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Transliteration scheme

The transliteration scheme followed in this book to represent Devanāgarī
script is given below.
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Foreword

In 1790, a little more than a century after the publication of Isaac New-
ton’s Principia, the Scottish mathematician John Playfair wrote a fascinating
paper on The astronomy of the Brahmins in the Transactions of the Royal
Society of Edinburgh. He was astonished at the consistently high accuracy of
Indian predictions of planetary and sun / moon positions and solar / lunar
eclipses, and at how competitive these predictions were with what had just
been achieved in Europe. And he wondered how Indians could achieve such
high precision with the very simple but elegant rules and tables that they
had invented for making their calculations – ‘with wonderful certainty and
expedition’ (but apparently without the aid of any ‘principles’), he wrote.
Now classical Indian astronomical literature has various siddhāntas which for-
mulate algorithms based on observations of planetary motions. Although the
implied models were effectively geocentric, Āryabhata had already proposed
that the earth rotates around its axis and Nīlakaṇṭha considered that the
inner planets moved around the sun but their little inner solar system still
revolved around the earth. While such views of planetary motion continued
to be discussed, the panchāngakāras (calendar-makers) sought the simplest
possible ‘rules’ that would give results very close to those of the siddhāntic
calculations / algorithms. The books that describe these rules were known
as karaṇas. However, how the rules in the karaṇa texts were discovered or
derived – especially as no ‘principles’ were stated – was a matter of mystery
to scholars like Playfair and his French counterparts.

The present book, called Karaṇa-paddhati (KP), is not chiefly about the
algorithms themselves; rather it is about the procedure by which the simple but
extraordinarily accurate rules that the panchāngakāra could use were derived
and constructed. If the karaṇas and the formulae and tables they gave could be
called ‘Astronomical Calculations Made Easy’, Karaṇa-paddhati considers how
simple but accurate rules for astronomical algorithms and calculations could
be derived. The authors of this book have produced a scholarly work on the
Karaṇa-paddhati of Putumana Somayāji. His date is not precisely known, and
proposals have varied from the 15th century to the 18th. The authors make a
convincing case that Putamana worked in the 16th century, and suggest that
he was a junior contemporary of Nīlakaṇṭha. KP itself never mentions the

xxv



xxvi Foreword

name of its author: both the author’s identity and his date have to be inferred
from what Putumana says elsewhere and what others have said about his
book.

As is generally the case in Sanskrit astronomy KP also describes algorithms
in poetry, using the katapayādi system for referring to numbers. Here the
numbers are so coded that they can be written in words which can in turn
be strung into lines of poetry forming complete sentences. This Vākya system
(as it is called) produced not only ingenious mathematics, but also presented
longitudes and various other parameters coded in the form of meaningful
sentences, and sometimes even in the form of poetry – generally in praise or
support of wisdom and morality. This seems to have been a popular method of
exposition particularly in South India. KP thus provides a derivation of each
approximation it proposes, many of them ingenious and original, using various
different metres (including some rare ones) for composing the ślokās. One of
the remarkable results that KP has is a new series for π where successive
terms an → 0 like n−4 as n → ∞. Interestingly KP realizes that there might
still be errors in the work, or that errors might develop over time (as indeed
they did in the siddhāntic algorithms themselves). KP therefore emphasizes
the need for correcting them with the aid of continual observation. Clearly
therefore KP is about deriving and constantly improving rules from siddhāntic
algorithms and from observations.

The publication of this work is an important event, because it answers the
questions that have puzzled many scholars about the mathematics and the
algorithms that lay behind those surprisingly accurate Indian calculations.
All this was achieved without the use of anything like Newton’s laws but with
careful observations over centuries, discerning cycles and other patterns in
the data, and discovery of algorithms which could describe those observations
and therefore also enable predictions. It is clear that this book now before the
reading public is a great work of scholarship, and has been a labour of love for
the authors – who incidentally provide every ślokā in Devanagari, an English
transliteration and an English translation, all followed by very interesting
commentary. The greatest contribution of this book would, in my view, be
the light it sheds on the unique way that ancient Indic astronomers thought
and acted. They followed Bhartṛhari’s dictum that there are constraints only

and achieved successes that, till the early 19th century, excited the puzzled –
even bewildered – wonder of astronomers like Playfair elsewhere in the world.

All those interested in the history of Indic astronomy must be grateful
to the authors of this work for the big step they have taken in revealing
Karaṇa-paddhati’s secrets. My warm congratulations to Dr V Pai, Prof K Ra-
masubramanian, Prof M S Sriram and Prof M D Srinivas.

Roddam Narasimha

on the end results (upeya), but none on the means (upāya) of arriving there;
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Introduction

Traditionally, the texts of Indian astronomy have been classed under the heads
of siddhānta and karaṇa.1 Of these, the siddhānta texts start with an ancient
date for the epoch and present in detail the theoretical framework apart from
giving the computational procedures for calculating the planetary positions,
occurrence of eclipses, etc. The Sūryasiddhānta, the Brāhmapshuṭasiddhānta
of Brahmagupta and the Siddhāntaśiromaṇi of Bhāskarācārya II are well-
known examples of siddhānta texts. The karaṇa texts are essentially manuals
in that they choose an epoch close to the date of composition of the text, and
display their ingenuity in coming up with simplified algorithms for computing
the planetary positions etc., to a desired level of accuracy. Many a times,
they even dispense with the use of jyās (Rsines) and other functions, and
instead limit themselves to the use of tables or approximate formulae. The
Khaṇḍakhādyaka of Brahmagupta, Laghumānasa of Muñjāla, Karaṇakutūhala
of Bhāskarācārya II and Dṛggaṇita of Parameśvara are well known examples
of karaṇa texts.

Karaṇapaddhati: A unique text in the vākya tradition of
Indian astronomy

The Karaṇapaddhati of Putumana Somayājī is a special text in that it does not
come under the categories mentioned above. More crucially, it is not a karaṇa
text. As the author declares right at the beginning of the text (Chapter 1,
1 Subbarayappa and Sarma 1985, pp. 2-3. The general convention seems to be that a
siddhānta text should choose the beginning of the current kalpa or an earlier date for its
epoch. If the text employs the beginning of current caturyuga or the current kaliyuga as its
epoch, then it is sometimes referred to as a tantra. Also, usually such tantra texts do not
offer any explanations for the computational procedures, but present the algorithms for
doing the computations in detail. The Śiṣyadhīvṛddhida of Lalla and the Tantrasaṅgraha
of Nīlakaṇṭha Somayājī are well known texts of the tantra category.
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verse 2), he is expounding on the paddhati or procedure for preparing an
accurate karaṇa text for any given epoch. As explained by K. V. Sarma:2

The Karaṇapaddhati . . . is not a manual prescribing computations; rather it enun-
ciates the rationale behind such manuals. Towards the beginning of the work, the
author states that he composed the book to teach how the several multipliers,
divisors, and Rsines pertaining to the different computations and the like are to
be derived. Thus, the work is addressed not to the almanac maker but to the man-
ual maker. All the topics necessary to make the daily almanac are not treated in
Karaṇapaddhati, whereas several other items not pertaining to manuals are dealt
with.

Another important feature of Karaṇapaddhati is that it deals with the com-
putational procedures which are employed in a karaṇa text following the so
called vākya system. The term vākya literally means a sentence consisting of
one or more words. In the context of astronomy, it refers to a phrase or a
string of letters in which the numerical values associated with various phys-
ical quantities are encoded. The vākyas are composed using the kaṭapayādi
scheme,3 which is one of the commonly employed systems to represent num-
bers in South-Indian texts.The strings used in composing vākyas are chosen so
that they not only represent numerical values, but form beautiful meaningful
sentences that convey worldly wisdom and moral values.

The vākya method of finding the true longitudes of the planets is quite
different from the methods outlined in the various siddhāntas. As per the
siddhāntas, we first find the mean longitudes of the planets and then apply
a series of corrections (saṃskāras) to get their true positions.4 On the other
hand, the vākya method, by making use of certain vākyas—meaningful sen-
tences composed in Sanskrit, which when decoded using kaṭapayādi system
yield certain numbers—directly gives the true longitudes of the planets at
certain intervals. The direct calculation of true longitudes involves making
use of auxiliary epochs (khaṇḍas, śodhyadinas), chosen to be close to the de-
sired date, and specified longitude values (dhruvas) which represent either
the true longitude at the chosen epoch or the amounts of change in the true
longitude over chosen periods (maṇḍalas). These khaṇḍas, śodhyadinas and
maṇḍalas are chosen appropriately depending on the mean rates of motion
of the planet, its mandocca, śīghrocca etc. Since the vākya method provides a
simple and elegant method for computing the true longitudes without resort-
ing to the normal procedure of calculating various corrections involving sine
functions etc., it became very popular in South India where it seems to have
originated.5

2 Sarma 2008, p. 1837.
3 For a brief explanation on the kaṭapayādi system, see Section 1.2.
4 The mandasaṃskāra is to be applied in the case of the Sun and the Moon, whereas the
mandasaṃskāra and the śīghrasaṃskāra are to be applied in the case of the other five
planets. These are explained in Appendix B.
5 A detailed introduction to the vākya system is presented in Appendices D, E. For
further details on the vākya system see {CV 1948}, {VK 1962}, {SC 1973}, Hari 2001,
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Ancient Indian astronomers were aware of the various kinds of periodicities
in the motions of celestial bodies. One such periodicity is the 248-day cycle
during which the Moon’s anomaly completes nearly 9 revolutions.6 Precisely
this cycle was used in India, from early times, to find the true longitudes of the
Moon at the sunrise for each day of the cycle and express them in the form of
vākyas. These are the 248 Vararuci-vākyas which are attributed to Vararuci,
who is also credited with the invention of the kaṭapayādi scheme of notation.
He probably hailed from Kerala sometime prior to the 4th century CE.

The canonical text of the Parahita system, the Grahacāranibandhana of
Haridatta, the famous seventh century astronomer from Kerala, introduces
vākyas for the manda and śīghra corrections. A fully developed vākya sys-
tem is outlined in the famous karaṇa text of 13th century, the Vākyakaraṇa,
which gives methods for directly computing the true longitudes of the Sun, the
Moon and the planets by using vākyas. Manuscripts of the work are available
in various manuscript libraries of South India, especially Tamilnadu. Kup-
panna Sastri and K. V. Sarma estimate that it was composed between 1282
and 1316 CE. The author of this work is not known, but probably hailed
from the Tamil speaking region of South India. It has a commentary called
Laghuprakāśikā by Sundararāja who hailed from Kāñcī near Chennai. The
work is based on Mahābhāskarīya and Laghubhāskarīya of Bhāskara I belong-
ing to the Āryabhaṭa School, and the Parahita system of Haridatta.

Mādhava of Saṅgamagrāma (c. 1360-1420), the legendary founder of the
Kerala School of Astronomy, composed two works, Veṇvāroha and Sphuṭacan-
drāpti, which discuss the vākya method for computing the true longitude of the
Moon, which shows the maximum variation in the course of a day. Mādhava
composed a more accurate set of 248 vākyas, which give the true longitudes
correct to a second, and also presented an ingenious method by which the
these vākyas can be used to determine the true longitudes of the Moon at
nine instants during the course of a day, thereby reducing the error in calcu-
lating the true longitude at any instant using interpolation. Mādhava was also
the originator of the agaṇita system of computation of planetary positions.
The Agaṇitagrahacāra of Mādhava is yet to be edited, though manuscripts of
this work are available.

The Vākyakaraṇa and the above works of Mādhava only present the lists of
vākyas and the computational procedures for obtaining the longitudes of the
planets using these vākyas. It is the Karaṇapaddhati of Putumana Somayājī
which explains the rationale behind them. In particular, it explains in detail
the procedures for arriving at suitable khaṇḍas and śodhyadinas close to any
epoch, as also the appropriate maṇḍalas, dhruvas etc., which have been used
in texts such as the Vākyakaraṇa and the Agaṇitagrahacāra. It is only in
Karaṇapaddhati that we find a detailed discussion of the procedure for arriving

2003, Madhavan 2012, Pai 2011, 2013, Pai et al 2009, 2015, 2016, Sastri 1989, Sriram
2014, Sriram and Pai 2012.
6 This cycle has also been noticed by the Babylonians and the Greeks (Jones 1983).
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at an accurate set of vākyas for the Sun, Moon and the planets, for any suitable
epoch.

Karaṇapaddhati extensively employs the method of vallyupasaṃhāra, which
is essentially the technique of continued fraction expansion of a ratio of two
large numbers. The second chapter of the text is devoted to a detailed discus-
sion of the vallyupasaṃhāra method, which summarises many of the important
properties of the convergents of a continued fraction. This includes the well-
known relation between successive convergents and an interesting relation
(which we refer to as the remainder theorem) involving the convergents and
the remainders obtained in the mutual division of two numbers. The conver-
gents are of course used to arrive at optimal approximations to the rates of
motions of planets and their anomalies. The remainder theorem and other
properties of the convergents are used to arrive at ingenious algorithms for
obtaining khaṇḍas, śodhyadinas, etc.

In short, the purpose served by Karaṇapaddhati7 may be stated as:

करणकरणे पڠखतः |
karaṇakaraṇe paddhatiḥ
[Outlining] the procedure for composing karaṇa [texts].

Putumana Somayājī: The author

The author does not give any information about himself in Karaṇapaddhati
except for the following brief mention at the end of the text (verse 10.12).

इखत छशवपुरनामΗामजः कोऽकप यնा…
iti śivapuranāmagrāmajaḥ ko’pi yajvā …

Thus someone hailing from the village by name Śivapura, and who has performed
sacrifices (yajvā)…

Unfortunately he stops with this and does not provide his name, or lineage,
etc. However Putumana (new-house), the name of his house (illam-peru in
Malayalam) appears in the introduction of one of the commentaries of Karaṇa-
paddhati:8

"नूतनगृह" सोमसुता रचचतायाः करणपڠतेकवϺϞषा |
भाषЇ कवघलखखत कछͪ࠻ बालानЇ बोधनाथϺम߽ङधयाͳ ||
“nūtanagṛha” somasutā racitāyāḥ karaṇapaddhaterviduṣā |
bhāṣāṃ vilikhati kaścit bālānāṃ bodhanārthamalpadhiyām ||

7 The word Karaṇapaddhati can be derived as: karaṇe paddhatiḥ karaṇapaddhatiḥ; sap-
tamyāḥ viṣayatvamarthaḥ; viṣayatvaṃ ca karaṇaparam.
8 {KP 1956}, p. xxv.
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For the benefit of those who are novices to the field, and those who are dull-witted,
here is an attempt by someone to explain in the local language (Malayalam) the
[content of] Karaṇapaddhati, written by the [great] scholar Somayājī belonging to
nūtanagṛha (Putumana).

In yet another work, Jātakādeśamārga, a highly popular work on astrology,
Putumana Somayājī does refer to his house-name as also the title Somayājī.9

नवालयवनाҿेन धीमता सोमयाछजना |
कृतं Φकरणं तेͬࣁ दवै̶जनतुࡕये ||
navālayavanākhyena dhīmatā somayājinā |
kṛtaṃ prakaraṇaṃ hyetad daivajñajanatuṣṭaye ||

This short treatise (prakaraṇa) has been composed by the stalwart known as Pu-
tumana (navālayavana) Somayājī in order to please the community of astrologers.

As regards Śivapura, we may cite the following points made by S.K.Nayar:10

The term Śivapura is generally taken to refer to modern Trichur (Tṛ-ś-Śivapura).
But unfortunately Nampūtiri brahmins of the latter village are not privileged to
perform sacrifices on account of a curse or royal degradation and hence a native
of this village cannot become ‘Somayājis’(sic). There is, however, a neighbouring
village Covvaram (Śukapuram) which is also Sanskritised as Śivapuram and it may
be taken that our author belonged to this Śivapura where even today there is a
house named Putumana whose members are traditional astronomers.

Thus, all that we know about Putumana Somayājī is that he is reputed to
have performed Somayāga and that his house bore the title Putumana. This
is perhaps a unique case of a famous Indian astronomer, whose actual name
is not found mentioned anywhere either in his works or in the commentaries.

Works of Putumana Somayājī

Putumana Somayājī seems to have authored several works, not only on as-
tronomy, but also on astrology and dharmaśāstra. Unfortunately, apart from
Karaṇapaddhati, none of his other works have been published, except for the
very popular work on astrology, Jātakādeśamārga.11 Works of Putumana So-
mayājī are identified by the notings on their manuscripts by the scribes and
often also by the presence of the following “signature verse” which is the
starting invocatory verse in Karaṇapaddhati (verse 1.1):
9 {KP 1956}, p. xxii and Pingree 1981, p. 208.
10 {KP 1956}, p. xxv. Based on this information, an attempt was made a few years ago
by the authors of the present volume to identify this house of Putumana Somayājī in
Covvaram. Unfortunately the efforts did not turn to be successful. Given the fact that
Nayar was writing sixty years ago, and the fact that not much importance has been/is
being given to maintain such heritage sites, it is not clear whether future efforts may
yield any success in locating the illam “Putumana” of the author.
11 {JAM, 1930}, {JAM, 1942}, {JAM 1962}, {JAM, 1971}.
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मदीयϓदयाकाशे चचदानۤमयो गुϑः |
उदतेु सततं स߅ग̶ानखतखमराϑणः ||
madīyahṛdayākāśe cidānandamayo guruḥ |
udetu satataṃ samyagajñānatimirāruṇaḥ ||

May the guru, an embodiment of intelligence and bliss keep ever rising in the space
of my heart, like the Sun dispelling the darkness of ignorance.

The following passage cited from an article of K. V. Sarma gives a succinct
summary of the works of Putumana Somayājī other than Karaṇapaddhati:12

Somayājī was a profile writer, mainly on astronomy and astrology, his only work
in a different discipline being Bahvṛcaprāyaścitta, a treatise which prescribes expi-
ations (prāyaścitta), for lapses in the performance of rites and rituals by Bahvṛca
(Ṛgvedic) Brahmins of Kerala. In addition to his major work, Somayājī is the
author of several other works. In Pañca-bodha (Treatise on the Five), he briefly
sets out computations at the times of Vyatipāta (an unsavory occasion), Gra-
haṇa (eclipse), Chāyā (Measurements based on the gnomonic shadow), Śṛṅgonnati
(Elongation of the moon’s horns), and Mauḍhya (Retrograde motion of the plan-
ets), all of which are required for religious observances. His Nyāyaratna (Gems of
Rationale), available in two slightly different versions, depicts the rationale of eight
astronomical entities: true planet, declination, gnomonic shadow, reverse shadow,
eclipse, elongation of the moon’s horns, retrograde motion of the planets, and Vy-
atipāta. Three short tracts on the computation of eclipses, including a Grahaṇāṣṭaka
(Octad on Eclipses), are ascribed to Somayājī. He also composed a work called
Veṇvārohāṣṭaka (Octad of the Ascent on the Bamboo), which prescribes methods
for the computation of the accurate longitudes of the moon at very short intervals.
A commentary in the Malayalam language on the Laghumānasa of Muñjāla is also
ascribed to him. On horoscopy, Somayājī wrote a Jātakādeśamārga (methods of
making predictions on the basis of birth charts), which is very popular in Kerala.

The time of composition of Karaṇapaddhati

Karaṇapaddhati is among the four works that were mentioned in the famous
1834 article of Charles M. Whish on the Kerala School of astronomy.13 In this
article, having given an account of some of the infinite series given in Chapter 6
of Karaṇapaddhati, Whish mentions that the grandson of the author “is now
alive in his seventieth year.” Whish also makes reference to the last verse of
Karaṇapaddhati as containing a chronogram giving the kali-ahargaṇa of the
date of composition of the text. The second half of this verse (verse 10.12)
reads

ࠬङधतगछणतमेतͪ स߅गालोѿसۢः
कघथतखमह कवदۢः सۢु सۢोषवۢः |

12 Sarma 2008, pp. 1836-7.
13 Tantrasaṅgraha, Yuktibhāṣā and Sadratnamālā are the other three works mentioned
in this article (Whish 1834).
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vyadhitagaṇitametat samyagālokya santaḥ
kathitamiha vidantaḥ santu santoṣavantaḥ |

By assiduously going through this mathematical work and understanding whatever
has been set out here, may the noble ones become happy.

According to Whish:14

The last verse [of Karaṇapaddhati] …contains its date in numerical letters in terms
of the days of the caliyuga …The words Ganita Metutsamyac, written in numbers
amounts to 1765653 in terms of the days of the present age; which is found to agree
with AD 1733.

Though the above chronogram is somewhat unusual, in that it is embedded
in the middle of a pāda of the verse, it has been accepted by many scholars,
including K. V. Sarma,15 as giving the date of composition of Karaṇapaddhati.
According to Sarma, Putumana Somayājī could have been born around 1660
and might have been active till 1740. In any case, the two published Malay-
alam commentaries on Karaṇapaddhati employ dates around 1749-52 for the
khaṇḍadinas, and thus set an upper limit to the date of Karaṇapaddhati.16

S. K. Nayar has cited the following verse of Puruṣottama in a commentary
of an astrological work called Praśnāyana to argue that Putumana Somayājī
should have lived around 1700 CE:17

मیारئङڥजा࢒ाͬ कवगघलत इह यः ΦࡁमागЎ मरादौ
कोले߂ छाΡछश࡞ोऽ࢒ च कवरचचतवाͮ जातकादशेरِͳ ।
तऩՋ࢒࡞ानुमٖाࢉघलपुरकनलय࢒ायनΦࡁतोऽसौ
छसΦादशेाकदवासी ࠬरचयमहमٌुݞ मः पूϑषाणाͳ ॥
madhyāraṇyadvijāsyād vigalita iha yaḥ praśnamārgo marādau
kolambe chātraśiṣyo’sya ca viracitavān jātakādeśaratnam |
tacchiṣyasyānumatyā sthalipuranilayasyāyanapraśnato’sau
siprādeśādivāsī vyaracayamahamapyuttamaḥ pūruṣāṇām ||

The text praśnamārga emanated from the mouth madhyāraṇyadvija (Iṭakkāḍ Nam-
pūtiri) in the Kollam year 825 (Marādau Kolambe) (A.D. 1650). His student disciple
wrote the gem of a work Jātakādeśa. With the permission of his student I, Puruṣot-
tama (uttamaḥ pūruṣāṇām) belonging to the place called Siprādeśa, have authored
a commentary on the work called Praśnāyana.

The argument presented by Nayar, based on the above verse, in arriving at
the conclusion that Putumana Somayājī should have lived around 1700 CE
runs as follows:
14 Whish 1834, p. 522.
15 Sarma 2008. Sarma however notes that the kali-aharagaṇa 1765653 corresponds to
1732 CE, whereas it actually corresponds to April 4, 1733 CE.
16 {KP 1956}, p. xxx.
17 {KP 1956}, p.xxix-xxx.
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This verse states that in the Kollam year 825 (Marādau Kolambe) (A.D. 1650)
madhyāraṇyadvija (Iṭakkāḍ Nampūtiri) wrote his Praśnamārga and a pupil of his
pupil wrote the Jātakādeśa. At the instance of a pupil of this author Puruṣottama
wrote his commentary. It may be noted that like Karaṇapaddhati, Jātakādeśa also
extracts verses from other works. The Praśnamārga is one such source book. This
too points to the fact that Jātakādeśa is later and corroborates Puruṣottama’s
statments quoted above. Since our author is the pupil’s pupil of the author of
Praśnamārga which was composed in 1605 A.D., he must be forty or fifty years
younger to him and might have lived about 1700 A.D.

The above argument is also not really convincing as Puruṣottama is referring
to a work called Jātakādeśaratna (not Jātakādeśamārga) and does not make
any direct reference to Putumana Somayājī.

In the first volume of his famous Keralīya Saṃskṛta Sāhitya Caritram
(1937), Vatakkumkur Rajaraja Varma cited the following verse communi-
cated to him by a friend and was supposedly a part of a work Gaṇitasūcikā
of Govinda Bhaṭṭa, which mentioned that Putumana Somayājī composed his
Karaṇapaddhati in the Śaka year 1353 (1431 CE):18

नवीनकवकपने महࣵमखभुजЇ मछणः सोमया-
մदुारगणकोऽΡ यः समभवՊ तेनामुना |
ࠬलेझख सुϐगुٌमा करणपڠखतः संृࡹता
`खΡप֎छशझखभू'खमत-Φघथत-शाकसंवٛरे ||

navīnavipine mahīmakhabhujāṃ maṇiḥ somayā-
jyudāragaṇako’tra yaḥ samabhavac ca tenāmunā |
vyalekhi sudṛguttamā karaṇapaddhatiḥ saṁskṛtā
‘tripañcaśikhibhū’mita-prathita-śākasaṁvatsare ||

This well refined [text] Karaṇapaddhati that is held high among the works belonging
to dṛk system, was composed in the śaka year 1353 (tripañcaśikhibhū) by that
Somayājī, who was a gem amongst the brahmins (mahīmakhabhuks)19, who is
an exalted mathematician and was born in a house (illam) known as putumana
(navīnavipina)20

This verse, which still remains a hearsay, cannot be given any credence
since Karaṇapaddhati cites both the Agaṇitagrahacāra of Mādhava (composed
around 1417-18) and also the Dṛggaṇita of Parameśvara which was composed
in 1431 CE.

To us the most compelling evidence for the date of Putumana Somayājī
seems to be provided by the following initial verse of his Veṇvārohāṣṭaka,
which is as yet unpublished:21

18 Cited from {KP 1956}, p.xxvii.
19 The word makha is a synonym of yāga. Hence, makhabhuk = deva/sura, and therefore
mahīmakhabhuk = bhūsura, a term often employed to refer to a brahmin.
20 According to many scholars, it seems to be a common practice in Kerala to translate
the Malayalam word mana into vana or its synonyms such as vipina (which refer to forest)
in Sanskrit.
21 Cited from Manuscript No 430, deposited at the K. V. Sarma Research Foundation,
Chennai.
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ϒ̵ोऽयं Εुडڠता࢒ोकनतकघलकदवसाͪ ΦࢉगोराմभѶाͪ
कालानӾैकदϺवीܓरैकप कघलकदवसं तΡ छशࡕोनमाϡः …
rūkṣo’yaṃ kruddhitāsyonitakalidivasāt prasthagorājyabhaktāt
kālānaṅgairdivīndrairapi kalidivasaṃ tatra śiṣṭonamāhuḥ…

When 1692162 (rūkṣo’yaṃ kruddhitāsya) is subtracted from the kali-ahargaṇa and
[the remainders are successively] divided by 12372 (prasthagorājya), 3031 (kālā-
naṅga) and 248 (divīndra), the remaining number of kali days are stated to be …

The above verse prescribes a procedure for computing the longitude of
the Moon, similar to that employed in Vākyakaraṇa,22 where the khaṇḍadina
number 1692162 is subtracted from the given kali-ahargaṇa and the remain-
ders are successively divided by the following number of days corresponding
to complete anomalistic cycles: 12372, 3031 and 248. The number 1692162,
regarded as a kali-ahargaṇa, corresponds to January 8, 1532. It can then be
argued that the date of composition of the work should be between the kali-
ahargaṇas 1692162 and 1692162 + 12372, for otherwise the latter day would
have been a better choice for the khaṇḍadina. Hence, it follows that the work
should have been composed sometime during the period 1532–1566.23

From a study of Karaṇapaddhati, it is clear that Putumana Somayājī is fully
conversant with all the works of Mādhava and the Dṛk system of Parameśvara.
As regards the Tantrasaṅgraha of Nīlakaṇṭha Somayājī, it seems that Putu-
mana Somayājī is well aware of it, especially since there are some verses in
common.24 Further, according to one of the commentaries of Karaṇapaddhati,
by using the word nijamadhyama for the interior planets in verse 7.25, Putu-
mana Somayājī is implying that the equation of centre for those planets is to
be applied to their so called śīghrocca—a procedure, which was first introduced
by Nīlakaṇṭha in Tantrasaṅgraha, and is an important feature of his revised
planetary model.25 However, there are many aspects of Nīlakaṇṭha’s revised
model that are not taken note of in the Karaṇapaddhati. Similarly, for many
of the problems in spherical astronomy, Karaṇapaddhati adopts ideas and
techniques, which are very elegant, but totally different from those employed
in Tantrasaṅgraha.26 It is therefore reasonable to conclude that Putumana
Somayājī was a junior contemporary of Nīlakaṇṭha, living in the sixteenth
century. This is in accordance with the above evidence from the Veṇvāro-
hāṣṭaka.27

22 This procedure is discussed in Section D.5 of Appendix D.
23 Precisely the same argument was used by Kuppanna Sastri and K. V. Sarma to
conclude that Vākyakaraṇa was composed sometime during the period 1282–1316 CE
({VK, 1963}, p. ix).
24 For instance verses 6.19, 9.9 and 9.10 of Karaṇapaddhati are the same as the verses
2.16, 6.4 and 6.5, respectively of Tantrasaṅgraha {TS, 2011}.
25 For details, see the discussion in Section 7.19.
26 See for instance the discussion in sections 8.2 and 8.13.
27 We may also note that if it were to be assumed that Putumana Somayājī was living in
the late 17th or early eighteenth century, then the first subtractive or khaṇḍadina chosen
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Manuscripts and editions of Karaṇapaddhati

Pingree in his Census of the Exact Sciences in Sanskrit lists about thirty
manuscripts of Karaṇapaddhati, most of which are in the Malayalam script,
but some are in Grantham and Telugu scripts.28 Most of the manuscripts are
in the Manuscripts Library of the Trivandrum University, but some are in
the libraries of Chennai and Baroda. There is also a paper manuscript of the
work in the Whish collection of the Royal Asiatic Society, London, which is
not listed in the Pingree list.

The first edition of Karaṇapaddhati was issued as Vol. 126 of the Trivan-
drum Sanskrit Series way back in the year 1937. This edition brought out by K.
Sāmbaśiva Śāstrī, merely contains the original text in Devanāgarī script along
with a very brief introduction of one and half pages. However, the meticulous
effort that must have been put by Śāstrī in bringing out this largely error-free
edition is indeed remarkable. In his acknowledgement, Śāstrī has mentioned
that he had made use of five manuscripts (most of which were from private
collections) in preparing this edition. Regarding the manuscripts that were
available to him, he also states that:29

A commentary on this work in Malayalam was obtained, but it was so worn out
and unreadable that we had to give up the idea of getting it printed. We are sparing
no pains in unearthing a complete manuscript of the same.

Fortunately, more manuscripts were identified at a later date. In the year
1953, P. K. Koru brought out an edition of the text with his own scholarly
annotations and detailed mathematical notes in Malayalam. The title given
by Koru for his commentary is Yuktiprakāśikā (that which throws light on
the rationale). While acknowledging the source material that was available to
him, Koru observes:30

In September 1927, in Kannur, a gentleman from the place Cembiloṭṭaṃśaṃkoy-
oṭṭu (place near Kāṭāccira), named C. Kuññambu Paṇikkar gave me a (hand writ-
ten) copy of Karaṇapaddhati, which also contained an old Malayalam commentary
whose authorship is not known. The examples and the explanations contained in
that book were found extremely useful to understand the import of the verses.

Besides presenting the original verses along with their import (which Koru
rightly calls as sāram, as it cannot be considered as translation) he has also
worked out several numerical examples. These examples contribute a great

in Veṇvārohāṣṭaka should have been at least 1741650 (amitayavotsuka). This kalidina,
which corresponds to July 16, 1667, happens to be a well known khaṇḍadina employed by
the later Kerala astronomers, as has been mentioned by Kunhan Raja in his introduction
to Haricarita ({HC, 1948}, p. xxxi).
28 Pingree 1981, p. 207.
29 {KP, 1937} p. 1.
30 {KP, 1953}, p. ii (translated from the original passage in Malayalam).
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deal to our understanding of the mathematical principles enunciated in the
text and thereby add considerable value to this edition.

In 1956, Dr. S. K. Nayar of Madras University published an invaluable
critical edition of Karaṇapaddhati along with two Malayalam commentaries.31

Both these commentaries are dated to the middle of eighteenth century, and
as Nayar notes:32

Both the commentaries are elaborate and besides the meanings of the verses in
detail they give numerous examples worked out in the traditional method which
is of great value to a modern student of Indian astronomy. The commentaries are
important also from another point of view. In the course of the explanation they
quote several tables of jyās and other astronomical constants in vākyas couched in
the kaṭapayādi notation, which are also useful to a student of Kerala astronomy.

Nayar mentions that he based his edition of the commentaries on the basis
of six manuscripts each. The text itself was edited on the basis of fourteen
manuscripts and the published version edited by Sāmbaśiva Śāstrī. Nayar has
also written a scholarly introduction to the work, at the end of which he has
acknowledged the enormous help and encouragement that he received from
K. V. Sarma in bringing out this edition, which is worth reproducing here:33

It now remains for me only to express my indebtedness to friends who enabled me
to bring out this publication. The editing of this work was originally assigned to
Dr. C. Acyuta Menon, Reader in Malayalam in this University, but his untimely
demise prevented him from taking up the work. When I was asked to do it, I felt
it a burden on account of my little knowledge of the subject. Luckily for me, my
friend Sri K .V. Sarma of the Sanskrit Department of our University came to my
rescue and I had the confidence that with this help and advice a good edition of
the work could be put through. The original idea was only to print the text and
commentary I as available in the Madras manuscript No. M.D.218. I owe to Sri
Sarma the expansion of the scheme to bring out a critical edition of the text, to
include in the critical apperatus (sic) Grantha and Telugu manuscripts, to include
the second and better commentary and to edit the commentaries also on the basis
of several manuscripts; and I am thankful to him for carrying out the scheme
successfully. I am also thankful to him for the manifold new information given in
this Introduction and for the several points dealt with therein, and also for adding
the tables, appendix etc., which have enriched the value of this publication.

In the present edition, we have relied on the editions of Sāmbaśiva Śāstrī
and Nayar for the text of Karaṇapaddhati, though at a few places we have
indicated and corrected some errors that seem to have crept in.34 We have
made full use of the two Malayalam commentaries, and the Malayalam notes
of P. K. Koru and the examples given therein, for understanding the exact
import of the verses of the text. We have also cited most of the vākyas that
have been presented in the commentaries.
31 Nayar also refers to two Tamil commentaries of the text, whose manuscripts were said
to be incomplete.
32 {KP, 1956}, p. xiv.
33 {KP, 1956}, p. xxxii.
34 See for instance verses 7.4, 9.12 and 9.13.
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The present edition gives the original verses of Karaṇapaddhati both in
Devanāgarī and in transliterated form, along with English translation and de-
tailed mathematical notes. Each of the ten chapters have been further divided
into several sections with an appropriate title given to those sections both in
Sanskrit and English. In our notes, we have tried to explain the various algo-
rithms and procedures given in the text by means of equations, diagrams and
tables. We have also explained the rationale behind most of the ingenious algo-
rithms presented in the text, and also worked out several illustrative examples.
For the benefit of the reader, we have also included a few Appendices, which
serve to provide an introduction to important topics such as: the relation be-
tween the vallyupasaṃhāra technique and continued fraction expansion, the
epicyclic and eccentric models of planetary motion, and the vākya system of
computing the longitudes of the Sun, Moon and the planets.35

An outline of the contents of Karaṇapaddhati

Karaṇapaddhati is a comparatively short text with 214 verses, which are di-
vided into ten chapters. It is largely based on the Parahita system initiated by
Haridatta in seventh century, which adopts all the revolution numbers given
in the Āryabhaṭīya after applying a correction known as the śakābda-saṃskāra
which is an accumulating correction taking effect from 522 CE.

The first chapter of Karaṇapaddhati is similar to the chapter on Mad-
hyamādhikāra in most of the astronomical works, and deals with the computa-
tion of mean longitudes. Here, soon after the invocation, the author presents
the number of revolutions of the planets in a mahāyuga. This is followed
by a discussion on the procedure for obtaining the solar, lunar and sidereal
months, days, etc. Then he outlines the method for finding the kali-ahargaṇa
(the number of civil days elapsed since the beginning of Kaliyuga), and the
mean positions of the planets. Following this, there is an elaborate discussion
on the application the śakābda-correction to the mean planets and also to
the rates of motion. The author also presents interesting algorithms which
make the calculation of the mean planets easier by making use of suitable
intermediate epochs (khaṇḍas).

Chapter 2 of the text is devoted to a discussion of the method vallyu-
pasaṃhāra which is essentially the same as the technique of continued fraction
expansion of a ratio of two integers.36 This method, also known as the kuṭṭaka
35 Appendices A,B and D. While deriving the Candravākyas of Mādhava, by direct com-
putation of the true longitude using the basic parameters of the parahita system, we found
that there were a few errors in the edited versions of these vākyas ({VR, 1956}, {SC,
1973}). The details of our computation and the corrected version of the Candravākyas of
Mādhava are presented in Appendix E.
36 An introduction to the continued fraction expansion of a rational number is presented
in Appendix A.
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method, has been widely used in Indian astronomical literature, since the time
of Āryabhaṭa, for solving linear indeterminate equations. Karaṇapaddhati ex-
plains how this method can be used to obtain optimal approximations to the
ratio, say H/G, of two large numbers. It gives recursive algorithms for obtain-
ing the convergents Hi/Gi in the continued fraction expansion of the above
ratio. This method is used repeatedly in the text to give optimal approxima-
tions for the rates of motion of planets and their anomalies. Karaṇapaddhati
also reveals a very sophisticated understanding of important properties of the
convergents, such as,

HiGi+1 −Hi+1Gi = (−1)i.

Further, it presents an interesting “remainder theorem”, which may be ex-
pressed in the form

HGi −GHi = (−1)i−1ri,

where {ri} are the remainders obtained in the mutual division of H and G.
These relations are repeatedly made use of in the later chapters of the text to
arrive at very ingenious algorithms for the khaṇḍas, śodhyadinas, etc.

Chapter 3 deals with the vākya method of computing the true longitude of
the Moon. It commences with the use of vallyupasaṃhāra method for approx-
imating the true rate of motion of the anomaly by ratios of smaller numbers
such as 9/248, 110/3031, 449/12372, 6845/188611, etc., which give the vari-
ous approximate anomalistic cycles (such as 9 cycles completed in 248 days
etc). The denominators of the above ratios are known as kendrahārakas. The
text presents an algorithm for obtaining a khaṇḍadina (a day on which the
lunar anomaly is zero at sunrise), which is close to a given ahargaṇa. This
ingenious algorithm (which seems to have been arrived at by making use of
the relations between successive convergents mentioned above) can be used
to generate several khaṇḍadinas based on the choice of the kendrahāraka. The
text then describes the computation of the dhruvas, which are the changes
in the true longitude over different anomalistic cycles, and introduces other
notions such as kendraphala, dhruva-saṃskāra-hāraka, which help in simplify-
ing the computations. Finally there is a brief discussion of the procedure for
obtaining the Candravākyas.

Chapter 4 deals with the vākya method of computing the true longitudes
of planets. It first gives the method for finding the manda-khaṇḍa and śīghra-
khanda (which are the days close to the given ahargaṇa on which the man-
dakendra and the śīghrakendra vanish respectively) as given in the nirgaṇita
system, which is perhaps the same as the agaṇita system of Mādhava. Then
the text gives the algorithm for finding a set of maṇḍalas and the associated
dhruvas for any planet, as used in the Vākyakaraṇa. Maṇḍala is a period in
which a planet and its śīghrocca are in conjunction and nearly return to the
mandocca, starting from a time when they are in conjunction. Then the text
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gives the method for finding a set of śodhyadinas and the associated dhruvas
for any planet. The śodhyadina is a day close to the given ahargaṇa such that
the planet and its śīghrocca are in conjunction and close to the planet’s man-
docca. The text then gives the method for obtaining a set of agaṇita-hārakas
(divisors giving the revolutions made by a planet in a solar year) used in the
agaṇita system. This is followed by the method of computing the śodhyābda,
which gives the solar year close to the given ahargaṇa such that, at Meṣādi
or the beginning of the year, the mean planet and its śīghrocca are in con-
junction. The chapter finally gives a method to compute the grahaṇakhaṇḍas,
which are the days of the occurrence of eclipses close to a given ahargaṇa. In
this case, the text specifically prescribes the use of the parameters of the Dṛk
system (for the Sun, Moon and the node) of Parameśvara, instead of those of
the Parahita system.

In Chapter 5, the text emphasises the importance of correcting the revolu-
tion numbers etc., on the basis of observations. The chapter begins with the
verse:

ΗहणΗहयोगाڦःै ये Ηहाः सुपरࣷछ̵ताः |
ϐ҃माٛ࢈माः क߽े कࠔा वा भगणादयः ||
grahaṇagrahayogādyaiḥ ye grahāḥ suparīkṣitāḥ |
dṛksamāstatsamāḥ kalpe kalpyā vā bhagaṇādayaḥ ||
Based on a thorough examination of the position of the planets at the time of
eclipses, planetary conjunctions, and so on, the revolution numbers etc. [of the
planets] in a kalpa have to be proposed for achieving concordance with observations.

Having highlighted the importance of the need for correction when the
parameters employed do not accord with observation, the text also outlines
various methods for this purpose. It also explains how the longitude values
which have been assumed for the epoch, such as the beginning of Kaliyuga
etc., can be altered by using the so called kalyādi-dhruvas, so that the com-
puted values are in accordance with observations. Alternative methods are
suggested (such as correcting the revolution numbers, etc.) for achieving the
same end. Finally, the text emphasises that there can indeed be a multiplic-
ity of theoretical models with different durations (1000 or 1008 mahāyugas)
being assigned to a kalpa, and other theoretical constructs. In this context,
verse 15 of this chapter quotes the celebrated dictum from the Vākyapadīya
of Bhartṛhari, that there are no constraints on the theoretical models (upāya
or means), but only on the observed results (upeya, the end).37

क߽ादीनЇ Φमाणं तु बϡधा कࠔते बुधैः |
उपेयै࢒व कनयमो नोपाये࢒खत यͪ ततः ||
kalpādīnāṃ pramāṇaṃ tu bahudhā kalpyate budhaiḥ |
upeyasyaiva niyamo nopāyasyeti yat tataḥ ||

37 {VP, 1980}, p. 79. The same passage has been quoted by Nīlakaṇṭha in his
Āryabhaṭīya–bhāṣya in a very similar context ({ABB, 1931}, p. 31.)
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The duration of a kalpa has been conceived differently by different scholars. This
is due to the fact that there are no constraints on the means (upāya), but only on
the end result (upeya).

Chapter 6 presents a succinct summary of the results on the paridhi-vyāsa-
sambandha (relation between the circumference and the diameter of a circle)
and jyānayana (computation of the Rsines). As regards the first topic, the
text presents all the important fast convergent series given by Mādhava for π

4 ,
which have been cited in the Gaṇitayuktibhāṣā of Jyeṣṭhadeva or Yuktidīpikā
of Śaṅkara Vāriyar. In addition, it also presents the following interesting series,
which has not been mentioned either by Jyeṣṭhadeva or by Śaṅkara, and is
perhaps due to Putumana Somayājī himself (verse 6.4):

वगЄयुϺजЇ वा ङڥगुणैकनϺरेकैः वग੃कृतैवϺछजϺतयुӓवगЄः |
ࠬासं च ष̓ӳं कवभजेͪ फलंं࢔ ࠬासे खΡकनӳे पिरङध࢈दा࢒ाͪ ||
vargairyujāṃ vā dviguṇairnirekaiḥ
vargīkṛtairvarjitayugmavargaiḥ |
vyāsaṃ ca ṣaḍghnaṃ vibhajet phalaṃ svaṃ
vyāse trinighne paridhistadā syāt ||

Or, from the square of even numbers multiplied by two, subtract one, and from
the square [of that] subtract the square of the even numbers. Divide the diameters
multiplied by six by the above [quantities]. When [the sum of] these are added to
three times the diameter, the result will be the circumference.

The series presented by the above verse is,

C = 3D + 6D
(2.22 − 1)2 − 22

+ 6D
(2.42 − 1)2 − 42

+ 6D
(2.62 − 1)2 − 62

+ . . . ,

which may be written in the form

C = 3D +
∞∑

n=1

6D
(2.(2n)2 − 1)2 − (2n)2

.

This is a fast convergent series where the successive terms decrease like the
fourth power of 2n.

As regards the computation of sines, an interesting feature of Karaṇapad-
dhati is that it presents both the Rsine and Rcosine series of Mādhava in terms
of just one and a half verses (verses 6.12, 6.13). Finally the text discusses the
relation between the arc and the Rsine for small angles.

Chapter 7 begins with a discussion of the (variable) dimensions of the
manda and śīghra epicycles and proceeds to present some interesting formu-
lae for the calculation of the manda and śīghra corrections (phalas). It then
gives the formula for the inverse hypotenuse (vyasta-karṇa) for the case of
the Sun. This formula, which was given by Mādhava to calculate the iter-
ated manda-hypotenuse (asakṛt-manda-karṇa)38, is used here to calculate the
38 See for instance the discussion in {TS, 2011}, pp. 494-497.
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mean longitude of the Sun from the true longitude. This, in turn, is used to
determine the exact times for the true Sun to enter a rāśi, nakṣatra etc., and
these are expressed in terms of the saṅkrāntivākyas, nakṣatravākyas, etc. The
text also explains the derivation of the yogyādivākyas, which give an extremely
simple way to calculate the true longitude of the Sun for any given day. The
text then gives the methods of combining the manda and śīghra corrections
to arrive at the true longitudes of different planets. Here, at least according
to one of the Malayalam commentaries, the text seems to follow the revised
planetary model of Nīlakaṇṭha according to which the manda correction or
equation of centre should be applied not to the mean Sun, but to (what is
traditionally referred to as) the śīghrocca of the planets. The chapter ends
with a discussion on planetary distances, as well as heliacal rising and setting
of planets.

Chapter 8, dealing with the shadow problems, is indeed a fairly long chap-
ter as in other texts of Indian astronomy. Here, as well as in the next two
chapters, Putumana Somayājī displays his high felicity in dealing with prob-
lems of spherical astronomy. The chapter begins with the determination of the
latitude from the midday-shadow and the corrections to be applied to take
into account the parallax and the finite size of the solar disc. These latter cor-
rections are found in Tantrasaṅgraha also, but they are formulated somewhat
differently here. After discussing the standard relations between the declina-
tion, altitude and the azimuth, longitude etc, the text presents several ways
of calculating the prāṇakalāntara (the difference between the right ascension
and the longitude of the Sun), and the carajyā (ascensional difference). The
text then goes on to present a very interesting method for the determina-
tion of the declination of the Moon, which is actually more accurate than
the method outlined in Tantrasaṅgraha. Finally the text deals with lambana
(parallax) and gives the method for computing some of the lambanahārakas
and lambanajyās, which are used in the computation of eclipses. These have
been tabulated as vākyas, for the latitude around 10◦50′, which is close to
Shoranur or Alattur.

Chapter 9 commences with a discussion of the longitudes and latitudes of
junction stars and the method for calculating the declination of a celestial
body with non-zero latitude. The text then considers the problem of finding
the lagna (the ascendant or the rising point of the ecliptic). Here again we
notice that Putumana Somayājī introduces concepts and methods that are
not found in other texts such as Tantrasaṅgraha. The notions of kālalagna
(the time interval between the rise of the vernal equinox and that of the given
body on the ecliptic) and madhyāhna-kālalagna (the kālalagna when the body
is on the meridian) are employed in Karaṇapaddhati instead of madhyakāla
(right ascension of the point of the equator on the meridian) and madhyāh-
nalagna (longitude of the meridian ecliptic point) which have been used in
Tantrasaṅgraha. Both texts, however, present exact results based on a careful
analysis of the properties of spherical triangles.
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Chapter 10 begins by highlighting the importance of obtaining accurate
values of the longitudes and latitudes of celestial objects by a careful exami-
nation of their shadows etc., by means of instruments. This is a brief chapter
which deals essentially with the important issue of relating one coordinate
system to another. For instance, it explains how natakāla (right ascension)
may be obtained from the altitude and azimuth, and how the celestial lati-
tude and longitude may be determined from the right ascension and the hour
angle, etc.

This brief outline of the contents of Karaṇapaddhati should be sufficient
to show that the following declaration made by the author at the end of the
work is entirely justified (verse 10.11):

गछणतखमदमशेषं युगѶयुѶं पठۢः भुकव गछणतजनानाͳ अΗगئा भवेयुः |
gaṇitamidamaśeṣaṃ yuktiyuktaṃ paṭhantaḥ
bhuvi gaṇitajanānām agragaṇyā bhaveyuḥ |

Those who study and comprehend (paṭhantaḥ) all the mathematical principles
supported by rationales (yuktiyuktaṃ) enunciated here, would become the foremost
leaders in the community of mathematicians in this world.

The metres employed in the text

Not only has Putumana Somayājī demonstrated his originality in devising
ingenious algorithms, he has also demonstrated his exceptional skills as a
poet by composing verses in a variety of metres. The 214 verses comprising
the work have been composed in 20 different metres. The names of the metres
along with the number of verses composed in them are listed in Table 1. It
may be noted that Somayājī has employed both varṇavṛttas and mātrāvṛttas.

Some of the long metres that appear at the end of the table are not quite
easy to handle particularly when dealing with topics such as mathematics
and astronomy. In the classical kāvya literature it may be common to see such
metres, but it is rare to find them in scientific literature where the author
does not have as large a basket of words to choose from in order to convey a
particular thought or idea.

Notwithstanding this constraint, it is remarkable that Putumana Somayājī
has handled such metres with great felicity in Karaṇapaddhati. In this regard,
he can be compared with Bhāskaracārya-II—the author of the famous works
Līlāvatī, Bījagaṇita and Siddhāntaśiromaṇi—who is highly acclaimed for his
poetical skills including the use of a variety of metres. It may be recalled
that even renowned mathematicians and astronomers like Āryabhaṭa, Brah-
magupta, Mādhava, or Nīlakaṇṭha generally stick to one particular metre—
āryā, anuṣṭubh, etc, that does not impose serious constraints, and gives much
leeway in employing words.
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The choice of different metres, at least from the view point of readers, has
the following advantages:

• In olden days when the mode of learning was primarily oral, it would have
largely facilitated student in recalling the verses dealing with any topic in
terms of the metres in which they are composed.

• For describing processes involving several steps, choice of long metres such
as sragdharā greatly facilitates in remembering the series of operations that
needs to be sequentially carried out just by memorizing a single verse.

• It is a general convention that the poet changes the metres of the last verse
in a chapter, to alert the reader regarding the change of topic of discussion.

• Also, the change of the rhythm in rendering the verses helps, to a large
extent, in reducing the boredom (an inevitable hazard) while reading or
memorising the text.

xlvii

Acknowledgements

Initial studies on the Karaṇapaddhati were made by Venketeswara Pai when he
started his research career by working in some of projects—that were under-
taken by Prof. K. Ramasubramanian—sponsored by the Industrial Research
and Consultancy Centre (IRCC), IIT Bombay, and the National Academy
of Sciences India (NASI), Allahabad. A critical study of certain chapters of
Karaṇapaddhati was the topic of his doctoral dissertation, supervised by Prof.
K. Ramasubramanian at IIT Bombay, for the award of Ph.D. degree in the
year 2011. Both Pai and Ramasubramanian would like to express their sincere
gratitude to IRCC and NASI for graciously supporting such studies by way
of sanctioning sponsored projects.

During his postdoctoral research, when Dr. Pai was working with Prof.
M. S. Sriram on Karaṇapaddhati, he received support from an INSA project
undertaken by Prof. K. Ramasubramanian. For extending this support, both
of them would like to place on record their thanks to the History of Science
Division, INSA. Dr. Pai would also like to gratefully acknowledge the support

In the process of finalizing the text for publication, the manuscript went
through several rounds of revisions which had to be carefully implemented.
The authors would like to express their gratitude to Sri G. Periyasamy and
Dr. Dinesh Mohan Joshi for enthusiastically assisting them in this regard.

Dr. Pai is grateful to IISER Pune for the extraordinary academic freedom
which made it possible for him to meet the collaborators frequently to finalize
the book without any delay. He would also like to thank Prof. K. N. Ganesh and
Prof. L. S. Shashidhara for their support.

and encouragement he received from the authorities of the SASTRA University,
Thanjavur and IISER, Pune during the course of this work.



Introductionxlviii

tiative” (SandHI) at IIT Bombay. Finally, the authors would like to thank the
Hindustan Book Agency, New Delhi for graciously coming forward to publish
this volume as a part of their series on Culture and History of Mathematics.

हमेलठ߂-մेࡖकृڥࡗादशी Venketeswara Pai
कޓࠂ५११९ IISER Pune

Wednesday K Ramasubramanian
June 21, 2017 IIT Bombay

M S Sriram
K V Sarma Research Foundation, Chennai

M D Srinivas
Centre for Policy Studies, Chennai

They would also like to thank the anonymous referee for carefully going
through the manuscript and making several valuable comments and sugges-
tions. They would also like to sincerely acknowledge the generous support
from the MHRD received through the project on “Science and Heritage Ini-



Chapter 1
मۊΖह: शकाޑसंࡷार࠹
Mean planets and the śakābdasaṃskāra

१.१ मӼलाचरणͲ
1.1 Invocation

मदीयϓदयाकाशे चचदानۤमयो गुϑः।
उदतेु सततं स߅ग̶ानखतखमराϑणः॥ १ ॥
मातЉ؝ादीͮ Ηहाͮ न٘ा तٳसादाͪ कवघलҿते।
गुणहारगुणादीनЇ करणे काकप पڠखतः॥ २ ॥
madīyahṛdayākāśe cidānandamayo guruḥ |
udetu satataṃ samyagajñānatimirāruṇaḥ || 1 ||
mārtāṇḍādīn grahān natvā tatprasādāt vilikhyate |
guṇahāraguṇādīnāṃ karaṇe kāpi paddhatiḥ || 2 ||

May the guru, an embodiment of intelligence and bliss, keep ever rising in the space
of my heart, like the Sun dispelling the darkness of ignorance.
Having paid my obeisances to all the planets beginning with the Sun, a novel (kāpi)
procedure for the construction of multipliers (guṇa), divisors (hāra), Rsines (guṇa)
etc. is being written down [by me] by their grace.

Commencing the work with a maṅgalācaraṇa (performance of an auspi-
cious act) is a common feature that can be seen in almost all the composi-
tions pertaining to different disciplines in the Indian tradition. Maṅgalācaraṇa
generally falls under one of the following types:

(i) Offering veneration to the teacher (guruvandanam).
(ii) Offering prayers to the desired deity (iṣṭadevatānamaskāraḥ).
(iii) Stating the purpose of the text (vastunirdeśaḥ). 1

1 Generally maṅgalācaraṇa will be of the form (i) or (ii) or a combination of both. How-
ever, this third type of a maṅgalācaraṇa though rare is found in Kālidāsa’s Kumārasamb-
hava, which begins with the verse astyuttarasyāṃ diśi devatātmā…

1© Springer Nature Singapore Pte Ltd. 2018 and Hindustan Book Agency 2018 
V. Pai et al., Kara apaddhati of Putumana Somayājī, Sources and Studies in the History  
of Mathematics and Physical Sciences, https://doi.org/10.1007/978-981-10-6814-0_

.n
1

https://doi.org/10.1007/978-981-10-6814-0_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-6814-0_1&domain=pdf


2 मیΗह: शकाޓसंࡹार࠻ Mean planets and the śakābdasaṃskāra

In the above verses (composed in anuṣṭubh metre), it is interesting to note
that all the three forms of maṅgalācarana have been incorporated by the
author. He first extolls his guru as an embodiment of intelligence and bliss,
then pays his obeisances to all the grahas, and finally also briefly mentions
the purpose of the text.

In the next few verses the author presents all the parameters that form the
basis for the computation of longitudes of the planets.

१.२ महायुगे Ζहपयϸयाः
1.2 Revolutions of the planets in a mahāyuga

नाना̶ानΦगࠀद࢈लबलमसुसूңं धयेΣाजद߃ो
भΣोदۢोधरेܓो कनरनुसृगङधसौҿं विरࡖोऽङभषӾः।
दोदϺ؝ाΗऽेकΣनाथो कवषखमतकवकपनं चܓरेखा߂झुखۦ-े
ٖकЉदःे पयϺयाः ःु࢒ छ̵खतकदनमनृशंसःकळाथ੃समٖϺः॥ ३ ॥
nānājñānapragalbhastilabalamasusūkṣmaṃ dhayedrājadambho
bhadrodantodharendro niranusṛgadhisaukhyaṃ variṣṭho’bhiṣaṅgaḥ |
dordaṇḍāgre’drinātho viṣamitavipinaṃ candrarekhāmbukhinne-
tyarkādeḥ paryayāḥ syuḥ kṣitidinamanṛśaṃsaḥ kaḷārthīsamartyaḥ || 3 ||

The number of revolutions of [the planets] Sun etc. are: 4320000 (nānājñā-
napragalbhaḥ), 57753336 (tilabalamasusūkṣmaṃ), 488219 (dhayedrājadambha),
2296824 (bhadrodantodharendra), 17937020 (niranusṛgadhisaukhyaṃ), 364224 (var-
iṣṭho’bhiṣaṅga), 7022388 (dordaṇḍāgre’drinātha), 146564 (viṣamitavipina), 232226
(candrarekhāmbukhinna). And the number of civil days (kṣitidina) [in a mahāyuga]
is 1577917500 (anṛśaṃsaḥkaḷārthīsamartya).

The above verse is composed in sragdharā metre, one of the longest metres
with 21 syllables per quarter. The choice of this metre is quite understandable
as it facilitates the author to concisely present as much information as possi-
ble. In fact, the author has specified the number of revolutions made by all
the planets in a mahāyuga, as well as the total number of civil days, in one sin-
gle verse. For specifying these numbers, Putumana Somayājī has adopted the
kaṭapayādi system2 of numeration—the most preferred choice of the Kerala
astronomers starting at least from the time of Haridatta (7th cent.). Table 1.1
presents these numbers along with their Sanskrit equivalents. It may be men-
tioned here that the revolution numbers as well as the number of civil days
in a mahāyuga specified in Table 1.1 are the same as in Āryabhaṭīya.

An interesting feature of the works of Kerala astronomers is that while
specifying the numbers using kaṭapayādi system, they try to make the phrases
2 The following table presents the numbers associated with the consonants ka, kha etc.
in this system:
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Planet Revolutions in a mahāyuga
in Kaṭapayādi in numerals

Sun नाना̶ानΦगࠀः 4320000
(Illustrious with various kinds of knowledge)

Moon खतलबलमसुसूңͳ 57753336
(Power of sesamum [seed] is not subtle)

Moon’s apogee धयेΣाजद߃ः 488219
(Hypocrisy of king)*

Mars भΣोदۢोधरेܓः 2296824
(King about whom the narratives are good)

Mercury** कनरनुसृगङधसौҿͳ 17937020
(Comfort without repeated inarticulate sound)

Jupiter विरࡖोऽङभषӾः 364224
(Humiliated senior)

Venus** दोदϺद؝ाΗऽेकΣनाथः 7022388
(Lord of mountains [who is] upholding

the pole by [his] arm)
Saturn कवषखमतकवकपनͳ 146564

(Impassable forest)
Moon’s node चܓरेखा߂झुखۦा 232226

(Ray of the Moon distressed by water)
Number of civil days अनृशंसः कळाथ੃समٖϺः 1577917500

(Along with a man is not cruel)*
*Literal meaning of the words “dhayed” and “kaḷārthī” is not clear.
**The revolution numbers are those of the associated śīghroccas.

Table 1.1 Revolutions made by the planets in a mahāyuga.

Number 1 2 3 4 5 6 7 8 9 0
Consonants k kh g gh ṅ c ch j jh ñ

used ṭ ṭh ḍ ḍh ṇ t th d dh n
to represent p ph b bh m – – – – –
numbers y r l v ś ṣ s h ḷ –

In the case of conjunct consonants, only the last consonant is to be considered. Vowels
which are separate, represent the number zero.

Let us consider the phrase nānājñānapragalbhaḥ as an example. The table below gives
the encoded numbers corresponding to each syllable.

nā nā jñā na pra ga lbhaḥ
0 0 0 0 2 3 4

By reversing the order, we have the number 4320000 which is encoded in the phrase
nānājñānapragalbhaḥ.
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meaningful also. It is ensured that the words that get into these phrases are
familiar and commonly employed words, thereby facilitating the reader to
pronounce and remember them easily. The literal meanings of the phrases
used in the verse above are given in Table 1.1 in parenthesis.

१.३ महायुगे सौरचाܑमासाः अखधमासा࠹
1.3 The number of solar, lunar and intercalary months

in a mahāyuga

ϒपाहताक੮ भगणाः खϟ सौरमासाः
मासा रवीۤभुगणाۢरमेव चाܓाः ।
चܓाक੮ मासकववरं च युगाङधमासाः
मासाः पुननϺगहता कदवस࢔ϒपाः ॥ ४ ॥
rūpāhatārkabhagaṇāḥ khalu sauramāsāḥ
māsā ravīndubhagaṇāntarameva cāndrāḥ |
candrārkamāsavivaraṃ ca yugādhimāsāḥ
māsāḥ punarnagahatā divasasvarūpāḥ || 4 ||

The number of revolutions of the Sun multiplied by 12 (rūpa) are indeed the solar
months. The difference between the number of revolutions of the Sun and that of
the Moon is itself the number of lunar [months]. The difference between the number
of lunar months and the solar months gives the number of adhimāsas (intercalary
months) in a yuga. These months multiplied by 30 (naga) give the number of [solar
and lunar] days.

If Ms represents the number of solar months in a mahāyuga, and Rs the
number of revolutions of the Sun, then

Ms = Rs × 12
= 4320000× 12 = 51840000. (1.1)

A lunar month, by definition, is the time interval between two successive
conjunctions of the Sun and the Moon (two amāvāsyās or new Moons). Hence
the total number of lunar months (Mm) in a mahāyuga will be equal to the
total number of new Moons which in turn will be equal to the difference
between the number of lunar and the solar revolutions. That is,

Mm = 57753336− 4320000 = 53433336. (1.2)

The number of lunar months that are in excess of the number of solar months
in a mahāyuga are referred to as the intercalary months or adhimāsas (Ma),
and are given by
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Ma = Mm −Ms

= 53433336− 51840000 = 1593336. (1.3)

In the last quarter of the above verse, it has been stated that the number
of months multiplied by 30 gives the number of days. As this is a generic
prescription, the number of solar months in a mahāyuga multiplied by 30
gives the number of solar days in a mahāyuga, the number of lunar months
multiplied by 30 gives the number of lunar days and so on. If Ds, Dm and Da

be the number of solar days, lunar days, and their difference in a mahāyuga,
respectively, then they are given by

Ds = 30× 51840000
= 1555200000, (1.4)

Dm = 30× 53433336
= 1603000080, (1.5)

Dm −Ds = Da = 30× 1593336
= 47800080. (1.6)

Here it may be mentioned that a solar day is purely a theoretical entity and
is different from the civil day (24 hrs) that is commonly used in practice. The
solar day corresponds to the time taken by the Sun to cover 1◦ of the ecliptic,
which on an average would be slightly larger than a civil day. An average
lunar day/tithi is shorter than a civil day.

१.४ ̴यओतकथना̴ΠऒदनानЅ संҽा
1.4 The number of omitted tithis and sidereal days

चाܓमासा नगा࢈ޱा भूकदनोनाद࢈घथ̵याः ।
भूकदनाؔाक੮ भगणाः ना̵Ρकदवसाः ࢑तृाः ॥ ५ ॥
cāndramāsā nagābhyastā bhūdinonāstithikṣayāḥ |
bhūdināḍhyārkabhagaṇāḥ nākṣatradivasāḥ smṛtāḥ || 5 ||

The number of lunar months multiplied by 30 [and] diminished by the number of
civil days gives the tithikṣayas (the number of omitted tithis). The number of solar
revolutions added to the number of civil days (bhūdina) is stated to be the number
of nākṣatradivasas (sidereal days).

This verse essentially presents the procedure for obtaining the total number
of omitted tithis and sidereal days in a mahāyuga from the number of civil days.
We know that the number of tithis (lunar days) in a mahāyuga is obtained by
multiplying the number of lunar months by 30. And, the number of kṣayatithis
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(omitted tithis) is the difference between the number of tithis and the number
of civil days in a mahāyuga.

Let Mm and Dc represent the total number of lunar months and civil days
in a mahāyuga. Then the number of kṣayatithis (Tk) is given by

Tk = Mm × 30−Dc

= 53433336× 30− 1577917500 = 25082580. (1.7)

It may be recalled that the total number of civil days in a mahāyuga represents
the number of sunrises in it. Similarly, the number of sidereal days (nākṣatrad-
inas) represents the number of star-rises in a mahāyuga. Since the stars do not
have any eastward motion of their own, whereas the Sun completes one full
revolution in a sidereal year, the number of sidereal days in a solar year will
be greater than the number of civil days by exactly one unit. Hence, the total
number of sidereal days or nākṣatradivasas (Dn) in a mahāyuga will exceed
the total number of civil days exactly by the number of solar years, which is
the same as the number of revolutions of the Sun (Rs) in the background of
stars. That is,

Dn = Dc +Rs

= 1577917500 + 4320000 = 1582237500. (1.8)

Having specified the revolution numbers corresponding to a mahāyuga, the
text proceeds to state the values corresponding to a kalpa whose period is
stated to be 1008 times that of a mahāyuga.

१.५ के߻ Ζहपयϸयाः
1.5 Revolutions of the planets in a kalpa

एवं युगोѶा भगणादये࢈ कदनानयӳाु࢈ भवठۢ क߽े ।
चतुदϺश मϺनवोऽΡु࢒ तेषЇ युगाकन रासΦखमताकन य࢑ाͪ ॥ ६ ॥
evaṃ yugoktā bhagaṇādayaste dinānayaghnāstu bhavanti kalpe |
caturdaśasyurmanavo’tra teṣāṃ yugāni rāsapramitāni yasmāt || 6 ||

The revolutions (thus stated) for a caturyuga, when multiplied by 1008 (dinānaya)
would become the revolutions in a kalpa. In this [kalpa] there would be 14 Manus
since their period is 72 [catur]yugas.

In the verse above, the word yuga has been employed to refer to a caturyuga
or a mahāyuga, whose period is known to be 4320000 years. Also, the period
of a kalpa is defined in terms of a mahāyuga.
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Planet Revolutions in a kalpa

Sun 4354560000
Moon 58215362688

Moon’s apogee 492124752
Mars 2315198592

Mercury 18080516160
Jupiter 367137792
Venus 7078567104
Saturn 147736512

Moon’s node 234083808
Table 1.2 The number of revolutions of the planets in a kalpa.

It has been stated
that there are 14
manvantaras in a
kalpa.3 As there are
72 caturyugas in a
manvantara, there are
1008 (72×14) mahāyu-
gas in a kalpa.

The above verse
also mentions that
the number of revo-
lutions of the plan-
ets in a kalpa is ob-
tained by multiply-
ing the revolutions
made by them in a

mahāyuga by 1008. That is,

R (kalpa) = 1008×R (yuga).

The revolution numbers for a kalpa are listed in Table 1.2.

१.६ वतϸमानके߻ अतीतकालः
1.6 Period elapsed in the present kalpa

कृतΡतेाڥापराҿः कघलै࠻ते युगाԧयः ।
युगाԧयु࢈ क߽ेऽध࢑ͮ ङधगाकदٖखमता गताः ॥ ७ ॥
kṛtatretādvāparākhyaḥ kaliścaite yugāṅghrayaḥ |
yugāṅghrayastu kalpe’smin dhigādityamitā gatāḥ || 7 ||

The [four] quarters (yugāṅghris) of the [mahā]yuga are known as kṛta, tretā, dvāpara
and kali. In the present kalpa the number of elapsed yugāṅghris (quarter of a yuga)
are 1839.

The mahāyuga that was referred to in the previous verse is conceived to be
made up of four parts. The first one is called the kṛtayuga, the second one the
tretā, the third one the dvāpara and the fourth one the kali. Here it is stated
that, in the present kalpa, the number of such quarters of yuga4 elapsed is
equal to 1839. It may be noted that,
3 A Manu lives for one manvantara.
4 Here, yuga refers to a caturyuga or mahāyuga.
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1839
4

= 459 + 3
4
.

This means that apart from 459 caturyugas, three-fourths of a caturyuga is
over. If we further divide 459 by 72, we obtain 6 as the quotient and 27 as the
remainder. Thus, as per this prescription, in the present kalpa, six manvantaras
have already elapsed. And in the seventh manvantara 27 mahāyugas have
elapsed.

We are currently in the twenty-eighth mahāyuga. In this mahāyuga too,
three quarters have elapsed and we are in the fourth one, namely the kali.
Therefore, the total number of quarters elapsed since the beginning of the
kalpa is

(72× 6 + 27)× 4 + 3 = 1839.

१.७ वतϸमानककलयुगे गताޑगणानयनͲ
1.7 Obtaining the number of elapsed years since the

beginning of the present kaliyuga

गतवषЉۢकोल߂वषЉ࢈रळगाठۮताः ।
कޓࠂा धीࢉकालाؔशकाޓा वा भवठۢ ते ॥ ८ ॥
gatavarṣāntakolambavarṣāstaraḷagānvitāḥ |
kalyabdā dhīsthakālāḍhyaśakābdā vā bhavanti te || 8 ||

Adding 3926 (taraḷaga) to the number of elapsed kollam years gives the num-
ber of kali years elapsed. These [kali years] can also be obtained by adding 3179
(dhīsthakāla) to the elapsed śaka years (śakābdas).

The above verse presents the relations among the three popular eras that are
currently in vogue in various parts of India, namely the kalyabda, the śakābda
and the kollam. Of them, the first two are used throughout India, whereas the
last one is employed only in Kerala.

If yk, ys and yko represent the kalyabda, śakābda and kollam years respec-
tively, then the content of the above verse may be expressed as

yk = yko + 3926,
and, yk = ys + 3179. (1.9)

Also,
ys = yk − 3179 = yko + 747. (1.10)
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१.८ अहगϸणानयनͲ
1.8 Procedure for obtaining the ahargaṇa

कޓࠂतः कΦयहताͬ गतमासयुѶाः
चाܓाҿमासगुछणताΣकवमासलޔः ।
नागाहतद࢈घथयुतः छ̵खतवासरӳः
चाܓकैदϺनैरपϓतो गुणोऽՋवाराͪڦ ॥ ९ ॥
kalyabdataḥ priyahatād gatamāsayuktāḥ
cāndrākhyamāsaguṇitādravimāsalabdhaḥ |
nāgāhatastithiyutaḥ kṣitivāsaraghnaḥ
cāndrairdinairapahṛto dyugaṇo’cchavārāt || 9 ||

The number of years elapsed since the beginning of kaliyuga, multiplied by twelve
(priya) and added to the months elapsed [in the present year], is multiplied by
the number of lunar months [in a yuga]. The quotient obtained, while dividing
this by the solar months [in a yuga], is to be multiplied by thirty (nāga) and to
that the (number of) tithis elapsed [in the present month] is added. [The result],
multiplied by the civil days in a yuga and divided by the total number of lunar
days (cāndradina) in a yuga, will be the ahargaṇa, commencing with Friday.

The term ahargaṇa refers to the number of civil days that have elapsed since a
given epoch. To obtain this, we need to first find the number of solar months
that have elapsed since the epoch, which is taken to be the beginning of
kaliyuga. The number of (solar) months (ms) elapsed since the beginning of
kaliyuga is given by

ms = 12× yk +m,

where yk represents the kalyabda as defined in the previous section, and m
is the number of months elapsed in the present year. The number of lunar
months that have elapsed since the beginning of kaliyuga till the desired date
is obtained by employing the following rule of three:

solar months in a mahāyuga (Ms) : lunar months in a mahāyuga (Ml)
: : elapsed solar months (ms) : elapsed lunar months (ml) ? (1.11)

Now,

ml =
ms ×Ml

Ms
= ms × 53433336

51840000
(1.12)

= ms × 2226389
2160000

. (1.13)

To find the number of tithis that have elapsed since the beginning of kaliyuga
till the desired date, we need to multiply ml by 30, and add to that the number
of tithis that have elapsed in the current lunar month. If t be the number of
tithis that have elapsed in the present month, then the total number of tithis
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te that have elapsed since the beginning of kaliyuga till the desired date, is
given by

te = (ml × 30) + t. (1.14)

Now from these tithis, the ahargaṇa A, which represents the total number of
civil days elapsed from the epoch till date, is found by employing the rule of
three. If the total number of civil days and tithis in a mahāyuga be Dc and T
respectively, then

T : Dc : : te : A ? (1.15)

Therefore,

A = te ×Dc

T

= te × 1577917500
1603000080

(1.16)

= te × 26298625
26716668

. (1.17)

In most texts, the beginning of the kaliyuga is taken to be the mean sunrise
of February 18, 3102 BCE, which happens to be a Friday. Thus, when A
is divided by 7, if the remainder is 0, 1, 2, …, 6, it means that the day for
which the ahargaṇa A has been computed should be Friday, Saturday, …,
Thursday. If the actual weekday differs from the computed one, then the
ahargaṇa is corrected generally by adding ±1 to A. Such differences between
the computed and the actual values are not uncommon, as the calculational
procedure involves the use of rule of three and rounding off to the nearest
integer. This rounding off occurs both in the calculation of ml and A.

It may also be mentioned here, that the procedure for finding the ahargaṇa
in Karaṇapaddhati is slightly different from the one presented in Tantrasaṅ-
graha and many other texts, wherein the number of adhimāsas and kṣayatithis
are separately computed and added. On the other hand, here the number of
lunar months and the number of tithis elapsed are directly computed. Having
obtained them, by multiplying the number of tithis elapsed with the yugasā-
vanadina and dividing it by the number of tithis in a yuga, we obtain the
ahargaṇa. We shall now illustrate the above procedure with a couple of ex-
amples.

Illustrative examples

Example 1: Find the kalyahargaṇa corresponding to nija-āṣāḍha-kṛṣṇa-
navamī,5 Śaka 1891 (August 6, 1969 ce).

5 Ninth day of the dark fortnight correspondding to the actual (nija) lunar month Āṣāḍha.
Actual because of the occurrence of an intercalary month preceding this.
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Number of kali years elapsed, yk = 1891 + 3179
= 5070.

Number of solar months elapsed in the
present year, m = 3.

Total number of solar months elapsed, ms = (5070× 12) + 3
= 60843.

Number of lunar months elapsed
(including adhimāsas), ml = 60843× 53433336

51840000
= 62713.04904.

Since we are interested in the integral part,
we take ml = 62713.
Number of tithis elapsed in the present
lunar month t = 15 + 8 = 23.

Total no. of tithis elapsed since the
beginning of kali (including kṣayatithis), te = (62713× 30) + 23

= 1881413.

Number of civil days since the beginning of
kali (corresponding to te)

= 1881413× 1577917500
1602999600

= 1851974.57156.
We round off the above fraction and
take the kalyahargaṇa A, to be = 1851975

= (264567× 7) + 6.

The remainder 6 implies that the day has to be a Thursday. But August 6,
1969 happens to be a Wednesday. Hence the computed value of the ahargaṇa
is incorrect by a day. This error is evidently due to the error in rounding off.
This kind of error is very likely to occur particularly when the fractional value
obtained in finding A from te is close to 0.5. By leaving out the fractional part,
we get the actual ahargaṇa as 1851974. Thus the number of civil days elapsed
since the beginning of kaliyuga till nija-āṣāḍha-kṛṣṇa-navamī, Śaka 1891 is
1851974.

It may also be noted that the use of rule of three for finding the elapsed
lunar months from the solar months implicitly assumes that the adhimāsas
occur uniformly. However, this is not true, and the variation could be quite
significant depending upon the occurrence or absence of true saṅkrānti in a
lunar month. We need to be especially careful when the value of ml is close to
an integer. If there is an error in the choice of ml, the ahargaṇa would differ
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from the actual value by nearly 30 days. On the other hand, as seen earlier,
we may also go wrong in the ahargaṇa by one day.

These errors can be easily fixed from the knowledge of the occurrence or
otherwise of an adhimāsa near the desired date, and the day of the week,
respectively. We shall now illustrate an example where the value ml is to be
chosen carefully.

Example 2: Find the kalyahargaṇa corresponding to phālguna-kṛṣṇa-
trayodaśī,6 Śaka 1922 (March 22, 2001 ce).

Number of kali years elapsed, yk = 1922 + 3179
= 5101.

Number of solar months elapsed in the
present year, m = 11.

Total number of solar months elapsed, ms = (5101× 12) + 11
= 61223.

Number of lunar months elapsed
(including adhimāsas), ml = 61223× 53433336

51840000
= 63104.72859.

Since we are interested in the integral part,
we take ml = 63104.
Number of tithis elapsed in the present
lunar month t = 15 + 12 = 27.

Total number of tithis elapsed since the
beginning of kali (including kṣayatithis), te = (63104× 30) + 23

= 1893147.

Number of civil days since the beginning of
kali (corresponding to te)

= 1893147× 1577917500
1602999600

= 1863524.96992.
We round off the above fraction
take the kalyahargaṇa A, to be = 1863525

= (266217× 7) + 6.

The remainder 6 implies that the day has to be a Thursday. March 22,
2001 happens to be a Thursday, and hence the computed value of the ahar-
gaṇa is correct. Thus the number of civil days elapsed since the beginning of
the kaliyuga till phālguna-kṛṣṇa-trayodaśī, Śaka 1922 (March 22, 2001 ce) is
1863525.
6 Thirteenth day of the dark fortnight correspondding to the lunar month Phālguna.
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Note: In this example, rounding off the value of ml = 63104.72859 to the
nearest integer (that is, by considering ml = 63105) would have led to the
value of A = 1863555. This value differs from the actual value by 30 days.

१.९ गणनलाघवोपायः
1.9 Technique for simplifying the mathematical

operations

गुणहाराۢरगुछणतं गुंئ हाराϓतं तु वा गुेئ ।
गुणकाङधका߽क٘े मृणं࢔ कुयЉͪ फल࢒संछसैڵ ॥ १० ॥
guṇahārāntaraguṇitaṃ guṇyaṃ hārāhṛtaṃ tu vā guṇye |
guṇakādhikālpakatve svamṛṇaṃ kuryāt phalasya saṃsiddhyai || 10 ||

The difference between the multiplier and the divisor (guṇa-hārāntara) multiplied
by the multiplicand (guṇya) and divided by the divisor, has to be added to or
subtracted from the multiplicand, depending on whether the multiplier is greater
or smaller [than the hāra (divisor)] respectively.

Consider the product a
(
c
b

)
. Here, c is the multiplier (guṇaka or simply guṇa),

a the multiplicand (guṇya) and b the divisor (hāra). Clearly there are two
possible cases: (i) c > b and (ii) c < b. It is easily seen that the given product
in these two cases can be written respectively as

a
c

b
= a+ a

(c− b)
b

, (1.18)

and a
c

b
= a− a

(b− c)
b

. (1.19)

It is precisely these two relations that are given in the above verse.

१.१० मۊΖहानयनͲ
1.10 Obtaining the mean longitudes of planets

अहगϺणाͪ खेचरपयϺयӳाͬ धराकदनाݗा भगणाकदखेटाः ।
खΡभाठۮतं तΡ भवेͬ कवधूՊं कवधुۢदु࠻ΕदलाङڥϠڠः ॥ ११ ॥
ahargaṇāt khecaraparyayaghnād
dharādināptā bhagaṇādikheṭāḥ |
tribhānvitaṃ tatra bhaved vidhūccaṃ
vidhuntudaścakradalādviśuddhaḥ || 11 ||
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The ahargaṇa multiplied by the revolution number of planets and divided by the
bhūdinas (civil days) gives the elapsed bhagaṇas of the planets. The [longitude of
the] Moon’s apogee is obtained by adding three rāśis [to the calculated result], and
that of the Rāhu (Moon’s node) by subtracting it from six rāśis.

If A be the ahargaṇa, R the number of revolutions made by the planet in a
mahāyuga and Dc the total number of civil days. Then the mean longitude θ0
of the planet, is given by

θ0 = A×R

Dc

= A×R

1577917500
= I1 + f1, (1.20)

where I1 represents the integral part of θ0, and f1 the fractional part. The
integral part gives the number of revolutions that have been completed by the
planet since the beginning of the present kaliyuga. It is from the fractional
part f1 that the rāśis etc., covered by the planet, are obtained. To find this,
the fractional part f1 is first multiplied by 12.

f1 × 12 = I2 + f2.

Here, the integral part I2 gives the number of rāśis that the planet has covered
in the present revolution. The fractional part f2 when multiplied by 30 gives
the number of degrees covered in the present rāśi. Let

f2 × 30 = I3 + f3,

where I3 gives the number of degrees covered by the planet in the present
rāśi. f3 multiplied by 60 gives the number of minutes covered in the present
degree. Continuing along similar lines, we may further express the product of
f3 and 60 as

f3 × 60 = I4 + f4.

In the above equation, I4 represents the integral number of minutes covered
and f4 the fractional part of it. Thus the mean longitude of the planet may
be expressed as

θ0 = (I2)r + (I3)◦ + (I4)′. (1.21)

After giving the general prescription for obtaining the longitudes from ahar-
gaṇa for all the planets, which includes Moon’s apogee and nodes, the verse
specifically mentions that in the case of Tuṅga (Moon’s apogee) three signs
are to be added, and in the case of Rāhu, the obtained value has to be sub-
tracted from six rāśis. These specific prescriptions point to the fact that the
Moon’s apogee at the beginning of kaliyuga was at 90◦ and that of Rāhu was
at 180◦. It may also be recalled here that the motion of Rāhu is retrograde.
We shall now illustrate the above procedure through an example.
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Illustrative example

We calculate the mean longitude of the Moon corresponding to the ahargaṇa
1754000 (9th May 1701). We have chosen this ahargaṇa because the Malayalam
Commentary II presents a series of verses giving the dhruvas of all the planets
corresponding to this ahargaṇa. The verses commence with the specification
of ahargaṇa as follows:7

अनूनुवणϺसाیोनाͪ सोमवाराڦहगϺणः |
anūnuvarṇasādhyonāt somavārādyahargaṇaḥ |
By subtracting 1754000, the ahargaṇa commencing from Monday is obtained.

Here the number encoded in the string “anūnuvarṇasādhya” is 1754000. The
same ahargaṇa has been used for illustrating other computational procedures
in the following chapters as well.

From (1.20), the longitude of the Moon corresponding to the ahargaṇa
A = 1754000 is given by

θ0 (Moon) = 1754000× 57753336
1577917500

= 64198.1290809. (1.22)

The integral part 64198 represents the number of revolutions completed and
does not contribute to the longitude. It is from the fractional part 0.12908089
we get the number of rāśis etc., covered by the Moon. We have

0.12908089× 12 = 1 + 0.54897068.

This shows that the Moon has covered one rāśi and is in the second one,
namely Vṛṣabha. To get the degrees etc., we multiply the fractional part by
30. Thus we have,

0.54897068× 30 = 16 + 0.4691204.

This means that the mean Moon has covered 16 degrees in the Vṛṣabha-rāśi.
The fractional part of the above expression further multiplied by 60 gives
28.147224 minutes. The fractional part of this can be further multiplied by 60
to get the seconds etc. Thus the mean longitude of the Moon corresponding
to the ahargaṇa 1754000 is

θ0 (Moon) = 1r16◦28′8′′. (1.23)

The mean longitudes8 of all the planets for this ahargaṇa, obtained in a similar
manner, are given in Table 1.5.
7 {KP 1956}, pp. 56-57.
8 The mean longitudes of the planets presented here correspond to the mean sunrise of
an observer situated on the meridian passing through Ujjayinī. In the case of Rāhu, the
value obtained using the above procedure has been subtracted from six signs, and in the
case of Moon’s apogee, three signs have been added to obtain the mean longitude.
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Mean longitude (θ0)
Planet sign degrees minutes seconds thirds fourths

(rāśi) (◦) (′) (′′) (′′′) (′′′′)

Sun 0 27 24 55 48 22
Moon 1 16 28 8 50 14

Moon’s apogee 11 12 4 5 22 26
Mars 1 16 58 48 13 7

Mercury 7 21 20 5 40 10
Jupiter 10 12 36 55 33 11
Venus 0 10 9 48 2 31
Saturn 11 0 57 26 50 16

Moon’s node 4 9 25 18 54 23
Table 1.5 Mean longitudes corresponding to A = 1754000.

It was mentioned earlier that the revolution numbers for planets presented
in Table 1.1 are not different from those given in Āryabhaṭīya. However, in the
Parahita system some corrections have been introduced to get more accurate
values of the mean longitudes of the planets. These corrections (saṃskāras)
have been prescribed to be applied to the mean longitude of the planets start-
ing from the śaka year 444,9 and are called śakābdasaṃskāras.

१.११ मۊΖहे शकाޑसंࡷारः
1.11 Śakābdasaṃskāra for mean planets

वाӒावोनाՋकाޓाͪ धनशतलयहाͪ मۤवैलҤरागैः
आݗाङभघलϺकݗकाङभः कवरऔहततनवः चܓतٌुӾपाताः ।
शोभानीϒढसंकवͪ गणकनरहताͪ मागराݗाः कुजाڦाः
संयुѶा ̶ारसौराः सुरगुϑभृगुजौ वछजϺतौ भानुवजϺͳ ॥ १२ ॥
vāgbhāvonācchakābdāt dhanaśatalayahāt mandavailakṣyarāgaiḥ
āptābhirliptikābhiḥ virahitatanavaḥ candratattuṅgapātāḥ |
śobhānīrūḍhasaṃvit gaṇakanarahatāt māgarāptāḥ kujādyāḥ
saṃyuktā jñārasaurāḥ suragurubhṛgujau varjitau bhānuvarjam || 12 ||

Subtracting 444 (vāgbhāva) from the śakābda multiply it by 09 (dhana), 65 (śata)
and 13 (laya) and divide by 85 (manda), 134 (vailakṣya) and 32 (rāga) [respectively].

9 Note that the śaka year 444 or 522 ce happens to be 23 years after the composition of
the Āryabhaṭīya. In the Parahita system the correction term becomes zero in this year.



1.11 Śakābdasaṃskāra for mean planets 17

The results thus obtained, in minutes, are subtracted from the longitudes of Moon,
its apogee and its node respectively. [Similarly, subtracting 444 (vāgbhāva) from the
śakābda and] multiplying by 45 (śobhā), 420 (nīrūḍha), 47 (saṃvit), 153 (gaṇaka)
and 20 (nara) and dividing by 235 (māgara), the results obtained are applied to
the planets Mars etc. [Here again] the quantities thus obtained have to be added
to the mean longitudes of the Mars, Mercury and Saturn and subtracted from that
of the Jupiter and Venus, omitting [any correction in the case of] the Sun.

This verse (in sragdharā metre) essentially presents the magnitude of the
śakābda-saṃskāra that is to be applied to the planets including Moon’s apogee.
This is done by specifying multipliers (guṇakāras, g) and divisors (hārakas,
h) for each planet which will be used in conjunction with the number of
years elapsed since the epoch, namely the śaka year 444. Sundararāja, the
16th century commentator of Vākyakaraṇa quotes this verse and mentions
that this śakābda correction was introduced in the Parahita system (c. 683) of
Haridatta. However, the edited version of the Grahacāranibandhana of Hari-
datta does not have this verse or this correction. However, later works such
as the Grahacāranibandhasaṅgraha (c. 932) give these guṇas and hārakas of
the śakābda correction.10

The śakābda correction, denoted by c1, prescribed in the verse is given by

c1 = (ys − 444)× g

h
. (1.24)

This has to be applied to the mean longitudes of the planets. It is seen from the
above expression, that if ys = 444, c1 reduces to zero. Thus, (1.24) implies that
the mean longitudes obtained by using the parameters given in Āryabhaṭīya
were accurate around the śaka year 444 (= 522 ce). It may be noted that
this year incidentally happens to be 23 years after the date of composition of
Āryabhaṭīya.

The śakābdaguṇakāras (g) and śakābdahāras (h) that are given in the verse
for different planets, are listed in Table 1.6. Also, as has been explicitly men-
tioned in the verse, the result (c1) obtained would be in minutes (āptābhirlip-
tikābhiḥ) and has to be applied to the mean longitude obtained by (1.21) either
positively or negatively depending upon the planet. Thus, the corrected mean
longitude at this stage may be represented as

θ1 = θ0 ± c1. (1.25)

Note: In (1.25), the ‘+’ sign is to be chosen in the case of Mercury, Mars and
Saturn, and ‘−’ in the case of Venus, Jupiter as also the Moon, its apogee and
the node.
10 {GCN 1954}, pp. ix-x.
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śakābdaguṇakāra śakābdahāraka Nature of
Planet (g) in (h) in g

h
correction

kaṭapayādi no. kaṭapayādi no. (+/−)

Sun No śakābda correction for Sun
Moon dhana 09 manda 85 0.10588 −

Moon’s apogee śata 65 vailakṣya 134 0.48507 −
Mars śobhā 45 māgara 235 0.19149 +

Mercury nīrūḍha 420 māgara 235 1.78723 +
Jupiter saṃvit 47 māgara 235 0.20000 −
Venus gaṇaka 153 māgara 235 0.65106 −
Saturn nara 20 māgara 235 0.08511 +

Moon’s node laya 13 rāga 32 0.40625 −

Table 1.6 Śakābdaguṇahāras of the planets.

Illustrative example

In Table 1.5 we have listed the mean longitudes of all the planets corresponding
to A = 1754000. Considering the mean longitude of Venus, and expressing it
in minutes we have

θ0 (Venus) = 609.80070′. (1.26)

The śakābda-saṃskāras corresponding to A = 1754000 for different planets
are given in Table 1.7. In arriving at these values we have taken the number
of śaka years elapsed ys to be 1623. It is noted from the table that the śakābda
correction for Venus is -767.60426. Applying this to the mean longitude given
by (1.26), we have

θ1 (Venus) = 609.80070− 767.604255
= −157.80355 (in min). (1.27)

The śakābda corrected values of mean longitudes of the other planets cor-
responding to ys = 1623 are listed in Table 1.8.

It may be noted from (1.24) that the expression given for c1 takes into
account only that part of the correction corresponding to the complete number
of years that have elapsed. It does not include the correction that is to be
considered for the time elapsed in the current year. The next verse describes
the procedure for obtaining this part of the correction.



1.12 Śakābdasaṃskāra for the number of days elapsed in the present year 19

Planet śakābdasaṃskāra (±c1)
in minutes (′)

Sun No saṃskāra
Moon −124.83529

Moon’s apogee −571.90299
Mars +225.76596

Mercury +2107.14894
Jupiter −235.80000
Venus −767.60426
Saturn +100.34043

Moon’s node −478.96875

Table 1.7 Śakābdasaṃskāras for different planets for ys = 1623.

Planet śakābda corrected
mean planet θ1 in min. (′)

Moon 2663.31200
Moon’s apogee 19952.18658

Mars 3044.56960
Mercury 15987.24343
Jupiter 18521.12588
Venus −157.80355
Saturn 19957.78772

Moon’s node 7286.34636

Table 1.8 Śakābda corrected mean longitudes of the planets for ys = 1623.

१.१२ वतϸमानाޑगतऒदनेषु शकाޑसंࡷारः
1.12 Śakābdasaṃskāra for the number of days elapsed in

the present year

नाकाहतं भाखगतभानुमंی ह٘ा धनाڦगैुϺणकैिरहोѶैः ।
मۤाकदहारैकवϺभजेदवाݗाः कायЉः शशाӼाकदषु तّराڦाः॥ १३ ॥
nākāhataṃ bhāgitabhānumadhyaṃ
hatvā dhanādyairguṇakairihoktaiḥ |
mandādihārairvibhajedavāptāḥ
kāryāḥ śaśāṅkādiṣu tatparādyāḥ || 13 ||

Having multiplied 10 (nāka) times the mean longitude of the Sun, expressed in de-
grees (bhāgita), by the śakābdaguṇakāras, 09 (dhana) etc. stated here, and dividing
the same by the śakābdahārakas, 85 (manda) etc., the results obtained, which are
in thirds, should be applied to the Moon etc. [respectively].
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If θs0 is the mean longitude of the Sun expressed in degrees, then the
śakābda correction corresponding to the number of days elapsed in the current
year as given in the verse is of the form

c2 = 10× θs0 ×
g

h
. (1.28)

In the above expression, though the mean longitude θs0 is expressed in de-
grees, it has been explicitly mentioned that the final result obtained is in
thirds (tatparās). This quantity needs to be applied positively or negatively
to the mean planet to obtain the mean longitudes of the planets for the given
ahargaṇa.

We now explain the rationale behind the expression given in (1.28). From
(1.24), it is clear that the śakābdasaṃskāra to be applied to the mean planet
for one year is g

h (in min.) or g
h ×3600 (in thirds). Since this is the magnitude

of correction to be applied corresponding to a period in which the mean Sun
moves 360◦, the magnitude of correction for a given number of solar days
elapsed in the present year can be obtained simply by applying the rule of
three, and is given by

c2 =
( g
h
× 3600

)
× θs0 (in deg.)

360
, (1.29)

which is the same as (1.28).

Note: As indicated earlier, in the case of Mars, Mercury and Saturn, the
correction is to be added and in the case of the others, it has to be subtracted
from their mean śakābda longitudes.

Illustrative example

It may be noted from Table 1.8, that the mean longitude of Venus after the first
stage of śakābdasaṃskāra is θ1 (Venus) = −157.80355. The mean longitude of
the Sun for the given ahargaṇa (from Table 1.5) when expressed in degrees is

θs0 = 27.41550◦. (1.30)

Using (1.30) and the corresponding value of g

h
for Venus in (1.28), we get the

magnitude of the the second correction for Venus to be

c2 (Venus) = 178.49242 (in thirds).

The second correction including the sign for all the planets are listed in
Table 1.9.

Since c2 is subtractive for Venus, the corrected mean longitude θ2 is given
by
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Planet śakābdasaṃskāra (±c2)
in thirds (′′′)

Sun No saṃskāra
Moon −29.02818

Moon’s apogee −132.98564
Mars 52.49777

Mercury 489.97918
Jupiter −54.83100
Venus −178.49242
Saturn 23.33234

Moon’s node −111.37548

Table 1.9 Śakābdasaṃskāras corresponding to the number of solar days elapsed in the
current year for ahargaṇa A = 1754000.

θ2 = θ1 − c2

= −157.80355× 3600− 178.49242
= −568271.28254 (in thirds). (1.31)

In the above equation, since c2 is in thirds and θ1 is in minutes, the value of
the latter has been multiplied by 3600 in order to express that also in thirds.

Usually in the Indian astronomical tradition the longitudes are expressed
in rāśis, degrees, minutes etc. Hence, we divide (1.31) first by 21600 in order
to get the result in degrees, and then further divide it by 30 in order to express
the corrected mean longitude in terms of rāśi etc. Now,

−568271.28256
216000× 30

= −0.0876961856.

Since the result is negative, we add 12 rāśis to it. Thus

θ2 = 12− 0.087696186 = 11.9123038.

Here the integral part represents the rāśi. Thus, Venus has completed 11 rāśis
and is in the 12th rāśi. By multiplying the fractional part by 30, we will get
the degrees etc. In this way, the corrected mean longitude of Venus is found
to be

θ2 = 11r27◦22′8′′48′′′43′′′′.

In a similar manner the corrected mean longitudes of all the planets corre-
sponding to A = 1754000 have been computed and the results are listed in
Table 1.10.
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Planet
śakābda corrected mean longitude (θ2)
sign deg. min. sec. thirds fourths
(rāśi) (◦) (′) (′′) (′′′) (′′′′)

Sun 0 27 24 55 48 22
Moon 1 14 23 18 14 9

Moon’s apogee 11 2 32 8 58 42
Mars 1 20 44 35 3 3

Mercury 8 26 27 22 46 19
Jupiter 10 8 41 6 38 21
Venus 11 27 22 8 48 43
Saturn 11 2 37 47 39 8

Moon’s node 4 1 26 18 55 30
Table 1.10 Śakābda corrected mean longitudes of the planets for the ahargaṇa A =
1754000.

१.१३ ख؛ΣुवयोरानयनͲ
1.13 Obtaining the khaṇḍas and the dhruvas

It is evident from the procedure for the computation of mean longitudes of
planets from the kalyahargaṇa, outlined in the previous sections, that the
process involves handling huge numbers such as the ahargaṇa, the revolution
numbers and the number of civil days in a mahāyuga. It is therefore very
important to arrive at procedures that would simplify the arithmetical oper-
ations. One of the main objectives of this text Karaṇapaddhati is to describe
methods by which such a simplification can be achieved, and in this connection
the author introduces several new concepts and techniques that are not found
in the siddhāntic texts. In particular, the notions of khaṇḍas and dhruvas are
quite important and play a key role in simplifying many of the calculations.

The next couple of verses outline the procedures for obtaining the khaṇḍas
and dhruvas.

१.१३.१ ख؛ानयनΥकारः
1.13.1 Procedure for obtaining the khaṇḍas

धीभावाӾैः कघलकदनगणाޱࠄते गुئसं̶ः
तՋेषोनः11 कघलकदनगणः ख؝सं̶ो Ηहाणाͳ ।

11 तՋेषोनः = धीभावाӾैः कवभմ यः शेषः लޔः, तेन ऊनः कघलकदनगणः |
taccheṣonaḥ = dhībhāvāṅgaiḥ vibhajya yaḥ śeṣaḥ labdhaḥ, tena ūnaḥ kalidinagaṇaḥ |



1.13 Obtaining the khaṇḍas and the dhruvas 23

गुئाͪ तٌڣगणगुछणताͪ ऊनमूՋЉϠभाݗाः
खेटा࢈Ӿुञࢢभवनयुतः ष׽ϠڠोऽΡ राϡः ॥ १४ ॥
dhībhāvāṅgaiḥ kalidinagaṇāllabhyate guṇyasaṃjñaḥ
taccheṣonaḥ kalidinagaṇaḥ khaṇḍasaṃjño grahāṇām |
guṇyāt tattadbhagaṇaguṇitāt ūnamūrcchāśubhāptāḥ
kheṭāstuṅgastribhavanayutaḥ ṣaḍbhaśuddho’tra rāhuḥ || 14 ||

The quotient obtained by dividing the ahargaṇa (kalidinagaṇa) by 3449 (dhīb-
hāvāṅga) is guṇya; the remainder subtracted from the ahargaṇa is known as the
khaṇḍa of the planets. The results obtained by multiplying the guṇya by respective
revolution numbers (bhagaṇas) [of the planets] and dividing by 457500 (ūnamūrc-
chāśubha) are [the uncorrected dhruvas of] the planets. In the case of Tuṅga (Moon’s
apogee) three rāśis are added to the result and in the case of Rāhu (Moon’s node)
the result has to be subtracted from six rāśis.

The above verse essentially outlines the procedure for obtaining khaṇḍas. The
term khaṇḍa literally means ‘a part’. However, in the above verse, it refers to
the ahargaṇakhaṇḍa, a certain number of civil days that have already elapsed
since a given epoch. The mean longitudes at the end of the khaṇḍa are called
khaṇḍāntyadhruvas, or simply dhruvas of the planets. We now proceed to
explain the procedure to obtain the uncorrected mean longitude (without the
“śakābda-saṃskāra”) as outlined in the verse.

Let A represent the ahargaṇa for the desired day. When this is divided by
3449 (dhībhāvāṅga) we get,

A

3449
= G+ r

3449
. (1.32)

Here the quotient G is called guṇya, and the remainder r the śeṣa. Now, the
khaṇḍa (K) is defined as

K = A− r = 3449×G. (1.33)

From the above equation it is evident that khaṇḍa represents a certain large
chunk of ahargaṇa that is an integral multiple of 3449. If R represents the
revolutions made by the planet in a mahāyuga, then the uncorrected mean
longitude of the planet at the end of the khaṇḍa is stated to be

θk0 = G×R

457500
. (1.34)

The number 457500 appearing in the above equation is obtained by dividing
the total number of civil days in a mahāyuga Dc by 3449.

Dc

3449
= 1577917500

3449
= 457500. (1.35)

Using (1.35) and (1.33) in (1.34) we have
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θk0 = K ×R

Dc
, (1.36)

which is the standard expression for obtaining the mean longitudes. It should
be kept in mind that what we are considering here is only the uncorrected
mean longitude.

Illustrative example

We shall now find the khaṇḍa and dhruvas of the planets corresponding to the
ahargaṇa A = 1754000 for which the mean longitudes were computed earlier.

Dividing A by 3449, we get the guṇya G to be 508. That is,

1754000
3449

= 508 + 1908
3449

. (1.37)

As per the prescription, the remainder r = 1908 when subtracted from A gives
the khaṇḍa

K = 1754000− 1908 = 1752092.

We know that the revolution made by the Moon in a Mahāyuga is 57753336.
From (1.34), the mean longitude of the Moon at the end of the khaṇḍa 1752092
may be obtained as follows:

θk0 (Moon) = 508× 57753336
457500

= 64128.294399. (1.38)

This shows that at the end of the khaṇḍa, Moon has completed 64128 revo-
lutions and 3 signs (0.294399× 12 = 3.532799). By multiplying the fractional
part by 30 etc., we obtain the uncorrected mean longitude of the Moon at
khaṇḍāntya to be

θk0 (Moon) = 3r15◦59′2′′23′′′59′′′′.

It may be noted that the mean longitude θk0 of the planet at the end of
the khaṇḍa is obtained by making use of the multiplier (G = 508) and the
divisor (457500) whose magnitudes are considerably smaller compared to the
magnitude of the khaṇḍa (1752092) and bhūdina (1577917500). This is indeed
an advantage from the computational view point.

The uncorrected mean longitudes of all the other planets at the end of the
khaṇḍa are listed in Table 1.11. The next verse explains the śakābdasaṃskāra
to be applied to this mean planet in order to find the dhruva, D.
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Mean longitude (θk0) at the end
Planet of the khaṇḍa K = 1752092

sign deg. min. sec. thirds fourths
(rāśi) (◦) (′) (′′) (′′′) (′′′′)

Sun 10 6 53 6 53 6
Moon 3 15 59 2 23 59

Moon’s apogee 4 9 32 33 12 23
Mars 4 7 9 15 41 54

Mercury 11 13 12 28 19 40
Jupiter 5 4 3 57 0 35
Venus 6 13 15 43 47 24
Saturn 8 27 9 25 8 27

Moon’s node 7 20 30 42 15 20
Table 1.11 The uncorrected khaṇḍāntyadhruvas of the planets.

१.१३.२ Σुवानयने शकाޑसंࡷार:
1.13.2 Applying śakābdasaṃskāra to find the dhruvas

गुئाͪ खतथीशगुछणताͬ खगिरतुӾकनӳं पोतं ٖजेदथ धनाकदगुणाहतं तͪ ।
मۤाकदहारहतपोतϓतं यथोѶं कुयЉͬ कवहӾमकलाकदषु ते Τवुाः ःु࢒ ॥ १५ ॥
guṇyāt tithīśaguṇitād girituṅganighnaṃ
potaṃ tyajedatha dhanādiguṇāhataṃ tat |
mandādihārahatapotahṛtaṃ yathoktaṃ
kuryād vihaṅgamakalādiṣu te dhruvāḥ syuḥ || 15 ||

[The number] 61 (pota) multiplied by 3623 (girituṅga) has to be subtracted from
576 (tithīśa) multiplied by the guṇya. [The result thus obtained] should be mul-
tiplied by [the śakābdaguṇakāras], 09 (dhana) etc. and divided by the product of
61 (pota) and the śakābdahārakas, 85 (manda) etc. By applying [the results] in
minutes to the mean planets, the dhruvas can be obtained.

The above verse prescribes the śakābdasaṃskāra that is to be applied to the
uncorrected mean longitude to obtain the dhruva D. If G represents the guṇya,
and g and h the śakābdaguṇakāra and hāraka of the planet respectively, then
the śakābda correction is given by

cd = (G× 576− 3623× 61)× g

h× 61
. (1.39)

Here it has been specifically stated that the result obtained should be applied
to the longitude of the planet expressed in minutes (vihaṅgamakalādiṣu). This
implies that the correction given by (1.39) is in minutes. Multiplying the
fractional part by 60, seconds can be obtained. This correction cd has to be
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applied positively in the case of Mercury, Mars and Saturn and negatively in
the case of others. That is,

D = θk0 + cd (for Mercury, Mars and Saturn), (1.40a)
and D = θk0 − cd (for other planets). (1.40b)

We now explain the rationale for the above correction (1.39). It may be
recalled that while obtaining mean planets from A, two corrections c1 and
c2, given by (1.24) and (1.28), were to be applied. However, here only one
correction term is given. It can easily be seen that this single correction term
given by (1.39) is equivalent to the sum of the two correction terms given by
(1.24) and (1.28). Recalling the two expressions and finding their sum we have

c1 + c2 = (ys − 444)× g

h
+ θs0 × g × 10

h× 3600

=
(
yk − 3623 + θs0

360

)
× g

h
. (1.41)

Since c1 is in minutes and c2 given in (1.28) is in thirds (tatparas), we have
divided the latter by 3600 in order to express that also in minutes in the above
expression.

