generated from Pd2(dba)3·CHCl3
and (R, R)-renorphos, alkynols undergo catalytic asymmetric intramolecular

hydroalkoxylation in a manner similar to hydroamination, allowing the

enantioselective synthesis of cyclic ethers (Scheme 61). The reaction represents

the first example of transition-metal catalyzed asymmetric intramolecular addition

of oxygen to an activated C–C bond, even if some limitations, such as high catalyst

loading, high temperature, and longer reaction times were reported. This reaction

was very sensitive to the electronic effect of substituents at the aromatic ring

attached at the terminus of the alkynes (electron-donating substituents on the

aromatic group gave lower yields and ee’s) [111].

Among the known methodologies for the synthesis of benzofuran derivatives, a

favorable recent alternative to obtain 2-alkynylbenzofurans was represented by the

intramolecular reaction of the ortho diyne phenols and aryl halides. This procedure
may be performed with success in one or two steps in the presence of Pd(PPh3)4
[112] (Scheme 62).

A particular pathway for the synthesis of cyclic alkenyl ethers by intramolecular

C–O bond formation consisted in the reaction of g-acetylenic aldehydes in the

OH
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R
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DMA, 80 °C
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O
R R
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Scheme 60 Double hydroalkoxylation of dihydroxy dialkynylbenzenes
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Scheme 61 Chiral catalyst for enantioselective cyclic ethers formation
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presence of MeOH and Pd(II), the latter exploiting the double role of Lewis acid

and transition metal (Scheme 63).

The Lewis acid forms a complex with the carbonyl oxygen and makes feasible

the attack of MeOH to produce an hemiacetal. The coordination of the triple bond to

Pd(II) would induce the intramolecular attack of the hydroxyl moiety to the alkyne

from the opposite side to the palladium via the exo or endo pathway to produce the

corresponding vinylpalladium complex. The protonation of these intermediates

gives the alkenyl cyclic ethers. The cyclization was effective with Pd(OAc)2 and

BQ, which did not work as an oxidizing agent but as a ligand for the palladium

catalyst [113] (Scheme 64).

A challenging microwave assisted three-component approach to dihydroisoben-

zofurans and dihydrofuro[3,4-b]pyridines starting from o-bromoarylaldehydes,

methanol and terminal alkynes was recently published by our group [114]. The

reaction occurs through an interesting cooperative palladium/base promoted cou-

pling/addition/cyclization sequence (Scheme 65).

6.3 Hydroacyloxylation

6.3.1 Alkenes

The acetyloxylation of alkenes bearing electron-withdrawing substituents afforded

the corresponding acetic esters, using PdCl2(CH3CN)2 as catalyst in the presence of

LiCl [115]. Similarly, the addition of carboxylic acids across dienes with Pd(PPh3)4
gave allyl esters in good yields [93] (Scheme 66).
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OTBDMS
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40-85 %
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Scheme 62 Synthesis of 2-alkynylbenzofurans
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6.3.2 Alkynes

Among different variety of existing method for preparing functionalized

heterocycles, the intramolecular cyclization of unsaturated systems bearing a car-

boxylic acid provided lactones of different size. Enantiomerically pure a-amino

acids containing a carbon–carbon triple bond were exploited as starting materials

for the synthesis of various heterocycles through a Pd-catalyzed intramolecular

cyclization, involving the carboxylate or amine functionality, depending on the

protecting group strategy applied. Thus, the cyclization of esterified aminoacids

produced nitrogenated heterocycles; conversely, the N-protected amino acids

furnished the corresponding five- and six-membered a-amino-g-methylidene
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Scheme 64 Mechanism of g-acetylenic aldehydes cyclization
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Scheme 65 Three-component approach to dihydroisobenzofurans synthesis.
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lactones [116, 117] (Scheme 67). In contrast with the five-membered rings, the six-

membered lactones were obtained in somewhat disappointing yields, which is

probably due to the lower tendency of Pd to react in a 6-exo-fashion. The 1H

NMR experiments led to conclude that virtually no racemization occurred in

these cyclization reactions.

7 Platinum

7.1 Hydration

7.1.1 Alkenes

Platinum(II) complexes have been described as catalysts for the hydration of both

terminal alkenes in an anti-Markovnikov fashion and for symmetric maleic acid

derivatives.

Unfortunately, the reported [118] direct anti-Markovnikov hydration of terminal

alkenes catalyzed by trans-PtHCl(PMe3)2 in the presence of aqueous NaOH and a

phase-transfer catalyst at 60–100�C has proved to be irreproducible [119, 120].

Bennett and coworkers described the cis-hydroxyplatination of diethyl maleate

with organoplatinum(II)-hydroxo complexes [121]. In particular, they isolated and

characterized the cis-PtMe{CH(CO2Me)CH(OH)(CO2Me)}L2 [L2 ¼ 2 PPh3 or

dppe] complexes. Treatment of these complexes with aqueous acid cleaves the

R2R1

R1 = COPh,
O

O
R2 = H, Me

OAc
R1

R2

+ AcOH

+ BzOH OBz
toluene

52-71 %

42 %

PdCl2(CH3CN)2,LiCl

Pd(PPh3)4 2 mol %

Scheme 66 Acetoxylation of alkenes and dienes

N
OHR2

R1 O

n

O

O

n

N
R2

R1

24-66 %

Pd(OAc)2 5 mol %

TEA, THF, 25-80 °C

R1 = H, R2 = Ts or R1 = R2 = Phth

Scheme 67 Intramolecular hydroacyloxylation of alkynes
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Pt-CH(CO2Me)CH(OH)(CO2Me) bonds forming [PtMe(H2O)L2]
+ and dimethyl

malate, MeO2CCH2CH(OH)CO2Me, and demonstrated that two steps are necessary

for the catalytic addition of water to dimethyl maleate. More recently, the synthesis

and solution- and solid-state characterization of monometallic Pt(II) complexes of

the biphosphine ligands bearing two o-N,N-dimethylanilynyl substituents at each P-

atom were described [122]. Some of these complexes show marginal activity in

water for the catalyzed hydration of maleic to malic acid, giving about 6–7%

conversion in 24 h at 100�C at a catalyst loading of 100:1.

7.1.2 Alkynes

The platinum-catalyzed hydration reactions of alkynes have been recently reviewed

[1a, e]. The early works in this field refer to the use of simple platinum(II) halides or

of Zeise’s Pt(II) dimer, [{PtCl2(C2H4)2}2], as active and selective catalysts for the

hydration of unactivated terminal and internal alkynes [123–125] (Scheme 68).

Unfortunately, for unsymmetrically substituted alkynes, the reported regioselec-

tivities are poor.

The accepted reaction mechanism involves coordination/activation of the triple

bond to the metal followed by water addition, enol-ketone tautomerization followed

by protonolysis (Scheme 69).

R2R1

R1 R2 R1
R2O

O
++

ratio:   1.8-2.7           :             1

25-93 %

H2O
[(C2H4)PtCl2]2

THF, reflux, 24 h

R1 = R2 = n-C3H7, Ph, CH3CHOH

R1 = C2H5, n-C3H7, t-C4H9, Ph; R2 = CH3

R1 = CH3; R
2 = n-C5H11

Scheme 68 Pt(II) catalyzed hydration of alkynes

RR

Cl
Pt
Cl

THFL

R

R
Cl
Pt
Cl

L

R

Pt R

OH

Cl

L

Cl

R

Pt R

O

Cl

L

Cl

R
O

R
H+

H+, THF

H2O

––

Scheme 69 Reaction mechanism for Pt(II) catalyzed hydration of alkynes
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Besides, the works of Blum and coworkers established that the hydration of

alkynones to the corresponding 1,3-diketones could be easily accomplished in the

presence of the platinum (IV) compound H2PtCl2 • 6 H2O [126] (Scheme 70).

Moreover, both aliphatic and aromatic unactivated alkynes can be hydrated with

a catalyst generated from PtCl4 and CO at 40–110�C. This powerful catalyst is able
to operate under homogeneous conditions in wet THF or, under phase-transfer

conditions, in CHCl3/H2O in the presence of a quaternary ammonium salts

[127, 128]. The active species is a Pt(II) compound [PtH(CO)Cl(L)] (L ¼ CO,

H2O, THF) and the reaction mechanism parallels that reported for platinum(II)

halides and Zeise’s catalyst. The reactions work with internal and terminal alkynes,

following in the latter case the Markovnikov rule. Scarce reproducibility and erratic

yields are the main drawbacks in these reactions.

The catalytic hydration of alkynes in water was developed with water soluble

cis-(TPPTS)2PtCl2 and (DPPETS)PtCl2 complexes [TPPTS ¼ tris(sodium

m-benzenesulfonate)phosphine, DPPETS ¼ ({m-NaO3SC6H4}2PCH2CH2P{m-
C6H4SO3Na}2)] [129, 130]. These complexes catalyze the hydration of water

soluble 3-pentyn-1-ol and 4-pentyn-1-ol to 5-hydroxy-2-pentanone through a

mechanism involving a 5-endo-dig and 5-exo-dig cyclization step, respectively,

as shown in Scheme 71 for 3-pentyn-1-ol.

In a heteroannulation reaction, optically active g-hydroxy-a,b -acetylenic esters

undergo regiospecific hydration in the presence of Zeise’s dimer, [PtCl2(C2H4)]2, to

generate, by tandem hydration/annulation reaction, optically active tetronic acids in

74–92% yields [131] (Scheme 72).

The intermediate A has been proposed for the Pt(II)-catalyzed hydration of the

g-hydroxy-a,b-acetylenic esters. In A, the electron-withdrawing effect of the ester

group, the Lewis acidity of the Pt(II) center, and the chelating effect in the

coordination of the acetyleneic ester to the Pt(II) center contributed to the observed

regiospecific hydration.

The most recent findings on these reactions were reported by Liu and coworkers

who developed a series of cascade reactions involving one or more alkyne

R1

R1

O
+

77-100 %

R2

O

R2

O
H2O

H2PtCl6• 6H2O

THF, reflux, 6-96 h

R1 = Ph, t-C4H9; R2 = Me, CH3(CH2)2, Ph, p-CH3C6H4

Scheme 70 Pt(IV) catalyzed hydration of alkynones
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H H
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OH

O
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Scheme 71 Pt(II) catalyzed hydration of 3-pentyn-1-ol
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hydration step. The catalyst employed was PtCl2/CO in wet dioxane and the

substrates involved trialkynes, oxoalkynes, and oxodiynes for the synthesis of

bicyclic spiroketones [132], tetracyclic ketones [133], chrysene derivatives [134],

and benzopyrones [135].

Indeed, b-unsaturated bicyclic spiroketones were obtained from triynes via a

regioselective cyclization (Scheme 73). Model reactions suggest that the platinum

catalyzed reactions include two regioselective hydrations, an alkyne insertion, and

an aldol condensation (Scheme 74).

Similar strategies involving hydration/cyclization steps were employed for the

synthesis of the other reported polycyclic compounds (Scheme 75).

7.1.3 Nitriles

Homogeneous catalysts based on Pt(II) complexes have also been successful in the

hydrolysis of nitriles to amides. The early report on this topic appeared about

30 years ago [136, 137]. However, the first reactive and selective catalyst, reported

in 1986 by Togler and Jensen [138], was [PtH(PMe3)2(H2O)][OH], a species that

catalyzes the hydrolysis of acetonitrile to acetamide at rates of 178 mol/(mol of

catalyst h), at 80�C and gives as many as 6000 turnovers.
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R2

O

OH

R3

R2

O
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R4R2

R4
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+

12-81 %23-54 %
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R1 = CH3; R2 = H; R3 = CF3; R4 = H

R1 = H; R2 = H; R3 = CF3; R4 = H
R1 = CH3; R2 = H; R3 = F; R4 = H
R1 = CH3; R2 = H; R3 = H; R4 = H
R1 = OCH3; R2 = H; R3 = F; R4 = H

Scheme 73 PtCl2/CO catalyzed regioselective hydration/cyclization of triynes
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Scheme 72 Zeise’s dimer catalyzed hydration/annulation of g-hydroxy-a,b -acetylenic esters
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Scheme 75 PtCl2/CO catalyzed domino hydration/cyclization reactions of triynes, oxoalkynes
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With acrylonitrile, the same catalyst exhibits low regioselectivity between the

olefin and nitrile functionalities at 80�C, whereas at 25�C, regioselectively (97%)

hydrates 6.1 mol of acrylonitrile/(mol of catalyst h) to acrylamide.

However, the most recent and useful applications of Pt catalysis to the hydrolysis

of nitriles to amide were achieved with homogeneous platinum phosphinito

catalysts [139, 140]. The catalyst precursors are coordination compounds of Pt(II)

with secondary phosphine oxides and the results obtained with [PtH(PMe2OH)

(PMe2-O)2H] with alkyl, alkenyl, and aryl nitriles are reported in Scheme 76.

The catalyst contains a hydrogen bridged mono-anionic bidentate phosphinito

group, together with a third phosphine oxide ligand and amonodentate anionic ligand,

a hydride ion. The reaction of the hydride with water gives a cationic species, which is

the active catalyst. The suggested reaction mechanism is reported in Scheme 77.

On coordination to the cation, the nitrile becomes susceptible to nucleophilic

attack. The hydrolysis gives the amide as the sole product, and there is no tendency

toward further hydrolysis to the acid. It is noteworthy to report that hydration of

acrylonitrile to acrylamide was achieved with a turnover number of 77,000, without

addition to the C¼C double bond.

More recently, broadening the scope of these hydration reactions, hydrolysis of

several hindered or acid-, base-sensitive nitriles, with the same catalyst, has been

achieved with moderate and more often excellent yields (25–98%) [141] (Fig. 3).

The same authors reported that a new catalyst precursor bearing optical active

phosphine ligand failed to give kinetic resolution and racemize during the reaction.

7.2 Hydroalkoxylation

7.2.1 Alkenes

Platinum-mediated additions of alcohols to alkenes are known in their intramolec-

ular version and have been developed by R. A. Widenhoefer and coworkers [142].

Thus, they showed that [{PtCl2(H2C-CH2)}2]/2P(4-C6H4CF3)3 is an effective cata-

lyst for the intramolecular cyclization of g- and d-hydroxyolefins to saturated

oxygen heterocycles under mild reaction conditions [143] (Scheme 78).

R–CN R
O

NH2

Pt
P

P

HO

O
H

Me2

Me2
63-97 %

PMe2OH

solvent, reflux, 3-15.5 h

R = CH3, CH2 = CH, CNCH2CH2, Ph, 4-OHC6H4, 1,4-CN-C6H3, 2,6-F-C6H3, 3-CN-pyridine

solvent = H2O, H2O/ THF, H2O/EtOH

Scheme 76 Platinum phosphinito catalyzed hydrolysis of nitriles
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The reactions tolerate a wide range of functional groups and give rise to the

product arising from oxygen addition to the more substituted alkene carbon atom.

The platinum-catalyzed hydroalkoxylation mechanism involves outer-sphere attack

of the pendant hydroxyl group on the platinum-complexed alkene (A) to form

zwitterion B. Loss of HCl followed by protonolysis of the Pt–C bond of C would

release the oxygen heterocycle with regeneration of the Pt(II) catalyst (Scheme 79).
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7.2.2 Alkynes

A study on the intermolecular addition of alcohols to alkynes in the presence of Pt

(II) (as Zeise’s dimer or as simple dihalide salt) has been reported by Hartman in

2004 [144]. The proposed reaction mechanism parallels the hydration mechanism

shown in Scheme 65. However, the nucleophilic addition, shown in step 2, is

reversible when tautomerism to a carbonyl is not available, which would be the

case if alcohol was the nucleophile. Thus, if alcohol is used as the nucleophile, the

initial product would be a platinum-bound protonated vinyl ether in the equilibrium

shown in Scheme 80. Since tautomerism is not possible for this species, then the

addition of an appropriate base could abstract the acidic proton from the intermedi-

ate and drive the equilibrium forward.

Scheme 81 summarizes the results obtained using anhydrous sodium sulfate with

platinum(II) in adding a series of alcohols to 4-octyne. The results clearly indicate

that the cocatalyst provides high conversions of the alkyne to the corresponding

acetal products. In the absence of the cocatalyst, only starting alkyne and alcohol

are isolated.

47-98 %

OH O O

and /or

n

[{PtCl2(H2C = CH2)}2]2 1 %, P(4-C6H4CF3)3 2 %

C2H2Cl4, 70 °C, 16-48 h

Scheme 78 Pt(II) catalyzed cyclization of g- and d-hydroxyolefins
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Scheme 79 Proposed mechanism for Pt(II) catalyzed cyclization of g- and d-hydroxyolefins
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Attempts to limit the addition of alcohol in order to observe and isolate a vinyl

ether failed resulting in the isolation of the alkyne and variable amounts of the

acetal. This seems to suggest that the second alcohol addition to the platinum-bound

vinyl ether is faster than the primary addition of alcohol to the alkyne. This peculiar

behavior has been successfully applied into the oxy-functionalization of internal

alkynes bearing one or two oxy-substituents, general formula A, Fig. 4, for the

synthesis of spiroketals, acetals, and ketones [145].

5-Alkynols (Fig. 4, n ¼ 2, n’ ¼ 1, R ¼ OTHP, OTBS, OAc, n-Pr) undergo

selective intramolecular 6-exo vs 7-endo hydroalkoxylation in the presence of Pt

(II) Zeise’s dimer giving rise to transient platinated oxocarbenium species,

Scheme 82. In a second step, the derivatization of the platinated intermediate

affords the final products. When R is a THP- or TBS-protected oxygen, the

reaction, upon deprotection conditions, involves a second cyclization to spiroacetal

derivatives. The OTBS and n-Pr derivatives in the presence of moist THF yield

the corresponding d-hydroxyketones, whereas, with methanol, OAc and n-Pr

derivatives afford the corresponding methylacetals.
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The Pt(II) catalyzed hydroalkoxylation of 4-alkynols (Fig. 4, n ¼ 1, n’ ¼ 2,

R ¼ OTHP, OTBS, OAc, Et, OMOM, OMe) followed by derivatization as before

favors the 6-endo derived products with a 5-exo:6-endo selectivity ranging from

1:1.7 to 1:11, depending on R and derivatization method. For 4-alkynols, 5-exo
selectivity has been achieved with a combination of MeAuPPh3/AgPF6.

With these results in hand, the same authors described a tandem hydroalk-

oxylation/acetal formation upon the reaction of 5-alkynols with five equivalents

of MeOH in the presence of 1% of Pt(II) Ziese’s dimer in a THF:HC(OMe)3 (10:1)

solvent mixture.

