Venketeswara Pai

K. Ramasubramanian
M.S. Sriram

M.D. Srinivas

Karanapaddhati
of Putumana
Somayaji

HINDUSTAN .
OOOOOOOOOO @ Sprmger



Sources and Studies in the History of Mathematics
and Physical Sciences

Managing Editor
Jed Z. Buchwald

Associate Editors
J.L. Berggren

J. Liitzen

J. Renn

Advisory Board
C. Fraser

T. Sauer

A. Shapiro

More information about this series at http://www.springer.com/series/4142


http://www.springer.com/series/4142

Sources and Studies in the History of Mathematics and Physical Sciences was
inaugurated as two series in 1975 with the publication in Studies of Otto
Neugebauer’s seminal three-volume History of Ancient Mathematical Astronomy,
which remains the central history of the subject. This publication was followed the
next year in Sources by Gerald Toomer’s transcription, translation (from the
Arabic), and commentary of Diocles on Burning Mirrors. The two series were
eventually amalgamated under a single editorial board led originally by Martin
Klein (d. 2009) and Gerald Toomer, respectively two of the foremost historians of
modern and ancient physical science. The goal of the joint series, as of its two
predecessors, is to publish probing histories and thorough editions of technical
developments in mathematics and physics, broadly construed. Its scope covers all
relevant work from pre-classical antiquity through the last century, ranging from
Babylonian mathematics to the scientific correspondence of H. A. Lorentz. Books
in this series will interest scholars in the history of mathematics and physics,
mathematicians, physicists, engineers, and anyone who seeks to understand the
historical underpinnings of the modern physical sciences.



Venketeswara Pai « K. Ramasubramanian
M.S. Sriram * M.D. Srinivas

Karanapaddhati
of Putumana Somayaji

l_EHEi HINDUSTAN
BOOK AGENCY

@ Springer



Venketeswara Pai K. Ramasubramanian

Department of Humanities Department of Humanities

and Social Sciences and Social Sciences

Indian Institute of Science Indian Institute of Technology Bombay
Education and Research Mumbai, Maharashtra, India

Pune, Maharashtra, India

M.D. Srinivas
M.S. Sriram Centre for Policy Studies
Prof. K.V. Sarma Research Foundation Chennai, Tamil Nadu, India
Chennai, Tamil Nadu, India

This work is a co-publication with Hindustan Book Agency, New Delhi, licensed for sale in
all countries in electronic form, in print form only outside of India. Sold and distributed in
print within India by Hindustan Book Agency, P-19 Green Park Extension, New Delhi
110016, India. ISBN: 978-93-86279-65-1 © Hindustan Book Agency 2018.

ISSN 2196-8810 ISSN 2196-8829 (electronic)
Sources and Studies in the History of Mathematics and Physical Sciences
ISBN 978-981-10-6813-3 ISBN 978-981-10-6814-0 (eBook)

https://doi.org/10.1007/978-981-10-6814-0
Library of Congress Control Number: 2017958823

© Springer Nature Singapore Pte Ltd. 2018 and Hindustan Book Agency 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. part of

Springer Nature.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore


https://doi.org/10.1007/978-981-10-6814-0

Transliteration scheme

The transliteration scheme followed in this book to represent Devanagarty
script is given below.

Table of vowels

F|SM|T|Z|3 ||| F| | [T 3| T[T 3 |am

al|l ali|lt|lulu|r|r|l |e|l ol|ai|au|am| ah

Table of consonants

S| G || 9| | T8 || |A
ka | kha | ga | gha | na | ca | cha | ja | jha | na
| || @ | |d| T || 9T|Hd
ta | tha | da | dha | na | ta | tha | da | dha | na
9/ % || 9 | H

pa | pha | ba | bha | ma
Jg|I X |d | 9 | [ Y| H | 8| D

ya| ma | la | va | Sa | sa| sa | ha| la




Contents

Transliteration scheme......... ... .. ... . . . . . ..

v
Foreword .. ... ... ... XXV
About the Authors ....... ... ... . . xxvii
Introduction ....... ... ... . . . XXix
1 TIE: ARG HAHR Y
Mean planets and the sakabdasamskara . ..................... 1
1.1 Invocation .........c. i 1
1.2 Revolutions of the planets in a mahayuga . .................. 2
1.3 The number of solar, lunar and intercalary months in a
MOARAYUGA .« o oo 4
1.4 The number of omitted ¢ithis and sidereal days .............. 5
1.5 Revolutions of the planets in a kalpa . ...................... 6
1.6 Period elapsed in the present kalpa.............. ... ... ... 7
1.7 Obtaining the number of elapsed years since the beginning of
the present kaliyuga. ........ .. . .. . 8
1.8 Procedure for obtaining the ahargana ...................... 9
1.9 Technique for simplifying the mathematical operations ....... 13
1.10 Obtaining the mean longitudes of planets................... 13
1.11 Sakabdasamskara for mean planets . ........................ 16
1.12 Sakabdasamskara for the number of days elapsed in the
PIESENE YEAT ..ottt e 19
1.13 Obtaining the khandas and the dhruvas .................... 22
1.13.1 Procedure for obtaining the khandas ................. 22
1.13.2 Applying Sakabdasamskara to find the dhruvas ........ 25
1.14 An alternative method for obtaining the khandas and dhruvas . 28
1.15 Speciality in the sakabdasamskara for Rahu ................. 37
1.16 The mean motion of the planets ........................... 38
1.17 Sakabdasamskara for the mean motions. .................... 38



viii

Contents

1.18 Obtaining the hara and the dvitiyahara of a gunakara ........ 42
1.19 Sakabdasamskara for the number of revolutions of the planets . 47
1.20 Relation between the kaksyas of planets .............. ... ... 48
TR ITH
Obtaining smaller gunas and haras .......................... 51
2.1 Definition of the mahagunakaras and mahaharas of the planets 51
2.2 The process of apavartana for obtaining the drdhagunaharas .. 52
2.3 Mean longitudes of the planets from maha-gunakaras and
MAhARATAS . . .o 56
2.4 Kalyadidhruvas of the planets ...... ... ... ... .. .. ... ... 57
2.5 The Vallyupasamhara technique .. ........ ... ... ... ....... 59
2.5.1 Vallyupasamhara: Method I....... ... .. ... ... ... 60
2.5.2  Vallyupasamhara: Method IT . ..... ... .. ... .. ... 64
2.6 Better approximations to the rate of motion: Dvitiya and
trtiya-harakas . . ... 68
2.7 The dvitiya-haraka in terms of the remainders in the mutual
diVISION ..ot 70
2.8 Gunakaras and haras for the difference in rates of motion . . . .. 72
Computation of the khanda, dhruva, etc. of the Moon ....... 75
3.1 The alpa-gunakaras and alpa-harakas of the candra-kendra . ... 75
3.2 Obtaining the khandas and dhruvas for the Moon . ........... 76
3.2.1 Algorithm to determine the khanda .................. 79
3.2.2  Dhruvas at the end of different harakas and khandas ... 84
3.3 Obtaining the kendraphalas ... ...... ... ... . ... ... ....... 85
3.4 An alternative method for obtaining the kendraphalas . ....... 87
3.5 Obtaining the dhruva-samskaraharakas ..................... 88
3.6 Obtaining the khanda using a specific haraka............. ... 90
3.7 A method for finding different khandas .............. ... ... 91
3.8 Obtaining kendraphalas using a special haraka............... 94
3.9 The process of obtaining the multipliers ................. ... 95
3.10 The procedure for obtaining the candravakyas............... 95
3.11 The relationship between the magnitude of haraka and the
proximity to sunrise ......... ... 96
3.12 Obtaining the yogodayantarapranas and yogadhruvas . ... ... .. 97
3.13 General rule for conjunction of planets ..................... 100
PREESIERER
Obtaining the harakas for the planets....................... 101
4.1 The mandakendraharakas of the planets .................... 101
4.2 Obtaining the sighrakendra-harakas of the planets ........... 102
4.3 Obtaining the khandas of the planets....................... 104

4.4 Convention in the choice of haraka.......... ... ... ... ... ... 107



Contents ix

4.5 Procedure for obtaining mandalas and dhruvas given in the

Vakyakarana . ... e 107
4.5.1 Expression for the mandalas and dhruvas ............. 108
4.5.2 Rationale behind the expression for mandala .......... 109
4.5.3 Rationale behind the expression for dhruva ........... 110
4.6 A general prescription for obtaining Sodhyas ................ 112

4.7 Obtaining the instant at which the $ighrocca-grahayoga occurs. 112
4.8 Another method to obtain the instant of the $ighrocca-grahayogall3

4.9 Procedure for obtaining the Sodhyadina..................... 114
4.10 Finding the Sodhyadhruva ........ .. .. ... .. .. ... ... 116
4.11 Another method to obtain the Sodhyadina .................. 117
4.12 Obtaining the maudhyavasana-khandas..................... 119
4.13 Obtaining the harakas mentioned in the Aganita............. 119
4.14 Obtaining the sodhyabdas of the planets .................... 121
4.15 Obtaining the adhimasakhanda .. ........... ... .. ........ 123
4.16 Procedure for obtaining the grahanaharakas................. 125
4.17 Procedure for obtaining the grahanakhandas ................ 126
5 YTOTITQULra

Examination of the revolution numbers etc. ............... 133
5.1 Procedure for correcting the revolutions of the planets in a

kalpa. .. ..o 133
5.2 Obtaining the kalpadidhruvas of the planets................. 134
5.3  Sarkramanadhruva at the beginning of the kalpa........... .. 135
5.4 Corrections to sankramana and graha-dhruvas............... 136
5.5 Eliminating the kalpadidhruvas ........... .. ... ... ....... 138
5.6 Obtaining zero sarikramanadhruva at the beginning of the kalpaldl
5.7 Different measures of kalpa ........ ... ... .. .. . ... 143
5.8 Different divisions of a kalpa ............. .. ... ... ....... 144
5.9 The duration of krta and other yugas ............... ... ... 145
5.10 Time elapsed in the present kalpa.......................... 145

6 ARTIATHIT: AT

Relation between the circumference and the diameter

and computation of Rsines........... ... .. ... ... .. ... .. 147
6.1 The Madhava series. ..........couiiii ... 147
6.1.1 Transformed Madhava series ........................ 148
6.1.2 An algebraic identity ............ .. .. . ... 150
6.1.3 The Putumana Somayaji series...................... 150
6.2 Ratio of the circumference to the diameter.................. 152

6.3 Generation of the tabular Rsines from Rsin 30 and Rsin 45 ...154
6.4 Procedure for obtaining the Rsine and Rcosine of the half of

any desired arc........... 155
6.5 An alternative expression for the Rsine of half the desired arc . 157
6.6 Finding the Rsine and Rcosine of half of the arc from the bana 159



Contents

6.7 Series expansion for the Rsine and Rcosine ................. 160
6.8 Computation of the Rsine and Rcosine values using the
vakyas vidvam etC. .. ... 162
6.9 Obtaining the tabular Rsines from the last and the
penultimate Rsine ........ .. .. . .. . i 166
6.10 Another recursive relation for obtaining the Rsines .......... 168
6.11 Computation of the arc from the corresponding chord .. ...... 169
6.12 Computation of the Rsine value of a small arc............... 170
6.13 Finding the Rsines from a table of arc-sine differences for
small arcs . ... . 172
Obtaining the planetary longitudes ........................ 177
7.1 The circumferences of the manda and $ighra epicycles of the
Planets . ... 177
7.2 Finding the true circumference of the epicycle............... 179
7.3 Obtaining the mandaphalas of the planets .................. 180
7.4 Obtaining the Sighraphalas of the planets ................... 181
7.5 Obtaining the true bhuja and kotiphalas ................... 182
7.6 Application of the manda and the Sighraphalas .............. 184
7.7 Procedure for obtaining the antyaphala.................. ... 185
7.8 Obtaining the expression for the sighraphala in terms of the
antyaphala ... 186
7.8.1 Expression for the Sighrakarna ........... ... ... ... 188
7.8.2 Expression for the sighraphala in case I when the
Sighrakendra is makaradi . ........ ... ... . . . ... 189
7.8.3 Expression for Sighraphala in case I when the
Sighrakendra is karkyadi . ... ... ... . .. 190
7.8.4 Expression for the Sighraphala in case II when the
Sighrakendra is karkyadi .. ... ... .. .. .. 191
7.9 Another method to obtain the Sighraphala ............... ... 193
7.10 An alternate method to obtain the Sighrakarna .............. 195
7.11 Obtaining the circumference of the sighra epicycle ........... 196
7.12 Circumference at the beginning and the end of the odd
quadrant . ... 198
7.13 Obtaining the vyastakarna of the Sun ........ ... ... ... ... 199
7.14 Finding the mean longitudes of the Sun from vyastakarna .. ..201
7.15 Finding the mandakarnas of the Sun and the Moon from
VYASTARATIG . o oo 204
7.16 Finding the true physical distances of the Sun and the Moon
from vyastakarna . ... 205
7.17 Obtaining the masavakyas, sankrantivakyas and naksatravakyas205
7.17.1 The masavakyas. .. ... 206
7.17.2 The sankrantivakyas ........ ... 207

7.17.3 The naksatravakyas . ........ ... .. 208



Contents

7.18

7.19

7.20
7.21
7.22
7.23
7.24

7.25
7.26

The yogyadivakyas: True longitude of the Sun at any instant . .
7.18.1 Obtaining the yogyadivakyas .......................

7.18.2 Finding the true longitude of the Sun from the

YOGYAAIVAKYAS . o« oot
Procedure for obtaining the manda-sphuta ... ..............
7.19.1 Manda-sphuta of exterior planets ...................
7.19.2 Manda-sphuta of interior planets ...................
Obtaining the manda and Sighrakarnas . ...................
Obtaining the karnas when the Rsine of the kendra is zero . . .
Earth-planet distance . ........... ... .. ...
Yojanakarpas (physical distance in yojanas) of the planets . . .
Obtaining the hypotenuse at the heliacal rising and setting . .

7.24.1 Hypotenuse at heliacal rising and setting of the

interior planets. ...... ... .. .. .. i
Latitude of a planet at heliacal rising and setting ...........

Diameter of the orbs of the Sun, Moon and the Earth in

YOJAMUAS v v e e et e e e e e e e

8 BHETIARIIH

Gnomonic shadow

8.1

8.2
8.3
8.4
8.5

8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22

LY

Obtaining the Rsine and Rcosine of the latitude from the

midday shadow ......... .. .. ..
Corrections to the Rsine and Rcosine of the latitude ........
Obtaining mahasanku and chaya at any desired instant. .. ...
Obtaining the bhujakotis of mahacchaya . ............... ...

Expression for the latitude in terms of the declination and

mid-day shadow . ....... ..
Expression for the Rsine of sum/difference of two arcs.......
Another expression for the latitude and co-latitude .........
Obtaining the svadesaharaka . ........... .. ... .. .......
Obtaining the krantijya of Sun and the dyujya .............
Different methods of obtaining pranakalantaras.............
The expression for the ascensional difference or carajya. .. . ..
Alternate expressions for the carajya ........... .. ... ...
Obtaining the declination of the Moon ....................
Obtaining the manyadijyas and the inadijyas ..............
Lambanaharaka and its application .......................
Obtaining the lambanajyas. ....... ... ... i ..
Obtaining the pritariganadi-lambanajyas . ..................
Obtaining the yogiraktadi-lambanajyas .. ..................

Obtaining the dimension of the disc of the planets in minutes

xi

211
211

212
214
214
215
217

.220

221

.223
.224

226
229

232

233

233
235
239
240

242
244
244
247
247
249
252
254
256
262
263
267
272
274

. 276

Obtaining the dimension of the discs of the Sun and the Moon 277
Obtaining the diameter of earth’s shadow on the Moon’s orbit 278

Obtaining the bimbaliptas of the planets . ..................

280



xii

Contents

9 HHATghIHHUH
Ascendent at the meridian transit ......................... 283
9.1 Defining kala-lagna and obtaining the rising times of rasis
therefrom ... ... ... .. . 283
9.2 The longitudes and latitudes of the “junction stars”
commencing with asvint ....... . ... . i i 285
9.3 Obtaining the true declinations of the stars ................. 287
9.4 Obtaining the madhyahnakalalagna ... ..................... 291
9.5 An alternate method for obtaining
the madhyahnakalalagna . .. ... ... 0. . . .. 294
9.6 Yet another method for obtaining the madhyahnakalalagna . . .297
9.7 Obtaining the natakala (RA) and the madhyahnakalalagna . . . . 299
9.8 The time elapsed in the current rasi ....................... 303
10 SdRIGTRNITH
Obtaining the Right Ascension, etc. ....................... 305
10.1 Importance of observations with instruments................ 305
10.2 Obtaining the natakala or the vayukala (RA)........ ... .. ... 306
10.3 An alternate method for obtaining the vayukala ............. 309
10.4 Definition of the natakala........ ... ... ... ... . ... ... 310
10.5 Obtaining the latitude from the vayukala ................... 311
10.6 Obtaining the longitude from the vayukala.................. 312
10.7 An alternative method for obtaining the longitude from the
madhyahnakalalagna ... ... ... 314
10.8 Concluding remarks .......... .. .. . i i 316
Appendices . ... ... 318
A Vallyupasamhara and continued fractions .................... 319
A.1 Simple continued fraction and its convergents ............... 319
A.2 Properties of the convergents............... ... ... .. ... 321
A.3 Remainder theorem of Karanapaddhati ..................... 323
A.4 Some applications of the Remainder theorem................ 325
B Epicycle and eccentric models for manda and $ighra
COorrections .......... .. .. 327
B.1 Equation of centre and the manda-sphuta of planets ......... 327
B.2 Sighraphala and the Sighra-sphuta or the true longitude of
planets . ..o 330
C Alpagunakaras and alpaharakas of the planets ................. 333
D An introduction to the Vakya method of Indian astronomy . 337
D.1 Introduction .......... ... 337
D.2 Vakyas related to the true motion of the Sun................ 339

D.2.1 Vakyakarana method ......... .. ... .. .. .. .. .. .. 339



Contents xiii

D.2.2 Vakyas pertaining to the Sun according to

Karanapaddhati ... 341
D.3 Obtaining masavakyas, sankrantivakyas and

naksatravakyas . ... ... 343
D.3.1 The Masavakyas ...........c..cuuiiuiiiiieinnen. .. 344
D.3.2 The Sankrantivakyas . ............ccoiiiiiniii.. 346
D.3.3 The Naksatravakyas ............c.cooieuiiiinnon. 347
D.4 The Yogyadivakyas ...........c.cooieiiiiiiniininnnn. 347

D.4.1 Finding the true longitude of the Sun from the
YOGYAATVAKYAS . . o oo 351
D.4.2 Some observations . .............. i 351
D.5 Vakya method of finding the longitude of the Moon .......... 352
D.6 Vakya method for finding the true longitudes of the planets . .. 358
D.6.1 Mandalas, dhruvas and Sodhyas ..................... 359
E The candravakyas of Vararuci and Madhava ................. 365
E.1 Computing the candravakyas of Vararuci and Madhava . ... ... 365
E.2 Error correction procedure for candravakyas................. 367
E.3 Rationale behind the vakyasodhana procedure ............... 373
E.3.1 Vararucivakyas........ .. . .. . i 373
E.3.2 Madhava-vakyas. ........ ... . i 374
E.3.3 Explanation of the vakyasodhana expression for d; .. ... 374
E.4 Table of candravakyas of Vararuci and Madhava ............. 378
E.5 Table of computed candravakyas............ ... .. ... ... 389
F Literal meanings of selected vakyas ........................ 395
G The Mandalas and dhruvas of the planets ................. ... 399
H The gunakaras and harakas of the Aganita system............. 405
GloSSary . .. oo 409
Bibliography . ... .. 425
Index . ... oo 433



List of Figures

1.1

1.2

1.3

6.1

6.2

7.1
7.2

7.3

7.4

7.5
7.6
7.7

7.8
7.9a

7.9b
7.10

Difference between the ahargana and the khanda (obtained
using Method II) for aharganas between 1600000 to 1800000. .. 36
Difference between the ahargana and the khanda (obtained

using Method I) for aharganas between 1600000 to 1800000. ... 36
Difference between the ahargana and the khanda (using both
Methods I, II) for aharganas ranging from 10° to 2.5 x 106. .. .. 37

Graph depicting the convergence of the Madhava series and
its transformed versions. ........ .. .. i 152
The expression for the Rsine and Rcosine of half the desired arc.156

Bana, when the kendra is makaradi (a), and karkayadi (b). ....184
Obtaining the $ighraphala when the sighrakendra is makaradi

with

[RCOSOsk] > T v oo 188
Obtaining the Sighraphala when the Sighrakendra is karkyadi

with

[RCOSOsk| > T v ov e 191
Obtaining the Sighraphala when the Sighrakendra is karkyadi

with

[RCOSOgk] < T oo 192
Alternate method for obtaining the Sighraphala. .............. 194
Obtaining the circumference of the sighra epicycle. ........... 197
Determination of the viparitakarna when the kendra is in (a)

the first quadrant and (b) the third quadrant................. 200
Obtaining the madhyama (the mean position) from the sphuta

(the true position). ........ ... 202
Obtaining the mandakarna. ......... ... ... o i .. 218
Obtaining the Sighrakarna. ......... ... .. . . ... ... 219
Obtaining the distance of the planets from the centre of the
celestial sphere (earth). ....... ... ... ... i 222

XV



xXvi

7.11

7.12

7.13
7.14
7.15

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

8.13

8.14
8.15
8.16
8.17
8.18
8.19
8.20

9.1
9.2

9.3
9.4

9.5
9.6

9.7

10.1

List of Figures

Obtaining the karna of exterior planets at heliacal rising and
setting. . ... 226
Obtaining the karna at heliacal rising and setting of the

interior planets. . ........ . .. 228
Latitude of the Moon. ...... .. .. .. .. .. . . i i 230
Heliocentric latitude of a planet. .......... ... ... ... ... ... 230
Obtaining the geocentric latitude of a planet from its

heliocentric latitude. . ....... ... ... .. . . 231

Determination of the latitude from the equinoctial shadow of

the Sanku. ... ... 235
Correction due to the finite size of the Sun. ............ ... ... 237
Correction due to parallax. ........ ... .. ... ... . . ... 238
The mahasariku and the mahacchaya. ....................... 240
Obtaining the bhuja and koti of mahacchaya.................. 241
Latitude in terms of the declination and zenith distance. ...... 243
The zenith distance of the Sun during meridian transit. ....... 243
Another method to obtain the latitude. .................. ... 245
Obtaining the krantijya of Sun in terms of the longitude. ...... 248
Determination of pranakalantara. ............. .. .. .. .. .... 250
Ascessional difference when the Sun is on the equator. ........ 252
Ascessional difference when the declination of the Sun is

northerly. ... .. 253
Ascensional difference when the declination of the Sun is
southerly. ... ... 254
Determination of the viksepacalanajya and paramakrantijya. . ..257
Horizontal parallax.......... ... ... i i 266
Obtaining the parallax of a celestial body. ................... 268
Obtaining the lambanottha-caramaphala. ... ........... ... ... 269
Obtaining the lambanajya. . ....... .. ... ... . i . 271
Dimension of the disc of the planets. .......... ... ... ... ... 277
Determination of the angular diameter of the Earth’s shadow. . . 279
Determination of the kalalagna. ......... ... .. ... ... .... 284
Finding the declination of a celestial object with a non-zero
latitude.. ... o 290
Determination of the madhyahnakalalagna. .............. ... 292
The relation between declination, true longitude, latitude and

R A 293
Obtaining the madhyahnakalalagna................ ... ... ... 295
Obtaining the madhyahnakalalagna from the declinations of

two celestial objects whose longitudinal difference is 90°. ...... 298
Obtaining the natakala and the madhyahnakalalagna. .. ....... 301

Obtaining the natakala (R.A.) from the Saniku and chaya. . . . . .. 307



List of Figures xvii

10.2
10.3
10.4

B.1

B.2

D.1

Obtaining the vayukala (R.A.) from the Sarku and chaya. ... .. 308
Obtaining the Rsine of the latitude from the R.A. ............ 312
Obtaining the true longitude from the madhyahnakalalagna. . ..315

Obtaining the manda-sphuta in the epicycle and eccentric
circle models. ... ... . . 328
Obtaining the $ighra-sphuta in the epicycle and eccentric models.331

Schematic sketch of an exterior planet being in conjunction
with its Sighrocca along the direction of its mandocca. ......... 360



List of Tables

1.1
1.2
1.5
1.6
1.7
1.8
1.9

1.10

1.11
1.12
1.13
1.14
1.15

1.16
1.17
1.18
1.19

1.20
1.21
1.22
1.23
1.24

2.1

2.2

Revolutions made by the planets in a mahayuga. ............. 3
The number of revolutions of the planets in a kalpa. .......... 7
Mean longitudes corresponding to A = 1754000. .............. 16
Sakabdagunaharas of the planets. ........................... 18
Sakabdasamskaras for different planets for y, = 1623........... 19

Sakabda corrected mean longitudes of the planets for y, = 1623. 19
Sakabdasamskaras corresponding to the number of solar days

elapsed in the current year for ahargana A = 1754000. ........ 21
Sakabda corrected mean longitudes of the planets for the

ahargana A = 1754000. . . . ..o 22
The uncorrected khandantyadhruvas of the planets. ........... 25
Sakabdasamskara for the dhruvas of the planets. .............. 27
Dhruvas corresponding to the khanda K = 1752092. .......... 28
Dhruvas corresponding to the khanda K = 1848664. .......... 29
Dhruvas of the planets corresponding to the khanda

K = 1755192, .« 35
The mean motion of the planets. ........................... 39
Samskaras to be applied to the mean motion of planets. ....... 40
The corrected mean motion of planets. ...................... 41
The corrected mean motion of planets given in the

Commentary I in the form of vakyas............ ... ... ... ... 41
The first and second harakas of the planets for x = 100. ....... 45
The first and second harakas of the planets for x = 1. ......... 46
The first and second harakas of the planets for x =50. ........ 46
Corrected and uncorrected revolutions of planets in a mahayuga. 48
The kaksyas of planets.......... ... i 49
The mahagunakaras and mahaharas of planets given in
Commentary I (see {KP 1956}, pp. 61-62). .................. 53
The drdhagunakaras and the drdhaharas of planets. ........... 95

Xix



XX

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

3.1

3.2

3.3
3.4

4.1
4.2
4.3

4.4
4.5
4.6

4.7
4.8

4.9

5.1

6.1

List of Tables

Vakyas for the drdhagunakaras and the drdhaharas (see Table

2.2) as given in the Commentary I. .......... ... ... ... ... 59
Mean longitudes of the planets corresponding to A = 1754000
computed using the mahagunakaras and mahaharas. .......... 57
Kalyadidhruvas of the planets. ......... .. .. .. .. ... ... ... 60
Vallyupasamhara: Method 1. ... ... .. . .o . .. 62
Arrangement of successive quotients (valliphalas) in the

second method of vallyupasamhara. ......................... 65
Generating the alpagunakaras and alpaharakas using the

second method of vallyupasamhara. ......................... 66
Pairs of alpagunakaras and alpaharakas obtained using the

second method of vallyupasamhara. ........... ... .. ... ... 67
Generating the alpagunakaras and alpaharakas using the

second method of vallyupasamhara for the haraka H = 210389

and gunakara G = 576 associated with Sun................... 67
The alpagunakaras and alpaharakas of Sun. .................. 68
The dvitiya- and trtiya-haras for Moon, with the corresponding

rates of motion and errors. ............. ... 72
The dvitiya- and trtiya-haras for Venus, with the corresponding

rates of motion and errors. ............ . .. 72

The gunakaras and harakas corresponding to the Moon’s

anomaly. ... ... 7
The kendrabhuktis corresponding to different kendraharakas

and their deviation from complete revolution. ................ 78
The dhruvas corresponding to different kendraharakas. . ....... 86
The yogodayantara-pranas corresponding to different harakas

for the khanda K = 1851951, .. ..o\ ue e 99

The Sighrakendra-gunakaras and Sighrakendra-harakas of Saturn.103
The sighrakendragunkaras and Sighrakendraharakas of Mars. . ..104
The $ighrakendra-gunakaras and Sighrakendra-harakas of

Mercury. . ... 104
The $ighrakendra-gunakaras and sighrakendra-harakas of Jupiter.105
The Sighrakendra-gunakaras and Sighrakendra-harakas of Venus. 105
The gunakaras and harakas for the revolutions made by the

planets in a solar year. ......... ... . i i 120
The gunakaras and the harakas for the adhimasakhanda.. . ... .. 125
The Drgganita parameters used in the computation of

grahanaharakas. . ... 126
The grahanaharakas. . ...... . .. . . . . 127

The number of years in the four yugas constituting a mahayuga. 145

31415926536 153

Successive approximations for the ratio 35555050600 -



List of Tables xxi

6.2

6.3
6.4

6.5

6.6
6.7
6.8

7.1
7.2
7.3

7.4

7.5
7.6

7.7

7.8
7.9

8.1

8.2
8.3

9.1
9.2

C.1
C.2
C.3
C4
C.5
C.6
C.r
C.8

The scheme for obtaining the twenty-four tabular Rsines from
a set of two values (Jg and Jy2) along with trijya. ............ 158
Odd and even terms for generating the cosine and sine series. .. 162
Comparing the values encoded by the vakyas, vidvan etc., with

the computed values. ....... .. .. . .. i 163
Comparing the values encoded by the vakyas, stena etc., with

the computed values. ....... ... .. i 166
The successive approximations for §6 in terms of sindf. ....... 171
The values of ¢, and j, given by (6.57) and (6.58). ........... 174

Vakyas for jyas along with the accurate values of jya and capa
such that jyacapantara is exactly n seconds. See {KP 1956},
p. 200, and {TS 1958}, pp. 30-31. ...t 175

The dimensions of the manda and $ighra epicycles of the planets.178

Successive approximations for 2700XR 270 ................... 186

The masavakyas given in the Commentary I and the computed

values of d;. ... o 207
The sankrantivakyas in the Commentary II and the computed
values. ... 208
Number of civil days elapsed at each naksatra-sankramna. .. ... 209
The naksatra-sanikrantivakyas given in both the Commentaries

and the computed values......... ... ... ... ... . .. . .. . ... 210
The 48 yogyadivakyas mentioned in the Commentary I along

with the computed values in parentheses. .................... 213
The maudhyamsas of the planets and their Rsines and Rcosines. 225
The maximum latitudes of planets. ........... ... ... ... ... 232

The inadijyas given in the commentary and the computed

values. ... 264
The Pritaniganadi-lambanajyas given in the commentary. ... ... 273
The Yogiraktadilambanajyas. .. ... .. 276
Twice the longitudes of the “junction stars” in the 27 naksatras. 287
The latitudes of the “junction stars” in the 27 naksatras. . ... .. 288
The alpagunakaras and alpaharakas of Moon.................. 333
The alpagunakaras and alpaharakas of Moon’s apogee.......... 333
The alpagunakaras and alpaharakas of Mars. ................. 334
The alpagunakaras and alpaharakas of Mercury. .............. 334
The alpagunakaras and alpaharakas of Jupiter. ............... 334
The alpagunakaras and alpaharakas of Venus. ................ 335
The alpagunakaras and alpaharakas of Saturn................. 335
The alpagunakaras and alpaharakas of Moon’s node. .......... 335



xxii

D.1

D.2

D.3

D.4

D.5

D.6
D.7

D.8
D.9
D.10
D.11
D.12

D.13
E.1
E.2
F.1
F.2
F.3
F.A4
F.5
G.1
G.2
G.3
G4

G.5
G.6

List of Tables

Deductive minutes for finding the true Sun for some specified

number of days. .. ... 340
Vakyas giving the instants of entry of the Sun into different
zodiacal Signs. . ... .. 341

The wvakyas given in the Commentary II for the mean
longitudes of the Sun at sankramanas, compared with the

computed values. ... ... 344
The masavakyas given in the Commentary I compared with

the computed values of d;. . ....... .. i i 345
The sankrantivakyas in the Commentary II and the computed
values. ... 346
Number of civil days elapsed at each Naksatra-sankramana. . . .. 348
The naksatra-sankrantivakyas given in both the Commentaries

and the computed values............ ... ... ... .. ... ... ... 349
The 48 yogyadivakyas mentioned in the Commentary I along

with the computed values in parentheses. .................... 350
The khandas for Moon given in different texts. ............... 353
The dhruvas as given in Vakyakarana........................ 354
The Sodhyas and corresponding dhruvas for different planets

as given in Vakyakarana ({VK 1962}, p. 30).. ...t 360
The mandalas and corresponding dhruvas for Mars as given in
Vakyakarana ({VK 1962}, p. 51).......ooiii 362
Computed values of mandalas and dhruvas of Mars............ 363
The candravakyas of Vararuci and Madhava. ................. 388
Comparison of candravakyas of Madhava with the computed
values. ... 394
Vakyas presenting the revolutions made by the planets in a
mahayuga. (Refer Table 1.1) ....... ... ... . o . i ... 395
Vakyas presenting the corrected mean motion of planets.

(Refer Table 1.19) ... ..ot 396
Vakyas used in computing the instance of entry of the Sun

into different zodiacal signs. (Refer Table D.2) ............... 396
Vakyas presenting the mean longitude of the Sun at the

zodiacal transits of the true Sun. (Refer Table D.3) ........... 397
Vakyas used in computing the longitude of the Sun at any

given instance. (Refer Table D.8) ....... ... ...t 398
The mandalas and dhruvas of Mars. .......... ... .. ... ... 399
The mandalas and dhruvas of Mercury....................... 400
The mandalas and dhruvas of Jupiter........................ 400
The mandalas and dhruvas of Venus. .. ...................... 400
The mandalas and dhruvas of Saturn. .................... ... 401
Computed values of the mandalas and dhruvas of Mars. ....... 401



List of Tables

xxiii

G.7 Computed values of the mandalas and dhruvas of Mercury. .. ..402
G.8 Computed values of the mandalas and dhruvas of Jupiter. .. ... 402
G.9 Computed values of the mandalas and dhruvas of Venus. ...... 403
G.10 Computed values of the mandalas and dhruvas of Saturn....... 403
H.1 The aganita-harakas of Mars. ...... .. .. ... .. .. o it 405
H.2 The aganita-harakas of Mercury. ...... ... ... .. .. ... .... 405
H.3 The aganita-harakas of Jupiter. ........ .. ... .. ... ... ... 406
H.4 The aganita-harakas of Venus. ....... ... .. .. .. ... ... ... 406
H.5 The aganita-harakas of Saturn. ..... ... ... ... ... .. ... ... 406
H.6 Computed values of the aganita-gunakaras and aganita-harakas

Of VAT, . oot 406
H.7 Computed values of the aganita-gunakaras and aganita-harakas

of Mercury. .. ..o 407
H.8 Computed values of the aganita-gunakaras and aganita-harakas

of Jupiter. ... . 407
H.9 Computed values of the aganita-gunakaras and aganita-harakas

of Venus. . ... 407

H.10 Computed values of the aganita-gunakaras and aganita-harakas
of Saturn. . ... 407



Foreword

In 1790, a little more than a century after the publication of Isaac New-
ton’s Principia, the Scottish mathematician John Playfair wrote a fascinating
paper on The astronomy of the Brahmins in the Transactions of the Royal
Society of Edinburgh. He was astonished at the consistently high accuracy of
Indian predictions of planetary and sun / moon positions and solar / lunar
eclipses, and at how competitive these predictions were with what had just
been achieved in Europe. And he wondered how Indians could achieve such
high precision with the very simple but elegant rules and tables that they
had invented for making their calculations — ‘with wonderful certainty and
expedition’ (but apparently without the aid of any ‘principles’), he wrote.
Now classical Indian astronomical literature has various siddhantas which for-
mulate algorithms based on observations of planetary motions. Although the
implied models were effectively geocentric, Aryabhata had already proposed
that the earth rotates around its axis and Nilakantha considered that the
inner planets moved around the sun but their little inner solar system still
revolved around the earth. While such views of planetary motion continued
to be discussed, the panchangakaras (calendar-makers) sought the simplest
possible ‘rules’ that would give results very close to those of the siddhantic
calculations / algorithms. The books that describe these rules were known
as karanas. However, how the rules in the karana texts were discovered or
derived — especially as no ‘principles’ were stated — was a matter of mystery
to scholars like Playfair and his French counterparts.

The present book, called Karana-paddhati (KP), is not chiefly about the
algorithms themselves; rather it is about the procedure by which the simple but
extraordinarily accurate rules that the panchangakara could use were derived
and constructed. If the karanas and the formulae and tables they gave could be
called ‘Astronomical Calculations Made Easy’, Karana-paddhati considers how
simple but accurate rules for astronomical algorithms and calculations could
be derived. The authors of this book have produced a scholarly work on the
Karana-paddhati of Putumana Somayaji. His date is not precisely known, and
proposals have varied from the 15" century to the 18*". The authors make a
convincing case that Putamana worked in the 16" century, and suggest that
he was a junior contemporary of Nilakantha. KP itself never mentions the
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name of its author: both the author’s identity and his date have to be inferred
from what Putumana says elsewhere and what others have said about his
book.

As is generally the case in Sanskrit astronomy KP also describes algorithms
in poetry, using the katapayadi system for referring to numbers. Here the
numbers are so coded that they can be written in words which can in turn
be strung into lines of poetry forming complete sentences. This Vakya system
(as it is called) produced not only ingenious mathematics, but also presented
longitudes and various other parameters coded in the form of meaningful
sentences, and sometimes even in the form of poetry — generally in praise or
support of wisdom and morality. This seems to have been a popular method of
exposition particularly in South India. KP thus provides a derivation of each
approximation it proposes, many of them ingenious and original, using various
different metres (including some rare ones) for composing the $lokas. One of
the remarkable results that KP has is a new series for m where successive
terms a,, — 0 like n™* as n — oco. Interestingly KP realizes that there might
still be errors in the work, or that errors might develop over time (as indeed
they did in the siddhantic algorithms themselves). KP therefore emphasizes
the need for correcting them with the aid of continual observation. Clearly
therefore KP is about deriving and constantly improving rules from siddhantic
algorithms and from observations.

The publication of this work is an important event, because it answers the
questions that have puzzled many scholars about the mathematics and the
algorithms that lay behind those surprisingly accurate Indian calculations.
All this was achieved without the use of anything like Newton’s laws but with
careful observations over centuries, discerning cycles and other patterns in
the data, and discovery of algorithms which could describe those observations
and therefore also enable predictions. It is clear that this book now before the
reading public is a great work of scholarship, and has been a labour of love for
the authors — who incidentally provide every $loka in Devanagari, an English
transliteration and an English translation, all followed by very interesting
commentary. The greatest contribution of this book would, in my view, be
the light it sheds on the unique way that ancient Indic astronomers thought
and acted. They followed Bhartrhari’s dictum that there are constraints only
on the end results (upeya), but none on the means (upaya) of arriving there;
and achieved successes that, till the early 19" century, excited the puzzled —
even bewildered — wonder of astronomers like Playfair elsewhere in the world.

All those interested in the history of Indic astronomy must be grateful
to the authors of this work for the big step they have taken in revealing
Karana-paddhati’s secrets. My warm congratulations to Dr V Pai, Prof K Ra-
masubramanian, Prof M S Sriram and Prof M D Srinivas.

Roddam Narasimha
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Introduction

Traditionally, the texts of Indian astronomy have been classed under the heads
of siddhanta and karana.! Of these, the siddhanta texts start with an ancient
date for the epoch and present in detail the theoretical framework apart from
giving the computational procedures for calculating the planetary positions,
occurrence of eclipses, etc. The Suryasiddhanta, the Brahmapshutasiddhanta
of Brahmagupta and the Siddhantasiromani of Bhaskaracarya II are well-
known examples of siddhanta texts. The karana texts are essentially manuals
in that they choose an epoch close to the date of composition of the text, and
display their ingenuity in coming up with simplified algorithms for computing
the planetary positions etc., to a desired level of accuracy. Many a times,
they even dispense with the use of jyas (Rsines) and other functions, and
instead limit themselves to the use of tables or approximate formulae. The
Khandakhadyaka of Brahmagupta, Laghumanasa of Munjala, Karanakutuhala
of Bhaskaracarya Il and Drgganita of Paramesvara are well known examples
of karana texts.

Karanapaddhati: A unique text in the vakya tradition of
Indian astronomy

The Karanapaddhati of Putumana Somayaji is a special text in that it does not
come under the categories mentioned above. More crucially, it is not a karana
text. As the author declares right at the beginning of the text (Chapter 1,

! Subbarayappa and Sarma 1985, pp. 2-3. The general convention seems to be that a
siddhanta text should choose the beginning of the current kalpa or an earlier date for its
epoch. If the text employs the beginning of current caturyuga or the current kaliyuga as its
epoch, then it is sometimes referred to as a tantra. Also, usually such tantra texts do not
offer any explanations for the computational procedures, but present the algorithms for
doing the computations in detail. The Sisyadhivrddhida of Lalla and the Tantrasarigraha
of Nilakantha Somayaji are well known texts of the tantra category.
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verse 2), he is expounding on the paddhati or procedure for preparing an
accurate karana text for any given epoch. As explained by K. V. Sarma:?

The Karanapaddhati ... is not a manual prescribing computations; rather it enun-
ciates the rationale behind such manuals. Towards the beginning of the work, the
author states that he composed the book to teach how the several multipliers,
divisors, and Rsines pertaining to the different computations and the like are to
be derived. Thus, the work is addressed not to the almanac maker but to the man-
ual maker. All the topics necessary to make the daily almanac are not treated in
Karanapaddhati, whereas several other items not pertaining to manuals are dealt
with.

Another important feature of Karanapaddhati is that it deals with the com-
putational procedures which are employed in a karana text following the so
called vakya system. The term vakya literally means a sentence consisting of
one or more words. In the context of astronomy, it refers to a phrase or a
string of letters in which the numerical values associated with various phys-
ical quantities are encoded. The wakyas are composed using the katapayadi
scheme,? which is one of the commonly employed systems to represent num-
bers in South-Indian texts.The strings used in composing vakyas are chosen so
that they not only represent numerical values, but form beautiful meaningful
sentences that convey worldly wisdom and moral values.

The wvakya method of finding the true longitudes of the planets is quite
different from the methods outlined in the various siddhantas. As per the
siddhantas, we first find the mean longitudes of the planets and then apply
a series of corrections (samskaras) to get their true positions.* On the other
hand, the vakya method, by making use of certain vakyas—meaningful sen-
tences composed in Sanskrit, which when decoded using katapayadi system
yield certain numbers—directly gives the true longitudes of the planets at
certain intervals. The direct calculation of true longitudes involves making
use of auxiliary epochs (khandas, Sodhyadinas), chosen to be close to the de-
sired date, and specified longitude values (dhruvas) which represent either
the true longitude at the chosen epoch or the amounts of change in the true
longitude over chosen periods (mandalas). These khandas, Sodhyadinas and
mandalas are chosen appropriately depending on the mean rates of motion
of the planet, its mandocca, Sighrocca etc. Since the vakya method provides a
simple and elegant method for computing the true longitudes without resort-
ing to the normal procedure of calculating various corrections involving sine
functions etc., it became very popular in South India where it seems to have
originated.’

2 Sarma 2008, p. 1837.
3 For a brief explanation on the katapayadi system, see Section 1.2.

4 The mandasamskara is to be applied in the case of the Sun and the Moon, whereas the
mandasamskara and the Sighrasamskara are to be applied in the case of the other five
planets. These are explained in Appendix B.

5 A detailed introduction to the vakya system is presented in Appendices D, E. For
further details on the vakya system see {CV 1948}, {VK 1962}, {SC 1973}, Hari 2001,
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Ancient Indian astronomers were aware of the various kinds of periodicities
in the motions of celestial bodies. One such periodicity is the 248-day cycle
during which the Moon’s anomaly completes nearly 9 revolutions.® Precisely
this cycle was used in India, from early times, to find the true longitudes of the
Moon at the sunrise for each day of the cycle and express them in the form of
vakyas. These are the 248 Vararuci-vakyas which are attributed to Vararuci,
who is also credited with the invention of the katapayadi scheme of notation.
He probably hailed from Kerala sometime prior to the 4th century CE.

The canonical text of the Parahita system, the Grahacaranibandhana of
Haridatta, the famous seventh century astronomer from Kerala, introduces
vakyas for the manda and $ighra corrections. A fully developed vakya sys-
tem is outlined in the famous karana text of 13th century, the Vakyakarana,
which gives methods for directly computing the true longitudes of the Sun, the
Moon and the planets by using vakyas. Manuscripts of the work are available
in various manuscript libraries of South India, especially Tamilnadu. Kup-
panna Sastri and K. V. Sarma estimate that it was composed between 1282
and 1316 CE. The author of this work is not known, but probably hailed
from the Tamil speaking region of South India. It has a commentary called
Laghuprakasika by Sundararaja who hailed from Kanci near Chennai. The
work is based on Mahabhaskariya and Laghubhaskariya of Bhaskara I belong-
ing to the Aryabhata School, and the Parahita system of Haridatta.

Madhava of Sangamagrama (c. 1360-1420), the legendary founder of the
Kerala School of Astronomy, composed two works, Venvaroha and Sphutacan-
drapti, which discuss the vakya method for computing the true longitude of the
Moon, which shows the maximum variation in the course of a day. Madhava
composed a more accurate set of 248 wvakyas, which give the true longitudes
correct to a second, and also presented an ingenious method by which the
these vakyas can be used to determine the true longitudes of the Moon at
nine instants during the course of a day, thereby reducing the error in calcu-
lating the true longitude at any instant using interpolation. Madhava was also
the originator of the aganita system of computation of planetary positions.
The Aganitagrahacara of Madhava is yet to be edited, though manuscripts of
this work are available.

The Vakyakarana and the above works of Madhava only present the lists of
vakyas and the computational procedures for obtaining the longitudes of the
planets using these vakyas. It is the Karanapaddhati of Putumana Somayajt
which explains the rationale behind them. In particular, it explains in detail
the procedures for arriving at suitable khandas and Sodhyadinas close to any
epoch, as also the appropriate mandalas, dhruvas etc., which have been used
in texts such as the Vakyakarana and the Aganitagrahacara. It is only in
Karanapaddhati that we find a detailed discussion of the procedure for arriving

2003, Madhavan 2012, Pai 2011, 2013, Pai et al 2009, 2015, 2016, Sastri 1989, Sriram
2014, Sriram and Pai 2012.

5 This cycle has also been noticed by the Babylonians and the Greeks (Jones 1983).
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at an accurate set of vakyas for the Sun, Moon and the planets, for any suitable
epoch.

Karanapaddhati extensively employs the method of vallyupasamhara, which
is essentially the technique of continued fraction expansion of a ratio of two
large numbers. The second chapter of the text is devoted to a detailed discus-
sion of the vallyupasamhara method, which summarises many of the important
properties of the convergents of a continued fraction. This includes the well-
known relation between successive convergents and an interesting relation
(which we refer to as the remainder theorem) involving the convergents and
the remainders obtained in the mutual division of two numbers. The conver-
gents are of course used to arrive at optimal approximations to the rates of
motions of planets and their anomalies. The remainder theorem and other
properties of the convergents are used to arrive at ingenious algorithms for
obtaining khandas, sodhyadinas, etc.

In short, the purpose served by Karanapaddhati” may be stated as:

TR Fegfel: |
karanakarane paddhatih

[Outlining] the procedure for composing karana [texts].

Putumana Somayaji: The author

The author does not give any information about himself in Karanapaddhati
except for the following brief mention at the end of the text (verse 10.12).

i Brag=arTamsT: Sisfy g=ar..

iti Sivapuranamagramajah ko’pi yajva ...

Thus someone hailing from the village by name Sivapura, and who has performed
sacrifices (yajva)...

Unfortunately he stops with this and does not provide his name, or lineage,
etc. However Putumana (new-house), the name of his house (illam-peru in
Malayalam) appears in the introduction of one of the commentaries of Karana-
paddhati:®

[T ATARIAT AT FROTIEA ST |
7T fafesate Sierd sTemT srumTdTedtmm ||

“nutanagrha” somasuta racitayah karanapaddhatervidusa |
bhasam wvilikhati kascit balanam bodhanarthamalpadhiyam ||

7 The word Karanapaddhati can be derived as: karane paddhatih karanapaddhatih; sap-
tamyah visayatvamarthah; visayatvam ca karanaparam.

8 [KP 1956}, p. xxv.



Introduction xxxiii

For the benefit of those who are novices to the field, and those who are dull-witted,
here is an attempt by someone to explain in the local language (Malayalam) the
[content of] Karanapaddhati, written by the [great] scholar Somayaji belonging to
nutanagrha (Putumana).

In yet another work, Jatakadesamarga, a highly popular work on astrology,
Putumana Somayaji does refer to his house-name as also the title Somayajt.”

TATSTIARST SIHAT AT |
el TROT BlAg QTS |

navalayavanakhyena dhimata somayajina |
krtam prakaranam hyetad daivajnajanatustaye ||

This short treatise (prakarana) has been composed by the stalwart known as Pu-
tumana (navalayavana) Somayajl in order to please the community of astrologers.

As regards Sivapura, we may cite the following points made by S.K.Nayar:'°

The term Sivapura is generally taken to refer to modern Trichur (Tr—é—Sivapura).
But unfortunately Namputiri brahmins of the latter village are not privileged to
perform sacrifices on account of a curse or royal degradation and hence a native
of this village cannot become ‘Somayajis’(sic). There is, however, a neighbouring
village Covvaram (Sukapuram) which is also Sanskritised as Slvapuram and it may
be taken that our author belonged to this Slvapura where even today there is a
house named Putumana whose members are traditional astronomers.

Thus, all that we know about Putumana Somayaji is that he is reputed to
have performed Somayaga and that his house bore the title Putumana. This
is perhaps a unique case of a famous Indian astronomer, whose actual name
is not found mentioned anywhere either in his works or in the commentaries.

Works of Putumana Somayaji

Putumana Somayaji seems to have authored several works, not only on as-
tronomy, but also on astrology and dharmasastra. Unfortunately, apart from
Karanapaddhati, none of his other works have been published, except for the
very popular work on astrology, Jatakadesamarga.'* Works of Putumana So-
mayajl are identified by the notings on their manuscripts by the scribes and
often also by the presence of the following “signature verse” which is the
starting invocatory verse in Karanapaddhati (verse 1.1):

9 {KP 1956}, p. xxii and Pingree 1981, p. 208.

10 {KP 1956}, p. xxv. Based on this information, an attempt was made a few years ago
by the authors of the present volume to identify this house of Putumana Somayaj1 in
Covvaram. Unfortunately the efforts did not turn to be successful. Given the fact that
Nayar was writing sixty years ago, and the fact that not much importance has been/is
being given to maintain such heritage sites, it is not clear whether future efforts may
yield any success in locating the illam “Putumana” of the author.

1 LJAM, 1930}, {JAM, 1942}, {JAM 1962}, {JAM, 1971}.
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TEIAE TR e~ % |
Fd TP ERTSOT: ||

madiyahrdayakase cidanandamayo guruh |
udetu satatam samyagajiianatimirarunal ||

May the guru, an embodiment of intelligence and bliss keep ever rising in the space
of my heart, like the Sun dispelling the darkness of ignorance.

The following passage cited from an article of K. V. Sarma gives a succinct
summary of the works of Putumana Somayaji other than Karanapaddhati:*>

Somayaji was a profile writer, mainly on astronomy and astrology, his only work
in a different discipline being Bahvrcaprayascitta, a treatise which prescribes expi-
ations (prayascitta), for lapses in the performance of rites and rituals by Bahvrca
(Rgvedic) Brahmins of Kerala. In addition to his major work, Somayaji is the
author of several other works. In Parnica-bodha (Treatise on the Five), he briefly
sets out computations at the times of Vyatipata (an unsavory occasion), Gra-
hana (eclipse), Chaya (Measurements based on the gnomonic shadow), Sriigonnati
(Elongation of the moon’s horns), and Maudhya (Retrograde motion of the plan-
ets), all of which are required for religious observances. His Nyayaratna (Gems of
Rationale), available in two slightly different versions, depicts the rationale of eight
astronomical entities: true planet, declination, gnomonic shadow, reverse shadow,
eclipse, elongation of the moon’s horns, retrograde motion of the planets, and Vy-
atipata. Three short tracts on the computation of eclipses, including a Grahanastaka
(Octad on Eclipses), are ascribed to Somayaji. He also composed a work called
Venvarohastaka (Octad of the Ascent on the Bamboo), which prescribes methods
for the computation of the accurate longitudes of the moon at very short intervals.
A commentary in the Malayalam language on the Laghumanasa of Munjala is also
ascribed to him. On horoscopy, Somayaji wrote a Jatakadesamarga (methods of
making predictions on the basis of birth charts), which is very popular in Kerala.

The time of composition of Karanapaddhati

Karanapaddhati is among the four works that were mentioned in the famous
1834 article of Charles M. Whish on the Kerala School of astronomy.'? In this
article, having given an account of some of the infinite series given in Chapter 6
of Karanapaddhati, Whish mentions that the grandson of the author “is now
alive in his seventieth year.” Whish also makes reference to the last verse of
Karanapaddhati as containing a chronogram giving the kali-ahargana of the
date of composition of the text. The second half of this verse (verse 10.12)
reads

AR TSR I
Hidfe foed: d=g dvdraa-: |

12 Sarma 2008, pp. 1836-7.

13 Tantrasangraha, Yuktibhasa and Sadratnamala are the other three works mentioned
in this article (Whish 1834).
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vyadhitaganitametat samyagalokya santah
kathitamiha vidantah santu santosavantah |

By assiduously going through this mathematical work and understanding whatever
has been set out here, may the noble ones become happy.

According to Whish:'4

The last verse [of Karanapaddhati] ...contains its date in numerical letters in terms
of the days of the caliyuga ..The words Ganita Metutsamyac, written in numbers
amounts to 1765653 in terms of the days of the present age; which is found to agree
with AD 1733.

Though the above chronogram is somewhat unusual, in that it is embedded
in the middle of a pada of the verse, it has been accepted by many scholars,
including K. V. Sarma,'® as giving the date of composition of Karanapaddhati.
According to Sarma, Putumana Somayaji could have been born around 1660
and might have been active till 1740. In any case, the two published Malay-
alam commentaries on Karanapaddhati employ dates around 1749-52 for the
khandadinas, and thus set an upper limit to the date of Karanapaddhati.*®

S. K. Nayar has cited the following verse of Purusottama in a commentary
of an astrological work called Prasnayana to argue that Putumana Somayajt
should have lived around 1700 CE:!”

HARUAT SIS [OTTosd 38 F: TP ARTar
oW BEEEsE T faRRrdas STasezRad |
AT SR I s
RmreznteaTi sREEHE g aH: THNToT

madhyaranyadvijasyad vigalita tha yah prasnamargo maradau
kolambe chatrasisyo’sya ca viracitavan jatakadesaratnam |
tacchisyasyanumatya sthalipuranilayasyayanaprasnato’sau
sipradesadivast vyaracayamahamapyuttamah purusanam ||

The text prasnamarga emanated from the mouth madhyaranyadvija (Itakkad Nam-
putiri) in the Kollam year 825 (Maradau Kolambe) (A.D. 1650). His student disciple
wrote the gem of a work Jatakadesa. With the permission of his student I, Purusot-
tama (uttamah purusanam) belonging to the place called Sipradesa, have authored
a commentary on the work called Prasnayana.

The argument presented by Nayar, based on the above verse, in arriving at
the conclusion that Putumana Somayaji should have lived around 1700 CE
runs as follows:

1 Whish 1834, p. 522.

15 Sarma 2008. Sarma however notes that the kali-aharagana 1765653 corresponds to
1732 CE, whereas it actually corresponds to April 4, 1733 CE.

16 fKP 1956}, p. xxx.

17 (KP 1956}, p.xxix-xxx.
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This verse states that in the Kollam year 825 (Maradau Kolambe) (A.D. 1650)
madhyaranyadvija (Itakkad Namputiri) wrote his Prasnamarga and a pupil of his
pupil wrote the Jatakadesa. At the instance of a pupil of this author Purusottama
wrote his commentary. It may be noted that like Karanapaddhati, Jatakadesa also
extracts verses from other works. The Prasnamarga is one such source book. This
too points to the fact that Jatakadesa is later and corroborates Purusottama’s
statments quoted above. Since our author is the pupil’s pupil of the author of
Prasnamarga which was composed in 1605 A.D., he must be forty or fifty years
younger to him and might have lived about 1700 A.D.

The above argument is also not really convincing as Purusottama is referring
to a work called Jatakadesaratna (not Jatakadesamarga) and does not make
any direct reference to Putumana Somayaj.

In the first volume of his famous Keraliya Samskrta Sahitya Caritram
(1937), Vatakkumkur Rajaraja Varma cited the following verse communi-
cated to him by a friend and was supposedly a part of a work Ganitasucika
of Govinda Bhatta, which mentioned that Putumana Somayaji composed his
Karanapaddhati in the Saka year 1353 (1431 CE):'8

TR FEFTEST ATOT: T
SYERITOTHIS Tz AT AT |
R AT FROTTG T Tl
‘gt ma-ard-aredae ||

navinavipine mahimakhabhujam manih somaya-
Jyudaraganako’tra yah samabhavac ca tenamuna |
vyalekhi sudrguttama karanapaddhatih samiskrta
‘tripanicasikhibhu mita-prathita-sakasanivatsare ||

This well refined [text] Karanapaddhati that is held high among the works belonging
to drk system, was composed in the $aka year 1353 (tripanicasikhibhu) by that
Somayaji, who was a gem amongst the brahmins (mah#makhabhuks)™®, who is
an exalted mathematician and was born in a house (illam) known as putumana
(navinavipina)?®

This verse, which still remains a hearsay, cannot be given any credence
since Karanapaddhati cites both the Aganitagrahacara of Madhava (composed
around 1417-18) and also the Drgganita of Parames$vara which was composed
in 1431 CE.

To us the most compelling evidence for the date of Putumana Somayaji
seems to be provided by the following initial verse of his Venvarohastaka,
which is as yet unpublished:?!

18 Cited from {KP 1956}, p.xxvii.

19 The word makha is a synonym of yaga. Hence, makhabhuk = deva/sura, and therefore
mahimakhabhuk = bhusura, a term often employed to refer to a brahmin.

20 According to many scholars, it seems to be a common practice in Kerala to translate
the Malayalam word mana into vana or its synonyms such as vipina (which refer to forest)
in Sanskrit.

21 Cited from Manuscript No 430, deposited at the K. V. Sarma Research Foundation,
Chennai.
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: [N o o o
TENST Pl el GaaTd HRLPTRTST T
HIHTTH AT A T RIEATE: ...

rukso’yam kruddhitasyonitakalidivasat prasthagorajyabhaktat
kalanangairdivindrairapi kalidivasam tatra Sistonamahuh...

When 1692162 (rukso’yam kruddhitasya) is subtracted from the kali-ahargana and
[the remainders are successively] divided by 12372 (prasthagorajya), 3031 (kala-
nanga) and 248 (divindra), the remaining number of kali days are stated to be ...

The above verse prescribes a procedure for computing the longitude of
the Moon, similar to that employed in Vakyakarana,??> where the khandadina
number 1692162 is subtracted from the given kali-ahargana and the remain-
ders are successively divided by the following number of days corresponding
to complete anomalistic cycles: 12372, 3031 and 248. The number 1692162,
regarded as a kali-ahargana, corresponds to January 8, 1532. It can then be
argued that the date of composition of the work should be between the kali-
aharganas 1692162 and 1692162 + 12372, for otherwise the latter day would
have been a better choice for the khandadina. Hence, it follows that the work
should have been composed sometime during the period 1532-1566.%

From a study of Karanapaddhati, it is clear that Putumana Somayaji is fully
conversant with all the works of Madhava and the Drk system of Paramesvara.
As regards the Tantrasangraha of Nilakantha Somayaji, it seems that Putu-
mana Somayaji is well aware of it, especially since there are some verses in
common.?* Further, according to one of the commentaries of Karanapaddhati,
by using the word nijamadhyama for the interior planets in verse 7.25, Putu-
mana Somayajl is implying that the equation of centre for those planets is to
be applied to their so called sighrocca—a procedure, which was first introduced
by Nilakantha in Tantrasarngraha, and is an important feature of his revised
planetary model.2> However, there are many aspects of Nilakantha’s revised
model that are not taken note of in the Karanapaddhati. Similarly, for many
of the problems in spherical astronomy, Karanapaddhati adopts ideas and
techniques, which are very elegant, but totally different from those employed
in Tantrasarigraha.?® Tt is therefore reasonable to conclude that Putumana
Somayaji was a junior contemporary of Nilakantha, living in the sixteenth
century. This is in accordance with the above evidence from the Venvaro-
hastaka.?”

22 This procedure is discussed in Section D.5 of Appendix D.

23 Precisely the same argument was used by Kuppanna Sastri and K. V. Sarma to
conclude that Vakyakarana was composed sometime during the period 1282-1316 CE
({VK, 1963}, p. ix).

24 For instance verses 6.19, 9.9 and 9.10 of Karanapaddhati are the same as the verses
2.16, 6.4 and 6.5, respectively of Tantrasarigraha {TS, 2011}.

25 For details, see the discussion in Section 7.19.

26 See for instance the discussion in sections 8.2 and 8.13.

27 We may also note that if it were to be assumed that Putumana Somayaji was living in
the late 17" or early eighteenth century, then the first subtractive or khandadina chosen
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Manuscripts and editions of Karanapaddhati

Pingree in his Census of the Exact Sciences in Sanskrit lists about thirty
manuscripts of Karanapaddhati, most of which are in the Malayalam script,
but some are in Grantham and Telugu scripts.2® Most of the manuscripts are
in the Manuscripts Library of the Trivandrum University, but some are in
the libraries of Chennai and Baroda. There is also a paper manuscript of the
work in the Whish collection of the Royal Asiatic Society, London, which is
not listed in the Pingree list.

The first edition of Karanapaddhati was issued as Vol. 126 of the Trivan-
drum Sanskrit Series way back in the year 1937. This edition brought out by K.
Sambagiva SastrT, merely contains the original text in Devanagari script along
with a very brief introduction of one and half pages. However, the meticulous
effort that must have been put by SastrT in bringing out this largely error-free
edition is indeed remarkable. In his acknowledgement, SastrT has mentioned
that he had made use of five manuscripts (most of which were from private
collections) in preparing this edition. Regarding the manuscripts that were
available to him, he also states that:2°

A commentary on this work in Malayalam was obtained, but it was so worn out
and unreadable that we had to give up the idea of getting it printed. We are sparing
no pains in unearthing a complete manuscript of the same.

Fortunately, more manuscripts were identified at a later date. In the year
1953, P. K. Koru brought out an edition of the text with his own scholarly
annotations and detailed mathematical notes in Malayalam. The title given
by Koru for his commentary is Yuktiprakasika (that which throws light on
the rationale). While acknowledging the source material that was available to

him, Koru observes:3°

In September 1927, in Kannur, a gentleman from the place Cembilottams$amkoy-
ottu (place near Kataccira), named C. Kuifiambu Panikkar gave me a (hand writ-
ten) copy of Karanapaddhati, which also contained an old Malayalam commentary
whose authorship is not known. The examples and the explanations contained in
that book were found extremely useful to understand the import of the verses.

Besides presenting the original verses along with their import (which Koru
rightly calls as saram, as it cannot be considered as translation) he has also
worked out several numerical examples. These examples contribute a great

in Venvarohastaka should have been at least 1741650 (amitayavotsuka). This kalidina,
which corresponds to July 16, 1667, happens to be a well known khandadina employed by
the later Kerala astronomers, as has been mentioned by Kunhan Raja in his introduction
to Haricarita ({HC, 1948}, p. xxxi).

28 Pingree 1981, p. 207.
2 (KP, 1937} p. 1.
30 IKP, 1953}, p. ii (translated from the original passage in Malayalam).
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deal to our understanding of the mathematical principles enunciated in the
text and thereby add considerable value to this edition.

In 1956, Dr. S. K. Nayar of Madras University published an invaluable
critical edition of Karanapaddhati along with two Malayalam commentaries.3!
Both these commentaries are dated to the middle of eighteenth century, and
as Nayar notes:>2

Both the commentaries are elaborate and besides the meanings of the verses in
detail they give numerous examples worked out in the traditional method which
is of great value to a modern student of Indian astronomy. The commentaries are
important also from another point of view. In the course of the explanation they
quote several tables of jyas and other astronomical constants in vakyas couched in
the katapayadi notation, which are also useful to a student of Kerala astronomy.

Nayar mentions that he based his edition of the commentaries on the basis
of six manuscripts each. The text itself was edited on the basis of fourteen
manuscripts and the published version edited by Sambagiva Sastr1. Nayar has
also written a scholarly introduction to the work, at the end of which he has
acknowledged the enormous help and encouragement that he received from
K. V. Sarma in bringing out this edition, which is worth reproducing here:33

It now remains for me only to express my indebtedness to friends who enabled me
to bring out this publication. The editing of this work was originally assigned to
Dr. C. Acyuta Menon, Reader in Malayalam in this University, but his untimely
demise prevented him from taking up the work. When I was asked to do it, I felt
it a burden on account of my little knowledge of the subject. Luckily for me, my
friend Sri K .V. Sarma of the Sanskrit Department of our University came to my
rescue and I had the confidence that with this help and advice a good edition of
the work could be put through. The original idea was only to print the text and
commentary I as available in the Madras manuscript No. M.D.218. I owe to Sri
Sarma the expansion of the scheme to bring out a critical edition of the text, to
include in the critical apperatus (sic) Grantha and Telugu manuscripts, to include
the second and better commentary and to edit the commentaries also on the basis
of several manuscripts; and I am thankful to him for carrying out the scheme
successfully. I am also thankful to him for the manifold new information given in
this Introduction and for the several points dealt with therein, and also for adding
the tables, appendix etc., which have enriched the value of this publication.

In the present edition, we have relied on the editions of Sambagiva SastrT
and Nayar for the text of Karanapaddhati, though at a few places we have
indicated and corrected some errors that seem to have crept in.3* We have
made full use of the two Malayalam commentaries, and the Malayalam notes
of P. K. Koru and the examples given therein, for understanding the exact
import of the verses of the text. We have also cited most of the vakyas that
have been presented in the commentaries.

31 Nayar also refers to two Tamil commentaries of the text, whose manuscripts were said
to be incomplete.

32 [KP, 1956}, p. xiv.
33 [KP, 1956}, p. xxxii.
34 See for instance verses 7.4, 9.12 and 9.13.



x1 Introduction

The present edition gives the original verses of Karanapaddhati both in
Devanagart and in transliterated form, along with English translation and de-
tailed mathematical notes. Each of the ten chapters have been further divided
into several sections with an appropriate title given to those sections both in
Sanskrit and English. In our notes, we have tried to explain the various algo-
rithms and procedures given in the text by means of equations, diagrams and
tables. We have also explained the rationale behind most of the ingenious algo-
rithms presented in the text, and also worked out several illustrative examples.
For the benefit of the reader, we have also included a few Appendices, which
serve to provide an introduction to important topics such as: the relation be-
tween the vallyupasamhara technique and continued fraction expansion, the
epicyclic and eccentric models of planetary motion, and the vakya system of
computing the longitudes of the Sun, Moon and the planets.?”

An outline of the contents of Karanapaddhati

Karanapaddhati is a comparatively short text with 214 verses, which are di-
vided into ten chapters. It is largely based on the Parahita system initiated by
Haridatta in seventh century, which adopts all the revolution numbers given
in the Aryabhatiya after applying a correction known as the sakabda-samskara
which is an accumulating correction taking effect from 522 CE.

The first chapter of Karanapaddhati is similar to the chapter on Mad-
hyamadhikara in most of the astronomical works, and deals with the computa-
tion of mean longitudes. Here, soon after the invocation, the author presents
the number of revolutions of the planets in a mahayuga. This is followed
by a discussion on the procedure for obtaining the solar, lunar and sidereal
months, days, etc. Then he outlines the method for finding the kali-ahargana
(the number of civil days elapsed since the beginning of Kaliyuga), and the
mean positions of the planets. Following this, there is an elaborate discussion
on the application the sakabda-correction to the mean planets and also to
the rates of motion. The author also presents interesting algorithms which
make the calculation of the mean planets easier by making use of suitable
intermediate epochs (khandas).

Chapter 2 of the text is devoted to a discussion of the method wvallyu-
pasamhara which is essentially the same as the technique of continued fraction
expansion of a ratio of two integers.?® This method, also known as the kuttaka

35 Appendices A,B and D. While deriving the Candravakyas of Madhava, by direct com-
putation of the true longitude using the basic parameters of the parahita system, we found
that there were a few errors in the edited versions of these vakyas ({VR, 1956}, {SC,
1973}). The details of our computation and the corrected version of the Candravakyas of
Madhava are presented in Appendix E.

36 An introduction to the continued fraction expansion of a rational number is presented
in Appendix A.
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method, has been widely used in Indian astronomical literature, since the time
of Aryabhata, for solving linear indeterminate equations. Karanapaddhati ex-
plains how this method can be used to obtain optimal approximations to the
ratio, say H/G, of two large numbers. It gives recursive algorithms for obtain-
ing the convergents H;/G; in the continued fraction expansion of the above
ratio. This method is used repeatedly in the text to give optimal approxima-
tions for the rates of motion of planets and their anomalies. Karanapaddhati
also reveals a very sophisticated understanding of important properties of the
convergents, such as,

HiGiJrl — HiJrlGZ‘ = (—1)L

Further, it presents an interesting “remainder theorem”, which may be ex-
pressed in the form

HG; — GH; = (71)2’71”,

where {r;} are the remainders obtained in the mutual division of H and G.
These relations are repeatedly made use of in the later chapters of the text to
arrive at very ingenious algorithms for the khandas, sodhyadinas, etc.

Chapter 3 deals with the vakya method of computing the true longitude of
the Moon. It commences with the use of vallyupasamhara method for approx-
imating the true rate of motion of the anomaly by ratios of smaller numbers
such as 9/248, 110/3031, 449/12372, 6845/188611, etc., which give the vari-
ous approximate anomalistic cycles (such as 9 cycles completed in 248 days
etc). The denominators of the above ratios are known as kendraharakas. The
text presents an algorithm for obtaining a khandadina (a day on which the
lunar anomaly is zero at sunrise), which is close to a given ahargana. This
ingenious algorithm (which seems to have been arrived at by making use of
the relations between successive convergents mentioned above) can be used
to generate several khandadinas based on the choice of the kendraharaka. The
text then describes the computation of the dhruvas, which are the changes
in the true longitude over different anomalistic cycles, and introduces other
notions such as kendraphala, dhruva-samskara-haraka, which help in simplify-
ing the computations. Finally there is a brief discussion of the procedure for
obtaining the Candravakyas.