In (1.41), θs0 is the number of solar days elapsed in the current year and
360 is the number of solar days in a year. Therefore, θs0

360 , say yf , represents
fraction of the current year elapsed. Rewriting (1.41),

c1 + c2 = ((yk + yf )− 3623)× g

h
. (1.42)

Now (yk + yf ) is the number of solar years elapsed corresponding to the
khaṇḍa K. Since 4320000 is the total number of the number of solar years
consisting of 1577917500 days, the number of solar years corresponding to K
can be expressed using the rule of three as

yk + yf = K × 4320000
1577917500

. (1.43a)

Dividing 4320000 and 1577917500 by 7500 (which is their G.C.D.), we get 576
and 210389. Thus the above equation becomes

yk + yf = K × 576
210389

= K × 576
3449× 61

. (1.43b)

Substituting (1.43b) in (1.42), we get
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c1 + c2 =
(

K × 576
3449× 61

− 3623
)
× g

h

=

(
K

3449 × 576− 3623× 61
61

)
× g

h

= (G× 576− 3623× 61)× g

h× 61
, (1.44)

which is the same as the correction (1.39), prescribed in the text.

Illustrative example

It was shown in the previous section that the uncorrected mean longitude of
the Moon corresponding to K = 1752092 is

θk0 = 3r15◦59′2′′23′′′59′′′′ = 6359.04′.

Substituting appropriate values of G from (1.37) and also the values of g
and h from (Table 1.6) for the Moon in (1.39), we get the śakābda correction
to be

cd (Moon) = 124.290260′. (1.45)

Planet śakābdasaṃskāra (cd)
in minutes (′)

Sun No Saṃskāra
Moon −124.29026

Moon’s apogee −569.40604
Mars +224.78026

Mercury +2097.94908
Jupiter −234.77049
Venus −764.25288
Saturn +99.90233

Moon’s node +476.87756

Table 1.12 Śakābdasaṃskāra for the dhruvas of the planets.

Subtracting cd of Moon from θk0, we get the dhruva

D (Moon) = 6359.04− 124.29026 = 6234.74974′.

Converting the above into signs, degrees etc. we have
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D (Moon) = 3r13◦54′44′′59′′′3′′′′.

The śakābdasaṃskāras for the other planets obtained in a similar manner
are listed in Table 1.12. These corrections when applied to their mean lon-
gitudes give the dhruvas or the śakābda-corrected mean longitudes of all the
planets at the end of the khaṇḍa (see Table 1.13).

śakābda-corrected mean planet (dhruva D)
Planet corresponding to khaṇḍa K = 1752092

sign deg. min. sec. thirds fourths
(rāśi) (◦) (′) (′′) (′′′) (′′′′)

Sun 10 6 53 6 53 6
Moon 3 13 54 44 59 3

Moon’s apogee 4 0 3 8 50 38
Mars 4 10 54 2 30 49

Mercury 12 18 10 25 16 20
Jupiter 5 0 9 10 46 49
Venus 6 0 31 28 37 3
Saturn 8 28 49 19 16 52

Moon’s node 7 12 33 49 36 7
Table 1.13 Dhruvas corresponding to the khaṇḍa K = 1752092.

While Table 1.13 presents the dhruvas corresponding to a date that goes
back by three centuries, the dhruvas corresponding to a recent date are listed
in Table 1.14. Here we take the ahargaṇa A = 1851974 corresponding to nija-
āṣāḍha-kṛṣṇa-navamī, Śaka 1891 (August 6, 1969 ce). Then we obtain the
corresponding khaṇḍa K = 1848664. The dhruvas for this khaṇḍa are listed in
Table 1.14.

१.१४ ख؛ΣुवगणनायЅ Υकारा۠रͲ
1.14 An alternative method for obtaining the khaṇḍas

and dhruvas

भूकदनाͬ ोݗगुणेनाڦ हार࢈ने࢔पयϺयाͪ ।
भगणाڦा Ηहा࢈Ρ शࡄՊुे भΡयं छ̵पेͪ ॥ १६ ॥
पाते तु म؝लाՋुेڠ चΕाधϺमकप योजयेͪ ।
हारेण भूकदनाޔࠄो गुणःڦ ख؝सं̶कः ॥ १७ ॥
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śakābda-corrected mean planet (dhruva D)
Planet corresponding to khaṇḍa K = 1848664

sign deg. min. sec. thirds fourths
(rāśi) (◦) (′) (′′) (′′′) (′′′′)

Sun 2 28 31 28 31 28
Moon 11 0 23 23 42 30

Moon’s apogee 2 14 44 24 27 36
Mars 11 7 10 41 33 48

Mercury 10 8 35 17 42 32
Jupiter 8 14 8 29 13 58
Venus 3 10 26 2 1 23
Saturn 8 18 24 37 31 57

Moon’s node 4 24 11 15 31 47
Table 1.14 Dhruvas corresponding to the khaṇḍa K = 1848664.

तΡाङधकमुतोनं वा Εमाϐणधनाٕकͳ ।
मभुगѶӳमेतͬیम࢔࢔ भाࡹरपयϺये ॥ १८ ॥
हारӳखगिरतुӾोने धनाकद࢔गुणाहते ।
मۤाकद࢔हरेणाेݗ णϻ࢔ सा߅ङभदावशाͪ ॥ १९ ॥
Εमाͬ धनमृणं कृ٘ा ततो हारेण संϓतͳ ।
कुयЉͬ Ηहषेु घलݗांڦ तदा ते ΤुϺवाु࢒ इह ॥ २० ॥
bhūdinād dyugaṇenāpto hārastena svaparyayāt |
bhagaṇādyā grahāstatra śaśyucce bhatrayaṃ kṣipet || 16 ||
pāte tu maṇḍalācchuddhe cakrārdhamapi yojayet |
hāreṇa bhūdināllabdho dyugaṇaḥ khaṇḍasaṃjñakaḥ || 17 ||
tatrādhikamutonaṃ vā kramādṛṇadhanātmakam |
svasvamadhyamabhuktighnametad bhāskaraparyaye || 18 ||
hāraghnagirituṅgone dhanādisvaguṇāhate |
mandādisvahareṇāpte svarṇaṃ sāmyabhidāvaśāt || 19 ||
kramād dhanamṛṇaṃ kṛtvā tato hāreṇa saṃhṛtam |
kuryād graheṣu liptādyaṃ tadā te syurdhruvā iha || 20 ||

The result (quotient) obtained by dividing the number of civil days (bhūdina) in
a mahāyuga by ahargaṇa is the hāraka. The number of revolutions of the planets
divided by that [hāraka] would be the elapsed revolutions etc. of the planets. There,
three rāśis should be added to the Moon’s apogee.
In the case of Rāhu, the result has to be subtracted from twelve rāśis and then six
rāśis have to be added. The group of civil days obtained by dividing the bhūdina
by hāraka is a heap of days (dyugaṇa) called the khaṇḍa.
The remainder which is in excess or less would be negative or positive respec-
tively. This is multiplied by the respective mean motions (madhyamabhuktis) of
the planets [and] the result is applied [to the following]. The number 3623 (giri-
tuṅga) multiplied by the hāraka is subtracted from the number of revolutions of
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the Sun. [The remainder] is multiplied by dhanādi-guṇakāras and divided by the
mandādi-hārakas of the respective planets.
Having added or subtracted [the result thus obtained] appropriately and divid-
ing by the hāraka, [the result] in minutes should be applied to the mean planets
obtained earlier. Then, the resulting quantities would be the dhruvas.

The guiding principle in any choice of the khaṇḍa is that the dhruva should
be easily computable and the khaṇḍaśeṣa should be as small as possible. One
method of obtaining the khaṇḍa and the dhruva was already discussed in
verse 14. It may be noted that the value of the khaṇḍa K as obtained from
that method would be necessarily a multiple of 3449, and hence the value of
khaṇḍaśeṣa which is the difference between the khaṇḍa and the ahargaṇa can
be as large as 3449. The purpose of the alternative method presented in this
set of five verses (16-20) is to arrive at a value of khaṇḍaśeṣa that could be
much smaller than the one obtained by the method outlined in verse 14.

We now proceed to explain this alternative procedure for finding the khaṇḍa
as also the dhruvas of planets corresponding to the khaṇḍa. It is interesting to
note that the śakābdasaṃskāra is also nicely incorporated in this procedure.
First, a quantity known as hāraka (H) is defined as follows

H =
[
Dc

A

]
int

, (1.46)

where A is the ahargaṇa, and ‘[ ]int’ denotes the integral part or quotient. Now,
if R represents the revolutions made by a planet, then the uncorrected mean
longitude for the khaṇḍa (which is defined below) is stated to be (θ)0 = R

H . As
usual, 90◦ is to be added to Moon’s apogee, and 180◦ to Rāhu whose motion
is retrograde.

Having defined the hāraka and mean longitude, the text defines khaṇḍa K
(see latter half of verse 17) as the ratio of the yugasāvanadina Dc and the
hāraka H. That is,

K =
[
Dc

H

]
int

. (1.47)

It is further stated that the khaṇḍa is to be taken as the quotient K itself
when the remainder r, which is obtained when Dc is divided by H, is less
than H

2 ; and when r is greater than H
2 , the khaṇḍa is to be taken as K + 1.

We now discuss these two cases.

Case i: r < H
2

In this case, it is said that the khaṇḍa is to be taken to be the quotient itself.
That is,
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K =
[
Dc

H

]
int

. (1.48)

Hence (1.48) may be written as

Dc = (H ×K) + r, (1.49)

where the remainder r is called adhikaśeṣa.12

Case ii: r > H
2

In this case it is said that the khaṇḍa is to be taken to be the quotient plus
one. That is,

K =
[
Dc

H

]
int

+ 1. (1.50)

Hence,

Dc = HK − (H − r)
= HK − r′. (1.51)

Here the remainder r′ = H − r, which is called ‘ūnaśeṣa’ (ūnātmakaḥ śeṣaḥ)
is subtractive in nature.

At this stage the text uses the mean daily motion of the planet which is
given by R × 21600

Dc
. The mean daily motion multiplied by r (adhikaśeṣa) or

r′ (ūnaśeṣa) is a quantity (which we denote by x) which will be considered
below. To this is applied another quantity (which we denote by y) which is
defined as follows:

y = [bhāskaraparyaya − (hāra × 3623)]× g

h
. (1.52)

The term bhāskaraparyaya literally means the revolutions made by the Sun
[in a mahāyuga], and hence refers to the number 4320000. Therefore, we have

y = (4320000− 3623×H)× g

h
. (1.53)

Now the corrected mean longitude at khaṇḍāntya K which is what is called
‘Dhruva’ is stated to be:

12 The remainder (śeṣa) is the excess (adhika) when the product H ×K is removed from
Dc, and hence called adhikaśeṣa.
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D = (θ)0 + (y ± x) 1
H

= R

H
+ (y ± x) 1

H
, (1.54)

where the ‘−’ sign arises when r < H
2 .

Rationale behind the expression for dhruva

We now present the rationale behind the expression (1.54) given above. It may
be noted that the series of steps prescribed for finding the dhruvas commences
with the definition of hāraka H, which is the integral part of the ratio of
yugasāvanadina and ahargaṇa. This ratio itself can have a fractional part
which we denote as f . That is,

Dc

A
= H + f.

Rewriting the above Dc = H ×A+ f ×A. Let f ×A = qH + r. Then,

Dc = H(A+ q) + r

= Hq′ + r, (1.55)

Depending upon the magnitude of H and r, we now consider two cases. If
r < H

2 , we write

Dc = K ×H + r, (1.56)

where K = q′ = A + q is the khaṇḍa, and r the remainder (adhikaśeṣa). If
r > H

2 , we write

Dc = K ×H − r′, (1.57)

where K = q′ + 1 = A+ q + 1 is the khaṇḍa, and r′ = H − r is ūnaśeṣa.
We now return to the expression for dhruva D given in (1.54). This is valid

for both the cases r > H
2 and r < H

2 . In what follows will consider the case
r > H

2 . It is well known that the mean longitude of a planet is given by R× A
Dc

.
The mean longitude at the khaṇḍāntya is what is known as dhruva (D) and
may be expressed as

D = R× K

Dc
+ δ, (1.58)

where the additive δ represents the śakābda correction. Since the case under
consideration is r > H

2 , we use the expression for Dc given by (1.57) in (1.58).
Doing so, we have
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D = R× K

(K ×H − r′)
+ δ

≈ R

H

[
1 + r′

(K ×H)

]
+ δ. (1.59)

It may be noted that, in (1.59) we have used the approximation 1
(1−z) ≈

1 + z, when z ≪ 1, with z = r′

K×H . Rewriting (1.59), we have

D = R

H
+ R

(K ×H)
× r′

H
+ δ. (1.60)

Considering (1.57), since r′ ≪ K ×H, to the “first order”, Dc ≈ H ×K.
Therefore, R

(H×K) ≈ R
Dc

= number of revolutions/day. This when converted
into minutes gives the mean daily motion gm (madhyamabhukti). Hence the
correction to the mean longitude in minutes due to the “remainder term”
(second term in RHS of (1.60)) is given by

gm × r′

H
, (1.61)

which is what is represented as x
H in (1.54). This is the case when the remain-

der is ūnaśeṣa (r > H
2 ). In the case of adhikaśeṣa (r < H

2 ) too, it can be seen
that one is lead to a similar result.13

Now we shall show that the term y
H occuring in (1.54) exactly corresponds

to the śakābda correction δ. For this, we first find the number of years between
the epoch śakābda 444 or kalyabda 3623 and our khaṇḍa, K. The number of
years from the beginning of kali to the khaṇḍa K is

K × 4320000
Dc

.

Therefore, the number of years between śakābda 444 and the khaṇḍa is
13 In this case Dc = KH + r and hence,

1
Dc

= 1
KH

[
1

1 + r
KH

]
≈ 1

KH

[
1− r

KH

]
.

Hence, in place of (1.60), we have

D = R

H
− R

K ×H
× r

H
+ δ.

This leads to the ‘−’ sign in (1.54).
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4320000

Dc
×K − 3623

)
≈ 4320000

H
− 3623

= 1
H

× (4320000− 3623×H). (1.62)

Hence the śakābda correction due to above number of years between śakābda
444 and the khaṇḍa K is given by

1
H

(4320000− 3623×H)× g

h
, (1.63)

which is the same as y
H as given by (1.53). Hence the dhruva D is given by

D ≈ R

H
+ (x+ y) 1

H
.

This is the rationale behind (1.54), where the second term includes both the
corrections due to the “remainder term” and due to the śakābdasaṃskāra, in
minutes.

Illustrative example

We will now illustrate the above alternate method for finding the khaṇḍa and
the dhruva. We shall in particular obtain the dhruva of Moon for the same
ahargaṇa A = 1754000, considered earlier. The hāraka will be

H =
[
Dc

A

]
int

=
[
1577917500
1754000

]
int

= 899.

The uncorrected mean longitude is

(θ)0 = R

H

= 57753336
899

= 64241.75305895 revolutions (1.64)

= 16266.073415′, (1.65)

after subtracting the integral number of revolutions, 64241. In this case,

Dc

H
= 1577917500

899
or Dc = 899× 1755191 + 791. (1.66)

Since the number r = 791 is greater than half of the divisor H, the khaṇḍa,
K = 1755191 + 1 = 1755192. The ūnaśeṣa
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r′ = 899− r = 899− 791 = 108.

The corrected mean longitude at the khaṇḍa, or the dhruva D, is given by

D = (θ)0 +
r′ × gm

H
− 1

H
(4320000− 3623×H)× g

h
. (1.67)

Here (θ)0 = 16266.073415′, r′ = 108, the madhyamagati of the Moon, gm is
790.581′, H = 899 and g

h = −0.10588′. Substituting these values, we have

D (Moon) = 16235.8597996
= 9r0◦35′51′′35′′′16′′′′. (1.68)

The dhruvas corresponding to the various planets are listed in Table 1.15.

dhruva
Planet (D)

sign degrees minutes seconds thirds fourths
(rāśi) (◦) (′) (′′) (′′′) (′′′′)

Sun 4 2 15 14 47 48
Moon 9 0 35 51 35 16

Moon’s apogee 3 15 16 56 6 23
Mars 10 15 22 57 8 21

Mercury 3 14 35 12 24 17
Jupiter 1 17 43 34 29 32
Venus 3 17 5 45 7 4
Saturn 0 12 29 35 11 17

Moon’s node 1 28 16 28 29 48
Table 1.15 Dhruvas of the planets corresponding to the khaṇḍa K = 1755192.

In this context the observation made in Malayalam Commentary II as a
prelude to the set of five verses described above is worth noting:14

anantaraṃ “dhībhāvāṅga” ennatinekkāḷ aduppamuḷḷa iṣṭadinaṃ koṇṭu khaṇḍaṅaḷuṃ
dhruvaṅaḷuṃ varuttuvān collunnū añjuśḷokaṅaḷe koṇḍu.
Hereafter, in the following five verses, [a procedure] is stated to obtain the khaṇḍas
and dhruvas for any desired day which is more closer [to the day compared to that
which is obtained from] dhībhāvāṅga [method].

What the commentator is implying is that the alternative method for find-
ing the khaṇḍas given in verses 16-20 [Method II] leads to khaṇḍas which are
closer to the given ahargaṇa than the khaṇḍas which are obtained by following
the method outlined in verse 14 [Method I].
14 {KP 1956}, p. 25.
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Fig. 1.1 Difference between the ahargaṇa and the khaṇḍa (obtained using Method II)
for ahargaṇas between 1600000 to 1800000.
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Fig. 1.2 Difference between the ahargaṇa and the khaṇḍa (obtained using Method I) for
ahargaṇas between 1600000 to 1800000.

In order to check the veracity of the claim made by the commentator, we
computed the khaṇḍa using both the methods for ahargaṇas ranging from
1600000 (15th century) to 1800000 (20th century). In Figure 1.1 we plot the
difference between the ahargaṇa and the khaṇḍa computed using Method II
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against the ahargaṇa for this range at an interval of 10 days. We observe
that the maximum difference is ≈ 2000. In Figure 1.2, we plot the difference
between the ahargaṇa and the khaṇḍa obtained following Method I for the
same range of ahargaṇas at an interval of 10 days. There we see the maximum
difference is 3449.

It is clear that Method II is more advantageous for ahargaṇas A ≈ 106.
In Figure 1.3, we have plotted the difference between the ahargaṇa and the
khaṇḍa following both the methods, for ahargaṇas ranging from 106 to 2.5×106
at an interval of 100 years. From the trend of the graph, it is seen that Method
II may be less advantageous for A > 2.1 × 106. However, this cannot be
attributed as a drawback of Method II, since the karaṇa texts are not expected
to be applicable for large range of values of A anyway.
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Fig. 1.3 Difference between the ahargaṇa and the khaṇḍa (using both Methods I, II) for
ahargaṇas ranging from 106 to 2.5× 106.

१.१५ राहोः शकाޑसंࡷारे वैगशࡦͲ
1.15 Speciality in the śakābdasaṃskāra for Rāhu

शकाޓसंृࡹतौ पाते Ϡڠ एव भवेϐणͳ ।
ततोऽ۬Ρ धनं कवڦाͪ तڣगुѶभगणाकदके ॥ २१ ॥
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śakābdasaṃskṛtau pāte śuddha eva bhavedṛṇam |
tato’nyatra dhanaṃ vidyāt tadbhuktibhagaṇādike || 21 ||

In the computed value of Rāhu [subtracted from 360◦] the śakābda correction has
to be subtracted from the [mean longitude]. In other places where the revolutions
and madhyamagati are found, it has to be added.

In the case of Rāhu, after obtaining the mean longitude from its number of
revolutions, as for other planets, it is subtracted from 6 rāśis, as its motion is
retrograde and is located at 6 rāśis at kalyādi. The śakābdasaṃskāra for Rāhu
is prescribed to be negative, considering the retrograde nature of its motion
into account. This means that there is an increase in the revolution number
and madhyamagati of Rāhu due to the śakābdasaṃskāra.

१.१६ ΖहमۊभुकѴः
1.16 The mean motion of the planets

अकЉदभेϺगणा࢈ޱा राछशचΕ࢒ घलकݗकाः ।
भूकदनैकवϺϓता࢈षेЇ मیभुगѶकलाः ࢑तृाः ॥ २२ ॥
arkāderbhagaṇābhyastā rāśicakrasya liptikāḥ |
bhūdinairvihṛtāsteṣāṃ madhyabhuktikalāḥ smṛtāḥ || 22 ||

The revolution numbers of the planets, starting from the Sun etc., multiplied by
21600 and divided by the number of civil days in a mahāyuga (bhūdinas) would
result in their respective mean daily rate of motion (madhyabhukti) in minutes.

If gm denotes the madhyamabhukti/madhyamagati of the planet, then it is
given by

gm = 21600×R

Dc
. (1.69)

The integral part of the above result obtained would be in minutes. From
the fractional part, the seconds etc. can be obtained. The madhyamabhuktis
of different planets obtained using (1.69) are given in Table 1.16.

१.१७ मۊभुѴेः शकाޑसंࡷारः
1.17 Śakābdasaṃskāra for the mean motions

नृपहतकदनकरभोगागۦजकनजगुणकैधϺनाकदङभगुϺछणताͪ ।
मۤाकद࢔हराݗाः चܓाकदगतौ Φतّराः कायЉः ॥ २३ ॥
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Mean motion (madhyamagati)
Planet minutes seconds thirds fourths

(′) (′′) (′′′) (′′′′)

Sun 59 8 10 13
Moon 790 34 52 39

Moon’s apogee 6 40 59 30
Mars 31 26 27 48

Mercury 245 32 18 54
Jupiter 4 59 9 0
Venus 96 7 44 17
Saturn 2 0 22 41

Moon’s node 3 10 44 7
Table 1.16 The mean motion of the planets.

nṛpahatadinakarabhogānnijanijaguṇakairdhanādibhirguṇitāt |
mandādisvaharāptāḥ candrādigatau pratatparāḥ kāryāḥ || 23 ||

The mean motion of the Sun (dinakarabhoga) multiplied by 10 (nṛpa) has to be
[further] multiplied by the guṇakāras, dhana etc., and divided by the hārakas,
manda etc. The result in fourths (pratatparas) should be applied to the [mean]
motion (madhyamagatis) of the Moon etc.

If cr represents the śakābdasaṃskāra to be applied to the madhyamagati of
the planet, then it is stated that

cr = dinakarabhoga × 10× g

h

= 59′8′′10′′′13′′′′ × 10× g

h
. (1.70)

In (1.70), dinakarabhoga is the rate of motion of the Sun per day in minutes. It
has been clearly mentioned in the verse that the magnitude of the correction
given by (1.70) is in pratatparas (fourths).

The rationale behind (1.70) can be understood as follows. We know that
the śakābda correction applied to the planets per year (in minutes) is g

h . Hence,
the saṃskāra per day is

Rs

Dc
× g

h
(in minutes), (1.71)

where Rs represents the revolutions made by the Sun in a mahāyuga and Dc

the total number of civil days in a mahāyuga. The ratio Rs

Dc
as such gives the

rate of motion of the Sun in revolutions per day. Thus this ratio Rs

Dc
in (1.71)

can be replaced by dinakarabhoga
21600 . Doing so, the saṃskāra for one day is
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dinakarabhoga
21600

× g

h
(in minutes). (1.72)

Now multipying this by 603, we would obtain the correction in fourths. Thus,
we have

gati-saṃskāra/ day = dinakarabhoga
21600

× g

h
× 603

= 59′8′′10′′′13′′′′ × 10× g

h
, (1.73)

which is the same as the expression (1.70) given in the text. The magnitude
of the correction (cr) to be applied to the mean motion of different planets in
fourths (tatparas) are listed in Table 1.17.

Planet śakābdasaṃskāra (cr)
in fourths (′′′′)

Sun No saṃskāra
Moon 62.6148 ≈ 63

Moon’s apogee 286.8546 ≈ 287
Mars 113.2395 ≈ 113

Mercury 1056.9018 ≈ 1057
Jupiter 118.2723 ≈ 118
Venus 385.0142 ≈ 385
Saturn 50.3287 ≈ 50

Moon’s node 240.2407 ≈ 240
Table 1.17 Saṃskāras to be applied to the mean motion of planets.

The corrected mean motion of the planets (saṃskṛta-madhyamagatis) are
given by

g′m = gm + cr (for Mars, Mercury, (1.74)
Saturn and Moon’s node),

and = gm − cr (for Moon, Jupiter, (1.75)
Venus and Moon’s apogee).

It may be mentioned that unlike in the computation of mean longitudes,
cr has to be added to the mean motion of Moon’s node, Rāhu. The values of
g′m for different planets are listed in Table 1.18. These values have also been
listed in the Commentary I in the form of vākyas.15 They have been tabulated
15 {KP 1956}, p. 30.
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in Table 1.19, where we have also indicated the few places where the vākyas
differ slightly from the computed values.

saṃskṛta-madhyamagati
Planet minutes seconds thirds fourths

(′) (′′) (′′′) (′′′′)

Sun 59 08 10 13
Moon 790 34 51 36

Moon’s apogee 6 40 54 43
Mars 31 26 29 41

Mercury 245 32 36 31
Jupiter 4 59 07 02
Venus 96 07 37 52
Saturn 2 00 23 31

Moon’s node 3 10 48 7
Table 1.18 The corrected mean motion of planets.

saṃskṛta madhyamagati
Planet min. sec. thirds fourths vākya

(′) (′′) (′′′) (′′′′)

Sun 59 08 10 13 gopājñayā dinadhāmāḥ
Moon 790 34 51 36 caṇḍikeśo bhargasnigdhosau

Moon’s apogee 6 40 54 43 gūḍhavāśo’nubhāti
Mars 31 26 29 (42)16 prabhur dharācakrapālaḥ

Mercury 245 32 36 (32) rāgī tumbururgaṇeśvaraḥ
Jupiter 4 59 07 02 prajñāsanno dharmavān
Venus 96 07 37 (51) kāśīsāmbasannacoḍaḥ
Saturn 2 00 23 (32) prabalaḥ prājño naraḥ

Moon’s node 3 10 (44) (41) kavirvibhur nakulaḥ
Table 1.19 The corrected mean motion of planets given in the Commentary I in the
form of vākyas.

16 The parentheses mark those places where the vākya values differ from those in Ta-
ble 1.18.
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१.१८ गुणकार࢐ हारखڣतीयहारानयनͲ
1.18 Obtaining the hāra and the dvitīyahāra of a guṇakāra

इࡕӳाͪ कुकदनाͪ࢔पयϺयϓतो हारࢣथेࡕो गुणः
तΡोनाङधकमۦतّरहतं णЉٕकं࢔ पयϺये ।
सौरे हारहते धनाकदगुछणते मۤाकदहारोڠतृे
कृ٘ानेन हराहतछ̵खतकदनाޔࠄो ङڥतीयो हरः ॥ २४ ॥
iṣṭaghnāt kudināt svaparyayahṛto hārastvatheṣṭo guṇaḥ
tatronādhikamannatatparahataṃ svarṇātmakaṃ paryaye |
saure hārahate dhanādiguṇite mandādihāroddhṛte
kṛtvānena harāhatakṣitidināllabdho dvitīyo haraḥ || 24 ||

The quotient obtained when any desired number is multiplied by the number of
civil days in a mahāyuga (bhūdina) and divided by the number of revolutions of the
planet would be the hāraka, and this desired number is indeed the multiplicand
(guṇa). The remainder which is either less or in excess is multiplied by 21600
(annatatpara) and applied positively or negatively to the revolution number of the
Sun multiplied by the hāraka and by the multipliers dhana etc., and divided by
the divisors manda etc. By the [result thus obtained], the hāraka multiplied by the
bhūdina has to be divided. The quotient would be the dvitīyahāra.

Let x be an arbitrary number which is considered as the multiplicand (guṇa)
and R the number of revolutions of the planets. Now the product of x and
Dc, divided by R may be expressed as

x×Dc

R
= Q+ r

R
, (1.76)

where Q is the quotient and r is the remainder. Introducing the notation H1
for the hāraka, we consider the two possible cases that arise.

(i) If r < R
2 , then

H1 = Q =
[
x×Dc

R

]
int

, (1.77)

and the remainder r is called adhikaśeṣa as x×Dc

R is in excess of the hāraka,
H1.

(ii) If r > R
2 , then

H1 = Q+ 1 =
[
x×Dc

R

]
int

+ 1, (1.78)

and the remainder r′ = R − r is called ūnaśeṣa as x×Dc

R is less than the
hāraka.

Then, we compute one of the following quantities as the case may be
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y = H1 × 4320000× g

h
+ r′ × 21600 (if r >

R

2
),

and y = H1 × 4320000× g

h
− r × 21600 (if r <

R

2
).

Now, the dvitīyahāra H2 is defined in terms of H1 as:

H2 =
[
H1 ×Dc

y

]
int

. (1.79)

Since H1 and Dc are always positive, H2 would be negative, if y is negative,
and would be positive otherwise.

Explanation

This set of verses present an interesting method for simplifying the calculation
of the śakābda corrected mean longitude of the planets.

Let θc be the śakābda corrected mean longitude for ahargaṇa A. That is,

θc =
A×Rc

Dc
, (1.80)

where Rc is the corrected revolution number after incorporating the śakāb-
dasaṃskāra (which is explained in the next verse). We can write θc as

θc =
A× x
x×Dc

Rc

. (1.81)

Now (as set forth in the next verse) Rc = R+ 4320000
21600 × g

h , as g
h is the correction

for the rate of motion per year in minutes and there are 4320000 years in a
mahāyuga. We write Rc as

Rc = R

[
1 + 4320000

21600
× g

h×R

]
, (1.82)

and

x×Dc

Rc
= x×Dc

R

[
1 + 4320000

21600
× g

h×R

]−1

≈ x×Dc

R
− x×Dc

R
× 4320000

21600
× g

h×R
. (1.83)

If r < R
2 ,
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x×Dc

R
= H1 +

r

R
, and

x×Dc

Rc
≈ H1 +

r

R
−H1 ×

4320000
21600

× g

h×R
, (1.84)

where the term x×Dc

R is approximated by H1 in the śakābdasaṃskāra correc-
tion term. Hence,

x×Dc

Rc
≈ H1 −

y

R× 21600
, (1.85)

where
y = H1 × 4320000× g

h
− r × 21600.

If r > R
2 , then

x×Dc

R
= H1 −

r′

R
, and

x×Dc

Rc
≈ H1 −

y

R× 21600
, (1.86)

where y = H1× 4320000× g
h + r′× 21600. Hence, the expression for θc will be

θc =
A× x
x×Dc

Rc

≈ A× x

H1 − 1
R×21600 × y

≈ A× x

H1

[
1− 1

R×21600 × y
H1

]
≈ A× x

H1
+ A× x

H1

[
1

R× 21600
× y

H1

]
. (1.87)

This in terms of minutes reduces to

θc (in min) ≈ A× x

H1
× 21600 + A× x

H1 ×R
× y

H1
.

Now, RH1 ≈ x×Dc. Hence,

θc (in min) ≈ A× x

H1
× 21600 + A(

H1×Dc

y

) . (1.88)

The dvitīyahāra H2 is defined in the verse as
[
H1×Dc

y

]
int

. Therefore,

θc (in min) = A× x

H1
× 21600 + A

H2
. (1.89)
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The second term including H2 can be considered as a correction term as it is
much smaller.

Illustrative example

For the purpose of convenience, we choose the multiplicand x to be 100. With
this we will find out the hāra (H1) and the dvitīyahāra (H2) in the case of the
Moon.

x×Dc

Rc (Moon) = 2732 + 9636048
57753336

.

Here, the remainder 9636048 is less than half of 57753336. So the remainder is
adhikaśeṣa and the correction corresponding to that is negative. The hāraka,
H1 = 2732. Now,

y = 2732× 4320000× g

h
− 9636048× 21600

= 2732× 4320000×
(
−9
85

)
− 9636048× 21600

= −209388285741.1765.

Substituting the values in (1.79) the dvitīyahāraka H2 is found to be

H2 =
[

2732× 1577917500
−209388285741.1765

]
int

= −21.

Here H2 is negative. The value of H1 and H2 corresponding to x = 100 for
the other planets are also found in a similar manner and these are listed in
Table 1.20.

Planet H1 H2

Sun 36526 4681
Moon 2732 -21

Moon’s apogee 323199 -756
Mars 68700 1865

Mercury 8797 191
Jupiter 433227 -1817
Venus 22470 -1014
Saturn 1076606 4307

Moon’s node 679475 -899
Table 1.20 The first and second hārakas of the planets for x = 100.
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Similarly we have computed the first and second hārakas for x = 1 and
x = 50 and the values are listed in Tables 1.21 and 1.22.

Planet H1 H2

Sun 365 -23
Moon 27 0

Moon’s apogee 88 11
Mars 225 7

Mercury 687 1865
Jupiter 4332 -1161
venus 10766 4525
Saturn 3232 -768

Moon’s node 6795 -1004
Table 1.21 The first and second hārakas of the planets for x = 1.

Planet H1 H2

Sun 18263 4681
Moon 1366 −2

Moon’s apogee 4398 −44
Mars 11235 −1014

Mercury 3435 1865
Jupiter 216614 −18563
Venus 538303 4307
Saturn 161599 −744

Moon’s node 339737 −895

Table 1.22 The first and second hārakas of the planets for x = 50.
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१.१९ ΖहपयϸयाणЅ शकाޑसंࡷारः
1.19 Śakābdasaṃskāra for the number of revolutions of the

planets

̶ानीܓकनӳा गुणका धनाڦा मۤाकदहारैकवϺϓता यथोѶͳ ।
चܓाकदकानЇ भगणेषु कायЉः तदा तु ते संृࡹतपयϺयाः ःु࢒ ॥ २५ ॥
jñānīndranighnā guṇakā dhanādyā
mandādihārairvihṛtā yathoktam |
candrādikānāṃ bhagaṇeṣu kāryāḥ
tadā tu te saṃskṛtaparyayāḥ syuḥ || 25 ||

The number 200 (jñānīndra) is multiplied by the multipliers dhana etc., and divided
by the divisors manda etc., of the respective planets. The results when applied to
the revolution numbers (bhagaṇas) of the planets starting from Moon etc., would
give the corrected revolutions (saṃskṛtaparyayas).

If Rc denotes the corrected bhagaṇa of the planets, referred to as saṃskṛta-
paryaya in the above verse, then

Rc = R±∆. (1.90)

where, ∆ is the śakābda correction and is given by

∆ = jñānīndra × guṇaka
hāra

= 200× g

h
. (1.91)

It may be noted that g
h is the correction to the rate of motion of the mean

planet per year in minutes. Hence, 1
21600 ×

g
h is the correction per year in revo-

lutions. Therefore, the correction to the number of revolutions in a mahāyuga
is given by

4320000
21600

× g

h
= 200× g

h
,

as stated above.
It may also be noted that for the Sun, there is no saṃskāra. The corrected

revolutions of all the planets are listed in Table 1.23.
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Planet saṃskṛta-paryayas asaṃskṛta-paryayas
(Rc) (R)

Sun 4320000 4320000
Moon 57753314. 823529 57753336

Moon’s apogee 488121.985075 488219
Mars 2296862.297872 2296824

Mercury 17937377.446809 17937020
Jupiter 364184.000000 364224
Venus 7022257.787234 7022388
Saturn 146581.021277 146564

Moon’s node 232307.250000 232226
Table 1.23 Corrected and uncorrected revolutions of planets in a mahāyuga.

१.२० ΖहकҢाणЅ परࢋरसۣ߀:
1.20 Relation between the kakṣyās of planets

अ̶ानाۢकरा हतेۤभुगणࢣाकाशकҤा ततः
खेटानЇ कदवसोѶयोजनगखतधЉΡीकदनैϑڠतृा ।
कҤा या नभसः࢔पयϺयϓता कҤा ΗहाणЇ रवेः
कҤा नीखतसमाहता कनगकदता न̵ΡकҤा बुधैः ॥ २६ ॥
अथवा नयना࢈ޱा मیभुगѶकला कवधोः ।
कҤासु࢔࢔ खेटानЇ कदनयोजनभुѶयः ॥ २७ ॥
गुणो भवेͬ योजनभुगѶरेषा तदा कҤवै࢔ हरो Ηहाणाͳ ।
कलागखतͬे࠻ गुणकोऽΡ हारो भचΕघलݗा कनजमیनीतौ ॥ २८ ॥
ajñānāntakarā hatendubhagaṇastvākāśakakṣyā tataḥ
kheṭānāṃ divasoktayojanagatirdhātrīdinairuddhṛtā |
kakṣyā yā nabhasaḥ svaparyayahṛtā kakṣyā grahāṇāṃ raveḥ
kakṣyā nītisamāhatā nigaditā nakṣatrakakṣyā budhaiḥ || 26 ||
athavā nayanābhyastā madhyabhuktikalā vidhoḥ |
svasvakakṣyāsu kheṭānāṃ dinayojanabhuktayaḥ || 27 ||
guṇo bhaved yojanabhuktireṣā tadā svakakṣyaiva haro grahāṇām |
kalāgatiśced guṇako’tra hāro bhacakraliptā nijamadhyanītau || 28 ||

[The number] 216000 (ajñānāntakara) multiplied by the revolutions of Moon is
called the ākāśakakṣyā. [This ākāśakakṣyā] divided by the number of civil days
gives the [common] mean daily motion in yojanas (dinayojanagati) of the planets.
The ākāśakakṣyā divided by the revolutions of the planets give the orbits (kakṣyās)
of the planets. It has been said by the learned that the orbit of the Sun multiplied
by 60 (nīti) would be the nakṣatra-kakṣyā.
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Or else, the mean motion (madhyamabhukti) of the Moon in minutes multiplied by
10 (nayana) would be the [common] mean daily motion in yojanas (dinayojanagati)
of the planets in their respective orbits.
While finding the mean longitudes of the planets, if dinayojanabhukti is the
guṇakāra then the respective kakṣyās would be the hārakas. If the daily motion
of the planets in minutes would be guṇaka then 21600 (bhacakraliptā) would be
the hāra.

The mean linear velocity of all the planets is assumed to be the same
in the Indian astronomical texts. Hence the mean daily motion in yojanas
(dinayojanagati) is the same for all the planets. The ākāśakakṣyā (S) or the
total distance covered by each planet is stated to be

S = 216000× no. of Moon’s revolutions
= 12474720576000 yojanas, (1.92)

and dinayojanagati (V ) is given by

V = S

Dc
≃ 7906. (1.93)

Here, 216000 yojanas is the kakṣyā of the Moon itself. The kakṣyā of a planet
(O), is defined by:

O = ākāśakakṣyā
svaparyaya = S

Rc
. (1.94)

The value of the kakṣyas of different planets obtained by substituting their
revolution number Rc in (1.94), are listed in Table 1.24.

Planet kakṣyā (in yojanas)

Sun 2887666.800000
Moon 216000.000000

Moon’s apogee 25551485.247400
Mars 5431291.459859

Mercury 695473.416208
Jupiter 34250133.368477
Venus 1776421.436127
Saturn 85114493.163396

Moon’s node 53718018.550894
Table 1.24 The kakṣyās of planets.

In the last quarter of verse 26 it has been stated that the kakṣyā of the Sun
multiplied by 60 gives the nakṣatrakakṣyā. That is,
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nakṣatrakakṣyā = 2887666.799× 60 ≈ 173260008.

Now the madhyamabhukti of the Moon is 790.581′. This multiplied by 10 will
also give the common dinayojanabhukti of the planets. That is,

V = 790.581× 10 ≈ 7906, (1.95)

which is the same as (1.93)
Let θ be the mean longitude at the end of the ahargaṇa A in revolutions,

then

θ = A× V

O

= A× g′m (in min.)
21600

. (1.96)

These relations are a direct consequence of (1.93), as

V

O
= S

DcO
= Rc

Dc
, (1.97)

and
g′m (in min.) = Rc × 21600

Dc
. (1.98)



Chapter 2
अ߻गुणहारानयनͲ
Obtaining smaller guṇas and hāras

२.१ ΖहाणЅ महागुणकारहारऑनवϸचनͲ
2.1 Definition of the mahāguṇakāras and mahāhāras of the

planets

मۤाकदहारगुछणता भगणा युतोना
̶ानीܓसंगुणधनाकदगुणैगुϺणा: ःु࢒ ।
मۤाकदहारहतभूकदवसा࠻ हाराः
ΦोѶा महागुणहरा࢈ इमेऽपवٖЉः ॥ १ ॥
mandādihāraguṇitā bhagaṇā yutonā
jñānīndrasaṃguṇadhanādiguṇairguṇāḥ syuḥ |
mandādihārahatabhūdivasāśca hārāḥ
proktā mahāguṇaharāsta ime’pavartyāḥ || 1 ||

The product of 200 (jñānīndra) and the [śakābda]-guṇakāras, beginning with dhana
(9), has to be added to or subtracted from the product of the [śakābda]-hāras [of
the planets], beginning with manda (85), and their respective revolution numbers.
These are guṇas [of the planets]. The [śakābda]-hāras, beginning with manda, mul-
tiplied by the the number of civil days (bhūdina) in a mahāyuga are the hāras.
These are the mahāguṇas and mahāhāras, whose apavartana is to be done (they
have to be factored by their GCD).

In the previous chapter, the methods outlined for obtaining the mean plan-
ets essentially involved multiplication of the ahargaṇa A by the revolution
numbers of the respective planets and division by the civil days in a mahāyuga.
The mean longitudes of the planets thus obtained were further refined by ap-
plying the śakābdasaṃskāra. The same mean longitudes can also be obtained
straightaway by multiplying and dividing the ahargaṇa by certain multipliers
and divisors respectively called the mahāguṇakāras and mahāhāras.

Let G be the mahāguṇakāra of the planets. They are given by

51
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G = R× h+ 200× g (for Mars, Mer., Sat. & Moon’s nodes). (2.1)
= R× h− 200× g (for the other planets). (2.2)

The mahāhāra (H) for all the planets is the product of the bhūdina and the
respective śakābdahāra.

H = Dc × h.

For the Sun, the mahāguṇa and mahāhāra are its own revolution number and
the bhūdina respectively. That is,

G = 4320000,
and H = 1577917500. (2.3)

The values of mahāguṇakāras and mahāhāras of all the other planets are listed
in Table 2.1, along with the vākyas given in Commentary I.1

Now the ratio of the śakābda corrected number of revolutions (see section
1. 13) to the number of civil days in a mahāyuga is

Rc

Dc
=

R ± 200× g

h
Dc

= R× h ± 200× g

Dc × h
. (2.4)

It is the numerator and denominator of (2.4) that are referred to as the
mahāguṇakāras and the mahāhāras respectively.

२.२ Ϗढगुणहारानयनाय अपवतϸनΥऒΔया
2.2 The process of apavartana for obtaining the

dṛḍhaguṇahāras

राࡄोर۬ो۬हरणे शेषः ादपवतϺनͳ࢒ ।
तेन तौ कवϓतौ राशी ϐढाҿावपवखतϺतौ ॥ २ ॥
rāśyoranyonyaharaṇe śeṣaḥ syādapavartanam |
tena tau vihṛtau rāśī dṛḍhākhyāvapavartitau || 2 ||

In the process of mutual division of the two rāśis, whatever remains is apavartana.
[The results obtained by dividing] the two rāśis by that apavartana are called the
dṛḍhas.

1 {KP 1956}, pp. 61-62.
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It may be noted from Table 2.1, that the mahāguṇakāras and mahāhāras are
very large numbers and performing computations with them as such would be
a difficult task. The above verse prescribes a certain procedure to obtain what
are known as dṛḍhaguṇakāras and dṛḍhahārakas by which the computations
are made simpler.

The principle behind the desired simplification lies in finding the great-
est common divisor (GCD), which is called apavartana.2 The name apavar-
tana, which literally means changing or transforming, is employed to refer to
the GCD, using which the mahāguṇakāras and mahāhāras are transformed
into dṛḍhaguṇakāras and dṛḍhahāras. The dṛḍhaguṇakāras, dṛḍhahāras and
the apavartana corresponding to the mahāguṇahāras of all the planets are
listed in Table 2.2.

By taking a specific example we shall now illustrate the apavartana process
leading to the dṛḍhaguṇakāras and dṛḍhahāras. In the case of the Sun, the
mahāguṇakāra and the mahāhāra, are: G = 4320000, H = 1577917500. Now
dividing H by G,

1577917500
4320000

= 365 + 1117500
4320000

,

the remainder is 1117500. Again we divide G by this remainder, we have

4320000
1117500

= 3 + 967500
1117500

.

The remainder now obtained is 967500. Again dividing 1117500 by 967500

1117500
967500

= 1 + 150000
967500

,

a remainder of 150000 is obtained. Continuing the process,

967500
150000

= 6 + 1

2 + 1

4 + 7500
15000

,

we obtain the remainder 7500. At this stage, when we divide 15000 by 7500,
the remainder becomes zero. The number 7500, which is the last non-zero re-
mainder, is called the apavartana. The quantities obtained by dividing 4320000
and 1577917500 by 7500 are called dṛḍhaguṇakāra (Gd) and dṛḍhahāra (Hd)
respectively, and in the case of the Sun they are 576 and 210389 respectively.
Gd and Hd found in a similar manner for all the other planets are listed in
2 The word apavartana is employed in the above verse in two senses: (i) in the verbal
form and (ii) in the noun form. In the noun form it refers to the GCD. The verbal form
which appears towards the end of the verse refers to the process of factoring out the GCD
from both the numerator and the denominator.
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Table 2.2. They have also been presented in the form of vākyas in the Com-
mentary I3 and these are listed in Table 2.3.

Planet apavartana dṛḍhaguṇakāra dṛḍhahāra

(G.C.D.) Gd Hd

Sun 7500 576 210389

Moon 60 81817196 2235383125

Moon’s apogee 6 10901391 35240157500

Mars 60 8996044 6180176875

Mercury 100 42152837 3708106125

Jupiter 940 91046 394479375

Venus 60 27503843 6180176875

Saturn 60 574109 6180176875

Moon’s node 24 309743 2103890000

Table 2.2 The dṛḍhaguṇakāras and the dṛḍhahāras of planets.

Planet apavartana dṛḍhaguṇakāra dṛḍhahāra

(G.C.D.) Gd Hd

Sun ūnamāsam tatsama dhījagannūpuram

Moon nītiḥ coḻikathā kuñjapade śatrukulaṃ halīmallārīndre

Moon’s apogee tajjñaḥ yuddhagaḥ pīnadhānuṣkaḥ jñānaśaṃsī medhyajño vidrumāṅgaḥ

Mars nītiḥ bhuvane stabdho dhījit māsajātasampanno jayantaḥ

Mercury anīka saṅgaharo śaṅkaro’bhūt mādrīpatirnayadānasaṅgaḥ

Jupiter avadhī tattvajñayoddhā māṃsagandhisabhāviddholam

Venus nṛttam garbhajālaghno matsarī māsajātasampanno jayantaḥ

Saturn netā dhaniṣko vasumān māsajātasampanno jayantaḥ

Moon’s node vajram gūḍhasiddhirnṛgaḥ anūnanidhirjalānāṃ pūram

Table 2.3 Vākyas for the dṛḍhaguṇakāras and the dṛḍhahāras (see Table 2.2) as given
in the Commentary I.

3 {KP 1956}, pp. 63-66.
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२.३ महागुणकारमहाहाराޯЅ मۊΖहानयनͲ
2.3 Mean longitudes of the planets from mahā-guṇakāras

and mahāhāras

महागुणӳाͬ ाͪࡕगुणादभीڦ महाहराݗा भगणाकदखेटाः ।
कࠂाकदजैः Τवुकैः࢔ समेताः फणी तु तΡ Τवुतो कवशोیः॥ ३ ॥
mahāguṇaghnād dyugaṇādabhīṣṭāt
mahāharāptā bhagaṇādikheṭāḥ |
kalyādijaiḥ svadhruvakaiḥ sametāḥ
phaṇī tu tatra dhruvato viśodhyaḥ || 3 ||

The desired ahargaṇa when multiplied by the mahāguṇakāras and divided by the
mahāhāras would give the elapsed revolutions etc. of the planets. The initial po-
sition of the planets at the beginning of kali (kalyādidhruvas) are to be added [to
them]. In the case of Rāhu, the result has to be subtracted from the [Kali]dhruva.

The formula prescribed in the above verse for obtaining the mean longitude
θc of a planet from the mahāguṇakāras (G) and the mahāhāras (H) may be
represented as

θc = θk0 ±
A×G

H
, (2.5)

where A represents the ahargaṇa and θk0 the kalyādidhruva of the planet
(discussed in the next verse). While the sign ‘+’ is to be chosen for all the
planets including Moon’s apogee; in the case of Rāhu, ‘−’ is to be chosen since
its motion is retrograde.

Illustrative example

We shall illustrate the procedure for finding the mean longitude of the Moon.
Let the ahargaṇa chosen be A = 1754000.

From Table 2.1, the mahāguṇakāra (G) and mahāhāra (H) of the Moon are
4909031760 and 134122987500 respectively.4 Hence,

A×G

H
= 1754000× 4909031760

134122987500
= 64198.105541304023. (2.6)

That is, at the end of 1754000 civil days the Moon has completed 64198 revo-
lutions, since the commencement of kaliyuga. The rāśi, degrees etc., traversed
by the Moon in the 64199th revolution is to be found from the fractional
4 We can use the dṛḍhaguṇakāra Gd = 81817196 and dṛḍhahāra Hd = 2235383125,
instead of G and H in the computation of the mean longitude.
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part. The mean longitude when expressed in rāśis etc., may be written as
1r7◦59′41′′31′′′48′′′′.

Adding the kalyādidhruva5 θk0 to the value of the longitude obtained above,
we get the actual value of the mean longitude of the Moon to be

θc (Moon) = 1r7◦59′41′′31′′′48′′′′ + 0r6◦23′36′′42′′′21′′′′

= 1r14◦23′18′′14′′′9′′′′. (2.7)

The mean longitudes of all the other planets obtained in a similar manner
using the mahāguṇakāras and mahāhāras are listed in Table 2.4.

mean longitudes (θc) obtained from mahāguṇakāras
Planet and mahāhāras corresponding to A = 1754000

sign degrees minutes seconds thirds fourths
(rāśi) (◦) (′) (′′) (′′′) (′′′′)

Sun 0 27 24 55 48 22
Moon 1 14 23 18 14 9

Moon’s apogee 11 2 32 8 58 42
Mars 1 20 44 35 3 3

Mercury 8 26 27 22 46 19
Jupiter 10 8 41 6 38 21
Venus 11 27 22 8 48 43
Saturn 11 2 37 47 39 8

Moon’s node 4 1 26 18 55 30
Table 2.4 Mean longitudes of the planets corresponding to A = 1754000 computed
using the mahāguṇakāras and mahāhāras.

२.४ ΖहाणЅ कࠀाऒदΣुवाः
2.4 Kalyādidhruvas of the planets

गोΡोٌुӾहताͬ धनाकदगुणतो मۤाकदहारोڠतृाः
कࠂादौ रजनीकराकदकवहगा घलݗादयः ःु࢒ Εमाͪ ।
तेषाखमۤजुभूखमजाक੮ तनयाः शोیाः पुनमϺ؝लाͪ
तुӾो भΡयसंयुत࢈औुहनगोः पातु࢈ ष׽ाठۮतः ॥ ४ ॥

5 The kalyādidhruvas are presented in Table 2.5.
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gotrottuṅgahatād dhanādiguṇato mandādihāroddhṛtāḥ
kalyādau rajanīkarādivihagā liptādayaḥ syuḥ kramāt |
teṣāmindujabhūmijārkatanayāḥ śodhyāḥ punarmaṇḍalāt
tuṅgo bhatrayasaṃyutastuhinagoḥ pātastu ṣaḍbhānvitaḥ || 4 ||

The multipliers commencing with 9 (dhana) are to be multiplied by 3623 (gotrot-
tuṅga) and divided by the divisors 85 (manda) etc. [The results obtained would
be] the initial positions at the beginning of kali (kalyādidhruva), in minutes, of
the planets starting with Moon (rajanīkara), in order. Further, among them [the
dhruvas of] Mercury, Mars and Saturn have to be subtracted from 12 rāśis; and to
[the dhruva of] Moon’s apogee (tuṅga) three rāśis are to be added; and to that of
Rāhu 6 rāśis should be added.

The number 3623 appearing in the above verse is the kalyabda correspond-
ing to the śakābda 444. It may be recalled that in prescribing the śakāb-
dasaṃskāra (see verse 27 of chapter 1) there is an implicit assumption that if
we compute the mean longitudes of the planets based on the Āryabhaṭan pa-
rameters it should give accurate results at the end of Kalyabda 3623 (śakābda
444), as the śakābda-saṃskāra for that year is taken to be zero.

Now, the śakābda correction is applied starting from the end of the kali year
3623. However, if we want to make all our calculations by using the kalyahar-
gaṇa, then we will have to modify the kalyādidhruvas prescribed by Āryab-
haṭa. The śakābdasaṃskāra was such that the madhyamagatis of the Moon,
its apogee, Jupiter and Venus got reduced. Therefore, the mean longitudes ob-
tained by mahāguṇakāra would be less than those obtained by employing the
values given in Āryabhaṭīya. The amounts by which they become deficient over
a period of 3623 years have to be added to the Āryabhaṭīya-dhruvas. In the
case of Mars, Mercury and Saturn, these amounts have to be subtracted from
the Āryabhaṭīya-dhruvas. Since the Āryabhaṭīya-dhruvas for these planets are
zero, they have to be subtracted from 12 rāśis.

We know that the saṃskāra to be applied per year is g
h . Therefore, for 3623

years it would be
3623× g

h
.

This would be in minutes and has to be added to the Āryabhaṭīya-dhruvas in
the case of the Moon, Jupiter and Venus. Since Āryabhaṭīya-dhruvas are zero
for all the planets except for the apogee and the node of the Moon, the above
values would themselves be the kalyādidhruva. That is,

θk0 = 3623× g

h
(for Moon, Jupiter and Venus).

But in the case of the apogee of the Moon, three rāśis are to be added. Hence,

θk0 = 3623× g

h
+ 90◦ (for the apogee of Moon).

In the case of the other three planets, namely Mars, Mercury and Saturn the
above values have to be subtracted from 12 rāśis. That is,
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θk0 = 360◦ − 3623× g

h
(for Mars, Mercury and Saturn).

In the case of Rāhu, the madhyamagati is increased because of śakāb-
dasaṃskāra, but the motion is retrograde. The Āryabhaṭīya-dhruva for (Rāhu)
is 180◦. Hence its kalyādidhruva is

θk0 = 3623× g

h
+ 180◦ (for Rāhu).

Illustrative example

We now illustrate the prescription given in the above verse by finding out
the kalyādidhruvas of two planets, namely Moon and Mercury. In the case of
Moon, g and h are 9 and 85 respectively. Hence,

θk0 (Moon) = 3623× 9
85

= 383.6117647058′,

since the Āryabhaṭīya-dhruva for Moon is zero. By converting this into degrees
etc. we have

θk0 (Moon) = 6◦23′36′′42′′′21′′′′.

The values of g and h for Mercury are 420 and 235 respectively. Hence,

|θk0 (Mercury)| = 3623× 420
235

= 6475.14893617′.

This has to be subtracted from 12 rāśis. Therefore, the kalyādi-dhruva for
Mercury is

θk0 (Mercury) = 8r12◦4′51′′3′′′49′′′′.

The kalyādi-dhruvas for the various planets are listed in Table 2.5. The
Malayalam Commentaries I and II give the kalyādidhruvas in terms of vākyas.6

२.५ वࠖुपसंहारΥऒΔया
2.5 The Vallyupasaṃhāra technique

Having delineated the procedure for obtaining the mean longitudes by mak-
ing use of the mahāguṇakāras, mahāhāras and appropriate dhruvas of the
planets, the text proceeds to explain two methods by which the ratio of two
large integers can be systematically and successively approximated by ratios
6 {KP 1956}, pp. 68-69.
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Planet
kalyādidhruvas of the planets

sign degrees minutes seconds thirds fourths
(rāśi) (◦) (′) (′′) (′′′) (′′′′)

Sun 0 0 0 0 0 0
Moon 0 6 23 36 42 21

Moon’s apogee 3 29 17 25 31 20
Mars 11 18 26 14 2 33

Mercury 8 12 4 51 3 49
Jupiter 0 12 4 35 59 59
Venus 1 9 18 48 15 19
Saturn 11 24 51 39 34 28

Moon’s node 6 24 31 50 37 30
Table 2.5 Kalyādidhruvas of the planets.

of smaller integers. This technique, is referred to as vallyupasaṃhāra and the
two methods by which the simplification is achieved are explained in the fol-
lowing sections. As we shall see, the vallyupasaṃhāra technique is essentially
the same as the technique of continued fraction expansion.

२.५.१ वࠖुपसंहारे ΥथमΥकारः
2.5.1 Vallyupasaṃhāra: Method I

अ۬ो۬ं कवभज۫हागुणहरौ यावङڥभѶेऽ߽ता
तावޔࠄफलाकन ϒपमकप च۬े࢒दधोऽधः Εमाͪ ।
Φछ̵ݞा܉मुपाठۢमेन गुछणते Ͽێो࢔ तदं܉ ٖजेͪ
भूयोऽݞषे कवङधभϺवेͬ गुणहरौ ातЇ࢒ तदोێϺनࢉतौ ॥ ५ ॥
anyonyaṃ vibhajanmahāguṇaharau yāvadvibhakte’lpatā
tāvallabdhaphalāni rūpamapi ca nyasyedadho’dhaḥ kramāt |
prakṣipyāntyamupāntimena guṇite svordhve tadantyaṃ tyajet
bhūyo’pyeṣa vidhirbhaved guṇaharau syātāṃ tadordhvasthitau || 5 ||

Divide the mahāguṇakāra and mahāhāra mutually by each other till the remainder
becomes small. Having placed the successive quotients (labdaphalas) obtained till
then one below the other with 1 [at the bottom most place], the product of the
penultimate (upāntima) number and the one preceding [to that] is added to the
last number. [Then] the last number is dropped. Again this process is repeated.
The two [numbers] that remain at the top would then be the [smaller] guṇa and
hāra.

Let G and H denote the two large numbers corresponding to the mahāguṇa
and mahāhāra respectively, usually G < H. The above verse presents a certain
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method by which we can obtain a set of optimal approximations to G
H . In other

words, the method helps us to obtain smaller guṇakāras and hārakas whose
ratios approximate the value of G

H . As we shall see, this method is nothing
but finding approximation of a rational number by the convergents of the
continued fraction expansion of that number. Assuming H > G, we divide H
by G. Let

H

G
= q1 +

r1
G
.

Here, q1 is the first quotient and r1 the first remainder. We now divide G by
r1 to obtain the second quotient (q2) and the second remainder (r2).

G

r1
= q2 +

r2
r1

.

Repeating this process, we get the quotient q3 and the remainder r3.
r1
r2

= q3 +
r3
r2

.

In general,
rn−1

rn
= qn+1 +

rn+1

rn
.

Hence, the ratio H
G may be written as

H

G
= q1 +

1

q2 +
1

q3 + . . .+
1

qn+1 + . . .
.

This is the expression for H
G in terms of a continued fraction.7

The successive quotients q1, q2, q3 ……qn+1 obtained are referred to as vallī-
phalas. These are placed one below the other with 1 at the bottom as shown
in the Table 2.6. By doing certain operations known as vallyupasaṃhāra with
these vallīphalas, one is led to the alpaguṇakāra and alpahāraka as explained
below with the help of the Table 2.6.

Considering the first two columns in Table 2.6, it may be noted that the
entries in the second column are essentially the same as those in the first but
for two changes:

1. In the second column the last entry of the first column has been omitted.
2. The penultimate entry of the second column is equal to the sum of the

last entry and the product of the penultimate entry of the first column
and the one preceding it.

7 Further details regarding the continued fraction expansion of a rational number are
given in Appendix A.
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q1 q1 q1 Hn

q2 q2 q2 Gn

q3 q3 q3 —
q4 q4 q4 … … —
...

...
...

...
...

...
...

...
qn−1 qn−1 ((qn−1 × (qn × qn+1 + 1)) + qn+1) … … —
qn (qn × qn+1 + 1) (qn × qn+1 + 1) —

qn+1 qn+1 — … … —
1 — — —

Table 2.6 Vallyupasaṃhāra: Method I.

By the phrase “bhūyo’pyeṣa vidhirbhavet” it is implied that the same procedure
is to be repeated in constructing the successive columns from the preceding
ones. This procedure has to be continued till we finally arrive at only two
terms. These two are known as alpaguṇakāra (Gn) and alpahāraka (Hn).

Rationale behind Vallyupasaṃhāra Method I:

Consider the continued fraction expansion of H
G . When rn+1 is small, this may

be approximated by
H

G
≈ q1 + 1

q2 + 1

q3 + . . .+ 1

qn−1 + 1

qn + 1
qn+1

= q1 + 1

q2 + 1

q3 + . . .+ 1
qn−1 + qn+1

qn × qn+1 + 1

= q1 + 1

q2 + 1

q3 + . . .+ 1

qn−2 + qn × qn+1 + 1
(qn−1 × (qn × qn+1 + 1)) + qn+1

.

A comparison of the above expression with Table 2.6, clearly shows that the
penultimate elements of the different columns in Table 2.6 are the same as the
ones that are obtained in the continued fraction expansion. This explains the
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correspondence between the process of vallyupasaṃhāra described in verse 5
and the continued fraction expansion of a rational number.

In the first stage (first column), we can consider 1, qn+1 and qn as the
last, penultimate and preceding entries. In the next stage, from the above
expression, we can see that qn+1, (qn×qn+1+1) and qn−1 are the corresponding
entries. Similarly, in the next stage, (qn × qn+1 + 1), (qn−1 × (qn × qn+1 +
1) + qn+1) and qn−2 are the last, penultimate and the preceding entries. The
process is repeated further. This is precisely the process of vallyupasaṃhāra
described in verse 5.

We now illustrate this method of vallyupasaṃhāra by considering a specific
numerical example.

Illustrative example

Consider G = 576 and H = 210389 which are the dṛḍhaguṇakāra and the
dṛḍhahāraka of the Sun. Dividing H by G, we get

H

G
= 210389

576
= 365 + 149

576
.

Here the quotient is 365 and the remainder is 149. We once again divide 576
by 149 to get 3 as the quotient and 129 as remainder. Repeating the process
of division we obtain the sequence of quotients or the vallīphalas:

365, 3, 1, 6 and 2.

Here we have terminated the process of mutual divison with qn+1 = q5 = 2,
as r5 = 2 may be considered small. Placing these vallīphalas one below the
other with 1 at the bottom, we have

365
3
1
6
2
1

The bottom most entry 1 is called antya or antima and the preceding entry
2 is called upāntima. Multiplying 6 by 2 and adding 1, the result would be
13. According to the prescription given for constructing the next column, the
penultimate entry 2 of the previous column has to be made the last entry of
the present column. Then 6 has to be replaced by 13 and 1 has to be deleted.
Thus, the new vallī becomes
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365 365
3 3
1 1
6 13
2 2
1

Repeating the process till only two terms remain in the last column, we
obtain the following array of numbers.

365 365 365 365 21185
3 3 3 58 58
1 1 15 15
6 13 13
2 2
1

Here, 58 and 21185 are the alpaguṇakāra and alpahāra of the Sun respec-
tively. Thus we have 58

21185 as an approximation to 576
210389 which is correct to

more than four decimal places.
This procedure leads to only one pair of alpaguṇakāra and alpahāraka. The

text now proceeds to describe another method for obtaining several such pairs.

२.५.२ वࠖुपसंहारे खڣतीयΥकारः
2.5.2 Vallyupasaṃhāra: Method II

अ۬ो۬ाϓतभाմहारकफलं सवϻ ٘धोऽधो ۬सेͪ
एकΡाڦफलेन हࣵनमपरΡकंै ोपिर࠻योڥ ।
कुयЉͬ व࠘पुसंϓखतं Ϩपिरतः पूवϺΦणाशं कवना
ٖाմं तٳथमोێϺगं हरगुणापࡕࡇा࠻ वा Ջेया࢔ ॥ ६॥
anyonyāhṛtabhājyahārakaphalaṃ sarvaṃ tvadho’dho nyaset
ekatrādyaphalena hīnamaparatraikaṃ dvayoścopari |
kuryād vallyupasaṃhṛtiṃ hyuparitaḥ pūrvapraṇāśaṃ vinā
tyājyaṃ tatprathamordhvagaṃ haraguṇāśśiṣṭāśca vā svecchayā || 6 ||

The quotients obtained by dividing the guṇa and hāra, mutually by each other,
have to be kept one below the other at one place. Place the same quotients [one
below the other] at another place after dropping the first result. Placing 1 above in
both the places, may the vallyupasaṃhāra be done [as before] from the top without
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deleting the previous results. [However], 1 from the first column has to be dropped.
One can freely choose any of the remaining pairs as hāras and guṇas respectively.

Let q1, q2, q3 . . . be the successive quotients. It is said in the verse that,
in the first place, all of them should be placed one below the other, whereas
in the other place, the same results have to be placed after omitting the first
quotient q1.

I II

1
q1 1
q2 q2

q3 q3

q4 q4

q5 q5
...

...
...

...
Table 2.7 Arrangement of successive quotients (vallīphalas) in the second method of
vallyupasaṃhāra.

Now, placing 1 at the top in both the vallīs, we obtain columns I and II
as shown in Table 2.7. The process of vallyupasaṃhāra has to be done from
the top. The way the successive entries are generated is shown in Table 2.8.
Here the subsequent columns generated from column I denoted by the index
‘n’ (I(n)) give the set of hārakas and those (II(n)) generated from column II
give the corresponding set of guṇakas. Further it is said:

“tyājyaṃ tatprathamordhvagam”.
That is, 1 at the top of the hāraka column I(n) in Table 2.8 has to be

dropped. Once we do this, the entries in column I(n) and column II(n) can be
as such paired up to get various pairs of alpahārakas and alpaguṇakāras. For a
ratio H

G , the different pairs (Hi, Gi) obtained this way are listed in Table 2.9.

Illustrative example

To illustrate this second method of vallyupasaṃhāra, we consider the
dṛḍhahāraka (210389) and dṛḍhaguṇakāra (576) of the Sun, as in the pre-
vious example. Dividing the two numbers 210389 and 576 mutually, till the
remainder becomes either 0 or 1, we get

365, 3, 1, 6, 2, 4 and 2
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I I(1) I(2) … … I(n)

1 1 1 … … ̸ 1
q1 q1 q1 … … H1 = q1

q2 q1 × q2 + 1 q1 × q2 + 1 … … H2 = q1 × q2 + 1
q3 q3 (q1 × q2 + 1)× q3 + q1 … … H3 = (q1 × q2 + 1)× q3 + q1
...
...

...
...

...
...

...
...

...
...

...
...

qn qn qn … … Hn = Hn−1 × qn +Hn−2

II II(1) II(2) … … II(n)

1 1 1 … … G1 = 1
q2 q2 q2 … … G2 = q2

q3 q2 × q3 + 1 q2 × q3 + 1 … … G3 = q2 × q3 + 1
q4 q4 (q2 × q3 + 1)× q4 + q2 … … G4 = (q2 × q3 + 1)× q4 + q2
...
...

...
...

...
...

...
...

...
...

...
...

qn qn qn … … Gn = Gn−1 × qn +Gn−2

Table 2.8 Generating the alpaguṇakāras and alpahārakas using the second method of
vallyupasaṃhāra.

as successive quotients (vallīphalas). We arrange them in two places one below
the other with 1 at the top.

Then we do vallyupasaṃhāra, as shown in Table 2.10. After deleting 1 in
the I(7)-th column of Tables 2.10 we get the successive alpaguṇakāras and the
corresponding alpahārakas of the Sun which are listed in Table 2.11.

Tables C.1–C.8 in Appendix C list the alpaguṇakāras and alpahārakas, for
all the other planets, obtained in a similar manner.

As explained in Appendix A, the above technique of obtaining alpa-
guṇakāras and the alpahārakas is essentially the same as the technique of
computing the convergents of a continued fraction.
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(H1, G1) = (q1, 1)

(H2, G2) = (q1 × q2 + 1, q2)

(H3, G3) = ((q1 × q2 + 1)× q3 + q1, q2 × q3 + 1)

(H4, G4) = (((q1 × q2 + 1)× q3 + q1)× q4 + (q1 × q2 + 1), (q2 × q3 + 1)× q4 + q2)

...
...

Table 2.9 Pairs of alpaguṇakāras and alpahārakas obtained using the second method of
vallyupasaṃhāra.

I I(1) I(2) I(3) … I(7)

1 1 1 1 … ̸ 1
365 365 365 365 … H1 = 365
3 1096 1096 1096 … H2 = 1096
1 1 1461 1461 … H3 = 1461
6 6 6 9862 … H4 = 9862
2 2 2 2 … H5 = 21185
4 4 4 4 … H6 = 94602
2 2 2 2 … H7 = 210389
II II(1) II(2) II(3) … II(7)

1 1 1 1 … G1 = 1
3 3 3 3 … G2 = 3
1 4 4 4 … G3 = 4
6 6 27 27 … G4 = 27
2 2 2 58 … G5 = 58
4 4 4 4 … G6 = 259
2 2 2 2 … G7 = 576

Table 2.10 Generating the alpaguṇakāras and alpahārakas using the second method of
vallyupasaṃhāra for the hāraka H = 210389 and guṇakāra G = 576 associated with Sun.

After presenting the method of vallyupasaṃhāra, Putumana Somayājī dis-
cribes a technique by which the deviations of these approximate ratios from
the actual value can be minimized. This involves finding the so called dvitīya
and tṛtīyahārakās.
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alpaguṇakāras alpahārakas
Gi Hi

1 365
3 1096
4 1461

27 9862
58 21185
259 94602
576 210389

Table 2.11 The alpaguṇakāras and alpahārakas of Sun.

२.६ ऒदनगओतࢇौࠀपिरहाराय खڣतीयतृतीयहारकौ
2.6 Better approximations to the rate of motion: Dvitīya

and tṛtīya-hārakas

The following verses describe how the approximate rates of motion, Gi

Hi
, can be

improved by means of correction terms involving what are termed “dvitīya”
and “ trtīya-hārakas”.

ौ߽࢔ हारगुणौ महागुणहर̵ु؟ौ तयोरۢरं
णЉҿं࢔ Εमशो महाहरहते े߽࢔ गुणेऽ߽ेऽङधके ।
तेनानۢपुराहतेन हरयोघЉताͬ ङڥतीयो हरः
तऩՋेࡕन तथा हरΡयवधा࢈ޔࠄतृीयो हरः ॥ ७ ॥
svalpau hāraguṇau mahāguṇaharakṣuṇṇau tayorantaraṃ
svarṇākhyaṃ kramaśo mahāharahate svalpe guṇe’lpe’dhike |
tenānantapurāhatena harayorghātād dvitīyo haraḥ
tacchiṣṭena tathā haratrayavadhāllabdhastṛtīyo haraḥ || 7 ||

The difference between the products of the alpahāra and mahā-guṇakāra, and of
the mahāhāra and alpaguṇakāra is considered to be positive or negative, depending
on whether the product of the mahāhāra and alpaguṇakāra is respectively smaller
or greater [than the other]. [The quotient obtained] from the product of the two
hāras when divided by that [difference] multiplied by 21600 (anantapura) is [called]
the dvitīya-hāra (second divisor). The quotient obtained by dividing the product
of the three hāras by the remainder is [called] tṛtīya-hāra (third divisor).

Let G and H be the mahāguṇakāra and mahāhāra, and Gi and Hi be the
alpaguṇakāra and alpahāra, for some i. The ratio G

H represents the number of
revolutions made by the planet per day. The ratio Gi

Hi
obtained by the process

of vallyupasaṃhāra is an approximation to this. This being the case, Gi

Hi
can

be greater or smaller than G
H . The difference between the two is the error in

the rate of motion per day. Denoting this difference by ∆i, we have
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∆i =
G

H
− Gi

Hi
= GHi −GiH

HHi
. (2.8)

Obviously, ∆i is positive when GHi > GiH and negative otherwise. As
such, ∆i represents the error in the rate of motion per day. The magnitude of
this, |∆i| has to be added to Gi

Hi
if ∆i is positive, and subtracted otherwise.

We define ϕi through the relation:

ϕi = GHi −GiH.

(In the next verse, ϕi would be identified with ±ri, where ri is the remainder
in the process of mutual division of G and H, at the ith stage).

To obtain the difference between the actual rate of motion G
H and its ap-

proximation Gi

Hi
, in minutes per day, we have to multiply by 21600. Therefore,

(
G

H
− Gi

Hi

)
× 21600 =

(
GHi −GiH

HHi

)
× 21600

= ϕi

HHi
× 21600. (2.9)

Now,
H ×Hi

ϕi × 21600
= H2i +

ϵ2i
ϕi × 21600

,

where the dvitīya-hāra, H2i is given by

H2i =
[

H ×Hi

ϕi × 21600

]
int

, (2.10)

with ‘[ ]int’ denoting the integral part, and ϵ2i is the remainder when H×Hi is
divided by ϕi×21600. We may rewrite equation (2.10) including the remainder
term ϵ2i as

H ×Hi = ϕi × 21600×H2i + ϵ2i. (2.11)

Using (2.11) in (2.9),

ϕi × 21600
H ×Hi

= 1
H2i

− ϵ2i
H2i ×H ×Hi

. (2.12)

Now the tṛtīya-hāraka H3i is defined by

H3i =
[
H2i ×H ×Hi

ϵ2i

]
int

. (2.13)

Using (2.13) in (2.12),
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G

H
− Gi

Hi

)
× 21600 = ϕi × 21600

H ×Hi
≈ 1

H2i
− 1

H3i
. (2.14)

Hence

G

H
× 21600 ≈ Gi

Hi
× 21600 + 1

H2i
− 1

H3i
. (2.15)

Thus it is seen that dvitīya-hāraka and tṛtīya-hāraka give the correction
terms to be applied to the approximate rate of motion Gi

Hi
, to make it closer

to the actual rate of motion, G
H .

२.७ महागुणहारापवतϸनशेषै: खڣतीयहारानयनͲ
2.7 The dvitīya-hāraka in terms of the remainders in the

mutual division of mahāguṇas and mahāhāras

यڥा खमथो कवϓतहारगुणोٍशेषैः नूِातपΡगुछणतैमϺहतोऽΡ हाराͪ ।
तٌڠराङभकनहताͬ कवϓताͬ ङڥतीयहाराः भव܉णृधनाٕकघलकݗकानाͳ ॥८॥
yadvā mitho vihṛtahāraguṇotthaśeṣaiḥ
nūtnātapatraguṇitairmahato’tra hārāt |
tattaddharābhinihatād vihṛtād dvitīya-
hārāḥ bhavantyṛṇadhanātmakaliptikānām || 8 ||

Or, [the quotients obtained] when the mahā-hāra multiplied by the [alpa] hāra at
each stage is divided by the product of 21600 (nūtnātapatra) and the remainders
arising from the mutual division of [mahā]hāra and [mahā]guṇa, are the dvitīya-
hāras in negative or positive minutes.

Let ri be the remainders in the process of mutual division of H and G.
Then, this verse states that the dvitīya-hāra H2i is given by

H2i = −
[

H ×Hi

ri × 21600

]
int

(i = 1, 3, . . .), (2.16)

or

= +
[

H ×Hi

ri × 21600

]
int

(i = 2, 4, . . .). (2.17)

Comparing these equations with (2.10) in the previous section, we need to
show that

ϕi ≡ GHi −HGi = (−1)iri. (2.18)

This result is well known in the theory of continued fractions and is ex-
plained in Appendix A. We demonstrate this explicitly for i = 1, 2. In the
mutual division of G and H,
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H = Gq1 + r1,

and the first approximation to G
H is given by G1

H1
, where G1 = 1, H1 = q1.

Then,

GH1 −HG1 = Gq1 − (Gq1 + r1)
= −r1.

Now
G = r1q2 + r2,

and the second approximation to G
H is given by G2

H2
, where G2 = q2, H2 =

q1q2 + 1. Then,

GH2 −HG2 = G(q1q2 + 1)− (Gq1 + r1)q2
= G− r1q2

= r2.

Now the vallyupasaṃhāra is based on the relations,

Hi+1 = Hiqi+1 +Hi−1,

Gi+1 = Giqi+1 +Gi−1.

Also
ri−1 = riqi+1 + ri+1,

from the process of mutual division. From these relations, we can prove the
general result,

GHi −HGi = (−1)iri, (2.19)

by induction as explained in Appendix A.
It is remarkable that Putumana Somayājī is clearly aware of this general

result, and he makes repeated use of it in different contexts as we shall in the
later chapters.

Illustrative examples

We present the dvitīya and tritīya-hāras (H2i, H3i), the corrected rates of
motion and the associated errors for the case of the Moon and Venus, in
Tables 2.12 and 2.13 below. In case of the Moon, for i = 1, H2i = 0, and the
method cannot be applied.

From the tables, we notice that the inclusion of the dvitīya and tṛtīya-hāras
lead to fairly good approximations to the rates of motion even for low values
of i.



72 अ߽गुणहारानयनͳ Obtaining smaller guṇas and hāras

G = 4909031760, H = 134122987500 and G
H × 21600 ≃ 790.581003

H2i H3i
Gi

Hi
× 21600 Error

i Gi Hi
Gi

Hi
× 21600 + 1

H2i
− 1

H3i

2 3 82 790.243902 2 6 790.577236 0.003767
3 28 765 790.588235 −139 26452 790.581007 6.06× 10−11

4 115 3142 790.579249 570 37347323 790.581003 ≈ 10−16

Table 2.12 The dvitīya- and tṛtīya-hāras for Moon, with the corresponding rates of
motion and errors.

G = 1650230580, H = 370810612500 and G
H × 21600 ≃ 96.127185

H2i H3i
Gi

Hi
× 21600 Error

i Gi Hi
Gi

Hi
× 21600 + 1

H2i
− 1

H3i

1 1 224 96.428571 −4 19 96.125939 0.001245

2 1 225 96.000000 7 63 96.126984 2.01× 10−4

3 3 674 96.142433 −66 10391 96.127185 3.95× 10−9

4 7 1573 96.122059 195 403639 96.127185 4.70× 10−12

5 10 2247 96.128170 −1015 5354575 96.127185 4.26× 10−14

Table 2.13 The dvitīya- and tṛtīya-hāras for Venus, with the corresponding rates of
motion and errors.

२.८ भुҎ۠रगुणहाराः
2.8 Guṇakāras and hāras for the difference in rates of

motion

महागुणाे࢈ भगणाः Φकࠔाः महाहरा भूकदवसा࠻ तͪڥ ।
सवϺΡ ते तुࠂहरा࠻ कायЉः परࢍरं योगकवयोगकाले ॥ ९ ॥
अ۬ो۬हारगुछणतौ गुणकौ हारौ च तुࠂहारौ ः࢈ ।
तΡापवखतϺताޱЇ हाराޱЇ वा परࢍरं गुणयेͪ ॥१०॥
mahāguṇāste bhagaṇāḥ prakalpyāḥ mahāharā bhūdivasāśca tadvat |
sarvatra te tulyaharāśca kāryāḥ parasparaṃ yogaviyogakāle || 9 ||
anyonyahāraguṇitau guṇakau hārau ca tulyahārau staḥ |
tatrāpavartitābhyāṃ hārābhyāṃ vā parasparaṃ guṇayet || 10 ||

The mahāguṇakāras are to be considered as revolution numbers [of the planets in
future operations], and similarly the civil days as the mahāharas. In all those in-
stances where they are mutually added or subtracted, [one] has to find the common
divisor.
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The multipliers and the divisors mutually multiplied become the guṇakāras and
[the product of] the divisors would be the common divisors. There, the divisors
which have been already divided by the apavartana can be multiplied mutually.

These verses give a method for obtaining the effective guṇas and hāras
which will appear while calculating the difference in the rates of motion of
two planets. Let G(1) and H(1) be the mahāguṇakāra and mahāhāra of a
particular planet. Let G(2) and H(2) be those of a second planet. Here G(1)

and G(2) are to be considered as revolution numbers and H(1) and H(2) are
to be considered as civil days. Now the ratio G(1)

H(1) called dinagati represents
the daily motion of the first planet. In order to find the difference in the daily
motion of the two planets, we subtract one from the other, and obtain

G(1)

H(1) −
G(2)

H(2) =
(
G(1) ×H(2) −G(2) ×H(1))

H(1) ×H(2) .

Here the common divisor is the product of the two hāras H(1) × H(2)

and the multiplier is
(
G(1) ×H(2) −G(2) ×H(1)). It may be pointed out

that the result would be the same even if we use dṛḍhaguṇahāras instead
of mahāguṇahāras. Then the difference in the ratios of the guṇakāras and the
hāras is

G
(1)
d

H
(1)
d

−
G

(2)
d

H
(2)
d

=

(
G

(1)
d ×H

(2)
d −G

(2)
d ×H

(1)
d

)
H

(1)
d ×H

(2)
d

.

Illustrative example

We know that the dṛḍhaguṇakāra and dṛḍhahāra of the Sun are 576 and
210389, and those of the Moon are 81817196 and 2235383125 respectively.

Now

ravi-dinabhukti = 576
210389

(2.20)

and candra-dinabhukti = 81817196
2235383125

. (2.21)

The difference in their daily motion known as bhuktyantara is given by

bhuktyantara =
∣∣∣∣ 576
210389

− 81817196
2235383125

∣∣∣∣
=
∣∣∣∣ (576× 2235383125− 81817196× 210389)

210389× 2235383125

∣∣∣∣
= 15925857369244

470300020285625
. (2.22)
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The huge numbers appearing in the above equation signify that
15925857369244 is the difference in the number of revolutions (referred to
as paryayāntara in chapter 4) of the planets in 470300020285625 number of
days. We can use the vallyupasaṃhāra method for finding the smaller numer-
ators and denominators which approximate the above bhuktyantara.



Chapter 3
शगशख؛ΣुवाڤानयनͲ
Computation of the khaṇḍa, dhruva, etc. of
the Moon

३.१ चܑकेܑ࢐ अ߻गुणकारहारका:
3.1 The alpa-guṇakāras and alpa-hārakas of the candra-kendra

कवधो࢈ϞՊ࢒च पयϺयाۢरं धराकदनौघं च खमथोऽथ संहरेͪ ।
फलैरमीङभगुϺणहारकाۦयेͬ यथोकदतं केܓभवा भवठۢ ते ॥ १ ॥
vidhostaduccasya ca paryayāntaraṃ
dharādinaughaṃ ca mitho’tha saṃharet |
phalairamībhirguṇahārakānnayed
yathoditaṃ kendrabhavā bhavanti te || 1 ||

Let the heap of days (dharādinaugha), and the difference in the revolutions of the
Moon and its apogee be mutually divided. Then, from these results, the guṇakāras
and hārakas associated with the Moon’s anomaly (candra-kendra) are to be ob-
tained as stated earlier.

Let G(1), G(2) and H(1), H(2) be the mahāguṇakāras and mahāhāras of the
Moon and that of its apogee respectively (see Table 2.1). Now the daily rate
of motion (dinagati) of the Moon and its apogee are

G(1)

H(1) = 4909031760
134122987500

, (3.1)

G(2)

H(2) = 65408346
211440945000

. (3.2)

The difference between the two is the daily rate of motion of the anomaly
(kendra-dinabhukti) and is given by

4909031760
134122987500

− 65408346
211440945000

.
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Here the samaccheda or common-divisor is the heap of days (dharādinaugha)

134122987500× 211440945000 = 28359091223223187500000. (3.3)

The number of revolutions made by the Moon (candraparyaya) in these many
days is

4909031760× 211440945000 = 1037970314369413200000,

and that of its apogee (tuṅgaparyayas) is

65408346× 134122987500 = 8772762772953675000.

The difference in the paryayas (paryayāntara) given above is

1029197551596459525000. (3.4)

The G.C.D. or the apavartana of the paryayāntara given by (3.4) and the
sama-ccheda given by (3.3) is found to be 225000. Dividing these two quanti-
ties by their apavartana, we get the dṛḍhaguṇahāras of the candra-kendra (see
the last row in Table 3.1), the ratio ( G

H ) of which gives the dṛḍhakendragati
of the Moon which is given by

G

H
= 4574211340428709

126040405436547500
. (3.5)

The quotients obtained in the mutual division (vallyupasaṃhṛta-phalas) of
the above ratio are 27, 1, 1, 4, 12, 4, 15, 7, 1, 13, 2, 9, 1, 2, 1, 1, 1, 1, 1, 1, 2,
1, 1 and 4. The alpa-guṇakāras and alpa-hārakas obtained by the process of
vallyupasaṃhāra are listed in Table 3.1.

For a number of days equal to any of the hārakas in Table 3.1, the motion
in anomaly will not be exactly given by a complete number of revolutions. The
kendrabhukti of a hāraka is the change in Moon’s anomaly after a number of
days equal to the hāraka. We have also listed the kendrabhuktis corresponding
to some of these hārakas in Table 3.2. The kendrabhuktis have been computed
by choosing the value given by (3.5) as the daily motion of the anomaly.

३.२ चܑख؛ΣुवयोरानयनͲ
3.2 Obtaining the khaṇḍas and dhruvas for the Moon

दवेेܓशमЄѿकदनेۤतुुӾभेदाधϺयुѶेࡕकदनेۤकेुܓाͪ ।
घलݗीकृताͪ केܓहरेࡡभीेࡕनाहٖ नानाखतϺपरैरवाݗाः॥ २ ॥
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i hārakas (Hi) guṇakāras (Gi)

1 27 1
2 28 1
3 55 2
4 248 9
5 3031 110
6 12372 449
7 188611 6845
8 1332649 48364
9 1521260 55209
10 21109029 766081
11 43739318 1587371
12 414762891 15052420
13 458502209 16639791
14 1331767309 48332002
15 1790269518 64971793
16 3122036827 113303795
17 4912306345 178275588
18 8034343172 291579383
19 12946649517 469854971
20 20980992689 761434354
21 54908634895 1992723679
22 75889627584 2754158033
23 130798262479 4746881712
24 599082677500 21741684881
25 126040405436547500 4574211340428709

Table 3.1 The guṇakāras and hārakas corresponding to the Moon’s anomaly.

अभीࡕहारोێϺहरेण ह٘ा पूवЎकदताभीࡕहरेण ϓ٘ा ।
तΡाङधकोनं गुणाͪڦ कवशोंی हारौजयुӓ٘वशाͪ Εमेण ॥ ३ ॥
छशंࡕ शशाӼोकदतवाѿख؝ः त࢒Τवु࢈ओڟवसुࢎटेۤ ःु ।
तथा हराणЇ Τवुका࠻ तै࢈ःै कदनैࢗमानीतकवधुुࢎटाकन ॥ ४ ॥
devendraśarmaikyadinendutuṅga-
bhedārdhayukteṣṭadinendukendrāt |
liptīkṛtāt kendrahareṣvabhīṣṭe-
nāhatya nānārtiparairavāptāḥ || 2 ||
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hārakas (Hi) kendrabhukti deviation from 21600
(in minutes) (in minutes)

27 21165.27668 −434.72332
28 349.17581 349.17581
55 21514.45249 −85.54751

248 6.98579 6.98579
3031 21598.28195 −1.71805
12372 0.11358 0.11358
188611 21599.98568 −0.01432

1332649 0.01333 0.01333
1521260 21599.99901 −0.00099
21109029 0.00047 0.00047
43739318 21599.99995 −4.95911× 10−5

414762891 3.50095× 10−5 3.50095× 10−5

458502209 21599.99998 −1.33765× 10−5

Table 3.2 The kendrabhuktis corresponding to different kendrahārakas and their devia-
tion from complete revolution.

abhīṣṭahārordhvahareṇa hatvā
pūrvoditābhīṣṭahareṇa hṛtvā |
tatrādhikonaṃ dyugaṇāt viśodhyaṃ
hāraujayugmatvavaśāt krameṇa || 3 ||
śiṣṭaṃ śaśāṅkoditavākyakhaṇḍaḥ
tasya dhruvastaddivasasphuṭenduḥ |
tathā harāṇāṃ dhruvakāśca taistaiḥ
dinaissamānītavidhusphuṭāni || 4 ||

Half of the difference between the longitudes (bhuktis) of the Moon and its apogee,
corresponding to the sum of 248 (devendra) and 55 (śarma) days, has to be added
to the longitude of Moon’s anomaly in minutes for the desired day. This has to be
multiplied by the desired divisor (kendrahāraka) and divided by the 21600 (nānār-
tipara).
The quotient of this division is multiplied by the previous divisor and divided by the
desired divisor, and the resulting remainder is stored. In the case of odd divisors,
this remainder (adhikaśiṣṭa) has to be subtracted from the ahargaṇa; in the case
of even divisors the divisor minus the remainder (ūnaśiṣṭa) has to be subtracted
from the ahargaṇa. The result of the subtraction would be the khaṇḍa spoken of
[in vākya texts] (vākyakhaṇḍa) for the Moon.
The dhruva of that (khaṇḍa) is the true Moon (sphuṭacandra) at the end of that day
(corresponding to the khaṇḍa). In the same manner, the candrasphuṭas obtained
for the kendrahārakas are the dhruvas of the respective hārakas.

The above verses present an algorithm for obtaining a khaṇḍa correspond-
ing to a given hāraka. A khaṇḍa (also referred to as khaṇḍadina) is a day close
to given ahargaṇa when the anomaly is close to zero at the mean sunrise.
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In order to determine the khaṇḍa, we need to know the guṇakāras and
hārakas associated with the rate of motion of the anomaly (kendragati). In
the case of Moon, these are listed in Table 3.1. Let us denote the odd hārakas
by H1, H3, H5 . . . and the odd guṇas by G1, G3, G5 . . .. Similarly, let H2, H4,
H6 . . . and G2, G4, G6 . . . be the even hārakas and guṇas respectively. We now
present the algorithm to find the khaṇḍa corresponding to an ahargaṇa given
in the above verses.

३.२.१ ख؛ानयनΥकारः
3.2.1 Algorithm to determine the khaṇḍa

The algorithm essentially consists of the following steps:

1. Adding half the anomaly of the Moon in minutes corresponding to 303
days to the value of anomaly corresponding to the ahargaṇa A: That is
we need to find

(θ0 − θm)A + (θ0 − θm)303
2

,

where θ0 and θm are the longitudes of the mean Moon and its apogee
respectively, and (θ0−θm)A and (θ0−θm)303 are the longitudes of Moon’s
anomaly after A days and 303 days respectively.

2. Obtaining the quotient Qi by finding the ratio of the product of the above
quanity and the desired hāraka Hi (listed in Table 3.1) and dividing by
21600:

Qi =


(
(θ0 − θm)A + (θ0 − θm)303

2

)
×Hi

21600


int

. (3.6)

3. Finding the remainder ri by multiplying the quotient of the above divi-
sion by the previous divisor (ūrdhvahāraka) and dividing it by the desired
divisor (iṣṭahāraka): That is,

ri =
[
Qi ×Hi−1

Hi

]
rem

=


[
(θ0−θm)A+ (θ0−θm)303

2
21600 ×Hi

]
int

×Hi−1

Hi


rem

. (3.7)

Here, ‘[ ]rem’ denotes the remainder of the quantity obtained by finding
the ratio.
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4. Having obtained ri, in order to obtain the khaṇḍa, the adhikaśiṣṭa (ri) or
ūnaśiṣṭa (Hi − ri) has to be subtracted from A depending on whether Hi

is odd or even respectively. That is, khaṇḍa

Ki = A− ri (for odd Hi),
Ki = A− (Hi − ri) (for even Hi). (3.8)

Except for the correction term (θ0−θm)303
2 in (3.6), the rationale for which

is not clear, the rest of the steps in the above algorithm can be explained
as follows. Consider the anomaly (θ0 − θm)A in minutes, which includes the
zero-correction at kali beginning (kalyādidhruva). This is to be computed us-
ing the exact rate of motion of the anomaly G

H . This rate of motion can be
reasonably approximated by Gi

Hi
, for a reasonably large value of the hāraka Hi.

(θ0−θm)A
21600 which is the anomaly in revolutions may be expressed as n′

Hi
(after

subtracting the integral number of revolutions). Hence anomaly at ahargaṇa
A in revolutions is can be expressed as

(θ0 − θm)A
21600

= n′

Hi
, (3.9)

or
[
(θ0 − θm)A

21600
×Hi

]
int

= [n′]int = n, (3.10)

Thus, we are essentially approximating the anomaly at A by n
Hi

, where n is
an integer. For large Hi (say 12372 or above, see Table 3.2), this is a good
approximation. The khaṇḍa, Ki corresponds to the day when the anomaly is
close to zero. Let Ki = A−x. So x is the number of days in which the kendra
increases by n

Hi
revolutions. As the daily motion of the kendra is approximately

given by Gi

Hi
revolutions, we have

Gi

Hi
× x− y = n

Hi
, (3.11)

where y is the number of completed revolutions of the kendra. The above
equation can be rewritten as

Gix−Hiy = n, (3.12)

where we have to solve for x and y in integers. The solution of this is related
to the solution of the equation

Gix
′ −Hiy

′ = 1. (3.13)

Here we may recall the relation between the successive ”convergents” in the
continued fraction expansion of G

H as given by relation (A.13) of Appendix A,
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GiHi−1 −HiGi−1 = (−1)i+1. (3.14)

Therefore, a solution of (3.13) is given by

x′ = Hi−1 (odd i),
x′ = Hi −Hi−1 (even i). (3.15)

Hence, a solution of (3.12) is given by

x = nHi−1 (odd i),
x = nHi − nHi−1 (even i). (3.16)

For the linear indeterminate equation (3.12), a general solution for x may
be obtained by adding an arbitrary integral multiple of Hi. Therefore, the
smallest solution for x can be obtained by dividing the above solution by Hi

and taking the remainder. Therefore, we have the solution

x =
[
nHi−1

Hi

]
rem

(odd i),

x = Hi −
[
nHi−1

Hi

]
rem

(even i). (3.17)

Thus from (3.10) and (3.17), it is clear that the khaṇḍa Ki is given by

Ki = A− ri (odd i),
Ki = A− (Hi − ri) (even i), (3.18)

where

ri =


[
(θ0−θm)A

21600 ×Hi

]
int

×Hi−1

Hi


rem

,

as stated in the text except for the correction term (θ0 − θm)303
2

. It may be
noted that here it is not insisted upon that the kendra should exactly be zero
at the khaṇḍa.

Illustrative example

We shall now illustrate the procedure for obtaining the khaṇḍa outlined above
by means of an example. Let’s consider the ahargaṇa A to be 1851974 corre-
sponding to August 6, 1969 CE.

The kalyādidhruva of the kendra is 6◦23′37′′−129◦17′26′′ = −6773.836667′.
We take the daily motion of the kendra to be 766081

21109029 revolutions. Hence the
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motion of the kendra in 1851974 days is[
766081
21109029

× 1851874
]
frc

= 0.14903 revolution

= 3218.94200′,

where we have left out the integral part or the total number of revolutions
completed. Using the above rate of motion, we can also compute the quantity∣∣∣∣ (θ0 − θm)303

2

∣∣∣∣ = 39.28086′ = 39′17′′. (3.19)

Hence

(θ0 − θm)A +
∣∣∣∣ (θ0 − θm)303

2

∣∣∣∣ = −6773.816667′ + 3218.94200′ + 39.28086′

= −3515.59381
= 18084.40619′ ≈ 18084′. (3.20)

Actually we need to find the number of civil days elapsed from the time
when the kendra was zero to the point when the kendra becomes 18084′ close
to sunrise. That many number of days when subtracted from the ahargaṇa
1851874 would give the khaṇḍa.

Now we take the hāraka H4 = 248. Then, the daily motion of the kendra is
9

248 . That is, after each day (commencing from the day on which the kendra is
zero), the increase of kendra would be in multiples of 9

248 . That is, at the end
of the first day it would be 9

248 , at the end of the second day 18
248 and so on.

After the 28th day when the Moon’s kendra has completed one revolution, it
would be 4

248 , since 9×28−248 = 4. Hence, at the sunrise of any arbitrary day,
the kendra would be an integral multiple of 1

248 (in bhagaṇas) or 1
248 × 21600

(in minutes).
Let n′ be an integer so that n′

248 × 21600′ is equal to 18084′. Then

n′

248
= 18084

21600
,

or n′ = 18084× 248
21600

= 207.631.

Hence
n = [n′]int = 207,

As the hāraka previous to 248 is 55, we calculate[
207× 55

248

]
rem

= 225.
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Now, the hāraka chosen is H4 = 248, which is a yugmahāraka, corresponding
to even i. Therefore, as per the prescription given in the verse

x = 248− 225 = 23.

Hence, the khaṇḍa is given by

K4 = 1851974− 23 = 1851951. (3.21)

The kendrabhukti corresponding to K4 is obtained by multiplying it by the
daily motion of the kendra which is taken to be 766081

21109029 in this example.
After subtracting the integral number of revolutions from this, we find it to
be 6789.26186′. Adding the kalyādidhruva −6773.81667, we find that kendra
at khaṇḍa K4 is 15.44519′ which is small, as expected.

If we take the hāraka to be H6 = 12372, then n′ = 10358.11333, so that
n = 10358. In this case, the hāraka previous to 12372 is 3031. Thus we have[

10358× 3031
12372

]
rem

= 7334.

As 12372 is also yugmahāraka (i = 6), x = 12372− 7334 = 5038.
Hence, in this case, the khaṇḍa K6 = 1851974 - 5038 = 1846936.

The kendra at K6 is then[
1846936× 766081

21109029

]
frc

× 21600− 6773.81667 = −38.72306′,

where ‘[ ]frc’ denotes the fractional part. For this ahargaṇa, not only is the
difference between the ahargaṇa and the khaṇḍa high (5038), the kendra is
also slightly larger.

Now, we find the khaṇḍa K4 and the kendra at the khaṇḍa without consid-
ering the correction term (θ0−θm)303

2 = 39.28086. In this case,

(θ0 − θm)A = 18045.12533′ ≈ 18045′,

for the same ahargaṇa, A = 1851974 days. If we take the hāraka as 248, then

n′

248
= 18045

21600
,

or n′ = 207.183333,

and n = 207. This is the same as what we obtained earlier, and we obtain the
same value of khaṇḍa K4 = 1851951 and kendra at K4 to be 15.44519′.

If we take the hāraka to be H6 = 12372, then

n′

12372
= 18045

21600
,
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or, n′ = 10335.775 or n = 10335. Then[
10335× 3031

12372

]
rem

= 11853,

and 12372− 11853 = 519. Therefore, khaṇḍa

K6 = 1851974− 519 = 1851455.

Now the kendra at K6 is

1851455× 766081
21109029

× 21600− 6773.81667

= 1.47′,

where we have subtracted the integral multiple of 21600. It is to be noted that
the magnitude of the kendra is small at the khaṇḍa for this hāraka when we
do not use the correction term (θ0−θm)303

2 .

३.२.२ हारकख؛ा۠े Σुवाः
3.2.2 Dhruvas at the end of different hārakas and khaṇḍas

In verse 4 it is stated that the dhruvas corresponding to the khaṇḍas Ki would
be the true longitudes of the Moon at the end of those khaṇḍas. Similarly, for
a hāraka Hi, the dhruva is the increase in the true longitude during an interval
equal to Hi days, at the beginning of which true anomaly is zero. It is well
known that the true longitude (θ) in terms of the mean longitude (θ0) and
the mandakendra (θ0 − θm) is given by

θ = θ0 − sin−1
(

7
80

× sin(θ0 − θm)
)
. (3.22)

Using the above relation, we have computed the dhruvas for all the hārakas
and tabulated them in Table 3.3.

For the ahargaṇa A = 1851974 considered above, the khaṇḍa was 1851951
corresponding to the hāraka 248, and the mandakendra was 15.45′. The mean
longitude of the Moon for this ahargaṇa including the kalyādidhruva is θ0 =
74◦40′. Then the true longitude of the Moon is found to be

θ = θ0 − sin−1
(

7
80

× sin(15.45′)
)

= 74◦38.6′.
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Similarly for the hāraka H6 = 12372, the khaṇḍa was K6 = 1846936 with
mean longitude θ0 = 241◦39.4′ and θ0 − θm = −38.72306′ as seen above. The
true longitude of the Moon at the khaṇḍa would be

θ = θ0 − sin−1
(

7
80

× sin(−38.72′)
)

= 241◦42.8′.

३.३ केܑफलानयनͲ
3.3 Obtaining the kendraphalas

तٌओڟनोٍेۤ तुϞՊभेदघलݗाहताͪ केܓहरादभीࡕाͪ ।
केܓाئनۢोؽरसंϓताकन࢔णЉٕकानीܔङधका߽क٘े ॥ ५ ॥
tattaddinotthendutaduccabhedaliptāhatāt kendraharādabhīṣṭāt |
kendrāṇyanantotkarasaṃhṛtāni svarṇātmakānīndvadhikālpakatve || 5 ||

The difference between the longitudes of the Moon and its apogee in minutes
corresponding to the respective days,1 multiplied by the desired kendrahāra and
divided by 21600 (anantotkara) would give the kendra[phalas] of the respective days
[corresponding to the chosen kendra-hāra]. [This] would be positive or negative
depending on whether [the longitude of] the Moon is larger or smaller [than the
longitude of the apogee].

If θ0 and θm be the mean longitudes of the Moon and its apogee in minutes,
then the kendraphalas kij of the different hārakas Hj (where j = 1, 2, . . . i−1)
corresponding to iṣṭakendrahāraka Hi may be expressed as

kij = +
∣∣∣∣ (θ0 − θm)Hj ×Hi

21600

∣∣∣∣ (if θ0 > θm), (3.23)

kij = −
∣∣∣∣ (θ0 − θm)Hj ×Hi

21600

∣∣∣∣ (if θ0 < θm). (3.24)

Similarly, given the khaṇḍa Ki and the hāraka Hi, the kendraphala ki is
given by
1 Here, the word tattaddina (respective days) refers to both the khaṇdadinas obtained
and the number of days given by the kendrahārakas.
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hārakas dhruvas

Hi (in minutes)

27 21383.62485

28 505.76731

55 289.43982

248 1663.47755

3031 20251.17118

12372 17868.16227

188611 7473.60524

1332649 5383.39894

1521260 12857.00418

21109029 21324.45330

43739318 12305.91079

414762891 2477.65039

458502209 14783.56116

1331767309 10444.77271

1790269518 3628.33398

3122036827 14073.10645

4912306345 17701.44043

8034343172 10174.54688

12946649517 6275.98828

20980992689 16450.53517

54908634895 17577.05469

75889627584 12427.59375

130798262479 8404.65625

599082677500 2846.18750

Table 3.3 The dhruvas corresponding to different kendrahārakas.

ki = +
∣∣∣∣ (θ0 − θm)Ki ×Hi

21600

∣∣∣∣ (if θ0 > θm), (3.25)

ki = −
∣∣∣∣ (θ0 − θm)Ki ×Hi

21600

∣∣∣∣ (if θ0 < θm). (3.26)

Here (θ0 − θm)Hj or (θ0 − θm)Ki represent the change in the longitude of the
kendra or anomaly in a period of Hj or Ki days respectively, in minutes. Now,
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if the rate of motion of the kendra (anomaly) is taken to be Gi

Hi
, then

(θ0 − θm)X =
[
X × Gi

Hi

]
frc

× 21600 (in minutes),

where [ ]frc in the RHS denotes the fractional part. Hence

(θ0 − θm)X
21600

=
[
X × Gi

Hi

]
frc

= αi

Hi
, (3.27)

where αi is the remainder when XGi is divided by Hi. This remainder αi is
the kendraphala denoted by kij when X = Hj , and by ki when X = Ki.

३.४ केܑफलानयने Υकारा۠रͲ
3.4 An alternative method for obtaining the kendraphalas

अभीࡕहार֎ गुणं तदीयं खमथो हरेٌښणुहारशेषाः ।
अभीࡕहारोێϺगहारकाणЇ धनणϺकेܓाئथवा भवठۢ ॥ ६ ॥
abhīṣṭahārañca guṇaṃ tadīyaṃ mitho harettadguṇahāraśeṣāḥ |
abhīṣṭahārordhvagahārakāṇāṃ dhanarṇakendrāṇyathavā bhavanti || 6 ||

Or else, the remainders obtained in [the process] of mutual division (vallyu-
pasaṃhāra) of the desired hāraka and its guṇakāra would be the positive and
negative kendra[phalas] of the preceding hārakas.

Essentially the verse states that in the process of doing mutual division
(vallyupasaṃhāra) between the desired hāraka Hi and its guṇakāra Gi, the
remainders obtained rij , j = 1, 2, . . . , i−1, are the kendraphalas of the hārakas
H1,H2, . . . Hi−1 respectively corresponding to Hi. This can be seen as follows.
In equation (3.27), setting X = Hj , and correspondingly αi = kij , we have

(θ0 − θm)Hj

21600
=
[
Hj ×

Gi

Hi

]
frc

= kij
Hi

. (3.28)

But it has been shown in (A.29) of Appendix A that

GiHj = HiGj ± rij , j = 1, 2, . . . (i− 1),

where we take ‘+’ sign when j is even and ‘−’ sign when j is odd. Therefore,
we have

kij
Hi

=
[
Gj ±

rij
Hi

]
frc

. (3.29)
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The Gj term does not contribute to the fractional part. Hence kij = ±rij .
Here rij are the remainders obtained during the process of mutual division of
the given hāraka and its guṇakāra. The kendraphalas are just these remainders
apart from a sign.