In a tandem intramolecular version of these reactions, starting from 3-pentynols

under Pt(II) catalysis, initially formed enol ethers undergo Pt(II) catalyzed nucleo-

philic attack, the nucleophile being the C-3 of an indole derivative [146]. The

reaction works in THF, at room temperature and in the presence of PtCl2 with a

wide range of substituted 3-alkynols and indoles (Scheme 83).

Simple intramolecular 5-endo-dig hydroalkoxylation of phenol derivatives,

bearing an alkyne moiety at the ortho-position, gives rise to the corresponding

R

O
O

R = OTHP, OTBS

under deprotection conditions

HO

O
R

O
R

O

(II)Pt
H

R
OH

OH

R

O
(II)Pt

H

O
O

O
OCH3

R

R

6-exo
[PtCl2(CH2 = CH2)]2

Et2O, 23 °C, 30 min

–

+ R = OTBS, n -Pr

THF, H2O

R = OAc, n-Pr

CH3OH

H3CO

6-endo
[PtCl2(CH2 = CH2)]2

Et2O, 23 °C, 30 min

–
+

under deprotection conditions

CH3OH

Scheme 82 Zeise’s dimer catalyzed intramolecular hydroalkoxylation of 4- and 5-alkynols
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Scheme 83 PtCl2 catalyzed tandem nucleophilic addition/intramolecular hydroalkoxylation of

3-pentynols with indoles
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benzofurans on exposure to catalytic amounts of PtCl2 in toluene [147]. The

reaction proceeds at ambient temperature, although it is significantly faster when

performed at 80�C. Low catalyst loadings (0.5–1 mol %) usually suffice to obtain

almost quantitative yields with a wide range of substrates also under air at room

temperature (Scheme 84). In contrast to most other catalysts used for similar

purposes, no external base is necessary to promote the reaction, which is also

compatible with functional groups that are susceptible to oxidative insertion of

low-valent metal species. A mechanistic rationale is proposed, implying activa-

tion of the alkyne by the carbophilic Pt(II) as the primary step of the catalytic

cycle.

In the same paper, the authors extended the procedure to O-substituted phenols

(phenolic ethers such as allyl, methoxymethyl (MOM), benzyloxymethyl (BOM),

and (trimethylsilyl)ethoxymethyl (SEM)) and the substituent is transferred from

oxygen to carbon-3, thus allowing for an intramolecular carboalkoxylation.

Although some of these reactions can even be carried out in air, the rates are

significantly increased when conducted under an atmosphere of CO.

1,4-Nucleophilic addition to enynones and 1,2-nucleophylic addition to

g-ketoalkynes generate in situ the suitable functionalities for subsequent intramo-

lecular hydroalkoxylations under Pt(II) catalysis.

Thus, tandem nucleophiles addition to cyclic and acyclic enynones followed by

intramolecular hydroalkoxylation reaction allows for the synthesis of highly

substituted or fused bicyclic furan derivatives [148] (Scheme 85).

OH

R

83-98 %
O

R
PtCl2 5 mol %, CO

toluene, 80 °C, 1-5 h
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Scheme 84 PtCl2 catalyzed intramolecular hydroalkoxylation of o-alkynylphenols
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Ph, C6H5NH2, CH3COOH, PhCH2COCH2Ph

Scheme 85 PtCl2 catalyzed tandem nucleophiles addition/intramolecular hydroalkoxylation of

enynones with nucleophiles
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The reactions are performed in the presence of 5 mol% of PtCl2 at temperatures

ranging from rt to 60�C and resulted in the simultaneous formation of a new C–O

bond and a C–O, C–N or C–C bond depending on the nucleophile.

In a conceptually similar approach, 2-alkynyl-1-carbonylbenzenes and

allylsilanes undergo an allylation/annulation cascade reaction in water and in the

presence of 5 mol% of PtCl2/CO giving rise to 9-oxabicyclo[3.3.1]nona-2,6-dienes

[149] (Scheme 86). This reaction sequence is proposed to proceed through a series

of three reactions, including allylation of the carbonyl group, hydroalkoxylation of

the alkyne, and a new ene-oxonium annulation.

Recently, Barluenga and Fañanás reported tandem intramolecular hydroalk-

oxylation/hydroarylation and hydroalkoxylation/Prins-Type annulation reactions.

In the first communication, they described the cycloisomerization of 5-alkynols

with several gold, platinum, and silver catalysts and the application to the synthesis

of enantiopure benzo fused cyclic ethers from the chiral pool [150] (Scheme 87).

All reported experiments allow to determine that both cationic Pt(II) and Au(I)

and also Pt(IV) complexes were appropriate catalysts for the synthesis of simple

and enantiopure bicyclo[3.3.1]nonanes. A mechanism based on a tandem sequence

involving a 6-exo-cycloisomerization reaction followed by an intramolecular

hydroarylation process has been proposed (Scheme 88).

This reaction has been extended to the synthesis of 2,3-benzofused 8-oxabicyclo

[2.3.1]octane and thus applied in the key step of the synthesis of Bruguierol

A [151].
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Moreover, in a subsequent paper, a reaction based on a gold- or platinum-

catalyzed tandem process that involves an intramolecular hydroalkoxylation of a

triple bond followed by a Prins-type cyclization has been reported for the synthesis

of [3.3.1]bicyclic compounds starting from easily available alkynol derivatives

[152] (Scheme 89).

The reaction has been carried out with differently substituted alkynol derivatives

and oxygen-, nitrogen-, and carbon-centered nucleophiles and applied to the syn-

thesis of enantiomerically pure [3.3.1]bicyclic systems from the chiral pool. The

mechanism parallels the one proposed for the hydroalkoxylation/hydroarylation

sequence.
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Scheme 88 Proposed mechanism for cycloisomerization of 5-alkynols
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As above reported, Pt-catalyzed cycloisomerization reactions of o-alkynols
have been applied to the synthesis of oxygen-containing heterocycles and, in

particular, the intramolecular nature of these transformations means that the

regio- and stereoselectivities are often excellent, thus permitting the synthesis of

a single compound after several bond-forming reactions. Recently, following this

reasoning, a new approach to the synthesis of chiral [4.2.1]- and [3.2.1]-fused

bicyclic acetals by an intramolecular double alkoxylation of alkyne diols has

been reported [153] (Scheme 90).

These reactions take advantage by the fact that both enantiomers of starting diols

are easily prepared in a multigram scale from glyceraldehyde or tartrate. A series of

experiments with different catalysts under a number of reaction conditions was

carried out. After this optimization process, the authors found that the use of

2 mol % PtCl4 in THF as the solvent afforded the desired bicyclic acetals in

excellent yields as single diastereoisomers after 2 h at room temperature. The

course of the reaction depends on the substitution of the triple bond. Terminal

alkynes give the [3.2.1]bicyclic product by a 6-exo pathway, whereas aryl alkynes

undergo almost exclusively a 7-endo cyclization to give the [4.2.1]bicycles.

A plausible mechanism for the double hydroalkoxylation reaction is depicted

in Scheme 91. Coordination of the platinum catalyst to the alkyne provides a

p-complex in which the triple bond is activated toward an intramolecular nucleo-

philic attack by one of the hydroxy groups. Terminal alkynes cyclize by the 6-exo
pathway, whereas the cyclization of arylalkynes proceeds almost exclusively by the

7-endo pathway. Subsequent proton transfer leads to the enol ether and, finally, the

corresponding fused bicyclic acetals are formed by a proton or Lewis acid catalyzed

intramolecular hydroalkoxylation.

A similar approach was recently reported for the synthesis of (�)-Frontalin, (�)-

endo-Brevicomin, and (�)-exo-Brevicomin [154].

7.2.3 Allenes

The intermolecular reaction of allenes with alcohols in the presence of catalytic

amounts of PtCl2 was recently reported by Sierra and coworkers [155]. The reaction

leads to an unexpected aliphatic acetal formation by attack of two molecules of

methanol to the terminal carbon of monosubstituted allene systems with complete

reduction of the allene (Scheme 92).
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Into the previously reported transition-metal catalyzed intermolecular hydroalk-

oxylations of alkenes, gold catalysts showed to be the most active catalysts, with

divergent reactivity with respect to PtCl2, leading to the formation of allylethers

[156]. Opposite to monosubstituted allenes, disubstituted allenes yield no aliphatic

acetals. Deuteration studies support the hypothesis of a zwitterionic Pt carbene as
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Scheme 91 Proposed reaction mechanism for PtCl4 catalyzed intramolecular double alkoxylation

of alkyne diols
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the key intermediate of this transformation. The key step could be seen as a formal

1,3-dipolar addition, with MeOH acting as the 1,3-dipole partner (Scheme 92).
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155. Paz Muňoz M, de la Torre MC, Sierra MA (2010) New platinum-catalysed dihydro-

alkoxylation of allenes. Adv Synth Catal 352:2189–2194

156. Cui D-M, Yu K-R, Zhang, C (2009) Regio- and stereoselective Au(I)-catalyzed intermole-

cular hydroalkoxylation of aryl allenes. Synlett 1103–1106

290 G. Abbiati et al.



Top Organomet Chem (2013) 43: 291–324
DOI: 10.1007/3418_2011_21
# Springer-Verlag Berlin Heidelberg 2011
Published online: 16 November 2011

Gold-Catalyzed O–H Bond Addition

to Unsaturated Organic Molecules

Núria Huguet and Antonio M. Echavarren

Abstract In this chapter, we review the synthetic and mechanistic aspects of

addition reactions of water and alcohols to alkynes, alkenes, and allenes in the

presence of gold catalysts. In addition, gold-catalyzed hydroxy- and alkoxycy-

clizations of 1, n-enynes (n ¼ 5–7) are also covered.
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1 Introduction

Among the wide variety of transformations catalyzed by gold(I), the most funda-

mental transformations have centered on the activation of alkynes, allenes, and

alkenes with gold(I) complexes [1–13]. In particular, cationic complexes of gold(I)

N. Huguet and A.M. Echavarren (*)

Institute of Chemical Research of Catalonia (ICIQ), Av. Paı̈sos Catalans 16, 43007 Tarragona,

Spain

e-mail: aechavarren@iciq.es

mailto:aechavarren@iciq.es


have been demonstrated to be the most alkynophilic amongst the electrophilic

metals. Gold(I) complexes are highly selective Lewis acids with a high affinity

for p-bonds, which has been rationalized based on relativistic effects, which are

maximum with gold [6, 14–16].

A number of alkyne–gold complexes have been structurally characterized

[17–21] and studied in solution [22–25]. Well-characterized complexes of gold(I)

with alkenes are also known [26–42] and their structures have been studied in

solution [38, 39, 43, 44]. The solid state structures of cationic allene–gold(I) [45]

and diene–gold(I) [46] have also been determined.

Formation of C–C bonds can be catalyzed by gold(III) salts or complexes.

However, gold(III) may be reduced to gold(I) by easily oxidizable substrates

[47]. The most common catalysts are cationic complexes of general formula [Au

(S)(L)]X, which are formed by chloride abstraction from neutral complexes Au(L)

Cl. Thus, precatalyst Au(PPh3)Cl, or similar phosphine complexes, reacts with an

equivalent of silver salt with a non-coordinating anion to generate catalysts [Au

(PPh3)(S)]X (S ¼ solvent or substrate molecule) [48, 49]. Cationic complex [Au

(PPh3)(MeCN)]SbF6 has been prepared as a stable crystalline solid [48]. Related

cationic complexes can be obtained by cleavage of the Au–Me bond in [Au(PPh3)

Me] with a protic acid [48, 50–52]. Gold–oxo complex [(Ph3PAu)3O]BF4 [53, 54]

has also been used as a catalyst [55].

Gold(I) complexes A–E with bulky biphenylphosphines are useful precatalysts in

many transformations (Chart 1) [56]. More convenient are their cationic derivatives

F–I [57, 58], which allow performing gold(I)-catalyzed reactions in the absence of

silver(I) salts [59–62]. Related complexes J andKwith bis(trifluoromethanesulfonyl)

amide (NTf2, Tf ¼ CF3SO2) as a weakly coordinated ligand behave similarly in

catalysis [63]. Gold complexes with highly donating N-heterocyclic ligands (NHC)

[64–66] such as L–O are also good precatalysts [56, 67–71]. Cationic complexes

P and Q [72] and related complexes [73, 74] as well as neutral R and S [75, 76]

bearing the IMes and IPr NHC ligands are selective catalysts in many applications.

Gold–hydroxy complex [Au(OH)(IPr)] can also be used as a precatalyst that is

activated with Br€onsted acids [77, 78]. Readily available open carbenes [79–83]

and other related carbenes [20, 84–87] also give rise to selective catalysts of moderate

electrophilicity. The most electrophilic catalysts are gold(I) complexes with less

donating phosphite or phosphoramidite ligands [88, 89] such as complexes T [90]

and U [67] with tris(2,6-di-tert-butylphenyl)phosphite as the ligand.

2 Gold-Catalyzed Hydrofunctionalization of p-Bonds

2.1 Hydration and Hydroalkoxylation of Alkynes

The addition of water to alkynes (hydration) is one of the fundamental methods

for generating carbonyl compounds from unsaturated hydrocarbon precursors
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[1, 91–96]. This transformation is a highly atom-economical process that does not

involve energy-intensive redox chemistry.

The first hydration of an alkyne was discovered in 1881 by Mikhail Kucherov,

a Russian chemist from the Imperial Forestry Institute in St. Petersburg, using

mercury(II) bromide as the catalyst [97] producing acetaldehyde. This reaction has

been extensively applied in synthesis, although due to the toxicity of mercury

compounds and the relatively low turnover numbers (<500), much effort has

been done to find new catalysts. Thus, transition-metal-complexes containing Pd

(II) [98], Pt(II) [99], Ru(II) [100], Rh [101], and other metal centers [91] have been

used, although in most cases the catalytic efficiency was only moderate.

The hydration of terminal alkynes gives either a methyl ketone 2 (Markovnikov

addition) or an aldehyde 3 (anti-Markovnikov addition), whereas unsymmetrical

internal alkynes can give two regioisomeric ketones (Scheme 1) [91]. The catalytic

addition of water with ruthenium(II)-complexes described by Tokunaga and

Wakatsuki [100, 102] gives rise to anti-Markovnikov hydration. On the other

hand, the Markovnikov selectivity is observed in most alkyne hydrations in the

N N
R1 R2

A : R1 = Cy, R2 = R3 = H
B : R1 = t-Bu, R2 = R3 = H
C : R1 = t-Bu, R2 = R3 = i-Pr
D : R1 = Cy, R2 = OMe, R3 = H
E : R1 = Cy, R2 = R3 = i-Pr

L: R1 = R2 = 2,4,6-Me3 C6 H2
M: R1 = 2,4,6-Me3C6H2, R2 = Me
N: R1 = R2 = Me
O: R1 = R2 = 2, 6-i-Pr2C6H3

P Au Cl
R1 R1

R2

R3

R2

Au

Cl

P Au NTf2

R1 R1

R2

R2

R2

J: R1 = t-Bu, R2 = H
K: R1 =Cy, R2 = i-Pr

F: R1 = Cy, R2 = R3 = H
G: R1 = t-Bu, R2 = R3 = H
H: R1 = t-Bu, R2 = R3 = i-Pr
I: R1 =Cy, R2 = OMe, R3 = H

P Au NCMe

+
R1 R1

R2

R3

R2

SbF6
–

+
SbF6

–

t-Bu O

t-Bu

P AuCl
3

t-Bu O

t-Bu

P AuNCPh
3

SbF6
–

+

N N
R1 R1

P: R1 2, 4, 6-Me3C6H2,
L = 2, 4, 6-(MeO)3C6H2CN
Q: R1 = 2, 6-i-Pr2C6H3,
L = PhCN

Au

L

N N
R1 R1

R: R1 = 2, 4, 6-Me3C6H2
S: R1 = 2, 6-i-Pr2C6H3

Au

NTf2

T U

Chart 1 Gold(I) catalysts with bulky phosphine, N-heterocyclic carbene (NHC), or phosphite

ligands
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presence of electrophilic salts or complexes of Cu(II) [103], Ag(I) [103], Pt [99], Rh

[101], and Pd(II) [98].

The first hydration of alkynes with a gold(III) catalyst (HAuCl4) was reported in

1976 by Thomas [104]. The original procedure using MeOH under reflux for 24 h

was modified by Fukuda and Utimoto in 1991 [105] using NaAuCl4 as the catalyst.

Terminal alkynes were smoothly hydrated to afford the corresponding ketones,

whereas internal alkynes provided mixtures of ketones with poor regioselectivity

(Scheme 2).

Teles and co-workers proposed in 1998 a generally useful catalytic process for

the addition of heteronucleophiles to alkynes, making possible the addition of weak

nucleophiles to unactivated alkynes [50, 106]. Cationic gold(I) complexes of the

general type [L–Au+] (where L is a phosphine, a phosphite, or an arsine) generated

in situ were used as catalysts. The addition of alcohols to alkynes (hydroalk-

oxylation) occurs under mild conditions in the presence of an acidic co-catalyst.

A Lewis acid such as boron trifluoride can also be utilized because it is rapidly

hydrolyzed to trimethyl borate and HF under the reaction conditions. Internal

symmetrical alkynes such as 7 give 8 as the only product (Scheme 3), while in

the case of unsymmetrical alkynes such as 9, the addition takes place at the less

sterically hindered carbon leading to acetal 10 as the major product together with

smaller amounts of enol ether 11. Terminal alkynes are also suitable substrates and

propargyl alcohols also react readily under these conditions.

Scheme 1 General scheme

of alkyne hydration

Scheme 2 Hydration of alkynes catalyzed by NaAuCl4
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Unlike in the case of [M(CO)6] (M ¼ Cr, Mo, W) and certain Ru(II) complexes,

which activate alkynes via vinylidene metal complexes [102, 107–111],

gold complexes promote reactions of alkynes by the formation of electrophilic

Z2-alkyne–gold(I) complexes [1–13].

The mechanism initially proposed for the catalytic addition of alcohols to

alkynes starts with the coordination of the alkyne to the cationic gold(I) complex I,

generated by protonolysis of a methylgold complex LAuMe (Scheme 4). The gold

(I)–propyne complex (II) is then attacked by a molecule of methanol to give

intermediate III by a syn-addition involving activation of both methanol and the

alkyne by LAu+. Rearrangement of III to IV (the Z isomer) followed by another

rearrangement produces intermediate V. A ligand exchange regenerates complex II

Scheme 3 Addition of alcohols to symmetric and asymmetric alkynes

Scheme 4 Proposed mechanism for the addition of MeOH to propyne catalyzed by trimethyl-

phosphine gold(I) cation
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and gives the final hydroalkoxylated product. The addition of water to alkynes is

often selective, even in the presence of excess of alcohol or carboxylic acid. More

recently, a theoretical study by Hashmi and Schwerdtfeger on the addition of water

to propyne catalyzed by AuCl3 was consistent with an anti-addition of water to the

alkyne activated by Au(III) [112].