Chapter 4 deals with the vakya method of computing the true longitudes
of planets. It first gives the method for finding the manda-khanda and Sighra-
khanda (which are the days close to the given ahargana on which the man-
dakendra and the Sighrakendra vanish respectively) as given in the nirganita
system, which is perhaps the same as the aganita system of Madhava. Then
the text gives the algorithm for finding a set of mandalas and the associated
dhruvas for any planet, as used in the Vakyakarana. Mandala is a period in
which a planet and its Sighrocca are in conjunction and nearly return to the
mandocca, starting from a time when they are in conjunction. Then the text
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gives the method for finding a set of Sodhyadinas and the associated dhruvas
for any planet. The Sodhyadina is a day close to the given ahargana such that
the planet and its sighrocca are in conjunction and close to the planet’s man-
docca. The text then gives the method for obtaining a set of aganita-harakas
(divisors giving the revolutions made by a planet in a solar year) used in the
aganita system. This is followed by the method of computing the Sodhyabda,
which gives the solar year close to the given ahargana such that, at Mesadi
or the beginning of the year, the mean planet and its Sighrocca are in con-
junction. The chapter finally gives a method to compute the grahanakhandas,
which are the days of the occurrence of eclipses close to a given ahargana. In
this case, the text specifically prescribes the use of the parameters of the Drk
system (for the Sun, Moon and the node) of Parame$vara, instead of those of
the Parahita system.

In Chapter 5, the text emphasises the importance of correcting the revolu-
tion numbers etc., on the basis of observations. The chapter begins with the
verse:

RO 3 ITeT: IOIETeT: |
TITHTEI T HT: Shed ShedT a7 S0 Y: ||

grahanagrahayogadyaih ye grahah supariksitah |
drksamastatsamah kalpe kalpya va bhaganadayah ||

Based on a thorough examination of the position of the planets at the time of
eclipses, planetary conjunctions, and so on, the revolution numbers etc. [of the
planets] in a kalpa have to be proposed for achieving concordance with observations.

Having highlighted the importance of the need for correction when the
parameters employed do not accord with observation, the text also outlines
various methods for this purpose. It also explains how the longitude values
which have been assumed for the epoch, such as the beginning of Kaliyuga
etc., can be altered by using the so called kalyadi-dhruvas, so that the com-
puted values are in accordance with observations. Alternative methods are
suggested (such as correcting the revolution numbers, etc.) for achieving the
same end. Finally, the text emphasises that there can indeed be a multiplic-
ity of theoretical models with different durations (1000 or 1008 mahayugas)
being assigned to a kalpa, and other theoretical constructs. In this context,
verse 15 of this chapter quotes the celebrated dictum from the Vakyapadiya
of Bhartrhari, that there are no constraints on the theoretical models (upaya
or means), but only on the observed results (upeya, the end).?7

FHEITEHT FHTOT F TgT Howrd I |
9T ey A I ||

kalpadinam pramanam tu bahudha kalpyate budhaih |
upeyasyaiva niyamo nopayasyeti yat tatah ||

37 {VP, 1980}, p. 79. The same passage has been quoted by Nilakantha in his
Aryabhatiya-bhasya in a very similar context ({ABB, 1931}, p. 31.)
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The duration of a kalpa has been conceived differently by different scholars. This
is due to the fact that there are no constraints on the means (upaya), but only on
the end result (upeya).

Chapter 6 presents a succinct summary of the results on the paridhi-vyasa-
sambandha (relation between the circumference and the diameter of a circle)
and jyanayana (computation of the Rsines). As regards the first topic, the
text presents all the important fast convergent series given by Madhava for 7,
which have been cited in the Ganitayuktibhasa of Jyesthadeva or Yuktidipika
of Sankara Variyar. In addition, it also presents the following interesting series,
which has not been mentioned either by Jyesthadeva or by Sankara, and is
perhaps due to Putumana Somayaji himself (verse 6.4):

TS A feoifRes: effehdafstagsaas: |
Tt T g favsid e v @ g aRferder @ ||

vargairyujam va dvigunairnirekaih
vargikrtairvarjitayugmavargaih |

vyasam ca sadghnam vibhajet phalam svam
vyase trinighne paridhistada syat ||

Or, from the square of even numbers multiplied by two, subtract one, and from
the square [of that] subtract the square of the even numbers. Divide the diameters
multiplied by six by the above [quantities]. When [the sum of] these are added to
three times the diameter, the result will be the circumference.

The series presented by the above verse is,

C—3ps 6D . 6D . 6D N
B (222—-1)2—22 ' 242-1)2—42 ' (262—-1)2-62

which may be written in the form

- 6D
C=3D+ .
; (2.(2n)2 = 1)2 — (2n)?
This is a fast convergent series where the successive terms decrease like the
fourth power of 2n.

As regards the computation of sines, an interesting feature of Karanapad-
dhati is that it presents both the Rsine and Rcosine series of Madhava in terms
of just one and a half verses (verses 6.12, 6.13). Finally the text discusses the
relation between the arc and the Rsine for small angles.

Chapter 7 begins with a discussion of the (variable) dimensions of the
manda and Sighra epicycles and proceeds to present some interesting formu-
lae for the calculation of the manda and Sighra corrections (phalas). It then
gives the formula for the inverse hypotenuse (vyasta-karpa) for the case of
the Sun. This formula, which was given by Madhava to calculate the iter-
ated manda-hypotenuse (asakrt-manda-karna)®®, is used here to calculate the

38 SQee for instance the discussion in {TS, 2011}, pp. 494-497.
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mean longitude of the Sun from the true longitude. This, in turn, is used to
determine the exact times for the true Sun to enter a rasi, naksatra etc., and
these are expressed in terms of the sankrantivakyas, naksatravakyas, etc. The
text also explains the derivation of the yogyadivakyas, which give an extremely
simple way to calculate the true longitude of the Sun for any given day. The
text then gives the methods of combining the manda and Sighra corrections
to arrive at the true longitudes of different planets. Here, at least according
to one of the Malayalam commentaries, the text seems to follow the revised
planetary model of Nilakantha according to which the manda correction or
equation of centre should be applied not to the mean Sun, but to (what is
traditionally referred to as) the Sighrocca of the planets. The chapter ends
with a discussion on planetary distances, as well as heliacal rising and setting
of planets.

Chapter 8, dealing with the shadow problems, is indeed a fairly long chap-
ter as in other texts of Indian astronomy. Here, as well as in the next two
chapters, Putumana Somayaji displays his high felicity in dealing with prob-
lems of spherical astronomy. The chapter begins with the determination of the
latitude from the midday-shadow and the corrections to be applied to take
into account the parallax and the finite size of the solar disc. These latter cor-
rections are found in Tantrasangraha also, but they are formulated somewhat
differently here. After discussing the standard relations between the declina-
tion, altitude and the azimuth, longitude etc, the text presents several ways
of calculating the prapakalantara (the difference between the right ascension
and the longitude of the Sun), and the carajya (ascensional difference). The
text then goes on to present a very interesting method for the determina-
tion of the declination of the Moon, which is actually more accurate than
the method outlined in Tantrasangraha. Finally the text deals with lambana
(parallax) and gives the method for computing some of the lambanaharakas
and lambanajyas, which are used in the computation of eclipses. These have
been tabulated as wakyas, for the latitude around 10°50’, which is close to
Shoranur or Alattur.

Chapter 9 commences with a discussion of the longitudes and latitudes of
junction stars and the method for calculating the declination of a celestial
body with non-zero latitude. The text then considers the problem of finding
the lagna (the ascendant or the rising point of the ecliptic). Here again we
notice that Putumana Somayaji introduces concepts and methods that are
not found in other texts such as Tantrasangraha. The notions of kalalagna
(the time interval between the rise of the vernal equinox and that of the given
body on the ecliptic) and madhyahna-kalalagna (the kalalagna when the body
is on the meridian) are employed in Karanapaddhati instead of madhyakala
(right ascension of the point of the equator on the meridian) and madhyah-
nalagna (longitude of the meridian ecliptic point) which have been used in
Tantrasangraha. Both texts, however, present exact results based on a careful
analysis of the properties of spherical triangles.
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Chapter 10 begins by highlighting the importance of obtaining accurate
values of the longitudes and latitudes of celestial objects by a careful exami-
nation of their shadows etc., by means of instruments. This is a brief chapter
which deals essentially with the important issue of relating one coordinate
system to another. For instance, it explains how natakala (right ascension)
may be obtained from the altitude and azimuth, and how the celestial lati-
tude and longitude may be determined from the right ascension and the hour
angle, etc.

This brief outline of the contents of Karanapaddhati should be sufficient
to show that the following declaration made by the author at the end of the
work is entirely justified (verse 10.11):

SToTafHEHEIY Jihgh Tawd: T OTaSHMM STnToar 9ag;: |

ganitamidamadesam yuktiyuktam pathantah
bhuvi ganitajananam agraganya bhaveyuh |

Those who study and comprehend (pathantah) all the mathematical principles
supported by rationales (yuktiyuktam) enunciated here, would become the foremost
leaders in the community of mathematicians in this world.

The metres employed in the text

Not only has Putumana Somayaji demonstrated his originality in devising
ingenious algorithms, he has also demonstrated his exceptional skills as a
poet by composing verses in a variety of metres. The 214 verses comprising
the work have been composed in 20 different metres. The names of the metres
along with the number of verses composed in them are listed in Table 1. It
may be noted that Somayaj1 has employed both varnavrttas and matravrttas.

Some of the long metres that appear at the end of the table are not quite
easy to handle particularly when dealing with topics such as mathematics
and astronomy. In the classical kavya literature it may be common to see such
metres, but it is rare to find them in scientific literature where the author
does not have as large a basket of words to choose from in order to convey a
particular thought or idea.

Notwithstanding this constraint, it is remarkable that Putumana Somayaji
has handled such metres with great felicity in Karanapaddhati. In this regard,
he can be compared with Bhaskaracarya-II—the author of the famous works
Lilavati, Bijaganita and Siddhantasiromani—who is highly acclaimed for his
poetical skills including the use of a variety of metres. It may be recalled
that even renowned mathematicians and astronomers like Aryabhata, Brah-
magupta, Madhava, or Nilakantha generally stick to one particular metre—
arya, anustubh, etc, that does not impose serious constraints, and gives much
leeway in employing words.
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The choice of different metres, at least from the view point of readers, has
the following advantages:

¢ In olden days when the mode of learning was primarily oral, it would have
largely facilitated student in recalling the verses dealing with any topic in
terms of the metres in which they are composed.

o For describing processes involving several steps, choice of long metres such
as sragdhara greatly facilitates in remembering the series of operations that
needs to be sequentially carried out just by memorizing a single verse.

o It is a general convention that the poet changes the metres of the last verse
in a chapter, to alert the reader regarding the change of topic of discussion.

e Also, the change of the rhythm in rendering the verses helps, to a large
extent, in reducing the boredom (an inevitable hazard) while reading or
memorising the text.
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Chapter 1 @
HIAUE: TR HINE i

Mean planets and the sSakabdasamskara

9.9 :IW?R'UT‘{
1.1 Invocation

AR E a3 FRem-=Tat 7% |

3I3q A TRPTAMTAHARTSOT: 1 9 |l
ATATUSTEN TEH T darrard faforerd |
STOTERIOTIGIT SOl I Fegifel: |1 2 I

madiyahrdayakase cidanandamayo guruh |

udetu satatam samyagajiianatimirarunah || 1 ||
martandadin grahan natva tatprasadat vilikhyate |
gunaharagunadinam karape kapi paddhatih || 2 ||

May the guru, an embodiment of intelligence and bliss, keep ever rising in the space
of my heart, like the Sun dispelling the darkness of ignorance.

Having paid my obeisances to all the planets beginning with the Sun, a novel (kap)
procedure for the construction of multipliers (guna), divisors (hara), Rsines (guna)
ete. is being written down [by me] by their grace.

Commencing the work with a margalacarana (performance of an auspi-
cious act) is a common feature that can be seen in almost all the composi-
tions pertaining to different disciplines in the Indian tradition. Marngalacarana
generally falls under one of the following types:

(i) Offering veneration to the teacher (guruvandanam).
(ii) Offering prayers to the desired deity (istadevatanamaskarah).
(iii) Stating the purpose of the text (vastunirdesah). !

! Generally mangalacarana will be of the form (i) or (ii) or a combination of both. How-
ever, this third type of a mangalacarana though rare is found in Kalidasa’s Kumarasamb-
hava, which begins with the verse astyuttarasyam disi devatatma...

© Springer Nature Singapore Pte Ltd. 2018 and Hindustan Book Agency 2018 1
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In the above verses (composed in anustubh metre), it is interesting to note
that all the three forms of margalacarana have been incorporated by the
author. He first extolls his guru as an embodiment of intelligence and bliss,
then pays his obeisances to all the grahas, and finally also briefly mentions
the purpose of the text.

In the next few verses the author presents all the parameters that form the
basis for the computation of longitudes of the planets.

9.2 HETIT TEIIAT:

1.2 Revolutions of the planets in a mahayuga

AT T RS TSI eH SagTsTarT
Felerarai=g AR aRersfiTg: |
Srgventsfarrar Favfafafe ssargfea-
RIS THAT: fﬁ%ﬁqﬂmmﬁwﬁ 3l

bhadrodantodharendro mmnusrgadhzsaukhyam varistho bhisargah |
dordandagre’drinatho visamitavipinam candrarekhambukhinne-
tyarkadeh paryayah syuh ksitidinamanysamsah kalarthisamartyah || 3 ||

napragalbhah), 57753336 (tilabalamasusuksmam), 488219 (dhayedrd]adambha)
2296824 (bhadrodantodharendra), 17937020 (niranusrgadhisaukhyam), 364224 (var-
istho bhisariga), 7022388 (dordandagre’drinatha), 146564 (visamitavipina), 232226
(candrarekhambukhinna). And the number of civil days (ksitidina) [in a mahayuga)
is 1577917500 (anrsamsahkalarthisamartya).

The above verse is composed in sragdhara metre, one of the longest metres
with 21 syllables per quarter. The choice of this metre is quite understandable
as it facilitates the author to concisely present as much information as possi-
ble. In fact, the author has specified the number of revolutions made by all
the planets in a mahayuga, as well as the total number of civil days, in one sin-
gle verse. For specifying these numbers, Putumana Somayaji has adopted the
katapayadi system? of numeration—the most preferred choice of the Kerala
astronomers starting at least from the time of Haridatta (7* cent.). Table 1.1
presents these numbers along with their Sanskrit equivalents. It may be men-
tioned here that the revolution numbers as well as the number of civil days
in a mahayuga specified in Table 1.1 are the same as in Aryabhatiya.

An interesting feature of the works of Kerala astronomers is that while
specifying the numbers using katapayadi system, they try to make the phrases

2 The following table presents the numbers associated with the consonants ka, kha etc.
in this system:



1.2 Revolutions of the planets in a mahayuga

Revolutions in a mahayuga

(Along with a man is not cruel)*

Planet
in Katapayadi in numerals
Sun AR e 4320000
(Ilustrious with various kinds of knowledge)

Moon IR EGLRReta 57753336
(Power of sesamum [seed] is not subtle)

Moon’s apogee THSTSTSIT: 488219

(Hypocrisy of king)*
Mars - : 2296824
(King about whom the narratives are good)
Mercury** [REGLERIDEIIE2E0 17937020
(Comfort without repeated inarticulate sound)
Jupiter FRSrsTTg: 364224
(Humiliated senior)

Venus** EIECRSPNESIRE 7022388

(Lord of mountains [who is] upholding
the pole by [his] arm)
Saturn 1 146564
(Impassable forest)

Moon’s node TEEr T 232226
(Ray of the Moon distressed by water)

Number of civil days IR oA 1577917500

*Literal meaning of the words “dhayed” and “kalarthi” is not clear.
**The revolution numbers are those of the associated Sighroccas.

Table 1.1 Revolutions made by the planets in a mahayuga.

Number 1 2 3 4 5 6 7 8 9 0
Consonants | k kh g gh n ¢ ch j jh 7
used t th d dh n t th d dh n
torepresent | p ph b bh m - - - — -
numbers y T l v s s s h I -

In the case of conjunct consonants, only the last consonant is to be considered. Vowels
which are separate, represent the number zero.

the encoded numbers corresponding to each syllable.

na

na | jna | na | pra | ga | lbhah

0

0 0 2 3 4

By reversing the order, we have the number 4320000 which is encoded in the phrase




4 H g SThlE TR Y Mean planets and the sakabdasamskara

meaningful also. It is ensured that the words that get into these phrases are
familiar and commonly employed words, thereby facilitating the reader to
pronounce and remember them easily. The literal meanings of the phrases
used in the verse above are given in Table 1.1 in parenthesis.

9.3 HETET WA HTET: STTHTATS

1.3 The number of solar, lunar and intercalary months
in a mahayuga

FTEATRITO: T ARHTAT:
HIHT I - HITOT=eR A =ITT: |
TSTRATAIEY = T HTAT:

HIRAT: GATEdT feaaRa=ar: |1 g |l

rupahatarkabhaganah khalu sauramasah
masa ravindubhaganantarameva candrah |
candrarkamasavivaram ca yugadhimasah
masah punarnagahata divasasvarupah || 4 ||

The number of revolutions of the Sun multiplied by 12 (rupa) are indeed the solar
months. The difference between the number of revolutions of the Sun and that of
the Moon is itself the number of lunar [months]. The difference between the number
of lunar months and the solar months gives the number of adhimasas (intercalary
months) in a yuga. These months multiplied by 30 (naga) give the number of [solar
and lunar| days.

If M represents the number of solar months in a mahayuga, and Ry the
number of revolutions of the Sun, then

My = Rs x 12
= 4320000 x 12 = 51840000. (1.1)

A lunar month, by definition, is the time interval between two successive
conjunctions of the Sun and the Moon (two amavasyas or new Moons). Hence
the total number of lunar months (M,,) in a mahayuga will be equal to the
total number of new Moons which in turn will be equal to the difference
between the number of lunar and the solar revolutions. That is,

My, = 57753336 — 4320000 = 53433336. (1.2)

The number of lunar months that are in excess of the number of solar months
in a mahayuga are referred to as the intercalary months or adhimasas (M,),
and are given by
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My, = M,, — M,
= 53433336 — 51840000 = 1593336. (1.3)

In the last quarter of the above verse, it has been stated that the number
of months multiplied by 30 gives the number of days. As this is a generic
prescription, the number of solar months in a mahayuga multiplied by 30
gives the number of solar days in a mahayuga, the number of lunar months
multiplied by 30 gives the number of lunar days and so on. If Dy, D,,, and D,
be the number of solar days, lunar days, and their difference in a mahayuga,
respectively, then they are given by

D, = 30 x 51840000

= 1555200000, (1.4)
D,, = 30 x 53433336
= 1603000080, (1.5)
Dy, — Dy = D, = 30 x 1593336
= 47800080. (1.6)

Here it may be mentioned that a solar day is purely a theoretical entity and
is different from the civil day (24 hrs) that is commonly used in practice. The
solar day corresponds to the time taken by the Sun to cover 1° of the ecliptic,
which on an average would be slightly larger than a civil day. An average
lunar day/tithi is shorter than a civil day.

9.8 STATATAATSTATST ST

1.4 The number of omitted tithis and sidereal days

TTSHTRAT AT SR 47T |
TSATRATRITOT: ATETATEAT: TFaT: 1l 4 |

candramasa nagabhyasta bhudinonastithiksayah |
bhudinadhyarkabhaganah naksatradivasah smrtah || 5 ||

The number of lunar months multiplied by 30 [and] diminished by the number of
civil days gives the tithiksayas (the number of omitted tithis). The number of solar
revolutions added to the number of civil days (bhudina) is stated to be the number
of naksatradivasas (sidereal days).

This verse essentially presents the procedure for obtaining the total number
of omitted tithis and sidereal days in a mahayuga from the number of civil days.
We know that the number of t¢ithis (lunar days) in a mahayuga is obtained by
multiplying the number of lunar months by 30. And, the number of ksayatithis
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(omitted tithis) is the difference between the number of tithis and the number
of civil days in a mahayuga.

Let M, and D, represent the total number of lunar months and civil days
in a mahayuga. Then the number of ksayatithis (T};) is given by

Tk = Mm x 30 — l)c
= 53433336 x 30 — 1577917500 = 25082580. (1.7)

It may be recalled that the total number of civil days in a mahayuga represents
the number of sunrises in it. Similarly, the number of sidereal days (naksatrad-
inas) represents the number of star-rises in a mahayuga. Since the stars do not
have any eastward motion of their own, whereas the Sun completes one full
revolution in a sidereal year, the number of sidereal days in a solar year will
be greater than the number of civil days by exactly one unit. Hence, the total
number of sidereal days or naksatradivasas (D,,) in a mahayuga will exceed
the total number of civil days exactly by the number of solar years, which is
the same as the number of revolutions of the Sun (R;) in the background of
stars. That is,

Dn = Dc + Rs
= 1577917500 + 4320000 = 1582237500. (1.8)

Having specified the revolution numbers corresponding to a mahayuga, the
text proceeds to state the values corresponding to a kalpa whose period is
stated to be 1008 times that of a mahayuga.

9.4 FHed TFIIT:

1.5 Revolutions of the planets in a kalpa

T FITTHT ST feATrg e afeer e |
TR AT A P A THA T & I

evam yugokta bhaganadayaste dinanayaghnastu bhavanti kalpe |
caturda$asyurmanavotra tesam yugani rasapramitani yasmat || 6 ||

The revolutions (thus stated) for a caturyuga, when multiplied by 1008 (dinanaya)
would become the revolutions in a kalpa. In this [kalpa] there would be 14 Manus
since their period is 72 [catur]yugas.

In the verse above, the word yuga has been employed to refer to a caturyuga
or a mahayuga, whose period is known to be 4320000 years. Also, the period
of a kalpa is defined in terms of a mahayuga.
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It has been stated

Planet || Revolutions in a kalpa that there are 14
Sun 4354560000 manvantaras in a
Moon 58215362688 kalpa.®> As there are
Moon’s apogee 492124752 72 caturyugas in a
manvantara, there are
Mars 2315198592 1008 (72x14) mahayu-
Mercury 18080516160 gas in a kalpa.
Jupiter 367137792 The above verse
Venus 7078567104 also mentions that
the number of revo-
Saturn 147736512 lutions of the plan-
Moon’s node 234083808 ets in a kalpa is ob-

tained by multiply-
ing the revolutions
made by them in a

Table 1.2 The number of revolutions of the planets in a kalpa.

mahayuga by 1008. That is,
R (kalpa) = 1008 x R (yuga).

The revolution numbers for a kalpa are listed in Table 1.2.

9.8 TAAFHT TATAHS:

1.6 Period elapsed in the present kalpa

FAAATETIRTEA: i P |
PTG Hod sRAT Femieaferar ar: 11w |l

krtatretadvaparakhyah kaliscaite yuganghrayah |
yuganghrayastu kalpe’smin dhigadityamita gatah || 7 ||

The [four] quarters (yuganghris) of the [maha)yuga are known as krta, treta, dvapara
and kali. In the present kalpa the number of elapsed yugarnghris (quarter of a yuga)
are 1839.

The mahayuga that was referred to in the previous verse is conceived to be
made up of four parts. The first one is called the krtayuga, the second one the
treta, the third one the dvapara and the fourth one the kali. Here it is stated
that, in the present kalpa, the number of such quarters of yuga® elapsed is
equal to 1839. It may be noted that,

3 A Manu lives for one manvantara.
4 Here, yuga refers to a caturyuga or mahayuga.
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1839 3
1= 459 + 1

This means that apart from 459 caturyugas, three-fourths of a caturyuga is
over. If we further divide 459 by 72, we obtain 6 as the quotient and 27 as the
remainder. Thus, as per this prescription, in the present kalpa, six manvantaras
have already elapsed. And in the seventh manvantara 27 mahayugas have
elapsed.

We are currently in the twenty-eighth mahayuga. In this mahayuga too,
three quarters have elapsed and we are in the fourth one, namely the kali.
Therefore, the total number of quarters elapsed since the beginning of the
kalpa is

(72 x 64 27) x 4+ 3 = 1839.

9. TATMRIGIT ITATCITOFETH

1.7 Obtaining the number of elapsed years since the
beginning of the present kaliyuga

Jldqqivdgﬂquqieﬂwnﬂr\qm: |_
FHogedl YRAFTATIZTRISIT a1 Faf~a o Il ¢ Il

gatavarsantakolambavarsastaralaganvitah |
kalyabda dhisthakaladhyasakabda va bhavanti te || 8 ||

Adding 3926 (taralaga) to the number of elapsed kollam years gives the num-
ber of kali years elapsed. These [kali years] can also be obtained by adding 3179
(dhisthakala) to the elapsed Saka years ($akabdas).

The above verse presents the relations among the three popular eras that are
currently in vogue in various parts of India, namely the kalyabda, the Sakabda
and the kollam. Of them, the first two are used throughout India, whereas the
last one is employed only in Kerala.

If yi, ys and yg, represent the kalyabda, sakabda and kollam years respec-
tively, then the content of the above verse may be expressed as

Yk = Yko + 3926,
and, Yk = Ys + 3179. (1.9)

Also,
Ys = Yr — 3179 = yro + T47. (1.10)
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1.8 Procedure for obtaining the ahargana

LR ORI RENIERIRLIR RUAE
A EFART TG G E: |
AR AT : fEifaererg:

AT faRagd! IO STBIRT 11 3 |l

kalyabdatah priyahatad gatamasayuktah
candrakhyamasagunitadravimasalabdhah |
nagahatastithiyutah ksitivasaraghnah
candrairdinairapahrto dyugano’cchavarat || 9 ||

The number of years elapsed since the beginning of kaliyuga, multiplied by twelve
(priya) and added to the months elapsed [in the present year|, is multiplied by
the number of lunar months [in a yuga]. The quotient obtained, while dividing
this by the solar months [in a yugal, is to be multiplied by thirty (naga) and to
that the (number of) tithis elapsed [in the present month] is added. [The result],
multiplied by the civil days in a yuga and divided by the total number of lunar
days (candradina) in a yuga, will be the ahargana, commencing with Friday.

The term ahargana refers to the number of civil days that have elapsed since a
given epoch. To obtain this, we need to first find the number of solar months
that have elapsed since the epoch, which is taken to be the beginning of
kaliyuga. The number of (solar) months (my) elapsed since the beginning of
kaliyuga is given by

ms =12 X yp +m,

where y;, represents the kalyabda as defined in the previous section, and m
is the number of months elapsed in the present year. The number of lunar
months that have elapsed since the beginning of kaliyuga till the desired date
is obtained by employing the following rule of three:

solar months in a mahayuga (Ms) : lunar months in a mahayuga (M)

elapsed solar months (my) : elapsed lunar months (my;) 7  (1.11)

Now,

ms X My mgs x 53433336

_ _ 1.12
m M, 51840000 (1.12)
% 222
_ my X 2226389 (1.13)
2160000

To find the number of tithis that have elapsed since the beginning of kaliyuga
till the desired date, we need to multiply m; by 30, and add to that the number
of tithis that have elapsed in the current lunar month. If ¢ be the number of
tithis that have elapsed in the present month, then the total number of tithis
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t. that have elapsed since the beginning of kaliyuga till the desired date, is
given by
te = (my x 30) + ¢. (1.14)

Now from these tithis, the ahargana A, which represents the total number of
civil days elapsed from the epoch till date, is found by employing the rule of
three. If the total number of civil days and ¢ithis in a mahayuga be D, and T
respectively, then

T:D., :: t.:A? (1.15)
Therefore,
te X D
g = e e
T
1 1
_ te x 1577917500 (1.16)
1603000080
te X 26298625
= -\ 1.1
26716668 (1.17)

In most texts, the beginning of the kaliyuga is taken to be the mean sunrise
of February 18, 3102 BCE, which happens to be a Friday. Thus, when A
is divided by 7, if the remainder is 0, 1, 2, .., 6, it means that the day for
which the ahargana A has been computed should be Friday, Saturday, ..,
Thursday. If the actual weekday differs from the computed one, then the
ahargana is corrected generally by adding £1 to A. Such differences between
the computed and the actual values are not uncommon, as the calculational
procedure involves the use of rule of three and rounding off to the nearest
integer. This rounding off occurs both in the calculation of m; and A.

It may also be mentioned here, that the procedure for finding the ahargana
in Karanapaddhati is slightly different from the one presented in Tantrasan-
graha and many other texts, wherein the number of adhimasas and ksayatithis
are separately computed and added. On the other hand, here the number of
lunar months and the number of tithis elapsed are directly computed. Having
obtained them, by multiplying the number of tithis elapsed with the yugasa-
vanadina and dividing it by the number of tithis in a yuga, we obtain the
ahargana. We shall now illustrate the above procedure with a couple of ex-
amples.

Illustrative examples

Example 1: Find the kalyahargana corresponding to nija-asadha-krsna-
navams,” Saka 1891 (August 6, 1969 CE).

5 Ninth day of the dark fortnight correspondding to the actual (nija) lunar month Asadha.
Actual because of the occurrence of an intercalary month preceding this.
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Number of kali years elapsed, y = 1891 + 3179
= 5070.

Number of solar months elapsed in the

present year, m =3.

Total number of solar months elapsed, ms = (5070 x 12) + 3
= 60843.

Number of lunar months elapsed
60843 x 53433336

51840000
= 62713.04904.

(including adhimasas), my =

Since we are interested in the integral part,

we take my = 62713.
Number of tithis elapsed in the present
lunar month ¢ =15+ 8 = 23.

Total no. of tithis elapsed since the
beginning of kali (including ksayatithis), t. = (62713 x 30) + 23
= 1881413.

1881413 x 1577917500
1602999600

= 1851974.57156.

Number of civil days since the beginning of =
kali (corresponding to t.)

We round off the above fraction and
take the kalyahargana A, to be = 1851975
= (264567 x 7) + 6.

The remainder 6 implies that the day has to be a Thursday. But August 6,
1969 happens to be a Wednesday. Hence the computed value of the ahargana
is incorrect by a day. This error is evidently due to the error in rounding off.
This kind of error is very likely to occur particularly when the fractional value
obtained in finding A from ¢, is close to 0.5. By leaving out the fractional part,
we get the actual ahargana as 1851974. Thus the number of civil days elapsed
since the beginning of kaliyuga till nija-asadha-krsna-navami, Saka 1891 is
1851974.

It may also be noted that the use of rule of three for finding the elapsed
lunar months from the solar months implicitly assumes that the adhimasas
occur uniformly. However, this is not true, and the variation could be quite
significant depending upon the occurrence or absence of true sarnkranti in a
lunar month. We need to be especially careful when the value of m; is close to
an integer. If there is an error in the choice of m;, the ahargana would differ
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from the actual value by nearly 30 days. On the other hand, as seen earlier,
we may also go wrong in the ahargana by one day.

These errors can be easily fixed from the knowledge of the occurrence or
otherwise of an adhimasa near the desired date, and the day of the week,
respectively. We shall now illustrate an example where the value m; is to be
chosen carefully.

Example 2: Find the kalyahargana corresponding to phalguna-krsna-
trayodast,® Saka 1922 (March 22, 2001 CE).

Number of kali years elapsed, yy = 1922 + 3179
= 5101.

Number of solar months elapsed in the

present year, m = 11.

Total number of solar months elapsed, m; = (5101 x 12) + 11
= 61223.

Number of lunar months elapsed
61223 x 53433336

51840000
= 63104.72859.

(including adhimasas), my =

Since we are interested in the integral part,

we take m; = 63104.
Number of tithis elapsed in the present
lunar month ¢ =15+ 12 = 27.

Total number of tithis elapsed since the
beginning of kali (including ksayatithis), t. = (63104 x 30) + 23
= 1893147.

1893147 x 1577917500
1602999600

= 1863524.96992.

Number of civil days since the beginning of =
kali (corresponding to t.)

We round off the above fraction
take the kalyahargana A, to be = 1863525
= (266217 x 7) + 6.

The remainder 6 implies that the day has to be a Thursday. March 22,
2001 happens to be a Thursday, and hence the computed value of the ahar-
gana is correct. Thus the number of civil days elapsed since the beginning of
the kaliyuga till phalguna-krsna-trayodass, Saka 1922 (March 22, 2001 CE) is
1863525.

6 Thirteenth day of the dark fortnight correspondding to the lunar month Phalguna.
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Note: In this example, rounding off the value of m; = 63104.72859 to the
nearest integer (that is, by considering m; = 63105) would have led to the
value of A = 1863555. This value differs from the actual value by 30 days.

9.% TSI

1.9 Technique for simplifying the mathematical
operations

SOTERT=ARAITOT 3[04 ERTE q a1 [ |
SOTeRIT T hed Y90 SHATd e ftegal Il 90 ||

gunaharantaragunitam gunyam harahrtam tu va gunye |
gunakadhikalpakatve svamrnam kuryat phalasya samsiddhyai || 10 ||

The difference between the multiplier and the divisor (guna-harantara) multiplied
by the multiplicand (gupya) and divided by the divisor, has to be added to or
subtracted from the multiplicand, depending on whether the multiplier is greater
or smaller [than the hara (divisor)] respectively.

Consider the product a (%) Here, c¢ is the multiplier (gunaka or simply guna),
a the multiplicand (gunya) and b the divisor (hara). Clearly there are two
possible cases: (i) ¢ > b and (ii) ¢ < b. It is easily seen that the given product
in these two cases can be written respectively as

ag = a—«—a@, (1.18)
h—
and a% =a-— a( 2 °) (1.19)

It is precisely these two relations that are given in the above verse.

9.90 HHUZHITH

1.10 Obtaining the mean longitudes of planets

HENI WERIATLTG, URTATHT HIOTEeT: |
Frfead @ vaig faye faryraeeshearames: 1199 1l

aharganat khecaraparyayaghnad
dharadinapta bhaganadikhetah |
tribhanvitam tatra bhaved vidhuccam
vidhuntudascakradaladvisuddhah || 11 ||
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The ahargana multiplied by the revolution number of planets and divided by the
bhudinas (civil days) gives the elapsed bhaganas of the planets. The [longitude of
the] Moon’s apogee is obtained by adding three rasis [to the calculated result], and
that of the Rahu (Moon’s node) by subtracting it from six rasis.

If A be the ahargana, R the number of revolutions made by the planet in a
mahayuga and D, the total number of civil days. Then the mean longitude 6,
of the planet, is given by

AX R

0y = B
B AXR _
T 1577917500

I + fi, (1.20)

where I represents the integral part of 6y, and f; the fractional part. The
integral part gives the number of revolutions that have been completed by the
planet since the beginning of the present kaliyuga. It is from the fractional
part f; that the rasis etc., covered by the planet, are obtained. To find this,
the fractional part f; is first multiplied by 12.

f1><12212+f2.

Here, the integral part I gives the number of rasis that the planet has covered
in the present revolution. The fractional part fo when multiplied by 30 gives
the number of degrees covered in the present rasi. Let

fax30=1I3+ fs,

where I3 gives the number of degrees covered by the planet in the present
ra$i. fs multiplied by 60 gives the number of minutes covered in the present
degree. Continuing along similar lines, we may further express the product of
f3 and 60 as

f3 ><60=I4+f4.

In the above equation, I, represents the integral number of minutes covered
and f4 the fractional part of it. Thus the mean longitude of the planet may
be expressed as

0o = (I2)" + (I3)° + (1) (1.21)

After giving the general prescription for obtaining the longitudes from ahar-
gana for all the planets, which includes Moon’s apogee and nodes, the verse
specifically mentions that in the case of Turnga (Moon’s apogee) three signs
are to be added, and in the case of Rahu, the obtained value has to be sub-
tracted from six radis. These specific prescriptions point to the fact that the
Moon’s apogee at the beginning of kaliyuga was at 90° and that of Rahu was
at 180°. It may also be recalled here that the motion of Rahu is retrograde.
We shall now illustrate the above procedure through an example.
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Illustrative example

We calculate the mean longitude of the Moon corresponding to the ahargana
1754000 (9*" May 1701). We have chosen this ahargana because the Malayalam
Commentary I presents a series of verses giving the dhruvas of all the planets
corresponding to this ahargana. The verses commence with the specification
of ahargana as follows:”

STTIFO AT ATERTAROT: |
anunuvarnasadhyonat somavaradyaharganah |

By subtracting 1754000, the ahargana commencing from Monday is obtained.

Here the number encoded in the string “anunuvarnasadhya” is 1754000. The
same ahargana has been used for illustrating other computational procedures
in the following chapters as well.

From (1.20), the longitude of the Moon corresponding to the ahargana
A = 1754000 is given by

1754000 x 57753336
0, (Moon) —
o (Moon) 1577917500

The integral part 64198 represents the number of revolutions completed and
does not contribute to the longitude. It is from the fractional part 0.12908089
we get the number of rasis etc., covered by the Moon. We have

= 64198.1290809. (1.22)

0.12908089 x 12 = 1 4 0.54897068.

This shows that the Moon has covered one ra$i and is in the second one,
namely Vrsabha. To get the degrees etc., we multiply the fractional part by
30. Thus we have,

0.54897068 x 30 = 16 + 0.4691204.

This means that the mean Moon has covered 16 degrees in the Vrsabha-rasi.
The fractional part of the above expression further multiplied by 60 gives
28.147224 minutes. The fractional part of this can be further multiplied by 60
to get the seconds etc. Thus the mean longitude of the Moon corresponding
to the ahargana 1754000 is

6o (Moon) = 1716°28'8". (1.23)

The mean longitudes® of all the planets for this ahargana, obtained in a similar
manner, are given in Table 1.5.

" {KP 1956}, pp. 56-57.

8 The mean longitudes of the planets presented here correspond to the mean sunrise of
an observer situated on the meridian passing through Ujjayini. In the case of Rahu, the
value obtained using the above procedure has been subtracted from six signs, and in the
case of Moon’s apogee, three signs have been added to obtain the mean longitude.
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Mean longitude (6o)

Planet sign degrees | minutes | seconds | thirds | fourths
sy | | o | o o] m
Sun 0 27 24 55 48 22
Moon 1 16 28 8 50 14
Moon’s apogee 11 12 4 5 22 26
Mars 1 16 58 48 13 7
Mercury 7 21 20 5 40 10
Jupiter 10 12 36 55 33 11
Venus 0 10 9 48 2 31
Saturn 11 0 57 26 50 16
Moon’s node 4 9 25 18 54 23

Table 1.5 Mean longitudes corresponding to A = 1754000.

It was mentioned earlier that the revolution numbers for planets presented
in Table 1.1 are not different from those given in Aryabhatiya. However, in the
Parahita system some corrections have been introduced to get more accurate
values of the mean longitudes of the planets. These corrections (samskaras)
have been prescribed to be applied to the mean longitude of the planets start-
ing from the $aka year 444,° and are called Sakabdasamskaras.

9.99 IR SRS IR

1.11 Sakabdasamskara for mean planets

AETIHTESHIETd TR Had e
TR TR feRfEdae: Tsaggar: |
BTTRE AT ITOTeh-RE AT HIFTRTHT: FsiTaT:
TR AR II[STSH afsrdr Agasi 1l 9R |l

vagbhavonacchakabdat dhanasatalayahat mandavailaksyaragaih
aptabhirliptikabhih virahitatanavah candratattungapatah |
Sobhanirudhasamuit ganakanarahatat magaraptah kujadyah
samyukta jnarasaurah suragurubhrgujau varjitauw bhanuvarjam || 12 ||

Subtracting 444 (vagbhava) from the Sakabda multiply it by 09 (dhana), 65 (Sata)
and 13 (laya) and divide by 85 (manda), 134 (vailaksya) and 32 (raga) [respectively].

9 Note that the Saka year 444 or 522 CE happens to be 23 years after the composition of
the Aryabhatiya. In the Parahita system the correction term becomes zero in this year.
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The results thus obtained, in minutes, are subtracted from the longitudes of Moon,
its apogee and its node respectively. [Similarly, subtracting 444 (vagbhava) from the
Sakabda and] multiplying by 45 ($obha), 420 (nirudha), 47 (samwit), 153 (ganaka)
and 20 (nara) and dividing by 235 (magara), the results obtained are applied to
the planets Mars etc. [Here again] the quantities thus obtained have to be added
to the mean longitudes of the Mars, Mercury and Saturn and subtracted from that
of the Jupiter and Venus, omitting [any correction in the case of] the Sun.

This verse (in sragdhara metre) essentially presents the magnitude of the
Sakabda-samskara that is to be applied to the planets including Moon’s apogee.
This is done by specifying multipliers (gunakaras, g) and divisors (harakas,
h) for each planet which will be used in conjunction with the number of
years elapsed since the epoch, namely the Saka year 444. Sundararaja, the
16" century commentator of Vakyakarana quotes this verse and mentions
that this Sakabda correction was introduced in the Parahita system (c. 683) of
Haridatta. However, the edited version of the Grahacaranibandhana of Hari-
datta does not have this verse or this correction. However, later works such
as the Grahacaranibandhasarigraha (c. 932) give these gunas and harakas of
the sakabda correction.'”

The Sakabda correction, denoted by c;, prescribed in the verse is given by

c1 = M (1.24)
h

This has to be applied to the mean longitudes of the planets. It is seen from the
above expression, that if y; = 444, ¢; reduces to zero. Thus, (1.24) implies that
the mean longitudes obtained by using the parameters given in Aryabhatiya
were accurate around the Saka year 444 (= 522 CE). It may be noted that
this year incidentally happens to be 23 years after the date of composition of
Aryabhatiya.

The Sakabdagunakaras (g) and Sakabdaharas (h) that are given in the verse
for different planets, are listed in Table 1.6. Also, as has been explicitly men-
tioned in the verse, the result (¢1) obtained would be in minutes (aptabhirlip-
tikabhih) and has to be applied to the mean longitude obtained by (1.21) either
positively or negatively depending upon the planet. Thus, the corrected mean
longitude at this stage may be represented as

01 = 90 + C1. (125)
Note: In (1.25), the ‘4’ sign is to be chosen in the case of Mercury, Mars and
Saturn, and ‘—’ in the case of Venus, Jupiter as also the Moon, its apogee and
the node.

10 fGCN 1954}, pp. ix-x.
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Sakabdagunakara Sakabdaharaka Nature of
Planet (g9) in (h) in % correction
katapayadi | no. | katapayadi | no. (+/-)
Sun No Sakabda correction for Sun

Moon dhana 09 manda 85 | 0.10588 —
Moon’s apogee Sata 65 vailaksya 134 | 0.48507 -
Mars Sobha 45 magara 235 | 0.19149 +
Mercury nirudha 420 magara 235 | 1.78723 +
Jupiter samuit 47 magara 235 | 0.20000 —
Venus ganaka 153 magara 235 | 0.65106 —
Saturn nara 20 magara 235 | 0.08511 +
Moon’s node laya 13 raga 32 | 0.40625 —

Table 1.6 Sakabdagunaharas of the planets.

Illustrative example

In Table 1.5 we have listed the mean longitudes of all the planets corresponding
to A = 1754000. Considering the mean longitude of Venus, and expressing it
in minutes we have

0o (Venus) = 609.80070’. (1.26)

The Sakabda-samskaras corresponding to A = 1754000 for different planets
are given in Table 1.7. In arriving at these values we have taken the number
of Saka years elapsed y, to be 1623. It is noted from the table that the sakabda
correction for Venus is -767.60426. Applying this to the mean longitude given
by (1.26), we have

01 (Venus) = 609.80070 — 767.604255

= —157.80355 (in min). (1.27)

The Sakabda corrected values of mean longitudes of the other planets cor-
responding to ys = 1623 are listed in Table 1.8.

It may be noted from (1.24) that the expression given for ¢; takes into
account only that part of the correction corresponding to the complete number
of years that have elapsed. It does not include the correction that is to be
considered for the time elapsed in the current year. The next verse describes

the procedure for obtaining this part of the correction.



Table 1.7 Sakabdasamskaras for different planets for ys = 1623.

Planct Sakabda corrected
mean planet 01 in min. (*)
Moon 2663.31200
Moon’s apogee 19952.18658
Mars 3044.56960
Mercury 15987.24343
Jupiter 18521.12588
Venus —157.80355
Saturn 19957.78772
Moon’s node 7286.34636
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Planet Sakabdasamskara (£c1)
in minutes (*)
Sun No samskara
Moon —124.83529
Moon’s apogee —571.90299
Mars +225.76596
Mercury +2107.14894
Jupiter —235.80000
Venus —767.60426
Saturn +100.34043
Moon’s node —478.96875

Table 1.8 Sakabda corrected mean longitudes of the planets for y. = 1623.

9.9R TAUMTITATY TR HAHIR:

1.12 Sakabdasamskara for the number of days elapsed in
the present year

AT IRTAAIAS gl gTEReThar: |

AR SIGaTHT: T TR dea=rar: 11 93 |l

nakahatam bhagitabhanumadhyam
hatva dhanadyairgunakairihoktaih |
mandadiharairvibhajedavaptah

karyah Sasankadisu tatparadyah || 13 ||

Having multiplied 10 (naka) times the mean longitude of the Sun, expressed in de-
grees (bhagita), by the sakabdagunakaras, 09 (dhana) etc. stated here, and dividing
the same by the Sakabdaharakas, 85 (manda) etc., the results obtained, which are
in thirds, should be applied to the Moon etc. [respectively].
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If 659 is the mean longitude of the Sun expressed in degrees, then the
Sakabda correction corresponding to the number of days elapsed in the current
year as given in the verse is of the form

o =10 X 049 X %. (1.28)

In the above expression, though the mean longitude 64 is expressed in de-
grees, it has been explicitly mentioned that the final result obtained is in
thirds (tatparas). This quantity needs to be applied positively or negatively
to the mean planet to obtain the mean longitudes of the planets for the given
ahargana.

We now explain the rationale behind the expression given in (1.28). From
(1.24), it is clear that the Sakabdasamskara to be applied to the mean planet
for one year is £ (in min.) or { x 3600 (in thirds). Since this is the magnitude
of correction to be applied corresponding to a period in which the mean Sun
moves 360°, the magnitude of correction for a given number of solar days
elapsed in the present year can be obtained simply by applying the rule of
three, and is given by

050 (in deg.)

1.2
60 (1.29)

ey = (% x 3600) x

which is the same as (1.28).

Note: As indicated earlier, in the case of Mars, Mercury and Saturn, the
correction is to be added and in the case of the others, it has to be subtracted
from their mean Sakabda longitudes.

Illustrative example

It may be noted from Table 1.8, that the mean longitude of Venus after the first
stage of Sakabdasamskara is 61 (Venus) = —157.80355. The mean longitude of
the Sun for the given ahargana (from Table 1.5) when expressed in degrees is

0,0 = 27.41550°. (1.30)

Using (1.30) and the corresponding value of % for Venus in (1.28), we get the

magnitude of the the second correction for Venus to be
¢z (Venus) = 178.49242 (in thirds).

The second correction including the sign for all the planets are listed in
Table 1.9.

Since ¢, is subtractive for Venus, the corrected mean longitude 6, is given
by
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Planet Sakabdasamskara (£cz)

in thirds (")
Sun No samskara

Moon —29.02818
Moon’s apogee —132.98564
Mars 52.49777
Mercury 489.97918
Jupiter —54.83100
Venus —178.49242
Saturn 23.33234
Moon’s node —111.37548

Table 1.9 Sakabdasamskaras corresponding to the number of solar days elapsed in the
current year for ahargana A = 1754000.

02 = 01 — C2
= —157.80355 x 3600 — 178.49242
= —568271.28254 (in thirds). (1.31)

In the above equation, since co is in thirds and #; is in minutes, the value of
the latter has been multiplied by 3600 in order to express that also in thirds.

Usually in the Indian astronomical tradition the longitudes are expressed
in rasis, degrees, minutes etc. Hence, we divide (1.31) first by 21600 in order
to get the result in degrees, and then further divide it by 30 in order to express
the corrected mean longitude in terms of rasi etc. Now,

—568271.28256
———— = —(.0876961856.
216000 x 30

Since the result is negative, we add 12 rasis to it. Thus
Ay = 12 — 0.087696186 = 11.9123038.

Here the integral part represents the rasi. Thus, Venus has completed 11 rasis
and is in the 12" rasi. By multiplying the fractional part by 30, we will get
the degrees etc. In this way, the corrected mean longitude of Venus is found
to be

Oy = 11727°22/8"48743"" .

In a similar manner the corrected mean longitudes of all the planets corre-
sponding to A = 1754000 have been computed and the results are listed in
Table 1.10.
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$akabda corrected mean longitude (02)
Planet sign | deg. | min. | sec. | thirds | fourths
(ras) | ) | O[] ") | (")
Sun 0 27 | 24 | 55| 48 22
Moon 1 14 | 23 | 18 14 9
Moon’s apogee 11 2 32 8 58 42
Mars 1 20 | 44 | 35 3 3
Mercury 8 26 | 27 | 22 46 19
Jupiter 10 8 41 6 38 21
Venus 11 27 | 22 | 8 48 43
Saturn 11 2 37 | 47 39 8
Moon’s node 4 1 26 | 18 55 30

Table 1.10 Sakabda corrected mean longitudes of the planets for the ahargana A =
1754000.

9.93 WUSYTARTITY

1.13 Obtaining the khandas and the dhruvas

It is evident from the procedure for the computation of mean longitudes of
planets from the kalyahargana, outlined in the previous sections, that the
process involves handling huge numbers such as the ahargana, the revolution
numbers and the number of civil days in a mahayuga. It is therefore very
important to arrive at procedures that would simplify the arithmetical oper-
ations. One of the main objectives of this text Karanapaddhati is to describe
methods by which such a simplification can be achieved, and in this connection
the author introduces several new concepts and techniques that are not found
in the siddhantic texts. In particular, the notions of khandas and dhruvas are
quite important and play a key role in simplifying many of the calculations.

The next couple of verses outline the procedures for obtaining the khandas
and dhruvas.

9.93.9 GUSHI T IR
1.13.1 Procedure for obtaining the khandas

TTATs: T TaT oG RId IoaiT:
TET: 1 HIAIATOT: FUSHAT TR |

U TeN: = U9 ST T: 31W: GeT:, AT Hl: s o oToT: |

tacchesonah = dhibhavangaih vibhajya yah Sesah labdhah, tena unah kalidinaganah |
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[T AT GITOROTAT ST IE[HTHT:
YR AT TRl s g: 11 9% |l

dhibhavangaih kalidinaganallabhyate gunyasamjnah
tacchesonah kalidinaganah khandasamgnio grahanam |
gunyat tattadbhaganagunitat unamurcchasubhaptah
khetastungastribhavanayutah sadbhasuddho’tra rahuh || 14 ||

The quotient obtained by dividing the ahargana (kalidinagana) by 3449 (dhib-
havanga) is gunya; the remainder subtracted from the ahargana is known as the
khanda of the planets. The results obtained by multiplying the gunya by respective
revolution numbers (bhaganas) [of the planets] and dividing by 457500 (anamaurc-
chasubha) are [the uncorrected dhruvas of] the planets. In the case of Turiga (Moon’s
apogee) three rasis are added to the result and in the case of Rahu (Moon’s node)
the result has to be subtracted from six rasis.

The above verse essentially outlines the procedure for obtaining khandas. The
term khanda literally means ‘a part’. However, in the above verse, it refers to
the aharganakhanda, a certain number of civil days that have already elapsed
since a given epoch. The mean longitudes at the end of the khanda are called
khandantyadhruvas, or simply dhruvas of the planets. We now proceed to
explain the procedure to obtain the uncorrected mean longitude (without the
“$akabda-samskara”) as outlined in the verse.

Let A represent the ahargana for the desired day. When this is divided by
3449 (dhibhavariga) we get,

A r
3449 G+ 3449°

(1.32)

Here the quotient G is called gunya, and the remainder r the Sesa. Now, the
khanda (K) is defined as

K=A—r=3449 x G. (1.33)

From the above equation it is evident that khanda represents a certain large
chunk of ahargana that is an integral multiple of 3449. If R represents the
revolutions made by the planet in a mahayuga, then the uncorrected mean
longitude of the planet at the end of the khanda is stated to be

~_ GxR
©457500°

k0 (1.34)

The number 457500 appearing in the above equation is obtained by dividing
the total number of civil days in a mahayuga D, by 3449.

D. 1577917500
3449~ 3449

Using (1.35) and (1.33) in (1.34) we have

= 457500. (1.35)
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p K xR
kO — Dc )

(1.36)

which is the standard expression for obtaining the mean longitudes. It should
be kept in mind that what we are considering here is only the uncorrected
mean longitude.

Illustrative example

We shall now find the khanda and dhruvas of the planets corresponding to the
ahargana A = 1754000 for which the mean longitudes were computed earlier.
Dividing A by 3449, we get the gunya G to be 508. That is,

1754000 1908
As per the prescription, the remainder r = 1908 when subtracted from A gives
the khanda
K = 1754000 — 1908 = 1752092.

We know that the revolution made by the Moon in a Mahayuga is 57753336.
From (1.34), the mean longitude of the Moon at the end of the khanda 1752092
may be obtained as follows:

508 x 57753336
Oro (Moon) = © 457500

= 64128.294399. (1.38)

This shows that at the end of the khanda, Moon has completed 64128 revo-
lutions and 3 signs (0.294399 x 12 = 3.532799). By multiplying the fractional
part by 30 etc., we obtain the uncorrected mean longitude of the Moon at
khandantya to be

Oro (Moon) = 3715°59'2"23"'59"".

It may be noted that the mean longitude 6y of the planet at the end of
the khanda is obtained by making use of the multiplier (G = 508) and the
divisor (457500) whose magnitudes are considerably smaller compared to the
magnitude of the khanda (1752092) and bhudina (1577917500). This is indeed
an advantage from the computational view point.

The uncorrected mean longitudes of all the other planets at the end of the
khanda are listed in Table 1.11. The next verse explains the Sakabdasamskara
to be applied to this mean planet in order to find the dhruva, D.
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Mean longitude (0xo) at the end
Planet of the khanda K = 1752092

sign | deg. | min. | sec. | thirds | fourths

casy | ) | O Len ] en | e

Sun 10 6 53 6 53 6

Moon 3 15 59 2 23 59

Moon’s apogee 4 32 33 12 23

Mars 4 9 15 41 54

Mercury 11 13 12 28 19 40

Jupiter 5 4 3 57 0 35

Venus 6 13 15 | 43 47 24

Saturn 8 27 9 25 8 27

Moon’s node 7 20 30 42 15 20

Table 1.11 The uncorrected khandantyadhruvas of the planets.

9.93.R YA ITRCITRIR:
1.13.2 Applying sakabdasamskara to find the dhruvas

o7 ferdiermifoTaTe FiRge g aid siey aiomed ad |
Tl EREduIdgd TUh $Ag [Aegahanay o gam: =: |1 94 ||

gunyat tithisagunitad giritunganighnam

potam tyajedatha dhanadigunahatam tat |
mandadiharahatapotahrtam yathoktam

kuryad vihanigamakaladisu te dhruvah syuh || 15 ||

[The number] 61 (pota) multiplied by 3623 (girituriga) has to be subtracted from
576 (tithisa) multiplied by the gunya. [The result thus obtained] should be mul-
tiplied by [the Sakabdagunakaras], 09 (dhana) etc. and divided by the product of
61 (pota) and the Sakabdaharakas, 85 (manda) etc. By applying [the results] in
minutes to the mean planets, the dhruvas can be obtained.

The above verse prescribes the sakabdasamskara that is to be applied to the
uncorrected mean longitude to obtain the dhruva D. If G represents the gunya,
and g and h the Sakabdagunakara and haraka of the planet respectively, then
the sakabda correction is given by

(G x 576 — 3623 x 61) x g

1.
h x 61 (1.39)

Cd =
Here it has been specifically stated that the result obtained should be applied
to the longitude of the planet expressed in minutes (vihangamakaladisu). This
implies that the correction given by (1.39) is in minutes. Multiplying the
fractional part by 60, seconds can be obtained. This correction ¢4 has to be
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applied positively in the case of Mercury, Mars and Saturn and negatively in
the case of others. That is,

D = 0y + ¢4 (for Mercury, Mars and Saturn),  (1.40q)
and D = 00 — cq (for other planets). (1.400)

We now explain the rationale for the above correction (1.39). It may be
recalled that while obtaining mean planets from A, two corrections ¢; and
co, given by (1.24) and (1.28), were to be applied. However, here only one
correction term is given. It can easily be seen that this single correction term
given by (1.39) is equivalent to the sum of the two correction terms given by
(1.24) and (1.28). Recalling the two expressions and finding their sum we have

(ys —444) x g = B0 x g x 10

cte= h h % 3600
990 g
— (4 — 3623+ 2 g, 1.41
(yk 36 3+360>><h (1.41)

Since ¢; is in minutes and co given in (1.28) is in thirds (tatparas), we have
divided the latter by 3600 in order to express that also in minutes in the above
expression.

In (1.41), 85 is the number of solar days elapsed in the current year and
360 is the number of solar days in a year. Therefore, %, say i, represents
fraction of the current year elapsed. Rewriting (1.41),

c1+ o = (g +y) — 3623) x %. (1.42)

Now (yx + yy) is the number of solar years elapsed corresponding to the
khanda K. Since 4320000 is the total number of the number of solar years
consisting of 1577917500 days, the number of solar years corresponding to K
can be expressed using the rule of three as

K % 4320000
1577917500 °

Dividing 4320000 and 1577917500 by 7500 (which is their G.C.D.), we get 576
and 210389. Thus the above equation becomes

Ye Yy = (1.43a)

K x 576 K x 576
210389 3449 x 61°

Substituting (1.43b) in (1.42), we get

Yr +Yr = (1.43b)



1.13 Obtaining the khandas and the dhruvas 27

K x 576 g
= - 2 <
ate (3449 <61 0 3) “h

<3§49 x 576 — 3623 x 61)
= x

RS

61

(G x 576 — 3623 x 61) x g
- h % 61 ’ (1.44)

which is the same as the correction (1.39), prescribed in the text.

Illustrative example

It was shown in the previous section that the uncorrected mean longitude of
the Moon corresponding to K = 1752092 is

Oro = 3"15°59'2"723"'59"" = 6359.04’.

Substituting appropriate values of G from (1.37) and also the values of ¢
and h from (Table 1.6) for the Moon in (1.39), we get the Sakabda correction
to be

cg (Moon) = 124.290260'. (1.45)
Planet Sakabdasamskara (cq)
in minutes (')

Sun No Samskara
Moon —124.29026
Moon’s apogee —569.40604
Mars +224.78026
Mercury +2097.94908
Jupiter —234.77049
Venus —764.25288
Saturn +99.90233
Moon’s node +476.87756

Table 1.12 Sakabdasamskara for the dhruvas of the planets.

Subtracting cg of Moon from 6y, we get the dhruva
D (Moon) = 6359.04 — 124.29026 = 6234.74974’.

Converting the above into signs, degrees etc. we have
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D (Moon) = 3713°54/44" 593"

The sakabdasamskaras for the other planets obtained in a similar manner
are listed in Table 1.12. These corrections when applied to their mean lon-
gitudes give the dhruvas or the sakabda-corrected mean longitudes of all the
planets at the end of the khanda (see Table 1.13).

Sakabda-corrected mean planet (dhruva D)
Planet corresponding to khanda K = 1752092
sign | deg. | min. | sec. | thirds | fourths
vas | ) | o fen] en | e
Sun 10 6 53 6 53
Moon 3 13 54 44 59
Moon’s apogee 4 0 3 8 50 38
Mars 4 10 54 2 30 49
Mercury 12 18 10 25 16 20
Jupiter 5 0 9 10 46 49
Venus 6 0 31 28 37 3
Saturn 8 28 49 19 16 52
Moon’s node 7 12 33 49 36 7

Table 1.13 Dhruvas corresponding to the khanda K = 1752092.

While Table 1.13 presents the dhruvas corresponding to a date that goes
back by three centuries, the dhruvas corresponding to a recent date are listed
in Table 1.14. Here we take the ahargana A = 1851974 corresponding to nija-
asadha-krsna-navamz, Saka 1891 (August 6, 1969 CE). Then we obtain the
corresponding khanda K = 1848664. The dhruvas for this khanda are listed in
Table 1.14.

9.9% mm

1.14 An alternative method for obtaining the khandas
and dhruvas

feTE FITOHTET BRA AT |
FSTOTTT TR 3T W farde 11 9% |l
T  AUS AT e FehTa AT AT |
EROT feATEgt FoToT: @oeHwE: 1l 9 |l
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Sakabda-corrected mean planet (dhruva D)
Planet corresponding to khanda K = 1848664
sign | deg. | min. | sec. | thirds | fourths
as | ) | O[] en | e
Sun 2 28 31 28 31 28
Moon 11 0 23 23 42 30
Moon’s apogee 2 14 44 24 27 36
Mars 11 7 10 41 33 48
Mercury 10 8 35 17 42 32
Jupiter 8 14 8 29 13 58
Venus 3 10 26 2 1 23
Saturn 8 18 24 37 31 57
Moon’s node 4 24 11 15 31 47

Table 1.14 Dhruvas corresponding to the khanda K = 1848664.

AT aT SHATEOTITHRA |
AT R gHAS ARRRadd 1 9¢ I
gRgn ?@%’(ﬁ*ﬂ SAOTE |
ATTaeag o ¥t ArafHerazmd 1l o) i
AT USOT el oar gIROT Hgad |
FATg T2y formTe dar d FYAT e 11 R0 |l

bhudinad dyuganenapto harastena svaparyayat |
bhaganadya grahastatra Sasyucce bhatrayam ksipet || 16 ||

pate tu mandalacchuddhe cakrardhamapi yojayet |
harena bhudinallabdho dyuganah khandasamgniakah || 17 ||

tatradhikamutonam va kramadrpadhanatmakam |
svasvamadhyamabhuktighnametad bhaskaraparyaye || 18 ||
haraghnagiriturigone dhanadisvagunahate |
mandadisvaharenapte svarnam samyabhidavasat || 19 ||

kramad dhanamrnam krtva tato harena samhrtam |
kuryad grahesu liptadyam tada te syurdhruva iha || 20 ||

The result (quotient) obtained by dividing the number of civil days (bhudina) in
a mahayuga by ahargana is the haraka. The number of revolutions of the planets
divided by that [haraka] would be the elapsed revolutions etc. of the planets. There,
three rasis should be added to the Moon’s apogee.

In the case of Rahu, the result has to be subtracted from twelve rasis and then six
rasis have to be added. The group of civil days obtained by dividing the bhudina
by haraka is a heap of days (dyugana) called the khanda.

The remainder which is in excess or less would be negative or positive respec-
tively. This is multiplied by the respective mean motions (madhyamabhuktis) of
the planets [and] the result is applied [to the following]. The number 3623 (giri-
tuniga) multiplied by the haraka is subtracted from the number of revolutions of
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the Sun. [The remainder| is multiplied by dhanadi-gunakaras and divided by the
mandadi-harakas of the respective planets.

Having added or subtracted [the result thus obtained] appropriately and divid-
ing by the haraka, [the result] in minutes should be applied to the mean planets
obtained earlier. Then, the resulting quantities would be the dhruvas.

The guiding principle in any choice of the khanda is that the dhruva should
be easily computable and the khandasesa should be as small as possible. One
method of obtaining the khanda and the dhruva was already discussed in
verse 14. It may be noted that the value of the khanda K as obtained from
that method would be necessarily a multiple of 3449, and hence the value of
khanda$esa which is the difference between the khanda and the ahargana can
be as large as 3449. The purpose of the alternative method presented in this
set of five verses (16-20) is to arrive at a value of khandasesa that could be
much smaller than the one obtained by the method outlined in verse 14.

We now proceed to explain this alternative procedure for finding the khanda
as also the dhruwvas of planets corresponding to the khanda. It is interesting to
note that the sakabdasamskara is also nicely incorporated in this procedure.
First, a quantity known as haraka (H) is defined as follows

H= [Dc]mt, (1.46)

where A is the ahargana, and ‘[ ];,+” denotes the integral part or quotient. Now,
if R represents the revolutions made by a planet, then the uncorrected mean
longitude for the khanda (which is defined below) is stated to be (6)g = %. As
usual, 90° is to be added to Moon’s apogee, and 180° to Rahu whose motion
is retrograde.

Having defined the haraka and mean longitude, the text defines khanda K
(see latter half of verse 17) as the ratio of the yugasavanadina D, and the
haraka H. That is,

K= {H‘Lm. (1.47)

It is further stated that the khanda is to be taken as the quotient K itself
when the remainder r, which is obtained when D, is divided by H, is less
than %; and when r is greater than %, the khanda is to be taken as K + 1.
We now discuss these two cases.

Casei: r < g

In this case, it is said that the khanda is to be taken to be the quotient itself.
That is,
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D
K=|=| . 1.48
Hence (1.48) may be written as
D.=(H x K) +r, (1.49)

where the remainder r is called adhikasesa.'?

Case ii: 7 > g

In this case it is said that the khanda is to be taken to be the quotient plus
one. That is,

D.
K= |— 1. 1.

Hence,

D,=HK —(H-r)
= HK —1'. (1.51)

Here the remainder ' = H — r, which is called ‘unasesa’ (unatmakah Sesah)
is subtractive in nature.
At this stage the text uses the mean daily motion of the planet which is

given by R X %ﬂ. The mean daily motion multiplied by r (adhikasSesa) or

7 (unasesa) is a quantity (which we denote by x) which will be considered
below. To this is applied another quantity (which we denote by y) which is
defined as follows:

x 3,

y = [bhaskaraparyaya — (hara x 3623)] (1.52)

The term bhaskaraparyaya literally means the revolutions made by the Sun
[in a mahayuga], and hence refers to the number 4320000. Therefore, we have

y = (4320000 — 3623 x H) x %. (1.53)

Now the corrected mean longitude at khandantya K which is what is called
‘Dhruva’ is stated to be:

2 The remainder ($esa) is the excess (adhika) when the product H x K is removed from
D., and hence called adhikasesa.
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D= (0)o+ (y+2)—~

H
R 1
= — +x)— 1.54
Lo, (1.54)
where the ‘—’ sign arises when r < %

Rationale behind the expression for dhruva

We now present the rationale behind the expression (1.54) given above. It may
be noted that the series of steps prescribed for finding the dhruvas commences
with the definition of haraka H, which is the integral part of the ratio of
yugasavanading and ahargana. This ratio itself can have a fractional part
which we denote as f. That is,

De
A

Rewriting the above D, = H x A+ f x A. Let f x A= qH + r. Then,

=H+f

D.=H(A+q)+r
=Hq +r, (1.55)

Depending upon the magnitude of H and r, we now consider two cases. If
r< %, we write

D.=K x H+r, (1.56)

where K = ¢’ = A + q is the khanda, and r the remainder (adhikaSesa). If
r > %, we write

D.,=KxH-—1, (1.57)

where K = ¢ +1= A+ g+ 1 is the khanda, and ' = H — r is unasesa.

We now return to the expression for dhruva D given in (1.54). This is valid
for both the cases r > % and r < % In what follows will consider the case
r > % It is well known that the mean longitude of a planet is given by R x DAC.
The mean longitude at the khandantya is what is known as dhruva (D) and

may be expressed as

K
D=Rx —+9, (1.58)
D,
where the additive § represents the sakabda correction. Since the case under
consideration is r > %7 we use the expression for D, given by (1.57) in (1.58).
Doing so, we have
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K

D=Rxgsm—m *°
R r’

1
1-=2)

~
~

It may be noted that, in (1.59) we have used the approximation 0
1+ z, when z < 1, with z = ﬁ Rewriting (1.59), we have

R R r!
D=—+4+——"+-Xx—=+49. 1.60
H KxH “H (1.60)
Considering (1.57), since ' <« K x H, to the “first order”, D, ~ H x K.
Therefore, ﬁ ~ Dﬁc = number of revolutions/day. This when converted
into minutes gives the mean daily motion g,, (madhyamabhukti). Hence the
correction to the mean longitude in minutes due to the “remainder term”

(second term in RHS of (1.60)) is given by

Gm X 1!
H b)

(1.61)

which is what is represented as # in (1.54). This is the case when the remain-
der is anadesa (r > %) In the case of adhikasesa (r < %) too, it can be seen
that one is lead to a similar result.!?

Now we shall show that the term % occuring in (1.54) exactly corresponds
to the $akabda correction d. For this, we first find the number of years between
the epoch Sakabda 444 or kalyabda 3623 and our khanda, K. The number of
years from the beginning of kali to the khanda K is

4320000
D, -

K x

Therefore, the number of years between Sakabda 444 and the khanda is

13 In this case D. = KH + r and hence,

1 1

D. KH

_
1+ KTH

Hence, in place of (1.60), we have

This leads to the ‘=’ sign in (1.54).
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432
><K—3623) %M—Z’)GZ?)

4320000
H

D,

1
= % (4320000 — 3623 x H).  (1.62)

Hence the sakabda correction due to above number of years between Sakabda
444 and the khanda K is given by

1
— (4320000 — 3623 x H) x 2, 1.63
H h

which is the same as % as given by (1.53). Hence the dhruva D is given by

(z+y) !

R
D~ —.
H

=+
This is the rationale behind (1.54), where the second term includes both the

corrections due to the “remainder term” and due to the Sakabdasamskara, in
minutes.

Illustrative example

We will now illustrate the above alternate method for finding the khanda and
the dhruva. We shall in particular obtain the dhruva of Moon for the same
ahargana A = 1754000, considered earlier. The haraka will be

D, 1577917500
H=|— = |— = 899.
|: A :|int |: 1754000 :| int

The uncorrected mean longitude is

R

o = 7
= % = 64241.75305895 revolutions (1.64)
= 16266.073415/, (1.65)

after subtracting the integral number of revolutions, 64241. In this case,

D, 1577917500

H 899
or D, = 899 x 1755191 + 791. (1.66)

Since the number r = 791 is greater than half of the divisor H, the khanda,
K = 1755191 + 1 = 1755192. The unasesa
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r’ =899 —r = 899 — 791 = 108.
The corrected mean longitude at the khanda, or the dhruva D, is given by

" X gm

D= (6) + 7

1 g
— —-(4320000 — 3623 x H) x =. 1.67
H( x H) x h (1.67)

Here (0)g = 16266.073415", 7 = 108, the madhyamagati of the Moon, g,, is
790.581', H = 899 and ¢ = —0.10588'. Substituting these values, we have

D (Moon) = 16235.8597996
= 970°35'51"35"16"". (1.68)

The dhruvas corresponding to the various planets are listed in Table 1.15.

dhruva
Planet (D)
sign degrees | minutes | seconds | thirds | fourths
(rasi) ©) @ ) () )
Sun 4 2 15 14 47 48
Moon 9 0 35 51 35 16
Moon’s apogee 3 15 16 56 6 23
Mars 10 15 22 57 8 21
Mercury 3 14 35 12 24 17
Jupiter 1 17 43 34 29 32
Venus 3 17 5 45 7 4
Saturn 0 12 29 35 11 17
Moon’s node 1 28 16 28 29 48

Table 1.15 Dhruvas of the planets corresponding to the khanda K = 1755192.