Now we shall illustrate the procedure to obtain the kendraphalas by choos-
ing Hi = 248 as an example. If we divide 248 by 9, the quotient would be 27
and the remainder is 5. Now dividing 9 by 5, we get the quotient as 1 and the
remainder is 4. In the next step we get the remainder as 1. Thus the ratio 9

248
can be written in the form of a continued fraction as

9
248

= 1

27 + 1

1 + 1

1 + 1
4

. (3.30)

The remainders are 5, 4 and 1. Hence, −5,+4 and −1 are the kendraphalas
of the ūrdhvahārakas 27, 28 and 55, respectively, corresponding to the hāraka
248.

३.५ ΣुवसंࡷारहारकानयनͲ
3.5 Obtaining the dhruva-saṃskārahārakas

अभीࡕहार࢒ गुणोऽयमुѶः संࡹारहारानयने तु भाմः ।
केܓाئमूकन࢔हरोڠतृानЇ Εमाͪ फलानЇ गुणका भवेयुः ॥ ७ ॥
abhīṣṭahārasya guṇo’yamuktaḥ saṃskārahārānayane tu bhājyaḥ |
kendrāṇyamūni svaharoddhṛtānāṃ kramāt phalānāṃ guṇakā bhaveyuḥ || 7 ||

While obtaining the divisor which is used for correcting the dhruva (dhruva-
saṃskārahāra), the multiplier corresponding to the desired divisor would become
the dividend. The kendra-[phalas] would be the multipliers of the quotients ob-
tained when dividing [khaṇḍaśeṣas] by their own hāras.

The expression for dhruva-saṃskārahāraka (the divisor which appears in
the correction for dhruva) given in the above verse is the following:

dhruva-saṃskārahāraka = Gi∑i−1
j=lkijqj

, (3.31)

where qj , j = l, l + 1, . . . i, are defined below. In (3.31), l is a suitable small
number, not specified. In practice l = 4, corresponding to the fourth hāraka,
248 (see Table 3.1).

Let Ki be the khaṇḍa, as given by (3.8), corresponding to the hāraka Hi.
The khaṇḍaśeṣa A − Ki is to be divided by Hi−1. The quotient obtained is
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qi−1; and the remainder obtained νi−1 is divided by the Hi−2 and so on. In
this way the khaṇḍaśeṣa A−Ki may be expressed as:

A−Ki = qi−1Hi−1 + qi−2Hi−2 + . . . qlHl + νl

= Sl + νl. (3.32)

The longitude of the kendra at Sl in revolutions is given by

(θ0 − θm)Sl
= qi−1(θ0 − θm)Hi−1 + qi−2(θ0 − θm)Hi−2 + . . .+ ql(θ0 − θm)Hl

.

Now
(θ0 − θm)Hj = kij

Hi
.

Hence

(θ0 − θm)Sl
=
∑i−1

j=lkijqj

Hi
. (3.33)

Verses 15 – 18 of the Vākyakaraṇa of Parameśvara2 define dhruva-saṃskārahāraka
(HD) to be

kendra at vākyārambhakāla = kendra-madhyama-gati
dhruva-saṃskārahāra ,

or (θ0 − θm)Sl
= kendra-madhyama-gati

HD

= Gi

Hi ×HD
. (3.34)

Equating (3.33) and (3.34), we get

HD = Gi∑i−1
j=lkijqj

, (3.35)

which is the same as the expression given in the text.
The sum of the increases in the mean longitude of the Moon correspond-

ing to Hi−1, . . . ,Hl days multiplied by the quotients qi−1, . . . , ql respectively
added to the mean longitude at the khaṇḍa will give the mean longitude at
Sl. From these the true longitude of the Moon at Sl can be obtained. If (θ)Sl

is the true longitude of Moon at the vākyārambhakāla Sl, then

(θ)Sl
= qi−1di−1 + qi−2di−2 + . . .+ qldl. (3.36)

where di’s are the dhruvas giving the true longitudes of the Moon after Hi

days. For the remaining days νl, the corresponding candravākya can be used
2 Vākyakaraṇam by Parameśvara, Mss. no. KVS 242, K V Sarma Library, Adyar.
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to find the change in longitude. In this way, the true longitude of the Moon
can be found for the desired ahargaṇa A.

३.६ हारकेण ख؛ानयनͲ
3.6 Obtaining the khaṇḍa using a specific hāraka

शीतЇशोकवϺकलाकदतࢗकळगैः युѶाͪ࢔तुӾोकनताͪ
घलݗीकृٖ कपोतϞजϺयहताͪ नूِातपΡोڠतृͳ ।
άीसӾकΦयताकडतं कवभजताͪ कापोतदहेायनैः
तऩՋंࡕ गुणाͪڦ ٖजेͪ तुऔहनगोः वाѿोѶख؝ाݗये ॥ ८ ॥
śītāṃśorvikalāditassakaḷagaiḥ yuktāt svatuṅgonitāt
liptīkṛtya kapotadurjayahatāt nūtnātapatroddhṛtam |
śrīsaṅgapriyatāḍitaṃ vibhajatāt kāpotadehāyanaiḥ
tacchiṣṭaṃ dyugaṇāt tyajet tuhinagoḥ vākyoktakhaṇḍāptaye || 8 ||

Having added the [mean longitude of the] Moon [accurate upto] the seconds to
39′17′′ (sakaḷaga) subtract the mean longitude of its apogee and [the result] has to
be converted into minutes. [Then] multiply by 188611 (kapotadurjaya) and divide
by 21600 (nūtnātapatra). [The result thus obtained] has to be multiplied (tāḍitam)
by 12372 (śrīsaṅgapriya) and divided by 188611 (kāpota-dehāyana). The remainder
has to be subtracted from the ahargaṇa in order to obtain the khaṇḍa of the Moon
(tuhinagu) that is mentioned in vākya [texts].

The expression given by the above verse, using which the khaṇḍa can be
obtained, is

r7 =


[
((θ0 − θm)A + 39′17′′)× 188611

21600

]
int

× 12372

188611


rem

. (3.37)

The extra term 39′17′′ which appears in the above equation is the same
as the term (θ0−θm)303

2 which appears in the definition (3.7) of the ri. This is
because the motion in anomaly in 303 days is very nearly equal to 2×39′17′′ =
78′34′′. This remainder when subtracted from A would give the necessary
khaṇḍa.

This prescription (3.37) is a particular case of general procedure described
in verses 2 and 3 (see (3.7)) with Hi = 188611 and Hi−1 = 12372 (i = 7). As
this H7 is a ojahāraka (odd divisor) the remainder itself is subtracted from
the ahargaṇa to obtain the khaṇḍa.
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Illustrative example

We choose the same ahargaṇa A = 1851974 as in the previous example. The
longitude of the kendra at the end of this ahargaṇa added to 39′17′′ is 18084′.
Using this value in (3.37), we get the reminder as 17410. Therefore, the khaṇḍa

K7 = 1851974− 17410 = 1834564.

३.७ वाѽोѴख؛ाओݕΥकारः
3.7 A method for finding different khaṇḍas

लंޔ तΡ तु कालनागगुछणतं άीरӾर߅भैϺजेͪ
तऩՋࡕोनहरोकनतो कदनगणो वा वाѿख؝ो भवेͪ ।
तΡाेݗ औकल दवेरैकवϺकनहते कालानलैः संϓते
शेषं वा गुणाͪڦ ٖजेͪ तुऔहनगोवЉѿोѶख؝ाݗये ॥ ९ ॥
labdhaṃ tatra tu kālanāgaguṇitaṃ śrīraṅgaramyairbhajet
tacchiṣṭonaharonito dinagaṇo vā vākyakhaṇḍo bhavet |
tatrāpte kila devarairvinihate kālānalaiḥ saṃhṛte
śeṣaṃ vā dyugaṇāt tyajet tuhinagorvākyoktakhaṇḍāptaye || 9 ||

The quotient obtained there (i.e., in the previous calculation) has to be multiplied
by 3031 (kālanāga) and divided by 12372. The reminder deducted from the hāraka
(as it is an ūnaśiṣṭa) when subtracted from the ahargaṇa will also result in a
vākyakhaṇḍa. The quotient obtained in this case may be multiplied by 248 (devara)
and divided by 3031 (kālānala). The remainder [thus obtained] when subtracted
from the ahargaṇa will also lead to a khaṇḍa that is mentioned in the vākya [texts].

The above verse presents an algorithm to find approximately the khaṇḍas
Ki−1,Ki−2, . . . given the khaṇḍa Ki. The rationale for this method is briefly
as follows.

Let us recall the definition of khaṇḍa Ki

Ki = A− ri (for odd i),
Ki = A− (Hi − ri) (for even i),

where

ri =


[
(θ0 − θm)A + (θ0−θm)303

2
21600

×Hi

]
int

×Hi−1

Hi


rem

.

Now let us define phala Pi by
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Pi =


[
(θ0 − θm)A + (θ0−θm)303

2
21600

×Hi

]
int

×Hi−1

Hi


int

. (3.38)

When Hi is fairly large, (see Table 3.2) we can approximate

[
(θ0 − θm)A + (θ0−θm)303

2
21600

×Hi

]
int

≃
(θ0 − θm)A + (θ0−θm)303

2
21600

×Hi (3.39)

Hence

Pi ≃
[
(θ0 − θm)A + (θ0−θm)303

2
21600

×Hi−1

]
int

. (3.40)

Therefore we obtain
ri−1 ≃

[
Pi ×Hi−2

Hi−1

]
rem

. (3.41)

Further
Pi−1 ≃

[
Pi ×Hi−2

Hi−1

]
int

, (3.42)

and so on.
The prescription given in the above verse, and the numerical values pre-

sented therein amount to finding r6 and r5 starting from r7. To start with

r7 =


[
((θ0 − θm)A + 39′17′′)× 188611

21600

]
int

× 12372

188611


rem

. (3.43)

Then the phala P7 is defined by

P7 =


[
((θ0 − θm)A + 39′17′′)× 188611

21600

]
int

× 12372

188611


int

. (3.44)

It is then said that
r6 =

[
P7 × 3031
12372

]
rem

.

Now P6 is given by
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P6 =
[
P7 × 3031
12372

]
int

. (3.45)

Then it is said that r5 is given by

r5 =
[
P6 × 248
3031

]
rem

.

The khaṇḍas K6 and K5 are given by

K6 = A− (12372− r6),
and K5 = A− r5. (3.46)

Clearly, K6 is closer to A than K7 and K5 is closer to A than K6.

Illustrative example

Let us consider the ahargaṇa, A = 1851974 as in the previous example. It was
found (see 3.20) that the kendra (θ0 − θm)A + 39′17′′ is 18084′. Using this in
(3.43),

r7 =


[
18084′×188611

21600

]
int

× 12372

188611


rem

= 17410.

Hence the khaṇḍa given by (3.8) is

K7 = A− 17410 = 1851974− 17410 = 1834564. (3.47)

Now, from (3.44) P7 is given by

P7 =


[
18084′×188611

21600

]
int

× 12372

188611


int

= 10358. (3.48)

We see that we obtain the same result 10358, if we use the approximation

P7 ≃
[
18084× 12372

21600

]
int

. (3.49)

Proceeding this way, the remainder

r6 =
[
10358× 3031

12372

]
rem

= 7334,

and the khaṇḍa, in this case the ūnaśiṣṭa, is given by
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K6 = A− (12372− 7334) = 1851974− 5038
= 1846936. (3.50)

Now P6 and r5 are given by

P6 =
[
10358× 3031

12372

]
int

= 2537,

r5 =
[
2537× 248

3031

]
rem

= 1759. (3.51)

The next khaṇḍa K5 is

K5 = 1851974− 1759 = 1850215. (3.52)

Again, P5 and r4 are given by

P5 =
[
2537× 248

3031

]
int

= 207,

r4 =
[
207× 55

248

]
rem

= 225.

Therefore, the ūnaśiṣṭa is 248− 225 = 23, and the khaṇḍa K4 is given by

K4 = 1851974− 23 = 1851951. (3.53)

which is the same as was obtained in (3.21).

३.८ हारकओवशेषेण केܑफलानयनͲ
3.8 Obtaining kendraphalas using a special hāraka

तओڟनेۤՊूयोभϿदाͪ पयЉݗϓदयाहताͪ ।
केܓाҿं चΕघलݗांݗ टेۤࢎु ु࢈ Ρ औह Τवुः ॥ १० ॥
taddinendūccayorbhedāt paryāptahṛdayāhatāt |
kendrākhyaṃ cakraliptāptaṃ sphuṭendustatra hi dhruvaḥ || 10 ||

The difference between the longitude of the Moon and its apogee for that day3 has
to be multiplied by 188611 (paryāptahṛdaya) and divided by 21600. [The quotient]
would be the corresponding kendraphala. The dhruva obtained there would be the
true longitude of the Moon for that day.

This is a particular case of (3.28) for the hāraka H7 = 188611.
3 The term taddina refers to the day associated with a given khaṇḍa and a hāraka.
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३.९ गुणकानयनΥकार:
3.9 The process of obtaining the multipliers

छशवोकदतं कण߀तϞजϺयं च घछܒाठ۫थो ࠬुٟ मतोऽΡ शेषाः ।
άीसӾर߅ाकदहराϓतानЇ धनणϺϒपा गुणका भवठۢ ॥ ११ ॥
śivoditaṃ kampitadurjayaṃ ca chindyānmitho vyutkramato’tra śeṣāḥ |
śrīsaṅgaramyādiharāhṛtānāṃ dhanarṇarūpā guṇakā bhavanti || 11 ||

The remainders obtained by the mutual division of 6845 (śivodita) and 188611
(kampitadurjaya) in reverse order would become the positive and negative multi-
pliers of the quotients obtained while dividing [khaṇḍaśeṣa] by the hāras 12372 etc.
(śrīsaṅgaramyādi).

The method prescribed in this verse has already been discussed in connec-
tion with verses 6, 7. The process of mutual division prescribed here especially
gives the kendraphalas. These positive and negative kendraphalas would be the
multipliers (guṇakas).

An important point needs to be emphasized here. We have seen that the
anomaly or the kendra is not zero at the end of the khaṇḍa, which is obtained
using the successive hārakas Hi, . . . , 248. In fact we have seen in (3.33) that,
after finding the khaṇḍa closest to A using the hāraka 248 at the last stage,
the kendra at the khaṇḍa would be given by

i−1∑
j=4

qjkij
Hi

(3.54)

revolutions. In the text Vākyakaraṇa, while prescribing the calculation of the
true longitude of the Moon using dhruvas and the vākyas, a correction term
has been specified which takes into account the fact that the kendra does not
complete exactly integral number of revolutions in 248 or 3031 days, as the
anomaly increases by the amounts 7′ and −1.75′ respectively. This correction
is explained in Appendix D.

३.१० चܑवाѽानयनΥकार:
3.10 The procedure for obtaining the candravākyas

दवेेܓसԝावङधकैः एकाڦकेोٌरैकदϺनैः ।
पृथ͛ पृथ͛ टीकुयЉकदۤुंࢎु तڥाѿछसڠये॥ १२ ॥
devendrasaṅkhyāvadhikaiḥ ekādyekottarairdinaiḥ |
pṛthak pṛthak sphuṭīkuryādinduṃ tadvākyasiddhaye || 12 ||
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The true longitudes of the Moon may be computed for each day separately start-
ing from day number 1 till day number 248 (devendra) in order to obtain the
candravākyas.

This verse gives a general prescription as to how the candravākyas have
to be obtained. The candravākyas accurate to a minute were enunciated by
Vararuci and these are the famous gīrnaśreyādi-vākyas. The great astronomer-
mathematician Mādhava enunciated the vākyas, śīlaṃ rājñaḥ śriye etc., which
are accurate to a second. The true longitudes of the Moon for 248 days,
starting from a day when the longitude of the Moon and its apogee was zero,
have been computed and listed along with the values encoded in the vākyas
in Appendix E.

३.११ शगशतुӼयोग࢐ सूयЌदयसऔۤकषϸः
3.11 The relationship between the magnitude of hāraka

and the proximity to sunrise

तुӾोकनतादवे कवधोयϺथोѶं नीते च खे؝ शछशतुӾयोगः ।
तΡेࡕहाराङधकतावशाͪ तڦोग࢒सूयЎदयसगۦकषϺः ॥ १३ ॥
tuṅgonitādeva vidhoryathoktaṃ nīte ca khaṇḍe śaśituṅgayogaḥ |
tatreṣṭahārādhikatāvaśāt tadyogasya sūryodayasannikarṣaḥ || 13 ||

[For any given day], having obtained the longitude of the Moon and subtracting
just the longitude of its apogee (tuṅgonitādeva4), if the khaṇḍa is [obtained], then
it ensures that the conjunction of the Moon and its apogee [is close to the sunrise].
There, larger the magnitude of the hāraka chosen, the closer is the conjunction (of
the Moon and its apogee) to the sunrise.

In the previous sections, we have seen how the khaṇḍa for the Moon can
be obtained corresponding to a given ahargaṇa. The purpose of obtaining
the khaṇḍa is to find a heap of days since the beginning of the kali in such
a way that, at the khaṇḍāntya, the longitude of the Moon should be equal
to the longitude of apogee. Here, the word khaṇdāntya refers to the number
of days elapsed after the beginning of kaliyuga. That is, if K is the khaṇḍa
obtained, then the khaṇḍāntya corresponds to the beginning of the (K + 1)th
day which is the sunrise on that day. But, since the khaṇḍa is obtained from the
approximate divisors, the conjunction between the Moon and its apogee will
not exactly coincide with the sunrise. There will be a small time difference
4 In the Commentary II, it is noted that the word eva associated with the word tuṅgonita
implies that only tuṅga has to be subtracted from the mean longitude and the ad hoc
correction term given by half the motion of the anomaly in 303 days or 39′17′′ need not
be added ({KP 1956}, p. 109). That is, the word ‘eva’ is used as anyayoga-vyavacchedaka.
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(antara) between the instant at which conjunction (yoga) happens and the
time of sunrise (udaya). This time difference in terms of the time unit prāṇas5

is called yogodayāntaraprāṇas. The method to obtain the yogodayāntaraprāṇas
is explained in the next verse.

३.१२ योगोदया۠रΥाणयोगΣुवयोरानयनͲ
3.12 Obtaining the yogodayāntaraprāṇas and yogadhruvas

तڥासरोٍतुऔहनЇϠतϞՊभेदघलݗा हताङभमतकेܓहराͬ गुणाݗाः।
योगोदयाۢरभवाः सवःࣁ Εमेण࢔णЉٕकाः तुऔहनगोरङधका߽क٘े ॥ १४ ॥
Φाणै࢈ःै ࠻ैݗहारा࢔ःै࢈ޱगुणा࢔ संृࡹतौ ।
चܓतुӾाकवमौ ातЇ࢒ तुࠂौ योगΤवुाࣃयौ ॥ १५ ॥
tadvāsarotthatuhināṃśutaduccabhedaliptā
hatābhimatakendraharād guṇāptāḥ |
yogodayāntarabhavāḥ hyasavaḥ krameṇa
svarṇātmakāḥ tuhinagoradhikālpakatve || 14 ||
prāṇaistaiḥ svaguṇābhyastaiḥ svahārāptaiśca saṃskṛtau |
candratuṅgāvimau syātāṃ tulyau yogadhruvāhvayau || 15 ||

The difference in the longitudes of the Moon and its apogee, in minutes, corre-
sponding to that day (tadvāsarottha) has to be multiplied by the desired kendrahāra
and divided by the guṇakāra. The [result thus obtained] would be positive or neg-
ative yogodayāntara-prāṇas depending on whether [the longitude of] the Moon is
larger or smaller [than that of the apogee].
The [longitudes of the] Moon and its apogee when corrected by [the result obtained
by] multiplying these [yogodayāntara]prāṇas by their guṇas, and dividing by their
own (sva)6 hāras respectively, would become equal. [These correction terms] are
known as yogadhruvas.

If (θ0 − θm)K represents the longitude of the kendra at the khaṇḍāntya (at
the sunrise), then the expression for the time difference between the sunrise
and the time of conjunction of Moon and its mandocca (yogodayāntaraprāṇas),
(∆t) given in the above verse can be written as

∆t = +
∣∣∣∣ (θ0 − θm)K ×Hi

Gi

∣∣∣∣ (if θ0 > θm), (3.55)

∆t = −
∣∣∣∣ (θ0 − θm)K ×Hi

Gi

∣∣∣∣ (if θ0 < θm). (3.56)

5 The word prāṇa is generally used to refer to life. However, in the context of astronomy
it has to be understood as a time unit which is 4 sidereal seconds.
6 The word sva indicates that appropriate values corresponding to the Moon and its
apogee are to be used.
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Here (θ0 − θm)K is the value of the anomaly in minutes, at sunrise after K
days have elapsed. The rate of motion of the anomaly is Gi

Hi
revolutions per

day, or Gi

Hi
× 21600 minutes of arc per day or Gi

Hi
minutes per prāṇa, as there

are 21600 prāṇas in a day. Hence the time interval between sunrise and the
instant at which the anomaly is zero (that is, instant of conjunction of the
Moon and its apogee) is given by∣∣∣∣ (θ0 − θm)K ×Hi

Gi

∣∣∣∣ ,
which is the magnitude of the yogodayāntaraprāṇas. Here if θ0 > θm at sunrise,
then the yoga (conjunction) has already occured and the yogodayāntaraprāṇa
is positive. It is negative if θ0 < θm. In that case, the mean Moon will be in
conjunction with the apogee, after the sunrise. Thus, from ∆t one can obtain
the instant at which the conjuction between the Moon and its apogee occurs.

It may be recalled that from the khaṇḍadina, we can only obtain the lon-
gitudes of the Moon and its apogee at the time of sunrise. But by making use
of ∆t, we can find the longitude at the instant when the conjuction of the
Moon and its apogee happens. This can be achieved by applying the correc-
tion terms to the longitudes at the sunrise. These correction terms are known
as yogadhruvas. Verse 15 explains the method to obtain the yogadhruvas as a
function of ∆t.

If G(1)
i and H

(1)
i are the guṇakāras and hāras of the Moon, and G

(2)
i and

H
(2)
i are those of the apogee repectively, then the yogadhruvas for Moon and

its apogee are given by

yogadhruva of the Moon = ∆t×G
(1)
i

H
(1)
i

, (3.57)

yogadhruva of the apogee = ∆t×G
(2)
i

H
(2)
i

. (3.58)

Illustrative example

We know that the khaṇḍa corresponding to the ahargaṇa A = 1851974 is
1851951 (see (3.21) ). Now, the longitudes of the Moon and its apogee at the
khaṇḍāntya can be written as

θ0 = 4857.14276′,
θm = 4845.36580′.

Hence |θ0 − θm| = 11.77696. (3.59)
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Since θ0 > θm, we use (3.55) to find ∆t. With the choice of hāraka Hi =
188611, corresponding to the khaṇḍa K = 1851951, we obtain7

∆t = +
[
11.77696× 188611

6845

]
= +324.50910. (3.60)

The yogodayāntaraprāṇas corresponding to different hārakas were com-
puted in the similar manner and the values obtained are listed in Table 3.4.

hāraka guṇakāra yogodayāntara
(Hi) (Gi) (in prāṇas)

2 55 + 323.86649
9 248 + 324.52076

110 3031 + 324.50887
449 12372 + 324.50911
6845 188611 + 324.50910

Table 3.4 The yogodayāntara-prāṇas corresponding to different hārakas for the khaṇḍa
K = 1851951.

By substituting the value of ∆t given by (3.60) and the respective guṇahāras
in (3.57) and (3.58), we get

yogadhruva of the Moon = 324.5091×G
(1)
5

H
(1)
5

= 324.5091× 143
3907

= 11.87735′. (3.61)

yogadhruva of the apogee = 324.5091×G
(2)
3

H
(2)
3

= 324.5091× 2
6465

= 0.10039′. (3.62)

Applying8 these values to the respective mean longitudes of the Moon and
its apogee at the sunrise, we get
7 Since the accuracy of the∆t increases with the increase in the magnitude of the hārakas,
we have used the values corresponding to the hāraka 188611.
8 As per the Commentary II, the magnitude of the yogadhruvas are to be added to, or
subtracted from the mean longitudes depending on whether the yogodayāntaraprāṇas are
negative or positive respectively ({KP 1956}, p. 111).
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Longitude of the Moon at yoga = 4857.14276′ − 11.87735′

= 4845.26541′, (3.63)
Longitude of the apogee at yoga = 4845.36580′ − 0.10039′

= 4845.26541′. (3.64)

३.१३ Ζहयुओतः
3.13 General rule for conjunction of planets

एवमेव पुनिरࡕखेटयोः योगखमࡕसमये समानयेͪ ।
इࡕकालखगमیमाۢरңाकदनेࡕखगपयϺयाۢरैः ॥ १६ ॥
evameva punariṣṭakheṭayoḥ yogamiṣṭasamaye samānayet |
iṣṭakālakhagamadhyamāntarakṣmādineṣṭakhagaparyayāntaraiḥ || 16 ||

The conjunction of any two desired planets for any desired day can be obtained by
making use of the difference between the mean longitudes of the planets (khagamad-
hyamāntara), the number of civil days (kṣmādina) and the difference in revolutions
(khagaparyayāntara), in a similar manner.

This has already been explained in section 3.1.



Chapter 4
ΖहहारकानयनͲ
Obtaining the hārakas for the planets

४.१ Ζहमۢकेܑहारकाः
4.1 The mandakendrahārakas of the planets

चܓाद۬कवहӾानЇ मیानयनहारकाः ।
मۤकेܓहरा ̶ेयाः सौरा एव ̶ϠΕयोः ॥ १ ॥
candrādanyavihaṅgānāṃ madhyānayanahārakāḥ |
mandakendraharā jñeyāḥ saurā eva jñaśukrayoḥ || 1 ||

It is to be understood that the madhyānayana-hārakas of the planets other than
the Moon are also their mandakendrahārakas. For Mercury and Venus [madhyā-
nayanahārakas] of the Sun would be the mandakendrahārakas.

The above verse defines the mandakendrahārakas of the planets. It may
be recalled that the mandakendra is the difference between the planet and
its mandocca (apogee). The mandakendra-guṇakāras and the mandakendra-
hārakas determine the successive approximations to the rate of motion of the
mandakendra.

The term madhyānayanahāraka appearing in the earlier half of the verse has
to be understood as ’madhyamānayane hārakāḥ’, i.e., the hārakas employed
in obtaining the mean longitudes of the planets. The statement that ‘the
madhyānayana-hārakas are to be understood as the mandakendra-hārakas’,
implies that the mandocca of the planets have a negligible motion. Therefore,
the mandakendra-hārakas and the mandakendra-guṇakāras of the planets are
the same as the dṛḍhahārakas and dṛḍhaguṇakāras listed in Table 2.2.

It may also be mentioned here that the text Karaṇapaddhati in certain re-
spects follows the traditional planetary model used by the Indian astronomers
at least since the time of Āryabhaṭa. In this model while computing the man-
dasaṃskāra or the equation of centre, the mean Sun is taken as the mean
planet in the case of Mercury and Venus. Karaṇapddhati in fact makes no
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reference to the revised planetary model introduced by Nīlakaṇtha Somayāji
in his Tantrasaṅgraha (c. 1500), which proposed that what were considered
as the śīghroccas of Mercury and Venus should be taken to be the mean plan-
ets and that the mean Sun is to be taken as the śīghrocca for all the planets
including Mercury and Venus.1

४.२ ΖहशीΣकेܑहारकानयनͲ
4.2 Obtaining the śīghrakendra-hārakas of the planets

भाࡹरेࡕखगपयϺयाۢरं भूकदनं च कवभजेͪ परࢍरͳ ।
हारकाकनह फलैः समानयेͪ ते भवठۢ चलकेܓहारकाः ॥ २ ॥
bhāskareṣṭakhagaparyayāntaraṃ bhūdinaṃ ca vibhajet parasparam |
hārakāniha phalaiḥ samānayet te bhavanti calakendrahārakāḥ || 2 ||

Divide the difference in the revolutions (paryayāntara) of the Sun and the desired
planet and the number of civil days (bhūdina) mutually. The hārakas are to be
obtained from the quotients (phalas) [by the process of vallyupasaṃhāra]. These
[hārakas] would be the śīghrakendra-hārakas.

The method for obtaining the śīghrakendra-hārakas of the planet is ex-
plained in the above verse. If Gp and Hp are the dṛḍhaguṇakāras and the
dṛḍhahārakas of the planet respectively, and Gs and Hs are those of the Sun,
then the ”difference in revolutions” (paryayāntara) mentioned in the verse is

±(Gs ×Hp −Gp ×Hs),

where the ‘+’ sign is to be used in the case of the exterior planets Mars,
Jupiter and Saturn, and ‘−’ sign for the interior planets Mercury and Venus.
The “number of civil days” (bhūdina) is Hs ×Hp. In other words, (Gs×Hp −
Gp×Hs) is the difference in the number of revolutions made by the planet and
the Sun in Hs ×Hp civil days. Doing vallyupasaṃhāra by mutually dividing
them, we obtain the śīghrakendra-hārakas.
1 Later, in verse 25 of Chapter 7, there is a statement that the manda correction for
Mercury and Venus should be applied to their “nijamadhyama” and this is interpreted,
in the Commentary II, as a reference to their śīghroccas. If we accept this interpretation,
then it would imply that Karaṇapaddhati is adopting the revised planetary model of
Nīlakaṇṭha, at least as regards the application of the manda correction in the case of
the interior planets. For details of Nīlakaṇṭha’s revised planetary model, see {TS 2011},
Appendix F, pp. 487-535.
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Illustrative example

We will now find the śīghrakendra-hārakas for Saturn. This can be done by
choosing the dṛḍhahāraka (6180176875) and dṛḍhaguṇakāra (574109) of the
Saturn. The dṛḍhahāraka and dṛḍhaguṇakāra of the Sun are 210389 and 576
respectively. Now the “difference in revolutions” between the Sun and the
Saturn is given by

576× 6180176875− 574109× 210389 = 3438995661599.

The corresponding ”number of civil days” is given by

210389× 6180176875 = 1300241232554375. (4.1)

Dividing the above quantities mutually till the remainder becomes zero
and doing vallyupasaṃhāra, we get śīghrakendra-guṇakāras and śīghrakendra-
hārakas related to Saturn which are listed along with the quotients and re-
mainders obtained in the process of vallyupasaṃhāra in Table 4.1. Tables 4.2
– 4.5 list the śīghrakendra-guṇakāras and śīghrakendra-hārakas for all other
planets, which are obtained in a similar manner.

quotient remainder śīghrakendra- śīghrakendra-
guṇakāra hāraka

378 300872469953 1 378
11 129398492116 11 4159
2 42075485721 23 8696
3 3172034953 80 30247
13 839031332 1063 401907
3 654940957 3269 1235968
1 184090375 4332 1637875
3 102669832 16265 6149593
1 81420543 20597 7787468
1 21249289 36862 13937061
3 17672676 131183 49598651
1 3576613 168045 63535712
4 3366224 803363 303741499
1 210389 971408 367277211
16 0 16345891 6180176875

Table 4.1 The śīghrakendra-guṇakāras and śīghrakendra-hārakas of Saturn.
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quotient remainder śīghrakendra- śīghrakendra-
guṇakāra hāraka

779 1560066203739 1 779
1 107046975145 1 780
14 61408551709 15 11699
1 45638423436 16 12479
1 15770128273 31 24178
2 14098166890 78 60835
1 1671961383 109 85013
8 722475826 950 740939
2 227009731 2009 1566891
3 41446633 6977 5441612
5 19776566 36894 28774951
2 1893501 80765 62991514
10 841556 844544 658690091
2 210389 1769853 1380371696
4 0 7923956 6180176875

Table 4.2 The śīghrakendraguṇkāras and śīghrakendrahārakas of Mars.

quotient remainder śīghrakendra- śīghrakendra-
guṇakāra hāraka

115 5892968539430 1 115
1 839655556163 1 116
7 15379646289 8 927
54 9154656557 433 50174
1 6224989732 441 51101
1 2929666825 874 101275
2 365656082 2189 253651
8 4418169 18386 2130483
82 3366224 1509841 174953257
1 1051945 1528227 177083740
3 210389 6094522 706204477
5 0 32000837 3708106125

Table 4.3 The śīghrakendra-guṇakāras and śīghrakendra-hārakas of Mercury.

४.३ Ζहख؛ानयनͲ
4.3 Obtaining the khaṇḍas of the planets

मیाͪ ΗहाणЇ मृϣՊहࣵनः࢔ शीΘोՊतो मیकववछजϺताՊ ।
खं؝ नयेͪ केܓहरै࢈दीयैः इۤѶूवगۦगϺछणतोकदताे࢈ ॥ ३ ॥
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quotient remainder śīghrakendra- śīghrakendra-
guṇakāra hāraka

398 184234070687 1 398
1 23830972419 1 399
7 17417263754 8 3191
1 6413708665 9 3590
2 4589846424 26 10371
1 1823862241 35 13961
2 942121942 96 38293
1 881740299 131 52254
1 60381643 227 90547
14 36397297 3309 1319912
1 23984346 3536 1410459
1 12412951 6845 2730371
1 11571395 10381 4140830
1 841556 17226 6871201
13 631167 234319 93466443
1 210389 251545 100337644
3 0 988954 394479375

Table 4.4 The śīghrakendra-guṇakāras and śīghrakendra-hārakas of Jupiter.

quotient remainder śīghrakendra- śīghrakendra-
guṇakāra hāraka

583 2061056061934 1 583
1 165668082993 1 584
12 73039066018 13 7591
2 19589950957 27 15766
3 14269213147 94 54889
1 5320737810 121 70655
2 3627737527 336 196199
1 1693000283 457 266854
2 241736961 1250 729907
7 841556 9207 5376203

287 210389 2643659 1543700168
4 0 10583843 6180176875

Table 4.5 The śīghrakendra-guṇakāras and śīghrakendra-hārakas of Venus.
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madhyāt grahāṇāṃ svamṛdūccahīnaḥ śīghroccato madhyavivarjitācca |
khaṇḍaṃ nayet kendraharaistadīyaiḥ indūktavannirgaṇitoditāste || 3 ||

From [the mandakendras that are obtained by] subtracting the mandoccas from
the mean [longitudes] of the planets, as well as from [the śīghrakendras that are
obtained by] subtracting the mean [longitudes of the planets] from the śīghroccas,
the respective kendrahārakas are obtained. From them the khaṇḍas may be obtained
in the same way as was done in the case of Moon. These are the khaṇḍas mentioned
in the Nirgaṇita system.

Here the author discusses the procedure to obtain the khaṇḍas as enunci-
ated in the Nirgaṇita system.2 If θ0, θm and θs represent the longitudes of the
madhyamagraha, the mandocca and the śīghrocca of the planets respectively,
then the mandakendra (θmk) and the śīghrakendra (θsk) are given by

θmk = θ0 − θm, and θsk = θs − θ0.

In the case of planets, the khaṇḍa corresponding to a specific ahargaṇa A, can
be of two kinds:
1. The śaighrakhaṇḍa, is obtained from the śīghrakendra (θsk)A (expressed

in minutes), corresponding to the ahargaṇa A, by making use of the
śīghrakendra-hārakas H

(s)
i . As in the case of the Moon these khaṇḍas are

given by the following expressions.

A −
(
H

(s)
i −

[[
((θsk)A)
21600

×H
(s)
i

]
int

×
H

(s)
i−1

H
(s)
i

]
rem

)
, (4.2)

A −
[[

((θsk)A)
21600

×H
(s)
i

]
int

×
H

(s)
i−1

H
(s)
i

]
rem

. (4.3)

Expressions (4.2) and (4.3) correspond to even and odd i values respec-
tively.

2. The mandakhaṇḍa, is obtained from the mandakendra (θmk)A (expressed
in minutes), corresponding to the ahargaṇa A, by making use of the
mandakendra-hārakas H

(m)
i . As in the case of the Moon these khaṇḍas

are given by the following expressions.

A −
(
H

(m)
i −

[[
((θmk)A)
21600

×H
(m)
i

]
int

×
H

(m)
i−1

H
(m)
i

]
rem

)
, (4.4)

A −

[[
((θmk)A)
21600

×H
(m)
i

]
int

×
H

(m)
i−1

H
(m)
i

]
rem

. (4.5)

2 The Nirgaṇita system is perhaps the same as the Agaṇita system discussed by Mādhava.
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Here again (4.4) and (4.5) correspond to even and odd i values respectively.

The above expressions for the śaighrakhaṇḍa and mandakhaṇḍa give rise
to ahargaṇas close to the chosen ahargaṇa A, such that the śīghrakendra or
mandakendra is nearly zero to a level of accuracy dependent on the hāraka
chosen. The rationale for these expressions have already been explained earlier
in section 3.2.

४.४ हार࢒ीकृतौ सामा۪ऑनयमः
4.4 Convention in the choice of hāraka

गुणहाराकवशेषोѶौ 3 सवϺΡाकप हरो महाͮ ।
हाराङधके गुणे हाराͮ अना࠻ैڦ फलैनϺयेͪ ॥ ४ ॥
guṇahārāviśeṣoktau sarvatrāpi haro mahān |
hārādhike guṇe hārān anādyaiśca phalairnayet || 4 ||

Whenever the guṇakāras and the hārakas are not mentioned explicitly, the hāraka
is always chosen to be larger [than the guṇakāra]. When the guṇakāra [stated] is
larger than the hāraka, then the hārakas may be obtained by using the quotients
(in vallyupasaṃhāra) after excluding the first one.

This definition is helpful in formulating a common strategy for computing
the dhruvas of the mean planet/śīghrocca at the end of maṇḍalas as will be
explained later.

४.५ वाѽकरणोѴम؛लΣुवयोः आनयनͲ
4.5 Procedure for obtaining maṇḍalas and dhruvas given in

the Vākyakaraṇa

हारः सूयϺकवहӾयोभϺगणयोभϿदो गुणोऽ߽࢈योः
ताޱामΡ परࢍराݗफलजाः हाराः धराहाहताः ।
भѶा࢈नेहरेण वाѿकरणोѶा म؝लाः -थै࢈ु࢒
वा۬ो۬ाϓतछशࡕचΕकघलकाޱासाͪ धनणϺΤवुाः ॥ ५ ॥

3 Here we need to first form a compound of the words viśeṣa and ukti which is then
compunded with nañ. That is, कवशेषत: उगѶ: = कवशेषोगѶ: | न कवशेषोगѶ: = अकवशेषोगѶ: |
(viśeṣataḥ uktiḥ = viśeṣoktiḥ. na viśeṣoktiḥ = aviśeṣoktiḥ).
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hāraḥ sūryavihaṅgayorbhagaṇayorbhedo guṇo’lpastayoḥ
tābhyāmatra parasparāptaphalajāḥ hārāḥ dharāhāhatāḥ |
bhaktāstenahareṇa vākyakaraṇoktā maṇḍalāḥ syustathai-
vānyonyāhṛtaśiṣṭacakrakalikābhyāsāt dhanarṇadhruvāḥ || 5 ||

The “difference in revolutions” between the Sun and the planet is the divisor (hāra).
Of those two [quantities], the smaller would be the multiplier (guṇakāra). Here, the
hārakas derived from the quotients obtained in the mutual division of these two [by
doing vallyupasaṃhāra], are multiplied by the “number of civil days” (dharāha).
[The results] when divided by the divisor (hāra) are the maṇḍalas mentioned in
Vākyakaraṇa. In the same way, the remainders obtained in the mutual division [of
guṇakāra and hāra] when multiplied by 21600 (cakrakalikābhyāsa) [and divided by
the hāra] give the positive or negative dhruvas.

Before getting into the details of the procedure outlined in the above verse
for finding maṇḍala and dhruva, we need to be familiar with some technical
terms. Hence we first define them below.

४.५.१ म؛लΣुवानयनसूΠͲ
4.5.1 Expression for the maṇḍalas and dhruvas

If Gp and Hp are the dṛḍhaguṇakāras and the dṛḍhahārakas of the planets
respectively, and Gs and Hs are those of the Sun, then the “difference in
revolutions” mentioned in the above verse is given by

|Gs ×Hp −Gp ×Hs|.

This is the hāra, and the smaller of the two terms above is the guṇakāra.
Let Gi and Hi be the successive guṇakāras and hārakas obtained respectively
by doing the process of vallyupasaṃhāra with the above guṇakāra and hāra.
Another term mentioned in the above verse, “number of civil days” (dharāha)
is given by Hs×Hp (as indicated in verse 2). Now, the maṇḍalas are given by

maṇḍala (Mi) =
dharāha ×Hi

hāra

= (Hs ×Hp)×Hi

|Gs ×Hp −Gp ×Hs|
. (4.6)

The dhruvas can be obtained from the remainders ri at various stages in the
above process of vallyupasaṃhāra. Depending upon whether i is odd or even,
the dhruva is given by

dhruva (Di) = ±
∣∣∣∣ ri × 21600
Gs ×Hp −Gp ×Hs

∣∣∣∣ . (4.7)
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We shall now explain the rationale behind the above expressions for the
maṇḍala and dhruva.

४.५.२ म؛लानयने युकѴः
4.5.2 Rationale behind the expression for maṇḍala

For this purpose, let us consider the case of an exterior planet (Mars, Jupiter
and Saturn). In this case the rate of revolution of the planet Gp

Hp
, is smaller

than that of the śīghrocca (Sun) Gs

Hs
. Hence, the rate of revolution of the

śīghrakendra (number of revolutions per day) is

Gs

Hs
− Gp

Hp
= GsHp −GpHs

HsHp
. (4.8)

In this case, clearly GpHs being smaller than HpGs, will be the guṇakāra.
And GsHp −GpHs will be the hāra. In other words,

G = GpHs,

and H = GsHp −GpHs. (4.9)

To start with let us consider the case when G < H. In the case of Saturn, we
have already evaluated H (see (4.1)) to be 1300241232554375. From the same
calculation, we can see that G = 120786218401, and clearly G < H. From the
above discussion, it follows that the synodic period, or the number of civil
days for one revolution of the śīghrakendra, is given by

HsHp

GsHp −GpHs
.

Now H revolutions of the śīghrakendra corresponds to(
HsHp

GsHp −GpHs

)
×H days.

As the denominator is actually H, this corresponds to an integral number of
days HsHp. Moreover, the rate of revolution of the planet is Gp

Hp
. Hence, the

number of revolutions of the planet after H revolutions of the śīghrakendra is

HsHp ×
Gp

Hp
,

which is again an integer HsGp. Hence the planet and the śīghrocca (Sun for an
exterior planet) both complete a full number of revolutions after H revolutions
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of the śīghrakendra, or in HsHp days. This means that if the planet and the
śīghra are at the mandocca of the planet at some instant, they would come
back to the same mandocca after H revolutions of the śīghrakendra. As we
saw above, H is a very large number, and it is impractical to work with this
large time interval between two instants at which both the mandakendra and
śīghrakendra are zero.

Now, consider Hi revolutions of the śīghrakendra, which correspond to

HsHp

GsHp −GpHs
×Hi =

HsHp

H
×Hi (in days). (4.10)

The number of revolutions of the planet in this interval is

Hs ×Hp

H
×Hi

Gp

Hp
= HsGp ×

Gi

H
× Hi

Gi
. (4.11)

Since, Hi, Gi arise from the vallyupasaṃhāra of H and G, Hi

Gi
would be a good

approximation to H
G . Also G = HsGp. Hence the number of revolutions of the

planet in Hi revolutions of the śīghrakendra is equal to

G× Gi

H
× Hi

Gi
≈ G× Gi

H
× H

G
= Gi. (4.12)

In other words, the planet also makes very nearly a complete integral number
of revolutions during the period where the śīghrakendra makes Hi revolutions,
which corresponds to

Hs ×Hp

GsHp −GpHs
×Hi,

days. This is the reason for considering maṇḍalas defined in (4.6), as the planet
and the śīghrocca are both expected to come back close to the mandocca, after a
maṇḍala if their initial positions coincided with it. We now proceed to explain
the dhruvas.

४.५.३ Σुवानयने युकѴः
4.5.3 Rationale behind the expression for dhruva

After a maṇḍala, the change in the longitude of the planet (or the śīghrocca)
in revolutions, or the dhruva in revolutions is given by

HsHp

(GsHp −GpHs)
×Hi ×

Gp

Hp
= HsGpHi

H
= GHi

H
, (4.13)

where we have used (4.9). This may be written as
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GHi

H
= GHi −HGi

H
+ HGi

H
. (4.14)

The second term above can be dropped as it is an integer.
Now, Hi and Gi are the hāraka and the guṇakāra obtained doing the process

of mutual division of H and G, and it has been shown in equation (A.24) of
Appendix A that

GHi −HGi = ±ri, (4.15)

where ri is the remainder at the ith stage, and we have to choose ’−’ sign
when i is odd and ’+’ when i is even. The remainder ri is the guṇaśiṣṭa when
i is even and the hāraśiṣṭa when i is odd. Hence, (4.14) in minutes is given by

GHi

H
= ± ri

H
× 21600, (4.16)

where the RHS is the same as in (4.7).
We may now consider the case when G > H. Let

G = Ha1 + r1, (4.17)

where a1 is an integer, and r1 < H is the remainder when G is divided by H.
Then the dhruva (in revolutions) is given by

GHi

H
= r1Hi

H
+ a1Hi. (4.18)

As the second term is an integer, it would not contribute to the dhruva. Now
we can consider the vallyupasaṃhāra of H and r1 for computing the dhruva.
This is the reason for the prescription in verse 4, that the hārakas Hi may be
obtained after excluding the first quotient (a1) when G > H.

It is easy to see that similar results can be obtained for the interior planets
(Mercury and Venus) also where the mean planet is the Sun and the actual
heliocentric mean planet is the śīghra.

The maṇḍalas and dhruvas of all the planets, corresponding to differ-
ent hārakas are calculated following the above process, and listed in Tables
G.6 – G.10 in Appendix G.4 There the maṇḍalas and dhruvas listed in the
Vākyakaraṇa are also tabulated and it is seen that they coincide fairly accu-
rately with the computed values.
4 Some of these maṇḍalas and dhruvas have also been presented in the form of vākyas in
the Commentaries I, II ({KP 1956}, pp. 119-129).
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४.६ सामा۪त: शोۊानयनΥकार:
4.6 A general prescription for obtaining śodhyas

म؝लानयने नीताः हाराः म؝लहारकाः ।
तैः शोیमानयेͪ यڥा सΤवैुः लैः؝म߽࢔ ॥ ६ ॥
maṇḍalānayane nītāḥ hārāḥ maṇḍalahārakāḥ |
taiḥ śodhyamānayet yadvā sadhruvaiḥ svalpamaṇḍalaiḥ || 6 ||

The hāras employed in the process of obtaining maṇḍalas are the corresponding
maṇḍala-hārakas. The śodhyas are to be obtained from these [hārakas]. Or else,
[the śodhyas can also be obtained by] using smaller maṇḍalas (svalpamaṇḍalas)
along with their dhruvas.

The śodhya corresponds to a time interval (not necessarily an integer) close to
the desired ahargaṇa, at which the śīghrakendra is zero, and the longitudes of
the mean planet and the śīghrocca (which are equal) are close to the longitude
of mandocca. The method of calculating śodhyas is discussed later in this
chapter (verses 9-12).

४.७ शीΗोՈΖहयोगकालानयनͲ
4.7 Obtaining the instant at which the śīghrocca-grahayoga

occurs

अङभमतकदनकवहगोनाͪ शीΘोՊाͪ भुगѶकववरलޔोनः ।
अङभमतकदवसगणोऽयं शीΘोՊकवहӾयोगसमयः ाͪ࢒ ॥ ७ ॥
abhimatadinavihagonāt śīghroccāt bhuktivivaralabdhonaḥ |
abhimatadivasagaṇo’yaṃ śīghroccavihaṅgayogasamayaḥ syāt || 7 ||

The mean longitude of the planet corresponding to the desired ahargaṇa is sub-
tracted from its śīghrocca and divided by the difference between their daily motions
(dinabhuktis). The result thus obtained when subtracted from the desired ahargaṇa
gives the instant of conjunction (yoga) of the śīghrocca with the planet.

The above verse presents an expression for finding the instant, close to the
desired ahargaṇa, when the śīghrakendra is zero. This phenomenon is referred
to as graha-śīghrocca-yoga or śīghrocca-grahayoga. If θ0 and θs are the mean
longitudes of the planet and the śīghrocca respectively, then the instant at
which the śīghrakendra becomes zero can be obtained from the relation

tc = A− (θs − θ0)A
(θ̇s − θ̇0)

, (4.19)
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where θ̇s and θ̇0 represent the daily motion of the śīghrocca and the planet
respectively.

४.८ शीΗोՈΖहयोगकालानयने खڣतीयः Υकारः
4.8 Another method to obtain the instant of the

śīghrocca-grahayoga

येࡕڥमیकवहगोनचलोՊघलݗा-
संवङधϺतछ̵खतकदनाͪ भगणाۢराݗͳ ।
अ̶ातपारϓतखमࡕकदनाͪ कवशोंی
छशंࡕ चलोՊखगमیमयोगकालः ॥ ८ ॥
yadveṣṭamadhyavihagonacaloccaliptā-
saṃvardhitakṣitidināt bhagaṇāntarāptam |
ajñātapārahṛtamiṣṭadināt viśodhyaṃ
śiṣṭaṃ caloccakhagamadhyamayogakālaḥ || 8 ||

Or else, the mean longitude of the planet is subtracted from its śīghrocca, expressed
in minutes, and multiplied (saṃvardhita) by the number of civil days (kṣitidina),
and divided by the difference in revolutions (bhagaṇāntara). [Again, the result thus
obtained] is divided by 21600 (ajñātapāra) and is subtracted from the ahargaṇa.
The [end] result gives the instant at which the conjunction of the mean planet and
its śīghrocca occurs.

The above verse gives an alternative expression for obtaining the instant at
which the śīghrakendra is zero. If (θs − θ0)A (expressed in minutes) is the
śīghrakendra corresponding to the ahargaṇa A, then the instant at which the
conjunction of the planet and its śīghrocca occurs is now expressed as

tc = A−
∣∣∣∣ (θs − θ0)A × (HsHp)
((GsHp −GpHs)× 21600)

∣∣∣∣ . (4.20)

This is in fact the same as (4.19) since the denominator in the latter can be
expressed as

(θ̇s − θ̇0) (in min.) =
(
Gs

Hs
− Gp

Hp

)
× 21600

= (GsHp −GpHs)
HsHp

× 21600, (4.21)

since Gs

Hs
and Gp

Hp
are the rates motion in revolutions of the śīghrocca (Sun) and

the mean planet, for the exterior planets. For the interior planets, Gs

Hs
is the

rate of motion of the mean Sun which is also the rate of motion of the mean
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planet. This is smaller than Gp

Hp
which is the rate of motion of the śīghrocca of

the planet. Hence for the interior planets

(θ̇s − θ̇0) (in min.) =
(
Gp

Hp
− Gs

Hs

)
× 21600

= (GpHs −GsHp)
HsHp

× 21600. (4.22)

४.९ शोۊऒदनानयनΥकारः
4.9 Procedure for obtaining the śodhyadina

तؽालमیकवहगं मृϣՊहࣵनं࢔ घलݗीकृतं तु कनजम؝लहारकेषु ।
इेࡕन संगुणमनۢपुरेण भѶͳ इࡕोێϺहारहतखमࡕहरेण ϓ٘ा ॥ ९ ॥
ऊनाङधकं तकदह हारसमासम٘े धाΡीकदनӳमुभयोभϺगणाۢराݗͳ ।
शीΘोՊमیमकवहӾमयोगकालाͪ शोंی तदा भवखत शोیकदनं Ηहाणाͳ ॥ १० ॥
tatkālamadhyavihagaṃ svamṛdūccahīnaṃ
liptīkṛtaṃ tu nijamaṇḍalahārakeṣu |
iṣṭena saṃguṇamanantapureṇa bhaktam
iṣṭordhvahārahatamiṣṭahareṇa hṛtvā || 9 ||
ūnādhikaṃ tadiha hārasamāsamatve
dhātrīdinaghnamubhayorbhagaṇāntarāptam |
śīghroccamadhyamavihaṅgamayogakālāt
śodhyaṃ tadā bhavati śodhyadinaṃ grahāṇām || 10 ||

After subtracting its own mandocca from the mean planet at that moment (when
śīghrocca-grahayoga occurs), convert [the result] into minutes. Multiply [the result]
by a desired hāraka among the maṇḍala-hārakas of the [planet], and divide by
21600 (anantapura). [The quotient thus obtained] is multiplied by the penultimate
hāraka and divided by the desired hāraka.
Depending on whether the hāraka is odd or even, the remainder [of the above
division] (adhikaśiṣṭa), or the remainder subtracted from the hāraka (ūnaśiṣṭa) is
multiplied by the number of civil days (dhātrīdina) and divided by the difference
in revolutions (bhagaṇāntara) of the two (planet and its śīghrocca). The result thus
obtained has to be subtracted from the time of conjunction of the planet and its
śīghrocca. Then we obtain the śodhyadina of the planets.

The instant of time at which the mandocca will be close to the śīghrocca-
grahayoga is called the śodhyadina. The verses above present an algorithm
to find the śodhyadina from the instant tc at which the śīghrocca-grahayoga
occurs.

If Hi and Hi−1 are the desired maṇḍalahāraka and the one immediately
preceding it, and if (θmk)tc = (θ0 − θm)tc is the mandakendra at time tc, then
the remainder ri (adhikaśiṣṭa or ūnaśiṣṭa) mentioned in the above verse may
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be written as

ri =
[[

((θmk)tc)
21600

×Hi

]
int

× Hi−1

Hi

]
rem

(for odd Hi),

ri = Hi −
[[

((θmk)tc)
21600

×Hi

]
int

× Hi−1

Hi

]
rem

(for even Hi). (4.23)

The śodhyadina ts, can then be obtained as follows.

ts = tc −
ri × (Hp ×Hs)
(GsHp −GpHs)

. (4.24)

We shall explain the rationale behind the above expression by considering the
case of an exterior planet. The period of the śīghrakendra (synodic period) of
the planet Ts is given by

Ts = HsHp

(GsHp −GpHs)
. (4.25)

Hence, the motion of the mean planet (and the śīghrocca) after one synodic
period, in revolutions, is

Ts ×
Gp

Hp
= HsHp

(GsHp −GpHs)
× Gp

Hp
= G

H
, (4.26)

where, following verse 6, we have used the definition of G and H given in
Section 4.5 (see the discussion after equation (4.8)). Therefore,

Gp

Hp
= 1

Ts
× G

H
. (4.27)

Now Gi

Hi
are the successive approximants of G

H in the process of vallyu-
pasaṃhāra. Hence, the rate of motion of the mean planet may be approxi-
mated as

Gp

Hp
≈ 1

Ts
× Gi

Hi
. (4.28)

Now let (θmk)tc in minutes be the longitude of the mandakendra at the
instant of conjunction of the mean planet and the śīghrocca, tc. In terms of
revolutions it is (θmk)tc

21600 . This can be written in the form

(θmk)tc
21600

= n′

Hi
, (4.29)

Further, n′ can be approximated by
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n =
[
(θmk)tc
21600

×Hi

]
int

. (4.30)

Let
x = x× Ts, (4.31)

be the number of days in which the mean planet (or mandakendra, since the
mandocca is assumed to be stationary) increases by (θmk)tc

21600 . Here, we assume
x to be an integer, as we want the śīghrakendra also to complete an integral
number of revolutions so that the mean planet and the śīghrocca are again
in conjunction. If we subtract x from tc, we would obtain the śodhyadina, at
which the śīghrocca and the mean planet are in conjunction and also close to
the mandocca.

As the rate of motion of the mean planet is 1
Ts

× Gi

Hi
, we should have

1
Ts

× Gi

Hi
× x− y = n

Hi
, (4.32)

where y is the integral number of completed revolutions. Using (4.31) in the
above equation we have,

Gix−Hiy = n.

Following our discussion in Section 3.2 of Chapter 3, the solution of the above
equation can be expressed in the form

x =
[
n×Hi−1

Hi

]
rem

= ri (for odd Hi),

and x = Hi −
[
n×Hi−1

Hi

]
rem

= ri (for even Hi), (4.33)

where n is given by (4.30). Now the number of days to be subtracted from tc
to find the śodhyadina is given by

x = Tsx = x(Hp ×Hs)
(GsHp −GpHs)

= ri(Hp ×Hs)
(GsHp −GpHs)

. (4.34)

Hence, we obtain the expression for the śodhyadina ts as given by (4.24).

४.१० शोۊΣुवानयनͲ
4.10 Finding the śodhyadhruva

तؽालΗहम࢒یमۤतुӾ࢒चाۢरͳ ।
शोیΤवंु धनणЉҿं उՊा۫یाङधकेऽ߽के ॥ ११ ॥
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tatkālagrahamadhyasya mandatuṅgasya cāntaram |
śodhyadhruvaṃ dhanarṇākhyaṃ uccānmadhyādhike’lpake || 11 ||

The difference between the mean longitude of the planet and its apogee (man-
datuñga) at that instant (ts) would be the dhruva at the end of the śodhyadina
(śodhyadhruva). It is positive or negative depending on whether the mean planet
is larger or smaller than the apogee.

The śodhyadhruva at the end of the śodhyadina is stated to be

śodhyadhruva = (θ0 − θm)ts .

From the procedure for finding the śodhyadina, it is clear that θ0−θm (mandak-
endra) would be close to zero but not exactly zero at the instant ts (śodhyadina
which is not necessarily an integer).

४.११ शोۊऒदनाݕौ Υकारा۠रͲ
4.11 Another method to obtain the śodhyadina

शीΘोՊΗहमیयोः सϐशयोः त۫یतुӾाۢरं
घलݗीकृٖ हरेͪ Τवैुः ऋणधनैःमیΗहऽे߽ेऽङधके ।
छशंࡕ शोیकदनΤवंु Τवुफल̵ु؟ा࠻ त۫؝लाͪ
शीΘोՊΗहमیसा߅समयाͪ शोیाः येݗाیशो࢔ ॥ १२ ॥
śīghroccagrahamadhyayoḥ sadṛśayoḥ tanmadhyatuṅgāntaraṃ
liptīkṛtya haret dhruvaiḥ ṛṇadhanaiḥ madhyagrahe’lpe’dhike |
śiṣṭaṃ śodhyadinadhruvaṃ dhruvaphalakṣuṇṇāśca tanmaṇḍalāt
śīghroccagrahamadhyasāmyasamayāt śodhyāḥ svaśodhyāptaye || 12 ||

The difference between the mean longitude of the planet, when it is the same
as that of the śīghrocca, and the mandocca, expressed in minutes, is divided by
[any suitable] negative or positive maṇḍaladhruva depending on whether the mean
longitude is smaller or larger [than the mandocca]. The remainder [of this division]
would be the śodhyadhruva. The quotients [of the division] (dhruvaphalas) are
multiplied by the corresponding maṇḍalas and are to be subtracted from the time
of conjunction of the planets and their śīghrocca, in order to obtain their own
śodhyadinas.

If Di represents a maṇḍaladhruva, then the śodhya-dhruva or śodhyadina-
dhruva given in the above verse is

śodhyadinadhruva =
[
(θ0 − θm)tc

Di

]
rem

, (4.35)

where we need to choose i to be odd (Di < 0) if θ0 < θm, and i to be even
(Di > 0) if θ0 > θm. In (4.35), tc is the instant of conjunction of śīghrocca and
the planet (śīghrocca-grahayoga) close to the desired ahargaṇa A.
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The expression for the śodhyadina, given in the verse, is

ts = tc −Mi ×
[
(θ0 − θm)tc

Di

]
int

, (4.36)

where Mi is the maṇḍala with which the dhruva Di is associated.
We can easily see the rationale for the above expressions for the śodhyad-

ina and the śodhyadinadhruva. As we have already seen, the maṇḍalas Mi are
chosen in such a way that in Mi days the planet and the śīghrocca will be in
conjunction and close to the mandocca. Also, in Mi days, the mandakendra
of the planet changes by an amount equal to the dhruva Di. At the time tc
(śīghrocca-grahayoga), the mandakendra is (θ0 − θm)tc . Hence, the mandak-
endra will be zero at the time

tc −Mi ×
(
(θ0 − θm)tc

Di

)
.

Therefore, the mandakendra will be nearly zero at the time

ts = tc −Mi ×
[
(θ0 − θm)tc

Di

]
int

. (4.37)

Since ts as given by the above equation, differs from tc by an integral
multiple of the maṇḍala Mi, the śīghrakendra will also be zero at the instant
ts. This is the rationale for the above equation (4.36) for śodhyadina.

Now we shall consider the rationale for the expression for śodhyadhruva.
Let the mandakendra at time tc be expressed in terms of Di as

(θ0 − θm)tc = q ×Di + r,

where

q =
[
(θ0 − θm)tc

Di

]
int

and r =
[
(θ0 − θm)tc

Di

]
rem

. (4.38)

Then the longitude of the mandakendra on the śodhyadina will be given by

(θ0 − θm)tc − qDi = r

=
[
(θ0 − θm)tc

Di

]
rem

. (4.39)

which coincides with the (4.35) as prescribed in the verse. Here r is negative
if Di is negative.
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४.१२ मौؒावसानख؛ाः
4.12 Obtaining the mauḍhyāvasāna-khaṇḍas

शीΘोՊमیΗहयोगकालः मौؔोٍकालाधϺकदनैः समेतः ।
मौؔावसानڦगुणः सख؝ः मौؔोऽΡ हारा࠻लकेܓहाराः ॥ १३ ॥
śīghroccamadhyagrahayogakālaḥ
mauḍhyotthakālārdhadinaiḥ sametaḥ|
mauḍhyāvasānadyugaṇaḥ sakhaṇḍaḥ
mauḍhyo’tra hārāścalakendrahārāḥ || 13 ||
Half the duration of the period of invisibility (mauḍhyakāla) added to the instant of
conjunction of the śīghrocca and the mean planet, would give the mauḍhyāvasāna-
khaṇḍa days. Here, the divisors are the śīghrakendrahārakas.

During the course of revolution of a planet, it will not be visible for a certain
period of time when its longitude is close to that of the Sun. This period of
invisibility of the planet is called the mauḍhyakāla and the starting of this
mauḍhya (mauḍhyārambha) is known as the setting (astamana) of the planet.
Similarly, the time of ending of this mauḍhya (mauḍhyāvasāna) is known as
the rising (udaya) of the planet.

The term mauḍhyāvasāna-khaṇḍa refers to the number of days since the
beginning of the kali to the recent mauḍhyāvasāna (ending of mauḍhya). The
procedure to obtain it is explained in the verse above.

Let the time interval between the setting and rising of the planets called
the mauḍhyakāla be denoted by ∆tm. Here, it is important to note that the
śīghrocca-grahayoga occurs exactly at the middle of the mauḍhyakāla. If tc
represents the instant at which the conjunction of the mean planet and its
śīghrocca takes place, then the mauḍhyāvasāna-khaṇḍa given by the above
verse may be written as

mauḍhyāvasāna-khaṇḍa = tc +
∆tm
2

. (4.40)

It may be noted that, in the above formula (4.40), the variations in the rate at
which the planet and the śīghrocca themselves move have not been considered.

४.१३ अगगणतोѴहारकानयनͲ
4.13 Obtaining the hārakas mentioned in the Agaṇita

गुणहारौ Ηहाकदٖभगणौ तौ खमथो हरेͪ ।
हारकाْ࢈लैन੃ता भव܉गछणतोकदताः ॥ १४ ॥
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guṇahārau grahādityabhagaṇau tau mitho haret |
hārakāstatphalairnītā bhavantyagaṇitoditāḥ || 14 ||

The guṇakāras and hārakas which give the number of revolutions of the planet and
the Sun are divided mutually. The hārakas obtained by the quotients of the above
division are the ones that are mentioned in the Agaṇita.

As stated earlier, the ratios Gp

Hp
and Gs

Hs
are the rates of revolutions of the

planet and the Sun per day, where Gp and Gs are the dṛḍhaguṇakāras and Hp

and Hs are the corresponding dṛḍhahārakas. Their inverses are proportional
to the number of revolutions in a mahāyuga. The ratio of the number of
revolutions of the planet to that of the Sun is therefore given by

Gp ×Hs

Hp ×Gs
.

This in fact gives the number of revolutions made by a planet in one sidereal
year (one revolution of the Sun). Using the values of dṛḍhaguṇakāras and
dṛḍhahārakas listed in Table 2.2 of the second chapter of the text, we can
compute the above numerator and the denominator for each planet. They are
listed in Table 4.6.

Name of the planet guṇakāra hāraka

Mars 8996044 16920000

Mercury 42152837 10152000

Jupiter 91046 1080000

Venus 27503843 16920000

Saturn 574109 16920000

Table 4.6 The guṇakāras and hārakas for the revolutions made by the planets in a solar
year.

By doing the vallyupasaṃhāra of the guṇakāras and the hārakas listed in
Table 4.6, we get a set of hārakas. We have computed these hārakas for dif-
ferent planets and listed them in Appendix H, Tables H.6 – H.10. The text
notes that, these are the hārakas given in the Agaṇita system of Mādhava.
The Commentary I also gives some of these hārakas in the form of vākyas.
These vākyas and hārakas are listed in Appendix G, Table H.1– H.5.
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४.१४ ΖहशोۊाޑानयनͲ
4.14 Obtaining the śodhyābdas of the planets

मیाޓाۢसमानीतमیΗहकदनेशयोः ।
अ߽भोगं महाभोगाͪ ٖҒा छशंࡕ कलࣷकृतͳ ॥ १५ ॥
हारेࡡगछणतΦोѶेࡡभीेࡕन समाहतͳ ।
चΕघलݗाݗखमࡕोێϺहारकेण हतं पुनः ॥ १६ ॥
इࡕहारेण संϓٖ तΡोनमङधकं तु वा ।
इࡕहारयुगोज٘वशाͪ ٖाմं शकाޓतः ॥ १७ ॥
छशࡕाޓाۢे भवेͬ योगः इࡕΗहकदनेशयोः ।
त࢑ादगछणतΦोѶः शोیाޓः सोऽयमीिरतः ॥ १८
madhyābdāntasamānītamadhyagrahadineśayoḥ |
alpabhogaṃ mahābhogāt tyaktvā śiṣṭaṃ kalīkṛtam || 15 ||
hāreṣvagaṇitaprokteṣvabhīṣṭena samāhatam |
cakraliptāptamiṣṭordhvahārakeṇa hataṃ punaḥ || 16 ||
iṣṭahāreṇa saṃhṛtya tatronamadhikaṃ tu vā |
iṣṭahārayugojatvavaśāt tyājyaṃ śakābdataḥ || 17 ||
śiṣṭābdānte bhaved yogaḥ iṣṭagrahadineśayoḥ |
tasmādagaṇitaproktaḥ śodhyābdaḥ so’yamīritaḥ || 18 ||

Having obtained the mean longitude of the planet and the Sun at the end of the
mean solar year (madhyābdānta),5 subtract [the mean longitude of] that which has
smaller daily motion from the other which has larger daily motion and convert the
remainder into minutes.
Multiply [the result] by any desired divisor mentioned in the Agaṇita and after
dividing it by 21600 (cakraliptā), the quotient obtained is multiplied by the imme-
diately preceding divisor (iṣṭordhvahāraka).
The result is divided by the desired divisor. Then, depending on whether the desired
hāraka is odd or even, the remainder in the above division or the hāraka minus the
remainder, respectively, is subtracted from the śakābda.
The conjunction of the mean planet and the mean Sun occurs at the end of these
remaining years (śiṣṭābda). Therefore, this gives that śodhyābda as mentioned in
the Agaṇita.

The śodhyābda is the number of years elapsed since the beginning of the śaka
era to the beginning of that year when the mean planet and the śīghrocca
are in conjunction at the meṣādi. This notion seems to have been introduced
in the Agaṇita system. The four verses given above explain how to compute
the śodhyābda of a planet which is close to the time when ys śaka years have
elapsed.
5 The term madhyābdānta refers to the instant at which the transit of the mean Sun
occurs from Mīna to Meṣa-rāśi. In other words, it refers to the instant at which the mean
longitude of the Sun is zero.
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The algorithm presented here for finding the śodhyābda from a given
śakābda (ys) may be written as

• Let (θ0)ys represent the mean longitude of the planet in minutes at the
end of the mean śakābda year ys. Since at that time the mean longitude
of the Sun is zero, the difference between the mean longitude of the planet
and that of the Sun would be (θ0)ys itself. This in minutes has to be first
multiplied by any desired agaṇita-hāraka, say Hi (see Tables H.6 – H.10)
and divided by 21600. The integral part of this is to be obtained. That is,
we need to find [

((θ0)ys)×Hi

21600

]
int

.

• This result should be further multiplied by previous hāraka (Hi−1) and
divided by Hi. The remainder (ri) of the last division is found.

ri =


[
((θ0)ys )×Hi

21600

]
int

×Hi−1

Hi


rem

. (4.41)

• Now, ri or Hi − ri is to be subtracted from the śakābda (ys) depending on
whether i is odd or even respectively and the śodhyābda is given by

śodhyābda = ys − ri (for odd i),
= ys − (Hi − ri) (for even i). (4.42)

Now we explain the rationale behind the procedure outlined above. At the
end of the mean śakābda year, ys, the mean longitude of the Sun is zero by
definition. The mean longitude of the planet is (θ0)ys in minutes, that is (θ0)ys

21600
in revolutions. Let

(θ0)ys

21600
= n′

Hi
.

If
[
(θ0)ys

21600
×Hi

]
int

= [n′]int = n, (4.43)

we may approximate (θ0)ys

21600
by n

Hi
.

Let x be the number of years in which the longitude of the planet increases
by n

Hi
. Then, the śodhyābda, that is, the śaka year at the end of which the

planet is at meṣādi is given by ys − x. The rate of motion of the planet per
solar year is G

H . This can be approximated by Gi

Hi
. Therefore,

Gi

Hi
× x = (θ0)ys

21600
+ z ≈ n

Hi
+ z, (4.44)



4.15 Obtaining the adhimāsakhaṇḍa 123

where z is an integer giving the completed number of revolutions. That is, x
is a solution of the indeterminate equation

Gix−Hiz = n. (4.45)

Following the discussion in Section 3.2, the solution of the above equation can
be expressed in the form

x = ri =
[
n×Hi−1

Hi

]
rem

(for odd i),

and

x = Hi − ri = Hi −
[
n×Hi−1

Hi

]
rem

(for even i). (4.46)

Subtracting this from the śaka year ys, we obtain

śodhyabda = ys − x,

which is what is stated in the verses.

४.१५ अखधमासख؛ानयनͲ
4.15 Obtaining the adhimāsakhaṇḍa

कޓࠂӳाङधमासाः कदनकरभगणैः संϓता भूकदनӳाः
कࠂादीۤΤुवुЇशछ̵खतकदनवधतो कन࠻लाݗकैवϺहࣵनाः ।
भѶा࢈ΡाङधमासैभϺवखत कदनगणः सोऽङधमासोѶख؝ोऽ-
था۬ो۬ाݗाङधमासछ̵खतकदनरचचता हारका࢈Ρ हाराः ॥ १९ ॥
kalyabdaghnādhimāsāḥ dinakarabhagaṇaiḥ saṃhṛtā bhūdinaghnāḥ
kalyādīndudhruvāṃśakṣitidinavadhato niścalāptairvihīnāḥ |
bhaktāstatrādhimāsairbhavati dinagaṇaḥ so’dhimāsoktakhaṇḍo-
’thānyonyāptādhimāsakṣitidinaracitā hārakāstatra hārāḥ || 19 ||

The number of adhikamāsas in a mahāyuga (yugādhmāsas), multiplied by the num-
ber of elapsed years since the beginning of kali, is divided by the number of solar
revolutions [in a mahāyuga]. [The result] is multiplied by the number of civil days
(bhūdina) [in a mahāyuga]. [Separately], the dhruva of Moon, in degrees, at the
beginning of kali is multiplied by the number of civil days in a mahāyuga and
divided by 360 (niścala). The quotient of this division is subtracted [from the first
result]. The result [thus obtained] when divided by the number of adhikamāsas [in
a mahāyuga] gives the number of civil days which is stated as the adhimāsakhaṇḍa.
The divisors obtained by the mutual division of the yugādhimāsas and the bhūdina
are to be used as the hārakas here.

The adhimāsakhaṇḍa is the number of civil days elapsed since the begin-
ning of the kaliyuga to the beginning of an adhimāsa which is close to the
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Meṣādi when yk kali years have elapsed. If Rs and Dc represent the number
of revolutions of the Sun and the number of civil days in a mahāyuga, then
the expression for adhimāsakhaṇḍa given in the above verse may be written
as [

yk × yugādhimāsa
Rs

− kalyādidhruva of Moon (in deg)
360

]
int

×Dc

yugādhimāsa .

The rationale behind the above expression can be understood as follows. If
the longitude of the Moon were to be zero at kalyādi, the number of adhimāsas
elapsed (na) when yk kali years have elapsed is given by the rule of three to
be

na = yk × yugādhimāsas
Rs

. (4.47)

Because of the kalyādidhruva (initial position being non-zero), the Moon would
have to cover that much less before the new Moon, compared to the zero-
dhruva case. So kalyādidhruva (in degrees)

360 should be subtracted from na.
Hence

adhimāsakhaṇḍa =
[
na −

kalyādidhruva of Moon (in deg)
360

]
int

.

The above result is in adhimāsās. It may be noted that only the integral
part is taken, because in the calculation of the adhimāsakhaṇḍa, only the
integral number of adhimāsas before the kali year yk should be considered.
Now the duration corresponding to one adhimāsa is Dc

yugādhimāsa . Hence the
adhimāsakhaṇḍa is[

na −
kalyādidhruva of Moon (in deg)

360

]
int

×Dc

yugādhimāsa civil days.

We need to find Dc

yugādhimāsa for computing the above. The last quarter of
the verse prescribes that this ratio can be approximated by the standard val-
lyupasaṃhāra method. The commentators note that here we should actually
use the śakābda corrected number of adhimāsas and the śakābda corrected
number of civil days in a mahāyuga.6 These are given by 135431760 and
134122987500 respectively. Using the above values, we have computed the
guṇakāras and the corresponding hārakas which have been listed in Table 4.7.
6 {KP 1956}, pp. 150-152.
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guṇakāra hāraka

1 990
2 1981
3 2971

110 108937
113 111908
675 668477
1463 1448862
2138 2117339
10015 9918218
12153 12035557
46474 46024889
337471 334209780
383945 380234669

2257196 2235383125
135431760 134122987500

Table 4.7 The guṇakāras and the hārakas for the adhimāsakhaṇḍa.

४.१६ ΖहणहारानयनΥकारः
4.16 Procedure for obtaining the grahaṇahārakas

ϓ٘ा परࢍरमथो युगचाܓमासं
ङڥӳाक੮ पातभगणैѿमपीह लޔःै ।
हाराۦयेͪ पुनरमी धरणीकदनӳाः
मासकवϓताܓा࠻ु࢒ ΗहणोѶहाराः ॥ २० ॥
hṛtvā parasparamatho yugacāndramāsaṃ
dvighnārkapātabhagaṇaikyamapīha labdhaiḥ |
hārānnayet punaramī dharaṇīdinaghnāḥ
syuścāndramāsavihṛtā grahaṇoktahārāḥ || 20 ||

The number of lunar months in a yuga and twice the sum of the revolutions of the
Sun and the node of the Moon (dvighnārkapāta-bhagaṇaikya) have to be divided
mutually and from the quotients obtained here, let the hārakas be obtained. These
[hārakas] when multiplied by the number of civil days (dharaṇīdina) and divided
by the number of lunar months give the grahaṇahārakas.

The above verse describes the procedure to obtain the grahaṇahārakas which
are used in finding the grahaṇakhaṇḍas (explained in the following verses).
Both the Commentaries I and II mention that the revolution numbers to be
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used while obtaining these hārakas are the Dṛggaṇita revolution numbers that
are listed in Table 4.8.7

Planet number of revolutions
in kaṭapayādi in numerals

Sun jñānājñānapralobham 4320000
Moon nikhilaguṇasusīmā 57753320
Rāhu anaṅgo rāgakhinnaḥ 232300

Table 4.8 The Dṛggaṇita parameters used in the computation of grahaṇahārakas.

From Table 4.8, we find that twice the sum of revolutions of the Sun and
the node of the Moon amounts to

G = 2× (4320000 + 232300) = 9104600.

The number of lunar months is given by H = 53433320. Using them we
have computed the guṇakāras Gi and hārakas Hi obtained by the process of
vallyupasaṃhāra and these are listed in Table 4.9.

The grahaṇahārakas (Hgi), which are used for obtaining the grahaṇakhaṇḍa,
are given by

Hi ×Dc

lunar months in a mahāyuga . (4.48)

These have also been listed in the third column of Table 4.9.

४.१७ Ζहणख؛ानयनΥकारः
4.17 Procedure for obtaining the grahaṇakhaṇḍas

नी٘ा मیाक੮ चܓौ फछणनमकप ϐशा मیपवЉۢकाले
पातोनाकϿ ۤघुलݗा ϟनदगगुछणता࠻Εघलݗा कवभѶाः ।
तापࢉानेन ह٘ा ϟनदगकवϓते छशࡕतो भूकदनӳाͪ
चाܓमैЉसैरवांݗ ٖजतु कदनगणाͪ सोपरागोѶख؝ः ॥ २१ ॥
nītvā madhyārkacandrau phaṇinamapi dṛśā madhyaparvāntakāle
pātonārkenduliptā lunadagaguṇitāścakraliptā vibhaktāḥ |

7 {KP 1956}, pp. 152-154. The revolution numbers are perhaps inferred from the param-
eters given in Dṛggaṇita. The published edition of the Dṛggaṇita of Parameśvara ({DG
1963}) gives only guṇakāras and hārakas for planets.
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guṇakāra hāraka grahaṇahāraka
(Gi) (Hi) (Hgi)

1 5 148
1 6 177
7 41 1211
8 47 1388
15 88 2599
23 135 3987
38 223 6585
61 358 10572

587 3445 101733
648 3803 112305
3179 18657 550952
3827 22460 663257
22314 130957 3867238
26141 153417 4530495
100737 591208 17458721
227615 1335833 39447938

9104600 53433320 1577917500
Table 4.9 The grahaṇahārakas.

tāpasthānena hatvā lunadagavihṛte śiṣṭato bhūdinaghnāt
cāndrairmāsairavāptaṃ tyajatu dinagaṇāt soparāgoktakhaṇḍaḥ || 21 ||

Having obtained the mean longitudes of the Sun, Moon and its node (phaṇi) at the
instant of mean conjunction/opposition (madhyaparvānta)8 using [the parameters
given in] Dṛg[gaṇita], subtract [the mean longitude of] the node (pāta) from [that of]
the Sun and the Moon and convert [the results] into minutes. They are multiplied
by 3803 (lunadaga) and divided by 21600 (cakraliptā). [The quotients thus obtained]
are multiplied by 716 (tāpasthāna) and divided by 3803 (lunadaga). The remainders
thus obtained are multiplied by the number of civil days in a mahāyuga and divided
by the number of lunar months in a mahāyuga. The results thus obtained, when
subtracted from the ahargaṇa [at the end of the conjunction/opposition], are said
to be the grahaṇa-khaṇḍas.

Here, the verse gives the prescription to obtain the day on which the con-
junction of the Sun or Moon and the Moon’s node (Rāhu) occurs before any
given new Moon day or full Moon day (parvāntakāla). Let’s assume that the
Sun is close to one of the nodes of the Moon and that it is a parvāntakāla.
On this day the longitude of the Moon will be same as that of the node in
8 The instant at which the difference in longitudes of the mean Sun and the Moon is
either 0◦ or 180◦ is called the madhyaparvāntakāla.
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the case of solar eclipse or at the other node which is six rāśis away in the
case of lunar eclipse. The procedure outlined in the above verse for obtaining
grahaṇa-khaṇḍa (for a solar/lunar eclipse) corresponding to a new Moon/full
Moon day with ahargaṇa An/Af is as follows.

• Let θs0, θm0 and θn0 represent the mean longitudes in minutes of the Sun,
the Moon and its node respectively. We evaluate them corresponding to the
aharagaṇa An when the Sun and the Moon are in conjunction, and then
find [ (θs0 − θn0)An

× 3803
21600

]
int

.

Similarly, we find these longitudes when the Sun and the Moon are in
opposition, i.e., when ahargaṇa Af ≈ An + 15. Then we determine the
following quantity [

(θm0 − θn0)Af
× 3803

21600

]
int

.

• These two results have to be further multiplied by 716 and divided by 3803.
The remainders (rs and rm) of the resulting quantities are then found.

rs =


[ (θs0 − θn0)An

× 3803
21600

]
int

× 716

3803


rem

,

and

rm =


[
(θm0 − θn0)Af

× 3803
21600

]
int

× 716

3803


rem

. (4.49)

• These remainders are now multiplied by the number of civil days (Dc) in
a mahāyuga and divided by the number of lunar months (Mm). Then the
grahaṇa-khaṇḍas are given by

grahaṇa-khaṇḍa = An − rs ×Dc

Mm
(solar eclipse), (4.50)

= Af − rm ×Dc

Mm
(lunar eclipse). (4.51)

We shall now provide the rationale behind the above procedure, by first
considering the case when the Sun and the Moon are in conjunction corre-
sponding to an ahargaṇa An. Let the mean longitude of the Sun and the Moon
be given by θs0(= θm0) in minutes, and that of the ascending node be θn0 in
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minutes. Let

θs0 − θn0
21600

= n′

Hi
≈ n

Hi
, (4.52)

where n is the integral part and Hi is a suitable grahaṇa-hāraka.
Now, we have to find the instant prior to the specified ahargaṇa, when

the Sun, Moon and one of its two nodes are at conjunction. This gives the
khaṇḍa for solar eclipse. Let the difference between the two instants be x lunar
months. The motion of the nodes of the Moon (Rāhu and Ketu) is retrograde.
The nodes individually separate from the Sun at the rate G

2H revolution per
lunar month, where

G

H
= 2× (revolutions of the Sun + revolutions of nodes)

number of lunar months .

We shall approximate the above rate by Gi

Hi
by making use of the grahaṇa-

gunakāras and grahaṇahārakas discussed in the previous section (see Table
4.9). At the sūryagrahaṇakhaṇḍa, which is x lunar months before the given
ahargaṇa, either Rāhu or Ketu should be in conjunction with the mean Sun.
Hence

Gi

2Hi
× x− y

2
= n

Hi
, (4.53)

where y is an integer. Thus, Gix − Hiy = 2n. Following the discussion in
Section 3.2 of Chapter 3, the solution of the above equation can be expressed
in the form

x = Hi −
[
2nHi−1

Hi

]
rem

(for even i),

and x =
[
2nHi−1

Hi

]
rem

(for odd i). (4.54)

Since x is in the units of lunar months, the number of civil days between the
new Moon (An) (parvānta) and the sūryagrahaṇa-khaṇḍa is given by[

2nHi−1

Hi

]
rem

× Dc

Mm
(for odd i), (4.55)

and (
Hi −

[
2nHi−1

Hi

]
rem

)
× Dc

Mm
(for even i). (4.56)

We choose the even (10th) hāraka Hi = 3803, so that Hi−1 = 3445. Using
these values in (4.54), we have,
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x = 3803−
[
2n× 3445

3803

]
rem

. (4.57)

Now 2n× 3445 = 2n(3803− 358). Let

2n× 358 = n× 716 = l × 3803 + r, (4.58)

where l is an integer. That is

r =
[ n

3803
× 716

]
rem

. (4.59)

Then
2n× 3445 = (2n− l − 1)× 3803 + (3803− r).

The first term does not contribute to the remainder, and hence[
2n× 3445

3803

]
rem

= 3803− r. (4.60)

Therefore,

rs = x = 3803−
[
2n× 3445

3803

]
rem

= 3803− (3803− r)

= r =
[ n

3803
× 716

]
rem

, (4.61)

where
n =

[
(θs0 − θn0)An × 3803

21600

]
int

.

This is what is prescribed in the text. Now rs lunar months correspond to
rs× Dc

Mm
days. Hence the sūryagrahaṇa-khaṇḍa corresponding to the parvānta,

which is a New Moon, is

An − rs ×
Dc

Mm
. (4.62)

Similarly, the candragrahaṇa-khaṇḍa corresponding to the same parvānta,
is Af − rm × Dc

Mm
, where Af is half a lunar month more than An, and rm is

given by
rm =

[ n

3803
× 716

]
rem

, (4.63)

where
n =

[ (θm0 − θn0)Af
× 3803

21600

]
.
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Illustrative example:

We take the Dṛggaṇita values for the revolution numbers. The longitude of the
Sun and Moon at kalyādi are zero, whereas that of the Rāhu is 180◦. Consider
the ahargaṇa A = 1851981. The mean longitudes of the Sun and the Moon
are not exactly equal at A. It can be easily checked that

An = 1851981.462035,

corresponds to the instant of conjunction with θs0 = θm0 = 118.2247◦. At An,
the longitude of Rāhu is found to be θn0 = −53.1073◦. Hence, at the parvānta
(here the new Moon day),

θs0 − θn0 = 171.3320◦

= 10279.92′,

and θs0 − θn0 (minutes)
21600

= 0.47592

= 1809.9323
3803

≈ 1810
3803

.

With this we find the remainder rs to be

rs =
[
n× 716
3803

]
rem

=
[
1810× 716

3803

]
rem

= 2940 lunar months,

and
rs ×Dc

Mm
= 86819.93651 days.

Hence the sūryagrahaṇa-khaṇḍa is given by

sūryagrahaṇa-khaṇḍa = An − rs ×Dc

Mm

= 1765161.526 days.

One can check that at this khaṇḍa,

θs0 = 228.2474,
θm0 = 228.2472,
θn0 = 228.2597.

It is also worth noting that θn0 and θs0 (or θm0) differ only by 0.0125◦ ≈ 0.6′.
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Along the same lines, we shall now proceed to obtain the candragrahaṇa-
khaṇḍa. If An = 1851981.462035517 days corresponds to the time of new
moon, then

Af = An + 1
2

lunar month = 1851996.227 days,

corresponds to the time of full moon. At this ahargaṇa we find that

θm0 = 312.7773756◦,
θs0 = 132.7773756◦ (θm0 − 180◦),
θn0 = −53.88983997◦.

At the parvānta (here, the time of full moon)

θm0 − θn0 = 6.66721556◦

= 400.032934′,

and θm0 − θn0 (min)
21600

= 0.01852004324

= 70.4317444
3803

≈ 70
3803

.

Now [
n× 716
3803

]
rem

= 681 lunar months

= 20110.33223 days.

Hence, the candragrahaṇa-khaṇḍa is

Af − 20110.33223 = 1851996.227− 20110.33223
= 1831885.895 days.

At this khaṇḍa,

θs0 = 111.9763◦,
θm0 = 291.9721◦,
θn0 = 291.9370◦.

It is seen that the longitude of Sun differs from (longitude of Moon −180◦)
only by 0.0042◦ ≈ 0.24′. Similarly, the longitude of Rāhu and mean Moon
differ by 0.0351◦ ≈ 2.1′. This again shows the accuracy of the procedure
outlined in the text.



Chapter 5
भगणाऒदपर̴ࣴा
Examination of the revolution numbers
etc.

५.१ क߻ΖहभगणुࢌटीकरणΥकारः
5.1 Procedure for correcting the revolutions of the

planets in a kalpa

ΗहणΗहयोगाڦःै ये Ηहाः सुपरࣷछ̵ताः ।
ϐ҃माٛ࢈माः क߽े कࠔा वा भगणादयः ॥ १ ॥
परࣷछ̵त࢒खेट࢒ त܊ानीत࢒चाۢरͳ ।
घलݗीकृताक੮ भगणैः क߽ोѶै࠻ समाहतͳ ॥ २ ॥
त܊कनमЉणकाल࢒ पर̵ࣷासमय࢒च ।
अۢरालगतैरैޓ राछशचΕकलाहतैः ॥ ३ ॥
ϓ٘ांݗ त܊नीत࢒ Ηह࢒ा߽ाङधक٘तः ।
णϻ࢔ तͪ क߽भगणे कुयЉۦषैकवधी रवेः ॥ ४ ॥
grahaṇagrahayogādyaiḥ ye grahāḥ suparīkṣitāḥ |
dṛksamāstatsamāḥ kalpe kalpyā vā bhagaṇādayaḥ || 1 ||
parīkṣitasya kheṭasya tantrānītasya cāntaram |
liptīkṛtārkabhagaṇaiḥ kalpoktaiśca samāhatam || 2 ||
tantranirmāṇakālasya parīkṣāsamayasya ca |
antarālagatairabdai rāśicakrakalāhataiḥ || 3 ||
hṛtvāptaṃ tantranītasya grahasyālpādhikatvataḥ |
svarṇaṃ tat kalpabhagaṇe kuryānnaiṣavidhī raveḥ || 4 ||

Based on a thorough examination of the position of the planets at the time of
eclipses, planetary conjunctions, and so on, the revolution numbers etc. [of the
planets] in a kalpa have to be conceived of for achieving concordance with obser-
vations.
Multiply the magnitude of the difference between the textually computed (tantrānīta)
and the observed (parīkṣita) values of the [longitude of] a planet, expressed in min-
utes, by the revolutions of the Sun in a kalpa and divide by the product of the
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number of years elapsed between the time of observation and that of the compo-
sition of the text (employed for making the computation) and 21600 (cakrakalā).
The quotient thus obtained should be added to or subtracted from the number
of revolutions in a kalpa (kalpabhagaṇa) of the planet, depending on whether the
textually computed values are smaller or larger [than the observed values], respec-
tively. This procedure is not to be employed in the case of the Sun.

Let the magnitude of the difference between the observed and the computed
mean longitudes of the planet be ∆θ (in minutes). Assuming that at the time
of composition of the text there was no difference between the two, the entire
difference ∆θ can be considered to be the error accumulated during the period
starting from the date of composition till the date of observation. If y be the
number of years between the date of composition of the text and that of
observation, then the discrepancy per year is

∆θ (in min.)
y

= ∆θ

21600× y
(bhagaṇas). (5.1)

Multiplying (5.1) by the number of years in a kalpa would give the error
accumulated in the kalpa. The number of years in a kalpa is by definition
equal to the number of solar revolutions in a kalpa, Rs. The result obtained
can be applied to the bhagaṇas in a kalpa to obtain the corrected revolutions of
the planets in a kalpa. Thus, the correction ∆R to be applied to the revolutions
of the planet is given by

∆R = ∆θ

21600× y
×Rs. (5.2)

The above correction ∆R is to be added or subtracted from the revolution
number of the planet depending on whether the observed values are smaller
or larger, respectively, than the computed values.

५.२ ΖहाणЅ क߻ाऒदΣुवानयनͲ
5.2 Obtaining the kalpādidhruvas of the planets

तّयϺयाङभहतक߽गताޓवृۤाͪ
क߽ाक੮ पयϺयϓतं भगणाकदमیͳ ।
ٖҒा परࣷछ̵तसमाۢकवहӾमیाͪ
छशंࡕ वदठۢ औकल क߽मुखΤवुाҿͳ ॥ ५ ॥
tatparyayābhihatakalpagatābdavṛndāt
kalpārkaparyayahṛtaṃ bhagaṇādimadhyam |
tyaktvā parīkṣitasamāntavihaṅgamadhyāt
śiṣṭaṃ vadanti kila kalpamukhadhruvākhyam || 5 ||
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The product of those [corrected] revolutions of the planets and the number of years
elapsed since the beginning of the kalpa when divided by the number of revolutions
of the Sun in a kalpa, gives the mean longitude of the planet. [This is] subtracted
from the observed mean longitude of the planet at the end of the elapsed year. The
remainder indeed is stated to be the kalpādidhruva of the planet.

This verse lays down the procedure for obtaining the initial position of the
planets at the beginning of kalpa (known as kalpādidhruvas). It is stated that
difference between the computed mean longitude (θc) and the observed mean
longitude1 (θo) gives the kalpādidhruvas or the grahadhruvas.

If Y be the number of elapsed years since the beginning of kalpa, then the
computed mean longitudes of the planets are given by

θc =
(R±∆R)× Y

Rs
, (5.3)

where Rs represents the number of revolutions of the Sun in kalpa and R±∆R
represents the corrected bhagaṇas of the planets. The integral part of the
above equation gives the elapsed number of revolutions. From the fractional
part one can obtain the longitudes in terms of sign, degrees, minutes etc., as
done earlier. Subtracting θc from θo we obtain the grahadhruva. That is,

grahadhruva = θo − θc. (5.4)

५.३ क߻ादौ सԕमणΣुवः
5.3 Saṅkramaṇadhruva at the beginning of the kalpa

क߽ोѶभूकदवसक߽गताޓघाताͪ
क߽ोѶभानुभगणाϓतवासरादःे ।
सݗाݗछशࡕरऔहतेࡕसमाۢकालः
क߽ाकदजो भवखत सԗमणΤवुोऽयͳ ॥ ६ ॥
kalpoktabhūdivasakalpagatābdaghātāt
kalpoktabhānubhagaṇāhṛtavāsarādeḥ |
saptāptaśiṣṭarahiteṣṭasamāntakālaḥ
kalpādijo bhavati saṅkramaṇadhruvo’yam || 6 ||

Multiplying the number of elapsed years in the [present] kalpa by the number of
civil days in a kalpa, and dividing the result by the number of solar revolutions
in a kalpa, whatever is obtained has to be divided by 7. The remainder of this,
when subtracted from [the number corresponding] to the observed weekday at the

1 The term ‘observed’ mean longitude may sound strange as it is only the true longitude
that can be observed. However, at those instances when the true coincides with the mean,
the observed value straightaway gives the mean longitude.
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end of the elapsed year (iṣṭasamāntakāla), would be the saṅkramaṇadhruva at the
beginning of the kalpa.

The term saṅkramaṇadhruva represents the weekday at the beginning of
the kalpa. The procedure outlined above is based on the assumption that the
mean Sun is at meṣādi (with zero degree longitude) at the beginning of kalpa.
If Dc is the number of civil days in a kalpa, and Y is the elapsed number of
years since the beginning of the kalpa, then the elapsed number of civil days
dc elapsed is given by

dc =
Y ×Dc

Rs
. (5.5)

The weekday wc at the end of the Y th year is given by

wc =
[
dc
7

]
rem

. (5.6)

Here, wc = 0, 1, 2 . . . and 6 correspond to Sunday, Monday . . . and Saturday
respectively.

If wo be the observed weekday at the end of the elapsed year, then the
saṅkramaṇa-dhruva or the weekday at the beginning of the kalpa would be

Saṅkramaṇadhruva = wo − wc [for wo > wc],
= (7 + wo)− wc [for wo < wc]. (5.7)

५.४ सԕमणΖहΣुवयोः टीकरणͲࢌु
5.4 Corrections to saṅkramaṇa and graha-dhruvas

त܊ानीतपरࣷछ̵ताϑणङभदाघलݗाः पृथ͝ भूकदनैः
क߽ोѶैΗϺहपयϺयै࠻ गुछणताः क߽ाक੮ वषЉϓताः ।
Φाणाः सԗमणΗहषेु कघलकाः क߽ाकदगेषु Εमाͪ
णϻ࢔ तΡ परࣷछ̵ते कदनकरे ऽङधकेे߽࢔ ते टाःࢎु ॥ ७ ॥
tantrānītaparīkṣitāruṇabhidāliptāḥ pṛthag bhūdinaiḥ
kalpoktairgrahaparyayaiśca guṇitāḥ kalpārkavarṣāhṛtāḥ |
prāṇāḥ saṅkramaṇagraheṣu kalikāḥ kalpādigeṣu kramāt
svarṇaṃ tatra parīkṣite dinakare svalpe’dhike te sphuṭāḥ || 7 ||

The difference in [the longitudes] of the textually computed (tantrānīta) and the
observed values (parīkṣita) of the Sun in minutes are separately multiplied by the
number of civil days in a kalpa and by the number of revolutions of the planets in a
kalpa, and divided by the number of solar years in a kalpa. The results thus obtained
should be applied to the saṅkramaṇadhruva in prāṇas and to the grahadhruvas of
the respective planets, respectively. This [correction] has to be applied positively
or negatively depending on whether the observed [longitude of the] Sun is smaller
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or larger [than the computed value]. These give the true values [of the saṅkramaṇa
and grahadhruvas].

The above verse gives the corrections to the saṅkramaṇadhruva and the
grahadhruvas of the planets at the beginning of the kalpa which arise due to a
shift in the kalpādi itself as inferred from the difference between the observed
and computed longitudes of the Sun. These corrections are obtained by first
finding the difference between the observed and the computed longitudes of
the Sun (θso and θsc respectively) δθs (in revolutions) given by

δθs = θso − θsc. (5.8)

This multiplied by the number of civil days in a solar year (ratio of the number
of civil days to the number of solar revolutions in a kalpa) would give the
fraction of a day corresponding to δθs. Thus, the correction added to the
saṅkramaṇadhruva is

∆s (in days) = δθs ×Dc

Rs
. (5.9)

As one day is equal to 21600 prāṇas, multiplying both sides of the above
equation by 21600, we get the correction in prāṇas.

∆s (in prāṇas) = δθs ×Dc × 21600
Rs

= δθs (in min.) ×Dc

Rs
. (5.10)

If θso > θsc, it means that the ahargaṇa for the day of observation is
actually more, that is, the kalpādi is actually earlier and hence ∆s (in prāṇas)
must be subtracted from the saṅkramaṇadhruva. If θso < θsc, ∆s has to be
added to it.

The shift in the kalpādi would alter the grahadhruvas also. The change in
grahadhruva in minutes would be

∆ (in minutes) = ∆s (in prāṇas) × (R±∆R)
Dc

= δθs (in minutes) × (R±∆R)
Rs

, (5.11)

as the rate of motion of the planet is

(R±∆R)
Dc

revolutions = (R±∆R)
Dc

× 21600 minutes per day.

If the kalpādi is earlier (if θso > θsc), ∆ has to be subtracted from the gra-
hadhruva. If θso < θsc, ∆ has to be added to the grahadhruva of the planet.
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५.५ क߻ाऒदΣुवसڡावपिरहरणͲ
5.5 Eliminating the kalpādidhruvas

एवं तु Τवुसڣावः क߽ादौ नैव युմते ।
इखत तّिरहाराथϻ संࡹाराۢरखम࡞ते ॥ ८ ॥
ϓ٘ा खमथः क߽गताޓवृۤं क߽ोकदतं भाࡹरपयϺय֎ ।
लޔःै समानीतहरेࡡभीेࡕनाहٖ क߽ाकदखगΤवुЇशाͮ ॥ ९॥
ϓ٘ातुलैराݗमभीࡕहार࢒ोێϺࢉहारेण कनहٖ ϓ٘ा ।
पूवЎकदताभीࡕहरेण छशंࡕ हारौजयुӓ٘वशाͬ धनणϺͳ ॥ १० ॥
क߽ोकदते संृࡹतपयϺयौघे Ηह࢒ कुयЉͪ स तदा टःࢎु ाͪ࢒ ।
इࡕӳहारोनयुतः स ϐࡕःҁचचͬ Ηहो ϐगࡕसमो यतः ाͪ࢒ ॥ ११ ॥
ताޱЇ हराޱЇ तु तथा मृϣՊाͪ पाताՊ नीतो भगण࢈दीयः ।
हाराङڥशोیोऽयमृणाٕकͪे࠻ पात࢒सवϻ कवपरࣷतमेव ॥ १२ ॥
evaṃ tu dhruvasadbhāvaḥ kalpādau naiva yujyate |
iti tatparihārārthaṃ saṃskārāntaramiṣyate || 8 ||
hṛtvā mithaḥ kalpagatābdavṛndaṃ
kalpoditaṃ bhāskaraparyayañca |
labdhaiḥ samānītahareṣvabhīṣṭe-
nāhatya kalpādikhagadhruvāṃśān || 9 ||
hṛtvātulairāptamabhīṣṭahāra-
syordhvasthahāreṇa nihatya hṛtvā |
pūrvoditābhīṣṭahareṇa śiṣṭaṃ
hāraujayugmatvavaśād dhanarṇam || 10 ||
kalpodite saṃskṛtaparyayaughe
grahasya kuryāt sa tadā sphuṭaḥ syāt |
iṣṭaghnahāronayutaḥ sa dṛṣṭaḥ
kvacid graho dṛṣṭisamo yataḥ syāt || 11 ||
tābhyāṃ harābhyāṃ tu tathā mṛdūccāt
pātācca nīto bhagaṇastadīyaḥ |
hārādviśodhyo’yamṛṇātmakaścet
pātasya sarvaṃ viparītameva || 12 ||

This way of having dhruvas at the beginning of kalpa does not seem to be ap-
propriate. Hence, in order to avoid that, an alternative correction procedure is
sought.
[For this purpose], the elapsed number of years since the beginning of kalpa and
the number of years or solar revolutions (bhāskaraparyaya) in a kalpa are mutu-
ally divided. Of the [successive multipliers and] divisors thus obtained, choose any
divisor and multiply it by the grahadhruva of the planet in degrees (kalpādikhaga-
dhruvāṃśa) and divide by 360 (atula).
Multiply the quotient thus obtained by the preceding divisor and divide by the
previously stated desired divisor. The remainder thus obtained is applied to the
corrected revolution (saṃskṛtaparyaya) of the planet positively or negatively de-
pending on whether the divisor is odd or even respectively. Then, we get the true
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revolution (sphuṭa). An integral multiple of the hāraka may be added to or sub-
tracted from this (sphuṭa) so as to ensure that the planetary longitude coincides
with what is observed.
With the same hārakas, obtain the revolutions of the apogees and the nodes. If it
(the grahadhruva) turns out to be negative then it has to be subtracted from the
divisor. All the operations have to be reversed in the case of the node.

The verses 9-11 prescribe a correction term which is to be applied to the
saṃskṛtaparyayas R′ of the planets (R±∆R discussed in Section 5.1), in order
to eliminate the kalpādidhruvas. The prescription is as follows:

• Find the successive approximations for the ratio of the number of years
elapsed since the beginning of the kalpa (Y ) to the number of years in the
kalpa (Rs) by the method of mutual division. The successive guṇakāras and
hārakas that arise in this mutual division are to be noted down. Let these
be denoted by Gi’s and Hi’s (i = 1, 2, . . .) respectively.

• Multiply the grahadhruva in degrees (θo − θc) by any desired hāraka (Hi),
divide by 360 and find the quotient. That is, find[

(θo − θc)×Hi

360

]
int

.

• Multiply the above result by the penultimate hāraka (Hi−1) and divide by
the desired hāraka. The remainder obtained has to be applied to R′. The re-
sult would be the corrected revolution number of the planet, sphuṭaparyaya
R′′. That is

R′′ = R′ ±


[
(θo−θc)×Hi

360

]
int

×Hi−1

Hi


rem

.

• Here we need to choose ‘+’ for odd and ‘−’ for even hāraka. An integral
multiple of hāra can be added to or subtracted from this (sphuṭaparyaya)
to make the revolution number tally with observations.

Now we proceed to explain the rationale behind the above correction term.
The mean longitude of a planet corresponding to elapsed years Y since the
beginning of the kalpa is given by

R′ × Y

Rs
± (θo − θc)

360
, (5.12)

where (θo − θc) is the magnitude of grahadhruva in degrees (dhruvāṃśa). In
the above equation, the mean longitude computed corresponds to the elapsed
number of years Y . It may also be noted that the dhruva has been applied
to the result. Now instead of applying dhruva, we could as well modify the
saṃskṛta-paryayas or the corrected number of revolutions in a kalpa, R′, itself
by adding a quantity x to it and still obtain the same result. Here, the quantity
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x has the same dimension as that of the bhagaṇa. Thus new expression for
mean longitude is

(R′ + x)× Y

Rs
. (5.13)

We will consider the case where the quantity θo − θc is positive. Equating
(5.12) and (5.13), we have [

x× Y

Rs

]
frc

= (θo − θc)
360

,

or x× Y

Rs
− y = (θo − θc)

360
, (5.14)

where y is an integer. Rewriting the above equation, we have

x× Y

Rs
− (θo − θc)

360
= y. (5.15)

Now we have an indeterminate equation of first order, wherein we need to find
integer solutions for x and y.