Hayashi and Tanaka et al. reported in 2002 that the Au(I)-acid catalytic system

in aqueous methanol was a powerful catalyst, affording the corresponding

Markovnikov hydration product of a large variety of alkynes (Scheme 5) with

turnover frequencies of at least two orders of magnitude higher than those obtained

using [cis-PtCl2(tppts)2] [51, 113].
The efficiency of the catalyst was significantly enhanced by the addition of

appropriate ligands (CO and (PhO)3P), which enable us to minimize the amount of

the precious catalyst (Table 1, entries 2 and 3). The reaction did not proceed in the

absence of either the Au catalyst or sulfuric acid. Other acid co-catalyst such as

CF3SO3H (entry 4), CH3SO3H (entry 5), and H3PW12O40 (entry 6) also gave very

high yields even in the absence of the coordinative additives. The use of solvents

such as dioxane, acetonitrile, THF, DMF, dichloromethane, or 2-propanol resulted

in lower yields. Aliphatic and aromatic terminal alkynes, including those bearing

functional groups such as alkoxy, cyano, chloro, and olefinic moieties, underwent

hydration in moderate to excellent yields to form exclusively Markovnikov

products. Internal alkynes displayed lower reactivity, presumable because of steric

hindrance.

Catalytic hydration of phenylacetylene has been accomplished in a biphasic

mixture of ionic liquids and toluene using [BMTz] [AuCl3Br] 15 as a catalyst

(Scheme 6) [114]. Several imidazolium derived ionic liquids, as well as 15, can be

Table 1 Hydration of 1-octene in methanol

Entry Acid Additive Yielda (%)

1 H2SO4 – 35

2 H2SO4 CO (1 atm) 99

3 H2SO4 (PhO)3P (0.004 mmol) 90

4 CF3SO3H – 99

5 CH3SO3H – 77

6 H3PW12O40 – 80
aGC yield of 2-octanone

Scheme 5 Au(I)-acidic catalytic hydration of alkynes in aqueous methanol
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converted into gold–carbene complex 16 by sequential deprotonation and coordi-

nation, opening the way for in situ catalyst design (Scheme 7).

Anionic and neutral organometallic gold(III) compounds with one or two

organic radicals, C6F5 or (2,4,6-(CH3)3C6H2), can efficiently mediate alkyne hydra-

tion in neutral media in refluxing methanol with a catalytic activity similar to that

reported for NaAuCl4 (Table 2) [115]. The addition of acidic co-catalysts improves

the catalytic activity of this reaction.

The active organometallic gold(III) catalysts in the hydration of phenylacetylene

proved to be also efficient catalysts for the addition of MeOH giving the enol ether

17 and the acetal 18 (Table 3).

Scheme 6 Gold-catalyzed

hydration of phenylacetylene

in an ionic liquid

Scheme 7 Synthesis of gold–carbene complexes 16 from imidazolium derived ionic liquid 15

Table 2 Hydration of phenylacetylene with organic Au(III) or Au(I) compounds

Entry Catalyst Cat. loading

(mol%)

Acid Time (h) Conversion

(%)

Yield

(%)

1 [Au(C6F5)Cl2] 4.5 – 1.5 100 98

2 [Au(C6F5)Cl2(tht)] 2 – 1.5 0 –

3 BzPPh3[Au(mes)Cl3] 2 – 1.5 72 70

4 t-NBu4[Au(C6F5)Br2] 2.5 – 4 96 90

5 t-NBu4[Au(C6F5)Cl2] 0.5 H2SO4 1.5 100 –

6 [Au(Me)PPh3] 1 H2SO4 1.5 100 –

7 [Au(Me)PPh3] 0.5 HSO3CF3 1.5 100 –
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Water-soluble phosphine ligands TPPMS, TPPDS, and TPPTS (mono-, di-, and

tri-sulfonated triphenylphosphine, respectively) were tested as ligands for the

hydration of alkynes in aqueous media [116]. Complexes 19 and 20 (Fig. 1) gave

the highest turnover frequencies ever reported (1,000 and 1,060 h�1, respectively)

for the hydration of phenylacetylene under optimum conditions (0.1 mol% catalyst

loading, 10 mol% H2SO4, reflux, and MeOH/H2O).

Gold(I) complexes such as AuSPhosNTf2 having N-phenyltriflimide ligand are

efficient catalysts for the hydration of a wide range of alkynes to the corresponding

ketones with no acidic co-catalyst required ([117]; for regioselective transformation

of alkynes into cyclic acetals with gold(I) catalyst see [118]). Complexes of this

type allow us to perform hydrations of alkynes under milder, more selective, and

operationally easier conditions. Alkyl and aryl terminal alkynes, internal alkynes,

and propargylic alcohols, including enantiopure compounds, are cleanly

transformed into the corresponding ketones in nearly quantitative yields.

The first gold(I)–carbene complex with a gold–oxygen bond [Au(R2-imy)OC(O)

CH3] (Fig. 2) was successfully applied for the addition of water to 3-hexyne in the

presence of a Lewis acid as a co-catalyst [115].

Formation of a,b-unsaturated carbonyl compounds from propargylic alcohols

was described in 2007 by Chung et al. [119] and from propargylic acetates by Nolan

and co-workers (Scheme 8) with [(NHC)AuI] complexes [120]. The presence of

water was required for the formation of the desired products. Steric hindrance of the

ligand appeared to be crucial for the selectivity of the reaction. The reaction was not

Table 3 Addition of anhydrous methanol to phenylacetylene with organometallic gold(III)

compounds

Entry Catalyst Cat. loading

(mol%)

Time (h) Conversion (%) Yielda (%)

1 BzPPh3[Au(mes)Cl3] 3 1.5 17 (26) + 18 (64) –

2 BzPPh3[Au(C6F5)Cl3] 3 1.5 17 (45) + 18 (55) –

3 BzPPh3[Au(C6F5)2Cl2] 2.5 1.5 17 (100) 98
aIsolated yield

Fig. 1 Water soluble gold(I)–alkynyl complexes
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affected by aromatic substitution, and cinnamyl ketones possessing neutral, electron-

withdrawing and electron-donating groups were obtained in excellent yields. How-

ever, acetylenes with bulky groups such as TMS were not substrates for this

reaction. Similar transformations were reported by Engel and Dudlye [121] using

an Au(III)-catalyzed Meyer–Schuster rearrangement, and Akai et al. [122] where

the combination of cationic Au catalysts with MoO2(acac)2 leads to the 1,3-

rearrangement of propargyl alcohols.

The proposed reaction mechanism for the gold-catalyzed production of

a,b-unsaturated carbonyl compounds based on calculations is presented below

(Scheme 9). Gold(I) activates water by forming the hydroxide complex VII and

Scheme 8 Gold-catalyzed

formation of a,b-unsaturated
ketones with NHC ligands

Scheme 9 Proposed mechanism for the gold-catalyzed formation of a,b-unsaturated carbonyl

compounds based on calculations

Fig. 2 Gold(I)–carbene

complex: [Au(R2-imy)OC(O)

CH3]
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releases a solvated cluster of HSbF6. The proton of the hydroxy group of VII is

transferred to the inner oxygen atom of 23 and the oxygen atom binds in a concerted

process to the most electron-deficient carbon atom of the triple bond. Formic acid is

formed and acts as a leaving group. To complete the catalytic cycle, water adds to IX,

proceeding through a cyclic six-membered ring TS (XI), to give the enone 24 and

regenerating the catalyst.

Two years later, the group of Nolan succeeded in decreasing the catalyst loading

to parts-per-million (typically 50–100 ppm and as low as 10 ppm) under acid-free

conditions with the same NHC–gold(I) complexes [123].

Synthesis of diverse aryl vinyl ethers is possible through gold-catalyzed intermo-

lecular addition of substituted phenols to unactivated alkynes (Scheme 10) [124].

Gold-catalyzed hydration of alkynes has been applied in the total synthesis of

pterosines B and C (Scheme 11) [125], a class of sesquiterpene indane derivative

that possesses interesting biological activity.

A three-component addition for the hydration of alkynes was accomplished to

form efficiently 3-oxabicyclo[3.1.0]hexanes from 2-(arylmethylene)cyclopropyl-

carbinols, terminal arynes, and alcohols (Scheme 12) [126].

Scheme 10 Hydrophenoxylation of alkynes with AuCl3

Scheme 11 Application of alkyne hydration to total synthesis

Scheme 12 Hydration of alkyne via three-component addition methodology
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An intramolecular version of alkyne hydration was reported in 2006 by Belting

and Krause [127] providing an efficient route to tetrahydrofuranyl ethers 32.

This transformation consists in a tandem cycloisomerization–hydroalkoxylation

of homopropargylic alcohols 31 in the presence of an alcohol in a dual catalyst

system (a gold precatalyst and a Br€onsted acid) under mild conditions (Scheme 13).

The reaction proceeds satisfactorily with terminal and internal alkynes, with bis-

homopropargylic alcohols and alkynyl phenols to provide cyclic acetal skeletons

that occur in a variety of natural products. Substituted furanones can be obtained

by gold(III)-catalyzed activation of alkynes by heterocyclization and subsequent

1,2-alkyl shift [128].

The intramolecular addition of a hydroxyl group to a triple bond has found many

synthetic applications. o-Acetylenic alcohols 33 have been regio- and stereose-

lectively converted to the corresponding a-alkylidene oxygenated heterocycles in

the presence of catalytic amounts of AuCl and K2CO3 (Scheme 14) [129].

b

a

Brönsted

Scheme 13 (a) Gold- and acid-catalyzed synthesis of tetrahydrofuranyl ethers 32. (b) Proposed

mechanism for the intramolecular hydroalkoxylation of 31

Scheme 14 Formation of

a-alkylidene oxolanes and
oxanes catalyzed by gold

chloride and base
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Moreover, spiroketals are produced from tandem hydroalkoxylation of 4-alkynols

(Scheme 15) [130]. Starting from diynediols, bis-spiroketals are obtained using Au

(I) as catalysts [131]. Furthermore, Barluenga et al. reported the formation of

spirocyclic compounds in a tandem alkyne hydroalkoxylation [4 + 2] cycloaddition

reaction [132, 133], together with a tandem intramolecular hydroalkoxylation of

a triple bond followed by a Prins-type cyclization [129].

Acetal skeletons are also obtained as products through a highly regio- and

diastereoselective intermolecular addition of water and alcohols to alkynyl epoxides

catalyzed by gold(I) (Scheme 16) [134, 135].

Additionally, homopropargylic ethers with pendant nucleophiles, when subjected to

gold catalysts in an aqueous solvent, provide heterocyclic ketones (5- and 6-membered

rings) (Scheme 17) [136, 137]. This method was applied to the formation of piperidines

Scheme 16 Gold(I)-

catalyzed addition of water

to alkynyl epoxides

Scheme 15 Gold-catalyzed hydroalkoxylation of 4-alkynol 35

Scheme 17 Gold-catalyzed synthesis of oxygen- and nitrogen-containing heterocycles from

alkynyl ethers
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and to the efficient enantioselective synthesis of (+)-andrachcinidine (43). Synthesis

of indenyl ethers by gold(I)-catalyzed intramolecular carboalkoxylation of alkynes

was reported by Dubé and Toste [138]. Recently, Renault et al. have reported an

intramolecular gold(I)-catalyzed addition of ethers to alkynes followed by a carbode-

metallation giving access to a substituted chromone derivatives [139].

Intermolecular hydroalkoxylation of alkynes is also possible by hydration

of propargyl acetates assisted by a neighboring carbonyl group [140] and with

N-Boc-protected carbamates [141].

Carbocyclization of 1,5- and 1,6-diynes has been reported leading to

benzopyrones [142] and Z-cyclopentylidenes [143, 144], respectively. Further-

more, 1,4-diynes 44 react in the presence of gold-catalysts to form seven-membered

ring heterocycles 45 by an endo-cyclization (Scheme 18) [145].

Carboxylic acids also react with alkynes in the presence of gold(I) catalysts to

form lactones [146, 147]. AuCl catalyzes the conversion of substrate 46 to 47

at room temperature without additives (Scheme 19). Six-membered lactones can

be formed in the presence of AuCl and K2CO3 [147]. The corresponding esters can

be used instead of carboxylic acids [148, 149].

Boronic acids react intramolecularly with alkynes in the presence of

PPh3AuNTf2 as a catalyst to form synthetically useful boron enolates in excellent

yields (Scheme 20) [150].

The transition-metal-catalyzed hydration of alkynes and related reactions adds

the elements of H2O or ROH to the alkyne. Recently, Hammond and co-workers

expanded these procedures further by Selecfluor in combination with a boronic

Scheme 18 Cyclization of

diynols to dioxepine

derivatives

Scheme 19 Intramolecular

addition of carboxylic acids

to alkynes

Scheme 20 Gold-catalyzed boron enolate formation/aldol reaction
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acid, leading to product 48 (Scheme 21) [151]. Related examples of gold-catalyzed

oxidative alkene alkoxylations in the presence of Selectfluor and boronic acid have

been reported by Zhang et al. [152] and Toste et al. [153, 154].

Hydroamination of alkynes using gold catalysts has also attracted considerable

interest [155–158]. In this context, triazole–Au(I) complexes, which show

improved thermal stability, are active catalysts for the hydroamination of alkynes

[159]. The hydrothiolation of alkynes using soluble and heterogenized gold com-

plex catalysts was reported by Corma and co-workers [160].

2.2 Hydroalkoxylation of Alkenes

Despite the successes of the gold-catalyzed addition of O-nucleophiles to alkynes,

the corresponding catalyzed reactions involving nucleophilic addition to olefins are

very limited. Mild, metal-catalyzed additions of O–H bonds across olefins have

been studied for decades, and efforts to develop such processes have intensified in

the last years. Results of the hydroalkoxylation of alkenes are collected in different

reviews [1, 94–96, 161].

The pioneer experiments on the hydroalkoxylation of alkenes were carried out

by Thomas et al. (1976, [162]) using HAuCl4 in MeOH, following the previous

reported work on the oxidation of alkenes by mercury(II), thalium(III), and lead(IV)

salts (1974–1975) [163, 164]. Mixtures of ketones, a-chloroketones, 1-chloro-2-
methoxyalkanes, and 1,2-dimethoxyalkanes were obtained in most of the cases

(Scheme 22).

The first important contribution in this field was reported by Yang and He [165].

The intermolecular addition of phenols and carboxylic acids to internal and terminal

alkenes was applied successfully in the presence of Au(PPh3)Cl combined with

AgOTf in toluene to give good yields of the Markovnikov products (Scheme 23).

Differently substituted olefins and both electron-rich and electron-withdrawing

phenols are good substrates for this addition reaction. Hydroxylation of unactivated

olefins can also be achieved combining gold(I) and electron deficient phosphine

ligands in the presence of alcohol substrates bearing halogen or alkoxy groups as

additional coordination sites [166]. The intramolecular cyclization of g-hydroxylalkene
can be mediated by gold(I) under the same conditions (Scheme 24).

Scheme 21 Fluoro

functionalized hydration

of alkynes

Scheme 22 Oxidation of alkenes with gold(III)
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The reaction mechanism for the intermolecular addition of phenols to alkenes is

proposed in Scheme 25. Cationic gold(I) catalyst binds and activates alkene for a

nucleophilic addition by the phenols or carboxylic acids, a reaction reminiscent of

Scheme 24 Cyclization of hydroxy alkenes

Scheme 25 Proposed catalytic mechanism of intermolecular addition of phenols and carboxylic

acids to alkenes

Scheme 23 Gold(I)-catalyzed intermolecular addition of phenols and carboxylic acids to alkenes
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the first step to the Wacker process catalyzed by palladium(II). A subsequent

proton-transfer step affords the final product 49 and regenerates gold(I) catalyst.

The gold catalyst also promotes migration of double bonds, which gives rise to

formation of small amounts of side product 50.

However, caution should be exercised at interpreting these transformations as

genuine metal-catalyzed reactions since it has been demonstrated that intermolecu-

lar additions of the O–H bonds of phenols and alcohols to olefins can be catalyzed

by 1 mol% of triflic acid formed by hydrolysis of metal triflates [167, 168]. The

same applied to the addition of the N–H bond of sulfonamides and benzamides.

The same catalytic system was used to prepare dihydrobenzofurans 52 from aryl

allyl ethers 51 through an intramolecular process (Scheme 26) [169]. This reaction

proceeds by a Claisen rearrangement, followed by gold(I)-catalyzed addition of the

resulting phenol to the allyl group.

Li and co-workers extended this reaction to 1,3-dienes (Scheme 27) in an

efficient gold-catalyzed intermolecular atom-economical annulation of phenols

and naphthols to generate dihydrobenzofuran derivatives such as 53 [170]. The

reaction involves a sequential double addition of a carbon and an oxygen nucleo-

phile to the diene. Interestingly, gold(III) gave the best results in this transforma-

tion, whereas cationic gold(I) failed as a catalyst. Moreover, the addition of

alcohols to 3,3-disubstituted cyclopropenes can be successfully applied to gold

catalysis to form alkyl tert-allylic ethers in good yields (Scheme 28) [171].

Scheme 26 Formation of

dihydrobenzofurans from aryl

allyl ethers catalyzed by gold

Scheme 27 Annulation of phenol with cyclohexadiene catalyzed by gold and silver

Scheme 28 Gold(I)-catalyzed addition of alcohol to cyclopropene
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Zang and Corma [172, 173] reported the intermolecular addition of alcohols to

alkenes combining gold(III) catalyst with catalytic amounts of CuCl2 salt under

relatively harsh conditions. It was proposed that the role of CuCl2 in these gold

(III)–CuCl2 catalysts is to stabilize the cationic Au(III) (Scheme 29).

Gold(I) complexes bearing bulky cyclic carbodiphosphorane ligands (Fig. 3)

showed for the first time to be active in the hydroalkoxylation of acrylonitrile

yielding the anti-Markovnikov product [174].