In this context the observation made in Malayalam Commentary II as a
prelude to the set of five verses described above is worth noting:'*

anantaram “dhibhavanga” ennatinekkal aduppamulla istadinam kontu khandanalum
dhruvanalum varuttuvan collunnu anjuslokanale kondu.

Hereafter, in the following five verses, [a procedure] is stated to obtain the khandas
and dhruvas for any desired day which is more closer [to the day compared to that
which is obtained from] dhibhavarga [method].

What the commentator is implying is that the alternative method for find-
ing the khandas given in verses 16-20 [Method 11| leads to khandas which are
closer to the given ahargana than the khandas which are obtained by following
the method outlined in verse 14 [Method IJ.

1 (KP 1956}, p. 25.
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Fig. 1.1 Difference between the ahargana and the khanda (obtained using Method IT)
for aharganas between 1600000 to 1800000.
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Fig. 1.2 Difference between the ahargana and the khanda (obtained using Method I) for
aharganas between 1600000 to 1800000.

In order to check the veracity of the claim made by the commentator, we
computed the khanda using both the methods for aharganas ranging from
1600000 (15" century) to 1800000 (20" century). In Figure 1.1 we plot the
difference between the ahargana and the khanda computed using Method II
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against the ahargana for this range at an interval of 10 days. We observe
that the maximum difference is ~ 2000. In Figure 1.2, we plot the difference
between the ahargana and the khanda obtained following Method I for the
same range of aharganas at an interval of 10 days. There we see the maximum
difference is 3449.

It is clear that Method II is more advantageous for aharganas A = 10°.
In Figure 1.3, we have plotted the difference between the ahargana and the
khanda following both the methods, for aharganas ranging from 10° to 2.5x 106
at an interval of 100 years. From the trend of the graph, it is seen that Method
II may be less advantageous for A > 2.1 x 10°. However, this cannot be
attributed as a drawback of Method II, since the karana texts are not expected
to be applicable for large range of values of A anyway.

3500
Method 1l

— Method |
3000
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Fig. 1.3 Difference between the ahargana and the khanda (using both Methods I, IT) for
aharganas ranging from 10° to 2.5 x 10°.
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1.15 Speciality in the sakabdasamskara for Rahu
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Sakabdasamskrtau pate Suddha eva bhavedrnam |
tato’nyatra dhanam vidyat tadbhuktibhaganadike || 21 ||

In the computed value of Rahu [subtracted from 360°] the Sakabda correction has
to be subtracted from the [mean longitude]. In other places where the revolutions
and madhyamagati are found, it has to be added.

In the case of Rahu, after obtaining the mean longitude from its number of
revolutions, as for other planets, it is subtracted from 6 rasis, as its motion is
retrograde and is located at 6 rasis at kalyadi. The Sakabdasamskara for Rahu
is prescribed to be negative, considering the retrograde nature of its motion
into account. This means that there is an increase in the revolution number
and madhyamagati of Rahu due to the sakabdasamskara.

9.9% TEHAYH:

1.16 The mean motion of the planets

SISO TR TosThhT:
i dgdTeaT TerheheT: TIaT: |||Q% I

arkaderbhaganabhyasta rasicakrasya liptikah |
bhudinairvihrtastesam madhyabhuktikalah smrtah || 22 ||

The revolution numbers of the planets, starting from the Sun etc., multiplied by
21600 and divided by the number of civil days in a mahayuga (bhudinas) would
result in their respective mean daily rate of motion (madhyabhukti) in minutes.

If g,, denotes the madhyamabhukti/ madhyamagati of the planet, then it is
given by

21600 x R

Gm = D,

The integral part of the above result obtained would be in minutes. From
the fractional part, the seconds etc. can be obtained. The madhyamabhuktis
of different planets obtained using (1.69) are given in Table 1.16.

(1.69)

9.9 TETYhH: ITHIGITRIR:

1.17 Sakabdasamskara for the mean motions
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Mean motion (madhyamagati)
Planet minutes|seconds |thirds|fourths
@) OEECRNED)
Sun 59 8 10 13
Moon 790 34 52 39
Moon’s apogee 6 40 59 30
Mars 31 26 27 48
Mercury 245 32 18 54
Jupiter 4 59 9 0
Venus 96 7 44 17
Saturn 2 0 22 41
Moon’s node 3 10 44 7

Table 1.16 The mean motion of the planets.

nrpahatadinakarabhogannijanijagunakairdhanadibhirgunitat |
mandadisvaharaptah candradigatau pratatparah karyah || 23 ||

The mean motion of the Sun (dinakarabhoga) multiplied by 10 (nrpa) has to be
[further] multiplied by the gunakaras, dhana etc., and divided by the harakas,
manda etc. The result in fourths (pratatparas) should be applied to the [mean]
motion (madhyamagatis) of the Moon etc.

If ¢, represents the sakabdasamskara to be applied to the madhyamagati of
the planet, then it is stated that

¢y = dinakarabhoga x 10 X %

= 59'8"10""13"" x 10 x % (1.70)

In (1.70), dinakarabhoga is the rate of motion of the Sun per day in minutes. It
has been clearly mentioned in the verse that the magnitude of the correction
given by (1.70) is in pratatparas (fourths).

The rationale behind (1.70) can be understood as follows. We know that
the sakabda correction applied to the planets per year (in minutes) is . Hence,
the samskara per day is

x = (in minutes), (1.71)

SlEs
SH[S

where R, represents the revolutions made by the Sun in a mahayuga and D,

the total number of civil days in a mahayuga. The ratio gs as such gives the

rate of motion of the Sun in revolutions per day. Thus this ratio B in (1.71)

can be replaced by %. Doing so, the samskara for one day is
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dinakarabhoga

31600 X % (in minutes). (1.72)

Now multipying this by 603, we would obtain the correction in fourths. Thus,
we have

dinakarabh
gati-samskara/ day = W % x 60°
= 59'8”10"13"" x 10 x %, (1.73)

which is the same as the expression (1.70) given in the text. The magnitude
of the correction (¢,.) to be applied to the mean motion of different planets in
fourths (tatparas) are listed in Table 1.17.

Planet Sakabdasamskara (cr)
in fourths (")
Sun No samskara
Moon 62.6148 ~ 63
Moon’s apogee 286.8546 ~ 287
Mars 113.2395 ~ 113
Mercury 1056.9018 ~ 1057
Jupiter 118.2723 ~ 118
Venus 385.0142 ~ 385
Saturn 50.3287 ~ 50
Moon’s node 240.2407 ~ 240

Table 1.17 Samskaras to be applied to the mean motion of planets.

The corrected mean motion of the planets (samskrta-madhyamagatis) are
given by

ghy = Gm + ¢, (for Mars, Mercury, (1.74)
Saturn and Moon’s node),
and = gm — ¢ (for Moon, Jupiter, (1.75)

Venus and Moon’s apogee).

It may be mentioned that unlike in the computation of mean longitudes,
¢ has to be added to the mean motion of Moon’s node, Rahu. The values of
g, for different planets are listed in Table 1.18. These values have also been
listed in the Commentary I in the form of vakyas.'® They have been tabulated

15 [KP 1956}, p. 30.
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in Table 1.19, where we have also indicated the few places where the vakyas
differ slightly from the computed values.

samskrta-madhyamagati
Planet minutes | seconds | thirds | fourths
() ) 1 ™)

Sun 59 08 10 13
Moon 790 34 51 36
Moon’s apogee 6 40 54 43
Mars 31 26 29 41
Mercury 245 32 36 31
Jupiter 4 59 07 02
Venus 96 07 37 52
Saturn 2 00 23 31
Moon’s node 3 10 48 7

Table 1.18 The corrected mean motion of planets.

samskrta madhyamagati
Planet min. | sec. | thirds | fourths vakya
O 1L 10
Sun 59 08 10 13 gopajnaya dinadhamah
Moon 790 | 34 51 36 candikeso bhargasnigdhosau
Moon’s apogee 6 40 54 43 gudhavaso 'nubhati
Mars 31 | 26 29 (42)*® | prabhur dharacakrapalah
Mercury 245 | 32 36 (32) ragr tumbururganesvarah
Jupiter 4 59 07 02 prajnasanno dharmavan
Venus 96 | 07 37 (51) kasisambasannacodah
Saturn 2 00 23 (32) prabalah prajro narah
Moon’s node 3 10 | (44) (41) kavirvibhur nakulah

Table 1.19 The corrected mean motion of planets given in the Commentary I in the
form of vakyas.

16 The parentheses mark those places where the vakya values differ from those in Ta-
ble 1.18.



42 H g SThlE TR Y Mean planets and the sakabdasamskara
9.9¢ IOTHRT BRIGAIERFITT

1.18 Obtaining the hara and the dvitiyahara of a gunakara

T eI A TITE ER¥T ST
TR dIRed WIS 937 |

AR gRE aAIoTd A=aifegR g
FeAT ERTEATGIATSTgge e &2: 11 ¢ ||

istaghnat kudinat svaparyayahrto harastvathesto gunah
tatronadhikamannatatparahatam svarnatmakam paryaye |
saure harahate dhanadigunite mandadiharoddhrte
krtvanena harahataksitidinallabdho dvitiyo harah || 24 ||

The quotient obtained when any desired number is multiplied by the number of
civil days in a mahayuga (bhudina) and divided by the number of revolutions of the
planet would be the haraka, and this desired number is indeed the multiplicand
(guna). The remainder which is either less or in excess is multiplied by 21600
(annatatpara) and applied positively or negatively to the revolution number of the
Sun multiplied by the haraka and by the multipliers dhana etc., and divided by
the divisors manda etc. By the [result thus obtained], the haraka multiplied by the
bhudina has to be divided. The quotient would be the dvitiyahara.

Let x be an arbitrary number which is considered as the multiplicand (guna)
and R the number of revolutions of the planets. Now the product of x and
D,., divided by R may be expressed as

xz x D,

- :Q+%, (1.76)

where (@ is the quotient and r is the remainder. Introducing the notation H;
for the haraka, we consider the two possible cases that arise.

(i) If r < &, then

(1.77)

x D,
Hi = Q = [mR} s
int

and the remainder r is called adhikadesa as £ XRD < is in excess of the haraka,

H;.

. R
(ii) If » > 5, then .
X De
Hi=Q+1= [x] +1, (1.78)
R nt
and the remainder ' = R — r is called unadesa as LRDC is less than the
haraka.

Then, we compute one of the following quantities as the case may be
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y = H1 X 4320000 x % 41/ x 21600

and  y = Hy x 4320000 x % —rx 21600 (ifr < ).

ifr>—),

Now, the dvitiyahara Ho is defined in terms of H; as:

(1.79)

Hy = {Hl XDC] .
int

Y

Since H1 and D, are always positive, Ho would be negative, if y is negative,
and would be positive otherwise.

Explanation

This set of verses present an interesting method for simplifying the calculation
of the sakabda corrected mean longitude of the planets.
Let 6. be the Sakabda corrected mean longitude for ahargana A. That is,

_ AX R,
=5

0. (1.80)
where R, is the corrected revolution number after incorporating the sakab-
dasamskara (which is explained in the next verse). We can write 6, as

Axzx

R,

Now (as set forth in the next verse) R. = R+ 43%%880 x & as 4 is the correction

for the rate of motion per year in minutes and there are 4320000 years in a
mahayuga. We write R, as

B 4320000 g

RC—R{1+ 1600 xth}y (1.82)

and
vxDe _wxDe[ 4320000 g -t
R. R 21600 ~ h xR

xx D, xxD. 4320000 g

~ — . 1.

R R 21600 " hxR (1.83)

R
If’l"<§,
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I :H1+%, and
2 x D, r 4320000 g
~ T 1.84
R, Mt o oo X xR (1.84)
XD,

where the term == is approximated by H; in the Sakabdasamskara correc-
tion term. Hence,

xx D, Y
N TP S— 1.85
R, M~ B 21600° (1.85)
where
y = M1 x 4320000 x % — 7 % 21600.
Ifr > g, then
D !
z j% C=H, — %, and
x x D, Y
~H - 1.86
R, = R 21600 (1.86)

where y = H; x 4320000 x { 47’ x 21600. Hence, the expression for 6. will be

Axzx
96 = XD,
R.
N Axux
1
H1 — Bxote00 X Y
N Axz
1
Hi [1 ~ Rx21600 © 7—%}
Axz Axzx 1 y
~ X —| . 1.87
Hq + Hq {R x 21600 rH1:| ( )
This in terms of minutes reduces to
X x Axzx y
0. (i in) ~ x 21600 X =,
(in min) 7'[1 + TS T
Now, RH1 =~ = x D.. Hence,
. . X T A
0. (in min) =~ 7 x 21600 + (HITC). (1.88)
Y
The dvitiyahara Hs is defined in the verse as {lejD “} . Therefore,
nt
A
6. (in min) = 2% x 21600 + —— (1.89)

Hl H2 )
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The second term including Hs can be considered as a correction term as it is
much smaller.

Illustrative example

For the purpose of convenience, we choose the multiplicand x to be 100. With
this we will find out the hara (H;) and the dvitiyahara (H2) in the case of the

Moon. D 9636048
x x D,
_TXPe  _ gygg .y D000UES
R.. (Moon) t 57753336

Here, the remainder 9636048 is less than half of 57753336. So the remainder is
adhikasesa and the correction corresponding to that is negative. The haraka,
Hy = 2732. Now,

y = 2732 x 4320000 x 9 9636048 x 21600

h
= 2732 x 4320000 x (85) — 9636048 x 21600
= —209388285741.1765.

Substituting the values in (1.79) the dvitiyaharaka Hs is found to be

= —21.

{ 2732 x 1577917500 ]
HQ = =
int

—209388285741.1765

Here Ho is negative. The value of H; and Hs corresponding to x = 100 for
the other planets are also found in a similar manner and these are listed in
Table 1.20.

Planet || Hi | Ha |
Sun 36526 | 4681
Moon 2732 -21
Moon’s apogee || 323199 | -756
Mars 68700 | 1865
Mercury 8797 191
Jupiter 433227 | -1817
Venus 22470 | -1014
Saturn 1076606 | 4307
Moon’s node 679475 | -899

Table 1.20 The first and second harakas of the planets for z = 100.
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Similarly we have computed the first and second harakas for x = 1 and
x = 50 and the values are listed in Tables 1.21 and 1.22.

Planet || Ha | Ha |
Sun 365 -23
Moon 27 0
Moon’s apogee 88 11
Mars 225 7
Mercury 687 1865
Jupiter 4332 | -1161
venus 10766 | 4525
Saturn 3232 | -768
Moon’s node 6795 | -1004

Table 1.21 The first and second harakas of the planets for z = 1.

Planet || Hi | Ha |
Sun 18263 4681
Moon 1366 -2
Moon’s apogee 4398 —44
Mars 11235 | —1014
Mercury 3435 1865
Jupiter 216614 | —18563
Venus 538303 | 4307
Saturn 161599 | —744
Moon’s node 339737 | —895

Table 1.22 The first and second harakas of the planets for z = 50.
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9.9% TEIAATUTT IThTEHHIR:

1.19 Sakabdasamskara for the number of revolutions of the
planets

AHE T STOTHT SR AT e T |
TIEERIT STITOTY ShTaT: T of ARPaaaan: ¥: 11y |

jnanindranighna gunaka dhanadya
mandadiharairvihrta yathoktam |
candradikanam bhaganesu karyah

tada tu te samskrtaparyayah syub || 25 ||

The number 200 (jiianindra) is multiplied by the multipliers dhana etc., and divided
by the divisors manda etc., of the respective planets. The results when applied to
the revolution numbers (bhaganas) of the planets starting from Moon etc., would
give the corrected revolutions (samskrtaparyayas).

If R. denotes the corrected bhagana of the planets, referred to as samskrta-
paryaya in the above verse, then

R. =R+ A. (1.90)
where, A is the $akabda correction and is given by
A jnanindra X gunaka

N hara
~ 200x g
=—

(1.91)

It may be noted that { is the correction to the rate of motion of the mean
planet per year in minutes. Hence, ﬁ x { is the correction per year in revo-
lutions. Therefore, the correction to the number of revolutions in a mahayuga
is given by

4320000

200 x g
21600 ’

g

X — =
h h

as stated above.
It may also be noted that for the Sun, there is no samskara. The corrected

revolutions of all the planets are listed in Table 1.23.
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Planet samskrta-paryayas | asamskrta-paryayas
(Re) (R)
Sun 4320000 4320000
Moon 57753314. 823529 57753336
Moon’s apogee 488121.985075 488219
Mars 2296862.297872 2296824
Mercury 17937377.446809 17937020
Jupiter 364184.000000 364224
Venus 7022257.787234 7022388
Saturn 146581.021277 146564
Moon’s node 232307.250000 232226

Table 1.23 Corrected and uncorrected revolutions of planets in a mahayuga.

9.20 TR AT TR+ :

1.20 Relation between the kaksyas of planets

SIATAThXI Ed*%HJIUIWI%I?I%#*’-IIaﬁ?

GeH feaarharsT T a i amega |

HEAT T THIA: TIIIEAT HeAT TETOT I
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AT HEIR] WM G hmd: |1 R0 ||

I[OT A ST hYST daT Tehedd g2f TET0TH |

HSTIHE OTRIST BRT TShIcHdT HsTrerrdr | ¢ |

ajnanantakara hatendubhaganastvakasakaksya tatah
khetanam divasoktayojanagatirdhatridinairuddhrta |
kaksya ya nabhasah svaparyayahrta kaksya grahanam raveh
kaksya nitisamahata nigadita naksatrakaksya budhaih || 26 ||

athava nayanabhyasta madhyabhuktikala vidhoh |
svasvakaksyasu khetanam dinayojanabhuktayah || 27 ||

guno bhaved yojanabhuktiresa tada svakaksyaiva haro grahanam |
kalagatisced gunako’tra haro bhacakralipta nijamadhyanitau || 28 ||

[The number] 216000 (ajrianantakara) multiplied by the revolutions of Moon is
called the akasakaksya. [This akasakaksya] divided by the number of civil days
gives the [common] mean daily motion in yojanas (dinayojanagati) of the planets.
The akasakaksya divided by the revolutions of the planets give the orbits (kaksyas)
of the planets. It has been said by the learned that the orbit of the Sun multiplied
by 60 (niti) would be the naksatra-kaksya.
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Or else, the mean motion (madhyamabhukti) of the Moon in minutes multiplied by
10 (nayana) would be the [common] mean daily motion in yojanas (dinayojanagati)
of the planets in their respective orbits.

While finding the mean longitudes of the planets, if dinayojanabhukti is the
gunakara then the respective kaksyas would be the harakas. If the daily motion
of the planets in minutes would be gunaka then 21600 (bhacakralipta) would be
the hara.

The mean linear velocity of all the planets is assumed to be the same
in the Indian astronomical texts. Hence the mean daily motion in yojanas
(dinayojanagati) is the same for all the planets. The akasakaksya (S) or the
total distance covered by each planet is stated to be

S = 216000 x no. of Moon’s revolutions
= 12474720576000 yojanas, (1.92)

and dinayojanagati (V') is given by

S

V =
De

~ 7906. (1.93)
Here, 216000 yojanas is the kaksya of the Moon itself. The kaksya of a planet
(0), is defined by:
_ akasakaksya _ i (1.94)
svaparyaya R.
The value of the kaksyas of different planets obtained by substituting their
revolution number R, in (1.94), are listed in Table 1.24.

| Planet || kaksya (in yojanas) |
Sun 2887666.800000
Moon 216000.000000
Moon’s apogee || 25551485.247400
Mars 5431291.459859
Mercury 695473.416208
Jupiter 34250133.368477
Venus 1776421.436127
Saturn 85114493.163396
Moon’s node 53718018.550894

Table 1.24 The kaksyas of planets.

In the last quarter of verse 26 it has been stated that the kaksya of the Sun
multiplied by 60 gives the naksatrakaksya. That is,
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naksatrakaksya = 2887666.799 x 60 ~ 173260008.

Now the madhyamabhukti of the Moon is 790.581’. This multiplied by 10 will
also give the common dinayojanabhukti of the planets. That is,

V = 790.581 x 10 ~ 7906, (1.95)

which is the same as (1.93)
Let 6 be the mean longitude at the end of the ahargana A in revolutions,
then

AxV
9 =
0]
A x g/, (in min.)
= m 1.
21600 (1.96)
These relations are a direct consequence of (1.93), as
v S R,
5 - DCO == ch (1.97)
and R. x 21600
gy, (in min.) = Te X 2100 (1.98)

D,



Chapter 2

Check for
updates

Obtaining smaller gunas and haras

R.9 TETIT HEFUTHRERHEIT]

2.1 Definition of the mahagunakaras and mahaharas of the
planets

TRTTQETRITOTAT ITOTT AT
AR OTIAT OO ;|

o ERT:
HIRHT AETIOTERTR gasaaat: 119 |l

mandadiharagunita bhagana yutona
Jjranindrasamgunadhanadigunairgunah syuh |
mandadiharahatabhudivasasca harah
prokta mahagunaharasta ime’pavartyah || 1 ||

The product of 200 (jnanindra) and the [Sakabdal-gunakaras, beginning with dhana
(9), has to be added to or subtracted from the product of the [Sakabda]-haras [of
the planets], beginning with manda (85), and their respective revolution numbers.
These are gunas [of the planets]. The [$akabdal-haras, beginning with manda, mul-
tiplied by the the number of civil days (bhudina) in a mahayuga are the haras.
These are the mahagunas and mahaharas, whose apavartana is to be done (they
have to be factored by their GCD).

In the previous chapter, the methods outlined for obtaining the mean plan-
ets essentially involved multiplication of the ahargana A by the revolution
numbers of the respective planets and division by the civil days in a mahayuga.
The mean longitudes of the planets thus obtained were further refined by ap-
plying the sakabdasamskara. The same mean longitudes can also be obtained
straightaway by multiplying and dividing the ahargana by certain multipliers
and divisors respectively called the mahagunakaras and mahaharas.

Let G be the mahagunakara of the planets. They are given by
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G =R xh+200x g (for Mars, Mer., Sat. & Moon’s nodes).  (2.1)
= R x h—200 x g (for the other planets).

The mahahara (H) for all the planets is the product of the bhudina and the
respective Sakabdahara.
H=D,x h.

For the Sun, the mahaguna and mahahara are its own revolution number and
the bhudina respectively. That is,

G = 4320000,
and  H = 1577917500. (2.3)

The values of mahagunakaras and mahaharas of all the other planets are listed
in Table 2.1, along with the vakyas given in Commentary 1.}

Now the ratio of the $akabda corrected number of revolutions (see section
1. 13) to the number of civil days in a mahayuga is

200 x g
&_Rﬁ: —
D. D,
Rxh + 200 % g
= . 2.4
D. x h (2:4)

It is the numerator and denominator of (2.4) that are referred to as the
mahagunakaras and the mahaharas respectively.

R.R TSOTERMIATT ATTANTHAT

2.2 The process of apavartana for obtaining the
drdhagunaharas

TSR0 21 WTEIad= |

o ot fegat Tt TeremETafaar 1R 1

rasyoranyonyaharane Sesah syadapavartanam |
tena tau vihrtau rase drdhakhyavapavartitau || 2 ||

In the process of mutual division of the two rasis, whatever remains is apavartana.
[The results obtained by dividing] the two rasis by that apavartana are called the
drdhas.

L {KP 1956}, pp. 61-62.
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2.2 The process of apavartana for obtaining the drdhagunaharas
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It may be noted from Table 2.1, that the mahagunakaras and mahaharas are
very large numbers and performing computations with them as such would be
a difficult task. The above verse prescribes a certain procedure to obtain what
are known as drdhagunakaras and drdhaharakas by which the computations
are made simpler.

The principle behind the desired simplification lies in finding the great-
est common divisor (GCD), which is called apavartana.? The name apavar-
tana, which literally means changing or transforming, is employed to refer to
the GCD, using which the mahagunakaras and mahaharas are transformed
into drdhagunakaras and drdhaharas. The drdhagunakaras, drdhaharas and
the apavartana corresponding to the mahagunaharas of all the planets are
listed in Table 2.2.

By taking a specific example we shall now illustrate the apavartana process
leading to the drdhagunakaras and drdhaharas. In the case of the Sun, the
mahagunakara and the mahahara, are: G = 4320000, H = 1577917500. Now
dividing H by G,

1577917500 1117500

4320000 =365+ 4320000’

the remainder is 1117500. Again we divide G by this remainder, we have

4320000 +9mmo
1117500 1117500°

The remainder now obtained is 967500. Again dividing 1117500 by 967500

1117500 +_150000
967500 967500’

a remainder of 150000 is obtained. Continuing the process,

967500 6 1
150000 91 1 ’
. 7500
15000

we obtain the remainder 7500. At this stage, when we divide 15000 by 7500,
the remainder becomes zero. The number 7500, which is the last non-zero re-
mainder, is called the apavartana. The quantities obtained by dividing 4320000
and 1577917500 by 7500 are called drdhagunakara (Gg) and drdhahara (Hy)
respectively, and in the case of the Sun they are 576 and 210389 respectively.
G4 and Hy found in a similar manner for all the other planets are listed in

2 The word apavartana is employed in the above verse in two senses: (i) in the verbal
form and (ii) in the noun form. In the noun form it refers to the GCD. The verbal form
which appears towards the end of the verse refers to the process of factoring out the GCD
from both the numerator and the denominator.
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Table 2.2. They have also been presented in the form of vakyas in the Com-
mentary I? and these are listed in Table 2.3.

Moon’s node vajram

gudhasiddhirnrgah

Planct apavartana | drdhagunakara drdhahara
(G.C.D.) Ga Hy
Sun 7500 576 210389
Moon 60 81817196 2235383125
Moon’s apogee 6 10901391 35240157500
Mars 60 8996044 6180176875
Mercury 100 42152837 3708106125
Jupiter 940 91046 394479375
Venus 60 27503843 6180176875
Saturn 60 574109 6180176875
Moon’s node 24 309743 2103890000
Table 2.2 The drdhagunakaras and the drdhaharas of planets.
Planet apavartana drdhagunakara drdhahara
(G.C.D.) Ga Hq
Sun anamasam tatsama dhijagannipuram
Moon nitih colikatha kunjapade Satrukulam halvmallarindre
Moon’s apogee tajinah | yuddhagah pinadhanuskah | jianasamsi medhyajnio vidrumarngah
Mars nitih bhuvane stabdho dhijit masajatasampanno jayantah
Mercury anika sangaharo Sankaro’bhiut madripatirnayadanasangah
Jupiter avadhi tattvajnayoddha mamsagandhisabhaviddholam
Venus nrttam garbhajalaghno matsari masajatasampanno jayantah
Saturn neta dhanisko vasuman masagjatasampanno jayantah

anunanidhirjalanam puaram

Table 2.3 Vakyas for the drdhagunakaras and the drdhaharas (see Table 2.2) as given

in the Commentary I.

3 {KP 1956}, pp. 63-66.
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R.3 TENOTHRRHETERTST TEHIRAIAH

2.3 Mean longitudes of the planets from maha-gunakaras
and mahaharas

HEFIUTHTE, FITOME T HETERTHT WITvMaweT: |
THedTTaST: YT h: AHAT: BT o 7= gaar fazier: || 3 1|

mahagunaghnad dyuganadabhistat
mahaharapta bhaganadikhetah |
kalyadijaih svadhruvakaih sametah
phani tu tatra dhruvato visodhyah || 3 ||

The desired ahargana when multiplied by the mahagunakaras and divided by the
mahaharas would give the elapsed revolutions etc. of the planets. The initial po-
sition of the planets at the beginning of kali (kalyadidhruvas) are to be added [to
them]. In the case of Rahu, the result has to be subtracted from the [Kalidhruva.

The formula prescribed in the above verse for obtaining the mean longitude
0. of a planet from the mahagunakaras (G) and the mahaharas (H) may be

represented as

AxG
ac = ekO =+ o (25)

where A represents the ahargana and 09 the kalyadidhruva of the planet
(discussed in the next verse). While the sign ‘+’ is to be chosen for all the
planets including Moon’s apogee; in the case of Rahu, ‘—’ is to be chosen since
its motion is retrograde.

Illustrative example

We shall illustrate the procedure for finding the mean longitude of the Moon.
Let the ahargana chosen be A = 1754000.

From Table 2.1, the mahagunakara (G) and mahahara (H) of the Moon are
4909031760 and 134122987500 respectively.* Hence,

Ax G 1754000 x 4909031760

H 134122987500
= 64198.105541304023. (2.6)

That is, at the end of 1754000 civil days the Moon has completed 64198 revo-
lutions, since the commencement of kaliyuga. The rasi, degrees etc., traversed
by the Moon in the 64199%" revolution is to be found from the fractional

4 We can use the drdhagunakara Gy = 81817196 and drdhahara Hy = 2235383125,
instead of G and H in the computation of the mean longitude.



2.4 Kalyadidhruvas of the planets 57

part. The mean longitude when expressed in rasis etc., may be written as
17‘7059/41//31///48///1-

Adding the kalyadidhruva® i to the value of the longitude obtained above,
we get the actual value of the mean longitude of the Moon to be

0. (Moon) = 1"7°59'41"31""48"" 4+ 076°23'36" 42" 21"
=1714°23'18"14"9"". (2.7)

The mean longitudes of all the other planets obtained in a similar manner
using the mahagunakaras and mahaharas are listed in Table 2.4.

mean longitudes (6.) obtained from mahagunakaras
Planet and mahaharas corresponding to A = 1754000
sign | degrees | minutes | seconds | thirds | fourths
ca)| o | o | o ]
Sun 0 27 24 55 48 22
Moon 1 14 23 18 14 9
Moon’s apogee 11 2 32 8 58 42
Mars 1 20 44 35 3 3
Mercury 8 26 27 22 46 19
Jupiter 10 8 41 6 38 21
Venus 11 27 22 8 48 43
Saturn 11 2 37 47 39 8
Moon’s node 4 1 26 18 55 30

Table 2.4 Mean longitudes of the planets corresponding to A = 1754000 computed
using the mahagunakaras and mahaharas.

2.8 RO HedTSLaT:
2.4 Kalyadidhruvas of the planets

Tﬁaﬁaﬁmmﬁwﬁrﬂ?@g@w
TS TSTIRRTT ST foSHTEH: RT: ShATT |

ﬁmﬁwﬁaﬁwﬁwgﬂﬁﬂm

TFT TGRS T Sghae: 1l ¢ |l

5 The kalyadidhruvas are presented in Table 2.5.
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gotrottunigahatad dhanadigunato mandadiharoddhrtah
kalyadau rajanikaradivihaga liptadayah syuh kramat |
tesamindujabhumijarkatanayah Sodhyah punarmandalat
tunigo bhatrayasamyutastuhinagoh patastu sadbhanvitah || 4 ||

The multipliers commencing with 9 (dhana) are to be multiplied by 3623 (gotrot-
tunga) and divided by the divisors 85 (manda) etc. [The results obtained would
be] the initial positions at the beginning of kali (kalyadidhruva), in minutes, of
the planets starting with Moon (rajanikara), in order. Further, among them [the
dhruvas of] Mercury, Mars and Saturn have to be subtracted from 12 rasis; and to
[the dhruva of] Moon’s apogee (turnga) three rasis are to be added; and to that of
Rahu 6 rasis should be added.

The number 3623 appearing in the above verse is the kalyabda correspond-
ing to the Sakabda 444. It may be recalled that in prescribing the sakab-
dasamskara (see verse 27 of chapter 1) there is an implicit assumption that if
we compute the mean longitudes of the planets based on the Aryabhatan pa-
rameters it should give accurate results at the end of Kalyabda 3623 (Sakabda
444), as the Sakabda-samskara for that year is taken to be zero.

Now, the sakabda correction is applied starting from the end of the kali year
3623. However, if we want to make all our calculations by using the kalyahar-
gana, then we will have to modify the kalyadidhruvas prescribed by Aryab-
hata. The sakabdasamskara was such that the madhyamagatis of the Moon,
its apogee, Jupiter and Venus got reduced. Therefore, the mean longitudes ob-
tained by mahagunakara would be less than those obtained by employing the
values given in Aryabhatiya. The amounts by which they become deficient over
a period of 3623 years have to be added to the Aryabhatiya-dhruvas. In the
case of Mars, Mercury and Saturn, these amounts have to be subtracted from
the Aryabhatiya-dhruvas. Since the Aryabhatiya-dhruvas for these planets are
zero, they have to be subtracted from 12 rasis.

We know that the samskara to be applied per year is 7. Therefore, for 3623
years it would be

g
3623 x <.
“h

This would be in minutes and has to be added to the Aryabhatiya-dhruvas in
the case of the Moon, Jupiter and Venus. Since Aryabhatiya-dhruvas are zero
for all the planets except for the apogee and the node of the Moon, the above
values would themselves be the kalyadidhruva. That is,

Oro = 3623 x % (for Moon, Jupiter and Venus).
But in the case of the apogee of the Moon, three rasis are to be added. Hence,

Oro = 3623 X % +90° (for the apogee of Moon).

In the case of the other three planets, namely Mars, Mercury and Saturn the
above values have to be subtracted from 12 rasis. That is,
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Oro = 360° — 3623 x % (for Mars, Mercury and Saturn).

In the case of Rahu, the madhyamagati is increased because of Sakab-
dasamskara, but the motion is retrograde. The Aryabhatiya-dhruva for (Rahu)
is 180°. Hence its kalyadidhruva is

Oro = 3623 x % +180° (for Rahu).

Illustrative example

We now illustrate the prescription given in the above verse by finding out
the kalyadidhruvas of two planets, namely Moon and Mercury. In the case of
Moon, g and h are 9 and 85 respectively. Hence,

9
Oro (Moon) = 3623 x 5= 383.6117647058’,

since the Aryabhatiya-dhruvae for Moon is zero. By converting this into degrees
etc. we have
Oro (Moon) = 6°23'36"42""21""".

The values of g and h for Mercury are 420 and 235 respectively. Hence,
420 ,
|0xo (Mercury)| = 3623 x 238 = 6475.14893617".

This has to be subtracted from 12 rasis. Therefore, the kalyadi-dhruva for
Mercury is
Oro (Mercury) = 8712°4'51"73"49"" .

The kalyadi-dhruvas for the various planets are listed in Table 2.5. The
Malayalam Commentaries I and II give the kalyadidhruvas in terms of vakyas.

.Y TETIHEIRATSHAT

2.5 The Vallyupasamhara technique

Having delineated the procedure for obtaining the mean longitudes by mak-
ing use of the mahagunakaras, mahaharas and appropriate dhruvas of the
planets, the text proceeds to explain two methods by which the ratio of two
large integers can be systematically and successively approximated by ratios

5 {KP 1956}, pp. 68-69.
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kalyadidhruvas of the planets

Planet sign |degrees|minutes|seconds|thirds|fourths
casp]l @ | o | o [em]em
Sun 0 0 0 0 0 0
Moon 0 6 23 36 42 21
Moon’s apogee|| 3 29 17 25 31 20
Mars 11 18 26 14 2 33
Mercury 8 12 4 51 3 49
Jupiter 0 12 4 35 59 59
Venus 1 9 18 48 15 19
Saturn 11 24 51 39 34 28
Moon’s node 6 24 31 50 37 30

Table 2.5 Kalyadidhruvas of the planets.

of smaller integers. This technique, is referred to as vallyupasamhara and the
two methods by which the simplification is achieved are explained in the fol-
lowing sections. As we shall see, the vallyupasamhara technique is essentially
the same as the technique of continued fraction expansion.

4.9 T IHER TITTHR:

2.5.1 Vallyupasamhara: Method I

AT TSI g PIoTeRT ATa T h Seddl
ATTGSTRSI WA T RIS T: THAT |
AfgTeT s IfoTe X dew st
AT fafryag JoTe=t Tt ARGt 11y |

anyonyam vibhajanmahagunaharau yavadvibhakte lpata
tavallabdhaphalani rapamapi ca nyasyedadho’dhah kramat |
praksipyantyamupantimena gunite svordhve tadantyam tyajet
bhuyo 'pyesa vidhirbhaved gunaharau syatam tadordhvasthitau || 5 ||

Divide the mahagunakara and mahahara mutually by each other till the remainder
becomes small. Having placed the successive quotients (labdaphalas) obtained till
then one below the other with 1 [at the bottom most place], the product of the
penultimate (upantima) number and the one preceding [to that] is added to the
last number. [Then] the last number is dropped. Again this process is repeated.
The two [numbers] that remain at the top would then be the [smaller] guna and
hara.

Let G and H denote the two large numbers corresponding to the mahaguna
and mahahara respectively, usually G < H. The above verse presents a certain
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method by which we can obtain a set of optimal approximations to % In other
words, the method helps us to obtain smaller gunakaras and harakas whose
ratios approximate the value of % As we shall see, this method is nothing
but finding approximation of a rational number by the convergents of the
continued fraction expansion of that number. Assuming H > G, we divide H
by G. Let

H 71

- q1 + rek

Here, ¢ is the first quotient and r; the first remainder. We now divide G by
r1 to obtain the second quotient (g2) and the second remainder (r2).

¢ =g+ Y
1 1

Repeating this process, we get the quotient g3 and the remainder rs.

T1 T3
— =g+ —.
T2 2
In general,
Tn—1 Tn41
=qn+1+ .
n r'n

Hence, the ratio g may be written as

H N 1
g 1 1
Q2 +

1

A N E S —
qn+1+-~-

This is the expression for g in terms of a continued fraction.”

The successive quotients q1, g2, g3 .....¢n+1 Obtained are referred to as valli-
phalas. These are placed one below the other with 1 at the bottom as shown
in the Table 2.6. By doing certain operations known as vallyupasamharae with
these valliphalas, one is led to the alpagunakara and alpaharaka as explained
below with the help of the Table 2.6.

Considering the first two columns in Table 2.6, it may be noted that the
entries in the second column are essentially the same as those in the first but
for two changes:

1. In the second column the last entry of the first column has been omitted.

2. The penultimate entry of the second column is equal to the sum of the
last entry and the product of the penultimate entry of the first column
and the one preceding it.

7 Further details regarding the continued fraction expansion of a rational number are
given in Appendix A.
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q1 q1 q1 H,
q2 q2 q2 Gn
q3 q3 q3 -
qa q4 qQs e —
Gn—1 gn-1 ((gn-1 X (gn X @nt1 + 1)) + Gn+1) = - —
gn (@n X gnt1+1) (gn X gn+1+1) -
Gn+1 Gn+1 — . —
1 J— P P

Table 2.6 Vallyupasamhara: Method 1.

By the phrase “bhuyo’pyesa vidhirbhavet” it is implied that the same procedure
is to be repeated in constructing the successive columns from the preceding
ones. This procedure has to be continued till we finally arrive at only two
terms. These two are known as alpagunakara (G,) and alpaharaka (H,,).

Rationale behind Vallyupasamhara Method I:

Consider the continued fraction expansion of g When 7,11 is small, this may
be approximated by

H 1
ENQI‘F 1
q2 + i
Q3+...+—1
Qn71+71
dn
dn+1
1
=q + 1
q2 + 1
Q3+...+q_1+ g1
QnXQn+1+1
1
=q + 1
q2 + 1
(]34—...4—(;[72+ Gn X gni1 11

(@n-1 % (gn X gn+1 + 1)) 4+ gnt+1

A comparison of the above expression with Table 2.6, clearly shows that the
penultimate elements of the different columns in Table 2.6 are the same as the
ones that are obtained in the continued fraction expansion. This explains the
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correspondence between the process of vallyupasamhara described in verse 5
and the continued fraction expansion of a rational number.

In the first stage (first column), we can counsider 1, ¢,1+1 and ¢, as the
last, penultimate and preceding entries. In the next stage, from the above
expression, we can see that ¢,41, (¢, Xgn+1+1) and ¢, are the corresponding
entries. Similarly, in the next stage, (¢n X qni1 + 1), (ga—1 X (gn X @ny1 +
1) + ¢n41) and g, o are the last, penultimate and the preceding entries. The
process is repeated further. This is precisely the process of vallyupasamhara
described in verse 5.

We now illustrate this method of vallyupasamhara by considering a specific
numerical example.

Illustrative example

Consider G = 576 and H = 210389 which are the drdhagunakara and the
drdhaharaka of the Sun. Dividing H by G, we get

H 210389 149
= =365+ —.
G 576 + 976

Here the quotient is 365 and the remainder is 149. We once again divide 576
by 149 to get 3 as the quotient and 129 as remainder. Repeating the process
of division we obtain the sequence of quotients or the wvalliphalas:

365, 3, 1, 6 and 2.

Here we have terminated the process of mutual divison with g,+1 = ¢5 = 2,
as r5 = 2 may be considered small. Placing these valliphalas one below the
other with 1 at the bottom, we have

365

— N O = W

The bottom most entry 1 is called antya or antima and the preceding entry
2 is called upantima. Multiplying 6 by 2 and adding 1, the result would be
13. According to the prescription given for constructing the next column, the
penultimate entry 2 of the previous column has to be made the last entry of
the present column. Then 6 has to be replaced by 13 and 1 has to be deleted.
Thus, the new valli becomes
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365 365
3 3
1 1
6 13
2 2
1

Repeating the process till only two terms remain in the last column, we
obtain the following array of numbers.

365 365 365 365 21185
3 3 3 58 58

1 1 15 15
6 13 13

2 2

1

Here, 58 and 21185 are the alpagunakara and alpahara of the Sun respec-
tively. Thus we have % as an approximation to % which is correct to
more than four decimal places.

This procedure leads to only one pair of alpagunakara and alpaharaka. The
text now proceeds to describe another method for obtaining several such pairs.

R.4.R TeegUaER fadayeER:

2.5.2 Vallyupasamhara: Method I1

A ATEAHTSIERFHS T IS =adq
THATT T SIS ZaIEa |

g?qﬁaawgwgﬁqqﬁ—rr ECEEIENEE]
T gIOTRTETS aT e T || &I

anyonyahrtabhajyaharakaphalam sarvam tvadho’dho nyaset
ekatradyaphalena hinamaparatraikam dvayoscopari |

kuryad vallyupasamhrtim hyuparitah purvapranasam vina

tyajyam tatprathamordhvagam haragunassistasca va svecchaya || 6 ||

The quotients obtained by dividing the guna and hara, mutually by each other,
have to be kept one below the other at one place. Place the same quotients [one
below the other| at another place after dropping the first result. Placing 1 above in
both the places, may the vallyupasamhara be done [as before| from the top without
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deleting the previous results. [However], 1 from the first column has to be dropped.
One can freely choose any of the remaining pairs as haras and gunas respectively.

Let ¢1, g2, g3 ... be the successive quotients. It is said in the verse that,
in the first place, all of them should be placed one below the other, whereas
in the other place, the same results have to be placed after omitting the first
quotient q;.

I|1I
1
Q|1
92 | q2
q3 | q3
G4 | qa
a5 | 45

Table 2.7 Arrangement of successive quotients (valliphalas) in the second method of
vallyupasamhara.

Now, placing 1 at the top in both the wvallis, we obtain columns I and II
as shown in Table 2.7. The process of vallyupasamhara has to be done from
the top. The way the successive entries are generated is shown in Table 2.8.
Here the subsequent columns generated from column I denoted by the index
‘n’ (I() give the set of harakas and those (II™)) generated from column IT
give the corresponding set of gunakas. Further it is said:

“tyajyam tatprathamordhvagam”.

That is, 1 at the top of the haraka column I in Table 2.8 has to be
dropped. Once we do this, the entries in column I and column IT™ can be
as such paired up to get various pairs of alpaharakas and alpagunakaras. For a
ratio %7 the different pairs (H;, G;) obtained this way are listed in Table 2.9.

Illustrative example

To illustrate this second method of wvallyupasamhara, we consider the
drdhaharaka (210389) and drdhagunakara (576) of the Sun, as in the pre-
vious example. Dividing the two numbers 210389 and 576 mutually, till the
remainder becomes either 0 or 1, we get

365, 3, 1, 6, 2, 4 and 2
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1@ @ 1

11 T 1

q1 q1 qq e Hy =q

Q@ q Xqg+1lqg xge+1 L. Ho=q xq+1

a3 g3 (x@e+l)Xg+aq .. Hs= (g1 xqz+1) X g3 +q
qn qn qn Hyp,=Hp-1 Xqn+ Hp_2

1 11 L 1t

11 r L G =1

q2 q2 qQ Ga = q2

@G @Xxgp+legxg+1 L. Gs=q2xq3+1

q4 qa (2 xg3+1)xqs+q2 . Gi=(g2xqgz+1)xXq+q
4n Q4n qn e Gn = anl X Qn + Gn72

Table 2.8 Generating the alpagunakaras and alpaharakas using the second method of
vallyupasamhara.

as successive quotients (valliphalas). We arrange them in two places one below
the other with 1 at the top.

Then we do wvallyupasamhara, as shown in Table 2.10. After deleting 1 in
the I(M-th column of Tables 2.10 we get the successive alpagunakaras and the
corresponding alpaharakas of the Sun which are listed in Table 2.11.

Tables C.1-C.8 in Appendix C list the alpagunakaras and alpaharakas, for
all the other planets, obtained in a similar manner.

As explained in Appendix A, the above technique of obtaining alpa-
gunakaras and the alpaharakas is essentially the same as the technique of
computing the convergents of a continued fraction.
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(H1,G1) = (q1, 1)

(H2,G2) = (1 x @2+ 1, ¢q2)

(Hs3,G3) = (((n x g2+ 1) X g3 +q1, g2 xg3+1)

67

(H1,Ga) = (1 x @2 +1) x g3 +q1) x qa + (q1 X g2+ 1), (g2 X g3 +1) X g1 + q2)

Table 2.9 Pairs of alpagunakaras and alpaharakas obtained using the second method of

vallyupasamhara.

I 1Y) 12 1@ M
1 1 1 1 1
365 365 365 365 Hi =365
3 1096 1096 1096 H> = 1096
1 1 1461 1461 Hs = 1461
6 6 6 9862 Hy = 9862
2 2 2 2 Hs = 21185
4 4 4 4 Hes = 94602
2 2 2 2 H; = 210389
n o® n® o 5L
1 1 1 1 Gi=1
3 3 3 3 G2 =3
1 4 Gs =14
6 6 21 27 Gy =27
2 2 58 Gs =58
4 4 4 G = 259
2 2 Gr =576

Table 2.10 Generating the alpagunakaras and alpaharakas using the second method of
vallyupasamhara for the haraka H = 210389 and gunakara G = 576 associated with Sun.

After presenting the method of vallyupasamhara, Putumana Somayaji dis-
cribes a technique by which the deviations of these approximate ratios from
the actual value can be minimized. This involves finding the so called dvitiya

and trtiyaharakas.
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alpagunakaras | alpaharakas
G H;

365

3 1096

1461

27 9862

58 21185

259 94602

576 210389

Table 2.11 The alpagunakaras and alpaharakas of Sun.

R.& emiforelieraReRm Tedagdagret

2.6 Better approximations to the rate of motion: Duvitiya
and trtiya-harakas

The following verses describe how the approximate rates of motion, f] , can be
improved by means of correction terms involving what are termed “dvztzya
and “ trtiya-harakas”.

T ERITOT HEFIOTEREIU0T daReay
TS SHHET HETERed ¥aed oS st |
ATFFAYRIEA BRATITdTg fEdar 8e:
AFBET T EAITITGERGAA 2<: 11 o |

svalpau haragunau mahagunaharaksunnau tayorantaram
svarnakhyam kramaso mahaharahate svalpe gune’lpe’dhike |
tenanantapurahatena harayorghatad dvitiyo harah
tacchistena tatha haratrayavadhallabdhastrtiyo harah || 7 ||

The difference between the products of the alpahara and maha-gunakara, and of
the mahahara and alpagunakara is considered to be positive or negative, depending
on whether the product of the mahahara and alpagunakara is respectively smaller
or greater [than the other|. [The quotient obtained] from the product of the two
haras when divided by that [difference] multiplied by 21600 (anantapura) is [called]
the dvitiya-hara (second divisor). The quotient obtained by dividing the product
of the three haras by the remainder is [called] trtiya-hara (third divisor).

Let G and H be the mahagunakara and mahdhdm and G; and H; be the
alpagunakara and alpahara, for some i. The ratio & 77 represents the number of
revolutions made by the planet per day. The ratio HZ obtained by the process
of vallyupasamhara is an approximation to this. This being the case, % can

be greater or smaller than % The difference between the two is the error in
the rate of motion per day. Denoting this difference by A4;, we have
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4 G G _GH-GH

" H H; = HH; (2:8)

Obviously, A; is positive when GH; > G;H and negative otherwise. As
such, A; represents the error in the rate of motion per day. The magnitude of
this, |4A;| has to be added to % if A; is positive, and subtracted otherwise.

We define ¢; through the relation:

¢; = GH; — G;H.

(In the next verse, ¢; would be identified with £r;, where r; is the remainder
in the process of mutual division of G and H, at the i*" stage).

To obtain the difference between the actual rate of motion % and its ap-
proximation g , in minutes per day, we have to multiply by 21600. Therefore,

(G - Gi) x 21600 = (GH_GH> x 21600

H H; HH;
bi
= 21 . 2.
% 21600 (2.9)
Now,
H x H; . €2
®; x 21600 Hai + é; x 21600’
where the dvitiya-hara, Ho; is given by
H x Hz
= , 2.10
# Lz)i x QIGOO]M (2:10)

with ‘[ J;n¢’ denoting the integral part, and ey; is the remainder when H x H; is
divided by ¢; x 21600. We may rewrite equation (2.10) including the remainder
term eo; as

H x HZ = (j)Z x 21600 x Hgi + €2;. (211)
Using (2.11) in (2.9),

¢ZX216007 1 B €94
Hx H; Mo Hoi x Hx H;'

(2.12)
Now the trtiya-haraka Hs; is defined by

(2.13)

7‘[32': |:’H21‘XHXH1‘:| '
int

€2

Using (2.13) in (2.12),
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G G; ¢; x 21600 1 1
— - — 21 == — . 2.14
(H Hl> % 600 H x Hi Hzi Hgi ( )

Hence

i 1
% x 21600 ~ g x 21600 +

— . 2.15
H; Hai  Hsi ( )

Thus it is seen that dvitiya-haraka and trtiya-harakae give the correction

terms to be applied to the approximate rate of motion %, to make it closer
G

to the actual rate of motion, .

R. TEPUTERTIEARIN: TdagRmaTq

2.7 The dvitiya-haraka in terms of the remainders in the
mutual division of mahagunas and mahaharas

2T At g aeRe oz Jardu=nforaHedrss gRd |
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yadva mitho vihrtaharagunotthasesaih
nutnatapatragunitairmahato tra harat |
tattaddharabhinihatad vikrtad dvitiya-
harah bhavantyrnadhanatmakaliptikanam || 8 ||

Or, [the quotients obtained] when the maha-hara multiplied by the [alpa] hara at
each stage is divided by the product of 21600 (nutnatapatra) and the remainders
arising from the mutual division of [mahalhara and [maha]guna, are the dvitiya-
haras in negative or positive minutes.

Let r; be the remainders in the process of mutual division of H and G.
Then, this verse states that the dvitiya-hara Ho; is given by

H x Hz
i =— | ,=1,3,...), 2.1
2 {ri X 21600]W (i=13..) (2.16)
or
H x Hz
=4 | XSL =2,4,..). 2.1
{ri X 21600]W (i=24..) (2.17)

Comparing these equations with (2.10) in the previous section, we need to
show that .

This result is well known in the theory of continued fractions and is ex-
plained in Appendix A. We demonstrate this explicitly for ¢ = 1,2. In the
mutual division of G and H,
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H= qu + 1,

and the first approximation to % is given by %, where G; = 1, H; = q1.
Then,

GH, - HG, =Gq1 — (Gq1 + 1)

= —T1.

Now
G =riqe + 12,

and the second approximation to % is given by }%, where Gy = ¢2, Hy =
q192 + 1. Then,

GHy; — HGy = G(qiq2 + 1) — (Gq1 + 1) g2
=G —-rg

= T2.
Now the vallyupasamhara is based on the relations,

Hiy = Higipr + Hiq,
Git1 = Gigip1 + Gi—1.

Also
Ti—1 = Tiqi+1 + Tit+1,

from the process of mutual division. From these relations, we can prove the
general result, ,
GHl - HGl = (—1)17‘1‘, (219)

by induction as explained in Appendix A.

It is remarkable that Putumana Somayaj1 is clearly aware of this general
result, and he makes repeated use of it in different contexts as we shall in the
later chapters.

Illustrative examples

We present the dvitiya and tritiya-haras (Ha;, Hs;i), the corrected rates of
motion and the associated errors for the case of the Moon and Venus, in
Tables 2.12 and 2.13 below. In case of the Moon, for i = 1, Ho; = 0, and the
method cannot be applied.

From the tables, we notice that the inclusion of the dvitiya and trtiya-haras
lead to fairly good approximations to the rates of motion even for low values
of 7.
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G = 4909031760, H = 134122987500 and % X 21600 =~ 790.581003

Hai Hsi g’ x 21600 Error
i | Gy | H; | §x21600 e — e
2 3 82 | 790.243902 2 6 | 790.577236 0.003767
3| 28| 765 | 790.588235 | —139 26452 | 790.581007 | 6.06 x 10~
4| 115 | 3142 | 790.579249 570 | 37347323 | 790.581003 ~ 10716

Table 2.12 The dvitiya- and trtiya-haras for Moon, with the corresponding rates of
motion and errors.

G = 1650230580, H = 370810612500 and % x 21600 ~ 96.127185

Hai Hai | §- % 21600 Error
i | Gi | Hi | § x21600 T T
1| 1| 224 | 96428571 —4 19 | 96125939 |  0.001245
2 | 1| 225 | 96.000000 7 63 | 96.126984 | 2.01 x 107*
3 3| 674 | 96142433 —66 10391 96.127185 | 3.95 x 107°
41 7| 1573 | 96.122059 195 | 403639 | 96.127185 | 4.70 x 1072
5| 10 | 2247 | 96.128170 | —1015 | 5354575 |  96.127185 | 4.26 x 1074

Table 2.13 The dvitiya- and trtiya-haras for Venus, with the corresponding rates of
motion and errors.

R4 R ITRIRT:

2.8 Gunakaras and haras for the difference in rates of
motion

TEFIOTRR ST9TOT: HehewT: HRTexT Hiavrey dad |

ST | eI T TR FRTETehTes 1 3 |l

aﬂﬂm@?ﬂiﬁ?ﬁg\]ﬁgﬁamﬁw |
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mahagunaste bhaganah prakalpyah mahahara bhudivasasca tadvat |
sarvatra te tulyaharasca karyah parasparam yogaviyogakale || 9 ||

anyonyaharagunitau gunakau harau ca tulyaharau stah |
tatrapavartitabhyam harabhyam va parasparam gunayet || 10 ||

The mahagunakaras are to be considered as revolution numbers [of the planets in
future operations], and similarly the civil days as the mahaharas. In all those in-
stances where they are mutually added or subtracted, [one] has to find the common
divisor.
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The multipliers and the divisors mutually multiplied become the gunakaras and
[the product of] the divisors would be the common divisors. There, the divisors
which have been already divided by the apavartana can be multiplied mutually.

These verses give a method for obtaining the effective gunas and haras
which will appear while calculating the difference in the rates of motion of
two planets. Let GV and H) be the mahagunakara and mahahara of a
particular planet. Let G?) and H® be those of a second planet. Here G(!)
and G2 are to be considered as revolution numbers and H") and H®) are
to be considered as civil days. Now the ratio % called dinagati represents
the daily motion of the first planet. In order to find the difference in the daily
motion of the two planets, we subtract one from the other, and obtain

g @ (G(l) x H®? — G2 % H(l))
HO  H® — HD x H®)

Here the common divisor is the product of the two haras H x H®?)
and the multiplier is (G(l) x H? — G@) x H(l)). It may be pointed out
that the result would be the same even if we use drdhagunaharas instead
of mahagunaharas. Then the difference in the ratios of the gunakaras and the
haras is

1 2 2 1
av q® (6 x B 6P x 1)

Y HP Y % 1P

Illustrative example

We know that the drdhagunakara and drdhahara of the Sun are 576 and
210389, and those of the Moon are 81817196 and 2235383125 respectively.
Now

5976

210389

81817196
-di | = —————. 2.21
and candra-dinabhukti 5535383135 ( )

ravi-dinabhukti = (2.20)

The difference in their daily motion known as bhuktyantara is given by

576 81817196
210389 2235383125

(576 x 2235383125 — 81817196 x 210389)
‘ 210389 x 2235383125

_ 15925857369244

~470300020285625

bhuktyantara = ‘

(2.22)
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The huge numbers appearing in the above equation signify that
15925857369244 is the difference in the number of revolutions (referred to
as paryayantara in chapter 4) of the planets in 470300020285625 number of
days. We can use the vallyupasamhara method for finding the smaller numer-
ators and denominators which approximate the above bhuktyantara.



Chapter 3 @

Check for
updates

Computation of the khanda, dhruva, etc. of
the Moon

3.9 TEho ST UTHRERE:

3.1 The alpa-gunakaras and alpa-harakas of the candra-kendra

FraRagE o TR 9RIed o sy Hevd |
ORI UTER eI AT hrefa et ot 119 |l

vidhostaduccasya ca paryayantaram
dharadinaugham ca mitho’tha samharet |
phalairamibhirgunaharakannayed
yathoditam kendrabhava bhavanti te || 1 ||

Let the heap of days (dharadinaugha), and the difference in the revolutions of the
Moon and its apogee be mutually divided. Then, from these results, the gunakaras
and harakas associated with the Moon’s anomaly (candra-kendra) are to be ob-
tained as stated earlier.

Let G, G® and HV, H® be the mahagunakaras and mahaharas of the
Moon and that of its apogee respectively (see Table 2.1). Now the daily rate
of motion (dinagati) of the Moon and its apogee are

el 4909031760
= , (3.1)
H® — 134122987500

G® 65408346 (3.2)
H® — 211440945000 '

The difference between the two is the daily rate of motion of the anomaly
(kendra-dinabhukti) and is given by

4909031760 65408346
134122987500 211440945000

© Springer Nature Singapore Pte Ltd. 2018 and Hindustan Book Agency 2018 75
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Here the samaccheda or common-divisor is the heap of days (dharadinaugha)
134122987500 x 211440945000 = 28359091223223187500000. (3.3)

The number of revolutions made by the Moon (candraparyaya) in these many
days is

4909031760 x 211440945000 = 1037970314369413200000,
and that of its apogee (turigaparyayas) is
65408346 x 134122987500 = 8772762772953675000.
The difference in the paryayas (paryayantara) given above is
1029197551596459525000. (3.4)

The G.C.D. or the apavartana of the paryayantara given by (3.4) and the
sama-ccheda given by (3.3) is found to be 225000. Dividing these two quanti-
ties by their apavartana, we get the drdhagunaharas of the candra-kendra (see
the last row in Table 3.1), the ratio (%) of which gives the drdhakendragati
of the Moon which is given by

G 4574211340428709
H ~ 126040405436547500°

The quotients obtained in the mutual division (vallyupasamhyta-phalas) of
the above ratio are 27, 1, 1,4, 12,4, 15,7, 1,13,2,9, 1,2, 1,1, 1,1, 1, 1, 2,
1, 1 and 4. The alpa-gunakaras and alpa-harakas obtained by the process of
vallyupasamhara are listed in Table 3.1.

For a number of days equal to any of the harakas in Table 3.1, the motion
in anomaly will not be exactly given by a complete number of revolutions. The
kendrabhukti of a haraka is the change in Moon’s anomaly after a number of
days equal to the haraka. We have also listed the kendrabhuktis corresponding
to some of these harakas in Table 3.2. The kendrabhuktis have been computed
by choosing the value given by (3.5) as the daily motion of the anomaly.

(3.5)

3.2 TEEEYTIRMITT

3.2 Obtaining the khandas and dhruvas for the Moon
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| i || harakas (H;) | gunakaras (G;) |
1 27 1
2 28 1
3 55 2
4 248 9
5 3031 110
6 12372 449
7 188611 6845
8 1332649 48364
9 1521260 55209
10 21109029 766081
11 43739318 1587371
12 414762891 15052420
13 458502209 16639791
14 1331767309 48332002
15 1790269518 64971793
16 3122036827 113303795
17 4912306345 178275588
18 8034343172 291579383
19 12946649517 469854971
20 20980992689 761434354
21 54908634895 1992723679
22 75889627584 2754158033
23 130798262479 4746881712
24 599082677500 21741684881
25 || 126040405436547500 | 4574211340428709

Table 3.1 The gunakaras and harakas corresponding to the Moon’s anomaly.

TIEERIAERT ET TaTaTHIEExeT e |
AT oM Feret gRISTgF e a2 shaor |1 3 |
2rs TG ifedaTaraTe: AR YaearaTepeg;: |
TAT BRI FhT ovet: T Rmara e gett 11 g |l

devendrasarmaikyadinendutunga-
bhedardhayuktestadinendukendrat |
liptikrtat kendraharesvabhiste-
nahatya nanartiparairavaptah || 2 ||
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harakas (H;) kendrabhukti | deviation from 21600
(in minutes) (in minutes)
27 21165.27668 —434.72332
28 349.17581 349.17581
55 21514.45249 —85.54751
248 6.98579 6.98579
3031 21598.28195 —1.71805
12372 0.11358 0.11358
188611 21599.98568 —0.01432
1332649 0.01333 0.01333
1521260 21599.99901 —0.00099
21109029 0.00047 0.00047
43739318 21599.99995 —4.95911 x 1075
414762891 | 3.50095 x 10~° 3.50095 x 107°
458502209 21599.99998 —1.33765 x 107°

Table 3.2 The kendrabhuktis corresponding to different kendraharakas and their devia-
tion from complete revolution.

abhistaharordhvaharena hatva
purvoditabhistaharena hrtva |
tatradhikonam dyuganat visodhyam
haraujayugmatvavasat kramena || 3 ||
Sistam Sasankoditavakyakhandah
tasya dhruvastaddivasasphutenduh |
tatha haranam dhruvakasca taistaih
dinaissamanitavidhusphutani || 4 ||

Half of the difference between the longitudes (bhuktis) of the Moon and its apogee,
corresponding to the sum of 248 (devendra) and 55 (Sarma) days, has to be added
to the longitude of Moon’s anomaly in minutes for the desired day. This has to be
multiplied by the desired divisor (kendraharaka) and divided by the 21600 (nanar-
tipara).

The quotient of this division is multiplied by the previous divisor and divided by the
desired divisor, and the resulting remainder is stored. In the case of odd divisors,
this remainder (adhika$ista) has to be subtracted from the ahargana; in the case
of even divisors the divisor minus the remainder (unasista) has to be subtracted
from the ahargana. The result of the subtraction would be the khanda spoken of
[in vakya texts] (vakyakhanda) for the Moon.

The dhruva of that (khanda) is the true Moon (sphutacandra) at the end of that day
(corresponding to the khanda). In the same manner, the candrasphutas obtained
for the kendraharakas are the dhruvas of the respective harakas.

The above verses present an algorithm for obtaining a khanda correspond-
ing to a given haraka. A khanda (also referred to as khapdadina) is a day close
to given ahargana when the anomaly is close to zero at the mean sunrise.



3.2 Obtaining the khandas and dhruvas for the Moon 79

In order to determine the khanda, we need to know the gunakaras and
harakas associated with the rate of motion of the anomaly (kendragati). In
the case of Moon, these are listed in Table 3.1. Let us denote the odd harakas
by Hy, Hs, Hs ... and the odd gunas by G1, G3, G5 . ... Similarly, let Ho, Hy,
Hg ... and Gy, G4, Gg ... be the even harakas and gunas respectively. We now
present the algorithm to find the khanda corresponding to an ahargana given
in the above verses.

3.R.9 GUSHIAARIN:

3.2.1 Algorithm to determine the khanda

The algorithm essentially consists of the following steps:

1. Adding half the anomaly of the Moon in minutes corresponding to 303
days to the value of anomaly corresponding to the ahargana A: That is
we need to find

(6o — 0m)303

2 )
where 6y and 0,, are the longitudes of the mean Moon and its apogee
respectively, and (g —6,,) 4 and (6p — 0,,,)303 are the longitudes of Moon’s
anomaly after A days and 303 days respectively.

2. Obtaining the quotient @; by finding the ratio of the product of the above
quanity and the desired haraka H; (listed in Table 3.1) and dividing by
21600:

(0o — Om)a+

((90 = Om)a+ (B = b )s0a 9m)303> x H;

2

Qi= (3.6)

21600

int

3. Finding the remainder r; by multiplying the quotient of the above divi-
sion by the previous divisor (urdhvaharaka) and dividing it by the desired
divisor (istaharaka): That is,

. Qi X Hi—1:|
o= [
L HZ rem
r —6m)303
(6p—0 )A_,_M
[ 1600 x H; X Hiy
_ wnt 3 7
- )
L rem

Here, ‘[ ]yem’ denotes the remainder of the quantity obtained by finding
the ratio.
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4. Having obtained r;, in order to obtain the khanda, the adhikasista (r;) or
unasista (H; — r;) has to be subtracted from A depending on whether H;
is odd or even respectively. That is, khanda

K,=A—r, (for odd H;),
K,=A—-(H;—r) (for even H;). (3.8)

Except for the correction term W in (3.6), the rationale for which
is not clear, the rest of the steps in the above algorithm can be explained
as follows. Consider the anomaly (6p — 6,,)4 in minutes, which includes the
zero-correction at kali beginning (kalyadidhruva). This is to be computed us-
ing the exact rate of motion of the anomaly % This rate of motion can be
reasonably approximated by %, for a reasonably large value of the haraka H;.

% which is the anomaly in revolutions may be expressed as F/ (after
subtracting the integral number of revolutions). Hence anomaly at ahargana

A in revolutions is can be expressed as

(0o —bm)a _ 1"
21600  H;’

n

(3.9)

or (B0 — Om)a x H; = [n]

1
21600 " (3.10)

int —
int

Thus, we are essentially approximating the anomaly at A by Hii, where n is
an integer. For large H; (say 12372 or above, see Table 3.2), this is a good
approximation. The khanda, K; corresponds to the day when the anomaly is
close to zero. Let K; = A— x. So x is the number of days in which the kendra
increases by H% revolutions. As the daily motion of the kendra is approximately

given by g revolutions, we have
Gi n
— Xr—y=—, 3.11
TtV (3.11)

where y is the number of completed revolutions of the kendra. The above
equation can be rewritten as

Gix — Hyy =n, (3.12)

where we have to solve for z and y in integers. The solution of this is related
to the solution of the equation

Giz' — Hyy = 1. (3.13)

Here we may recall the relation between the successive ”convergents” in the
continued fraction expansion of % as given by relation (A.13) of Appendix A,
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GiH; 1 — H;G;_y = (—=1)""1, (3.14)
Therefore, a solution of (3.13) is given by

¥ =H; 4 (odd 1),

¥ =H; — H; 4 (even ). (3.15)
Hence, a solution of (3.12) is given by

r=nH;_4 (odd i),
x=nH; —nH;_4 (even i). (3.16)

For the linear indeterminate equation (3.12), a general solution for z may
be obtained by adding an arbitrary integral multiple of H;. Therefore, the
smallest solution for z can be obtained by dividing the above solution by H;
and taking the remainder. Therefore, we have the solution

x = [nHil} (odd 1),
Hl rem
H,_
x=H; — [TLH”} (even 1). (3.17)

Thus from (3.10) and (3.17), it is clear that the khanda K; is given by

Ki =A- T (Odd Z),
Ki =A-— (HIL - ’I”z') (even Z)7 (318)

where

(o—0m)a ) )
[ stoo0 X Hi| X Hi
wnt

H; ’

rem

T, =

7(90 — 9m)303. It may be

noted that here it is not insisted upon that the kendra should exactly be zero
at the khanda.

as stated in the text except for the correction term

Illustrative example

We shall now illustrate the procedure for obtaining the khanda outlined above
by means of an example. Let’s consider the ahargana A to be 1851974 corre-
sponding to August 6, 1969 CE.

The kalyadidhruva of the kendra is 6°23'37" —129°17'26" = —6773.836667’.

We take the daily motion of the kendra to be 21?883%9 revolutions. Hence the
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motion of the kendra in 1851974 days is

[ 766081

51109029 X 1851874} = 0.14903 revolution

fre
— 3218.94200/,

where we have left out the integral part or the total number of revolutions
completed. Using the above rate of motion, we can also compute the quantity

0o — O
‘“2)303 = 39.28086' = 39'17". (3.19)
Hence
(00 — 6m)303 / ; /
(B = 0un)a + |*—5 ™02 = —6TT3.816667 + 3218.94200 + 30.28086
= —3515.59381
= 18084.40619' ~ 18084’ (3.20)

Actually we need to find the number of civil days elapsed from the time
when the kendra was zero to the point when the kendra becomes 18084’ close
to sunrise. That many number of days when subtracted from the ahargana
1851874 would give the khanda.

Now we take the haraka Hy = 248. Then, the daily motion of the kendra is
-9 . That is, after each day (commencing from the day on which the kendra is

248"

zero), the increase of kendra would be in multiples of %. That is, at the end

of the first day it would be %, at the end of the second day 217?8 and so on.

After the 28" day when the Moon’s kendra has completed one revolution, it
would be ﬁ, since 9 x 28 —248 = 4. Hence, at the sunrise of any arbitrary day,
the kendra would be an integral multiple of Tis (in bhaganas) or ﬁ x 21600
(in minutes).

Let n/ be an integer so that 22 x 21600’ is equal to 18084’. Then

248
' 18084
248 21600’
or s 18084 x 248
T 21600
= 207.631.
Hence
n=[n] 207,

int —

As the haraka previous to 248 is 55, we calculate

207 x 55
]
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Now, the haraka chosen is Hy = 248, which is a yugmaharaka, corresponding
to even i. Therefore, as per the prescription given in the verse

r = 248 — 225 = 23.
Hence, the khanda is given by
K, = 1851974 — 23 = 1851951. (3.21)

The kendrabhukti corresponding to Ky is obtained by multiplying it by the
daily motion of the kendra which is taken to be Qﬁgggég in this example.
After subtracting the integral number of revolutions from this, we find it to
be 6789.26186'. Adding the kalyadidhruva —6773.81667, we find that kendra
at khanda Ky is 15.44519 which is small, as expected.