It is noted that by solving (5.15) and applying the value of x obtained
to R′, we can correct the bhagaṇas of the planets which takes into account
the zero correction due to dhruva. To find x, first find successive multipliers
and divisors of the ratio Y

Rs
by doing vallyupasaṃhāra. Let Gi’s and Hi’s be

the successive multipliers and divisors. Now we approximate Y
Rs

by Gi

Hi
for a

suitable hāraka Hi. Also by writing

(θo − θc)
360

= z′

Hi
, (5.16)

we have z′ = (θo−θc)
360 ×Hi. We approximate z′ by its integral part z. Hence

(θo − θc)
360

≈ z

Hi
= 1

Hi

[
(θo − θc)

360
×Hi

]
int

, (5.17)

Then x satisfies the equation

Gix−Hiy = z. (5.18)

Following our discussion in Section 3.2, the solution of the above equation can
be written as

x =
[
z

Hi
×Hi−1

]
rem

(when i is odd),

and x = Hi −
[
z

Hi
×Hi−1

]
rem

(when i is even). (5.19)
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Now the corrected revolution number is R′ + x. If (x, y) is a solution of the
indeterminate equation, then (x + mHi, y + mGi) is also a solution for any
integer m. So, a suitable multiple of Hi can be added to the above to make
the corrected revolution number tally with observations. For the same reason,
the term Hi in the above solution for even i can be dropped.

Now when the dhruvāṃśa (θo−θc) is negative, we would have the equation

x× Gi

Hi
− y = − (θo − θc)

360
≈ −z

Hi
≈ Hi − z

Hi
− 1,

or x× Gi

Hi
− (y − 1) = Hi − z

Hi
. (5.20)

Here, the same procedure is to be followed, as in the case of positive dhru-
vāṃśa, except that Hi − z is used instead of z, where z

Hi
is the magnitude of

dhruvāṃśa
360 .

५.६ क߻ादौ सԕमणΣुव࢐ Ϥ۪तासंपादनͲ
5.6 Obtaining zero saṅkramaṇadhruva at the beginning of

the kalpa

क߽गतं वषϺगणं सݗाहतक߽भानुभगणमकप ।
ϓ٘ा पुनर۬ो۬ं तΡाݗहैЉरकाः कायЉः ॥ १३ ॥
हारेषु तेࡡङभमतेन पुनकवϺकनӳाͪ
क߽ाकदसԗमकदनाͪ खϟ सݗभѶͳ ।
इࡕोێϺहारहतखमࡕहरेण तंࡕ
ΦाӖՊ क߽कुकदने मृणं࢔ ΦकुयЉͪ ॥ १४ ॥
kalpagataṃ varṣagaṇaṃ saptāhatakalpabhānubhagaṇamapi |
hṛtvā punaranyonyaṃ tatrāptairhārakāḥ kāryāḥ || 13 ||
hāreṣu teṣvabhimatena punarvinighnāt
kalpādisaṅkramadināt khalu saptabhaktam |
iṣṭordhvahārahatamiṣṭahareṇa taṣṭaṃ
prāgvacca kalpakudine svamṛṇaṃ prakuryāt || 14 ||

Obtain the hārakas by mutually dividing the elapsed number of years since the
beginning of the kalpa and seven times the number of years in a kalpa.
Multiply the saṅkramaṇadina corresponding to the beginning of kalpa by the de-
sired hāraka and divide by seven. [The quotient] thus obtained has to be multiplied
by the previous divisor and divided by the desired divisor. As earlier, [the remain-
der] should be added to or subtracted from the number of civil days in a kalpa.

The correction term which is to be added to the number of civil days (Dc)
in order to make the saṅkramaṇadhruva zero as prescribed in the above verse
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is of the form 
[saṅkramaṇadhruva×Hi

7

]
int

×Hi−1

Hi


rem

, (5.21)

where Hi and Hi−1 are the iṣṭahāraka and iṣṭordhvahārakas which are obtained
by doing vallyupasaṃhāra of the ratio Y

7Rs
. The above correction has to be

added to or subtracted from the number of civil days (Dc) depending on
whether the hāraka Hi is odd or even respectively. We now proceed to explain
the rationale behind the correction term (5.21).

Let Rs be the number of revolutions of the Sun in a kalpa and Dc the
tabulated number of civil days in a kalpa. Hence the number of days, dc
corresponding to number of elapsed years Y starting from kalpādi can be
represented as

dc =
Y ×Dc

Rs
= 7l + wc, (5.22)

where l is an integer, wc is the computed weekday which could be different
from the actual count of the weekday wo. Note that wo and wc can have
integral and fractional parts. Earlier this quantity (wo − wc) was considered
as the saṅkramaṇadhruva for the beginning of the kalpa. However, this could
also be attributed to the number of civil days in a kalpa being equal to a
number D′

c different from Dc. Then

do = Y ×D′
c

Rs
= 7k + wo, (5.23)

where k is an integer. Now from (5.22) and (5.23),

do − dc =
Y

Rs
× (D′

c −Dc) = 7(k − l) + (wo − wc). (5.24)

Dividing this by 7, we have

Y

7×Rs
× (D′

c −Dc) = (k − l) + (wo − wc)
7

. (5.25)

Let Gi, Hi be the successive guṇakāras and hāras in the vallyupasaṃhāra
of Y

7Rs
. Then for a sufficiently large Hi, Y

7Rs
can be approximated by Gi

Hi
. Also

let
(wo − wc)

7
= n′

Hi
≈ n

Hi
,

where
n =

[
(wo − wc)

7
×Hi

]
int

. (5.26)
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Let k − l = y, and D′
c −Dc = x. We then have the indeterminate equation,

Gix−Hiy = n.

The solution of this is given by

x = +
[
nHi−1

Hi

]
rem

(when i is odd),

x = −
[
nHi−1

Hi

]
rem

(when i is even). (5.27)

In the case of “even” Hi, use is made of the fact that if (x, y) is a solution of
the indeterminate equation, then (x−Hi, y−Gi) is also a solution. Hence the
corrected number of civil days D′

c is given by

D′
c = Dc ±

[
nHi−1

Hi

]
rem

, (5.28)

where we have to choose ‘+’ when i is odd and ‘−’ when i is even. Clearly
the correction term (5.28) is the same as that prescribed by the verse in the
form (5.21).

५.७ ओवखभۤक߻पिरमाणाऑन
5.7 Different measures of kalpa

क߽ादीनЇ Φमाणं तु बϡधा कࠔते बुधैः ।
उपेयै࢒व कनयमो नोपाये࢒खत यͪ ततः ॥ १५ ॥
kalpādīnāṃ pramāṇaṃ tu bahudhā kalpyate budhaiḥ |
upeyasyaiva niyamo nopāyasyeti yat tataḥ || 15 ||

The duration of a kalpa has been conceived differently by different scholars. This
is due to the fact that there are no constraints on the means (upāya), but only on
the end result (upeya).

Quantities such as the number of years in a kalpa are only the means (upāya)
for obtaining the end results (upeya), such as the longitudes of the planets.
In the following verses, the author presents views of two different schools
(pakṣas), which take the duration of the kalpa to be 1000 years instead of
1008 years considered in Section 1.5.
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५.८ क࢐߻ ओवखभۤओवभागाः
5.8 Different divisions of a kalpa

क߽े युगाकन तु सहέमुशठۢ केचचͪ तΡकैसݗखतयुगाकन पृथ͟ मनूनाͳ ।
आۢڦयो࠻ कववरे च तथैव तेषЇ ःु࢒ सۥयो युगदशЇशचतुࡑतुࠂाः ॥ १६ ॥
मनवोऽथ चतुदϺशैव क߽े पृथुतुࠂाकन युगाकन चैव तेषाͳ ।
खΡयुगाकन गताकन सृगࡕतः Φा͛ परतः ःु࢒ Φलयाͪ तथाϡर۬े ॥ १७ ॥
kalpe yugāni tu sahasramuśanti kecit
tatraikasaptatiyugāni pṛthaṅ manūnām |
ādyantayośca vivare ca tathaiva teṣāṃ
syuḥ sandhayo yugadaśāṃśacatuṣkatulyāḥ || 16 ||
manavo’tha caturdaśaiva kalpe
pṛthutulyāni yugāni caiva teṣām |
triyugāni gatāni sṛṣṭitaḥ prāk
parataḥ syuḥ pralayāt tathāhuranye || 17 ||

Some [teachers] say that there are 1000 caturyugas in a kalpa. In it, there are 71
caturyugas corresponding to 14 Manus. At the beginning and towards the end [of
the kalpa], as well as in the interval between (different Manu’s) periods, there will
be sandhis whose durations are equal to

(
4
10

)th of a caturyuga.
Some other [teachers] say that the number of Manus in a kalpa is 14 only and that
the yugas associated with each of them is equal to 71 (pṛthu). [Also, according to
them] a period of three yugas is said to have elapsed before the creation (sṛṣṭi) and
there will be [three yugas] after the dissolution (pralaya).

According to some teachers, the number of caturyugas in a Manvantara is
stated to be 71 and a kalpa corresponds to a period which is equal to the sum
of 14 Manus and 15 sandhis, where each sandhi corresponds to

( 4
10
)th of a

caturyuga. Thus the total number of caturyugas in a kalpa is equal to

71× 14 + 15× 4
10

= 1000.

Having explained what constitutes a kalpa of one thousand2 mahāyugas as per
one school, the author presents the view held by another school in this regard.

Even according to them the total number of caturyugas in a kalpa is 1000
only. However, the internal composition of the number of caturyugas in a kalpa
is different. In this school, instead of conceiving of 15 sandhi periods of shorter
duration in between every manvantara, they conceive of two long periods each
2 It may be recalled that in Bhagavadgītā too the number of caturyugas in a kalpa is
stated to be 1000, which is said to be the same as the duration of the day of Brahmā.

sahasrayugaparyantaṃ aharyad brahmaṇo viduḥ |
rātriṃ yugasahasrāntāṃ te’horātravido janāḥ ||
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equal to 3 mahāyugas, for creation and dissolution. Thus according to them
also the total number of mahāyugas in a kalpa will be

71× 14 + 3 + 3 = 1000.

५.९ कृताऒदयुगानЅ पिरमाणͲ
5.9 The duration of kṛta and other yugas

युग࢒ दशमो भागो भोगकΦयहतः Εमाͪ ।
कृतादीनЇ Φमाणं ाͪ࢒ प̵योरनयोڥϺयोः ॥ १८ ॥
yugasya daśamo bhāgo bhogapriyahataḥ kramāt |
kṛtādīnāṃ pramāṇaṃ syāt pakṣayoranayordvayoḥ || 18 ||

According to both these schools (pakṣas) the period of the [yugapādas] kṛta etc. are
one-tenth of a [mahā]yuga multiplied by 4, 3, 2 and 1 (bhogapriya) respectively .

A mahāyuga consists of 43, 20, 000 years. One-tenth of it is 4, 32, 000 years.
The number of years in the four pādas according to both the schools referred
to in the previous section are the same, and are presented in Table 5.1. It
may be recalled that this is different from the conception of equal yugapādas
presented in Section 1.6.

yugapāda no. of years
कृत kṛta 1728000
Ρतॆा tretā 1296000
ापरڥ dvāpara 864000
कघल kali 432000

Table 5.1 The number of years in the four yugas constituting a mahāyuga.

५.१० वतϸमानके߻ गतकालः
5.10 Time elapsed in the present kalpa

क߽ेऽध࢑ͮ सݗम࢒ा࢒ वैव࢔तमनोयुϺगे ।
अࡕाकवंशे कघलः सवЄवϺतϺमान इह࢑तृः ॥ १९ ॥
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kalpe’smin saptamasyāsya vaivasvatamanoryuge |
aṣṭāviṃśe kaliḥ sarvairvartamāna iha smṛtaḥ || 19 ||

As per the civilizational memory (smṛti), all [the schools] recall that, we are in
the Vaivasvata-manvantara associated with the seventh Manu of the present kalpa
[and in this manvantara], we are in the 28th kali [yuga].



Chapter 6
पिरखधࠪाससंबۣः ղानयन֌
Relation between the circumference and
the diameter and computation of Rsines

६.१ माधवीयΫेढी
6.1 The Mādhava series

ࠬासाՊतुӳЉͪ बϡशः पृथҫाͪ खΡप֎सݗाڦयुगाϓताकन ।
ࠬासे चतुӳϿ Εमशࢣणृं ं࢔ कुयЉٌदा ाͪ࢒ पिरङधः सुसूңः ॥ १ ॥
vyāsāccaturghnāt bahuśaḥ pṛthaksthāt
tripañcasaptādyayugāhṛtāni |
vyāse caturghne kramaśastvṛṇaṃ svaṃ
kuryāttadā syāt paridhiḥ susūkṣmaḥ || 1 ||

May the diameter be multiplied by four, kept separately at several places, and
divided by the odd numbers 3, 5, 7 etc. [The results] may be sequentially applied
negatively and positively to the diameter multiplied by four. Then we obtain a
very accurate [value of the] circumference.

If C be the circumference of a circle whose diameter is D, then the above
verse enunciates the following infinite series:

C = 4D − 4D
3

+ 4D
5

− 4D
7

+ 4D
9

− . . . . (6.1a)

The above series is the well known series— first enunciated by Mādhava (14th
century)—relating the circumference and the diameter of a circle. It is gener-
ally referred to as the Gregory-Leibniz series (who rediscovered it in the latter
half of the 17th century) and is expressed in the form

C

4D
= π

4
= 1− 1

3
+ 1

5
− 1

7
+ . . . . (6.1b)

The series in (6.1a) may also be expressed in the form
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C = 4D
∞∑

n=1
(−1)n+1 1

(2n− 1)
. (6.1c)

As the series (6.1) converges terribly slowly, Mādhava considered a finite
number of terms in the series, to which an end-correction (antyasaṃskāra)
denoted by 1

ap
, is applied as follows:

C ≈ 4D
(
1− 1

3
+ 1

5
− . . .+ (−1)

p−1
2

1
p
+ (−1)

p+1
2

1
ap

)
. (6.2)

Here p represents the last odd number appearing as the divisor, at which the
series is terminated, and (−1)p+ 1

2

(
1
ap

)
is an approximation to the remaining

terms in the series. The three successive approximations to the end-correction(
1
ap

)
that have been given by Mādhava, are the following:1

1
ap(1)

= 1
2(p+ 1)

, (6.3)

1
ap(2)

=

(
p+ 1
2

)
(p+ 1)2 + 1

, (6.4)

1
ap(3)

=

(
p+ 1
2

)2

+ 1[((
p+ 1
2

)2

+ 1

)
4 + 1

](
p+ 1
2

) . (6.5)

Now, by applying the end-correction given by (6.3), the series (6.2) becomes,

C ≈ 4D
(
1− 1

3
+ 1

5
− . . .+ (−1)

p−1
2

1
p
+ (−1)

p+1
2

1
2(p+ 1)

)
. (6.6)

६.१.१ पिरणतमाधवीयΫेढी
6.1.1 Transformed Mādhava series

ࠬासाͬ वनसӾुछणताͪ पृथगांݗ ٫ाڦयुडӖमूलघनैः ।
खΡगुणࠬासे मृणं࢔ Εमशः कृ٘ाकप पिरङधरानेयः ॥ २ ॥
vyāsād vanasaṅguṇitāt pṛthagāptaṃ tryādyayugvimūlaghanaiḥ |
triguṇavyāse svamṛṇaṃ kramaśaḥ kṛtvāpi paridhirāneyaḥ || 2 ||

1 {GYB 2008}, Section 6.8, pp. 201–205.
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The diameter multiplied by four (vana) is divided separately by the cubes of the odd
numbers, starting with three, diminished by their bases. By applying this positively
and negatively, in order, to the diameter multiplied by three, the circumference may
be obtained.

The above verse gives the following infinite series for the circumference of a
circle in terms of its diameter.

C = 3D + 4D
(33 − 3)

− 4D
(53 − 5)

+ 4D
(73 − 7)

− · · ·

= 4D
[
3
4
+ 1

(33 − 3)
− 1

(53 − 5)
+ 1

(73 − 7)
− · · ·

]
, (6.7)

The rationale behind the above expression can be understood as follows. We
can rewrite the equation (6.1) in terms of the so called sthaulyas as follows:2

C = 4D
[(

1− 1
a1

)
+
(

1
a1

+ 1
a3

− 1
3

)
−
(

1
a3

+ 1
a5

− 1
5

)
+ · · ·

]
= 4D

[(
1− 1

a1

)
+ E(3)− E(5) + E(7)− · · ·

]
, (6.8)

where the sthaulya E(p) is given by

E(p) =
[

1
ap−2

+ 1
ap

]
− 1

p
.

By choosing ap = 2p+2 and ap−2 = 2p− 2 and substituting them in (6.8),
we get the transformed series

C = 3D + 4D
(33 − 3)

− 4D
(53 − 5)

+ 4D
(73 − 7)

− · · ·

= 4D
[
3
4
+ 1

(33 − 3)
− 1

(53 − 5)
+ 1

(73 − 7)
− · · ·

]
. (6.9)

It can be easily seen that the above transformed Mādhava series (6.9) would
have faster convergence since the cubes of odd numbers appear in the denom-
inator unlike the original Mādhava series (6.1c) wherein only the first power
of odd numbers appear in the denominator. The series given in (6.9) can be
rewritten as

C = 3D +
∞∑

n=1
(−1)n+1 4D

(2n+ 1)3 − (2n+ 1)
. (6.10)

2 {GYB 2008}, Section 6.8, pp. 201–205.
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६.१.२ ऒकख֌दࠪѴसूΠͲ
6.1.2 An algebraic identity

हायϻ हारैѿभेदӳं हारघातेन वा हरेͪ ।
हायЉڠारयुगावाݗफलयोगाۢराݗये ॥ ३ ॥
hāryaṃ hāraikyabhedaghnaṃ hāraghātena vā haret |
hāryāddhārayugāvāptaphalayogāntarāptaye || 3 ||

The dividend multiplied by the sum or the difference of the divisors should be
divided by product of the divisors in order to obtain the sum or the difference of
the results obtained by dividing the dividend by these divisors.

If d be the dividend and h1 and h2 be the hāras (divisors), then the above
verse essentially gives the following algebraic identity

d

h1
± d

h2
= d× (h2 ± h1)

h1 × h2
. (6.11)

६.१.३ पुतुमनसोमयाजीΫेढी
6.1.3 The Putumana Somayājī series

वगЄयुϺजЇ वा ङڥगुणैकनϺरेकैः वग੃कृतैवϺछजϺतयुӓवगЄः ।
ࠬासं च ष̓ӳं कवभजेͪ फलंं࢔ ࠬासे खΡकनӳे पिरङध࢈दा࢒ाͪ ॥ ४ ॥
vargairyujāṃ vā dviguṇairnirekaiḥ
vargīkṛtairvarjitayugmavargaiḥ |
vyāsaṃ ca ṣaḍghnaṃ vibhajet phalaṃ svaṃ
vyāse trinighne paridhistadā syāt || 4 ||

Or, from the square of even numbers multiplied by two, subtract one, and from
the square [of that] subtract the square of the same (even number). Divide the
diameter multiplied by six by the above [quantities]. When [the sum of] these is
added to three times the diameter, the result will be the circumference.

The series presented by the above verse is,

C = 3D + 6D
(2.22 − 1)2 − 22

+ 6D
(2.42 − 1)2 − 42

+ 6D
(2.62 − 1)2 − 62

+ . . . ,

which may be written in the form

C = 3D +
∞∑

n=1

6D
(2.(2n)2 − 1)2 − (2n)2

. (6.12)
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The above series (6.12) is a new series not found either in the Gaṇitayuk-
tibhāṣā of Jyeṣṭhadeva or in the Yuktidīpikā, commentary of Śaṅkara Vāriyar
on the Tantrasaṅgraha, and is perhaps due to Putumana Somayājī himself.3

We may note that the series (6.12) converges faster than (6.10) or (6.9)
since the fourth powers of odd numbers appear as the denominators in (6.12).
It can be shown that this series can easily be obtained from the series (6.10)
given above. The series (6.10) can be re-written as:

C = 3D +
∞∑

n=1

(
4D

(4n− 1)3 − (4n− 1)

)
−
(

4D
(4n+ 1)3 − (4n+ 1)

)
. (6.13)

After some algebraic manipulations, the argument of the summation in the
second term in RHS of the above can be shown to be

4D ×
((
(4n+ 1)3 − (4n+ 1)

)
−
(
(4n− 1)3 − (4n− 1)

))
((4n− 1)3 − (4n− 1))× ((4n+ 1)3 − (4n+ 1))

= 4D × 96n2

((4n− 1)((4n− 1)2 − 1))× ((4n+ 1)((4n+ 1)2 − 1))

= 4D × 96n2

((4n− 1)(16n2 − 8n))× ((4n+ 1)(16n2 + 8n))

= 4D × 96n2

64n2 (64n4 − 20n2 + 1)

= 6D
((8n2 − 1)2 − 4n2)

= 6D
((2.(2n)2 − 1)2 − (2n)2)

, (6.14)

which is the same as (6.12).

Figure 6.1 graphically depicts the rates of convergence of the three series
given by (6.1c), (6.10) and (6.12).
3 This verse of Karaṇapaddhati has been cited in the article of Whish (Whish 1834).
There, Whish also gives the following transformed version of the series

C = 6×
( 1
1.3.3.5 + 1

3.5.7.9 + 1
5.7.11.13 + 1

7.9.15.17. + . . .

)
= 3 + 6×

∞∑
n=1

(
1

(2n− 1)(2n+ 1)(4n− 1)(4n+ 1)

)
.
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Fig. 6.1 Graph depicting the convergence of the Mādhava series and its transformed
versions.

६.२ पिरखधࠪासानुपातः
6.2 Ratio of the circumference to the diameter

ࠬासादभीࡕा۫हतोऽ࢒ वृٌं नी٘वैमाޱЇ तु खमथो कवभѶैः ।
कायЉ यथोѶं गुणकारहाराः ते ࠬासवृٌाकन तदा भवठۢ ॥ ५ ॥
गुणहारकभूतै࢈:ै ࠬासवृٌैयϺथोकदतͳ ।
इࡕवृٌाۦयेͬ ࠬासं ࠬासाͬ वृٌं कवपयϺयाͪ ॥ ६ ॥
अनूननूِाननुनुۦकनٖःै समाहता࠻ΕकलाकवभѶाः ।
च؝ЇϠचܓाधमकंुङभपालैः ࠬास࢈दधϻ खΡभमौकवϺका ाͪ࢒ ॥ ७ ॥
vyāsādabhīṣṭānmahato’sya vṛttaṃ
nītvaivamābhyāṃ tu mitho vibhaktaiḥ |
kāryā yathoktaṃ guṇakārahārāḥ
te vyāsavṛttāni tadā bhavanti || 5 ||
guṇahārakabhūtaistaiḥ vyāsavṛttaiṛyathoditam |
iṣṭavṛttānnayed vyāsaṃ vyāsād vṛttaṃ viparyayāt || 6 ||
anūnanūtnānanununnanityaiḥ
samāhatāścakrakalāvibhaktāḥ |
caṇḍāṃśucandrādhamakuṃbhipālaiḥ
vyāsastadardhaṃ tribhamaurvikā syāt || 7 ||

Having obtained the circumference corresponding to a chosen large value of the
diameter, and by doing the mutual division of the two (considering the diameter as
the multiplier and the circumference as the divisor), various [pairs of] multipliers
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and divisors are obtained as stated earlier. These [pairs] then form the [successive
approximations to] diameters and circumferences.
With [any of] these [pairs of] diameters and circumferences serving as multipliers
and divisors, by the process described earlier, from the desired [value of the] cir-
cumference, the diameter can be obtained. [Similarly] the circumference can be
obtained from the diameter through the reverse process.
The product of 10000000000 (anūnanūtnānanunnanitya) and the number of min-
utes in a circle (cakrakalā) when divided by 31415926536 (caṇḍāṃśucandrād-
hamakuṃbhipāla) would give the diameter. Half of that would be the Rsine (mau-
rvikā) corresponding to three signs (tribha).

The first of the three verses above states that from an accurate value of the
ratio of the circumference to the diameter, approximate values of the ratio
can be obtained by the method of vallyupasaṃhāra described in chapter 2.

The next verse then mentions that from any of these ratios of C
D , the

circumference can be calculated if the diameter is known and vice versa.

Diameter (D) Circumference (C) Order of
∣∣C
D − π

∣∣
1 3 1.41592654×10−1

7 22 1.26448927×10−3

106 333 8.32196275×10−5

113 355 2.66764189×10−7

33102 103993 5.77890624×10−10

33215 104348 3.31628058×10−10

66317 208341 1.22356347×10−10

99532 312689 2.91433544×10−11

464445 1459097 7.51132490×10−12

563977 1771786 1.13287157×10−11

1028422 3230883 9.60476143×10−12

1592399 5002669 1.02153841×10−11

72686377 228350988 1.02069464×10−11

74278776 233353657 1.02069464×10−11

146965153 461704645 1.02069464×10−11

1250000000 3926990817 1.02069464×10−11

10000000000 31415926536 1.02069464×10−11

Table 6.1 Successive approximations for the ratio 31415926536
10000000000 .

Verse 7 gives a fairly accurate value of the radius of a circle when its
circumference is given by 21600 (minutes). That is,
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R ≈ 1
2
×
[
10000000000× 21600

31415926536

]
≈ 3437.7467707737701′

≈ 3437′44′′48′′′22′′′′, (6.15)

which is indeed accurate upto the fourths (′′′′) of a degree.
From the ratio of circumference (C = 31415926536) to the diameter (D =

10000000000) given in the last verse

C

D
≈ 31415926536

10000000000
,

by doing vallyupasaṃhāra, with D as the multiplier and C as the divisor,
we obtain different approximations to the above ratio that are given in the
Table 6.1. As we can see, this table contains a few of the well known rational
approximations to π such as 3

1 , 22
7 and 355

113 .

६.३ एकराۊࡂधϸरागशղाޯЅ पऒठतղानयनͲ
6.3 Generation of the tabular Rsines from Rsin 30 and

Rsin 45

खΡմाڠϺमेकराछशմा खΡմावगЉڠϺतः पदͳ ।
भवेदیधϺराछशմा ताޱाम۬गुणाͮ नयेͪ ॥ ८ ॥
trijyārddhamekarāśijyā trijyāvargārddhataḥ padam |
bhavedadhyardharāśijyā tābhyāmanyaguṇān nayet || 8 ||

Half of trijyā would be the jyā of one rāśi (ekarāśijyā) and the square root of half
of the square of trijyā would be the jyā of one and a half rāśis (adhyardharāśijyā).
From these two, the other sine values (guṇas) may be obtained.

Having given an accurate value of trijyā (in the previous verse) this verse
states how to obtain the values of R sin 30◦ (ekarāśijyā) and R sin 45◦ (adh-
yardharāśijyā) from the value of trijyā (R).

R sin 30 = R

2
,

R sin 45 = R√
2
.

Further it is said that from these two values all other Rsine values may be
obtained.

By ‘anyaguṇān’ (‘all other jyās’) what is meant is the rest of the twenty-one
Rsine values, leaving R sin 90 = R, R sin 30◦ and R sin 45◦, since most texts on
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Indian astronomy divide the quadrant of a circle into twenty-four equal parts,
each division corresponding to 5400′

24 = 225′. The scheme by which the rest
(21) of the tabular Rsines is obtained, is outlined in Table 6.2. The rationale
behind this scheme is explained in the next section.

६.४ इࡓचापाधϸभुजकोऒटकानयनͲ
6.4 Procedure for obtaining the Rsine and Rcosine of

the half of any desired arc

खΡմेࡕմावधाؔोनखΡմावगЎٍमूलयोः ।
भेदयोगदलेठ٘ࡕचापाधϺभुजकोकटके ॥ ९ ॥
trijyeṣṭajyāvadhāḍhyonatrijyāvargotthamūlayoḥ |
bhedayogadaletviṣṭacāpārdhabhujakoṭike || 9 ||

Having multiplied trijyā with any desired jyā, let it be added to as well as sub-
tracted from the square of the trijyā. Half of the difference and sum of the square
roots of the results thus obtained would yield the Rsine (bhujajyā) and Rcosine
(koṭijyā) respectively of half of the desired arc.

In the previous verse, having given the values of R sin 30◦ and R sin 45◦ it
was simply mentioned that with these two Rsine values the remaining tabular
Rsines can be obtained. Two expressions that could be used for this purpose
are presented in this verse.

R sin
(α
2

)
=

√
R2 +R2 sinα−

√
R2 −R2 sinα

2
, (6.16)

and R cos
(α
2

)
=

√
R2 +R2 sinα+

√
R2 −R2 sinα

2
. (6.17)

The rationale behind these expressions can be understood with the help of
Figure 6.2. Here, O is the center of a circle whose diameter is AE. CD and
OD are Rsine and Rcosine respectively corresponding to the arc

⌢

AC. The
mid-point of the

⌢

AC is denoted by M . Then AB is the Rsine of the
⌢

AM ,
which is half of

⌢

AC. Similarly OB is Rcosine of the
⌢

AM . That is, if
⌢

AC= α,
then

CD = R sinα, OD = R cosα,

and, AB = R sin
(α
2

)
, OB = R cos

(α
2

)
.

Now the area of the △OAC can be expressed in two ways:
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Fig. 6.2 The expression for the Rsine and Rcosine of half the desired arc.

Area = 1
2
AC ×OB,

= 1
2
OA× CD. (6.18)

As AC = 2AB, we have

AC ×OB = 2AB ×OB

= OA× CD

= R.R sinα. (6.19)

The square of the sum/difference of OB and AB is given by

(OB ±AB)2 = OB2 +AB2 ± 2(OB ×AB)
= R2 ±R.R sinα. (6.20)

Hence,

OB +AB =
√
R2 +R.R sinα, (6.21)

and OB −AB =
√
R2 −R.R sinα. (6.22)

Subtracting (6.22) from (6.21), we get

AB = R sin
(α
2

)
=

√
R2 +R.R sinα−

√
R2 −R.R sinα

2
.
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Adding (6.21) and (6.22), we get

OB = R cos
(α
2

)
=

√
R2 +R.R sinα+

√
R2 −R.R sinα

2
.

The above two equations are the same as (6.16) and (6.17). Using these two
equations and the values of R sin (30◦) (i.e., J8, the 8th jyā) and R sin (45◦)
(i.e., J12, the 12th jyā) one can find all the 24 tabular sines known as paṭhita-
jyās and denoted by J1, J2 …J24.

Table 6.2 lists all the 24 Rsines and also indicates how each of them can
be found from the two base values J8 and J12 once trijyā J24 is known. For
instance in the second row against J2 we find J8 ⇀ J4 ⇀ J2. Here the symbol
⇀ conveys that (6.16) is employed to first obtain J4 from J8, and further J2
from J4. Similarly, the symbol ⇁ in the 20th row J8 ⇁ J20 conveys that (6.17)
is employed to obtain J20 from J8, as

J20 = R sin(20× 225′) = R cos(4× 225′) = R cos
(
8× 225′

2

)
.

६.५ इࡓचापाधϸղानयने Υकारा۠रͲ
6.5 An alternative expression for the Rsine of half the

desired arc

येࡕڥचापगुणतՋरवगϺयोग-
मूलाधϺखमࡕधनुरधϺगुणः Φकदࡕः |
մानЇ कनजखΡगुणवगϺकवशेषमूलं
कोकट࢈ϣनसऔहतौ खΡगुणौ बाणौ࢔ ॥ १० ॥
yadveṣṭacāpaguṇataccharavargayoga-
mūlārdhamiṣṭadhanurardhaguṇaḥ pradiṣṭaḥ |
jyānāṃ nijatriguṇavargaviśeṣamūlaṃ
koṭistadūnasahitau triguṇau svabāṇau || 10 ||

Alternatively, it has been stated that half of the square root of the sum of squares
of the jyā and the śara of a desired arc (iṣṭacāpa)4 would be the Rsine of half of the
desired arc (dhanurardhaguṇa). The square root of the square of the jyā subtracted
from the square of trijyā, gives the koṭijyā. This, when subtracted from or added
to trijyā, would give the pair of versines (bāṇas) corresponding to that jyā.

4 In the compound word yadveṣṭacāpaguṇataccharavargayogaḥ, the author has employed
the nyāya, ‘dvandvānte śrūyamāṇaṃ padaṃ pratyekamabhisaṃpadyate’ Hence, the word
varga is to be associated with both guṇa (Rsine) and tacchara (Rversine).
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The 24 jyās The scheme of obtaining them

J1 J8 ⇀ J4 ⇀ J2 ⇀ J1

J2 J8 ⇀ J4 ⇀ J2

J3 J12 ⇀ J6 ⇀ J3

J4 J8 ⇀ J4

J5 J8 ⇁ J20 ⇀ J10 ⇀ J5

J6 J12 ⇀ J6

J7 J8 ⇁ J20 ⇁ J14 ⇀ J7

J8
R
2

J9 J12 ⇁ J18 ⇀ J9

J10 J8 ⇁ J20 ⇀ J10

J11 J8 ⇀ J4 ⇁ J22 ⇀ J11

J12
R√
2

J13 J8 ⇀ J4 ⇁ J22 ⇁ J13

J14 J8 ⇁ J20 ⇁ J14

J15 J12 ⇁ J18 ⇁ J15

J16
√

(R2 − J2
8 )

J17 J8 ⇁ J20 ⇁ J14 ⇁ J17

J18 J12 ⇁ J18

J19 J8 ⇁ J20 ⇀ J10 ⇁ J19

J20 J8 ⇁ J20

J21 J12 ⇀ J6 ⇁ J21

J22 J8 ⇀ J4 ⇁ J22

J23 J8 ⇀ J4 ⇀ J2 ⇁ J23

J24 R

Table 6.2 The scheme for obtaining the twenty-four tabular Rsines from a set of two
values (J8 and J12) along with trijyā.

In the first half of this verse, another formula has been presented (which
is different from (6.16)) for obtaining R sin(α2 ) from R sinα. In the later half
of the verse, the author defines the koṭijyā and the two śarajyās (Rversines).
The formulae given in the verse may be written as:

iṣṭadhanurardhaguṇa =
√

(iṣṭacāpaguṇa)2 + (iṣṭaśara)2
2

,

R sin
(α
2

)
=
√

R2 sin2 α+ (R−R cosα)2
2

. (6.23)
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Also,

R cosα =
√
R2 −R2 sin2 α. (6.24)

The sum or difference of R and R cosα is referred to as bāṇa. Hence the
dual usage bāṇau here refers to both R+R cosα and R−R cosα. For instance,
in Figure 6.2 if

⌢

AC= α, then ED and DA refer to the two bāṇas, which add
up to the diameter of the circle.

We shall now show how to obtain (6.23) from the expression (6.16) discussed
in the earlier verses. Squaring (6.16), we get

R2 sin2
(α
2

)
= 2R2 − 2

√
R2 +R.R sinα.

√
R2 −R.R sinα

4
,

or, 4R2 sin2
(α
2

)
= 2R2 − 2

√
R4 −R4 sin2 α

= 2R2 − 2R
√

R2 −R2 sin2 α

= R2 +R2 − 2R2 cosα. (6.25)

By replacing one R2 by R2 sin2 α + R2 cos2 α and doing some algebraic
manipulations, and finally taking the square root on both sides, (6.25) becomes

R sin
(α
2

)
=
√
R2 +R2 sin2 α+R2 cos2 α− 2R2 cosα

2

=
√
R2 sin2 α+ (R−R cosα)2

2
, (6.26)

which is the same as the expression (6.23) indicated in the text.

६.६ शराͩ इࡓचापाधϸदोःकोऒटղानयनͲ
6.6 Finding the Rsine and Rcosine of half of the arc

from the bāṇa

येࡕڥको׊ाहतकव࢈राधϿनोनाठۮतौ ࠬासदल࢒ वगГ ।
अध੃कृतौ तौ पकदतावभीࡕचापाधϺदोःकोकटगुणौ भवेताͳ ॥ ११ ॥
yadveṣṭakoṭyāhatavistarārdhenonānvitau vyāsadalasya vargau |
ardhīkṛtau tau paditāvabhīṣṭacāpārdhadoḥkoṭiguṇau bhavetām || 11 ||

Or else, the product of the trijyā and the koṭijyā of a desired arc, added to and
subtracted from the square of half the diameter, are halved and the square root is
taken. The results will be the koṭijyā and dorjyā respectively of half of the desired
arc.
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The formulae given in the above verse may be expressed as√
R2 −R2 cosα

2
= R sin

(α
2

)
, (6.27)√

R2 +R2 cosα
2

= R cos
(α
2

)
. (6.28)

It may be noted that the LHS of the above equations may be expressed as√
R(R±R cosα)

2
=
√

trijyā × bāṇa
2

.

It can be easily seen that equations (6.27) and (6.28) can be obtained by
taking the square root of (6.25). Then, we have

R sin
(α
2

)
=
√

2R2 − 2R2 cosα
4

=
√

R2 −R2 cosα
2

. (6.29)

We know that R cos
(
α
2
)
=
√

R2 −R2 sin2
(
α
2
)
. Now squaring (6.29) and sub-

tracting it from R2, we obtain

R2 −R2 sin2
(α
2

)
= R2 −

(√
R2 −R2 cosα

2

)2

= 2R2 −R2 +R2 cosα
2

. (6.30)

Taking the square root on both sides of (6.30), we get

R cos
(α
2

)
=
√

R2 +R2 cosα
2

,

which is the same as the expression (6.28).

६.७ ղाकोऒटޯЅ Ϋेगणओवࢆारः
6.7 Series expansion for the Rsine and Rcosine

चापाՊ तٌْलतोऽकप तͪڥ चापाहताͬۀाकदहतखΡमौࠬЉ ।
लޔाकन युӓाकन फला۬धोऽधः चापादयुӓाकन च कव࢈राधЉͪ ॥ १२ ॥
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कव۬࢒चोपयुϺपिर ٖजेͪ तՋेषौ भुजाकोकटगुणौ भवेताͳ ।
एकाकदसԝाहतभाࡕमЇशाͪ एवं चतुकवϻशखतमौकवϺकाः ःु࢒ ॥ १३ ॥5

cāpācca tattatphalato’pi tadvat
cāpāhatād dvyādihatatrimaurvyā |
labdhāni yugmāni phalānyadho’dhaḥ
cāpādayugmāni ca vistarārdhāt || 12 ||
vinyasya coparyupari tyajet tac-
cheṣau bhujākoṭiguṇau bhavetām |
ekādisaṅkhyāhatabhāṣṭamāṃśāt evaṃ
caturviṃśatimaurvikāḥ syuḥ || 13 ||

The [desired] arc and the results obtained are successively multiplied by the arc di-
vided by the product of the radius with two, three, etc. Having placed [all] the even
terms [sequentially] below the arc, and the odd terms below the radius, subtract
[all] the succeeding terms from the immediately preceding ones. The [resultant]
remainders are the Rsine (bhujājyā) and the Rcosine (koṭijyā) respectively. Thus
[all] the twenty-four Rsines are obtained by using the integral multiples of the arc
equal to one-eighth of 30 degrees.

The above verses present the well known series for the sine and cosine func-
tions. Having presented both the series in one and a half verses, in the latter
half of verse 13, it is stated that the 24 tabular sines can also be computed
using the series presented here. If Rα represents the desired arc (cāpa), then
the successive terms to be generated in order to obtain the series are:

(Rα)× (Rα)
2R

,
(Rα)× (Rα)2

2R× 3R
,
(Rα)× (Rα)3

2R× 3R× 4R
,

(Rα)× (Rα)4

2R× 3R× 4R× 5R
. . . . . .

Now the odd and even terms obtained have to be arranged as shown in
Table 6.3.

Then it is said that all the successive terms are to be subtracted from the
immediately preceding term. Thus we have
5 For convenience, we present the prose order of the verse:

चापाͪ चापाहताͪ ङڥहतखΡमौࠬЉ [कवभմ लंޔ फलं], तͪڥ तْलतोऽकप च चापाहताͪ
खΡहतखΡमौࠬЉ [कवभմ लंޔ फलं], तͪڥ तْलतोऽकप च चापाहताͪ चतुहϺतखΡमौࠬЉ [कवभմ
लंޔ फलं], [इٖवंे] लޔाकन युӓाकन फलाकन चापादधोऽधः कव۬࢒, अयुӓाकन च फलाकन
कव࢈राधЉदधोऽधः कव۬࢒उपयुϺपिरٖजेͪ। तΡ लޔौ शेषौ (तՋेषौ) भुजाकोकटगुणौ [Εमशः]
भवेताͳ।
(cāpāt cāpāhatāt dvihatatrimaurvyā [vibhajya labdhaṃ phalaṃ], tadvat tatpha-
lato’pi ca cāpāhatāt trihatatrimaurvyā [vibhajya labdhaṃ phalaṃ], tadvat tatpha-
lato’pi ca cāpāhatāt caturhatatrimaurvyā [vibhajya labdhaṃ phalaṃ], [ityevaṃ] lab-
dhāni yugmāni phalāni cāpādadho’dhaḥ vinyasya, ayugmāni ca phalāni vistarār-
dhādadho’dhaḥ vinyasya uparyupari tyajet | tatra labdhau śeṣau (taccheṣau) bhu-
jākoṭiguṇau [kramaśaḥ] bhavetām.)
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odd terms even terms
R, Rα,

(Rα)× (Rα)
2R ,

(Rα)× (Rα)2

2R× 3R ,

(Rα)× (Rα)3

2R× 3R× 4R,
(Rα)× (Rα)4

2R× 3R× 4R× 5R,

(Rα)× (Rα)5

2R× 3R× 4R× 5R× 6R,
(Rα)× (Rα)6

2R× 3R× 4R× 5R× 6R× 7R,

...
...

Table 6.3 Odd and even terms for generating the cosine and sine series.

R sinα = (Rα)−
(
(Rα)3

3!R2 −
(
(Rα)5

5!R4 −
(
(Rα)7

7!R6 − . . . . . .

)))
= (Rα)− (Rα)3

3!R2 + (Rα)5

5!R4 − (Rα)7

7!R6 + . . . . . .

= (Rα) +
∞∑
i=1

(−1)i (Rα)(2i+1)

(2i+ 1)!R(2i) , (6.31)

R cosα = (R)−
(
(Rα)2

2!R
−
(
(Rα)4

4!R3 −
(
(Rα)6

6!R5 − . . . . . .

)))
= (R)− (Rα)2

2!R
+ (Rα)4

4!R3 − (Rα)6

6!R5 + . . . . . .

= R+
∞∑
i=1

(−1)i (Rα)2i

(2i)!R(2i−1) , (6.32)

which are the well known series for sine and cosine functions.

६.८ ओवڣाऑनٔाऒदना ղाको׈ानयनͲ
6.8 Computation of the Rsine and Rcosine values using

the vākyas vidvān etc.

कवڥाͮ तुۦबलः कवीशकनचयः6 सवЉथϺशीलनࢉरः
कनकवϺڠाӾनरेܓϑ͟ कनगकदतेेࡡषु Εमाͪ प֎सु ।

6 {KP 1937} and {KP 1953} have the incorrect reading kapīśanicayaḥ. {KP 1956} has
the correct reading kavīśanicayaḥ which also tallies with the computed value.
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आधࢦाͪ गुछणतादभीࡕधनुषः कृٖा कवϓٖाठۢम-
ंݗा࢒ शोیमुपयुϺपयϺथ घनेनैवं धनुۢ࡞तः ॥ १४ ॥7

vidvān tunnabalaḥ kavīśanicayaḥ sarvārthaśīlasthiraḥ
nirviddhāṅganarendraruṅ nigaditeṣveṣu kramāt pañcasu |
ādhasthyāt guṇitādabhīṣṭadhanuṣaḥ kṛtyā vihṛtyāntima-
syāptaṃ śodhyamuparyuparyatha ghanenaivaṃ dhanuṣyantataḥ || 14 ||

Among the five values stated in order [as] vidvān, tunnabalaḥ, kavīśanicayaḥ,
sarvārthaśīlasthiraḥ, nirviddhāṅganarendraruk, the last value is to be multiplied
by the square of the desired arc [and] divided by the [square] of the ultimate [value
of the arc, 5400]. The result obtained should be subtracted from the [immediately]
preceding one above. Similarly the process is repeated with revised last value.
Then [the result is to be multiplied] by the cube [of the arc divided by the last
arc]. Finally [the result is to be subtracted] from the [desired] arc.

In the first half of the above verse, five numbers (β1, β2, β3, β4 and β5) are
presented using the vākyas: vidvān, …, nirviddhāṅganarendraruk, which are
listed in Table 6.4. The operations to be carried out with these numbers in
order to obtain the Rsine values are outlined in the latter part of the verse.
We shall present the sequence of these operations in the form of an algorithm.

βi vākyas computed values

in kaṭapayādi in numerals

β5 vidvān 44′′′ 44′′′32.33′′′′

β4 tunnabalaḥ 33′′06′′′ 33′′05′′′36.13′′′′

β3 kavīśanicayaḥ 16′05′′41′′′ 16′05′′40′′′51.99′′′′

β2 sarvārthaśīlasthiraḥ 273′57′′47′′′ 273′57′′47′′′02.80′′′′

β1 nirviddhāṅganarendraruk 2220′39′′40′′′ 2220′39′′39′′′33.89′′′′

Table 6.4 Comparing the values encoded by the vākyas, vidvān etc., with the computed
values.

7 For convenience, we present the prose order of the verse:

कवڥाͮ तुۦबलः कवीशकनचयः सवЉथϺशीलनࢉरः कनकवϺڠाӾनरेܓϑ͛ [इखत] एषु प֎सु Εमाͪ
कनगकदतेषु आधࢦाͪ अभीࡕधनुषः कृٖा गुछणताͪ अठۢम࢒ [धनुषः कृٖा] कवϓٖ, आݗͳ
उपिर [कवڦमानाͪ] शोیͳ | .....एवͳ उपिर उपिर [कायϺͳ] | अथ [अभीࡕधनुषः] घनेन [गुछणताͪ]
[अठۢम࢒धनुषः] घनेन [कवϓٖ]आݗͳ अۢतः धनुखष [शोیͳ] |
(vidvān tunnabalaḥ kaviśanicayaḥ sarvārthaśīlasthiraḥ nirviddhāṅganarendraruk
[iti] eṣu pañcasu kramāt nigaditeṣu ādhastyāt abhīṣṭadhanuṣaḥ kṛtyā guṇitāt anti-
masya [dhanuṣaḥ kṛtyā] vihṛtya, āptam upari [vidyamānāt] śodhyam |…evam upari
upari [kāryam]. atha [abhīṣṭadhanuṣaḥ] ghanena [guṇitāt] [antimasya dhanuṣaḥ]
ghanena [vihṛtya] āptam antataḥ dhanuṣi [śodhyam].)
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• β5 is multiplied by the square of the desired arc (Rα) and divide by (5400)2
(antimasya kṛtiḥ) and the result thus obtained is subtracted from β4. That
is,

β4 −
(
β5 × (Rα)2

(5400)2

)
.

• The above result, is further multiplied by (Rα)2 and divided by (5400)2.
The result is subtracted from β3,

β3 −
(
β4 −

(
β5 × (Rα)2

(5400)2

))
× (Rα)2

(5400)2
.

• This process has to be repeated till we reach β1. At this stage we have

β1 −
(
β2 −

(
β3 −

(
β4 −

(
β5 × (Rα)2

(5400)2

))
× (Rα)2

(5400)2

)
× (Rα)2

(5400)2

)
× (Rα)2

(5400)2 .

• The above result is then multiplied by (Rα)3 (atha ghanenaivam) and
divided by (5400)3. The result thus obtained is subtracted from Rα
(dhanuṣyantataḥ). Thus, we get

Rα− β1 × (Rα)3

(5400)3 + β2 × (Rα)5

(5400)5 − β3 × (Rα)7

(5400)7 + β4 × (Rα)9

(5400)9 − β5 × (Rα)11

(5400)11 . (6.33)

The rationale behind the expression (6.33), as well as the origin of the numbers
listed in Table 6.4 can be understood with the help of the Mādhava series
(6.31) for R sinα. Multiplying and dividing each term in the sum in the RHS
of (6.31) by (5400)(2i+1), we obtain

R sinα ≈ (Rα) +
5∑

i=1
(−1)i (Rα)(2i+1)

(2i+ 1)!R(2i) ×
(5400)(2i+1)

(5400)(2i+1)

= (Rα) +
5∑

i=1
(−1)i βi × (Rα)(2i+1)

(5400)(2i+1) , (6.34)

where βi =
(5400)(2i+1)

(2i+ 1)!R(2i) .

The above expression is the same as (6.33). It can easily be verified that
the values of βi’s (i = 1, . . . , 5) given in Table 6.4 are obtained by choosing
the value of R to be 3437′44′′48′′′ in the expression for βi. In this table, we
also present, for the sake of comparison, the computed values (accurate upto
fourths) by taking the value of R to be 21600

2π . As we can see from the table,
the computed values tally with the values given by the vākyas except for β5
which when rounded off to the nearest thirds should be 45′′′.

The following verse presents the truncated series for the Rcosine func-
tion. The numerical values represented by the vākyas, stenaḥ, …ūnadhanakṛdb-
hūreva, are listed in Table 6.5.
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नेः࢈ ीकपϠनःࢢ सुगठۥनगनुͬ भΣाӾभࠬासनो
मीनाӾो नरछसंह ऊनधनकृڣरेूव षेסषु तु ।
आधࢦाͪ गुछणतादभीࡕधनुषः कृٖा कवϓٖाठۢम-
ंݗा࢒ शोیमुपयुϺपयϺथ फलं࢒ाϞٟम࢒ा܉जͳ ॥ १५ ॥
stenaḥ strīpiśunaḥ sugandhinaganud bhadrāṅgabhavyāsano
mīnāṅgo narasiṃha ūnadhanakṛdbhūreva ṣaṭsveṣu tu |
ādhasthyāt guṇitādabhīṣṭadhanuṣaḥ kṛtyā vihṛtyāntima-
syāptaṃ śodhyamuparyuparyatha phalaṃ syādutkramasyāntyajam || 15 ||

Among the six values [listed in order as] stenaḥ, strīpiśunaḥ, sugandhinaganud,
bhadrāṅgabhavyāsanaḥ, mīnāṅgo narasiṃhaḥ, ūnadhanakṛdbhūreva, the last value
is to be multiplied by the square of the desired arc [and] divided by the [square]
of the ultimate [value of the arc, 5400]. The result obtained should be subtracted
from the [immediately] preceding one above. Similarly the process is repeated with
revised last value. The result is to be [multiplied by the square of the desired arc
divided by the square of the last arc]. The final result obtained (antyajam phalam)
will give the value of the Rversine (utkramasya) [of the desired arc].

This verse presents the vākyas, stena etc., for the coefficients ϕ1, ϕ2 . . . , ϕ6
appearing in Rversine (utkramajyā) series

R−R cosα ≈
6∑

i=1
(−1)iϕi × (Rα)2i

(5400)2i
,

which is the same as presenting the Rcosine series

R cosα ≈ R+
6∑

i=1
(−1)iϕi × (Rα)2i

(5400)2i
.

As with the series for Rsine, here too the rationale behind the given ex-
pression can be understood by multiplying and dividing each term in the sum
in the RHS of (6.32) by (5400)(2i). Doing so, we get

R cosα ≈ R+
6∑

i=1
(−1)i (Rα)2i

(2i)!R(2i−1) ×
(5400)2i

(5400)2i

= R+
6∑

i=1
(−1)iϕi × (Rα)2i

(5400)2i
, (6.35)

where ϕi =
(5400)2i

(2i)!R(2i−1) .

It can easily be verified that the values of ϕi’s (i = 1, . . . , 6) given in
Table 6.5 are obtained by choosing the value of R to be 3437′44′′48′′′ in the
expression for ϕi = (5400)2i

(2i)!R(2i−1) . In this table, we also present, for the sake of
comparision, the computed values (accurate upto fourths) by taking the value
of R to be 21600

2π . As we can see from the table, the computed values tally with
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the values given by the vākyas except for ϕ2 which when rounded off to the
nearest thirds should be 872′03′′06′′′.

ϕi vākyas computed values

in kaṭapayādi in numerals

ϕ6 stenaḥ 06′′′ 05′′′49.81′′′′

ϕ5 strīpiśunaḥ 05′′12′′′ 05′′11′′′53.86′′′′

ϕ4 sugandhinaganud 03′09′′37′′′ 03′09′′36′′′39.75′′′′

ϕ3 bhadrāṅgabhavyāsano 071′43′′24′′′ 71′43′′24′′′06.54′′′′

ϕ2 mīnāṅgo narasiṃha 872′03′′05′′′ 872′03′′05′′′30.83′′′′

ϕ1 ūnadhanakṛdbhūreva 4241′09′′00′′′ 4241′09′′00′′′17.79′′′′

Table 6.5 Comparing the values encoded by the vākyas, stena etc., with the computed
values.

६.९ अ܇ोपा܇ղाޯЅ चतुओवϹशओतղानयनͲ
6.9 Obtaining the tabular Rsines from the last and the

penultimate Rsine

अ܉ोपा܉गुणाۢरेण कवϓता खΡմाΡ हारो भवेͪ
आڦմा࢔हरЇशकेन रऔहता ङڥӳा ङڥतीया भवेͪ ।
जीवा सा ङڥगुणा तो࢔ हरϓतेनाڦմया चोकनता
जीवा सैव तृतीयकैवमवराः कायЉ࢈रुࣷयादयः ॥ १६ ॥
antyopāntyaguṇāntareṇa vihṛtā trijyātra hāro bhavet
ādyajyā svaharāṃśakena rahitā dvighnā dvitīyā bhavet |
jīvā sā dviguṇā svato harahṛtenādyajyayā conitā
jīvā saiva tṛtīyakaivamavarāḥ kāryāsturīyādayaḥ || 16 ||

The result obtained by dividing the radius by the difference between the last and
the penultimate jyās is the divisor (hāra). Dividing the first jyā by the hāra and
subtracting the result from the first jyā, and further multiplying [the result] by two
would yield the second jyā. The second jyā is multiplied by two and from that when
the same [quantity] divided by hāra, as well as the previous jyā, are subtracted,
that indeed will give the third jyā. In a similar manner, the later jyās commencing
with the fourth can be obtained.

The text first defines a quantity called the hāra (H) as follows:
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H = trijyā
antyajyā − upāntyajyā = radius

diff. of last and last but one Rsines . (6.36a)

Using the hāra, explicit expressions are given for the second and the third
Rsines.

dvitīyajyā = 2×
(

ādyajyā − ādyajyā
H

)
, (6.36b)

tritīyajyā = 2×
(

dvitīyajyā − dvitīyajyā
H

)
− ādyajyā. (6.36c)

Then it is said that all other jyās can be obtained in a similar manner.
Essentially what is presented here is a recursive relation using which all the

tabular Rsines can be obtained. We shall now explain this recursive formula.
First we note the expression for hāra (H) given in the verse is

H = R

R sin 24α−R sin 23α
= R

R−R cosα
. (6.37)

Using this hāra and R sinα or the first Rsine, all the tabular Rsines can be
obtained.

To start with, it is well known that

R sin 2α = 2R sinα cosα. (6.38)

Adding and subtracting 2R sinα to the RHS of the above equation, we get

R sin 2α = 2R sinα− 2R sinα+ 2R sinα cosα
= 2 (R sinα−R sinα (1− cosα))

= 2
(
R sinα− R sinα (R−R cosα)

R

)
. (6.39)

Using (6.37) we may rewrite the above equation as

R sin 2α = 2
(
R sinα− R sinα

H

)
, (6.40)

which is the same as (6.36b) given in the text. Now, R sin 3α can be expressed
as

R sin(2α+ α) = R sin 2α cosα+R cos 2α sinα. (6.41)

Applying the relation cos 2α = (2 cos2 α− 1), the second term in the RHS of
(6.41) becomes

R cos 2α sinα = 2R cos2 α sinα−R sinα
= R sin 2α cosα−R sinα. (6.42)
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Now substituting (6.42) in (6.41) and adding and subtracting 2R sin 2α, we
get

R sin 3α = 2R sin 2α− 2R sin 2α+ 2R sin 2α cosα−R sinα
= 2R sin 2α− 2R sin 2α(1− cosα)−R sinα

= 2
(
R sin 2α− R sin 2α

H

)
−R sinα, (6.43)

which is the same as (6.36c). In the same way, R sin((i+1)α) can be expressed
as

R sin((i+ 1)α) = 2
(
R sin(iα)− R sin(iα)

H

)
−R sin((i− 1)α). (6.44)

This is the recursive relation that is implied in the text, when it mentions
that in a similar manner the remaining jyās can be obtained.

६.१० ղानयने Υकारा۠रͲ
6.10 Another recursive relation for obtaining the Rsines

आࡕेڦजीवाकृखतभेदवगЉͪ इࡕाڦजीवाकृखतसंϓता तु ।
इࡕोێϺजीवाकृखतरेतया तΡेࡕाڦजीवाकृखतरेव लޔा ॥ १७ ॥
ādyeṣṭajīvākṛtibhedavargāt iṣṭādyajīvākṛtisaṃhṛtā tu |
iṣṭordhvajīvākṛtiretayā tatreṣṭādyajīvākṛtireva labdhā || 17 ||

When the square of the difference between the squares of the desired Rsine (iṣṭa-
jīvā) and the first Rsine (ādyajīvā) is divided by the square of the Rsine that is
immediately preceding to the desired Rsine (iṣṭādyajīvā),8 it results in the square
of the Rsine that is the successor of the desired Rsine (iṣṭordhvajīvā). [If the previ-
ous result is divided] by this (iṣṭordhvajīvā) then the resultant would be the square
of the preceding Rsine.

The formulae presented in the above verse may be expressed as:

(iṣṭordhvajīvā)2 =
[
(iṣṭajīvā)2 − (ādyajīvā)2

]2
(iṣṭādyajīvā)2

and (iṣṭādyajīvā)2 =
[
(iṣṭajīvā)2 − (ādyajīvā)2

]2
(iṣṭordhvajīvā)2 (6.45)

8 Here the term iṣṭādyajīvā should be considered as a tatpuruṣa compound (and not
dvandva compound), and hence has to be derived as iṣṭajīvāyāḥ ādyajīvā, meaning the
Rsine prior to desired Rsine.
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Let the desired Rsine iṣṭajīvā be denoted by R sin(iα) (where α = 225′ and
i = 1, 2 . . . 24). Then, the above expressions translate to

R2 sin2((i+ 1)α) =
[
R2 sin2(iα)−R2 sin2 α

]2
R2 sin2((i− 1)α)

,

and R2 sin2((i− 1)α) =
[
R2 sin2(iα)−R2 sin2 α

]2
R2 sin2((i+ 1)α)

. (6.46)

In fact, these relations are a consequence of the following identity.

R sin((i− 1)α)×R sin((i+ 1)α) = R2 sin2(iα)−R2 sin2 α. (6.47)

६.११ अभीࡓजीवायाः चापानयनͲ
6.11 Computation of the arc from the corresponding

chord

ࠬासाधϿन हतादभीࡕगुणतः को׊ाݗमांڦ फलं
մावगϿण कवकनӳमाकदमफलं तٌْलं चाहरेͪ ।
कृٖा कोकटगुण࢒ तΡ तु फलेेࡡकखΡप֎ाकदङभः
भѶेࡡोजयुतैࢡजेͪ समयुखतं जीवाधनुप࡞ࡇते ॥ १८ ॥
vyāsārdhena hatādabhīṣṭaguṇataḥ koṭyāptamādyaṃ phalaṃ
jyāvargeṇa vinighnamādimaphalaṃ tattatphalaṃ cāharet |
kṛtyā koṭiguṇasya tatra tu phaleṣvekatripañcādibhiḥ
bhakteṣvojayutaistyajet samayutiṃ jīvādhanuśśiṣyate || 18 ||

The first phala is the Rsine of the desired arc mutliplied by the radius and divided
by the Rcosine of the arc. The first phala multiplied by the square of the Rsine and
divided by the square of the Rcosine (koṭiguṇa) [gives the second phala] and [in a
similar manner] the successive phalas are obtained. Here these phalas are divided
by one, three, five etc., [successively]. [Then] the sum of the even terms is to be
subtracted from that of the odd ones. What remains is the arc of the Rsine.

If s be the arc-length corresponding to a given jyā, js, and koṭi, ks, then
the above verse presents the following series:

s = R

(
js
ks

)
− R

3

(
js
ks

)3

+ R

5

(
js
ks

)5

− · · · . (6.48)

The above expression, with s = Rx, is equivalent to the series for the inverse
tan function (the so called Gregory series).

x = tan x− 1
3
tan3 x+ 1

5
tan5 x− . . . ,
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or
tan−1 x = x− x3

3
+ x5

5
− . . . .

The Mādhava series for π
4 given in the first verse of this chapter can be readily

obtained from this by substituting x = 1.

६.१२ अ߻चाप࢐ղानयनͲ
6.12 Computation of the Rsine value of a small arc

भागतोࡖचापघनष߽࢔ कव࢈राधϺकृखतभѶवछजϺतͳ ।
छशࡕचापखमह छशज֐नी भवेͪ तڦतुोऽ߽कगुणोऽसकृͬ धनुः ॥ १९ ॥
svalpacāpaghanaṣaṣṭhabhāgato vistarārdhakṛtibhaktavarjitam |
śiṣṭacāpamiha śiñjinī bhavet tadyuto’lpakaguṇo’sakṛd dhanuḥ || 19 ||

The cube of a small arc is divided by six and the result is [further] divided by the
square of the radius. The result obtained by subtracting this from the arc will be
the Rsine (śiñjinī) [of that arc]. The Rsine of the small arc added to that (cube
of the arc divided by the square of the radius multiplied by six) would be the arc
when the process is iterated.

In the above verse Putumana Somayājī gives an approximation for the
Rsine of an arc when it is small, that is, an arc that is much smaller than
225′ which is taken to be the unit in tabulating Rsine values. If Rδθ be the
length of a small arc along the circle, corresponding to an angle δθ, then the
expression for its Rsine (śiñjinī)9 given in the above verse is :

R sin δθ ≈ R δθ − (R δθ)3

6 R2 ,

or, sin δθ ≈ δθ − (δθ)3

6
. (6.49)

The above equation is a well known approximation for the sine function and
gives a fairly accurate value when the angle is very small.

In the last quarter of the verse, the text indicates an iterative process for
evaluating the arc Rδθ from the equation

R δθ = R sin δθ + (R δθ)3

6 R2 . (6.50)

The last part of the verse is “tadyuto’lpakaguṇaḥ asakṛddhanuḥ”. The word
‘tad’ being a pronoun, always points to something that was referred to ear-
9 The term śiñjinī is synonymous with jyā and stands for Rsine.
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lier.10 Here it refers to (Rδθ)3
6R2 as this was the quantity that was prescribed in

the first half of the verse for further operations. Hence it is stated that this
quantity added to the Rsine corresponding to a small arc (alpakaguṇaḥ) gives
the value of the arc (dhanuḥ) itself when an iterative process is employed.

To start with, we have as the first approximation

Rδθ ≈ R sin δθ.

Substituting this in the RHS of (6.50), we get

Rδθ ≈ R sin δθ + (R sin δθ)3

6 R2 . (6.51)

The iterative procedure prescribed above may be captured by the following
recursive relation:

Rδθi+1 = R sin(δθ) + (Rδθi)3

6
. (6.52)

The successive approximations obtained in this way are listed in Table 6.6. It
may be noted that the successive terms do differ from the well known series
for the arc-sine in higher orders.

Successive approximations Corresponding terms

to δθ in arc-sine series

δθ1 sin δθ sin δθ

δθ2 sin δθ + (sin δθ)3
6 sin δθ + (sin δθ)3

6

δθ3 sin δθ + (sin δθ)3
6 + sin δθ + (sin δθ)3

6 +
(sin δθ)5

12 + (sin δθ)7
72 + (sin δθ)9

1296
3(sin δθ)5

40 + 15(sin δθ)7
336 + . . .

Table 6.6 The successive approximations for δθ in terms of sin δθ.

10 The rule is: sarvanāmnāṃ pūrvaprakrāntaparāmarśitvam.
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६.१३ अ߻चापղाखޯे؛ः ղानयनͲ
6.13 Finding the Rsines from a table of arc-sine

differences for small arcs

एकङ٫ڥाकदसंҿाӳखΡմावगϺनयЇशतः ।
घनमूलं औह चापմा࢔संҿोनकवघलकݗकͳ ॥ २० ॥
ekadvitryādisaṃkhyāghnatrijyāvarganayāṃśataḥ |
ghanamūlaṃ hi cāpajyā svasaṃkhyonaviliptikam || 20 ||

After multiplying the square of the radius by the numbers 1, 2, 3 etc. and dividing
by 10 (naya), [let] the cube root of the resulting quantity be obtained. The integral
numbers 1, 2, 3, . . . in seconds when subtracted from the above [cāpa] would be
the corresponding jyās (Rsines).

This verse gives a method for calculating the value of the arc (cn) and
its Rsine (jn) such that their difference (jyācāpāntara) cn − jn is equal to n
seconds where n = 1, 2, 3, . . ..

It commences with the prescription of an approximate value of cn

cn ≈ 3

√
n×R2

10
. (6.53)

Then, it is said that the Rsine is to be obtained using

jn = cn − n. (6.54)

Following is the rationale for the above approximation. From (6.49) we
know that, when the cāpa is small, the difference between the cāpa (arc) and
its jyā (Rsine) called jyācāpāntara, to a good approximation, may be expressed
as

R δθ −R sin δθ ≈ (R δθ)3

6 R2 , (6.55)

Here, all the quantities are expressed in minutes. If the jyācāpāntara = n,
where n = 1, 2, 3, . . ., expressed in seconds, then using (6.55) the corresponding
cāpa (Rδθ = cn) can be calculated using the relation

(cn)3

6R2 ≈ n

60
. (6.56)

This implies that when jyācāpāntara = n, the corresponding cāpa (arc) is
given by
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cn ≈ 3

√
n× 6R2

60

= 3

√
n×R2

10
. (6.57)

Now the Rsine, jn, corresponding to the arc, cn, can be obtained using (6.55)
as

jn = cn − n. (6.58)

In Table 6.7, we compile the values of cn and jn given by the formulae (6.57)
and (6.58). In fact, Commentary II lists (even more accurate) values of the jn
in terms of the vākyas, gūḍhāmenaka etc.11

A similar method for computing the arc and the Rsine when the difference
between them is equal to n seconds, where n is a positive integer, has been
given in Tantrasaṅgraha of Nīlakaṇṭha Somayājī. However, in the explanation
of this verse, Śaṅkara Vāriyar seems to imply that the expression 3

√
n×R2

10
should be considered as the jyā value to which n seconds have to be added
to obtain the corresponding cāpa.12 This interpretation is clearly flawed as it
can be shown that 3

√
n×R2

10 more closely approximates the value of the arc for
which jyācāpāntara is equal to n seconds.

In Table 6.8, we have presented the accurate values of jyā and cāpa for which
the jyācāpāntara is equal to n seconds. These may be compared with the com-
puted values of 3

√
n×R2

10 presented in Table 6.7. From that table, it is clear

that 3
√

n×R2

10 is very good approximation for the cāpa such that the jyācāpān-

tara is n seconds. Hence, n seconds have to be subtracted from 3
√

n×R2

10 , as in
equation (6.58), in order to obtain the jyā values for which the jyācāpāntara
is n seconds.

Interestingly, Śaṅkara Vāriyar also gives the vākyas, lavaṇaṃ nindyaṃ
etc.,13 for the jyā values such that the jyācāpāntara is n seconds. They seem to
coincide mostly with the jyā values given by the gūḍhāmenakādi-vākyas men-
tioned in Commentary II of Karaṇapaddhati. Numerical values corresponding
to both these set of vākyas have been included in Table 6.8 along with the
accurate values of jyās and cāpas.

11 {KP 1956} p. 200A.
12 {TS 1958}, pp. 29-31.
13 {TS 1958}, pp. 29-31.
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The difference 3
√

n×R2

10 cn − n

(jyācāpāntara) (cn) (jn)

(n) min. sec. min. sec.

1 105 43.57149473 105 42.57149473

2 133 12.39925772 133 10.39925772

3 152 29.01326248 152 26.01326248

4 167 49.79206396 167 45.79206396

5 180 47.35467201 180 42.35467201

6 192 07.03439517 192 01.03439517

7 202 14.81572241 202 07.81572241

8 211 27.14298945 211 19.14298945

9 219 55.16044655 219 46.16044655

10 227 46.81048694 227 36.81048694

11 235 07.97670738 234 56.97670738

12 242 03.15327734 241 51.15327734

13 248 35.85969959 248 22.85969959

14 254 48.90976526 254 34.90976526

15 260 44.59261467 260 29.59261467

16 266 24.79851544 266 08.79851544

17 271 51.10860342 271 34.10860342

18 277 04.86040335 276 46.86040335

19 282 07.19663531 281 48.19663531

20 286 59.10221742 286 39.10221742

21 291 41.43276140 291 20.43276140

22 296 14.93682505 295 52.93682505

23 300 40.27350818 300 17.27350818

24 304 58.02652497 304 34.02652497

Table 6.7 The values of cn and jn given by (6.57) and (6.58).
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Accurate values of

n The values of jyā given in vākyas jyā and cāpa

such that cāpa − jyā = n seconds

(sec.) Gūḍhāmenakādi Lavaṇaṃ-nindyādi jyā cāpa

min. sec. min. sec. min. sec. min. sec.

1 105 43 105 43 105 42.67150 105 43.67150

2 133 11 133 11 133 10.59927 133 12.59927

3 152 26 152 26 152 26.31329 152 29.31329

4 167 46 167 46 167 46.19210 167 50.19210

5 180 43 180 43 180 42.85473 180 47.85473

6 192 02 192 02 192 01.63447 192 07.63447

7 202 09 202 08 202 08.51582 202 15.51582

8 211 20 211 20 211 19.94312 211 27.94312

9 219 47 219 47 219 47.06060 219 56.06060

10 227 34 227 38 227 37.81067 227 47.81067

11 234 58 234 58 234 58.07693 235 9.07693

12 241 52 241 52 241 52.35353 242 4.35353

13 248 24 248 24 248 24.15999 248 37.15999

14 254 36 254 36 254 36.31009 254 50.31009

15 260 31 260 31 260 31.09298 260 46.09298

16 266 10 266 10 266 10.39892 266 26.39892

17 271 36 271 36 271 35.80906 271 52.80906

18 276 49 276 48 276 48.66090 277 6.66090

19 281 51 281 50 281 50.09718 282 9.09718

20 286 40 286 40 286 41.10281 287 1.10281

21 291 22 291 22 291 22.53341 291 43.53341

22 295 55 295 55 295 55.13752 296 17.13752

23 300 19 300 18 300 19.57426 300 42.57426

24 304 36 304 36 304 36.42733 305 0.42733

Table 6.8 Vākyas for jyās along with the accurate values of jyā and cāpa such that
jyācāpāntara is exactly n seconds. See {KP 1956}, p. 200, and {TS 1958}, pp. 30–31.



Chapter 7
ΖहुࢌटानयनͲ
Obtaining the planetary longitudes

७.१ ΖहाणЅ मۢशीΗपिरखधमानͲ
7.1 The circumferences of the manda and śīghra epicycles

of the planets

भानोगЉनं कवधोः ानंࢉ टवृٌकलाःࢎु सदा ।
वܒो कदࠬो गुणी कृࡗः सूनुमЉनी कलाधरः ॥ १ ॥
ानंࢉ दानं तपो मा۬ं भानुः Φा̶ो धमः समः ।
धनी लोको धनं दानं भौमाͪ पिरङधघलकݗकाः ॥ २ ॥
मۤशीΘΕमाͪ के࢒ܓौजयुӓपदाकदगाः ।
पृथगेकैकपादोѶा असुरैरपवखतϺताः ॥ ३ ॥
bhānorgānaṃ vidhoḥ sthānaṃ sphuṭavṛttakalāḥ sadā |
vandyo divyo guṇī kṛṣṇaḥ sūnurmānī kalādharaḥ || 1 ||
sthānaṃ dānaṃ tapo mānyaṃ bhānuḥ prājño dhamaḥ samaḥ |
dhanī loko dhanaṃ dānaṃ bhaumāt paridhiliptikāḥ || 2 ||
mandaśīghrakramāt kendrasyaujayugmapadādigāḥ |
pṛthagekaikapādoktā asurairapavartitāḥ || 3 ||

The true epicycle circumference in minutes (sphuṭavṛttakalās) of the Sun is 03
(gānam ) and that of the Moon is 07 (sthānam) always (in all the quadrants).
The [dimensions of the] circumferences of the manda and the śīghra [epicycles] of
the planets starting from Mars in minutes, at the beginning of the odd and the
even quadrants, in order, are 14 (vandya), 18 (divya), 53 (guṇī) and 51 (kṛṣṇa) [for
Mars]; 07 (sūnu), 05 (mānī), 31 (kalā) and 29 (dhara) [for Mercury]; 07 (sthānaṃ),
04 (dānaṃ), 16 (tapo) and 15 (mānyaṃ) [for Jupiter]; 04 (bhānuḥ), 02 (prājño),
59 (dhamaḥ) and 57 (samaḥ) [for Venus]; 09 (dhanī), 13 (loko), 09 (dhanaṃ) and
08 (dānaṃ) [for Saturn]. These are stated separately for different quadrants after
being divided (apavartita) by 270.
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The above set of verses essentially present the dimensions of the manda
and śīghra epicycles.1 From the latter half of the first verse beginning with
vandyaḥ, for the next five quarters, only numbers are stated—each quarter pre-
senting a list of four numbers. Of the four, the first two correspond to manda
epicycle and the latter two to the śīghra epicycle (mandaśīghrakramāt). Of
these pairs, the first gives the dimension of the epicycle at the beginning of
the odd quadrants and the second at the beginning of the even quadrants re-
spectively (ojayugmapadādigāḥ). The values of the manda and śīghra-paridhis
at the beginning of the odd and even quadrants of all the planets are listed in
Table 7.1. It may be noted that these values are the same as those prescribed
in Āryabhaṭīya.

The numbers given in Table 7.1 multiplied by 270 give the manda and
śīghra-paridhis (circumference of the epicycles) in minutes, when the circum-
ference of the kakṣyāmaṇḍala (deferent) is taken to be 21600 minutes. The
given number divided by 80 would be the ratio of the radius of the epicycle
and the deferent. For example, if C ′

mo and C ′
so denote the circumferences, and

rmo and rso denote the radii, of the manda and śīghra epicycles of Mars at
the beginning of the odd quadrants in minutes, then

C ′
mo = 14× 270, and C ′

so = 53× 270 (for Mars). (7.1)

Similarly
rmo

R
= 14

80
, and rso

R
= 53

80
(for Mars). (7.2)

dimensions of the dimensions of the
manda epicycle śīghra epicycle

Planet at the beginning of at the beginning of
odd quadrant even quadrant odd quadrant even quadrant

Sun 03 03 – –
Moon 07 07 – –
Mars 14 18 53 51

Mercury 07 05 31 29
Jupiter 07 08 16 15
Venus 04 02 59 57
Saturn 09 13 09 08

Table 7.1 The dimensions of the manda and śīghra epicycles of the planets.

1 The epicycle and eccentric circle models which form the basis for the computations in
this chapter are explained in Appendix B.
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The manda and śīghra-paridhis at the beginning of the odd quadrants refer
to their values when the mandakendra/śīghrakendra is equal to 0◦ or 180◦.
Similarly manda and śīghra-paridhis at the beginning of the even quadrants
refer to their values when the mandakendra/śīghrakendra is equal to 90◦ or
270◦. Having defined the values at the beginning of the quadrants the text
proceeds to describe the procedure to find manda and śīghra-paridhis for other
values of the kendra.

७.२ मۢशीΗपिरधीनЅ टीकरणͲࢌु
7.2 Finding the true circumference of the epicycle

वृٌाۢरेणाहतबाϡजीवЇ ϓ٘ा2 खΡमौࠬЉ फलमोजवृٌे ।
Εमाͬ धनणϻ कवϞरोजवृٌ࢒ा߽ाङधक٘े ैڵटवृٌछसࢎु ॥ ४ ॥
vṛttāntareṇāhatabāhujīvāṃ hṛtvā trimaurvyā phalamojavṛtte |
kramād dhanarṇaṃ vidurojavṛttasyālpādhikatve sphuṭavṛttasiddhyai || 4 ||

The difference between [the dimensions of] the epicycles at the beginning of the odd
and even quadrants is to be multiplied by the Rsine [of the kendra] and divided by
the trijyā. The result has to be added to or subtracted from the dimension of the
epicycle at the beginning of an odd quadrant, depending on whether the epicycle
at the beginning of odd quadrant is smaller or bigger [than the epicycle at the
beginning of even quadrant] respectively, to obtain the true epicycle (sphuṭavṛtta).

Let Co and Ce represent the dimensions of the mandaparidhis or śīghra-
paridhis at the beginning of the odd and even quadrants respectively. Then
the dimension at any other place (sphuṭaparidhi, C) is given by

C = Co ±
∆× |R sin(θk)|

R
, (7.3)

where ∆ = |Co − Ce| and θk is the anomaly or kendra. Here ‘+’ and ‘−’ signs
are chosen depending on whether Co < Ce and Co > Ce respectively.

The above equation provides the general expression for finding the circum-
ference of the manda or the śīghra epicycle for a given kendra. That is, if
θmk, Cmo and Cme are the mandakendra, ojādiparidhi and yugmādiparidhi of
manda epicycle respectively, then manda-sphuṭaparidhi (Cm) for an arbitrary
value of θmk is given by

Cm = Cmo ±
∆m × |Rsin(θmk)|

R
, (7.4)

2 In all the earlier editions {KP 1937}, {KP 1953} and {KP 1956}, we find the reading
hatvā. However, it is clear from the context that it should be hṛtvā.
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where ∆m = |Cmo − Cme|. When the dimension of the epicycle at the begin-
ning of the odd quadrant (θmk = 0◦ or 180◦) is less than that of the even
quadrant (Cmo < Cme), then, as the kendra increases, the dimension of the
epicycle also increases till it reaches a maximum at the beginning of the even
quadrant. Then it will start decreasing. This explains the prescription of ‘+’
and ‘−’ sign in the text.

Similarly, if θsk, Cso and Cse are the śīghrakendra, ojādiparidhi and yug-
mādiparidhi of śīghra epicycle respectively, then the śīghra-sphuṭaparidhi (Cs)
for an arbitrary value of θsk is given by

Cs = Cso ±
∆s × |Rsinθsk|

R
, (7.5)

where ∆s = |Cso − Cse|. As earlier, ‘+’ and ‘−’ signs correspond to the cases
Cso < Cse and Cso > Cse respectively.

Note that for any value of the manda or śīghrakendra the radii of the manda
and śīghra epicycle are given by

rm = Cm

80
×R, and rs =

Cs

80
×R. (7.6)

७.३ ΖहमۢफलानयनͲ
7.3 Obtaining the mandaphalas of the planets

माۤने टवृٌेनࢎु कनहताकदࡕदोगुϺणाͪ ।
नۤांݗ चाकपतं माۤमकЉदीनЇ भुजाफलͳ ॥ ५ ॥
māndena sphuṭavṛttena nihatādiṣṭadorguṇāt |
nandāptaṃ cāpitaṃ māndamarkādīnāṃ bhujāphalam || 5 ||

The Rsine [of the mandakendra]3 has to be multiplied by the true epicycle
(sphuṭavṛtta ) and divided by 80. When converted into arc (taking Rsine-inverse)
it would give the mandaphala of the Sun, etc.

We refer the reader to the discussion in Appendix B, where (B.9) gives the
mandaphala. From (7.6) we have
3 We may recall the third verse of the fourth chapter of the text which defines the manda
and the śīghrakendras.

madhyāt grahāṇāṃ svamṛdūccahīnāt śīghroccato madhyavivarjitācca…
[The mandakendra can be obtained by] subtracting their mandoccas from the mean
[longitudes] and [the śīghrakendra can be obtained] by subtracting the mean planets
from their śīghroccas.
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rm
R

= Cm

80
.

Therefore, (B.9) reduces to:

sin(∆θ) = Cm

80
| sin(θmk)|,

or ∆θ = sin−1
(
Cm

80
| sin(θmk)|

)
. (7.7)

The quantity R∆θ which is the arc corresponding to the mandaphala is
referred to as māndaṃ in the verse.

७.४ ΖहशीΗफलानयनͲ
7.4 Obtaining the śīghraphalas of the planets

शैΘे दोःकोकटजीवे टपिरङधहतेࢎु नۤभѶे फले ते
ࠬासाधϿ कोकटजं तͬ धनखमह मकरादावृणं कक੮ टादौ ।
कृ٘ा तڥगϺयुѶाͬ भुजफलकृखततः ाͪ࢒ पदं शीΘकणϺः
खΡմाӳाͬ दोःफलाٌङڥϓतफलधनुः कऔक੮ नΕाकदजीवाः ॥ ६ ॥
śaighre doḥkoṭijīve sphuṭaparidhihate nandabhakte phale te
vyāsārdhe koṭijaṃ tad dhanamiha makarādāvṛṇaṃ karkaṭādau |
kṛtvā tadvargayuktād bhujaphalakṛtitaḥ syāt padaṃ śīghrakarṇaḥ
trijyāghnād doḥphalāttadvihṛtaphaladhanuḥ karkinakrādijīvāḥ ||6||

Multiply the Rsine (bhujājyā) and Rcosine (koṭijyā) of the śīghrakendra by [śīghra]-
sphuṭaparidhi (Cs), and divide by 80 (nanda). [Among] the results, the one which
is obtained from koṭi has to be added to or subtracted from the radius [depending
upon whether the śīghrakendra is within the six signs] beginning with the makara
or karkaṭa. The square root of the sum of the squares of this result and the result
obtained from bhujājyā or the doḥphala is called śīghrakarṇa. The doḥphala mul-
tiplied by the radius [trijyā] and divided by that (śīghrakarṇa) gives the Rsine [of
śīghraphala] that is either makarādi or karkyādi.

The doḥphala (bhujāphala), Bp, and the koṭiphala, Kp, in the śīghra process
are given by

Bp = |rs sin θsk| =
Cs

80
|R sin θsk|,

and Kp = |rs cos θsk| =
Cs

80
|R cos θsk|. (7.8)

Then, from (B.13) and (B.14) in Appendix B, the śīghrakarṇa is given by
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Ks =
[
(R±Kp)2) + (Bp)2

] 1
2

=

[(
R± Cs

80
|R cos θsk|

)2

+
(
Cs

80
|R sin θsk|

)2
] 1

2

, (7.9)

where the ‘+’ and ‘−’ signs correspond to the six signs beginning with
makarādi and karkyādi respectively. Also the Rsine of the śīghraphala is given
by

R sin∆θs =
R

Ks
|rs sin θsk| =

R

Ks
× Cs

80
|R sin θsk|. (7.10)

७.५ Υकारा۠रेण टभुजाकोऒटफलानयनͲࢌु
7.5 Obtaining the true bhujā and koṭiphalas

अङभमतदोःकोकटगुणावोजपिरیाहतौ च नۤाݗौ ।
दोःकोकटफले࢒ातामनयोवЉ वृٌसंृࡹखतं कुयЉͪ ॥ ७ ॥
ङڥӳाͪ तڢाϡचापाͬ भुजगुणमकप तؽोकटजीवЇ च नी٘ा
कѿϿणादौ तु कोटीगुणयुतरऔहता खΡմका तΡ बाणः ।
बाणाधЉͪ दोगुϺणाधЉदकप पिरङधङभदा संगुणाۤۦभѶं
जࣁाͬ दोःकोकटजाޱЇ छ̵पतु च समवृٌेऽङधके ते टेࢎु ः࢈ ॥ ८ ॥
abhimatadoḥkoṭiguṇāvojaparidhyāhatau ca nandāptau |
doḥkoṭiphale syātāmanayorvā vṛttasaṃskṛtiṃ kuryāt || 7 ||
dvighnāt tadbāhucāpād bhujaguṇamapi tatkoṭijīvāṃ ca nītvā
karkyeṇādau tu koṭīguṇayutarahitā trijyakā tatra bāṇaḥ |
bāṇārdhāt dorguṇārdhādapi paridhibhidā saṃguṇānnandabhaktaṃ
jahyād doḥkoṭijābhyāṃ kṣipatu ca samavṛtte’dhike te sphuṭe staḥ || 8 ||

The bhujāphala and koṭiphala are obtained by multiplying the desired Rsine [of the
śīghrakendra] and the corresponding Rcosine by the circumference of the śīghra
epicycle at [the beginning of] the odd quadrant and divided by 80 (nanda). The
corrections (paridhi-saṃskāra) can also be applied to these [phalas].
Having obtained the Rsine and Rcosine of the double of the arc (i.e., twice the
śīghrakendra (2θsk) ) corresponding to the iṣṭajyā, the koṭijyā has to be added to
or subtracted from the radius when the double of the arc is karkyādi or is makarādi
respectively. Half of the [result obtained which is called the] bāṇa and the half of the
Rsine (dorguṇārdha) have to be multiplied by the difference between the paridhis
and divided by 80 (nanda). [The results are] applied positively to the bhujāphala
and koṭiphala, when the epicycle at the beginning of even quadrants (samavṛtta)
is greater than that at the beginning of odd quandrants [or negatively otherwise],
to obtain the sphuṭas.

The bhujāphala and the koṭiphala at the beginning of the odd quadrant are
given by Cso

80 |R sin θsk| and Cso

80 |R cos θsk| respectively. The bhujāphala and
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koṭiphala for an arbitrary value of the śīghrakendra θsk will have in addition
the correction terms which are to be added. Recalling the expression for śīghra-
sphuṭaparidhi (Cs) given by (7.5), the expressions for the bhujāphala Bp and
koṭiphala Kp discussed in the previous section (7.8) become,

Bp =

Cso ±
∆s × |R sin θsk|

R
80

 |R sin θsk|

= Bpo ±
(
∆s ×R sin2 θsk

80

)
, (7.11)

where Bpo = Cso

80 R sin θsk is the bhujāphala which is defined in the seventh
verse. As per the relation (6.27) given in the previous chapter we have,

sin2 θsk = 1− cos(2θsk)
2

= 1± | cos(2θsk)|
2

. (7.12)

Here ‘+’ and ‘−’ signs are applicable when 2θsk is karkyādi (that is, 90◦ ≤
2θsk ≤ 270◦), and makarādi (that is, 270◦ ≤ 2θsk ≤ 360◦ or 0◦ ≤ 2θsk ≤ 90◦),
respectively. Using (7.12) in (7.11),

Bp = Bpo ±
(
∆s

80
× (R± |R cos(2θsk)|)

2

)
. (7.13)

The term (R±|R cos(2θsk)|)
2 is referred to as bāṇārdha in the verse, since bāṇā

(BD in Figure 7.1) is given by

BD = R− |R cos 2θsk| (when 2θsk is makarādi),
= R+ |R cos 2θsk| (when 2θsk is karkyādi). (7.14)

Similarly, the expression for the koṭiphala may be written as

Kp = Cso

80
|R cos θsk| ±

(
∆s × | sin θsk|

80

)
|R cos θsk|

= Kpo ±
(
∆s × |R sin θsk cos θsk|

80

)

= Kpo ±

∆s ×
|R sin(2θsk)|

2
80

 . (7.15)

In the verse, the term |R sin(2θsk)|
2

is referred to as dorguṇārdha.



184 Ηहुࢎटानयनͳ Obtaining the planetary longitudes
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Fig. 7.1 Bāṇā, when the kendra is makarādi (a), and karkāyadi (b).

७.६ मۢशीΗफलयोः संࡷारΥकारः
7.6 Application of the manda and the śīghraphalas

माۤे ٘वंे समानीतं दोःफलं चाकपतं टͳࢎु ।
शैΘे खΡմाहतं कणϺभѶं चापीकृतं तथा ॥ ९ ॥
mānde tvevaṃ samānītaṃ doḥphalaṃ cāpitaṃ sphuṭam |
śaighre trijyāhataṃ karṇabhaktaṃ cāpīkṛtaṃ tathā || 9 ||

In the case of manda[saṃskāra], the arc of the doḥphala thus obtained itself would
be the sphuṭa. [While] in the case of śīghra [saṃskāra], it (the sphuṭa) is the arc of
the [doḥphala] which is multiplied by the radius and divided by the karṇa.

It is stated that in the case of mandasaṃskāra, the arc of the doḥphala
given by4

R∆θ = R sin−1 (|rm sin(θmk)|) . (7.16)

is to be applied as it is to obtain the manda-sphuṭa.
This is because, as discussed in Appendix B, in the case of mandasaṃskāra,

the radius of the epicycle is propotional to the manda-karṇa K and this would
imply that K does not appear in the expression for mandaphala.

However, in śīghrasaṃskāra, the radius of the epicycle is the tabulated
value itself, and the śīghraphala would involve the śīghrakarṇa Ks. Hence the
magnitude of correction is to be obtained from

R∆θs = R sin−1
(
|rs sin θsk|.

R

Ks

)
. (7.17)

4 We shall be using the symbol R sin−1(α) or cāpa (α) to denote the arc or cāpa, in a
circle of radius R, associated with an Rsine or jyā of magnitude α.
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For further details the reader is referred to section B.2 of Appendix B.

७.७ अ܇फलानयनΥकारः
7.7 Procedure for obtaining the antyaphala

टवृٌखमनादीनЇࢎु कामानलसमाहतͳ ।
कंसेन कवभजेंޔࠄ भवेद܉फलाࣃयͳ ॥ १० ॥
sphuṭavṛttaminādīnāṃ kāmānalasamāhatam |
kaṃsena vibhajellabdhaṃ bhavedantyaphalāhvayam || 10 ||

The true epicycle circumference (sphuṭavṛtta) of the Sun etc., have to be multiplied
by 3051 (kāmānala) and divided by 71 (kaṃsa). The result thus obtained is called
the antyaphala.

The term antyaphala, has different meanings depending upon the context.
In this verse, it denotes the epicycle radius rs, when the radius of the deferent
circle is the trijyā R. Since the ratio Cs

80 is same as the ratio rs
R , we have

rs = Cs ×
R

80
. (7.18)

In the sixth chapter (verse 7), we have seen that the radius R corresponding
to the circumference of 21600 is

R ≈ 10000000000× 21600
2× 31415926536

. (7.19)

Using (7.19) in (7.18), we have

rs ≈ Cs ×
2700000000000
62831853072

. (7.20)

The successive rational approximations of the 2700000000000
62831853072 , using a continued

fraction expansion, are listed in Table 7.2.
The numbers 3051 and 71 in the fifth row of this table are referred to in

the verse as kāmānala and kaṃsa respectively. Therefore, we have the simpler
approximation

rs ≈ Cs ×
3051
71

, (7.21)

which is what is stated in the verse.
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multiplier divisor
42 1
43 1

1504 35
1547 36

3051 71
163250 3799
166301 3870
1161056 27019
7132637 165984

29691604 690955
333740281 7766489
363431885 8457444
3604627246 83883485
7572686377 176224414

18750000000 436332313
2700000000000 62831853072

Table 7.2 Successive approximations for 270×R
C = 270

2π .

७.८ अ܇फला۠भЇओवतशीΗफलानयनͲ
7.8 Obtaining the expression for the śīghraphala in terms

of the antyaphala

कोकटմा܉फलेन हࣵनसऔहता या कऔक੮ नΕाकदतः
तڟोմЉकृखतयोगमूलमुकदतः कणЎऽमुना संहरेͪ ।
दोմЊ संृࡹतकोकटकामकप तथा ࠬासाधϺसंवङधϺतЇ
तՊापं भुजकोकटचापरऔहतं մाकऔक੮ नΕाकदका ॥ ११ ॥
कोकटմा߽ा चरमफलतः कक੮ टादौ यकद࢒ाͪ
खΡմा࢈ޱाकदह भुजगुणाͪ कणϺभѶ࢒चापͳ ।
दो࠻ापाؔं भगणदलतࢡմतЇ संृࡹतायाः
को׊ा5͠ڥ࢈ छЯ खतϓतधनुः छ̵ݞतЇ कोकटचापे ॥ १२ ॥

5 The term तͪڥ (tadvat) means ‘similarly’. Which mathematical operation is to be car-
ried out similarly has not be stated explicitly. From the context we understand it to
be “multiplied by the radius”. Thus, संृࡹतायाः को׊ाः तͪڥ … = संृࡹतायाः को׊ाः तͪڥ
[खΡմा࢈ޱाͪ] … (saṃskṛtāyāḥ koṭyāḥ tadvat … = saṃskṛtāyāḥ koṭyāḥ tadvat [trijyāb-
hyastāt] …).
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koṭijyāntyaphalena hīnasahitā yā karkinakrāditaḥ
taddorjyākṛtiyogamūlamuditaḥ karṇo’munā saṃharet |
dorjyāṃ saṃskṛtakoṭikāmapi tathā vyāsārdhasaṃvardhitāṃ
taccāpaṃ bhujakoṭicāparahitaṃ jyākarkinakrādikā || 11 ||
koṭijyālpā caramaphalataḥ karkaṭādau yadi syāt
trijyābhyastādiha bhujaguṇāt karṇabhaktasya cāpam |
doścāpāḍhyaṃ bhagaṇadalatastyajyatāṃ saṃskṛtāyāḥ
koṭyāstadvacchrutihṛtadhanuḥ kṣipyatāṃ koṭicāpe || 12 ||

The antyaphala is subtracted from or added to the Rcosine [of the śīghrakendra]
depending on whether [the kendra] is karkyādi or makarādi respectively. The square
root of the sum of the squares of that and the Rsine [of the kendra] would be the
karṇa. The Rsine and the [antyaphala] corrected Rcosine have to be multiplied by
the radius and divided by this [karṇa]. When the arc of these results is subtracted
from the arc of the kendrabhujā and kendrakoṭi respectively, the results obtained
are karkyādi and makarādijyās [or the śīghraphalas].
In the case [where śīghrakendra is] karkyādi, if the Rcosine [of the kendra] happens
to be smaller than the antyaphala, then the karṇa should be obtained by subtract-
ing the koṭijyā from the antyaphala. Multiply that by the kendrabhujā and by the
radius and divide by the [karṇa]. The arc of this is to be added to the arc of the
kendrabhujā, and the result obtained is subtracted from six signs bhagaṇadala [to
obtain the śīghraphala]. [Or,] the saṃskṛtakoṭijyā having been multiplied by the
radius and divided by the karṇa, the arc of the result can be added to the arc
(dhanus) of the kendrakoṭijyā [to obtain the śīghraphala].

In these two verses Putumana Somayājī presents four different expressions
for computing the śīghraphala of a planet. Since the expressions are a bit
involved and lengthy, he has aptly chosen Śārdūlavikrīḍita metre6 while com-
posing the verses. The expressions for śīghraphala (R∆θs) given are:

R∆θs = cāpa (bhujā) − cāpa
(

dorjyā × vyāsārdha
karṇa

)
, (7.22)

R∆θs = cāpa (koṭi) − cāpa
(

saṃskṛtakoṭi × vyāsārdha
karṇa

)
, (7.23)

R∆θs = bhagaṇadala − cāpa
(

bhujaguṇa × trijyā
karṇa

)
− cāpa (doḥ), (7.24)

R∆θs = cāpa (koṭi) + cāpa
(

saṃskṛtakoṭi × trijyā
śruti

)
. (7.25)

Of the four formulae, the first two are presented in verse 11, and the latter
two in verse 12. While presenting the rationale behind these formulae, we too
maintain this division, by considering two separate cases based on the value
of koṭijyā and antyaphala.
Case I : When the koṭijyā is greater than antyaphala (|R cos θsk| > rs)
Case II : When the koṭijyā is less than antyaphala (|R cos θsk| < rs)
6 This is one of the long metres having 19 syllables per quarter.
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Fig. 7.2 Obtaining the śīghraphala when the śīghrakendra is makarādi with
|R cos θsk| > rs.

We first derive the expression for the śīghrakarṇa which is given in the first
half of verse 11.

७.८.१ शीΗकणЇनयनसूΠͲ
7.8.1 Expression for the śīghrakarṇa

In Figure 7.2, O is the center for both the epicycle and the deferent circle. The
dashed circle which is centered at śīghrocca S is the eccentric circle. P0 and
P are the manda-sphuṭa and the śīghra-corrected (true) planets respectively.
The longitude of the manda-sphuṭa and the śīghrocca are

θms = ΓÔP0 = Γ ŜP,

and θs = ΓÔS = Γ ŜD. (7.26)

The śīghrakendra is obtained by subtracting the śīghrocca from the manda-
sphuṭa. That is,

θsk = DÔP0 = DŜP.
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Since in Figure 7.2 the value of θsk is less than 90◦, it is meṣādi as well as
makarādi. The antyaphala or the radius of the śīghravṛtta (rs) is OS. Further,

OC = OP0 = SP = R,

and PD = R sin θsk is the kendrabhujājyā while SD = R cos θsk is the
kendrakoṭijyā.

Let the line OP intersect the deferent at A. The arc
⌢

AP0 is (R∆θs), which
is the arc of the śīghraphala. This can be obtained by subtracting

⌢

AC from
the arc

⌢

P0C of the śīghrakendra. That is,

R∆θs =
⌢

AP0 =
⌢

P0C −
⌢

AC = Rθsk−
⌢

AC . (7.27)

It may be noted that
⌢

AC is the arc of the half-chord AB. Since the triangles
OPD and OAB are similar, we have

AB = OA× PD

OP
= R×R sin θsk

Ks
, (7.28)

and OB = OA×OD

OP
= R× (R cos θsk + rs)

Ks
, (7.29)

where Ks = OP is the śīghrakarṇa and is given by

Ks =
√
OD2 + PD2

=
√
(SD +OS)2 + PD2

=
√
(R cos θsk + rs)2 +R2 sin2 θsk. (7.30)

This is precisely the expression for karṇa that is given in the first half of the
verse 11.

The expression for śīghraphala in each of the two cases mentioned above,
depends on whether the value of the śīghrakendra is makarādi or karkyādi.

७.८.२ Υथमके߻ केܑ࢐ मकारादाै शीΗफलͲ
7.8.2 Expression for the śīghraphala in case I when the

śīghrakendra is makarādi

In Figure 7.2, the position of the manda-sphuṭa P0, is depicted in such a way
that the śīghrakendra is makarādi (270◦ < θsk < 90◦). In order to obtain
the śīghraphala given by (7.27), we need to know

⌢

AC. It may be noted
⌢

AC=
R sin−1(AB). Hence the expression for śīghraphala (7.27) becomes,
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R∆θs = Rθsk −R sin−1(AB), (7.31)

or, R∆θs = Rθsk −R sin−1
(
R×R sin θsk

Ks

)
. (7.32)

In (7.17), the first term in RHS, may be expressed as Rθsk = R sin−1(R sin θsk).
Hence it may be written as

R∆θs = R sin−1(R sin θsk)−R sin−1
(
R×R sin θsk

Ks

)
. (7.33)

It is clear that the expression for R∆θs in (7.33) is the same as (7.22). We
now consider the case of śīghrakendra being karkyādi.

७.८.३ Υथमके߻ केܑ࢐ कѽЇदाै शीΗफलͲ
7.8.3 Expression for śīghraphala in case I when the

śīghrakendra is karkyādi

In Figure 7.3, the position of the manda-sphuṭa P ′
0 on the deferent is such

that the śīghrakendra is karkyādi (90◦ < θsk < 270◦). The true planet which
is along the direction of the śīghrocca from P ′

0 is shown at P ′ on the eccentric
circle. Then, the śīghrakarṇa, Ks = OP ′ is given by

Ks =
√

(|R cos θsk| − rs)2 +R2 sin2 θsk. (7.34)

Let OC̄ be the radius of the deferent perpendicular to OS.
Now the śīghraphala, R∆θs can be written as

R∆θs =
⌢

A′P ′
0 =

⌢

P ′
0C̄ −

⌢

A′C̄

= R sin−1(OF ′)−R sin−1(OB′). (7.35)

Since the triangles OD′P ′ and OB′A′ an similar, we have

OB′ = OD′.
OA′

OP ′

= (|R cos θsk| − rs).
R

Ks
. (7.36)

Also it is clear from Figure 7.3, that OF ′ = |R cos θsk|. Using this, and (7.36)
in (7.35) we have
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P’
0

P’
A’
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F’

Fig. 7.3 Obtaining the śīghraphala when the śīghrakendra is karkyādi with
|R cos θsk| > rs.

R∆θs = R sin−1(|R cos θsk|)−R sin−1
(

R

Ks
× (|R cos θsk| − rs)

)
, (7.37)

It is straightforward to see that (7.37) is the same as (7.23). We now con-
sider case II (|R cos θsk| < rs) as discussed in verse 12. Here again there are
two possible cases depending on whether the śīghrakendra θsk is makarādi or
karkyādi. When θsk is makarādi, even when |R cos θsk| < rs, the śīghraphala is
the same as given in equation (7.32). Hence, both the formulae given in verse
12 correspond to θsk being karkyādi.

७.८.४ खڣतीयके߻ केܑ࢐ कѽЇदाै शीΗफलͲ
7.8.4 Expression for the śīghraphala in case II when the

śīghrakendra is karkyādi

In Figure 7.4, the manda-sphuṭa P ′
0 is such that the śīghrakendra SOP ′

0 is
karkyādi. Now the śīghraphala is given by

R∆θs =
⌢

A′P ′
0 =

⌢

A′C ′ −
⌢

P ′
0C

′ . (7.38)



192 Ηहुࢎटानयनͳ Obtaining the planetary longitudes
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Fig. 7.4 Obtaining the śīghraphala when the śīghrakendra is karkyādi with
|R cos θsk| < rs.

It is evident from the figure that
⌢

A′C ′ = R.180◦−
⌢

A′C,

and
⌢

A′C = R sin−1(A′B′). (7.39)

As the triangles OA′B′ and OP ′D′ are similar, we have

A′B′ = P ′D′ ×OA′

OP ′

= R sin θsk ×R

Ks
, (7.40)

since P ′D′ = P ′
0F

′ = R sin θsk. Using (7.40) in (7.39) we have

⌢

A′C ′= R.180◦ −R sin−1
(
R sin θsk ×R

Ks

)
. (7.41)

Now,
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⌢

P ′
0C

′= R sin−1(P ′
0F

′) = R sin−1(R sin θsk). (7.42)

Using (7.42) and (7.41) in (7.38) we have,

R∆θs = R.180◦ −R sin−1(R sin θsk)−R sin−1
(
R sin θsk.

R

Ks

)
= C

2
−
(
Rθsk +R sin−1

(
R sin θsk.

R

Ks

))
, (7.43)

which is the same as (7.24) given in the verse, once we identify cāpa (doḥ) =
Rθsk, and bhagaṇadala = C

2 .
Alternatively, the expression for śīghraphala may be written as

R∆θs =
⌢

A′P ′
0 =

⌢

A′C̄ +
⌢

C̄P ′
0 . (7.44)

Now,
⌢

A′C̄= R sin−1(OB′) = R sin−1
(
OD′.

OA′

OP ′

)
= R sin−1

[
(OS − SD′). R

Ks

]
= R sin−1

[
(rs − |R cos θsk|)

R

Ks

]
, (7.45)

as SD′ = SP ′ cos(P ′ŜD′) = R cos(180◦ − θsk) = |R cos θsk|. Also
⌢

C̄P ′
0 = R sin−1(OF ′) = R sin−1(|R cos θsk|). (7.46)

Using (7.45) and (7.46) in (7.44) we have,

R∆θs = R sin−1
[
(rs − |R cos θsk|).

R

Ks

]
+R sin−1 |R cos θsk|. (7.47)

This is the same as (7.25) given in the verse once we identify cāpa (koṭi) with
the second term in the RHS of the above equation (7.47).

७.९ शीΗफलानयने Υकारा۠रͲ
7.9 Another method to obtain the śīghraphala

अथवा܉फला࢈ޱाͬ दोगुϺणाͪ कणϺसंϓतͳ ।
चापीकृतं भवेदΡ कऔक੮ नΕाकदमौकवϺकाः ॥ १३ ॥



194 Ηहुࢎटानयनͳ Obtaining the planetary longitudes

athavāntyaphalābhyastād dorguṇāt karṇasaṃhṛtam |
cāpīkṛtaṃ bhavedatra karkinakrādimaurvikāḥ || 13 ||

Otherwise, the arc of the result obtained by multiplying the Rsine of the śīghrak-
endra by the antyaphala and dividing by the karṇa would give the karkimakarādi-
jyās [or the śīghraphalas].

O

Γ

P

P
0

Γ

S’

A

D

S

Fig. 7.5 Alternate method for obtaining the śīghraphala.

In Figure 7.5 the line SS′ perpendicular to OP is the Rsine corresponding
to the angle SP̂O as SP = R. Since the angles SP̂O and AÔP0 are equal, the
Rsine corresponding to the arc

⌢

AP0 is equal to SS′. That is, R sin(∆θs) = SS′.
Now

PD = SP sin(DŜP ) = R sin θsk.

The triangles SS′O and PDO are similar. Hence,

R sin(∆θs) = SS′ = PD.
OS

OP

= R sin θsk × rs
Ks

. (7.48)

Therefore,
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∆θs = R sin−1
(
R sin θsk × rs

Ks

)
. (7.49)

This is the form in which the śīghra correction is given in most of the texts.