Recently, Bandini and co-workers [175] reported an intramolecular gold(I)-

catalyzed asymmetric nucleophilic alkoxylation of allylic alcohols leading to

vinyl-substituted six- and seven-membered heterocycles (Scheme 30a). Following

this work, Aponick and Biannic [176] developed a synthesis of tetrahydropyrans in

high enantio- or diastereoselectivities (Scheme 30b). The configuration of the

allylic alcohol controls efficiently the facial selectivity when the substrates include

additional stereocenters.

2.3 Hydration and Hydroalkoxylation of Allenes

Hydration of allenes catalyzed by gold has been much less studied. The interest

of the addition of primary and secondary alcohols to allenes using gold complexes

Fig. 3 Cyclic

carbodiphosphorane–Au(I)

complex

Scheme 29 Addition of

methanol to styrene with an

AuCl3–CuCl2 catalyst

a

b

Scheme 30 Chirality transfer in Au-catalyzed cyclization reaction of allylic diols
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[1, 94–96, 161] started in the twenty-first century. Hoffmann-R€oder and Krause

(2001) investigated the gold(III)-catalyzed cyclization reactions of allenyl carbinols

54 to form 2,5-dihydrofurans 55 (Scheme 31) by using 5–10 mol% of the catalyst

[177], since it was known that catalytic amounts of Au(III) induce the cyclization of

allenyl ketones to furans [178]. All the reactions proceeded under perfect

stereocontrol. The use of gold(III) chloride, compared to the established Ag(I)-

promoted method [179], allowed the transformation of notoriously difficult

substrates and increased the reaction rate. Similar reactions of allenyl carbinols

were reported by Hashmi et al. [180] providing evidence for a mechanism of an in

situ reduction of gold (III). Hyland and Hegedus [181] developed an efficient

hydrocyclization of alleneamides mediated by N-iodosuccinimide yielding similar

dihydrofurans. Recently, the groups of Lipshutz and Krause have found that these

heterocyclizations can efficiently be carried out with AuBr3 in an aqueous micellar

system using poly(oxyethyl)-a-tocopheryl sebacate as the amphiphile [182].

The group of Krause [183, 184] extended this methodology to the Au(I) and Au

(III) 6-endo-cyclization of b-hydroxyallenes 58 to dihydropyrans 59 in good chem-

ical yields (Scheme 31). The chirality transfer can be explained with the mechanis-

tic model shown in Scheme 32. Thus, coordination of the gold catalyst to the

terminal double bond of the allene 58 gives rise to the formation of the intermediate

XXI, which is transformed into the s-gold complex XXII by nucleophilic attack of

the oxygen. Protodemetalation of the latter intermediate provides the hydropyran

59 and releases the gold catalyst. More recently, the same group combined the

lipase-catalyzed kinetic resolution of racemic a-allenic acetates with gold-

catalyzed cycloisomerization to form the corresponding 2,5-dihydrofuranes in

one pot [185].

The cyclization of allenols was applied successfully to the synthesis of different

natural products (Krause 2007): (�)-isocyclocapitelline [186], (�)-isochrysotricine

[186], and furanomycin derivatives [187].

Similar intramolecular exo-hydrofunctionalizations of g-allenes were achieved

by Widenhoefer et al., with Au[P(t-Bu)2(o-biphenyl)]Cl activated by either AgOTf

a

b

Scheme 31 (a) Electrophilic

cyclization of a-
hydroxyallenes 54 to 2,5-

dihydrofurans 55. (b) Gold-

catalyzed cycloisomerization

of b-hydroxyallenes 56 to

dihydropyrans 57
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or AgOTs with transfer of chirality from the allene to the newly formed stereogenic

center [188, 189]. An enantioselective cyclization was achieved in the presence of

Au2 complexes of the form [Au2(P–P)Cl2] (P–P ¼ 2,20-bis(diarylphosphino)biphe-
nyl) activated by AgOTs [188]. Toste et al. reported a powerful chiral counterion

strategy for asymmetric gold hydroalkoxylation of allenes [190] improving the

enantioselectivity reported with chiral ligands. Examination of solvents demonstrated

that more-polar solvents, such as nitromethane or acetone, gave significantly lower

enantiomeric excess values than THF or benzene. Recently, the same group

demonstrated that gold–phosphine complexes can be readily encapsulated in a tetra-

hedral Ga4L6 [L ¼ N,N0-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene] cluster

in both methanol and water, improving the catalytic activity of Me3PAuBr in the

hydroalkoxylation of allenes [191].

Hydrofunctionalization of allenes also can be promoted by ketones in the

presence of [Au(PPh3)]OTf to form furans [192]. This gold-catalyzed synthesis of

furans proceeds by a novel [1,2]-alkyl shift (Scheme 33). Gold(III) porphyrin-

catalyzed cycloisomerization of allenones gave the corresponding furans in good

to excellent yields (up to 98%) [193].

Scheme 33 Gold-catalyzed [1,2]-alkyl shift in allenyl ketones

Scheme 32 Proposed mechanism for the cyclization of b-hydroxyallenes to dihydropyrans

Gold-Catalyzed O–H Bond Addition to Unsaturated Organic Molecules 309



Haloallenyl ketones cyclization gives halofuranes via two competitive pathways

depending on the catalyst (Scheme 34) [194]. Thus, more oxophilic Au(III)

activates the carbonyl group leading to 3-halofurans by a 1,2-halogen shifts,

whereas Au(I) selectively activates the terminal double bond of the allene to form

2-halofurans.

Allenyl carbinol esters 60 (Scheme 35) form 1,3-butadien-2-ol esters 61 under

mild conditions with low catalyst loadings and good E-selectivity [195]

The intermolecular hydroalkoxylation of allenes was reported by Widenhoefer

et al. catalyzed by a gold(I) N-heterocyclic carbene complex and AgOTf providing

a straightforward entry to allylic ethers (Scheme 36) [196, 197]. Excellent

regioselectivity was obtained for the addition of the alcohols at the less hindered

terminal carbon of the allene. Nishina and Yamamoto [198] extended the intermo-

lecular hydrofunctionalization of allenes using Au(PPh3)Cl and AgOTf as the

catalyst concluding that the axial chirality of allenes is transferred to the products

with high enantioselectivities during the hydroamination, although racemization

was observed in the hydroalkoxylation reaction. In addition, one year later Zang

and co-workers proposed a regio- and stereoselective Au(I)-catalyzed intermolecu-

lar hydroalkoxylation of aryl– and alkoxy–allenes using PPh3AuNO3 catalyst

[199, 200].

Scheme 36 Intermolecular hydroalkoxylation of allenes catalyzed by gold(I)

Scheme 35 Gold(I)-

catalyzed reaction of

allenyl carbinol esters

Scheme 34 Proposed pathways for the gold-catalyzed regiodivergent synthesis of halofurans
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3 Addition of Nucleophiles to 1,n-Enynes

3.1 Hydroxycyclization and Alkoxycyclization of 1,5-Enynes

1,5-Enynes such as 62a-b react with alcohols or water in the presence of gold(I)

catalysts to give adducts 63a-b (Scheme 37) [67, 76, 201–203]. Whereas products

63a-b are formed by cleavage of bond a in intermediates XXIII, the intramolecular

hydroxycyclizations of 1,5-enynes 64a-b to give six-membered ring derivatives

65a-b take place by cleavage of bond b in XXIII [204]. In a mechanistically related

transformation, N-(hex-5-enynyl)-tert-butyloxycarbamates react in a formal

[4 + 2] cycloaddition process with gold(I) catalysts [205]. Enenyl carbonates also

undergo related gold(I)-catalyzed tandem cyclization reactions [206].

Phenols such as 66 also react intramolecularly with 1,5-enynes to give tricyclic

products 67 stereospecifically (Scheme 38) [207]. The reaction was extended to a

Scheme 37 Au(I)-catalyzed hydroxy- and alkoxycyclizations of 1,5-enynes

Gold-Catalyzed O–H Bond Addition to Unsaturated Organic Molecules 311



substituted 1,5-enyne 68, which gave tetracyclic derivative 69. Related poly-

cyclizations can be carried out using Hg(OTf)2 as a catalyst [208].

Reaction of propargyl vinyl ethers 70 in the presence of water or alcohols leads

to dihydropyrans 71 (Scheme 39) [209]. The intramolecular version of this reaction

from substrates such as 72 leads to spiroketals 73 with good stereocontrol

(Scheme 40) [209]. In the absence of nucleophiles, propargyl vinyl ethers undergo

Claisen rearrangement with gold(I) catalysts to give allenes [55, 210–212]. Similar

transformations catalyzed by gold- [49] or palladium [213] have also been reported.

Allyl silyl alkynes 74 react similarly with alcohols in the presence of gold(I)

catalysts to give the alkenylsilanes 75 and/or products 76 of alkoxycyclization

Scheme 38 Intramolecular hydroxycyclization with phenols

Scheme 39 Intermolecular reaction of propargyl vinyl ether 70 with water

Scheme 40 Intramolecular reaction of propargyl vinyl ethers
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(Scheme 41) [214, 215]. These products are formed by an endocyclic attack of the

initial cyclopropyl gold carbene XXIV followed by attack of the nucleophile at

either the cyclopropane or at the silicon atom.

3.2 Hydroxycyclization and Alkoxycyclization of 1,6-Enynes

The Pt(II)-catalyzed addition of water or alcohols to 1,6-enynes is a very general

reaction which can also take place, albeit less efficiently, using Pd(II) as a catalyst

[216–225]. Ru(II) complexes have also been used for the hydroxycyclization of 1,6-

enynes [216, 226]. 1,6-Enynes also react stereospecifically with alcohols or water in

the presence of Au(I) catalysts under milder conditions than with other metal

catalysts [48, 56, 76, 80, 218, 227–232]. This reaction can be performed inter-

(Scheme 42) or intramolecularly (Scheme 43). In the first case, the substitution

Scheme 41 Au(I)-catalyzed reaction of allyl silyl alkynes

Scheme 42 Intermolecular Au(I)-catalyzed hydroxy- and alkoxycyclizations of 1,6-enynes
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pattern at the alkene usually dictates the overall regioselectivity (5-exo-trig in 77a

vs. 6-endo-trig in 77b). In the later case, enynes bearing hydroxy groups, such as

79, react with Au(I) to give cyclic ethers of type 80. In a similar process, the

intramolecular reaction of carboxylic acids to enynes gives rise to lactones

(Scheme 43) [233]. These cyclizations exhibit the characteristics associated with

cationic polyene cyclization reactions.

Although similar results were obtained from catalysts generated in situ from

[AuMe(PPh3)] and a protic acid (Scheme 44) [59] or [AuCl(PPh3)] and AgSbF6, in

Scheme 43 Intramolecular Au(I)-catalyzed hydroxycyclization of 1,6-enyne

Scheme 44 Methoxycyclization of dienynes 84a-b
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the stereospecific transformation of 84a and 84b into 85a and 85b, respectively, the

catalysts of choice for the hydroxy- and alkoxycyclizations of 1,6-enynes are

those bearing bulky biphenyl phosphines (Scheme 45) [63, 227, 234]. Similar

results can be obtained with NHC–Au(I) [89] or Au(III) complexes as catalysts

[76, 80, 229, 235].

Asymmetric methoxycyclization of 1,6-enynes takes place selectively with gold

(I) complexes bearing chiral bidentate phosphines and N-heterocyclic carbenes

leading to good levels of enantioselectivity (Scheme 46) [201, 230, 232, 236].

Scheme 45 Au(I)-catalyzed hydroxycyclization with bulky phosphines and NHC ligands

Scheme 46 Asymmetric gold(I)-catalyzed hydroxycyclization of 1,6-enynes
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Mechanistically, formation of products of exo-trig and endo-trig cyclization can

be explained by the attack of the nucleophiles to cyclopropyl gold(I) carbene

intermediates XXVI at carbons a or b to form products 86 or 87 (Scheme 47),

similarly to that found for Pt(II) ([235], an example of gold-catalyzed methoxycy-

clization of an allenene [237]). In the first step, the alkene reacts with the

alkyne–gold(I) complex in an electrophilic addition process.

Usually, the hydroxycyclization is much faster than the direct nucleophilic

addition of water to the alkyne to form the corresponding methyl ketone. However,

hydration of the alkyne takes place with 1,6-enynes in which the alkene bears

electron withdrawing substituents that reduce its reactivity in the electrophilic

addition [227]. Thus, enyne 88a reacts with MeOH in the presence of gold(I)-

catalyst to give 89 in excellent yield, whereas 88b with a p-nitrophenyl group at the
terminal carbon of the alkene gives ketone 90 (Scheme 48). Formation of ketone 90

is the result of addition of water contained in the solvent, since addition of 4 Å

molecular sieves inhibits the hydration reaction [50, 51].

3.3 Hydroxycyclization and Alkoxycyclization of 1,7-Enynes

The cycloisomerizations of 1,7-enynes have been less studied. Chatai and Murai

reported the first example of a skeletal rearrangement of a 1,7-enyne using [RuCl

Scheme 47 General mechanism for the gold(I)-catalyzed hydroxy- and alkoxycyclization of

1,6-enynes

Scheme 48 Hydration of 1,6-enyne catalyzed by gold(I)
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(CO)2]2 as a catalyst [238]. Similar results have been obtained using PtCl2 [239,

240], PtCl4 [241], [IrCl(CO)3]n [242], GaCl3 [243–245], and InCl3 [246]. With the

exception of rearrangements catalyzed by GaCl3, which can proceed with

10–20 mol% catalyst at 23–40�C, all other metals catalyzed the process at higher

temperatures (80–110�C) [247].
A few examples of skeletal rearrangement and hydroxylation of 1,7-enynes were

reported using Au(I) [248] and Hg(II) [249] as catalysts, respectively. The hydroxy-

and alkoxycyclizations of 1,7-enynes take place similarly to 1,6-enynes with a

variety of gold(I) catalysts [250]. Better results were obtained in these cases with

gold(I) complexes bearing bulky biphenylphosphines [57, 251]. The reaction of

1,7-enyne 91 in aqueous acetone afforded mixtures of alcohol 92 and rearranged

diene 93, whereas the reaction in methanol led exclusively to the product of

methoxycyclization 94 (Scheme 49). The gold(I)-catalyzed methoxycyclization of

95 gave stereospecifically 96 in 70% yield.

These results are consistent with reaction of 1,7-enynes by selective activation of

the alkyne by Au(I) in complexes XXVII leading to cyclopropyl gold(I)-carbenes

XXVIII, which react with water or alcohols to form stereospecifically adducts 97.

Alternatively, intermediatesXXVIII can undergo single-cleavage rearrangement to

give dienes 98 (Scheme 50).

The hydroxycyclization reaction of homopropargylic enyne 99 did not proceed

as previously reported for 1,6-enynes and suffered the addition of water to the

alkyne moiety (alkyne hydration) to give ketone 100 (Scheme 51) (Sect. 2.1, 3.2)

[229]. 1,7-Enyne 101 did not react at room temperature, although ketone 102 and

six-membered ring alcohol 103 could be obtained when the reaction was carried out

at 60�C.

Scheme 49 Hydroxy- and methoxycyclization of 1,7-enynes
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60. Jiménez-Núñez E, Claverie CK, Nieto-Oberhuber C, Echavarren AM (2006) Angew Chem

Int Ed Engl 45:5452–5455

61. Ferrer C, Echavarren AM (2006) Angew Chem Int Ed Engl 45:1105–1109

62. Ferrer C, Amijs CHM, Echavarren AM (2007) Chem Eur J 13:1358–1373
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Transition-Metal-Catalyzed S–H and Se–H

Bonds Addition to Unsaturated Molecules

Akiya Ogawa

Abstract This chapter deals with the transition-metal-catalyzed hydrothiolation

and hydroselenation of alkynes and allenes and related unsaturated compounds with

thiols and selenols. In these reactions, the regio- and/or stereoselectivities of the

addition products can be controlled by switching the transition metal catalysts.

Metal sulfides and selenides (RE-MLn, E ¼ S, Se, M ¼ Ni, Pd, Rh, Zr, Sm, etc.)
play an important role as key catalyst species in these hydrothiolation and

hydroselenation. The introduction of carbon monoxide into these hydrothiolation

and hydroselenation systems leads to novel carbonylation with simultaneous

addition of thio and seleno groups to unsaturated bonds.

Keywords Carbonylation � Hydroselenation � Hydrothiolation � Transition metal

catalysts � Vinyl sulfides
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Abbreviations

Ac Acetyl

acac Acetylacetonate

An Actinide

Ar Aryl

t-Bu tert-butyl
cat Catalyst

c-Hex Cyclohexyl

coe Cyclooctene

cod 1,5-cyclooctadiene

Cp Cyclopentadienyl

Cp* Pentamethylcyclopentadienyl

DIOP O-2,3-isopropylidene-2,3-dihydroxy-1,4-bis(diphenyl-
phosphino)butane

dppp 1,3-bis(diphenylphosphino)propane

dppf 1,1’-bis(diphenylphosphino)ferrocene

DTBM-segphos 5,5’-bis{di(3,5-di-t-butyl-4-methoxyphenyl)phosphino}-

4,4’-bi-1,3-benzodioxole

equiv Equivalent

GPC Gel permeation chromatography

i-Pr Isopropyl

IMes N,N-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene

Ln Lanthanide

MLn Transition metal complex (M: metal L: ligand)

mol Mole(s)

Me Methyl

Ms Methanesulfonyl (mesyl)

NHC N-heterocyclic carbene ligands
Ph Phenyl

py Pyridine

R Organyl substituent

rt Room temperature

SEM Scanning electron microscopy

THF Tetrahydrofuran

TMS Trimethylsilyl

Tp* Hydrotris(3,5-dimethylpyrazolyl)borate

p-TsOH p-toluenesulfonic acid
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1 Introduction

Transition-metal-catalyzed addition reactions of heteroatom compounds bearing a

heteroatom–hydrogen linkage to carbon–carbon unsaturated bonds are very useful

in terms of highly regio- and stereoselective synthesis of heteroatom compounds

with excellent atom economy. Indeed, transition-metal-catalyzed hydroboration,

hydrosilylation, and hydrostannation are widely employed for organic synthesis. In

contrast, the transition-metal-catalyzed addition of group 16 heteroatom

compounds bearing a sulfur–hydrogen or selenium–hydrogen linkage to unsatu-

rated compounds has remained largely undeveloped. This might be partly due to the

widespread prejudice that organic sulfur and selenium compounds often bind

strongly to the catalysts, thus poisoning them and making the catalytic reactions

ineffective [1]. During the last two decades, however, examples of efficient, highly

selective addition of thiols and selenols to carbon–carbon unsaturated bonds in the

presence of transition metal catalysts have been reported. This chapter deals with

the highly selective transition-metal-catalyzed hydrothiolation and hydroselenation

of alkynes and related carbon–carbon unsaturated compounds using thiols and

selenols [2–20].