If we take the haraka to be Hg = 12372, then n’ = 10358.11333, so that
n = 10358. In this case, the haraka previous to 12372 is 3031. Thus we have

[ 10358 x 3031

55 Lm — 7334.

As 12372 is also yugmaharaka (i = 6), x = 12372 — 7334 = 5038.
Hence, in this case, the khanda Kg = 1851974 - 5038 = 1846936.
The kendra at Kg is then

[1846936 X 766081

_ _ ,
91109029 L‘TC x 21600 — 6773.81667 38.72306°,

where ‘[ |¢-.’ denotes the fractional part. For this ahargana, not only is the
difference between the ahargana and the khanda high (5038), the kendra is
also slightly larger.

Now, we find the khanda K4 and the kendra at the khanda without consid-
ering the correction term W = 39.28086. In this case,

(6 — 0,) 4 = 18045.12533" ~ 18045/,

for the same ahargana, A = 1851974 days. If we take the haraka as 248, then

L/ 18045
248 ~ 21600’
or n' = 207.183333,

and n = 207. This is the same as what we obtained earlier, and we obtain the
same value of khanda K4 = 1851951 and kendra at K4 to be 15.44519'.
If we take the haraka to be Hg = 12372, then

n' 18045
12372~ 21600’
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or, n’ = 10335.775 or n = 10335. Then

[10335 x 3031

55 ]m — 11853,

and 12372 — 11853 = 519. Therefore, khanda

K¢ = 1851974 — 519 = 1851455.

Now the kendra at Kg is

1851455 x 766081

21109029 x 21600 — 6773.81667

= 147,

where we have subtracted the integral multiple of 21600. It is to be noted that
the magnitude of the kendra is small at the khanda for this haraka when we

do not use the correction term M.

3.R.2 REWE YAT:

3.2.2 Dhruvas at the end of different harakas and khandas

In verse 4 it is stated that the dhruvas corresponding to the khandas K; would
be the true longitudes of the Moon at the end of those khandas. Similarly, for
a haraka H;, the dhruva is the increase in the true longitude during an interval
equal to H; days, at the beginning of which true anomaly is zero. It is well
known that the true longitude (6) in terms of the mean longitude (6y) and
the mandakendra (0g — 6,,,) is given by

6 =6y —sin~? (870 x sin(fp — Gm)) . (3.22)

Using the above relation, we have computed the dhruvas for all the harakas
and tabulated them in Table 3.3.

For the ahargana A = 1851974 considered above, the khanda was 1851951
corresponding to the haraka 248, and the mandakendra was 15.45’. The mean
longitude of the Moon for this ahargana including the kalyadidhruva is 6y =
74°40'. Then the true longitude of the Moon is found to be

0 =0y —sin* <870 X sin(15.45'))

= 74°38.6".
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Similarly for the haraka Hg = 12372, the khanda was Kg = 1846936 with
mean longitude 6y = 241°39.4" and 6y — 6,,, = —38.72306" as seen above. The
true longitude of the Moon at the khanda would be

7
o . —1 o . _ /
6 = 6y — sin (80 x sin(—38.72 ))

= 241°42.8'.

3.3 FrghB I

3.3 Obtaining the kendraphalas

Aafet e gaga vl HTE T e aH I |
g IO IR g SO HAHTE deheasdhd | 4 |l

tattaddinotthendutaduccabhedaliptahatat kendraharadabhistat |
kendranpyanantotkarasamhrtani svarpatmakanindvadhikalpakatve || 5 ||

The difference between the longitudes of the Moon and its apogee in minutes
corresponding to the respective days,! multiplied by the desired kendrahara and
divided by 21600 (anantotkara) would give the kendra[phalas| of the respective days
[corresponding to the chosen kendra-hara]. [This] would be positive or negative
depending on whether [the longitude of] the Moon is larger or smaller [than the
longitude of the apogee].

If 6y and 6,,, be the mean longitudes of the Moon and its apogee in minutes,
then the kendraphalas k;; of the different harakas H; (where j =1,2,...1—1)
corresponding to istakendraharaka H; may be expressed as

(90 — Om)H X H1 .
= : f 2
]{?U + ‘ 21600 (1 0y > Hm), (3 3)
(60—9m)H. XHZ‘ )
i = — - f . .24
iy ‘ s (if B < 6,0) (3.24)

Similarly, given the khanda K; and the haraka H;, the kendraphala k; is
given by

! Here, the word tattaddina (respective days) refers to both the khandadinas obtained
and the number of days given by the kendraharakas.
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harakas dhruvas

H; (in minutes)

27 21383.62485

28 505.76731

55 289.43982

248 1663.47755

3031 20251.17118

12372 17868.16227
188611 7473.60524
1332649 5383.39894
1521260 12857.00418
21109029 21324.45330
43739318 12305.91079
414762891 2477.65039
458502209 14783.56116
1331767309 10444.77271
1790269518 3628.33398
3122036827 14073.10645
4912306345 17701.44043
8034343172 10174.54688
12946649517 6275.98828
20980992689 16450.53517
54908634895 17577.05469
75889627584 12427.59375
130798262479 8404.65625
599082677500 2846.18750

Table 3.3 The dhruvas corresponding to different kendraharakas.

| (B0 —Om)k, X Hi| .

— ‘ o (if 6o > o), (3.25)
_ (00 — Qm)Ki X Hi .

k; = ‘ 21600 (if Oy < O.)- (3.26)

Here (0o — 0,)m, or (0o — 0.,) k, represent the change in the longitude of the
kendra or anomaly in a period of H; or K; days respectively, in minutes. Now,
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if the rate of motion of the kendra (anomaly) is taken to be g?, then
i

(0o — Om)x = {X X GZ] x 21600 (in minutes),
fre

where [ | - in the RHS denotes the fractional part. Hence

(0o —Om)x G e
2600 | . H (3:27)

where «; is the remainder when XG; is divided by H;. This remainder «; is
the kendraphala denoted by k;; when X = Hj, and by k; when X = K.

3.% FrghOHIT THRTAT

3.4 An alternative method for obtaining the kendraphalas

TEERY ot A< e evagUERE: |

o < ke C (N
STHIEGRIEHIGIRAIVIT YTUTeh—< oIS Hdd || & |l

abhistaharanca gunam tadiyam mitho harettadgunaharasesah |
abhistaharordhvagaharakanam dhanarnakendranyathava bhavanti || 6 ||

Or else, the remainders obtained in [the process] of mutual division (vallyu-
pasamhara) of the desired haraka and its gunakara would be the positive and
negative kendra[phalas] of the preceding harakas.

Essentially the verse states that in the process of doing mutual division
(vallyupasamhara) between the desired haraka H; and its gupakara G;, the
remainders obtained 75,7 = 1,2,...,i—1, are the kendraphalas of the harakas
H,y, Hs, ... H;_; respectively corresponding to H;. This can be seen as follows.
In equation (3.27), setting X = H;, and correspondingly a; = k;;, we have

But it has been shown in (A.29) of Appendix A that

G:H; = H;Gj £y, i=1,2,...(1—-1),
where we take ‘+’ sign when j is even and ‘—’ sign when j is odd. Therefore,
we have
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The G; term does not contribute to the fractional part. Hence k;; = =£ry;.
Here r;; are the remainders obtained during the process of mutual division of
the given haraka and its gunakara. The kendraphalas are just these remainders
apart from a sign.

Now we shall illustrate the procedure to obtain the kendraphalas by choos-
ing H; = 248 as an example. If we divide 248 by 9, the quotient would be 27
and the remainder is 5. Now dividing 9 by 5, we get the quotient as 1 and the
remainder is 4. In the next step we get the remainder as 1. Thus the ratio ﬁ
can be written in the form of a continued fraction as

9 1
7 1
248 27 4 —1
1+ —T

14+ =
+4

(3.30)

The remainders are 5, 4 and 1. Hence, —5,+4 and —1 are the kendraphalas
of the urdhvaharakas 27, 28 and 55, respectively, corresponding to the haraka
248.

3.4 YIRRBRERAMIT

3.5 Obtaining the dhruva-samskaraharakas

TITERT T STh: TRBRERTTI I |
HSTOTH [ FER g1 AT, THesT1 TRt g 1o |l

abhistaharasya guno’yamuktah samskaraharanayane tu bhajyah |
kendranyamuni svaharoddhrtanam kramat phalanam gunaka bhaveyuh || 7 ||

While obtaining the divisor which is used for correcting the dhruva (dhruva-
samskarahara), the multiplier corresponding to the desired divisor would become
the dividend. The kendra-[phalas] would be the multipliers of the quotients ob-
tained when dividing [khandasesas] by their own haras.

The expression for dhruva-samskaraharaka (the divisor which appears in
the correction for dhruva) given in the above verse is the following:
o G;
dhruva-samskaraharaka = ————, (3.31)
j= —ikija;

where ¢;, j =1,1+1,...4, are defined below. In (3.31), [ is a suitable small
number, not specified. In practice [ = 4, corresponding to the fourth haraka,
248 (see Table 3.1).

Let K; be the khanda, as given by (3.8), corresponding to the haraka H;.
The khandasesa A — K; is to be divided by H;_1. The quotient obtained is
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qi—1; and the remainder obtained v;_; is divided by the H; 5 and so on. In
this way the khandasesa A — K; may be expressed as:

A-Ki=q 1 Hi 1 +qoH; 2+ ...qH + v
=S +u. (3.32)

The longitude of the kendra at .S; in revolutions is given by

(B0 —0m)s, = qi—1(80 — O) e,y + @i—2(00 — Om)E, o + - - + (00 — On) m, -

Now .
(0o = Om)m, = h%
Hence -
g
(8o — Om)s, = % (3.33)

Verses 15 — 18 of the Vakyakarana of Parameévara? define dhruva-samskaraharaka
(Hp) to be

kendra-madhyama-gati

kendra at vakya bhakala =
enars ab vasyaramonakasa dhruva-samskarahara ’

kendra-madhyama-gati

or 0o —0,)s, =
( 0 )Sl HD

G
S — .34
Hi X HD (3 3 )

Equating (3.33) and (3.34), we get
Gi
> imikijas

which is the same as the expression given in the text.

The sum of the increases in the mean longitude of the Moon correspond-
ing to H;_1,..., H; days multiplied by the quotients ¢;_1,...,q respectively
added to the mean longitude at the khanda will give the mean longitude at
S;. From these the true longitude of the Moon at S; can be obtained. If (6)g,
is the true longitude of Moon at the vakyarambhakala S;, then

(0)s, = qi—1di—1 + Gi—2di—2 + ... + qd;. (3.36)

where d;’s are the dhruvas giving the true longitudes of the Moon after H;
days. For the remaining days v;, the corresponding candravakya can be used

2 Vakyakaranam by Parameévara, Mss. no. KVS 242, K V Sarma Library, Adyar.
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to find the change in longitude. In this way, the true longitude of the Moon
can be found for the desired ahargana A.

3.§ BRI GUSHIY
3.6 Obtaining the khanda using a specific haraka

iﬂﬂjﬁrﬁwﬁﬂ@wﬁ T I g T

[oHIh A q’)qld%ﬂi{édld\'j\dld“l?ﬂ%séd{|

SgTEated fovsama

ATEE IPTOM i eI arerhEerdd |l ¢ ||

Sitamsorvikaladitassakalagaih yuktat svatungonitat

liptikrtya kapotadurjayahatat nutnatapatroddhrtam |
srisangapriyataditam vibhajatat kapotadehayanaih

tacchistam dyuganat tyajet tuhinagoh vakyoktakhandaptaye || 8 ||

Having added the [mean longitude of the] Moon [accurate upto] the seconds to
39’17" (sakalaga) subtract the mean longitude of its apogee and [the result] has to
be converted into minutes. [Then] multiply by 188611 (kapotadurjaya) and divide
by 21600 (nutnatapatra). [The result thus obtained] has to be multiplied (taditam)
by 12372 ($risangapriya) and divided by 188611 (kapota-dehayana). The remainder
has to be subtracted from the ahargana in order to obtain the khanda of the Moon
(tuhinagu) that is mentioned in vakya [texts].

The expression given by the above verse, using which the khanda can be
obtained, is

- "17") x 188611
(8o — ) a 4;1369007 ) x 1886 < 19372

— nt
"= 188611 ' (3:37)

rem

The extra term 39'17” which appears in the above equation is the same
as the term W which appears in the definition (3.7) of the r;. This is
because the motion in anomaly in 303 days is very nearly equal to 2x39'17"” =
78'34”. This remainder when subtracted from A would give the necessary
khanda.

This prescription (3.37) is a particular case of general procedure described
in verses 2 and 3 (see (3.7)) with H; = 188611 and H;_; = 12372 (i = 7). As
this H7 is a ojaharaka (odd divisor) the remainder itself is subtracted from
the ahargana to obtain the khanda.
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Illustrative example

We choose the same ahargana A = 1851974 as in the previous example. The
longitude of the kendra at the end of this ahargana added to 39'17" is 18084’.
Using this value in (3.37), we get the reminder as 17410. Therefore, the khanda

K7 = 1851974 — 17410 = 1834564.

3.1 ATFIHEUSTTHIHTR:
3.7 A method for finding different khandas

@] T  BIGAPTIOTE FRgRAE I

AT BRI feToT a7 ST vel 73 |
ToH fohe SaRfaREd Soe: Jed

2 T IPTONT It e arhEverdd |l g |

labdham tatra tu kalanagagunitam Srirangaramyairbhajet
tacchistonaharonito dinagano va vakyakhando bhavet |
tatrapte kila devarairvinihate kalanalaih samhrte

Sesam va dyuganat tyajet tuhinagorvakyoktakhandaptaye || 9 ||

The quotient obtained there (i.e., in the previous calculation) has to be multiplied
by 3031 (kalanaga) and divided by 12372. The reminder deducted from the haraka
(as it is an wna$ista) when subtracted from the ahargapa will also result in a
vakyakhanda. The quotient obtained in this case may be multiplied by 248 (devara)
and divided by 3031 (kalanala). The remainder [thus obtained] when subtracted
from the ahargana will also lead to a khanda that is mentioned in the vakya [texts].

The above verse presents an algorithm to find approximately the khandas
K;_1,K;_o,... given the khanda K;. The rationale for this method is briefly
as follows.

Let us recall the definition of khanda K;

Ki =A- r; (fOI‘ odd ’L)7
K;=A—-(H; —r;) (for even i),
where o
(0 — Bim) 4 + Lo 0mlana
21600

X H; X H;_q

r; = wnt

H;

rem

Now let us define phala P; by
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[(90 - am)A + (007027")303

21600 “4txm1

P =
o;

int

When H; is fairly large, (see Table 3.2) we can approximate

[(90 — ) 4 + P phan

X H1
21600 ‘|

wnt

(B0 = On) y + P

H;
21600 X
Hence (Go—0m)
P~ (O — O) 4 + ——580 E— < Hy |
! 21600 " .
Therefore we obtain
|:Pi X H12:|
il | —= .
! Hi_l rem

Further P

P~ [X?] ,

Hi—l wnt

and so on.

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

The prescription given in the above verse, and the numerical values pre-
sented therein amount to finding rg and rs starting from r7. To start with

((6p — Om)a + 39'17") x 188611
21600
188611

} x 12372
int

rT =

rem

Then the phala P; is defined by

21600
188611

_ 1111
[((60 Om)a +3917") x 188611} < 1937
int

P =

int
It is then said that

. [Prx3031
N TETO N .

Now Py is given by

(3.43)

(3.44)
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[P; x 3031
Ps=|— 3.45
07 | 12372 Lm (3.45)
Then it is said that r5 is given by
[P x 248
e R T R
The khandas K¢ and K5 are given by
K¢ = A— (12372 — rg),
and Ks=A—rs. (3.46)

Clearly, Kg is closer to A than K7 and Kj is closer to A than K.

Illustrative example

Let us consider the ahargana, A = 1851974 as in the previous example. It was
found (see 3.20) that the kendra (6g — 0m)a +39'17" is 18084'. Using this in
(3.43),

21600

_ in — 17410.
" 188611 7410

[w} x 12372
int

rem

Hence the khanda given by (3.8) is
K; =A— 17410 = 1851974 — 17410 = 1834564. (3.47)
Now, from (3.44) P; is given by

18084188611
Lo | 1237

Pr = 188611

int

= 10358. (3.48)

We see that we obtain the same result 10358, if we use the approximation

(3.49)

21600

int

Proceeding this way, the remainder

{10358 x 3031
Te = | 7 —~—Ffoma

— 7334
12372 Lm 754,

and the khanda, in this case the unasista, is given by
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K¢ = A— (12372 — 7334) = 1851974 — 5038
= 1846936. (3.50)

Now P and r5 are given by

10358 x 3031
el
2537 x 248
= |—-" = 1759. .01
s { 3031 ]Tem 759 (3.51)
The next khanda K5 is
K5 = 1851974 — 1759 = 1850215. (3.52)
Again, Ps and r4 are given by
2537 x 248
Py= |22 220 o
° [ 3031 Lm 07,
207 x 55
ry = [248 }rem = 225.

Therefore, the unasista is 248 — 225 = 23, and the khanda K, is given by
K, = 1851974 — 23 = 1851951. (3.53)

which is the same as was obtained in (3.21).

3.¢ ERAAINIT FHghBHITT

3.8 Obtaining kendraphalas using a special haraka

S CRIE RO R R RERIERIGE

hreH TehihHTH ¥hege fe ga: |l 90 1|

taddinenduccayorbhedat paryaptahrdayahatat |
kendrakhyam cakraliptaptam sphutendustatra hi dhruvah || 10 ||

The difference between the longitude of the Moon and its apogee for that day® has
to be multiplied by 188611 (paryaptahrdaya) and divided by 21600. [The quotient]
would be the corresponding kendraphala. The dhruva obtained there would be the
true longitude of the Moon for that day.

This is a particular case of (3.28) for the haraka H; = 188611.

3 The term taddina refers to the day associated with a given khanda and a haraka.
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3. TR HITARIR:
3.9 The process of obtaining the multipliers

Feraifed wiragstd = fe=nf=rar SerarsT 2 |
ARG &I 0Ty TRt S7af=er 11 99 |l

Stvoditam kampitadurjayam ca chindyanmitho vyutkramato’tra Sesah |
$risangaramyadiharahrtanam dhanarnarupa gunaka bhavanti || 11 ||

The remainders obtained by the mutual division of 6845 ($ivodita) and 188611
(kampitadurjaya) in reverse order would become the positive and negative multi-
pliers of the quotients obtained while dividing [khandasesa] by the haras 12372 etc.
($risangaramyadsi).

The method prescribed in this verse has already been discussed in connec-
tion with verses 6, 7. The process of mutual division prescribed here especially
gives the kendraphalas. These positive and negative kendraphalas would be the
multipliers (gunakas).

An important point needs to be emphasized here. We have seen that the
anomaly or the kendra is not zero at the end of the khanda, which is obtained
using the successive harakas H;,...,248. In fact we have seen in (3.33) that,
after finding the khanda closest to A using the haraka 248 at the last stage,
the kendra at the khanda would be given by

i—1 aiki;
o (3.54)
=

revolutions. In the text Vakyakarana, while prescribing the calculation of the
true longitude of the Moon using dhruvas and the vakyas, a correction term
has been specified which takes into account the fact that the kendra does not
complete exactly integral number of revolutions in 248 or 3031 days, as the
anomaly increases by the amounts 7/ and —1.75 respectively. This correction
is explained in Appendix D.

3.90 IdTHITARIN:

3.10 The procedure for obtaining the candravakyas

T EgATIh: TR |
YU JUE TFSIFANES, TR 1 R ||

devendrasankhyavadhikaih ekadyekottarairdinail |
prthak prthak sphutikuryadindum tadvakyasiddhaye || 12 ||
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The true longitudes of the Moon may be computed for each day separately start-
ing from day number 1 till day number 248 (devendra) in order to obtain the
candravakyas.

This verse gives a general prescription as to how the candravakyas have
to be obtained. The candravakyas accurate to a minute were enunciated by
Vararuci and these are the famous girnasreyadi-vakyas. The great astronomer-
mathematician Madhava enunciated the vakyas, silam rajnah sriye etc., which
are accurate to a second. The true longitudes of the Moon for 248 days,
starting from a day when the longitude of the Moon and its apogee was zero,
have been computed and listed along with the values encoded in the vakyas
in Appendix E.

3.99 IR FAPT PAGIATAERT:

3.11 The relationship between the magnitude of haraka
and the proximity to sunrise

JEiaTes fauiieih i = gve FfRgganT: |
TATERITIHATIZI T IATEaarasy: 1l 93 |l

tunigonitadeva vidhoryathoktam nite ca khande Sasiturigayogah |
tatrestaharadhikatavasat tadyogasya suryodayasannikarsah || 13 ||

[For any given day|, having obtained the longitude of the Moon and subtracting
just the longitude of its apogee (turigonitadeva®), if the khanda is [obtained], then
it ensures that the conjunction of the Moon and its apogee [is close to the sunrise].
There, larger the magnitude of the haraka chosen, the closer is the conjunction (of
the Moon and its apogee) to the sunrise.

In the previous sections, we have seen how the khanda for the Moon can
be obtained corresponding to a given ahargana. The purpose of obtaining
the khanda is to find a heap of days since the beginning of the kali in such
a way that, at the khandantya, the longitude of the Moon should be equal
to the longitude of apogee. Here, the word khandantya refers to the number
of days elapsed after the beginning of kaliyuga. That is, if K is the khanda
obtained, then the khandantya corresponds to the beginning of the (K + 1)
day which is the sunrise on that day. But, since the khanda is obtained from the
approximate divisors, the conjunction between the Moon and its apogee will
not exactly coincide with the sunrise. There will be a small time difference

4 In the Commentary IL, it is noted that the word eva associated with the word turigonita
implies that only turiga has to be subtracted from the mean longitude and the ad hoc
correction term given by half the motion of the anomaly in 303 days or 39'17” need not
be added ({KP 1956}, p. 109). That is, the word ‘eva’ is used as anyayoga-vyavacchedaka.
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(antara) between the instant at which conjunction (yoga) happens and the
time of sunrise (udaya). This time difference in terms of the time unit pranas®
is called yogodayantarapranas. The method to obtain the yogodayantarapranas
is explained in the next verse.

3.9 ANTIEATARATI T FTYETIRTIT]

3.12 Obtaining the yogodayantarapranas and yogadhruvas

TSR AR AGE R AT BT TS exTg JOTTHT: |

< o [N
YPEIAT-ATHAT: FHT: ShHUT IAOTTHChT: JreTIIRHhiedhcd || 9% I

SITURAT: RO : FAERTHE el |
TradETTaH! Tl et arTeaTgar 1l 9y I

tadvasarotthatuhinamsutaduccabhedalipta
hatabhimatakendraharad gunaptah |
yogodayantarabhavah hyasavah kramena
svarnatmakah tuhinagoradhikalpakatve || 14 ||

pranaistaih svagunabhyastaih svaharaptaisca samskrtau |
candratungavimau syatam tulyau yogadhruvahvayau || 15 ||

The difference in the longitudes of the Moon and its apogee, in minutes, corre-
sponding to that day (tadvasarottha) has to be multiplied by the desired kendrahara
and divided by the gunakara. The [result thus obtained] would be positive or neg-
ative yogodayantara-pranas depending on whether [the longitude of] the Moon is
larger or smaller [than that of the apogee].

The [longitudes of the] Moon and its apogee when corrected by [the result obtained
by] multiplying these [yogodayantara]pranas by their gunpas, and dividing by their
own (sva)® haras respectively, would become equal. [These correction terms] are
known as yogadhruvas.

If (8g — 01) k represents the longitude of the kendra at the khandantya (at
the sunrise), then the expression for the time difference between the sunrise
and the time of conjunction of Moon and its mandocca (yogodayantarapranas),
(At) given in the above verse can be written as

_ H.

At =+ ’ o =0l X Il (it gy > 0,0, (3.55)
— o

At = — ’ (% HZ?K “Hil i gy < 6,0). (3.56)

5 The word prana is generally used to refer to life. However, in the context of astronomy
it has to be understood as a time unit which is 4 sidereal seconds.

6 The word sva indicates that appropriate values corresponding to the Moon and its
apogee are to be used.
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Here (8 — 0) i is the value of the anomaly in minutes, at sunrise after K

days have elapsed. The rate of motion of the anomaly is &t revolutions per
Gi Gi

H;

day, or ZrRe 21600 minutes of arc per day or 7 minutes per prana, as there
are 21600 pranas in a day. Hence the time interval between sunrise and the
instant at which the anomaly is zero (that is, instant of conjunction of the

Moon and its apogee) is given by

(90 — em)[( X Hi
G; ’

which is the magnitude of the yogodayantarapranas. Here if 8y > 6,,, at sunrise,
then the yoga (conjunction) has already occured and the yogodayantaraprana
is positive. It is negative if 8y < 0,,. In that case, the mean Moon will be in
conjunction with the apogee, after the sunrise. Thus, from At one can obtain
the instant at which the conjuction between the Moon and its apogee occurs.

It may be recalled that from the khandadina, we can only obtain the lon-
gitudes of the Moon and its apogee at the time of sunrise. But by making use
of At, we can find the longitude at the instant when the conjuction of the
Moon and its apogee happens. This can be achieved by applying the correc-
tion terms to the longitudes at the sunrise. These correction terms are known
as yogadhruvas. Verse 15 explains the method to obtain the yogadhruvas as a
function of At.

If Ggl) and Hi(l) are the gupakaras and haras of the Moon, and Gz@) and

H i(Z) are those of the apogee repectively, then the yogadhruvas for Moon and
its apogee are given by

At x GV
yogadhruva of the Moon = t><7Gz7 (3.57)
aY
At x G
yogadhruva of the apogee = ;(gl (3.58)

Illustrative example

We know that the khanda corresponding to the ahargana A = 1851974 is
1851951 (see (3.21) ). Now, the longitudes of the Moon and its apogee at the
khandantya can be written as

0o = 4857.14276,
0, = 4845.36580'.
Hence |60 — 0| = 11.77696. (3.59)
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Since 6y > 0,,, we use (3.55) to find At. With the choice of haraka H; =
188611, corresponding to the khanda K = 1851951, we obtain”

11.77696 x 188611
6845
= +324.50910. (3.60)

At =+

The yogodayantarapranas corresponding to different harakas were com-
puted in the similar manner and the values obtained are listed in Table 3.4.

haraka | gunakara | yogodayantara
(Hs) (Gy) (in pranas)

2 55 + 323.86649

9 248 + 324.52076

110 3031 + 324.50887
449 12372 + 324.50911
6845 188611 + 324.50910

Table 3.4 The yogodayantara-pranas corresponding to different harakas for the khanda
K = 1851951.

By substituting the value of At given by (3.60) and the respective gunaharas
in (3.57) and (3.58), we get

324.5091 x G
"
324.5091 x 143
3907
— 11.87735'. (3.61)

(2)
24.5091
yogadhruva of the apogee = %

H3
~324.5091 x 2
o 6465
= 0.10039’. (3.62)

yogadhruva of the Moon =

Applying® these values to the respective mean longitudes of the Moon and
its apogee at the sunrise, we get

7 Since the accuracy of the At increases with the increase in the magnitude of the harakas,
we have used the values corresponding to the haraka 188611.

8 As per the Commentary II, the magnitude of the yogadhruvas are to be added to, or
subtracted from the mean longitudes depending on whether the yogodayantarapranas are
negative or positive respectively ({KP 1956}, p. 111).
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Longitude of the Moon at yoga = 4857.14276" — 11.87735’

— 4845.26541, (3.63)
Longitude of the apogee at yoga = 4845.36580" — 0.10039’
— 4845.26541". (3.64)

3.93 MEgfa:

3.13 General rule for conjunction of planets

T ARTEST: ARTHEHHS FAA |
TERGEI IR AT EETIaax: | 9 ||

evameva punaristakhetayoh yogamistasamaye samanayet |
istakalakhagamadhyamantaraksmadinestakhagaparyayantaraih || 16 ||

The conjunction of any two desired planets for any desired day can be obtained by
making use of the difference between the mean longitudes of the planets (khagamad-
hyamantara), the number of civil days (ksmadina) and the difference in revolutions
(khagaparyayantara), in a similar manner.

This has already been explained in section 3.1.



Chapter 4 @
AgaXpHITH =
Obtaining the harakas for the planets

9.9 TEHShgaRH:

4.1 The mandakendraharakas of the planets

TSTATIEGTHT ASATTIATERH: |
A=l 2 aT: |IRT U AR 119 |l

candradanyavihanganam madhyanayanaharakah |
mandakendrahara jiieyah saura eva jnasukrayoh || 1 ||

It is to be understood that the madhyanayana-harakas of the planets other than
the Moon are also their mandakendraharakas. For Mercury and Venus [madhya-
nayanaharakas] of the Sun would be the mandakendraharakas.

The above verse defines the mandakendraharakas of the planets. It may
be recalled that the mandakendra is the difference between the planet and
its mandocca (apogee). The mandakendra-gunakaras and the mandakendra-
harakas determine the successive approximations to the rate of motion of the
mandakendra.

The term madhyanayanaharaka appearing in the earlier half of the verse has
to be understood as 'madhyamanayane harakah’, i.e., the harakas employed
in obtaining the mean longitudes of the planets. The statement that ‘the
madhyanayana-harakas are to be understood as the mandakendra-harakas’,
implies that the mandocca of the planets have a negligible motion. Therefore,
the mandakendra-harakas and the mandakendra-gunakaras of the planets are
the same as the drdhaharakas and drdhagunakaras listed in Table 2.2.

It may also be mentioned here that the text Karanapaddhati in certain re-
spects follows the traditional planetary model used by the Indian astronomers
at least since the time of Aryabhata. In this model while computing the man-
dasamskara or the equation of centre, the mean Sun is taken as the mean
planet in the case of Mercury and Venus. Karanapddhati in fact makes no

© Springer Nature Singapore Pte Ltd. 2018 and Hindustan Book Agency 2018 101
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https://doi.org/10.1007/978-981-10-6814-0_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-6814-0_4&domain=pdf

102 UgEIRDITH Obtaining the harakas

reference to the revised planetary model introduced by Nilakantha Somayaji
in his Tantrasarnigraha (c. 1500), which proposed that what were considered
as the sighroccas of Mercury and Venus should be taken to be the mean plan-
ets and that the mean Sun is to be taken as the Sighrocca for all the planets
including Mercury and Venus.!

.2 BB hgaREMITH

4.2 Obtaining the sighrakendra-harakas of the planets

ARPXEEIIGATAR e T [avsid IRe=A |
ERHIE Thoh: THAE o = ToehrggRar: 1l 2 |l

bhaskarestakhagaparyayantaram bhudinam ca vibhajet parasparam |
harakaniha phalaih samanayet te bhavanti calakendraharakah || 2 ||

Divide the difference in the revolutions (paryayantara) of the Sun and the desired
planet and the number of civil days (bhudina) mutually. The harakas are to be
obtained from the quotients (phalas) [by the process of vallyupasamhara]. These
[harakas] would be the Sighrakendra-harakas.

The method for obtaining the Sighrakendra-harakas of the planet is ex-
plained in the above verse. If G, and H,, are the drdhagunaekaras and the
drdhaharakas of the planet respectively, and G5 and H are those of the Sun,
then the ”difference in revolutions” (paryayantara) mentioned in the verse is

+(Gs x H, — Gp x Hy),

where the ‘+’ sign is to be used in the case of the exterior planets Mars,
Jupiter and Saturn, and ‘—’ sign for the interior planets Mercury and Venus.
The “number of civil days” (bhudina) is Hg x H,. In other words, (G5 x H), —
Gp x Hy) is the difference in the number of revolutions made by the planet and
the Sun in H, x H,, civil days. Doing vallyupasamhara by mutually dividing
them, we obtain the sighrakendra-harakas.

! Later, in verse 25 of Chapter 7, there is a statement that the manda correction for
Mercury and Venus should be applied to their “nijamadhyama” and this is interpreted,
in the Commentary II, as a reference to their Sighroccas. If we accept this interpretation,
then it would imply that Karanapaddhati is adopting the revised planetary model of
Nilakantha, at least as regards the application of the manda correction in the case of
the interior planets. For details of Nilakantha’s revised planetary model, see {TS 2011},
Appendix F, pp. 487-535.
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Illustrative example

We will now find the sighrakendra-harakas for Saturn. This can be done by
choosing the drdhaharaka (6180176875) and drdhagunakara (574109) of the
Saturn. The drdhaharaka and drdhagunakara of the Sun are 210389 and 576
respectively. Now the “difference in revolutions” between the Sun and the
Saturn is given by

576 x 6180176875 — 574109 x 210389 = 3438995661599.
The corresponding "number of civil days” is given by
210389 x 6180176875 = 1300241232554375. (4.1)

Dividing the above quantities mutually till the remainder becomes zero
and doing vallyupasamhara, we get sighrakendra-gunakaras and Sighrakendra-
harakas related to Saturn which are listed along with the quotients and re-
mainders obtained in the process of vallyupasamhara in Table 4.1. Tables 4.2
— 4.5 list the Sighrakendra-gunakaras and Sighrakendra-harakas for all other
planets, which are obtained in a similar manner.

quotient remainder Sighrakendra- | Sighrakendra-
gunakara haraka

378 | 300872469953 1 378

11 | 129398492116 11 4159

2 | 42075485721 23 8696

3 3172034953 80 30247

13 839031332 1063 401907

3 654940957 3269 1235968

1 184090375 4332 1637875

3 102669832 16265 6149593

1 81420543 20597 7787468

1 21249289 36862 13937061

3 17672676 131183 49598651

1 3576613 168045 63535712

4 3366224 803363 303741499

1 210389 971408 367277211

16 0 16345891 6180176875

Table 4.1 The Sighrakendra-gunakaras and Sighrakendra-harakas of Saturn.
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quotient remainder Sighrakendra- | Sighrakendra-
gunakara haraka
779 | 1560066203739 1 779
1 107046975145 1 780
14 61408551709 15 11699
1 45638423436 16 12479
1 15770128273 31 24178
2 14098166890 78 60835
1 1671961383 109 85013
8 722475826 950 740939
2 227009731 2009 1566891
3 41446633 6977 5441612
5 19776566 36894 28774951
2 1893501 80765 62991514
10 841556 844544 658690091
2 210389 1769853 1380371696
4 0 7923956 6180176875

Table 4.2 The Sighrakendragunkaras and Sighrakendraharakas of Mars.

quotient remainder Sighrakendra- | $ighrakendra-
gunakara haraka

115 | 5892968539430 1 115

1| 839655556163 116

7 15379646289 8 927

54 9154656557 433 50174

1 6224989732 441 51101

1 2929666825 874 101275

365656082 2189 253651

4418169 18386 2130483

82 3366224 1509841 174953257

1 1051945 1528227 177083740

3 210389 6094522 706204477

5 0 32000837 3708106125

Table 4.3 The Sighrakendra-gunakaras and Sighrakendra-harakas of Mercury.

%.3 TEEUSHITH

4.3 Obtaining the khandas of the planets

AT JRTOT G 2ar=ar AArarsiand |
GUE T hrageReal: ggeharerioTdiieerd 11 3 |l




4.3 Obtaining the khandas of the planets

quotient remainder Sighrakendra- | Sighrakendra-
gunakara haraka

398 | 184234070687 1 398

1] 23830972419 1 399

7| 17417263754 8 3191

1 6413708665 9 3590

2 4589846424 26 10371

1 1823862241 35 13961

2 942121942 96 38293

1 881740299 131 52254

1 60381643 227 90547

14 36397297 3309 1319912

23984346 3536 1410459

1 12412951 6845 2730371

1 11571395 10381 4140830

1 841556 17226 6871201

13 631167 234319 93466443

1 210389 251545 100337644

3 0 988954 394479375

Table 4.4 The Sighrakendra-gunakaras and Sighrakendra-harakas of Jupiter.

quotient remainder Sighrakendra- | Sighrakendra-
gunakara haraka

583 | 2061056061934 1 583

1 165668082993 1 584

12 73039066018 13 7591

2 19589950957 27 15766

3 14269213147 94 54889

1 5320737810 121 70655

2 3627737527 336 196199

1 1693000283 457 266854

2 241736961 1250 729907

7 841556 9207 5376203

287 210389 2643659 1543700168

4 0 10583843 6180176875

Table 4.5 The Sighrakendra-gunakaras and sighrakendra-harakas of Venus.

105
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madhyat grahanam svamyrduccahinah Sighroccato madhyavivarjitacca |
khandam nayet kendraharaistadiyaih induktavannirganitoditaste || 3 ||

From [the mandakendras that are obtained by| subtracting the mandoccas from
the mean [longitudes] of the planets, as well as from [the Sighrakendras that are
obtained by] subtracting the mean [longitudes of the planets] from the Sighroccas,
the respective kendraharakas are obtained. From them the khandas may be obtained
in the same way as was done in the case of Moon. These are the khandas mentioned
in the Nirganita system.

Here the author discusses the procedure to obtain the khandas as enunci-
ated in the Nirganita system.? If 0y, 6,, and 6, represent the longitudes of the
madhyamagraha, the mandocca and the sighrocca of the planets respectively,
then the mandakendra (0,,x) and the sighrakendra (6sx) are given by

Gmk = 90 — Gm, and Osr, =05 — 00'

In the case of planets, the khanda corresponding to a specific ahargana A, can
be of two kinds:

1. The $aighrakhanda, is obtained from the Sighrakendra (0s;)a (expressed
in minutes), corresponding to the ahargana A, by making use of the

sighrakendra-harakas Hi(s). As in the case of the Moon these khandas are
given by the following expressions.

()
H.
A (g®_ |[Un)a) el Hia . (42
i 21600 s HG
rem

H
A |[Wsk)a)  pe] | Hia (4.3)
21600 "l HY

int

Expressions (4.2) and (4.3) correspond to even and odd ¢ values respec-
tively.

2. The mandakhanda, is obtained from the mandakendra (0,,)4 (expressed
in minutes), corresponding to the ahargana A, by making use of the
mandakendra-harakas Hi(m). As in the case of the Moon these khandas
are given by the following expressions.

H(7rL)
a— (| |WCma)  pom] - M (49
i 21600 e H™

(m)
A |[Gn)a)  pew] Hi (4.5)
21600 Yl =M™

2 The Nirganita system is perhaps the same as the Aganita system discussed by Madhava.
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Here again (4.4) and (4.5) correspond to even and odd i values respectively.
The above expressions for the Saighrakhanda and mandakhanda give rise
to aharganas close to the chosen ahargana A, such that the Sighrakendra or
mandakendra is nearly zero to a level of accuracy dependent on the haraka

chosen. The rationale for these expressions have already been explained earlier
in section 3.2.

9.8 BRIEIGAl AT
4.4 Convention in the choice of haraka

TUTERTTEISIThT 3 A= &1 9e |

RIS T[0T BRI 3T Hos=ad 119 |l

gunaharavisesoktau sarvatrapi haro mahan |
haradhike gune haran anadyaisca phalairnayet || 4 ||

Whenever the gunakaras and the harakas are not mentioned explicitly, the haraka
is always chosen to be larger [than the gunakara]. When the gunakara [stated] is
larger than the haraka, then the harakas may be obtained by using the quotients
(in vallyupasamhara) after excluding the first one.

This definition is helpful in formulating a common strategy for computing
the dhruvas of the mean planet/sighrocca at the end of mandalas as will be
explained later.

9.4 FTRIFRITHAUSSYTAT: AT

4.5 Procedure for obtaining mandalas and dhruvas given in
the Vakyakarana

BR: AR FoEEY o seuRaar:
AT TRERTHRG ST BIRT: GRTETRT: |
TRRATERUT ATRIFRUTIRRT HUSHT: WA -

JEAATE AR TS Tsheh{ T ITATd S=TOTSaT: Il 4 ||

3 Here we need to first form a compound of the words visesa and ukti which is then
compunded with nan. That is, forzrya: 3fh: = fasiwife: I?ﬁﬁ'sﬁﬁﬁ: = faziife: |

(videsatah uktih = visesoktih. na visesoktih = avisesoktih).
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harah suryavihargayorbhaganayorbhedo guno’lpastayoh
tabhyamatra parasparaptaphalajah harah dharahahatah |
bhaktastenaharena vakyakaranokta mandalah syustathai-
vanyonyahrtasistacakrakalikabhyasat dhanarpadhruvah || 5 ||

The “difference in revolutions” between the Sun and the planet is the divisor (hara).
Of those two [quantities|, the smaller would be the multiplier (gunakara). Here, the
harakas derived from the quotients obtained in the mutual division of these two [by
doing wvallyupasamharal, are multiplied by the “number of civil days” (dharaha).
[The results] when divided by the divisor (hara) are the mandalas mentioned in
Vakyakarana. In the same way, the remainders obtained in the mutual division [of
gunakara and hara] when multiplied by 21600 (cakrakalikabhyasa) [and divided by
the hara] give the positive or negative dhruvas.

Before getting into the details of the procedure outlined in the above verse
for finding mandala and dhruva, we need to be familiar with some technical
terms. Hence we first define them below.

%.4.9 FUSHYTFITRITT

4.5.1 Expression for the mandalas and dhruvas

If G, and H,, are the drdhagunakaras and the drdhaharakas of the planets
respectively, and G5 and H are those of the Sun, then the “difference in
revolutions” mentioned in the above verse is given by

|Gs x H, — G, x Hy.

This is the hara, and the smaller of the two terms above is the gunakara.
Let G; and H; be the successive gunakaras and harakas obtained respectively
by doing the process of vallyupasamhara with the above gunakara and hara.
Another term mentioned in the above verse, “number of civil days” (dharaha)
is given by H, x H,, (as indicated in verse 2). Now, the mandalas are given by

dharaha x H;
hara
(Hs x Hp) x H;

- |Gs x Hy, — G, x Hy| (4.6)

mandala (M;) =

The dhruvas can be obtained from the remainders r; at various stages in the
above process of vallyupasamhara. Depending upon whether i is odd or even,
the dhruva is given by

L[ 21600
|Gy x Hy— G, x Hy |’

dhruva (D) (4.7)
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We shall now explain the rationale behind the above expressions for the
mandala and dhruva.

9.4.2 TUEHMI gieh:

4.5.2 Rationale behind the expression for mandala

For this purpose, let us consider the case of an exterior planet (Mars, Jupiter
and Saturn). In this case the rate of revolution of the planet %, is smaller
p
than that of the Sighrocca (Sun) % Hence, the rate of revolution of the
Sighrakendra (number of revolutions per day) is
Gs G, GgH,—G,H;

T2 _ e Tep T Tpis 4,
H, H, H.H, (4.8)

In this case, clearly G, Hs being smaller than H,G,, will be the gunakara.
And G H), — G,H, will be the hara. In other words,

G =G,H,,
and H =GsH, — G,H;. (4.9)

To start with let us consider the case when G < H. In the case of Saturn, we
have already evaluated H (see (4.1)) to be 1300241232554375. From the same
calculation, we can see that G = 120786218401, and clearly G < H. From the
above discussion, it follows that the synodic period, or the number of civil
days for one revolution of the Sighrakendra, is given by

H.H,
G.H, — G,H,

Now H revolutions of the sighrakendra corresponds to

H.H,
——— | x H days.
(GsHp - GPH S> Y
As the denominator is actually H, this corresponds to an inte%ral number of
days HgH,. Moreover, the rate of revolution of the planet is +*. Hence, the
p
number of revolutions of the planet after H revolutions of the Sighrakendra is

G
H:H oy
p X Hp

which is again an integer H,G,. Hence the planet and the $ighrocca (Sun for an
exterior planet) both complete a full number of revolutions after H revolutions
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of the Sighrakendra, or in H,H, days. This means that if the planet and the
Sighra are at the mandocca of the planet at some instant, they would come
back to the same mandocca after H revolutions of the Sighrakendra. As we
saw above, H is a very large number, and it is impractical to work with this
large time interval between two instants at which both the mandakendra and
Sighrakendra are zero.

Now, consider H; revolutions of the Sighrakendra, which correspond to

HH, . HH

—_— H; i ). 4.1
e <= < e (e (4.10)

The number of revolutions of the planet in this interval is

H, x H G
Tprin:HSGpX

G, H;
— X —. 4.11
TG, (4.11)
Since, H;, G; arise from the vallyupasamharae of H and G, % would be a good

approximation to g Also G = H;G,. Hence the number of revolutions of the
planet in H; revolutions of the sighrakendra is equal to

G; o H;
H G~

G; H
G x G X — x — =G, 4.12
7 x g =G (4.12)
In other words, the planet also makes very nearly a complete integral number
of revolutions during the period where the Sighrakendra makes H; revolutions,
which corresponds to
H, x Hp

G.H, — G, H,

days. This is the reason for considering mandalas defined in (4.6), as the planet
and the sighrocca are both expected to come back close to the mandocca, after a
mandala if their initial positions coincided with it. We now proceed to explain
the dhruvas.

Hia

9.4.3 YAMIA Ih:

4.5.3 Rationale behind the expression for dhruva

After a mandala, the change in the longitude of the planet (or the sighrocca)
in revolutions, or the dhruva in revolutions is given by

HH, . G _ HGH _GCH,

(G.H, — G,H,) H, H H (4.13)

where we have used (4.9). This may be written as
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GH; GH;— HG,; N HG;
H H H

(4.14)

The second term above can be dropped as it is an integer.

Now, H; and G; are the haraka and the gunakara obtained doing the process
of mutual division of H and G, and it has been shown in equation (A.24) of
Appendix A that

) 9

where 7; is the remainder at the i*" stage, and we have to choose '—’ sign
when 7 is odd and '+’ when i is even. The remainder r; is the gunasista when
i is even and the haradista when i is odd. Hence, (4.14) in minutes is given by

GH;
H

Ti
=+— x21 4.1
I x 21600, (4.16)

where the RHS is the same as in (4.7).
We may now consider the case when G > H. Let

G:Ha1 +T‘1, (417)

where a; is an integer, and r; < H is the remainder when G is divided by H.
Then the dhruva (in revolutions) is given by
GHZ‘ TlHi

As the second term is an integer, it would not contribute to the dhruva. Now
we can consider the vallyupasamhara of H and ry for computing the dhruva.
This is the reason for the prescription in verse 4, that the harakas H; may be
obtained after excluding the first quotient (a;) when G > H.

It is easy to see that similar results can be obtained for the interior planets
(Mercury and Venus) also where the mean planet is the Sun and the actual
heliocentric mean planet is the Sighra.

The mandalas and dhruvas of all the planets, corresponding to differ-
ent harakas are calculated following the above process, and listed in Tables
G.6 — G.10 in Appendix G.* There the mandalas and dhruvas listed in the
Vakyakarana are also tabulated and it is seen that they coincide fairly accu-
rately with the computed values.

4 Some of these mandalas and dhruvas have also been presented in the form of vakyas in
the Commentaries I, IT ({KP 1956}, pp. 119-129).
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4.6 A general prescription for obtaining Sodhyas

HUEATTI HTdT: BRT: HUSHERA: |
q: DA TST TYS: FeTHUSS: | & |l

mandalanayane nitah harah mandalaharakah |
taih Sodhyamanayet yadva sadhruvaih svalpamandalaih || 6 ||

The haras employed in the process of obtaining mandalas are the corresponding
mandala-harakas. The $odhyas are to be obtained from these [harakas]. Or else,
[the Sodhyas can also be obtained by| using smaller mandalas (svalpamandalas)
along with their dhruvas.

The $odhya corresponds to a time interval (not necessarily an integer) close to
the desired ahargana, at which the $ighrakendra is zero, and the longitudes of
the mean planet and the izghrocca (which are equal) are close to the longitude
of mandocca. The method of calculating Sodhyas is discussed later in this
chapter (verses 9-12).

2. 3TN EE ARSI

4.7 Obtaining the instant at which the sighrocca-grahayoga
occurs

ATHAEH ég‘ AT RATHTE ﬁ\ﬂ%ﬁm«ﬁﬁ:{: |
CIE O EE RN EIPIGIEEERIN R LRSI U RN

abhimatadinavihagonat Sighroccat bhuktivivaralabdhonah |
abhimatadivasagano 'yam Sighroccavihangayogasamayah syat || 7 ||

The mean longitude of the planet corresponding to the desired ahargana is sub-
tracted from its sighrocca and divided by the difference between their daily motions
(dinabhuktis). The result thus obtained when subtracted from the desired ahargana
gives the instant of conjunction (yoga) of the Sighrocca with the planet.

The above verse presents an expression for finding the instant, close to the
desired ahargana, when the Sighrakendra is zero. This phenomenon is referred
to as graha-sighrocca-yoga or Sighrocca-grahayoga. If 6y and 65 are the mean
longitudes of the planet and the Sighrocca respectively, then the instant at
which the Sighrakendra becomes zero can be obtained from the relation

to=A— w, (4.19)
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where 6, and 6 represent the daily motion of the Sighrocca and the planet
respectively.

.¢ STUTEUEINTHSHI fZaia: Th:

4.8 Another method to obtain the instant of the
sighrocca-grahayoga

S Al Gl
FATAIRE AT AT fazmet

IS TR A AT S: | ¢ 1l

yadvestamadhyavihagonacaloccalipta-
samuvardhitaksitidinat bhaganantaraptam |
ajnataparahrtamistadinat visodhyam

Sistam caloccakhagamadhyamayogakalah || 8 ||

Or else, the mean longitude of the planet is subtracted from its Sighrocca, expressed
in minutes, and multiplied (samuvardhita) by the number of civil days (ksitidina),
and divided by the difference in revolutions (bhaganantara). [Again, the result thus
obtained] is divided by 21600 (ajriatapara) and is subtracted from the ahargana.
The [end] result gives the instant at which the conjunction of the mean planet and
its Sighrocca occurs.

The above verse gives an alternative expression for obtaining the instant at
which the Sighrakendra is zero. If (05 — 0y) 4 (expressed in minutes) is the
Sighrakendra corresponding to the ahargana A, then the instant at which the
conjunction of the planet and its $ighrocca occurs is now expressed as

(4.20)

%:A_‘(@—%uxuam> «

((G.H, — G,H,) x 21600)

This is in fact the same as (4.19) since the denominator in the latter can be
expressed as

(6 — o) (in min.)

(GS Gp) x 21600

H, H,
(GsHp — GPH S)
=-———"—"x21 4.21
., x 21600, (4.21)
since gﬂ and % are the rates motion in revolutions of the $ighrocca (Sun) and

the mean planet, for the exterior planets. For the interior planets, chls is the
rate of motion of the mean Sun which is also the rate of motion of the mean
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planet. This is smaller than % which is the rate of motion of the sighrocca of
the planet. Hence for the interior planets
. . G G
0s —0p) (i in.) = -2 - == 21600
( b) (in min.) (Hp Hs> X
(GpH s GSHP)

= e T STl o 21600. 4.22
T x 21600 (4.22)

. ST AT R

4.9 Procedure for obtaining the Sodhyadina

TRGHATIET FHGHE (U d (MSTE@aRHY |

BT HIOHARAYROT e SO EREATHEEOT & 1 i

ST TeE BRI I g AT ToT=aRTe |

e E AT 2 deT wafd sefe T 1 9o |l

tatkalamadhyavihagam svamrduccahinam
liptikrtam tu nijamandalaharakesu |
istena samgunamanantapurena bhaktam
istordhvaharahatamistaharena hrtva || 9 ||

unadhikam tadiha harasamasamatve
dhatridinaghnamubhayorbhaganantaraptam |
Sighroccamadhyamaviharngamayogakalat

Sodhyam tada bhavati Sodhyadinam grahanam || 10 ||

After subtracting its own mandocca from the mean planet at that moment (when
Sighrocca-grahayoga occurs), convert [the result] into minutes. Multiply [the result]
by a desired haraka among the mandala-harakas of the [planet], and divide by
21600 (anantapura). [The quotient thus obtained] is multiplied by the penultimate
haraka and divided by the desired haraka.

Depending on whether the haraka is odd or even, the remainder [of the above
division] (adhikasista), or the remainder subtracted from the haraka (unasista) is
multiplied by the number of civil days (dhatridina) and divided by the difference
in revolutions (bhaganantara) of the two (planet and its Sighrocca). The result thus
obtained has to be subtracted from the time of conjunction of the planet and its
Sighrocca. Then we obtain the Sodhyadina of the planets.

The instant of time at which the mandocca will be close to the sighrocca-
grahayoga is called the Sodhyadina. The verses above present an algorithm
to find the Sodhyadina from the instant ¢. at which the Sighrocca-grahayoga
occurs.

If H; and H;_; are the desired mandalaharaka and the one immediately
preceding it, and if (0,,)t, = (0o — Om )z, is the mandakendra at time ., then
the remainder r; (adhikasista or unasista) mentioned in the above verse may
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be written as

;= (Omr)e.) % H; x Hi (for odd H;),
21600 Hi |, .m

int

N ((Omr)t.) ‘ Hiy ‘
r; = H; H 51600 x H; X . (for even H;). (4.23)

int
The Sodhyadina ts, can then be obtained as follows.

x (Hp x Hy)

—(GsHp —GH,) (4.24)

ts = le —
We shall explain the rationale behind the above expression by considering the

case of an exterior planet. The period of the Sighrakendra (synodic period) of
the planet T is given by

H.H,

T, =— P
(GsHp — GpH,)

(4.25)

Hence, the motion of the mean planet (and the Sighrocca) after one synodic
period, in revolutions, is
G H.H, G G
Tyx L2 =P P _ _ (4.26)
H, (GsH,—GpH,) H, H
where, following verse 6, we have used the definition of G and H given in
Section 4.5 (see the discussion after equation (4.8)). Therefore,

G 1 G
L - x = (4.27)
H, T, H

Now fl are the successive approximants of & 7 in the process of wvallyu-

pasamham Hence, the rate of motion of the mean planet may be approxi-
mated as
G, 1 G;

S o Z & 4.28
o, T "o (4.28)

Now let (0,,%):, in minutes be the longitude of the mandakendra at the

instant of conjunction of the mean planet and the $ighrocca, t.. In terms of

Omr)ie Thig can be written in the form

revolutions it is 21600

(Omr)e. W
£ = 4.2
21600  H;’ (4.29)

Further, n’ can be approximated by
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(ka)t
= | Wokdee gl 4.30
" [21600 S P (4.30)
Let
T=xxT, (4.31)

be the number of days in which the mean planet (or mandakendra, since the
mandocca is assumed to be stationary) increases by (g’fggéc . Here, we assume
x to be an integer, as we want the sighrakendra also to complete an integral
number of revolutions so that the mean planet and the Sighrocca are again
in conjunction. If we subtract T from t., we would obtain the Sodhyadina, at
which the Sighrocca and the mean planet are in conjunction and also close to

the mandocca.

As the rate of motion of the mean planet is % X fl , we should have
1 G’z n
— X —= XT—Y=— 4.32
TN TV (4.32)

where y is the integral number of completed revolutions. Using (4.31) in the
above equation we have,
Gi,T — Hiy =n.

Following our discussion in Section 3.2 of Chapter 3, the solution of the above
equation can be expressed in the form

H,_
T = [anll} . =r; (for odd H;),
H;_
and x=H,; — [nXHZl} =r; (for even H;), (4.33)

where n is given by (4.30). Now the number of days to be subtracted from ¢,
to find the Sodhyadina is given by
x(Hp x Hy) ri(Hp x Hy)

T = TS = = . 4.34
= = G, G ) T (G H, — Gy H) (4.34)

Hence, we obtain the expression for the Sodhyadina ts as given by (4.24).

.90 IHETYTFITT

4.10 Finding the Sodhyadhruva

ThTAUEH I Al I |
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tatkalagrahamadhyasya mandaturigasya cantaram |
Sodhyadhruvam dhanarnakhyam uccanmadhyadhike’lpake || 11 ||

The difference between the mean longitude of the planet and its apogee (man-
datunga) at that instant (¢s) would be the dhruva at the end of the Sodhyadina
($odhyadhruva). Tt is positive or negative depending on whether the mean planet
is larger or smaller than the apogee.

The Sodhyadhruva at the end of the sodhyadina is stated to be
Sodhyadhruva = (6 — O )4, -
From the procedure for finding the sodhyadina, it is clear that 6y—8,,, (mandak-

endra) would be close to zero but not exactly zero at the instant ts (Sodhyadina
which is not necessarily an integer).

.99 STATSTH! ThRTRH

4.11 Another method to obtain the sodhyadina

UTEREAAT: T TTAGETR

TR 23 Yo T IR S ST |

2T FATTYd YTho oo THISHT

TR AR 2T WEraras || 92 ||
Sighroccagrahamadhyayoh sadrsayoh tanmadhyatungantaram
liptikrtya haret dhruvaih rpadhanaih madhyagrahe’lpe’dhike |
Sistam Sodhyadinadhruvam dhruvaphalaksunnasca tanmandalat
Sighroccagrahamadhyasamyasamayat sodhyah svasodhyaptaye || 12 ||

The difference between the mean longitude of the planet, when it is the same
as that of the Sighrocca, and the mandocca, expressed in minutes, is divided by
[any suitable] negative or positive mandaladhruva depending on whether the mean
longitude is smaller or larger [than the mandocca). The remainder [of this division]
would be the Sodhyadhruva. The quotients [of the division] (dhruvaphalas) are
multiplied by the corresponding mandalas and are to be subtracted from the time
of conjunction of the planets and their $ighrocca, in order to obtain their own
Sodhyadinas.

If D; represents a mandaladhruva, then the Sodhya-dhruva or Sodhyadina-
dhruva given in the above verse is
6o — 6
Sodhyadinadhruva = [(ODm)tC] , (4.35)
where we need to choose i to be odd (D; < 0) if 8y < 6,,, and i to be even

(D; > 0)if 6y > 6,,. In (4.35), t. is the instant of conjunction of szghrocca and
the planet (Sighrocca-grahayoga) close to the desired ahargana A.
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The expression for the Sodhyadina, given in the verse, is

6o — 6
ty =te — M; x {(O"L)t} , (4.36)
Di int

where M; is the mandala with which the dhruva D; is associated.

We can easily see the rationale for the above expressions for the sodhyad-
ina and the Sodhyadinadhruva. As we have already seen, the mandalas M; are
chosen in such a way that in M; days the planet and the sSighrocca will be in
conjunction and close to the mandocca. Also, in M; days, the mandakendra
of the planet changes by an amount equal to the dhruva D;. At the time t,
($ighrocca-grahayoga), the mandakendra is (0o — 6y,)¢.. Hence, the mandak-
endra will be zero at the time

0o — Om)+.
tC_MiX <(O-D’L)t>.

Therefore, the mandakendra will be nearly zero at the time

o i ) (90 - am)tc
ty = to — M; x |:Di " (4.37)

Since ts as given by the above equation, differs from ¢, by an integral
multiple of the mandala M;, the Sighrakendra will also be zero at the instant
ts. This is the rationale for the above equation (4.36) for Sodhyadina.

Now we shall consider the rationale for the expression for Sodhyadhruva.
Let the mandakendra at time t. be expressed in terms of D; as

(00 —0m)tc =q X .D1 + 7,

where

[ (B0 = Om)s, _ [ (6o — ).
1= |: Dl nt and " D1 rem . (438)

Then the longitude of the mandakendra on the sodhyadina will be given by
(0o = Om)t, —qDi =7

= {(90 _Df’”)tch. (4.39)

which coincides with the (4.35) as prescribed in the verse. Here r is negative
if D; is negative.
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.9 HISATa IS UST:

4.12 Obtaining the maudhyavasana-khandas

ST UE TR Ao Tad: |
I TEATTIToT: HEUE: Hiells= ERIGH-=ERT: || 93 |l

Sighroccamadhyagrahayogakalah

maudhyotthakalardhadinaih sametah|

maudhyavasanadyuganah sakhandah

maudhyo tra harascalakendraharah || 13 ||

Half the duration of the period of invisibility (maudhyakala) added to the instant of
conjunction of the Sighrocca and the mean planet, would give the maudhyavasana-
khanda days. Here, the divisors are the sighrakendraharakas.

During the course of revolution of a planet, it will not be visible for a certain
period of time when its longitude is close to that of the Sun. This period of
invisibility of the planet is called the maudhyakala and the starting of this
maudhya (maudhyarambha) is known as the setting (astamana) of the planet.
Similarly, the time of ending of this maudhya (maudhyavasana) is known as
the rising (udaya) of the planet.

The term maudhyavasana-khanda refers to the number of days since the
beginning of the kali to the recent maudhyavasana (ending of maudhya). The
procedure to obtain it is explained in the verse above.

Let the time interval between the setting and rising of the planets called
the maudhyakala be denoted by At,,. Here, it is important to note that the
Sighrocca-grahayoga occurs exactly at the middle of the maudhyakala. If t.
represents the instant at which the conjunction of the mean planet and its
Sighrocca takes place, then the maudhyavasana-khanda given by the above
verse may be written as

At
maudhyavasana-khanda = t. + —5 (4.40)

It may be noted that, in the above formula (4.40), the variations in the rate at
which the planet and the sighrocca themselves move have not been considered.

8.93 ITTIOTAThEREATTIT

4.13 Obtaining the harakas mentioned in the Aganita
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gunaharau grahadityabhaganau tau mitho haret |
harakastatphalairnita bhavantyaganitoditah || 14 ||

The gunakaras and harakas which give the number of revolutions of the planet and
the Sun are divided mutually. The harakas obtained by the quotients of the above
division are the ones that are mentioned in the Aganita.

As stated earlier, the ratios % and &= are the rates of revolutions of the

planet and the Sun per day, Wherg G, and G are the drdhagunakaras and H,
and H are the corresponding drdhaharakas. Their inverses are proportional
to the number of revolutions in a mahayuga. The ratio of the number of
revolutions of the planet to that of the Sun is therefore given by

Gp x Hy
H, x Gy’

This in fact gives the number of revolutions made by a planet in one sidereal
year (one revolution of the Sun). Using the values of drdhagunakaras and
drdhaharakas listed in Table 2.2 of the second chapter of the text, we can
compute the above numerator and the denominator for each planet. They are
listed in Table 4.6.

Name of the planet || gunakara | haraka |
Mars 8996044 | 16920000
Mercury 42152837 | 10152000
Jupiter 91046 | 1080000
Venus 27503843 | 16920000
Saturn 574109 | 16920000

Table 4.6 The gunakaras and harakas for the revolutions made by the planets in a solar
year.

By doing the wvallyupasamhara of the gunakaras and the harakas listed in
Table 4.6, we get a set of harakas. We have computed these harakas for dif-
ferent planets and listed them in Appendix H, Tables H.6 — H.10. The text
notes that, these are the harakas given in the Aganita system of Madhava.
The Commentary I also gives some of these harakas in the form of vakyas.
These vakyas and harakas are listed in Appendix G, Table H.1- H.5.
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4.14 Obtaining the sodhyabdas of the planets

A E e R L R DD R CE R B
1 IR 218 Hoslhad 1194 1l

BRSO SIS TR |

TRl HTASI A ERSUT B I: 11 9% |l
SRRV Hed dAl A% 4T |
TUERYISTAT2I ATy R || 99 I
RreTear wag AT gewEfe: |
TSI Ih: ST ST |1 9¢

madhyabdantasamanitamadhyagrahadinesayoh |
alpabhogam mahabhogat tyaktva Sistam kalikrtam || 15 ||

haresvaganitaproktesvabhistena samahatam |
cakraliptaptamistordhvaharakena hatam punah || 16 ||

istaharena samhyrtya tatronamadhikam tu va |
istaharayugojatvavasat tyajyam Sakabdatah || 17 ||
Sistabdante bhaved yogah istagrahadinesayoh |
tasmadaganitaproktah Sodhyabdah so’yamiritah || 18 ||

Having obtained the mean longitude of the planet and the Sun at the end of the
mean solar year (madhyabdanta),® subtract [the mean longitude of] that which has
smaller daily motion from the other which has larger daily motion and convert the
remainder into minutes.

Multiply [the result] by any desired divisor mentioned in the Agapita and after
dividing it by 21600 (cakralipta), the quotient obtained is multiplied by the imme-
diately preceding divisor (istordhvaharaka).

The result is divided by the desired divisor. Then, depending on whether the desired
haraka is odd or even, the remainder in the above division or the haraka minus the
remainder, respectively, is subtracted from the Sakabda.

The conjunction of the mean planet and the mean Sun occurs at the end of these
remaining years (istabda). Therefore, this gives that Sodhyabda as mentioned in
the Aganita.

The Sodhyabda is the number of years elapsed since the beginning of the saka
era to the beginning of that year when the mean planet and the Sighrocca
are in conjunction at the mesadi. This notion seems to have been introduced
in the Aganita system. The four verses given above explain how to compute
the Sodhyabda of a planet which is close to the time when y; Saka years have
elapsed.

5 The term madhyabdanta refers to the instant at which the transit of the mean Sun
occurs from Mina to Mesa-rasi. In other words, it refers to the instant at which the mean
longitude of the Sun is zero.
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The algorithm presented here for finding the Sodhyabda from a given
Sakabda (ys) may be written as

o Let (0y),, represent the mean longitude of the planet in minutes at the
end of the mean sakabda year ys. Since at that time the mean longitude
of the Sun is zero, the difference between the mean longitude of the planet
and that of the Sun would be (6p),, itself. This in minutes has to be first
multiplied by any desired aganita-haraka, say H; (see Tables H.6 — H.10)
and divided by 21600. The integral part of this is to be obtained. That is,

we need to find
((6o)y,) x H;
21600 int ’

e This result should be further multiplied by previous haraka (H;—1) and
divided by H;. The remainder (r;) of the last division is found.

((B0)ys ) x Hi
[ 31600 Lnt X Hia

H;

(4.41)

’]"7; =
rem

e Now, r; or H; —r; is to be subtracted from the Sakabda (ys) depending on
whether ¢ is odd or even respectively and the Sodhyabda is given by

Sodhyabda = ys — r; (for odd i),
=ys — (H; —r;) (for even i). (4.42)

Now we explain the rationale behind the procedure outlined above. At the
end of the mean Sakabda year, y,, the mean longitude of the Sun is zero by
definition. The mean longitude of the planet is (6p),, in minutes, that is gﬂ“ggg

in revolutions. Let

(Ho)ys :ll
21600 H;
(00)21 /
If = x H; = [n)int =1, 4.43
{21600 XHi| =[lme=n (4.43)
we may approximate (B0)y. y i.
21600 H,

Let x be the number of years in which the longitude of the planet increases
by 7. Then, the $odhyabda, that is, the Saka year at the end of which the
planet is at mesadsi is given by ys — . The rate of motion of the planet per

solar year is % This can be approximated by g Therefore,

=Wy, 4.44
o T T 21600 T TR (4.44)
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where z is an integer giving the completed number of revolutions. That is, x
is a solution of the indeterminate equation

Gix — Hiz =n. (4.45)

Following the discussion in Section 3.2, the solution of the above equation can
be expressed in the form

H;_ .
x=r;= {nxl} (for odd 1),
H’L rem

and
n X Hi—l

=H,—r; = H, —
T T { T,

Lm (for even 7).  (4.46)

Subtracting this from the saka year ys, we obtain
Sodhyabda = ys — x,

which is what is stated in the verses.

.94 STTHTIEISHITH

4.15 Obtaining the adhimasakhanda
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kalyabdaghnadhimasah dinakarabhaganaih samhrta bhuadinaghnah
kalyadindudhruvamsaksitidinavadhato niscalaptairvihinah |
bhaktastatradhimasairbhavati dinaganah so’dhimasoktakhando-
’thanyonyaptadhimasaksitidinaracita harakastatra harah || 19 ||

The number of adhikamasas in a mahayuga (yugadhmasas), multiplied by the num-
ber of elapsed years since the beginning of kali, is divided by the number of solar
revolutions [in a mahayuga). [The result] is multiplied by the number of civil days
(bhudina) [in a mahayugal. [Separately], the dhruva of Moon, in degrees, at the
beginning of kali is multiplied by the number of civil days in a mahayuga and
divided by 360 (niscala). The quotient of this division is subtracted [from the first
result]. The result [thus obtained] when divided by the number of adhikamasas [in
a mahayuga) gives the number of civil days which is stated as the adhimasakhanda.
The divisors obtained by the mutual division of the yugadhimasas and the bhudina
are to be used as the harakas here.

The adhimasakhanda is the number of civil days elapsed since the begin-
ning of the kaliyuga to the beginning of an adhimasa which is close to the



124 UgEIRDITH Obtaining the harakas

Mesadi when yy, kali years have elapsed. If R; and D, represent the number
of revolutions of the Sun and the number of civil days in a mahayuga, then
the expression for adhimasakhanda given in the above verse may be written
as

yr X yugadhimasa  kalyadidhruva of Moon (in deg) D
R, - 360 X e

int

yugadhimasa

The rationale behind the above expression can be understood as follows. If
the longitude of the Moon were to be zero at kalyadi, the number of adhimasas
elapsed (n,) when yi kali years have elapsed is given by the rule of three to
be

ny = Yp X yugddhimdsas. (4.47)
R
Because of the kalyadidhruva (initial position being non-zero), the Moon would

have to cover that much less before the new Moon, compared to the zero-

dhruva case. So kalyddzdhrugﬁao(m degrees) should be subtracted from n,.

Hence

_ kalyadidhruva of Moon (in deg)
360

adhimasakhanda = |n,
int
The above result is in adhimasas. It may be noted that only the integral
part is taken, because in the calculation of the adhimasakhanda, only the
integral number of adhimasas before the kali year y; should be considered.
Now the duration corresponding to one adhimasa is ——=7<——. Hence the
yugadhimasa
adhimasakhanda is

_ kalyadidhruva of Moon (in deg)
a 360

x D,

int

civil days.
yugadhimasa v day

We need to find ——P<— for computing the above. The last quarter of
yugadhimasa

the verse prescribes that this ratio can be approximated by the standard val-
lyupasamhara method. The commentators note that here we should actually
use the Sakabda corrected number of adhimasas and the Sakabda corrected
number of civil days in a mahayuga.b These are given by 135431760 and
134122987500 respectively. Using the above values, we have computed the
gunakaras and the corresponding harakas which have been listed in Table 4.7.

6 {KP 1956}, pp. 150-152.
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gunakara haraka
1 990
2 1981
3 2971
110 108937
113 111908
675 668477
1463 1448862
2138 2117339
10015 9918218
12153 12035557
46474 46024889
337471 334209780
383945 380234669
2257196 2235383125
135431760 | 134122987500

Table 4.7 The gunakaras and the harakas for the adhimasakhanda.