७.१० शीΗकणЇनयने Υकारा۠रͲ
7.10 An alternate method to obtain the śīghrakarṇa

अं܉ फलं कोकटगुणे ङڥकनӳे कृ٘ामुनैवा܉फलेन ह٘ा।
संृٖࡹ तͬࠬासदल࢒ वगϿ मूलࣷकृतो वा भवतीह कणϺः ॥ १४ ॥
antyaṃ phalaṃ koṭiguṇe dvinighne kṛtvāmunaivāntyaphalena hatvā |
saṃskṛtya tad vyāsadalasya varge mūlīkṛto vā bhavatīha karṇaḥ || 14 ||

Or else, having applied7 the antyaphala to twice the Rcosine [of the śīghrakendra],
and further having multiplied the result thus obtained by the antyaphala itself, and
then having applied that to the square of the radius and taking the square root [of
the resulting quantity], the karṇa is obtained.

Here, the author gives a different expression for karṇa. To derive this expres-
sion, consider the triangle ODP in Figure 7.5, which corresponds makarādi-
śīghrakendra. DŜP is the śīghrakendra, and SP = R, SD = R cos θsk and
PD = R sin θsk. Also, OS = rs. Hence, the karṇa Ks is given by

Ks =
√
OD2 + PD2

=
√
(OS + SD)2 + PD2

=
√
(rs +R cos θsk)2 +R2 sin2 θsk

=
√
R2 + rs(rs + 2|R cos θsk|). (7.50)

In case the śīghrakendra is karkyādi, we have from Figures 7.3 and 7.4,

OD′ = ±(OS − SD′)
= ±(rs − |R cos θsk|),

Hence,
7 The term kṛtvā simply refers to application which can be positive or negative. Here,
the antyaphala is to be subtracted from or added to depending on whether the kendra is
karkyādi or makarādi.
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Ks =
√

(OD′)2 + (P ′D′)2

=
√

(rs − |R cos θsk|)2 +R2 sin θsk
=
√

R2 + rs(rs − 2|R cos θsk|), (7.51)

which is the expression for Ks as described in the verse.

७.११ शीΗकेܑղातः शीΗवृيपिरखधगणना
7.11 Obtaining the circumference of the śīghra epicycle

from the Rsine of the śīghra-anomaly

मृगकक੮ टकाकददोःफलाͪ तڣजुचापोनयुताͪ भुजागुणो यः।
अमुना कवभजेͬ भुजाफलմЇ अजकनӳੁ फलमΡ शीΘवृٌͳ॥ १५ ॥
mṛgakarkaṭakādidoḥphalāt
tadbhujacāponayutāt bhujāguṇo yaḥ |
amunā vibhajed bhujāphalajyāṃ
ajanighnīṃ phalamatra śīghravṛttam || 15 ||

The [arc] of the mṛgakarkaṭādi-śīghraphala has to be subtracted from or added to
the śīghrakendra when the kendra is makarādi or karkyādi respectively, and Rsine
of this is to be found. The product of 80 (aja) and the Rsine of the bhujāphala
divided by the result [obtained above] would be the śīghra-vṛtta [paridhi].

The expression for the śīghra-vṛttaparidhi (Cs) given in the above verse
may be written as

Cs = 80× bhujāphalajyā
R sin(śīghrakendra ∓ arc of doḥphala) . (7.52)

Here, in the denominator, ‘−’ is to be used if kendra is makarādi and ‘+’ if
karkyādi.

The rationale behind this expression can be understood from Figure 7.6.
Considering the triangle SOS′,

SS′ = OS. sin(SÔP ).

If we consider the triangle SPS′,

SS′ = SP. sin(SP̂S′) = SP. sin(SP̂O).

Equating the two expressions for SS′, we have

antyaphala, OS = R sin(SP̂O)× SP

R sin(SÔP )
. (7.53)
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Fig. 7.6 Obtaining the circumference of the śīghra epicycle.

In the above expression SP = R, and SP̂O = AÔP0, the angle corresponding
to the arc

⌢

AP0 which is nothing but the arc of the correction term (śīghraphala
or doḥphala) used in śīghrasaṃskāra. That is,

R sin(SP̂O) = R sin(AP0) = bhujāphala

and R sin(SÔP ) = R sin(DŜP − SP̂O).8

Substituting the above relations in (7.53), we have
8 In the triangle OSP , SÔP +OŜP + SP̂O = 180 and OŜP +DŜP is also 180. Hence,
we have

R sin(SÔP ) = R sin(DŜP − SP̂O).
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OS = R sin(
⌢

AP0)×R

R sin(DŜP − SP̂O)
,

or Cs = R sin(
⌢

AP0)× 80
R sin(DŜP − SP̂O)

= bhujāphalajyā × 80
R sin(śīghrakendra − arc of doḥphala) , (7.54)

as Cs

80 = OS
R . The above expression is the same as (7.52). Similarly, it can be

shown that there should be a ‘+’ sign in front of the arc of doḥphala in the
denominator, when the śīghrakendra is karkyādi.

७.१२ पदा۠ڤपिरधी
7.12 Circumference at the beginning and the end of the

odd quadrant

अ܉भुजाफलनीतं वृٌं वृٌमोजपदे܉ाद࢒ ।
एकभदोःफलनीतं ङڥगुछणतम܉ोकनतं भवेदाڦͳ ॥ १६ ॥
antyabhujāphalanītaṃ vṛttaṃ syādantyavṛttamojapade |
ekabhadoḥphalanītaṃ dviguṇitamantyonitaṃ bhavedādyam || 16 ||

The dimension of the epicycle (vṛtta) obtained by the bhujāphala at the end of
the odd quadrant would be the śīghravṛtta at the end [of the odd quadrant or the
beginning of the even quadrant]. Subtracting [this vṛtta at] the end [of the odd
quadrant], from the product of 2 and the vṛtta obtained by the Rsine (doḥphala)
at the end of first sign (ekabha) [from the beginning of odd quadrant], would result
in the [vṛttaparidhi at the] beginning [of the odd quadrant].

If Cse and Cso1 are the śīghravṛtta-paridhis at the end of the odd quadrant
(beginning of the even quadrant) and at the end of the first rāśi from the
beginning of the odd quadrant, then the paridhi at the beginning is given by

Cso = 2× Cso1 − Cse. (7.55)

We can understand the rationale behind the above expression as follows.
To be specific, we consider the case Cse > Cso. At the end of the first rāśi,
θsk = 30◦, and at the end of the first quadrant, θsk = 90◦. Then from (7.5),
we have

Cso1 = Cso +
∆s

2
,

Cse = Cso +∆s, (7.56)
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where ∆s = Cse − Cso. Then it follows that

Cso = 2Cso1 − Cse.

७.१३ रवेः कणЇनयनͲࢆࠪ
7.13 Obtaining the vyastakarṇa of the Sun

राۢࡄभानुुࢎटतो मृϣՊं कवशोی दोःकोकटगुणौ गृहࣵ٘ा ।
खΡसӾुणौ तावथ नۤभѶौ Εमेण दोःकोकटफले भवेताͳ ॥ १७ ॥
कोटीफलं कक੮ मृगाकदजातं खΡमौकवϺकायЇ मृणं࢔ च कृ٘ा ।
तڥगϺतो दोःफलवगϺयुѶाͪ मूलं कवपयЉसकृतोऽΡ कणϺः ॥ १८ ॥
rāśyantabhānusphuṭato mṛdūccaṃ viśodhya doḥkoṭiguṇau gṛhītvā |
trisaṅguṇau tāvatha nandabhaktau krameṇa doḥkoṭiphale bhavetām || 17 ||
koṭīphalaṃ karkamṛgādijātaṃ trimaurvikāyāṃ svamṛṇaṃ ca kṛtvā |
tadvargato doḥphalavargayuktāt mūlaṃ viparyāsakṛto’tra karṇaḥ || 18 ||

Having subtracted the [longitude of the] mandocca from the true longitude of the
Sun at the end of the rāśi, and having obtained the Rsine and Rcosine of that
[result], and multiplying it by 3 and dividing by 80, the doḥphala and the koṭiphala
are obtained successively.
The koṭiphala has to be added to or subtracted from the radius when [the kendra
is] karkyādi or makarādi respectively. The square root of the sum of the squares of
the result thus obtained and of the doḥphala would be the viparītakarṇa here.

The term vyastakarṇa or viparītakarṇa literally means ’inverse hypotenuse’,
and is nothing but the radius of the kakṣyāvṛtta when the measure of man-
dakarṇa is taken to be equal to the trijyā, R.9

The term mṛdūcca appearing in the first line of the verse is a synonym for
mandocca. The sphuṭa that is referred to here should be understood as manda-
sphuṭa or the manda-corrected longitude. Here onwards, we use the symbol
θ for the sphuṭa or the true longitude of the Sun, instead of θms, and rm
for the mean radius of the manda epicycle for convenience. If θm represents
the longitude of the mandocca (of the Sun), then the sphuṭa-doḥphala and
sphuṭa-koṭiphala are given by

doḥphala = rm
R

R sin(θ − θm),

koṭiphala = rm
R

R cos(θ − θm). (7.57)

9 For a general discussion of the viparītakarṇa introduced by Mādhava in order to compute
the itrated-manda-hypotenuse (asakṛt-manda-karṇa), see {TS 2011}, pp. 492–497.
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The rationale behind the formula for viparītakarṇa which is mentioned in
these verses, can be understood with the help of Figure 7.7a and 7.7b. In these
figures P0 and P represent the mean and the true planet respectively. N is the
foot of the perpendicular drawn from the mean planet P0 to the line joining the
centre of the circle and the true planet. Let the radius of the karṇavṛtta OP be
set equal to the trijyā R. Then the radius of the uccanīcavṛtta P0P is rm, as it is
in the measure of the karṇavṛtta. In this measure, the radius of the kakṣyāvṛtta
OP0 = Rv which is one of the sides of the triangle OP0P , where other sides are
OP = R and PP0 = rm. In the triangle NPP0, NP0 is equal to the doḥphala
and NP is equal to koṭiphala since the angle P0P̂O = PÔU = θ − θm. That
is,

NP0 = rm sin(θ − θm),
and NP = rm cos(θ − θm). (7.58)
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P
0

N Γ

O

P

P

N

0

(a)

(b)

Fig. 7.7 Determination of the viparītakarṇa when the kendra is in (a) the first quadrant
and (b) the third quadrant.
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The viparītakarṇa (Rv) which is the hypotenuse (OP0) of the triangle
ONP0 is given by

Rv =
√

ON2 +NP 2
0

=
√

(OP −NP )2 +NP 2
0

=

√(
R− rm

R
× |R cos(θ − θm)|

)2
+
(
rm
R

×R sin(θ − θm)
)2

. (7.59)

The above expression for the vyastakarṇa is applicable when the kendra is
makarādi (in the first or fourth quadrant). If the kendra is karkyādi (in the
second or third quadrant) as shown in Figure 7.7b, then

Rv =
√

ON2 +NP 2
0

=
√

(OP 2 +NP 2) +NP 2
0

=

√(
R+ rm

R
×R |cos(θ − θm)|

)2
+
(
rm
R

×R sin(θ − θm)
)2

. (7.60)

Equations (7.59) and (7.60) are the general expressions for the viparī-
takarṇa. The verse actually talks of the viparītakarṇa of the Sun at the end of
various rāśis. For the Sun, rm

R = 3
80 . The viparītakarṇa of the Sun at the end

of various rāśis will be used in the next verse to calculate the mean longitudes
of the Sun at the saṅkramaṇas.

७.१४ कणϸतःࢆࠪ सԕमणकाकलकमۊाकЇनयनͲ
7.14 Finding the mean longitudes of the Sun at the

zodiacal transits from the vyastakarṇa

खΡմाहताͬ दोःफलतोऽमुनांݗ चापीकृतं मेषतुलाकदतͪ࢈ ।
रा܉ࡄभानौ मृणं࢔ च कुयЉͪ तदा भवेͪ सԗमणाक੮ मیͳ ॥ १९ ॥
trijyāhatād doḥphalato’munāptaṃ
cāpīkṛtaṃ meṣatulāditastat |
rāśyantyabhānau svamṛṇaṃ ca kuryāt
tadā bhavet saṅkramaṇārkamadhyam || 19 ||

The arc of [the quantity obtained] by multiplying the doḥphala by radius and
dividing by this [vyastakarṇa], has to be added to or subtracted from the true
longitude of the Sun when [the kendra is] meṣādi or tulādi respectively. The result
would be the mean longitude of the Sun at the transit.
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Having given the expression for the viparītakarṇa Rv in terms of the true
anomaly (θ − θm) in the previous verse, the text presents an application of
it for obtaining the mean longitudes of the Sun from its true value at the
transits (saṅkramaṇas).

O’

Γ

Γ

Τ

O

P

U

Po

N

Fig. 7.8 Obtaining the madhyama (the mean position) from the sphuṭa (the true posi-
tion).

We explain this with the help of Figure 7.8. Here O is the observer and
P0 is the mean planet (mean Sun). The point P represents the true Sun. The
distance P0P = OO′ represents the actual radius of the variable epicyle that
may be denoted as r. The angle P0ÔP = OP̂O′ = (θ0 − θ). Considering the
triangle OO′P , we draw a perpendicular from O′ that intersects OP at T .
Now, in the triangle O′PT ,

O′T = O′P sin(O′P̂ T )
= O′P sin(PÔP0)
= R sin(θ0 − θ). (7.61)

Also

O′T = r sin(θ − θm), (7.62)

as O′ÔT = θ − θm. Equating the two, we have

R sin(θ0 − θ) = r sin(θ − θm). (7.63)
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Here, the term R sin(θ0 − θ) can be positive or negative depending upon the
quadrant in which θ− θm is situated, so the makarādi and karkyādi cases are
both considered here, and not discussed separately.

As noted in Appendix B, the manda-epicycle r, and the mandakarṇa K,
vary in such a way that they always satisfy the equation r

K = rm
R . Also, in

the measure of the karṇavṛtta, the radius of the pratimaṇḍala is Rv, so that
K
R = R

Rv
.

Hence,
r = rm.

K

R
= rm.

R

Rv
. (7.64)

Thus (7.63) reduces to

R sin(θ0 − θ) = rm sin(θ − θm) R
Rv

. (7.65)

Or, θ0 − θ = R sin−1
[
rm sin(θ − θm) R

Rv

]
= R sin−1

[
3
80

×R sin(θ − θm) R
Rv

]
, (7.66)

where we have used the tabulated value of the manda-epicycle of the Sun
given by rm

R = 3
80 .

In (7.66), since θ is known, the mean planet θ0 can be obtained by
adding the above difference θ0 − θ to it. The difference is positive when
the sphuṭakendra θ − θm is within the six signs beginning with Meṣa, viz.,
0◦ < θ − θm ≤ 180◦, and negative when the kendra is within the six signs
beginning with Tulā, viz., 180◦ < θ − θm ≤ 360◦.

For the purpose of illustration we shall work out an example. For this we
assume that the longitude of the mandocca θm = 78◦ for the Sun.

Example: Makara-saṅkramaṇa (Transition to Capricorn, θ = 270◦)

Rv =

√(
R− 3

80
R cos(270− 78)

)2

+
(

3
80

R sin(270− 78)
)2

= 3563.95′,

and θ0 − θ = sin−1
[
3
80

sin(270− 78) R
Rv

]
= −0.431◦.

Therefore, θ0 = 270◦ − 0.431◦ = 269.569◦ = 8r29◦34′.
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At the transit (saṅkramaṇa) into different rāśis the true longitudes of the
Sun would be multiples of 30. That is,

θi = 30× i,

where i = 0, 1, . . . , 11 for Meṣa, Vṛṣabha, . . ., and Mīna respectively. Sub-
stituting these 12 values for true longitudes (θ) in (7.66), we can obtain the
mean longitudes of the Sun at each transit.

The mean longitudes at the transits known as ’saṅkramaṇārkamadhya’ are
given as vākyas in the Commentary II of the Karaṇapaddhati. These are listed
in Appendix Table D.3, and compared with the values computed as above.

Another important application of vyastakarṇa lies in finding the value of
mandakarṇa which is described in the following verse.

७.१५ :कणϸतࢆࠪ रओवचܑयोमϸۢकणϸगणना
7.15 Finding the mandakarṇas of the Sun and the Moon

from vyastakarṇa

सूयϿܔोरेवमेवेࢎुࡕटाͪ त۫یमानयेͪ ।
तΡोѶࠬ࢈कणЉٌञࢢմावगЎ मृϞάखुतः ॥ २० ॥
sūryendvorevameveṣṭasphuṭāt tanmadhyamānayet |
tatroktavyastakarṇāttastrijyāvargo mṛduśrutiḥ || 20 ||
In the same manner, the mean longitudes of the Sun and the Moon have to be
obtained from their true longitudes. Dividing the square of the radius by the cor-
responding vyastakarṇa gives mandakarṇa.

The expression for the mandakarṇa, or manda hypotenuse represented by
K in the previous section, as described in the verse is given by

K = R2

Rv
.

This follows from the definition of the vyastakarṇa (Rv) itself. The radius
of the kakṣyāvṛtta or the deferent is Rv, when the karṇa is taken to be R.
Hence, when the radius of the deferent is the trijyā or R, the karṇa K can be
found from the rule of proportions. That is,

K

R
= R

Rv
or K = R2

Rv
.
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७.१६ :कणϸतࢆࠪ रओवचܑयोः टयोजनकणϸ̵ानͲࢌु
7.16 Finding the true physical distances of the Sun and

the Moon from vyastakarṇa

मृϞάखुतहताͪ कҤावृٌाՊΕकलाϓतͳ ।
टयोजनकणЉҿंࢎु कҤाࠬासदलं रवेः ॥ २१ ॥
mṛduśrutihatāt kakṣyāvṛttāccakrakalāhṛtam |
sphuṭayojanakarṇākhyaṃ kakṣyāvyāsadalaṃ raveḥ || 21 ||

The [instantaneous] radius of the orbit (kakṣyāvyāsārdha) which is [also] called the
true hypotenuse in yojanas (sphuṭayojanakarṇa) can be obtained by multiplying
kakṣyā by the mandakarṇa and dividing by 21600 (cakrakalā).

When the average distance of the Sun from the centre of the bhagola (es-
sentially the centre of earth) is taken to be 21600 minutes, the distance of
the Sun from this centre at any point of its orbit is given by K, in min-
utes. Hence, when the average distance of the Sun in yojanas is given by the
kakṣyāvyāsārdha Osm (see Section 1.20), the actual physical distance of the
Sun from the earth known as the sphuṭayojanakarṇa is given by

Ost =
K ×Osm

21600
.

७.१७ माससԕाछ۠न̴ΠवाѽानयनͲ
7.17 Obtaining the māsavākyas, saṅkrāntivākyas and

nakṣatravākyas

Let di denote the time period that has elapsed from the beginning of the year
(when the true longitude of the Sun is zero) to the end of the particular solar
month (corresponding to the Sun transiting the ith rāśi). Obviously, di need
not be an integer. A māsavākya is the integer closest to di. The fractional
part, in terms of nāḍikās can be found from the saṅkrāntivākyas, which give
the remainders when di are divided by 7. Similarly, nakṣatra-saṅkrāntivākyas
give the time when the Sun crosses a nakṣatra division of the zodiac.

भागीकृताͪ तदनु सԗमणाक੮ मیाͪ
अޓाۢदोःफलयुताڠरणीकदनӳाͪ ।
सौरैकदϺनैरपϓतं खϟ मासवाѿं
सԗाठۢवाѿखमह तٛϓुतावछशࡕͳ ॥ २२ ॥
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न̵ΡाۢुࢎटोّۦमیाकЉदवेमेव च ।
नये̵ۦΡसԗाठۢवाѿं ककवषुपूवϺकͳ ॥ २३ ॥
bhāgīkṛtāt tadanu saṅkramaṇārkamadhyāt
abdāntadoḥphalayutāddharaṇīdinaghnāt |
saurairdinairapahṛtaṃ khalu māsavākyaṃ
saṅkrāntivākyamiha tatsuhṛtāvaśiṣṭam || 22 ||
nakṣatrāntasphuṭotpannamadhyārkādevameva ca |
nayennakṣatrasaṅkrāntivākyaṃ kaviṣupūrvakam || 23 ||

Having obtained the mean longitude of the Sun in degrees at [the time of] transit
(saṅkrānti) and adding the doḥphala (difference between the mean and the true
Sun) at the end of the year (abdānta) to it, multiply the result by the number of
civil days (bhūdina) and divide by the number of solar days [in a mahāyuga]. [The
result obtained gives] the māsavākya. The remainders obtained by dividing those
(māsavākyas) by 7 (su) give the saṅkrāntivākyas.
In a similar manner, the nakṣtravākyas that commence with kaviṣu can be obtained
by finding the mean longitudes of the Sun from its true longitudes at the end of
the nakṣatras.

७.१७.१ मासवाѽाऑन
7.17.1 The māsavākyas

Verse 22 gives the procedure for obtaining the māsavākyas and saṅkrānti-
vākyas. The true longitudes of the Sun at the end of each month are 30◦,
60◦…, 360◦. At the end of the 12th month, which is the same as the beginning
of the first month in the next year, the true longitude of the Sun is 360◦. The
mean longitude corresponding to the true longitude of 360◦ is found to be
357.883◦ = −2.117◦ ≈ −2◦7′ = 11r27◦53′. The difference between the true
and the mean longitudes at the end of the year is termed the ’abdāntadoḥphala’
whose value is 2◦7′.

The madhyamabhoga (difference in the mean longitudes) reckoned from the
meṣa-saṅkramaṇa to iṣṭasaṅkramaṇa (desired zodiacal transition) is the dif-
ference in the mean longitude at the desired zodiacal transit and the transit
at meṣādi of the true Sun. It is found by adding 2◦7′ to the mean longitude at
each transit. For example, the true longitude of the Sun at the Makarasaṅkra-
maṇa is 270◦. The mean longitude corresponding to this is 269◦34′. Adding
2◦7′ to it, we obtain 271◦41′ as the madhyamabhoga from the meṣasaṅkrama
to the makarasaṅkrama.

A mean solar day is the time interval corresponding to an increase of 1◦
in the mean longitude. This is slightly longer than a civil day, and is given
in terms of the latter by Dc

Ds
, where Dc and Ds represent the numbers of civil

days and solar days in a mahāyuga. Note that the values given in the Karaṇa-
paddhati for Dc and Ds are 1577917500 and 360× 4320000 = 1555200000 re-
spectively. Let θi0 represent the madhyamabhoga for the transit to the (i+1)th
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rāśi. Then
di = θi0 ×

Dc

Ds
.

For makarasaṅkramaṇa, θ90 = 271◦41′ and therefore

d9 = 271◦41′ × 1577917500
1555200000

= 275 d 39 n. (7.67)

The māsavākya is the integer closest to di. Hence, 276 is the māsavākya
at the makarasaṅkrama. The māsavākyas corresponding to all the transits as
given in the Commentary I10 are listed in Table 7.3 along with the computed
di’s.

Name of the rāśi māsavākya computed
transited textual value of di value of di

(saṅkramaṇa) in kaṭapayādi in numerals (in days & nāḍikās)

Vṛṣabha kulīna 31 30 d 56 n

Mithuna rūkṣajña 62 62 d 20 n

Karkaṭaka vidhāna 94 93 d 56 n

Siṃha mātrayā 125 125 d 24 n

Kanyā kṣaṇasya 156 156 d 26 n

Tulā siṃhasya 187 186 d 54 n

Vṛścika suputra 217 216 d 48 n

Dhanus catvarāṭ 246 246 d 18 n

Makara tathādri 276 275 d 39 n

Kumbha mīnāṅgi 305 305 d 7 n

Mīna mṛgāṅgi 335 334 d 55 n

Meṣa mātulaḥ 365 365 d 15 n

Table 7.3 The māsavākyās given in the Commentary I and the computed values of di.

By finding the difference between the successive māsavākyas, the number
of civil days corresponding to each month can be calculated.

७.१७.२ सԕाछ۠वाѽाऑन
7.17.2 The saṅkrāntivākyas

The instant at which the transit of true Sun from one rāśi to another oc-
curs can be determined from the saṅkrānti-vākyas. By dividing di by 7, the
10 {KP 1956}, p. 225.
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remainders obtained are the saṅkrānti-vākyas. For instance, in the previous
example

d9
7

= 275 d 39 n

7
= 39 + 2 d 39 n

7
.

The remainder is 2 d 39 n. Here the obtained day of the week corresponds to
number 2 and the nāḍikā is 39. The vākya for this is nṛvarāṭ, which represents
the day as 2 and nāḍikā as 40.

The saṅkrāntivākyas which are given in the Commentary II11 for different
transits are listed in Table 7.4, along with the computed values.

Name of saṅkrāntivākya
the rāśi in kaṭapayādi in numerals computed value

day nāḍikā day nāḍikā

Vṛṣabha timire 2 56 2 55.5
Mithuna niratam 6 20 6 19.5

Karkaṭaka camare 2 56 2 56.0
Siṃha marutaḥ 6 25 6 24.1
Kanyā surarāṭ 2 27 2 26.1
Tulā ghṛṇibhaḥ 4 54 4 53.5

Vṛścika javato 6 48 6 47.7
Dhanus dhaṭakaḥ 1 19 1 18.2
Makara nṛvarāṭ 2 40 2 39.3
Kumbha sanibhaḥ 4 7 4 6.7

Mīna maṇimān 5 55 5 55.2
Meṣa cayakā 1 16 1 15.5

Table 7.4 The saṅkrāntivākyas in the Commentary II and the computed values.

It is clear that the value of di corresponding to a saṅkramaṇa is obtained by
adding a suitable multiple of 7, to the saṅkrāntivākya. For example, we have
to add 91 to the day component of the saṅkrāntivākya for karkaṭaka (2+91)
to obtain d3 whose value is 93 days 56 nāḍikās.

७.१७.३ न̴Πवाѽाऑन
7.17.3 The nakṣatravākyas

We know that the ecliptic (rāśicakra, 360◦) is divided into 27 equal parts called
nakṣatras, each part corresponding to 13◦20′. The basis of this division is the
Moon’s sidereal period which is close to 27 days. The term nakṣatra also refers
11 {KP 1956}, p. 226.
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to the time spent by the Moon in any of these divisions. In the same vein, the
time durations spent by the Sun to traverse through these divisions are called
mahānakṣatras. The true longitudes of the Sun at the end of the 27 nakṣatras
are 13◦20′, 26◦40′, 40◦, 53◦20′, …, 360◦. Converting these longitudes to the
corresponding mean ones and adding 2◦7′ to them, we obtain the increase
in the mean longitude of the Sun at the end of each nakṣatra starting from
Aśvinī. The number of civil days corresponding to these can be calculated by
multiplying them by the civil days in a mahāyuga and dividing by the solar
days in a mahāyuga. These values are presented in Table 7.5.

Name of the No. of civil days elapsed
nakṣatra before the nakṣatra-saṅkramaṇa
Bharaṇī 13.674
Kṛttikā 27.461
Rohiṇī 41.349

Mṛgaśirā 55.318
Ārdrā 69.343

Punarvasu 83.395
Puṣya 97.442
Āśleṣā 111.454
Maghā 125.401

Pūrvaphālgunī 139.260
Uttarāphālgunī 153.015

Hasta 166.654
Citrā 180.175
Svāti 193.581

Viśākhā 206.881
Anurādhā 220.090
Jyeṣṭhā 233.224
Mūla 246.304

Pūrvāṣāḍhā 259.352
Uttarāṣāḍhā 272.393

Śravaṇa 285.449
Dhaniṣṭhā 298.543
Śatabhiṣaj 311.697

Pūrvabhādrapadā 324.931
Uttarabhādrapadā 338.262

Revatī 351.702
Aśvinī 365.258

Table 7.5 Number of civil days elapsed at each nakṣatra-saṅkramṇa.

The instant at which the nakṣatra-saṅkramaṇa occurs can be obtained from
the nakṣatra-saṅkrāntivākyas. When we divide the civil days at each transit
by 7, the remainders obtained are the nakṣatra-saṅkrāntivākyas, similar to the
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rāśi-saṅkrāntivākyas discussed earlier. The nakṣatra-saṅkrāntivākyas as given
in both the Commentaries12 are tabulated along with the computed values in
Table 7.6.

Nakṣatra transit nakṣatra-saṅkrāntivākya
(saṅkramaṇa) in kaṭapayādi in numerals computed saṅkrāntivākya

day nāḍikā day nāḍikā

Bharaṇī kaviṣu 6 41 6 40.4
Kṛttikā hāriṣu 6 28 6 27.7
Rohiṇī dīyata 6 18 6 20.9

Mṛgaśirā dhīyate 6 19 6 19.1
Ārdrā kariṣu 6 21 6 20.6

Punarvasu māriṣu 6 25 6 23.7
Puṣya sāriṣu 6 27 6 26.5
Āśleṣā dūrataḥ 6 28 6 27.2
Maghā smarati 6 25 6 24.0

Pūrvaphālgunī duṣyati 6 18 6 15.6
Uttaraphālgunī yoniṣu 6 1 6 0.9

Hasta parvaṇā 5 41 5 39.2
Citrā trikaśa 5 12 5 10.5
Svāti tāṇḍava 4 36 4 34.9

Viśākhā bhomṛga 3 54 3 52.9
Anurādhā dhenugaḥ 3 9 3 5.4
Jyeṣṭhā supura 2 17 2 13.4
Mūla hāṭaka 1 18 1 18.2

Pūrvāṣāḍhā nīrana 0 20 0 21.1
Uttarāṣāḍhā bhāratā 6 24 6 23.6

Śravaṇa caraṇa 5 26 5 26.9
Dhaniṣṭhā gālava 4 33 4 32.6
Śatabhiṣaj viśvagu 3 44 3 41.8

Pūrvabhādrapadā carmarāṭ 2 56 2 55.9
Uttarabhādrapadā cikura 2 16 2 15.7

Revatī rāvaya 1 42 1 42.1
Aśvinī markaṭa 1 15 1 15.5

Table 7.6 The nakṣatra-saṅkrāntivākyas given in both the Commentaries and the com-
puted values.

12 {KP 1956}, p. 228.
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७.१८ इࡓकाकलकुࢌटाकЇनयनाथϹ योӒाऒदवाѽाऑन
7.18 The yogyādivākyas: True longitude of the Sun at any

instant

मासाकदतोऽࡕाࡕकदनोٍसूयϺुࢎटाۢरЇशाࡕकदनाۢराछण ।
योӔाकदवाѿाकन धनणϺतैषЇ कदना߽ताङधѿवशाकदनाݗौ ॥ २४ ॥
māsādito’ṣṭāṣṭadinotthasūryasphuṭāntarāṃśāṣṭadināntarāṇi |
yogyādivākyāni dhanarṇataiṣāṃ dinālpatādhikyavaśādināptau || 24 ||

[First] the difference in the true longitudes of the Sun in degrees etc. at intervals
of eight days from the beginning of the month [are found]. The difference between
[these values] and eight degrees are [given by] the yogyādivākyas. These are [applied]
positively or negatively, depending upon whether 8 degrees is lesser or greater [than
the difference in longitudes at the 8 days interval], to obtain the [true] Sun [at any
given instant].

The definition of yogyādivākyas and the method of applying them to obtain
the true longitude of the Sun at intervals of 8 days in a solar month, are given
in this verse.

Unlike the rāśi and nakṣatra-saṅkramaṇavākyas discussed earlier, whose
nomenclature was based upon a certain time interval or phenomenon, the
name yogyādi-vākyas stems from the fact that here we have a set of 48 vākyas
beginning with the phrase yogya. These vākyas enable us to find the longitude
of the Sun at any given instant. There are 4 vākyas corresponding to each
solar month. Each month is divided into four parts with a maximum of 8
days per part. Now, the sphuṭabhoga of each part is the difference between
the true longitudes of the Sun at the beginning and at the end of that part.
The difference in minutes between the sphuṭabhoga of each part and 8◦ are the
yogyādivākyas. If the longitudinal difference is greater (lesser) than 8◦, then
it will be notified as positive (negative).

७.१८.१ योӒाऒदवाѽानयनͲ
7.18.1 Obtaining the yogyādivākyas

The yogyādivākyas as given in the edited version of the Commentary I13 are
listed in Table 7.7. Apart from the vākyas (here in the form of one word, which
form part of meaningful sentences), the signs (’+’ or ’−’) are also indicated in
the commentary. Except in the case of Tulā, all the 4 vākyas corresponding to
a particular rāśi have the same sign and this is indicated as such in the table.
For Tulā, the sign for the first vākya is − and the signs for the other three are
13 {KP 1956}, p. 229.
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all +, as indicated in the table. The rationale behind these yogyādivākyas is
best explained by taking up a couple of concrete examples.

Consider the solar month of Makara. The true longitude of the Sun at the
beginning of the month is θ = 270◦. The corresponding mean longitude θ0 can
be determined using the method explained earlier and we find θ0 = 269◦34′9′′.
Using the fact that the rate of motion of the mean longitude of the Sun
is 59.136′ per day, the mean longitude is θ0 = 277◦27′14′′ after 8 days in
the month of Makara. The mandaphala (θ − θ0) corresponding to this value
of θ0 is found to be 42′56′′. Adding this to θ0, we find the true longitude
after 8 days to be 277◦27′14′′ + 42′56′′ = 278◦10′10′′. Hence the increase in
the true longitude after the first 8 days of the month is 8◦10′10′′. As the
longitudinal increase is greater than 8◦, the difference is positive and is given
by +(8◦10′10′′ − 8◦) = +10′10′′, compared with the value of +11′ as given by
the vākya ‘pūjya’ in the commentary.

After 16 days in the month of Makara, the mean longitude θ0 = 269◦34′9′′+
59′8′′× 16 = 285◦20′17′′. The true longitude corresponding to this is found to
be θ = 286◦19′29′′. Hence the difference between the true longitudes at the
beginning and at the end of the second part is 286◦19′29′′ − 278◦10′10′′ =
8◦9′19′′. Here again as the longitudinal increase is greater than 8◦, the differ-
ence is positive and is given by +(8◦9′19′′−8◦) = +9′19′′, which compares well
with the value of +9′ as implied by the vākya ‘dhenuḥ’ in the commentary.

७.१८.२ योӒाऒदवाѽाͩ टसूयЇनयनͲࢌु
7.18.2 Finding the true longitude of the Sun from the

yogyādivākyas

One can obtain the true longitude of the Sun on any day using the yogyādi-
vākyas, and linear interpolation. For example, suppose we would like to find
the true longitude of the Sun after the lapse of 18 days in the Makara month.
This comes in the third part (khaṇḍa). Therefore the approximate value of
the true longitude of the Sun after 18 days elapsed would be

θ′ = 270◦ + 18◦ = 288◦.

A correction which can be called yogyādisaṃskāra ∆θ′ has to be applied to
θ′ in order to obtain the true longitude θ.

Now, the correction for 8 days of the third khaṇḍa is given as 8′ (dine).
Hence the correction for 2 days is 8×2

8 minutes. Adding this to the sum of the
first two vākyas (pūjya and dhenuḥ),

∆θ′ = 11 + 9 + 8× 2
8

= 22′.
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Month yogyādivākyas (in minutes)

Meṣa − yogyo 11 vaidyaḥ 14 tapaḥ 16 satyam 17
(11′12′′) (13′3′′) (15′42′′) (17′42′′)

Vṛṣabha − dhanyaḥ 19 putraḥ 21 kharo 22 varaḥ 24
(19′18′′) (20′54′′) (22′18′′) (23′18′′)

Mithuna − vīraḥ 24 śūraḥ 25 śaro 25 vajrī 24
(24′6′′) (24′30′′) (24′36′′) (24′24′′)

Karkaṭaka − bhadram 24 gotro 23 ruruḥ 22 karī 21
(23′54′′) (23′6′′) (21′54′′) (20′30′′)

Siṃha − dhanyaḥ 19 sevyo 17 mayā 15 loke 13
(18′54′′) (17′0′′) (14′54′′) (12′42′′)

Kanyā − kāyo 11 dīnaḥ 8 stanām 6 ganā 3
(10′36′′) (8′12′′) (5′48′′) (3′18′′)

Tulā yājño − 1 yajñām + 1 ganā + 3 śūnā + 5
(−1′30′′) (+0′48′′) (3′0′′) (4′54′′)

Vṛścika + steno 6 dīno 8 dhunī 9 naṭaḥ 10
(6′12′′) (7′42′′) (8′54′′) (9′54′′)

Dhanus + āpaḥ 10 pāpaḥ 11 payaḥ 11 pathyam 11
(10′18′′) (10′42′′) (10′48′′) (10′30′′)

Makara + pūjyā 11 dhenuḥ 9 dine 8 rthinaḥ 7
(10.2) (9.4) (8.2) (6.8)

Kumbha + tanuḥ 6 bhinnā 4 khanī 2 jñānī 0
(5′42′′) (3′54′′) (1′54′′) (−0′18′′)

Mīna − ratnaṃ 2 bhānuḥ 4 suniḥ 7 nayaḥ 10
(2′0′′) (4′24′′) (6′48′′) (9′18′′)

Table 7.7 The 48 yogyādivākyas mentioned in the Commentary I along with the com-
puted values in parentheses.

These corrections are indicated as positive in the listing of the vākyas in the
commentary. Hence applying this result positively to θ′ the true longitude of
the Sun at the end of the 18th day of the solar month Makara is found to be

θ = 288◦ + 22′ = 288◦22′.
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७.१९ मۢुࢌटानयनΥकारः
7.19 Procedure for obtaining the mandasphuṭa of the

planets

भौमादःे कृतमۤदोःफलदलाٌेܓؽतो दोःफलं
नीतं केवलमیमे धनमृणं मۤुࢎट࢒ाݗये ।
कवڣӖृोकनϺजमیमे मृϞफलं࢔ोՊोनमیोڣवं
नۤӳं टशीΘवृٌकवϓतंࢎु कुयЉͪ स मۤुࢎटः ॥ २५ ॥
bhaumādeḥ kṛtamandadoḥphaladalāttatkendrato doḥphalaṃ
nītaṃ kevalamadhyame dhanamṛṇaṃ mandasphuṭasyāptaye |
vidbhṛgvornijamadhyame mṛduphalaṃ svocconamadhyodbhavaṃ
nandaghnaṃ sphuṭaśīghravṛttavihṛtaṃ kuryāt sa mandasphuṭaḥ || 25 ||

In the case of Mars, etc. (Mars, Jupiter and Saturn)14 having first applied half of
the mandaphala, from the resulting value the kendra is obtained and from that, the
mandaphala is [once again] obtained. The mandaphala is to be applied positively
or negatively [depending on whether the kendra is tulādi or meṣādi respectively]
to the original mean planet (kevalamadhyama) to obtain the manda-sphuṭa. In the
case of Mercury and Venus, the mandaphala (mṛduphala)—obtained by subtracting
the apogee from the mean longitude—is multiplied by 80 (nanda) and divided by
the sphuṭaśīghravṛtta (Cs). The mandasphuṭa is obtained by applying [the result
thus obtained] to its own mean (nijamadhyama).

The mandaphala obtained earlier can be written as

∆θ = sin−1
(
Cm

80
sin(θ0 − θm)

)
. (7.68)

The procedure for obtaining the manda-sphuṭas of the interior and the exterior
planets are separately prescribed in the above verse, and they will be explained
in the next two subsections.

७.१९.१ कुजादीनЅ मۢुࢌटीकरणͲ
7.19.1 Manda-sphuṭa of exterior planets

The procedure for obtaining manda-sphuṭa of Mars, Jupiter and the Saturn
involves the following two steps:
14 Here, the word “bhaumādeḥ” (of the Mars etc.), is to be understood in a restricted
sense to refer to only three planets, namely Mars, Jupiter and Saturn, since the word
“vidbhṛgvoḥ” used in the third quarter of the verse refers to the other two planets, Mercury
and Venus .
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Step 1: Having obtained the mandaphala ∆θ, half of it has to be applied to
the mean planet (madhyamagraha) θ0. Now we get the half manda-corrected
mean planet θ1.

θ1 = θ0 −
∆θ

2
(for 0 < (θ0 − θm) < 180), (7.69)

= θ0 +
∆θ

2
(for 180 < (θ0 − θm) < 360). (7.70)

Step 2: Then once again we have to compute mandaphala. In doing so, we
have to find the kendra from the half-manda-corrected mean planet (θ1).
That is, the value of the mandaphala calculated for the second time is given
by

∆θ2 = sin−1
(
Cm

80
sin(θ1 − θm)

)
. (7.71)

It is said that this value ∆θ2 is to be applied to kevalamadhyama15 θ0.
Thus the manda-sphuṭagraha θms is given by

θms = θ0 −∆θ2 (for 0 < (θ1 − θm) < 180), (7.72)
= θ0 +∆θ2 (for 180 < (θ1 − θm) < 360). (7.73)

७.१९.२ बुधϟΔयोः मۢुࢌटीकरणͲ
7.19.2 Manda-sphuṭa of interior planets

In the case of interior planets (Mercury and Venus) the manda-sphuṭa is ob-
tained by a single step process.

Multiply the mandaphala obtained from their respective kendras by 80 di-
vided by sphuṭaśīghravṛttaparidhi (Cs). Thus the doḥphala is computed as

80
Cs

× Cm

80
sin(θ0 − θm) = Cm

Cs
sin(θ0 − θm).

The arc of the doḥphala is the mandaphala

∆θ1 = sin−1
(
Cm

Cs
sin(θ0 − θm)

)
. (7.74)

Applying this to the mean planet, we obtain the manda-sphuṭa
15 Usually the mandaphala is applied to the mean from which the kendra is computed.
Here, though the kendra is computed from θ1, the author specifically tells that the second
mandaphala to be applied only to the original mean planet kevala-madhyama (θ0).
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θms = θ0 ±∆θ1. (7.75)

It is important to note that according to the Commentary II, the phrase
“vidbhṛgvor-nijamadhyame” actually implies that, in the case of the interior
planets, the manda correction is to be applied to the corresponding śīghrocca.16

This is indeed a major departure from the traditional planetary theory where
the mean Sun was taken to be the mean planet for Mercury and Venus.

It was Nīlakaṇṭha Somayājī who modified the traditional planetary model
by suggesting that what was traditionally known as the śīghrocca in the case
of the interior planets, should actually be taken as the corresponding mean
planet to which the manda correction is to be applied. By interpreting the
phrase nijamadhyama as explained above, the Commentary II is suggesting
that the Karaṇapaddhati, by prescribing that the manda correction for the
mean planets should be applied to their śīghroccas and not to the mean Sun,
is also following the revised planetary model proposed by Nīlakaṇṭha in his
Tantrasaṅgraha (c. 1500).17

In this context, it should be noted that the Commentary I does not attach
any such special meaning to the phrase nijamadhyama for the interior planets.
Further, barring a few indications here and there, there is no explicit state-
ment in Karaṇapaddhati that it is following the revised model proposed by
Nīlakaṇṭha. Therefore, the question as to whether Putumana Somayājī was
indeed aware of and followed the modified planetary model of Nīlakaṇṭha is
still an open question which could perhaps be settled by a study of the other
works of Putumana Somayājī most of which are still unpublished.

There is also another peculiarity in the prescription for the mandaphala for
the interior planets as given in the above verse. It seems to be suggesting that
the stated value of the mandaparidhi is in the measure of the śīghra-paridhi.
In other words, Cm

Cs
is being used as the ratio of the manda-epicycle and the

deferent associated with the mandasaṃskāra.
16 Here, the Commentary II states ({KP 1956}, p. 232):

“budhaśukranmāruḍe tanṭe tanṭe nijamadhyamaṃ veccu …mandasphuṭaṅṅaḷ varuṃ.
iviḍe ‘nijamadhyama’mennu paraññadu śīghroccamākunnadu.”
In terms of the respective mean longitudes (referred by the name nijamadhyama)
of the Mercury and Venus …manda-sphuṭas are obtained. Here, what is stated as
the ‘respective mean planet’ is indeed the [corresponding] śīghrocca.”

17 For details of the revised planetary model of Nīlakaṇṭha, see {TS 2011}, pp. 508-522.
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७.२० मۢशीΗुࢌटाޯЅ मۢशीΗकणϸ̵ानͲ
7.20 Obtaining the manda and śīghrakarṇas from the

manda-sphuṭa and śīghra-sphuṭa

Їޱटाࢎु܉ा܉ोपा࢔ कनजकनजचलतुӾोकनताޱЇ भुजाմे
नी٘ा खΡմाहताޱЇ कवभजतु परया शीΘकणϺ࢈दा ाͪ࢒ ।
मۤोՊेनोकनताޱЇ άवणमकप नये۫یमۤुࢎटाޱЇ
माۤा यΡ ःݗटाकࢎु पकठतभुजफलै࢈Ρ कणЉकݗरेवͳ ॥ २६ ॥
svopāntyāntyasphuṭābhyāṃ nijanijacalatuṅgonitābhyāṃ bhujājye
nītvā trijyāhatābhyāṃ vibhajatu parayā śīghrakarṇastadā syāt |
mandoccenonitābhyāṃ śravaṇamapi nayenmadhyamandasphuṭābhyāṃ
māndā yatra sphuṭāptiḥ paṭhitabhujaphalaistatra karṇāptirevam || 26 ||

Having obtained the Rsine of the upāntyasphuṭa and antyasphuṭa from which re-
spective tuṅgas are subtracted, multiply [the former] by trijyā and divide by the
latter. The result obtained then would be the śīghrakarṇa. [Similarly], the [manda]
karṇa can be obtained by subtracting apogee from the mean and the manda-sphuṭa.
The karṇas are to be obtained like this when the sphuṭas are obtained from the
tabulated correction values.

The formula mentioned in the verse for obtaining the karṇa is

karṇa = R×R sin(upāntyasphuṭakendra)
R sin(antyasphuṭakendra) . (7.76)

Here, the terms ‘upāntyasphuṭa’ (penultimate to the corrected planet) and
‘antyasphuṭa’ (the corrected planet) have to be assigned meanings depending
upon the process under consideration. If it is śīghra-process, then the antyas-
phuṭa refers to śīghra-sphuṭa, the upāntyasphuṭa refers to the manda-sphuṭa,
and the associated karṇa is the śīghrakarṇa. On the other hand if the process
under consideration is the manda-process, then the term antyasphuṭa refers
to the mandasphuṭa, upāntyasphuṭa refers to madhyamagraha (mean planet),
and the associated karṇa is mandakarṇa. As regards the kendra, it is obvious
that depending upon whether the process considered is manda or śīghra, the
mandocca and śīghrocca have to be employed in finding the anomaly.

Therefore, the expression for śīghrakarṇa can be written from (7.76) as

śīghrakarṇa = R×R sin(mandasphuṭakendra)
R sin(śīghrasphuṭakendra) ,

or Ks = R× |R sin(θs − θms)|
|R sin(θs − θ)|

, (7.77)

where θs is the śīghrocca, θms is the manda-sphuṭa and θ is the śīghra-sphuṭa.
The mandakarṇa can be obtained from
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mandakarṇa = R×R sin(mandakendra)
R sin(manda-sphuṭakendra) ,

or Km = R× |R sin(θ0 − θm)|
|R sin(θms − θm)|

. (7.78)

The rationale for obtaining the above expression (7.78) can be understood
from Figure 7.9a where P0 is the mean planet and P is the manda-sphuṭa.

O’

Γ

Γ

O

P

U

P
o

T

θ

θ

0

ms

Fig. 7.9a Obtaining the mandakarṇa.

Draw PT perpendicular to OU . In triangle PO′T ,

PT = PO′ sin(TÔ′P )
= |R sin(θ0 − θm)|, (7.79)

as ΓÔ′P = θ0, ΓÔ′U = θm and UÔ′P = TÔ′P = θ0 − θm. In triangle POT ,

PT = OP sin(TÔP )
= Km| sin(θms − θm)|, (7.80)

as PÔΓ = θms, ΓÔU = θm and UÔP = TÔP = θms − θm. Equating the two
expressions (7.79) and (7.80), we find
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Km = R× |R sin(θ0 − θm)|
|R sin(θms − θm)|

, (7.81)

which is the same as the expression given in (7.78).
Similarly, the expression for the śīghrakarṇa, Ks in (7.77) can be obtained

by considering the Figure 7.9b where S is the śīghrocca and P is the sphuṭa.

O

Γ

P

P
0

Γ

D

S

Fig. 7.9b Obtaining the śīghrakarṇa.

Draw PD perpendicular to OS extended. In triangle PSD,

PD = SP sin(PŜD)
= R sin(Γ ŜD − Γ ŜP )
= R sin(ΓÔS − ΓÔP0)
= R| sin(θs − θms)|. (7.82)

In triangle POD,

PD = OP sin(PÔD)
= Ks sin(ΓÔS − ΓÔP )
= Ks| sin(θs − θ)|. (7.83)

Equating the two expressions (7.82) and (7.83), we find
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Ks = R× |R sin(θs − θms)|
|R sin(θs − θ)|

. (7.84)

७.२१ केܑղाभावे कणЇनयनͲ
7.21 Obtaining the karṇas when the Rsine of the kendra is

zero

दोմЉभावे तु केेܓ सखत मकरकुलࣷराकदके तΡ माۤे
तٌृڥ ोनाؔनۤञैࢢभगुणगुछणताۤۦना۫ۤकणϺः ।
शैΘे तٌृڥ युѶोकनतनदगुछणताङ࢈ڥराधЉۦदाݗो
भौमादःे शीΘकणϺः सततमकप कवधोः शीΘकणЎऽ܉कणϺः ॥ २७ ॥
dorjyābhāve tu kendre sati makarakulīrādike tatra mānde
tadvṛttonāḍhyanandaistribhaguṇaguṇitānnandanānmandakarṇaḥ |
śaighre tadvṛttayuktonitanadaguṇitādvistarārdhānnadāpto
bhaumādeḥ śīghrakarṇaḥ satatamapi vidhoḥ śīghrakarṇo’ntyakarṇaḥ || 27 ||

While obtaining the mandakarṇa if the Rsine [of the kendra] is zero, then the
ojavṛtta has to be subtracted from or added to 80 (nanda) depending on whether
[the kendra] is makarādi or karkyādi respectively. Dividing the product of the trijyā
and 80 by this [result] the mandakarṇa is obtained. In the case of śīghra[karṇa] if
the Rsine [of the kendra] is zero, then the śīghrojaparidhi has to be added to
or subtracted from 80 (nada) [depending on whether the kendra is makarādi or
karkyādi respectively]. Multiplying the result by trijyā and dividing by 80 (nada)
would give the śīghrakarṇa in the case of the [planets] Mars etc. The śīghrakarṇa
of the Moon is its antyakarṇa itself.

Recalling the expressions (B.4) and (B.5) for the mandakarṇa K, in ap-
pendix B, we have

K =
[
(R+ r cos(θ0 − θm))2 + (r sin(θ0 − θm))2

] 1
2 , (7.85)

which is valid for both makarādi and karkyādi cases. It is easily seen that,
when the kendra (θ0 − θm) = 0 or 180◦, then the expression for K reduces to

K = R+ r (for (θ0 − θm) = 0), (7.86)
= R− r (for (θ0 − θm) = 180◦), (7.87)

where r is the instantaneous radius of the epicycle. From the relation r
K =

rm
R = Cm

80 , we have

r = K × Cm

80
. (7.88)

Now, the sphuṭamandaparidhi Cm is simply ojamandaparidhi Cmo when (θ0−
θm) = 0 or 180◦. Using the above relation for r in the expression for K, we
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have

K = R± K × Cmo

80
,

Hence, K = R× 80
80∓ Cmo

= trijyā × nanda
nanda ∓ ojaparidhi , (7.89)

as stated in the text.
Similarly, using the expressions (B.13) and (B.14) for the śīghrakarṇa Ks

in appendix B, we have,

Ks =

[(
R± Cs

80
|R cos θsk|

)2

+
(
Cs

80
R sin θsk

)2
] 1

2

, (7.90)

where we have used to relation, rs
R = Cs

80 . Here, we use ‘+’ in the first term in
RHS if kendra is makarādi and ‘−’ if it is karkyādi. For θsk = 0 and θsk = 180◦,
Cs = Cso and Ks reduces to

Ks = R×
(
1± Cso

80

)
= R×

(
80± Cso

80

)
. (7.91)

७.२२ भूमۊखेटओववरͲ
7.22 Earth–planet distance

कणϺڥय࢒ वधतञࢢगुणेन लंޔ
केܓΗहाۢरखमन࢒ तु तͪ࢔कणϺः ।
भूमیखेटकववरं च तदवे कवڦाͪ
Φायेण शीतमहसः टमेवࢎु तͪ࢒ाͪ ॥ २८ ॥
karṇadvayasya vadhatastriguṇena labdhaṃ
kendragrahāntaraminasya tu tat svakarṇaḥ |
bhūmadhyakheṭavivaraṃ ca tadeva vidyāt
prāyeṇa śītamahasaḥ sphuṭameva tat syāt || 28 ||

The distance of the planet from the centre (kendragrahāntara) is given by the
product of the two karṇas (manda-karṇa and śīghrakarṇa) with each other and
divided by the radius (triguṇa or trijyā). For the Sun its mandakarṇa itself is the
kendragrahāntara. That (kendragrahāntara) itself may generally be taken as the
distance between the center of the earth and the planet (bhūmadhyakheṭavivara).
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In the case of the Moon it is indeed the accurate distance from the centre of the
earth.

In traditional Indian planetary theory, at least from the time of Āryabhaṭa,
the mean planetary distances were obtained based on the hypothesis that all
the planets move with the same linear velocity, that is, they all cover the same
physical distance in a given period of time.

The term kendragrahāntara mentioned in the verse is the distance of the
planets from the center of the celestial sphere (earth), and is given by

kendragrahāntara = mandakarṇa × śīghrakarṇa
trijyā

= Km ×Ks

R
. (7.92)

This is the relation stated in Āryabhaṭīya. Nīlakaṇṭha in his Āryabhaṭīyab-
hāṣya explains that, since usually the śīghrakarṇa is evaluated with respect
to a concentric of the standard radius (trijyā), the above prescription of
Āryabhaṭīya implies that the earth-planet distance is actually given by the
śīghrakarṇa which is evaluated with respect to a concentric circle whose ra-
dius is given by the mandakarṇa.18

O

Γ

Γ

S

P

Fig. 7.10 Obtaining the distance of the planets from the centre of the celestial sphere
(earth).

18 {ABB 1931}, pp. 53-4.
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In order to understand the conditions under which the Āryabhaṭīya relation
holds, let us consider the case of exterior planets which is depicted in the
Figure 7.10. The kendragrahāntara is the śīghrakarṇa OP itself if SP is taken
as trijyā, R, that is P is taken to be madhyamagraha with respect to S. If
we take P to be the manda-sphuṭa with respect to S and take SP , as the
mandakarṇa, K, we would obtain

kendragrahāntara = Km ×Ks

R
, (7.93)

only if OS the radius of the śīghra epicycle which is scaled by the factor Km

R .
There is no mention of such a scaling of the śīghra epicycle in Karaṇapad-
dhati. To that extent the prescription (7.92) for the earth–planet distance is
somewhat ad hoc.

७.२३ ΖहयोजनकणЇः
7.23 Yojanakarṇas (physical distance in yojanas) of the

planets

भूΗहाۢरहता कनजकҤा शीΘवृٌहतकनࢗरभѶः ।
̶ाՋयोभϺवखत योजनकणЎ ̶ानतّरϓत࠻ परेषाͳ ॥ २९ ॥
bhūgrahāntarahatā nijakakṣyā śīghravṛttahatanissarabhaktaḥ |
jñācchayorbhavati yojanakarṇo jñānatatparahṛtaśca pareṣām || 29 ||

Multiply the earth-planet distance (bhūgrahāntara) by the orbit of the planet
(kakṣyā). When we divide this by the product of the circumference of the śīghra-
epicycle (śīghravṛtta) and 270 (nissara), we obtain the distance in yojanas (yo-
janakarṇas) of Mercury and Venus. Dividing [the product of (bhūgrahāntara) and
kakṣyā] by 21600 (jñānatatpara) would result in the yojanakarṇas of other planets
(the exterior planets)].

The yojanakarṇas of the interior planets are stated to be

yojanakarṇa = bhūgrahāntara × kakṣyāparidhi
nissara × śīghravṛtta

= bhūgrahāntara × 2π ×Op

270× Cs
, (7.94)

where Op is the radius of the orbit in yojanas. The rationale behind the
expression in the denominator can be understood as follows. If rs is the radius
of the śīghravṛtta in minutes, Cs

80 = rs
R = 2πrs

21600 , then Cs × 270 = 2πrs (in
minutes). Thus,
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yojanakarṇa = bhūgrahāntara ×Op

rs
. (7.95)

This is essentially the same as the expression for the yojanakarṇa for Mercury
and Venus in the Tantrasaṅgraha (verse VIII.37). However, in Tantrasaṅgraha
what appears in the denominator is the planet’s own orbital radius around
the mean Sun and that is equal to the radius of the śīghravṛtta.19

Karaṇapaddhati does not present any geometrical model of planetary mo-
tion. There is no mention of the geometrical picture of planetary motion pro-
posed by Nīlakaṇṭha that the interior planets are going around the mean
Sun along their śīghravṛttas. Hence the above prescription (7.95) for the yo-
janakarṇas also seems to have been made in an adhoc manner.

For the other planets (pareṣāṃ), that is Mars, Jupiter and Saturn, the
distance in yojanas is stated to be

yojanakarṇa = bhūgrahāntara × kakṣyāparidhi
jñānatatpara

= bhūgrahāntara ×Op

R
. (7.96)

This can be understood by a simple rule of three. The mean kakṣyā in yojana
Op is the distance of the planet corresponding to the radius of the concentric
given by R minutes. If the actual karṇa is given by bhūgrahāntara minutes,
what is the distance of the planet in yojanas? The answer is as given in
equation (7.96).

७.२४ माैؒोपΔमावसानकणЇनयनͲ
7.24 Obtaining the hypotenuse at the heliacal rising and

setting

भौमाͪ सेࠬगयापयोधनमयाͪ मौؔोकदता शंकाःࣁ
तڟोःकोकटगुणौ ौ؟शीΘपिरङध̵ु࢔ नदाݗौ फले ।
खΡմादोःफलवगϺभेदजपदं कोटीफलेनाठۮतं
कणϺः कालसकवधे࢈ाϞदया࢒ मۤामरे׿ासृजाͳ ॥ ३० ॥
bhaumāt sevyagayāpayodhanamayāt mauḍhyoditā hyaṃśakāḥ
taddoḥkoṭiguṇau svaśīghraparidhikṣuṇṇau nadāptau phale |
trijyādoḥphalavargabhedajapadaṃ koṭīphalenānvitaṃ
karṇaḥ syādudayāstakālasavidhe mandāmareḍyāsṛjām || 30 ||

The longitudinal difference of the planets in degrees for helical rising (mauḍhy-
oditāṃśas) [of the planets] starting from Mars etc. are 17 (sevya), 13 (gayā), 11

19 {TS 2011}, pp. 434-437.
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(payaḥ), 09 (dhanaḥ) and 15 (mayā). Multiply the Rsines and Rcosines of these
[aṃśas] by the respective śīghra-paridhis and divide by 80 (nada). The square roots
obtained by subtracting the square of the results obtained with Rsines from the
square of the trijyā have to be added to the results obtained with Rcosines. [The
results obtained] would be the hypotenuses (karṇas) near to the udayāstamanakāla
of the Saturn (manda), Jupiter (amaredya) and Mars (asṛk).

The heliacal rising angles in degrees (mauḍhyāmśas) with Rsine and Rco-
sine values for five planets given in the verse are listed in Table 7.8. The value
of the mauḍhyāṃśas stated here are the same as those in Āryabhaṭīya and
Tantrasaṅgraha. The expression for the karṇa Kmd at the mauḍhyodaya and

Planet mauḍhyāṃśa (α) R sinα R cosα
(in degrees) (in minutes) (in minutes)

Mars 17 1005.10 3287.53
Mercury 13 773.32 3349.64
Jupiter 11 655.95 3374.59
Venus 9 537.78 3395.42
Saturn 15 889.75 3320.61

Table 7.8 The mauḍhyāṃśas of the planets and their Rsines and Rcosines.

the astamana of the exterior planets is stated to be

Kmd =

√
R2 −

(
Cs

80
×R sinα

)2

+ Cs

80
×R cosα, (7.97)

where α is the mauḍhyāṃśa and Cs the śīghra-paridhi.
This can be understood with the help of Figure 7.11. Here S′ is the śīghrocca

which is the centre of the pratimaṇḍala of radius R. The planet P is situated
on this pratimaṇḍala such that PŜ′S is the śīghrakendra. SÔP = α is the
angular separation between the planet P and the Sun. OS′ is the radius of
the śīghravṛtta and is given by

OS′ = Cs

80
×R.

Then,

S′D = OS′ sin(SÔP ) = Cs

80
×R sinα,

OD = Cs

80
×R cosα,

and PD =
√

S′P 2 − SD2 =

√
R2 −

(
Cs

80
×R sinα

)2

. (7.98)
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Fig. 7.11 Obtaining the karṇa of exterior planets at heliacal rising and setting.

Then OP , which is the karṇa Kmd is given by

Kmd = OP = PD +OD

=

√
R2 −

(
Cs

80
×R sinα

)2

+ Cs

80
×R cosα. (7.99)

७.२४.१ बुधϟΔयोः मौؒाेΥΔमावसानकणϸः
7.24.1 Hypotenuse at heliacal rising and setting of the

interior planets

मौؔोकदतЇशभुजकोकटगुणौ ̶भृӖोः
नी٘ा भुजागुणहताͪ चलवृٌभेदाͪ ।
शीΘौजवृٌϓतम܉फलाͪ तदीयाͪ
संशोی छशࡕखमदम܉फलं टंࢎु ाͪ࢒ ॥ ३१ ॥
तڥगϺतो दोगुϺणवगϺहࣵनाͪ मूलं पुनः कोकटगुणे धनणϺͳ।
कुयЉٌदा ा۫गृकक੮࢒ टाڦोः Φायेण मौؔाڦवसानकणϺः॥ ३२ ॥
mauḍhyoditāṃśabhujakoṭiguṇau jñabhṛgvoḥ
nītvā bhujāguṇahatāt calavṛttabhedāt |
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śīghraujavṛttahṛtamantyaphalāt tadīyāt
saṃśodhya śiṣṭamidamantyaphalaṃ sphuṭaṃ syāt || 31 ||
tadvargato dorguṇavargahīnāt mūlaṃ punaḥ koṭiguṇe dhanarṇam |
kuryāttadā syānmṛgakarkaṭādyoḥ prāyeṇa mauḍhyādyavasānakarṇaḥ || 32 ||

Having obtained the Rsine and Rcosine of the mauḍhyāṃśas of Mercury and Venus,
multiply the Rsine by the difference between the odd and the even śīghravṛttas
and divide by the śīghravṛtta at the beginning of odd quadrant (śīghraujavṛtta).
The result when subtracted from the associated antyaphala would give the true
antyaphala.
From the square of that (sphuṭāntyaphala), subtract the square of the Rsine [of
the mauḍhyāṃśa] and square root of the result is added to or subtracted from the
Rcosine in mṛgādi and karkyādi respectively. The result will be close to the karṇa
at the beginning and ending of the mauḍhya.

The verse 31 expresses the antyaphala (radius of the epicycle) corresponding
to the mauḍhyāṃśa, as the antyaphala at the beginning of the odd quadrant
to which a correction term is added. The corrected antyaphala is further used
to find the karṇas at the heliacal rising and setting of the interior planets.
The correction term to be applied to the antyaphala in order to obtain the
sphuṭāntyaphala, is stated to be

∆rs =
R sinα×∆s

Cso
, (7.100)

where ∆s represents the difference between the odd and the even śīghravṛttas.
Subtracting this from the antyaphala, we have

sphuṭāntyaphala rs = rso −∆rs.

Now we present the rationale behind the above expression. In what follows,
we ignore the correction due to eccentricity of the interior planet’s orbit.

In Figure 7.12, O is the earth, P0 is the Sun and P represents the interior
planet. P0P is parallel to OSi, where OSi is in the direction of the śīghrocca.
Then P0ÔSi = θsk is the śīghrakendra, and P0ÔP is the angle between the true
interior planet at P and the Sun at P0, as viewed from the earth. P0ÔP = α
at the beginning and end of the mauḍhya. We know that the śīghra-paridhi
Cs varies with the śīghrakendra as

Cs = Cso −∆s
R sin θsk

R
, (7.101)

where ∆s is the difference in the radius of the epicycle at the beginning and at
the end of the odd quadrant. In the triangle P0PO in Figure 7.12, P0ÔP = α
and

P0P̂O = PÔS = P0ÔSi − P0ÔP = θsk − α.

Now in the triangle P0OD,
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Fig. 7.12 Obtaining the karṇa at heliacal rising and setting of the interior planets.

P0D = OP0 sin(P0ÔD) = R sinα.

Considering the triangle P0DP ,

P0D = PP0 sin(P0P̂D) = rs sin(θsk − α),

as PP0 = rs is the radius of the śīghravṛtta. Equating the two expressions for
P0D,

rs sin(θsk − α) = R sinα,

or sin(θsk − α)
R

= sinα
rs

.

Since α is small compared to the śīghrakendra θsk, and rs ≈ rso, we have

sin θsk
R

≈ sinα
rso

.

Hence
Cs ≈ Cso −∆s

R sinα
rso

.

The above relation is equivalent to

rs ≈ rso −∆s
R sinα
Cso

, (7.102)
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since rs
R = Cs

80 .
According to verse 32, the karṇas at the rising and setting of the mauḍhya

for mṛgādi and karkyādi are given by

Kmd = (R cosα)±
√
(rs)2 − (R sinα)2.

This is an exact result. The approximation is due to the fact that the only an
approximate value of rs was calculated in the previous verse. The expression
for the karṇa can be understood as follows. In Figure 7.12,

OD = R cos(P0ÔD) = R cosα,

and P0D = R sinα.

Hence,
PD =

√
P0P 2 − P0D2 =

√
r2s − (R sinα)2.

The karṇa OP = Kmd = OD±DP . Here, we should choose ‘+’ for makarādi
as in the figure, and ‘−’ for karkyādi. Hence,

Kmd = (R cosα)±
√
(rs)2 − (R sinα)2. (7.103)

७.२५ मौؒोपΔमावसानयोः Ζहओव̴ेपः
7.25 Latitude of a planet at heliacal rising and setting

कणЎऽयं ̵ेपहारः20 ावसानयोः߃ा۫ौؔार࢒ ।
गुणो औह परम̵ेपो यڥा तावपवखतϺतौ ॥ ३३ ॥
आसुरۦाळमारئमۢमाάयमकΦयͳ ।
चܓादीनЇ Εमादतेाः परम̵ेपघलकݗकाः ॥ ३४ ॥
karṇo’yaṃ kṣepahāraḥ syānmauḍhyārambhāvasānayoḥ |
guṇo hi paramakṣepo yadvā tāvapavartitau || 33 ||
āsurannāḷamāraṇyamantamāśrayamapriyam |
candrādīnāṃ kramādetāḥ paramakṣepaliptikāḥ || 34 ||

While obtaining the latitude (kṣepa) at the commencement and the end of mauḍhya,
the divisor is this mauḍhyārambhāvasāna-karṇa (stated in the previous verse), and
the multiplier is the maximum latitude (paramakṣepa). Or else, we can use these
[kṣepa and hāra] after doing apavartana.
The maximum latitudes in minutes of the planets starting from the Moon etc., are
successively āsuram (270), nāḷam (90), āraṇyam (120), antam (60), āśrayam (120)
and apriyam (120).

20 The term kṣepahāraḥ should be understood as “kṣepasya [ānayane] yo hāraḥ saḥ”.
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Fig. 7.13 Latitude of the Moon.

For the Moon, the latitude β (see Figure 7.13) for an arbitrary value of
its longitude λ is given by β ≈ i sin(λ − λN ), where λN is the longitude of
its node, and i is the inclination of its orbit with the ecliptic whose value is
taken to be 270′. For the planets, the latitude at the commencement and end
of mauḍhya is stated to be

vikṣepa = paramakṣepa
mauḍhyārambhāvasāna-karṇa .

Here, Putumana Somayājī has in view some approximate version of the
expression for the latitudes of planets as in Tantrasaṅgraha (where also the
śīghrakarṇa appears in the denominator). In Figures 7.14 and 7.15, P and

β
h

Q

P

i

S

N

Fig. 7.14 Heliocentric latitude of a planet.

N refer to the true planet and the node, and S the mean Sun. The orbit of
the planet is inclined at an angle i with respect to the ecliptic on which the
mean Sun moves. Now consider Figure 7.14. Since the inclination of the orbit
is small, the heliocentric latitude βh may be written as

βh ≈ i sin(θms − θn), (7.104)

where θms and θn are the longitudes of the planet and its node respectively.
The relation between the geocentric latitude, βE , which is measured with
respect to the Earth, and βh is depicted in Figure 7.15. Here, the arc PQ may
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Fig. 7.15 Obtaining the geocentric latitude of a planet from its heliocentric latitude.

be expressed in two ways

PQ = βE × EP. (7.105)
and PQ = βh × SP. (7.106)

Hence,

βE = βh
SP

EP
, (7.107)

or βE = i sin(θms − θn)
SP

EP
. (7.108)

For exterior planets, the mean Sun S is the śīghrocca, and P is the manda-
sphuṭa which moves on the pratimaṇḍala centred at S, and SP = R (the
trijyā), and EP = śīghra-karṇa. Then

βE = iR sin(θms − θn)
śīghra-karṇa . (7.109)

For the interior planets, the mean Sun is the mean planet, and P is the true
planet which moves on the śīghravṛtta or the śīghra-epicycle centred at S and
is in the direction of the śīghrocca, with respect to S, and SP = rs, the radius
of the śīghra epicycle. Then

βE = i rs sin(θms − θn)
śīghra-karṇa

=
i
(
rs
R

)
R sin(θms − θn)

śīghra-karṇa .

Here θms is the longitude of the śīghrocca corrected by the mandaphala. Hence,
for the interior planets, βmax should be identified with i

(
rs
R

)
. Thus for both

interior and exterior planets, we can write the latitude as

βE = βmax ×R sin(θms − θn)
śīghra-karṇa .
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This relation is stated in Tantrasaṅgraha (verse VII. 5).21 However, it must
be noted that in the above verse in Karaṇapaddhati, the maximum deflection
βmax in the numerator and the śīghrakarṇa in the denominator are mentioned,
whereas the factor R sin(θms − θn) is not mentioned,

The above verse also gives the maximum latitudes of the planets in minutes
using kaṭapayādi notation. These values are listed in Table 7.9. It may be noted
that these values too are the same as in Tantrasaṅgraha.

Maximum latitude
Planet (βmax in minutes)

in kaṭapayādi in numerals
Moon āsuram 270
Mars nāḷam 90

Mercury āraṇyam 120
Jupiter antam 60
Venus āśrayam 120
Saturn apriyam 120

Table 7.9 The maximum latitudes of planets.

७.२६ रओवचܑभुवЅ ओबࠪ߀ासयोजनाऑन
7.26 Diameter of the orbs of the Sun, Moon and the

Earth in yojanas

अकЎڣवं रवेकबϺࠬ߂ासः ोजनाٕकःڦा࢒ ।
शࡄӾं शछशनͬڥ࢈ भवेदाٕनयं भुवः ॥ ३५ ॥
arkodbhavaṃ raverbimbavyāsaḥ syādyojanātmakaḥ |
śaśyaṅgaṃ śaśinastadvad bhavedātmanayaṃ bhuvaḥ || 35 ||

The diameter of the Sun in yojanas is 4410 (arkodbhavam). Similarly that of the
Moon and the Earth are 315 (śaśyaṅgam) and 1050 (ātmanayam) [respectively].

The diameters of the Sun, Moon and the Earth are specified to be 4410, 315,
1050 yojanas respectively. These values are the same as in Tantrasaṅgraha.

21 {TS 2011}, pp. 391-394.



Chapter 8
छायाΥकरणͲ
Gnomonic shadow

८.१ मۊाࢽՉायातः अ̴ղाल߀ղानयनͲ
8.1 Obtaining the Rsine and Rcosine of the latitude

from the midday shadow

कवषुवओڟनमیभाकृखतभϺवकाؔा पकदता पलάखुतः ।
कवषुवओڟनमیभाहताͪ खΡगुणाͪ तङڥϓता̵मौकवϺका ॥ १ ॥
तड٭մावगϺकवेࡅषमूलं ल߂नमौकवϺका ।
एके संࡹारखमՋठۢ ट٘ाथϻࢎु तयोखमϺथः ॥ २ ॥
viṣuvaddinamadhyabhākṛtirbhavakāḍhyā paditā palaśrutiḥ |
viṣuvaddinamadhyabhāhatāt triguṇāt tadvihṛtākṣamaurvikā || 1 ||
tattrijyāvargaviśleṣamūlaṃ lambanamaurvikā |
eke saṃskāramicchanti sphuṭatvārthaṃ tayormithaḥ || 2 ||

The hypotenuse of the gnomon (palaśruti) is obtained by taking the square root of
the sum of 144 (bhavaka) and the square of the mid-day shadow [of the gnomon]
on the equinoctial day (viṣuvaddina).1 The mid-day shadow on the equinoctial day
when multiplied by the radius (triguṇa) and divided by that [hypotenuse] would
be the Rsine of the terrestrial latitude (akṣamaurvikā).
The square root of the square of that [akṣajyā] subtracted from the square of the
radius is the Rcosine of the terrestrial latitude (lambanamaurvikā or lambajyā).
Some [astronomers] prefer that their values be corrected in order to obtain accurate
results.

Several quantities of physical interest can be found through observations
using a śaṅku or a gnomon. The gnomon is placed on level ground, perpen-
dicular to it, and shadow measurements are done with that. The set of verses
given above present expressions for the Rsine and Rcosine of the latitude in
1 The day on which the Sun passes through the equinox.
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terms of the equinoctial shadow. The height of the śaṅku (gnomon) is usually
taken to be 12 units (aṅgulas) in the texts on Indian astronomy. The following
are the expressions for the hypotenuse of the shadow cast by the śaṅku, the
Rsine of the latitude (akṣajyā) and its Rcosine (lambajyā), as given in these
verses:

karṇa =
√

chāyā2 + 144,

akṣajyā = trijyā × chāyā
karṇa ,

lambajyā =
√

trijyā2 − akṣajyā2. (8.1)

We now provide the rationale behind the above expressions using Fig-
ure 8.1. It can be easily seen from the figure that the triangle formed by
the śaṅku (gnomon), the chāyā (shadow) and the karṇa (hypotenuse) is a
right-angled triangle. OX represents the śaṅku (12 units), OY the chāyā and
XY the karṇa. The expression for karṇa is straightforward. Considering the
triangle OXY ,

XY 2 = OY 2 +OX2,

or karṇa2 = chāyā2 + śaṅku2

= chāyā2 + 144,

or karṇa =
√

chāyā2 + 144,

as stated in the verse. On the equinoctial day, the Sun is almost on the equator
throughout the day. Hence, the zenith distance of the Sun as it crosses the
prime meridian (at noon) would be equal to the latitude (ϕ) of the place. That
is, OX̂Y = ϕ. Hence,

sinϕ = OY

XY
, cosϕ = OX

XY
. (8.2)

Now akṣajyā is R sinϕ and lambajyā or lambaka is R cosϕ. Hence, multiplying
the above equation by the radius (trijyā) we have

akṣajyā = trijyā × chāyā
karṇa , (8.3a)

and lambaka = trijyā × śaṅku
karṇa ,

or lambaka = trijyā ×
√

karṇa2 − chāyā2

karṇa

=

√
trijyā2 × (karṇa2 − chāyā2)

karṇa2 .
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Fig. 8.1 Determination of the latitude from the equinoctial shadow of the śaṅku.

Using (8.3a) in the above, we have

lambaka =
√(

trijyā2 − akṣajyā2). (8.3b)

This is what is mentioned in the verse.

८.२ ल߀ा̴ղाुࢌटीकरणͲ
8.2 Corrections to the Rsine and Rcosine of the latitude

भूࠬासाधϺसमाहता̵गुणतञࢢմाϓतं भा࢔तो
ࠬासाधЉदपनीयछशࡕगुछणतौ ल߂ा̵सं̶ौ गुणौ ।
कҤाࠬासदलेन च؝महस࢈ाؽाघलकेनाहरेͪ
तΡाݗौ Εमशोऽ̵ल߂गुणयोः णϻ࢔ तदाݗौ टौࢎु ॥ ३ ॥
bhūvyāsārdhasamāhatākṣaguṇatastrijyāhṛtaṃ bhāsvato
vyāsārdhādapanīyaśiṣṭaguṇitau lambākṣasaṃjñau guṇau |
kakṣyāvyāsadalena caṇḍamahasastātkālikenāharet
tatrāptau kramaśo’kṣalambaguṇayoḥ svarṇaṃ tadāptau sphuṭau || 3 ||

The radius of the earth is multiplied by the akṣajyā and divided by the trijyā, and
the result is subtracted from the radius of the Sun. The remainder is multiplied by
lambajyā and akṣajyā [separately and the results] are divided by the instantaneous
(tātkālika) radius of the orbit (kakṣyāvyāsadala) of the Sun. The results obtained,
when added to and subtracted from the akṣajyā and lambajyā respectively, would
give the accurate [values of the same].
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The expressions for the Rsine and Rcosine of the latitude in terms of the
shadow stated in the verses 1 and 2 do not take the finite size of the Sun into
account. Also in all the calculations, it is the shadow as observed at the centre
of the earth which appears, whereas observations are made on the surface of
the earth. The difference between them is due to ‘parallax’, which is due to
the finite size of the earth.

The above verse gives the corrections to be applied to the observed ‘akṣajyā’
and ‘lambajyā’ due to these two factors via a two step process.
Step 1: Multiply the akṣajyā by the radius of the earth (bhūvyāsārdha)

and divide by the trijyā. The result is subtracted from radius of the Sun
(arkavyāsārdha). That is, we have to find the quantity,(

arkavyāsārdha − akṣajyā × bhūvyāsārdha
trijyā

)
.

Step 2: This quantity obtained in Step 1 is multiplied separately by lam-
bajyā and akṣajyā and divided by the instantaneous kakṣyāvyāsārdha of the
Sun. The results obtained are applied positively and negatively to the akṣa-
jyā and lambajyā respectively. That is, the corrected values of the akṣajyā
and lambajyā are

akṣajyā +
lambajyā ×

(
arkavyāsārdha − akṣajyā×bhūvyāsārdha

trijyā
)

tatkāla-kakṣyāvyāsārdha ,

and

lambajyā −
akṣajyā ×

(
arkavyāsārdha − akṣajyā×bhūvyāsārdha

trijyā
)

tatkāla-kakṣyāvyāsārdha

respectively.
These corrections have been discussed in the chāyāprakaraṇa chapter of

Tantrasaṅgraha2 also, but they are formulated differently here.
The correction which arises owing to the finite size of the Sun is illustrated

in Fig. 8.2. Here OA is the śaṅku and PSQ represents the sectional view of
the Sun, S being the centre. rs = PS is the arkavyāsārdha (radius of the Sun)
and Os = SA is the tatkāla-kakṣyāvyāsārdha (distance of the Sun from the
centre of the earth at that instant).

If the Sun was a point source of light, then the tip of the shadow of the
śaṅku would fall at S′ and ϕ′ = OÂS′ would be the latitude as measured by
the observer. However, if P is the upper extremity of the Sun’s disc, the tip of
the shadow of the śaṅku would fall at P ′ and ϕ′′ = OÂP ′ would be the actual
value of the latitude observed. Now

ϕ′ = OÂS′ = OÂP ′ + P ′ÂS′ = ϕ′′ + γ,

2 {TS 2011}, 131-214.
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Fig. 8.2 Correction due to the finite size of the Sun.

where γ is the angular semidiameter of the Sun. Therefore,

R sinϕ′ = R sin(ϕ′′ + γ)
≈ R sinϕ′′ + γ.R cosϕ′′, (8.4)

since γ is very small, that is, γ << ϕ′′. Similarly,

R cosϕ′ = R cos(ϕ′′ + γ) ≈ R cosϕ′′ − γ.R sinϕ′′

Also, since γ is small

γ ≈ R sin γ = PS

SA
= rs

Os
= arkavyāsārdha

tatkāla-kakṣyā-vyāsārdha .

Therefore,

R sinϕ′ = R sinϕ′′ + rs
Os

.R cosϕ′′, (8.5)

and R cosϕ′ = R cosϕ′′ − rs
Os

.R sinϕ′′. (8.6)

Since the observed value of the latitude ϕ′′, the radius of the Sun rs, and the
distance of the Sun Os are known, the first corrected value of the latitude ϕ′

can be calculated.
Now we consider the correction due to the parallax as depicted in Figure 8.3.

O represents the centre of the earth and A, the location of the observer. S is
the Sun, OS = Os is the radius of the Sun’s orbit at that instant and OA = re
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Fig. 8.3 Correction due to parallax.

is the bhūvyāsārdha, or the radius of the earth. ϕ′ is the latitude including the
correction due to the finite size of the Sun.

Considering the triangle OAS in Figure 8.3,

sin p
re

= sin(180− ϕ′)
Os

,

or sin p = sinϕ′ re
Os

. (8.7)

Also, from the figure,
ϕ = ϕ′ − p,

where AŜO = p is the parallax. Therefore,

sinϕ = sin(ϕ′ − p)
= sinϕ′ cos p− cosϕ′ sin p. (8.8)

Using (8.7) in (8.8) and considering the fact that p << ϕ so that cos p ≈ 1,
we have

R sinϕ ≈ R sinϕ′ −R cosϕ′R sinϕ′

R

re
Os

.

Similarly
R cosϕ ≈ R cosϕ′ +R sinϕ′R sinϕ′

R

re
Os

.

Using the expression for R sinϕ′ and R cosϕ′ given by (8.5) and (8.6) respec-
tively, and neglecting higher order terms (of order rers

O2
s

), we have
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R sinϕ = R sinϕ′′ +R cosϕ′′

(
rs −

re.R sinϕ′′

R

)
Os

, (8.9)

and R cosϕ = R cosϕ′′ −R sinϕ′′

(
rs −

re.R sinϕ′′

R

)
Os

. (8.10)

These are the expressions stated in the above verse, as rs is the arkavyāsārdha,
re is the bhūvyāsārdha, Os is the tatkāla-kakṣyāvyāsārdha, and R sinϕ′′ and
R cosϕ′′ are the uncorrected akṣajyā and lambajyā.

८.३ इࡓकाले महाशӺुՉायानयनͲ

8.3 Obtaining mahāśaṅku and chāyā at any desired instant

अӾुलाठٕकयाभीࡕՋायया तΡ भा࢔तः ।
महाशӼुΦभे कायϿ संृࡹते ल߂का̵वͪ ॥ ४ ॥

aṅgulātmikayābhīṣṭacchāyayā tatra bhāsvataḥ |
mahāśaṅkuprabhe kārye saṃskṛte lambakākṣavat || 4 ||

Mahāśaṅku and Mahācchāyā at any instant can be obtained from the shadow of
the Sun3 in aṅgulas [at that instant]. [These] have to be corrected just like lambaka
and akṣa.

We explain the concept of mahāśaṅku and mahācchāyā with the help of
Figure 8.4. Here, S is the Sun and F is the foot of perpendicular drawn from
the Sun to the horizon. The angle OX̂Y = FŜO = z is the zenith distance
of the Sun, and OŶ X = FÔS = 90 − z = a is the altitude of the Sun. The
triangles OXY and FSO are similar. In the triangle OXY , OX represents
the usual śaṅku of 12 units in height, and OY is its shadow, or the chāyā.
SF = R cos z and FO = R sin z are referred to as the mahāśaṅku and the
mahācchāyā respectively.

It is stated in the verse that the mahāśaṅku and mahācchāyā are to be
corrected just like the lambajyā and akṣajyā in order to make them sphuṭa.
Let R cos z and R sin z be the sphuṭamahāśaṅku and sphuṭamahācchāyā re-
spectively, where z refers to the zenith distance at the centre of the earth. If
z′ is the observer’s zenith distance,

3 The third case chāyayā used here is ‘hetau tṛtīyā’ and not ‘karaṇe tṛtīyā’. Hence it has
been translated as, ‘from the shadow’.
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Fig. 8.4 The mahāśaṅku and the mahācchāyā.

R cos z = R cos z′ −
R sin z′ ×

(
arkavyāsārdha − R sin z′×bhūvyāsārdha

trijyā
)

tatkāla-kakṣyāvyāsārdha ,

R sin z = R sin z′ +
R cos z′ ×

(
arkavyāsārdha − R sin z′×bhūvyāsārdha

trijyā
)

tatkāla-kakṣyāvyāsārdha .

These relations can be derived in the same way as was done in the previous
section for the case of the akṣajyā and lambajyā.

८.४ महाՉायाभुजाको׈ानयनͲ
8.4 Obtaining the bhujākoṭis of mahācchāyā

छायाӾुलभुजाको׊ौ हते टमहाभयाࢎु ।
छायाӾुलϓते ातЇ࢒ महाभा बाϡकोकटके ॥ ५ ॥
या߅ोٌरा भुजा ाՋायायाः࢒ पूवϺपछ࠻मकोकटः ।
समम؝लगे भानौ नैव भुजा कोकटका न मیाेࢿ ॥ ६ ॥
chāyāṅgulabhujākoṭyau hate sphuṭamahābhayā |
chāyāṅgulahṛte syātāṃ mahābhā bāhukoṭike || 5 ||
yāmyottarā bhujā syācchāyāyāḥ pūrvapaścimakoṭiḥ |
samamaṇḍalage bhānau naiva bhujā koṭikā na madhyāhne || 6 ||

The bhujā and koṭi of mahācchāyā can be obtained by multiplying the bhujā and
koṭi of chāyāṅgula by sphuṭamahācchāyā and dividing by the chāyāṅgula.
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[The direction of] bhujā is along north-south line [whereas] that of koṭi is along
east-west line. When the Sun is on the prime vertical, then there will not be bhujā
[for chāyā], and there is no koṭi [for chāyā formed from] the noon [Sun].
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Fig. 8.5 Obtaining the bhujā and koṭi of mahācchāyā.

In Indian astronomical texts, the azimuthal angle (A′) is measured with
respect to the samamaṇḍala or the prime vertical (great circle passing through
E, W and Z) A′ = A ∼ 90◦, where A is the azimuth measured with respect
to the meridian. In Figure 8.5, OX = 12 is the śaṅku. The Sun is at S,
corresponding to a zenith distance z. A′ is the azimuthal angle of the Sun, as
measured from the prime vertical. OY is the chāyā (shadow), and XY = K
is the karṇa. We have OX = K cos z and OY = K sin z, where z is the zenith
distance. Y Q is drawn perpendicular to the EW line from the tip of the
shadow Y . Then

chāyābhujā = Y Q = OY sinA′

= K sin z sinA′, (8.11)
and chāyākoṭi = OQ = OY cosA′

= K sin z cosA′. (8.12)

Then

mahācchāyābhujā = R sin z sinA′

= R sin zK sin z sinA′

K sin z

= mahācchāyā × chāyābhujā
chāyā , (8.13)

and
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mahācchāyākoṭi = R sin z cosA′

= R sin zK sin z cosA′

K sin z

= mahācchāyā × chāyākoṭi
chāyā . (8.14)

When the Sun is on the prime vertical, the azimuthal angle A′ = 0, and
hence the chāyābhujā and the mahācchāyābhujā also vanish. Similarly, at noon,
the Sun will be on the meridian, and the zenith distance z = 0. Then, both
the chāyākoṭi and mahācchāyā-koṭi are also zero.

८.५ Δाछ۠मۊाࢽभाޯЅ अ̴ղानयनͲ
8.5 Expression for the latitude in terms of the

declination and mid-day shadow

खΡմाहतापΕमतोऽ̵जीवा ाՋӼुभѶा࢒ समवृٌगेऽकϿ ।
मیाࢿभापΕमचापयोवЉ भेदोऽ̵चापो कवकदशोु࢈ योगः ॥ ७ ॥
trijyāhatāpakramato’kṣajīvā syācchaṅkubhaktā samavṛttage’rke |
madhyāhnabhāpakramacāpayorvā bhedo’kṣacāpo vidiśostu yogaḥ || 7 ||

The Rsine of latitude (akṣajīvā) [of a place] is the product of Rsine of declination
(apakramajyā) and the trijyā divided by śaṅku when the Sun is on the prime
vertical (samaśaṅku). Or, the arc of the latitude is the difference between the arcs
of mid-day shadow and the declination. The two arcs are to be added if they are
in opposite directions.

In Figure 8.6, EZW is the samamaṇḍala or the prime vertical. Let z0 be
the zenith distance of the Sun S, when it is on the prime vertical. Then the
samaśaṅku is R cos z0. If the declination of the Sun is δ, then the apakramajyā
is R sin δ. Here it is stated that

R sinϕ = apakramajyā × trijyā
samaśaṅku = R sin δ ×R

R cos z0
. (8.15)

In Figure 8.6, SP = 90 − δ and ZP = 90 − ϕ. In the spherical triangle
SZP , the spherical angle at Z is 90◦. Applying the cosine formula to the side
SP , we have

cos(90− δ) = cos z0. cos(90− ϕ),

or sinϕ = sin δ
cos z0

, (8.16)
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Fig. 8.6 Latitude in terms of the declination and zenith distance.

which is the same as (8.15).
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Fig. 8.7 The zenith distance of the Sun during meridian transit.

In Figure 8.7, OS0 represents the equator and ZÔS0 = ϕ. When the Sun
is at S2, its southerly declination, δs = S2ÔS0, and the zenith distance at
mid-day is z2 = ZÔS2. Then

ϕ = z2 − δs.

Here, the zenith distance ZS2 = z2 and the declination S0S2 = δs are in the
same direction, and the arc of the latitude is the difference between the arcs
of the zenith distance and the declination.
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When the Sun is at S1, its northerly direction is z1 = ZÔS1. Here, z1 and
the northerly declination δn are in opposite directions. In this case,

ϕ = z1 + δn.

८.६ अभीࡓचापयोगओववरयोः ղा
8.6 Expression for the Rsine of sum/difference of two

arcs

अ۬ो۬कोकटहतयोरङभमतगुणयोः खΡजीवया ϓतयोः ।
योगकवयोगौ ातामङभमतगुणचापयोगकववरगुणौ࢒ ॥ ८ ॥
anyonyakoṭihatayorabhimataguṇayoḥ trijīvayā hṛtayoḥ |
yogaviyogau syātāmabhimataguṇacāpayogavivaraguṇau || 8 ||

Multiply each guṇa (Rsine of an arc) by the other koṭi (Rcosine of the other arc)
and divide them by the trijyā. Their sum or difference becomes the guṇa (Rsine)
of the sum or difference of the arcs.

This verse essentially gives the rule for the Rsine of the sum or difference
of two arcs (yogavivaraguṇa). That is, sin(A±B) formula. If α and β be the
two arcs corresponding to the two angles θ and ϕ, then the rule given may be
expressed as

jyā (α± β) = jyā α koṭijyā β ± koṭijyā α jyā β

trijyā ,

R sin (θ ± ϕ) = R sin θ R cos ϕ±R cos θ R sin ϕ

R
. (8.17)

८.७ ल߀ा̴ղानयने Υकारा۠रͲ
8.7 Another expression for the latitude and co-latitude

भाकोकटका गुुणवगϺङभदाڦ पदाؔ-
ՋायाभुजापϓतशԙपमैѿवगϺः ।
हारे धनणϺमनयोमϺहता߽तोऽ̵ः
खΡմा हताͬ भवखत ल߂गुणोऽ࢒कोकटः ॥ ९ ॥
bhākoṭikā dyuguṇavargabhidā padāḍhya-
cchāyābhujāpahṛtaśaṅkvapamaikyavargaḥ |
hāre dhanarṇamanayormahatālpato’kṣaḥ
trijyā hatād bhavati lambaguṇo’sya koṭiḥ || 9 ||
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[Obtain] the square root of the difference between the squares of the bhākoṭi and day
radius (dyujyā) from which the chāyābhujā is subtracted. By the resulting quantity
divide the square of the sum of the gnomon (śaṅku) and the Rsine of declination
(apamajyā), and the result obtained is added to and subtracted from [the initial
result]. Among these, the one which is smaller in magnitude is multiplied by the
radius (trijyā) and divided by the one which is larger in magnitude, in order to
obtain the Rsine of latitude (akṣajyā). The associated Rcosine is the lambajyā.

To start with, we list a few technical terms employed here.

śaṅku = R cos z,
akṣajyā = R sinϕ,

lambajyā = R cosϕ,
dyuguṇa = dyujyā = R cos δ,

bhākoṭikā = chāyākoṭi = R sin z cosA′,

bhādoḥchāyābhujā = R sin z sinA′,

apamajyā = R sin δ.

Now, Let x =
√
R2 cos2 δ −R2 sin2 z cos2 A′ − R sin z sinA′. The expression

for the Rsine of the latitude (akṣajyā) stated in the verse is

akṣajyā = R sinϕ = R×

 (R cos z +R sin δ)2

x
− x

(R cos z +R sin δ)2

x
+ x

 . (8.18)
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Fig. 8.8 Another method to obtain the latitude.
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The rationale behind the above expression can be understood with the help
of Figure 8.8. Here, in the spherical triangle PẐS, PZ = 90 − ϕ, ZS = z,
PS = 90 − δ, PẐS = 90 + A′ and ZP̂S = H, the hour angle. Applying the
sine formula,

sin(90 +A′)
sin(90− δ)

= sinH
sin z

.

Hence sin z cosA′ = cos δ sinH. From this it follows that

x =
√
R2 cos2 δ −R2 sin2 z cos2 A′ −R sin z sinA′

= R(cos δ cosH − sin z sinA′). (8.19)

Now applying the cosine formula to the sides ZS = z, and PS = 90 − δ, we
have

cos z = sinϕ sin δ + cosϕ cos δ cosH,

and sin δ = sinϕ cos z − cosϕ sin z sinA′. (8.20)

Adding the two expressions, and rearranging the terms, we obtain

(cos z + sin δ)(1− sinϕ) = cosϕ(cos δ cosH − sin z sinA′).

Multiplying by R, and squaring, we get

(R cos z +R sin δ)2 = cos2 ϕ
(1− sinϕ)2

x2

= 1 + sinϕ
1− sinϕ

x2.

Therefore, 1 + sinϕ
1− sinϕ

= (R cos z +R sin δ)2

x2 . (8.21)

From this, it is easy to see that

sinϕ = (R cos z +R sin δ)2 − x2

(R cos z +R sin δ)2 + x2 ,

or R sinϕ = R×

 (R cos z +R sin δ)2

x
− x

(R cos z +R sin δ)2

x
+ x

 , (8.22)

which is the same as (8.18).
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८.८ दशेहारकः࢒
8.8 Obtaining the svadeśahāraka

ࠬासाधϺवगϺतो लޔः टयाࢎु ल߂जीवया ।
दशेहारकः࢔ ΦोѶो ः߂ल࢈ࠬ स उՒते ॥ १० ॥
vyāsārdhavargato labdhaḥ sphuṭayā lambajīvayā |
svadeśahārakaḥ prokto vyastalambaḥ sa ucyate || 10 ||

The result [obtained by] dividing the square of the vyāsārdha (radius) by the cor-
rected lambajyā is known as svadeśahāraka. This is [also] referred to as the vyasta-
lamba.

The svadeśahāraka defined in the above verse may be expressed as

svadeśahāraka = R2

R cosϕ
. (8.23)

Svadeśahāraka is used to calculate the time difference (deśāntarakāla) be-
tween two places on the same latitude circle. Now a distance d between two
places on a latitudinal circle corresponding to a latitude ϕ, corresponds to a
distance d

cosϕ on the equator.
The circumference of the earth is specified as 3300 yojanas. A distance

of 3300 yojanas on the equator corresponds to a difference of one day or
60 ghaṭikās. Hence the time difference corresponding to a distance d on the
latitudinal circle, or d

cosϕ on the equator would be

δt = d

3300 cosϕ
× 60

= d

3300
× 60

R

(
R2

R cosϕ

)
ghaṭikās. (8.24)

८.९ अक਽ Δाछ۠ղाڤղुयोरानयनͲ
8.9 Obtaining the krāntijyā of Sun and the dyujyā

गुण࠻तुकवϻशखतभागजातः परापम࢈ने हतेࡕजीवा।
खΡմा ϓता Εाठۢगुणोऽ࢒कोकटः मुौकवϺकाڦ ाͬ࢒ कदननायक࢒॥ ११ ॥
guṇaścaturviṃśatibhāgajātaḥ parāpamastena hateṣṭajīvā |
trijyā hṛtā krāntiguṇo’sya koṭiḥ dyumaurvikā syād dinanāyakasya || 11 ||
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The Rsine of 24◦ is the Rsine of maximum declination (paramāpamajyā). [This]
multiplied by the desired Rsine [of the longitude] and divided by the trijyā would
be the krāntijyā. The associated Rcosine is the dyujyā of the Sun.

Let δ and λ be the declination and the longitude of the Sun respectively,
then the relation stated in the text may be written as

R sin δ = R sin(24◦)R sinλ
R

, (8.25)

where R sin(24◦) is stated to be the Rsine of the maximum declination
(paramāpamajyā) in the text.
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Fig. 8.9 Obtaining the krāntijyā of Sun in terms of the longitude.

The rationale for the above expression can be understood with the help
of Figure 8.9. ΓBB0 and ΓSS0 are the quadrants of the equator and the
ecliptic intersecting at the vernal equinox, Γ . Consider the situation when the
Sun is at S on the ecliptic, when its longitude is λ = ΓÔS. Draw the arc
SB = δ perpendicular to the equator, where δ is the declination. Draw ST
perpendicular to OB, and SO′ = R sinλ perpendicular to OΓ . Draw S0T0
perpendicular to OB0. Now S0ÔT0 = SÔ′T = ϵ, the obliquity of the ecliptic.
Then, S0T0 = R sin ϵ and ST = R sin δ.

Now the triangles SO′T and S0OT0 are similar. Therefore,

ST

S0T0
= SO′

S0O
,

or R sin δ
R sin ϵ

= R sinλ
R

. (8.26)

Hence,
R sin δ = R sin ϵ.R sinλ

R
. (8.27)

It is straightforward to see from the above relation that the declination
has the maximum value when λ = 90◦. That is, δmax = ϵ. This is known as
paramāpama. In all the Indian astronomical works the obliquity ϵ is taken to
be 24◦. Hence (8.27) reduces to



8.10 Different methods of obtaining prāṇakalāntaras 249

R sin δ = R sin(24◦)R sinλ
R

.

The corresponding koṭijyā, R cos δ is known as dyujyā. This is the radius of
the diurnal circle, when the declination of the Sun is δ, and it figures in many
relations related to diurnal problems.

८.१० Υाणकला۠रगणनायЅ ΥकारवैओवۊͲ
8.10 Different methods of obtaining prāṇakalāntaras

अڦ܉जुीवाहतबाϡजीवЇ इڦࡕमुौࠬЉ कवभजेदवाݗͳ ।
चापीकृतं बाϡगुण࢒चापाͬ कवशोङधतं Φाणकलाۢरं࢒ाͪ ॥ १२ ॥
कोटीगुणं ࠬासदलेन संहٖेڦࡕमुौࠬЉ कवभजेदवाݗͳ |
चापीकृताͪ कोकटगुण࢒चापे ٖѶेऽथवा Φाणकलाۢरं࢒ाͪ ॥ १३ ॥
दोः कोकटमौࠬЎवϺधतञࢢमौࠬЉ लंޔ परापΕमबाणकनӳͳ ।
մुाϓतंڦ Φाणकलाۢरं तͪ युӓौजपादΕमतो धनणϺͳ ॥ १४ ॥
antyadyujīvāhatabāhujīvāṃ iṣṭadyumaurvyā vibhajedavāptam |
cāpīkṛtaṃ bāhuguṇasya cāpād viśodhitaṃ prāṇakalāntaraṃ syāt || 12 ||
koṭīguṇaṃ vyāsadalena saṃhatyeṣṭadyumaurvyā vibhajedavāptam |
cāpīkṛtāt koṭiguṇasya cāpe tyakte’thavā prāṇakalāntaraṃ syāt || 13 ||
doḥ koṭimaurvyorvadhatastrimaurvyā
labdhaṃ parāpakramabāṇanighnam |
dyujyāhṛtaṃ prāṇakalāntaraṃ tat
yugmaujapādakramato dhanarṇam || 14 ||

Multiply the last day-radius (antyadyujyā) by the Rsine of the longitude (bāhujyā)
and divide by the desired day-radius (dyujyā). The arc of this, when subtracted
from the longitude (the arc of the desired bāhujyā), would be the prāṇakalāntara.
Or else, the Rcosine of the longitude of the Sun is multiplied by the radius (trijyā)
and divided by the desired day-radius (dyujyā). From the arc of [this], when the
arc of the Rcosine of the longitude of the Sun is subtracted, [the result obtained]
would be the prāṇakalāntara.
The product of the Rsine and Rcosine of the longitude is divided by the radius.
The result is multiplied by the versine of the maximum declination (paramāpakram-
abāṇa) and divided by desired day-radius (dyujyā). [The associated arc] gives the
prāṇakalāntara. This is positive for even quadrants and negative for odd quadrants.

We explain the rationale behind the three expressions for prāṇakalāntara
given in the verses above, with the help of Figure 8.10. Here the point of in-
tersection of the celestial equator and the ecliptic is the sāyana meṣādi. The
Sun is situated on the ecliptic at S. The angle between the ecliptic and the
celestial equator, SΓ̂D = ϵ. ΓS = λ is the longitude of the Sun, measured
along the ecliptic. The circle PSD is the meridian passing through S and is
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perpendicular to the celestial equator. Hence, the spherical angle ΓD̂S = 90◦
and, SD = δ, is the declination of the Sun. Also, ΓD = α, is the Right Ascen-
sion (R.A.) of the Sun, which is called the natakāla. The term prāṇakalāntara
refers to the difference between the R. A. and the longitude of the Sun. That
is,

prāṇakalāntara = α− λ,

where α and λ are arcs expressed in minutes. This corresponds to part of the
equation of time which is due to the obliquity of the ecliptic. It can be seen
that the prāṇakalāntara is positive in the even quadrants and negative in the
odd quadrants.
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Fig. 8.10 Determination of prāṇakalāntara.

Verses 12, 13 and 14, essentially present the following three formulae to
obtain the prāṇakalāntara:

α ∼ λ = λ− sin−1
(
cos ϵ sinλ

cos δ

)
,

α ∼ λ = sin−1(cosλ)− sin−1
(
cosλ
cos δ

)
,

α ∼ λ = sin−1
(
sinλ cosλ(1− cos ϵ)

cos δ

)
. (8.28)

In what follows, we present a derivation of these relations. For this, consider
the spherical triangle ΓPS. In this, ΓP̂S = α and PS = 90− δ. Also, PΓ̂S =
90◦ − SΓ̂D = 90− ϵ. Applying the sine formula to this triangle,
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sinα
sinλ

= sin(90− ϵ)
sin(90− δ)

, or sinα = cos ϵ sinλ
cos δ

. (8.29)

Hence
α = sin−1

(
cos ϵ sinλ

cos δ

)
. (8.30)

Thus, we obtain
α− λ = sin−1

(
cos ϵ sinλ

cos δ

)
− λ, (8.31)

which is the first of the equations (8.28) for α ∼ λ.
Now, consider the spherical triangle ΓSD. Here, ΓD̂S = 90◦, and SD = δ.

Applying the cosine formula, we obtain

cosλ = cosα cos δ,

or cosα = cosλ
cos δ

. (8.32)

Therefore,

sin−1
(
cosλ
cos δ

)
= sin−1(cosα) = 90◦ − α or 90◦ + α,

and sin−1(cosλ) = 90◦ − λ or 90◦ + λ.

Hence

α ∼ λ = 90◦ ± α− (90◦ ± λ)

= sin−1
(
cosλ
cos δ

)
− sin−1(cosλ), (8.33)

which is the second of the relations (8.28) for α ∼ λ.
Now consider the expression,

sinλ cosλ(1− cos ϵ)
cos δ

= sinλcosλ
cos δ

− cosλ sinλ cos ϵ
cos δ

= sinλ cosα− cosλ sinα
= sin(λ− α). (8.34)

Hence
α ∼ λ = sin−1

[
sinλ cosλ(1− cos ϵ)

cos δ

]
, (8.35)

which is the third of the relations (8.28) for α ∼ λ given in the set of verses
above.
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८.११ चरղानयनͲ
8.11 The expression for the ascensional difference or

carajyā

पलմया हतापमाͪ࢔ल߂केन भूगुणः ।
ततञࢢजीवयाहताͬ जुीवयाڦ ϓतं चरͳ ॥ १५ ॥
palajyayā hatāpamāt svalambakena bhūguṇaḥ |
tatastrijīvayāhatād dyujīvayā hṛtaṃ caram || 15 ||

The Rsine of the latitude (palajyā), multiplied by Rsine of the declination (apama-
jyā) and divided by Rcosine of the latitude (lambaka) of the place, would be the
bhūguṇa (generally referred to as earth-sine or kṣitijyā). That multiplied by the
radius and divided by the day-radius (dyujīvā) would be the Rsine of ascessional
difference (carajyā).