2 Transition-Metal-Catalyzed Hydrothiolation with Thiols

Thiols have been widely employed as the sources of ligands for various transition

metals. In the stoichiometric reactions of thiols with transition metal complexes,

two types of processes are generally operative (Scheme 1).

One is the ligand-exchange reaction between high-valent transition metal

complexes (Mn+2Lx) and thiols to give the complexes bearing only thiolate ligands

(RS-Mn+2Lx-1). The other is the oxidative addition of thiols to low-valent transition

metals (MnLn) to give the corresponding transition metal complexes bearing both

hydride and thiolate ligands (RS-Mn+2Lx-2-H). The reaction of the former

complexes (RS-Mn+2Lx-1) with carbon–carbon unsaturated compounds such as

alkynes may proceed via thiometallation, in which relatively more bulky Mn+2Lx-1

is bonded at the terminal carbon of alkynes. On the other hand, in the reaction of

the latter complexes (RS-Mn+2Lx-2-H) with alkynes both hydrometallation and

thiometallation processes are possible. These processes proceed via syn-addition.
Alternative pathway for the addition of thiols to alkynes involves coordination of

alkynes to transition metals and then nucleophilic addition of thiols (or thiolate

anions) to the alkynes. These processes take place via anti-addition. By controlling
these pathways, regio- and stereoselective hydrothiolation of alkynes is expected to

be attained successfully.

Transition-Metal-Catalyzed S–H and Se–H Bonds Addition to Unsaturated Molecules 327



2.1 Hydrothiolation of Alkynes

In the transition-metal-catalyzed addition reactions of thiols to terminal alkynes,

several addition products, i.e., Markovnikov-type adduct 1, Markovnikov addition

and then double-bond-isomerization product 2, anti-Markovnikov adduct 3, double

hydrothiolation product 4, and bisthiolation product 5, may be formed (Scheme 2).

Controlling the product selectivity can be attained by the selection of transition

metal complexes as catalysts, the use of additives, and/or the optimization of

the reaction conditions (solvent, temperature, molar ratios of the starting materials,

and so on).
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Scheme 1 Mechanistic pathways for hydrothiolation of alkynes
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Scheme 2 Product selectivity in hydrothiolation of terminal alkynes
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2.1.1 Markovnikov Addition

Palladium Catalysts

The reaction of benzenethiol with 1-octyne in the presence of various transition

metal complexes is conducted as a model reaction, and a number of transition metal

complexes are found to catalyze the hydrothiolation of 1-octyne (Scheme 3) [21].

Among the catalysts examined, palladium diacetate (Pd(OAc)2) exhibits an excel-

lent catalytic activity toward the Markovnikov addition of PhSH to 1-octyne, and

2-phenysulfurnyl-1-octene (1a) is obtained regioselectively. Bis(benzonitrile)pal-

ladium dichloride (PdCl2(PhCN)2) can form cationic palladium species more

easily compared with Pd(OAc)2. The use of PdCl2(PhCN)2 as a catalyst causes

Markovnikov addition of PhSH to 1-octyne and the following double-bond-isomer-

ization reaction, which afford 2-phenylsulfanyl-2-octene (2a) as the major product.

Similar product selectivity is also observed when tetrakis(triphenylphosphine)plat-

inum (Pt(PPh3)4) is employed as the catalyst. It is known that the stoichiometric

reaction of Pt(PPh3)4 with thiol forms PhS-PdH(PPh3)2 via oxidative addition

[22, 23]. The platinum species can contribute to the addition of thiols to alkynes

[24, 25] and the double-bond-isomerization to give the hydrothiolation product 2a.

In the case of tetrakis(triphenylphosphine)palladium (Pd(PPh3)4) catalyst, 1,2-bis

(phenylsulfanyl)-1-octene (5a) is obtained beside 2a. Oxidative addition of PhSH to

the low-valent palladium complex may lead to the formation of PhS-PdH(PPh3)2.

The palladium hydride species having phosphines as the ligands is reactive to

generate in situ Pd(SPh)2(PPh3)2, resulting in the formation of several addition

products. In general, platinum hydride species are more stable than the corresponding

palladium hydride species, and therefore the Pt(PPh3)4-catalyzed hydrothiolation of

1-octyne indicates excellent product selectivity compared with the Pd(PPh3)4-

catalyzed reaction.

+  PhSH
5 mol % catalyst

SPh SPh
SPh+ +

1a 2a 3a1 equiv

PhH, 80 °C, 16 h

RhCl(PPh3)3

Pd(PPh3)4

PdCl2(PhCN)2

Pt(PPh3)4

NiCl2(PPh3)2

Pd(OAc)2 67% 2% <1%

Pd(OAc)2 (THF, 40 °C) 85% <1% <1%

1% 45% 4%

2% 73% 0%

2% 80% 18%

1% 22% 2%

14% 23% 52% [98/2]a

none (20 h) 0% 0% 65% [48/52]a
aE /Z ratio.

2 M (R  = n-C5H11)

R R R R

Scheme 3 Hydrothiolation of 1-octyne catalyzed by transition metal complexes

Transition-Metal-Catalyzed S–H and Se–H Bonds Addition to Unsaturated Molecules 329



Even in the absence of catalyst, thiols add to alkynes under neutral conditions

to afford anti-Markovnikov-type vinylic sulfides with excellent regioselectivity

usually as a stereoisomeric mixture. Indeed, the reaction of benzenethiol with

1-octyne in the absence of transition metal catalyst provides anti-Markovnikov

adduct 4a regioselectively with the E:Z ratio of ca. 1:1. This hydrothiolation takes

place, most probably via the radical process induced by trace amounts of oxygen

existed in the reaction system. The radical addition of thiols to alkynes sometimes

seems to proceed even in the presence of transition metal catalysts. Accordingly,

when the anti-Markovnikov adducts are obtained with approximately equal

amounts of E- and Z-isomers, the following possibility is present: the anti-
Markovnikov adducts are formed by the radical process, regardless of the presence

of transition metal catalysts.

The Pd(OAc)2-catalyzed hydrothiolation with thiols can be applied to a variety

of terminal alkynes and Markovnikov-type addition products 1 are obtained

regioselectively in good yields. Functionalities such as hydroxy, amino, ester, and

alkenyl groups are tolerant toward the regioselective hydrothiolation. The

hydrothiolation also proceeds smoothly with internal alkynes to give a stereoiso-

meric mixture of vinyl sulfides, although the E-isomer is predominantly formed at

the beginning of the reaction. Interestingly, the addition to 2-octynoic acid affords

3-(phenylsurfanyl)-2-octenoic acid with high regio- and stereoselectivity (87%,

E/Z ¼ 98/2; its regioisomer (2%)). This excellent regioselectivity may be attained

by the coordination of carboxylic group to the palladium.

To ascertain the stereochemistry of this Pd(OAc)2-catalyzed hydrothiolation of

terminal alkynes, the reaction of PhSH with 1-octyne-1-d (containing 93% d) is
monitored by 1H NMR spectroscopy. The E:Z ratio of the thiolation products is

100:0 at the initial stage, and then E-isomer as the kinetic product gradually

isomerized to Z-isomer. These results clearly indicate that the hydrothiolation

proceeds via syn-addition at least at the initial stage (Scheme 4).

To get insight into the reaction pathway for the Pd(OAc)2-catalyzed

hydrothiolation, several mechanistic investigations are examined. At first, the

reaction of Pd(OAc)2 with two equivalents of PhSH in THF in the presence or

n-C6H13
n-C6H13

SPh
1 equiv

THF, 40 °C

15 min (6 %)

2 h (40 %)

4 h (59 %)

100

96

89

D + PhSH
n-C6H13

SPh

0

4

11

8 h (81 %)

17 h (94 %)

86

67

(d1 94 %, d2 0 %)

14

33

D

HD

H +
Pd(OAc)2

Scheme 4 Syn-addition of PhSH to 1-octyne-1-d
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absence of 1-octyne is attempted. In both cases (in the presence or absence of

1-octyne), dark brown precipitates A or B are formed immediately with the

formation of two equivalents of AcOH (Scheme 5) [2, 7]. The elemental analysis

of these dark brown precipitates A or B suggests the formation of [Pd(SPh)2]n from

the ligand-exchange reaction of Pd(OAc)2 with two equivalents of PhSH. The

catalytic hydrothiolation of 1-octyne with PhSH proceeds well in the presence of

the dark brown precipitate A (prepared in the presence of 1-octyne), whereas the

dark brown precipitate B (prepared in the absence of 1-octyne) is less effective for

the catalytic hydrothiolation. On the other hand, no hydrothiolation of 1-octyne

takes place by using the filtrate instead of the dark brown precipitates. These results

strongly suggest that the dark brown precipitate, i.e., [Pd(SPh)2]n, is the real catalyst

species and this Pd(OAc)2-catalyzed hydrothiolation has the nature of heteroge-

neous catalysis.

The key species, [Pd(SPh)2]n, is considered to have a polymeric structure bearing

both terminal and bridged sulfide groups, and is insoluble in most of organic solvents.

The hydrothiolation may take place on the surface of the precipitated [Pd(SPh)2]n.

Owing to the insolubility of the [Pd(SPh)2]n in organic solvents, the determination of

the molecular weight of [Pd(SPh)2]n by gel permeation chromatography (GPC) is

difficult. However, the palladium sulfide B prepared by the reaction in the absence of

1-octyne might be much more polymeric than the palladium sulfideA prepared by the

reaction in the presence of 1-octyne, because the polymerization by the sulfur bridging

may be retarded by the coordination of 1-octyne to the palladium. Monodentate

terminal sulfanyl groups are active for the desired hydrothiolation. Most probably,

bidentate bridged sulfanyl groups are inactive (or less active) for the hydrothiolation,

and conceivably the polymerized palladium sulfide with large molecular weight is

considered as “catalyst poisoning.” To avoid the poisoning, therefore, it is important

technically to mix the palladium catalyst and alkynes before addition of thiols

(The order of addition is usually as follows: the catalyst, solvent, alkyne, then thiol).

Pd(OAc)2 + PhSH
2 equiv

[Pd(SPh)2]n + AcOH

A

2 equiv

In the presence of 1-octyne (1 equiv)

BIn the absence of 1-octyne

+  PhSH
catalyst

SPh
1a2 M 1 equiv

THF, 40 °C, 16 h

THF, rt, 0.5 h

filtration

filtrate
dark brown

catalyst A

catalyst B

filtrate

62 %

32 %

0 %

n-C6H13

n-C6H13

Scheme 5 Catalytic activity of palladium sulfide for hydrothiolation
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The structures of the palladium sulfides have been confirmed clearly by scanning

electron microscopy (SEM) study [26]. When Pd(OAc)2 dissolved in alkyne in the

presence of g-terpinene is allowed to react with cyclohexanethiol upon microwave

heating, nanostructured Pd species (Pd nanobelts) is formed in 85% yield.

g-Terpinene acts as an excellent radical trapper and suppresses the formation of

anti-Markovnikov addition product 3 by radical pathway. On the other hand, the

addition of thiols to Pd(OAc)2 followed by addition of alkyne leads to amorphous

particles in the mm-size region. The formed Pd nanobelts exhibits excellent catalytic

activity toward the hydrothiolation of alkynes. In particular, the hydrothiolation with

alkanethiols proceeds efficiently with excellent regioselectivity upon microwave

heating (Scheme 6).

A possible pathway for the Pd(OAc)2-catalyzed hydrothiolation is shown in

Scheme 7. The ligand-exchange reaction between Pd(OAc)2 and PhSH leads to

Pd(SPh)2, which reacts each other to form the polymeric palladium sulfide species.

Alkyne coordinates to the terminal palladium of the polymeric palladium sulfides

and then the alkyne inserts into the monodentate sulfanyl-Pd bond. Since polymeric

palladium site is bulky, the sulfanylpalladation occurs with bonding of the Pd site to

the terminal carbon of alkyne regioselectively to generate vinylpalladium species.

Protonation of the vinylpalladium species with PhSH affords the hydrothiolation

product 1 with regeneration of the catalyst. In the cases of arenethiols, the proton-

ation process proceeds smoothly, due to the higher acidity of arenethiols compared

with alkanethiols (pKa ¼ 6.5 (PhSH); 10.66 (n-alkaneSH)). In the cases of

alkenethiols, direct protonation is somewhat difficult to take place due to the

lower acidity of them. Therefore, the s-bond metathesis between vinylic C–Pd

R +

γ-terpinene

Pd(OAc)2 n-HexSH

microwave
[Pd(SHex-n)2]n

dark brown “Pd nanobelts”

R +  n-HexSH
5 mol % [Pd(SHex-n)2]n R

SHex-n
microwave

R = HO(CH3)2C 99 % (>99:1)

98 % (>99:1)AcO(CH3)2C

98 % (95:5)n-Bu

96 % (91:9)H2NCH2

98 % (84:16)Ph

*The values in parentheses are selectiveity of
Markovnikov addition to anti-Markovnikov one.

Scheme 6 Synthesis of Pd nanobelts and their catalytic activity
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and RS–H via the four-centered (vinylic C, Pd, S, and H) transition state is an

alternative pathway.

Some additional comments about the mechanism are as follows: It is important

to discuss the difference in the coordination ability between alkylsulfanyl and

arylsulfanyl groups. In general, alkyl group is among electron-donating groups,

whereas the aryl group on sulfur conjugates with the lone-pair on the sulfur of ArS

group. This conjugation decreases the coordination ability of ArS group. Since

alkylsulfanyl group has the higher coordination ability, alkylsulfanyl group acts as

bidentate ligands to bridge between two palladiums [27].

Another mechanistic aspect is the reductive elimination from the vinylpalladium

intermediate, which may afford the vicinal disulfanylalkene 5. In the presence of

phosphines as ligands, the reductive elimination is relatively fast. Since no phos-

phine is employed for this Pd(OAc)2-catalyzed hydrothiolation, the reductive

elimination to give 5 does not proceed smoothly.

Nickel Catalysts

Markovnikov-type addition of benzenethiols to alkynes has been investigated in

detail by using nickel catalysts such as nickel dichloride (NiCl2) [28]. The NiCl2-

catalyzed hydrothiolation of alkynes with PhSH has been attained by using

g-terpinene and triethylamine as additives (Scheme 8).

g-Terpinene as a radical trapper inhibits the anti-Markovnikov addition by

radical mechanism. Triethylamine contributes to the increase in the yield and

selectivity of Markovnikov-type addition product by activation of NiCl2.

Pd(OAc)2

[Pd(SR)2]n

RSH

AcOH

SR

RSH

1

Pd

RS

R
S

Pd

S
R

R
S

S
R

Pdn–2(SR)2n–5Pd

R
S

Pd

S
R

R
S

S
R

Pdn–2(SR)2n–5RS

R
R

R

R

Scheme 7 A possible catalytic cycle for the Pd(OAc)2-catalyzed hydrothiolation
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Furthermore, excluding phosphine and phosphite from the catalytic system inhibits

the formation of the vicinal disulfanylalkene 5.

An excellent nickel-based nanosized catalytic system has been developed for the

practical synthesis of vinylic sulfides 1 (Scheme 9) [29, 30].

Inexpensive and easily available nickel acetylacetonate (Ni(acac)2) is employed

as the catalyst precursor. The procedure can be easily scaled-up to prepare up to

50 g of the vinyl sulfides with high regioselectivity. Moreover, solvent-free

conditions without chromatographical purification attain eco-friendly synthetic

method of vinyl sulfides. The mechanistic study indicates that the catalytic

hydrothiolation takes place under heterogeneous conditions with alkyne insertion

into the Ni–S bond of nanosized nickel sulfide species.

A novel homogeneous catalytic system using nickel complexes bearing

N-heterocyclic carbene ligands (NHC) has been also developed for the regioselective
hydrothiolation of alkynes (Scheme 10) [31–33]. For example, N,N-bis(2,4,
6-trimethylphenyl)imidazol-2-ylidene (IMes) is used as a representative NHC, and

the formed CpNi(IMes)Cl indicates an excellent catalytic activity toward the

Markovnikov-type addition of thiols to alkynes, which proceeds efficiently with

high regioselectivity (61–87% yields; up to 31:1 selectivity). The stabilization

of highly reactive metal complexes by the greater s-donation of NHC makes it

R +   PhSH
3 mol % NiCl2, 10 mol % Et3N R

SPhγ -terpinene (1 equiv), CHCl3
80 °C, 2.5 h (R  = n-C5H11)2 equiv

1  95 %

Scheme 8 NiCl2-catalyzed hydrothiolation of 1-heptyne

R + PhSH

2 mol % Ni(acac)2 R

SPhsolvent-free condition

R = n-Bu 79 %(94:5)

93 %(>98:2)HO(CH2)2

96 %(>98:2)AcO(CH3)2C

82 %(73:27)Ph

*The values in parentheses are selectiveity of
Markovnikov addition to anti-Markovnikov one.

10 mmol 2 equiv

Ni

PhS

PhS

Ph
S

Ni

S
Ph

Ni(acac)2
PhSH

- acacH

n

40 °C, 15 min

40 °C, 75 min

60 °C, 3.5 h

40 °C, 8 min

Ni

PhS

Ph
S

Ni

S
Ph n

R

PhS

R

Scheme 9 Ni(acac)2-catalyzed hydrothiolation of alkynes
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possible to gain insight into the mechanism for this hydrothiolation under homoge-

neous conditions.

In the presence of Et3N, CpNi(NHC)Cl reacts with arenethiols to form the

corresponding nickel sulfides (CpNi(NHC)(SAr)) quantitatively. Furthermore, the

structure of CpNi(NHC)(SAr) is confirmed by X-ray analysis. A catalytic activity of

the CpNi(NHC)(SAr) for the regioselective hydrothiolation is demonstrated. When

the hydrothiolation of 1-heptyne with PhSH is conducted in the presence of 3 mol%

of CpNi(NHC)(SAr) at 60 �C for 6 h, 2-phenylsulfanyl-1-heptene is obtained in 67%

yield with 8:1 selectivity (Markovnikov: anti-Markovnikov). While the stoichiomet-

ric reaction of CpNi(NHC)(SAr) with alkynes does not proceed in the absence of

thiols even upon heating at 80 �C, the presence of thiols (2 equiv) upon heating at

70 �C for 4 h leads to 96% of the Markovnikov-type adduct along with CpNi(NHC)

(SAr) (1 equiv) and thiols (1 equiv). The appearance of vinylnickel intermediate via

thionickelation is not observed by NMR measurements. However, these results

suggest the vinylnickel intermediate is in equilibrium with CpNi(NHC)(SAr) and

alkynes. The addition of another equivalent of thiol enables the trapping of the

vinylnickel intermediate, giving the vinyl sulfides.