%.9% TZIBRMITIRR:

4.16 Procedure for obtaining the grahanaharakas

T IR YIS ATH
TR IE S |
ERTAAT TIRAT aRoTTeTe:

TS ATATIE AT TEThEIRT: || R0 ||

hrtva parasparamatho yugacandramasam
dvighnarkapatabhaganaikyamapiha labdhaih |
harannayet punarami dharanidinaghnah
syuScandramasavihrta grahanoktaharah || 20 ||

The number of lunar months in a yuga and twice the sum of the revolutions of the
Sun and the node of the Moon (dvighnarkapata-bhaganaikya) have to be divided
mutually and from the quotients obtained here, let the harakas be obtained. These
[harakas] when multiplied by the number of civil days (dharanidina) and divided
by the number of lunar months give the grahanaharakas.

The above verse describes the procedure to obtain the grahanaharakas which
are used in finding the grahanakhandas (explained in the following verses).
Both the Commentaries I and IT mention that the revolution numbers to be
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used while obtaining these harakas are the Drgganita revolution numbers that
are listed in Table 4.8.7

number of revolutions
Planet
in katapayadi in numerals
Sun | jranajiianapralobham 4320000
Moon nikhilagunasusima 57753320
Rahu anango ragakhinnah 232300

Table 4.8 The Drgganita parameters used in the computation of grahanaharakas.

From Table 4.8, we find that twice the sum of revolutions of the Sun and
the node of the Moon amounts to

G = 2 x (4320000 + 232300) = 9104600.

The number of lunar months is given by H = 53433320. Using them we
have computed the gunakaras G; and harakas H; obtained by the process of
vallyupasamhara and these are listed in Table 4.9.

The grahanaharakas (Hgy;), which are used for obtaining the grahanakhanda,
are given by

Hi X Dc
lunar months in a mahayuga’

(4.48)

These have also been listed in the third column of Table 4.9.

8.99 UG IEISHITARIR:
4.17 Procedure for obtaining the grahanakhandas

HreaT AT TS ROTH TR T asey
WWHTWWW%‘W |
AT Bl I FRredt sifergra

TS HATRIRETE ST, [GToTd AP ETE: 1129 |l

nitva madhyarkacandrau phaninamapi drsa madhyaparvantakale
patonarkendulipta lunadagagunitascakralipta vibhaktah |

7 {KP 1956}, pp. 152-154. The revolution numbers are perhaps inferred from the param-
eters given in Drgganita. The published edition of the Drgganita of Paramesvara ({DG
1963}) gives only gunakaras and harakas for planets.
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gunakara haraka | grahanaharaka
(Gi) (H:) (Hgi)

1 5 148

1 6 177

7 41 1211

8 47 1388

15 88 2599

23 135 3987

38 223 6585

61 358 10572

587 3445 101733

648 3803 112305
3179 18657 550952
3827 22460 663257
22314 130957 3867238
26141 153417 4530495
100737 591208 17458721
227615 | 1335833 39447938
9104600 | 53433320 1577917500

Table 4.9 The grahanaharakas.

tapasthanena hatva lunadagavihrte Sistato bhudinaghnat

candrairmasairavaptam tyajatu dinaganat soparagoktakhandah || 21 ||
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Having obtained the mean longitudes of the Sun, Moon and its node (phani) at the
instant of mean conjunction/opposition (madhyaparvanta)® using [the parameters

given in] Drg[ganita], subtract [the mean longitude of] the node (pata) from [that of]

the Sun and the Moon and convert [the results] into minutes. They are multiplied

by 3803 (lunadaga) and divided by 21600 (cakralipta). [The quotients thus obtained]

are multiplied by 716 (tapasthana) and divided by 3803 (lunadaga). The remainders
thus obtained are multiplied by the number of civil days in a mahayuga and divided
by the number of lunar months in a mahayuga. The results thus obtained, when
subtracted from the ahargana [at the end of the conjunction/opposition], are said

to be the grahana-khandas.

Here, the verse gives the prescription to obtain the day on which the con-
junction of the Sun or Moon and the Moon’s node (Rahu) occurs before any
given new Moon day or full Moon day (parvantakala). Let’s assume that the
Sun is close to one of the nodes of the Moon and that it is a parvantakala.
On this day the longitude of the Moon will be same as that of the node in

8 The instant at which the difference in longitudes of the mean Sun and the Moon is
either 0° or 180° is called the madhyaparvantakala.
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the case of solar eclipse or at the other node which is six rasis away in the
case of lunar eclipse. The procedure outlined in the above verse for obtaining
grahana-khanda (for a solar/lunar eclipse) corresponding to a new Moon/full
Moon day with ahargana A, /Ay is as follows.

o Let 059, 0,0 and 6,9 represent the mean longitudes in minutes of the Sun,
the Moon and its node respectively. We evaluate them corresponding to the
aharagana A, when the Sun and the Moon are in conjunction, and then

find
(930 — eno)An x 3803
21600 ot

Similarly, we find these longitudes when the Sun and the Moon are in
opposition, i.e., when ahargana Ay =~ A, + 15. Then we determine the
following quantity

(Omo — o) 4, X 3803
21600 ;

e These two results have to be further multiplied by 716 and divided by 3803.
The remainders (rs and r,,) of the resulting quantities are then found.

050 — 0, x 3803
(00 — o), 6
21600 it
3803 ’

rs =

<4 rem

and

21600
_ . 4.49
T 3803 (4.49)

Omo — On x 3803 T
V 0~ 0n0) A, ] -
int

<4 rem

e These remainders are now multiplied by the number of civil days (D.) in
a mahayuga and divided by the number of lunar months (M,,). Then the
grahana-khandas are given by

S DC .

grahana-khanda = A,, — ! ]\; (solar eclipse), (4.50)
m D .

=Af— ! ]\; - (lunar eclipse). (4.51)

We shall now provide the rationale behind the above procedure, by first
considering the case when the Sun and the Moon are in conjunction corre-
sponding to an ahargana A, . Let the mean longitude of the Sun and the Moon
be given by 0s0(= 0,,0) in minutes, and that of the ascending node be 6,9 in
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minutes. Let

090 - 6710 n/ n
—_— — A — 4.52
21600 o, H ( )

where n is the integral part and H; is a suitable grahana-haraka.

Now, we have to find the instant prior to the specified ahargana, when
the Sun, Moon and one of its two nodes are at conjunction. This gives the
khanda for solar eclipse. Let the difference between the two instants be x lunar
months. The motion of the nodes of the Moon (Rahu and Ketu) is retrograde.
The nodes individually separate from the Sun at the rate % revolution per

lunar month, where

G 2 x (revolutions of the Sun + revolutions of nodes)

H number of lunar months

We shall approximate the above rate by % by making use of the grahana-
gunakaras and grahanaharakas discussed in the previous section (see Table
4.9). At the suryagrahanakhanda, which is z lunar months before the given
ahargana, either Rahu or Ketu should be in conjunction with the mean Sun.
Hence

G
2H;

Yy n
—d=_ 4.53
5= (4.53)

where y is an integer. Thus, G;x — H;y = 2n. Following the discussion in
Section 3.2 of Chapter 3, the solution of the above equation can be expressed
in the form

ImH,_
x=H,; — [ n : 1] (for even i),
2nH,;_ .
and x = [ nH 1] (for odd 1). (4.54)
i rem

Since z is in the units of lunar months, the number of civil days between the
new Moon (A,) (parvanta) and the suryagrahana-khanda is given by

Fg—l}m X z\l;m (for odd i), (4.55)
and onIT D
nili—1 c .
(Hz - { T, ]Tem) X AL (for even i). (4.56)

We choose the even (10") haraka H; = 3803, so that H; ; = 3445. Using
these values in (4.54), we have,
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2n x 3445
=3803 — | —=—— 4.57
Now 2n x 3445 = 2n(3803 — 358). Let
2n x 358 =n x 716 =1 x 3803 + r, (4.58)
where [ is an integer. That is
n
- 1 } . 4.
" [3803 e (4.59)
Then
2n x 3445 = (2n — 1 — 1) x 3803 + (3803 — r).
The first term does not contribute to the remainder, and hence
2n x 3445
_— = - 4.
[ 3803 Lem 3803 —r (4.60)
Therefore,
2n x 3445
Trs =T = 3803 - |:3803:| .
= 3803 — (3803 — r)
n
= 1 } 4.61
" {3803X76Tem’ (4.61)
where

n— (0s0 — no)a,, x 3803
B 21600 .

This is what is prescribed in the text. Now r¢ lunar months correspond to
rg X J@)C days. Hence the suryagrahana-khanda corresponding to the parvanta,

m
which is a New Moon, is

D
A, —rs X M; (4.62)
Similarly, the candragrahana-khanda corresponding to the same parvanta,
is A —rp, X AE;TC”, where Ay is half a lunar month more than A,, and r,, is
given by

T = [35% x 716] . (4.63)

where

. (9m0 — GnO)Af % 3803
= 21600
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Illustrative example:

We take the Drgganita values for the revolution numbers. The longitude of the
Sun and Moon at kalyadi are zero, whereas that of the Rahu is 180°. Consider
the ahargana A = 1851981. The mean longitudes of the Sun and the Moon
are not exactly equal at A. It can be easily checked that

A, = 1851981.462035,

corresponds to the instant of conjunction with 659 = 60,0 = 118.2247°. At A,,,
the longitude of Rahu is found to be 6,0 = —53.1073°. Hence, at the parvanta
(here the new Moon day),

0so — 0o = 171.3320°

= 10279.92’,
0so — B0 (minutes)
d = 0.47592
an 21600
_1809.9323 1810
T 3803 3803

With this we find the remainder r, to be

. [nxT16
| 3803 ...
B [1810 x 716}

3803
= 2940 lunar months,

and D
T's X Pe _ 86819.93651 days.

m

Hence the suryagrahana-khanda is given by

rs X D,
M,
= 1765161.526 days.

suryagrahana-khanda = A, —

One can check that at this khanda,

040 = 228.2474,
0o = 228.2472,
00 = 228.2597.

It is also worth noting that 6,0 and 85y (or 8,,9) differ only by 0.0125° ~ 0.6'.
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Along the same lines, we shall now proceed to obtain the candragrahana-
khanda. If A,, = 1851981.462035517 days corresponds to the time of new
moon, then

1
A=A, + 3 lunar month = 1851996.227 days,

corresponds to the time of full moon. At this ahargana we find that

Omo = 312.7773756°,
050 = 132.7773756° (Omo — 180°),
Ono = —53.88983997°.

At the parvanta (here, the time of full moon)

0o — 0o = 6.66721556°
= 400.032934’,

and Omo = Ono_(min) _ ) 01 855004304

21600
704317444 _ 70
3803 3803

Now

{n x 716

= 681 lunar months
3803 |,..

= 20110.33223 days.
Hence, the candragrahana-khanda is

Ay —20110.33223 = 1851996.227 — 20110.33223
= 1831885.895 days.

At this khanda,

0,0 = 111.9763°,
Omo = 291.9721°,
00 = 291.9370°.

It is seen that the longitude of Sun differs from (longitude of Moon —180°)
only by 0.0042° ~ 0.24’. Similarly, the longitude of Rahu and mean Moon
differ by 0.0351° ~ 2.1’. This again shows the accuracy of the procedure
outlined in the text.



Chapter 5 @

WITOTTEIreTT wa
Examination of the revolution numbers
etc.

4.9 HEITE I TIRH I OTIRIR:

5.1 Procedure for correcting the revolutions of the
planets in a kalpa

TEUTIEANITE: 3 ET: JU=ITeTaT: |
TRTIRATHT: hed HewT T IroTre: 119 |l
TR e d== I Irvd= |

TS E TR TOT: Hedrhel THTEa 11 R |l
AT TR THERT T |

I RIS A2Tashhargd: 1| 3 |l
EdTH T Tg e Iehad: |

ot T FHed+Tor FATATIT I 119

grahanagrahayogadyaih ye grahah supariksitah |
drksamastatsamah kalpe kalpya va bhaganadayah || 1 ||

pariksitasya khetasya tantranitasya cantaram |
liptikrtarkabhaganaih kalpoktaisca samahatam || 2 ||
tantranirmanakalasya pariksasamayasya ca |
antaralagatairabdai rasicakrakalahataih || 3 ||

hrtvaptam tantranitasya grahasyalpadhikatvatah |
svarnpam tat kalpabhagane kuryannaisavidhi raveh || 4 ||

Based on a thorough examination of the position of the planets at the time of
eclipses, planetary conjunctions, and so on, the revolution numbers etc. [of the
planets] in a kalpa have to be conceived of for achieving concordance with obser-
vations.

Multiply the magnitude of the difference between the textually computed (tantranita)
and the observed (pariksita) values of the [longitude of] a planet, expressed in min-
utes, by the revolutions of the Sun in a kalpa and divide by the product of the
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number of years elapsed between the time of observation and that of the compo-
sition of the text (employed for making the computation) and 21600 (cakrakala).

The quotient thus obtained should be added to or subtracted from the number
of revolutions in a kalpa (kalpabhagana) of the planet, depending on whether the
textually computed values are smaller or larger [than the observed values], respec-
tively. This procedure is not to be employed in the case of the Sun.

Let the magnitude of the difference between the observed and the computed
mean longitudes of the planet be Af (in minutes). Assuming that at the time
of composition of the text there was no difference between the two, the entire
difference A0 can be considered to be the error accumulated during the period
starting from the date of composition till the date of observation. If y be the
number of years between the date of composition of the text and that of
observation, then the discrepancy per year is

A0 (in min.) A6
y 21600 x

(bhaganas). (5.1)

Multiplying (5.1) by the number of years in a kalpa would give the error
accumulated in the kalpa. The number of years in a kalpa is by definition
equal to the number of solar revolutions in a kalpa, Rs;. The result obtained
can be applied to the bhaganas in a kalpa to obtain the corrected revolutions of
the planets in a kalpa. Thus, the correction AR to be applied to the revolutions
of the planet is given by

Af
AR= 2= LR, 5.2
21600 x y - (52)

The above correction AR is to be added or subtracted from the revolution
number of the planet depending on whether the observed values are smaller
or larger, respectively, than the computed values.

4.2 T FHeaT YT

5.2 Obtaining the kalpadidhruvas of the planets

A EdheaTdTEg-ard
WWWWl
ﬁ?rgqq—d ﬁﬂmwgeﬁgqlwlﬁ sl

tatparyayabhihatakalpagatabdavrndat
kalparkaparyayahrtam bhaganadimadhyam |
tyaktva pariksitasamantaviharngamadhyat

Sistam vadanti kila kalpamukhadhruvakhyam || 5 ||
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The product of those [corrected] revolutions of the planets and the number of years
elapsed since the beginning of the kalpa when divided by the number of revolutions
of the Sun in a kalpa, gives the mean longitude of the planet. [This is] subtracted
from the observed mean longitude of the planet at the end of the elapsed year. The
remainder indeed is stated to be the kalpadidhruva of the planet.

This verse lays down the procedure for obtaining the initial position of the
planets at the beginning of kalpa (known as kalpadidhruvas). Tt is stated that
difference between the computed mean longitude (6.) and the observed mean
longitude! (6,) gives the kalpadidhruvas or the grahadhruvas.

If Y be the number of elapsed years since the beginning of kalpa, then the
computed mean longitudes of the planets are given by

(R+ AR) x Y

90 = 5
R

(5.3)

where R, represents the number of revolutions of the Sun in kalpa and R+ AR
represents the corrected bhaganas of the planets. The integral part of the
above equation gives the elapsed number of revolutions. From the fractional
part one can obtain the longitudes in terms of sign, degrees, minutes etc., as
done earlier. Subtracting 6. from 6, we obtain the grahadhruva. That is,

grahadhruve = 0, — .. (5.4)

4.3 HeUTal HEAUTYE:

5.3 Sankramanadhruvae at the beginning of the kalpa

%Wlm‘i\mqﬁ%wﬂdlm&lldld\
eI HITHI e ddTART: |

=

FHearTestt Yafd TATYarsaT |l & II

kalpoktabhudivasakalpagatabdaghatat
kalpoktabhanubhaganahrtavasaradeh |
saptaptasistarahitestasamantakalah

kalpadijo bhavati sankramanadhruvo’yam || 6 ||

Multiplying the number of elapsed years in the [present] kalpa by the number of
civil days in a kalpa, and dividing the result by the number of solar revolutions
in a kalpa, whatever is obtained has to be divided by 7. The remainder of this,
when subtracted from [the number corresponding] to the observed weekday at the

! The term ‘observed’ mean longitude may sound strange as it is only the true longitude
that can be observed. However, at those instances when the true coincides with the mean,
the observed value straightaway gives the mean longitude.
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end of the elapsed year (istasamantakala), would be the sarkramanadhruva at the
beginning of the kalpa.

The term sankramanadhruva represents the weekday at the beginning of
the kalpa. The procedure outlined above is based on the assumption that the
mean Sun is at mesadi (with zero degree longitude) at the beginning of kalpa.
If D, is the number of civil days in a kalpa, and Y is the elapsed number of
years since the beginning of the kalpa, then the elapsed number of civil days
d. elapsed is given by

Y x D,
de = ———. 5.5
- (55
The weekday w, at the end of the Y'*" year is given by
dc}
We = | — . (5.6)
|: 7 rem
Here, w, = 0,1,2... and 6 correspond to Sunday, Monday ... and Saturday

respectively.
If w, be the observed weekday at the end of the elapsed year, then the
sankramana-dhruva or the weekday at the beginning of the kalpa would be

Sankramanadhruvae = w, — w,. [for w, > w|,

= (T+w,) —w, [for w, < we]. (5.7)

4.8 TEHUIEYTAT: THETHIITT

5.4 Corrections to sarnkramana and graha-dhruvas

A TATRITaTATR T T: o e
FeaTthgTIae JOTdT: HeaTshasTedT: |

TOT: HZHAORIRY, HIOHT: FHedTed Y SHATT

ot a7 qRIfe feehe waed sfares o wper: 1l v i

tantranitapariksitarunabhidaliptah prthag bhudinaih
kalpoktairgrahaparyayaisca gunitah kalparkavarsahrtah |
pranah sankramanagrahesu kalikah kalpadigesu kramat
svarnam tatra pariksite dinakare svalpe’dhike te sphutah || 7 ||

The difference in [the longitudes] of the textually computed (tantranita) and the
observed values (pariksita) of the Sun in minutes are separately multiplied by the
number of civil days in a kalpa and by the number of revolutions of the planets in a
kalpa, and divided by the number of solar years in a kalpa. The results thus obtained
should be applied to the sankramanadhruva in pranas and to the grahadhruvas of
the respective planets, respectively. This [correction] has to be applied positively
or negatively depending on whether the observed [longitude of the] Sun is smaller
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or larger [than the computed value]. These give the true values [of the sarikramana
and grahadhruvas).

The above verse gives the corrections to the sankramanadhruva and the
grahadhruvas of the planets at the beginning of the kalpa which arise due to a
shift in the kalpadi itself as inferred from the difference between the observed
and computed longitudes of the Sun. These corrections are obtained by first
finding the difference between the observed and the computed longitudes of
the Sun (6, and 6. respectively) d6, (in revolutions) given by

80, = 0,0 — Oy (5.8)

This multiplied by the number of civil days in a solar year (ratio of the number
of civil days to the number of solar revolutions in a kalpa) would give the
fraction of a day corresponding to 0. Thus, the correction added to the
sankramanadhruva is

605 x D,

A (in days) = 7

(5.9)

As one day is equal to 21600 pranas, multiplying both sides of the above
equation by 21600, we get the correction in pranas.

80, x D, x 21600

A (in pranpas) =

= . (5.10)

If 65, > 0O, it means that the ahargana for the day of observation is
actually more, that is, the kalpadi is actually earlier and hence Ay (in pranas)
must be subtracted from the sankramanadhruva. If 6,5, < 6., As has to be
added to it.

The shift in the kalpadi would alter the grahadhruvas also. The change in
grahadhruva in minutes would be

As (in pranas) x (R + AR)
D,
305 (in minutes) x (R + AR)

= A1
o AR

A (in minutes) =

as the rate of motion of the planet is

BEAR) | olutions = BEAR)

D. D. x 21600 minutes per day.

If the kalpadi is earlier (if 05, > 05.), A has to be subtracted from the gra-
hadhruva. If 04, < ., A has to be added to the grahadhruva of the planet.
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4.4 HAMCYTHGITIREIITH
T

5.5 Eliminating the kalpadidhruvas

Td  YITgIT: heaTel 49 Iad |

i aaReERTS TeRTaRE=T 1 ¢l

AT Y FHerTarag Heulfad TRARIIIT |

T TR BT hedTe@Tyaian Il ]|
FAT T TR ER0T e e |
gaifariieesor 2 gRisgFaazng 9= 1l 9o |l
FHediiad TRGITIIS TEF FATd T T THe: =1 |
TEYERIMYA: T TF: T JeT TS aa: Trd 1199 |l
AT BRI | T AT T ST SoToRASr: |

BRI STONHBET ITea T [TodasT 1l 92 1l

evam tu dhruvasadbhavah kalpadau naiva yujyate |
iti tatpariharartham samskarantaramisyate || 8 ||

hrtva mithah kalpagatabdavrndam
kalpoditam bhaskaraparyayarica |
labdhaih samanitaharesvabhiste-
nahatya kalpadikhagadhruvamsan || 9 ||

hrtvatulairaptamabhistahara-
syordhvasthaharena nihatya hrtva |
purvoditabhistaharena Sistam
haraujayugmatvavasad dhanarnam || 10 ||

kalpodite samskrtaparyayaughe

grahasya kuryat sa tada sphutah syat |
istaghnaharonayutah sa drstah

kvacid graho drstisamo yatah syat || 11 ||
tabhyam harabhyam tu tatha mrduccat
patacca nito bhaganastadiyah |
haradvisodhyo yamrnatmakascet

patasya sarvam viparitameva || 12 ||

This way of having dhruvas at the beginning of kalpa does not seem to be ap-
propriate. Hence, in order to avoid that, an alternative correction procedure is
sought.

[For this purpose], the elapsed number of years since the beginning of kalpa and
the number of years or solar revolutions (bhaskaraparyaya) in a kalpa are mutu-
ally divided. Of the [successive multipliers and] divisors thus obtained, choose any
divisor and multiply it by the grahadhruva of the planet in degrees (kalpadikhaga-
dhruvamsa) and divide by 360 (atula).

Multiply the quotient thus obtained by the preceding divisor and divide by the
previously stated desired divisor. The remainder thus obtained is applied to the
corrected revolution (samskrtaparyaya) of the planet positively or negatively de-
pending on whether the divisor is odd or even respectively. Then, we get the true
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revolution (sphuta). An integral multiple of the haraka may be added to or sub-
tracted from this (sphuta) so as to ensure that the planetary longitude coincides
with what is observed.

With the same harakas, obtain the revolutions of the apogees and the nodes. If it
(the grahadhruva) turns out to be negative then it has to be subtracted from the
divisor. All the operations have to be reversed in the case of the node.

The verses 9-11 prescribe a correction term which is to be applied to the
samskrtaparyayas R’ of the planets (R+ AR discussed in Section 5.1), in order
to eliminate the kalpadidhruvas. The prescription is as follows:

e Find the successive approximations for the ratio of the number of years
elapsed since the beginning of the kalpa (Y') to the number of years in the
kalpa (Rs) by the method of mutual division. The successive gunakaras and
harakas that arise in this mutual division are to be noted down. Let these
be denoted by G;’s and H;’s (i = 1,2,...) respectively.

o Multiply the grahadhruva in degrees (6, — 0.) by any desired haraka (H;),
divide by 360 and find the quotient. That is, find

(90 — 90) X Hz
360 int '

o Multiply the above result by the penultimate haraka (H;—1) and divide by
the desired haraka. The remainder obtained has to be applied to R’. The re-
sult would be the corrected revolution number of the planet, sphutaparyaya
R”. That is

0o—00) X H,
R'=R + [e], X Hi
= 27
e Here we need to choose ‘+’ for odd and ‘-’ for even haraka. An integral

multiple of hara can be added to or subtracted from this (sphutaparyaya)
to make the revolution number tally with observations.

Now we proceed to explain the rationale behind the above correction term.
The mean longitude of a planet corresponding to elapsed years Y since the
beginning of the kalpa is given by

R’xzi(eo_ec)

—_— 12
R, 360 (5:12)

where (6, — 0.) is the magnitude of grahadhruva in degrees (dhruvamsa). In
the above equation, the mean longitude computed corresponds to the elapsed
number of years Y. It may also be noted that the dhruva has been applied
to the result. Now instead of applying dhruva, we could as well modify the
samskrta-paryayas or the corrected number of revolutions in a kalpa, R', itself
by adding a quantity x to it and still obtain the same result. Here, the quantity
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x has the same dimension as that of the bhagana. Thus new expression for
mean longitude is

(R + ) x RX (5.13)

We will consider the case where the quantity 6, — 6. is positive. Equating
(5.12) and (5.13), we have

T X Y _ (6o —9c)
Rels. 360
Y (0, —6.)
——y=——" 5.14
or T X i Yy 360 ( )
where y is an integer. Rewriting the above equation, we have
Y (6,-6.)
— e 7 _ o 1
T X . 360 Yy (5.15)

Now we have an indeterminate equation of first order, wherein we need to find
integer solutions for x and y.

It is noted that by solving (5.15) and applying the value of x obtained
to R’, we can correct the bhaganas of the planets which takes into account
the zero correction due to dhruva. To find x, first find successive multipliers

and divisors of the ratio RL by doing vallyupasamhara. Let G;’s and H;’s be

. c s .. . Y G;
the successive multipliers and divisors. Now we approximate - by e for a

suitable haraka H;. Also by writing ’

(0, —6.) 2’
EETTA (5.16)
we have 2/ = (eggoa <) H;. We approximate 2’ by its integral part z. Hence
(6, —6.) z 1 [(6,—0.)
— L x—=—|—FX%xH; , 1
360 H; H; 360 int (517
Then x satisfies the equation
Gix—Hyy=z. (5.18)

Following our discussion in Section 3.2, the solution of the above equation can
be written as

z .
T = [Hz X Hi_l} . (when i is odd),
and r=H; — [Ij X Hi_l} (when ¢ is even).  (5.19)
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Now the corrected revolution number is R’ + z. If (z,y) is a solution of the
indeterminate equation, then (z + mH;,y + mG;) is also a solution for any
integer m. So, a suitable multiple of H; can be added to the above to make
the corrected revolution number tally with observations. For the same reason,
the term H; in the above solution for even ¢ can be dropped.

Now when the dhruvamsa (6, —0..) is negative, we would have the equation

LG Oo—0b) -2 Hi-z
tmE YT T 360 T H, T H, ’
Hi z
L (y—=1) = 2
or x X l ( ) T (5.20)

Here, the same procedure is to be followed, as in the case of positive dhru-
vamsa, except that H; — z is used instead of z, where Hil is the magnitude of
dhruvamsa

360

4.& HeaTel TEATYIRE IAATIGTT

5.6 Obtaining zero sankramanadhruva at the beginning of
the kalpa

HEIT T HHTEARCT AT |
T IR FATHERET: St 1193 I
ERY A e
TGS W THHTHA |

o0 hd e
UPTE hedplad TIHOT AHAT 11 9% I

kalpagatam varsaganam saptahatakalpabhanubhaganamapi |
hrtva punaranyonyam tatraptairharakah karyah || 13 ||
haresu tesvabhimatena punarvinighnat
kalpadisankramadinat khalu saptabhaktam |
istordhvaharahatamistaharena tastam

pragvacca kalpakudine svamrnam prakuryat || 14 ||

Obtain the harakas by mutually dividing the elapsed number of years since the
beginning of the kalpa and seven times the number of years in a kalpa.

Multiply the sarnkramanadina corresponding to the beginning of kalpa by the de-
sired haraka and divide by seven. [The quotient] thus obtained has to be multiplied
by the previous divisor and divided by the desired divisor. As earlier, [the remain-
der| should be added to or subtracted from the number of civil days in a kalpa.

The correction term which is to be added to the number of civil days (D.)
in order to make the sankramanadhruva zero as prescribed in the above verse
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is of the form

sankramanadhruvax H;
- X Hz 1

7 .
int 5.21
e : (5.21)

rem

where H; and H;_; are the istaharaka and z’stordhvahdmkas which are obtained
by doing wvallyupasamhara of the ratio W The above correction has to be
added to or subtracted from the number of civil days (D) depending on
whether the haraka H; is odd or even respectively. We now proceed to explain
the rationale behind the correction term (5.21).

Let Rs; be the number of revolutions of the Sun in a kalpa and D, the
tabulated number of civil days in a kalpa. Hence the number of days, d.
corresponding to number of elapsed years Y starting from kalpadi can be
represented as

Y x D,
R

where [ is an integer, w,. is the computed weekday which could be different
from the actual count of the weekday w,. Note that w, and w. can have
integral and fractional parts. Earlier this quantity (w, — w.) was considered
as the sankramanadhruva for the beginning of the kalpa. However, this could
also be attributed to the number of civil days in a kalpa being equal to a
number D!, different from D.. Then

d. = =7l + w,, (5.22)

Y x D!
do = % =Tk + w,, (5.23)

where k is an integer. Now from (5.22) and (5.23),

dy—dy = RX < (DL — D) = 7(k — 1) + (wy — we). (5.24)

Dividing this by 7, we have

Y (wo — wc).

T x (D= De) = (k= 1) + -~ (5.25)

Let G, H; be the successive gunakdms and haras in the vallyupasamhara

of 7 . Then for a sufficiently large H;, =5~ R G . Also
let
(wo —we) _n"
7 H; H
where

n— {( } (5.26)



5.7 Different measures of kalpa 143
Let k —l =y, and D, — D, = x. We then have the indeterminate equation,
Gix — Hyy = n.

The solution of this is given by

H;_ .
T = {n 27 ! ] . (when 7 is odd),
H;_
O {n 7 1] (when i is even). (5.27)

In the case of “even” H;, use is made of the fact that if (z,y) is a solution of
the indeterminate equation, then (x — H;,y — G;) is also a solution. Hence the
corrected number of civil days D/, is given by

(2

H;_
D.=D.+ [”H } , (5.28)

9

where we have to choose ‘+” when ¢ is odd and ‘—’ when ¢ is even. Clearly
the correction term (5.28) is the same as that prescribed by the verse in the
form (5.21).

4. RAfrsHeraRaren=

5.7 Different measures of kalpa

FHETSHT FHTOT § 9T hoard 9 |
34T ey ARy g 119y |l

kalpadinam pramanam tu bahudha kalpyate budhaih |
upeyasyaiva niyamo nopayasyeti yat tatah || 15 ||

The duration of a kalpa has been conceived differently by different scholars. This
is due to the fact that there are no constraints on the means (upaya), but only on
the end result (upeya).

Quantities such as the number of years in a kalpa are only the means (upaya)
for obtaining the end results (upeya), such as the longitudes of the planets.
In the following verses, the author presents views of two different schools
(paksas), which take the duration of the kalpa to be 1000 years instead of
1008 years considered in Section 1.5.
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4.4 FHod T TSS9 rm:

5.8 Different divisions of a kalpa

el o G AR hi eI TABHAFALII g AL |
AT~ [aR o T899 A9 B: T JIeeradshde: |l 9% |l

AT TgE2Nd el FYGT I < ao |
TR STaT I e ORa: T: TSI gz 1l 99 |l

kalpe yugani tu sahasramusanti kecit
tatraikasaptatiyugani prthan manunam |
adyantayosca vivare ca tathaiva tesam

syuh sandhayo yugadasamsacatuskatulyah || 16 ||

manavo tha caturdasaiva kalpe
prthutulyani yugani caiva tesam |
triyugans gatani srstitah prak

paratah syuh pralayat tathahuranye || 17 ||

Some [teachers] say that there are 1000 caturyugas in a kalpa. In it, there are 71
caturyugas corresponding to 14 Manus. At the beginning and towards the end [of
the kalpa], as well as in the interval between (different Manu’s) periods, there will

h
be sandhis whose durations are equal to (ﬁ)t of a caturyuga.
Some other [teachers] say that the number of Manus in a kalpa is 14 only and that
the yugas associated with each of them is equal to 71 (prthu). [Also, according to

them] a period of three yugas is said to have elapsed before the creation (srsti) and
there will be [three yugas] after the dissolution (pralaya).

According to some teachers, the number of caturyugas in a Manvantara is
stated to be 71 and a kalpa corresponds to a period which is equal to the sum

of 14 Manus and 15 sandhis, where each sandhi corresponds to (E) oot a
caturyuga. Thus the total number of caturyugas in a kalpa is equal to

4
71><14+15><1—0:1000.

Having explained what constitutes a kalpa of one thousand? mahayugas as per
one school, the author presents the view held by another school in this regard.

Even according to them the total number of caturyugas in a kalpa is 1000
only. However, the internal composition of the number of caturyugas in a kalpa
is different. In this school, instead of conceiving of 15 sandhi periods of shorter
duration in between every manvantara, they conceive of two long periods each

2 It may be recalled that in Bhagavadgita too the number of caturyugas in a kalpa is
stated to be 1000, which is said to be the same as the duration of the day of Brahma.

sahasrayugaparyantam aharyad brahmano viduh |
ratrim yugasahasrantam te’horatravido janah ||
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equal to 3 mahayugas, for creation and dissolution. Thus according to them
also the total number of mahayugas in a kalpa will be

71 x 14 + 3 + 3 = 1000.

4. FATTSLITHT TRHATIY

5.9 The duration of krta and other yugas

T T AT TS AT |

HATaIT FHTOT JT TeTaR-aEar: 119¢ |l

yugasya dasamo bhago bhogapriyahatah kramat |
krtadinam pramanam syat paksayoranayordvayoh || 18 ||

According to both these schools (paksas) the period of the [yugapadas] krta etc. are
one-tenth of a [maha]yuga multiplied by 4, 3, 2 and 1 (bhogapriya) respectively .

A mahayuga consists of 43,20, 000 years. One-tenth of it is 4, 32,000 years.
The number of years in the four padas according to both the schools referred
to in the previous section are the same, and are presented in Table 5.1. It
may be recalled that this is different from the conception of equal yugapadas
presented in Section 1.6.

yugapada no. of years
Fa krta 1728000
Far treta 1296000
&IAaX dvapara 864000
Hics kali 432000

Table 5.1 The number of years in the four yugas constituting a mahayuga.

4.90 TAHH T TATHD:

5.10 Time elapsed in the present kalpa

e SRET THASATRT I as T |
STEITE! ios: AT 28 e 11 9% |l



146 IO ér Examination of the revolution numbers etc.

kalpe’smin saptamasyasya vaivasvatamanoryuge |
astavimse kalih sarvairvartamana iha smrtah || 19 ||

As per the civilizational memory (smyti), all [the schools] recall that, we are in
the Vaivasvata-manvantara associated with the seventh Manu of the present kalpa
[and in this manvantara], we are in the 28th kali [yugal.



Chapter 6 @
IR SAFAY B
Relation between the circumference and
the diameter and computation of Rsines

§.9 ATIAISST

6.1 The Madhava series

STATE I g 3T: TR POg e |

AT Y HHTRGOT ¥ FATART ST TIRTe: FRIE: 119 |l

vyasaccaturghnat bahusah prthaksthat
tripaticasaptadyayugahrtans |

vyase caturghne kramasastvrnam svam
kuryattada syat paridhih susuksmah || 1 ||

May the diameter be multiplied by four, kept separately at several places, and
divided by the odd numbers 3, 5, 7 etc. [The results] may be sequentially applied
negatively and positively to the diameter multiplied by four. Then we obtain a
very accurate [value of the] circumference.

If C be the circumference of a circle whose diameter is D, then the above
verse enunciates the following infinite series:

4D 4D 4D 4D
C=4D - —+ — = — +— —...

1
3 75 7 T (6.1a)

The above series is the well known series— first enunciated by Madhava (14th
century)—relating the circumference and the diameter of a circle. It is gener-
ally referred to as the Gregory-Leibniz series (who rediscovered it in the latter
half of the 17th century) and is expressed in the form

C T

11
— ———+... . 6.1b

-1 37

1
3
The series in (6.1a) may also be expressed in the form
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C =4D Z(—l)”“ﬁ . (6.1¢)

As the series (6.1) converges terribly slowly, Madhava considered a finite
number of terms in the series, to which an end-correction (antyasamskara)
denoted by ai, is applied as follows:

P

1 1 p—11 pt1 1
~4D | 1— -+ - —... —1)7= - 1)z — . 2
Crap (1= g g CDTLACDTL) 62

Here p represents the last odd number appearing as the divisor, at which the
series is terminated, and (—1)P*2 (é) is an approximation to the remaining
terms in the series. The three successive approximations to the end-correction
( ) that have been given by Madhava, are the following:!

1
ap

a;nzwin’ (6.3)
p+1
apl(Q) - (p<+ 12)2 2 1 (6.4)
p+1)*
1
) (234) +1
el

Now, by applying the end-correction given by (6.3), the series (6.2) becomes,

11 bl . 1
e En > . (6.6)

C’z4D<13+5...+(1) z 5+(—1) z D)

§.9.9 IRUTAHTYEISEr

6.1.1 Transformed Madhava series

SHATATE TGO JeTH TG ere: |
FEPTOTERY ¥ T SHHET: AT IRTERT: 11 R I

vyasad vanasangunitat prthagaptam tryadyayugvimulaghanaih |
trigunavyase svamrnam kramasah krtvapi paridhiraneyah || 2 ||

L {GYB 2008}, Section 6.8, pp. 201-205.
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The diameter multiplied by four (vana) is divided separately by the cubes of the odd
numbers, starting with three, diminished by their bases. By applying this positively
and negatively, in order, to the diameter multiplied by three, the circumference may
be obtained.

The above verse gives the following infinite series for the circumference of a
circle in terms of its diameter.

4D 4D 4D
C:3D+(33_3)_(53_5)+(73_7)_
3 1 1 1
:4D|:4+(33—3)_(53_5)+(73_7)_"':|a (67)

The rationale behind the above expression can be understood as follows. We
can rewrite the equation (6.1) in terms of the so called sthaulyas as follows:?

C:4D[(1—1)+(1+1_1)_(1+1_1)+...]
ajq aq as 3 as as 5

4D[(11)+E(3)E(5)+E(7)-~}, (6.8)

ai

where the sthaulya E(p) is given by

SREREIE

ap—2 ap
By choosing a, = 2p+2 and a,_2 = 2p — 2 and substituting them in (6.8),

we get the transformed series

4D 4D 4D
—3D _ _
C=3D g o) (BT

3 1 1 1
:4D[4+(33—3>_<53—5>+<73—7>_”' ' (09

It can be easily seen that the above transformed Madhava series (6.9) would
have faster convergence since the cubes of odd numbers appear in the denom-
inator unlike the original Madhava series (6.1¢) wherein only the first power
of odd numbers appear in the denominator. The series given in (6.9) can be
rewritten as

4D
n+1)3— (2n+1)

C=3D + i(—l)”“ ( (6.10)
n=1

2 {GYB 2008}, Section 6.8, pp. 201-205.



150 IR PE R ERH Relation between the circumference and the diameter
§.9.% FRlRrqsamgmm

6.1.2 An algebraic identity

B R ed gRYTA a1 8 |

5Iq(|°&l<g°lIQIH“hC’NI*II'dﬂHa N3l

haryam haraikyabhedaghnam haraghatena va haret |
haryaddharayugavaptaphalayogantaraptaye || 3 ||

The dividend multiplied by the sum or the difference of the divisors should be
divided by product of the divisors in order to obtain the sum or the difference of
the results obtained by dividing the dividend by these divisors.

If d be the dividend and hy and hg be the haras (divisors), then the above
verse essentially gives the following algebraic identity

d d d x (hgihl)
—t = —FF . A1
hl hQ h1 X hQ (6 )

§.9.3 YIOAIHATSIISET

6.1.3 The Putumana Somayaji series

TSt a7 fgpoifees: anffepadfotagsaant: |
AT o g el e v @ B aRfeRder = 1l g |l

vargairyujam va dvigunairnirekaih
vargikrtairvarjitayugmavargaih |

vyasam ca sadghnam vibhajet phalam svam
vyase trinighne paridhistada syat || 4 ||

Or, from the square of even numbers multiplied by two, subtract one, and from
the square [of that] subtract the square of the same (even number). Divide the
diameter multiplied by six by the above [quantities]. When [the sum of] these is
added to three times the diameter, the result will be the circumference.

The series presented by the above verse is,

C=3D+ 6D + 6D + 6D +
- (222 -1)2-22 ' (242 -1)2—-42 ' (262-1)2—62 '

which may be written in the form

> 6D
O:3D—|—z::1 EEE 1F @ (6.12)
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The above series (6.12) is a new series not found either in the Ganitayuk-
tibhasa of Jyesthadeva or in the Yuktidipika, commentary of Sankara Variyar
on the Tantrasarigraha, and is perhaps due to Putumana Somayaji himself.?

We may note that the series (6.12) converges faster than (6.10) or (6.9)
since the fourth powers of odd numbers appear as the denominators in (6.12).
It can be shown that this series can easily be obtained from the series (6.10)
given above. The series (6.10) can be re-written as:

4D
_3D+Z<4 “1p (4n1)><(4n+1)3(4n+1))' (6.13)

After some algebraic manipulations, the argument of the summation in the
second term in RHS of the above can be shown to be

4D x (((4n+1)* — (4n+1)) — ((4n — 1) — (4n — 1)))
(dn—1)3 — (dn — 1)) x ((4n+1)3 — (4n + 1))

B 4D x 96n?

(4n —1)((4n —1)2 = 1)) x (4n +1)((4n+1)2 — 1))
B 4D x 96n?
~ ((4n — 1)(16n2 — 8n)) x ((4n + 1)(16n2 + 8n))
B 4D x 96n>
 64n2 (64n* — 20n2 + 1)
B 6D
~((8n2 —1)2 — 4n2)

6D

T (22n)2 - 12 - 2n)2) (6.14)

which is the same as (6.12).

Figure 6.1 graphically depicts the rates of convergence of the three series
given by (6.1¢), (6.10) and (6.12).

3 This verse of Karanapaddhati has been cited in the article of Whish (Whish 1834).
There, Whish also gives the following transformed version of the series

C*6><(1+1+1+1+)
a 1.3.3.5  3.5.79  5.7.11.13 = 7.9.15.17.

> 1
=346x) ((Z‘n1)(2n+1)(4n1>(4n+1))'

n=1
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10° . . : :
~—4a Madhava series
=—a Transformed Madhava series
-1 M .
w00 +——+ Putumana-Somayaiji series
107
107}
10
10°
10-6 L
-7 " " L L
107, 10 20 30 0 50

Fig. 6.1 Graph depicting the convergence of the Madhava series and its transformed
versions.

§.2 TR

6.2 Ratio of the circumference to the diameter

AT ST HEA S I g g o fah: |
SHTAT TYIh IOTHRERT: o ATAGAT daT ar |1 4 |l

IUTERFHR: AT |
TS ST ARG I [9gard |1 & |l
AR TA A : THTEATH SRR G T |

- TRy AT =T o |l

vyasadabhistanmahato’sya vrttam
nitvaivamabhyam tu mitho vibhaktaih |
karya yathoktam gunakaraharah

te vyasavrttani tada bhavanti || 5 ||

gunaharakabhutaistaih vyasavrttairyathoditam |
istavrttannayed vyasam vyasad vrttam viparyayat || 6 ||
anunanutnananununnanityaih
samahatascakrakalavibhaktah |
candamsucandradhamakumbhipalaih

vyasastadardham tribhamaurvika syat || 7 ||

Having obtained the circumference corresponding to a chosen large value of the
diameter, and by doing the mutual division of the two (considering the diameter as
the multiplier and the circumference as the divisor), various [pairs of] multipliers
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and divisors are obtained as stated earlier. These [pairs] then form the [successive
approximations to] diameters and circumferences.

With [any of] these [pairs of] diameters and circumferences serving as multipliers
and divisors, by the process described earlier, from the desired [value of the| cir-
cumference, the diameter can be obtained. [Similarly] the circumference can be
obtained from the diameter through the reverse process.

The product of 10000000000 (anunanutnananunnanitya) and the number of min-
utes in a circle (cakrakala) when divided by 31415926536 (candamsucandrad-
hamakumbhipala) would give the diameter. Half of that would be the Rsine (mau-
rvika) corresponding to three signs (tribha).

The first of the three verses above states that from an accurate value of the
ratio of the circumference to the diameter, approximate values of the ratio
can be obtained by the method of vallyupasamhara described in chapter 2.

The next verse then mentions that from any of these ratios of %, the
circumference can be calculated if the diameter is known and vice versa.

Diameter (D) Circumference (C) Order of { g - 7r|
1 3 1.41592654x107!

7 22 1.26448927x1073

106 333 8.32196275%107°

113 355 2.66764189x 1077
33102 103993 5.77890624x 1010
33215 104348 3.31628058x 10~ 10
66317 208341 1.22356347x10710
99532 312689 2.91433544x 10~ !
464445 1459097 7.51132490x 10712
563977 1771786 1.13287157x10~ 11
1028422 3230883 9.60476143x 10712
1592399 5002669 1.02153841x10~ 11
72686377 228350988 1.02069464x 10~
74278776 233353657 1.02069464x 10~ 11
146965153 461704645 1.02069464x 1011
1250000000 3926990817 1.02069464x 10~ 11
10000000000 31415926536 1.02069464x 10711

31415926536

Table 6.1 Successive approximations for the ratio J5550050000 -

Verse 7 gives a fairly accurate value of the radius of a circle when its
circumference is given by 21600 (minutes). That is,



154 EIRPE R ERH Relation between the circumference and the diameter

1 _ [10000000000 x 21600
) 31415926536

~ 3437.7467707737701'

A 34374474822 (6.15)

R X

which is indeed accurate upto the fourths (") of a degree.
From the ratio of circumference (C' = 31415926536) to the diameter (D =
10000000000) given in the last verse

C 31415926536

D~ 10000000000’

by doing wallyupasamhara, with D as the multiplier and C' as the divisor,

we obtain different approximations to the above ratio that are given in the

Table 6.1. As we can see, this table contains a few of the well known rational
3 22

. . 355
approximations to m such as 7, % and 333.

§.3 TRRISTAURIRISATRT IfoasamaTq

6.3 Generation of the tabular Rsines from Rsin 30 and
Rsin 45

o

EERIR-EERIRIERIREERICHI DR C
TG RIRISAT AT =poT 744 1l ¢ |l

trijyarddhamekarasijya trijyavargarddhatah padam |
bhavedadhyardharasijya tabhyamanyagunan nayet || 8 ||

— ..

of the square of trijya would be the jya of one and a half rasis (adhyardharasijya).
From these two, the other sine values (gunas) may be obtained.

Having given an accurate value of trijya (in the previous verse) this verse
states how to obtain the values of Rsin30° (ekarasijya) and Rsin45° (adh-
yardharasijya) from the value of trijya (R).

R
Rsin30 = =
Sin 9

Rl
7

Further it is said that from these two values all other Rsine values may be
obtained.

By ‘anyagunan’ (‘all other jyas’) what is meant is the rest of the twenty-one
Rsine values, leaving Rsin 90 = R, Rsin30° and R sin 45°, since most texts on

Rsin45 =
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Indian astronomy divide the quadrant of a circle into twenty-four equal parts,

each division corresponding to %ﬂol = 225’. The scheme by which the rest

(21) of the tabular Rsines is obtained, is outlined in Table 6.2. The rationale
behind this scheme is explained in the next section.

§.% TEATITYYSThITCHMITT

6.4 Procedure for obtaining the Rsine and Rcosine of
the half of any desired arc

[EE SN EDIEaIEIEER E R R

[N [ o
HAPTGo [ dEHATITYSThITC |1 R I

trijyestajyavadhadhyonatrijyavargotthamaulayoh |
bhedayogadaletvistacapardhabhujakotike || 9 ||

Having multiplied trijya with any desired jya, let it be added to as well as sub-
tracted from the square of the trijya. Half of the difference and sum of the square
roots of the results thus obtained would yield the Rsine (bhujajya) and Rcosine
(kotijya) respectively of half of the desired arc.

In the previous verse, having given the values of Rsin30° and Rsin45° it
was simply mentioned that with these two Rsine values the remaining tabular
Rsines can be obtained. Two expressions that could be used for this purpose
are presented in this verse.

2 2 e v 2 _ P2 a
Rsin (%) _ VR?2 + R?sina . VR R sma) (6.16)
« VR2 + R?2sina + vVR2 — R?sina
and Rcos <§) = 5 . (6.17)

The rationale behind these expressions can be understood with the help of
Figure 6.2. Here, O is the center of a circle whose diameter is AE. CD and

OD are Rsine and Rcosine respectively corresponding to the arc AC. The
mid-point of the AAC is denoted by M. Then AB is the Rsine of the A/]\W,
which is half of AAC. Similarly OB is Rcosine of the A?W. That is, if A/\C: «,
then
CD = Rsina, OD = Rcosa,
and,  AB = Rsin (%) . OB = Rcos (%) :

Now the area of the AOAC' can be expressed in two ways:
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a

Fig. 6.2 The expression for the Rsine and Rcosine of half the desired arc.

Area = %AC x OB,

_ %OA « CD. (6.18)

As AC = 2AB, we have

AC x OB =2AB x OB
=0AXxCD
= R.Rsina. (6.19)

The square of the sum/difference of OB and AB is given by

(OB + AB)? = OB* + AB? +2(OB x AB)
= R>+ R.Rsina. (6.20)

Hence,

OB+ AB = v/ R?+ R.Rsina, (6.21)
and OB — AB = \/R? — RRsina. (6.22)

Subtracting (6.22) from (6.21), we get

_ VR2+ R.Rsina — vVR2 — R.Rsina
- 5 )

AB = Rsin (%)



6.5 An alternative expression for the Rsine of half the desired arc 157

Adding (6.21) and (6.22), we get

OB = Rcos (%)

B VR?2+ R.Rsina+ vVR2 — R.Rsina
- : )

The above two equations are the same as (6.16) and (6.17). Using these two
equations and the values of Rsin (30°) (i.e., Jg, the 8" jya) and Rsin (45°)
(i.e., Ji2, the 12" jya) one can find all the 24 tabular sines known as pathita-
jyas and denoted by Jy, Jo ...Jo4.

Table 6.2 lists all the 24 Rsines and also indicates how each of them can
be found from the two base values Jg and Jy2 once trijya Joy is known. For
instance in the second row against .JJ, we find Jg — J; — Js. Here the symbol
— conveys that (6.16) is employed to first obtain Jy from Jg, and further Jy
from J4. Similarly, the symbol — in the 20" row Jg — Jog conveys that (6.17)
is employed to obtain Jyy from Jg, as

!/
J20 = Rsin(20 x 225") = Recos(4 x 225') = Rcos <8X225> :

2

§.4 TEATITY SN THRTRT

6.5 An alternative expression for the Rsine of half the
desired arc

JEEAT TSR -
AATI AR EOT: s |
e o

pifexgated! HRIoT =@t | 9o I

yadvestacapagunataccharavargayoga-
maulardhamistadhanurardhagunah pradistah |
Jjyanam nijatrigunavargavisesamulam
kotistadunasahitau trigunaw svabanau || 10 ||

Alternatively, it has been stated that half of the square root of the sum of squares
of the jya and the $ara of a desired arc (istacapa)* would be the Rsine of half of the
desired arc (dhanurardhaguna). The square root of the square of the jya subtracted
from the square of trijya, gives the kotijya. This, when subtracted from or added
to trijya, would give the pair of versines (banas) corresponding to that jya.

4 In the compound word yadvestacapagunataccharavargayogah, the author has employed
the nyaya, ‘dvandvante srayamanam padam pratyekamabhisampadyate’ Hence, the word
varga is to be associated with both guna (Rsine) and tacchara (Rversine).
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The 24 jyas

The scheme of obtaining them

J1
J2
J3
Ja
Js
Je
J7
Js
Jy
J1o
Ji
J12
Jis
J1a
J1s
Ji6
Jir
Jis
Jig
J20
Jo1
J22
Jas3
Joa

Js—=Js— Jo— 1
Jg — Jy — Jo
Jiz = Jsg — J3

Jg — Ja
Js — Jao = Jio — J5
Jiz — Je

Jg — Jao — J1a — J7
R

2
Ji2 — Jis = Jy

Jg — J2o — J1o

Jg = Jy — Jo2 = J11
R

V2
Jg = Jy — Ja2 — Ji3

Js — J20 — J1a
Jiz — Jis — Jis
(= 72)
Js — J20 — J1a — Ji7
Jiz — Jis
Js — J20 = Jio — Ji9
Js — J20
Ji2 = Jo — J21
Js = Jy — J22
Jg = Jy = J2 — Ja3
R

Table 6.2 The scheme for obtaining the twenty-four tabular Rsines from a set of two
values (Jg and Ji12) along with trijya.

In the first half of this verse,

another formula has been presented (which

is different from (6.16)) for obtaining Rsin(§) from Rsinc. In the later half
of the verse, the author defines the kotijya and the two Sarajyas (Rversines).

The formulae given in the verse

istadhanurardhaguna

Rsin (%)

may be written as:

\/ (istacapaguna)? + (istasara)?
2 )
VR2sin? a 4 (R — Rcos a)?
5 )

(6.23)
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Also,

Rcosa =V R?2 — R?sin? . (6.24)

The sum or difference of R and R cos« is referred to as bapa. Hence the
dual usage banau here refers to both R+ R cos @ and R— R cos a. For instance,
in Figure 6.2 if AC= «, then ED and DA refer to the two banas, which add
up to the diameter of the circle.

We shall now show how to obtain (6.23) from the expression (6.16) discussed
in the earlier verses. Squaring (6.16), we get

2 _ 2 : 2 _ :
12 sin? (a) _ 2R? —2v/R? + R.Rsina.v/R? — R.Rsin«

2 4 ’
or, 4R? sin® (%) =2R%? -2/ R* — R4sin

=2R?> - 2RV R? — R?sin®«
= R?*+ R?* - 2R*cosa. (6.25)

By replacing one R? by R?sin®a + R?cos? o and doing some algebraic
manipulations, and finally taking the square root on both sides, (6.25) becomes

Rsin (g) B \/R2+RQSiI’1204—|—R2008204—2R200804
2/ 2
_ V/R2sin?a + (R — Rcos a)? (6.26)
— 5 7 )

which is the same as the expression (6.23) indicated in the text.

§.§ TR gEATAT I esa=a=T

6.6 Finding the Rsine and Rcosine of half of the arc
from the bana

TR aRARTS A I TS 91T |
sreffepat ot ufedTareaTT RIS oR Taam 1199 I

yadvestakotyahatavistarardhenonanvitau vyasadalasya vargau |
ardhikrtau tau paditavabhistacapardhadohkotigunau bhavetam || 11 ||

Or else, the product of the trijya and the kotijya of a desired arc, added to and
subtracted from the square of half the diameter, are halved and the square root is
taken. The results will be the kotijya and dorjya respectively of half of the desired
arc.
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The formulae given in the above verse may be expressed as

R? — R2cosa A
= Rsin (5) , (6.27)

2 2 o3
\/ W = Rcos (%) . (6.28)

It may be noted that the LHS of the above equations may be expressed as

\/R(R + Rcosa) \/tm’jyd x bana
2 V2

It can be easily seen that equations (6.27) and (6.28) can be obtained by
taking the square root of (6.25). Then, we have

R sin (%) _ \/ZR2 — 24R2 cos a

2 _ P2
_ 1/%, (6.29)

We know that Rcos (%) = \/R2 — R?sin” (¢). Now squaring (6.29) and sub-

tracting it from R2, we obtain

2
2_ 2 .. 2 g _ 2_ R2_R2COSa
R* — R%sin (2)—R < _

2

2R?> — R? + R?cos
5 )

(6.30)

Taking the square root on both sides of (6.30), we get

R cos (%) _ /R2+122(:osa’

which is the same as the expression (6.28).

§.9 SATRITCT SfoTfRaR:

6.7 Series expansion for the Rsine and Rcosine

T AAChS TS dard ATaTedlg salaaarHeT |
BT GIAI BTGNS FTATGGTAT = faRa=reard 11 92 |l
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o= S ufR st e TRl fe]oit e |

TR ST Z[TEaHTEATSITd Ua wgfaiasifaent: =: 11 93 11°

capacca tattatphalato’pi tadvat
capahatad dvyadihatatrimaurvya |
labdhani yugmani phalanyadho’dhah
capadayugmani ca vistarardhat || 12 ||
vinyasya coparyupari tyajet tac-
chesau bhujakotigunau bhavetam |
ekadisankhyahatabhastamamsat evam
caturvimsatimaurvikah syuh || 13 ||

The [desired] arc and the results obtained are successively multiplied by the arc di-
vided by the product of the radius with two, three, etc. Having placed [all] the even
terms [sequentially] below the arc, and the odd terms below the radius, subtract
[all] the succeeding terms from the immediately preceding ones. The [resultant]
remainders are the Rsine (bhujajya) and the Rcosine (kotijya) respectively. Thus
[all] the twenty-four Rsines are obtained by using the integral multiples of the arc
equal to one-eighth of 30 degrees.

The above verses present the well known series for the sine and cosine func-
tions. Having presented both the series in one and a half verses, in the latter
half of verse 13, it is stated that the 24 tabular sines can also be computed
using the series presented here. If Ra represents the desired arc (capa), then
the successive terms to be generated in order to obtain the series are:

(Ra) x (Ra) (Ra) x (Ra)? (Ra) x (Ra)3 (Ra) x (Ra)*
2R " 2Rx3R 2R x3Rx4R'2Rx3Rx4Rx5R"

Now the odd and even terms obtained have to be arranged as shown in
Table 6.3.

Then it is said that all the successive terms are to be subtracted from the
immediately preceding term. Thus we have

5 .
° For convenience, we present the prose order of the verse:

AT, ITITRAT fEEasEer [[IvsT @l %], dad dohodlsiy o STaTgdrd
Preattar oy &ef %), dad dahadisi o ITaTedTd Tded=HIer [[aysa
Tl Fo], [Fd] T AT FAlT Araredrse: 9=, sy 9 war
faeaRTateytse: fama Iugai std | 7 ot 2IST (s SSThITeson (e
GEGIE]

(capat capahatat dvihatatrimaurvya [vibhajya labdham phalam], tadvat tatpha-
lato’pi ca capahatat trihatatrimaurvya [vibhajya labdham phalam], tadvat tatpha-
lato’pi ca capahatat caturhatatrimaurvya [vibhajya labdham phalam], [ityevam] lab-
dhani yugmani phalani capadadho’dhah vinyasya, ayugmani ca phalani vistarar-
dhadadho’dhah vinyasya uparyupari tyajet | tatra labdhau Sesau (tacchesau) bhu-
jakotigunau [kramasah] bhavetam.)
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odd terms even terms
R7 Ra:
(Ra) x (Ra) (Ra) x (Ra)?
2R ’ 2R x 3R’
(Ra) x (Ra)? (Ra) x (Ra)*
2R x 3R x 4R’ 2R x 3R x 4R x 5R’
(Ra) x (Ra)® (Ra) x (Ra)®

2R x 3R x 4R x5Rx 6R’ 2R x3Rx4RX5RXx6R x TR’

Table 6.3 Odd and even terms for generating the cosine and sine series.

Rsina = (Ra) — ((52)23 - ((ng - (gg; R )))
(Ra)® | (Ra)®  (Ra)T

= (Ra) — 3'R2 + 5‘R4 ~ Re +..
i )(27,+1)
(Ra) +Z 721+ DR (6.31)

Rm:(m_cf;gg (G ()
(Ra)? | (Ra)'  (Ra)"

=(R) — 2!R + RS GIRs +.o
) RO[ 21

which are the well known series for sine and cosine functions.

§.¢ FagantenT SuTsieTmT

6.8 Computation of the Rsine and Rcosine values using
the vakyas vidvan etc.

6 {KP 1937} and {KP 1953} have the incorrect reading kapiganicayah. {KP 1956} has
the correct reading kavisanicayah which also tallies with the computed value.
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TR IO TATSHE U Y: el g et
ST 2T IE Y goe s 1| 98 117

vidvan tunnabalah kavisanicayah sarvarthasilasthirah
nirviddharnganarendrarun nigaditesvesu kramat pancasu |

adhasthyat gunitadabhistadhanusah krtya vihrtyantima-

syaptam Sodhyamuparyuparyatha ghanenaivam dhanusyantatah || 14 ||

Among the five values stated in order [as] vidvan, tunnabalah, kavisanicayah,
sarvarthasilasthirah, nirviddhanganarendraruk, the last value is to be multiplied
by the square of the desired arc [and] divided by the [square] of the ultimate [value
of the arc, 5400]. The result obtained should be subtracted from the [immediately]
preceding one above. Similarly the process is repeated with revised last value.
Then [the result is to be multiplied] by the cube [of the arc divided by the last
arc|. Finally [the result is to be subtracted] from the [desired] arc.

In the first half of the above verse, five numbers (51, 82, 83, B4 and f5) are
presented using the wvakyas: vidvan, .., nirviddhanganarendraruk, which are
listed in Table 6.4. The operations to be carried out with these numbers in
order to obtain the Rsine values are outlined in the latter part of the verse.
We shall present the sequence of these operations in the form of an algorithm.

Bi vakyas computed values
in katapayadi in numerals

Bs vidvan 44" 44'32.33""

B4 tunnabalah 33”06 33"705""36.13""

B3 kavisanicayah 16’05"41" 16’05"740"'51.99""

B2 sarvarthasilasthirah 273'57" 47" 273'57"47""02.80"""

51 nirviddhanganarendraruk 2220'39" 40" 2220'39"739""/33.89""

Table 6.4 Comparing the values encoded by the vakyas, vidvan etc., with the computed
values.

7 For convenience, we present the prose order of the verse:

foam e waEies: dardieier: Midergresss ) Ty 9799 %A
FITEAY TRt ST a: ST JfoTdTd, Ao [9: Fa] e, g
3T [fremmTe) 2 | ... Uae 3uRR U [RH] | 377 [3TIE U :] 99 [FIfoTdTd]
[Srerear Sgers] T () ST Stverer: S [aer) |

(vidvan tunnabalah kavisanicayah sarvarthasilasthirah nirviddhanganarendraruk
[iti] esu paticasu kramat nigaditesu adhastyat abhistadhanusah krtya gunitat anti-
masya [dhanusah krtya] vihrtya, aptam upari [vidyamanat] sodhyam |[..evam upari
upari [karyam/. atha [abhistadhanusah] ghanena [gunitat] [antimasya dhanusah]
ghanena [vihrtya] aptam antatah dhanusi [Sodhyam].)
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e (5 is multiplied by the square of the desired arc (Ra) and divide by (5400)2
(antimasya krtih) and the result thus obtained is subtracted from 4. That

(S

o The above result, is further multiplied by (Ra)? and divided by (5400)2.
The result is subtracted from fs,

P <5“ - <ﬂ5<5x4é$3)2>) “ ((5]13“3)

o This process has to be repeated till we reach 1. At this stage we have

Bs x (Ra)? (Ra)? (Ra)? (Ra)?
- (BZ N <63 N (ﬁ“ N < (5400)2 )) X (5400)2> " (540092 ) * (5400)2"
o The above result is then multiplied by (Ra)® (atha ghanenaivam) and

divided by (5400)3. The result thus obtained is subtracted from Ra
(dhanusyantatah). Thus, we get

B1 x (Ra)® B2 x (Ra)® B3 x(Ra)” fax(Ra)® f5x (Ra)'!

Ra— (5400)3 (5400)>  (5400)7 (5400)°  (5400)!1

. (6.33)

The rationale behind the expression (6.33), as well as the origin of the numbers
listed in Table 6.4 can be understood with the help of the Madhava series
(6.31) for Rsin «. Multiplying and dividing each term in the sum in the RHS
of (6.31) by (5400)(***1) we obtain

5 . .
) B ; (Ra)(21+1) (5400)(21—0—1)
Rsina =~ (Ra) + ;(—1) @i+ DIR® X (5100) 3T
=B X (Ra) %D

= (Ra) + ;(—1) ~ a0y (6.34)

(5400)+1)
2i+ )IRE)

The above expression is the same as (6.33). It can easily be verified that
the values of 8;’s (i = 1,...,5) given in Table 6.4 are obtained by choosing
the value of R to be 3437/44”48"" in the expression for ;. In this table, we
also present, for the sake of comparison, the computed values (accurate upto
fourths) by taking the value of R to be %. As we can see from the table,
the computed values tally with the values given by the vakyas except for (s
which when rounded off to the nearest thirds should be 45",

The following verse presents the truncated series for the Rcosine func-
tion. The numerical values represented by the vakyas, stenah, ...unadhanakrdb-
hureva, are listed in Table 6.5.

where f3; =
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AT H: GRS TSRl

A gt RiRE FAITFEd T5Y T |

STEREATA IOTATHIR LT FAT g~
HTH ITTE Y e Mgh s |l 94 I

stenah stripisunah sugandhinaganud bhadrangabhavyasano

minango narasimha unadhanakrdbhureva satsvesu tu |

adhasthyat gunitadabhistadhanusah krtya vihrtyantima-

syaptam Sodhyamuparyuparyatha phalam syadutkramasyantyajam || 15 ||

Among the six values [listed in order as| stenah, stripisunah, sugandhinaganud,
bhadrangabhavyasanah, minango narasimhah, unadhanakrdbhureva, the last value
is to be multiplied by the square of the desired arc [and] divided by the [square]
of the ultimate [value of the arc, 5400]. The result obtained should be subtracted
from the [immediately]| preceding one above. Similarly the process is repeated with
revised last value. The result is to be [multiplied by the square of the desired arc
divided by the square of the last arc]. The final result obtained (antyajam phalam)
will give the value of the Rversine (utkramasya) [of the desired arc].

This verse presents the vakyas, stena etc., for the coefficients ¢1, @5 . . ., g
appearing in Rversine (utkramajya) series

: ¢i X (Ra)®

6
R— Rcosa =~ Z(— G100)T
i=1

which is the same as presenting the Rcosine series

6
Rcosa %R—&—Z(—

=1

i Pi X (Ra)%
(5400)2

As with the series for Rsine, here too the rationale behind the given ex-
pression can be understood by multiplying and dividing each term in the sum
in the RHS of (6.32) by (5400)("). Doing so, we get

(Ra)* _  (5400)*
22)!R(2i—1) (5400)27

RcosawR—&—Z i

1=1

Ra)Qz
=R+ Z W’ (6.35)

(5400)2
(2i)!R(Zi-1)"
It can easily be verified that the values of ¢;’s (i = 1,...,6) given in

Table 6.5 are obtained by choosing the value of R to be 3437'44”48"" in the
(5400)%*
(2))/RCI-D)
comparision, the computed values (accurate upto fourths) by taking the value
of R to be %. As we can see from the table, the computed values tally with

where ¢; =

expression for ¢; = In this table, we also present, for the sake of
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the values given by the vakyas except for ¢o which when rounded off to the
nearest thirds should be 872'03”06".

bi vakyas computed values
in katapayadi in numerals
b6 stenah 06" 05"749.81"""
)3 stripisunah 05""12"" 05"11""53.86"""
b4 sugandhinaganud 03'09"37" 03'09"36""39.75""
b3 bhadrangabhavyasano 071'43"24"" 71'43"24""06.54""
b2 minango narasimha 872'03"05" 872'03"05"""30.83""
b1 unadhanakrdbhareva 4241’09 00" 424109700 17.79""

Table 6.5 Comparing the values encoded by the vakyas, stena etc., with the computed
values.

§.% IS ATH T TS S ASIM I

6.9 Obtaining the tabular Rsines from the last and the
penultimate Rsine

AT TR OT gt FHsams Ry e
TS TER 2R AT fordl faiar 9ad |
STraT AT oo Tt gRgaATESaET Jiar

SHET AT FATRTHART: HrATRATEE: 1| 9% |l

antyopantyagunantarena vihrta trijyatra haro bhavet
adyajya svaharamsakena rahita dvighna dvitiya bhavet |
jwa sa dviguna svato harahrtenadyajyaya conita

Jjwa saiva trtiyakaivamavarah karyasturiyadayah || 16 ||

The result obtained by dividing the radius by the difference between the last and
the penultimate jyas is the divisor (hara). Dividing the first jya by the hara and
subtracting the result from the first jya, and further multiplying [the result] by two
would yield the second jya. The second jya is multiplied by two and from that when
the same [quantity] divided by hara, as well as the previous jya, are subtracted,
that indeed will give the third jya. In a similar manner, the later jyas commencing
with the fourth can be obtained.

The text first defines a quantity called the hara (H) as follows:
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trijya radius

= . (6.36
antyajya — upantyajya  diff. of last and last but one Rsines ( 2

Using the hara, explicit expressions are given for the second and the third
Rsines.

S duainG
dvitiyajya = 2 X (adyajya — agjqajya) , (6.360)

dvitiyajya

tritiyajya = 2 X (dm’tzyajya — 7

) — adyajya. (6.36¢)
Then it is said that all other jyas can be obtained in a similar manner.

Essentially what is presented here is a recursive relation using which all the
tabular Rsines can be obtained. We shall now explain this recursive formula.
First we note the expression for hara (H) given in the verse is

o R B R
" Rsin24a — Rsin23a¢ R — Rcosa’

(6.37)

Using this hara and Rsina or the first Rsine, all the tabular Rsines can be
obtained.
To start with, it is well known that

Rsin 2« = 2R sin a cos a. (6.38)
Adding and subtracting 2R sin a to the RHS of the above equation, we get

Rsin2a = 2Rsina — 2Rsina + 2R sina cos o
=2(Rsina — Rsina (1 — cos a))

:2(RSina—RSIHa(R_RCOSQ)). (6.39)

R

Using (6.37) we may rewrite the above equation as
Rsin2a2<Rsinost;;a>, (6.40)

which is the same as (6.36b) given in the text. Now, Rsin 3« can be expressed
as
Rsin(2a + ) = Rsin2a.cos o + R cos 2a:sin a. (6.41)

Applying the relation cos2a = (2cos? a — 1), the second term in the RHS of
(6.41) becomes

Rcos2asina = 2R cos? asina — Rsin o
= Rsin2acosa — Rsina. (6.42)
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Now substituting (6.42) in (6.41) and adding and subtracting 2R sin 2«, we
get

Rsin3a = 2Rsin 2o — 2R sin 2« + 2R sin 2accos o« — Rsin o
= 2Rsin2a — 2R sin 2a(1 — cos ) — Rsin«
Rsin 2«

( SN 2 H

) — Rsinq, (6.43)
which is the same as (6.36¢). In the same way, Rsin((i+1)«) can be expressed
as

Rsin(ia)

Rsin((i + 1)a) =2 (R sin(ia) — Vi

) — Rsin((i — 1)ov). (6.44)

This is the recursive relation that is implied in the text, when it mentions
that in a similar manner the remaining jyas can be obtained.