We first explain the concepts of the earthsine (kṣitijyā) and Rsine asces-
sional difference (carajyā), before presenting the derivation of the expressions
for them given in the above verse.
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Fig. 8.11 Ascessional difference when the Sun is on the equator.

When the Sun is on the equator (declination, δ = 0), the duration of the day
(sunrise to sunset) is 12 hours irrespective of the latitude (ϕ) of the observer.
Hence, the Sun takes six hours from meridian-transit to the setting on the
horizon, and the hour angle at sunset would be 90◦. When the declination
of the Sun is northerly (δ > 0), the Sun takes more than six hours from the
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meridian transit to the setting on the horizon, and correspondingly, the hour
angle at sunset can be written as 90◦ +∆α. This ascessional difference ∆α is
called cara and R sin∆α is called carajyā. Similarly the hour angle at sunset is
less than 90◦ when the declination is southerly (δ < 0) and can be expressed
as 90◦ −∆α, as depicted in Figure 8.13.

In Figure 8.12, X represents the setting point of the Sun on the horizon, and
XV = δ is Sun’s declination. The great circle VWT is the celestial equator
and the small circle XY T ′ which is parallel to it is the diurnal circle of the
Sun on that day, whose radius is dyujyā or R cos δ. The great circle PYW is
known as the unmaṇḍala (6 o’ clock circle). WP̂Z = 90◦, and Ht = XP̂Z is
the hour angle at sunset. XP̂Y = ∆α is the ascessional difference or cara.
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Fig. 8.12 Ascessional difference when the declination of the Sun is northerly.

Now in the spherical triangle XPZ, XZ = 90◦, PX = 90◦ − δ and
PZ = 90◦ − ϕ. Applying the cosine formula, we have

cos 90◦ = cos(90− δ) cos(90− ϕ) + sin(90− δ) sin(90− ϕ) cosHt,

or cosHt = − tanϕ tan δ.

As Ht = (90 +∆α), we obtain

sin∆α = tanϕ tan δ. (8.36)

Now the earthsine (kṣitijyā) is the sine of the ascessional difference on the
diurnal circle and is given by
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kṣitijyā = R sin∆α cos δ = R sinϕR sin δ
R cosϕ

= palajyā × apamajyā
lambaka , (8.37)

as stated in the verse. Hence, carajyā is given by

carajyā = R sin∆α = R tanϕ tan δ

= R sinϕR sin δ
R cosϕ

× R

R cos δ

= kṣitijyā × trijyā
dyujyā , (8.38)

as stated in the verse.
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Fig. 8.13 Ascensional difference when the declination of the Sun is southerly.

८.१२ चरղानयने Υकारा۠रͲ
8.12 Alternate expressions for the carajyā

चरमڦगुुणाहतेࡕदोմЉ कवϓतेڦࡕगुुणेन कालजीवा ।
चरमेण चरेण ताकडता सा खΡभजीवापϓताथवा चरմा ॥ १६ ॥
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खΡմा̵घातादवल߂काݗनेाहٖ दोःΕाठۢगुणं मुौࠬЉڦ ।
हरेदवांݗ चरमौकवϺका ाͪ࢒ तदीयचापा औह चरासवः ःु࢒ ॥ १७ ॥
खΡմा̵घातल߂ЇशेनाहताकदࡕदोगुϺणाͪ ।
तؽो׊ांݗ चरմा࢒ाͬ Ηाࣁा सा Εाठۢचापतः ॥ १८ ॥
caramadyuguṇāhateṣṭadorjyā vihṛteṣṭadyuguṇena kālajīvā |
carameṇa careṇa tāḍitā sā tribhajīvāpahṛtāthavā carajyā || 16 ||
trijyākṣaghātādavalambakāptenāhatya doḥkrāntiguṇaṃ dyumaurvyā |
haredavāptaṃ caramaurvikā syāt tadīyacāpā hi carāsavaḥ syuḥ || 17 ||
trijyākṣaghātalambāṃśenāhatādiṣṭadorguṇāt |
tatkoṭyāptaṃ carajyā syād grāhyā sā krānticāpataḥ || 18 ||

The day-radius associated with the maximum declination (caramadyujyā), multi-
plied by the desired Rsine of longitude (dorjyā) and divided by the desired day-
radius (dyujyā), would be the Rsine of Right Ascension (kālajīvā). That multiplied
by the last carajyā and divided by the radius would be the carajyā alternatively.
The product of the radius and Rsine of the latitude (akṣajyā) divided by the Rcosine
of the latitude (lambaka), when multiplied by Rsine of declination (doḥkrāntiguṇa)
and divided by the Rcosine of declination (dyumaurvī or dyujyā), would give the
carajyā. The arc of this would give the ascensional difference (carāsavaḥ).
The product of the radius and Rsine of latitude (akṣa) is divided by the Rcosine
(laṃbajyā). The desired Rsine [of declination] multiplied by this and divided by
the corresponding Rcosine would be the carajyā. This has to be obtained from the
declination (krānticāpa).

The right ascension α is measured along the celestial equator, and is asso-
ciated with ‘time’ or ‘kāla’. Hence R sinα is called kālajyā or kālajīvā. In the
first half of the verse 16 it is stated that

R sinα = R cos ϵ.R sinλ
R cos δ

. (8.39)

This expression is the same as (8.29) which was derived earlier. In the latter
half of the verse 16 it is stated that

carajyā = kālajyā × caramacara
trijyā . (8.40)

We will now verify this relation. Recalling the expression (8.38) for carajyā,
it may be noted that, once ϕ is fixed the variation is only due to δ, and it
attains maximum (carama) value when δ = ϵ. Thus,

caramacara = R sinϕR sin ϵ
R cosϕ

× R

R cos ϵ
. (8.41)

Hence,
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kālajyā × caramacara
trijyā = R cos ϵR sinλ

R cos δ
R sinϕR sin ϵ

R cosϕ
R

R cos ϵ
1
R

= R sinϕR sin δ
R cosϕR cos δ

R

= carajyā. (8.42)

In verse 17 it is stated that

carajyā = trijyā × akṣajyā
lambaka × doḥkrāntiguṇa

dyumaurvī . (8.43)

Using the standard expressions for the various quantities in the above equa-
tion, we have

R sin∆α = R× R sinϕ
R cosϕ

× R sin δ
R cos δ

= R tanϕ tan δ. (8.44)

In the last quarter of verse 17, it is stated that the arc (cāpa) correspond-
ing to the above carajyā, gives the ascensional difference (carāsava). Verse
18 presents another version of the same result given by (8.43). Towards the
end of the verse it is mentioned that the carajyā is to be obtained from the
declination. Perhaps this has been mentioned explicitly to indicate that, for a
given observer, since the latitude is fixed, ∆α is essentially a function of the
declination δ.

८.१३ चܑओव̴ेपानयनͲ
8.13 Obtaining the declination of the Moon

अڦ܉մुाहतादे̵܉पाद܉ापमोڠतृे ।
अे̵܉पशरा࢈ޱЇ कोकटմЇ खΡմया ϓताͳ ॥ १९ ॥
कऔक੮ नΕाकदतः णϻ࢔ कुयЉद܉फलाݗये ।
तڠते बाϡकोकटմे खΡմाेݗ बाϡकोकटजे ॥ २० ॥
ࠬासाधϿ कोकटजं णϻ࢔ मृगककЉकदतः Εमाͪ ।
तڢाϡफलवगЄѿमूलं कणЎऽΡ राϡजः ॥ २१ ॥
दोःफलं खΡմयां࢈ޱ राϡकणϿन संहरेͪ ।
लޔचापं भवेकदۤोः कव̵ेपचलनाࣃयͳ ॥ २२ ॥
परमापΕमां࢈ޱ राϡकणϻ खΡजीवया ।
कवभजेޔࠄखमۤोः ाͪ࢒ परमΕाठۢमौकवϺका ॥ २३ ॥
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antyadyujyāhatādantyakṣepādantyāpamoddhṛte |
antyakṣepaśarābhyastāṃ koṭijyāṃ trijyayā hṛtām || 19 ||
karkinakrāditaḥ svarṇaṃ kuryādantyaphalāptaye |
taddhate bāhukoṭijye trijyāpte bāhukoṭije || 20 ||
vyāsārdhe koṭijaṃ svarṇaṃ mṛgakarkāditaḥ kramāt |
tadbāhuphalavargaikyamūlaṃ karṇo’tra rāhujaḥ || 21 ||
doḥphalaṃ trijyayābhyastaṃ rāhukarṇena saṃharet |
labdhacāpaṃ bhavedindoḥ vikṣepacalanāhvayam || 22 ||
paramāpakramābhyastaṃ rāhukarṇaṃ trijīvayā |
vibhajellabdhamindoḥ syāt paramakrāntimaurvikā || 23 ||

The Rsine of the maximum latitude of Moon (antyavikṣepa) is multiplied by the
last day-radius (antyadyujyā) and divided by the Rsine of maximum declination
(antyāpama). The result obtained by dividing the product of the Rversine of max-
imum latitude (antyakṣepaśara) and the koṭijyā [of the Rāhu] by the radius, has
to be added to or subtracted from that, depending on whether the rāhubhujā is
karkyādi or makarādi respectively, in order to obtain the antyaphala. That [antya-
phala] multiplied by the bhujājyā and koṭijyā [of the Rāhu] separately and divided
by the radius, would be the bāhuphala and koṭiphala4 respectively. The koṭiphala is
added to, or subtracted from the radius, depending upon whether [the rāhubhujā
is] mṛgādi or karkyādi respectively. The square root of the sum of the squares of
that and bāhuphala is rāhukarṇa. The arc of the result obtained by multiplying bhu-
jāphala by the radius and dividing by the rāhukarṇa, is known as vikṣepacalana of
the Moon. The product of rāhukarṇa and Rsine of maximum declination of the Sun
(paramāpakramajyā), divided by the radius would be the Rsine of the maximum
declination (paramakrāntijyā) of the Moon.

The above set of verses essentially presents the procedure for finding the
declination (krānti) of the Moon. Today it is known that the inclination of
Moon’s orbit with the ecliptic varies over a period of time. However, the angle
of inclination, i is taken to be a constant in Indian astronomy, and its value
is taken as 270′ or 4.5◦.
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Fig. 8.14 Determination of the vikṣepacalanajyā and paramakrāntijyā.

4 In the verse, the word “bāhukoṭije” should be understood as bāhuja and koṭija, or derived
from bāhu and koṭi, namely, bāhuphala and koṭiphala respectively.
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In Figure 8.14, Γ is the vernal equinox, or sāyana-meṣādi. The Moon’s orbit
is inclined to the ecliptic and intersects it at N , at an angle i. N is the Rāhu,
or the ascending node of the Moon. Consider the instant when the Moon is
at M in its orbit. The arc MP is drawn perpendicular to the ecliptic from
M . MN̂P = β is the latitude of the Moon and

⌢

MP= Rβ. The vikṣepa is the
perpendicular distance of the Moon from the plane of ecliptic, and is given by

vikṣepa = R sin β.

It can be seen that the maximum value of the vikṣepa or the paramavikṣepa is
given by

paramavikṣepa = R sin i.

Now ΓN = λN is the longitude of the node in minutes and ΓP = λm is
the longitude of the Moon (in minutes). MX is a part of the meridian circle
passing through the Moon which intersects the equator at X. Then, MX = δm
is the declination of the Moon in minutes. Then, it can be shown that

sin δm = cos ϵ sin β + sin ϵ cosβ sinλm. (8.45)

In the Karaṇapaddhati, as in the Tantrasaṅgraha of Nīlakaṇṭha, an alternate
method to find the declination is given. For this, an expression for the Rsine of
maximum declination of the Moon, is given first. This maximum declination
of the Moon, for a given position of the node, is indeed the instantaneous
inclination I of the Moon’s orbit with the equator.

First, a quantity called antyaphala (x) is defined through the relation

x = paramavikṣepa × antyadyujyā
antyāpakramajyā ± vikṣepaśara × rāhukoṭijyā

trijyā

= R sin i×R cos ϵ
R sin ϵ

± R(1− cos i) |R cosλN |
R

, (8.46)

where the ‘+’ sign is to be taken when the longitude of the node (rāhubhujā)
is karkyādi or 90◦ ≤ λN ≤ 270◦, and ‘−’ when the rāhubhujā is mṛgādi or
270◦ ≤ λN ≤ 90◦. Both these cases are taken into account by the equation

x = R sin iR cos ϵ−R(1− cos i)R cosλN sin ϵ
R sin ϵ

. (8.47)

The bāhuphala Bp and the koṭiphala, Kp are now defined to be

Bp = xR| sinλN |
R

= x| sinλN |, (8.48a)

and Kp = xR| cosλN |
R

= x| cosλN |, (8.48b)

respectively, and the rāhukarṇa is given by
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KR =
√
(R±Kp)2 +B2

p (8.49)

=
√
(R± x| cosλN |)2 + x2 sin2 λN

= R

√
(1 + x

R
cosλN )2 + x2

R2 sin2 λN , (8.50)

as cosλN = ±| cosλN |, depending upon whether λN is mṛgādi or karkyādi
respectively.

Then it is stated that the paramakrāntijyā of the Moon, R sin I (where I
is the instantaneous inclination of the Moon’s orbit as shown in the Figure
(8.14)) is

R sin I = rāhukarṇa × paramāpakramajyā
trijyā

= KR ×R sin ϵ
R

= KR sin ϵ. (8.51)

Now from equations (8.47) and (8.50)

K2
R

R2 = 1 + x2

R2 + 2 x
R

cosλN

= 1
sin2 ϵ

[sin2 ϵ+ (sin i cos ϵ+ cos i cosλN sin ϵ− cosλN sin ϵ)2

+2(sin i cos ϵ+ cos i cosλN sin ϵ− cosλN sin ϵ) cosλN sin ϵ].

By simplifying this, we get

K2
R

R2 = 1
sin2 ϵ

[
(sin ϵ cos i+ cos ϵ sin i cosλN )2 + sin2 i sin2 λN

]
.

Using the above in (8.51) we have,

R sin I =
√

(R sin ϵ cos i+R cos ϵ sin i cosλN )2 + (R sin i sinλN )2. (8.52)

Equation (8.52) is the same as the expression for the paramakrāntijyā given
in Tantrasaṅgraha.5 In Yuktibhāṣā, this expression for the maximum declina-
tion is derived.6 We now provide a derivation based on modern spherical
trigonometry. In Figure 8.14, let NQ = y. Then, ϵ, λN = ΓN , i = ΓN̂Q,
and y = NQ are four adjacent parts in the spherical triangle ΓNQ. Using the
“four-parts” formula, we find

cosλN cos i = sinλN cot y − sin i cot ϵ. (8.53)
5 {TS 2011}, p. 363.
6 {GYB 2008}, pp. 815-817.
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Thus,
cot y = sin ϵ cosλN cos i+ sin i cos ϵ

sin ϵ sinλN
. (8.54)

After some straightforward manipulations, we get

sin ϵ
sin y

=
√
(sin ϵ cos i+ cos ϵ sin i cosλN )2 + (sin i sinλN )2

sinλN
. (8.55)

Now applying the sine formula in the spherical triangle ΓNQ, we have

sin ϵ
sin y

= sin I
sinλN

. (8.56)

Using (8.55) in (8.56) we get,

sin I =
√

(sin ϵ cos i+ cos ϵ sin i cosλN )2 + (sin i sinλN )2,

which is the same as (8.52).
We now take up the expression for R sin δm, where δm is the declination of

the Moon. From the spherical triangle MQX in Figure 8.14, the declination
MX is given by

R sin δm = R sinMQ.R sin I
R

. (8.57)

Now

MQ = MN +NQ

= MN + ΓN +NQ− ΓN

≈ NP + ΓN +NQ− ΓN, (8.58)

where we have assumed that MN ≈ NP as the inclination i is small. Now,
NP + ΓN = λm, is the longitude of the Moon. Hence,

MQ ≈ λm − (ΓN −NQ). (8.59)

Here, ΓN−NQ is called the ’vikṣepacalana’ and shall be denoted by A.7 Then

MQ ≈ λm −A.

Now the expression for the Moon’s declination given in Tantrasaṅgraha is8

7 In Tantrasaṅgraha, the vikṣepacalana, A = ΓN −NQ is approximated by ΓQ. This is
reasonable as i is small ({TS 2011}, pp. 368-369).
8 Though Karaṇapaddhati does not give this formula for the declination of Moon, it gives
all the necessary inputs for calculating it, such as the vikṣepacalana A and the maximum
declination I.
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R sin δm = R sinMQ.R sin I
R

≈ R sin(λm −A)R sin I
R

. (8.60)

In the above verses of Karaṇapaddhati, the expression for the vikṣepacalana is
given by the relation

R sinA = bāhuphala × trijyā
rāhukarṇa

= x| sinλN | ×R

KR

= x sinλN

R sin I
.R sin ϵ. (8.61)

In arriving at the above equation, we have used (8.48b) and (8.51). Substitut-
ing for x from (8.47) in (8.61), the RHS reduces to

(R sin iR cos ϵ−R(1− cos i)R cosλN sin ϵ) sinλN

R sin I
. (8.62)

We will now show that the above expression is the same as R sin(ΓN −
NQ) = R sinA. Now NQ = y, and we had already noted that

sin y = sin ϵ sinλN

sin I
. (8.63)

Also, from the “four-parts formula” involving ϵ, λN = PN , i = PN̂Q and
y = NQ, we have

cosλN cos i = sinλN cot y − sin i cot ϵ,
or sinλN

cos y
sin y

= sin icos ϵ
sin ϵ

+ cosλN cos i.

Multiplying this equation with the equation (8.63) for sin y, we find

cos y = sin ϵ
sin I

(
sin icos ϵ

sin ϵ
+ cosλN cos i

)
. (8.64)

Hence,

R sinA = sin(λN −NQ)
= sinλN cos y − cosλN sin y

= sin ϵ
sin I

[
sinλN

(
sin icos ϵ

sin ϵ
+ cosλN cos i

)
− cosλN sinλN

]
= [sin i cos ϵ− (1− cos i) cosλN sin ϵ] sin λN

sin I
. (8.65)

Using the above equations, Moon’s latitude can be calculated from the relation
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R sin δm = R sin(λm −A)R sin I
R

. (8.66)

This is an exact formula which does not involve any approximation (except
for the relation MN ≈ NP ), unlike the expression in Tantrasaṅgraha where
A = ΓN −NQ is approximated by ΓQ.

८.१४ मा۪ाऒद-इनाऒदղानयनͲ
8.14 Obtaining the mānyādijyās and the inādijyās

खΡմावगϿणाहताद̵कणЉͪ մकाभѶहࣵनाःࢢմुाभѶाञڦ ।
मा۬ाकदմाः संभृता̵ेΡदशेे दवेाݗा࢈ा हारजीवा इनाڦाः ॥ २४ ॥
trijyāvargeṇāhatādakṣakarṇāt dyujyābhaktāstrijyakābhaktahīnāḥ |
mānyādijyāḥ saṃbhṛtākṣetradeśe devāptāstā hārajīvā inādyāḥ || 24 ||

The hypotenuse of the equinoctial shadow (akṣakarṇa) multiplied by the square of
the radius [is to be kept at two places]. [One is] divided by the day-radius (dyujyā)
and [the other] by the radius. Subtracting the latter result from the former would
give the mānyādijyās. At a place where the Rsine of the latitude (akṣajyā) is 647
(saṃbhṛtaṃ) [minutes], [these] divided by 48 would give the hārajīvas given by the
vākyas ina etc.

For the standard śaṅku of 12 aṅgulas, the hypotenuse of the equinoctial
shadow is given by

akṣakarṇa = 12
lambajyā = 12

cosϕ
. (8.67)

The mānyādijyās and the inādijyās given in the above verse may be ex-
pressed as

mānyādijyās = akṣakarṇa ×
(

R2

R cos δ
−R

)
= 12

cosϕ
×
(

R2

R cos δ
−R

)
, (8.68)

and inādijyās = mānyādijyās
48

= 1
4× cosϕ

×
(

R2

R cos δ
−R

)
. (8.69)

The above quantities are of relevance in the computation of solar eclipses.
The verse also specifies that these quantities are to be calculated at a place
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where the Rsine of the latitude (akṣajyā) is given by 647′. This corresponds
to a latitude of 10◦50′50′′.9

The inādijyās, given in the edition of Karaṇapaddhati along with Malay-
alam Commentaries10 for the above value (647′) of the akṣajyā, are listed in
Table 8.1. These vākyas can be put together in the verse form as given below.

इनः पुनगЉनमनाः सनी पटुङभϺया ङधया ।
गाΡहरो बलࣷ हलࣷ कवभुधϺवशमϺनटः ॥
शतं धृतं लसͪ तथा धीࢉ-पदͳ Φभो गदः ।
inaḥ punargānamanāḥ sanī paṭurbhiyā dhiyā |
gātraharo balī halī vibhurdhavaśarmanaṭaḥ ||
śatam dhṛtaṃ lasat tathā dhīstha-padam prabho gadaḥ |

In Table 8.1, we also give the computed values, for the same latitude,
of inādijyās by taking the declination values in (8.69) that correspond to
longitudes which are multiples of 225′.

८.१५ ल߀नहारकः त࢐ोपयोग࠹
8.15 Lambanahāraka and its application

धूळࣸरागो भुवो वृٌं तेन चΕЇशका हताͪ ।
कदनयोजनभोगाͪ࢒ाͪ लޔो ल߂नहारकः ॥ २५ ॥
खΡմातो ल߂हारांݗ नाकडकाۢڦल߂नͳ ।
तदवेगखतभागӳं शोंی छायाकवधौ नराͪ ॥ २६ ॥
dhūḷīrāgo bhuvo vṛttaṃ tena cakrāṃśakā hatāt |
dinayojanabhogāt syāt labdho lambanahārakaḥ || 25 ||
trijyāto lambahārāptaṃ nāḍikādyantalambanam |
tadevagatibhāgaghnaṃ śodhyaṃ chāyāvidhau narāt || 26 ||

The circumference of the earth is 3299 (dhūḷīrāga) [yojanās]. The product of 360
(cakrāṃśaka) and the [common] daily motion of the planets in yojanās (dinay-
ojanabhoga) is divided by this, and what is obtained is the divisor for parallax
(lambanahāraka).
By dividing the trijyā by [this] lambanahāraka, the maximum parallax (antyalam-
baka) in nāḍikā etc., is obtained. The same (antyalambaka) multiplied by the daily
motion of the Moon in degrees, has to be subtracted from the gnomon (śaṅku) in
the computation of the shadow (chāyā).

9 According to P. K. Koru, this could be a place close to Shoranur (latitude 10◦46′12′′)
({KP 1953}, p. 293). According to S. K. Nayar, the place could be Alattur ({KP 1956},
p. 272).
10 {KP 1956}, p. 272.
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longitude declination mnemonic tabulated comp. value
i λ = i× 225′ δ (in min.) in the value akṣakarṇa ×

commentary
(

R2
R cos δ

−R
)

48

1 225 91.46 inaḥ 0 0.3098
2 450 182.60 punar 1 1.2359
3 675 273.07 gāna 3 2.7682
4 900 362.57 manāḥ 5 4.8898
5 1125 450.75 sanī 7 7.5767
6 1350 537.27 paṭur 11 10.7977
7 1575 621.82 bhiyā 14 14.5139
8 1800 704.04 dhiyā 19 18.6787
9 2025 783.60 gātra 23 23.2372
10 2250 860.15 haro 28 28.1268
11 2475 933.36 balī 33 33.2762
12 2700 1002.88 halī 38 38.6068
13 2925 1068.38 vibhur 44 44.0323
14 3150 1129.53 dhava 49 49.4602
15 3375 1186.00 śarma 55 54.7931
16 3600 1237.48 nataḥ 60 59.9301
17 3825 1283.68 śatam 65 64.7694
18 4050 1324.34 dhṛtam 69 69.2105
19 4275 1359.19 lasat 73 73.1575
20 4500 1388.02 tathā 76 76.5220
21 4725 1410.65 dhīstha 79 79.2262
22 4950 1426.92 padam 81 81.2061
23 5175 1436.72 prabho 82 82.4134
24 5400 1440.0 gadaḥ 83 82.8196

Table 8.1 The inādijyās given in the commentary and the computed values.

These verses tell us how to obtain the parallax, which is used to find the
corrections to the gnomon (śaṅku), the shadow (chāyā) as well as in the com-
putation of eclipses. Let re be the radius of the earth and g the dinayojanagati
(which is the same for all the planets) whose value is 7906 yojanas/day (see
(1.93)). The circumference of the earth Ce = 2πre is given as 3299 yojanas.
The expression for lambanahāraka given in the verse is

lh = 360× g

Ce
= 360× 7906

3299
. (8.70)
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The antyalambana in nāḍikās, l is stated to be

l = R

lh
= R× Ce

360× g
= 3438× 3299

360× 7906
= 3.99 nāḍikās. (8.71)

Now, the latter half of verse 26 states that this value multiplied by the
motion of the Moon is to be subtracted from the gnomon in the shadow
measurement process. This is to take into account the effect of parallax. Thus
the expression for the parallax in minutes is given to be

P (minutes) = l × gati-bhāga of the Moon

= l × 790.6
60

. (8.72)

The word gati-bhāga used in the verse, as well as in the above equation, refers
to the daily motion (gati) expressed in degrees (bhāgas).11 Using (8.71) in the
above equation we have,

P (minutes) = R× Ce

360× g
× 790.6

60
= re

10
, (8.73)

as R× Ce = R× 2πre = 360× 60× re and g = 7906.
We now show that this is the value of the horizontal parallax or the maxi-

mum value of the parallax of the Moon, whose mean distance from the earth
(in yojanas) is given by Om = 10R. In Figure 8.15, the zenith distances of the
Moon at the location of the observer A, and at center of the earth, O are z′

and z respectively. The angle AM̂O = z′ − z = p, subtended by the radius
OA = re at M is termed parallax.

In the triangle AMO,

sin p
re

= sin(180− z′)
Om

,

or sin p = re
Om

sin z′. (8.74)

When the Moon is on the horizon z′ = 90◦, the corresponding parallax, P
is known as the horizontal parallax. Clearly,

sinP = re
Om

. (8.75)

Using (8.75) in (8.74), we get
11 The compound gati-bhāga may be derived as: गखत: भागेषु कनकदϺࡕा = गखतभागा:| Gatiḥ
bhāgeṣu nirdiṣṭā = gatibhāgāḥ |
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Fig. 8.15 Horizontal parallax.

sin p = sinP sin z′. (8.76)

Since re
Om

≈ 1
60 , both P and p are small angles, we can use the approxima-

tions, sin p ≈ p and sinP ≈ P = re
Om

. Therefore,

p ≈ P sin z′ = re
Om

sin z′. (8.77)

Here, p and P are in radians. The trijyā, R, is the number of minutes in a
radian, and the distance of Moon Om = 10R. Hence,

P (minutes) = re
Om

×R = re
10

, (8.78)

as implied in the verses (see (8.73)).
Let us now consider the corrections to the chāyā and the śaṅku due to

parallax. The actual zenith distance z = z′ − p. Hence the corrected śaṅku
(that is, the śaṅku at the centre of the earth) is given by

R cos z = R cos(z′ − p)
≈ R cos z′ +R sin z′.p

= R cos z′ +R sin z′. p(in min.)
R

= R cos z′ +R sin z′.P (in min.)
R

.
R sin z′

R
. (8.79)

Similarly, the corrected chāyā is given by
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R sin z = R sin(z′ − p)

≈ R sin z′ −R cos z′. p(in min.)
R

= R sin z′ −R cos z′.P (in min.)
R

.
R sin z′

R
. (8.80)

८.१६ ल߀नղानयनͲ
8.16 Obtaining the lambanajyās

सूयϿܔोभुϺगѶघलݗाकववरकवरऔहता राछशचΕ࢒ घलݗा
भूࠬासाधϿन कनӳा नृपहतऔहमϑӒुगѶघलݗा कवभѶाः ।
खΡմा܉Εाठۢको׊ोयुϺखतदलगुछणताञࢢմयाϓٖ लंޔ
ल߂ӳं खΡմयांݗ चरमफलखमदं ल߂नोٍं वदठۢ ॥ २७ ॥
ٖजेͪ खΡմावगЉՊरमफलवगϿण सऔहताͪ
ङڥकनӳੁ कोकटմЇ चरमफलसंवङधϺततनुͳ ।
ततो मूलं कणϺञࢢभगुणहतं बाϡजगुणं
हरेͪ कणϿनाݗा Ηहणपकठता ल߂नगुणाः ॥ २८ ॥
sūryendvorbhuktiliptāvivaravirahitā rāśicakrasya liptā
bhūvyāsārdhena nighnā nṛpahatahimarugbhuktiliptā vibhaktāḥ |
trijyāntyakrāntikoṭyoryutidalaguṇitāstrijyayāhṛtya labdhaṃ
lambaghnaṃ trijyayāptaṃ caramaphalamidaṃ lambanotthaṃ vadanti || 27 ||
tyajet trijyāvargāccaramaphalavargeṇa sahitāt
dvinighnīṃ koṭijyāṃ caramaphalasaṃvardhitatanum |
tato mūlaṃ karṇastribhaguṇahataṃ bāhujaguṇaṃ
haret karṇenāptā grahaṇapaṭhitā lambanaguṇāḥ || 28 ||

[The result obtained by] subtracting the difference between the daily motions
(gatis) of the Sun and the Moon in minutes from the 21600 (rāśicakralipta) has to be
multiplied by the radius of the earth (bhūvyāsārdha) and divided by the product of
ten and the rate of motion of the Moon expressed in minutes (himarugbhuktilipta).
[The result] is then multiplied by half of the sum of the radius and the Rcosine
of maximum declination (antyakrānti-koṭi) and divided by the radius. This result
when multiplied by Rcosine of latitude (lamba) and divided by the radius is called
as lambanottha-caramaphala.
Subtract the product of this caramaphala and Rcosine (koṭijyā) multiplied by two
from the sum of the squares of the caramaphala and the radius. Square root [of
this result] is the karṇa. The Rsine (bāhuguṇa) [of the zenith distance] multiplied
by the radius (tribha) and divided by this karṇa is the lambanaguṇa tabulated in
[the computation of] eclipse.

The effect of the parallax is to increase the zenith distance z, of a celestial
object. That is, z as seen by an observer on the surface of the earth, would be
greater than the zenith distance at the centre of the earth. So, effectively, if z
be the zenith distance of a celestial object, it will be enhanced by an amount,
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p = P sin z, along the vertical passing through it, due to the parallax. The
component of the parallax along the ecliptic, which represents the effective
change in the longitude due to the parallax, is called ‘lambana’.
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Fig. 8.16 Obtaining the parallax of a celestial body.

In Figure 8.16, M and M ′ represent the actual and the apparent positions
of the Moon. That is, ZM and ZM ′ would be the zenith distances measured
by the observers at the centre of the earth and on the surface respectively.
Now, MM ′ = p is the parallax, which is along the vertical passing through
M . The ecliptic and the secondary to the ecliptic KMA passing through M
are shown in the figure. Let ξ be the angle between the vertical through M
and the secondary to the ecliptic. Then the lambana, ∆λ, is given by

∆λ = M ′A = MM ′ sin ξ = p sin ξ. (8.81)

Hence, one needs to find the angle ξ to determine the lambana. The proce-
dure for this, given in Tantrasaṅgraha, is fairly lengthy and involved. However,
in Karaṇapaddhati, an approximate method to find the lambana is given, based
on simpler considerations, and a different approach.

To start with, instead of considering the lambana as such, the text con-
siders a related quantity called lambanottha-caramaphala. While, the lambana
is the displacement along the ecliptic due to parallax, the lambanotthaphala
is the westward displacement along the diurnal circle of the Moon in the
time interval corresponding to the ‘lambana’. Lambanottha-caramaphala is the
maximum value of this when z = 90◦. The z-dependence comes in through
‘lambanajyā’, which is considered in verse 28. In verse 27 the expression for
lambanottha-caramaphala (lc) is given as follows:
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lc =
[rāśicakraliptā − (indugati − sūryagati)(in liptās)]

nṛpa × himarugbhukti

×bhūvyāsārdha × 1
2
[trijyā + antyakrāntikoṭi]

trijyā × lamba
trijyā

= 21600− (gm − gs)
10× gm

× (re)×
1
2 [R+R cos ϵ]

R
× R cosϕ

R
, (8.82)

where gm and gs are the daily rates of motion of the Moon and the Sun in
minutes respectively, and ϕ is the latitude. The rationale behind this can be
understood with the help of Figure 8.17.
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Fig. 8.17 Obtaining the lambanottha-caramaphala.

Consider an equatorial observer (ϕ = 0). Then, the celestial equator is a
vertical circle. In fact, it coincides with the prime vertical. For the moment,
if we ignore the inclination of the Moon’s orbit and also assume that it is
close to the vernal or autumnal equinox, then the diurnal motion of the Moon
would be more or less on the equator, which is the prime vertical. Then the
horizontal parallax, MM ′ would be along the equator as shown in Figure
8.17 (a). Here,

MM ′ (minutes of arc) = re
10

, (8.83)
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as explained earlier. This is the change in the longitude ∆λ due to parallax.
The time interval in days corresponding to this change in longitude is

re
10× gm

, (8.84)

where gm is the daily motion of the Moon. Now the east-west motion of the
stars per civil day is (21600 + gs), where gs is the daily motion of the Sun
in minutes. The Moon moves eastwards with respect to the stars at the rate
of gm per day (gm in minutes). Hence, the net westward motion of the Moon
per day is

21600 + gs − gm = 21600− (gm − gs) minutes/civil day.

In the time interval given by (8.84), the net westward displacement of the
Moon along the diurnal circle due to parallax, denoted by l, is

l = 21600− (gm − gs)
gm

× re
10

minutes. (8.85)

Assuming that the Moon moves along the ecliptic (taking i = 0) which is
inclined to the equator at an angle ϵ, we have two extreme situations:

1. the ecliptic and the equator intersect at M , the east point of the horizon
as indicated in Figure 8.17 (b), and,

2. the ecliptic and equator intersect at zenith and nadir as indicated in Figure
8.17 (c).

In the former case, the displacement MM ′ due to the parallax and the ecliptic
make an angle ϵ, and the lambana, along the ecliptic will be, MM1 = cos ϵ×
MM ′. In the latter case, the displacement MM ′ is along the ecliptic itself,
since the ecliptic happens to be a vertical circle, and hence lambana = MM ′.

In a general situation, the multiplication factor is between cos ϵ and 1. In
his Malayalam exposition of the Karaṇapaddhati, P. K. Koru12 suggests that,
the factor

1
2
(1 + cos ϵ) = R+R cos ϵ

2R
(8.86)

represents the average situation.
Now consider the situation for a place with latitude ϕ, as depicted in Fig-

ure 8.17 (d). In this case, the deflection due to parallax MM ′′ along the
vertical has a component along the equator given by M1M

′ = MM ′′ cosϕ, as
the equator is inclined at an angle ϕ with the prime vertical. Now, we have to
multiply this by 1

2 (1+cos ϵ) as earlier, to take into account the obliquity of the
ecliptic. Thus, the net displacement along the diurnal circle due to parallax
12 {KP 1953}, p. 297.
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corresponding to a zenith distance of 90◦, or the lambanottha-caramaphala, is
given by,

lc =
re
10

× (1 + cos ϵ)
2

cosϕ (in min. of arc)

= 21600− (gm − gs)
gm

× re
10

× (R+R cos ϵ)
2R

R cosϕ
R

, (8.87)

which is the same as (8.82) given in the text. The expression (8.87) will be in
minutes westwards, along the diurnal circle.

Now, consider the lambana for an arbitrary zenith distance z. This is de-
picted in Figure 8.18. In this case,
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Fig. 8.18 Obtaining the lambanajyā.

sin p ≈ p (radians) = AT

AM

= lc sin z√
AT 2 + TM2

= lc sin z√
l2c sin2 z + (R− lc cos z)2

= lc
sin z√

R2 + l2c − 2lcR cos z
. (8.88)

Hence

p (minutes) = p (radians).R

= lc
R

R sin z.R√
R2 + l2c − 2lcR cos z

. (8.89)
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Now, the karṇa is given by

K =
√
R2 + l2c − 2lcR cos z. (8.90)

Hence, the lambanajyā as defined in verse 28, is

lambanajyā = R.R sin z
K

. (8.91)

In verses 27 and 28, a method for obtaining lambanajyās at any place (i.e.,
for any value of ϕ) is described. Now, the author proceeds to explain the
procedure for obtaining the 24 tabular values of lambanajyās at a particular
place. These values are encoded in the 24 vākyas, prītāṅganā etc.

८.१७ ΥीताӼनाऒद-ल߀नղानयनͲ
8.17 Obtaining the prītāṅganādi-lambanajyās

कोटीगुणाङभकनहत࢈नचचΡहࣵनं
मलयंࠂीकेघळमाࢢ पकदतं च कणϺः ।
खΡմाहताͪ भुजगुणादमुना ϓता वा
ΦीताӾनाڦकुदतल߂नमौकवϺकाः ःु࢒ ॥ २९ ॥
koṭīguṇābhinihatastanacitrahīnaṃ
strīkeḷimālyamalayaṃ paditaṃ ca karṇaḥ |
trijyāhatāt bhujaguṇādamunā hṛtā vā
prītāṅganādyuditalambanamaurvikāḥ syuḥ || 29 ||

The product of 2606 (stanacitra) and the Rcosine [of the zenith distance or the
mahāśaṅku] is subtracted from 13515912 (strīkeḷimālyamalayaṃ). The square root
[of the result obtained] is the karṇa. The bhujāguṇa (Rsine of the zenith distance
or the mahācchāya) multiplied by the radius and divided by the karṇa would be
the lambanajyās stated [by the vākyas] beginning with prītāṅganā etc.

In the above verse, the expression for the lambanajyā is stated to be

lambanajyā = bhujāguṇa × trijyā
karṇa , (8.92)

where the karṇa is given by

karṇa =
√

13515912− (2606×R cos z). (8.93)

Thus the complete expression for lambanajyā is

lambanajyā = R sin z ×R√
13515912− (2606×R cos z)

. (8.94)
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The above equation was used to compute the 24 tabular lambanajyās, and the
values obtained are tabulated for z = 0 to 90◦, at an interval of 225′ = 3◦45′
along with the vākyas in Table 8.2.

z computed value vākya in the tabulated
in minutes lambanajyā commentary13 value

225 361.2480 prītāṅgana 362
450 716.4680 dhiyāsana 719
675 1060.0057 gītijñoyam 1063
900 1386.8988 naḷālaye 1390
1125 1693.1000 sudhātāpam 1697
1350 1975.5867 hasaddhānyam 1978
1575 2232.3620 bhṛguśreṣṭho 2234
1800 2462.3700 matirvarā 2465
2025 2665.3570 dantaaturo 2668
2250 2841.7063 vibhurjāro 2844
2475 2992.2737 vidhurdhīraḥ 2994
2700 3118.2378 parākulaḥ 3121
2925 3220.9741 parorogi 3221
3150 3301.9565 pranīlāṅgo 3302
3375 3362.6835 bhartālolaḥ 3364
3600 3404.6261 munirbhṛguḥ 3405
3825 3429.1948 dhīrobhṛguḥ 3429
4050 3437.7181 sulābhogaḥ 3437
4275 3431.4332 rudrobhargaḥ 3422
4500 3411.4824 priyobhṛguḥ 3412
4725 3378.9150 sosaulambaḥ 3377
4950 3334.6914 bhṛgorlīlā 3334
5175 3279.6898 dhīsthorāgi 3279
5400 3214.7129 mayūragaḥ 3215

Table 8.2 The Prītāṅganādi-lambanajyās given in the commentary.

The rationale for the numbers appearing in the above equation can be
understood by comparing (8.93) with (8.90). It is clear that the lambanottha-
caramaphala, lc = 1303. Hence,

R2 + l2c =
(
21600
2π

)2

+ 13032 ≈ 13515911.86 ≈ 13515912,

13 {KP 1956}, p. 277.
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which is the number stated in the verse.
Now, we recall the expression for lc given by the equation (8.82) from the

previous section. Here, we know that gm = 790.6′, gs = 59.1′, re = 3299
2π =

525 yojanas and ϵ = 24◦. Hence,

lc
cosϕ

= 21600− (790.6− 59.1)
7906

× 525(1 + cos(24◦))
2

= 1325.87,

or ϕ = cos−1
(

lc
1325.87

)
= 639.44′. (8.95)

Therefore, the lambanajyās given in the Table 8.2 appear to be the ones for a
place whose latitude is ϕ = 639.44′.14 It is seen that the tabulated values are
close to the computed values, except when z = 4275′, where the discrepancy
is nearly 9.4′.

८.१८ योगीरѴाऒद-ल߀नղानयनͲ
8.18 Obtaining the yogīraktādi-lambanajyās

कोटीմाӳनेाघनागेन हࣵनाͪ Φ̶ामोहΦायवाѿाͪ पदं यͪ ।
तेनावाݗाͬ दोगुϺणाͪ कातरӳाͪ योगीरѶेٖाकदका ल߂नմाः ॥ ३० ॥
koṭījyāghnenāghanāgena hīnāt
prajñāmohaprāyavākyāt padaṃ yat |
tenāvāptād dorguṇāt kātaraghnāt
yogīraktetyādikā lambanajyāḥ || 30 ||

The product of 3040 (aghanāgaṃ) and the Rcosine (of the zenith distance), is
subtracted from 14128502 (prajñāmoha-prāyavākyam). 261 (kātara) multiplied by
the dorguṇa (Rsine of the zenith distance or the mahāśaṅku) and divided by the
the squareroot of the quantity obtained earlier would be the lambanajyās [given by
the vākyas] yogīrakta etc.

In the above verse, the expression for a new lambanajyā is given to be

lambanajyā = R sin z × 261
karṇa , (8.96)

where the karṇa is

karṇa =
√

14128502− (3040×R cos z). (8.97)
14 This is close to the latitude value 10◦50′50′′ which was referred to in verse 24 above.
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Comparing the expression for karṇa given in the above equation with (8.90),
it follows that the value of lc works out to be

lc =
3040
2

= 1520, (8.98)

Using this value of lc in (8.95) we have,

lc
1325.87

= cosϕ > 1. (8.99)

That is, the value of lc = 1520 is not possible for any physical value of the
latitude ϕ. Notwithstanding this, we compute the lambanajyās which are now
defined through the relation

lambanajyā = R sin z × 261√
l2c +R2 − 2lcR cos z

. (8.100)

It may also be mentioned here that the significance of the number 261 is
also not clear. However, we note that

R× 60
261

= 3438× 60
261

= 790.345

≈ 790.6 ≃ gm,

or 261 ≈ R× 60
gm

, (8.101)

where gm is the rate of motion of the Moon per day in minutes.

We have computed the values of lambanajyās for z = i.225′ (i = 1, 2…24)
and have listed them with the values given by the mnemonics yogīrakta in
both the Commentaries,15 in Table 8.3. We note that for the smaller values
of the zenith distance, the errors are large. We can also find the value of lc
which fits the computed value with the tabulated value. That is, find lc such
that

lambanajyā (tabulated) = R sin z × 261√
l2c +R2 − 2lcR cos z

, (8.102)

for different values of z. We find that lc = 1549, 1573 and 1545 for z =
225′, 450′ and 675′ respectively. In fact if the lambanajyā is taken to be 61 for
z = 450′, lc = 1542. The computed values of the lambanajyās for lc = 1545 are
also displayed in Table 8.3. We see that the values represented by the vākyas
are very close to these computed values, especially for smaller values of z.
15 {KP 1956}, p. 279.
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z computed value vākya in the tabulated computed value
in minute of lambanajyā commentary value of lambanajyā

for lc = 1545

225 27.4296 yogī 31 30.7804
450 54.4015 rakto 62 60.8568
675 80.4864 nidhanam 90 89.5892
900 105.3074 supaṭam 117 116.4527
1125 128.5573 kavikṛt 141 141.0654
1350 150.0066 vṛṣasya 164 163.1938
1575 169.5036 lajjaḍhyaḥ 183 182.7381
1800 186.9681 anakhaḥ 200 199.7073
2025 202.3809 svapure 214 214.1894
2250 215.7712 tarurāṭ 226 226.3292
2475 227.2038 tagaro 236 236.2800
2700 236.7682 vivare 244 244.2367
2925 244.5690 niśendra 250 250.3735
3150 250.7180 śoṇendraḥ 255 254.8613
3375 255.3290 himaruṅ 258 257.8588
3600 258.5138 nitarām 260 259.5101
3825 260.3793 kataro 261 259.9447
4050 261.0264 kataro 261 259.2779
4275 260.5492 nitarām 260 257.6118
4500 259.0344 himarug 258 255.0366
4725 256.5615 śoṇendra 255 251.6322
4950 253.2036 niśendra 250 247.4691
5175 249.0273 vivara 244 242.6101
5400 244.0936 tuṅgendraḥ 236 237.1108

Table 8.3 The Yogīraktādilambanajyās.

८.१९ Ζहओब߀योजनानЅ कलासु पिरवतϸनͲ
8.19 Obtaining the dimension of the disc of the planets

in minutes

कब߂ादीनЇ योजनाकन हताकन खΡभजीवया |
टयोजनकणϿनࢎु भѶा۬षेЇ कलाः ࢑तृाः || ३१ ||
bimbādīnāṃ yojanāni hatāni tribhajīvayā |
sphuṭayojanakarṇena bhaktānyeṣāṃ kalāḥ smṛtāḥ || 31 ||
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The diameters of the planets in yojanas multiplied by the radius and divided by
the true distance in yojanas (sphuṭayojanakarṇa) are said to be the diameters [of
the discs] of the planets in minutes.

O

Op

Dp

pθ

Fig. 8.19 Dimension of the disc of the planets.

Let Dp be the bimbavyāsayojana or the diameter of a planet in yojanas, and
Op, the true distance between the centres of the earth and the planet (sphuṭay-
ojanakarṇa). Then, the angular diameter of the planet may be obtained from
the relation

tan θp
2

≈ θp
2

= Dp

2Op
,

since θp is small. In the above relation both Dp and Op are in yojanas, and θp
is in radians. As the angular diameter in minutes Dp (min.) = θpR, we are
led to

Dp(min.) = Dp

Op
×R, (8.103)

which is the relation stated in the verse.

८.२० रवीۢओुब߀कलानयने Υकारा۠रͲ
8.20 Obtaining the dimension of the discs of the Sun and

the Moon

अथवा ाݗटगखतघलࢎु कबࠬ߂ास࢒ योजनैगुϺछणताः ।
कदनयोजनगखतकवϓता࢒࢈च घलݗा भवठۢ रकवशछशनोः ॥ ३२ ॥
athavā sphuṭagatiliptā bimbavyāsasya yojanairguṇitāḥ |
dinayojanagativihṛtāstasya ca liptā bhavanti raviśaśinoḥ || 32 ||

Or, the diameter of the discs of the Sun and the Moon in minutes can be obtained by
multiplying their sphuṭagatis in minutes by the diameter of the orbs (bimbavyāsa)
in yojanas and dividing by the daily motion (dinayojanagatis) in yojanas.

If g is the dinayojanagati or the mean rate of motion of a planet in yojanas
per day, and gsp (in min.) the true rate of motion (sphuṭagati) in minutes, it
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is clear that
gsp(in min.) = g

Op
×R.

Comparing this with equation (8.103),

R

Op
= Dp (min.)

Dp
= gsp (in min.)

g
, (8.104)

or Dp (min.) = Dp × gsp (in min.)
g

(8.105)

= Dp × sphuṭagati
dinayojanagati , (8.106)

which is what given in the verse. This applies to all the planets including the
Sun and the Moon. It may be recalled here that the dinayojanagati is taken
to be the same for all the planets.

८.२१ चܑकҢाࢇ-भूՉायाࠪासानयनͲ
8.21 Obtaining the diameter of earth’s shadow on the

Moon’s orbit

भूࠬासयोजनहताः शछशभुगѶघलݗा
भू߅क੮ कव࢈खृतङभदा हतभानुगٖा ।
हࣵनाः पुनकदϺवसयोजनभुगѶभѶा
घलݗा भवठۢ तमसः शछशमागϺग࢒ ॥ ३३ ॥
bhūvyāsayojanahatāḥ śaśibhuktiliptā
bhūmyarkavistṛtibhidā hatabhānugatyā |
hīnāḥ punardivasayojanabhuktibhaktā
liptā bhavanti tamasaḥ śaśimārgagasya || 33 ||

The product of the rate of motion of the Sun (bhānugati) and the difference between
diameters (vistṛti) of the earth and the Sun, is subtracted from the product of
the earth’s diameter (bhūvyāsa) in yojanas and the rate of motion of the Moon
(śaśibhukti) in minutes. The remainder divided by the daily rate of motion in
yojanas (divasayojanabhukti), would be the diameter in minutes of the shadow
(tamas) that moves on the Moon’s orbit.

Figure 8.20 depicts a lunar eclipse. Here Ds and De are the diameters of
the Sun and the earth in yojanas. Os and Om are the distances of the Sun and
the Moon from the earth in yojanas. Let Dt be the diameter of the earth’s
shadow in the plane of the Moon’s path in yojanas (or minutes). From the
geometry of the figure, it is clear that
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Fig. 8.20 Determination of the angular diameter of the Earth’s shadow.

2SA− 2EF

Os
= 2EF − 2MB

Om
,

or Ds −De

Os
= De −Dt

Om
.

∴ Dt (yojanas) = De −
Om

Os
(Ds −De)

= OsDe −Om(Ds −De)
Os

. (8.107)

Let gm and gs be the rates of motion of the Moon and the Sun in minutes.
Since the linear velocities of all the planets are the same, we have

Os gs = Omgm = g,

or Os

Om
= gm

gs
. (8.108)

Using (8.108) in (8.107) we get

Dt (yojanas) = gmDe − gs(Ds −De)
gm

. (8.109)

Hence,

Dt (minutes) = Dt (yojanas) ×R

Om

= gmDe − gs(Ds −De)
g (yojanas) , (8.110)

as stated in the verse.
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८.२२ Ζहओब߀कलݕानयनͲ
8.22 Obtaining the bimbaliptās of the planets

हायϻ ा۫ۤशीΘोकदतफलकववरे࢒ कऔक੮ नΕाकदयाते
णϻ࢔ जवधछशखरЇशाؔहࣵनेۦणЄѿभेदाग࢔ शरࣷरे ।
त࢑ाͪ प֎ӳमौؔोकदतलवकवϓता कब߂घलݗाः कुजादःे
ाथशीत̵तपुघलनϓताःۦڦानोࢉ ता࠻ कैछͪ࠻ Φकदࡕाः ॥ ३४ ॥
hāryaṃ syānmandaśīghroditaphalavivare karkinakrādiyāte
svarṇaṃ svarṇaikyabhedānnijavadhaśikharāṃśāḍhyahīne śarīre |
tasmāt pañcaghnamauḍhyoditalavavihṛtā bimbaliptāḥ kujādeḥ
sthānodyannāthaśītakṣatapulinahṛtāḥ tāśca kaiścit pradiṣṭāḥ || 34 ||

The product of differences of successive mandaphalas and śīghraphalas is divided by
225 (śikhara). [The result obtained is to be] added to [225 (śikhara)] itself, if both
the differences are positive or negative and it is to be subtracted from [śikhara] if
one [of them] is positive while the other is negative. The differences of successive
mandaphalas and śīghraphalas are to be added [to the result obtained earlier] if
they are karkyādi and are to be subtracted from [the result] if they are makarādi.
That becomes the dividend (hārya). This hārya when divided by the product of
5 and the mauḍhyāṃśas of the planets, gives the bimbaliptās of the planets Mars
etc. [There,] according to some, the hārya has to be divided by the hārakas 107
(sthānodyat), 70 (nātha), 65 (śīta), 60 (kṣata) and 91 (puḷina) in order to obtain
the bimbaliptās.

The term manda-śīghrodita-phalavivare refers to the difference of successive
mandaphalas and difference of successive śīghraphalas. Let ∆mi and ∆si de-
note these differences respectively. In the verse, the term nijavadhaśikharāṃśa
refers to the product of them divided by 225 (śikharāṃśa), that is

∆mi ×∆si

225
. (8.111)

This quantity is added to or subtracted from 225 (śarīra). Then we obtain
the result (denoted by x) as

x = 225± ∆mi ×∆si

225
. (8.112)

Here, the sign ‘+’ is taken when both (the ∆mi and ∆si) are positive
(svarṇaikya) and ‘−’ is taken when one is positive and the other is negative
(svarṇabheda). Both the ∆mi and ∆si are to be added or subtracted from
the above result (x) obtained depending upon whether they are karkyādi or
makarādi. Hence, the term hārya mentioned in the above verse can be written
as
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hārya = x+∆mi +∆si (if both ∆mi and ∆si are karkyādi),
hārya = x+∆mi −∆si (for ∆mi is karkyādi and ∆si makarādi),
hārya = x−∆mi +∆si (for ∆mi is makarādi and ∆si karkyādi),
hārya = x−∆mi −∆si (if both ∆mi and ∆si are makarādi).

This hārya when divided by the product of 5 and mauḍḥyāṃśas of the planets
would give the bimbaliptās of the respective planets. That is,

bimbaliptās = hārya
5× mauḍhyāṃśas .



Chapter 9
मۊाࢽकाललӎͲ
Ascendent at the meridian transit

९.१ काललӎऑनवϸचनं त࢏ा΢ाुࡂदया࢒ानयन֌
9.1 Defining kāla-lagna and obtaining the rising times of

rāśis therefrom

कृतायनेࡕराेۢࡄ चरΦाणकलाۢरे ।
कुयЉͪ तकदࡕराۢࡄकाललӐमुदाϓतͳ ॥ १ ॥
इࡕतّवूϺराۢࡄकाललӐाۢरЇशकाः ।
दशाहता भवۢीࡕराछशमानकवनाकडकाः ॥ २ ॥
kṛtāyaneṣṭarāśyante caraprāṇakalāntare |
kuryāt tadiṣṭarāśyantakālalagnamudāhṛtam || 1 ||
iṣṭatatpūrvarāśyantakālalagnāntarāṃśakāḥ |
daśāhatā bhavantīṣṭarāśimānavināḍikāḥ || 2 ||

The ascensional difference (cara) and the prāṇakalāntara are to be applied to the
[longitude of the] end of the desired zodiacal sign (rāśyanta) which is corrected for
the movement of equinox (ayanacalana). The result thus obtained is stated to be
the kālalagna corresponding to the end of the desired zodiacal sign (rāśyanta).
The difference in degrees, between the kālalagnas of the desired rāśyanta and the
one preceding it when multiplied by 10, would be the rising time of the sign
(rāśimāna) in vināḍikās.

In the set of verses given above the author introduces the notion of kālalagna
and gives the procedure for finding the rising time of rāśis using kālalagna.
The kālalagna of a point on the ecliptic is the time interval between the rise
of the vernal equinox, Γ , and the rise of the given point on the ecliptic. We
explain the concepts with the help of Figure 9.1.

Here Γ is the vernal equinox, where the celestial equator and the ecliptic
intersect, which is rising at the east point E on the horizon. R is a point on the
ecliptic with tropical (sāyana) longitude λ, right ascension α, and declination
δ. A section of the diurnal circle in which R moves is also depicted in the

283
V. Pai et al., Kara apaddhati of Putumana Somayājī, Sources and Studies in the History  
of Mathematics and Physical Sciences, https://doi.org/10.1007/978-981-10-6814-0_

.n
9

© Springer Nature Singapore Pte Ltd. 2018 and Hindustan Book Agency 2018 

https://doi.org/10.1007/978-981-10-6814-0_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-6814-0_9&domain=pdf


284 मیाࢿकाललӐͳ Ascendent at the meridian transit

X

α

∆α

e
q
u
a
to

r

e
c
lip

tic
 

EΓ ,

P

Z

horizon

R

Fig. 9.1 Determination of the kālalagna.

figure. X represents the point on the diurnal circle at which the object with
longitude λ rises. Consider the angle

RP̂X = α−∆α. (9.1)

Here ∆α = EP̂X denotes the cara which is given by

sin∆α = tanϕ tan δ. (9.2)

The expression (9.1) denotes the time between the rise of Γ and an object
with tropical longitude λ, in sidereal units. This is essentially the expression
for kālalagna which may also be written as

kālalagna = λ+ (α− λ−∆α). (9.3)

Here α − λ is the prāṇakalāntara and λ is the sāyana longitude1 which is
referred to as kṛtāyana in the verse. Hence,

kālalagna = λ+ (prāṇakalāntara − cara),

which is the expression given in verse 1. What is of particular interest is the
iṣṭarāśyantakālalagna, which is the kālalagna corresponding to the end point
of the desired rāśi, given by λ = i× 30, where i = 1, 2, . . . , 12.

The term rāśimāna employed in verse 2 actually refers to “the time taken
by the rāśi” to come up above the horizon. If Ki denotes the kālalagna corre-
sponding to the ith rāśi, given by
1 The term sāyana longitude refers to the sum of the nirayaṇa longitude (sphuṭa) and
the ayanāṃśa (amount of precession of equinoxes.)
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Ki = λi − [(αi − λi)−∆αi] ,

then Ki −Ki−1 is the kālalagnāntara (difference in kālalagnas) referred to in
the first half of the verse 2. The beginning point of a rāśi is of course the
end-point of the previous rāśi. Now the duration of a day is 60 naḍikās or
3600 vināḍikās corresponding to 360◦ in angular units. Hence 1◦ corresponds
to 10 vināḍikās and the rāśimāna is given by

Rising time of ith rāśi = (Ki −Ki−1)× 10 (in vināḍikās).

Note: In Tantrasaṅgraha also, the kālalagna of a point on the ecliptic is the
time interval between the rise of the vernal equinox Γ and the rise of the
given point on the ecliptic. However, apart from this, the concepts considered
in Tantrasaṅgraha and Karaṇapaddhati are somewhat different. In Tantrasaṅ-
graha, madhyakāla is the R.A. of a point on the equator which is situated on
the meridian, and madhyalagna is the longitude of the meridian ecliptic point
and an algorithm is presented for finding the madhyalagna from madhyakāla.2

In Karaṇapaddhati, madhyakāla and madhyalagna are not mentioned. In-
stead, as may be seen from Section 9.4, we have the concept of madhyāh-
nakālalagna which is the time interval between the rise of Γ and the instant
when a star with a non zero latitude is on the meridian. Algorithms for finding
the madhyāhnakāla given here have no equivalents in Tantrasaṅgraha. These
algorithms involve very careful analysis of the properties of spherical triangles.

९.२ अग۪ࡄाऒदयोगताराणЅ टЅश̴ेपौࢌु
9.2 The longitudes and latitudes of the “junction stars”

commencing with aśvinī

तट̶ो गुणेन Φसۦो नृन߅ो वरेئो कनकवࡕो वदा۬ो नृपेܓः ।
हिरΣा समुΣः Φहारो कदना߂ःु वाӾो࢈ कनसगЎ कवळӾो कवϒढः ॥ ३ ॥
कवभाव࢈णृौघो गजाभो धनेशो बलेशो ϐताशः कळाٕा कवप̵ः ।
̵मा̵ो कनळाۢो कनरासः रेतेु࢒ ΕमादङधϺता दέपूवЉः टЇशाःࢎु ॥ ४ ॥
न߅ः कΦयो मुकनमЉनी कनٖं पूմ࢈नुनϺनु ।
ानेࢉ ̶ानी कΦयो लोके सूनुः Φा̶ःࢉले पुनः ॥ ५ ॥
लӐे भानुजϺनࢉाने सूनुनЉगद࢈लं ननु |
वΕ࢈Ρ ननु ̵ेपभागा दέाकदतः Εमाͪ ॥ ६ ॥
दέाۢकायϺमभगाकदखत वकࢿवायुव࢔केपाͬ ङڥहिरϥपϺगता࠻ सौ߅ाः ।
या߅ाः परे वϑणनैऋ੮ तϥपϺभानЇ ̵ेपाु࢈ कदࠬनगनागकलाठۮताे࢈ ॥ ७ ॥

2 {TS 2011}, pp. 248-254.
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taṭajño guṇena prasanno nṛnamyo
vareṇyo niviṣṭo vadānyo nṛpendraḥ |
haridrā samudraḥ prahāro dināmbuḥ
stavāṅgo nisargo viḷaṅgo virūḍhaḥ || 3 ||
vibhāvastṛṇaugho gajābho dhaneśo
baleśo dṛtāśaḥ kaḷātmā vipakṣaḥ |
kṣamākṣo niḷānto nirāsaḥ syurete
kramādardhitā dasrapūrvāḥ sphuṭāṃśāḥ || 4 ||
namyaḥ priyo munirmānī nityaṃ pūjyastanurnanu |
sthāne jñānī priyo loke sūnuḥ prājñaḥ sthale punaḥ || 5 ||
lagne bhānurjanasthāne sūnurnāgastilaṃ nanu |
vakrastatra nanu kṣepabhāgā dasrāditaḥ kramāt || 6 ||
dasrāntakaryamabhagāditi vahnivāyu-
vasvekapād dvihariśūrpagatāśca saumyāḥ |
yāmyāḥ pare varuṇanaiṛtaśūrpabhānāṃ
kṣepāstu divyanaganāgakalānvitāste || 7 ||

The numbers 16, 53, 72, 100, 124, 140, 184, 210, 228, 257, 282, 308, 346, 370,
394, 424, 444, 456, 483, 509, 533, 569, 591, 614, 656, 690 and 720 when halved
(ardhita) represent the values of the longitudes [of the stars], beginning with aśvinī,
in degrees.
The numbers 10, 12, 5, 5, 10, 11, 6, 0, 7, 0, 12, 13, 7, 2, 37, 1, 3, 4, 8, 7, 7, 30,
36, 0, 24, 26 and 00 represent the values of the latitudes (kṣepa) [of the stars] in
degrees beginning with aśvinī.
[The stars] dasra (aśvinī), antaka (bharaṇī), aryama (pūrvāphalgunī), bhaga (ut-
tarāphalgunī), aditi (punarvasu), vahni (kṛttikā), vāyu (svātī), vasu (dhaniṣṭhā),
ekapādvī (pūrvabhādrapadā and uttarabhādrapadā), hari (śravaṇa) and śūrpa (viśākhā)
have northerly latitude (Saumya). The others have southerly latitude (Yāmya).
To the aforementioned latitudes of varuṇa (śatabhiṣaj), nairṛta (mūla) and śūrpa
(viśākhā), 18, 30 and 30 minutes respectively have to be added.

The verses 3 and 4, give the values of twice the longitudes of the junction
stars in the 27 nakṣatras in degrees in kaṭapayādi notation. These values are
specified commencing with the star aśvinī referred to as dasra, and are listed
in Table 9.1.

Verses 5–6 present the magnitude of deflection (vikṣepa) of these stars from
the ecliptic in degrees in kaṭapayādi notation. These values are tabulated in
Table 9.2. Verse 7 gives the direction of this vikṣepas. It is stated that the
vikṣepas of aśvinī, bharaṇī, pūrvaphalgunī, uttaraphalgunī, punarvasu, kṛttikā,
svātī, dhaniṣṭhā, pūrvabhādrapadā, uttarabhādrapadā, śravaṇa and viśākhā are
towards the north (saumya) of the ecliptic. These are denoted by introducing
‘+’ sign in the table. The vikṣepas of the rest of the junction stars having
southerly declination (yāmya) are denoted by ‘−’ sign in the table. It is further
stated that 18′ (divya), 30′ (naga) and 30′ (nāga) are to be added to the
vikṣepas of śatabhiṣaj, mūla and viśākhā respectively. These corrrected values
are indicated in the parentheses in Table 9.2.
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Name of the Twice the longitude of
Nakṣatra stars in degrees

in kaṭapayādi in numerals

Aśvinī taṭajñaḥ 16
Bharaṇī guṇena 53
Kṛttikā prasannaḥ 72
Rohiṇī nṛnamyḥ 100

Mṛgaśirā vareṇyaḥ 124
Ārdrā niviṣṭaḥ 140

Punarvasu vadānyaḥ 184
Puṣya nṛpendraḥ 210
Āśleṣā haridrā 228
Maghā samudraḥ 257

Pūrvaphalgunī prahāraḥ 282
Uttaraphalgunī dināṃbuḥ 308

Hasta tavāṅgaḥ 346
Citrā nisarga 370
Svāti viḷaṅgaḥ 394

Viśākhā virūḍhaḥ 424
Anurādhā vibhāvaḥ 444
Jyeṣṭhā tṛṇaughaḥ 456
Mūla gajābhaḥ 483

Pūrvāṣāḍhā dhaneśaḥ 509
Uttarāṣāḍhā baleśaḥ 533

Śravaṇa dhṛtāśaḥ 569
Dhaniṣṭhā kaḷātmā 591
Śatabhiṣaj vipakṣaḥ 614

Pūrvabhādrapadā kṣamākṣaḥ 656
Uttarabhādrapadā niḷāntaḥ 690

Revatī nirāsaḥ 720
Table 9.1 Twice the longitudes of the “junction stars” in the 27 nakṣatras.

९.३ भानЅ टओव̴ेपानयनͲࢌु
9.3 Obtaining the true declinations of the stars

न̵ΡाणЇ टाःࢎु कायЉः सकलाः संृࡹतायनाः ।
तेषЇ Εाठۢगुणाः ाःࡕࢍ ताःࡹकव̵ेपसंृ࢔࢔ ॥ ८ ॥
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Name of the The latitudes
Nakṣatra of stars in degrees

in kaṭapayādi in numerals

Aśvinī namyaḥ +10
Bharaṇī priyaḥ +12
Kṛttikā muniḥ +05
Rohiṇī mānī −05

Mṛgaśirā nityam −10
Ārdrā pūjyaḥ −11

Punarvasu tanuḥ +06
Puṣya nanu 00
Āśleṣā sthānī −07
Maghā jñānī 00

Pūrvaphalgunī priyaḥ +12
Uttaraphalgunī loke +13

Hasta sūnuḥ −07
Citrā prājñaḥ −02
Svāti sthale +37

Viśākhā punaḥ +01(1.5)∗

Anurādhā lagne −03
Jyeṣṭhā bhānuḥ −04
Mūla janaḥ 08(8.5)∗

Pūrvāṣāḍhā sthāne −07
Uttarāṣāḍhā sūnuḥ −07

Śravaṇa nāgaḥ +30
Dhaniṣṭhā tilam +36
Śatabhiṣaj nanu 00(0.3)∗

Pūrvabhādrapadā vakraḥ +24
Uttarabhādrapadā tatra +26

Revatī nanu 00

Table 9.2 The latitudes of the “junction stars” in the 27 nakṣatras.

परमापΕमको׊ा कव̵ेपմЇ कनहٖ तؽो׊ा ।
इࡕΕाठۢं चोभे खΡմाेݗ योगकवरहयोӔे ः࢈ ॥ ९ ॥
सकदशोः संयुखतरनयोकवϺयुखतकवϺकदशोरपΕमः ःࡕࢍ ।
Ϻմा3ुڦापΕमकोकटࡕࢍ कव̵ेपम؝ले वसताͳ ॥ १० ॥

3 For getting the intended meaning (evident from the context), as well as to see that the
sentence is gramatically correct we need to introduce a ‘visarga’ after the word ‘koṭi’.
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nakṣatrāṇāṃ sphuṭāḥ kāryāḥ sakalāḥ saṃskṛtāyanāḥ |
teṣāṃ krāntiguṇāḥ spaṣṭāḥ svasvavikṣepasaṃskṛtāḥ || 8 ||
paramāpakramakoṭyā vikṣepajyāṃ nihatya tatkoṭyā |
iṣṭakrāntiṃ cobhe trijyāpte yogavirahayogye staḥ || 9 ||
sadiśoḥ saṃyutiranayorvidiśorapakramaḥ spaṣṭaḥ |
spaṣṭāpakramakoṭidyujyā vikṣepamaṇḍale vasatām || 10 ||

The true longitudes (sphuṭas) of the nakṣatras have to be corrected by the amount
of precession (ayanacalana). Their true declinations can be obtained by applying
the corrections based on their respective latitudes (vikṣepas).
Take the product of the Rcosine of the maximum declination (paramāpakramakoṭi)
and Rsine of the latitude (vikṣepajyā), and similarly obtain the product of Rcosine
of the latitude (vikṣepakoṭijyā) and a desired Rsine of the declination (iṣṭakrānti);
divide [both the products] by trijyā. [Now, the results obtained are] ready for
additive and subtractive operations.
If the latitude (vikṣepa) and declination (krānti) are along the same direction, then
take the sum [of the results obtained earlier] and if they are in opposite directions,
then take their difference and that would be the true declination (spaṣṭāpakrama).
The Rcosine of the true declination would be the radius of the diurnal circle (dyu-
jyā) for objects that lie on a latitudinal circle (vikṣepamaṇḍala) [off the ecliptic].

It is the tropical or the sāyana longitude which figures in most of the diurnal
problems. This is equal to the sum of the nirayana longitude and the amount
of precession or the ayanacalana. The declination of a celestial object which
lies on the plane of the ecliptic in terms of the tropical longitude λ is given by

sin δ = sin ϵ sinλ,

where ϵ is the obliquity of the ecliptic. But when the celestial object is off the
ecliptic, this relation is no longer valid, as we have to take the latitude β or
vikṣepa of the object into account. Verse 8 simply states that the latitude of
the stars have to be considered for obtaining the accurate value of declination
without giving details of how it has to be applied. The next couple of verses
give the procedure for obtaining the declination of a celestial object with
latitude.

Let δ be the declination of a celestial object whose tropical longitude is λ
and latitude is β. Let δ′ be the declination of an imaginary object situated
on the ecliptic (β = 0) with the same longitude λ. The iṣṭakrāntijyā of the
celestial object is the declination of this imaginary object and is given by the
formula

R sin δ′ = R sin ϵ sinλ. (9.4)

Then it is stated that the Rsine of true declination (spasṭāpakrama) is the
sum (or difference) of the two terms given below.

The reading in the existing editions is without visarga. That is մुाڦापΕमकोकटࡕࢍ |
(Spaṣṭāpakramakoṭidyujyā).
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spaṣṭāpakramajyā = paramāpakramakoṭi × vikṣepajyā
trijyā

∼ vikṣepakoṭijyā × iṣṭakrāntijyā
trijyā . (9.5)

Considering only the ‘+′ sign for the time being, the above relation may be
expressed in the form

R sin δ = R cos ϵR sin |β|
R

+ R cosβR sin δ′

R
. (9.6)

Using (9.4) in the above equation and simplifying we have

sin δ = cos ϵ sin |β|+ cosβ sin ϵ sinλ. (9.7)

In Figure 9.2(a) the star is to the north of both the ecliptic and the equator.
Hence the declination is given by the sum of the two terms in the RHS of
(9.5). However when the star lies to the south of the ecliptic and to the north
of the equator as indicated in Figure 9.2(b), then the difference of the two
terms in RHS of (9.5) is to be considered for obtaining the declination of the
star. In other words, the true declination is given by

sin δ = cos ϵ sin |β| ∼ cosβ sin ϵ sinλ. (9.8)

The rationale behind (9.7) and (9.8) can be understood with the help of
Figure 9.2.
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Fig. 9.2 Finding the declination of a celestial object with a non-zero latitude.

Let X be the celestial object whose longitude and latitude are given by
ΓA = λ and XA = |β| respectively in Figure 9.2(a). Here, P and K are the
poles of the equator and ecliptic respectively. Consider the spherical triangle
PKX. The sides of the triangle are given by PX = 90 − δ, KX = 90 − |β|
and KP = ϵ. The spherical angle PK̂X = 90 − λ. Now, applying the cosine
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formula, we have

cos(90− δ) = cos ϵ cos(90− |β|) + sin ϵ sin(90− |β|) cos(90− λ),
or sin δ = cos ϵ sin |β|+ cosβ sin ϵ sinλ, (9.9)

which is the same as (9.2) given in the text. In a similar manner by applying
the cosine formula to the triangle PKX in Figure 9.2(b), we get

sin δ = cosβ sin ϵ sinλ − cos ϵ sin |β|, (9.10)

which is the same as (9.8).
Finally it is said that for objects lying on the vikṣepamaṇḍala, which is a

small circle parallel to the ecliptic with radius R cosβ, the Rcosine of the true
declination thus determined would be the dyujyā. That is for determining the
radius of the diurnal circle, the value of declination (δ) obtained from (9.9) is
to be used and not the one given by (9.4).

९.४ मۊाࢽकाललӎानयनͲ
9.4 Obtaining the madhyāhnakālalagna

टΕाठۢगुणोࢎु भूयः केवल̵ेपसंृࡹतः ।
परΕाठۢशरा࢈ޱः परΕाठۢϓतो गुणः ॥ ११ ॥
गुणहताͪ खΡभयुҮुटदोगुϺणाͪ4 कदनगुणाݗधनुञࢢभयुҮुटे ।
ऋणधनं समङभۦकदशो भवेͪ कदवसमیगकालकवलӐकͳ ॥ १२ ॥
sphuṭakrāntiguṇo bhūyaḥ kevalakṣepasaṃskṛtaḥ |
parakrāntiśarābhyastaḥ parakrāntihṛto guṇaḥ || 11 ||
guṇahatāt tribhayuksphuṭadorguṇāt
dinaguṇāptadhanustribhayuksphuṭe |
ṛṇadhanaṃ samabhinnadiśo bhavet
divasamadhyagakālavilagnakam || 12 ||

The Rsine of the true declination (sphuṭakrānti), again corrected by the latitude,
multiplied by the Rversine of maximum declination (para-krānti) and divided by
the Rsine of maximum declination would be the multiplier (guṇa).
[This] multiplier has to be multiplied by the Rsine of the sum of the true longitude
(sphuṭa) and 3 signs, and divided by the day-radius (dina-guṇa). The arc [of the
result obtained] is added to or subtracted from the sum of the true longitude and
3 signs, depending on whether the directions of the multiplier and the declination
are the same or different respectively.

4 In the earlier editions of the text, the reading found is “खΡभयु͛ ”टदोगुϺणाͪࢎु (“Trib-
hayuk sphuṭadorguṇāt”). The word-splitting here is unintended and also misleading. This
would mean (90◦ +R sinλ). What is intended is R sin(90 + λ). Hence we have presented
the phrase in its compound form.
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The madhyāhnakālalagna corresponding to any celestial object is the kāla-
lagna when the object is on the prime meridian. It is the time interval between
the rise of the vernal equinox Γ , and the instant when the celestial object is on
the meridian. It can be seen that the madhyāhnakālalagna is equal to 90 + α,
where α is the natakāla or the right ascention (R.A). In Figure 9.3, X denotes
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Fig. 9.3 Determination of the madhyāhnakālalagna.

the celestial object on the prime meridian, and Γ the vernal equinox. The
R.A. of the object is ΓT = α. Clearly, the time (in angular measure) after
the rise of Γ at the eastern point is arc ET + TΓ = 90 + α. This is the
madhyāhnakālalagna for the object X, as it is on the prime meridian.

Verses 11 and 12 prescribe the following procedure for the determination
of the madhyāhnakālalagna. The text first introduces a quantity called guṇa
(the multiplier) which is given by the relation:5

guṇa = (sphuṭakrānti ± kevalavikṣepa)× parakrāntiśara
parakrānti

= (|R sin δ +R sin β|)×R(1− cos ϵ)
R sin ϵ

. (9.11)

With this guṇa we are asked to find the phala given by
5 Here onwards, we include the sign in β, so that it is negative when the declination is
south.
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phala = guṇa × tribhayuk-sphuṭaguṇa
dinaguṇa

= guṇa ×R| sin(90 + λ)|
R cos δ

=
∣∣∣∣R(sin δ + sin β)× (1− cos ϵ)

sin ϵ
× cosλ

cos δ

∣∣∣∣ . (9.12)

Then,

madhyāhnakālalagna = (λ+ 90◦)∓R sin−1(phala). (9.13)

The latter half of the verse 12 talks about ∓ (ṛṇadhanaṃ). When (sin δ +
sin β) and cosλ have the same sign or have the same directions, then their
product is positive and we should subtract the angle corresponding to the
phala from 90 + λ. If they have the opposite sign, then we should add the
angle corresponding to the phala to 90 + λ.

The rationale behind the relation (9.13) can be understood as follows. It
was already shown (9.9) that

sin δ = cos ϵ sin β + cosβ sin ϵ sinλ. (9.14)
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Fig. 9.4 The relation between declination, true longitude, latitude and R.A.

It is to be noted in the Figure 9.4 that, in the triangle KPX, the spherical
angle KP̂X = 90+α. Applying the cosine formula to the side KX = 90− β,
we have

cos(90− β) = cos ϵ cos(90− δ) + sin ϵ sin(90− δ) cos(90 + α),
or sin β = cos ϵ sin δ − sin ϵ cos δ sinα. (9.15)
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Adding (9.14) and (9.15), we have

sin δ + sin β = cos ϵ(sin δ + sin β)− sin ϵ cos δ sinα
+cosβ sin ϵ sinλ,

or (sin δ + sin β)(1− cos ϵ)
sin ϵ

= − cos δ sinα+ cosβ sinλ. (9.16)

Multiplying this by cosλ
cos δ and using cos β cosλ

cos δ = cosα (which follows from the
application of the sine formula to the spherical triangle KPX), we have

(sin δ + sin β)(1− cos ϵ)
sin ϵ

× cosλ
cos δ

= − cosλ sinα+ cosα sinλ

= sin(λ− α). (9.17)

The LHS of the above equation is nothing but the phala given in (9.12). Using
(9.17) in (9.12) we have,

λ+ 90− sin−1
[
(sin δ + sin β)× (1− cos ϵ)

sin ϵ
.
cosλ
cos δ

]
= λ+ 90− (λ− α)

= 90 + α, (9.18)

which is the desired result.

९.५ Υकारा۠रेण मۊाࢽकाललӎानयनͲ
9.5 An alternate method for obtaining
the madhyāhnakālalagna

यڥा टेࢎु कनजकलासुङभदЇ6 च कृ٘ा
तध࢑ͮ पुनञࢢभयुते भुजापमմाͳ࢔ ।
̵ेपाहतामपमकोकटϓतЇ पुरोवͪ
कुयЉͪ࢔मیकदनकालकवलӐछसैڵ ॥ १३ ॥
yadvā sphuṭe nijakalāsubhidāṃ ca kṛtvā
tasmin punastribhayute svabhujāpamajyām |
kṣepāhatāmapamakoṭihṛtāṃ purovat
kuryāt svamadhyadinakālavilagnasiddhyai || 13 ||

6 The reading in the earlier editions of the text is: कनजकलासु ङभदЇ। (Nijakalāsu bhidāṃ).
(This is not acceptable as the word is a compound word and is a synonym of Φाणकलाۢर
(Prāṇakalāntara), which is also a compound word denoting the difference between the
longitude and the R.A. (λ ∼ α).
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Alternatively, having applied the difference between the true longitude and the
right ascension (nijakalāsubhidā) to the true longitude (sphuṭa), adding 3 signs to
it, and finding the Rsine of the declination corresponding to the resulting longi-
tude (svabhujāpamajyā), multiply [the result obtained] by the Rsine of the lati-
tude (vikṣepajyā). Dividing this by the Rcosine of the declination (apakramakoṭi),
[computation] has to be done, as was done before in order to obtain madhyāh-
nakālalagna.
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Fig. 9.5 Obtaining the madhyāhnakālalagna.

Let λ be the true longitude of the celestial object. It is said that this
has to be first corrected by the prāṇakalāntara. It should be noted that the
prāṇakalāntara (∆α) for a celestial object having a non-zero latitude is

∆α = λ ∼ α′,

where λ is the longitude and α′ is the R.A. of an object on the ecliptic whose
longitude is λ. Let λ′ = λ − ∆α be the sāyana longitude of the celestial
object corrected by its prāṇakalāntara, and R sin δ′′ be the Rsine of declination
associated with a point on the ecliptic, corresponding to a longitude λ′ + 90.
Then the madhyāhnakālalagna is stated to be

α+ 90 = λ′ + 90−R sin−1
[
R sin δ′′ ×R sin β

R cos δ

]
. (9.19)

The rationale for the above expression is as follows. In Figure 9.5, X is the
position of a star with a latitude β, and longitude λ. X ′ is the point on the
ecliptic with the same longitude. From the figure λ = ΓX ′, and α′ = ΓT ′ is
the R.A., corresponding to the point X ′ on the ecliptic, and, ∆α = λ− α′ =
λ− ΓT ′, is the prāṇakalāntara. Hence,
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α = ΓT = ΓT ′ − TT ′

= λ− (λ− ΓT ′)− TT ′

= λ−∆α− TT ′

= λ′ − TT ′. (9.20)

Now the madhyāhnakālalagna can be written as

α+ 90 = λ′ + 90− TT ′. (9.21)

Verse 13 essentially gives a method to find TT ′. TT ′ can be found from the
spherical triangle XPX ′. Here, XP = 90 − δ, XP̂X ′ = TT ′ and XX ′ = β.
Now applying the sine formula, we obtain

sinTT ′ = sin β × sinXX̂ ′P

sin(90− δ)

= sin β × sinXX̂ ′P

cos δ
. (9.22)

In the spherical triangle KPX ′, KP = ϵ, KX ′ = 90, and KP̂X ′ = 90+ΓT ′.
Now applying the sine formula, we have

sinXX̂ ′P = sinKP̂X

sin(KX ′)
× sinKP

= sin(90 + ΓT ′)
sin(90)

× sin ϵ,

or sinXX̂ ′P = cosΓT ′ sin ϵ. (9.23)

The quantity ΓT ′ is the RA of the object at X ′ and is equal to the sāyana
longitude corrected by prāṇakalāntara. That is, ΓT ′ = λ′ = λ −∆α. Hence,
the Rsine of declination (apakramajyā) corresponding to λ′ + 90 is sin δ′′ =
cosΓT ′ sin ϵ, which is numerically equal to sinXX̂ ′P = cosΓX̂ ′T ′. Therefore,
(9.22) becomes

sinTT ′ = sin β × cosΓT ′ sin ϵ
cos δ

= sin β × sin δ′′

cos δ
. (9.24)

Substituting (9.24) in (9.21), we obtain the madhyāhnakālalagna

α+ 90 = λ′ + 90−R sin−1
[
R sin δ′′ ×R sin β

R cos δ

]
,

which is the same as (9.19).
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९.६ मۊाࢽकाललӎानयने अ۪तरः Υकारः
9.6 Yet another method for obtaining the

madhyāhnakālalagna

यڥा Εाठۢतदीयको׊सुकलाभेदЇञࢢभोनुࢎटाͪ
अानीयासुकलाۢरं खΡभयुते कुयЉͪ टेࢎु तΡ तु ।
तٟा܉ोवϺधतोऽधϺकव࢈खृतहताͬ ाͬݗմुावधाڦ धनुः
Εा܉ोङभϺۦसमाशयोधϺनमृणं मیाࢿकालाݗये ॥ १४ ॥
yadvā krāntitadīyakoṭyasukalābhedāṃstribhonasphuṭāt
ānīyāsukalāntaraṃ tribhayute kuryāt sphuṭe tatra tu |
tatkrāntyorvadhato’rdhavistṛtihatād dyujyāvadhāptād dhanuḥ
krāntyorbhinnasamāśayordhanamṛṇaṃ madhyāhnakālāptaye || 14 ||

Or, for the true longitude diminished by three signs (tribhonasphuṭa) obtain the
Rsine of declination, the corresponding Rcosine, and the prāṇakalāntara. This
prāṇakalāntara has to be applied to the sum of the true longitude (sphuṭa) and
three rāśis. The product of these declinations [of the sphuṭa and the one dimin-
ished by three rāśis] has to be multiplied by the radius (ardhavistṛti) and divided
by the product of the [corresponding] day-radii (dyujyās). The arc [of the result
obtained] is to be applied positively or negatively, depending upon whether the
direction of the declinations are opposite or the same, in order to obtain the mad-
hyāhnakālalagna.

Let δ1 and δ2 be the declinations of two celestial objects whose longitudes
are λ and λ − 90 respectively. Then, the madhyāhnakālalagna given in the
verse is

λ+ 90−∆αλ−90 − sin−1
[
sin δ1 sin δ2
cos δ1 cos δ2

]
, (9.25)

where ∆αλ−90 is the prāṇakalāntara at the longitude λ− 90.

We give the rationale behind the above expression with the help of Figure
9.6. Here X and X ′ are the objects whose longitudes are λ and λ− 90 respec-
tively. If α and ∆αλ = λ− α are the R.A. and the prāṇakalāntara of the star
when it is at X (whose longitude is λ), then the madhyāhnakālalagna (α+90)
can be written as

α+ 90 = λ+ 90−∆αλ. (9.26)

Now, PX ′ is the great circle arc which intersects the equator at R. Therefore,
the prāṇakalāntara when the star is at X ′ is
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Fig. 9.6 Obtaining the madhyāhnakālalagna from the declinations of two celestial objects
whose longitudinal difference is 90◦.

∆αλ−90 = (λ− 90)− (α−RM)
= λ− 90− α+RM

= (λ− α)− (90−RM)
= ∆αλ − sin−1(sin(90−RM))
= ∆αλ − sin−1(cos(RM)),

or ∆αλ = ∆αλ−90 + sin−1(cos(RM)). (9.27)

Substituting (9.27) in (9.26), we have

α+ 90 = λ+ 90−∆αλ−90 − sin−1(cos(RM)). (9.28)

The term sin−1(cos(RM)) in (9.28) can be found from the spherical triangle
PXX ′. Here PX = 90− δ1, PX ′ = 90 + δ2, and XP̂X ′ = RM . Here δ1 and
δ2 are the magnitudes of the declinations. Now applying the cosine formula
to the side XX ′(= 90◦), we get

cos(90) = cos(90− δ1) cos(90 + δ2)
+ sin(90− δ1) sin(90 + δ2) cos(RM),

or 0 = − sin δ1 sin δ2 + cos δ1 cos δ2 cos(RM).

Hence, cos(RM) = sin δ1 sin δ2
cos δ1 cos δ2

. (9.29)

Substituting (9.29) in (9.28), we get
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α+ 90 = λ+ 90−∆αλ−90 − sin−1
[
sin δ1 sin δ2
cos δ1 cos δ2

]
,

which is the expression (9.25) given in the text.
The significance of this result is not clear and it corresponds to a rather

round about procedure. After all, α+ 90 = λ+ 90−∆αλ. Hence, the need of
expressing α+ 90 in terms of ∆αλ−90 and then applying a correction to it is
not clear.

९.७ नतकाल-मۊाࢽकाललӎानयनͲ
9.7 Obtaining the natakāla (RA) and the

madhyāhnakālalagna

कव̵ेपकोटीपरमڦजुीवाघाताͪ परΕाठۢϓतो हरः ाͪ࢒ ।
̵ेपाहते टकोकटदोմϿࢎु࢔ हाराϓते कोकटभुजाफले࢈ः ॥ १५ ॥
भुजाफलं ࠬासदले धनणϻ कव̵ेपदोմЉहिरदѿैभेदाͪ ।
तڥगϺकोटीफलवगϺयोगाͪ मूलं भवेदायनसं̶कणϺः ॥ १६ ॥
कोटीफलं ࠬासदलेन ह٘ा कणЉϓतं ϐѻलमायनं ाͪ࢒ ।
णϻ࢔ टेࢎु त۫गृकक੮ टाڦोः ̵ेपे तु मेषाकदगतेऽ۬था ाͪ࢒ ॥ १७ ॥
तध࢑ͮ पुनः Φाणकलाۢरं च कुयЉͪ तदा तकालۦा࢒ एषः ।
नताҿकालञࢢभसंयुतोऽयं माیाकࢿकं कालकवलӐकं࢒ाͪ ॥ १८ ॥
vikṣepakoṭīparamadyujīvāghātāt parakrānti hṛto haraḥ syāt |
kṣepāhate svasphuṭakoṭidorjye hārāhṛte koṭibhujāphale staḥ || 15 ||
bhujāphalaṃ vyāsadale dhanarṇaṃ vikṣepadorjyāharidaikyabhedāt |
tadvargakoṭīphalavargayogānmūlaṃ bhavedāyanasaṃjñakarṇaḥ || 16 ||
koṭīphalaṃ vyāsadalena hatvā karṇāhṛtaṃ dṛkphalamāyanaṃ syāt |
svarṇaṃ sphuṭe tanmṛgakarkaṭādyoḥ kṣepe tu meṣādigate’nyathā syāt || 17 ||
tasmin punaḥ prāṇakalāntaraṃ ca kuryāt tadā syānnatakāla eṣaḥ |
natākhyakālastribhasaṃyuto’yaṃ mādhyāhnikaṃ kālavilagnakaṃ syāt || 18 ||

The product of the Rcosine of the (celestial) latitude (vikṣepakoṭijyā) and the Rco-
sine of maximum declination (paramadyujyā), divided by the Rsine of maximum
declination (paramakrāntijyā), is the divisor. When the Rcosine and Rsine of the
true longitude (sphuṭa) are multiplied by the Rsine of the latitude (vikṣepajyā) and
divided by the divisor, the koṭiphala and the bhujāphala respectively are obtained.
Depending on whether the directions of the Rsine of latitude (vikṣepa) and the
Rsine of longitude (dorjyā) are the same or different, the bhujāphala has to be
added to or subtracted from the radius (vyāsārdha), respectively. Square root of
the sum of the squares of this and the koṭiphala is known as the āyanakarṇa.
[The arc of] this koṭiphala multiplied by the radius and divided by the karṇa is the
āyanadṛkphala. This is added to or subtracted from the true longitude for karkyādi
or makarādi if the kṣepa is meṣādi, and vice versa if it is tulādi.
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Then let the prāṇakalāntara of this [corrected true longitude] be applied to that.
This gives the Right Ascension (natakāla). When three rāśis are added to the
natakāla that will be the madhyāhnakālalagna.

The method to obtain the madhyāhnakālalagna as given in verses 15–18
may be outlined as follows. Let |β| and ϵ be the latitude of the star and
obliquity of the ecliptic respectively. Then the hāra H, defined in the verse is

H = R cosβ R cos ϵ
R sin ϵ

.

The koṭiphala Kp, and the bhujāphala Bp, are defined as

Kp = |R cosλ R sin β|
H

,

Bp = |R sinλ R sin β|
H

. (9.30)

The āyanakarṇa, denoted by K, and the āyanadṛkphala, Ap are defined by
the relations

K =
√

K2
p + (R±Bp)2,

Ap = R sin−1
(
Kp ×R

K

)
. (9.31)

Now the madhyāhnakālalagna can be found by using

α+ 90 = λ±Ap −∆α+ 90, (9.32)

where ∆α is the prāṇakalāntara corresponding to λ ± Ap. We explain the
rationale for this relation in what follows.

In Figure 9.7, λ (= ΓX ′) and β (= XX ′) are the longitude and the latitude
of the star X. It will be seen that X ′Y is the āyanadṛkphala, where Y is the
point of intersection between the ecliptic and the meridian passing through X.
Now, considering the spherical triangle Y XX ′, and applying the sine formula,
we find

sinX ′Y = sin β
sinXŶ X ′

× sinY X̂X ′. (9.33)

In the spherical triangle KXY ,

sin(KX̂Y )
sin(KY )

= sin(180− Y X̂X ′)
sin 90

= sin(XŶ K)
sin(KX)

,

or sin(Y X̂X ′) = sin(XŶ K)
cosβ

. (9.34)

Applying the sine formula to the spherical triangle KY P ,
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Fig. 9.7 Obtaining the natakāla and the madhyāhnakālalagna.

sin(PŶ K)
sin(KP )

= sin(XŶ K)
sin ϵ

= sin(KP̂Y )
sin(KY )

= sin(90 + ΓP̂T )
sin 90

,

or sin(XŶ K) = sin ϵ cos(ΓP̂T ).

Using this in (9.34), we have

sin(Y X̂X ′) = cos(ΓP̂T ) sin ϵ
cosβ

. (9.35)

Now, applying the sine formula to the spherical triangle ΓPY ,

sin(PŶ Γ )
sin(PΓ )

= sin(PΓ̂Y )
sin(PY )

,

or sin(180−XŶ X ′)
sin 90

= sin(90− ϵ)
sin(PY )

,

so that, sinXŶ X ′ = cos ϵ
sin(PY )

. (9.36)

Using (9.35) and (9.36) in (9.33), we obtain

sinX ′Y = sin β cos(ΓP̂T ) sin(PY ) sin ϵ
cosβ cos ϵ

. (9.37)

In the spherical triangle PY G, Y P̂G = 90◦ − ΓP̂T, Y G = 90◦ − ΓY , and
PĜY = 90◦. Applying the sine formula,
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sin(Y P̂G)
sin(Y G)

= cos(ΓP̂T )
cos(ΓY )

= sin(PĜY )
sin(PY )

= sin 90
sin(PY )

.

Thus, cos(ΓP̂T ) sin(PY ) = cos(ΓY ). Using this in (9.37), we have

R sinX ′Y = R sin βR cos(ΓY )R sin ϵ
R cosβR cos ϵ

. (9.38)

In (9.38), ΓY = ΓX ′ −X ′Y = λ−X ′Y , and R cos βR cos ϵ
R sin ϵ is referred to as the

hāra (H) in the verse. Therefore,

R sinX ′Y = R sin β.R cos(λ−X ′Y )
H

= R sin β
H

×R [cosλ cosX ′Y + sinλ sinX ′Y ] .

Thus,

sinX ′Y

[
R− R sin βR sinλ

H

]
= cosX ′Y

[
R sin βR cosλ

H

]
. (9.39)

Recalling the definition of bhujāphala and koṭiphala (9.30) given in the verse,
and also squaring the equation (9.39) and adding sin2 X ′Y ×K2

p on both sides,
we get

sin2 X ′Y
[
(R−Bp)2 +K2

p

]
= K2

p ,

or sinX ′Y
√[

(R−Bp)2 +K2
p

]
= Kp,

or sinX ′Y = Kp ×R

K
= sinAp, (9.40)

where K =
√[

(R−Bp)2 +K2
p

]
is referred to as āyanakarṇa in the verse, and

Ap is the āyanadṛkphala.7
Hence, X ′Y = Ap. When this is applied to the sphuṭa or the longitude,

λ = ΓX ′, we have

λ′ = ΓY = ΓX ′ −X ′Y = λ−Ap.

Now, when ∆α, or the prāṇakalāntara corresponding to λ′, is applied to this,
we obtain ΓT , the R.A. corresponding to Y , which is the natakāla or the
R.A. corresponding to the object X also, as the secondary to the equator, PT
passes through both X and Y . Hence, the natakāla is
7 In Figure 9.7, sin β sinλ is positive and Bp = R sinλ sin β

H . When sin β sinλ is negative
Bp = −R sinλ sin β

H and K =
√

(R+Bp)2 +K2
p .
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α = λ′ −∆α = λ−Ap −∆α,

and the madhyāhnakālalagna is

α+ 90 ≈ λ−Ap −∆α+ 90, (9.41)

which is the relation (9.32) mentioned in the verse.

९.८ Υकृतराशे: ࠪतीतकालानयनͲ
9.8 The time elapsed in the current rāśi

न̵ΡमیाࢿजकाललӐाͪ࢔ासۦराۢࡄजकाललӐͳ ।
ٖҒावशेष࢒लवाः षडाݗाः तΣाछशयाता घकटका भवठۢ ॥ १९ ॥
nakṣatramadhyāhnajakālalagnāt svāsannarāśyantajakālalagnam |
tyaktvāvaśeṣasya lavāḥ ṣaḍāptāḥ tadrāśiyātā ghaṭikā bhavanti || 19 ||

Having subtracted the kālalagna of the nearest end of a rāśi (svāsanna-rāśyanta)
from the madhyāhnakālalagna of the desired star, divide the remainder obtained,
in degrees (lavas), by six. [The result] would be the ghaṭikās that have elapsed in
the [next] rāśi.

The madhyāhnakālalagna corresponding to a star with R.A. α is 90 + α.
This means that the time interval between the rise of Γ and the instant when
the star is on the meridian is 90+α. Let the kālalagna of the rāśyanta nearest
to the star be α′ −∆α′. This means that the nearest rāśyanta rises α′ −∆α′

time units after the rise of Γ . Hence, at the instant when the star is on the
meridian, a time interval 90+α− (α′ −∆α′) in degrees has elapsed after the
rise of the rāśyanta or, in other words, in the current rāśi. Now,

60 ghaṭikās = 360 degrees = 360 lavas.

Therefore, 1 ghaṭikā = 6 lavas. Hence, the time elapsed in the current rāśi is

90 + α− (α′ −∆α′)
6

ghaṭikās,

as stated in the verse.



Chapter 10
नतकालाڤानयनͲ
Obtaining the Right Ascension, etc.

१०.१ य܈वेध࢐ ΥामुҽͲ
10.1 Importance of observations with
instruments

भानЇ ࠻टाࢎु कव̵ेपाः बϡधोѶा बुधै࢈तः ।
ःैڦछाया࢔ परࣷҤतैे कनणϿया य܊साङधतैः ॥ १ ॥
bhānāṃ sphuṭāśca vikṣepāḥ bahudhoktā budhaistataḥ |
svachāyādyaiḥ parīkṣyaite nirṇeyā yantrasādhitaiḥ || 1 ||

The longitudes (sphuṭas) and latitudes (vikṣepas) of the planets have been in-
structed in various ways by different scholars. Therefore, they have to be estab-
lished after examination of their shadows etc. (chāyādi), as observed by the instru-
ments.

Here the author emphasizes the importance of actual observations of the ce-
lestial objects through the measurement of their shadows etc. in determining
their longitudes and latitudes. In the case of the Sun, the measurements as-
sociated with the shadow at noon and other times pose no difficulty, in prin-
ciple at least, as these are done during the day. Observations pertaining to
the Moon’s shadow are also possible during the night. But what about the
planets and stars?

It is indeed possible to measure the zenith distance of the planets and
stars at the meridian transit and other times during the night using sights
and quadrants, and the longitude and latitude can be determined from these
observations. But the text or the commentaries do not give any further details
concerning measurements done with instruments.
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१०.२ नतकाल࢐ वायुकाल࢐ वानयनͲ
10.2 Obtaining the natakāla or the vāyukāla (RA)

सौे߅ शԙ̵घाते मृणखमह࢔ कदशा भाभुजЇ ल߂कӳੁ
कृ٘ा࢑ाͪ खΡմयांݗ कवϞरपमगुण࢒࢈कोकटुڦϺजीवा ।
खΡմाभाकोकटघाताͬ कदनगुणकवϓतं चाकपतं काललӐे
णϻ࢔ पूवЉपराेࢾ खΡभवनरऔहतं तڣवेͪ वायुकालः ॥ २ ॥
saumye śaṅkvakṣaghāte svamṛṇamiha diśā bhābhujāṃ lambakaghnīṃ
kṛtvāsmāt trijyayāptaṃ vidurapamaguṇastasya koṭirdyujīvā |
trijyābhākoṭighātād dinaguṇavihṛtaṃ cāpitaṃ kālalagne
svarṇaṃ pūrvāparāhṇe tribhavanarahitaṃ tadbhavet vāyukālaḥ || 2 ||

When [the declination is] north, the product of Rcosine of altitude (śaṅku) and
Rsine of latitude (akṣajyā), and the product of bhābhujā or chāyā-bhujā and Rcosine
of latitude (lambaka), have to be added to or subtracted from each other depending
upon their directions. [The result obtained] divided by the radius is known to be
the Rsine of declination (apamajyā). The Rcosine of that [declination] is day-radius
(dyujyā). The product of bhākoṭi and the radius is divided by dyujyā and the arc of
that is added to or subtracted from kālalagna before noon or after noon respectively.
The right ascension (natakāla or vāyukāla) is obtained by subtracting 3 rāśis from
the result.

This verse, in sragdharā metre, essentially presents an expression for the
right ascension α (yāyukāla) of a celestial object in terms of its azimuth A,
and the zenith distance z.

In Figure 10.1, X is the position of a celestial body whose zenith distance
is z. Then, XF = R cos z, is the śaṅku and, OF = R sin z, is the mahācchāyā
or just chāyā. The chāyābhujā is the projection of the chāyā, R sin z, along
the north-south line (or perpendicular to the east-west line) and is given by
RF = R sin z sinA′, where A′ is the angle between the prime vertical and the
vertical passing through the celestial body.

Then it is stated that

apamajyā = śaṅku × akṣajyā ± chāyābhujā × lambaka
trijyā ,

or R sin δ = R cos zR sinϕ±R sin z sinA′R cosϕ
R

. (10.1)

This is obtained by applying the cosine formula to the side PX in the spherical
triangle PZX, which gives

sin δ = cos z sinϕ− sin z cosϕ sinA′. (10.2)

Note that in this figure PẐX = 90 + A′, so that cos(90 + A′) = − sinA′.
However, when X lies to the north of the prime vertical, PẐX = 90−A′ (not
shown in the figure). Then, cos(90−A′) = sinA′, and hence
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Fig. 10.1 Obtaining the natakāla (R.A.) from the śaṅku and chāyā.

sin δ = cos z sinϕ+ sin z cosϕ sinA′. (10.3)

The two possible cases, given by (10.2) and (10.3), have been stated in the
verse. Having given the expression for R sin δ (apamajyā) it is said that dyujyā
(R cos δ) may be obtained from that.

Now applying the sine formula to the triangle PẐX (where H is the hour
angle),

sinH
sin z

= sin(90 +A′)
sin(90− δ)

= cosA′

cos δ
,

or H = sin−1
(
sin z cosA′

cos δ

)
= R sin−1

(
R sin z cosA′.R

R cos δ

)
= R sin−1

(
bhākoṭi × trijyā

dyujyā

)
, (10.4)

as bhākoṭi or chāyākoṭi is projection of the chāyā along the east-west line and
is given by R sin z cosA′.

Now in Figure 10.1, the time interval after the rise of Γ , referred to as the
kālalagna, is given by

kālalagna = ΓE = 90 +H + α,

or α = kālalagna −H − 90. (10.5)

where α is the natakāla or vāyukāla which is the R.A. of X. Hence, using
(10.4) in (10.5) we have
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α = kālalagna − sin−1
(
sin z cosA′

cos δ

)
− 90◦. (10.6)

This is what is stated in the latter half of the verse. The verse also considers
two cases,

(i) the celestial body X lying in the eastern hemisphere (pūrvāhṇa) and
(ii) X lying in the western hemisphere (aparāhṇa).

While Figure 10.1 depicts the situation in the afternoon, Figure 10.2 corre-
sponds to the forenoon. In this case,
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Fig. 10.2 Obtaining the vāyukāla (R.A.) from the śaṅku and chāyā.

H ′ = 90−X ′E

= 90− (ΓE − ΓX ′)
= 90− kālalagna + α. (10.7)

Therefore,

α = kālalagna + sin−1
(
sin z cosA′

cos δ

)
− 90, (10.8)

as stated before. Here H ′ is measured eastwards whereas H in Figure 10.1 is
measured westwards. Kālalagna is always measured westwards, whereas α is
measured eastwards in both Figure 10.1 and Figure 10.2.
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१०.३ वायुकालानयने Υकारा۠रͲ
10.3 An alternate method for obtaining the vāyukāla

यڥा या߅ोٌरापΕमपलगुणयोघЉततञࢢմयांݗ
शӼौ संृٖࡹ त࢑ाͪ खΡगुणकृखतहता߂ࠄकΕाठۢको׊ोः ।
घातांݗ काललӐे छ̵पतु कृतधनुࢡմतЇ Φा͛ कपाले
कालो माیाकࢿकोऽयं भवखत पुनरसौ वायुकालञࢢभोनः ॥ ३ ॥
yadvā yāmyottarāpakramapalaguṇayorghātatastrijyayāptaṃ
śaṅkau saṃskṛtya tasmāt triguṇakṛtihatāllambakakrāntikoṭyoḥ |
ghātāptaṃ kālalagne kṣipatu kṛtadhanustyajyatāṃ prāk kapāle
kālo mādhyāhniko’yaṃ bhavati punarasau vāyukālastribhonaḥ || 3 ||

Alternatively, the Rsine of the declination (apakramajyā) along the south or north
is multiplied by Rsine of the latitude (akṣajyā) and divided by the radius. Having
applied this to the Rcosine of zenith distance (śaṅku), multiply the result by the
square of the radius and divide by the product of the Rcosine of the latitude
(lambaka) and the Rcosine of declination (krāntikoṭi). The result is added to the
kālalagna [when the Sun is in the western hemisphere] and is subracted from it
when [the Sun] is in the eastern hemisphere (prākkapāla). And again three rāśis are
added to or subtracted respectively, in order to obtain the mādhyāhnika-kālalagna.
Subtracting 3 rāśis from this would result in the vāyukāla.