Another example of nickel-catalyzed hydrothiolation of alkynes is reported. Ni

(PPh2Me)4 in the presence of Ph2P(O)OH works as a useful catalyst for the

Markovnikov-type addition of 1-octyne [34]

Rhodium Catalysts

Hydrotris(pyrazolyl)borates are widely used as ligands for transition metals, and

especially, rhodium pyrazolylborates have been extensively studied for stoichiometric

Ni
NHC Cl

N N

(NHC = IMes)
N,N-bis(2,4,6-trimethylphenyl)-

imidazol-2-ylidene (IMes)ArSH
Et3N

Ni
NHC SAr

R

R

Ni
NHC

SAr

R

R

SAr

ArSH

Scheme 10 Homogeneous hydrothiolation of alkynes catalyzed by CpNi(NHC)Cl
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C–H activation reactions [35]. Rhodium pyrazolylborates, as highly electron-rich

metal complexes, are found to be useful catalysts for the Markovnikov-type

addition of thiols to alkynes. In particular, Tp*Rh(PPh3)2 (Tp* ¼ hydrotris

(3,5-dimethylpyrazolyl)borate) exhibits an excellent catalytic activity toward the

regioselective hydrothiolation of a range of alkynes with both arene- and

alkanethiols (Scheme 11) [36–40]. A variety of functional groups are well tolerated,

and both sterically encumbered alkynes and thiols are successful in hydrothiolation.

Electron-rich alkynes react more rapidly than electron-deficient alkynes.

Hydrothiolation of terminal alkynes is investigated by using Tp*Rh(SPh)2 as the

catalyst [41]. This hydrothiolation also affords Markovnikov-type addition

products as the major product. Mechanistic aspects are shown in Scheme 12.

R +  RSH

3 mol% Tp*Rh(PPh3)2 R

SRDCE:PhCH3(1:1)

10 mmol 1.1 equiv

B
N N

H N

N

N

N
Rh

PPh3

PPh3+

–

Tp*Rh(PPh3)2:

Scheme 11 Tp*Rh(PPh3)2-catalyzed hydrothiolation of alkynes
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H
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Tp*Rh(coe)(CH3CN)
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Scheme 12 Tp*Rh(SPh)2-catalyzed hydrothiolation of alkynes
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The reaction of Tp*Rh(coe)(CH3CN) with 1 equiv of PhSH generates the

corresponding hydrorhodium sulfide complex, Tp*RhH(SPh)(CH3CN), via oxida-

tive addition. Tp*RhH(SPh)(CH3CN) does not react with alkynes. Treatment of

Tp*RhH(SPh)(CH3CN) with excess PhSH affords Tp*Rh(SPh)2 to with concomi-

tant formation of H2. The insertion process of alkyne into the Rh–S bond takes place

smoothly by the orientation that “R” group of alkyne is located at the less hindered

sulfanyl site. The elimination process of the hydrothiolation product from

the vinylrhodium intermediate is relatively slow, and Tp*Rh(SPh)2 catalyst is

re-formed.

Early Transition Metal Catalysts

Several early transition metal complexes catalyze the regioselective hydrothiolation

of alkynes [42–47]. For example, the monomeric organozirconium complexes-

catalyzed hydrothiolation of alkynes is shown to be highly Markovnikov selective,

with selectivities up to 99%, and typically in greater than 90% yields (Scheme 13)

[43]. Kinetic investigations show that the Zr precatalyst-mediated reaction between

1-pentanethiol and 1-hexyne is first order in catalyst concentration, first order in

alkyne, and also first order in thiol at lower concentrations but transitions to zero

order at concentrations >0.3 M. Deuterium labeling of the alkyne yields kH/kD ¼ 1.3

(0.1), along with evidence of thiol-mediated protonolytic detachment of product from

the Zr center. Based on kinetic data, this hydrothiolation is proposed to proceed

through an alkyne insertion thiol protonolysis sequence with turnover-limiting alkyne

insertion.
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RSH
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RS SR

RS
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X

SR
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H
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Scheme 13 Organozirconium complexes-catalyzed hydrothiolation of alkynes
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TheMarkovnikov-selective lanthanide-mediated hydrothiolation of terminal alkynes

with aliphatic, benzylic, and aromatic thiols also proceeds by using Cp*2LnCH

(TMS)2 (Cp* ¼ C5Me5; Ln ¼ La, Sm, Lu) and Ln[N(TMS)2]3 (Ln ¼ La, Nd, Y)

as precatalysts [44, 45].

Kinetic investigations of the Cp*2SmCH(TMS)2-mediated reaction between

1-pentanethiol and 1-hexyne are found to be first order in catalyst concentration,

first order in alkyne, and zero order in thiol concentration. Deuterium labeling

of the alkyne reveals kH/kD ¼ 1.40(0.1), along with evidence of thiol-mediated

protonolytic detachment of the vinyl hydrothiolation product from the Sm center.

Mechanistic findings indicate turnover-limiting alkyne insertion into the Sm–SR

bond, followed by very rapid, thiol-induced Sm-C protonolysis to yield Markovnikov

vinyl sulfides with regeneration of the Sm–SR species. A mixture of free radical-

derived anti-Markovnikov vinyl sulfides is occasionally observed and can be

suppressed by g-terpinene radical inhibitor addition. Metal thiolate complex aggre-

gation to form insoluble species can be delayed kinetically by Cp-based ligation.

In addition, several organoactinide complexes also catalyze the regioselective

hydrothiolation of alkynes with various thiols (Scheme 14) [46, 47]. Bond enthalpy

considerations for the unexplored reaction predict net exothermicity for RSH

addition to alkynes, allenes, and alkenes mediated by organoactinide complexes.

While alkyne insertion into the An–S bond (step ii) is predicted to be exothermic,

Si An
CH2TMS

CH2TMS

SR

RSH

Si An
SR

SR

RSH
ΔHcalc = -32  kcal/mol

Si An
SR SR

An = Th, U
ΔHcalc

step i

step iistep iii

step ii step iii

alkyne

allene

alkene

-19

-1

+12

-26

-20

-32

R

R

R

Scheme 14 Organoactinide complexes-catalyzed hydrothiolation of alkynes
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alkenes are more challenging, with initial insertions predicted to be endothermic.

The final protonolysis (step iii) is estimated to be highly exothermic for all

substrates, reflecting the substantial C–H and An–S enthalpies.

2.1.2 Markovnikov Addition and Double-Bond-Isomerization

In the transition-metal-catalyzed Markovnikov-type addition of thiols to terminal

alkynes, the double-bond-isomerization reactions of the formed Markovnikov

addition products 1 are often observed, when the propargylic protons are present

in alkynes. As already mentioned, the addition of amines to the reaction systems

suppresses the formation of the double-bond-isomerization product 2. On the other

hand, the use of PdCl2(PhCN)2 as a catalyst causes Markovnikov addition of PhSH

to terminal alkynes and the following double-bond-isomerization reaction, which

afford 2-phenylsulfanyl-2-alkene 2 as the major product (Scheme 15) [7, 48].

To get some information about this sequential addition/isomerization reaction,

the stoichiometric reaction of PdCl2(PhCN)2 with 2 equiv of PhSH in benzene at

room temperature is conducted. The reaction provides a reddish-brown solid of

PdCl2(PhCN)2 + PhSH
2 equiv

[PdCl(SPh)(PhSH)]n

+ PhSH
5 mol % PdCl2(PhCN)2

SPh
21 equiv

PhH (0.5 mL), 80 °C, 20 h

PhH, rt

66 % [56/44]

70 % [55/45]

63 % [40/60]

1 mmol

R R

(n = 1 or 2)

reddish brown

+ PhSH
5 mol % [PdCl(SPh)(PhSH)]n

SPh
21 equiv

PhH, 80 °C, 20 h

(R = n-C5H11)

42 %

R R

R = n-C5H11

SPh

R 5 mol % [PdCl(SPh)(PhSH)]n

SPh
2

PhH, 80 °C, 20 h

(R = n-C5H11)

almost quantitative

R

1

Ph

NC(CH2)2

Scheme 15 PdCl2(PhCN)2 -catalyzed sequential addition/isomerization reaction
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palladium sulfide complex. Elemental analysis and GPC analysis of the reddish-

brown solid indicates the formation of [PdCl(SPh)(PhSH)]n (n ¼ 1 or 2). The

reddish-brown solid catalyzes the sequential addition/isomerization reaction of

1-octyne, and also the isomerization of Markovnikov adduct 1 to 2.

A possible catalytic cycle for this sequential addition/isomerization reaction is

shown in Scheme 16. Ligand-exchange reaction of PdCl2(PhCN)2 with PhSH

generates Pd(SPh)ClLn, which adds to alkyne providing vinylic palladium interme-

diate. Protonation of the vinylic palladium intermediate with PhSH to Markovnikov

addition product 1. Double-bond-isomerization proceeds via the cationic interme-

diate and the allylpalladium intermediate. Protonation of the allylpalladium inter-

mediate with HCl leads to vinyl sulfide 2. Alternatively, the isomerization may

occur by HCl, because HCl in aprotic solvent is a more powerful acid compared

with HCl in water. Therefore, tertiary amine may only trap HCl in the reaction

system.

As shown in Scheme 3, tetrakis(triphenylphosphine)platinum also indicates high

catalytic activity toward the sequential addition/isomerization reaction. In this case,

oxidative addition of PhSH to Pt(PPh3)4 proceeds to give PtH(SPh)(PPh3)2, which

is stable than the corresponding hydropalladium sulfide species. The following

hydroplatination and/or thioplatination of alkyne, followed by reductive elimina-

tion leads to the Markovnikov adduct 1. Hydroplatium species can contribute to the

isomerization of 1 to 2 [24, 25, 33, 49–53].

2.1.3 Anti-Markovnikov Addition

Under radical conditions, thiols add to terminal alkynes to give the corresponding

anti-Markovnikov addition products 3 regioselectively in good yields. In this
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PdCl(SPh)Ln

PhSH
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PhSH
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Cl-

R
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SPh

R

SPh

R
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Pd(SPh)Ln

SPh
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+
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HClSPh

R
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Scheme 16 A catalytic cycle

for the sequential addition/

isomerization reaction
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hydrothiolation of alkynes by radical process, however, controlling the stereose-

lectivity is difficult (a mixture of E- and Z-isomers are generally formed). There-

fore, it is of great importance to attain the regio- and stereoselective hydrothiolation

by using transition metal catalysts. Wilkinson’s catalyst (RhCl(PPh3)3) is an excel-

lent catalyst for anti-Markovnikov addition of thiols to alkynes with high stereose-

lectivity (E-isomers are obtained selectively) (Scheme 17) [48]. This suggests the

RhCl(PPh3)3-catalyzed hydrothiolation proceeds via syn-addition process.

A variety of alkynes undergo regio- and stereoselective hydrothiolation with

arenethiols in the presence of RhCl(PPh3)3. Ethanol and dichlorometane is suitable

solvents for this hydrothiolation. This hydrothiolation proceeds well, even when

galvinoxyl as a radical inhibitor is added to the reaction system. Recently,

Wilkinson’s catalyst is reported to be an excellent catalyst for alkyne hydrothiolation

with alkanethiols to provide E-isomers of anti-Markovnikov-type addition products 3

selectively [54].

Equimolar reaction of Wilkinson’s catalyst with PhSH is reported to afford trans-
HRhCl(SPh)(PPh3)2 as yellow solid [55]. Attempted catalytic hydrothiolation of

1-dodecyne using trans-HRhCl(SPh)(PPh3)2 successfully provides anti-Markovnikov

adduct 3 selectively.

To gain further insight into the mechanism, the reaction of trans-HRhCl(SPh)
(PPh3)2 with an equimolar amount of 1-dodecyne is monitored by 1H NMR. The

reaction leads to the disappearance of both Rh–H (d-16.4) and acetylenic H,

and instead, a new doublet peak appeared at d 5.1 (probably as the vinylic proton).

The new peak does not disappear after standing for 20 h at room temperature, but

the addition of PhSH (1equiv) to the solution leads to the formation of the

corresponding vinylic sulfide after standing for 6 h.

RhCl(PPh3)3  +  PhSH

2 equiv

trans-HRhCl(SPh)(PPh3)2

R +  PhSH
1~3 mol % RhCl(PPh3)3 R

31.1 equiv
EtOH (1 mL), 20~40 °C, 20 h

CH2Cl2, rt, 1 h
yellow solid

80 %

97 %

67 %

1 mmol

R +  PhSH
3 mol % trans-HRhCl(SPh)(PPh3)2

1.1 equiv
EtOH, 30 °C, 20 h

(R = n-C10H21)

R = n-C10H21

SPh

R

3

55%

SPh

 Ph

 Cl(CH2)3

Scheme 17 RhCl(PPh3)3-catalyzed regio- and stereoselective hydrothiolation
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Based on these observations, a possible catalytic cycle for the rhodium-catalyzed

anti-Markovnikov addition of thiols to alkynes is shown in Scheme 18. Oxidative

addition of PhSH to Wilkinson’s catalyst generates hydrorhodium sulfide species

(trans-HRhCl(SPh)(PPh3)2). After coordination of alkyne to the hydrorhodium

sulfide species, stereoselective insertion of alkyne into Rh–H bond provides

E-isomer of vinylic rhodium intermediate. The subsequent reductive elimination

of anti-Markovnikov adduct in the presence of PhSH regenerates the hydrorhodium

sulfide species.

Cationic gold complexes are useful catalysts for anti-Markovnikov-type

hydrothiolation with excellent regio- and stereoselectivities (Scheme 19) [56].

Rhodium and iridium complexes bearing bidentate N,N and N,P ligands also

indicate the catalytic activity for regioselective hydrothiolation. In this reaction,

anti-Markovnikov-type adducts are obtained as a stereoisomeric mixture

(Scheme 19) [57, 58].

Several synthetic methods of anti-Markovnikov-type hydrothiolation products

by using transition metal catalysts are reported [59–64]. For example, treatment of

RhCl(PPh3)3

HRhCl(SPh)(PPh3)2

PhSH

RSH

R

3

HRhCl(SPh)(PPh3)2

R

RhCl(SPh)(PPh3)2
R
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PPh3
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Scheme 18 A catalytic cycle for the RhCl(PPh3)3-catalyed hydrothiolation
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Scheme 19 Gold catalyst and iridium catalyst for hydrothiolation of alkynes
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alkynes with alkanethiols in the presence of cesium carbonate (Cs2CO3) and radical

inhibitor in DMSO provides the corresponding adduct, (Z)-1-alkenyl alkyl sulfides,
in good yield with high selectivity [59]. In the presence of CuI and Cs2CO3, a

variety of thiols reacted with arylpropiolic acids to afford the corresponding vinyl

sulfides with high stereoselectivity for Z-isomer [60]. The combination of CuI and

Cs2CO3 with rongalite is effective for the hydrothiolation of alkynes with diaryl

disulfides, leading to (Z)-1-alkenyl sulfides stereoselectively [61]. Hydrothiolation of
alkynes using Al2O3/KF under solvent-free conditions provides anti-Markovnikov-

type vinyl sulfides as stereoisomeric mixtures [62]. Some of these reactions proceed

via the formation of anionic intermediates by the nucleophilic attack of metal sulfides

to unsaturated compounds. Electron transfer process from thiols to manganese acetate

generates sulfanyl radicals and then addition of the sulfanyl radicals to alkynes

provides (E)-vinyl sulfides preferentially [63]. These methods are alternative access

to the anti-Markovnikov-type vinylic sulfides.

2.1.4 Double Hydrothiolation

In the transition-metal-catalyzed hydrothiolation reactions, dithioketals 4 as double

thiolation products are sometimes formed as byproducts. Since dithioketals 4 are

synthetically useful as carbonyl equivalents, selective synthesis of 4 from alkynes

and thiols is attractive. Indium bromide (InBr3) as a water-tolerant green Lewis acid

catalyst is found to catalyze efficiently the hydrothiolation of alkynes with arene-

and alkanethiols to produce the corresponding dithioketals in excellent yields

(Scheme 20) [64].

As mentioned in Sect. 2.1.1.1, palladium diacetate (Pd(OAc)2) is a useful

catalyst for the hydrothiolation of alkynes to give Markovnikov-type vinyl sulfides

1. Interestingly, when the same palladium-catalyzed reaction is conducted using

2 equivalents of thiols in the presence of water or acetic acid (1 equiv), the

Markovnikov-type vinyl sulfides 1 is not formed, and instead dithioketals 4 is

obtained selectively (Scheme 21) [65]. The Pd(OAc)2-catalyzed reaction of

1 with equimolar amounts of thiol provides 4 in good yield, whereas no reaction

is observed in the absence of Pd(OAc)2. These results suggest the intermediacy of

vinyl sulfides 1. Recently, noncatalytic double addition of thiols to alkynes in water

is reported to afford the corresponding vicinal dithioalkanes, regioselectively [66].

Therefore, the present Pd(OAc)2-catalyzed double addition of thiols to alkynes,

which affords the geminal dithioalkanes, is regiocomplementary to the noncatalytic

reaction.

R +  RSH
10 mol % InBr3

4

CH2Cl2, rt, 15~30 min SRRS

>95 %

R

Scheme 20 InBr3-catalyzed double hydrothiolation leading to dithioketals
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2.2 Hydrothiolation of Allenes

In the Sect. 2.1, a variety of transition-metal-catalyzed hydrothiolation reactions of

alkynes with thiols have been described. Transition metal catalysts are clearly

useful for the regio- and/or stereoselective addition of thiols to carbon–carbon

triple bonds. In contrast, the transition-metal-catalyzed addition of thiols to

carbon–carbon double bonds such as alkenes has not been developed hitherto,

except for Lewis acid-catalyzed hydrothiolation [8, 67–72]. This is most probably

due to the lower coordination ability of alkenes compared with alkynes, which may

permit the polymerization of metal sulfide complexes, resulting in inactivation of

them as key catalysts for hydrothiolation.

Since allenes have higher coordination ability and are reactive compared with

alkenes, the transition-metal-catalyzed addition of thiols to the carbon–carbon

double bonds is expected to proceed. Indeed, several transition metal complexes

exhibit catalytic activity toward the addition of thiols to allenes. Of great impor-

tance in the addition of thiols to allenes is controlling the selectivity. Formally, four

regioisomers are considered in the addition of thiols to terminal allenes

(Scheme 22). In the radical addition of benzenethiol to terminal allenes initiated

by molecular oxygen, the formed thio radical adds to both the inner and terminal

carbon of allenes, affording a mixture of vinyl and allyl sulfides [73].