-
&.90 SYMEIA YRIRTXH

6.10 Another recursive relation for obtaining the Rsines

o (N e o o
STIES TR IdHI SEISIATR[dHgAT |

TASRISTATHRIRE & 1199 I

adyestajiakrtibhedavargat istadyajivakrtisamhrta tu |
istordhvagivakrtiretaya tatrestadyajakrtireva labdha || 17 ||

When the square of the difference between the squares of the desired Rsine (ista-
jwa) and the first Rsine (adyajiva) is divided by the square of the Rsine that is
immediately preceding to the desired Rsine (istadyajwa),® it results in the square
of the Rsine that is the successor of the desired Rsine (istordhvajiva). [If the previ-
ous result is divided] by this (istordhvajiva) then the resultant would be the square
of the preceding Rsine.

The formulae presented in the above verse may be expressed as:

L L 972
(istordhva 'z’vd)2 = [(2515 ajiwa)”® - (adyajzva)2]
- J (istadyajiva)?
istaitva 2 7d N2 2
and (istadyajiva)?® = [(28 aja) (adyajiva) ] (6.45)

(istordhvajiva)?

8 Here the term istadyajiva should be considered as a tatpurusa compound (and not
dvandva compound), and hence has to be derived as istajivayah adyajiva, meaning the
Rsine prior to desired Rsine.
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Let the desired Rsine istajiva be denoted by Rsin(ia) (where o = 225’ and
i=1,2...24). Then, the above expressions translate to

[R?sin® (iar) — R? sin® o] 2
RZsin?((i — 1)a) ’

[R?sin® (ia) — R? sin® o] ?
R2sin?((i + 1))

R?sin’((i + 1)) =

and  R%sin?((i — 1)a) = (6.46)

In fact, these relations are a consequence of the following identity.

Rsin((i — 1)a) x Rsin((i + 1)a) = R%sin?(ia) — R*sin®a.  (6.47)

£.99 ITIESTamET: ITIHTY

6.11 Computation of the arc from the corresponding
chord

AT BTG HISI[OTe: hICTHHTE %o
SaTeRToT fafrgmTehe; aehe e |

FAT HICIORA T s ehiTaiiare:
TSI oRSTd oo StaTagfzarse 1l 9¢ |l

vyasardhena hatadabhistagunatah kotyaptamadyam phalam
Jyavargena vinighnamadimaphalam tattatphalam caharet |
krtya kotigunasya tatra tu phalesvekatriparicadibhih
bhaktesvojayutaistyajet samayutim jiwadhanussisyate || 18 ||

The first phala is the Rsine of the desired arc mutliplied by the radius and divided
by the Rcosine of the arc. The first phala multiplied by the square of the Rsine and
divided by the square of the Rcosine (kotiguna) [gives the second phala] and [in a
similar manner] the successive phalas are obtained. Here these phalas are divided
by one, three, five etc., [successively]. [Then] the sum of the even terms is to be
subtracted from that of the odd ones. What remains is the arc of the Rsine.

If s be the arc-length corresponding to a given jya, js, and koti, ks, then
the above verse presents the following series:

. . 3 . 5
_pfds _B (s R\ _ ..
S R S

The above expression, with s = Rz, is equivalent to the series for the inverse
tan function (the so called Gregory series).

1 3 1 5
x:tanx—gtan x—i—gtan Tr—...,
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or

3 5
1 x T

tan™ =r——4+—=——....
an r==x 3+5

The Madhava series for 7 given in the first verse of this chapter can be readily
obtained from this by substituting z = 1.

&.9R MUY S ITH

6.12 Computation of the Rsine value of a small arc

o L N 0
I ATTITISHITA! TS RTYh[dHhaSTdH |

Rramtig R vad dgarseamosaHhe 9 11 98 I

svalpacapaghanasasthabhagato vistarardhakrtibhaktavarjitam |

The cube of a small arc is divided by six and the result is [further| divided by the
square of the radius. The result obtained by subtracting this from the arc will be

of the arc divided by the square of the radius multiplied by six) would be the arc
when the process is iterated.

In the above verse Putumana Somayaji gives an approximation for the
Rsine of an arc when it is small, that is, an arc that is much smaller than
225" which is taken to be the unit in tabulating Rsine values. If R§6 be the
length of a small arc along the circle, corresponding to an angle 46, then the
expression for its Rsine ($injini)? given in the above verse is :

) N (R 50)3
Rsindf ~ R 66 o

3
or, sin 00 ~ 060 — @

(6.49)
The above equation is a well known approximation for the sine function and
gives a fairly accurate value when the angle is very small.

In the last quarter of the verse, the text indicates an iterative process for
evaluating the arc R0 from the equation

(R 50)3

(6.50)

The last part of the verse is “tadyuto’lpakagunah asakrddhanuh” The word
‘tad’ being a pronoun, always points to something that was referred to ear-

9 The term $ifijing is synonymous with jya and stands for Rsine.
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lier.'? Here it refers to % as this was the quantity that was prescribed in
the first half of the verse for further operations. Hence it is stated that this
quantity added to the Rsine corresponding to a small arc (alpakagunah) gives
the value of the arc (dhanuh) itself when an iterative process is employed.

To start with, we have as the first approximation
R60 ~ Rsin §6.
Substituting this in the RHS of (6.50), we get

(R sin §6)?

RO ~ Rsin 0 + 62

(6.51)
The iterative procedure prescribed above may be captured by the following
recursive relation:

(RS0;)?

R591'+1 = Rsm(50) + 6

(6.52)
The successive approximations obtained in this way are listed in Table 6.6. It
may be noted that the successive terms do differ from the well known series
for the arc-sine in higher orders.

Successive approximations Corresponding terms
to 66 in arc-sine series
661 sin 66 sin 66
062 sin 66 + w sin 66 + %
003 sin 60 + M—I— sin 86 + W‘F
(sinlge)5 + (Sin7(;9)7 + (Silr;gg)9 3(si2069)5 n 15(531229)7 L

Table 6.6 The successive approximations for §6 in terms of sin §6.

10 The rule is: sarvanamnam parvaprakrantaparamarsitvam.
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£.93 TCUATISITE IS : SAFITT

6.13 Finding the Rsines from a table of arc-sine
differences for small arcs

Tehi gAY FsaTas=aTzIa: |

T g ama=ar SR mtafaie 1l 2o I

ekadvitryadisamkhyaghnatrijyavarganayamsatah |
ghanamalam hi capajya svasamkhyonaviliptikam || 20 ||

After multiplying the square of the radius by the numbers 1, 2, 3 etc. and dividing
by 10 (naya), [let] the cube root of the resulting quantity be obtained. The integral
numbers 1, 2, 3, ... in seconds when subtracted from the above [capa] would be
the corresponding jyas (Rsines).

This verse gives a method for calculating the value of the arc (¢,) and
its Rsine (j,,) such that their difference (jyacapantara) c, — jy is equal to n
seconds where n =1,2,3,....

It commences with the prescription of an approximate value of ¢,

R2
o~ {0 j . (6.53)

Then, it is said that the Rsine is to be obtained using

Jn = Cp — N (6.54)

Following is the rationale for the above approximation. From (6.49) we
know that, when the capa is small, the difference between the capa (arc) and
its jya (Rsine) called jyacapantara, to a good approximation, may be expressed
as

. (R 50)3
R 60 — Rsin 60 =~ ———— 6.55
sin cRE (6.55)
Here, all the quantities are expressed in minutes. If the jyacapantara = n,
wheren = 1,2,3,. .., expressed in seconds, then using (6.55) the corresponding
capa (RO = ¢,,) can be calculated using the relation
(cn)? n
~—. 6.56
6R? 60 (6.56)

This implies that when jyacapantara = n, the corresponding capa (arc) is
given by
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o~ 3/mn X 6R2
" 60
s/n x R?

=i/ (6.57)

Now the Rsine, j,, corresponding to the arc, ¢,, can be obtained using (6.55)
as

Jn = Cp — N (6.58)

In Table 6.7, we compile the values of ¢,, and j,, given by the formulae (6.57)
and (6.58). In fact, Commentary II lists (even more accurate) values of the j,
in terms of the vakyas, gudhamenaka etc.'!

A similar method for computing the arc and the Rsine when the difference
between them is equal to n seconds, where n is a positive integer, has been
given in Tantrasargraha of Nilakantha Somayaji. However, in the explanation

3/ nxR2
10

should be considered as the jya value to which n seconds have to be added
to obtain the corresponding capa.'? This interpretation is clearly flawed as it

of this verse, Sankara Variyar seems to imply that the expression

10
which jyacapantara is equal to n seconds.

In Table 6.8, we have presented the accurate values of jya and capa for which
the jyacapantara is equal to n seconds. These may be compared with the com-

can be shown that ¢/ nxB2 ) ore closely approximates the value of the arc for

puted values of ¢ %52 presented in Table 6.7. From that table, it is clear

that ¢/ ”?52 is very good approximation for the capa such that the jyacapan-

3/ nx R2
10

equation (6.58), in order to obtain the jya values for which the jyacapantara
is n seconds.

Interestingly, Sankara Variyar also gives the vakyas, lavanam nindyam
etc.,'3 for the jya values such that the jyacapantara is n seconds. They seem to
coincide mostly with the jya values given by the gudhamenakadi-vakyas men-
tioned in Commentary II of Karanapaddhati. Numerical values corresponding
to both these set of vakyas have been included in Table 6.8 along with the
accurate values of jyas and capas.

tara is n seconds. Hence, n seconds have to be subtracted from , as in

11 fKP 1956} p. 200A.
12 1TS 1958}, pp. 29-31.
13 {TS 1958}, pp. 29-31.
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The difference \ "ﬁp ch—mn
(jyacapantara) (en) (Jn)

(n) min. sec. | min. sec.
1 105 43.57149473 105 42.57149473
2 133 12.39925772 133 10.39925772
3 152 29.01326248 152 26.01326248
4 167 49.79206396 167 45.79206396
5 180 47.35467201 180 42.35467201
6 192 07.03439517 192 01.03439517
7 202 14.81572241 202 07.81572241
8 211 27.14298945 211 19.14298945
9 219 55.16044655 219 46.16044655
10 227 46.81048694 227 36.81048694
11 235 07.97670738 234 56.97670738
12 242 03.15327734 241 51.15327734
13 248 35.85969959 248 22.85969959
14 254 48.90976526 254 34.90976526
15 260 44.59261467 260 29.59261467
16 266 24.79851544 266 08.79851544
17 271 51.10860342 271 34.10860342
18 277 04.86040335 276 46.86040335
19 282 07.19663531 281 48.19663531
20 286 59.10221742 286 39.10221742
21 291 41.43276140 291 20.43276140
22 296 14.93682505 295 52.93682505
23 300 40.27350818 300 17.27350818
24 304 58.02652497 304 34.02652497

Table 6.7 The values of ¢, and j, given by (6.57) and (6.58).
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Accurate values of

n The values of jya given in vakyas jya and capa

such that capa — jya = n seconds
(sec.) | Gudhamenakadi | Lavanam-nindyadi Jya capa

min. sec. min. sec. min. sec. | min. sec.
1 105 43 105 43 105 42.67150 | 105 43.67150
2 133 11 133 11 133 10.59927 | 133 12.59927
3 152 26 152 26 152 26.31329 | 152 29.31329
4 167 46 167 46 167 46.19210 | 167 50.19210
5 180 43 180 43 180 42.85473 | 180 47.85473
6 192 02 192 02 192 01.63447 | 192 07.63447
7 202 09 202 08 202 08.51582 | 202 15.51582
8 211 20 211 20 211 19.94312 | 211 27.94312
9 219 47 219 47 219  47.06060 | 219 56.06060
10 227 34 227 38 227  37.81067 | 227 47.81067
11 234 58 234 58 234 58.07693 | 235 9.07693
12 241 52 241 52 241  52.35353 | 242 4.35353
13 248 24 248 24 248  24.15999 | 248  37.15999
14 254 36 254 36 2564 36.31009 | 254 50.31009
15 260 31 260 31 260  31.09298 | 260 46.09298
16 266 10 266 10 266  10.39892 | 266 26.39892
17 271 36 271 36 271  35.80906 | 271 52.80906
18 276 49 276 48 276 48.66090 | 277  6.66090
19 281 51 281 50 281 50.09718 | 282 9.09718
20 286 40 286 40 286 41.10281 | 287 1.10281
21 291 22 291 22 291 2253341 | 291 43.53341
22 295 55 295 55 295 55.13752 | 296 17.13752
23 300 19 300 18 300 19.57426 | 300 42.57426
24 304 36 304 36 304 36.42733 | 305 0.42733

Table 6.8 Vakyas for jyas along with the accurate values of jya and capa such that
Jyacapantara is exactly n seconds. See {KP 1956}, p. 200, and {TS 1958}, pp. 30-31.



Chapter 7

Check for
updates

Obtaining the planetary longitudes

9.9 TRTOT A3 TEARTSHT

7.1 The circumferences of the manda and sighra epicycles
of the planets

AT 4t 2T Yhegashar: JaT |

g fer ot eor: AT HoTea=: 119 1l
AT G AT A= AT T S T

T el I ST AT dRfafostteT: 112 |l
A2 IHIhATd o ST I TT: |

JeSTheRUTEIhT 3RgRaaradr: |1 3 |l

bhanorganam vidhoh sthanam sphutavrttakalah sada |
vandyo divyo guni krsnah sunurmani kaladharah || 1 ||

sthanam danam tapo manyam bhanuh prajiio dhamah samah |
dhani loko dhanam danam bhaumat paridhiliptikah || 2 ||

mandadighrakramat kendrasyaujayugmapadadigah |
prthagekaikapadokta asurairapavartitah || 3 ||

The true epicycle circumference in minutes (sphutavrttakalas) of the Sun is 03
(ganam ) and that of the Moon is 07 (sthanam) always (in all the quadrants).
The [dimensions of the] circumferences of the manda and the $ighra [epicycles| of
the planets starting from Mars in minutes, at the beginning of the odd and the
even quadrants, in order, are 14 (vandya), 18 (divya), 53 (guni) and 51 (krsna) [for
Mars]; 07 (sunu), 05 (mani), 31 (kala) and 29 (dhara) [for Mercury]; 07 (sthanam),
04 (danam), 16 (tapo) and 15 (manyam) [for Jupiter]; 04 (bhanuh), 02 (prajrio),
59 (dhamah) and 57 (samah) [for Venus]; 09 (dhani), 13 (loko), 09 (dhanam) and
08 (danam) [for Saturn]. These are stated separately for different quadrants after
being divided (apavartita) by 270.
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The above set of verses essentially present the dimensions of the manda
and Sighra epicycles.! From the latter half of the first verse beginning with
vandyah, for the next five quarters, only numbers are stated—each quarter pre-
senting a list of four numbers. Of the four, the first two correspond to manda
epicycle and the latter two to the Sighra epicycle (mandasighrakramat). Of
these pairs, the first gives the dimension of the epicycle at the beginning of
the odd quadrants and the second at the beginning of the even quadrants re-
spectively (ojayugmapadadigah). The values of the manda and Sighra-paridhis
at the beginning of the odd and even quadrants of all the planets are listed in
Table 7.1. It may be noted that these values are the same as those prescribed
in Aryabhatiya.

The numbers given in Table 7.1 multiplied by 270 give the manda and
Sighra-paridhis (circumference of the epicycles) in minutes, when the circum-
ference of the kaksyamandala (deferent) is taken to be 21600 minutes. The
given number divided by 80 would be the ratio of the radius of the epicycle
and the deferent. For example, if C/,, and C?, denote the circumferences, and
mo and 7, denote the radii, of the manda and $ighra epicycles of Mars at
the beginning of the odd quadrants in minutes, then

Cl., =14 x 270, and C = 53 x 270 (for Mars). (7.1)
Similarly
T'mo 14 Tso 53
=—,and — = — for Mars). 7.2
R 80’ R 80 ( ) (7.2)
dimensions of the dimensions of the
manda epicycle $ighra epicycle
Planet at the beginning of at the beginning of
odd quadrant | even quadrant | odd quadrant | even quadrant
Sun 03 03 - -
Moon 07 07 - -
Mars 14 18 53 51
Mercury 07 05 31 29
Jupiter 07 08 16 15
Venus 04 02 59 57
Saturn 09 13 09 08

Table 7.1 The dimensions of the manda and Sighra epicycles of the planets.

! The epicycle and eccentric circle models which form the basis for the computations in
this chapter are explained in Appendix B.
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The manda and $ighra-paridhis at the beginning of the odd quadrants refer
to their values when the mandakendra/sighrakendra is equal to 0° or 180°.
Similarly manda and Sighra-paridhis at the beginning of the even quadrants
refer to their values when the mandakendra/ sighrakendra is equal to 90° or
270°. Having defined the values at the beginning of the quadrants the text
proceeds to describe the procedure to find manda and $ighra-paridhis for other
values of the kendra.

9.2 BT T THSTHROT

7.2 Finding the true circumference of the epicycle

gaTaRvEdaTgsial gear? Bete wesig |

AT 90T [gRISTgoaTea Ishe ¥gpegaras | ¢ |l

vrttantarenahatabahujivam hrtva trimaurvya phalamojavrtte |
kramad dhanarnam vidurojavrttasyalpadhikatve sphutavrttasiddhyai || 4 ||

The difference between [the dimensions of] the epicycles at the beginning of the odd
and even quadrants is to be multiplied by the Rsine [of the kendra] and divided by
the t¢rijya. The result has to be added to or subtracted from the dimension of the
epicycle at the beginning of an odd quadrant, depending on whether the epicycle
at the beginning of odd quadrant is smaller or bigger [than the epicycle at the
beginning of even quadrant| respectively, to obtain the true epicycle (sphutavrita).

Let C, and C, represent the dimensions of the mandaparidhis or Sighra-
paridhis at the beginning of the odd and even quadrants respectively. Then
the dimension at any other place (sphutaparidhi, C') is given by

A x |Rsin(6y)|

:oi s
Cc=C i

(7.3)
where A = |C, — C.| and 0y, is the anomaly or kendra. Here ‘+’ and ‘—’ signs
are chosen depending on whether C, < C, and C, > C, respectively.

The above equation provides the general expression for finding the circum-
ference of the manda or the Sighra epicycle for a given kendra. That is, if
Omi, Cmo and C),. are the mandakendra, ojadiparidhi and yugmadiparidhi of
manda epicycle respectively, then manda-sphutaparidhi (Cy,) for an arbitrary
value of 6, is given by

Ay X |Rsin(Om)|
R b

Cm = Crmo (7.4)

2 In all the earlier editions {KP 1937}, {KP 1953} and {KP 1956}, we find the reading
hatva. However, it is clear from the context that it should be hrtva.
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where A;,, = |Cio — Cine|- When the dimension of the epicycle at the begin-
ning of the odd quadrant (6,,; = 0° or 180°) is less than that of the even
quadrant (Cp,o < Cpe), then, as the kendra increases, the dimension of the
epicycle also increases till it reaches a maximum at the beginning of the even
quadrant. Then it will start decreasing. This explains the prescription of ‘+’
and ‘—’ sign in the text.

Similarly, if 65, Cs, and Cs. are the Sighrakendra, ojadiparidhi and yug-
madiparidhi of Sighra epicycle respectively, then the Sighra-sphutaparidhi (C)
for an arbitrary value of 8y is given by

Ag X |Rsinfgy|

s = Cso £ ;
Cs=0C 7

(7.5)
where Ay = |Cyso — Cse|. As earlier, ‘+’ and ‘—’ signs correspond to the cases
Cso < Cse and Cy, > (e respectively.
Note that for any value of the manda or Sighrakendra the radii of the manda
and Sighra epicycle are given by
Chm, Cs

'm = % X R, and Ts = % X R. (76)

9.3 AGHTHhAITH

7.3 Obtaining the mandaphalas of the planets

AT Tpega HedieEaniond |
TeaTH = ARG AT ToThAH |1 4 |l

mandena sphutavrttena nihatadistadorgunat |
nandaptam capitam mandamarkadinam bhujaphalam || 5 ||

The Rsine [of the mandakende has to be multiplied by the true epicycle
(sphutavrtta ) and divided by 80. When converted into arc (taking Rsine-inverse)
it would give the mandaphala of the Sun, etc.

We refer the reader to the discussion in Appendix B, where (B.9) gives the
mandaphala. From (7.6) we have

3 We may recall the third verse of the fourth chapter of the text which defines the manda
and the Sighrakendras.

madhyat grahanam svamyrduccahinat Sighroccato madhyavivarjitacca...

[The mandakendra can be obtained by] subtracting their mandoccas from the mean
[longitudes| and [the Sighrakendra can be obtained] by subtracting the mean planets
from their Sighroccas.
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Therefore, (B.9) reduces to:
sin(A) — %‘\ sin (G|,
1 (Cm
or Af = sin %| sin(@mg)| ) - (7.7)

The quantity RA# which is the arc corresponding to the mandaphala is
referred to as mandam in the verse.

9.8 TETTRAFITT

7.4 Obtaining the Sighraphalas of the planets

Y Sl TheaRTgd T=+th o) o

FTATY Hifest g IAMHE AHISTgO! HeheTal |

T TG TITHIG SThAHI: T I8 TR0
BaTgTg S heTalagdha 9 HichshiTasar: |l & I

Saighre dohkotijive sphutaparidhihate nandabhakte phale te
vyasardhe kotijam tad dhanamiha makaradavrnam karkatadau |
krtva tadvargayuktad bhujaphalakrtitah syat padam Sighrakarnah
trijyaghnad dohphalattadvihrtaphaladhanuh karkinakradijivah ||6]]|

Multiply the Rsine (bhujajya) and Reosine (kotijya) of the Sighrakendra by [$ighral-
sphutaparidhi (Cs), and divide by 80 (nanda). [Among] the results, the one which
is obtained from koti has to be added to or subtracted from the radius [depending
upon whether the Sighrakendra is within the six signs| beginning with the makara
or karkata. The square root of the sum of the squares of this result and the result
obtained from bhujajya or the dohphala is called $ighrakarna. The dohphala mul-
tiplied by the radius [trijya] and divided by that (Sighrakarna) gives the Rsine [of
Sighraphala) that is either makaradi or karkyadi.

The dohphala (bhujaphala), By, and the kotiphala, K, in the $ighra process
are given by

Cs
B, = |rssin | = %|Rsin05;€|7
and K, = |rscosbs| = %H{cos Os|. (7.8)

Then, from (B.13) and (B.14) in Appendix B, the §ighrakarna is given by
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=

Ko = [(R+ K,)?) + (Bp)?]

1
2 272
= (R:I: g;;|RCOSQSk> +<§8|Rsin95k|) 1 , (7.9)
where the ‘4’ and ‘—’ signs correspond to the six signs beginning with

makaradi and karkyadi respectively. Also the Rsine of the Sighraphala is given
by

Rsin Af, = E|7“s sin |

Cs\py o
I =X X %|Rsm05k|. (7.10)

9.4 THRTALIT IHTHSTH CHBHITT

7.5 Obtaining the true bhuja and kotiphalas

o o\
ATHAART IO ST ATE! o =T |

S RITEhS WTATHATET Jaapid Fard 11y |l

fraTd daTgaTaTg ST dhifestiat = e
FHERIOTE! q e NOTIARTEdT HsaehT q= J10T: |

oyt gRiTatEf uRfateer ST

STEITg Srahiesr T farag = THgrstas d e 3 1l ¢ |l

abhimatadohkotigunavojaparidhyahatau ca nandaptau |
dohkotiphale syatamanayorva vrttasamskrtim kuryat || 7 ||

dvighnat tadbahucapad bhujagunamapi tatkotijivam ca nitva
karkyenadau tu kotigunayutarahita trijyaka tatra banah |

banardhat dorgunardhadapi paridhibhida samgunannandabhaktam
jahyad dohkotijabhyam ksipatu ca samavrtte’dhike te sphute stah || 8 ||

The bhujaphala and kotiphala are obtained by multiplying the desired Rsine [of the
Sighrakendra] and the corresponding Rcosine by the circumference of the Sighra
epicycle at [the beginning of] the odd quadrant and divided by 80 (nanda). The
corrections (paridhi-samskara) can also be applied to these [phalas].

Having obtained the Rsine and Rcosine of the double of the arc (i.e., twice the
Sighrakendra (2651) ) corresponding to the istajya, the kotijya has to be added to
or subtracted from the radius when the double of the arc is karkyadi or is makaradi
respectively. Half of the [result obtained which is called the] bana and the half of the
Rsine (dorgunardha) have to be multiplied by the difference between the paridhis
and divided by 80 (nanda). [The results are] applied positively to the bhujaphala
and kotiphala, when the epicycle at the beginning of even quadrants (samavrtta)
is greater than that at the beginning of odd quandrants [or negatively otherwise],
to obtain the sphutas.

The bhujaphala and the kotiphala at the beginning of the odd quadrant are

given by Cs‘?)" Rsin | and 085(’ R cos 05| respectively. The bhujaphala and
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kotiphala for an arbitrary value of the Sighrakendra 65, will have in addition
the correction terms which are to be added. Recalling the expression for sighra-
sphutaparidhi (Cs) given by (7.5), the expressions for the bhujaphala B, and
kotiphala K, discussed in the previous section (7.8) become,

Ct Ag X |Rsin gy

B, = 20 I | R sin Oy, |

.
Ag X Rsin 95k> 7 (7.11)

=By, +
P ( 80
CSO

where By, = S Rsinfyy is the bhujaphala which is defined in the seventh
verse. As per the relation (6.27) given in the previous chapter we have,

1 —cos(20.,) 1+ |cos(20.)]

sin? 0 = 5 5 : (7.12)

Here ‘+’ and ‘—’ signs are applicable when 20y is karkyadi (that is, 90° <
20,1, < 270°), and makaradi (that is, 270° < 26, < 360° or 0° < 20, < 90°),
respectively. Using (7.12) in (7.11),

A (Rt |Rcos(295k)|)> ' (7.13)

B, = B, + (=2
p=Tp <80>< 2

The term w is referred to as banardha in the verse, since bana

(BD in Figure 7.1) is given by

BD = R — |Rcos 20| (when 204y, is makarady),
= R+ |Rcos 20| (when 20,y is karkyadsi). (7.14)

Similarly, the expression for the kotiphala may be written as

C, A in 0,
K, = 80°|Rcosﬁsk| + <s><8?)m§k|) |R cos 0]
Kt (AS X |Rsi;1(;95k cosHsk|)
A, x |R sin(26)]
= Kpo + o 2 : (7.15)

|Rsin(20,1))|
2

In the verse, the term is referred to as dorgunardha.
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B

(a) (b)

Fig. 7.1 Bana, when the kendra is makaradi (a), and karkayadi (b).

9.§ FEIIHGAT: GIHRIHN:

7.6 Application of the manda and the Sighraphalas

AT &9 THMIE St A1 ¥hed |
2 rsargd ot amdiehd am 11 3 |l

mande tvevam samanitam dohphalam capitam sphutam |
Saighre trijyahatam karnabhaktam capikrtam tatha || 9 ||

In the case of manda[samskara], the arc of the dohphala thus obtained itself would
be the sphuta. [While] in the case of Sighra [samskaral, it (the sphuta) is the arc of
the [dohphala] which is multiplied by the radius and divided by the karpa.

It is stated that in the case of mandasamskara, the arc of the dohphala
given by
RAG = Rsin™! (|rp, sin(0,1)]) - (7.16)

is to be applied as it is to obtain the manda-sphuta.

This is because, as discussed in Appendix B, in the case of mandasamskara,
the radius of the epicycle is propotional to the manda-karna K and this would
imply that K does not appear in the expression for mandaphala.

However, in Sighrasamskara, the radius of the epicycle is the tabulated
value itself, and the Sighraphala would involve the Sighrakarna K. Hence the
magnitude of correction is to be obtained from

RAG, = Rsin™* (|rs sin 08k|.£) . (7.17)

4 We shall be using the symbol Rsin™'(a) or capa (o) to denote the arc or capa, in a
circle of radius R, associated with an Rsine or jya of magnitude o.
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For further details the reader is referred to section B.2 of Appendix B.

0.9 A IYhATHIAH DRI

7.7 Procedure for obtaining the antyaphala

- T
FHAT [eige Yaeahegad |l 9o |l
sphutavrttaminadinam kamanalasamahatam |

kamsena vibhajellabdham bhavedantyaphalahvayam || 10 ||

The true epicycle circumference (sphutavrtta) of the Sun etc., have to be multiplied
by 3051 (kamanala) and divided by 71 (kamsa). The result thus obtained is called
the antyaphala.

The term antyaphala, has different meanings depending upon the context.
In this verse, it denotes the epicycle radius 75, when the radius of the deferent

circle is the trijya R. Since the ratio gg is same as the ratio 5, we have

R
L =C, x -2, 1
re=Cix o (7.18)

In the sixth chapter (verse 7), we have seen that the radius R corresponding
to the circumference of 21600 is

__ 10000000000 x 21600

R~ 2 x 31415926536 (7.19)
Using (7.19) in (7.18), we have
2700000000000
Ts B s X 831853072 (7.20)
2700000000000

The successive rational approximations of the
fraction expansion, are listed in Table 7.2.

The numbers 3051 and 71 in the fifth row of this table are referred to in
the verse as kamanala and kamsa respectively. Therefore, we have the simpler
approximation

62831853072 using a continued

3051
rs & Cs X 1 (7.21)

which is what is stated in the verse.
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multiplier divisor
42 1
43 1
1504 35
1547 36
3051 71
163250 3799
166301 3870
1161056 27019
7132637 165984
29691604 690955
333740281 7766489
363431885 8457444
3604627246 83883485
7572686377 176224414
18750000000 436332313
2700000000000 | 62831853072

Table 7.2 Successive approximations for

270x R __ 270
= =

27 "

9.4 STARATTHITITI T RATITT

7.8 Obtaining the expression for the sighraphala in terms
of the antyaphala

T syt aToRTEd SaTehthTshITaa Il 99 II

I TRATS: FHeheTal Afe TTd
Preamaearfag srend wot e = |
AT PTG G ARSIl AR

Hicadad” gideddd: fgreat sife=md 1l 9 |l

® The term T&d (tadvat) means ‘similarly’. Which mathematical operation is to be car-
ried out similarly has not be stated explicitly. From the context we understand it to
be “multiplied by the radius”. Thus, H¥HATAT: HISAT: T&A ... = HGhAAT: HicAT: d&d
[%@T"W'l?ﬂ ... (samskrtayah kotyah tadvat .. = samskrtayah kotyah tadvat [trijyab-
hyastat] ...).
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kotijyantyaphalena hinasahita ya karkinakraditah
taddorjyakrtiyogamulamuditah karno’muna samharet |
dorjyam samskrtakotikamapi tatha vyasardhasamvardhitam
taccapam bhujakoticaparahitam jyakarkinakradika || 11 ||
kotijyalpa caramaphalatah karkatadau yadi syat
trijyabhyastadiha bhujagunat karnabhaktasya capam |
doScapadhyam bhaganadalatastyajyatam samskrtayah
kotyastadvacchrutihrtadhanuh ksipyatam koticape || 12 ||

The antyaphala is subtracted from or added to the Rcosine [of the Sighrakendra)
depending on whether [the kendra] is karkyadi or makaradi respectively. The square
root of the sum of the squares of that and the Rsine [of the kendra] would be the
karna. The Rsine and the [antyaphala] corrected Rcosine have to be multiplied by
the radius and divided by this [karna]. When the arc of these results is subtracted
from the arc of the kendrabhuja and kendrakoti respectively, the results obtained
are karkyadi and makaradijyas [or the Sighraphalas|.

In the case [where Sighrakendra is] karkyads, if the Rcosine [of the kendra] happens
to be smaller than the antyaphala, then the karna should be obtained by subtract-
ing the kotijya from the antyaphala. Multiply that by the kendrabhuja and by the
radius and divide by the [karna]. The arc of this is to be added to the arc of the
kendrabhugja, and the result obtained is subtracted from six signs bhaganadala [to
obtain the Sighraphala). [Or,] the samskrtakotijya having been multiplied by the
radius and divided by the karna, the arc of the result can be added to the arc
(dhanus) of the kendrakotijya [to obtain the Sighraphalal.

In these two verses Putumana Somayaji presents four different expressions
for computing the sighraphala of a planet. Since the expressions are a bit
involved and lengthy, he has aptly chosen Sardulavikridita metre® while com-
posing the verses. The expressions for sighraphala (RA6;) given are:

dorjya asardh
RAOs = capa (bhuja) — capa < oTiYa X vyasan a) , (7.22)
karna
krtakoti asardh
RAG, = capa (koti) — capa (sams rtakoti X vyasar a> 7 (7.23)
karna

bhujaguna X trijya

RAO = bhaganadala — capa ( > — capa (doh), (7.24)

samskrtakoti X trijya )

karna

(7.25)

RAO; = capa (koti) + cdpa( ——
Sruts

Of the four formulae, the first two are presented in verse 11, and the latter
two in verse 12. While presenting the rationale behind these formulae, we too
maintain this division, by considering two separate cases based on the value
of kotijya and antyaphala.

Case I:  When the kotijya is greater than antyaphala (|R cos 0| > rs)
Case IT: When the kotijya is less than antyaphala (|Rcos 0| < 75)

6 This is one of the long metres having 19 syllables per quarter.
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Fig. 7.2 Obtaining the Sighraphala when the Sighrakendra is makaradi with
|RcosOs| > rs.

We first derive the expression for the Sighrakarna which is given in the first
half of verse 11.

9.£.9 STAHITHITRLTT

7.8.1 Expression for the Sighrakarna

In Figure 7.2, O is the center for both the epicycle and the deferent circle. The
dashed circle which is centered at Sighrocca S is the eccentric circle. Py and
P are the manda-sphuta and the Sighra-corrected (true) planets respectively.
The longitude of the manda-sphuta and the Sighrocca are

Ops = TOPy = I'SP,
and 0, = I'OS =I'SD. (7.26)
The sighrakendra is obtained by subtracting the $ighrocca from the manda-

sphuta. That is, . .
Os, = DOPy = DSP.
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Since in Figure 7.2 the value of 0 is less than 90°, it is mesadi as well as
makaradi. The antyaphala or the radius of the Sighravrtta (rs) is OS. Further,

OC =0F,=SP =R,
and PD = Rsinfy is the kendrabhujajya while SD = Rcosfg is the

kendrakotijya.
Let the line OP intersect the deferent at A. The arc AP, is (RAf,), which

—~

is the arc of the Sighraphala. This can be obtained by subtracting AC' from
the arc PyC of the Sighrakendra. That is,

RAG, = APy = PyC — AC = Rfy— AC . (7.27)

It may be noted that AC is the arc of the half-chord AB. Since the triangles
OPD and OAB are similar, we have

_OAXxPD RXRsinfgy

AB oF o (7.28)
and OB = OAOX POD _Rx (RC;(SSHS’“ ), (7.29)
where Ky = OP is the $ighrakarna and is given by
K, =+/OD? + PD?
=/(SD +08S)2 + PD?2
— \/(Reos b,y +1,)? + R?sin? 0. (7.30)

This is precisely the expression for karna that is given in the first half of the
verse 11.

The expression for sighraphala in each of the two cases mentioned above,
depends on whether the value of the sighrakendra is makaradi or karkyads.

9.¢.R TIAHTT Fegvd THRIST STARGT

7.8.2 Expression for the Sighraphala in case I when the
sighrakendra is makaradi

In Figure 7.2, the position of the manda-sphuta Py, is depicted in such a way
that the Sighrakendra is makaradi (270° < 65, < 90°). In order to obtain

the Sighraphala given by (7.27), we need to know AC. It may be noted AAC:
Rsin™!(AB). Hence the expression for sighraphala (7.27) becomes,
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RAO, = RO, — Rsin™'(AB), (7.31)

or,  RAB, = Rl — Rsin! (R x ftsin 95’“) .

e (7.32)

In (7.17), the first term in RHS, may be expressed as Rf,; = Rsin™!(Rsin f).
Hence it may be written as

(7.33)

RAf, = Rsin™'(Rsinf,;) — Rsin™! <R><Rbmed€> .

K,

It is clear that the expression for RAf, in (7.33) is the same as (7.22). We
now consider the case of Sighrakendra being karkyads.

9.£.3 TITHT Frg HFal ITThSH

7.8.3 Expression for Sighraphala in case I when the
swghrakendra ts karkyadi

In Figure 7.3, the position of the manda-sphuta P} on the deferent is such
that the Sighrakendra is karkyadi (90° < O, < 270°). The true planet which
is along the direction of the sighrocca from Fj is shown at P’ on the eccentric
circle. Then, the Sighrakarna, Ks = OP' is given by

K, = \/(Rcos ] — 1,)? + R?sin? 0. (7.34)

Let OC be the radius of the deferent perpendicular to OS.
Now the sighraphala, RAfs can be written as

—~

RA#, = AP} = P\C — A'C
= Rsin ! (OF’") — Rsin"*(OB’). (7.35)

Since the triangles OD' P’ and OB’ A’ an similar, we have

OA
B'=0D'.
© © OP'
R
= (|Rcos | — rs).Z. (7.36)

Also it is clear from Figure 7.3, that OF’ = | R cos 8, |. Using this, and (7.36)
in (7.35) we have
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Fig. 7.3 Obtaining the Sighraphala when the Sighrakendra is karkyadi with
|RcosOs| > 7s.

RAf, = Rsin"(|Rcosf,;|) — Rsin™! <[I; X (|Rcos 8| — rs)) ,  (7.37)
S

It is straightforward to see that (7.37) is the same as (7.23). We now con-
sider case II (|Rcosfsy| < r5) as discussed in verse 12. Here again there are
two possible cases depending on whether the Sighrakendra 6,y is makaradi or
karkyadi. When 0y, is makaradi, even when |R cos 84| < s, the Sighraphala is
the same as given in equation (7.32). Hence, both the formulae given in verse
12 correspond to 0, being karkyadi.

9.¢.% Todiashed Frgr HFaTar ITHST

7.8.4 Expression for the sighraphala in case II when the
sighrakendra is karkyadi

In Figure 7.4, the manda-sphuta P} is such that the Sighrakendra SOP] is
karkyadi. Now the Sighraphala is given by

RAG, = A'P} = A'C’ — PiC" . (7.38)
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Fig. 7.4 Obtaining the Sighraphala when the Sighrakendra is karkyadi with
|RcosOs| < 7s.

It is evident from the figure that
A'C' = R180°— A'C,
and A'C = Rsin ' (A'B). (7.39)

As the triangles OA’B’ and OP’D’ are similar, we have

P'D' x OA
AIB/ —

OP'

n 6,
_ Rsmkk X R’ (7.40)

since P'D’ = P{F'" = Rsinf,y,. Using (7.40) in (7.39) we have
— : 05

A'C'= R.180° — Rsin™! <RsmK’“XR) . (7.41)

Now,
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P,C'= Rsin ' (P{F') = Rsin ' (Rsinf,y). (7.42)
Using (7.42) and (7.41) in (7.38) we have,

R
RA#, = R.180° — Rsin™ ' (Rsinf,;) — Rsin™! (Rsin Gsk.K)

S

C . . R
=5~ <R95k + Rsin™! (R sin 9sk-K)) ) (7.43)

S

which is the same as (7.24) given in the verse, once we identify capa (doh) =

ROy, and bhaganadala = %

Alternatively, the expression for Sighraphala may be written as

RAO, = AP, =A'C +CP}. (7.44)

Now,

~ o
A'C= Rsin"'(OB') = Rsin™* (OD’.gPI)

R
= Rsin™? —_SD". —
Rsin [(OS SD") KJ
R R
= Rsin™" |(rs — |Rcos 95k|)? , (7.45)
as SD' = SP'cos(P'SD’) = Rcos(180° — f,;,) = | R cos O |. Also

CP} = Rsin ' (OF') = Rsin ' (|Rcos O]). (7.46)

Using (7.45) and (7.46) in (7.44) we have,
-1 R -1
RAfO; = Rsin™ " |(rs — |Rcos 6‘516\).? + Rsin™ " |R cos 8. (7.47)

This is the same as (7.25) given in the verse once we identify capa (koti) with
the second term in the RHS of the above equation (7.47).

9.8 ITTRGHIT THRTAH

7.9 Another method to obtain the Sighraphala

HYATAHATRATE SF[OT HoTRigad |
ATdreet STaEe HhTeheHaa: 11 92 |
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athavantyaphalabhyastad dorgunat karnasamhrtam |
capikrtam bhavedatra karkinakradimaurvikah || 13 ||

Otherwise, the arc of the result obtained by multiplying the Rsine of the Sighrak-
endra by the antyaphala and dividing by the karna would give the karkimakaradi-
jyas |or the Sighraphalas].

Fig. 7.5 Alternate method for obtaining the Sighraphala.

In Figure 7.5 the line S S’ perpendicular to OP is the Rsine corresponding
to the angle SPO as SP = R. Since the angles SPO and AOP, are equal, the

Rsine corresponding to the arc AP, is equal to SS’. That is, Rsin(Afs) = SS’.
Now

PD = SPsin(DSP) = Rsinf,y,.
The triangles SS’O and PDO are similar. Hence,

Rsin(Af) = SS' = PD.%

Rsinf,y X ry

e (7.48)

Therefore,
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(7.49)

Rsinfg, x r
Ay = Rsin™! [ ——22 2.
s (it

This is the form in which the $ighra correction is given in most of the texts.

.90 SNSRI THRTRH

7.10 An alternate method to obtain the Sighrakarna

31 Wheh Il T e aTershes ged |

TR 7 ARG T3 AP aT Faeig FHof: 1l 9% |l

antyam phalam kotigune dvinighne krtvamunaivantyaphalena hatva |
samskrtya tad vyasadalasya varge malikrto va bhavatiha karpah || 14 ||

Or else, having applied” the antyaphala to twice the Rcosine [of the Sighrakendral,
and further having multiplied the result thus obtained by the antyaphala itself, and
then having applied that to the square of the radius and taking the square root [of
the resulting quantity], the karna is obtained.

Here, the author gives a different expression for karna. To derive this expres-
sion, consider the triangle ODP in Figure 7.5, which corresponds makaradi-
Sighrakendra. DSP is the sighrakendra, and SP = R, SD = Rcosfg; and
PD = Rsinfg. Also, OS = r,. Hence, the karna K is given by

K, =+O0D?+ PD?

=/(0OS + SD)2 + PD?
= \/(rs + Rcosfg,)? + R2sin? 0,
= /R2 +1,(rs + 2|Rcos O|). (7.50)

In case the sighrakendra is karkyadi, we have from Figures 7.3 and 7.4,

OD' = +(0S - SD')
= +(rs — |Rcos b)),

Hence,

7 The term krtva simply refers to application which can be positive or negative. Here,
the antyaphala is to be subtracted from or added to depending on whether the kendra is
karkyadi or makarads.
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K. = /(0D + (PD'y
= \/(rs — |[RcosB.;])% + R%sin Oy
= /R2 +14(rs — 2|Rcos O4|), (7.51)

which is the expression for K as described in the verse.

9.99 SNSTHITa: SHATIRTITORT

7.11 Obtaining the circumference of the Sighra epicycle
from the Rsine of the sighra-anomaly

TThehe T Sal AT ogoT eI gATd SSTIoT 2|

AT [ sig STt AT thesw 2Terge il 94 |l

mrgakarkatakadidohphalat
tadbhujacaponayutat bhujaguno yah |
amuna vibhajed bhujaphalajyam
ajanighnim phalamatra Sighravrttam || 15 ||

The [arc] of the mrgakarkatadi-sighraphala has to be subtracted from or added to
the sighrakendra when the kendra is makaradi or karkyadi respectively, and Rsine
of this is to be found. The product of 80 (aja) and the Rsine of the bhujaphala
divided by the result [obtained above] would be the Sighra-vrtta [paridhi].

The expression for the Sighra-vrttaparidhi (Cs) given in the above verse
may be written as

80 x bhujaphalajya

= . 7.52
®  Rsin(Sighrakendra F arc of dohphala) (7.52)

Here, in the denominator, ‘—’ is to be used if kendra is makaradi and ‘4’ if
karkyads.
The rationale behind this expression can be understood from Figure 7.6.
Considering the triangle SOS’,
58" = 0S.sin(SOP).
If we consider the triangle SPS’,
58" = SP.sin(SPS’) = SP.sin(SPO).

Equating the two expressions for SS’, we have

Rsin(SPO) x SP
Rsin(SOP)

antyaphala, OS = (7.53)
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Fig. 7.6 Obtaining the circumference of the $ighra epicycle.

In the above expression SP = R, and SPO = AOPO, the angle corresponding

to the arc APy which is nothing but the arc of the correction term ($ighraphala
or dohphala) used in Sighrasamskara. That is,

Rsin(SPO) = Rsin(APy) = bhujaphala

and  Rsin(SOP) = Rsin(DSP — SPO).3

Substituting the above relations in (7.53), we have

8 In the triangle OSP, SOP + O8P + SPO = 180 and OSP + DSP is also 180. Hence,
we have

Rsin(SOP) = Rsin(DSP — SPO).
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B Rsin(A}O) X R
 Rsin(DSP — SPO)’
_ Rsin(ARy) x 80
° " Rsin(DSP — SPO)
bhujaphalajya x 80
- Rsin(Sighrakendra — arc of dohphala)’

or

(7.54)

as gg = %. The above expression is the same as (7.52). Similarly, it can be

shown that there should be a ‘4’ sign in front of the arc of dohphala in the
denominator, when the Sighrakendra is karkyads.

9.9 TRTEAIHT

7.12 Circumference at the beginning and the end of the
odd quadrant

TAMSITheHTd g0 R agqANSTIS |

TR T oTaH=al - Faare |l 95 Il

antyabhujaphalanitam vrttam syadantyavrttamojapade |
ekabhadohphalanitam dvigunitamantyonitam bhavedadyam || 16 ||

The dimension of the epicycle (vrtta) obtained by the bhujaphala at the end of
the odd quadrant would be the Sighravrtta at the end [of the odd quadrant or the
beginning of the even quadrant]. Subtracting [this vrtta at] the end [of the odd
quadrant], from the product of 2 and the vrtta obtained by the Rsine (dohphala)
at the end of first sign (ekabha) [from the beginning of odd quadrant], would result
in the [vrttaparidhi at the] beginning [of the odd quadrant].

If Cs¢ and Cy,1 are the Sighravrtta-paridhis at the end of the odd quadrant
(beginning of the even quadrant) and at the end of the first ragi from the
beginning of the odd quadrant, then the paridhi at the beginning is given by

Cso =2X Csol — Cse. (755)

We can understand the rationale behind the above expression as follows.
To be specific, we consider the case Cye > Cs,. At the end of the first ras,
05 = 30°, and at the end of the first quadrant, 85, = 90°. Then from (7.5),
we have

A
C’sol = Cso + 77
Cse = Oso + Am (756)
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where A, = Cye — Cyp. Then it follows that

Cso = 205:01 - Cse-

9.93 I FARUIITH

7.13 Obtaining the vyastakarna of the Sun

RTEATGed! g T2 Sl ot IJarT |

PRI e T2 el shHT eI tho) WeaT 11 9 |l
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rasyantabhanusphutato mrduccam visodhya dohkotigunau grhitva |
trisangunau tavatha nandabhaktau kramena dohkotiphale bhavetam || 17 ||

kotiphalam karkamrgadijatam trimaurvikayam svamrnam ca krtva |
tadvargato dohphalavargayuktat malam viparyasakrto’tra karpah || 18 ||

Having subtracted the [longitude of the] mandocca from the true longitude of the
Sun at the end of the rasi, and having obtained the Rsine and Rcosine of that
[result], and multiplying it by 3 and dividing by 80, the dohphala and the kotiphala
are obtained successively.

The kotiphala has to be added to or subtracted from the radius when [the kendra
is] karkyadi or makaradi respectively. The square root of the sum of the squares of
the result thus obtained and of the dohphala would be the viparitakarna here.

The term vyastakarna or viparitakarna literally means ’inverse hypotenuse’,
and is nothing but the radius of the kaksyavrtta when the measure of man-
dakarna is taken to be equal to the trijya, R.

The term mrducca appearing in the first line of the verse is a synonym for
mandocca. The sphuta that is referred to here should be understood as manda-
sphuta or the manda-corrected longitude. Here onwards, we use the symbol
0 for the sphuta or the true longitude of the Sun, instead of 6,,s, and 7,
for the mean radius of the manda epicycle for convenience. If 6, represents
the longitude of the mandocca (of the Sun), then the sphuta-dohphala and
sphuta-kotiphala are given by

dohphala = %Rsin(ﬁ —0m),

kotiphala = %RCOS(G —Om). (7.57)

9 For a general discussion of the viparitakarna introduced by Madhava in order to compute
the itrated-manda-hypotenuse (asakrt-manda-karna), see {TS 2011}, pp. 492-497.
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The rationale behind the formula for viparitakarna which is mentioned in
these verses, can be understood with the help of Figure 7.7a and 7.7b. In these
figures Py and P represent the mean and the true planet respectively. N is the
foot of the perpendicular drawn from the mean planet Py to the line joining the
centre of the circle and the true planet. Let the radius of the karnpavrtta OP be
set equal to the trijya R. Then the radius of the uccanicavrtta PyP is r,, as it is
in the measure of the karnavrtta. In this measure, the radius of the kaksyavrtta
OPy = R, which is one of the sides of the triangle O Py P, where other sides are
OP = R and PPy = r,,. In the triangle NPP,y, N F,; is equal to the dohphala
and NP is equal to kotiphala since the angle PyPO = POU = 6 — 6,,. That
is,

NPy = rpsin(6 — 6,,),
and NP =rpcos(0 — 6,,). (7.58)

Fig. 7.7 Determination of the viparitakarna when the kendra is in (a) the first quadrant
and (b) the third quadrant.
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The wviparitakarnpa (R,) which is the hypotenuse (OP,) of the triangle
ONP, is given by

Ry, = \/ON? + NP2

=/(OP —NP)? + NP}

_ \/(R ~ T x| Reos(® - em)\)2 + (%ﬂ x Rsin(6 — 0m))2. (7.59)

The above expression for the vyastakarna is applicable when the kendra is
makaradi (in the first or fourth quadrant). If the kendra is karkyadi (in the
second or third quadrant) as shown in Figure 7.7b, then

R, = /ON? + NP?

= /(OP? + NP?) + NP2

r

- \/(R+ T Rfeos(0 om)\>2 + (f’" x Rsin(0 — em))Q. (7.60)

Equations (7.59) and (7.60) are the general expressions for the wvipari-
takarna. The verse actually talks of the viparitakarna of the Sun at the end of
various rasis. For the Sun, 7 = %. The viparitakarna of the Sun at the end
of various rasis will be used in the next verse to calculate the mean longitudes
of the Sun at the sankramanas.

9.9% FATAHROT: ARG HTATRMITT

7.14 Finding the mean longitudes of the Sun at the
zodiacal transits from the vyastakarna

rsaTedTg S hodsHATH ATdihd Avdaad<ad |
AT IO < FATd daT T TgHMRAE | 98 1|

trijyahatad dohphalato’munaptam
capikrtam mesatuladitastat |
rasyantyabhanau svamrnam ca kuryat

tada bhavet sankramanarkamadhyam || 19 ||

The arc of [the quantity obtained] by multiplying the dohphala by radius and
dividing by this [vyastakarna], has to be added to or subtracted from the true
longitude of the Sun when [the kendra is] mesadi or tuladi respectively. The result
would be the mean longitude of the Sun at the transit.



202 PSR TIEEE Obtaining the planetary longitudes

Having given the expression for the wiparitakarpa R, in terms of the true
anomaly (6 — 6,,) in the previous verse, the text presents an application of
it for obtaining the mean longitudes of the Sun from its true value at the
transits (sarikramanas).

Fig. 7.8 Obtaining the madhyama (the mean position) from the sphuta (the true posi-
tion).

We explain this with the help of Figure 7.8. Here O is the observer and
Py is the mean planet (mean Sun). The point P represents the true Sun. The
distance PyP = OO’ represents the actual radius of the variable epicyle that
may be denoted as . The angle POP = OPO’ = (6, — #). Considering the
triangle OO’P, we draw a perpendicular from O’ that intersects OP at T.
Now, in the triangle O’ PT,

O'T = O'Psin(O'PT)

= O'Psin(POP,)
= Rsin(6y — 0). (7.61)
Also
O'T = rsin(0 — 0,,), (7.62)

as O'OT = 0 — 6,,. Equating the two, we have

Rsin(fy — 0) = rsin(6 — 6,,). (7.63)
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Here, the term Rsin(fy — ) can be positive or negative depending upon the
quadrant in which 8 — 0,, is situated, so the makaradi and karkyadi cases are
both considered here, and not discussed separately.

As noted in Appendix B, the manda-epicycle r, and the mandakarna K,

T

vary in such a way that they always satisfy the equation & = “g. Also, in

the measure of the karpavrtta, the radius of the pratimandala is R, so that
K _ R

R~ R,
Hence,
K R
=T =T .64
r=r 7 r . (7.64)
Thus (7.63) reduces to
. . R
Rsin(fy — 0) = ry, sin(0 — HW)R—. (7.65)

Or, 0p — 60 = Rsin™! [rm sin(f — Hm)]f]

v

3 R
= RSin_l |:80 X RSln(9 — em)RU] 5 (766)
where we have used the tabulated value of the manda-epicycle of the Sun
given by 7 = %

In (7.66), since 6 is known, the mean planet 6y can be obtained by
adding the above difference 6y — 6 to it. The difference is positive when
the sphutakendra 6 — 6,, is within the six signs beginning with Mesa, viz.,
0° < 0 — 6, < 180° and negative when the kendra is within the six signs
beginning with Tula, viz., 180° < 6 — 6,,, < 360°.

For the purpose of illustration we shall work out an example. For this we
assume that the longitude of the mandocca 6, = 78° for the Sun.

Example: Makara-sarikramana (Transition to Capricorn, 6§ = 270°)

2

3 N
R, = \/<R - %RCOS(Q'H) - 78)> + <80Rsm(270 — 78)>

— 3563.95,
3 R
and 0y — 6 =sin~! [80 sin(270 — 78)&,]

= —0.431°.

Therefore, 6y = 270° — 0.431° = 269.569° = 8729°34’.
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At the transit (sarikramana) into different rasis the true longitudes of the
Sun would be multiples of 30. That is,

0; =30 x 4,

where ¢ = 0,1,...,11 for Mesa, Vrsabha, ..., and Mina respectively. Sub-
stituting these 12 values for true longitudes (6) in (7.66), we can obtain the
mean longitudes of the Sun at each transit.

The mean longitudes at the transits known as ’sankramanarkamadhya’ are
given as vakyas in the Commentary II of the Karanapaddhati. These are listed
in Appendix Table D.3, and compared with the values computed as above.

Another important application of vyastakarna lies in finding the value of
mandakarna which is described in the following verse.

9.9% FXAHI: JTTAHEHIPTOFT

7.15 Finding the mandakarnas of the Sun and the Moon
from wvyastakarna

PG RaHISReTd dH A |
T hERaRUTTarE AT gggfa: 1I R0 |l

suryendvorevamevestasphutat tanmadhyamanayet |
tatroktavyastakarnattastrijyavargo mrdusrutih || 20 ||

In the same manner, the mean longitudes of the Sun and the Moon have to be
obtained from their true longitudes. Dividing the square of the radius by the cor-
responding vyastakarna gives mandakarna.

The expression for the mandakarna, or manda hypotenuse represented by
K in the previous section, as described in the verse is given by

R2
K=—.

R,

This follows from the definition of the vyastakarna (R,) itself. The radius
of the kaksyavrtta or the deferent is R,, when the karnpa is taken to be R.
Hence, when the radius of the deferent is the trijya or R, the karpa K can be
found from the rule of proportions. That is,

K R R?
E—E or K—E
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9.9% AR IATgaT: THeATSHBOTAFT

7.16 Finding the true physical distances of the Sun and
the Moon from vyastakarna
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myrdusrutihatat kaksyavrttaccakrakalahrtam |
sphutayojanakarnakhyam kaksyavyasadalam raveh || 21 ||

The [instantaneous] radius of the orbit (kaksyavyasardha) which is [also] called the
true hypotenuse in yojanas (sphutayojanakarna) can be obtained by multiplying
kaksya by the mandakarpa and dividing by 21600 (cakrakala).

When the average distance of the Sun from the centre of the bhagola (es-
sentially the centre of earth) is taken to be 21600 minutes, the distance of
the Sun from this centre at any point of its orbit is given by K, in min-
utes. Hence, when the average distance of the Sun in yojanas is given by the
kaksyavyasardha Og,, (see Section 1.20), the actual physical distance of the
Sun from the earth known as the sphutayojanakarna is given by

K x O

Ost = 57500

S ATAAGT T TR,

7.17 Obtaining the masavakyas, sankrantivakyas and
naksatravakyas

Let d; denote the time period that has elapsed from the beginning of the year
(when the true longitude of the Sun is zero) to the end of the particular solar
month (corresponding to the Sun transiting the i** rasi). Obviously, d; need
not be an integer. A masavakya is the integer closest to d;. The fractional
part, in terms of nadikas can be found from the sarnkrantivakyas, which give
the remainders when d; are divided by 7. Similarly, naksatra-sarnkrantivakyas
give the time when the Sun crosses a naksatra division of the zodiac.

wnﬁﬁmaagagﬂvmw
%’ﬂﬁ'l@?ﬂ'ﬁﬁ:r% |

?ﬁ%ﬁﬁw
W%amﬁgawﬁw LN
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bhagikrtat tadanu sankramanarkamadhyat
abdantadohphalayutaddharapidinaghnat |
saurairdinairapahrtam khalu masavakyam
sankrantivakyamsiha tatsuhrtavasistam || 22 ||

naksatrantasphutotpannamadhyarkadevameva ca |
nayennaksatrasankrantivakyam kavisupurvakam || 23 ||

Having obtained the mean longitude of the Sun in degrees at [the time of] transit
(sankranti) and adding the dohphala (difference between the mean and the true
Sun) at the end of the year (abdanta) to it, multiply the result by the number of
civil days (bhudina) and divide by the number of solar days [in a mahayugal. [The
result obtained gives] the masavakya. The remainders obtained by dividing those
(masavakyas) by 7 (su) give the sarikrantivakyas.

In a similar manner, the nakstravakyas that commence with kavisu can be obtained
by finding the mean longitudes of the Sun from its true longitudes at the end of
the naksatras.

9.919.9 RIS

7.17.1 The masavakyas

Verse 22 gives the procedure for obtaining the masavakyas and sankranti-
vakyas. The true longitudes of the Sun at the end of each month are 30°,
60°..., 360°. At the end of the 12" month, which is the same as the beginning
of the first month in the next year, the true longitude of the Sun is 360°. The
mean longitude corresponding to the true longitude of 360° is found to be
357.883° = —2.117° ~ —2°7" = 11727°53'. The difference between the true
and the mean longitudes at the end of the year is termed the 'abdantadohphala’
whose value is 2°7'.

The madhyamabhoga (difference in the mean longitudes) reckoned from the
mesa-sankramana to istasankramana (desired zodiacal transition) is the dif-
ference in the mean longitude at the desired zodiacal transit and the transit
at mesadi of the true Sun. It is found by adding 2°7’ to the mean longitude at
each transit. For example, the true longitude of the Sun at the Makarasarnkra-
mana is 270°. The mean longitude corresponding to this is 269°34’. Adding
2°7" to it, we obtain 271°41" as the madhyamabhoga from the mesasankrama
to the makarasankrama.

A mean solar day is the time interval corresponding to an increase of 1°
in the mean longitude. This is slightly longer than a civil day, and is given
in terms of the latter by D <, where D, and D, represent the numbers of civil

D
days and solar days in a mahayuga. Note that the values given in the Karana-

paddhati for D, and D4 are 1577917500 and 360 x 4320000 = 1555200000 re-
spectively. Let 6,0 represent the madhyamabhoga for the transit to the (i+1)"
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rasi. Then D
(RS D.

For makarasankramana, 0gg = 271°41" and therefore

_271°41" x 1577917500
N 1555200000

0 =275 d 39 n. (7.67)

The masavakya is the integer closest to d;. Hence, 276 is the masavakya
at the makarasankrama. The masavakyas corresponding to all the transits as

given in the Commentary I'° are listed in Table 7.3 along with the computed
de.
Name of the rasi masavakya computed
transited textual value of d; value of d;
(sankramana) in katapayadi | in numerals | (in days & nadikas)
Vrsabha kulina 31 30d 56 n
Mithuna ruksajna 62 62d20n
Karkataka vidhana 94 93d56n
Simha matraya 125 125d 24 n
Kanya ksanasya 156 156 d 26 n
Tula simhasya 187 186 d 54 n
Vrscika suputra 217 216 d48 n
Dhanus catvarat 246 246 d 18 n
Makara tathadri 276 275d39n
Kumbha minangs 305 305d7n
Mina mrgangsi 335 334d55n
Mesa matulah 365 365d15n

Table 7.3 The masavakyas given in the Commentary I and the computed values of d;.

By finding the difference between the successive masavakyas, the number
of civil days corresponding to each month can be calculated.

9.99.2 AgT=rarean=

7.17.2 The sankrantivakyas

The instant at which the transit of true Sun from one rasi to another oc-
curs can be determined from the sankranti-vakyas. By dividing d; by 7, the

10 fKP 1956}, p. 225.



208 PSR TIEEE Obtaining the planetary longitudes

remainders obtained are the sankranti-vakyas. For instance, in the previous
example

dy 275d39n 2d39n
- = - =39+ -
The remainder is 2 d 39 n. Here the obtained day of the week corresponds to
number 2 and the nadika is 39. The vakya for this is nrvarat, which represents
the day as 2 and nadika as 40.
The sarkrantivakyas which are given in the Commentary II'! for different
transits are listed in Table 7.4, along with the computed values.

Name of sankrantivakya
the rasi in katapayadi in numerals computed value
day nadika day nadika
Vrsabha timire 2 56 2 55.5
Mithuna niratam 6 20 6 19.5
Karkataka camare 2 56 2 56.0
Simha marutah 6 25 6 24.1
Kanya surarat 2 27 2 26.1
Tula ghrnibhah 4 54 4 53.5
Vrécika javato 6 48 6 47.7
Dhanus dhatakah 1 19 1 18.2
Makara nrvarat 2 40 2 39.3
Kumbha sanibhah 4 7 4 6.7
Mina maniman 5 55 5 55.2
Mesa cayaka 1 16 1 15.5

Table 7.4 The sarnkrantivakyas in the Commentary II and the computed values.

It is clear that the value of d; corresponding to a sarnkramana is obtained by
adding a suitable multiple of 7, to the sarnikrantivakya. For example, we have
to add 91 to the day component of the sankrantivakya for karkataka (2+91)
to obtain d3 whose value is 93 days 56 nadikas.

9,99, 3 TeTAITHAT

7.17.3 The naksatravakyas

We know that the ecliptic (rasicakra, 360°) is divided into 27 equal parts called
naksatras, each part corresponding to 13°20". The basis of this division is the
Moon’s sidereal period which is close to 27 days. The term naksatra also refers

1 {KP 1956}, p. 226.
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to the time spent by the Moon in any of these divisions. In the same vein, the
time durations spent by the Sun to traverse through these divisions are called
mahanaksatras. The true longitudes of the Sun at the end of the 27 naksatras
are 13°20/, 26°40’, 40°, 53°20’, ..., 360°. Converting these longitudes to the
corresponding mean ones and adding 2°7’ to them, we obtain the increase
in the mean longitude of the Sun at the end of each naksatra starting from
Asvini. The number of civil days corresponding to these can be calculated by
multiplying them by the civil days in a mahayuga and dividing by the solar
days in a mahayuga. These values are presented in Table 7.5.

Name of the No. of civil days elapsed
naksatra before the naksatra-sankramana
Bharani 13.674
Krttika 27.461
Rohint 41.349
Mrgasira 55.318

Ardra 69.343
Punarvasu 83.395
Pusya 97.442
Aslesa 111.454
Magha 125.401
Purvaphalguni 139.260
Uttaraphalguni 153.015
Hasta 166.654
Citra 180.175
Svati 193.581
Visakha 206.881
Anuradha 220.090
Jyestha 233.224
Mula 246.304

Purvasadha 259.352

Uttarasadha 272.393
vaana 285.449

Dhanistha 298.543
Satabhisaj 311.697
Parvabhadrapada 324.931
Uttarabhadrapada 338.262
Revatr 351.702
Asvint 365.258

Table 7.5 Number of civil days elapsed at each naksatra-sankramna.

The instant at which the naksatra-sankramana occurs can be obtained from
the naksatra-sankrantivakyas. When we divide the civil days at each transit
by 7, the remainders obtained are the naksatra-sankrantivakyas, similar to the
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rasi-sankrantivakyas discussed earlier. The naksatra-sankrantivakyas as given

in both the Commentaries'? are tabulated along with the computed values in
Table 7.6.
Naksatra transit naksatra-sankrantivakya
(sankramana) in katapayadi in numerals computed sankrantivakya
day | nadika | day nadika

Bharani kavisu 6 41 6 40.4
Krttika harisu 6 28 6 27.7
Rohint diyata 6 18 6 20.9
Mrgasira dhiyate 6 19 6 19.1
Ardra karisu 6 21 6 20.6
Punarvasu marisu 6 25 6 23.7
Pusya sarisu 6 27 6 26.5
Adlesa duratah 6 28 6 27.2
Magha smarati 6 25 6 24.0
Purvaphalguni dusyati 6 18 6 15.6
Uttaraphalguni yonisu 6 1 6 0.9
Hasta parvana 5 41 5 39.2
Citra trikasa 5 12 5 10.5
Svati tandava 4 36 4 34.9
Visakha bhomrga 3 54 3 52.9
Anuradha dhenugah 3 9 3 5.4
Jyestha supura 2 17 2 13.4
Mula hataka 1 18 1 18.2
Purvasadha nirana 0 20 0 21.1
Uttarasadha bharata 6 24 6 23.6
vaana carana 5 26 5 26.9
Dhanistha galava 4 33 4 32.6
Satabhisaj visvagu 3 44 3 41.8
Purvabhadrapada carmarat 2 56 2 55.9
Uttarabhadrapada cikura 2 16 2 15.7
Revaty ravaya 1 42 1 42.1
Asvint markata 1 15 1 15.5

Table 7.6 The naksatra-sankrantivakyas given in both the Commentaries and the com-
puted values.

12 fKP 1956}, p. 228.
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9.9¢ TERTSHIHTHMITY TaTearFa

7.18 The yogyadivakyas: True longitude of the Sun at any
instant
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masadito’stastadinotthasuryasphutantaramsastadinantarani |
yogyadivakyani dhanarpataisam dinalpatadhikyavasadinaptau || 24 ||

[First] the difference in the true longitudes of the Sun in degrees etc. at intervals
of eight days from the beginning of the month [are found]. The difference between
[these values] and eight degrees are [given by] the yogyadivakyas. These are [applied]
positively or negatively, depending upon whether 8 degrees is lesser or greater [than
the difference in longitudes at the 8 days interval], to obtain the [true] Sun [at any
given instant].

The definition of yogyadivakyas and the method of applying them to obtain
the true longitude of the Sun at intervals of 8 days in a solar month, are given
in this verse.

Unlike the rasi and naksatra-sankramanavakyas discussed earlier, whose
nomenclature was based upon a certain time interval or phenomenon, the
name yogyadi-vakyas stems from the fact that here we have a set of 48 vakyas
beginning with the phrase yogya. These vakyas enable us to find the longitude
of the Sun at any given instant. There are 4 vakyas corresponding to each
solar month. Each month is divided into four parts with a maximum of 8
days per part. Now, the sphutabhoga of each part is the difference between
the true longitudes of the Sun at the beginning and at the end of that part.
The difference in minutes between the sphutabhoga of each part and 8° are the
yogyadivakyas. If the longitudinal difference is greater (lesser) than 8°, then
it will be notified as positive (negative).

9.9¢.9 AFATATFIITT

7.18.1 Obtaining the yogyadivakyas

The yogyadivakyas as given in the edited version of the Commentary I'3 are
listed in Table 7.7. Apart from the vakyas (here in the form of one word, which
form part of meaningful sentences), the signs ("4’ or ’—’) are also indicated in
the commentary. Except in the case of Tula, all the 4 vakyas corresponding to
a particular rasi have the same sign and this is indicated as such in the table.
For Tula, the sign for the first vakya is — and the signs for the other three are

13 fKP 1956}, p. 229.
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all 4+, as indicated in the table. The rationale behind these yogyadivakyas is
best explained by taking up a couple of concrete examples.

Consider the solar month of Makara. The true longitude of the Sun at the
beginning of the month is § = 270°. The corresponding mean longitude 8y can
be determined using the method explained earlier and we find 6y = 269°34’9”.
Using the fact that the rate of motion of the mean longitude of the Sun
is 59.136" per day, the mean longitude is 6y = 277°27'14" after 8 days in
the month of Makara. The mandaphala (6 — 6y) corresponding to this value
of 6y is found to be 42’'56”. Adding this to 6y, we find the true longitude
after 8 days to be 277°27'14” + 42'56" = 278°10'10”. Hence the increase in
the true longitude after the first 8 days of the month is 8°10'10”. As the
longitudinal increase is greater than 8°, the difference is positive and is given
by +(8°10'10” —8°) = +10’10”, compared with the value of +11’ as given by
the vakya ‘pujya’ in the commentary.

After 16 days in the month of Makara, the mean longitude 6y = 269°34'9” +
59'8"” x 16 = 285°20'17”. The true longitude corresponding to this is found to
be 6 = 286°19'29”. Hence the difference between the true longitudes at the
beginning and at the end of the second part is 286°19'29” — 278°10'10" =
8°9’19”. Here again as the longitudinal increase is greater than 8°, the differ-
ence is positive and is given by +(8°9'19” —8°) = +9'19”, which compares well
with the value of +9’ as implied by the vakya ‘dhenuh’ in the commentary.

9.9¢.R AFATEATHIT] THSTATITT

7.18.2 Finding the true longitude of the Sun from the
yogyadivakyas

One can obtain the true longitude of the Sun on any day using the yogyadi-
vakyas, and linear interpolation. For example, suppose we would like to find
the true longitude of the Sun after the lapse of 18 days in the Makara month.
This comes in the third part (khanda). Therefore the approximate value of
the true longitude of the Sun after 18 days elapsed would be

0" = 270° + 18° = 288°.

A correction which can be called yogyadisamskara Af’ has to be applied to
0" in order to obtain the true longitude 6.