Consider the situation in the afternoon, as shown in the Figure 10.1. Applying
the cosine formula to the side ZX = z in the spherical triangle PZX,

cos z = sinϕ sin δ + cosϕ cos δ cosH,

or R sin(90−H) = R cosH = R
cos z − sinϕ sin δ

cosϕ cos δ

= R2.
R cos z − R sin δ.R sinϕ

R
R cosϕ.R cos δ

=

(trijyā)2 ×
śaṅku − apakramajyā × akṣajyā

trijyā
lambaka × krāntikoṭi

 ,

as indicated in the verse. Therefore,

90−H (degrees) = sin−1
[
cos z − sinϕ sin δ

cosϕ cos δ

]
(degrees).

It is stated in the verse that this has to be applied to kālalagna, either pos-
itively or negatively depending on whether X lies in the eastern on western
hemisphere. It may be recalled from (10.5) that when X is in the western
hemisphere, kālalagna = 90 +H + α. Hence,
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mādhyāhnika-kālalagna = 90 + α

= kālalagna + (90−H)− 90,
and, vāyukāla = α = mādhyāhnika-kālalagna − 90, (10.9)

as stated in the verse.
Consider the situation in the forenoon, when X is in the eastern hemisphere

as depicted in the Figure 10.2. In this case,

90−H ′ (degrees) = sin−1
[
cos z − sinϕ sin δ

cosϕ cos δ

]
(degrees),

and, kālalagna = EΓ = EX ′ +X ′Γ = 90−H ′ + α, as we saw earlier. Hence
kālalagna−(90−H ′) = α, and we have to subtract the arc from the kālalagna.
Again,

madhyāhna-kālalagna = 90 + α

= kālalagna − (90−H ′) + 90,
and, vāyukāla = α = madhyāhna-kālalagna − 90, (10.10)

as stated in the verse.

१०.४ नतकालऑनवϸचनͲ
10.4 Definition of the natakāla

घकटकाम؝ले यΡࡕंृࢍ तۦतम؝लͳ ।
तٳदशेो वायुकालो नतकालः स चोՒते ॥ ४ ॥
सवϿषामकप मیाेࢿ महाՋायैव दोःΦभा ।
काललӐं खΡराࡄनूं नतकाल࢈दा भवेͪ ॥ ५ ॥
ghaṭikāmaṇḍale yatra spṛṣṭaṃ tannatamaṇḍalam |
tatpradeśo vāyukālo natakālaḥ sa cocyate || 4 ||
sarveṣāmapi madhyāhne mahāchāyaiva doḥprabhā |
kālalagnaṃ trirāśyūnaṃ natakālastadā bhavet || 5 ||

Vāyukāla corresponds to the place on the equator where the secondary to the
equator (tannatamaṇḍala) [passing through the celestial object] touches it. And
this is [also] referred to as the natakāla.
In the noon mahācchāyā itself is the chāyābhujā for all [planets]. Three signs sub-
tracted from the kālalagna at that time would be the natakāla.

In Figure 10.1 or 10.2, the secondary to the equator (ghaṭikānatavṛtta)
passing through the object X intersects the equator at X ′. This point cor-
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responds to the natakāla or vāyukāla. In fact natakāla, as used in the earlier
verses corresponds to the Right Ascension, ΓX ′ = α.

As may be seen from Figure 10.1, at noon, A′ = 90, as the Sun (X) will be
on the prime meridian. In this case, chāyābhujā will be

R sin z sinA′ = R sin z = mahācchāyā.

This is true of any celestial object X on the meridian. Hence the use of the
word ‘sarveṣām’ (for all). Also, H = H ′ = 0 at noon. Then kālalagna = 90+α
and hence at noon, the natakāla = α = kālalagna − 90, as stated in Verse 5.

१०.५ वायुकालाखे̴ڣपानयनͲ
10.5 Obtaining the latitude from the vāyukāla

नतकालभुजाΕाठۢ1ं कदѭं࢈ࠬ Φकࠔताͳ ।
टापΕमकोकटӳੁࢎु टΕाठۢगुणेࢎु पुनः ॥ ६ ॥
परमΕाठۢकोकटӳे कृ٘ा त࢑ाͪ खΡजीवया ।
लޔो भवखत कव̵ेप: तؽोकटं च समानयेͪ ॥ ७ ॥
natakālabhujākrāntiṃ vyastadikkaṃ prakalpyatām |
sphuṭāpakramakoṭighnīṃ sphuṭakrāntiguṇe punaḥ || 6 ||
paramakrāntikoṭighne kṛtvā tasmāt trijīvayā |
labdho bhavati vikṣepaḥ tatkoṭiṃ ca samānayet || 7 ||

Obtain the Rsine of declination (krānti) associated with the natakāla, which is
taken to be in the opposite direction and multiply it by the Rcosine of the true
declination. [The result] has to be applied to the product of Rcosine of maximum
declination (paramakrānti) and the Rsine of the true declination (sphuṭakrānti).
This divided by the radius is the Rsine of the latitude (vikṣepa). The corresponding
Rcosine may [also] be obtained.

This verse presents the expression for the latitude of a celestial object in
terms of its R.A. α, and declination δ. The formula given in the verse may be
expressed as

R sin β = R sin δ ×R cos ϵ−R sinα sin ϵ×R cos δ
R

. (10.11)

Here the Rsine declination (krāntijyā) of the R.A. (natakāla) α is R sinα sin ϵ
(as the declination of a point on the ecliptic with longitude λ is R sinλ sin ϵ)
and this is what is referred to as ‘natakālabhujākrānti’ in the verse. Also the
1 The term नतकालभुजाΕाठۢ (natakālabhujākrānti) should be understood as
नतकालस߂ठۥनी या Εाठۢः, त࢒ाः भुजा (natakālasambandhinī yā krāntiḥ, tasyāḥ bhujā).
Mathematically it represents the quantity R sinα sin ϵ.
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term vikṣepa used in last quarter of the verses refers to the Rsine of the lati-
tude (R sin β) and not just the arc β. Also in (10.11) the choice of the negative
sign for the second term in RHS is as per the prescription in the verse that
the krāntijyā of the natakāla is taken in the opposite direction.

eclipti
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P
ε

equator

ε

Γ

X

B

A

A’

Fig. 10.3 Obtaining the Rsine of the latitude from the R.A.

By considering the spherical triangle KPX as shown in Figure 10.3, and
applying the cosine formula for the side KX = 90− β, we get,

cos(90− β) = cos ϵ cos(90− δ) + sin ϵ sin(90− δ) cos(90 +A′),
or sin β = cos ϵ sin δ − sinα sin ϵ cos δ, (10.12)

which is the same as (10.11) given in the verse.

१०.६ वायुकालाͩ टानयनͲࢌु
10.6 Obtaining the longitude from the vāyukāla

भूयः ̵ेपगुणं टामपगुणेࢎु कृ٘ामुना ताकडता
दोմЉसखΡभवायुकालजकनता कव̵ेपको׊ा ϓता ।
अ܉Εाठۢशराहता परमया Εा܉ा ϓता चाकपता
णϻ࢔ तुࠂङभदाशघातवशतः टःࢎायुकालुڥा࢒ ॥ ८ ॥
bhūyaḥ kṣepaguṇaṃ sphuṭāmapaguṇe kṛtvāmunā tāḍitā
dorjyāsatribhavāyukālajanitā vikṣepakoṭyā hṛtā |
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antyakrāntiśarāhatā paramayā krāntyā hṛtā cāpitā
svarṇaṃ tulyabhidāśaghātavaśataḥ syādvāyukālasphuṭaḥ || 8 ||

Apply the Rsine of the latitude (vikṣepa) to the Rsine of the true declination
(sphuṭāpakrama), and that is to be multiplied by the Rsine of the sum of three rāśis
and the R.A. (natakāla), and divided by the Rcosine of the latitude (vikṣepa). [This,
again] has to be multiplied by the versine of maximum declination (paramakrānti)
and divided by Rsine of maximum declination (antyakrānti). The arc of the [result
obtained] has to be added to or subtracted from the R.A. (natakāla) depending on
the similarity or otherwise of [the directions of declination and latitude], since there
is a product. This would give the true longitude (sphuṭa) from the R.A. (vāyukāla).

In the previous verse an expression for the latitude β of a celestial object
was presented as a function of α and δ. This verse gives an expression for
the longitude λ (sphuṭa) as a function of β, α and δ. This is actually done
by means of a correction term to be applied to the R.A. or natakāla. The
correction term given in the verse may be expressed as:

R sin−1
[
R sin(90 + α)

R cosβ
× (R sin δ +R sin β)R(1− cos ϵ)

R sin ϵ

]
.

This term has to be applied to the natakāla positively or negatively depending
on whether the directions of vikṣepa and krāntijyā are opposite or the same
respectively. Therefore, the true longitude is given by

λ = α± sin−1
[
cosα
cosβ

× (sin δ + sin β)× (1− cos ϵ)
sin ϵ

]
. (10.13)

The rationale for the above expression is as follows. Rewriting equation
(9.18) we have,

λ = α+ sin−1
[
(sin δ + sin β)× (1− cos ϵ)

sin ϵ
.
cosλ
cos δ

]
. (10.14)

Now consider the spherical triangle PKX in Figure 10.3. Here PK̂X = 90−
λ, PX = 90−δ,KP̂X = 90+α, and KX = 90−β. Applying the sine formula
we have,

cosλ
cos δ

= cosα
cosβ

. (10.15)

Using (10.15) in (10.14), we get

λ = α+ sin−1
[
cosα
cosβ

× (sin δ + sin β)× (1− cos ϵ)
sin ϵ

]
, (10.16)

which is the result (10.13) given in the verse. Here the quantity in the bracket is
positive or negative depending upon the sign of the product cosα(sin δ+sin β).
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१०.७ मۊाࢽकाललӎाͩ टानयनेࢌु Υकारा۠रͲ
10.7 An alternate method for obtaining the longitude

from the madhyāhnakālalagna

यڥा࢔मیाࢿगकाललӐे कृतासुघलݗाकववरे दोմЉͳ࢔ ।
̵ेपाठۢमΕाठۢवधेन ह٘ा तؽोकटघातेन कवभմलޔͳ ॥ ९ ॥
चापीकृतं च࢔मृणं ΦकुयЉͪ कव̵ेपदोմЉहिरदѿैभेदाͪ ।
खΡभोकनतेऽध࢑ͮ पुनरायनЇशं ं࢈ࠬ च कुयЉͪ स कनजुࢎटः ाͪ࢒ ॥ १० ॥
yadvā svamadhyāhnagakālalagne
kṛtāsuliptāvivare svadorjyām |
kṣepāntimakrāntivadhena hatvā
tatkoṭighātena vibhajya labdham || 9 ||
cāpīkṛtaṃ ca svamṛṇaṃ prakuryāt
vikṣepadorjyāharidaikyabhedāt |
tribhonite’smin punarāyanāṃśaṃ
vyastaṃ ca kuryāt sa nijasphuṭaḥ syāt || 10 ||

Or, having obtained the Rsine of prāṇakalāntara from the sva-madhyāhna-kālalagna
and applying the result to itself, [the Rsine of the result obtained] has to be mul-
tiplied by the product of the Rsine of latitude (kṣepajyā) and Rsine of maximum
declination (antyakrānti) and divided by the product of their Rcosines. The arc of
[the result obtained] is added to or subtracted from the corrected (saṃskṛta)-
madhyāhnakālalagna depending on whether the directions of Rsine of latitude
(vikṣepa) and Rsine of longitude (dorjyā) are the same or different respectively.
Then, by subtracting 3 signs and the amount of precession (ayanāṃśa), the true
longitude (sphuṭa) is obtained.

The two verses above essentially give yet another method to obtain the
true longitude (sphuṭa) from the madhyāhnakālalagna. Let λ′ be the mad-
hyāhnakālalagna corrected by the prāṇakalāntara, ∆α. That is,

λ′ = madhyāhnakālalagna +∆α.

Then the expression for the true longitude λ given by the verse is

λ = λ′ ±R sin−1
[
R sin β R sin ϵ R sinλ′

R cosβR cos ϵ

]
− 90. (10.17)

The ayanāṃśa has to be subtracted from λ to obtain the nirayana longitude.

In Figure 10.4, ΓX ′ = λ is the true longitude, and ΓT = α, is the right
ascension. And ΓX ′ − ΓT ′ = λ − α′ = ∆α is the prāṇakalāntara, where α′

is the R.A. of X ′ which has the same longitude as X and lies on the ecliptic.
Now the madhyāhnakālalagna (α + 90) corrected by prāṇakalāntara is given
by
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Fig. 10.4 Obtaining the true longitude from the madhyāhnakālalagna.

λ′ = ΓT + 90 + ΓX ′ − ΓT ′ (10.18)
= (ΓT − ΓT ′) + 90 + ΓX ′

= −TT ′ + 90 + λ,

or λ = λ′ + TT ′ − 90
≈ λ′ +X ′Y − 90, (10.19)

as TT ′ ≈ X ′Y . Now recalling the equation (9.38), we have

R sinX ′Y = R sin β R sin ϵ R cos(ΓY )
R cosβR cos ϵ

. (10.20)

Now, again from the figure, ΓX ′ = ΓY +X ′Y . Substituting this for ΓX ′ in
(10.18), we have

λ′ = (ΓT − ΓT ′) + 90 + ΓY +X ′Y

= −TT ′ +X ′Y + ΓY + 90,
or ΓY = λ′ + TT ′ −X ′Y − 90

≈ λ′ − 90. (10.21)

Substituting (10.21) in (10.20), we have
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R sinX ′Y = R sin β R sin ϵ R sinλ′

R cosβ R cos ϵ
,

or X ′Y = R sin−1
[
R sin β R sin ϵ R sinλ′

R cosβ R cos ϵ

]
. (10.22)

Using (10.22) in (10.19), we obtain

λ = λ′ +R sin−1
[
R sin β R sin ϵ R sinλ′

R cosβ R cos ϵ

]
− 90, (10.23)

which is the same as (10.17). Subtracting the ayanāṃśa from the above ex-
pression, we will obtain the true nirayana longitude of the celestial body as
mentioned in the verses. Here, the second term is positive, when the vikṣepa
(R sin β) and dorjyā (R sinλ′) have the same sign, and the arc has to be added
to λ′; while it is negative when they have the opposite signs, and the arc has
to be subtracted from λ′, as stated in the verse.

१०.८ उपसंहारवचनͲ
10.8 Concluding remarks

गछणतखमदमशेषं युगѶयुѶं पठۢः
भुकव गछणतजनानЇ अΗगئा भवेयुः ।
अकप च गखतकवशेषाͪ कालϒप࢒ कवࡗोः
सुभृशमनुभवۢो याठۢ तڠाम Ϡڠͳ ॥ ११ ॥
इखत छशवपुरनामΗामजः कोऽकप यնा
औकमकप करणपٖڠाࣃयं त܊ϒपͳ ।
ࠬङधतगछणतमेतͪ स߅गालोѿसۢः
कघथतखमह कवदۢः सۢु सۢोषवۢः ॥ १२ ॥
gaṇitamidamaśeṣaṃ yuktiyuktaṃ paṭhantaḥ
bhuvi gaṇitajanānāṃ agragaṇyā bhaveyuḥ |
api ca gativiśeṣāt kālarūpasya viṣṇoḥ
subhṛśamanubhavanto yānti taddhāma śuddham || 11 ||
iti śivapuranāmagrāmajaḥ ko’pi yajvā
kimapi karaṇapaddhatyāhvayaṃ tantrarūpam |
vyadhitagaṇitametat samyagālokya santaḥ
kathitamiha vidantaḥ santu santoṣavantaḥ || 12 ||

Those who study and comprehend (paṭhantaḥ) all the mathematical principles
supported by rationales (yuktiyuktam) enunciated here, would become the foremost
leaders in the community of mathematicians in this world. Moreover, blessed with
the compassion of Lord Viṣṇu, who also manifests in the form of time, they would
attain His pristine abode.



10.8 Concluding remarks 317

Thus someone, who has performed sacrifices (yajvā) hailing from the village by
name Śivapura, has composed a work called Karaṇapaddhati, in the form of a
Tantra. By assiduously going through this mathematical work and understanding
whatever has been set out here, may the noble ones become happy.

It was conjectured by Whish that the phrase “gaṇitametadsamyak” may be
encoding the ahargaṇa of the time of composition of this text (Whish 1834).
This ahargaṇa, which works out to be 1765653, corresponds to the year
1733 CE.2

2 On the date of Karaṇapaddhati, see the discussion in the Introduction.



Appendix A
Vallyupasaṃhāra and continued fractions

Ever since the work of Āryabhaṭa on the kuṭṭaka procedure for solving linear
indeterminate equations, Indian astronomers and mathematicians have been
using this method to solve a variety of problems. The method, also referred
to as kuṭṭākāra, basically makes use of a technique called vallyupasaṃhāra
which is analogous to the continued fraction expansion of a ratio of integers.
The vallī introduced by Āryabhaṭa is nothing but the column composed of
the quotients which arise in the mutual division of the integers. The vallyu-
pasaṃhāra method of transforming the vallī is essentially the recursive process
of calculating the successive convergents of the associated continued fraction.

In Karaṇapaddhati Putumana Somayājī displays a very sophisticated un-
derstanding of the mathematical properties of the continued fraction expan-
sion of a ratio of two integers G,H.1 Usually, G is the guṇa or guṇakāra and H
is the hāra or hāraka, and their ratio ( G

H ) is the rate of motion of a particular
planet or its apogee or node etc. Thus, G being the corrected revolution num-
ber and H the total number of civil days, they are indeed very huge numbers.
Chapter 2 of Karaṇapaddhati essentially presents the method of approximating
the ratio H

G by the successive convergents of the associated continued fraction.
Karaṇapaddhati also reveals a very sophisticated understanding of the prop-
erties of the convergents including a very interesting “remainder theorem”, as
we shall explain in this appendix.

A.1 Simple continued fraction and its convergents

We start with the ratio of two integers G
H , where G is the guṇakāra and H is

the hāraka. Normally H is larger than G and it is useful to consider the ratio
H
G . We now discuss the continued fraction expansion of H

G . Dividing H by G,
we get
1 For an introduction to continued fractions, see Khinchin 1964.
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H

G
= q1 +

r1
G
, (A.1)

where q1 is the quotient and r1 < G is the remainder. Now dividing G by r1,
we get

G

r1
= q2 +

r2
r1

. (A.2)

Continuing in this manner, we obtain a series of quotients and remainders
r1
r2

= q3 +
r3
r2

,

... =
...

ri−2

ri−1
= qi +

ri
ri−1

. (A.3)

As these quotients (qi) and remainders (ri) are obtained by the mutual
division of the numbers H, G, we can write

H

G
= q1 +

1

q2 +
1

q3 +
1

q4 + . . .+ 1
qi +

ri
ri−1

. (A.4)

Since H
G is a ratio of two integers, the process will terminate for some n,

when rn = 0. We thus have

H

G
= q1 +

1

q2 +
1

q3 +
1

q4 + . . .+ 1
qn

. (A.5)

This process of mutual division is also the well known process (so called Eu-
clidean algorithm) for finding GCD of the numbers H,G which is in fact given
by rn−1.

The above equation gives the simple continued fraction expansion of H
G . If

we truncate the above process at any intermediate stage k < n, then we get
one of the so called convergents of the continued fraction given by

Hk

Gk
= q1 +

1

q2 +
1

q3 +
1

q4 + . . .+ 1
qk

. (A.6)



A.2 Properties of the convergents 321

In particular, we have

H1

G1
= q1

1
(H1 = q1, G1 = 1), (A.7)

H2

G2
= q1 +

1
q2

= q1q2 + 1
q2

(H2 = q1q2 + 1, G2 = q2), (A.8)

and so on.

A.2 Properties of the convergents

Consider the simple continued fraction expansion of H
G :

q1 +
1

q2 +
1

q3 +
1

q4 + . . .

. (A.9)

The successive convergents are

H1

G1
= q1

1
,

H2

G2
= q2q1 + 1

q2
,

H3

G3
= q3(q2q1 + 1) + q1

q3q2 + 1
, . . . (A.10)

We shall now proceed to explain the properties of convergents. First we shall
show that the following recursion relations are satisfied by Hk, Gk for k > 2:

Hk = qkHk−1 +Hk−2, (A.11)
Gk = qkGk−1 +Gk−2. (A.12)

The proof is by induction on k. Clearly from (A.10), we see that (A.11)
and (A.12) hold when k = 3. Assuming that these equations hold for k, we
shall show that they hold for k + 1. From (A.6), it is clear that Hk+1

Gk+1
is same

as Hk

Gk
with qk replaced by qk + 1

qk+1
. Therefore,
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Hk+1

Gk+1
=

(qk + 1
qk+1

)Hk−1 +Hk−2

(qk + 1
qk+1

)Gk−1 +Gk−2

= (qk+1qk + 1)Hk−1 + qk+1Hk−2

(qk+1qk + 1)Gk−1 + qk+1Gk−2

= qk+1(qkHk−1 +Hk−2) +Hk−1

qk+1(qkGk−1 +Gk−2) +Gk−1

= qk+1Hk +Hk−1

qk+1Gk +Gk−1
.

Thus, we have shown that the recurrence relations (A.11) and (A.12) are valid
for all k > 2.

We shall now show another important property of Hk’s and Gk’s, namely

HkGk+1 −Hk+1Gk = (−1)k. (A.13)

From the recurrence relations (A.11) and (A.12), we see that

HkGk+1 −Hk+1Gk = Hk(qk+1Gk +Gk−1)− (qk+1Hk +Hk−1)Gk

= HkGk−1 −Hk−1Gk

= −(Hk−1Gk −HkGk−1)
...

= (−1)k−1(H1G2 −H2G1)
= (−1)k. (A.14)

From the above relation we can also derive yet another interesting property
of the convergents, namely∣∣∣∣Hk+1

Gk+1
− Hk

Gk

∣∣∣∣ = 1
GkGk+1

. (A.15)

We can easily see that

Hk+1

Gk+1
− Hk

Gk
= qk+1Hk +Hk−1

qk+1Gk +Gk−1
− Hk

Gk

= (Hk−1Gk −HkGk−1)
Gk+1Gk

= (−1)k−1

Gk+1Gk
. (A.16)
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A.3 Remainder theorem of Karaṇapaddhati

The Karaṇapaddhati states and makes extensive use of a ”remainder theorem”
which gives the difference between the number H

G and its convergents Hi

Gi
in

terms of the remainder ri which is obtained in the mutual division of H, G.
Now from the previous discussions, we know that the ratio

H

G
= q1 +

r1
G

= Gq1 + r1
G

. (A.17)

The difference between the actual ratio and its first approximation (A.7) can
be written as

H

G
− H1

G1
= Gq1 + r1

G
− q1

= r1
G
. (A.18)

Therefore,
GH1 −HG1 = Gq1 −H = −r1. (A.19)

Now, from (A.4)

H

G
= q1 +

1
q2 +

r2
r1

= q1 +
r1

q2r1 + r2

= (q1q2 + 1)r1 + q1r2
q2r1 + r2

. (A.20)

Using (A.8) in the above we have,

H

G
= H2r1 + q1r2

G2r1 + r2
. (A.21)

Therefore,

G(H2r1 + q1r2) = HG2r1 +Hr2,

or (GH2 −HG2)r1 = −(Gq1 −H)r2
= r1r2, (A.22)

where we have used (A.19). Hence,

GH2 −HG2 = r2. (A.23)
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Now we present the general version of the above remainder relation which
the Karaṇapaddhati states and makes extensive use of.

Theorem

If Hi

Gi
is the ith convergent of H

G and ri is the ith remainder in the mutual
division of H and G, then

HGi −GHi = (−1)i−1ri. (A.24)

Proof:

We have already seen that (A.24) is valid for i = 1, 2. Now, we shall assume
that relation (A.24) is true for some i and then show that it is true for i+ 1.
To be specific let i be even so that

(HGi −GHi) = −ri. (A.25)

Using the recursion relations

Gi+1 = Giqi+1 +Gi−1,

and Hi+1 = Hiqi+1 +Hi−1,

we obtain

HGi+1 −GHi+1 = (HGi −GHi)qi+1 +HGi−1 −GHi−1

= −riqi+1 + ri−1. (A.26)

In the expression for the continued fraction of H
G considered earlier, the re-

mainder ri+1 is obtained by dividing ri−1 by ri. The corresponding quotient
is qi+1 (see section A.1). Hence, ri−1 can be written as

ri−1 = riqi+1 + ri+1,

or ri+1 = −(riqi+1 − ri−1). (A.27)

Thus from (A.26), we have

ri+1 = (HGi+1 −GHi+1), (A.28)

thereby proving the above theorem.
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A.4 Some applications of the Remainder theorem

The above Remainder theorem is used in the computation of dvitīyahāras de-
scribed in the second chapter of Karaṇapaddhati. The third chapter of Karaṇa-
paddhati also introduces what are called kendraphalas which are nothing but
the remainders (rij) which arise when we mutually divide the alpahāras Hi

and alpaguṇakāras Gi. Let rij be the jth remainder when we mutually divide
Hi and Gi. This is called the jth kendraphala of the hāraka Hi. Applying the
above remainder theorem (A.24) to Hi

Gi
, we clearly obtain

rij = (−1)j+1(HiGj −GiHj). (A.29)

This is what is referred to as hāraśeṣa (when j is odd) and guṇaśeṣa (when j
is even) in the Section 3.4.



Appendix B
Epicycle and eccentric models for manda
and śīghra corrections

Chapter 7 of the text describes the procedures for finding the true geocen-
tric longitudes of the planets beginning with the mean longitudes. Here, we
explain the epicycle and eccentric models which form the basis for these com-
putations.1

B.1 Equation of centre and the manda-sphuṭa of planets

As explained in Section 1.10 of Chapter 1, the mean longitude is calculated for
the desired day by computing the number of mean civil days elapsed since the
epoch (called the ahargaṇa) and multiplying it by the mean daily motion of the
planet. Having obtained the mean longitude, a correction known as manda-
phala is applied to it. In essence, this correction takes care of the eccentricity
of the planetary orbit around the Sun. The equivalent of this correction is
termed the ‘equation of centre’ in modern astronomy, and it is a consequence
of the eccentricity of the orbit of the planet. The longitude of the planet
obtained by applying the mandaphala is known as the manda-sphuṭa-graha,
or simply the manda-sphuṭa.

The procedure for finding the mandaphala can be explained with the help
of an epicycle or an eccentric circle model represented in Figure B.1. Here
the mean planet P0 moves at a uniform rate on the ‘deferent’ circle or the
kakṣyāvṛtta, of radius R, whose circumference is usually taken to be 21600
minutes, so that R = 21600

2π ≈ 3438′. This circle is centered around O, which is
bhagolamadhya (centre of the celestial sphere), and OΓ is in the direction of
meṣādi, or the first point of Aries. This is the reference direction for measuring
the longitudes. The longitude of the mean planet P0 is given by ΓÔP0 = θ0.
OU is in the direction of the ‘mandocca’ or the apside. The ‘manda-sphuṭa’ P
1 For a more detailed overview of planetary models in Indian Astronomy, the reader is
referred to {TS 2011}, Appendix F, pp. 487-535.
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is situated on an epicycle which is a small circle of radius r around P0, such
that P0P is parallel to OU . The longitude of the mandocca is ΓÔU = θm.

P
 0

P

U

O

θ

θ

 ms

θ
 m

Γ

N

mandasphuta

∆θ

( )

mandocca )

(direction of

0

K

r

P

P

0

N

O’

Fig. B.1 Obtaining the manda-sphuṭa in the epicycle and eccentric circle models.

We have another equivalent picture of this in the eccentric circle model.
Here, O′ is a point at a distance r from O, in the direction of OU . Then the
manda-sphuṭa P moves uniformly around O′ at the same rate as P0 around O
in a circle of radius R, the ‘pratimaṇḍala’ (eccentric circle) or the grahavṛtta,
which is represented by a dashed circle. The motion of P around O would not
be uniform.

Now, draw a line PN perpendicular to OP0 which is extended. The differ-
ence between the mean longitude and the mandocca is

UÔP0 = PP̂0N = θ0 − θm = θmk, (B.1)

which is known as the mandakendra. The doḥphala and the koṭiphala are
defined as

doḥphala = PN = |r sin(θmk)|, (B.2)

and

koṭiphala = P0N = |r cos(θmk)|. (B.3)

Now, the mandakarṇa K is the distance between the planet P and the center
of the deferent circle O. When the mandakendra θmk is makarādi, that is,
when 270◦ ≤ θmk ≤ 360◦ and 0◦ ≤ θmk ≤ 90◦, then the mandakarṇa is given
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by

K = OP

=
[
(ON)2 + (PN)2

] 1
2

=
[
(R+ |r cos(θ0 − θm)|)2 + |r sin(θ0 − θm)|2

] 1
2 , (B.4)

as shown in the figure. Similarly, when the mandakendra θmk is karkyādi, that
is, when 90◦ ≤ θmk ≤ 270◦, then the mandakarṇa is given by

K = OP

=
[
(ON)2 + (PN)2

] 1
2

=
[
(R− |r cos(θ0 − θm)|)2 + |r sin(θ0 − θm)|2

] 1
2 , (B.5)

as shown in the figure.
In Figure B.1, the longitude of the planet, generally referred to as manda-

sphuṭa, is given by ΓÔP = θms. Denoting the difference between the mean
and true planets (PÔP0 = |θ0 − θms|) by ∆θ, we have

PN = OP sin(PÔP0) = K sin(∆θ). (B.6)

Considering the triangle PP0N , PN is also given by

PN = PP0 sin(PP̂0N) = |r sin(θmk)|. (B.7)

Equating the two expressions for PN ,

K sin(θ0 − θ) = |r sin(θmk)|,

or sin(∆θ) = |r sin(θmk)|
K

. (B.8)

In most of the Indian astronomical texts, the epicycle radius associated with
the equation of centre, r, is stated to be proportional to the mandakarṇa, K,
so that

r

K
= rm

R
,

where rm is the specified value of the radius in the text.2 Using this in (B.8),
we have

sin(∆θ) = |rm sin(θmk)|
R

. (B.9)

It may be noted that (B.9) does not involve the mandakarṇa K.
Now the manda-sphuṭa of the planet θms can be obtained from the mean

planet θ0 by applying ∆θ to it. It is clear that θms < θ0, when the man-
2 In fact, as discussed in Section 7.1, the specified value of epicycle radius rm also depends
upon the mandakendra, θmk.
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dakendra is meṣādi (0 ≤ θmk ≤ 180◦), and θms > θ0, when it is tulādi
(180◦ ≤ θmk ≤ 360◦). That is,

θms = θ0 ±∆θ,

where the value of ∆θ is obtained using (B.9), and the ‘+’ and ‘−’ signs are
applicable when the mandakendra is tulādi and meṣādi respectively.

B.2 Śīghraphala and the śīghra-sphuṭa or the true longitude
of planets

While the mandaphala is the only correction that needs to be applied in the
case of the Sun and the Moon for obtaining their true longitudes (sphuṭa-
grahas), in the case of the other five planets, two corrections, namely the
manda-saṃskāra and śīghra-saṃskāra, are to be applied in order to obtain
their true longitudes. The application of the śīghraphala essentially converts
the heliocentric longitude into the geocentric longitude. The true longitude of
the planet obtained by applying the śīghraphala is known as the śīghrasphuṭa-
graha, or simply śīghra-sphuṭa, or just sphuṭa.

For obtaining the śīghraphala also, epicycle/eccentric circle models are used,
and the procedure is similar to that for the mandaphala. This is illustrated
in Figure B.2. The manda-sphuṭa P0 moves on the ‘deferent’ circle or the
kakṣyāvṛtta of radius R ≈ 3438 around the centre of the celestial sphere O. Its
longitude is given by θms = ΓÔP0. OS is in the direction of the śīghrocca, S,
whose longitude is θs = ΓÔS. We will discuss its physical significance later.
Then, the śīghra-sphuṭa P is situated on a śīghra-epicycle of radius rs around
P0 such that P0P is parallel to OS.

Here also, we have an alternate picture of this in the eccentric circle model.
Let OS = rs, the radius of śīghra-epicycle. Draw a circle of radius R around
S, which is the pratimaṇḍala (dashed circle). Then, the śīghra-sphuṭa P is the
point on this circle, such that its longitude with respect to S is θms = Γ ŜP .

Now, draw a line PN perpendicular to OP0 which is extended. The differ-
ence between the śīghrocca and the manda-sphuṭa is

SÔP0 = PP̂0N = θs − θms = θsk, (B.10)

and is known as the ‘śīghrakendra’. Again, the doḥphala and the koṭiphala are
defined as

doḥphala = PN = |rs sin(θsk)|, (B.11)

and
koṭiphala = P0N = |rs cos(θsk)|. (B.12)
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Fig. B.2 Obtaining the śīghra-sphuṭa in the epicycle and eccentric models.

Now, the śīghrakarṇa Ks is the distance between the planet P and the center
of deferent circle, O. When the śīghrakendra, θsk is makarādi, that is, when
270◦ ≤ θsk ≤ 360◦ and 0◦ ≤ θsk ≤ 90◦, then the śīghrakarṇa is given by

Ks = OP

=
[
(ON)2 + (PN)2

] 1
2

=
[
(R+ |rs cos(θsk)|)2 + |r sin(θsk)|2

] 1
2 . (B.13)

Similarly, when the śīghrakendra θsk is karkyādi, that is, when 90◦ ≤ θsk ≤
270◦, then the śīghrakarṇa is given by

Ks = OP

=
[
(ON)2 + (PN)2

] 1
2

=
[
(R− |rs cos(θsk)|)2 + |r sin(θsk)|2

] 1
2 . (B.14)

Now, the śīghrasphuṭa or the true longitude is the geocentric longitude of
planet P with respect to O, and is given by θp = ΓÔP . The śīghraphala, ∆θs
is the difference between the true longitude θp and the manda-sphuṭa θms.
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Hence, we have
∆θs = θp ∼ θms = P0ÔP.

Considering the right angles OPN and P0PN , we have

PN = OP sin(P0ÔP ) = P0P sin(PP̂0N), (B.15)

or,

Ks sin(∆θs) = |rs sin(θsk)|, (B.16)

or, R sin(∆θs) = |rs sin(θsk)|
R

Ks
. (B.17)

Therefore, the śīghraphala ∆θs may be written as

∆θs = sin−1
(
|rs sin(θsk)|

Ks

)
.

The śīghra-sphuṭa of the planet θp can be obtained from the manda-sphuṭa,
θms, by applying ∆θs to it. It is clear that

θp = θms ±∆θs,

where ‘+’ and ‘−’ signs are applicable, when the śīghrakendra is meṣādi and
tulādi respectively.

Note that unlike in the case of mandaphala, the karṇa, Ks, occurs explicitly
in the expression for the śīghraphala, ∆θs. For the exterior planets, Mars,
Jupiter and Saturn, the manda-sphuṭa is the true heliocentric planet, and
the śīghrocca is the mean Sun. For the interior planets, Mercury and Venus,
the karaṇapaddhati seems to follow the traditional planetary model where the
mean planet is taken to be the mean Sun to which the equation of centre is
applied, and the śīghrocca is the mean heliocentric planet.3

3 For the first time in the history of astronomy, a correct formulation of the equation
of centre and the latitudinal motion of the interior planets was presented by Nīlakaṇṭha
Somayājī based on a revised planetary theory outlined in his Tantrasaṅgraha (c. 1500)
and other works (See for instance {TS 2011}, pp. 508-523). Karaṇapaddhati does not
discuss this model explicitly. But, as noted in Section 7.19, the Commentary II suggests
that the prescription in the verse 26 of Chapter VII that the manda correction for the
interior planets should be applied to their “nijamadhyama” implies that the correction is
actually to be applied to their śīghroccas. If this interpretation is adopted, then Putumana
Somayājī is also following the modified planetary model of Nīlakaṇṭha according to which
what was traditionally known as the śīghroccas of the interior planets are indeed the
madhyama-grahas or the mean planets. However, barring a few such instances, there is
no explicit statement in Karaṇapaddhati to the effect that the text is following the revised
planetary model proposed by Nīlakaṇṭha.



Appendix C
Alpaguṇakāras and alpahārakas of the planets

In this appendix we present the tables of alpaguṇakāras and alpahārakas, which
have been computed for various planets following the procedure discussed in
Section 2.5.2.

alpaguṇakāras alpahārakas
Gi Hi

1 27
3 82
28 765
115 3142
143 3907

38868 1061939
116747 3189724
155615 4251663
1050437 28699702
2256489 61651067

10076393 275303970
12332882 336955037
34742157 949214044
81817196 2235383125

Table C.1 The alpaguṇakāras and al-
pahārakas of Moon.

alpaguṇakāras alpahārakas
Gi Hi

1 3232
1 3233
2 6465
3 9698
8 25861

27 87281
170 549547
197 636828

43904 141925363
131909 426412917
175813 568338280
483535 1563089477
1142883 3694517234
1626418 5257606711
10901391 35240157500

Table C.2 The alpaguṇakāras and al-
pahārakas of Moon’s apogee.
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alpaguṇakāras alpahārakas
Gi Hi

1 686
1 687
85 58394
171 117475
256 175869
427 293344

1537 1055901
6575 4516948
14687 10089797
153445 105414918
475022 326334551
1103489 758084020
1578511 1084418571
8996044 6180176875

Table C.3 The alpaguṇakāras and al-
pahārakas of Mars.

alpaguṇakāras alpahārakas
Gi Hi

1 87
1 88

31 2727
63 5542
94 8269
251 22080

11640 1023949
23531 2069978

176357 15513795
199888 17583773

42152837 3708106125
Table C.4 The alpaguṇakāras and al-
pahārakas of Mercury.

alpaguṇakāras alpahārakas
Gi Hi

1 4332
1 4333
3 12998
4 17331

123 532928
127 550259
250 1083187
377 1633446
627 2716633

12917 55966106
91046 394479375

Table C.5 The alpaguṇakāras and alpahārakas of Jupiter.
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alpaguṇakāras alpahārakas
Gi Hi

1 224
1 225
3 674
7 1573
10 2247
37 8314
47 10561
84 18875
131 29436
477 107183
608 136619

1693 380421
2301 517040
3994 897461
6295 1414501
29174 6555465
35469 7969966
738554 165954785
5205347 1169653461

11149248 2505261707
27503843 6180176875

Table C.6 The alpaguṇakāras and al-
pahārakas of Venus.

alpaguṇakāras alpahārakas
Gi Hi

1 10764
1 10765
5 53824

11 118413
16 172237
27 290650
97 1044187
221 2379024
2307 24834427
4835 52047878
7142 76882305

111965 1205282453
231072 2487447211
574109 6180176875

Table C.7 The alpaguṇakāras and al-
pahārakas of Saturn.

alpaguṇakāras alpahārakas
Gi Hi

1 6792
2 13585
3 20377
8 54339
59 400750
67 455089
126 855839
445 3022606
1016 6901051
2477 16824708
5970 40550467

14417 97925642
49221 334327393
309743 2103890000

Table C.8 The alpaguṇakāras and alpahārakas of Moon’s node.



Appendix D
An introduction to the Vākya method of
Indian astronomy

D.1 Introduction

The term vākya literally means a sentence consisting of one or more words. In
the context of astronomy, it refers to a phrase or a string of letters in which nu-
merical values associated with various astronomical parameters are encoded.
The vākyas are composed using the kaṭapayādi system1 of numeration. The
strings used in composing the vākyas are chosen so that they not only repre-
sent numerical values, but are also in the form of beautiful meaningful phrases
and sentences that convey worldly wisdom and moral values.

The vākya method of finding the true longitude of the Sun, Moon and
the planets (sphuṭagraha) is a brilliantly designed simplified version of the
methods outlined in the various Siddhāntas.2 As per the Siddhāntas, we first
find the mean longitudes of the planets and then apply a few saṃskāras3 to
get their true positions. On the other hand, the vākya method, by making
use of a few series of vākyas presents a shortcut directly leading to the true
longitudes of the planets at certain regular intervals,4 starting from a certain
instant in the past. We will discuss about this instant, which is also closely
linked with other notions such as khaṇḍa and dhruva, during the course of our
discussion. At this stage it would suffice to mention that this vākya method
provides a simple elegant method for computing the true longitudes without
1 For the kaṭapayādi system, see Section 1.2.
2 This appendix presents an introductory overview of the vākya method of Indian astron-
omy. For further details see {CV 1948}, {KP 1956}, {VK 1962}, {SC 1973}, Hari 2001,
2003, Madhavan 2012, Pai 2011, 2013, Pai et al 2009, 2015, 2017, Sriram 2014, 2017,
Sriram and Pai 2012.
3 The mandasaṃskāra is to be applied in the case of the Sun and the Moon, whereas
both the mandasaṃskāra and śīghrasaṃskāra are to be applied in the case of the other
five planets.
4 The interval is usually one day for the Moon, and in the case of planets it varies widely
and depends on several factors which include their rates of motion with respect to their
mandocca and śīghrocca.
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having to resort to the normal procedure of calculating a whole sequence of
corrections involving sine functions etc., which would be quite tedious and
time consuming. Therefore, the vākya method became very popular in south
India and even today some pañcāngas are brought out using the vākya method
in the southern states of India.

Ancient Indian astronomers were aware of various kinds of periodicities
in the motions of celestial bodies. One such periodicity is the 248-day cycle
during which the Moon’s anomaly completes nearly 9 revolutions.5 They used
this cycle to find the true longitude of the Moon at the sunrise for each day
of the cycle and expressed them as phrases or “vākyas”, from early times.
These are the 248 ‘Vararuci-vākyas’ which are attributed to an astronomer
Vararuci, who is also credited with the invention of the letter-numeral system
of numeration, known as the kaṭapayādi system. Vararuci probably hailed from
Kerala and is usually dated prior to the 4th century CE.

The canonical text of the Parahita system, Grahacāranibandha of Hari-
datta (7th Century), introduces vākyas for the manda and śīghra corrections
which are referred to as the manda-jyās and śīghra-jyās. The fully developed
vākya system is presented in the famous karaṇa text of the 13th century,
Vākyakaraṇa which gives the method of directly computing the true longi-
tudes of the Sun, the Moon and the planets using ‘vākyas’. Manuscripts of
this work are available in various manuscript libraries of south India, espe-
cially Tamilnadu. Kuppanna Sastri and K. V. Sarma estimate that it was
composed between 1282 and 1306 CE . The author of this work is not known,
but probably hailed from the Tamil speaking region of south India. It has
a commentary called Laghuprakāśikā by Sundararāja who hailed from Kāñcī
near Chennai. The work is based on ‘Mahābhaskarīya’ and ‘Laghubhāskarīya’
of Bhāskara I belonging to the Āryabhaṭa School, and the Parahita system of
Haridatta prevalent in Kerala.

Mādhava of Saṅgamagrāma (c. 1360-1420), the founder of the Kerala school
of mathematics and astronomy, composed two works namely, ‘Veṇvāroha’ and
‘Sphuṭa-candrāpti’ which describe the vākya method for the Moon, and are
appended by accurate candra-vākyas which give the true longitudes of the
Moon correct to a second. Mādhava also gave an ingenious method by which
the vākyas can be used to determine the true longitudes of the Moon at nine
instants during the course of a day, thereby significantly reducing the error
in calculating the true longitude at any instant using normal interpolation.
Mādhava was also the originator of the Agaṇita system of computation of
planetary positions. Mādhava’s Agaṇitagrahacāra is yet to be edited, though
manuscripts of the work are available.

Vākyakaraṇa and the above works of Mādhava only present the lists of
vākyas and the computational procedures for obtaining the longitudes of the
planets using these vākyas. It is indeed the Karaṇapaddhati of Putumana So-
mayāji which explains the basis of the entire vākya system. It outlines in
5 This cycle had also been noticed by the Babylonians and Greeks (Jones 1983).
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detail the procedure for composing a karaṇa text (Karaṇapaddhati) for any
desired epoch, by presenting systematic procedures for the calculation of the
khaṇḍas, maṇḍalas and the associated dhruvas, as well as the methods for
arriving at an accurate set of vākyas for the Sun, Moon and the planets. In
this process, Karaṇapaddhati also explains how to make use of the continued
fraction techniques for approximating the rates of motion of the planets and
their anomalies.

D.2 Vākyas related to the true motion of the Sun

D.2.1 Vākyakaraṇa method

The text Vākyakaraṇa presents a fairly accurate method for computing the
true longitude of the Sun based on a set of vākyas.6 This computation involves
the knowledge of an accurate value of the mean motion of the Sun per day,
which in turn depends on the knowledge of the duration of the sidereal year.
The length of the sidereal year used in Vākyakaraṇa is 365 + 1/4 + 5/576 days
= 365 days (d) 15 nāḍis (n) and 31 1

4 vināḍis (v), where a nāḍi is one-sixtieth
of a day, and a vināḍi is one sixtieth of a nāḍi. In what follows, we at times
abbreviate the day, nāḍi and vināḍi by ‘d’, ‘n’ and ‘v’ respectively. Then, the
mean motion of the Sun is 59′8′12′′ per day, which is slightly less than 1◦ per
day.

Suppose n days have elapsed since the Sun was at the first point of Aries,
which is termed the ‘meṣa saṅkramaṇa’.7 Then, the true longitude of the Sun
is n◦, minus certain number of minutes, as deduced from the table of vākyas.
The vākyas beginning with bhūpajña which stands for 14 in the kaṭapayādi
system, are given for multiples of ten days upto 370 days, in the text. The text
also specifies that the correction in minutes to be applied for an intermediate
value of the time interval, is to be found by linear interpolation, which is a
common technique employed in finding the longitude of any celestial body at
an arbitrary instant.

In the following, we present a representative sample of the deductive min-
utes, at an interval of 50 days. We also compare the values, with those ob-
tained by computing the true longitude of the Sun using a simple epicycle
model discussed below.

In the epicycle model for the Sun, implicit in the text, the ratio of the radii
of the epicycle to the deferent is 13.5/360. Sun’s apogee is fixed at θA = 78◦.
Then the true longitude of the Sun θt is obtained from its mean longitude θ0,
using the relation,
6 {VK 1962}, pp. 10-18, 251-253.
7 Here, n can include a fractional part also.
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θt = θ0 − sin−1
[
13.5
360

sin(θ0 − θm)
]
,

where θ0 − θm = θ0 − 78◦ is the mean anomaly. When the true longitude,
θt = 0, θ0 = −2◦6′58′′. Given this, the mean longitude after n days is given
by

θ0 = −2◦6′58′′ + (59′8′′)× n, (D.1)

from which the true Sun θt is computed. For instance, for n = 100 days, we
find

θ0 = 96◦26′42′′,

and θt = 100◦ − 254′5′′ = 95◦45′55′′.

So the computed value of the deductive minutes is 254′5′′, compared with the
‘vākya’ value 254′.

No. of days 50 100 150 200 250 300 350
Vākya with munīḍya bhūmīndra tathāmbu tāpavān vāsāṅga puṇyāṅga kunīla
correspon- मुनी׿ भूमीܓ तथाु߂ तापवाͮ वासाӾ पुئाӾ कुनील
ding number 105′ 254′ 376′ 416′ 374′ 311′ 301′

As computed
in the epi- 104′3′′ 254′5′′ 375′4′′ 414′30′′ 373′24′′ 311′0′′ 300′48′′

cyle model

Table D.1 Deductive minutes for finding the true Sun for some specified number of
days.

The text also gives the vākyas for the time-intervals between the entry
of the Sun into different zodiacal signs (rāśi-saṅkramaṇa) and the entry into
Aries (Meṣa-saṅkramaṇa). These are presented in the format: day-nāḍi -vināḍi
taking the entry into Aries as the reference time 0-0-0. Here the day refers
only to the weekday and an appropriate multiple of 7 has to be added to it to
obtain the instant of entry into the particular sign. These vākyas have been
listed in Table D.2.

Illustrative example

From Table D.1, after 150 days, the true longitude of the Sun is 150◦ − 376′.
So, 150 days after the entry into the Aries, the Sun has to traverse 376′ more
to enter Virgo. The rate of motion of the Sun for the longitude around 150◦
can be estimated to be 58′18′′ per day from the table of deductive minutes
(see Table D.1). Hence, it would take 376

58′18′′ days = 6 d 26 n 38 v to cover 376′.
Hence the Kanyā-saṅkramaṇa (entry into Virgo) is 156 d 26 n 38 v after the
‘Meṣa-saṅkramaṇa’ (entry into Aries). This can be compared with the value
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Name of Instant of entry of the Sun
the rāśi in kaṭapayādi in numerals

वृषभ Vṛṣabha άीगुϺणखमΡा śrīrguṇamitrā 2-55-32
खमथुन Mithuna भूकवϺङधप̵ा bhūrvidhipakṣā 6-19-44
कक੮ टक Karkaṭaka ीࢢ रखतϥरा strī ratiśūrā 2-56-22
छसंह Siṃha भोगवरा ते bhogavarā te 6-24-34
क۬ा Kanyā भावचरोिरः bhāvacaroriḥ 2-26-44
तुला Tulā तेन वश٬ं tena vaśattvaṃ 4-54-6
वृछ࠻क Vṛścika लोकजभीखतः lokajabhītiḥ 6-48-13
धनु͹ Dhanuṣ लूहयोऽयͳࢉ sthūlahayo’yam 1-18-37
मकर Makara अӾङधगारः aṅgadhigāraḥ 2-39-30
कु߃ Kumbha तनाङभः߃ण࢈ stambhitanābhiḥ 4-06-46
मीन Mīna कनٖशशीशो nityaśaśīśo 5-55-10
मेष Meṣa यागमयोऽयͳ yāgamayo’yam 1-15-31

Table D.2 Vākyas giving the instants of entry of the Sun into different zodiacal signs.

using the vākya method, 156 d 26 n 44 v, where we have added 22 × 7 = 154
days to the vākya value 2-26-44 in Table D.2.

D.2.2 Vākyas pertaining to the Sun according to
Karaṇapaddhati

We now proceed to discuss the method for obtaining the vākyas pertaining
to the Sun, as presented in the Karaṇapaddhati. An important ingredient in
this method is the determination of the mean longitude corresponding to a
specified true longitude of the Sun. We explain the methods for obtaining the
‘māsavākyas’, ‘saṅkrāntivākyas’ and ‘nakṣatra-saṅkramaṇavākyas (nakṣatra-
transition sentences)’, and the method for obtaining the true longitude at any
instant, using the ‘yogyādi-vākyas’.

D.2.2.1 The mean longitude of the Sun at the saṅkramaṇas

The word saṅkramaṇa or saṅkrānti refers to ‘cross over’ or ‘transit’ of an ob-
ject from one division to another. According to the solar calendrical system
followed in many parts of India, a solar year is the time interval between suc-
cessive transits of the Sun across the beginning point of the Meṣarāśi (First
point of Aries). The solar year is divided into 12 solar months (sauramāsas).
The durations of these months are equal to the time spent by the Sun in each
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of the twelve rāśis (zodiacal signs), namely Meṣa (Aries), Vṛṣabha (Taurus),
Mithuna (Gemini), etc. In other words, it is the time interval between two
successive rāśi transits (rāśisaṅkramaṇa), which occur when the Sun crosses
the intersticial point between the two rāśis. For example, when the Sun is at
the beginning of the Siṃharāśi (Leo), transiting from Karkaṭaka (Cancer) to
Siṃha (Leo), it is Siṃhasaṅkramaṇa. Similarly, a nakṣatra-saṅkramaṇa (tran-
sition to the next nakṣatra) occurs when the Sun transits from one nakṣatra
(27th part of the zodiac, with the names Aśvinī, Bharaṇī, etc.) to the other.

The calculations related to saṅkramaṇas (transitions) are based on the true
longitudes of the Sun. For instance, a rāśi-saṅkramaṇa (zodiacal transit) oc-
curs when the true longitude is an integral multiple of 30◦. The true longitude
of the Sun does not increase uniformly with time. However, the variation of
the mean longitude is proportional to time. Conversely, the time-intervals are
proportional to the difference in mean longitudes. The mean longitude of the
Sun θ0 is obtained from true longitude θ, using the relation (see equation
(7.66) in Chapter 7)

θ0 − θ = sin−1
[
3
80

sin(θ − θm) R
Rv

]
,

where θm is the longitude of the Sun’s apogee (taken to be 78◦ in the text), R
is the trijyā (3438′), and Rv is the viparyāsakarṇa (inverse hypotenuse) given
by (see equation (7.59))

Rv =

√(
R− 3

80
R cos(θ − θm)

)2

+
(

3
80

R sin(θ − θm)
)2

.

By definition, at the saṅkramaṇa (transit), the true longitudes of the Sun
are multiples of 30. That is, θi = 30 × i, where i = 0, 1, . . . , 11 for Meṣa,
Vṛṣabha, . . ., and Mīna respectively. We now illustrate the procedure for ob-
taining the mean longitude from the true longitude, for two transits namely
Mithuna-saṅkramaṇa (transition to Gemini, θ = 60◦) and Kanyā-saṅkramaṇa
(transition to Virgo, θ = 150◦).

Example 1: Mithuna-saṅkramaṇa (Transition to Gemini, θ = 60◦)

For this transit, the viparītakarṇa is given by

Rv =

√(
R− 3

80
R cos(60− 78)

)2

+
(

3
80

R sin(60− 78)
)2

= 3321.52′,

and hence,

θ0 − 60 = sin−1
[
3
80

sin(360− (78− 60)) R
Rv

]
= −0.687◦.
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Therefore, the mean longitude is

θ0 = 60◦ − 0.687◦

= 59.313◦

= 1r29◦19′.

Example 2: Kanyā-saṅkramaṇa (Transition to Virgo, θ = 150◦)

For this transit, the viparītakarṇa is given by

Rv =

√(
R− 3

80
R cos(150− 78)

)2

+
(

3
80

R sin(150− 78)
)2

= 3398.14′,

and hence,

θ0 − 150 = sin−1
[
3
80

sin(150− 78) R
Rv

]
= 2.068◦.

Therefore, the mean longitude is

θ0 = 150◦ + 2.068◦

= 152.068◦

= 5r02◦04′.

The mean longitudes of the Sun at the transits known as ‘saṅkramaṇārka-
madhya’ are given as vākyas in the Commentary II of the Karaṇapaddhati.8
These are listed in Table D.3, and compared with the values computed as
above. Here, the Vṛṣabha (Taurus) appears first, as the transit into that rāśi
corresponds to the end of the first solar month, and the Meṣa (Aries) appears
last as the transit into that rāśi marks the end of the twelfth solar month, and
also of the solar year itself. It may be noted that the computed and the vākya
values differ only in three cases, namely the transit into Karkaṭaka, Makara
and Kumbha-rāśis, and the difference is only 1′.

D.3 Obtaining māsavākyas, saṅkrāntivākyas and
nakṣatravākyas

Let di denote the time period that has elapsed since the beginning of a year
to the end of a particular solar month (corresponding to the Sun transiting
the ith rāśi). Obviously, di need not be an integer. A māsavākya is the integer
8 {KP 1956}, p. 223.
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Name of Saṅkramaṇārka-madhya-vākya comp. val.

the rāśi (r) (◦) (′) in kaṭapayādi (r) (◦) (′)

Vṛṣabha 0 28 22 άेंࡖ औह रِͳ śreṣṭhaṃ hi ratnam 0 28 22

Mithuna 1 29 19 धा۬धरोऽयͳ dhānyadharo ′yam 1 29 19

Karkaṭaka 3 00 27 सुखी अकनलः sukhī anilaḥ 3 00 28

Siṃha 4 01 29 धरئЇ नभः dharaṇyāṃ nabhaḥ 4 01 29

Kanyā 5 02 04 वानरा अमी vānarā amī 5 02 04

Tulā 6 02 05 मुनीܓोऽनۢः munīndro ′nantaḥ 6 02 05

Vṛścika 7 01 33 बलाؔो नाथः balāḍhyo nāthaḥ 7 01 33

Dhanus 8 00 38 जले कननादः jale ninādaḥ 8 00 38

Makara 8 29 35 ϥलधरो औह śūladharo hi 8 29 34

Kumbha 9 28 37 सा߂ो औह Φधानः sāmbo hi pradhānaḥ 9 28 36

Mīna 10 27 59 धमϺसूңं कनٖͳ dharmasukhaṃ nityam 10 27 59

Meṣa 11 27 53 लңी सुरपूմा lakṣmī surapūjyā 11 27 53
Table D.3 The vākyas given in the Commentary II for the mean longitudes of the Sun
at saṅkramaṇas, compared with the computed values.

closest to di. The fractional part, in terms of nāḍikās can be found from the
saṅkrāntivākyas, which give the remainders when di are divided by 7.

D.3.1 The Māsavākyas

Verse 22 in chapter 7 of Karaṇapaddhati gives the procedure for obtaining the
māsavākyas and saṅkrāntivākyas. The true longitudes of the Sun at the end of
each month are 30◦, 60◦, …, 360◦. At the end of the 12th month, which is the
same as the beginning of the first month in the next year, the true longitude
of the Sun is 360◦. The mean longitude corresponding to the true longitude of
360◦ is found from (7.66) to be 357.883◦ = − 2.117◦ = − 2◦7′ = 11r27◦53′.
The difference between the true and the mean longitudes at the end of the
year is termed the ‘abdāntadoḥphala’ (the difference between the true and
mean longitudes at the year-end), whose value is 2◦7′.

The madhyamabhoga (difference in the mean longitudes) reckoned from the
meṣa-saṅkramaṇa to iṣṭasaṅkramaṇa (desired zodiacal transition) is the dif-
ference in the mean longitudes at the desired zodiacal transit and the transit
at meṣādi of the true Sun. It is found by adding 2◦7′ to the mean longitude at
each transit. For example, the true longitude of the Sun at the siṃhasaṅkra-
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maṇa is 120◦. The mean longitude corresponding to this is 121◦29′ (see Table
D.3). Adding 2◦7′ to it, we obtain 123◦36′ as the madhyamabhoga from the
meṣasaṅkrama to the siṃhasaṅkrama.

A mean solar day is the time interval corresponding to an increase of 1◦
in the mean longitude. This is slightly longer than a civil day, and is given
by Dc

Ds
, where Dc and Ds represent the numbers of civil days and solar days

in a mahāyuga. Note that the values given in the Karaṇapaddhati for Dc and
Ds are 1577917500 and 360 × 4320000 = 1555200000 respectively. Let θi0
represent the madhyamabhoga for the transit to the (i+ 1)th rasi. Then

di = θi0 ×
Dc

Ds
.

For siṃhasaṅkramaṇa, θ40 = 123◦36′ and therefore

d4 = 123◦36′ × 1577917500
1555200000

= 125 d 24 n. (D.2)

The māsavākya is the integer closest to di. Hence, 125 is the māsavākya at
the siṃhasaṅkrama. The māsavākyas corresponding to the transits as given
in the Commentary I9 as also the computed di’s are listed in Table D.4.

Rāśi transited to Māsavākya (textual value) computed

(saṅkramaṇa) in kaṭapayādi in numerals value of di

Vṛṣabha कुलࣷन kulīna 31 30 d 56 n

Mithuna ϒ̵̶ rūkṣajña 62 62 d 20 n

Karkaṭaka कवधान vidhāna 94 93 d 56 n

Siṃha माΡया mātrayā 125 125 d 24 n

Kanyā ̵ण࢒ kṣaṇasya 156 156 d 26 n

Tulā छसंह࢒ siṃhasya 187 186 d 54 n

Vṛścika सुपुΡ suputra 217 216 d 48 n

Dhanus च٘राͥ catvarāṭ 246 246 d 18 n

Makara तथाकΣ tathādri 276 275 d 39 n

Kumbha मीनाखӾ mīnāṅgi 305 305 d 07 n

Mīna मृगाखӾ mṛgāṅgi 335 334 d 55 n

Meṣa मातुलः mātulaḥ 365 365 d 15 n
Table D.4 The māsavākyās given in the Commentary I compared with the computed
values of di.

9 {KP 1956}, p. 225.
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By finding the difference between the successive māsavākyas, the number
of civil days corresponding to each month can be calculated.

D.3.2 The Saṅkrāntivākyas

The instant at which the rāśisaṅkramaṇas occur can be determined from
the saṅkrānti-vākyas. By dividing di by 7, the remainders obtained are the
saṅkrānti-vākyas. For instance, in the previous example

125 d 24 n
7

= 17 + 6 d 24 n
7

.

The remainder is 6 d 24 n. In this, the integral part represents the day and
the fractional part multiplied by 60 would give the nāḍikās. Here the obtained
day of the week corresponds to number 6 and the nāḍikā is 24. The vākya for
this is marutaḥ, which represents the day as 6 and nāḍikā as 25.

The saṅkrāntivākyas which are given in the Commentary II10 for different
transits are listed in Table D.5, along with the computed values.

Name of Saṅkrāntivākya (textual value) computed value
the rāśi in kaṭapayādi in numerals day nāḍikā

Vṛṣabha खतखमरे timire 2 56 2 55.5
Mithuna कनरतͳ niratam 6 20 6 19.5

Karkaṭaka चमरे camare 2 56 2 56.0
Siṃha मϑतः marutaḥ 6 25 6 24.1
Kanyā सुरराͥ surarāṭ 2 27 2 26.1
Tulā घृछणभः ghṛṇibhaḥ 4 54 4 53.5

Vṛścika जवतो javato 6 48 6 47.7
Dhanus धटकः dhaṭakaḥ 1 19 1 18.2
Makara नृवराͥ nṛvarāṭ 2 40 2 39.3
Kumbha सकनभः sanibhaḥ 4 07 4 06.7

Mīna मछणमाͮ maṇimān 5 55 5 55.2
Meṣa चयका cayakā 1 16 1 15.5

Table D.5 The saṅkrāntivākyas in the Commentary II and the computed values.

It is clear that the value of di corresponding to a saṅkramaṇa is obtained
by adding a suitable multiple of 7 to the saṅkrāntivākya. For example, we have
10 {KP 1956}, p. 226.
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to add 91 to the day component of the saṅkrāntivākya for karkaṭaka (2+91)
to obtain d3 whose value is 93 days 56 nāḍikā.

D.3.3 The Nakṣatravākyas

We know that the ecliptic (rāśicakra of 360◦) is divided into 27 equal parts
called nakṣatras, each part corresponding to 13◦20′. The basis of this division
is the fact that Moon’s sidereal period is around 27 days. The term nakṣatra
also refers to the time spent by the Moon in any of these divisions. In the
same vein, the time durations spent by the Sun to traverse through these
divisions are called mahānakṣatras. The true longitudes of the Sun at the
end of the 27 nakṣatras are 13◦20′, 26◦40′, 40◦, 53◦20′, … 360◦. Converting
these longitudes to the corresponding mean ones and adding 2◦7′ to them,
we obtain the increase in the mean longitude of the Sun at the end of each
nakṣatra starting from Aśvinī. The number of civil days corresponding to these
can be calculated by multiplying them by the bhūdinas and dividing by the
solar days in a mahāyuga. These values are presented in Table D.6.

The instant at which the nakṣatra-saṅkramaṇa occurs can be obtained from
the nakṣatra-saṅkrāntivākyas. When we divide the civil days at each transit
by 7, the remainders obtained are the nakṣatra-saṅkrāntivākyas, similar to the
rāśi-saṅkrāntivākyas discussed earlier. The nakṣatra-saṅkrāntivakyas as given
in both the Commentaries11 are tabulated along with the computed values in
Table D.7.

D.4 The Yogyādivākyas

Unlike the vākyas discussed earlier, wherein the nomenclature was based upon
a certain time interval or phenomenon, here the name yogyādivākyas stems
from the fact that the set of 48 vākyas begin with the word yogya. These vākyas
enable us to find the longitude of the Sun at any given instant. There are 4
vākyas corresponding to each solar month. Each month is divided into four
parts with a maximum of 8 days per part. Now, the sphuṭabhoga of each part
is the difference between the true longitudes of the Sun at the beginning and
at the end of that part. The difference in minutes between the sphuṭabhoga
of each part and 8◦ are the yogyādivākyas. If the longitudinal difference is
greater (lesser) than 8◦, then it is to be taken as positive (negative).

The definition of yogyādivākyas and the method of applying them to obtain
the true longitude of the Sun at an interval of 8 days in a solar month, are
given in verse 24, chapter 7 of Karaṇapaddhati.
11 {KP 1956}, p. 228.
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Name of the No. of civil days elapsed
Nakṣatra before the Nakṣatra-saṅkramaṇa

Bharaṇī 13.674
Kṛttikā 27.461
Rohiṇī 41.349

Mṛgaśirā 55.318
Ārdrā 69.343

Punarvasu 83.395
Puṣya 97.442
Āśleṣā 111.454
Maghā 125.401

Pūrvaphālgunī 139.260
Uttaraphālgunī 153.015

Hasta 166.654
Citrā 180.175
Svātī 193.581

Viśākhā 206.881
Anurādhā 220.090
Jyeṣṭhā 233.224
Mūla 246.304

Pūrvāṣāḍhā 259.352
Uttarāṣāḍhā 272.393

Śravaṇa 285.449
Dhaniṣṭhā 298.543
Śatabhiṣaj 311.697

Pūrvabhādrapadā 324.931
Uttarabhādrapadā 338.262

Revatī 351.702
Aśvinī 365.258

Table D.6 Number of civil days elapsed at each Nakṣatra-saṅkramaṇa.

How to obtain the yogyādivākyas?

The yogyādivākyas as given in the edited version of the Commentary I12 are
listed in Table D.8. Apart from the vākyas (here in the form of one word, which
form part of meaningful sentences), the signs (‘+’ or ‘−’) are also indicated in
the commentary. Except in the case of Tulā, all the 4 vākyas corresponding to
12 {KP 1956}, p. 229.
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Name of Nakṣatra-saṅkrāntivākya computed value
the Nakṣatra in kaṭapayādi in numerals day nāḍikā

Bharaṇī ककवषु kaviṣu 6 41 6 40.4
Kṛttikā हािरषु hāriṣu 6 28 6 27.7
Rohiṇī दीयत dīyata 6 18 6 20.9

Mṛgaśirā धीयते dhīyate 6 19 6 19.1
Ārdrā किरषु kariṣu 6 21 6 20.6

Punarvasu मािरषु māriṣu 6 25 6 23.7
Puṣya सािरषु sāriṣu 6 27 6 26.5
Āśleṣā ϣरतः dūrataḥ 6 28 6 27.2
Maghā ࢑रखत smarati 6 25 6 24.0

Pūrvaphālgunī Ϟ࡞खत duṣyati 6 18 6 15.6
Uttaraphālgunī योकनषु yoniṣu 6 01 6 00.9

Hasta पवϺणा parvaṇā 5 41 5 39.2
Citrā खΡकश trikaśa 5 12 5 10.5
Svātī ता؝व tāṇḍava 4 36 4 34.9

Viśākhā भोमृग bhomṛga 3 54 3 52.9
Anurādhā धेनुग: dhenugaḥ 3 09 3 05.4
Jyeṣṭhā सुपुर supura 2 17 2 13.4
Mūla हाटक hāṭaka 1 18 1 18.2

Pūrvāṣāḍhā नीरन nīrana 0 20 0 21.1
Uttarāṣāḍhā भारता bhāratā 6 24 6 23.6

Śravaṇa चरण caraṇa 5 26 5 26.9
Dhaniṣṭhā गालव gālava 4 33 4 32.6
Śatabhiṣaj कवࡆगु viśvagu 3 44 3 41.8

Pūrvabhādrapadā चमϺराͥ carmarāṭ 2 56 2 55.9
Uttarabhādrapadā चचकुर cikura 2 16 2 15.7

Revatī रावय rāvaya 1 42 1 42.1
Aśvinī मक੮ ट markaṭa 1 15 1 15.5

Table D.7 The nakṣatra-saṅkrāntivākyas given in both the Commentaries and the com-
puted values.

a partcular raśi have the same sign and this is indicated as such in the table.
For Tulā, the sign for the first vākya is − and the signs for the other three are
all +, as indicated in the table. The rationale behind these yogyādivākyas is
best explained by taking up a couple of concrete examples.
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Consider the solar month of Mithuna. The true longitude of the Sun is θ =
60◦ at the beginning of the month. The corresponding mean longitude θ0 can
be determined using the method explained earlier and we find θ0 = 59◦18′42′′.
Using the fact that the rate of motion of the mean longitude of the Sun is
59.136′ per day, the mean longitude is θ0 = 67◦11′48′′ after 8 days in the
month of Mithuna. The mandaphala (θ− θ0) corresponding to this value of θ0
is found to be 24′6′′. Adding this to θ0, we find the true longitude after 8 days
to be 67◦11′48′′+24′6′′ = 67◦35′54′′. Hence the increase in the true longitude
after the first 8 days of the month is 7◦35′54′′. The longitudinal difference is
less than 8◦, and is given by −(8◦−7◦35′54′′) = −24′6′′, which compares well
with with the value of −24′ as given by the vākya ‘vīraḥ’ in the commentary.

After 16 days in the month of mithuna, the mean longitude θ0 = 59◦18′42′′+
59′8′′×16 = 75◦4′48′′. The true longitude corresponding to this is found to be
θ = 75◦11′24′′. Hence the difference between the true longitudes at the begin-
ning and at the end of the second part is 75◦11.4 − 67◦35′54′′ = 7◦35′30′′.
Here again as the longitude difference is less than 8◦, and is given by
−(8◦ − 7◦35′30′′) = −24′30′′, compared with the value of −25′ as implied
by the vākya ‘śūraḥ’ in the commentary.

Solar month yogyādivākyas (in minutes)
Meṣa − yogyo 11 vaidyaḥ 14 tapaḥ 16 satyam 17

(11′12′′) (13′3′′) (15′42′′) (17′42′′)
Vṛṣabha − dhanyaḥ 19 putraḥ 21 kharo 22 varaḥ 24

(19′18′′) (20′54′′) (22′18′′) (23′18′′)
Mithuna − vīraḥ 24 śūraḥ 25 śaro 25 vajrī 24

(24′6′′) (24′30′′) (24′36′′) (24′24′′)
Karkaṭaka − bhadram 24 gotro 23 ruruḥ 22 karī 21

(23′54′′) (23′6′′) (21′54′′) (20′30′′)
Siṃha − dhanyaḥ 19 sevyo 17 mayā 15 loke 13

(18′54′′) (17′0′′) (14′54′′) (12′42′′)
Kanyā − kāyo 11 dīnaḥ 8 stanām 6 ganā 3

(10′36′′) (8′12′′) (5′48′′) (3′18′′)
Tulā yājño − 1 yajñām + 1 ganā + 3 śūnā + 5

(−1′30′′) (+0′48′′) (3′0′′) (4′54′′)
Vṛścika + steno 6 dīno 8 dhunī 9 naṭaḥ 10

(6′12′′) (7′42′′) (8′54′′) (9′54′′)
Dhanus + āpaḥ 10 pāpaḥ 11 payaḥ 11 pathyam 11

(10′18′′) (10′42′′) (10′48′′) (10′30′′)
Makara + pūjyā 11 dhenuḥ 9 dine 8 arthinaḥ 7

(10.2) (9.4) (8.2) (6.8)
Kumbha + tanuḥ 6 bhinnā 4 khanī 2 jñānī 0

(5′42′′) (3′54′′) (1′54′′) (−0′18′′)
Mīna − ratnaṃ 2 bhānuḥ 4 suniḥ 7 nayaḥ 10

(2′0′′) (4′24′′) (6′48′′) (9′18′′)

Table D.8 The 48 yogyādivākyas mentioned in the Commentary I along with the com-
puted values in parentheses.
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D.4.1 Finding the true longitude of the Sun from the
yogyādivākyas

One can obtain the true longitude of the Sun on any day using the yogyādi-
vākyas, and linear interpolation. For example, suppose we would like to find
the true longitude of the Sun after the lapse of 18 days in the Vṛṣabha month.
This comes in the third part (khaṇḍa). Therefore the approximate value of
the true longitude of the Sun after 18 days elapsed would be

θ′ = 30◦ + 18◦ = 48◦.

A correction called yogyādisaṃskāra ∆θ′ has to be applied to θ′ in order
to obtain the true longitude θ.

Now, the correction for 8 days of the third khaṇḍa is given as 22′ (khara).
Hence the correction for 2 days is 22×2

8 minutes. Adding this to the sum of
the first two vākyas (dhanya and putra),

∆θ′ = 19 + 21 + 22× 2
8

= 45′30′′.

These corrections are indicated as negative in the listing of the vākyas in the
commentary. Hence applying this result negatively to θ′ the true longitude of
the Sun at the end of the 18th day of the solar month Vṛṣabha is found to be

θ = 48◦ − 45′30′′ = 47◦14′30′′.

D.4.2 Some observations

It is clear from the examples given above, that this method can be used to
determine the true longitude at any instant during the day using interpolation.
In Table D.8, our computed values for the difference between 8◦ and the
actual angular distance converted by the Sun in 8 days (i.e., the difference
between the true longitudes computed after a separation of 8 days) are given
in parentheses below the vākya values. It is clear from these figures that the
yogyādivākyas are very accurate.

More importantly, what is noteworthy here is the phenomenal simplification
that has been achieved in computing the true longitudes of the Sun at any
moment using the yogyādivākyas. The yogyādivākyas are easily remembered
through the following verses:

योӔो वैڦः तपः सٖं ध۬ः पुΡः खरो वरः|
वीरः ϥरः शरो वΛी भΣं गोΡो ϑϑः करࣷ||
ध۬ः सेࠬो मया लोके कायी दीनः |नाӾना࢈
या̶ी य̶ाӾना ϥना नेो࢈ दीनो धुनी नतः||
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आपः पापः पयः पंړ पूմा धेनुकदϺनेऽघथϺनः|
तनुङभϺۦा खनी ̶ानी रِं भानुः सुकननϺय:||

yogyo vaidyaḥ tapaḥ satyaṃ dhanyaḥ putraḥ kharo varaḥ |
vīraḥ śūraḥ śaro vajrī bhadraṃ gotro ruruḥ karī ||
dhanyaḥ sevyo mayā loke kāyī dīnaḥ stanāṅganā |
yājñī yajñāṅganā śūnā steno dīno dhunī naṭaḥ ||
āpaḥ pāpaḥ payaḥ pathyaṃ pūjyā dhenurdine ′rthinaḥ |
tanurbhinnā khanī jñānī ratnaṃ bhānuḥ sunirnayaḥ ||

The literal translation of the above verse is:
A qualified doctor; [Speaking] truth [by itself] is austerity; A blessed son; A donkey
is better; A skilful warrior; Indra’s arrow; This clan is safe; The antelope and
elephant; In the world only the blessed are to be served by me; The one with a
bulky body is pitiable; A lady with big breasts; The wife of the Yajamana and
performer if the sacrifice is swollen; The thief is miserable; The river is a dancer;
The water is the culprit; Milk is good; Cow is to be worshiped during the day by
those desirous of becoming wealthy; The body has been split; The wise is like a
mine; The Sun is a pearl; The one who is completely unscrupulous.

By simply memorizing the above verses, one can find out the longitude of
Sun on any given day at any given instant with reasonable accuracy. In fact,
for all practical purposes, the inaccuracies noted in Table 7.7 are negligible.
This is a very small price paid for the enormous simplification and fun involved
in computing the longitudes by simple arithmetical calculations.

D.5 Vākya method of finding the longitude of the Moon

All the texts dealing with the vākya method, be it the Vākyakaraṇa or Sphuṭa-
candrāpti or Veṇvāroha, first introduce what is known as the khaṇḍa, before
proceeding to describe the procedure for the computation of planetary lon-
gitudes. Essentially, a khaṇḍa refers to kalidinasaṅkhyā (certain number of
civil days elapsed from the beginning of kaliyuga), which is close to the ahar-
gaṇa under consideration. The value of khaṇḍa will be varying from planet to
planet. The choice of the khaṇḍa is dictated by certain conditions to be satis-
fied by the longitudes of the planets in relation with those of their mandoccas
and sīghroccas. In the case of the Moon, the khaṇḍa is the number of days
from the beginning of the kali to a day near to the chosen ahargaṇa such that
the mandakendra or the mean anomaly is zero at sunrise on that day. It may
be recalled that

mandakendra = madhyamagraha − mandocca
= mean longitude − longitude of apogee.

In Table D.9 we have listed the values of khaṇḍas for the Moon as given in
different texts.
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The vākya method for the Moon is based on the fact that the number
of revolutions of the mandakendra (anomaly) or anomalistic revolutions is
very close to an integer for certain specific number of days. For instance, the
number of anomalistic revolutions in 55, 248, 3031, 12372 or 188611 days is
very close to an integer (2, 9, 110, 449 and 6845 in the above cases). These
are called the cycles of anomaly or anomalistic cycles. Larger the value of the
anomalistic cycle, closer is the number of revolutions to an integral value.

Text the khaṇḍa for Moon

in kaṭapayādi in numerals

Vākyakaraṇa वेदे̶ڠानतुࡕः vededdhajñānatuṣṭaḥ 1600984

Sphuṭacandrāpti दीननΪानुशा࢒ः dīnanamrānuśāsyaḥ 1502008

Veṇvāroha दीननΪानुशा࢒ः dīnanamrānuśāsyaḥ 1502008
Table D.9 The khaṇḍas for Moon given in different texts.

Let A be the ahargaṇa corresponding to the day on which the mean lon-
gitude of the Moon is to be calculated. The algorithm for finding its true
longitude involves the following steps.13

• Initially we have to find the difference between the ahargaṇa and the khaṇḍa
which is generally referred to as khaṇḍaśeṣa. That is

khaṇḍaśeṣa = A−K.

• This khaṇḍaśeṣa is to be divided by 12372. The quotient and the remainder
thus obtained are to be stored separately.

(A−K)
12372

= q1 +
r1

12372
. (D.3)

• Now, we have to divide the remainder (r1) by 3031.

r1
3031

= q2 +
r2

3031
. (D.4)

Having stored the quotient (q2) and remainder (r2) separately, the process
has to be repeated with r2 and the number 248. Thus we have

r2
248

= q3 +
r3
248

. (D.5)

• Let D0 be the true longitude of the Moon at the end of the khaṇḍa or
khaṇḍāntya K. This is known as the dhruva at the khaṇḍāntya K. Let

13 {VK 1962}, pp. 18-21, 253-254.



354 An Introduction to the Vākya method

D1, D2 and D3 denote the dhruvas at the end of 12372, 3031 and 248
days respectively, which represent the change in the true longitude of the
Moon corresponding to these hārakas. Then the true longitude of Moon
(θA) corresponding to the ahargaṇa (A) is given by

θA = [D0 + (D1 × q1) + (D2 × q2) + (D3 × q3)] + Vr3 , (D.6)

where Vr3 represents the vākya corresponding to the number r3 which is to
be read off from the table of Moon’s vākyas. The table contains 248 vākyas
which are generally known as gīrnaśreyādi-vākyas composed by Vararuci
(prior to 4th cent. CE). Mādhava has composed a more accurate set of 248
cāndravākyas commencing with “śīlaṃ rājñaḥ śriye”. Both the Vararuci and
Mādhava vākyas have been tabulated in Table E.1 of Appendix E. Their
derivation is also discussed in the same Appendix.

It may be noted that the expression for the longitude θA given by (D.5),
essentially consists of two parts, which may be called as the “dhruva-part”
and the “vākya-part”. The expression corresponding to the former is enclosed
in the square bracket (“[ ]”) in order to distinguish it from the latter. We note
that it depends on Di’s (i = 0, 1, 2, 3) and qi’s (i = 0, 1, 2, 3). While qi’s are
to be obtained from the equations (D.3) – (D.5), the values of Di’s are to be
taken from the text.

The dhruvas D0, D1, D2 and D3 given in the text Vākyakaraṇa are listed
in Table D.10.14

i Dhruvas (Di’s) given in the text Vākyakaraṇa

in kaṭapayādi in numerals in degrees

0 सेनानािरनाथनͳ senānārināthanam 07r02◦00′7′′ 212.00194

1 कनٖदवेसुखाधीनͳ nityadevasukhādhīnam 09r27◦48′10′′ 297.80278

2 य̶योगसुनायकͳ yajñayogasunāyakam 11r07◦31′01′′ 337.51694

3 तनुकवϺࡆसुखͳ tanurviśvasukham 0r27◦44′06′′ 27.73500
Table D.10 The dhruvas as given in Vākyakaraṇa.

Now Moon’s anomaly at the end of K + 12372× q1 + 3031× q2 + 248× q3
days is taken to be zero in the first instance, as it is zero for the khaṇḍa K
and the anomaly is supposed to complete an integral number of revolutions
in 12372, 3031 and 248 days. Hence, the anomaly is solely determined by r3.

However, the lunar anomaly does not complete an exactly integral number
of revolutions in 248, 3031 or 12372 days. At the end of 248 days the anomaly
14 {VK 1962}, pp. 18-19.
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would have increased by 7′. Similarly, it would have decreased by 1.75′ at the
end of 3031 days. The text Vakyakaraṇa prescribes a correction for taking into
account this minute motion in anomaly in the following manner.

Find 32q3−8q2 (where q2 and q3 are the quotients corresponding to the divi-
sors 3031 and 248 respectively, in equations (D.3)–(D.5)). Find the true daily
motion of Moon’s longitude, say gmt by subtracting the longitude correspond-
ing to the vākya (r3 − 1) from that corresponding to r3. Subtract the mean
daily motion of the Moon, gm0 = 13◦11′ from this. Then the correction to the
true longitude obtained from the vākya in seconds is (gmt−gm0)×(32q3−8q2).

In Vākyakaraṇa, the rationale for the dhruvas D0, D1, D2, D3, or for the
vākyas, or for the finer correction mentioned above, are not presented. The
origin of these dhruvas can be understood as follows. The dhruva correspond-
ing to 12372 days is mentioned as 9r27◦48′10′′. Now there are 449 anomalistic
cycles in 12372 days. As it is known that the sidereal period of the Moon
is around 27.32 days, this will mean that the Moon’s longitude increases
by 452 revolutions and, 9r27◦48′10′′ or 452.8272299383 revolutions. Hence
the sidereal period of Moon employed in Vākyakaraṇa may be inferred to be

12372
452.8272299383 = 27.3216785167 days. Incidentally, this differs only in the 8th
decimal place with the Karaṇapaddhati’s śakābda corrected revolution rate of
27.3216785014.

According to Vākyakaraṇa, the mean longitude of the Moon increases by
3031

27.3216785167 revolutions in 3031 days. Subtracting the integral number of rev-
olutions from this, the dhruva for 3031 days would be 11r7◦31′1′′, which is
precisely the value specified in the text. Similarly, the mean longitude in-
creases by 248

27.3216785167 revolution in 248 days. From this, we find the dhruva
for 248 days to be 0r27◦44′5′′36′′′ compared to the value 0r27◦44′6′′ specified
in the text.

Now, Moon’s dhruva at the khaṇḍa of 1600984 days is stated to be 7r2◦0′7′′.
This means that the Moon’s mean longitude at the beginning of kaliyuga is

7r2◦0′7′′ −
[

1600984
27.32167852

]
frc

= 7r2◦0′7′′ − 6r25◦36′2′′

= 0r6◦24′5′′.

This kalyādidhruva does not figure in the calculation of Moon’s true lon-
gitude. Still, it is interesting to compare the above kalyādidhruva with the
kalyādidhruva in Karaṇapaddhati which is 0r6◦23′37′′ (see Table 2.5). These
two differ only by 28′′ .

It appears that in Vākyakaraṇa the rate of motion of the anomaly is taken to
be 449

12372 revolutions/day. Let x be the longitude of the apogee at the beginning
of the kali. As the Moon’s mean longitude at that time was 0r6◦24′5′′, the
kendra will be 0r6◦24′5′′ − x. The motion of the anomaly in 1600984 days is
1600984× 449

12372 revolutions. Hence the longitude of the anomaly at the khaṇḍa
is given by
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0r6◦24′5′′ − x+
[
1600984× 449

12372

]
frc

× 360,

where ‘[ ]frc’ denotes the fractional part. At the khaṇḍa the anomaly is sup-
posed to be zero. Hence we find

x = 6◦24′5′′ + 112◦40′2′′ = 3r29◦4′7′′.

This is the kalyādidhruva of Moon’s apogee in Vākyakaraṇa. This can be
compared with the Karaṇapaddhati value of 3r29◦17′26′′. The difference is
13′19′′.

We now take up the finer correction to the ‘true longitude’ due to the
minute motion in anomaly at the end of 248 and 3031 days. The anomaly
at the end of 248 days is not zero but 449

12372 × 248 revolutions if the rate of
motion of the anomaly is taken to be 449

12372 revolutions/day. This works out
to be 6.98′ ≈ 7′ after subtracting 9 integral number of revolutions. Similarly
the anomaly at the end of 3031 days is

449
12372

× 3031 = 110− 0.0000808276 revolutions

= −1′44′′45′′′ ≈ −1.75′,

dropping the integral number of revolutions. Hence, the correction to the
anomaly is δ = q3 × 7′ − q2 × 1.75′ = (q3×7′−q2×1.75′)

60 in degrees, when the
quotients corresponding to the hārakas 3031 and 248 are q2 and q3.

Let X be the anomaly without the above correction. Hence the ac-
tual anomaly would be X + δ. The equation of center would now be
− sin−1 [ 7

80 sin(X + δ)
]

instead of − sin−1 [ 7
80 sin(X)

]
. Hence the correction

to the equation of centre is given by

− sin−1
[
7
80

sin(X + δ)
]
+ sin−1

[
7
80

sin(X)
]

≈ − d

dX

[
sin−1

(
7
80

sinX
)]

× δ.

The true longitude is given by

θt = θm − sin−1
(

7
80

sinX
)
.

Now in one day, X increases by 13◦4′. Therefore,

gmt ≈ gm0 −
d

dX

[
sin−1

(
7
80

sinX
)]

× 13◦4′,

or
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− d

dX

[
sin−1

(
7
80

sinX
)]

≈ gmt − gm0

13◦4′
,

where gmt is the rate of motion of the true longitude of Moon/day and gm0
is rate of motion of the mean longitude of Moon/day, in degrees. Hence,

− d

dX

[
sin−1

(
7
80

sinX
)]

× δ ≈ gmt − gm0

13◦4′
× δ (in degrees)

= (gmt − gm0)×
δ × 3600
13.06

in seconds

= (gmt − gm0)×
(q3 × 7− q2 × 1.75)× 60

13.06
= (gmt − gm0)× (q3 × 32.159− q2 × 8.03)

In the text, the correction to the true longitude is stated to be (gmt − gm0)×
(32q3 − 8q2) seconds, where gmt and gm0 are rates of motion of the true and
mean longitudes of the Moon per day.

The longitude of the Moon thus obtained is to be further refined by taking
into account the saṃskāras which are mentioned in Vākyakaraṇa such as the
bhujāntara, cara, deśāntara and so on.

Illustrative example

We shall now illustrate the procedure outlined above by means of a numerical
example. For this, we choose the Kalyahargaṇa A = 1851974 corresponding
to Nija-āṣāḍha-kṛṣṇa-navamī, Śaka 1891 (August 6, 1969 ce).

ahargaṇa A = 1851974,
khaṇḍa K = 1600984,

khaṇḍaśeṣa A−K = 250990,

First quotient of 250990
12372

, q1 = 20,

First remainder of 250990
12372

, r1 = 3550,

Second quotient of 3550
3031

, q2 = 1,

Second remainder of 3550
3031

, r2 = 519
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Third quotient of 519
248

, q3 = 2,

Third remainder of 519
248

, r3 = 23.

From the quotients obtained above and the values of the dhruvas given in
the Table D.10, we get the net dhruva of the Moon to be

D0 + (D1 × q1) + (D2 × q2) + (D3 × q3) = 81.04448◦.

Now, the vākya corresponding to the number 23 (r3) is “goraso nanu syāt” (see
Table E.1). The longitude encoded by this phrase is 10r 07◦ 23′ = 307.38333◦.

Adding 307.38333◦ to the above dhruva 81.04448◦, we get the uncorrected
true longitude of the Moon as

θA = 28.4278 = 0r28◦25′40′′.

Now the 22nd vākya in the cycle is 9r 24◦ 42′. Subtracting this from the
23rd, namely 10r 7◦ 23′, we obtain the daily rate of motion of the true longi-
tude, gmt = 12◦41′. As the daily motion of the mean Moon is gm0 = 13◦11′,
we get gmt − gm0 = −30′ = −0.5◦. Hence the correction to the true longitude
is

−0.5(32q3 − 8q2) = −.5(64− 8)′′ = −28′′.

Hence the corrected true longitude is

0r28◦25′40′′ − 28′′ = 0r28◦25′12′′.

D.6 Vākya method for finding the true longitudes of the
planets

In the case of the Moon, only one correction, corresponding to the equation
of center or mandasaṃskāra, is considered in Vākyakaraṇa. The khaṇḍa cor-
responds to a day which is close to the ahargaṇa when the anomaly or the
mandakendra is zero. Then use is made of periods such as 248 days, 3031
days and 12372 days etc. in which the anomaly of mandakendra makes (very
nearly) integral number of revolutions. Finally for the remainder of days, use
is made of the tables of Moon’s longitude in the form of vākyas in a cycle
of 248 days. As the anomaly does not complete exactly integral number of
revolutions in 248 or 3031 days, a correction term is also prescribed to take
into account, the small positive or negative change in the anomaly after these
cycles.

In the case of the five planets, Mars, Mercury, Jupiter, Venus and Saturn,
two corrections (saṃskāras) have to be applied in order to obtain their true
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longitudes from the mean longitudes. One of them is the equation of centre
or mandasaṃskāra involving the mandocca. The other is the śīghrasaṃskāra
which converts the heliocentric longitude to the geocentric longitude. The
śīghrasaṃskāra involves the śīghrocca, and the śīghrakendra or the śīghra
anomaly. In the modified planetary model of Nīlakaṇtha Somayājī as enun-
ciated in his Tantrasaṅgraha, Siddhāntadarpaṇa etc., the mean Sun will be
the śīghrocca for all the planets. However, Vākyakaraṇa and, to a large ex-
tent, Karaṇapaddhati are based on the traditional planetary model according
to which the Sun is the śīghrocca for the exterior planets, Mars, Jupiter and
Saturn, whereas the heliocentric mean planet itself is called the śīghrocca in
the case of Mercury and Venus. Further, in the case of Mercury and Venus,
the mean Sun is taken to be the mean planet.

Tabulation of vākyas for the planets would have been greatly simplified
if there were small periods of time in which both the mandakendra and the
śīghrakendra become zero. On the contrary it is only after a very large in-
terval of time, of the order of millions of years, that both the mandakendra
and śīghrakendra become zero at the same time. Such periods would not be
convenient for the purpose of tabulations. Instead Vākyakaraṇa invokes the
concept of maṇḍalas which is closely linked with the synodic period of the
planet as we shall explain below.15

D.6.1 Maṇḍalas, dhruvas and śodhyas

The synodic period is the time interval between two successive conjunctions
of the mean planet and the śīghra. Having known this, we find the integral
multiples of the synodic period during which both the śīghra and the mean
planet return to an angular position close to the mandocca, if they started
near the mandocca. It is obvious that this would be possible only for certain
specified time durations. These time units are the maṇḍalas. It is important
to note that the maṇḍalas are not given by an integral number of civil days.

Let us consider an instant at which both the mandakendra and the śīghrak-
endra are zero. Physically this would correspond to a situation in which the
planet and its śīghrocca are both along the direction of the mandocca (U) as
shown in the Figure D.1.

In the figure, E represents the Earth and EΓ the direction of Meṣādi from
where the longitudes are measured. S is the śīghrocca (the mean Sun) which
moves around E and P is an exterior planet which moves around S. Γ ŜU rep-
resents the longitude of mandocca of the planet which may be taken to be fixed
15 For more details on the Vākyakaraṇa method of computing the true longitudes of
planets, see {VK 1962}, pp. 30-62, 257-266.
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śodhyas dhruvas
planet in kaṭapayādi in numerals in kaṭapayādi in numerals

days nāḍikās (in minutes)
Mars śīlasārahāramāṇikyo 1552827 35 ratnavit −402

शीलसारहारमाछणѿो रِकवͪ
Mercury rātrirnivāsaruddhāṃśako 1592740 22 rāgajñaḥ −032

राखΡकनϺवासϑڠЇशको राग̶ः
Jupiter satyaṃ śūravanasamayaiḥ 1570425 17 pitaraḥ −261

सٖं ϥरवनसमयैः कपतरः
Venus viśvaṃ sadgandhikāntimayaiḥ 1561937 44 satyajñāḥ +17

कवंࡆ सښठۥकाठۢमयैः स̶ٖाः
Saturn harirvāsavadhīdamāḍhyaḥ 1589474 28 tarugaḥ −326

हिरवЉसवधीदमाؔः तϑगः
Table D.11 The śodhyas and corresponding dhruvas for different planets as given in
Vākyakaraṇa ({VK 1962}, p. 30).

U

E

P

Γ

Γ

S

Fig. D.1 Schematic sketch of an exterior planet being in conjunction with its śīghrocca
along the direction of its mandocca.

as the rate at which the mandocca moves is extremely small in comparison
with that of the planets.

Both the planet (P) and the śīghrocca (S) keep moving continuously around
S and E respectively. It may so happen that after a certain period of time
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when both of them complete certain integral number of revolutions once again
they may fall in conjunction, along the direction of the mandocca of the planet.
But for this to happen the time period would be extremely large. However,
we can think of smaller periods in which, after a certain integral number of
synodic revolutions, the planet could be fairly close to its mandocca. These
periods are referred as maṇḍalas. Since we are considering a situation in which
the planet, being in conjunction with śīghrocca, is only close to the direction
of mandocca, there will be an angular separation between the two. In other
words, though the śīghrakendra is zero, the mandakendra will not be zero.
This difference between the longitude of the planet and its mandocca when
the śīghrakendra is zero is what is referred to as maṇḍaladhruva or simply
dhruva. Conventionally, dhruva would be taken to be positive if the longitude
of the planet is greater than that of its mandocca and negative otherwise. It
can be easily seen that if the maṇḍala is large, then the magnitude of dhruva
will be small and vice versa.

In the context of the planets, we also have the notion of the śodhya which is
roughly the equivalent of the khaṇḍa in the case of the Moon. This is the time
instant which is close to the desired ahargaṇa, when the śīghrakendra is zero
and the mandakendra has a small value. Again the śodhya does not correspond
to an integral number of civil days. The śodhyas and the corresponding dhruvas
for the planets, as given in the Vākyakaraṇa, are presented in Table D.11. The
maṇḍalas and the corresponding dhruvas as given in Vākyakaraṇa are listed
in Tables G.1 – G.5. In what follows, we shall briefly explain these tables in
the case of the planet Mars with some specific examples.

Maṇḍalas and dhruvas of Mars16

The maṇḍalas and dhruvas of Mars as given in Vākyakaraṇa are compiled in
Table D.12.

Based on the rough value of 780 days for the synodic period of Mars, it is
clear that the last or fifth maṇḍala (M5) of 11699 days 4 nāḍikās corresponds
to 15 synodic periods of Mars (complete revolutions of śīghrakendra) and the
fourth maṇḍala (M4) of 17158 days 37 nāḍikās corresponds to 22 synodic
revolutions. It is seen that the duration of the third maṇḍala (M3) is exactly
the sum of these two and corresponds to 37 revolutions.

M3 = M4 +M5.

If the dhruvas corresponding to the maṇḍala Mi are denoted by Di, we see
that they also satisfy the relation

D3 ≈ D4 +D5.

16 {VK 1962}, p. 259.
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maṇḍalas (Mi) dhruvas (Di)
in numerals in numerals

in kaṭapayādi days nāḍikās in kaṭapayādi (in minutes)
dhanadhīdānabhaṅgārtaiḥ 634089 09 vanānām +004

धनधीदानभӾातЄः वनानाͳ
putradhīhāmarālayaiḥ 132589 21 satrajñāḥ +027

पुΡधीहामरलयैः सΡ̶ाः
kavissammodahāraiḥ 28857 41 gaṅgārcyā +133

ककव߄ࢗोदहारैः गӾाՒЉ
saṅgajanmapathikaiḥ 17158 37 vaneśaḥ −504

सӾज۫पघथकैः वनेशः
vanadhīdhṛtapuṇyaiḥ 11699 04 jalārtā +638

वनधीधृतपुئःै जलातЉ
Table D.12 The maṇḍalas and corresponding dhruvas for Mars as given in Vākyakaraṇa
({VK 1962}, p. 51).

The second maṇḍala (M2) and the dhruva (D2) correspond to 170 revolutions
and satisfy the relations:

M2 ≈ 5M3 −M5,

D2 ≈ 5D3 −D5.

The first maṇḍala (M1) and the dhruva D1 correspond to 813 revolutions and
satisfy the relations

M1 ≈ 5M2 −M3,

D1 ≈ 5D2 −D3.

The dhruva for the first maṇḍala is very small (4′). This means that if the
longitude of the Sun and the Mars are both equal to the longitude of the
mandocca of Mars at some instant, then after 813 synodic revolutions, the
duration of which is 634089 days 9 nāḍikās, they will differ from the mandocca
only by 4′.

From the first maṇḍala, the exact synodic period of Mars can be com-
puted. Its value is 779.9374539 days. Using this and the sidereal period of the
śīghrocca, (the Sun), which is the sidereal year assumed in Vākyakaraṇa equal
to 365.258681 days, the sidereal period of Mars works out to be 686.9869988
days.

We can compute the increase in the longitude of the Sun or the Mars after
each maṇḍala using the above inferred sidereal year and the sidereal period
of Mars. The values obtained are listed in Table D.13.
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maṇḍalas dhruvas
Mi days nāḍikās
M5 11699 −4 D′

5 638′

M4 17158 −37 D′
4 −505.1′

M3 28857 −41 D′
3 132.9′

M2 132589 −21 D′
2 26.5′

M1 634089 −9 D′
1 4.7′

Table D.13 Computed values of maṇḍalas and dhruvas of Mars.

Comparing these values with those given in Table D.12, it is noted that the
computed values are very close to the dhruvas Di listed in the Vākyakaraṇa.

Computation of the śodhya and planetary longitude

Suppose we want to find a time period that is close to, let us say 1560000 kali
days, at which the śīghrakendra is zero. For this, if the longitude of Mars at
epoch were to be zero, then we could have chosen this to be

2M1 + 2M2 + 2M5 = 1556755.133333 days,

which amounts 1996 revolution of the śīghrakendra. However, the śīghrakendra
is not zero at the kali beginning as the longitude of Mars at the epoch is
actually 11r17◦7.4′ = 347◦7.4′. Taking this into consideration, we have to find
the time at which the longitudes of both the Sun and the Mars are close to
each other. If we take the time period as 1556727.236 days, the longitude of
Sun would be 354.8134661◦ = 354◦48.8′, and the longitude of Mars would be
354.8248167◦ = 354◦49.5′ which are nearly equal.

Now at this time, both the Sun and Mars have a longitude of ≈ 354◦49′
which is far from the apogee of Mars which has the value 118◦. Now in one
synodic revolution, the longitude of Sun/Mars increases by 48.70858◦. Hence
in five synodic revolutions they increase by 243.54292◦. Hence if we take the
time period to be

1556727.236− 5× 779.9374539 = 1556827.549
= 1556827 days 33 nāḍikās,

then the longitude of the Sun and Mars for this ahargaṇa would be 111◦16′.
This is 6◦44′ less than the longitude of the mandocca of Mars which is 118◦.
In other words, for a value of śodhya equal to 1556827 days 33 nāḍikās, the
dhruva is −6◦44′ = −404′. The value of śodhya and dhruva found in this
manner are very close to the Vākyakaraṇa values.
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For Mars, the vākyas are given for 15 synodic cycles or parivṛtti of nearly
780 days each. The period of 15 × 780days = 11700days, is very close to
M5 = 11699d4n. 38 vākyas are given for each synodic cycle of 780 days. These
are not at equal intervals. For an arbitrary day, the longitude of Mars is to be
found by interpolation. The vākya of the 0th day of a cycle is that of the last
day of the previous cycle. The vākya of the 0th day of the first cycle is simply
the same as the apogee of the planet, which is 118◦ in the case of Mars. The
vākyas also incorporate a correction term due to the ‘maṇḍaladhruvas’.

Suppose we want to compute the true longitude of Mars for the day corre-
sponding to the ahargaṇa, 18,44,004. Now,

18, 44, 004 = 15, 52, 827d 35n+ 2× 1, 32, 589d21n
+ 1× 17, 1587d 37n+ 11× 780d+ 259d 6n.

This means that after the śodhyadina of 15, 52, 827d35n, 2 maṇḍalas of
1, 32, 589d21n, 1 maṇḍala of 17, 158d37n and 11 cycles of 780 days in the
maṇḍala of 11, 699d4n are complete and 259d6n are over in the 12th cycle.
In the table provided in the text, the vākyas for 250 days and 270 days are
specified. The longitude corresponding to 259d6n is to be determined by in-
terpolation from these two vākyas. There is a ‘dhruva’, of

−402′ + 2× 27′ + 1×−504′ = −852′ = −14◦12′,

at the beginning of the ‘maṇḍala’ of 11, 699d4n. This, as well as the correction
for the longitude corresponding to 259 days and 6 nāḍis in the 12th cycle should
be added to the latter, in order to obtain the true longitude of Mars, at the
mean sunrise of the desired day (whose ahargaṇa is 18,44,404 days).

The true longitudes of the other planets are also to be found in this manner,
using their ‘śodhyadina’ ‘maṇḍalas’, dhruvas, and the vākyas for the shortest
maṇḍala.



Appendix E
The candravākyas of Vararuci and Mādhava

In Table E.1 below we present the 248 candravākyas of Vararuci and their
refinement due to Mādhava. The candravākyas are nothing but the phrases
encoding the true longitudes of the Moon for 248 successive days. The gīranaḥ
śreyādi vākyas of Vararuci give the true longitude values correct to a minute.
The vākyas of Mādhava, śīlaṃ rājñaḥ śriye etc., give the true longitudes
correct to a second. We have taken the Vararuci-vākyas from the edition of
Vākyakaraṇa due to K. V. Sarma and Kuppanna Sastri,1 and we have taken
the Mādhava-vākyas from the edition of Veṇvāroha due to K. V. Sarma.2 As
regards the latter, we have corrected the vākyas corresponding to the vākya
numbers 25, 174, 181, 234 and 242 mostly following the variant readings given
in the footnotes of the same edition. These variant readings have to be adopted
because, it is the values encoded by them which actually coincide with the
values of the true longitude of Moon computed accurately upto seconds. As we
have explained below, these variant readings are also obtained following the
traditional error correction procedure prescribed for correcting the Mādhava-
vākyas.

E.1 Computing the candravākyas of Vararuci and
Mādhava

The computation of the true longitude of the Moon depends on two param-
eters, namely the rates of motion of the mean Moon and the anomaly. We
shall adopt the values for these as given in Karaṇapaddhati. In their prescrip-
1 {VK 1962}, pp. 125-134. An earlier edition of the Vararuci-vākyas is due to Kunhan
Raja {CV 1948}.
2 {VR 1956} pp. 23-28. The same vākyas are also published in K. V. Sarma’s edition
of Sphuṭacandrāpti ({SC 1973}, pp. 46-59). There is a typographic error in the latter
version, as regards vākya 98, which is noted in fn. 13.
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tions for the calculation of the true longitude of the Moon, the Vākyakaraṇa
and the Sphuṭacandrāpti seem to use rates of motion of the Moon and the
anomaly which are approximations to the śakābda corrected rates given in
Karaṇapaddhati.3

To start with, let us compute the true longitudes of the Moon by using the
approximate daily rate of motion of the anomaly, given by 9

248 revolutions.
Then, the true longitude of the Moon on the ith day of a 248-day anomalistic
cycle can be expressed as

360◦ × i
134122987500
4909031760

− sin−1
[
7
80

× sin
(
9× i

248
× 360

)]
. (E.1)

In the above equation, the first term represents the mean longitude as the
sidereal period of the Moon is 134122987500

4909031760 days. The second term represents
the equation of center, as the anomaly is 9i

248 × 360 at the end of the ith

day. Equation (E.1) gives the value of the true longitude of the Moon at the
end of the first day to be 0r12◦02′34′′50′′′ correct to the thirds. This is also
the value encoded by the Vararuci vākya, gīrnaḥ śreyaḥ (0r12◦03′) correct to
a minute and also the value encoded by the Mādhava vākya, śīlaṃ rājñaḥ
śriye (0r12◦02′35′′). However, for several values of i > 1 the values resulting
from the equation (E.1) are not exactly in agreement with the candravākyas
of Mādhava. There is always a discrepancy of a few seconds. For instance,
for the 52nd day (i = 52), the above expression (E.1) gives 10r28◦26′15′′11′′′.
This is in agreement with the 52nd Vararuci vākya, tāḥ prajāḥ prājñāḥ syuḥ
which encodes the value 10r28◦26′. However, it differs by 6′′ from the value
10r28◦26′09′′ encoded in 52th candravākya of Mādhava, dhanaṃ coro haren-
nityam.