In contrast, palladium acetate (Pd(OAc)2) indicates an excellent catalytic activ-

ity for the regioselective addition of thiols to the inner double bond of terminal

allenes, providing the corresponding 2-sulfanyl-1-alkenes in good yields [74].

A possible pathway for this allene hydrothiolation may involve the following

processes: (i) ligand-exchange reaction between Pd(OAc)2 and PhSH (2 equiv)

Pd(OAc)2 (5 mol %) / no additive

Pd(OAc)2 (5 mol %) / AcOH (1 equiv)

0 % 69 %

Pd(OAc)2 (5 mol %) / H2O (1 equiv) 80 % 0 %

71 % 3 %

R + RSH
catalyst / additive R

4
THF, 40 °C, 16~20 h

(R = Ph, R  = n-C6H13)

SRRS

R

SR
+

1 M 2 equiv 1

R'

SR
+ RSH

catalyst / additive R'

4
THF, 40 °C, 20 h

(R = Ph, R = n-C6H13)
SRRS

1 equiv1

Pd(OAc)2 (5 mol %) / no additive

Pd(OAc)2 (5 mol %) / AcOH (1 equiv)

80 %

Pd(OAc)2 (5 mol %) / H2O (1 equiv) 80 %

93 %

no catalyst / AcOH (1 equiv) 0 %

Scheme 21 Pd(OAc)2-catalyzed double hydrothiolation leading to dithioketals
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generates Pd(SPh)2 along with AcOH (2 equiv); (ii) Since Pd(SPh)2 is a divalent

species, thiopalladation takes place at the relatively electron-rich double bond, i.e.,

inner double bond of allenes, leading to the allylic palladium intermediate;

(iii) protonation of the allylic palladium intermediate with PhSH affords the

vinyl sulfide with regeneration of Pd(SPh)2. Pd(PPh3)4 also exhibits similar

regioselectivity as Pd(OAc)2, whereas Pt(PPh3)4 shows different regioselectivity

[75]. 2-Sulfanyl-1-alkenes can be synthesized alternatively by the Pd(PPh3)4-

catalyzed hydrothiolation of allenes with diphenyl disulfide in the presence of

PPh3 and H2O. (PhS)2 reacts with PPh3 and H2O to generate PhSH in situ [76].

Rhodium-catalyzed asymmetric hydrothiolation of diphenylphosphinylallenes is

reported (Scheme 23) [77].

Reaction of dialkyl disulfide with allenes is catalyzed by a rhodium–phosphine

complex and trifluoromethanesulfonic acid giving (E)-2-alkylthio-1,3-dienes [78].
AuBr3-catalyzed regioselective hydrothiolation of aromatic allenes with arenethiols

affords the corresponding dithioketals in good yields under mild conditions [79].

Intramolecular hydrothiolation of a-thioallenes to 2,5-dihydrothiophenes is success-

fully catalyzed by AuCl (Scheme 24) [80].

This cyclization reaction may proceed via the coordination of the double bond

of allenes to Au and the following nucleophilic attack of sulfur to the activated

double bond.

R
+ PhSH

R

SPh

R

SPh

R

SPh

R SPh+ + +
α

β γ

α β γ

β

(R = t-Bu)

O2 38 % 37 % 25%

Pd(OAc)2*1 85 %

*1Pd(OAc)2 (2 mol %), THF, reflux, 2 h.

*2Pd(PPh3)4 (5 mol %), MeCN, reflux, 12 h.

*3Pt(PPh3)4 (5 mol %), MeCN, 40 °C, 36 h.
R

SPh

(R = c-Hex)

Pd(PPh3)4*2 82 %

Pt(PPh3)4*3 3 % 58 %

Pd(SPh)

Scheme 22 Hydrothiolation of allenes
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The thiol additions to conjugated dienes are catalyzed by gold complexes,

Ph3PAuBF4, with excellent yields at room temperature (Scheme 25) [81]. This

hydrothiolation occurs regioselectively at the less electron-rich double bond of

conjugated dienes.

Me
+  PhSH

Ph2(O)P
Ph2(O)P

SPh

Me
2.5 mol % [Rh(OH)(cod)]2
6 mol % (R)-DTBM-segphos

t-BuOH, 80 °C, 24 h

O

O

O

O P

P

OMe

OMe

t-Bu

t-Bu

t-Bu

t-Bu

2

2

(R)-DTBM-segphos:

74 %
81 % ee

Scheme 23 Asymmetric hydrothiolation of diphenylphosphinylallenes

R
+ ArSH

5 mol % AuBr3

CH2Cl2, 0 °C, 5 min
R

SArArS

R1

R3

HS

R2
5 mol % AuCI

CH2Cl2, 20 °C
S

R2

R3R1

R1

R3

S
H

R2
AuLn

Scheme 24 Gold-catalyzed hydrothiolation of allenes

+ RSH
5 mol % Ph3PAuBF4

CH2Cl2, rt, overnight

SR

Scheme 25 Gold-catalyzed hydrothiolation of conjugated dienes
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3 Transition-Metal-Catalyzed Hydroselenation with Selenols

Benzeneselenol as a representative selenol is a colorless liquid of greater acidity

than benzenethiol (pKa ¼ 5.9 (PhSeH); 6.5 (PhSH)). The bond energy of Se–H is

73 kcal/mol, is smaller than S–H (87 kcal/mol) [82]. These properties may contrib-

ute to the efficiency in the oxidative addition of selenols to low-valent transition

metals, ligand-exchange reaction between high-valent transition metal complexes

and selenols, and protonation process of carbon-metal bonds. Indeed, several

transition metal complexes catalyze the highly selective hydrothiolation of alkynes

and allenes.

Representative results of the transition-metal-catalyzed addition of benzeneselenol

to 1-octyne are shown in Scheme 26 [83–85]. Similarly as the hydrothiolation of

alkynes, Pd(OAc)2 is an active catalyst for the Markovnikov-type hydroselenation

of alkynes with PhSeH, but the product selectivity is somewhat lower compared

with the hydrothiolation. However, the use of pyridine as solvent or the addition of

2,2’-bipyridyl as ligand attains the excellent product selectivity giving the

Markovnikov-type vinyl selenides 6 in good yields. When PdCl2(PPh3)2 is employed

as the catalyst, the sequential addition/isomerization reaction takes place selectively to

give the vinyl selenides 7 as a stereoisomeric mixture. Although the RhCl(PPh3)3-

catalyzed hydrothiolation provides anti-Markovnikov-type adduct regioselectively,

R
+  PhSeH

2 mol % catalyst

R

SePh

R

SePh

R SePh+ +

6 7 8

Pd(OAc)2, PhH, 80 °C

1 equiv
16 h
(R = n-C5H11)

Pd(OAc)2, PhMe, 100 °C

2, 2 -bipyridyl (20 mol%)

PdCl2(PPh3)2, PhH, 80 °C

RhCl(PPh3)3, PhH, 80 °C

62% 7% <3%

Pd(OAc)2, pyridine, 100 °C 77%

63%

4% 71% [62 /38]a

7% 55% [64 /36]a
aE /Z ratio.

2 M

R

PhSe SePh

R SePh

SePh

+ +

9 10

13%

3%

6 7 8 9 10

Scheme 26 Transition-metal-catalyzed hydrothiolation of alkynes

Transition-Metal-Catalyzed S–H and Se–H Bonds Addition to Unsaturated Molecules 347



the sequential addition/isomerization reaction proceeds preferentially in the case of the

hydroselenation with PhSeH.

In the cases of aromatic alkynes, the radical addition of PhSeH induced by

oxygen (or air) is a very fast process (the addition is finished immediately after

mixing the alkynes and PhSeH), giving anti-Markovnikov adduct regioselectively.

The key species, PhSe·, adds to alkynes to generate vinyl radicals. a-Aryl-substituted
vinyl radicals (formed by the addition of PhSe· to aromatic alkynes) are among

p-radicals and more stable than a-alkyl-substituted vinyl radicals as s-radicals
(formed by the addition of PhSe· to aliphatic alkynes) [86]. Therefore, it is relatively

difficult, compared with the hydrothiolation, to control the selectivity in transition-

metal-catalyzed hydroselenation of aromatic alkynes.

The catalytic ability of low-valent palladium and platinum complexes bearing

phosphines as ligands toward the hydroselenation is investigated in detail (Scheme 27)

[87, 88]. The Pd(PPh3)4-catalyzed reactions of alkynes with PhSeH provides

Markovnikov-type hydroselenation products 6 and bisselenation products 10, whereas

Pt(PPh3)4 selectively provides only Markovnikov-type hydroselenation products 6.

In both cases, oxidative addition of PhSeH to Pd or Pt complexes generates HM

(SePh)(PPh3)2 (M ¼ Pd or Pt), which further reacts with PhSeH to give palladium

or platinum selenides [89] (Scheme 28) (Several related works about the oxidative

addition and metal selenides are reported [89–92]). Palladium sulfides easily

undergoes dimerization to form the corresponding selenium-bridged dinuclear

complexes, whereas, in the case of Pt, the rapid isomerization of cis-[Pt
(SePh)2(PPh3)2] to tarns-[Pt(SePh)2(PPh3)2] avoids such dimerization, leading

to the reductive elimination to (PhSe)2. The C–H bond formation in palladium-

catalyzed transformation most likely is an intermolecular trapping of s-vinyl
intermediates with PhSeH, in contrast to intramolecular reductive elimination

occurring when platinum catalyst is used.

A simple heterogeneous nickel-based catalytic methodology is developed

for regioselective hydroselenation of terminal alkynes (selective Markovnikov-

type addition) and stereoselective hydroselenation of internal alkynes (selective

syn-addition) [93]. The catalytic transformation is performed under mild

conditions, thus avoiding byproduct formation.

The mechanistic study revealed that the yield of the hydroselenation products

depends on the catalyst particle size. The catalysts prepared from the precursor

catalysts and selenols have the same chemical formula [M(SeAr)2]n, but the sizes of

R + PhSeH
3 mol % catalyst R

SePh

+

6

PhMe, 80 °C, 16 h

R
SePh

SePh

10

Pd(PPh3)4 49% 25%

Pt(PPh3)4 60%

(R = n-C6H13)

Scheme 27 Low-valent transition-metal-catalyzed hydroselenation of alkynes
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the particles differed dramatically. Poor results are obtained for NiCl2 precursor,

which gave catalyst particle sizes of 3–10 mm. Better results are observed with Pd

(OAc)2 and Ni(OAc)2 precursors, with particles sizes of 3–6 mm and 2–5 mm,

respectively. Further higher catalytic activity is observed in a heterogeneous cata-

lytic system of NiCl2 in the presence of Et3N, and the particle sizes are 0.3–1.5 mm.

The best results are achieved with Ni(acac)2 and the catalytic activity rapidly

increases upon decreasing particle size into the nanosized region (the sizes of the

nanoparticle from Ni(acac)2 are 300 � 90 nm) [17]. Some related nickel-catalyzed

selenation reactions of unsaturated compounds are reported [94, 95].

Indium(I) iodide is found to promote the regio- and stereoselective hydrothiolation

of propargyl alcohols with (PhSe)2 (Markovnikov-type addition and anti-addition)

Pd(PPh3)2

Pd
PhSe PPh3

Ph3P H
Pd

PPh3

Ph3P H
PhSe

R

R

PhSe

R

R

PhSe SePh

Pd
Se PPh3

Se
Ph

SePh
Pd

PhSe
Ph

Pd
PPh3

Se
Ph

SePh
Pd

Ph3P

Ph
Se

R

PhSe

Pd(PPh3)4

PhSeH

-H2

6

10

R
PhSeH

6

PhSeH

Pt(PPh3)2

Pt
PhSe PPh3

Ph3P H
Pt

PPh3

Ph3P H

PhSe

R

R

PhSe

R

PPh3

SePh
Pt

PhSe

Ph3P

Pt(PPh3)4

PhSeH
-H2

6 PhSeH

(PhSe)2

PPh3

PPh3

Pt
PhSe

PhSe

Ph3P

Scheme 28 Catalytic cycles for Pd- and Pt-catalyzed hydroselenations
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[96]. In addition, regioselective Markovnikov hydroselenation of terminal alkynes

using indium(III) selenates is also reported [97].

The Pd(OAc)2-catalyzed hydroselenation of alkynes with PhSeH can be applied

to the hydroselenation of allenes [98]. In the cases of terminal allenes, the

corresponding 2-selanyl-1-alkenes are obtained preferentially, whereas the radical

addition of PhSeH to terminal allenes affords 2-selanyl-2-alkenes as the major

product [99].

4 Applications to the Synthesis of Functionalized Sulfur

Compounds

Catalytic hydrothiolation and hydroselenation reactions are very useful for

providing a wide variety of functionalized organosulfur and selenium compounds.

For example, the palladium-catalyzed hydrothiolation of conjugated enynes

affords a series of 2-(phenylsulfanyl)-1,3-dienes regioselectively in good yields

(Scheme 29) [100].

Palladium-catalyzed hydrothiolation of alkynylphosphines proceeds via anti-
addition process, yielding the corresponding (Z)-1-phosphino-2-thioalkenes regio-
and stereoselectively. The coordination of the phosphino group to the palladium

induces the rare example of catalytic anti-addition of thiols to alkynes (Scheme 30)

[101].

A novel palladium-catalyzed thioboration of terminal alkynes (RC�CH)

with PhSBR’2 provides (Z)-2-sulfanyl-1-alkenylboranes (R(PhS)C¼CH-BR’2)

R + PhSH
cat. Pd(OAc)2

THF, 50 °C R

SPh

Scheme 29 Palladium-catalyzed hydrothiolation of conjugated enynes

+ R3SH
cat.Pd(OAc)2

EtOH, 25 °C, 1~4 h
R1 PR2

2

R1

R3S PR2
2

R1 PR2
2

[Pd]

R3SH

Scheme 30 Palladium-catalyzed hydrothiolation of alkynylphosphines
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regio- and stereoselectively, the methanolysis of which affords the corresponding

2-sulfanyl-1-alkenes (R(PhS)C ¼ CH2) as hydrothiolation products [102].

The palladium-catalyzed intramolecular hydrothiolation of (Z)-2-en-4-yne-
1-thiols, followed by double-bond-isomerization successfully provides substituted

thiophenes in good yields. The hydrothiolation step may involve the nucleophilic

attack of the sulfanyl group to the carbon–carbon triple bond coordinated by

palladium (Scheme 31) [103].

When the transition-metal-catalyzed hydrothiolation of unsaturated compounds

is performed in the presence of carbon monoxide, carbonylation reactions may

proceed with the introduction of sulfanyl groups. In fact, a series of carbonylative

thiolation reactions of alkynes and allenes are reported. These reactions provide

useful tools to synthetically important organosulfur compounds [104, 105]. For

example, the rhodium-catalyzed reaction of alkynes with thiols and CO provides

the corresponding thioformylation products regioselectively [106, 107]. Switching

the catalyst from rhodium complex to platinum complex leads to a sharp reversal of

regioselectivity of CO introduction [108, 109] (Scheme 32).

SH

R1

R4

R2 R3

1 mol % PdI2, 2 mol % KI

AcNMe2, 100 °C, 1~4 h

S
R1

R2 R3

PdI

SR1

R2 R3

R4

R4SH

R1

R4

R2 R3

PdI2

PdI2

-HI

HI -PdI2

Scheme 31 Thiophene synthesis by palladium-catalyzed hydrothiolation

+ RSH   +   CO

cat. RhH(CO)(PPh3)3

cat. Pt(PPh3)4

O

H

RS

ORS

R

R

R

Scheme 32 Regioselective carbonylative thiolation of alkynes
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In the former reaction, [Rh(SR)(CO)(PPh3)2]n is formed as a key species by the

reaction of RhH(CO)(PPh3)3 with RSH along with the release of H2. Regioselective

thiorhodation of alkynes with Rh(SR)(CO)(PPh3)2 generates vinylrhodium inter-

mediate (R’(RS)C¼CH–Rh(CO)(PPh3)2), and the following CO insertion into the

C–Rh bond forms acylrhodium intermediate. The acylrhodium intermediate reacts

with RSH to afford the corresponding thioformylation products with recovery of Rh

(SR)(CO)(PPh3)2.

The latter carbonylation involves the formation of PtH(SR)(PPh3)2 by the

oxidative addition of RSH to the zero-valent platinum complex. A possible pathway

may include the CO insertion into the S–Pt bond of PtH(SR)(PPh3)2. Then,

acylplatination of alkynes generates b-thiocarbonyl-substituted vinylplatinum

intermediate, which undergoes reductive elimination to give the a,b-unsaturated
thioesters with regeneration of the catalyst.

b-Sulfanyl-a,b-unsaturated carbonyl compounds like the thioformylation products

are structurally interesting, because the n-s* interaction between the sulfanyl group

and carbonyl group are observed [110].

Conjugated enynes undergo regioselective thiocarbonylation successfully giving

the corresponding thioesters bearing dienyl substituents (Scheme 33) [111].

Furthermore, highly stereoselective dithiocarbonylation of propargylic mesylates

with thiols and carbon monoxide is attained by the use of tetrakis(triphenyl-

phosphine)palladium(0) as the catalyst. This dithiocarbonylation is believed to pro-

ceed via allenylpalladium and allenyl thioesters, and the high stereoselectivity may

be rationalized by a mechanism where nucleophilic attack of a Pd(0) species on the

R2

R2

R2

R1

R1
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R2

R2

R1 R2

R1

R1

R1

cat. Pd(OAc)2, dppp

THF, 110 °C
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O
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Scheme 33 Regioselective thiocarbonylation of alkynes
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allenyl sp carbon occurs from the less hindered side of an alkyl substituent

(bulkiness of the substituents: R2 > R1) [112].

In the cases of propargyl and homopropargyl alcohols, carbonylative

lactonization proceeds to give a,b-unsaturated lactones in good yields [112–114].

Allenes also undergo highly regioselective thiocarbonylation with thiols and

carbon monoxide in the presence of palladium catalysts. The use of Pd(OAc)2/PPh3
as the catalyst leads to the selective formation of b,g-unsaturated thioesters

(Scheme 34) [115].