Now, the correction for 8 days of the third khanda is given as 8 (dine).
Hence the correction for 2 days is % minutes. Adding this to the sum of the

first two vakyas (puwjya and dhenuh),

9
Ae’:11+9+8%=22’.
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Month yogyadivakyas (in minutes)

Mesa —| yogyo 11|vaidyah 14| tapah 16| satyam 17

(11'12") (13'3") (15'42") (17'42")

Vrsabha ||—|dhanyah 19| putrah 21| kharo 22| warah 24

(19'18") (20"54"") (22'18") (23'18")

Mithuna ||—| wvirah 24| surah 25| Saro 25| wvajre 24

(24'6") (24'30") (24'36") (2424

Karkataka||—|bhadram 24| gotro 23| ruruh 22| kart 21

(23'54") (23'6") (21'54") (20'30")

Simha ||—|dhanyah 19| sevyo 17| maya 15| loke 13

(18'54") (17'0") (14'54") (12'42")

Kanya ||—| kayo 11| dinah 8|stanam 6| gana 3

(10'36") (8'12") (5'48"") (3'18")

Tula yajno — 1| yajnam + 1| gana + 3| Suna +5

(—1'30") (+0'48") (3'0") (4'54")

Vrscika ||+| steno 6| dino 8| dhuni 9| natah 10

(6'12") (7'42"") (8'54") (9’54

Dhanus ||4+| apah 10| papah 11| payah 11| pathyam 11

(10"18") (10'42") (10'48") (10'30")

Makara ||+| pujya 11| dhenuh 9| dine 8| rthinah 7

(10.2) (9.4) (8.2) (6.8)

Kumbha ||+ tanuh 6| bhinna 4| khani 2| jrant 0

(5'42") (3'54"") (1'54") (—0'18")

Mina —| ratnam 2| bhanuh 4| sunih 7| nayah 10

(2'0") (424" (6'48") (9'18")

Table 7.7 The 48 yogyadivakyas mentioned in the Commentary I along with the com-
puted values in parentheses.

These corrections are indicated as positive in the listing of the vakyas in the
commentary. Hence applying this result positively to 6’ the true longitude of
the Sun at the end of the 18" day of the solar month Makara is found to be

6 = 288° + 22" = 288°22".
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9.9% HgIhHIATRIR:

7.19 Procedure for obtaining the mandasphuta of the
planets

AT FeT-<al hoaaTach gl alhe
i AT T AevpeTHy |
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bhaumadeh krtamandadohphaladalattatkendrato dohphalam

nitam kevalamadhyame dhanamynam mandasphutasyaptaye |
vidbhrgvornijamadhyame mrduphalam svocconamadhyodbhavam
nandaghnam sphutasighravrttavihrtam kuryat sa mandasphutah || 25 ||

In the case of Mars, etc. (Mars, Jupiter and Saturn)14 having first applied half of
the mandaphala, from the resulting value the kendra is obtained and from that, the
mandaphala is [once again] obtained. The mandaphala is to be applied positively
or negatively [depending on whether the kendra is tuladi or mesadi respectively]
to the original mean planet (kevalamadhyama) to obtain the manda-sphuta. In the
case of Mercury and Venus, the mandaphala (mrduphala)—obtained by subtracting
the apogee from the mean longitude—is multiplied by 80 (nanda) and divided by
the sphutasighravrtta (Cs). The mandasphuta is obtained by applying [the result
thus obtained] to its own mean (nijamadhyama).

The mandaphala obtained earlier can be written as
.1 (Cm .
Af = sin 30 sin(fg — 0,) | - (7.68)

The procedure for obtaining the manda-sphutas of the interior and the exterior
planets are separately prescribed in the above verse, and they will be explained
in the next two subsections.

9.9%.9 FHATSHT HGTHSTHITT

7.19.1 Manda-sphuta of exterior planets

The procedure for obtaining manda-sphuta of Mars, Jupiter and the Saturn
involves the following two steps:

14 Here, the word “bhaumadeh” (of the Mars etc.), is to be understood in a restricted
sense to refer to only three planets, namely Mars, Jupiter and Saturn, since the word
“vidbhrguoh” used in the third quarter of the verse refers to the other two planets, Mercury
and Venus .
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Step 1: Having obtained the mandaphala A8, half of it has to be applied to
the mean planet (madhyamagraha) 6. Now we get the half manda-corrected
mean planet 6.

Ab
b1 =0~ (for 0< (6 —6,) <180), (7.69)

Ab
=0+ (for 180 < (6 — 6,n) < 360). (7.70)

Step 2: Then once again we have to compute mandaphala. In doing so, we
have to find the kendra from the half-manda-corrected mean planet (6;).

That is, the value of the mandaphala calculated for the second time is given
by

A92 = sin_l (CS’SI sin(91 - 9m)> . (771)

It is said that this value A, is to be applied to kevalamadhyama'® 6.
Thus the manda-sphutagraha 6,,s is given by

Gms = 90 — AHQ (fOI" 0< (91 — em) < 180), (772)
=0+ A0,  (for 180 < (81 — 6,,) < 360). (7.73)

9.9%.2 TR[SHAT: AERGHETHITT

7.19.2 Manda-sphuta of interior planets

In the case of interior planets (Mercury and Venus) the manda-sphuta is ob-
tained by a single step process.

Multiply the mandaphala obtained from their respective kendras by 80 di-
vided by sphutasighravrttaparidhi (Cs). Thus the dohphala is computed as

80 (O Cnm,
ES X % Sln(90 — 9m) = CS

Sin(o() — Gm)

The arc of the dohphala is the mandaphala

Af; = sin™! (gm sin(fy — Qm)) . (7.74)

S

Applying this to the mean planet, we obtain the manda-sphuta

15 Usually the mandaphala is applied to the mean from which the kendra is computed.
Here, though the kendra is computed from 61, the author specifically tells that the second
mandaphala to be applied only to the original mean planet kevala-madhyama (o).
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Opns = 00 = AB;. (7.75)

It is important to note that according to the Commentary II, the phrase
“vidbhrgvor-nijamadhyame” actually implies that, in the case of the interior
planets, the manda correction is to be applied to the corresponding sighrocca.'®
This is indeed a major departure from the traditional planetary theory where
the mean Sun was taken to be the mean planet for Mercury and Venus.

It was Nilakantha Somayaji who modified the traditional planetary model
by suggesting that what was traditionally known as the $ighrocca in the case
of the interior planets, should actually be taken as the corresponding mean
planet to which the manda correction is to be applied. By interpreting the
phrase nijamadhyama as explained above, the Commentary II is suggesting
that the Karanapaddhati, by prescribing that the manda correction for the
mean planets should be applied to their Sighroccas and not to the mean Sun,
is also following the revised planetary model proposed by Nilakantha in his
Tantrasangraha (c. 1500).17

In this context, it should be noted that the Commentary I does not attach
any such special meaning to the phrase nijamadhyama for the interior planets.
Further, barring a few indications here and there, there is no explicit state-
ment in Karanapaddhati that it is following the revised model proposed by
Nilakantha. Therefore, the question as to whether Putumana Somayaji was
indeed aware of and followed the modified planetary model of Nilakantha is
still an open question which could perhaps be settled by a study of the other
works of Putumana Somayaji most of which are still unpublished.

There is also another peculiarity in the prescription for the mandaphala for
the interior planets as given in the above verse. It seems to be suggesting that

the stated value of the mandaparidhi is in the measure of the sighra-paridhi.
In other words, %—m is being used as the ratio of the manda-epicycle and the

deferent associated with the mandasamskara.

16 Here, the Commentary II states ({KP 1956}, p. 232):

“budhasukranmarude tante tante nijamadhyamam veccu ..mandasphutannal varum.
wide ‘nijamadhyama’ mennu parannadu Sighroccamakunnadu.”

In terms of the respective mean longitudes (referred by the name nijamadhyama)
of the Mercury and Venus ..manda-sphutas are obtained. Here, what is stated as
the ‘respective mean planet’ is indeed the [corresponding] Sighrocca.”

17 For details of the revised planetary model of Nilakantha, see {TS 2011}, pp. 508-522.
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9.20 A3 TERIRET T A3 TR
T

7.20 Obtaining the manda and Sighrakarnas from the
manda-sphuta and Sighra-sphuta

AT AT ARG T HSTSTaadg ATl Jsisy
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svopantyantyasphutabhyam nijanijacalatungonitabhyam bhujajye

nitva trijyahatabhyam vibhajatu paraya sighrakarnastada syat |
mandoccenonitabhyam Sravanamapi nayenmadhyamandasphutabhyam
manda yatra sphutaptih pathitabhujaphalaistatra karpaptirevam || 26 ||

Having obtained the Rsine of the upantyasphuta and antyasphuta from which re-
spective turigas are subtracted, multiply [the former]| by ¢rijya and divide by the
latter. The result obtained then would be the Sighrakarna. [Similarly], the [manda]
karpa can be obtained by subtracting apogee from the mean and the manda-sphuta.
The karnas are to be obtained like this when the sphutas are obtained from the
tabulated correction values.

The formula mentioned in the verse for obtaining the karna is

R x Rsin(upantyasphutakendra)
k = . . 7.76
arna Rsin(antyasphutakendra) (7.76)

Here, the terms ‘upantyasphuta’ (penultimate to the corrected planet) and
‘antyasphuta’ (the corrected planet) have to be assigned meanings depending
upon the process under consideration. If it is Sighra-process, then the antyas-
phuta refers to Sighra-sphuta, the upantyasphuta refers to the manda-sphuta,
and the associated karna is the Sighrakarna. On the other hand if the process
under consideration is the manda-process, then the term antyasphuta refers
to the mandasphuta, upantyasphuta refers to madhyamagraha (mean planet),
and the associated karna is mandakarna. As regards the kendra, it is obvious
that depending upon whether the process considered is manda or Sighra, the
mandocca and $ighrocca have to be employed in finding the anomaly.

Therefore, the expression for §ighrakarna can be written from (7.76) as

Siohrakarng — R x Rsin(mandasphutakendra)
g " Rsin(sighrasphutakendra)
R x |Rsin(0s — O.5)|

Rsin(0, — 0)]

or K, = (7.77)

where 0, is the Sighrocca, 0,,, is the manda-sphuta and 0 is the sighra-sphuta.
The mandakarna can be obtained from
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mandakarna = R x Rsin(mandakendra)

“" Rsin(manda-sphutakendra)’
R x |Rsin(6y — 0,,)|

K, =

or m |Rsin(0s — Om)]

(7.78)

The rationale for obtaining the above expression (7.78) can be understood
from Figure 7.9a where P, is the mean planet and P is the manda-sphuta.

Fig. 7.9a Obtaining the mandakarna.

Draw PT perpendicular to OU. In triangle PO’T,

PT = PO'sin(TO'P)
= |Rsin(fy — Om)|, (7.79)

as I'O'P = 6y, I'O'U = 0,, and UO'P = TO'P = 6y — 0,,. In triangle POT,

PT = OPsin(TOP)
= K| sin(Oms — 0m)|, (7.80)

as POl = Orms, rou = 0,, and UOP =TOP = Oms — 0. Equating the two
expressions (7.79) and (7.80), we find
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_ R x|Rsin(0y — 0,,)]

K, = 81
m |Rsin(0pms — Om)| (7.81)

which is the same as the expression given in (7.78).
Similarly, the expression for the Sighrakarna, K in (7.77) can be obtained
by considering the Figure 7.9b where S is the $ighrocca and P is the sphuta.

Fig. 7.9b Obtaining the Sighrakarna.

Draw PD perpendicular to OS extended. In triangle PSD,

PD = SPsin(PSD)
= Rsin(I'SD — I'SP)
= Rsin(I"OS — 'OP,)
= R|sin(0s — ). (7.82)

In triangle POD,

PD = OPsin(POD)
= K,sin(I'OS — I'OP)
= K,|sin(65 — 6)|. (7.83)

Equating the two expressions (7.82) and (7.83), we find
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® R x |Rsin(0s — O.,5)]
s |Rsin(6s — )]

(7.84)

9.29 HrgSATHTS HUTHITH

7.21 Obtaining the karnas when the Rsine of the kendra is
zero
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dorjyabhave tu kendre sati makarakuliradike tatra mande
tadvrttonadhyanandaistribhagunagunitannandananmandakarnah |

Saighre tadvrttayuktonitanadagunitadvistarardhannadapto

bhaumadeh Sighrakarnah satatamapi vidhoh S$ighrakarno’ntyakarnah || 27 ||

While obtaining the mandakarna if the Rsine [of the kendra] is zero, then the
ojavrtta has to be subtracted from or added to 80 (nanda) depending on whether
[the kendra] is makaradi or karkyadi respectively. Dividing the product of the trijya
and 80 by this [result] the mandakarna is obtained. In the case of Sighralkarna) if
the Rsine [of the kendra] is zero, then the Sighrojaparidhi has to be added to
or subtracted from 80 (nada) [depending on whether the kendra is makaradi or
karkyadi respectively]. Multiplying the result by ¢rijya and dividing by 80 (nada)
would give the Sighrakarna in the case of the [planets] Mars etc. The Sighrakarna
of the Moon is its antyakarnpa itself.

Recalling the expressions (B.4) and (B.5) for the mandakarpa K, in ap-
pendix B, we have

=

K = [(R+rcos(0p — 0,,))° + (rsin(by — 6,,))%] %, (7.85)

which is valid for both makaradi and karkyadi cases. It is easily seen that,
when the kendra (6y — 6,,,) = 0 or 180°, then the expression for K reduces to

K=R+r (for (0o — 6,,) = 0), (7.86)
=R-r (for (0o — 6,,) = 180°), (7.87)
where r is the instantaneous radius of the epicycle. From the relation = =
B= g—’g, we have
K xC,
=— 7.88

Now, the sphutamandaparidhi C,, is simply ojamandaparidhi C,,, when (6g —
0.,) =0 or 180°. Using the above relation for r in the expression for K, we
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have
K x Cmo
K=R+ —
80 7
Hence, K = %

_ trijya X 'ncmdfz ) (7.89)
nanda F ojaparidhi

as stated in the text.
Similarly, using the expressions (B.13) and (B.14) for the Sighrakarnpa K
in appendix B, we have,

K, =
80

2 273
(Ri ;;|RCOS<93k|> + (@Rsin93k> ] , (7.90)

where we have used to relation, 75 = gg . Here, we use ‘+’ in the first term in
)

RHS if kendra is makaradi and ‘=’ if it is karkyadi. For 65, = 0 and 64, = 180°,
Cy, = Cy, and K, reduces to

CVSO
K,=Rx 1+
<(125)

80+ Cso

9. 3R UAEETaRT

7.22 Earth—planet distance
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karnadvayasya vadhatastrigunena labdham
kendragrahantaraminasya tu tat svakarnah |
bhumadhyakhetavivaram ca tadeva vidyat
prayena $itamahasah sphutameva tat syat || 28 ||

The distance of the planet from the centre (kendragrahantara) is given by the
product of the two karpas (manda-karna and Sighrakarna) with each other and
divided by the radius (¢riguna or trijya). For the Sun its mandakarna itself is the
kendragrahantara. That (kendragrahantara) itself may generally be taken as the
distance between the center of the earth and the planet (bhumadhyakhetavivara).
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In the case of the Moon it is indeed the accurate distance from the centre of the
earth.

In traditional Indian planetary theory, at least from the time of Aryabhata,
the mean planetary distances were obtained based on the hypothesis that all
the planets move with the same linear velocity, that is, they all cover the same
physical distance in a given period of time.

The term kendragrahantara mentioned in the verse is the distance of the
planets from the center of the celestial sphere (earth), and is given by

mandakarna x Sighrakarna

kendragrahantara = —
trijya
Ky X K

0 (7.92)

This is the relation stated in Aryabhatiya. Nilakantha in his Aryabhatiyab-
hasya explains that, since usually the $ighrakarna is evaluated with respect
to a concentric of the standard radius (¢rijya), the above prescription of
Aryabhatiya implies that the earth-planet distance is actually given by the

Sighrakarna which is evaluated with respect to a concentric circle whose ra-
18

dius is given by the mandakarna.

Fig. 7.10 Obtaining the distance of the planets from the centre of the celestial sphere
(earth).

18 {ABB 1931}, pp. 53-4.
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In order to understand the conditions under which the Aryabhatiya relation
holds, let us consider the case of exterior planets which is depicted in the
Figure 7.10. The kendragrahantara is the Sighrakarna OP itself if SP is taken
as trijya, R, that is P is taken to be madhyamagraha with respect to S. If
we take P to be the manda-sphuta with respect to S and take SP, as the
mandakarna, K, we would obtain

K, x K

kendragrahantara = — R (7.93)

only if OS the radius of the sighra epicycle which is scaled by the factor %.
There is no mention of such a scaling of the Sighra epicycle in Karanapad-
dhati. To that extent the prescription (7.92) for the earth—planet distance is

somewhat ad hoc.

9,23 TEATSTROIN:

7.23 Yojanakarnas (physical distance in yojanas) of the
planets

o o o
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bhugrahantarahata nijakaksya $ighravrttahatanissarabhaktah |
jnacchayorbhavati yojanakarno jnanatatparahrtasca paresam || 29 ||

Multiply the earth-planet distance (bhugrahantara) by the orbit of the planet
(kaksya). When we divide this by the product of the circumference of the dighra-
epicycle ($ighravrtta) and 270 (nissara), we obtain the distance in yojanas (yo-
janakarnas) of Mercury and Venus. Dividing [the product of (bhugrahantara) and
kaksya] by 21600 (jrianatatpara) would result in the yojanakarnas of other planets
(the exterior planets)].

The yojanakarnas of the interior planets are stated to be

. bhugrahantara X kaksyaparidhi
yojanakarna =

nissara X $ighravrtta
_ bhugrahantara x 27 x O,
o 270 x C, ’

(7.94)

where O, is the radius of the orbit in yojanas. The rationale behind the
expression in the denominator can be understood as follows. If r, is the radius
of the Sighravrtta in minutes, % =% = %, then Cs x 270 = 27r; (in

minutes). Thus,
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bhugrahantara x O,

yojanakarna =

(7.95)

Ts

This is essentially the same as the expression for the yojanakarna for Mercury
and Venus in the Tantrasangraha (verse VIII.37). However, in Tantrasarigraha
what appears in the denominator is the planet’s own orbital radius around
the mean Sun and that is equal to the radius of the Sighravrtta.*®

Karanapaddhati does not present any geometrical model of planetary mo-
tion. There is no mention of the geometrical picture of planetary motion pro-
posed by Nilakantha that the interior planets are going around the mean
Sun along their Sighravrttas. Hence the above prescription (7.95) for the yo-
janakarnas also seems to have been made in an adhoc manner.

For the other planets (paresam), that is Mars, Jupiter and Saturn, the
distance in yojanas is stated to be

. bhugrahantara X kaksyaparidhi
yojanakarna =

jnanatatpara
_ bhugrahantara x O,
= 7 )

(7.96)

This can be understood by a simple rule of three. The mean kaksya in yojana
O, is the distance of the planet corresponding to the radius of the concentric
given by R minutes. If the actual karna is given by bhugrahantara minutes,
what is the distance of the planet in yojanas? The answer is as given in
equation (7.96).

9.2 AIENIHATT AR

7.24 Obtaining the hypotenuse at the heliacal rising and
setting
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bhaumat sevyagayapayodhanamayat maudhyodita hyamsakah
taddohkotigunau svasighraparidhiksunnau nadaptau phale |
trijyadohphalavargabhedajapadam kotiphalenanvitam

karpah syadudayastakalasavidhe mandamaredyasrjam || 30 ||

The longitudinal difference of the planets in degrees for helical rising (maudhy-
oditamsas) [of the planets] starting from Mars etc. are 17 (sevya), 13 (gaya), 11

19 [TS 2011}, pp. 434-437.
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(payah), 09 (dhanah) and 15 (maya). Multiply the Rsines and Rcosines of these
[ams$as| by the respective Sighra-paridhis and divide by 80 (nada). The square roots
obtained by subtracting the square of the results obtained with Rsines from the
square of the trijya have to be added to the results obtained with Rcosines. [The
results obtained] would be the hypotenuses (karnas) near to the udayastamanakala

of the Saturn (manda), Jupiter (amaredya) and Mars (asrk).

The heliacal rising angles in degrees (maudhyamsas) with Rsine and Rco-
sine values for five planets given in the verse are listed in Table 7.8. The value
of the maudhyamsas stated here are the same as those in Aryabhatiya and
Tantrasangraha. The expression for the karna K,,q at the maudhyodaya and

Planet

maudhyamsa (o)

(in degrees)

Rsina

Rcosa

(in minutes) | (in minutes)

Mars
Mercury
Jupiter
Venus

Saturn

17
13
11
9

15

1005.10
773.32
655.95
537.78
889.75

3287.53

3349.64

3374.59
3395.42
3320.61

Table 7.8 The maudhyamsas of the planets and their Rsines and Rcosines.

the astamana of the exterior planets is stated to be

2
Kpa = \/RQ — <§; X Rsina> + % X Rcosa,

80

where « is the maudhyamsa and C, the Sighra-paridhi.

This can be understood with the help of Figure 7.11. Here S’ is the Sighrocca
which is the centre of the pratimandala of radius R. The planet P is situated
on this pratimandala such that PS'S is the Sighrakendra. SOP = a is the
angular separation between the planet P and the Sun. OS’ is the radius of
the $ighravrita and is given by

Then

)

S'D = 08’ sin(SOP) =

OD = G X Rcosa,

0s' =

80

8—8 X Rsin a,

(7.97)

2
and  PD=+/S'"P2—SD? = \/R2 - (g; X Rsin a) - (7.98)
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Fig. 7.11 Obtaining the karna of exterior planets at heliacal rising and setting.

Then OP, which is the karna K,,q is given by

Kpg=0P=PD+ 0D

2
= \/R2 - (gg X Rsina> + % X Rcos a. (7.99)

9.4.9 FUHAT: AIENTSHATTATRT:

7.24.1 Hypotenuse at heliacal rising and setting of the
interior planets
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maudhyoditamsabhujakotigunau jnabhrgvoh
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Sighraujavrttahrtamantyaphalat tadiyat

sam$odhya Sistamidamantyaphalam sphutam syat || 31 ||

tadvargato dorgunavargahinat mulam punah kotigune dhanarnam |
kuryattada syanmrgakarkatadyoh prayena maudhyadyavasanakarnah || 32 ||

Having obtained the Rsine and Rcosine of the maudhyamsas of Mercury and Venus,
multiply the Rsine by the difference between the odd and the even Sighravrttas
and divide by the Sighravrtta at the beginning of odd quadrant (Sighraujavrita).
The result when subtracted from the associated antyaphala would give the true
antyaphala.

From the square of that (sphutantyaphala), subtract the square of the Rsine [of
the maudhyamsa] and square root of the result is added to or subtracted from the
Rcosine in mrgadi and karkyadi respectively. The result will be close to the karna
at the beginning and ending of the maudhya.

The verse 31 expresses the antyaphala (radius of the epicycle) corresponding
to the maudhyamsa, as the antyaphala at the beginning of the odd quadrant
to which a correction term is added. The corrected antyaphala is further used
to find the karnas at the heliacal rising and setting of the interior planets.
The correction term to be applied to the antyaphala in order to obtain the
sphutantyaphala, is stated to be

Rsina x A,

Ar, :
g Cro

(7.100)

where A, represents the difference between the odd and the even sSighravrttas.
Subtracting this from the antyaphala, we have

sphutantyaphala ry = rgo — Ars.

Now we present the rationale behind the above expression. In what follows,
we ignore the correction due to eccentricity of the interior planet’s orbit.

In Figure 7.12, O is the earth, Py is the Sun and P represents the interior
planet. Py P is parallel to OS;, where O.S; is in the direction of the Sighrocca.
Then P,OS; = 6, is the Sighrakendra, and PyOP is the angle between the true
interior planet at P and the Sun at Py, as viewed from the earth. PyOP =«
at the beginning and end of the maudhya. We know that the $ighra-paridhi
C, varies with the Sighrakendra as

Rsin O,

Cs = Cso - AST; (7101)

where Ay is the difference in the radius of the epicycle at the beginning and at
the end of the odd quadrant. In the triangle Py PO in Figure 7.12, PyOP =«
and

PyPO = POS = PyOS; — PyOP =0, — a.

Now in the triangle PyOD,
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Fig. 7.12 Obtaining the karna at heliacal rising and setting of the interior planets.

PyD = OP,sin(PyOD) = Rsin .
Considering the triangle Py DP,
PyD = PPysin(PyPD) = rysin(fs, — a),

as PPy = r; is the radius of the ighravrtta. Equating the two expressions for
P0D7

rssin(fs, — ) = Rsinq,

sin(fsr, — )  sina
R o

or

Since « is small compared to the Sighrakendra 04, and rs = r4,, we have

sinfy, sina

R Tso

Hence

O~ Cuy— AsRsma.

TSO

The above relation is equivalent to

Rsin«

)
CSD

Ty R Tgy — Ag

(7.102)
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since 75 = gg.
According to verse 32, the karnas at the rising and setting of the maudhya

for mrgadi and karkyadi are given by

Kpna = (Reosa) £ 1/ (r,)? — (Rsina)’.

This is an exact result. The approximation is due to the fact that the only an
approximate value of r5 was calculated in the previous verse. The expression
for the karna can be understood as follows. In Figure 7.12,

OD = Rcos(PyOD) = Rcos a,

and PyD = Rsina.

Hence,

PD = +\/PyP? — ByD? = \/r2 — (Rsina)?.

The karna OP = K,,q = OD £ DP. Here, we should choose ‘+’ for makaradi
as in the figure, and ‘—’ for karkyadi. Hence,

Kpa = (Rcosa) £ \/(rs)2 — (Rsina)’. (7.103)

9,24 RISNIHATaAAT: TETIET:

7.25 Latitude of a planet at heliacal rising and setting

FHOTTST STURR:20 TR ATT: |
o7t 7 TRAEAT T T Aradatidr 1133 |

SRR ATSHAR ST AT SIANI |
TSI SHHTSAT: IRHETATS AT 1| 3¢ |l

karpo’yam ksepaharah syanmaudhyarambhavasanayoh |
guno hi paramaksepo yadva tavapavartitau || 33 ||

asurannalamaranyamantamasrayamapriyam |
candradinam kramadetah paramaksepaliptikah || 34 ||

While obtaining the latitude (ksepa) at the commencement and the end of maudhya,
the divisor is this maudhyarambhavasana-karna (stated in the previous verse), and
the multiplier is the maximum latitude (paramaksepa). Or else, we can use these
[ksepa and hara] after doing apavartana.

The maximum latitudes in minutes of the planets starting from the Moon etc., are
successively asuram (270), nalam (90), arapyam (120), antam (60), asrayam (120)
and apriyam (120).

20 The term ksepaharah should be understood as “ksepasya [anayane] yo harah sah’.
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Ecliptic

Moon’s orbit

Fig. 7.13 Latitude of the Moon.

For the Moon, the latitude 8 (see Figure 7.13) for an arbitrary value of
its longitude A is given by 8 & isin(A — Ay), where Ay is the longitude of
its node, and 4 is the inclination of its orbit with the ecliptic whose value is
taken to be 270’. For the planets, the latitude at the commencement and end
of maudhya is stated to be

paramaksepa

viksepa = .
oep maudhyarambhavasana-karna

Here, Putumana Somayaji has in view some approximate version of the
expression for the latitudes of planets as in Tantrasarigraha (where also the
Sighrakarna appears in the denominator). In Figures 7.14 and 7.15, P and

Fig. 7.14 Heliocentric latitude of a planet.

N refer to the true planet and the node, and S the mean Sun. The orbit of
the planet is inclined at an angle ¢ with respect to the ecliptic on which the
mean Sun moves. Now consider Figure 7.14. Since the inclination of the orbit
is small, the heliocentric latitude (§;, may be written as

B ~ isin(Opns — br), (7.104)

where 0,,s and 6,, are the longitudes of the planet and its node respectively.
The relation between the geocentric latitude, Sg, which is measured with
respect to the Earth, and 3, is depicted in Figure 7.15. Here, the arc PQ may
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Fig. 7.15 Obtaining the geocentric latitude of a planet from its heliocentric latitude.

be expressed in two ways

PQ = B x EP. (7.105)
and  PQ = By x SP. (7.106)
Hence,
SP
BE = ﬂhﬁ; (7.107)
. SP
or B = isin(fms — 0y) 5P (7.108)

For exterior planets, the mean Sun S is the sighrocca, and P is the manda-
sphuta which moves on the pratimandala centred at S, and SP = R (the
trijya), and EP = Sighra-karna. Then

iR sin(0pms — 0n)
swghra-karna

BE = (7.109)

For the interior planets, the mean Sun is the mean planet, and P is the true
planet which moves on the Sighravrtta or the Sighra-epicycle centred at S and
is in the direction of the Sighrocca, with respect to S, and SP = r;, the radius
of the sighra epicycle. Then

i rssin(0,s — On)
Sighra-karna
i (%) Rsin(0ps — 0,,)
sighra-karna ’

Be =

Here 6,5 is the longitude of the sighrocca corrected by the mandaphala. Hence,
for the interior planets, 8,,q4, should be identified with 4 (%) Thus for both
interior and exterior planets, we can write the latitude as

_ Bmaz X Rsin(0,s — 6)

Sighra-karna

Be
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This relation is stated in Tantrasarigraha (verse VII. 5).2! However, it must
be noted that in the above verse in Karanapaddhati, the maximum deflection
Bmaz in the numerator and the $ighrakarna in the denominator are mentioned,
whereas the factor Rsin(f,,s — 6,) is not mentioned,

The above verse also gives the maximum latitudes of the planets in minutes
using katapayadi notation. These values are listed in Table 7.9. It may be noted
that these values too are the same as in Tantrasangraha.

Maximum latitude
Planet (Bmaz in minutes)
in katapayadi | in numerals

Moon asuram 270
Mars nalam 90
Mercury aranyam 120
Jupiter antam 60
Venus asrayam 120
Saturn apriyam 120

Table 7.9 The maximum latitudes of planets.

9.2 IargyaT e

7.26 Diameter of the orbs of the Sun, Moon and the
Earth in yojanas

ThIgd AT TS |
AT 2 :H?iaaﬁéa HAT e 1134 1l

arkodbhavam raverbimbavyasah syadyojanatmakal |
Sasyangam Sasinastadvad bhavedatmanayam bhuvah || 35 ||

The diameter of the Sun in yojanas is 4410 (arkodbhavam). Similarly that of the
Moon and the Earth are 315 (Sasyarigam) and 1050 (atmanayam) [respectively].

The diameters of the Sun, Moon and the Earth are specified to be 4410, 315,
1050 yojanas respectively. These values are the same as in Tantrasangraha.

2L TS 2011}, pp. 391-394.
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Gnomonic shadow
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8.1 Obtaining the Rsine and Rcosine of the latitude
from the midday shadow

forgafereavTeiarsiashreaT ufedr ueyfa: |
TryatemmrerTEaTd Brpona afegdremiEe 19 |
AT T SR |

Teh R Rt~ Tpears aaiE: 1|2 ||

visuwvaddinamadhyabhakrtirbhavakadhya padita palasrutih |
visuwvaddinamadhyabhahatat trigunat tadvihrtaksamaurvika || 1 ||
tattrijyavargavislesamalam lambanamaurvika |

eke samskaramicchanti sphutatvartham tayormithah || 2 ||

The hypotenuse of the gnomon (palasruti) is obtained by taking the square root of
the sum of 144 (bhavaka) and the square of the mid-day shadow [of the gnomon]
on the equinoctial day (visuvaddina).! The mid-day shadow on the equinoctial day
when multiplied by the radius (t¢riguna) and divided by that [hypotenuse] would
be the Rsine of the terrestrial latitude (aksamaurvika).

The square root of the square of that [aksajya] subtracted from the square of the
radius is the Rcosine of the terrestrial latitude (lambanamaurvika or lambajya).
Some [astronomers| prefer that their values be corrected in order to obtain accurate
results.

Several quantities of physical interest can be found through observations
using a sanku or a gnomon. The gnomon is placed on level ground, perpen-
dicular to it, and shadow measurements are done with that. The set of verses
given above present expressions for the Rsine and Rcosine of the latitude in

! The day on which the Sun passes through the equinox.
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terms of the equinoctial shadow. The height of the $arnku (gnomon) is usually
taken to be 12 units (arigulas) in the texts on Indian astronomy. The following
are the expressions for the hypotenuse of the shadow cast by the Sariku, the
Rsine of the latitude (aksajya) and its Rcosine (lambajya), as given in these

verses:
karna = \/ chaya® + 144,

. _  trigya X chaya
aksajya = ———
karna

lambajya = \/trijyd2 — aksajya’. (8.1)

We now provide the rationale behind the above expressions using Fig-
ure 8.1. It can be easily seen from the figure that the triangle formed by
the Sanku (gnomon), the chaya (shadow) and the karpa (hypotenuse) is a
right-angled triangle. OX represents the $arnku (12 units), OY the chaya and
XY the karna. The expression for karna is straightforward. Considering the
triangle OXY,

XY? =0Y?+0X?,
or karna® = chaya® + Sanku®

= chaya® + 144,

or karna = \/ chaya® + 144,

as stated in the verse. On the equinoctial day, the Sun is almost on the equator
throughout the day. Hence, the zenith distance of the Sun as it crosses the
prime meridian (at noon) would be equal to the latitude (¢) of the place. That
is, OXY = ¢. Hence,

oYy 00,4

el = . 2

X7 cos ¢ %7 (8.2)
Now aksajya is Rsin ¢ and lambajya or lambaka is R cos ¢. Hence, multiplying
the above equation by the radius (¢rijya) we have

sin ¢ =

trijya X chaya

aksajya = (8.3a)
karna
triivd X Sanik
and lambaka = rryya X Samu
karna
trijya x \/ karna® — chaya’
or lambaka =

karna

_ \/ trijya® x (karna® — chaya®)

karna®
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Fig. 8.1 Determination of the latitude from the equinoctial shadow of the Sarnku.

Using (8.3a) in the above, we have

lambaka = \/(tmjde — ak;sajde). (8.3b)

This is what is mentioned in the verse.

¢.R BTG S [h T

8.2 Corrections to the Rsine and Rcosine of the latitude

AT AT ATE P oTd RS aTg e IR
eI IO |

hedTHTH dUSHGHMImhII?’)Ohﬂ%{d_\

SEILSL %H?Ilb?ﬁ(ﬁNgUMIZWﬁdC{IHI Thal 131

bhuvyasardhasamahataksagunatastrijyahrtam bhasvato
vyasardhadapaniyaistagunitau lambaksasamjiiau gunau |
kaksyavyasadalena candamahasastatkalikenaharet

tatraptau kramasdo’ksalambagunayoh svarnam tadaptau sphutau || 3 ||

The radius of the earth is multiplied by the aksajya and divided by the trijya, and
the result is subtracted from the radius of the Sun. The remainder is multiplied by
lambajya and aksajya [separately and the results] are divided by the instantaneous
(tatkalika) radius of the orbit (kaksyavyasadala) of the Sun. The results obtained,
when added to and subtracted from the aksajya and lambajya respectively, would
give the accurate [values of the same].
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The expressions for the Rsine and Rcosine of the latitude in terms of the
shadow stated in the verses 1 and 2 do not take the finite size of the Sun into
account. Also in all the calculations, it is the shadow as observed at the centre
of the earth which appears, whereas observations are made on the surface of
the earth. The difference between them is due to ‘parallax’, which is due to
the finite size of the earth.

The above verse gives the corrections to be applied to the observed ‘aksajya’
and ‘lambajya’ due to these two factors via a two step process.

Step 1:  Multiply the aksajya by the radius of the earth (bhuvyasardha)
and divide by the trijya. The result is subtracted from radius of the Sun
(arkavyasardha). That is, we have to find the quantity,

<arkavyasardha _ aksajya x bhuvyasardha) ’

trijya

Step 2:  This quantity obtained in Step 1 is multiplied separately by lam-
bajya and aksajya and divided by the instantaneous kaksyavyasardha of the
Sun. The results obtained are applied positively and negatively to the aksa-
jya and lambajya respectively. That is, the corrected values of the aksajya
and lambajya are

lambajya x (arkavydsdrdha _ aksajyax bhdvydsdrdha)

aksajya + trijya
Py tatkala-kaksyavyasardha ’
and
aksajya x (arkavydsdrdha — akﬁsajyaxtl;l;y%yasardha)
lambajya — - ——— Y
tatkala-kaksyavyasardha
respectively.

These corrections have been discussed in the chayaprakarana chapter of
Tantrasangraha® also, but they are formulated differently here.

The correction which arises owing to the finite size of the Sun is illustrated
in Fig. 8.2. Here OA is the Sanku and PSQ represents the sectional view of
the Sun, S being the centre. rs = PS is the arkavyasardha (radius of the Sun)
and Oy = SA is the tatkala-kaksyavyasardha (distance of the Sun from the
centre of the earth at that instant).

If the Sun was a point source of light, then the tip of the shadow of the
$anku would fall at S and ¢ = OAS’ would be the latitude as measured by
the observer. However, if P is the upper extremity of the Sun’s disc, the tip of
the shadow of the sariku would fall at P’ and ¢” = OAP’ would be the actual
value of the latitude observed. Now

¢ = O0AS' = OAP' + P'AS = ¢" + ~,

2 {TS 2011}, 131-214.
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cross section of
the Sun’s disc

ray from the upper edge of sl
of the Sun’s disc -7

observer’s horizon

o N (6}

Fig. 8.2 Correction due to the finite size of the Sun.

where 7 is the angular semidiameter of the Sun. Therefore,

Rsin¢’ = Rsin(¢” + )
~ Rsin¢"” + v.Rcos ¢, (8.4)

since v is very small, that is, v << ¢”. Similarly,
Rcos¢' = Rcos(¢” + ) ~ Rcos¢” — v.Rsin ¢

Also, since + is small

~ Rsin~y — P73 s arkavyasardha
T TTSA T O, tatkala-kaksya-vyasardha’
Therefore,
Rsin¢ = Rsin¢” + g.RCOS(b”, (8.5)
and Rcos¢’ = Rcos ¢ — S—S.R sin ¢ (8.6)
S

Since the observed value of the latitude ¢”, the radius of the Sun rg, and the
distance of the Sun O, are known, the first corrected value of the latitude ¢’
can be calculated.

Now we consider the correction due to the parallax as depicted in Figure 8.3.
O represents the centre of the earth and A, the location of the observer. S is
the Sun, OS = Oy is the radius of the Sun’s orbit at that instant and OA = r,
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Fig. 8.3 Correction due to parallax.

is the bhuvyasardha, or the radius of the earth. ¢’ is the latitude including the
correction due to the finite size of the Sun.
Considering the triangle OAS in Figure 8.3,

sinp  sin(180 — ¢')

Te O ’
. . aTe
= = 8.7
or sinp = sin ¢ 0. (8.7)
Also, from the figure,
(rb = (rb/ - D

where ASO = p is the parallax. Therefore,

sin ¢ = sin(¢’ — p)
= sin ¢’ cos p — cos ¢’ sin p. (8.8)

Using (8.7) in (8.8) and considering the fact that p << ¢ so that cosp ~ 1,
we have Rin o
Rsin¢g ~ Rsin¢’ — RCOS(ﬁ/ﬂE

R O,
Similarly
Rsin ¢/
Rcos¢ ~ Rcos¢ + Rsin ¢’ b;?(b 8—2

Using the expression for Rsin ¢’ and Rcos¢’ given by (8.5) and (8.6) respec-

ror
tively, and neglecting higher order terms (of order %), we have
S
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< Te.Rsin ¢ )
TR
Rsin¢ = Rsin¢” + Rcos ¢”

0. . (8.9)
< re.Rsin qb”)
and Rcos¢p = Rcos¢” — Rsing” 5 R . (8.10)

These are the expressions stated in the above verse, as 7, is the arkavyasardha,
re is the bhuvyasardha, O is the tatkala-kaksyavyasardha, and Rsin¢” and
Rcos ¢ are the uncorrected aksajya and lambajya.

¢.3 WW

8.3 Obtaining mahasanku and chaya at any desired instant

[N o
g THRATHTE BT T HIw: |
FETATGH T Tl g Il ¢ |

angulatmikayabhistacchayaya tatra bhasvatah |
mahasankuprabhe karye samskrte lambakaksavat || 4 ||

Mahasanku and Mahacchaya at any instant can be obtained from the shadow of
the Sun® in argulas [at that instant]. [These] have to be corrected just like lambaka
and aksa.

We explain the concept of mahasariku and mahacchaya with the help of
Figure 8.4. Here, S is the Sun and F' is the foot of perpendicular drawn from
the Sun to the horizon. The angle OXY = FSO = z is the zenith distance
of the Sun, and OYX = FOS = 90 — z = q is the altitude of the Sun. The
triangles OXY and FSO are similar. In the triangle OXY, OX represents
the usual Sanku of 12 units in height, and OY is its shadow, or the chaya.
SF = Rcosz and FO = Rsin z are referred to as the mahasanku and the
mahacchaya respectively.

It is stated in the verse that the mahasaniku and mahacchaya are to be
corrected just like the lambajya and aksajya in order to make them sphuta.
Let Rcosz and Rsinz be the sphutamahasariku and sphutamahacchaya re-
spectively, where z refers to the zenith distance at the centre of the earth. If
2’ is the observer’s zenith distance,

3 The third case chayaya used here is ‘hetau trtwy@ and not ‘karane trtiya. Hence it has
been translated as, ‘from the shadow’.
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mah);sanku
v
Fig. 8.4 The mahasariku and the mahacchaya.
Rsin 2’ x (arkavydsdrdha _ Rsinz x l;ﬁgsg_asardha)
Rcosz = Rcosz' —

b

tatkala-kaksyavyasardha
Rsin 2’ x bhﬂvydsdrdha)
trijya
tatkala-kaksyavyasardha

Rcos 2 x (arkavydsdrdha -
Rsinz = Rsinz’ +

These relations can be derived in the same way as was done in the previous
section for the case of the aksajya and lambajya.

6.8q@mﬁm

8.4 Obtaining the bhujakotis of mahacchaya

mwmgﬁwm|
SRIEEI AT HETHT aTgahiicsh Il 4 |l
TR ST TSI GaTSehiTe: |
THEHUSHIT HIHT AT ST hiteehl 7 7eTg 1| & |l

chayangulabhujakotyau hate sphutamahabhaya |
chayangulahrte syatam mahabha bahukotike || 5 ||

yamyottara bhuja syacchayayah purvapascimakotih |
samamandalage bhanau naiva bhuja kotika na madhyahne || 6 ||

The bhuja and koti of mahacchaya can be obtained by multiplying the bhuja and
koti of chayangula by sphutamahacchaya and dividing by the chayangula.
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[The direction of] bhuja is along north-south line [whereas| that of koti is along
east-west line. When the Sun is on the prime vertical, then there will not be bhuja
[for chayal, and there is no koti [for chaya formed from] the noon [Sun].

Q (A-90) /o o

— porizon

(@)
Fig. 8.5 Obtaining the bhuja and koti of mahacchaya.

In Indian astronomical texts, the azimuthal angle (A’) is measured with
respect to the samamandala or the prime vertical (great circle passing through
E, W and Z) A’ = A ~ 90°, where A is the azimuth measured with respect
to the meridian. In Figure 8.5, OX = 12 is the Sanku. The Sun is at S,
corresponding to a zenith distance z. A’ is the azimuthal angle of the Sun, as
measured from the prime vertical. OY is the chaya (shadow), and XY = K
is the karpa. We have OX = K cos z and OY = K sin z, where z is the zenith
distance. Y@ is drawn perpendicular to the EW line from the tip of the

shadow Y. Then
chayabhuja = Y Q = OY sin A’
= Ksinzsin A,
and chayakoti = OQ = OY cos A’
= Ksinzcos A'.

Then

mahacchayabhuja = Rsin zsin A’
. Ksin zsin A’
= Rsinzg——

Ksin z

= mahacchaya x —
chaya

and

chayabhuja

(8.11)

(8.12)

, (8.13)
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mahacchayakoti = Rsin z cos A’
. Ksinzcos A’
= Rsinz—————

Ksinz

chdydko.ti. (8.14)

= mahacchaya x —
chaya

When the Sun is on the prime vertical, the azimuthal angle A’ = 0, and
hence the chayabhuja and the mahacchayabhuja also vanish. Similarly, at noon,
the Sun will be on the meridian, and the zenith distance z = 0. Then, both
the chayakoti and mahacchaya-koti are also zero.

¢4 SR ATE AT TSI

8.5 Expression for the latitude in terms of the
declination and mid-day shadow

[EERIEGIEERRINEEICH wlwgﬂ?ﬁrwad%% |
AT HTIshAETIET HarseTardr fafezmeg e 11 |

trijyahatapakramato’ksajiva syacchankubhakta samavrttagerke |
madhyahnabhapakramacapayorva bhedo’ksacapo vidisostu yogah || 7 ||

The Rsine of latitude (aksajiva) [of a place] is the product of Rsine of declination
(apakramagjya) and the trijya divided by Sarnku when the Sun is on the prime
vertical (samasarku). Or, the arc of the latitude is the difference between the arcs
of mid-day shadow and the declination. The two arcs are to be added if they are
in opposite directions.

In Figure 8.6, EZW is the samamandala or the prime vertical. Let zy be
the zenith distance of the Sun S, when it is on the prime vertical. Then the
sama$anku is R cos zg. If the declination of the Sun is 4, then the apakramajya
is Rsind. Here it is stated that

apakramajya X trijya  Rsind x R

Rsi = = . 8.15
sin¢ samasanku R cos zg ( )

In Figure 8.6, SP = 90 — § and ZP = 90 — ¢. In the spherical triangle
SZ P, the spherical angle at Z is 90°. Applying the cosine formula to the side
SP, we have

cos(90 — 0) = cos zp. cos(90 — @),

sin &

(8.16)

or sing =
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prime vertical
(samamandala)

7

Fig. 8.6 Latitude in terms of the declination and zenith distance.

which is the same as (8.15).

celestial equator
S,

Fig. 8.7 The zenith distance of the Sun during meridian transit.

In Figure 8.7, OSy represents the equator and Z0Sy = ¢. When the Sun
is at Sy, its southeirly declination, d, = S90Sy, and the zenith distance at
mid-day is zo = Z0S5. Then

QS:ZQ—(SS.

Here, the zenith distance ZSs = 29 and the declination S¢Sy = 5 are in the
same direction, and the arc of the latitude is the difference between the arcs
of the zenith distance and the declination.
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When the Sun is at S7, its northerly direction is z; = 708,. Here, z; and
the northerly declination §,, are in opposite directions. In this case,

¢:Zl+(5n

¢.§ TTSTIIT_E=AT: SOT

8.6 Expression for the Rsine of sum/difference of two
arcs

AR g A RIS HAsoTA: ISt gaa: |
RIERIHIRICIEIRE U Sl RIRIEEEs e A

anyonyakotihatayorabhimatagunayoh trijivaya hyrtayoh |
yogaviyogau syatamabhimatagunacapayogavivaragunau || 8 ||

Multiply each guna (Rsine of an arc) by the other koti (Rcosine of the other arc)
and divide them by the trijya. Their sum or difference becomes the guna (Rsine)
of the sum or difference of the arcs.

This verse essentially gives the rule for the Rsine of the sum or difference
of two arcs (yogavivaraguna). That is, sin(A + B) formula. If « and g8 be the
two arcs corresponding to the two angles € and ¢, then the rule given may be
expressed as

Jya « kotijya B £ kotijya o jya B
K

Jya (o B) = P
TijYya
. 4 .
Rein (04 ¢) — Rsin 6 Rcos (bRRcos 0 Rsin (b. (8.17)
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8.7 Another expression for the latitude and co-latitude

TohIfeaRT TFOTEITHET UaTed -
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bhakotika dyugunavargabhida padadhya-
cchayabhujapahrtasarikvapamaikyavargal |
hare dhanarnamanayormahatalpato’ksah
trijya hatad bhavati lambaguno’sya kotih || 9 ||
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[Obtain] the square root of the difference between the squares of the bhakoti and day
radius (dyujya) from which the chayabhuja is subtracted. By the resulting quantity
divide the square of the sum of the gnomon ($arku) and the Rsine of declination
(apamagya), and the result obtained is added to and subtracted from [the initial
result]. Among these, the one which is smaller in magnitude is multiplied by the
radius (¢rijya) and divided by the one which is larger in magnitude, in order to
obtain the Rsine of latitude (aksajya). The associated Rcosine is the lambajya.

To start with, we list a few technical terms employed here.

Sanku = Rcos z,

aksajya = Rsin ¢,

lambajya = R cos ¢,

dyuguna = dyujya = R cosd,
bhakotika = chayakoti = Rsin z cos A',
bhadohchayabhuja = Rsin zsin A’

apamajya = Rsin 6.

Now, Let 2 = v/ R2cos?§ — R?sin? z cos2 A’ — Rsin zsin A’. The expression
for the Rsine of the latitude (aksajya) stated in the verse is

(Rcos z + Rsind)? .
ksajya = Rsing = R L : 8.18
aksajya sin ¢ X (Roos = + Rsin )2 ) (8.18)
x
7 diurnal circle

90 . . celestial
‘ equator

‘(\ofﬂ‘oo

W
Fig. 8.8 Another method to obtain the latitude.
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The rationale behind the above expression can be understood with the help
of Figure 8.8. Here, in the spherical triangle PZS, PZ = 90 — ¢, ZS = z,
PS =90—6, PZS =90+ A’ and ZPS = H, the hour angle. Applying the
sine formula,
sin(90 + A')  sinH

sin(90 —§)  sinz

Hence sin z cos A’ = cos § sin H. From this it follows that

T = \/R2 cos2d — R2sin® zcos2 A’ — Rsinzsin A’

= R(cosd cos H — sin zsin A”). (8.19)

Now applying the cosine formula to the sides ZS = z, and PS = 90 — §, we
have

cos z = sin ¢ sin § + cos ¢ cos d cos H,

and sind = sin ¢ cos z — cos ¢ sin zsin A'. (8.20)
Adding the two expressions, and rearranging the terms, we obtain
(cos z + sin §)(1 — sin ¢) = cos ¢(cos § cos H — sin z sin A').

Multiplying by R, and squaring, we get

2
(Rcosz + Rsind)? = (130:1;;)21:2
_ 1+sin ¢a?2
 1—sing
1+sing (Rcosz+ Rsind)?
Theref = . 8.21
erefore, I —smo o (8.21)
From this, it is easy to see that
o= (Rcosz + Rsind)? — x?
Se = (Rcosz + Rsind)? + 22’
(Rcos z + Rsin §)? -
Rsing = R x L 8.22
o sing (Rcos z + Rsin §)? ’ (8:22)
+x
x

which is the same as (8.18).
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8.8 Obtaining the svadesaharaka

ATATIETAT GeT: ThedT HRSiaAT |
B S: UIthl AXAGH: I 3 1l 90 I

vyasardhavargato labdhah sphutaya lambajivaya |
svadesaharakah prokto vyastalambah sa ucyate || 10 ||

The result [obtained by] dividing the square of the vyasardha (radius) by the cor-
rected lambajya is known as svadesaharaka. This is [also] referred to as the vyasta-
lamba.

The svadesaharaka defined in the above verse may be expressed as
2

Rcosg’

svadeSaharaka = (8.23)

Svadesaharaka is used to calculate the time difference (desantarakala) be-
tween two places on the same latitude circle. Now a distance d between two
places on a latitudinal circle corresponding to a latitude ¢, corresponds to a
distance ﬁ on the equator.

The circumference of the earth is specified as 3300 yojanas. A distance
of 3300 yojanas on the equator corresponds to a difference of one day or
60 ghatikas. Hence the time difference corresponding to a distance d on the

latitudinal circle, or ﬁ on the equator would be

d
e —
3300cos g < 00
_ 4 60/ R
© 3300 R \Rcoso

> ghatikas. (8.24)

¢.R TR STTRFITT

8.9 Obtaining the krantijya of Sun and the dyujya

o o o
OIS RNMAHRISITA: GRTIHA g =S|

Frsar gar swifeergoTr s hife: FHifden @g femase 11 99 |l

gunascaturvimsatibhagajatah parapamastena hatestajia |
trijya hrta krantiguno’sya kotih dyumaurvika syad dinanayakasya || 11 ||
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The Rsine of 24° is the Rsine of maximum declination (paramapamajya). [This]
multiplied by the desired Rsine [of the longitude] and divided by the t¢rijya would
be the krantijya. The associated Rcosine is the dyujya of the Sun.

Let § and XA be the declination and the longitude of the Sun respectively,
then the relation stated in the text may be written as
Rsin(24°)Rsin A

R 9,

Rsind = (8.25)

where Rsin(24°) is stated to be the Rsine of the maximum declination
(paramapamajya) in the text.

Fig. 8.9 Obtaining the krantijya of Sun in terms of the longitude.

The rationale for the above expression can be understood with the help
of Figure 8.9. I'BBy and I'SS; are the quadrants of the equator and the
ecliptic intersecting at the vernal equinox, I'. Consider the situation when the
Sun is at S on the ecliptic, when its longitude is A = I'OS. Draw the arc
SB = § perpendicular to the equator, where § is the declination. Draw ST
perpendicular to OB, and SO’ = Rsin A perpendicular to OI'. Draw SyTj
perpendicular to OBj. Now S40Ty = SO'T = €, the obliquity of the ecliptic.
Then, SoTy = Rsine and ST = Rsind.

Now the triangles SO'T and SyOT, are similar. Therefore,

ST SO’
SoTy  SpO’
Rsind  Rsin\
= . .2
o Rsine R (8.26)
Hence, ) .
Rsing — Rsine.R smA. (8.27)

R

It is straightforward to see from the above relation that the declination
has the maximum value when A = 90°. That is, d,,4; = €. This is known as
paramapama. In all the Indian astronomical works the obliquity e is taken to
be 24°. Hence (8.27) reduces to
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Rsin(24°)Rsin A

Rsiné =
sin 7

The corresponding kotijya, Rcosd is known as dyujya. This is the radius of
the diurnal circle, when the declination of the Sun is §, and it figures in many
relations related to diurnal problems.

¢.90 VTG ALTOMTT THRATIT T

8.10 Different methods of obtaining pranakalantaras

FISaTEdaTgsidl gugHter [avsiqarad |

AT ST AT fa2N T FToTha R @rd 1l 92 |
PN FIEST HEATTHAT faigaTay |

ATHHAT SISO =TT AThS TaT WIS T 11 93 I
3t HifeHIATG I TSHIeAT Tl RTISHASTOIE |

YATEd WO ad PHISTATEShHdT 90T 1| 9% |l

antyadyujivahatabahujivam istadyumaurvya vibhajedavaptam |
capikrtam bahugunasya capad visodhitam pranakalantaram syat || 12 ||
kotigunam vyasadalena samhatyestadyumaurvya vibhajedavaptam |
capikrtat kotigunasya cape tyakte’thava pranakalantaram syat || 13 ||
doh kotimaurvyorvadhatastrimaurvya

labdham parapakramabananighnam |

dyujyahrtam pranakalantaram tat

yugmaujapadakramato dhanarpam || 14 ||

Multiply the last day-radius (antyadyujya) by the Rsine of the longitude (bahujya)
and divide by the desired day-radius (dyujya). The arc of this, when subtracted
from the longitude (the arc of the desired bahujya), would be the pranakalantara.

Or else, the Rcosine of the longitude of the Sun is multiplied by the radius (trijya)
and divided by the desired day-radius (dyujya). From the arc of [this], when the
arc of the Rcosine of the longitude of the Sun is subtracted, [the result obtained]
would be the pranakalantara.

The product of the Rsine and Rcosine of the longitude is divided by the radius.
The result is multiplied by the versine of the maximum declination (paramapakram-
abana) and divided by desired day-radius (dyujya). [The associated arc] gives the
pranakalantara. This is positive for even quadrants and negative for odd quadrants.

We explain the rationale behind the three expressions for pranakalantara
given in the verses above, with the help of Figure 8.10. Here the point of in-
tersection of the celestial equator and the ecliptic is the sayana mesadi. The
Sun is situated on the ecliptic at S. The angle between the ecliptic and the
celestial equator, SI'D = €. I'S = X is the longitude of the Sun, measured
along the ecliptic. The circle PSD is the meridian passing through S and is
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perpendicular to the celestial equator. Hence, the spherical angle I’ DS =90°
and, SD = §, is the declination of the Sun. Also, I'D = «, is the Right Ascen-
sion (R.A.) of the Sun, which is called the natakala. The term pranakalantara
refers to the difference between the R. A. and the longitude of the Sun. That
is,

pranakalantara = a — A,

where « and A are arcs expressed in minutes. This corresponds to part of the
equation of time which is due to the obliquity of the ecliptic. It can be seen
that the pranakalantara is positive in the even quadrants and negative in the
odd quadrants.

7 diurnal path when
- P the Sun is in the
' northern hemisphere

Fig. 8.10 Determination of pranakalantara.

Verses 12, 13 and 14, essentially present the following three formulae to
obtain the pranakalantara:

oo X =\ sin- L (cosesinA)

cos 0

cos d
sin A cos A(1 — cose)
cos § '

o~ X =sin"!(cos\) —sin™? (COS)\> ,

(8.28)

aw)\zsin1<

In what follows, we present a derivation of these relations. For this, consider
the spherical triangle I'PS. In this, I'PS = a and PS = 90—4¢. Also, PI'S =
90° — SI'D = 90 — ¢. Applying the sine formula to this triangle,
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sina sin(90 —¢) cosesin A

= i = —. 8.29
sin A\ sin(90 —4)’ o . cosd (8:29)

Hence -
a = sin”! (“’i;:?) . (8.30)

Thus, we obtain

in A

a—\=sin"! <C(’Sesm) — )\ (8.31)
cos

which is the first of the equations (8.28) for ao~ A.
Now, consider the spherical triangle I'SD. Here, I'D.S = 90°, and SD = 4.
Applying the cosine formula, we obtain

COS A = cos . cos 9,
cos A

= 8.32
or cosa = (8.32)
Therefore,
. _q [cosA .1 o o
sin =sin” (cosa) = 90° — a or 90° + «,
cos d
and sin~!(cos \) = 90° — X\ or 90° + \.
Hence
a~ A =90° 4+ a— (90° £ )
A
= sin! <Z?)Z(5> —sin™!(cos \), (8.33)
which is the second of the relations (8.28) for oo ~ .
Now consider the expression,
sin Acos A\(1 — cose) _ sin )\cos)\ cos /\sm)\cose
cosd cos cosd
= sin Acosa — cos Asin o
= sin(A — a). (8.34)
Hence .
oo ) — sin-1 sin A cos A(1 — cose) ’ (8.35)

cos

which is the third of the relations (8.28) for v ~ A given in the set of verses
above.
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8.11 The expression for the ascensional difference or
carajya

TS BATIHT] TSR h PIOT: |

AarESIaATEdTE goiaar ga == 11 94 |l

palajyaya hatapamat svalambakena bhugunah |
tatastrijvayahatad dyujivaya hrtam caram || 15 ||

The Rsine of the latitude (palajya), multiplied by Rsine of the declination (apama-
jya) and divided by Rcosine of the latitude (lambaka) of the place, would be the
bhuguna (generally referred to as earth-sine or ksitijya). That multiplied by the
radius and divided by the day-radius (dyujiva) would be the Rsine of ascessional
difference (carajya).

We first explain the concepts of the earthsine (ksitijya) and Rsine asces-
sional difference (carajya), before presenting the derivation of the expressions

for them given in the above verse.

Fig. 8.11 Ascessional difference when the Sun is on the equator.

When the Sun is on the equator (declination, ¢ = 0), the duration of the day
(sunrise to sunset) is 12 hours irrespective of the latitude (¢) of the observer.
Hence, the Sun takes six hours from meridian-transit to the setting on the
horizon, and the hour angle at sunset would be 90°. When the declination
of the Sun is northerly (§ > 0), the Sun takes more than six hours from the
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meridian transit to the setting on the horizon, and correspondingly, the hour
angle at sunset can be written as 90° + Ac«. This ascessional difference A« is
called cara and Rsin A« is called carajya. Similarly the hour angle at sunset is
less than 90° when the declination is southerly (6 < 0) and can be expressed
as 90° — Aq, as depicted in Figure 8.13.

In Figure 8.12, X represents the setting point of the Sun on the horizon, and
XV = ¢ is Sun’s declination. The great circle VWT is the celestial equator
and the small circle XYT” which is parallel to it is the diurnal circle of the
Sun on that day, whose radius is dyujya or Rcosd. The great circle PYW is
known as the unmandala (6 o’ clock circle). WPZ =90°, and H, = XPZ is
the hour angle at sunset. X PY = Aa is the ascessional difference or cara.

Fig. 8.12 Ascessional difference when the declination of the Sun is northerly.
Now in the spherical triangle XPZ, XZ = 90°, PX = 90° — § and
PZ = 90° — ¢. Applying the cosine formula, we have

c0s90° = cos(90 — J) cos(90 — ¢) + sin(90 — J) sin(90 — ¢) cos Hy,

or cos Hy = —tan ¢ tand.
As H; = (90 + Aa), we obtain
sin Ao = tan ¢ tan . (8.36)

Now the earthsine (ksitijya) is the sine of the ascessional difference on the
diurnal circle and is given by
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Rsin ¢Rsin §
Rcos ¢
_ palajya X apamajya

ksitijya = Rsin Aacosd =

lambaka ’ (8.37)

as stated in the verse. Hence, carajya is given by

carajya = Rsin Ao = Rtan ¢ tand

_ Rsin¢Rsiné R

N Rcos ¢ . Rcosd
trijya

= ksitijya X (8.38)

dyujya’

as stated in the verse.

Fig. 8.13 Ascensional difference when the declination of the Sun is southerly.

¢.9R TRSAIT THRTAT

8.12 Alternate expressions for the carajya

SRR TE ST Mg SR ShlcrsiaT |
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s aTeTaTATC g IR TEATE A ErohT~el 0T THTeAT |
EYEaTH TRHITRT ST, derar=TdT {8 == = 1199 ||
BreamraraeEERdTeEEreTd |

ThICaTH TXSaT ¥ITE AT AT Shiteer=rdd: 1l 9¢ |l

caramadyugunahatestadorjya vihrtestadyugunena kalajiva |
caramena carena tadita sa tribhajivapahrtathava carajya || 16 ||

trijyaksaghatadavalambakaptenahatya dohkrantigunam dyumaurvya |
haredavaptam caramaurvika syat tadiyacapa hi carasavah syuh || 17 ||
trijyaksaghatalambamsenahatadistadorgunat |

tatkotyaptam carajya syad grahya sa kranticapatah || 18 ||

The day-radius associated with the maximum declination (caramadyujya), multi-
plied by the desired Rsine of longitude (dorjya) and divided by the desired day-
radius (dyujya), would be the Rsine of Right Ascension (kalajiva). That multiplied
by the last carajya and divided by the radius would be the carajya alternatively.
The product of the radius and Rsine of the latitude (aksajya) divided by the Rcosine
of the latitude (lambaka), when multiplied by Rsine of declination (dohkrantiguna)
and divided by the Rcosine of declination (dyumaurvi or dyujya), would give the
carajya. The arc of this would give the ascensional difference (carasavah).

The product of the radius and Rsine of latitude (aksa) is divided by the Rcosine
(lambagya). The desired Rsine [of declination] multiplied by this and divided by
the corresponding Rcosine would be the carajya. This has to be obtained from the
declination (kranticapa).

The right ascension « is measured along the celestial equator, and is asso-
ciated with ‘time’ or ‘kala’. Hence Rsin « is called kalajya or kalajiva. In the
first half of the verse 16 it is stated that

Rcose.Rsin A
Rsina = ————. 8.39
ma Rcosd ( )
This expression is the same as (8.29) which was derived earlier. In the latter
half of the verse 16 it is stated that

carajya = kalajya x w. (8.40)
trijya
We will now verify this relation. Recalling the expression (8.38) for carajya,
it may be noted that, once ¢ is fixed the variation is only due to §, and it
attains maximum (carama) value when 6 = e. Thus,

Rsin ¢Rsine y R
Rcos¢ Rcose’

caramacara =

(8.41)

Hence,



256 BIATIhITH Gnomonic shadow

L

_ . _ caramacara  RcoseRsin A\ Rsin¢Rsine R 1
kalajya x — = il
trijya Rcosd Rcos¢p Rcose R

_ RsingRsing

~ Rcos¢pRcosé

= carajya. (8.42)

In verse 17 it is stated that

aksajya  dohkrantiguna

carajya = trijya x (8.43)

lambaka dyumaurvi

Using the standard expressions for the various quantities in the above equa-
tion, we have

Rsing  Rsind

X X
Rcos¢ Rcosé
= Rtan ¢ tand. (8.44)

Rsin Aa = R

In the last quarter of verse 17, it is stated that the arc (capa) correspond-
ing to the above carajya, gives the ascensional difference (carasava). Verse
18 presents another version of the same result given by (8.43). Towards the
end of the verse it is mentioned that the carajya is to be obtained from the
declination. Perhaps this has been mentioned explicitly to indicate that, for a
given observer, since the latitude is fixed, A« is essentially a function of the
declination §.

¢.93 TSI

8.13 Obtaining the declination of the Moon
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antyadyujyahatadantyaksepadantyapamoddhrte |
antyaksepasarabhyastam kotijyam trijyaya hrtam || 19 ||
karkinakraditah svarpam kuryadantyaphalaptaye |
taddhate bahukotijye trijyapte bahukotije || 20 ||
vyasardhe kotijam svarpam mrgakarkaditah kramat |
tadbahuphalavargaikyamulam karno’tra rahujah || 21 ||
dohphalam trijyayabhyastam rahukarnena samharet |
labdhacapam bhavedindoh viksepacalanahvayam || 22 ||
paramapakramabhyastam rahukarnam trijivaya |
vibhajellabdhamindoh syat paramakrantimaurvika || 23 ||

The Rsine of the maximum latitude of Moon (antyaviksepa) is multiplied by the
last day-radius (antyadyujya) and divided by the Rsine of maximum declination
(antyapama). The result obtained by dividing the product of the Rversine of max-
imum latitude (antyaksepasara) and the kotijya [of the Rahu] by the radius, has
to be added to or subtracted from that, depending on whether the rahubhuja is
karkyadi or makaradi respectively, in order to obtain the antyaphala. That [antya-
phala] multiplied by the bhujajya and kotijya [of the Rahu] separately and divided
by the radius, would be the bahuphala and ko}fiphala4 respectively. The kotiphala is
added to, or subtracted from the radius, depending upon whether [the rahubhuja
is] mrgadi or karkyadi respectively. The square root of the sum of the squares of
that and bahuphala is rahukarna. The arc of the result obtained by multiplying bhu-
japhala by the radius and dividing by the rahukarna, is known as viksepacalana of
the Moon. The product of rahukarna and Rsine of maximum declination of the Sun
(paramapakramajya), divided by the radius would be the Rsine of the maximum
declination (paramakrantijya) of the Moon.

The above set of verses essentially presents the procedure for finding the
declination (kranti) of the Moon. Today it is known that the inclination of
Moon’s orbit with the ecliptic varies over a period of time. However, the angle
of inclination, 7 is taken to be a constant in Indian astronomy, and its value
is taken as 270" or 4.5°.

Fig. 8.14 Determination of the viksepacalanajya and paramakrantijya.

4 In the verse, the word “bahukotije” should be understood as bahuja and kotija, or derived
from bahu and koti, namely, bahuphala and kotiphala respectively.
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In Figure 8.14, I' is the vernal equinox, or sayana-mesadi. The Moon’s orbit
is inclined to the ecliptic and intersects it at N, at an angle i. N is the Rahu,
or the ascending node of the Moon. Consider the instant when the Moon is
at M in its orbit. The arc M P is drawn perpendicular to the ecliptic from

M. MNP = [ is the latitude of the Moon and M P= Rf3. The viksepa is the
perpendicular distance of the Moon from the plane of ecliptic, and is given by

viksepa = Rsin .

It can be seen that the maximum value of the viksepa or the paramaviksepa is
given by
paramaviksepa = Rsini.

Now I'N = Ay is the longitude of the node in minutes and I'P = )\, is
the longitude of the Moon (in minutes). M X is a part of the meridian circle
passing through the Moon which intersects the equator at X. Then, M X = d,,
is the declination of the Moon in minutes. Then, it can be shown that

sin d,, = cosesin 8 + sin € cos Fsin Ay, . (8.45)

In the Karanapaddhati, as in the Tantrasarigraha of Nilakantha, an alternate
method to find the declination is given. For this, an expression for the Rsine of
maximum declination of the Moon, is given first. This maximum declination
of the Moon, for a given position of the node, is indeed the instantaneous
inclination I of the Moon’s orbit with the equator.

First, a quantity called antyaphala () is defined through the relation

_ paramaviksepa X antyadyujya " viksepasara x rahukotijya

antyapakramajya trijya
Rsini x Rcose ;| R(1 —cosi) |Rcos Ay]|
= + 8.46
Rsine R ’ (8.46)

where the ‘+’ sign is to be taken when the longitude of the node (rahubhuja)
is karkyadi or 90° < Ay < 270°, and ‘—’ when the rahubhuja is mrgadi or
270° < Ay < 90°. Both these cases are taken into account by the equation

. RsiniRcose — R(1 —cos i)Rcos An Sine' (8.47)
Rsine

The bahuphala B, and the kotiphala, K, are now defined to be

in A\
B, = w = z|sin Ay, (8.484a)
A
and K, = w = x| cos Ay, (8.48b)

respectively, and the rahukarna is given by
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Kp=/(R£K,)?+ B2 (8.49)

\/ (R + x|cos Ay|)2 + 22sin® Ay

2
= \/(1 + —cosAy)? + o sin? Ay, (8.50)

as cos Ay = £|cos Ay|, depending upon whether Ay is mrgadi or karkyadi
respectively.