The expression (E.1) for the true longitude of the Moon on ith day is
obviously not accurate as it uses the crude rate of 9

248 for the daily motion of
the anomaly. The correct expression using the exact rate 4574211340428709

126040405436547500 for
the motion of the anomaly, according to Karaṇapaddhati (Table 2.1), is given
by

360◦ × i
134122987500
4909031760

− sin−1
[ 7
80 × sin

(4574211340428709× i

126040405436547500 × 360
)]

. (E.2)

Using the above expression (E.2), we have computed the values for the true
longitude of the Moon for the 248 day cycle. The computed values accurate
upto thirds are tabulated along with the values encoded in the candravākyas
of Mādhava in Table E.2. For the sake of comparison, we have also computed
the longitude values obtained by using the approximate value for the daily
rate of motion of the anomaly given by 9

248 . These have also been included in
Table E.2.
3 See for instance, the discussion in {VK 1962}, pp. xi-xii.
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From Table E.2, it may be seen that the computed values of Moon’s true
longitude using (E.2) with the exact rate of motion of the anomaly, coincide
(except for a difference of 1′′ in a few places) with the values encoded in the
candravākyas of Mādhava as tabulated in Table E.1, where, as noted earlier, we
have carried out emendations, from the published version of the vākyas ({VR
1956} pp. 23-28), to the five vākyas bearing the numbers 25, 174, 181, 234
and 242. On the other hand, the longitudes calculated with the crude rate of
motion 9

248 differ from the accurate values (and also from the Mādhava vākya
values)—the difference could be as much as 33′′ as seen in the case of 233rd
vākya.

E.2 Error correction procedure for candravākyas

It is quite interesting to note that an error correcting mechanism (vākyaśod-
hana) has also been enunciated in the tradition to ensure that the 248 can-
dravākyas do not get corrupted over a period of time. In the case of can-
dravākyas of Vararuci, we have the following verses cited in the edition of
Vākyakaraṇa, which present a method for checking the candravākyas.4 How-
ever, the actual source of these verses is not known.

भवेͪ सुख࢒ राशीनЇ अधϻ वाѿं तु मیमͳ ।
आकदवाѿमुपां܉ च भवतीखत `भवेͪ सुखͳ' ||
यΡा̵ݞरसۤहेः तΡ संࢉाݞ `दवेरͳ' |
ٖजेͪ तښतवाѿाकन, छशंࡕ शोंی `भवेͪ सुखाͪ' ॥
bhavet sukhasya rāśīnāṃ ardhaṃ vākyaṃ tu madhyamam |
ādivākyamupāntyaṃ ca bhavatīti ‘bhavet sukham’ ||
yatrāpyakṣarasandehaḥ tatra saṃsthāpya ‘devaram’ |
tyajet tadgatavākyāni, śiṣṭaṃ śodhyaṃ ‘bhavet sukhāt’ ||

Six rāśis plus half ‘bhavet sukham’ is the middle (124th) vākya. The first vākya plus
the penultimate [vākya] is ‘bhavet sukham’. [Therefore] whenever there is a doubt
regarding the letters of any vākya, deduct its serial number from 248 (devara) and
take the vākya corresponding to the remainder; deduct this vākya from ‘bhavet
sukham’. [The vākya in doubt should agree with this.]

Bhavet sukham is the last vākya of Vararuci which encodes the value
0r27◦44′. The 124th vākya is rāmā gīyate which encodes the value 6r13◦52′.
As the above verses note,

1
2
(360◦ + 0r27◦44′) = 6r13◦52′.

More importantly, the above verses state that the following equation is satis-
fied by the 248 candravākyas given by Vararuci, which can be used to check
4 {VK 1962}, p. 134.
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any of the vākyas when in doubt.

Vi + V248−i = V248 (modulo 360◦).

There is also a procedure for correcting the Mādhava-vākyas which is cited
in the editions of Veṇvāroha and Sphuṭacandrāpti.5 The procedure is described
in the following verses, whose authorship, again, is unknown.

इࡕसंҿोनदवेेܓवाѿं तٳखतयोखगकͳ ।
त࢒ाध-उێϺकववराͬ ङڥगुणाڦकववछजϺताͪ ॥
छशखराݗकलाहࣵनं ΦखतयोӔۢतࢡजेͪ ।6

इࡕवाѿं भवेऩՋࡕͳ एवं ाͬ࢒ वाѿशोधनͳ ॥
iṣṭasaṃkhyonadevendravākyaṃ tatpratiyogikam |
tasyādha-ūrdhvavivarād dviguṇādyavivarjitāt ||
śikharāptakalāhīnaṃ pratiyogyantatastyajet |
iṣṭavākyaṃ bhavecchiṣṭam evaṃ syād vākyaśodhanam ||

The vākya, associated with the desired number subtracted from 248 (devendra),
is the complementary [vākya] (tatpratiyogika). Find the difference of the vākyas
above and below it, and subtract the difference from twice the first vākya. Divide
the result by 225 (śikhara) and subtract the quotient, in minutes etc., from the
complementary vākya. Subtract the end-result from the 248th vākya. The remain-
der will be the desired vākya. This is the procedure for the correction of vākyas.

We now explain the procedure outlined in the verses to verify the correct-
ness of any of the Mādhava-vākyas.7 Let Vi be the ith vākya which is to be
checked. Then, the procedure is as follows:
• First, find out the complementary vākya Vj , where j = 248− i.
• Then, find the vākyas above (Vj−1) and below (Vj+1) the complementary

vākya (Vj) and find their difference, ∆Vj = Vj+1 − Vj−1.
• Subtract twice the first vākya (V1) from ∆Vj , and divide the result by 225.

That is, find
δj =

∆Vj − (2× V1)
225

.

• Subtract δj (in minutes, etc.) from the complementary vākya. This gives
the transformed complementary vākya

V ′
j = Vj − δj .

• The desired vākya, if correct, should be equal to the result found by sub-
tracting V ′

j from the final vākya (V248). That is, the desired vākya should
satisfy

5 {VR 1956}, pp. 27-28; {SC 1973} pp. 57-58.
6 The padaccheda here is pratiyogi+antataḥ+tyajet. This is the version found in {VR
1956}, p. 27. The version found in {SC 1973}, p. 57 is erroneous.
7 The rationale behind this ingenious Vākyaśodhana procedure is explained in Sriram
(2017). See next section for details.
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Vi = V248 − V ′
j .

We shall now apply the above correction procedure for vākya numbers 25,
174, 181, 234, and 242, and show that this procedure actually leads to the
variant readings of these vākyas that we have adopted based on our compu-
tation.

Correcting the 25th vākya

Since the desired vākya number i = 25, the number of the complementary
vākya j = 248 − 25 = 223. The vākyas below (Vj+1) and above (Vj−1) the
complementary vākya are:

V224 = 2r07◦51′36′′ and V222 = 1r13◦23′59′′.

Their difference is given by

∆V223 = 0r24◦27′37′′.

By subtracting twice the first vākya (2× V1 = 0r24◦05′10′′), from the above,
we get 22′27′′. Dividing this by 225, we obtain δ223 = 6′′. Subtracting this
from the complementary vākya (V223), we have

V ′
223 = V223 − δ223

= 1r25◦33′31′′ − 6′′ = 1r25◦33′25′′.

Now the desired vākya V25 is given by

V25 = V248 − V ′
223

= 12r27◦43′29′′ − 1r25◦33′25′′

= 11r02◦10′04′′. (E.3)

The vākya number 25 found in the editions of Veṇvāroha and Sphuṭacan-
drāpti8 is “dhananikaro niryayau”. This when decoded corresponds to the
value 11r02◦10′09′′ which varies from the value obtained above by 5′′. The
correct reading of the 25th vākya should be “ghananikaro niryayau” which is
in conformity with (E.3) and also the computed value given in Table E.2.

Correcting the 174th vākya

Since the desired vākya number i = 174, the number of the complementary
vākya j = 248 − 174 = 74. The vākyas below (Vj+1) and above (Vj−1) the
complementary vākya are:

V75 = 9r03◦10′03′′ and V73 = 8r05◦55′11′′.
8 {VR 1956}, p. 23; {SC 1973}, p. 47.
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Their difference is given by

∆V74 = 27◦14′52′′.

By subtracting twice the first vākya (2 × V1 = 0r24◦05′10′′), from the above
and dividing the result obtained by 225, we obtain δ74 = 51′′. Subtracting
this from the complementary vākya (V74), we have

V ′
74 = V74 − δ74

= 8r19◦39′48′′ − 51′′ = 8r19◦38′57′′.

Now the desired vākya V174 is given by

V174 = V248 − V ′
74

= 12r27◦43′29′′ − 8r19◦38′57′′

= 4r08◦04′32′′. (E.4)

The vākya number 174 found in the editions of Veṇvāroha and Sphuṭacan-
drāpti is “bālye’vajño jano vai”. This when decoded corresponds to the value
4r08◦04′13′′ which varies from the value obtained above by 19′′. The vākya
“khāṇḍavaghno jano vai” which corresponds to the value given by (E.4) is ac-
tually given as a variant reading in the editions of Veṇvāroha and Sphuṭacan-
drāpti,9 and this should be taken as the correct one as it is also in conformity
with the computed value given in Table E.2.

Correcting the 181th vākya

Since the desired vākya number i = 181, the number of the complementary
vākya j = 248 − 181 = 67. The vākyas below (Vj+1) and above (Vj−1) the
complementary vākya are:

V68 = 5r24◦59′07′′ and V66 = 4r26◦34′16′′.

Their difference is given by

∆V67 = 28◦24′51′′.

By subtracting twice the first vākya (2 × V1 = 0r24◦05′10′′), from the above
and dividing the result obtained by 225, we obtain δ67 = 1′ 10′′. Subtracting
this from the complementary vākya (V67), we have

V ′
67 = V67 − δ67

= 5r10◦43′28′′ − 1′10′′ = 5r10◦42′18′′.
9 {VR 1956}, p. 25; {SC 1973}, p. 53.



E.2 Error correction procedure for candravākyas 371

Now the desired vākya V181 is given by

V181 = V248 − V ′
67

= 12r27◦43′29′′ − 5r10◦42′18′′

= 7r17◦01′11′′. (E.5)

The vākya number 181 found in the editions of Veṇvāroha and Sphuṭa-
candrāpti is “phalajñānecchā katham”. This when decoded corresponds to the
value 7r17◦00′32′′ which varies from the value obtained above by 39′′. The
vākya “payasyanicchā katham” which corresponds to the value given by (E.5)
is actually given as a variant reading in the editions of Veṇvāroha and Sphuṭa-
candrāpti,10 and this should be taken as the correct one as it is also in con-
formity with the computed value given in Table E.2.

Correcting the 234th vākya

Since the desired vākya number i = 234, the number of the complementary
vākya j = 248 − 234 = 14. The vākyas below (Vj+1) and above (Vj−1) the
complementary vākya are:

V15 = 6r19◦01′30′′ and V13 = 5r20◦24′31′′.

Their difference is given by

∆V14 = 28◦36′59′′.

By subtracting twice the first vākya (2 × V1 = 0r24◦05′10′′), from the above
and dividing the result obtained by 225, we obtain δ14 = 1′ 13′′. Subtracting
this from the complementary vākya (V14), we have

V ′
14 = V14 − δ14

= 6r04◦43′25′′ − 1′13′′ = 6r04◦42′12′′.

Now the desired vākya V234 is given by

V234 = V248 − V ′
14

= 12r27◦43′29′′ − 6r04◦42′12′′

= 6r23◦01′17′′. (E.6)

The vākya number 234 found in the editions of Veṇvāroha and Sphuṭacan-
drāpti is “ṣaṭkāvyajño’mbarīṣaḥ”. This when decoded corresponds to the value
6r23◦01′16′′ which varies from the value obtained above by 01′′. The vākya
10 {VR 1956}, p. 25; {SC 1973}, p. 54.
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“satkāvyajño’mbarīṣaḥ” which corresponds to the value given by (E.6) is ac-
tually given as a variant reading in the editions of Veṇvāroha and Sphuṭacan-
drāpti,11 and this should be taken as the correct one as it is also in conformity
with the computed value given in Table E.2.

Correcting the 242th vākya

Since the desired vākya number i = 242, the number of the complementary
vākya j = 248 − 242 = 6. The vākyas below (Vj+1) and above (Vj−1) the
complementary vākya are:

V7 = 2r27◦12′59′′ and V5 = 2r01◦19′17′′.

Their difference is given by

∆V6 = 25◦53′42′′.

By subtracting twice the first vākya (2 × V1 = 0r24◦05′10′′), from the above
and dividing the result obtained by 225, we obtain δ6 = 28′′. Subtracting this
from the complementary vākya (V6), we have

V ′
6 = V6 − δ6

= 2r14◦08′28′′ − 28′′ = 2r14◦08′00′′.

Now the desired vākya V242 is given by

V242 = V248 − V ′
6

= 12r27◦43′29′′ − 2r14◦08′00′′

= 10r13◦35′29′′. (E.7)

The vākya number 242 found in the editions of Veṇvāroha and Sphuṭacan-
drāpti is “taruṇo balīyānāḍhyaḥ”. This when decoded corresponds to the value
10r13◦35′26′′ which varies from the value obtained above by 03′′. The vākya
“dharaṇo balīyānāḍhyaḥ” which corresponds to the value given by (E.7) is ac-
tually given as a variant reading in the editions of Veṇvāroha and Sphuṭacan-
drāpti,12 and this should be taken as the correct one as it is also in conformity
with the computed value given in Table E.2.
11 {VR 1956}, p. 26; {SC 1973}, p. 56.
12 {VR 1956}, p. 26; {SC 1973}, p. 56.
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E.3 Rationale behind the vākyaśodhana procedure

We shall explain the rationale behind the vākyaśodhana procedure outlined
in the previous section.13 The Moon’s true longitude is obtained by applying
the ‘equation of centre’ to the mean longitude. The equation of centre at any
instant depends upon the Moon’s ‘anomaly’ which is the angular separation
between the ‘mean Moon’ and the ‘apogee’ of the Moon. The khaṇḍadina is
the day at the sunrise of which the Moon’s anomaly is zero. The candravākyas
are based on the following formula for the change in the true longitude of the
Moon, i days after the khaṇḍadina:

Vi = R1.360.i− sin−1
[
7
80

× sin (R2 × 360.i)
]
, (E.8)

where R1 and R2 are the rates of motion of the Moon and its anomaly re-
spectively, in revolutions per day. The second term represents the equation
of centre of the Moon. As it stands, Vi is in degrees. The candravākyas are
essentally the values of Vi, after converting them to rāśis (zodiacal signs),
degrees, minutes and seconds, and expressed in the kaṭapayādi system.

The mean rate of motion of the Moon (R1) is taken to be 4909031760
134122987500 =

1
27.32167852 revolution per day (see (E.1)). It will be seen that the value of
R1 does not play any role in the vākyaśodhana procedure. For finding the
Vararuci-vākyas, R2 may be taken to be 9

248 revolution per day. For the
Mādhava-vākyas, we should take the more accurate value R2 = 6845

188611 rev-
olution per day (used in Veṇvāroha and Sphuṭacanrāpti).

E.3.1 Vararucivākyas

Substituting the value of R2 = 9
248 in (E.8), we have

Vi = R1.360.i− sin−1
[
7
80

× sin
(

9
248

× 360.i
)]

.

Hence,
13 The material in this section is based on Sriram (2017).
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V248−i = R1.360.(248− i)− sin−1
[
7
80

× sin
(

9
248

× 360.(248− i)
)]

= R1.360.(248− i) + sin−1
[
7
80

× sin
(

9
248

× 360.i
)]

.

V248 = R1.360.248 + sin−1
[
7
80

× sin
(

9
248

× 360.248
)]

= R1.360.248,

as the last time in the RHS of the equation for V248 is 0. Clearly,

Vi + V248−i = V248, (modulo 360◦), (E.9)

as noted in the previous section.

E.3.2 Mādhava-vākyas

In this case, as R2 ̸= 9
248 , the relation (E.9) clearly does not hold. For the

Mādhava-vākyas, the vākyaśodhana procedure, as explained in the preceding
section, is as follows:

Suppose one is in doubt about Vi. Let j = 248− i. Then, Vj is the comple-
mentary vākya. If Vj , and the vākyas above and below it are known, find:

Vj −
(Vj+1 − Vj−1 − 2V1)

225
.

Then,

Vi = V248 −
[
Vj −

(Vj+1 − Vj−1 − 2V1)
225

]
, j = 248− i. (E.10)

Note that i = 248− j. We rewrite the above equation in the form :

δj ≡ Vj + V248−j − V248 = Vj+1 − Vj−1 − 2V1

225
. (E.11)

We now show that the above relation is valid to a very good approximation,
using the ubiquitous Indian principle of trairāśika or the “rule of three”.

E.3.3 Explanation of the vākyaśodhana expression for δj

We denote the Mādhava value 6845
188611 for R2 by α. Then,
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δj = Vj + V248−j − V248

= R1.360.j − sin−1
[
7
80

sin(α.360.j)
]

+ R1.360.(248− j)− sin−1
[
7
80

sin(α.360.(248− j))
]

− R1.360.248 + sin−1
[
7
80

sin(α.360.248)
]
.

Therefore,

−δj = sin−1
[
7
80

sin(α.360.j)
]

+ sin−1
[
7
80

sin(α.360.(248− j))
]

− sin−1
[
7
80

sin(α.360.248)
]
.

We split α as α = (α− 9
248 ) +

9
248 . Hence,

−δj = sin−1
[
7
80

sin((α− 9
248

).360.j + 9
248

.360.j)
]

+ sin−1
[
7
80

sin((α− 9
248

).360.(248− j) + 9
248

.360.(248− j))
]

− sin−1
[
7
80

sin((α− 9
248

).360.248 + 9
248

.360.248)
]
.

Let ϵ = (α − 9
248 ) × 360 = 4.6948 × 10−4. Using this notation in the above

equation we have,

−δj = sin−1
[
7
80

sin( 9
248

.360.j + ϵ.j)
]

− sin−1
[
7
80

sin( 9
248

.360.j − ϵ.(248− j))
]

− sin−1
[
7
80

sin(ϵ.248)
]
.

Let f be the function representing the equation of centre, sin−1 [ 7
80 sin( )

]
,

where ( ) is the anomaly. Hence,

−δj = f

(
9

248
.360.j + ϵ.j

)
− f

(
9
248

.360.j − ϵ.(248− j)
)
− f(ϵ.248)

= y1 − f(ϵ.248), (E.12)
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where y1 is the difference in the equation of centre corresponding to a
change in the anomaly (which is the argument) equal to

( 9
248 .360.j + ϵ.j

)
−( 9

248 .360.j − ϵ.(248− j)
)
= ϵ.248 ≡ x1, around a value of anomaly equal to

9
248 × 360.j. Note that the change in the anomaly which is proportional to ϵ
is resulting from the departure of α = R2 from 9

248 .
Now consider a different kind of difference:

Vj+1 − Vj−1 = R1.360.(j + 1)− f (α.360.(j + 1))
− [R1.360.(j − 1)− f (α.360.(j − 1))] .

Hence, Vj+1 − Vj−1 = 2.R1.360− y2, (E.13)

where y2 is the difference in the equation of centre corresponding to a change
in the anomaly equal to (α.360.(j+1))−(α.360.(j−1)) = 2.α.360 ≡ x2, around
a value of anomaly equal to α.360.j. Here, the change in the anomaly is due
to the fact we are considering the vākyas for two different days, corresponding
to j + 1 and j − 1.

y1 and y2 are the changes in the equation of centre corresponding to changes
in the anomaly equal to x1 and x2 respectively. Now, we use the trairāśika
(the rule of three), or the law of proportions,14 which plays such an important
role in Indian mathematics and astronomy:15

y1 : x1 = y2 : x2,

or, y1 = y2
x2

.x1. (E.14)

Using equations (5), (6) and (7), and the values of x1 = ϵ.248 and x2 =
2.α.360, we have,

δj = −y1 + f(ϵ.248)

= (Vj+1 − Vj−1)− 2.R1.360
2.α.360

× ϵ.248 + f(ϵ.248).

Now,

ϵ.248
2.α.360

= 4.6948.248.188611
2.360.6845

× 10−4

= 4.4558× 10−3 = 1
224.4244

.

14 Actually, x1 is the change in the anomaly around 9
248 .360.j, whereas x2 is the change

in the anomaly around α.360.j. As α = 6845
18861 ≈ 9

248 , we ignore this difference, which will
lead to changes of higher order in ϵ.
15 In his explanation of verse 246 in his Līlāvatī, Bhāskara remarks that, just as this
universe is pervaded by Lord Nārāyaṇa in all his manifestations, “so is all this collections
of instructions for computations pervaded by the rule of three terms” ({LV, 1993}, p. 166).
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This is approximated as 1
225 . Therefore,

δj ≈ Vj+1 − Vj−1 − 2X
225

, (E.15)

where, X = R1.360−
f(ϵ.248)

2
× 225. (E.16)

Now, f(ϵ.248)
2 × 225 = 1

2 sin
−1 ( 7

80 sin(248.ϵ)
)
× 225 = 1.1449. Hence,

X = R1.360− 1.1449. (E.17)

From equation (1),

V1 = R1.360− sin−1
(

7
80

sin
(

6845
188611

× 360
))

= R1.360− 1.1334. (E.18)

Comparing equations (10) and (11), we find:

X ≈ V1. (E.19)

Substituting this in equation (8), we have:

δj ≡ Vj + V248−j − V248 ≈ Vj+1 − Vj−1 − 2V1

225
, (E.20)

which is the same as (E.11).
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E.5 Table of computed candravākyas

The following Table E.2 lists the 248 values of the longitudes as encoded by
the candravākyas of Mādhava as amended (in the case of vākya numbers 25,
174, 181, 234 and 242) and listed in Table E.1 (column 2), and compares them
with the computed values of the longitudes (columns 3–4) obtained by using
the exact value as well as the approximate value 9

248 for the rate of motion of
the Moon’s anomaly. The mean daily rate of motion of the Moon is taken to
be 4909031760

134122987500 .
We can clearly see that the computed values with the rate of motion of the

anomaly being approximated by 9
248 , differ significantly from those obtained

by using the exact value for the rate of motion of anomaly as given in Karaṇa-
paddhati. However, it can be checked that if we make use of the approximate
rate of motion 6845

188611 used in the Sphuṭacandrāpti of Mādhava, the resulting
value of longitude are the same upto the thirds with those computed using
the exact rate of motion. More importantly the computed true longitudes co-
incide with the values encoded by Mādhava-vākyas (as emended by us in case
of vākya numbers 25, 174, 181, 234 and 242) except for a difference of 1′′ in a
few places.

Computed true longitudes of the Moon on each
Values day for different rates of motion

encoded in of Moon’s anomaly
Vākya
No. Mādhava-vākyas G

H = 4574211340428709
126040405436547500

G
H ≈ 9

248

r ◦ ′ ′′ r ◦ ′ ′′ ′′′ r ◦ ′ ′′ ′′′

1 0 12 2 35 0 12 2 34 41 0 12 2 34 50
2 0 24 8 39 0 24 8 39 10 0 24 8 39 26
3 1 6 21 33 1 6 21 33 1 1 6 21 33 21
4 1 18 44 16 1 18 44 15 36 1 18 44 15 58
5 2 1 19 17 2 1 19 16 46 2 1 19 17 5
6 2 14 8 29 2 14 8 28 32 2 14 8 28 43
7 2 27 12 59 2 27 12 58 34 2 27 12 58 33
8 3 10 33 6 3 10 33 6 11 3 10 33 5 53
9 3 24 8 21 3 24 8 21 6 3 24 8 20 29
10 4 7 57 25 4 7 57 25 17 4 7 57 24 19
11 4 21 58 18 4 21 58 17 41 4 21 58 16 22
12 5 6 8 21 5 6 8 21 8 5 6 8 19 30
13 5 20 24 31 5 20 24 30 53 5 20 24 29 0
14 6 4 43 24 6 4 43 24 14 6 4 43 22 10
15 6 19 1 30 6 19 1 30 29 6 19 1 28 21
16 7 3 15 21 7 3 15 21 16 7 3 15 19 12
17 7 17 21 41 7 17 21 40 39 7 17 21 38 47
18 8 1 17 35 8 1 17 35 2 8 1 17 33 31
19 8 15 0 42 8 15 0 42 22 8 15 0 41 19
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20 8 28 29 20 8 28 29 20 0 8 28 29 19 33
21 9 11 42 31 9 11 42 30 48 9 11 42 31 2
22 9 24 40 6 9 24 40 6 28 9 24 40 7 27
23 10 7 22 48 10 7 22 48 14 10 7 22 49 58
24 10 19 52 4 10 19 52 4 9 10 19 52 6 36
25 11 2 10 4 11 2 10 4 1 11 2 10 7 7
26 11 14 19 32 11 14 19 31 56 11 14 19 35 33
27 11 26 23 37 11 26 23 37 29 11 26 23 41 27
28 0 8 25 46 0 8 25 46 2 0 8 25 50 9
29 0 20 29 29 0 20 29 28 38 0 20 29 32 42
30 1 2 38 12 1 2 38 11 47 1 2 38 15 33
31 1 14 55 7 1 14 55 7 16 1 14 55 10 31
32 1 27 23 2 1 27 23 2 25 1 27 23 4 56
33 2 10 4 11 2 10 4 11 9 2 10 4 12 44
34 2 23 0 6 2 23 0 6 24 2 23 0 6 55
35 3 6 11 35 3 6 11 34 39 3 6 11 33 59
36 3 19 38 33 3 19 38 33 3 3 19 38 31 12
37 4 3 20 10 4 3 20 9 41 4 3 20 6 40
38 4 17 14 47 4 17 14 46 37 4 17 14 42 33
39 5 1 20 6 5 1 20 5 45 5 1 20 0 46
40 5 15 33 16 5 15 33 16 28 5 15 33 10 49
41 5 29 51 5 5 29 51 4 51 5 29 50 58 48
42 6 14 10 3 6 14 10 3 20 6 14 9 57 12
43 6 28 26 41 6 28 26 41 2 6 28 26 35 7
44 7 12 37 34 7 12 37 33 50 7 12 37 28 29
45 7 26 39 35 7 26 39 34 35 7 26 39 30 7
46 8 10 30 3 8 10 30 2 40 8 10 29 59 21
47 8 24 6 53 8 24 6 52 41 8 24 6 50 46
48 9 7 28 42 9 7 28 41 40 9 7 28 41 18
49 9 20 34 54 9 20 34 53 59 9 20 34 55 16
50 10 3 25 44 10 3 25 43 30 10 3 25 46 26
51 10 16 2 13 10 16 2 12 48 10 16 2 17 17
52 10 28 26 9 10 28 26 9 20 10 28 26 15 11
53 11 10 39 59 11 10 39 59 9 11 10 40 6 7
54 11 22 46 39 11 22 46 38 53 11 22 46 46 37
55 0 4 49 26 0 4 49 26 23 0 4 49 34 31
56 0 16 51 51 0 16 51 50 48 0 16 51 58 54
57 0 28 57 22 0 28 57 22 24 0 28 57 30 4
58 1 11 9 22 1 11 9 22 25 1 11 9 29 12
59 1 23 30 53 1 23 30 52 52 1 23 30 58 23
60 2 6 4 27 2 6 4 27 15 2 6 4 31 10
61 2 18 52 2 2 18 52 2 3 2 18 52 4 5
62 3 1 54 50 3 1 54 50 3 3 1 54 50 3
63 3 15 13 16 3 15 13 15 56 3 15 13 13 49
64 3 28 46 55 3 28 46 54 47 3 28 46 50 36
65 4 12 34 34 4 12 34 33 38 4 12 34 27 33
66 4 26 34 16 4 26 34 15 49 4 26 34 8 5
67 5 10 43 28 5 10 43 27 41 5 10 43 18 40
68 5 24 59 7 5 24 59 7 5 5 24 58 57 14
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69 6 9 17 53 6 9 17 52 45 6 9 17 42 33
70 6 23 36 14 6 23 36 14 25 6 23 36 4 23
71 7 7 50 43 7 7 50 42 54 7 7 50 33 36
72 7 21 58 0 7 21 58 0 28 7 21 57 52 23
73 8 5 55 11 8 5 55 10 37 8 5 55 4 13
74 8 19 39 47 8 19 39 47 24 8 19 39 43 5
75 9 3 10 4 9 3 10 3 35 9 3 10 1 38
76 9 16 24 57 9 16 24 56 49 9 16 24 57 24
77 9 29 24 13 9 29 24 13 25 9 29 24 16 34
78 10 12 8 29 10 12 8 29 16 10 12 8 34 53
79 10 24 39 8 10 24 39 7 31 10 24 39 15 22
80 11 6 58 14 11 6 58 13 44 11 6 58 23 27
81 11 19 8 29 11 19 8 28 40 11 19 8 39 48
82 0 1 12 60 0 1 12 59 37 0 1 13 11 36
83 0 13 15 11 0 13 15 10 41 0 13 15 22 55
84 0 25 18 33 0 25 18 32 49 0 25 18 44 40
85 1 7 26 34 1 7 26 33 30 1 7 26 44 20
86 1 19 42 27 1 19 42 26 36 1 19 42 35 50
87 2 2 9 3 2 2 9 2 35 2 2 9 9 41
88 2 14 48 39 2 14 48 39 24 2 14 48 43 56
89 2 27 42 55 2 27 42 54 46 2 27 42 56 26
90 3 10 52 40 3 10 52 40 26 3 10 52 39 5
91 3 24 17 59 3 24 17 59 0 3 24 17 54 38
92 4 7 58 4 4 7 58 3 46 4 7 57 56 33
93 4 21 51 22 4 21 51 21 36 4 21 51 11 51
94 5 5 55 38 5 5 55 38 25 5 5 55 26 36
95 5 20 8 7 5 20 8 6 46 5 20 7 53 28
96 6 4 25 35 6 4 25 34 46 6 4 25 20 39
97 6 18 44 36 6 18 44 35 53 6 18 44 21 39
98 7 3 1 39 7 3 1 39 5 7 3 1 25 29
99 7 17 13 19 7 17 13 19 0 7 17 13 6 46
100 8 1 16 26 8 1 16 26 11 8 1 16 15 59
101 8 15 8 17 8 15 8 16 39 8 15 8 9 3
102 8 28 46 41 8 28 46 40 48 8 28 46 36 16
103 9 12 10 11 9 12 10 10 43 9 12 10 9 34
104 9 25 18 5 9 25 18 5 28 9 25 18 7 49
105 10 8 10 34 10 8 10 33 31 10 8 10 39 18
106 10 20 48 32 10 20 48 32 14 10 20 48 41 13
107 11 3 13 44 11 3 13 44 26 11 3 13 56 12
108 11 15 28 32 11 15 28 32 22 11 15 28 46 20
109 11 27 35 50 11 27 35 49 43 11 27 36 5 13
110 0 9 38 53 0 9 38 52 30 0 9 39 8 44
111 0 21 41 9 0 21 41 9 8 0 21 41 25 18
112 1 3 46 10 1 3 46 10 18 1 3 46 25 31
113 1 15 57 19 1 15 57 18 38 1 15 57 32 7
114 1 28 17 39 1 28 17 38 47 1 28 17 49 47
115 2 10 49 48 2 10 49 47 46 2 10 49 55 39
116 2 23 35 46 2 23 35 46 29 2 23 35 50 47
117 3 6 36 53 3 6 36 52 44 3 6 36 53 10
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118 3 19 53 37 3 19 53 36 35 3 19 53 33 3
119 4 3 25 39 4 3 25 38 31 4 3 25 31 9
120 4 17 11 51 4 17 11 50 39 4 17 11 39 45
121 5 1 10 21 5 1 10 20 45 5 1 10 6 51
122 5 15 18 39 5 15 18 38 52 5 15 18 22 39
123 5 29 33 46 5 29 33 45 30 5 29 33 27 47
124 6 13 52 21 6 13 52 21 0 6 13 52 2 39
125 6 28 10 56 6 28 10 55 33 6 28 10 37 32
126 7 12 25 59 7 12 25 59 23 7 12 25 42 39
127 7 26 34 13 7 26 34 13 2 7 26 33 58 27
128 8 10 32 37 8 10 32 37 10 8 10 32 25 34
129 8 24 18 42 8 24 18 42 9 8 24 18 34 10
130 9 7 50 36 9 7 50 36 8 9 7 50 32 15
131 9 21 7 12 9 21 7 11 38 9 21 7 12 9
132 10 4 8 10 10 4 8 9 36 10 4 8 14 31
133 10 16 54 1 10 16 54 0 31 10 16 54 9 39
134 10 29 26 3 10 29 26 2 35 10 29 26 15 32
135 11 11 46 17 11 11 46 17 5 11 11 46 33 12
136 11 23 57 21 11 23 57 21 18 11 23 57 39 48
137 0 6 2 20 0 6 2 20 4 0 6 2 40 1
138 0 18 4 36 0 18 4 36 11 0 18 4 56 34
139 1 0 7 40 1 0 7 40 20 1 0 8 0 6
140 1 12 15 1 1 12 15 0 52 1 12 15 18 58
141 1 24 29 54 1 24 29 53 37 1 24 30 9 7
142 2 6 55 12 2 6 55 12 5 2 6 55 24 6
143 2 19 33 18 2 19 33 18 9 2 19 33 26 1
144 3 2 25 54 3 2 25 54 16 3 2 25 57 30
145 3 15 33 57 3 15 33 57 24 3 15 33 55 45
146 3 28 57 36 3 28 57 35 33 3 28 57 29 3
147 4 12 36 7 4 12 36 7 20 4 12 35 56 15
148 4 26 28 4 4 26 28 4 27 4 26 27 49 20
149 5 10 31 17 5 10 31 16 58 5 10 30 58 33
150 5 24 43 1 5 24 43 0 39 5 24 42 39 50
151 6 9 0 6 6 9 0 5 49 6 8 59 43 39
152 6 23 19 7 6 23 19 7 2 6 23 18 44 40
153 7 7 36 33 7 7 36 33 16 7 7 36 11 51
154 7 21 48 58 7 21 48 58 3 7 21 48 38 42
155 8 5 53 10 8 5 53 9 41 8 5 52 53 28
156 8 19 46 21 8 19 46 21 0 8 19 46 8 46
157 9 3 26 18 9 3 26 18 12 9 3 26 10 41
158 9 16 51 29 9 16 51 28 35 9 16 51 26 14
159 10 0 1 6 10 0 1 5 53 10 0 1 8 52
160 10 12 55 13 10 12 55 13 7 10 12 55 21 23
161 10 25 34 42 10 25 34 42 29 10 25 34 55 38
162 11 8 1 12 11 8 1 12 4 11 8 1 29 29
163 11 20 17 0 11 20 17 0 10 11 20 17 20 58
164 0 2 24 57 0 2 24 57 29 0 2 25 20 38
165 0 14 28 18 0 14 28 18 3 0 14 28 42 23
166 0 26 30 29 0 26 30 29 27 0 26 30 53 43



E.5 Table of computed candravākyas 393

167 1 8 35 3 1 8 35 2 34 1 8 35 25 30
168 1 20 45 21 1 20 45 21 27 1 20 45 41 52
169 2 3 4 33 2 3 4 33 10 2 3 4 49 57
170 2 15 35 18 2 15 35 18 13 2 15 35 30 26
171 2 28 19 42 2 28 19 41 47 2 28 19 48 44
172 3 11 19 7 3 11 19 6 39 3 11 19 7 55
173 3 24 34 8 3 24 34 8 14 3 24 34 3 41
174 4 8 4 32 4 8 4 32 26 4 8 4 22 14
175 4 21 49 16 4 21 49 16 28 4 21 49 1 6
176 5 5 46 33 5 5 46 32 43 5 5 46 12 56
177 5 19 53 55 5 19 53 54 57 5 19 53 31 43
178 6 4 8 26 6 4 8 26 25 6 4 8 0 55
179 6 18 26 49 6 18 26 49 13 6 18 26 22 45
180 7 2 45 34 7 2 45 34 10 7 2 45 8 5
181 7 17 1 11 7 17 1 10 58 7 17 0 46 38
182 8 1 10 19 8 1 10 18 32 8 1 9 57 14
183 8 15 9 55 8 15 9 54 53 8 15 9 37 46
184 8 28 57 27 8 28 57 26 43 8 28 57 14 43
185 9 12 30 58 9 12 30 57 41 9 12 30 51 30
186 9 25 49 15 9 25 49 15 15 9 25 49 15 16
187 10 8 51 55 10 8 51 54 56 10 8 52 1 13
188 10 21 39 22 10 21 39 21 51 10 21 39 34 9
189 11 4 12 49 11 4 12 49 12 11 4 13 6 56
190 11 16 34 14 11 16 34 13 51 11 16 34 36 7
191 11 28 46 10 11 28 46 9 33 11 28 46 35 14
192 0 10 51 39 0 10 51 38 35 0 10 52 6 24
193 0 22 54 2 0 22 54 2 16 0 22 54 30 48
194 1 4 56 51 1 4 56 50 55 1 4 57 18 41
195 1 17 3 34 1 17 3 33 38 1 17 3 59 12
196 1 29 17 28 1 29 17 28 7 1 29 17 50 8
197 2 11 41 31 2 11 41 30 46 2 11 41 48 2
198 2 24 18 7 2 24 18 7 19 2 24 18 18 53
199 3 7 9 5 3 7 9 4 52 3 7 9 10 3
200 3 20 15 26 3 20 15 25 32 3 20 15 24 0
201 4 3 37 23 4 3 37 22 47 4 3 37 14 33
202 4 17 14 21 4 17 14 20 31 4 17 14 5 58
203 5 1 4 55 5 1 4 55 23 5 1 4 35 12
204 5 15 7 2 5 15 7 1 38 5 15 6 36 50
205 5 29 17 58 5 29 17 58 22 5 29 17 30 12
206 6 13 34 38 6 13 34 38 14 6 13 34 8 7
207 6 27 53 37 6 27 53 37 2 6 27 53 6 31
208 7 12 11 24 7 12 11 23 50 7 12 10 54 29
209 7 26 24 31 7 26 24 31 11 7 26 24 4 33
210 8 10 29 45 8 10 29 45 18 8 10 29 22 46
211 8 24 24 16 8 24 24 15 50 8 24 23 58 39
212 9 8 5 45 9 8 5 45 1 9 8 5 34 7
213 9 21 32 35 9 21 32 35 18 9 21 32 31 19
214 10 4 43 55 10 4 43 55 9 10 4 43 58 24
215 10 17 39 42 10 17 39 42 14 10 17 39 52 35
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216 11 0 20 43 11 0 20 43 25 11 0 21 0 23
217 11 12 48 32 11 12 48 32 2 11 12 48 54 48
218 11 25 5 22 11 25 5 22 21 11 25 5 49 46
219 0 7 14 2 0 7 14 1 57 0 7 14 32 37
220 0 19 17 43 0 19 17 42 47 0 19 18 15 10
221 1 1 19 51 1 1 19 51 27 1 1 20 23 52
222 1 13 23 59 1 13 23 58 58 1 13 24 29 46
223 1 25 33 31 1 25 33 30 39 1 25 33 58 12
224 2 7 51 36 2 7 51 35 52 2 7 51 58 42
225 2 20 20 58 2 20 20 58 27 2 20 21 15 21
226 3 3 3 48 3 3 3 47 51 3 3 3 57 52
227 3 16 1 32 3 16 1 31 45 3 16 1 34 17
228 3 29 14 51 3 29 14 50 55 3 29 14 45 45
229 4 12 43 37 4 12 43 36 37 4 12 43 23 59
230 4 26 26 51 4 26 26 51 18 4 26 26 31 48
231 5 10 22 52 5 10 22 51 56 5 10 22 26 32
232 5 24 29 16 5 24 29 16 9 5 24 28 46 7
233 6 8 43 10 6 8 43 10 6 6 8 42 36 57
234 6 23 1 18 6 23 1 17 43 6 23 0 43 9
235 7 7 20 11 7 7 20 10 31 7 7 19 36 19
236 7 21 36 18 7 21 36 17 53 7 21 35 45 49
237 8 5 46 17 8 5 46 17 12 8 5 45 48 56
238 8 19 47 4 8 19 47 3 57 8 19 46 41 0
239 9 3 36 1 9 3 36 1 13 9 3 35 44 50
240 9 17 11 8 9 17 11 8 19 9 17 10 59 25
241 10 0 31 8 10 0 31 7 38 10 0 31 6 46
242 10 13 35 29 10 13 35 29 20 10 13 35 36 36
243 10 26 24 33 10 26 24 33 9 10 26 24 48 14
244 11 8 59 27 11 8 59 27 11 11 8 59 49 21
245 11 21 22 4 11 21 22 3 49 11 21 22 31 57
246 0 3 34 53 0 3 34 53 10 0 3 35 25 53
247 0 15 40 55 0 15 40 54 53 0 15 41 30 29
248 0 27 43 29 0 27 43 28 39 0 27 44 5 19
Table E.2: Comparison of candravākyas of Mādhava with the computed val-
ues.



Appendix F
Literal meanings of selected vākyas

In this Appendix we shall present the literal meaning of selected set of vākyas.
This is just to highlight the fact that the vākyas often carry beautiful literal
meanings too.

vākyas
in Devanāgarī in transliterated form Literal meaning

नाना̶ानΦगࠀः nānājñānapragalbhaḥ Illustrious with various
kinds of knowledge

खतलबलमसुसूңͳ tilabalamasusūkṣmam Power of sesamum [seed] is
not subtle

धयेΣाजद߃ः dhayedrājaddambhaḥ Hypocrisy of the king*
भΣोदۢोधरेܓः bhadrodantodharendraḥ King about whom the nar-

ratives are good
कनरनुसृगङधसौҿͳ niranusṛgadhisaukhyam Comfort without repeated

inarticulate sound
विरࡖोऽङभषӾः variṣṭhobhiṣaṅgaḥ Humiliated senior

दोदϺद؝ाΗऽेकΣनाथः ddorddaṇḍāgreddrināthaḥ Lord of mountains, up-
holding the pole by [his]
arm

कवषखमतकवकपनͳ viṣamitavipinam Impassable forest
चܓरेखा߂झुखۦा candrarekhāmbukhinnā Ray of the Moon distressed

by water
अनृशंसः कळाथ੃समٖϺः anṛśaṃsaḥ kaḷārthīsamartyaḥ Along with a man who is

not cruel*

*Literal meaning of the words “dhayed” and “kaḷārthī” is not clear.
Table F.1 Vākyas presenting the revolutions made by the planets in a mahāyuga. (Refer
Table 1.1)
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vākyas
in Devanāgarī in transliterated form Literal meaning

गोपा̶या कदनधामाः gopājñayā dinadhāmāḥ We have been accomodated for
a day by the order of Gopa

चढ؝केशो भगϺजࢌӏोऽसौ caṇḍikeśo bhargasnigdhosau Caṇḍikeśa has close affinity to-
wards effulgence

गूढवाशोऽनुभूखतः gūḍhavāśo’nubhātiḥ This is an experience of deep
sense of roaring

ΦभुधϺराचΕपालः prabhur dharācakrapālaḥ Lord is the monarch of the
earth

रागी तु߂ϑुगϺणेࡆरः rāgī tumbururgaṇeśvaraḥ The leader of the group who
carries a special fruit is de-
sirous

Φ̶ासۦो धमϺवाͮ prajñāsanno dharmavān One who possesses dharma is
attracted to the intelligent

काशी सा߂सۦचोळः kāśī sāmbasannacoḷaḥ The Sāmbasannacoḷa shines
Φबलः Φा̶ो नरः prabalaḥ prājño naraḥ A wise man is powerful
ककवकवϺभुनϺकुलः kavirvibhurnakulaḥ The poet Nakula is around ev-

erywhere

Table F.2 Vākyas presenting the corrected mean motion of planets. (Refer Table 1.19)

vākyas
in Devanāgarī in transliterated form Literal meaning
άीगुϺणखमΡा śrīrguṇamitrā Wealth is the friend of the virtuous
भूकवϺङधप̵ा bhūrvidhipakṣā The earth is on side of the creator
ीࢢ रखतϥरा strī ratiśūrā Woman skilful in amorous acts
भोगवरा ते bhogavarā te She is well suited for enjoyment
भावचरोऽिरः bhāvacaroriḥ The enemy wanders over thoughts
तेन वश٬ं tena vaśattvaṃ Entangled by that
लोकजभीखतः lokajabhītiḥ Fear born out of the world
लूहयोऽयͳࢉ sthūlahayo’yam This is a stout horse
अӾङधगारः aṅgadhigāraḥ O [friend] wretched is the planet
तनाङभः߃ण࢈ stambhitanābhiḥ One who has arrested his navel
कनٖशशीशो nityaśaśīśo Eternal lord of the Moon
यागमयोऽयͳ yāgamayo’yam A [place is] filled with sacrifices

Table F.3 Vākyas used in computing the instance of entry of the Sun into different
zodiacal signs. (Refer Table D.2)
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vākyas
in Devanāgarī in transliterated form Literal meaning

άेंࡖ औह रِͳ śreṣṭhaṃ hi ratnam This indeed is a precious jewel
धा۬धरोऽयͳ dhānyadharo ′yam He is a possesser of grains
सुखी अकनलः sukhī anilaḥ A happy wind
धरئЇ नभः dharaṇyāṃ nabhaḥ The sky on the earth
वानरा अमी vānarā amī These are monkeys
मुनीܓोऽनۢः munīndro ′nantaḥ [Lord] Ananta is foremost amongst the seers
बलाؔो नाथः balāḍhyo nāthaḥ Lord endowed with power
जले कननादः jale ninādaḥ The humming noise in the river
ϥलधरो औह śūladharo hi He certainly possesses a trident

सा߂ो औह Φधानः sāmbo hi pradhānaḥ Parameśvara is indeed the foremost
धमϺसूңं कनٖͳ dharmasukhaṃ nityam Eternal are the secrets of dharma
लңी सुरपूմा lakṣmī is surapūjyā Lakṣmī venerable among the divine beings

Table F.4 Vākyas presenting the mean longitude of the Sun at the zodiacal transits of
the true Sun. (Refer Table D.3)
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vākyas
in Devanāgarī in transliterated form Literal meaning

योӔो वैڦः yogyo vaidyaḥ A qualified doctor
तपः सٖͳ tapaḥ satyam [Speaking] truth [by itself] is

austerity
ध۬ः पुΡः dhanyaḥ putraḥ A blessed son
खरो वरः kharo varaḥ A donkey is better
वीरः ϥरः vīraḥ śūraḥ A skilful warrior
शरो वΛी śaro vajrī Indra’s arrow
भΣं गोΡो bhadraṃ gotro This clan is safe
ϑϑः करࣷ ruruḥ karī The antelope and elephant

ध۬ः सेࠬो मया लोके dhanyaḥ sevyo mayā loke In the world only the blessed
are to be served by me

कायी दीनः kāyī dīnaḥ The one with a bulky body is
pitiable

नाӾना࢈ stanāṅganā A lady with big breasts
या̶ी य̶ाӾना ϥना yājñī yajñāṅganā śūnā The wife of the Yajamāna and

the performer of the sacrifice is
swollen

नेो࢈ दीनो steno dīno The thief is miserable
धुनी नतः dhunī naṭaḥ The river is a dancer
आपः पापः āpaḥ pāpaḥ The water is the culprit
पयः पंړ payaḥ pathyaṃ Milk is good

पूմा धेनुकदϺनेऽघथϺनः pūjyā dhenurdine ′rthinaḥ Cow is to be worshiped dur-
ing the day by those desirous
of becoming wealthy

तनुङभϺۦा tanurbhinnā The body has been split
खनी ̶ानी khanī jñānī The wise is like a mine
रِं भानुः ratnaṃ bhānuḥ The Sun is a pearl
सुकननϺय: sunirnayaḥ The one who is completely un-

scrupulous
Table F.5 Vākyas used in computing the longitude of the Sun at any given instance.
(Refer Table D.8)



Appendix G
The Maṇḍalas and dhruvas of the planets

In this Appendix, we first present the maṇḍalas and dhruvas for the various
planets, as specified in the text Vākyakaraṇa,1 in Tables G.1 to G.5. Verse
4 of Chapter 4 of Karaṇapaddhati presents an algorithm for computing the
maṇḍalas and dhruvas of the planets. These have been computed and pre-
sented in Tables G.6 to G.10. A comparison of these tables clearly shows that
indeed a large set of maṇḍala and dhruva value, the procedure outlined in
Karaṇapaddhati which include all the maṇḍala and dhruva values given in
Vākyakaraṇa, provided we ignore differences of the order of a few nāḍikās (in
the case of maṇḍalas) or a few minutes (in the case of dhruvas).

Maṇḍalas (Mi) Dhruvas (Di)
in numerals in numerals

in kaṭapayādi days nāḍikās in kaṭapayādi (in minutes)
dhanadhīdānabhaṅgārtaiḥ 634089 09 vanānām +004

धनधीदानभӾातЄः वनानाͳ
putradhīhāmarālayaiḥ 132589 21 satrajñāḥ +027

पुΡधीहामरालयैः सΡ̶ाः
kavissammodahāraiḥ 28857 41 gaṅgārcyā +133

ककव߄ࢗोदहारैः गӾाՒЉ
saṅgajanmapathikaiḥ 17158 37 vaneśaḥ −504

सӾज۫पघथकैः वनेशः
vanadhīdhṛtapuṇyaiḥ 11699 04 jalārtā +638

वनधीधृतपुئःै जलातЉ
Table G.1 The maṇḍalas and dhruvas of Mars.

1 {VK 1962}, p. 51–55.
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Maṇḍalas (Mi) Dhruvas (Di)
in numerals in numerals

in kaṭapayādi days nāḍikās in kaṭapayādi (in minutes)
viṣṇuryajñajatuṣṭaiḥ 16801 54 yajñajñaḥ −001

कवࡗयुϺ̶ाजतुैࡕः य̶̶ः
guṇanāmotsavaiḥ 4750 53 dhīvedyā +149

गुणनामोٛवैः धीवेڦा
śokadhīviśikhaiḥ 2549 15 sattvavit −447
शोकधीकवछशखैः स٬कवͪ

Table G.2 The maṇḍalas and dhruvas of Mercury.

Maṇḍalas (Mi) Dhruvas (Di)
in numerals in numerals

in kaṭapayādi days nāḍikās in kaṭapayādi (in minutes)
saraṇisthadevotsavaiḥ 474875 27 anenāḥ 000

सरछणࢉदवेोٛवैः अनेनाः
narmadāvartamātrakaiḥ 125648 50 dhanāni −009

नमϺदावतϺमाΡकैः धनाकन
satyodayanimittaiḥ 65018 17 balāḍhyā +133
सٖोदयकनखमٌैः बलाؔा

saṅkīrṇakulanīlaiḥ 30315 17 kathājñaḥ −071
सӼࣷतϺनकुलनीलैः कथा̶ः

deveddhaguṇiputraiḥ 21539 48 dhīkṛtaḥ −619
दवेेڠगुछणपुΡःै धीकृतः

viśvotsāhagarvaiḥ 4387 44 bhūsurāḥ +274
कवࡆोٛाहगवЄः भूसुराः

Table G.3 The maṇḍalas and dhruvas of Jupiter.

Maṇḍalas (Mi) Dhruvas (Di)
in numerals in numerals

in kaṭapayādi days nāḍikās in kaṭapayādi (in minutes)
dhanāśāvṛddhisaṅgāḍhaiḥ 487945 09 jñāninaḥ 000

धनाशावृडڠसӾाढःै ̶ाकननः
dānavṛddhiśubhārthakaiḥ 174594 08 dhīprājñāḥ +029

दानवृडڠϠभाथϺकैः धीΦा̶ाः
guṇitātmā sudehaiḥ 88756 53 damajñaḥ −058

गुछणताٕा सुदहेःै दम̶ः
gururakṣādhibhāvaiḥ 44962 23 lūnaḥ potrī +2103

गुϑर̵ाङधभावैः Ϥनः पोΡी
jaleddhakandharaiḥ 2919 38 viśveḍyaḥ −144

जलेڠकۥरैः कव׿ेࡆः
Table G.4 The maṇḍalas and dhruvas of Venus.
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Maṇḍalas (Mi) Dhruvas (Di)
in numerals in numerals

in kaṭapayādi days nāḍikās in kaṭapayādi (in minutes)
hīnabhogamunisamaiḥ 570534 08 māninī +005

हࣵनभोगमुकनसमैः माकननी
guruvṛddhidharājayaiḥ 182994 23 lokajñaḥ −013

गुϑवृडڠधराजयैः लोक̶ः
jñānayamīśaparaiḥ 21551 00 gurvājñā +043

̶ानयमीशपरैः गुवЉ̶ा
raṅgabhaktadhanikaiḥ 10964 32 yajñavān +401

रӾभѶधकनकैः य̶वाͮ

Table G.5 The maṇḍalas and dhruvas of Saturn.

hāraka śeṣa maṇḍala dhruva
day nāḍikās (minutes)

7 88224523260 5459 33.03 −1143.08
15 49106475712 11699 2.21 636.25
22 39118047548 17158 35.24 −506.83
37 9988428164 28857 37.45 129.42
133 9152763056 103731 27.60 −118.59
170 835665108 132589 5.05 10.83
1833 796111976 1429622 18.08 −10.31
2003 39553132 1562211 23.12 0.51
41893 5049336 32673850 0.56 −0.07

295254 4207780 230279161 27.03 0.05
337147 841556 262953011 27.59 -0.01
1980989 0 1545044218 45.00 0.00

Table G.6 Computed values of the maṇḍalas and dhruvas of Mars.
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hāraka śeṣa maṇḍala dhruva
day nāḍikās (minutes)

3 325016711593 347 37.55 −1042.74
19 185768858442 2201 37.83 595.99
22 139247853151 2549 15.38 −446.74
41 46521005291 4750 53.20 149.25
104 46205842569 12051 1.78 −148.24
145 315162722 16801 54.98 1.01

21274 192085157 2465130 49.48 −0.62
21419 123077565 2481932 44.46 0.39
42693 69007592 4947063 33.94 −0.22
64112 54069973 7428996 18.41 0.17

106805 14937619 12376059 52.35 −0.05
384527 9257116 44557175 55.45 0.03
491332 5680503 56933235 47.79 −0.02
875859 3576613 101490411 43.24 0.01
1367191 2103890 158423647 31.04 −0.01
2243050 1472723 259914059 14.28 0.004
3610241 631167 418337706 45.31 −0.002
9463532 210389 1096589472 44.90 0.001
32000837 0 3708106125 00.00 −0.00

Table G.7 Computed values of the maṇḍalas and dhruvas of Mercury.

hāraka śeṣa maṇḍala dhruva
day nāḍikās (minutes)

10 16514274166 3988 51.28 −1714.41
11 2640802728 4387 44.41 274.15
76 669457798 30315 17.72 −69.50
239 632429334 95333 37.55 65.65
315 37028464 125648 55.27 −3.84
5594 2945446 2231365 17.08 0.31
67443 1683112 26902032 20.24 −0.17
73037 1262334 29133397 37.32 0.13

140480 420778 56035429 57.56 −0.04
494477 0 197239687 30.0 0

Table G.8 Computed values of the maṇḍalas and dhruvas of Jupiter.
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hāraka śeṣa maṇḍala dhruva
day nāḍikās (minutes)

1 893666409854 583 55.54 −8668.88
2 439391325219 1167 51.07 4262.25
5 14883759416 2919 37.68 −144.38

147 7762302155 85837 3.79 75.30
152 7121457261 88756 41.47 −69.08
299 640844894 174593 45.27 6.22
3441 72163427 2009287 59.39 −0.70
27827 63537478 16248897 40.42 0.62
31268 8625949 18258185 39.81 −0.08

246703 3155835 144056197 19.09 0.03
524674 2314279 306370580 18.00 −0.02
771377 841556 450426777 37.09 0.01
2067428 631167 1207224135 32.18 −0.01
2838805 210389 1657650913 9.27 0
10583843 0 6180176875 0 0

Table G.9 Computed values of the maṇḍalas and dhruvas of Venus.

hāraka śeṣa maṇḍala dhruva
day nāḍikās (minutes)

28 56981546371 10586 26.98 −357.90
57 6823125659 21550 59.21 42.86
484 2396541099 182994 20.67 −15.05

1025 2030043461 387539 40.54 12.75
1509 366497638 570534 1.21 −2.30
8570 197555271 3240209 46.57 1.24
10079 168942367 3810743 47.78 −1.06
18649 28612904 7050953 34.35 0.18
103324 25877847 39065511 39.52 −0.16
121973 2735057 46116465 13.87 0.02
1201081 1262334 454113698 44.37 −0.01
2524135 210389 954343862 42.60 0

16345891 0 6180176875 0 0

Table G.10 Computed values of the maṇḍalas and dhruvas of Saturn.



Appendix H
The guṇakāras and hārakas of the Agaṇita
system

In this Appendix, we first present the hārakas of various planets, which are
used in the calculation of the associated śodhyabdas in the Agaṇita system,
as noted in the Commentary I of Karaṇapaddhati.1 These are compiled in
Tables H.1 to H.5. The verse 14 of Chapter 4 of Karaṇapaddhati gives an
algorithm for computing these hārakas of the Agaṇita system. Following this
algorithm, the agaṇitahārakas of various planets have been computed and
presented in Tables H.6 to H.10. A comparison of these tables clearly shows
that the hārakas given in Commentary I are indeed a subset of those which
have been computed following the algorithm given in Karaṇapaddhati.

hārakas
in kaṭapayādi in numerals
yatnam 1
ratnam 2
mānyam 15
rāgam 32
dhṛtsu 79
rāghavaḥ 284

Table H.1 The agaṇita-hārakas of
Mars.

hārakas
in kaṭapayādi in numerals
tajñaḥ 6
sthānam 7
gopaḥ 13
gaṃgā 33
tatvajñaḥ 46
dhanvī sutaḥ 6749

Table H.2 The agaṇita-hārakas of
Mercury.

1 ({KP 1956}, p. 145–146.
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hārakas
in kaṭapayādi in numerals
puṇyam 11
priyam 12
gajaḥ 83
pakṣīndraḥ 261
vibhaṃgaḥ 344

Table H.3 The agaṇita-hārakas of
Jupiter.

hārakas
in kaṭapayādi in numerals
dhyānam 1
khinnam 2
gānam 3
dānam 8
mallāriḥ 235
gobharam 243
haṃsaugham 478

Table H.4 The agaṇita-hārakas of
Venus.

hārakas
in kaṭapayādi in numerals
dhātrī 29
dharmam 59
yajñeśaḥ 501

Table H.5 The agaṇita-hārakas of
Saturn.

guṇakāra hāraka
1 1
1 2
8 15
17 32
25 47
42 79
151 284
193 363
2081 3914
2274 4277

47561 89454
335201 630455
382762 719909
2249011 4230000
8996044 16920000

Table H.6 Computed values of
the agaṇita-guṇakāras and agaṇita-
hārakas of Mars.
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guṇakāra hāraka
4 1
25 6
29 7
54 13

137 33
191 46

28023 6749
28214 6795
56237 13544
84451 20339

140688 33883
506515 121988
647203 155871
1153718 277859
1800921 433730
2954639 711589
4755560 1145319
12465759 3002227
42152837 10152000

Table H.7 Computed values of the
agaṇita-guṇakāras and agaṇita-hārakas of
Mercury.

guṇakāra hāraka
1 11
1 12
7 83
22 261
29 344
515 6109

6209 73652
6724 79761
12933 153413
45523 540000
91046 1080000

Table H.8 Computed values of
the agaṇita-guṇakāras and agaṇita-
hārakas of Jupiter.

guṇakāra hāraka
1 1
2 1
3 2
5 3

13 8
382 235
395 243
777 478
8942 5501
72313 44486
81255 49987

641098 394395
1363451 838777
2004549 1233172
5372549 3305121
7377098 4538293
27503843 16920000

Table H.9 Computed values of
the agaṇita-guṇakāras and agaṇita-
hārakas of Venus.

guṇakāra hāraka
1 29
2 59
17 501
36 1061
53 1562
301 8871
354 10433
655 19304
3629 106953
4284 126257

42185 1243266
88654 2612789
574109 16920000

Table H.10 Computed values of
the agaṇita-guṇakāras and agaṇita-
hārakas of Saturn.
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abhimata Desired.
abhyastā Having multiplied (same as hatvā ).
adhika Excess; additive.
adhikamāsa,

adhi-māsa
Intercalary month: a lunar month in which no saṅkrānti
(solar transit across zodiacal signs) occurs – it is not
counted as a part of the lunar year.

adhimāsakhaṇḍa The number of civil days elapsed since the beginning of
the kaliyuga till the beginning of an adhimāsa which is
close to the beginning of a Meṣādi.

āḍhya Quantity that is to be added.
ādi Beginning, starting point.
ādityamadhyama (1) The mean Sun. (2) The mean longitude of the Sun.
agrā Amplitude at rising, that is, the perpendicular distance

of the rising point from the east–west line.
agrāṅgula agrā specified in aṅgulas.
ahargaṇa Count of days. Number of civil days elapsed since the

commencement of a chosen epoch.
āhatya Having multiplied (same as hatvā).
ākāśakakṣyā Boundary circle of the sky, the circumference of which

is the linear distance traversed by a planet in a yuga.
akṣa (1) Terrestrial latitude (see also vikṣepa). (2) Rsine of

terrestrial latitude.
ākṣa Relating to (terrestrial) latitude.
akṣajīvā, akṣajyā Rsine of the terrestrial latitude.
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akṣakarṇa Hypotenuse of the equinoctial shadow.
akṣamaurvikā Same as akṣajyā.
akṣavalana Deflection due to the latitude of the observer. Part of

the inclination of the ecliptic to the local vertical, due
to the observer’s latitude.

alpaguṇakāra Smaller multiplier.
alpahāraka Smaller divisor.
aṁśa (1) Part. (2) Numerator. (3) Degree.
aṅgula A unit of measurement used to measure linear distances.
antyaphala Epicycle radius.
antarāla (1) Difference. (2) The perpendicular distance from a

point to a straight line or plane. (3) Divergence. (4) In-
tervening.

antyakarṇa The last hypotenuse in the iterative process for the com-
putation of the manda-hypotenuse K, such that the re-
lation rm

R = r
K is satisfied.

antyakrānti Maximum declination, taken to be 24 degrees, which is
the same as the inclination of the ecliptic to the celestial
equator.

anvita That which is added.
apahṛta That which is subtracted.
apakrama (1) Declination of a celestial body measured along

the meridian circle from the equator towards the
north/south pole. (2) Rsine of the declination.

apakramajyā Rsine of the declination.
apakramamaṇḍala,

apakramavṛtta,
apamaṇḍala

Ecliptic: the great circle in the celestial sphere along
which the Sun moves in the background of stars, during
the course of a year.

apavartana The process of reduction of a fraction to its lowest terms
by division.

apavartita That which is divided by a common factor without re-
mainder.

apavartya That which is to be reduced [by division] to the smallest
quantity.

āpta That which is obtained by [division].
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asu 21600th part of a sidereal day, or 4 sidereal seconds,
which is said to correspond to the time taken by a
healthy person to inhale and exhale.

ardhajyā Rsine of an arc, which is half of the chord.
arka Sun
arkabhagaṇa Number of revolutions made by a planet in the course

of a Mahāyuga (4320000 years).
avama Omitted/lapsed tithi: a tithi that commences after sun-

rise and ends before the next sunrise.
avasāna End.
ayanacalana Motion of the equinoxes as well as solsticial points.
bāhu (1) Rsine. (2) Number two in the Bhūtasaṅkhyā system.

(3) Side of a geometrical figure.
bāhujyā Rsine.
bāṇa (1) Literally, arrow. (2) Rversed sine: R(1 − cos θ).

(3) Number five in the Bhūtasaṅkhyā.
bha (1) Star. (2) Asterism.
bhacakra Circle of asterisms.
bhacakraliptā Minutes of arc contained in a circle which is equal to

360× 60 = 21600.
bhakakṣyā Orbit of the asterisms.
bhāga See aṁśa.
bhagaṇa Number of revolutions [of the planets].
bhājaka Divisor.
bhājya Dividend.
bhūdina, bhūdivasa (1) Terrestrial/civil day, the average time interval be-

tween two successive sunrises. (2) The number of civil
days in a yuga/kalpa.

bhūguṇa Literally earthsine. It is the Rsine of the arc of a diurnal
circle intercepted between local horizon and 6 o’clock
circle. If δ is the declination of the celestial body (usually
the Sun) and ϕ is the local latitude, then the earthsine
is given by R sinϕ.R sin δ

R cosϕ .
bhujā (1) Opposite side of a right-angled triangle. (2) The bhu-

jā of an angle is obtained from the degrees gone in the
odd quadrants and to go in the even quadrants.
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bhujājyā Rsine of an angle, or the usual sine multiplied by the
radius.

bhujāphala Equation of centre.
bhukti (1) Motion. (2) Daily motion of a celestial body.
bimba Disc of a planet.
bimbavyāsa Diameter of the disc of a planet.
cakra (1) Circle. (2) Cycle.
cakrakalā,

cakraliptā
Minutes of arc contained in a circle which is equal to
360× 60 = 21600.

calakendrahāra Divisor pertaining to śīghra anomaly.
candravākyas True longitudes of the Moon for 248 days represented in

248 phrases.
cāndramāsa Lunar month. The time interval between two successive

new moons whose average value is ≈ 29.54 civil days.
cāpa (1) Arc of a circle. (2) Constellation Dhanus.
cara Ascensional difference: equal to the arc of the celestial

equator lying between the 6 o’clock circle for a place with
a specified latitude, and the horizon. Usually expressed
in nāḍikās.

carajyā Rsine of ascessional difference.
caramaphala See antyaphala.
carāsava cara (ascensional difference) expressed in prāṇas (side-

real seconds).
dala Half.
dṛḍhaguṇakāra Steady [state] multiplier.
dṛḍhahāra Steady [state] divisor.
dhana (1) Positive. (2) Additive.
dhanus Arc of a circle.
dharādina/

dhātrīdina Civil days.
dhruva (1) Celestial pole (north or south). (2) Fixed initial

positions or longitudes of planets at a chosen epoch.
(3) Change in the longitude over a specified interval of
time.

dhruva-saṁskāra-
hāra

Divisor which is used for correcting the dhruva.
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dinagati Mean daily motion.
dinakara Sun.
dinayojanagati Mean daily motion in yojanas.
doḥ Literally, hand. See bhujā/bāhu.
doḥphala Opposite side of a right–angled triangle conceived inside

an epicycle of specified radius with one of the vertices
coinciding with the centre of the epicycle, and the an-
gle subtended at that vertex being the mandakendra or
śīghrakendra.

dorjyā Rsine.
dvitīyahāra Second order divisor.
dyugaṇa See Ahargaṇa.
dyujyā Day-radius: Radius of the diurnal circle, whose magni-

tude is R cos δ, δ being the declination of the celestial
body

dyuvṛtta See Ahorātravṛtta.
eka (1) Unit. (2) Unit’s position. (3) One.
gati (1) Motion. (2) Rate of motion (of celestial bodies).
ghana (1) Cube of a number. (2) A solid object.
ghanamūla Cube root.
ghāta Product.
ghna That which is multiplied.
graha-bhramaṇa-

vṛtta
Literally, circular orbit of the motion of a planet. This
is generally identified with the pratimaṇḍala or the ec-
centric circle.

grahabhukti/
grahagati Daily motion of a planet.

grāhaka/
grāhakabimba Eclipsing body.

grahaṇa Eclipse.
grahaṇa-kāla Time or duration of an eclipse.
grahaṇa-madhya Middle of an eclipse.
grahaṇa-pari-

lekhana
Geometrical or graphical representation of the course of
an eclipse.
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graha-sphuṭa True longitude of a planet.
grahakakṣyā Orbit of a planet.
guṇa (1) Multiplication. (2) Multiplier. (3) Rsine.
guṇaka, guṇakāra Multiplier.
guṇana Multiplication.
guṇita That which is multiplied.
guṇya Multiplicand.
hanana Multiplication.
hara, hāra, hāraka Divisor.
haraṇa Division.
haraṇaphala Result of division, quotient.
hata That which is multiplied.
hṛta That which is divided.
indu Moon.
iṣṭa Desired quantity.
iṣṭabhujācāpa Arc corresponding to the desired Rsine.
iṣṭadigvṛtta Vertical circle passing through the zenith and the given

celestial body.
iṣṭadyujyā Desired dyujyā (Rcosine of declination).
iṣṭajyā Rsine at the desired arc.
jīvā Rsine of an arc. R sin θ where θ is the angle correspond-

ing to the arc and R is the trijyā, which is the radius of
the circle.

jīve-paraspara-
nyāya

Rule for obtaining the Rsine of the sum or difference of
two angles, according to which the Rsine of one angle
is multiplied by the Rcosine of the other and vice-versa
and the results are added or subtracted from each other.
i.e., R sin(A±B) = R sinA.R cosB ±R cosA.R sinB

R
.

jyā See jīvā.
jyācāpāntara Difference between an arc and its Rsine.
kakṣyā Orbit of a planet.
kakṣyāmaṇḍala,

kakṣyāvṛtta
Deferent or concentric circle, on which the mean planet
moves.

kakṣyā-vyāsārdha Mean radius of the planetary orbit.
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kalā Minute of an arc (angular measure), 1
21600 th part of the

circumference of a circle.
kalāgati Daily motion [of the planets] in minutes.
kālajīva Rsine of right ascension.
kālalagna (1) Time elapsed after the rise of the vernal equinox.

(2) Time interval between the rise of the vernal equinox
and the sunrise.

kalidinagaṇa Number of civil days elapsed since the beginning of the
Kaliyuga.

kalpādidhruva Initial positions (longitudes) of planets at the beginning
of the kalpa.

kalyādi Beginning of the Kaliyuga.
kalyādi-dhruva Initial positions (longitudes) of planets at the beginning

of the Kaliyuga.
kalyahargaṇa Number of civil days elapsed since the beginning of the

Kaliyuga.
karaṇa (1) Construction. (2) A genre of astronomical work

(3) Period corresponding to half a tithi.
karka, karki The sign of Cancer.
karkyādi Six signs commencing from the sign of Cancer.
karṇa Hypotenuse.
kendrabhukti Daily motion of the anomaly.
kendragrahāntara The distance of the planets from the center of the celes-

tial sphere (earth).
kendrahāra/

kendrahāraka Divisor giving the successive approximations to the rate
of anomalistic motion.

khaṇḍa (1) A part. (2) An epoch closer to Ahargaṇa. (3) A day
on which the instant of conjunction of Moon and it’s
apogee is close to the sunrise. (4) A day satisfying spec-
ified conditions, close to given Ahargaṇa.

khecara, kheṭa That which wanders in space (planet).
koṭi (1) Adjacent side of a right-angled triangle. complement

of bhujā that is Rcosine. (2) 107 (both number and place
value).

koṭicāpa 90 degrees minus cāpa.
koṭijyā Rcosine of an arc.
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krānti See apakrama.
krāntijyā Rsine of the declination.
krāntikoṭi Rcosine of the declination.
krāntimaṇḍala See apakramamaṇḍala.
kṣepa (1) Celestial latitude. (2) Additive quantity.
kṣitidina/

kṣitivāsara Number of civil days in a Mahāyuga.
kṣitijyā See bhūjyā
kudina Number of civil days in a Mahāyuga.
Kulīra See Karki.
lagna Orient ecliptic point. The longitude of the ecliptic point

at the eastern horizon.
lagnasamamaṇḍala Vertical circle passing through the orient ecliptic point.
lambaka, lambana (1) Plumb-line. (2) Rsine of co-latitude, i.e., Rcosine of

latitude (3) Parallax. (4) Parallax in longitude.
lambana-nāḍikā Parallax in longitude in nāḍikās (24 sidereal minutes).
liptā Minute of an arc (angular measure).
madhyabhukti/

madhyagati
The mean rate of motion of a planet.

madhyabhuktikalā The mean rate of motion of a planet in minutes.
madhyagraha Mean longitude of the planet.
madhyagrahaṇa Mid-eclipse.
madhyāhna Midday.
madhyāhnacchāyā Midday-shadow.
madhyāhnāgrāṅgula Measure of amplitude at noon in terms of aṅgula.
madhyajyā Meridian sine, i.e. Rsine of the zenith distance when the

planet crosses the prime meridian.
madhyakāla (1) Mean time. (2) Middle of an eclipse etc.
madhyāhna-

kālalagna
Meridian ecliptic point—the point of the ecliptic on the
prime meridian.

madhyama Mean longitude of a planet.
madhyānayana-

hāraka
Divisor employed in obtaining the mean longitudes of
the planets.
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mahācchāyā Literally, great shadow. The distance from the foot of
the mahāśaṅku to the centre of the Earth. Rsine zenith
distance.

mahāguṇakāra Largest multiplier.
mahāhāra Largest divisor.
mahājyā The 24 Rsines used for computation.
mahāśaṅku (1) Great gnomon. (2) The perpendicular dropped from

the Sun to the horizon (when the radius of the celestial
sphere is taken to be R), which is equal to Rsine altitude
or Rcosine of zenith distance.

makara Capricorn.
makarādi The six signs commencing from Makara (Capricorn).
māna (1) Measure. (2) An arbitrary unit of measurement.
manda (1) Slow. (2) Associated with the equation of centre.

(3) Saturn.
manda-karṇa Hypotenuse associated with manda correction.
manda-karṇa-vṛtta Circle with a radius equal to manda-karṇa.
mandakendra manda anomaly, that is the difference in the longitude

between the mandocca (apogee or apsis) and the mean
planet. Mean anomaly.

mandakendrahāra Divisors pertaining to manda anomaly.
maṇḍala (1) Circle. (2) Orb.
maṇḍalahāraka Divisors employed in the process of obtaining maṇḍalas.
manda-paridhi Circumference of the epicycle associated with the equa-

tion of centre.
mandaphala The equation of centre.
manda-saṁskāra manda correction in planetary computation. Procedure

for obtaining the equation of centre.
manda-sphuṭa,

manda-sphuṭa-
graha

The longitude of a planet obtained after applying the
manda correction (equation of centre) to the mean lon-
gitude (known as madhyagraha).

manda-vṛtta manda epicycle, that is, the epicycle associated with the
equation of centre.

mandocca Uppermost point in the manda epicycle. Apogee. Apsis.
maṅgalācaraṇa Invocation.
māsa Month.
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māsavākyas A set of 12 vākyas which gives the cumulative number
of civil days at the end of each solar month.

mauḍhya Invisibility of a planet due to its direction/longitude be-
ing close to that of the Sun.

maurvikā See jyā.
meṣa Aries.
meṣādi (1) First point of Aries. (2) Commencing point of the

ecliptic. (3) Six signs beginning with meṣa.
mīna Pisces.
mithuna Gemini.
mṛga The 10th sign: Makara (Capricorn).
mṛgādi The six signs beginning with Capricorn.
mūla (1) The base or starting point of a line or arc.

(2) Square root, cube root etc.
nakra Capricorn (generally refered to as Makara).
nakṣatra (1) Star. (2) Asterism. (3) Constellation.
nākṣatradina Sidereal day, which is equal to the time interval between

two successive transits of a particular star across the
horizon or the meridian (≈ 23h56m of a civil day).

nakṣatrakakṣyā Orbit of the asterisms.
nakṣatra-
saṅkrāntivākyas

A set of 27 vākyas giving the times when Sun crosses
from one nakṣatra (13◦20′ of ecliptic) to another.

natakāla Right ascension.
nighna That which is multiplied.
oja Odd.
ojapada Odd quadrants (the first and the third) of a circle.
pada (1) Square root. (2) Terms of a series. (3) Quarter.

(4) Quadrant of a circle.
padīkṛta Having obtained the square root.
palabhā/palaprabhā Equinoctial shadow.
palajyā Rsine of the latitude.
palaśruti The hypotenuse of the gnomon.
parama Maximum.
paramakrānti Maximum declination.



Glossary 419

paramakrānti-
maurvikā

Rsine of maximum declination.

paramakṣepa Maximum latitude.
paramāpama/
paramāpakrama Maximum declination.
paridhi Circumference.
paryaya (1) Count of a certain repeated process.

(2) Number of revolutions of a planet.
prāṇa 4 sidereal seconds. See asu.
pāta Moon’s node.
prāṇakalāntara Difference between the longitude and right ascension of

the Sun in prāṇas.
pratatparā Angular measure corresponding to one-sixtieth of thirds

(tatparā), or fourths.
rāhu The ascending node of the Moon.
rāśi Literally, a group. It refers to: (1) A number (which is

a member of a group). (2) A zodiacal sign equal to 30
degrees in angular measure.

rāśicakra Ecliptic.
rūpa Unity or number one in the Bhūtasaṅkhyā system (liter-

ally, form, which is unique to every entity).
ṛṇa Negative or quantity to be subtracted.
samamaṇḍala Prime vertical (circle passing through the zenith and the

east and west points of the horizon).
samamaṇḍalachāyā Rsine of zenith distance of a celestial body when it is on

the prime vertical.
sama-maṇḍala-
śaṅku, sama-śaṅku

Rsine of altitude of a celestial body when it lies on the
prime vertical.

samasaṅkhyā Even number.
saṁguṇa Multiplied.
saṁvardhita That which is multiplied.
saṁhṛta That which is divided.
saṅkramaṇa,

saṅkrānti
Sun’s transit from one rāśi to the next (refers to both
the instant as well as the transit).

saṅkramaṇadhruva The weekday at the beginning of the kalpa.
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saṅkrāntivākyas A set of 12 vākyas using which the time of transit of the
Sun from one sign to another can be computed.

śaṅku (1) Gnomon (usually of 12 units). (2) Sometimes ma-
hāśaṅku (great gnomon), the perpendicular dropped
from the Sun to the horizon ( = Rsine of altitude).
(3) The number 1013.

śaṅkucchāyā Shadow of the gnomon.
śaṅkukoṭi Compliment of altitude or zenith distance.
śara (1) Arrow. (2) Rversed sine, R(1− cos θ).
saura Related to Sun, solar.
sauramāsa Solar month.
sāvanadina Civil days.
saṁskṛtaparyaya Corrected revolutions of the planets.
saṁvardhita Multiplied.
sannikarṣa Proximity.
śakābdasaṁskāra A correction applied to the mean planet based on the

elapsed number of śaka years.
śaśāṅka Moon.
śaśī Moon.
śaśituṅgayoga Conjunction of the Moon and its apogee.
śaśyucca Moon’s apogee.
śeṣa Remainder in an operation.
śīghra-karṇa (1) Hypotenuse associated with śīghra correction.

(2) Geocentric radius vector.
śīghrakendra Anomaly of conjunction; Angular separation between

śīghrocca and manda-sphuṭa (planet corrected for equa-
tion of centre) of a planet.

śīghra-kendrahāra Divisor pertaining to śīghra anomaly.
śīghra-paridhi Circumference of the śighra epicycle.
śīghraphala The correction to be applied to the manda-sphuṭa (a

planet corrected for the equation of centre) to obtain
the geocentric longitude of the planet.

śīghra-saṃskāra Śīghra correction or the application of the śīghraphala.
śīghra-sphuṭa The longitude of a planet obtained after applying the

śīghraphala.
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śīghra-vṛtta The śīghra epicycle, that is, the epicycle associated with
the anomaly of conjunction.

śīghrocca (1) Higher apsis (or the uppermost point) of the epicycle
employed in the śīghra correction. (2) Apex of the planet
moving faster.

śīghroccayoga-
samaya

The instant of conjunction (yoga) of the śīghrocca with
the planet.

śiñjinī See jyā.
śiṣṭa Remainder in an operation.
śiṣṭacāpa The difference between the given cāpa and the nearest

mahājyācāpa (arc whose Rsine is tabulated).
śodhya Śodhya corresponds to a time interval (not necessarily

an integer) close to the desired ahargaṇa, at which the
śīghrakendra is zero, and the longitudes of the mean
planet and the śīghrocca (which are equal) are close to
the longitude of mandocca.

śodhyabda The number of years elapsed since the beginning of
the Śaka era to the beginning of that year when the
mean planet and the śīghrocca are in conjunction at the
Meṣādi.

sphuṭa-vikṣepa Corrected celestial latitude.
sphuṭayojanakarṇa The actual physical distance of the planet from the

earth.
sphuṭendu True Moon or True longitude of the Moon.
śruti See karṇa.
śuddha Subtraction.
sūrya Sun
svadeśahāraka Divisor used to calculate the time difference between two

places on the same latitudinal circle.
svalpacāpa An arc having a small magnitude.
sva(m) (1) Addition. (2) Additive quantity.
tāḍana Multiplication.
tatparā Angular measure corresponding to one-sixtieth of a sec-

ond (vikalā).
tṛtīyahāra Third order divisor.
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tithi Lunar day, a thirtieth part of a synodic lunar month,
or the time interval during which the difference in the
longitudes of the Moon and the Sun increases by 12◦.

tithikṣaya See avama.
tithyanta End of a tithi.
trairāśika (1) Rule of three. (2) Direct proportion.
tribhajyā Rsine of three rāśis, same as trijyā or radius.
tribhuja A three-sided figure, triangle.
trijyā, trirāśijyā Rsine 90 degrees. The radius of the circle.
trimaurvikā See trijyā.
triśarādi Set of odd numbers 3, 5, 7, etc.
tuhinagu Moon.
tulā Libra.
tulādi The six signs commencing from Tulā.
tuṅga Apogee or aphelion (literally, ‘peak’, ucca).
ucca Higher apsis pertaining to the epicycle (manda or

śīghra). Equivalently, the farthest point in the prati-
maṇḍala from the centre of the kakṣyāmaṇḍala. The
apogee of the Sun and the Moon, and the aphelion of
the planets.

uccavāra Friday.
udaya (1) Rising. (2) Heliacal rising. (3) Rising point of a star

or constellation at the horizon.
udayakāla The moment of rising of a celestial body.
udayalagna Rising sign. The orient ecliptic point.
uddhṛta That which is divided.
ūna (1) Less. (2) That which is subtracted.
upāntya (1) Close to the end. (2) Penultimate (term).
upāntyajyā Penultimate Rsine.
uparāga Eclipse.
utkramajyā Rversed sine (R(1 − cos θ), where θ is the angle corre-

sponding to the arc).
vadha Multiplication.
vākyakhaṇḍa/
vākyoktakhaṇḍa Khaṇḍa mentioned in vākya texts.
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vallī An array of numbers.
vallyupasaṁhāra A mathematical process for obtaining successive approx-

imations to a ratio of integers.
varga Square.
vargaikya Sum of the squares.
vargaikyamūla Square-root of sum of the squares.
vargamūla Square root.
vāyukāla Right ascension.
vibhajya Having divided.
vidhūcca Moon’s apogee
vidhuntuda Moon’s node.
vihaṅgama Mean planet.
vihṛta That which is divided.
vikṣepa (1) Latitudinal deflection (Rsine of celestial latitude).

(2) Celestial latitude. (3) Polar latitude.
vikṣepacalana Related to deflection of Moon’s obit from the ecliptic.
vināḍī 24

60 of a sidereal second.
viparītakarṇa Reverse or inverse hypotenuse: R2

K , where K is the
aviśiṣṭa-mandakarṇa (iterated manda hypotenuse).

viparyaya Inverse or reverse, also called viparyāsa.
viṣama (1) Odd number or quadrant. (2) Difficult.
viśeṣa Speciality, Difference.
viṣkambha (1) Diameter. (2) The first of 27 daily yogas.
viṣkambhadala Semi-diameter.
viśleṣa (1) Subtraction. (2) Difference.
viśodhya Having subtracted.
vistarārdha Semi-diameter or radius.
vistṛtidala Semi-diameter (vistṛti is diameter).
viśuddha That which is subtracted.
viṣuvacchāyā/
viṣuvadbhā

Equinoctial midday shadow, that is, the shadow of a
gnomon measured at the meridian transit, of the Sun
when at the equinox.

viṣuvadbhāgra Tip of the shadow on the equinoctial day.
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viṣuvanmaṇḍala Celestial equator, which is the same as the path traced
by a star rising exactly in the east and setting exactly
in the west.

viṣuvat Vernal or autumnal equinox.
viṣuvatkarṇa Hypotenuse of equinoctial shadow.
vitribhalagna Central ecliptic point or nonagesimal, i.e., the point on

the ecliptic whose longitude is less than that of the lagna
(ascendant or the ecliptic point on the eastern horizon)
by 90 degrees.

vivara (1) Difference. (2) Gap. (3) Space in between.
viyoga Subtraction.
vṛtta Circle.
vṛttakendra Centre of a circle.
vṛttaparidhi Circumference of a circle.
vyāsa Diameter of a circle.
vyāsa-dala/ardha Semi-diameter, radius.
vyasta-karṇa See viparīta-karṇa.
yogadhruvas Corrections applied to the longitudes of Moon and its

apogee.
yogodayāntara Difference between the instances of conjunction of Moon

and its apogee and the sunrise.
yogyādivākyas A set of 48 vākyas which are used to find the true longi-

tude of the Sun at any given instant.
yojanagati Daily motion in terms of yojanas .
yuga Aeon. A large unit of time, for instance, Kaliyuga whose

duration is 432000 years or Mahāyuga whose duration is
4320000 years.

yugādhimāsa Number of adhimāsas in a yuga.
yugabhagaṇa Number of revolutions made by a planet in the course

of a Mahāyuga.
yugma Even.
yukta, yuta That which is added.
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saṃskṛtaparyaya 47–48, 138, 139
saṅkramaṇa,
saṅkrānti 136–137, 201–204, 206,

208–209, 211, 340, 341, 344, 346–347
saṅkramaṇadhruva 135–137, 141,–142
saṅkramaṇadina 141
saṅkramaṇamadhyavākya 344
saṅkrāntivākyas xlii, 205–211, 341,

343–344, 346
śaṅku 233–237, 239, 245, 263–264, 266,

306–309
śara xxxvi, 157
śarajyā 158
sauramāsa 341
śakābdasaṃskāra xxxviii, 1, 16, 19,

20–21, 24–25, 27–28, 30, 34, 37–40,
43–44, 47, 51, 58–59



442 Index

śaśāṅka 375
śaśī 278, 374, 380, 382
śeṣa 22–23, 31, 103–105, 391–393
sidereal days xxxviii, 5–6
sidereal month xxxviii, 347
sidereal period of the Moon 362
sidereal period of the śīghrocca 362
sidereal year 6, 120, 339
śīghra xxix, xli, xlii, 110–111, 180–182,

184, 188, 195–197, 217, 223, 231,
330–331, 338, 359

śīghra-karṇa 181, 184, 189, 190, 195, 217,
219, 221–223, 230–232, 331

śīghra-kendra xxxix, 106, 109–110,
112–113, 115–116, 118, 177–183,
187–192, 194–196, 198, 225, 227,
330–332

śīghra-kendraguṇakāra 103–105
śīghra-kendrahāraka 102–105, 129
śīghrakhaṇḍa xxxix
śīghra-paridhi 178, 179, 216, 225, 227
śīghra-phala 181–182, 184, 186–194,

196–197, 280, 330–332
śīghra-saṃskāra xxxviii, 186, 197, 330,

332, 359
śīghra-sphuṭa 217, 330–332
śīghrasphuṭagraha 330
śīghra-sphuṭaparidhi 180, 183
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क߽गतं वषϺगणं सݗाहतक߽ 5.13a 141
क߽ादीनЇ Φमाणं तु 5.15a 143
क߽ेऽध࢑ͮ सݗम࢒ा࢒ 5.19a 145
क߽े युगाकन तु सहέमुशठۢ 5.16a 144
क߽ोѶभूकदवसक߽गताޓ 5.6a 135
क߽ोकदते संृࡹतपयϺयौघे 5.11a 138
कޓࠂӳाङधमासाः 4.19a 123
कޓࠂतः कΦयहताͬ 1.9a 9
कޓࠂा धीࢉकालाؔ 1.8b 8
कࠂाकदजैः Τवुकैः࢔ 2.3b 56
कणϺڥय࢒ वधतञࢢगुणेन 7.28a 221
कणЎऽयं ̵ेपहारः ाͪ࢒ 7.33a 229
कंसेन कवभजेंޔࠄ भवेद܉ 7.10b 185
कायЉ यथोѶं गुणकारहाराः 6.5b 152
काललӐं खΡराࡄनूं नतकाल 10.5b 310
कुयЉٌदा ा۫गृकक੮࢒ टाڦोः 7.32b 226
कुयЉͪ तकदࡕराۢࡄकाललӐ 9.1b 283
कुयЉͬ Ηहषेु घलݗांڦ 1.20b 29
कुयЉͬ व࠘पुसंϓखतं 2.6b 64
कृतΡतेाڥापराҿः 1.7a 7
कृतादीनЇ Φमाणं ाͪ࢒ 5.18b 145
कृतायनेࡕराेۢࡄ चरΦाण 9.1a 283
कृٖा कोकटगुण࢒ तΡ तु 6.18b 169
कृ٘ा तڥगϺयुѶाͬ भुजफलकृखततः 7.6b 181
केܓाҿं चΕघलݗांݗ 3.10b 94
केܓाئनۢोؽरसंϓताकन 3.5b 85
केܓाئमूकन࢔हरोڠतृानЇ 3.7b 88
कोकटմा܉फलेन हࣵनसऔहता 7.11a 186
कोकटմा߽ा चरमफलतः 7.12a 186
कोटीगुणं ࠬासदलेन 8.13a 249
कोटीगुणाङभकनहत࢈न 8.29a 272
कोटीմाӳनेाघनागेन 8.30a 274
कोटीफलं कक੮ मृगाकदजातं 7.18a 199
कोटीफलं ࠬासदलेन 9.17a 299
Εमाͬ धनमृणं 1.20a 29
Εमाͬ धनणϻ कवϞरोजवृٌ࢒ 7.4b 179

̵मा̵ो कनळाۢो कनरासः 9.4b 285
̵ेपाठۢमΕाठۢवधेन ह٘ा 10.9b 314
̵ेपाहतामपमकोकटϓतЇ 9.13b 294
̵ेपाहते टकोकटदोմϿࢎु࢔ 9.15b 299

खं؝ नयेͪ केܓहरै࢈दीयैः 4.3b 104

गछणतखमदमशेषं युगѶयुѶं 10.11a 316
गतवषЉۢकोल߂ 1.8a 8
गुणकाङधका߽क٘े 1.10b 13
गुण࠻तुकवϻशखतभागजातः 8.11a 247
गुणहताͪ खΡभयुҮुटदोगुϺणाͪ 9.12a 291
गुणहारकभूतै࢈:ै ࠬासवृٌैः 6.6a 152
गुणहारगुणादीनЇ 1.2b 1
गुणहाराۢरगुछणतं 1.10a 13
गुणहाराकवशेषोѶौ 4.4a 107
गुणहारौ Ηहाकदٖभगणौ 4.14a 119
गुणो भवेͬ योजन 1.28a 48
गुणो औह परम̵ेपो यڥा 7.33b 229
गुئाͪ तٌڣगण 1.14b 23
गुئाͪ खतथीशगुछणताͬ 1.15a 25
गोΡोٌुӾहताͬ धनाकदगुणतो 2.4a 57
ΗहणΗहयोगाڦःै ये Ηहाः 5.1a 133

घकटकाम؝ले यΡࡕंृࢍ 10.4a 310
घनमूलं औह चापմा࢔संҿोन 6.20b 172
घातांݗ काललӐे छ̵पतु 10.3b 309

चΕघलݗाݗखमࡕोێϺहारकेण 4.16b 121
च؝ЇϠचܓाधमकंुङभपालैः 6.7b 152
चतुदϺश मϺनवोऽΡु࢒ 1.6b 6
चܓाक੮ मासकववरं 1.4b 4
चܓतुӾाकवमौ ातЇ࢒ 3.15b 97
चܓाद۬कवहӾानЇ 4.1a 101
चܓाकदकानЇ 1.25b 47
चܓादीनЇ Εमादतेाः 7.34b 229
चरमڦगुुणाहतेࡕदोմЉ 8.16a 254
चरमेण चरेण ताकडता सा 8.16b 254
चाܓमासा नगा࢈ޱा 1.5a 5
चापाՊ तٌْलतोऽकप तͪڥ 6.12a 160
चापीकृताͪ कोकटगुण࢒चापे 8.13b 249
चापीकृतं च࢔मृणं ΦकुयЉͪ 10.10a 314
चापीकृतं बाϡगुण࢒चापाͬ 8.12b 249
चापीकृतं भवेदΡ कऔक੮ नΕाकद 7.13b 193

छायाӾुलभुजाको׊ौ हते 8.5a 240
छायाӾुलϓते ातЇ࢒ महाभा 8.5b 240
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जीवा सा ङڥगुणा तो࢔ 6.16b 166
մानЇ कनजखΡगुणवगϺकवशेषमूलं 6.10b 157
̶ाՋयोभϺवखत योजनकणЎ 7.29b 223
̶ानीܓकनӳा 1.25a 47

तट̶ो गुणेन Φसۦो नृन߅ो 9.3a 285
ततञࢢजीवयाहताͬ जुीवयाڦ 8.15b 252
ततोऽ۬Ρ धनं 1.21b 37
ततो मूलं कणϺञࢢभगुणहतं 8.28b 267
तؽालΗहम࢒ی 4.11a 116
तؽालमیकवहगं 4.9a 114
तٟा܉ोवϺधतोऽधϺकव࢈खृतहताͬ 9.14b 297
तؽो׊ांݗ चरմा࢒ाͬ 8.18b 255
तٳदशेो वायुकालो नतकालः 10.4b 310
तّयϺयाङभहतक߽गताޓवृۤाͪ 5.5a 134
तٌओڟनोٍेۤ तुϞՊभेदघलݗाहताͪ 3.5a 85
तٌڠराङभकनहताͬ 2.8b 70
तΡापवखतϺताޱЇ हाराޱЇ 2.10b 72
तΡाेݗ औकल दवेरैकवϺकनहते 3.9b 91
तΡाङधकमुतोनं 1.18a 29
तΡाङधकोनं गुणाͪڦ 3.3b 77
तड٭մावगϺकवेࡅषमूलं ल߂न 8.2a 233
तΡेࡕहाराङधकतावशाͪ 3.13b 96
तΡोѶࠬ࢈कणЉٌञࢢմावगЎ 7.20b 204
तथा हराणЇ Τवुका࠻ 3.4b 77
तदवेगखतभागӳं शोंی 8.26b 263
तओڟनेۤՊूयोभϿदाͪ 3.10a 94
तڠते बाϡकोकटմे खΡմाेݗ 8.20b 256
तڢाϡफलवगЄѿमूलं कणЎऽΡ 8.21b 256
तڥगϺकोटीफलवगϺयोगाͪ मूलं 9.16b 299
तڥगϺतो दोगुϺणवगϺहࣵनाͪ मूलं 7.32a 226
तڥगϺतो दोःफलवगϺयुѶाͪ मूलं 7.18b 199
तڥासरोٍतुऔहनЇϠतϞՊ 3.14a 97
त܊कनमЉणकाल࢒ पर̵ࣷा 5.3a 133
त܊ानीतपरࣷछ̵ताϑण 5.7a 136
त࢑ाͪ प֎ӳमौؔोकदत 8.34b 280
त࢑ादगछणतΦोѶः 4.18b 121
तध࢑ͮ पुनः Φाणकलाۢरं च 9.18a 299
तापࢉानेन ह٘ा ϟनदगकवϓते 4.21b 126
ताޱЇ हराޱЇ तु तथा 5.12a 138
तुӾोकनतादवे कवधोयϺथोѶं 3.13a 96
तेन तौ कवϓतौ राशी 2.2b 52
तेनानۢपुराहतेन 2.7b 68
तेनावाݗाͬ दोगुϺणाͪ कातरӳाͪ 8.30b 274
तेषЇ Εाठۢगुणाः ाःࡕࢍ ࢔࢔ 9.8b 287

तेषाखमۤजुभूखमजाक੮ तनयाः 2.4b 57
तैः शोیमानयेͪ 4.6b 112
ٖҒावशेष࢒लवाः षडाݗाः 9.19b 303
ٖҒा परࣷछ̵तसमाۢ 5.5b 134
ٖजेͪ खΡմावगЉՊरमफलवगϿण 8.28a 267
खΡगुणࠬासे मृणं࢔ Εमशः 6.2b 148
खΡմा̵घातलंबЇशेनाहताकदࡕ 8.18a 255
खΡմा̵घातादवल߂काݗने 8.17a 255
खΡմातो ल߂हारांݗ नाकडका 8.26a 263
खΡմादोःफलवगϺभेदजपदं 7.30b 224
खΡմा܉Εाठۢको׊ोयुϺखत 8.27b 267
खΡմाڠϺमेकराछशմा खΡմा 6.8a 154
खΡմावगϿणाहताद̵कणЉͪ 8.24a 262
खΡմाहताͪ भुजगुणादमुना 8.29b 272
खΡմाहताͬ दोःफलतोऽमुनांݗ 7.19a 201
खΡմाहतापΕमतो̵जीवा 8.7a 242
खΡմा ϓता Εाठۢगुणोऽ࢒ 8.11b 247
खΡմेࡕմावधाؔोनखΡմा 6.9a 155
खΡभाठۮतं तΡ भवेͬ 1.11b 13
खΡभोकनतेध࢑ͮ पुनरायनЇशं 10.10b 314
खΡयुगाकन गताकन सृगࡕतः 5.17b 144
खΡसӾुणौ तावथ नۤभѶौ 7.17b 199

दशाहता भवۢीࡕराछशमान 9.2b 283
दέाۢकायϺमभगाकदखत 9.7a 285
कदनयोजनगखतकवϓता࢒࢈ 8.32b 277
कदनयोजनभोगाͪ࢒ाͪ 8.25b 263
ङڥӳाͪ तڢाϡचापाͬ भुज 7.8a 182
ϐ҃माٛ࢈माः क߽े 5.1b 133
दवेेܓशमЄѿकदनेۤतुुӾ 3.2a 76
दवेेܓसԝावङधकैः 3.12 a 95
दोःकोकटफले࢒ातामनयोवЉ 7.7b 182
दोः कोकटमौࠬЎवϺधतञࢢमौࠬЉ 8.14a 249
दोմЉभावे तु केेܓ 7.27a 220
दोմЊ संृࡹतकोकटकामकप 7.11b 186
दोदϺ؝ाΗऽेकΣनाथो 1.3b 2
दोःफलं खΡմयां࢈ޱ 8.22a 256
दो࠻ापाؔं भगणदलतࢡմतЇ 7.12b 186
մुाϓतंڦ Φाणकलाۢरं तͪ 8.14b 249

धनी लोको धनं दानं 7.2b 177
धीभावाӾैः कघलकदनगणाޱࠄते 1.14a 22
धूळࣸरागो भुवो वृٌं तेन 8.25a 263

न̵ΡमیाࢿजकाललӐाͪ 9.19a 303
न̵ΡाणЇ टाःࢎु कायЉः सकलाः 9.8a 287
न̵ΡाۢुࢎटोّۦमیाकЉदवेमेव 7.23a 206
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नतकालभुजाΕाठۢं कदѭं࢈ࠬ 10.6a 311
नताҿकालञࢢभसंयुतोऽयं 9.18b 299
नۤांݗ चाकपतं माۤमकЉदीनЇ 7.5b 180
न߅ः कΦयो मुकनमЉनी कनٖं 9.5a 285
नये̵ۦΡसԗाठۢवाѿं 7.23b 206
नाकाहतं भाखगतभानुमंی 1.13a 19
नागाहतद࢈घथयुतः 1.9b 9
नाना̶ानΦगࠀ 1.3a 2
नी٘ा मیाक੮ चܓौ फछणनमकप 4.21a 126
नृपहतकदनकर 1.23a 38

परΕाठۢशरा࢈ޱः परΕाठۢ 9.11b 291
परमΕाठۢकोकटӳे कृ٘ा त࢑ाͪ 10.7a 311
परमापΕमको׊ा कव̵ेपմЇ 9.9a 288
परमापΕमां࢈ޱ राϡकणϻ 8.23a 256
परࣷछ̵त࢒खेट࢒ 5.2a 133
पलմया हतापमाͪ࢔ल߂केन 8.15a 252
पाते तु म؝लाՋुेڠ 1.17a 28
पूवЎकदताभीࡕहरेण छशंࡕ 5.10b 138
पृथ͛ पृथ͛ टीकुयЉͪࢎु 3.12b 95
पृथगेकैकपादोѶा असुरैरपवखतϺताः 7.3b 177
Φछ̵ݞा܉मुपाठۢमेन 2.5b 60
Φाणाः सԗमणΗहषेु कघलकाः 5.7b 136
Φाणै࢈ःै ःै࢈ޱगुणा࢔ 3.15a 97

फलैरमीङभगुϺणहारकाۦयेͬ 3.1b 75

बाणाधЉͪ दोगुϺणाधЉदकप पिरङधङभदा 7.8b 182
कब߂ादीनЇ योजनाकन हताकन 8.31a 276

भѶा࢈नेहरेण वाѿकरणोѶा 4.5b 107
भѶा࢈ΡाङधमासैभϺवखत 4.19b 123
भगणाڦा Ηहा࢈Ρ 1.16b 28
भवेदیधϺराछशմा ताޱाम۬ 6.8b 154
भाकोकटका गुुणवगϺङभदाڦ 8.9a 244
भागीकृताͪ तदनु सԗमणाक੮ 7.22a 205
भानЇ ࠻टाࢎु कव̵ेपाः 10.1a 305
भानोगЉनं कवधोः ानंࢉ 7.1a 177
भाࡹरेࡕखगपयϺयाۢरं 4.2a 102
भुजाफलं ࠬासदले धनणϻ 9.16a 299
भूΗहाۢरहता कनजकҤा 7.29a 223
भूकदनाؔाक੮ भगणाः 1.5b 5
भूकदनाͬ ोݗगुणेनाڦ 1.16a 28
भूकदनैकवϺϓता࢈षेЇ 1.22b 38
भूमیखेटकववरं च तदवे 7.28b 221
भूयः ̵ेपगुणं टामपगुणेࢎु 10.8a 312

भूࠬासयोजनहताः शछशभुगѶ 8.33a 278
भूࠬासाधϺसमाहता̵गुणतः 8.3a 235
भेदयोगदलेठ٘ࡕचापाधϺभुज 6.9b 155
भोमाͪ सेࠬगयापयोधन 7.30a 224
भौमादःे कृतमۤदोःफलदलाͪ 7.25a 214

म؝लानयने नीताः 4.6a 112
मदीयϓदयाकाशे 1.1a 1
मیाͪ ΗहाणЇ 4.3a 104
मیाޓाۢसमानीतमی 4.15a 121
मیाࢿभापΕमचापयोवЉ 8.7b 242
मनवोऽथ चतुदϺशैव क߽े 5.17a 144
मۤकेܓहरा ̶ेयाः 4.1b 101
मۤशीΘΕमाͪ के࢒ܓौजयुӓ 7.3a 177
मۤाकद࢔हराݗाः 1.23b 38
मۤाकद࢔हरेणाेݗ 1.19b 29
मۤाकदहारगुछणता 2.1a 51
मۤाकदहारहतपोतϓतं 1.15b 25
मۤाकदहारहतभूकदवसा࠻ 2.1b 51
मۤाकदहारैकवϺभजेदवाݗाः 1.13b 19
मۤोՊेनोकनताޱЇ άवणमकप 7.26b 217
महागुणӳाͬ ाͪࡕगुणादभीڦ 2.3a 56
महागुणाे࢈ भगणाः 2.9a 72
महाशӼुΦभे कायϿ संृࡹते 8.4b 239

माۤे ٘वंे समानीतं दोःफलं 7.9a 184
माۤने टवृٌेनࢎु कनहताकद 7.5a 180
मा۬ाकदմाः संभृता̵ेΡदशेे 8.24b 262
मातЉ؝ादीͮ Ηहाͮ 1.2a 1
मासाकदतोऽࡕाࡕकदनोٍसूयϺुࢎटा 7.24a 211
मृगकक੮ टकाकददोःफलाͪ 7.15a 196
मृϞάखुतहताͪ कҤावृٌाՊΕ 7.21a 205
मौؔावसानڦगुणः सख؝ः 4.13b 119
मौؔोकदतЇशभुजकोकटगुणौ 7.31a 226

यڥा Εाठۢतदीयको׊सुकला 9.14a 297
यڥा खमथो कवϓतहारगुणोٍशेषैः 2.8a 70
यڥा या߅ोٌरापΕमपलगुणयोः 10.3a 309
यڥा टेࢎु कनजकलासुङभदЇ 9.13a 294
यڥा࢔मیाࢿगकाललӐे 10.9a 314
येࡕڥको׊ाहतकव࢈राधϿनोन 6.11a 159
येࡕڥचापगुणतՋरवगϺयोग 6.10a 157
येࡕڥमیकवहगोनचलोՊघलݗा 4.8a 113
या߅ाः परे वϑणनैऋ੮ तϥपϺभानЇ 9.7b 285
या߅ोٌरा भुजा ाՋायायाः࢒ 8.6a 240
युगाԧयु࢈ क߽ेऽध࢑ͮ 1.7b 7
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युग࢒ दशमो भागो भोगकΦयहतः 5.18a 145
योगकवयोगौ ातामङभमतगुण࢒ 8.8b 244
योगोदयाۢरभवाः सवःࣁ 3.14b 97
योӔाकदवाѿाकन धनणϺतैषЇ 7.24b 211

राۢࡄभानुुࢎटतो मृϣՊं 7.17a 199
रा܉ࡄभानौ मृणं࢔ च 7.19b 201
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