Platinum(0) complexes such as Pt(PPh3)4 also catalyze carbonylative thiolation

of allenes, affording a,b- and b,g-unsaturated thioesters in good yields [116]. When

2-iodobenzenethiols are employed for the palladium-catalyzed carbonylation with
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+  RSH  +  CO
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R2

R1

R1

SR

O

I

SH S

O

+ + CO
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Scheme 34 Regioselective thiocarbonylation of allenes
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allenes, thiochroman-4-ones are obtained in good to excellent yields with high

regioselectivity [117].

The Pd(OAc)2/PPh3 catalyst is very useful for the thiocarbonylation of a variety

of carbon–carbon double-bond compounds such as conjugated dienes [118], allylic

alcohols [119], and vinylcyclopropanes [120], as shown in Scheme 35. These

reactions proceeds via p-allylpalladium complexes as key intermediates. Further-

more, a catalytic system based on Pd(OAc)2/(R,R)-DIOP is found to effect asym-

metric thiocarbonylation of prochiral 1,3-dienes to produce good yields of optically

enriched b,g-unsaturated thioesters [121].

5 Conclusions

In this chapter, recent advance in the transition-metal-catalyzed hydrothiolation and

hydroselenation of alkynes, allenes, and related compounds has been described.

Although organosulfur and selenium compounds are believed to be catalyst

poisons, these new reactions described in this chapter clearly indicate the efficacy

of transition metal catalysts in the synthetic reactions of organosulfur and selenium

compounds. The use of transition metal catalysts makes it possible to attain highly

regio- and stereoselective synthesis of a variety of vinylic and allylic sulfides and

selenides. These reactions are very useful in terms of not only the organosulfur and

selenium compounds synthesis but also the development of bioactive compounds

and new materials. For example, p-conjugated polymers including heteroatoms

[101, 122] are promising in material science and these research fields require the

highly selective methods for introduction of heteroatom groups involving sulfur

and selenium.
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isomerization–hydroamination, 124

palladium hydration, 254

platinum hydration, 269
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regioselective carbonylative
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gold-catalyzed, 309
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2-Allylphenol, cyclization, 204

Allylphosphonate, 193
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Amines, activation, 125
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oxidative addition, 126
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hydroamination/cyclization, 55

Aminoalkynes, 5-/6-endo cyclizations, 131

hydroamination, 72

intramolecular hydroamination, 121

Aminoallenes, 5-/6-exo cyclizations, 133

hydroamination, 76
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lithium-amide catalyzed, 107

conjugated, hydroamination, 74

cyclizations, 75, 133
rare earth metal-catalyzed, 75

Aminoheptadiene, cyclization, 75
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Aminometallation, 126, 127

Aminopentenes, chiral, 98
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Aminostilbenes, lithium-catalyzed
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Aminotroponiminato, 60, 72

Ammonium carbamates, 207

Andrachcinidine, 303
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Z6-Arene ruthenium, hydroamination, 125

Arenethiols, 31, 45

1-Aryl-2-propynols, 189

Asymmetric synthesis, 51

Au–Me bond, 292

B
Benzamidinate, 60

Benzeneselenol, 347

Benzenethiols, nickel catalysts, 333

1,3-Benzodioxoles, 223

Benzofurans, 221, 234, 238, 265, 278

Rh(I) catalyzed synthesis, 239

Benzoic acids, addition to norbornene, 206

Benzopyrones, 303

Binaphthalenedicarboxamide

zirconium, 104

Binaphtholate, 80, 97

tantalum, 104

Bis(spiroketals), 302

Bis(ureate), 70

Bis(imidazolin-2-ylideneyl)borate, 67

Bis(alkanediamine)cobalt(III), 235
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Bis(phosphinimino)methanide, 60

Bisoxazolines, 94

1,2-Bis(diphenylphosphino)propane

(prophos), 147

Bis(indenyl)titanium, 88

Bis(amidate) vanadium(IV), 105

Bis(phosphinic amido)zirconium, 103

Boron enolate, gold-catalyzed, 303

Brevicomin, 281

Buckminsterfullerene, 83

Butadienes, intermolecular

hydroamination, 83

But-3-ynols, 223

3-Butyn-2-one, 161

C
Carbamates, addition, 207

Carbodiphosphorane–Au(I), 306

Carbonylation, 325

Carboxyalkenes, coordinated,

hydration, 235

Carboxylic acids, acetylenic, endo-

cyclization, 214

addition, 206, 209

anti-Markovnikov addition, 213

Catalysis, 1, 51, 231

Catechol, addition to alkynes, 223

C–C multiple bond activation, 115, 120

(S)-ChairPhos, 156

Chalcogenometalation, 21

2-Chalcogenovinyl complex, 21

Chalk–Harrod mechanism, 23

Co(III) catalyzed hydration, 235

Coniine, aminodiene hydroamination/

cyclization, 106

Constrained-geometry catalysts (CGC), 59

CpNi(IMes)Cl, 30

CpNi(NHC)Cl, 335

Cross-coupling, 2

C–S bond, Ni-catalyzed, 7

Curtin–Hammett preequilibrium, 98

Cyclic ethers, unsaturated, 203

Cyclohexene, hydrophosphorylation, 197

Cyclopentylidenes, 303

Cyclopropenes, Au(I)-catalyzed addition of

alcohol, 306

hydrophosphorylation/-phosphinylation,

191, 194

D
Dendrimers, 226

Dialkenylamines, hydroamination/

bicyclization, 78

Dialkynylamines, hydroamination/

bicyclization, 78

Dialkynylbenzenes, 265

Diamides, 60

Diamidoamine, 60

Diamidobinaphthyl alkyls, 94

Diamidobinaphthyl dilithium salt, 99

Dibutylphosphine oxide,

hydrophosphinylative

carbocyclization, 187

Dicarbonyl(2-methyl-8-quinolinolato)

rhodium, 240

1,2-Dideuterio-3-methyl-3-

phenylcyclopropene, 193

Diene–gold(I), 292

Dienes, 196

conjugated, hydroamination, 83, 132

hydroamination, 53
intramolecular, 105

Dienylcarbamates, 207

Dihydrobenzofurans, gold, 305

Dihydroisobenzofurans, 263, 267

Dihydropyrans, 308

6-endo-dig cyclization, 261

Dihydrothiophenes, 345

Dihydroxy dialkynylbenzenes, double

hydroalkoxylation, 265

Diketiminato, 60

Dimesitylphosphine oxide, 180

Dimethyl acetylenecarboxylate, asymmetric

hydrophosphination, 160

Dimethyl acetylenedicarboxylate, 41

Dimethyl 2-allylmalonate, 197

Dimethylaminopentene, hydroamination/

cyclization, 65

2,6-Dimethylphenylisocyanide, 198

Dioxepine, 303

Diphenylacetylene, 209

Diphenylphosphine, 159

3-Diphenylphosphinobut-3-en-1-ol, 153

3-(Diphenylphosphino)propanal, 157

2-Diphenylphosphinoprop-2-en-1-ol, 153

Diphenylphosphinylallenes, asymmetric

hydrothiolation, 346

Diphenyl-1-propenylphosphine, 147, 152
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Diphenylvinylphosphine, asymmetric

hydrophosphination, 152

Diphosphines, 157

Dipropargyl-p-tosylamide, 175

Dithioketals, double hydrothiolation, 344

Dithiolato Pt(II), 41

Dithiophosphoric acids, 108

Diynes, hydration, 246

hydroalkoxylation, 261

E
Elastomers, 192

Enol esters, 203, 210

iridium hydroacyloxylation, 253

Enones, hydrophosphination,

palladacycle, 162

1,n-Enynes, 231

Ethyl acetoacetate, 247

Ethylene, 23

Ethyl phenylphosphinate, 177

2-Ethynylbenzylalcohols, 221

2-Ethynylphenols, 221

F
5-Formyl-oxazoles, 262

Fosinopril sodium, 177

Frontalin, 281

Furanomycins, 308

Furanones, 301

Furans, 220, 234, 308

Z-enynols, 220

Furo[3,2-c]chromen-4-ones, 264

G
Gold–alkynyl, 298

Gold–carbene, 297

Gold catalysis, O–H bond addition, 231

Group 4 metals, 51

Group 5 metals, 51

Group 8 metals, 203

Group 9 metals, 231

Group 10 metals, 231

H
Haloallenyl ketones cyclization, 310

Halofurans, 310

1-Heptyne, hydrophosphorylation,

Ni-catalyzed, 170

hydrothiolation, 29
Ni-catalyzed, 334

Heteroatom, orientation, 8

Homopropargylamines, cyclization, 73

Homopropargylic alcohols, Rh(I) catalyzed

cycloisomerization, 239

tandem cycloisomerization–

hydroalkoxylation, 301

H-phosphinates, 167, 176
H-phosphonates, 167, 169
H-spirophosphorane, 172
Hydrations, 203, 231

anti-Markovnikov, 224

iridium, 245

Hydrido-chalcogenolato Pt(II), 40

Hydrido-(2-selenovinyl) Pt(II), 39

Hydrido-thiolato Pt(II), 40

Hydroacyloxylation, 231

palladium, 266

rhodium, 243

Hydroalkoxylation, 31, 231

alkenes, Au, 304

allenes, Au, 307

iridium, 249

organolanthanide-catalyzed, 35

palladium, 256

platinum, 273

rhodium, 238

Hydroamination, 51, 115

asymmetric, 92

bicyclization, 78

intermolecular, 80, 136
asymmetric, 107

intramolecular, 58

late transition metals, 115

organoaluminum-catalyzed, 68

Hydroaminoalkylation, 53

Hydrochalcogenation, transition metals, 21

Hydrofluoroethers, 257

Hydrofunctionalization, 1, 15

Hydrometalation, 16, 21

Hydrophosphinations, asymmetric, 145

Pt[P(CH2CH2CN)3]3-catalyzed, 40

Hydrophosphinylation, 167

Hydrophosphorylation, 167

Ni-catalyzed, 169, 170

Hydroselenation, 25, 37, 325

selenols, 347
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Hydrothiolation, 25, 325

double, 343

early transition metal, 337

nickel-catalyzed, 333

organozirconium(IV)-catalyzed, 33

Pd-catalyzed, 329

Rh-catalyzed, 336

RhCl(PPh3)3-catalyzed, 43

Rh(I)/Ir(I) complex-catalyzed, 46

Hydrotris(pyrazolyl)borates, 335

b-Hydroxyaldehydes, 216
Hydroxyalkenes, cyclization, 305

Hydroxyalkoxylation, olefins, 205

4-Hydroxy-4-phenyl-1-butyne, 25

5-Hydroxy-1-phenyl-1-pentyne, 24

I
Imidates, 5-/6-exo cyclizations, 132

Imidazol(in)ium-2-thiocarboxylate, 210

Imido mechanism, 57

Indolizidines, hydroamination/

bicyclization, 78

Insertion, alkenes/alkynes, 1, 54

(anti-)Markovnikov, 2

selectivity, 1, 14

Iridium, 244

hydroacyloxylation, 253

hydroalkoxylation, 249

hydroamination, 127

Isochromenes, 221

Isochrysotricine, 308

Isocyanides, sec-phosphine oxides, 197

Isocyclocapitelline, 308

Isoprene, hydrophosphorylation, 196

L
Lactones, 221, 267, 303, 314, 353

Lanthanides, hydroamination, 59, 126

Lanthanocenes, 55, 70, 78, 92, 105

Lanthanum, 76, 96

Late transition metals, 115

Lewis acids, transition metal catalysts, 23

LiHMDS, 82

Lithium alkyls, 82

Ln3, 60

Lutetium, 76

M
Markovnikov addition, 2, 25, 138, 187,

209, 329, 339

anti-, 2, 81, 137, 203, 212

Menthol, Takasago synthesis, 83

Menthyl, asymmetric hydroaminations, 93

Metal–heteroatom bonds, 1

Metal–hydrogen bonds, 1

2-Methylbenzodihydrofuran, 205

a-Methylene carbamates, 208

Methylenecyclopropanes, 257

hydroamination, 84, 86

3-Methyl-3-phenylcyclopropene, 192

Methyl propiolate, 41

Monocyclopentadienyl amido-imido, 87

Monophosphines, asymmetric

hydrophosphination, 155

Multiple bonds, 115, 120, 231

Myrcene, 83

N
Neodymium, 78

Neodymocene, 83

Neomenthyl, asymmetric

hydroaminations, 93

Nickel, 254

Nickel acetylacetonate, 334

Nitriles, 231, 235, 238, 248

hydration, Ir, 248

palladium hydration, 254

platinum hydration, 271

Nitrogen nucleophiles, 115

Norbornene, 206

asymmetric hydrophosphorylation, 192

hydroamination, 127

O
o-alkynylphenols, 239
Octahydrofluorenyl, 92

1-Octene, hydration, 296

Octylphosphinic acid, 195

Ni-catalyzed hydrophosphorylation, 169

Pd-catalyzed hydrothiolation, 329

1-Octyne, 27, 169, 329

Olefins, addition, 204

Organoactinides, 31, 61, 338
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Organolanthanides, 31, 59, 65, 74,

92, 117

Organolithium, 66, 79, 99

Organozirconium, hydrothiolation of

alkynes, 337

9-Oxabicyclo[3.3.1]nona-2,6-dienes, 279

Oxaphosphapalladacycle, 187

Oxazolinborate, 67

Oxidative addition, 21

Oxobutyl esters, 212

Oxopropylcarbamates, 208

Oxopropyl esters, 212

Oxygen nucleophiles, 231

P
Palladacycles, 145

Palladium, 329

(aryl)(amido), 14

hydration, 254

hydrothiolation, 329

nanobelts, 332

selenide, 26

sulfides, 332

Pd(OAc)2, 25

Pd–BrØnsted acid-catalyzed

hydrophosphinylation, 186

PdCl2(PhCN)2, 27

Pd–N, 14

Pd–PR2, 10

Pd/xantphos, 194

Pentalactones, 223

3-Pentyn-1-ol, Pt(II) catalyzed

hydration, 270

Pent-4-yn-1-ols, 220

P–H addition, 145

Phenylacetylene, 40, 45, 177, 196, 209,

214, 298

gold-catalyzed hydration, 297

hydrophosphorylation, 196

1-Phenyl-1,2-bis(diphenylphosphino)ethane

(phenphos), 147

Phenyldi[(Z)-prop-1enyl]phosphine, 153

2-Phenylethanol, 205

2-Phenylethynylphenol, hydroalkoxylation,

264

Phenylmenthyl alkylphosphinates, 194

Phenylmenthyl, asymmetric

hydroaminations, 93

Phenylmethylenecyclopropane

(PhMCP), intermolecular

hydroamination, 85

Phenyl(E)-1-phenyl-3-(pyridin-2-yl)-2-

propenone, 158

2-Phenylseleno-1-alkene, 27

2-(Phenylsulfanyl)-1,3-dienes, 350

2-Phenylsulfanyl-1-heptene, CpNi(NHC)

(SAr), 335

3-(Phenylsurfanyl)-2-octenoic acid, 330

2-Phenysulfurnyl-1-octene, 329

Phosphapalladacycle, 163

Phosphine oxides, secondary, 167

Phosphines, 145

asymmetric hydrophosphination, 153

Phospholes, 146

Phosphometalation, 171

Pinacol phosphonate, rhodium-catalyzed

addition, 191

Piperidines, 93, 302

Platinum, hydration, 268

hydroalkoxylations, 273

Poly(isoprene-co-1,3,7-octatriene), 192

Polymer synthesis,

hydrophosphinylation, 191

Post-metallocene rare earth metal

catalysts, 95

Propargylamides, 262

Propargyldiphenylphosphine oxide, 189

Propargylic alcohol, double addition, 220

diphenylphosphine oxide, 189

Protonolysis, 21

PTA (1,3,5-triaza-7-

phosphaadamantane), 212

2-Pyridylacetylene, 46

Pyridylphosphines, 158

Pyrrolidines, 71, 93

Pyrrolizidines, hydroamination/

bicyclization, 78

Q
Quinolizidines, 78

R
Rare earth metals, 51

Reductive elimination, 21

RhCl(P Ph3)3, 43

366 Index



Rhodium, 191, 198, 236

pyrazolylborates, 335

vinylidene complexes, 238

Rh-oxacarbene, 238

Ru(cod)(2-methylallyl)2, 124

Ru(methallyl)2(diphenylphosphinoethane),

207

RuCl2(PCy3)(bis(mesityl)imidazolylidene),

210

Ruthenium catalysts, 203, 211

vinylidene, 207

Ruthenium(naphthalene)(cyclopentadienyl)

hexafluorophosphate, 226

S
Salicylaldiminato, 60

Samarocene, 73

Selenaplatinacycle, 41

Selenolato Pd(II), 26

Sm2, 60

Spiroacetals, 241

Styrenes, hydroalkoxylation, palladium, 259

N-methylaniline, addition/retro-

addition, 118

pinacol phosphonate, 193

Sugar alkynols, cyclization, 263

Sulfanyl-1-alkenylboranes,

thioboration, 350

Sulfonamide alcohol, 107

T
Tantalum, 107

g-Terpinene, 33, 170, 332, 338
Tetrahydrofuranyl ethers,

gold-catalyzed, 301

Tetrolic acid ethyl ester hydration, 247

Thioboration, 350

Thiocarbonylations, 352

Thiochroman-4-ones, 354

Titanium, 69

Titanocenes, 88

TPPMS (sodium triphenylphosphine

monosulfonate), 212

Transition metals, 21, 325

early, 51, 117, 126, 337

late, 115

Triazacyclononane-amide, 60, 63

Triazole–Au(I), 304

Tridentate triamine, 60

Trimethylphosphine gold(I), 295

Triple bonds, addition of nucleophiles, 207

Tris(oxazolinyl)borate, 60, 101

Tris(diphenylphosphino)ethane, 151

Trispyrazolylborate rhodium, 180

Trivinylbenzene, 79

Triynes, Pt-catalyzed regioselective

hydration/cyclization, 271

U
Ureas, 208

V
Vinyl arenes, anti-Markovnikov

hydroamination, 81

arylamines, 118

Vinyl carbamates, 203, 207

Vinylcyclopropanes, thiocarbonylation, 354

Vinyl esters, iridium

hydroacyloxylation, 253

Vinylidene intermediates, 24

Vinylpiperidines, 74

2-Vinylpyridine, PhEtPH, 159

Vinylpyrrolidines, 74

Vinyl sulfides, 325

W
Water, addition, 223

Wilkinson catalyst, 43

X
Xenovenine, hydroamination,

aminobisalkene, 63

Y
Ynamide, NiBr2-catalyzed

hydrophosphorylation, 174

Yttrium, 76

Z
Zirconium, 69, 85, 103

amidate, 69

cyclopentadienyl-bis(oxazolidinyl)

borate, 70

Zirconocenes, 70
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