Then it is stated that the paramakrantijya of the Moon, RsinI (where I
is the instantaneous inclination of the Moon’s orbit as shown in the Figure
(8.14)) is

. rahukarna X paramapakramajya
Rsinl =

trijya
_ Kg x Rsine
N R

Now from equations (8.47) and (8.50)

= Kpgsine. (8.51)

K, . a?
ﬁ:1+ﬁ+2RCOS)\N

2

I .y o ‘ . .
—5—[sin” € + (sin i cos € + cosi cos Ay sin € — cos Ay sine)
sin” e

+2(sini cos e + cosicos Ay sin e — cos Ay sin €) cos Ay sin €.
By simplifying this, we get

K2 1 ) ) L 9. .
—}; = —— [(sinecosi + cosesinicos Ay)* + sin” isin® Ay .
R sin” €

Using the above in (8.51) we have,

RsinI = \/(Rsinecosi + Rcosesinicos \y)2 + (Rsinisin Ay)2. (8.52)

Equation (8.52) is the same as the expression for the paramakrantijya given
in Tantrasanigraha.® In Yuktibhasa, this expression for the maximum declina-
tion is derived.® We now provide a derivation based on modern spherical
trigonometry. In Figure 8.14, let NQ = y. Then, €, Ay = I'N, i = I'NQ,
and y = NQ are four adjacent parts in the spherical triangle I'N@. Using the
“four-parts” formula, we find

cos Ay cosi = sin Ay cot y — sini cot €. (8.53)

5 {TS 2011}, p. 363.
5 {GYB 2008}, pp. 815-817.
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Thus,
sin ecos Ay cosi + sint cos e
coty = N (8.54)
sin esin Ay
After some straightforward manipulations, we get
sine V/(sinecosi + cosesini cos Ay )2 + (sind sin Ay )2 (8.55)

siny sin An
Now applying the sine formula in the spherical triangle I"NQ, we have

s'in € _ §in I . (8.56)
siny  sin Ay

Using (8.55) in (8.56) we get,

sin I = +/(sin e cosi + cos esinicos Ay )2 + (sinisin Ay)2,

which is the same as (8.52).
We now take up the expression for Rsin é,,, where d,, is the declination of

the Moon. From the spherical triangle M QX in Figure 8.14, the declination

MX is given by

Rsin M@Q.Rsin I

Rsind,, = 8.57
sin R ( )
Now
M@ =MN + NQ
=MN+IT'N+NQ-IN
~NP+IN+NQ-TITN, (8.58)

where we have assumed that M N ~ NP as the inclination ¢ is small. Now,
NP +I'N = )\, is the longitude of the Moon. Hence,

MQ =M\, —(I'N - NQ). (8.59)
Here, I'N — NQ is called the *viksepacalana’ and shall be denoted by A.” Then
MQ =~ N\, — A.

Now the expression for the Moon’s declination given in Tantrasarngraha is®

" In Tantrasangraha, the viksepacalana, A = I'N — NQ is approximated by I'Q. This is
reasonable as ¢ is small ({TS 2011}, pp. 368-369).

8 Though Karanapaddhati does not give this formula for the declination of Moon, it gives
all the necessary inputs for calculating it, such as the viksepacalana A and the maximum
declination I.
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Rsin MQ.Rsinl _ Rsin(\,, — A)Rsin[

R ” R '
In the above verses of Karanapaddhati, the expression for the viksepacalana is
given by the relation

Rsind,, = (8.60)

Rsin A — bahuphala X trijya

rahukarna
z|sin An| X R
Kpr
Tsin Ay

= —_— i . . 1
Renl Rsine (8.61)

In arriving at the above equation, we have used (8.48b) and (8.51). Substitut-
ing for « from (8.47) in (8.61), the RHS reduces to

(RsiniRcose — R(1 — cosi)Rcos Ay sine) sin Ay
Rsinl )

(8.62)

We will now show that the above expression is the same as Rsin(I'N —
NQ) = Rsin A. Now N@ = y, and we had already noted that

siny = sinesin Ay ) (8.63)

sin 1

Also, from the “four-parts formula” involving ¢, Ay = PN, i = PN Q@ and
y = N@Q, we have

cos Ay cosi = sin Ay cot y — sini cote,
Se .

+ cos Ay cosi.
€

. cosy . .co
or sin \y—= = sin¢
siny

Multiplying this equation with the equation (8.63) for siny, we find

cosy = 2112; (smicf)SE + cos Ay cos z) . (8.64)

S1n €

Hence,

Rsin A =sin(Ay — NQ)
=sin Ay cosy — cos Ay siny
sine [ . . .COSE
= — sin Ay (sini—
sin [ sin e
[sinicose — (1 — cosi) cos A sine] sin Ay

4+ cos Ay cosi) — COS AN sin)\N]

(8.65)

sin 1

Using the above equations, Moon’s latitude can be calculated from the relation
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Rsin(A,, — A)Rsin I
7 .
This is an exact formula which does not involve any approximation (except

for the relation M N ~ N P), unlike the expression in Tantrasarigraha where
A=TN — NQ is approximated by I'Q.

Rsin d,, = (8.66)

¢.9% AT -GS AH I

8.14 Obtaining the manyadijyas and the inadijyas

ST TE AT TR AT ST R hET: |
ATATSSAT: FATH=EE SATHRAT gIRSHET g7 1| ¢ |

trijyavargenahatadaksakarnat dyujyabhaktastrijyakabhaktahinah |
manyadijyah sambhrtaksetradese devaptasta harajwa inadyah || 24 ||

The hypotenuse of the equinoctial shadow (aksakarna) multiplied by the square of
the radius [is to be kept at two places]. [One is| divided by the day-radius (dyujya)
and [the other| by the radius. Subtracting the latter result from the former would
give the manyadijyas. At a place where the Rsine of the latitude (aksajya) is 647
(sambhrtam) [minutes], [these] divided by 48 would give the harajivas given by the
vakyas ina etc.

For the standard Sanku of 12 arigulas, the hypotenuse of the equinoctial
shadow is given by

12 12

aksakarna = = .
i : lambajya  cos ¢

(8.67)

The manyadijyas and the inadijyas given in the above verse may be ex-
pressed as

2
manyadijyas = aksakarna X ( i R)

Rcosé
12 R?

~ cos¢ X (Rcos6 B R) ’ (8.68)

e manyadijyas

and nadijyas = —————

48
1 R?

_4><cos¢x (Rcosé_R)' (8.69)

The above quantities are of relevance in the computation of solar eclipses.
The verse also specifies that these quantities are to be calculated at a place
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where the Rsine of the latitude (aksajya) is given by 647'. This corresponds
to a latitude of 10°50'50".°

The inadijyas, given in the edition of Karanapaddhati along with Malay-
alam Commentaries'? for the above value (647’) of the aksajya, are listed in
Table 8.1. These vakyas can be put together in the verse form as given below.

T GAIITHAT: ST I T o |
RIEEE CIEIRER CERLE A
=T ¢ A qAT G-I T 7Te: |

inah punarganamanah sani paturbhiya dhiya |
gatraharo bali haly vibhurdhavasarmanatah ||
Satam dhrtam lasat tatha dhistha-padam prabho gadah |

In Table 8.1, we also give the computed values, for the same latitude,
of inadijyas by taking the declination values in (8.69) that correspond to
longitudes which are multiples of 225'.

¢.94 STETERE: TATIIRTE
8.15 Lambanaharake and its application

e IRTITT ST I AT TShiTehT &aTd |
TSI T St SRER: 11 R4 1l
Frsamar SERTH A hrardawT |

AT e SrETet wRTd 11 R8 |l

dhalirago bhuvo vrttam tena cakramsaka hatat |
dinayojanabhogat syat labdho lambanaharakah || 25 ||

trijyato lambaharaptam nadikadyantalambanam |
tadevagatibhagaghnam Sodhyam chayavidhau narat || 26 ||

The circumference of the earth is 3299 (dhaujiraga) [yojanas]. The product of 360
(cakramsaka) and the [common] daily motion of the planets in yojanas (dinay-
ojanabhoga) is divided by this, and what is obtained is the divisor for parallax
(lambanaharaka).

By dividing the trijya by [this] lambanaharaka, the maximum parallax (antyalam-
baka) in nadika etc., is obtained. The same (antyalambaka) multiplied by the daily
motion of the Moon in degrees, has to be subtracted from the gnomon ($ariku) in
the computation of the shadow (chaya).

9 According to P. K. Koru, this could be a place close to Shoranur (latitude 10°46'12")
({KP 1953}, p. 293). According to S. K. Nayar, the place could be Alattur ({KP 1956},
p. 272).

10 fKP 1956}, p. 272.
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longitude declination mnemonic tabulated comp. value
i A=1ix225 | § (in min.) in the value aksakarna X
2
commentary @
1 225 91.46 inah 0 0.3098
2 450 182.60 punar 1 1.2359
3 675 273.07 gana 3 2.7682
4 900 362.57 manah 5 4.8898
5 1125 450.75 sani 7 7.5767
6 1350 537.27 patur 11 10.7977
7 1575 621.82 bhiya 14 14.5139
8 1800 704.04 dhiya 19 18.6787
9 2025 783.60 gatra 23 23.2372
10 2250 860.15 haro 28 28.1268
11 2475 933.36 baly 33 33.2762
12 2700 1002.88 haly 38 38.6068
13 2925 1068.38 vibhur 44 44.0323
14 3150 1129.53 dhava 49 49.4602
15 3375 1186.00 Sarma 55 54.7931
16 3600 1237.48 natah 60 59.9301
17 3825 1283.68 Satam 65 64.7694
18 4050 1324.34 dhrtam 69 69.2105
19 4275 1359.19 lasat 73 73.1575
20 4500 1388.02 tatha 76 76.5220
21 4725 1410.65 dhistha 79 79.2262
22 4950 1426.92 padam 81 81.2061
23 5175 1436.72 prabho 82 82.4134
24 5400 1440.0 gadah 83 82.8196

Table 8.1 The inadijyas given in the commentary and the computed values.

These verses tell us how to obtain the parallax, which is used to find the
corrections to the gnomon (dariku), the shadow (chaya) as well as in the com-
putation of eclipses. Let . be the radius of the earth and g the dinayojanagati
(which is the same for all the planets) whose value is 7906 yojanas/day (see
(1.93)). The circumference of the earth C, = 277, is given as 3299 yojanas.
The expression for lambanaharaka given in the verse is

_360xg 360 x 7906
- C. 3299

In (8.70)
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The antyalambana in nadikas, [ is stated to be

R RxC. 3438 x 3299
Tl 360xg 360 x 7906

= 3.99 nadikas. (8.71)

Now, the latter half of verse 26 states that this value multiplied by the
motion of the Moon is to be subtracted from the gnomon in the shadow
measurement process. This is to take into account the effect of parallax. Thus
the expression for the parallax in minutes is given to be

P (minutes) = [ x gati-bhaga of the Moon
790.6

=[x —. 8.72

The word gati-bhaga used in the verse, as well as in the above equation, refers

to the daily motion (gati) expressed in degrees (bhagas).!* Using (8.71) in the

above equation we have,

. RxC. 790.6
P (minutes) = 360 x g X0
Te
=10’ (8.73)

as Rx C. =R x 27r, = 360 x 60 x r. and g = 7906.

We now show that this is the value of the horizontal parallax or the maxi-
mum value of the parallax of the Moon, whose mean distance from the earth
(in yojanas) is given by O,, = 10R. In Figure 8.15, the zenith distances of the
Moon at the location of the observer A, and at center of the earth, O are 2’
and z respectively. The angle AMO = 2/ — 2 = p, subtended by the radius
OA =r, at M is termed parallax.

In the triangle AMO,

sinp  sin(180 — 2')
re  Om

or sinp = Or—e sin 2’ (8.74)

When the Moon is on the horizon 2z’ = 90°, the corresponding parallax, P
is known as the horizontal parallax. Clearly,
Te

in P = . .
sin 5 (8.75)

m

Using (8.75) in (8.74), we get
' The compound gati-bhaga may be derived as: e ‘ﬂTﬁE ATEST = e Gatih

bhagesu nirdista = gatibhagah |
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Fig. 8.15 Horizontal parallax.

sinp = sin Psin 2’. (8.76)
Since 5fn ~ 6—10, both P and p are small angles, we can use the approxima-

. . Om . N
tions, sinp~ p and sin P ~ P = ot Therefore,

pa Psinz = Or—e sin 2’ (8.77)

m

Here, p and P are in radians. The trijya, R, is the number of minutes in a
radian, and the distance of Moon O,,, = 10R. Hence,

. Te Te
P ) = = e .
(minutes) - X R 10’ (8.78)

as implied in the verses (see (8.73)).

Let us now consider the corrections to the chaya and the sanku due to
parallax. The actual zenith distance z = 2’ — p. Hence the corrected Sarku
(that is, the Sariku at the centre of the earth) is given by

Rcosz = Rcos(z' — p)
~ Rcosz + Rsinz'.p

= Rcosz + Rsinz’.]M

R
Plin min. .
= Rcosz' + Rsinz2'. (mlen ).ngz (8.79)

Similarly, the corrected chaya is given by
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Rsinz = Rsin(z' — p)

. p(in min.
~ Rsinz — Rcosz’.g

R
P in.) Rsin 2z’
= Rsinz’ — Rcos 2'. (m];mn ) SJI;Z (8.80)

¢.9§ FEAAFIT]

8.16 Obtaining the lambanajyas

EarfhfomiaRiaRizar wErsr fomr
AT T FoRd A RAToT v |
[ERR IR E A A CR I PIRCED (M SRR K]
T PISTTH IR e G gt 1R |l
TSI A aTeTeRAR G o AfgdTd

i Sifesal eRvThoHarddd |

o iR . ;

B HUHTHT TEUTATSAT SO 1| ¢ I

suryendvorbhuktiliptavivaravirahita rasicakrasya lipta

bhuvyasardhena nighna nrpahatahimarugbhuktilipta vibhaktah |
trijyantyakrantikotyoryutidalagunitastrijyayahrtya labdham

lambaghnam trijyayaptam caramaphalamidam lambanottham vadanti || 27 ||

tyajet trijyavargaccaramaphalavargena sahitat
dvinighnim kotijyam caramaphalasamvardhitatanum |
tato mulam karnastribhagunahatam bahujagunam
haret karnpenapta grahanapathita lambanagunah || 28 ||

[The result obtained by] subtracting the difference between the daily motions
(gatis) of the Sun and the Moon in minutes from the 21600 (rasicakralipta) has to be
multiplied by the radius of the earth (bhuvyasardha) and divided by the product of
ten and the rate of motion of the Moon expressed in minutes (himarugbhuktilipta).
[The result] is then multiplied by half of the sum of the radius and the Rcosine
of maximum declination (antyakranti-koti) and divided by the radius. This result
when multiplied by Rcosine of latitude (lamba) and divided by the radius is called
as lambanottha-caramaphala.

Subtract the product of this caramaphala and Rcosine (kotijya) multiplied by two
from the sum of the squares of the caramaphala and the radius. Square root [of
this result] is the karpa. The Rsine (bahuguna) [of the zenith distance] multiplied
by the radius (¢ribha) and divided by this karna is the lambanaguna tabulated in
[the computation of] eclipse.

The effect of the parallax is to increase the zenith distance z, of a celestial
object. That is, z as seen by an observer on the surface of the earth, would be
greater than the zenith distance at the centre of the earth. So, effectively, if z
be the zenith distance of a celestial object, it will be enhanced by an amount,
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p = Psin z, along the vertical passing through it, due to the parallax. The
component of the parallax along the ecliptic, which represents the effective
change in the longitude due to the parallax, is called ‘lambana’

vertical passing
Z  through the Sun

(pole of the
ecliptic)

Fig. 8.16 Obtaining the parallax of a celestial body.

In Figure 8.16, M and M’ represent the actual and the apparent positions
of the Moon. That is, ZM and ZM' would be the zenith distances measured
by the observers at the centre of the earth and on the surface respectively.
Now, MM’ = p is the parallax, which is along the vertical passing through
M. The ecliptic and the secondary to the ecliptic K M A passing through M
are shown in the figure. Let £ be the angle between the vertical through M
and the secondary to the ecliptic. Then the lambana, A\, is given by

AN = M'A = MM'sin¢ = psiné. (8.81)

Hence, one needs to find the angle £ to determine the lambana. The proce-
dure for this, given in Tantrasargraha, is fairly lengthy and involved. However,
in Karanapaddhati, an approximate method to find the lambana is given, based
on simpler considerations, and a different approach.

To start with, instead of considering the lambana as such, the text con-
siders a related quantity called lambanottha-caramaphala. While, the lambana
is the displacement along the ecliptic due to parallax, the lambanotthaphala
is the westward displacement along the diurnal circle of the Moon in the
time interval corresponding to the ‘lambana’. Lambanottha-caramaphala is the
maximum value of this when z = 90°. The z-dependence comes in through
‘lambanajya’, which is considered in verse 28. In verse 27 the expression for
lambanottha-caramaphala (1.) is given as follows:
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_ [ragicakralipta — (indugati — suryagati)(in liptas)]

c =

nrpa X himarugbhukti

« bhivyasirdha x % [trijya + antyakrantikoti) " lamba

trijya trijya

21600 — (g — gs) 1[R+ Rcose] Rcosé
= . 2
0% g, X (1e) X I X (8.82)

where g, and g5 are the daily rates of motion of the Moon and the Sun in
minutes respectively, and ¢ is the latitude. The rationale behind this can be
understood with the help of Figure 8.17.

(a) (b)

Fig. 8.17 Obtaining the lambanottha-caramaphala.

Consider an equatorial observer (¢ = 0). Then, the celestial equator is a
vertical circle. In fact, it coincides with the prime vertical. For the moment,
if we ignore the inclination of the Moon’s orbit and also assume that it is
close to the vernal or autumnal equinox, then the diurnal motion of the Moon
would be more or less on the equator, which is the prime vertical. Then the
horizontal parallax, MM’ would be along the equator as shown in Figure
8.17 (a). Here,

Te

MM’ (minutes of arc) = 0

(8.83)
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as explained earlier. This is the change in the longitude AX due to parallax.
The time interval in days corresponding to this change in longitude is

Te

R 8.84
10 x g, ( )

where ¢y, is the daily motion of the Moon. Now the east-west motion of the
stars per civil day is (21600 + g4), where g, is the daily motion of the Sun
in minutes. The Moon moves eastwards with respect to the stars at the rate
of g per day (g, in minutes). Hence, the net westward motion of the Moon
per day is

21600 + g5 — gm = 21600 — (g — ¢gs) minutes/civil day.

In the time interval given by (8.84), the net westward displacement of the
Moon along the diurnal circle due to parallax, denoted by [, is

] = 21600 — (gm — gs)

- X % minutes. (8.85)

Assuming that the Moon moves along the ecliptic (taking ¢ = 0) which is
inclined to the equator at an angle €, we have two extreme situations:

1. the ecliptic and the equator intersect at M, the east point of the horizon
as indicated in Figure 8.17 (b), and,

2. the ecliptic and equator intersect at zenith and nadir as indicated in Figure
8.17 (c).

In the former case, the displacement M M’ due to the parallax and the ecliptic
make an angle €, and the lambana, along the ecliptic will be, M M; = cose x
MM’. In the latter case, the displacement MM’ is along the ecliptic itself,
since the ecliptic happens to be a vertical circle, and hence lambana = MM’.

In a general situation, the multiplication factor is between cose and 1. In
his Malayalam exposition of the Karanapaddhati, P. K. Koru'? suggests that,
the factor

R+ Rcose

oF (8.86)

1
5 (1+ cose) =
represents the average situation.

Now consider the situation for a place with latitude ¢, as depicted in Fig-
ure 8.17 (d). In this case, the deflection due to parallax MM" along the
vertical has a component along the equator given by M1 M’ = M M" cos ¢, as
the equator is inclined at an angle ¢ with the prime vertical. Now, we have to
multiply this by %(1 +cos€) as earlier, to take into account the obliquity of the
ecliptic. Thus, the net displacement along the diurnal circle due to parallax

12 fKP 1953}, p. 297.
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corresponding to a zenith distance of 90°, or the lambanottha-caramaphala, is
given by,

_1e _ (1+cose)

le e 5 cos ¢ (in min. of arc)
21600 — (gm —9s) re (R+ Rcose) Rcos¢
= — 8.87
m “10° 7 2R o (&8

which is the same as (8.82) given in the text. The expression (8.87) will be in
minutes westwards, along the diurnal circle.

Now, consider the lambana for an arbitrary zenith distance z. This is de-
picted in Figure 8.18. In this case,

Fig. 8.18 Obtaining the lambanajya.

AT
AM

losin z
VAT? + TM?

l.sin z

sinp ~ p (radians) =

B V12sin? 2 + (R — I cos )2
sin z

=1 .
VR?+ 12 —2l.Rcosz

(8.88)

Hence

p (minutes) = p (radians).R
le Rsinz.R

== . 8.89
R \/R2 +12 —2I.Rcos z (8.89)
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Now, the karna is given by

K =+/R2+12 —2l.Rcos . (8.90)
Hence, the lambanajya as defined in verse 28, is

R.Rsin z

= (8.91)

lambanajya =
In verses 27 and 28, a method for obtaining lambanajyas at any place (i.e.,
for any value of ¢) is described. Now, the author proceeds to explain the
procedure for obtaining the 24 tabular values of lambanajyas at a particular
place. These values are encoded in the 24 vakyas, pritarigana etc.

¢.9 WATEANS -F=ATITH

8.17 Obtaining the pritanganadi-lambanajyas

g g g i
HhHTeT A Uied = hoT: |
FISaTgdTd SeIoTedHT gar ar

g sJ: 1R

kotigunabhinihatastanacitrahinam
strikelimalyamalayam paditam ca karpah |
trijyahatat bhujagunadamuna hrta va
pritanganadyuditalambanamaurvikah syuh || 29 ||

The product of 2606 (stanacitra) and the Rcosine [of the zenith distance or the
mahasarku] is subtracted from 13515912 (strikelimalyamalayam). The square root
[of the result obtained] is the karpa. The bhujaguna (Rsine of the zenith distance
or the mahacchaya) multiplied by the radius and divided by the karpa would be
the lambanajyas stated [by the vakyas] beginning with pritangana etc.

In the above verse, the expression for the lambanajya is stated to be

bhujaguna X trijya

lamb jya = 8.92
ambanajya Farna , (8.92)
where the karna is given by
karna = /13515912 — (2606 x R cos z). (8.93)
Thus the complete expression for lambanajya is
Rsi R
lambanajya = e X (8.94)

/13515912 — (2606 x Rcosz)
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The above equation was used to compute the 24 tabular lambanajyas, and the
values obtained are tabulated for z = 0 to 90°, at an interval of 225 = 3°45’
along with the vakyas in Table 8.2.

z computed value vakya in the tabulated
in minutes lambanajya commentary value
225 361.2480 pritangana 362
450 716.4680 dhiyasana 719
675 1060.0057 gitijrioyam 1063
900 1386.8988 nalalaye 1390
1125 1693.1000 sudhatapam 1697
1350 1975.5867 hasaddhanyam 1978
1575 2232.3620 bhrgusrestho 2234
1800 2462.3700 matirvara 2465
2025 2665.3570 dantaaturo 2668
2250 2841.7063 vibhurjaro 2844
2475 2992.2737 vidhurdhirah 2994
2700 3118.2378 parakulah 3121
2925 3220.9741 parorogi 3221
3150 3301.9565 pranilango 3302
3375 3362.6835 bhartalolah 3364
3600 3404.6261 munirbhrguh 3405
3825 3429.1948 dhirobhrguh 3429
4050 3437.7181 sulabhogah 3437
4275 3431.4332 rudrobhargah 3422
4500 3411.4824 priyobhrguh 3412
4725 3378.9150 sosaulambah 3377
4950 3334.6914 bhrgorlila 3334
5175 3279.6898 dhisthoragi 3279
5400 3214.7129 mayuragah 3215

Table 8.2 The Pritanganadi-lambanajyas given in the commentary.

The rationale for the numbers appearing in the above equation can be
understood by comparing (8.93) with (8.90). It is clear that the lambanottha-
caramaphala, [, = 1303. Hence,

2
21
R+ 12 = (2(;00> +13032 & 13515911.86 ~ 13515912,

13 fKP 1956}, p. 277.
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which is the number stated in the verse.
Now, we recall the expression for [. given by the equation (8.82) from the

previous section. Here, we know that g,, = 790.6', g, = 59.1’, r, = % =
525 yojanas and € = 24°. Hence,
le 21600 — (790.6 — 59.1 525(1 24°
- ( ) OB+ cos(4%)) _ ja0r g7
cos ¢ 7906 2
or ¢ =cos! _l )\ _ 639.44 (8.95)
1325.87 T ’

Therefore, the lambanajyas given in the Table 8.2 appear to be the ones for a
place whose latitude is ¢ = 639.44’.14 Tt is seen that the tabulated values are
close to the computed values, except when z = 4275’, where the discrepancy
is nearly 9.4'.

¢.9¢ TETRTHIS-SFTsa=aTH]

8.18 Obtaining the yogiraktadi-lambanajyas

RICTSATIATIAR 2T TATHEHTEETeRITd U8 Iq |

TAATATHIE IIOTTA IR AR b aehl iS4 |l 30 |l

kotijyaghnenaghanagena hinat
prajnamohaprayavakyat padam yat |
tenavaptad dorgunat kataraghnat
yogiraktetyadika lambanagjyah || 30 ||

The product of 3040 (aghanagam) and the Rcosine (of the zenith distance), is
subtracted from 14128502 (prajnamoha-prayavakyam). 261 (katara) multiplied by
the dorguna (Rsine of the zenith distance or the mahasariku) and divided by the
the squareroot of the quantity obtained earlier would be the lambanagjyas [given by
the vakyas| yogirakta etc.

In the above verse, the expression for a new lambanajya is given to be

i 261
lambanajya = M, (8.96)
karna
where the karna is
karna = /14128502 — (3040 x R cos z). (8.97)

4 This is close to the latitude value 10°50’50"" which was referred to in verse 24 above.
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Comparing the expression for karna given in the above equation with (8.90),
it follows that the value of I, works out to be

Using this value of [ in (8.95) we have,

le
1325.87

=cos¢ > 1. (8.99)

That is, the value of [, = 1520 is not possible for any physical value of the
latitude ¢. Notwithstanding this, we compute the lambanajyas which are now
defined through the relation

Rsin z x 261

lambanajya = .
VI2+ R? —2l.Rcos z

(8.100)

It may also be mentioned here that the significance of the number 261 is
also not clear. However, we note that

R x60 3438 x 60

= .34
261 261 790.345

~ 790.6 ~ gun,

or 261 ~ 2260 (8.101)

Im

where g,, is the rate of motion of the Moon per day in minutes.

We have computed the values of lambanajyas for z = i.225" (i = 1, 2..24)
and have listed them with the values given by the mnemonics yogirakta in
both the Commentaries,'® in Table 8.3. We note that for the smaller values
of the zenith distance, the errors are large. We can also find the value of [,
which fits the computed value with the tabulated value. That is, find [, such
that

Rsin z x 261
2+ R? —2I.Rcosz’

for different values of z. We find that [. = 1549,1573 and 1545 for z =
225’, 450" and 675 respectively. In fact if the lambanajya is taken to be 61 for
2z = 450', I, = 1542. The computed values of the lambanajyas for I, = 1545 are
also displayed in Table 8.3. We see that the values represented by the vakyas
are very close to these computed values, especially for smaller values of z.

lambanajya (tabulated) =

(8.102)

15 [KP 1956}, p. 279.
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z computed value | wvakya in the | tabulated | computed value

in minute | of lambanajya commentary value of lambanajya

for I, = 1545
225 27.4296 yogr 31 30.7804
450 54.4015 rakto 62 60.8568
675 80.4864 nidhanam 90 89.5892
900 105.3074 supatam 117 116.4527
1125 128.5573 kavikrt 141 141.0654
1350 150.0066 ursasya 164 163.1938
1575 169.5036 lajjadhyah 183 182.7381
1800 186.9681 anakhah 200 199.7073
2025 202.3809 svapure 214 214.1894
2250 215.7712 tarurat 226 226.3292
2475 227.2038 tagaro 236 236.2800
2700 236.7682 vivare 244 244.2367
2925 244.5690 nisendra 250 250.3735
3150 250.7180 Sonendrah 255 254.8613
3375 255.3290 himarun, 258 257.8588
3600 258.5138 nitaram 260 259.5101
3825 260.3793 kataro 261 259.9447
4050 261.0264 kataro 261 259.2779
4275 260.5492 nitaram 260 257.6118
4500 259.0344 himarug 258 255.0366
4725 256.5615 Sonendra 255 251.6322
4950 253.2036 nisendra 250 247.4691
5175 249.0273 vivara 244 242.6101
5400 244.0936 tungendrah 236 237.1108

Table 8.3 The Yogiraktadilambanajyas.

¢.9R TETTISHHT HHRT TRIATT

8.19 Obtaining the dimension of the disc of the planets
in minutes

[ EIRIEEIEECIRNEREIERI
TEHCATSTRUI SRS et TT: || 39 ||

bimbadinam yojanani hatani tribhajivaya |
sphutayojanakarnpena bhaktanyesam kalah smrtah || 31 ||
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The diameters of the planets in yojanas multiplied by the radius and divided by
the true distance in yojanas (sphutayojanakarpa) are said to be the diameters [of
the discs] of the planets in minutes.

Fig. 8.19 Dimension of the disc of the planets.

Let D, be the bimbavyasayojana or the diameter of a planet in yojanas, and
O,, the true distance between the centres of the earth and the planet (sphutay-
ojanakarna). Then, the angular diameter of the planet may be obtained from
the relation g D

tan £ ~ £ = 2
"2 7% T a0,
since @), is small. In the above relation both D, and O, are in yojanas, and 6,
is in radians. As the angular diameter in minutes D, (min.) = 6,R, we are
led to

Dy(min.) = =2 x R, (8.103)

which is the relation stated in the verse.

¢.R0 TG TTHHHIT THRTIRH

8.20 Obtaining the dimension of the discs of the Sun and
the Moon

ST TESITTATCHHT TS FISTIoTeT: |

ST afag e = foar wafea =tz 13 1l

athava sphutagatilipta bimbavyasasya yojanairgunitah |
dinayojanagativihrtastasya ca lipta bhavanti ravisasinoh || 32 ||

Or, the diameter of the discs of the Sun and the Moon in minutes can be obtained by
multiplying their sphutagatis in minutes by the diameter of the orbs (bimbavyasa)
in yojanas and dividing by the daily motion (dinayojanagatis) in yojanas.

If g is the dinayojanagati or the mean rate of motion of a planet in yojanas
per day, and gs, (in min.) the true rate of motion (sphutagati) in minutes, it
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is clear that g
gsp(in min.) = O—p x R.

Comparing this with equation (8.103),

R Dy (min.)  gsp (in min.)

= = 3 8.104
o, D, P (8.104)
D sp (in min.
or D, (min.) — Do 9sp (in min.) (8.105)
g
Dy X sphutagati (8.106)

dinayojanagati’

which is what given in the verse. This applies to all the planets including the
Sun and the Moon. It may be recalled here that the dinayojanagati is taken
to be the same for all the planets.

¢RI T h AR - B ATATIAHITH

8.21 Obtaining the diameter of earth’s shadow on the
Moon’s orbit

JATIISTEAT: T Rp{HT
gm%ﬁﬁ%ﬁagmﬂw|

BT AT A A ST b hT
TR A~ a9 TIRERER |1 33 1|

bhuvyasayojanahatah Sasibhuktilipta
bhumyarkavistrtibhida hatabhanugatya |
hinah punardivasayojanabhuktibhakta

lipta bhavanti tamasah $asimargagasya || 33 ||

The product of the rate of motion of the Sun (bhanugati) and the difference between
diameters (wvistrti) of the earth and the Sun, is subtracted from the product of
the earth’s diameter (bhuvyasa) in yojanas and the rate of motion of the Moon
($agibhukti) in minutes. The remainder divided by the daily rate of motion in
yojanas (divasayojanabhukti), would be the diameter in minutes of the shadow
(tamas) that moves on the Moon’s orbit.

Figure 8.20 depicts a lunar eclipse. Here Ds and D, are the diameters of
the Sun and the earth in yojanas. O, and O,, are the distances of the Sun and
the Moon from the earth in yojanas. Let D; be the diameter of the earth’s
shadow in the plane of the Moon’s path in yojanas (or minutes). From the
geometry of the figure, it is clear that
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Fig. 8.20 Determination of the angular diameter of the Earth’s shadow.

2SA—-2EF 2EF —-2MB

Os a Om ’
Ds - De De - Dt
or 0.~ o
. O'"L
D; (yojanas) = D, — ) (Ds — D)
_ 0:D = On(D= D) (5,107

Let g, and g5 be the rates of motion of the Moon and the Sun in minutes.
Since the linear velocities of all the planets are the same, we have

Os 9s = Omgm = 9,
O, _ 9m

or 8.108
on " o (8.108)
Using (8.108) in (8.107) we get
mDe — Ys Ds - De
Dy (yojanas) = J 9s( ) (8.109)
Im
Hence,
D )

D, (minutes) = —* (yajg"as) kLl

_ mDe = 9:(Ds = De) (8.110)

g (yojanas)

as stated in the verse.
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¢.RR VTR TSHHITT

8.22 Obtaining the bimbaliptas of the planets

IR |
AT T g acaragar [Ty aT: FHefra:

STAYTOSTEAT: ATeT Shi2rd UiasT: 1l 3% 1|

haryam syanmandasighroditaphalavivare karkinakradiyate
svarnam svarnaikyabhedannijavadhasikharamsadhyahine Sarire |
tasmat pancaghnamaudhyoditalavavihrta bimbaliptah kujadeh
sthanodyannathasitaksatapulinahrtah tasca kaiscit pradistah || 34 ||

R R el e e e eI B I
ot TSI U ER e

The product of differences of successive mandaphalas and Sighraphalas is divided by
225 ($ikhara). [The result obtained is to be] added to [225 ($ikhara)) itself, if both
the differences are positive or negative and it is to be subtracted from [$ikhara] if
one [of them)] is positive while the other is negative. The differences of successive
mandaphalas and Sighraphalas are to be added [to the result obtained earlier] if
they are karkyadi and are to be subtracted from [the result] if they are makaradi.
That becomes the dividend (harya). This harya when divided by the product of
5 and the maudhyamsas of the planets, gives the bimbaliptas of the planets Mars
etc. [There,] according to some, the harya has to be divided by the harakas 107
(sthanodyat), 70 (natha), 65 ($ita), 60 (ksata) and 91 (pulina) in order to obtain
the bimbaliptas.

The term manda-$ighrodita-phalavivare refers to the difference of successive
mandaphalas and difference of successive Sighraphalas. Let A,,; and Ag; de-
note these differences respectively. In the verse, the term nijavadhas$ikharamsa
refers to the product of them divided by 225 (dikharamsa), that is

Ami X Asi

A1
995 (8.111)

This quantity is added to or subtracted from 225 (Sarira). Then we obtain
the result (denoted by z) as

Ami X Asi

— 225 +
v 225

(8.112)

Here, the sign ‘+’ is taken when both (the A,,; and A;) are positive
(svarnaikya) and ‘—’ is taken when one is positive and the other is negative
(svarnpabheda). Both the A,,; and A are to be added or subtracted from
the above result (x) obtained depending upon whether they are karkyadi or
makaradi. Hence, the term harya mentioned in the above verse can be written
as
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harya = x + Ay + Ay (

harya = x + A, — Ay (

harya = x — Ap; + Ay (for A,,; is makaradi and Ag; karkyadi),
(if both A,,; and Ag; are makaradsi).

if both A,,; and Ay; are karkyadsi),
for A, is karkyadi and Ag; makaradi),

harya = x — Apy — Ay

This harya when divided by the product of 5 and maudhyamsas of the planets
would give the bimbaliptas of the respective planets. That is,

harya

bimbaliptas = .
rmbatiptas 5 x maudhyamsas
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Ascendent at the meridian transit

R.9 Wmﬁm

9.1 Defining kala-lagna and obtaining the rising times of
rasis therefrom

HATIAERTRI ol TRUATIThS X |
AT AfSERTdhGHHIaTEa 11 9 |l

ARG AT 2T |

ERIESIR R ERIRGIEIEE R )

krtayanestarasyante carapranakalantare |

kuryat tadistarasyantakalalagnamudahyrtam || 1 ||
istatatpurvarasyantakalalagnantaramsakah |
dasahata bhavantistarasimanavinadikah || 2 ||

The ascensional difference (cara) and the pranakalantara are to be applied to the
[longitude of the] end of the desired zodiacal sign (rasyanta) which is corrected for
the movement of equinox (ayanacalana). The result thus obtained is stated to be
the kalalagna corresponding to the end of the desired zodiacal sign (rasyanta).

The difference in degrees, between the kalalagnas of the desired rasyanta and the
one preceding it when multiplied by 10, would be the rising time of the sign
(rasimana) in vinadikas.

In the set of verses given above the author introduces the notion of kalalagna
and gives the procedure for finding the rising time of rasis using kalalagna.
The kalalagna of a point on the ecliptic is the time interval between the rise
of the vernal equinox, I', and the rise of the given point on the ecliptic. We
explain the concepts with the help of Figure 9.1.

Here I' is the vernal equinox, where the celestial equator and the ecliptic
intersect, which is rising at the east point £ on the horizon. R is a point on the
ecliptic with tropical (sayana) longitude A, right ascension a, and declination
0. A section of the diurnal circle in which R moves is also depicted in the
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Fig. 9.1 Determination of the kalalagna.

figure. X represents the point on the diurnal circle at which the object with
longitude A rises. Consider the angle

RPX = a — Aa. (9.1)
Here Aa = EPX denotes the cara which is given by
sin Aa = tan ¢ tan 4. (9.2)

The expression (9.1) denotes the time between the rise of I" and an object
with tropical longitude A, in sidereal units. This is essentially the expression
for kalalagna which may also be written as

kalalagna = A + (o — A — Aav). (9.3)

Here o — A is the pranakalantara and X is the sayana longitude! which is
referred to as krtayana in the verse. Hence,

kalalagna = X + (pranakalantara — cara),

which is the expression given in verse 1. What is of particular interest is the
istarasyantakalalagna, which is the kalalagna corresponding to the end point
of the desired rasi, given by A =i x 30, where i = 1,2,...,12.

The term rasimana employed in verse 2 actually refers to “the time taken
by the rasi” to come up above the horizon. If K; denotes the kalalagna corre-
sponding to the i*" rasi, given by

! The term sayana longitude refers to the sum of the nirayana longitude (sphuta) and
the ayanamsa (amount of precession of equinoxes.)
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Ki = )\z — [(al — >\z) — Aal] s

then K; — K;_; is the kalalagnantara (difference in kalalagnas) referred to in
the first half of the verse 2. The beginning point of a rasi is of course the
end-point of the previous rasi. Now the duration of a day is 60 nadikas or
3600 vinadikas corresponding to 360° in angular units. Hence 1° corresponds
to 10 vinadikas and the rasimana is given by

Rising time of i** rasi = (K; — K;_1) x 10 (in vinadikas).

Note: In Tantrasangraha also, the kalalagna of a point on the ecliptic is the
time interval between the rise of the vernal equinox I' and the rise of the
given point on the ecliptic. However, apart from this, the concepts considered
in Tantrasarngraha and Karanapaddhati are somewhat different. In Tantrasan-
graha, madhyakala is the R.A. of a point on the equator which is situated on
the meridian, and madhyalagna is the longitude of the meridian ecliptic point
and an algorithm is presented for finding the madhyalagna from madhyakala.?

In Karanapaddhati, madhyakala and madhyalagna are not mentioned. In-
stead, as may be seen from Section 9.4, we have the concept of madhyah-
nakalalagna which is the time interval between the rise of I" and the instant
when a star with a non zero latitude is on the meridian. Algorithms for finding
the madhyahnakala given here have no equivalents in Tantrasangraha. These
algorithms involve very careful analysis of the properties of spherical triangles.

3.2 ATAATEANTARTOT THerzrear

9.2 The longitudes and latitudes of the “junction stars”
commencing with asvini

et O Tl JRT ARt st aerr o |

EaT g TERT fame: Taret R et fawe: 113 1
v TaRaoTaT TSI 92Tt ScsaTt EdTaT: HeATHT faveT: |
gARTERY fFreaT=T F=TT: S ShATafeidT gogat: ¥peram: 11 % |l
T=r: o g e geaRa g |

AT AT TSt ik I: WTeT: RIS G 11 4 ||

I ISR e = |

TS T G e ShATe I & |l

TATARETTIRT fgargaeasuTg fagRederdre I |

< < k2 o (e
Lll“‘llitli'QbUI"I*dQJ\“l“-ll"H HIT TS ATTARTh ST~ |9 ||

2 {TS 2011}, pp. 248-254.
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tatajno gunena prasanno nrnamyo

varenyo niwisto vadanyo nrpendrah |

haridra samudrah praharo dinambuh

stavargo nisargo vilango virudhah || 3 ||
vibhavastrnaugho gajabho dhaneso

baleso drtasah kalatma vipaksah |

ksamakso nilanto nirasah syurete

kramadardhita dasrapurvah sphutamsah || 4 ||
namyah priyo munirmani nityam pujyastanurnany |
sthane jnani priyo loke sunuh prajiiah sthale punah || 5 ||
lagne bhanurjanasthane sunurnagastilam nanu |
vakrastatra nanu ksepabhaga dasraditah kramat || 6 ||
dasrantakaryamabhagaditi vahnivayu-

vasvekapad dviharisurpagatasca saumyah |

yamyah pare varunanairtasurpabhanam

ksepastu divyanaganagakalanvitaste || 7 ||

The numbers 16, 53, 72, 100, 124, 140, 184, 210, 228, 257, 282, 308, 346, 370,
394, 424, 444, 456, 483, 509, 533, 569, 591, 614, 656, 690 and 720 when halved
(ardhita) represent the values of the longitudes [of the stars], beginning with asvin,
in degrees.

The numbers 10, 12, 5, 5, 10, 11, 6, 0, 7, 0, 12, 13, 7, 2, 37, 1, 3, 4, 8, 7, 7, 30,
36, 0, 24, 26 and 00 represent the values of the latitudes (ksepa) [of the stars] in
degrees beginning with asvini.

[The stars] dasra (asvini), antaka (bharani), aryama (purvaphalguni), bhaga (ut-
taraphalguni), aditi (punarvasu), vahni (krttika), vayu (svati), vasu (dhanistha),
ekapadvi (purvabhadrapada and uttarabhadrapada), hari (Sravana) and $urpa (visakha)
have northerly latitude (Saumya). The others have southerly latitude (Yamya).
To the aforementioned latitudes of varuna ($atabhisaj), nairrta (mala) and Surpa
(visakha), 18, 30 and 30 minutes respectively have to be added.

The verses 3 and 4, give the values of twice the longitudes of the junction
stars in the 27 naksatras in degrees in katapayadi notation. These values are
specified commencing with the star asvini referred to as dasra, and are listed
in Table 9.1.

Verses 5-6 present the magnitude of deflection (viksepa) of these stars from
the ecliptic in degrees in katapayadi notation. These values are tabulated in
Table 9.2. Verse 7 gives the direction of this wviksepas. It is stated that the
viksepas of asvini, bharani, purvaphalguni, uttaraphalguni, punarvasu, krttika,
svati, dhanistha, purvabhadrapada, uttarabhadrapada, sravana and visakha are
towards the north (saumya) of the ecliptic. These are denoted by introducing
‘4’ sign in the table. The wiksepas of the rest of the junction stars having
southerly declination (yamya) are denoted by ‘—’ sign in the table. It is further
stated that 18" (divya), 30" (naga) and 30" (naga) are to be added to the
viksepas of Satabhisaj, mula and visakha respectively. These corrrected values
are indicated in the parentheses in Table 9.2.
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Name of the Twice the longitude of
Naksatra stars in degrees
in katapayadi in numerals
Asvint tatajriah 16
Bharani gunena 53
Krttika prasannah 72
Rohini nrnamyh 100
Mrgasira varenyah 124
Ardra nivistah 140
Punarvasu vadanyah 184
Pusya nrpendrah 210
Aslesa haridra 228
Magha samudrah 257
Purvaphalgunt praharah 282
Uttaraphalgunt dinambuh 308
Hasta tavarigah 346
Citra nisarga 370
Svati vilangah 394
Visakha virudhah 424
Anuradha vibhavah 444
Jyestha trnaughah 456
Mdula gajabhah 483
Purvasadha dhanesah 509
Uttarasadha balesah 533
S ravana dhrtasah 569
Dhanistha kalatma 591
S atabhisaj vipaksah 614
Purvabhadrapada ksamaksah 656
Uttarabhadrapada nilantah 690
Revati nirasah 720

Table 9.1 Twice the longitudes of the “junction stars” in the 27 naksatras.

R.3 WHT TheaeqH=aTq

9.3 Obtaining the true declinations of the stars

FETATOT TEeT: 1T FARAT: AGHATIT: |
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Name of the The latitudes
Naksatra of stars in degrees
in katapayadi in numerals
Asvint namyah +10
Bharani priyah +12
Krttika munih +05
Rohini mani —05
Mrgasira nityam —10
Ardra pujyah —11
Punarvasu tanuh +06
Pusya nanu 00
ASdlesa sthani —07
Magha jnani 00
Purvaphalguni priyah +12
Uttaraphalgunt loke +13
Hasta sunuh —-07
Citra prajnah —02
Svati sthale +37
Visakha punah +01(1.5)"
Anuradha lagne —03
Jyestha bhanuh —04
Mala janah 08(8.5)"
Purvasadha sthane —-07
Uttarasadha sunuh —-07
Sravana nagah +30
Dhanistha tilam +36
Satabhisaj nanu 00(0.3)*
Purvabhadrapada vakrah +24
Uttarabhadrapada tatra +26
Revaty nanu 00

Table 9.2 The latitudes of the “junction stars” in the 27 naksatras.

RATTShH T easar (g dehieT |
ISR =19 FErsaTe geTfaREa g = : 11 % |
AT TR SR I TTE: |
TSTIsRARI e saT fagaHIes a9 1l 9o |l

3 For getting the intended meaning (evident from the context), as well as to see that the
sentence is gramatically correct we need to introduce a ‘visarga’ after the word ‘koti’.
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naksatranam sphutah karyah sakalah samskrtayanah |
tesam krantigunah spastah svasvaviksepasamskrtah || 8 ||
paramapakramakotya viksepajyam nihatya tatkotya |
istakrantim cobhe trijyapte yogavirahayogye stah || 9 ||
sadisoh samyutiranayorvidisorapakramah spastah |
spastapakramakotidyujya viksepamandale vasatam || 10 ||

The true longitudes (sphutas) of the naksatras have to be corrected by the amount
of precession (ayanacalana). Their true declinations can be obtained by applying
the corrections based on their respective latitudes (viksepas).

Take the product of the Recosine of the maximum declination (paramapakramakoti)
and Rsine of the latitude (viksepajya), and similarly obtain the product of Rcosine
of the latitude (viksepakotijya) and a desired Rsine of the declination (istakranti);
divide [both the products] by trijya. [Now, the results obtained are] ready for
additive and subtractive operations.

If the latitude (viksepa) and declination (kranti) are along the same direction, then
take the sum [of the results obtained earlier] and if they are in opposite directions,
then take their difference and that would be the true declination (spastapakrama).
The Rcosine of the true declination would be the radius of the diurnal circle (dyu-
jya) for objects that lie on a latitudinal circle (viksepamandala) [off the ecliptic].

It is the tropical or the sayana longitude which figures in most of the diurnal
problems. This is equal to the sum of the nirayana longitude and the amount
of precession or the ayanacalana. The declination of a celestial object which
lies on the plane of the ecliptic in terms of the tropical longitude X is given by

sin § = sin e sin A,

where € is the obliquity of the ecliptic. But when the celestial object is off the
ecliptic, this relation is no longer valid, as we have to take the latitude g or
viksepa of the object into account. Verse 8 simply states that the latitude of
the stars have to be considered for obtaining the accurate value of declination
without giving details of how it has to be applied. The next couple of verses
give the procedure for obtaining the declination of a celestial object with
latitude.

Let 0 be the declination of a celestial object whose tropical longitude is A
and latitude is 5. Let ¢’ be the declination of an imaginary object situated
on the ecliptic (8 = 0) with the same longitude A\. The istakrantijya of the
celestial object is the declination of this imaginary object and is given by the
formula

Rsind’ = Rsinesin \. (9.4)

Then it is stated that the Rsine of true declination (spastapakrama) is the
sum (or difference) of the two terms given below.

The reading in the existing editions is without wvisarga. That is WWQ@TI

(Spastapakramakotidyujya).
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paramapakramakoti X viksepajya

spastapakramajya = Py
trijya
viksepakotijya x istakrantijya

~

9.5
trijya (9:5)

Considering only the ‘+’ sign for the time being, the above relation may be
expressed in the form

RcoseRsin || n Rcos fRsin ¢’

Rsind = 9.6
sin R i (9.6)
Using (9.4) in the above equation and simplifying we have

sin d = cosesin || + cos Ssin esin . (9.7

In Figure 9.2(a) the star is to the north of both the ecliptic and the equator.
Hence the declination is given by the sum of the two terms in the RHS of
(9.5). However when the star lies to the south of the ecliptic and to the north
of the equator as indicated in Figure 9.2(b), then the difference of the two
terms in RHS of (9.5) is to be considered for obtaining the declination of the
star. In other words, the true declination is given by

sind = cose sin|B| ~ cosf sine sin . (9.8)

The rationale behind (9.7) and (9.8) can be understood with the help of
Figure 9.2.

P €
ecliptic _—

Fig. 9.2 Finding the declination of a celestial object with a non-zero latitude.

Let X be the celestial object whose longitude and latitude are given by
I'A = X and XA = |f] respectively in Figure 9.2(a). Here, P and K are the
poles of the equator and ecliptic respectively. Consider the spherical triangle
PKX. The sides of the triangle are given by PX = 90 — 4, KX = 90 — |S|
and K P = e. The spherical angle PKX =90 — \. Now, applying the cosine
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formula, we have

cos(90 — ¢) = cosecos(90 — |5]) + sinesin(90 — |5]) cos(90 — A),
or sind = cosesin |8| 4 cos Bsinesin A, (9.9)

which is the same as (9.2) given in the text. In a similar manner by applying
the cosine formula to the triangle PK X in Figure 9.2(b), we get

sind = cos B sine sin A — cose sin |, (9.10)

which is the same as (9.8).

Finally it is said that for objects lying on the viksepamandala, which is a
small circle parallel to the ecliptic with radius R cos 8, the Rcosine of the true
declination thus determined would be the dyujya. That is for determining the
radius of the diurnal circle, the value of declination (§) obtained from (9.9) is
to be used and not the one given by (9.4).

R.8 HHATg R UTTITH

9.4 Obtaining the madhyahnakalalagna

FHEHIRIOT 9 ha eI |
RT3 RTYI: URshIf=crgdl oT: 1199 Il

TUTEATd RGeS e omR e REe |

FHOTY TR T e TR aaHsT 11 9R |l

sphutakrantiguno bhuyah kevalaksepasamskrtah |
parakrantisarabhyastah parakrantihrto gunah || 11 ||

gunahatat tribhayuksphutadorgunat
dinagunaptadhanustribhayuksphute |
rnadhanam samabhinnadiso bhavet
divasamadhyagakalavilagnakam || 12 ||

The Rsine of the true declination (sphutakranti), again corrected by the latitude,
multiplied by the Rversine of maximum declination (para-kranti) and divided by
the Rsine of maximum declination would be the multiplier (guna).

[This] multiplier has to be multiplied by the Rsine of the sum of the true longitude
(sphuta) and 3 signs, and divided by the day-radius (dina-guna). The arc [of the
result obtained] is added to or subtracted from the sum of the true longitude and
3 signs, depending on whether the directions of the multiplier and the declination
are the same or different respectively.

4 In the earlier editions of the text, the reading found is “WW@W” (“Trib-
hayuk sphutadorgunat”). The word-splitting here is unintended and also misleading. This
would mean (90° + Rsin A). What is intended is Rsin(90 + ). Hence we have presented
the phrase in its compound form.



292 HHATghIHAUT Ascendent at the meridian transit

The madhyahnakalalagna corresponding to any celestial object is the kala-
lagna when the object is on the prime meridian. It is the time interval between
the rise of the vernal equinox I', and the instant when the celestial object is on
the meridian. It can be seen that the madhyahnakalalagna is equal to 90 + «,
where « is the natakala or the right ascention (R.A). In Figure 9.3, X denotes

Fig. 9.3 Determination of the madhyahnakalalagna.

the celestial object on the prime meridian, and I" the vernal equinox. The
R.A. of the object is I'T = «a. Clearly, the time (in angular measure) after
the rise of I' at the eastern point is arc ET + 171 = 90 4+ «. This is the
madhyahnakalalagna for the object X, as it is on the prime meridian.

Verses 11 and 12 prescribe the following procedure for the determination
of the madhyahnakalalagna. The text first introduces a quantity called guna
(the multiplier) which is given by the relation:®

(sphutakranti + kevalaviksepa) X parakrantisara

una =
gut parakranti

_ ([Rsind + Rsin ) x R(1 - cose) (9.11)
Rsine

With this guna we are asked to find the phala given by

5 Here onwards, we include the sign in 3, so that it is negative when the declination is
south.
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guna X tribhayuk-sphutaguna

phala =

dinaguna
~guna x R|sin(90 + \)|
N Rcosé
_ R(sind + s1np) x (1 — cose) " cos A . 9.12)
sine cos
Then,
madhyahnakalalagna = (X + 90°) F Rsin~!(phala). (9.13)

The latter half of the verse 12 talks about F (rpadhanam). When (sind +
sin 8) and cos A have the same sign or have the same directions, then their
product is positive and we should subtract the angle corresponding to the
phala from 90 + A. If they have the opposite sign, then we should add the
angle corresponding to the phala to 90 + .

The rationale behind the relation (9.13) can be understood as follows. It
was already shown (9.9) that

sin § = cosesin 3 + cos Bsinesin A. (9.14)

. €
eclipic ——

Fig. 9.4 The relation between declination, true longitude, latitude and R.A.

It is to be noted in the Figure 9.4 that, in the triangle K'PX, the spherical
angle K PX = 90 4+ «. Applying the cosine formula to the side KX = 90 — 3,
we have

cos(90 — ) = cos ecos(90 — ) + sin esin(90 — 0) cos(90 + «),

or sin 8 = cosesind — sin e cos 0 sin a. (9.15)



294 HHATghIHAUT Ascendent at the meridian transit

Adding (9.14) and (9.15), we have

sin d + sin 8 = cos e(sin § + sin ) — sin € cos d sin «
+ cos Bsinesin A,
(sin g + sin 8)(1 — cose)

or - = —cosdsina + cos Ssin . (9.16)
sSin €
Multiplying this by 252 and using <224 = cosa (which follows from the

application of the sine formula to the spherical triangle K PX), we have

(sind + sin 8)(1 — cose) " cos A

- — cos Asina + cos asin A
sin € cos 0

sin(A — ). (9.17)

The LHS of the above equation is nothing but the phala given in (9.12). Using
(9.17) in (9.12) we have,

(sind +sin 8) x (1 — cose) cos A
sin e "cosd

A+ 90 —sin~? =A+9 - (\—a)
=90+ a, (9.18)

which is the desired result.

R.4 THRTIRUT TATE RS HATTITT

9.5 An alternate method for obtaining
the madhyahnakalalagna

FATEATTaHeRITCgdl gRiad

AT AR AGH T 1193 |l

yadva sphute nijakalasubhidam ca krtva

tasmin punastribhayute svabhujapamajyam |
ksepahatamapamakotihrtam purovat

kuryat svamadhyadinakalavilagnasiddhyai || 13 ||

6 The reading in the earlier editions of the text is: ﬁmﬁaﬂ (Nijakalasu bhidam).
(This is not acceptable as the word is a compound word and is a synonym of HTOTeh T+
(Pranakalantara), which is also a compound word denoting the difference between the
longitude and the R.A. (A ~ ).
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Alternatively, having applied the difference between the true longitude and the
right ascension (nijakalasubhida) to the true longitude (sphuta), adding 3 signs to
it, and finding the Rsine of the declination corresponding to the resulting longi-
tude (svabhujapamagya), multiply [the result obtained] by the Rsine of the lati-
tude (viksepajya). Dividing this by the Rcosine of the declination (apakramakoti),
[computation] has to be done, as was done before in order to obtain madhyah-
nakalalagna.

Fig. 9.5 Obtaining the madhyahnakalalagna.

Let A be the true longitude of the celestial object. It is said that this
has to be first corrected by the pranakalantara. It should be noted that the
pranakalantara (Aa) for a celestial object having a non-zero latitude is

Aa=X~a,

where ) is the longitude and « is the R.A. of an object on the ecliptic whose
longitude is A\. Let X' = A — A« be the sayana longitude of the celestial
object corrected by its pranakalantara, and R sin ¢” be the Rsine of declination
associated with a point on the ecliptic, corresponding to a longitude A" + 90.
Then the madhyahnakalalagna is stated to be

1 [Rsiné” x Rsin 8

90 = X +90 — Rsin~
ot + St Rcosé

(9.19)

The rationale for the above expression is as follows. In Figure 9.5, X is the
position of a star with a latitude £, and longitude A. X’ is the point on the
ecliptic with the same longitude. From the figure A = I'X’, and o/ = I'T" is
the R.A., corresponding to the point X’ on the ecliptic, and, Ao =\ — o’ =
A — I'T’, is the pranakalantara. Hence,
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a=IT=IT —-TT'
—“A-(A—TIT)-TT
=A—Aa—-TT'
=N - TT (9.20)

Now the madhyahnakalalagna can be written as
a+90=\N+90-TT". (9.21)

Verse 13 essentially gives a method to find T7". QZT’ can be found from the
spherical triangle X PX’. Here, XP = 90 — §, XPX' =TT’ and XX’ = §.
Now applying the sine formula, we obtain

sin 8 X sin XX'P
sin(90 — ¢)
sin 8 X sin XX'P

cos § '

sinTT' =

(9.22)

In the spherical triangle KPX', KP =¢, KX’ =90, and KPX' =90+ I'T".
Now applying the sine formula, we have

X in KPX
sin XX'P = 222 =« sin KP
sin( K X")
sin(90 + I'T") .
= —"—— "~/ xsine,
sin(90)
or sin X X'P = cos I'T" sine. (9.23)

The quantity I'T” is the RA of the object at X’ and is equal to the sayana
longitude corrected by pranakalantara. That is, I'T' = X' = XA — Ac«. Hence,
the Rsine of declination (apakramajya) corresponding to A’ + 90 is sind” =
cos I'T" sin €, which is numerically equal to sin XX'P=cos'X'T. Therefore,
(9.22) becomes

sin 8 x cos I'T" sin e

sinTT' =
cos §
sin 8 x sin ¢”

= 9.24

cos 0 ( )

Substituting (9.24) in (9.21), we obtain the madhyahnakalalagna

1 [Rsind” x Rsin g

90 = X +90 — Rsin™
ot + St Rcosd ’

which is the same as (9.19).
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R.& HATERIHAHATTI =TI THIR:

9.6 Yet another method for obtaining the
madhyahnakalalagna

BRI L ERE Ca R E A K A Eeklie ko oA
AR gD $aTd ¥ a7 g |
eI el s TR Teradrg garaaraTg ¥
ISl AeATgeRe™a | 9% |l

yadva krantitadiyakotyasukalabhedamstribhonasphutat
anwyasukalantaram tribhayute kuryat sphute tatra tu |
tatkrantyorvadhato ’rdhavistrtihatad dyujyavadhaptad dhanuh
krantyorbhinnasamasayordhanamrnam madhyahnakalaptaye || 14 ||

Or, for the true longitude diminished by three signs (¢ribhonasphuta) obtain the
Rsine of declination, the corresponding Rcosine, and the pranakalantara. This
pranakalantara has to be applied to the sum of the true longitude (sphuta) and
three rasis. The product of these declinations [of the sphuta and the one dimin-
ished by three rasis| has to be multiplied by the radius (ardhavistrti) and divided
by the product of the [corresponding] day-radii (dyujyas). The arc [of the result
obtained] is to be applied positively or negatively, depending upon whether the
direction of the declinations are opposite or the same, in order to obtain the mad-
hyahnakalalagna.

Let 6; and 2 be the declinations of two celestial objects whose longitudes
are A and A — 90 respectively. Then, the madhyahnakalalagna given in the
verse is

(9.25)

in 61 sin ¢
A+90 — Aay_go — sin~! {sm 15 2}

cos 01 €Oos 0o

where Aay_gg is the pranakalantara at the longitude A — 90.

We give the rationale behind the above expression with the help of Figure
9.6. Here X and X’ are the objects whose longitudes are A and A — 90 respec-
tively. If o and Aay = A — « are the R.A. and the pranaekalantara of the star
when it is at X (whose longitude is A), then the madhyahnakalalagna (o + 90)
can be written as

a+90 =X4+90 — Aay. (9.26)

Now, PX' is the great circle arc which intersects the equator at R. Therefore,
the pranpakalantara when the star is at X' is
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N

Fig. 9.6 Obtaining the madhyahnakalalagna from the declinations of two celestial objects
whose longitudinal difference is 90°.

Aay_go = (A —=90) — (0« — RM)
=A-90—-a+RM
=(A—a)— (90— RM)
= Aay —sin~!(sin(90 — RM))
= Aay — sin~!(cos(RM)),
or Aay = Aay_gp + sin~!(cos(RM)). (9.27)

Substituting (9.27) in (9.26), we have
a+90 = A+ 90 — Aay_go — sin~*(cos(RM)). (9.28)

The term sin~! (cos(RM)) in (9.28) can be found from the spherical triangle
PXX'. Here PX =90 — 6;, PX' =90 + 05, and XPX’ = RM. Here &, and
0o are the magnitudes of the declinations. Now applying the cosine formula
to the side X X'(= 90°), we get

c0s(90) = cos(90 — 1) cos(90 + d2)
+sin(90 — d1) sin(90 + d2) cos(RM),
or 0 = — sin 07 sin d2 + cos d1 cos 02 cos(RM).

Hence, cos(RM) = sind, sin 0z (9.29)

cos 01 cos Oy

Substituting (9.29) in (9.28), we get
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0t 90 = A+ 90— Aay_go — sin~! [H}

cos 01 €oS 0o

which is the expression (9.25) given in the text.

The significance of this result is not clear and it corresponds to a rather
round about procedure. After all, o +90 = A + 90 — Ac«y. Hence, the need of
expressing o + 90 in terms of Away_gp and then applying a correction to it is
not clear.

R.9 TARIG-AATEHGGATITH

9.7 Obtaining the natakale (RA) and the
madhyahnakalalagna

eI IR R STaTaTdTd URShITgar 83: ¥ |

FUTEd Wapehiearsy BRTEd Shife¥STThe; o |1 94 |l

WWW%&%@@WWEW

SFAEI R RIS s R CE RS R E C B LW
PIEThe AT &l HUTEd TRhGHTI FTd |

ot T T TRheTE: §70 @ AT s=reT &0 1 99 I
ARE I: WTOThas TR o AT daT STAAHRIS TH: |

TATHARIA A ARIGAT5E AT geh BT IeHeh =rd 11 9¢ |l

viksepakotiparamadyujivaghatat parakranti hrto harah syat |
ksepahate svasphutakotidorjye harahrte kotibhujaphale stah || 15 ||

bhujaphalam vyasadale dhanarnam viksepadorjyaharidaikyabhedat |
tadvargakotiphalavargayoganmulam bhavedayanasamjnakarnah || 16 ||
kotiphalam vyasadalena hatva karnahrtam drkphalamayanam syat |
svarnam sphute tanmrgakarkatadyoh ksepe tu mesadigate nyatha syat || 17 ||
tasmin punah pranakalantaram ca kuryat tada syannatakala esah |
natakhyakalastribhasamyuto 'yam madhyahnikam kalavilagnakam syat || 18 ||

The product of the Rcosine of the (celestial) latitude (viksepakotijya) and the Rco-
sine of maximum declination (paramadyujya), divided by the Rsine of maximum
declination (paramakrantijya), is the divisor. When the Rcosine and Rsine of the
true longitude (sphuta) are multiplied by the Rsine of the latitude (viksepajya) and
divided by the divisor, the kotiphala and the bhujaphala respectively are obtained.

Depending on whether the directions of the Rsine of latitude (viksepa) and the
Rsine of longitude (dorjya) are the same or different, the bhujaphala has to be
added to or subtracted from the radius (vyasardha), respectively. Square root of
the sum of the squares of this and the kotiphala is known as the ayanakarna.

[The arc of] this kotiphala multiplied by the radius and divided by the karna is the

ayanadrkphala. This is added to or subtracted from the true longitude for karkyadsi
or makaradi if the ksepa is mesadi, and vice versa if it is tuladi.
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Then let the pranakalantara of this [corrected true longitude] be applied to that.
This gives the Right Ascension (natakala). When three rasis are added to the
natakala that will be the madhyahnakalalagna.

The method to obtain the madhyahnakalalagna as given in verses 15-18
may be outlined as follows. Let |8| and € be the latitude of the star and
obliquity of the ecliptic respectively. Then the hara H, defined in the verse is

Rcosf8 Rcose
Rsine )

The kotiphala K,, and the bhujaphala B, are defined as

H =

_ |Rcos A Rsin 3]

Ko=—7F
B, — ‘RSIH)‘HRSIHM. (9.30)

The ayanakarna, denoted by K, and the ayanadrkphala, A, are defined by
the relations

K =./K2+(R+DB,)?

K
A, = Rsin! ( p}: R> . (9.31)

Now the madhyahnakalalagna can be found by using
a+90=At A4, - Aa+90, (9.32)

where Aa is the pranakalantara corresponding to A + A,. We explain the
rationale for this relation in what follows.

In Figure 9.7, A (= I'X’) and 8 (= X X’) are the longitude and the latitude
of the star X. It will be seen that X'Y is the ayanadrkphala, where Y is the
point of intersection between the ecliptic and the meridian passing through X.
Now, considering the spherical triangle Y X X', and applying the sine formula,
we find )

sin XY = —S08 Gy Rx (9.33)
sin XY X'/

In the spherical triangle KXY,

sin(KXY) _ sin(180 — YXX') B sin(Xf/K)
sin(KY) sin 90 ~ sin(KX) '
sin( XYV K)

cos 3

or  sin(YXX') = (9.34)

Applying the sine formula to the spherical triangle K'Y P,
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P

Fig. 9.7 Obtaining the natakala and the madhyahnakalalagna.

sin(PYK)  sin(XYK)  sin(KPY)  sin(90 + I'PT)

sin(KP)  sine  sin(KY) sin 90 ’

A A

or sin(XY K) = sinecos(I'PT).
Using this in (9.34), we have

. 5 cos(I'PT)sin e
YXX)= ————. 9.35
sin(y Xx') = <=2 (9.35)
Now, applying the sine formula to the spherical triangle I'PY,
sin(PYT) B sin(PIY)
sin(PI)  sin(PY) "’
o sin(180 — XY X')  sin(90 — €)
sin 90 - sin(PY)
oy COSE
so that, sin XY X' = Sn(PY)’ (9.36)
Using (9.35) and (9.36) in (9.33), we obtain
S0 X'V — sin 3 cos(I"PT) sin(PY ) sin € (9.37)

cos B cose

In the spherical triangle PYG, YPG = 90° — I'PT,YG = 90° — I'Y, and
PGY =90°. Applying the sine formula,
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sin(YPQG)  cos(I'PT)  sin(PGY) sin 90

sin(YG)  cos(I'Y)  sin(PY)  sin(PY)’

Thus, cos(I'PT) sin(PY) = cos(I'Y). Using this in (9.37), we have

Rsin BRcos(I'Y )Rsine

RsinX'Y =
- RcosBRcose

(9.38)

In (9.38), 'Y =I'X' - X'Y =A-X'Y, and % is referred to as the
hara (H) in the verse. Therefore,

Rsin 8.Rcos(A — X'Y)

inX'Y =
Rsin fi
Rsi
= S;lﬂ X R[cos Acos X'Y + sin Asin X'Y].
Thus,
sin X'y | — fisinplisin Smffsm A} —cos X'Y [R Smﬁ;ws A} . (9.39)

Recalling the definition of bhujaphala and kotiphala (9.30) given in the verse,
and also squaring the equation (9.39) and adding sin? X'Y x K2 on both sides,
we get

sin® X'Y [(R— B,)* + K;| = K},

or sinX’Y\/[(R - B2+ K2| = K,

K, xR
or sin X'Y = % =sin A, (9.40)

where K = \/[(R — B,)? + K2 is referred to as ayanakarna in the verse, and

A, is the ayanadrkphala.”
Hence, X'Y = A,. When this is applied to the sphuta or the longitude,
A =TI'X' we have

N=TY=TX'-XY =X—A4,

Now, when Aq, or the pranakalantara corresponding to X', is applied to this,
we obtain I'T'; the R.A. corresponding to Y, which is the natakala or the
R.A. corresponding to the object X also, as the secondary to the equator, PT
passes through both X and Y. Hence, the natakala is

" In Figure 9.7, sin 8sin X is positive and By = %W When sin Ssin A is negative
By = =RsnAsinf and K = /(R + Bp)? + K3.
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a=XN—Aa=\-A4,— Aq,

and the madhyahnakalalagna is
a+90~=X— A, — Ao+ 90, (9.41)

which is the relation (9.32) mentioned in the verse.

3¢ THARTE: AATARIGHITH

9.8 The time elapsed in the current ras:

TETTAAHATR STh[B AU TATRTAI A STeh[h U |

TATIE YT SaT: TETHT: dgT2rardT greeht af= Il 98 |l

naksatramadhyahnajakalalagnat svasannarasyantajakalalagnam |
tyaktvavasesasya lavah sadaptah tadrasiyata ghatika bhavanti || 19 ||

Having subtracted the kalalagna of the nearest end of a rasi (svasanna-rasyanta)
from the madhyahnakalalagna of the desired star, divide the remainder obtained,
in degrees (lavas), by six. [The result] would be the ghatikas that have elapsed in
the [next] rasi.

The madhyahnakalalagna corresponding to a star with R.A. « is 90 + «.
This means that the time interval between the rise of I" and the instant when
the star is on the meridian is 90+ a. Let the kalalagna of the rasyanta nearest
to the star be o — Aa’. This means that the nearest rasyanta rises o' — A/
time units after the rise of I'. Hence, at the instant when the star is on the
meridian, a time interval 90 + a — (o/ — A«’) in degrees has elapsed after the
rise of the rasyanta or, in other words, in the current rasi. Now,

60 ghatikas = 360 degrees = 360 lavas.

Therefore, 1 ghatika = 6 lavas. Hence, the time elapsed in the current rasi is

90+ o — (o — Ad)
6

ghatikas,

as stated in the verse.
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Obtaining the Right Ascension, etc.

90.9 THAITRE AT

10.1 Importance of observations with
instruments

T THeTe faeidT: Sgarh JoRad: |
T qredd FHoTar gt 119 1l

bhanam sphutasca viksepah bahudhokta budhaistatah |
svachayadyaih pariksyaite nirpeya yantrasadhitaih || 1 ||

The longitudes (sphutas) and latitudes (viksepas) of the planets have been in-
structed in various ways by different scholars. Therefore, they have to be estab-
lished after examination of their shadows etc. (chayadi), as observed by the instru-
ments.

Here the author emphasizes the importance of actual observations of the ce-
lestial objects through the measurement of their shadows etc. in determining
their longitudes and latitudes. In the case of the Sun, the measurements as-
sociated with the shadow at noon and other times pose no difficulty, in prin-
ciple at least, as these are done during the day. Observations pertaining to
the Moon’s shadow are also possible during the night. But what about the
planets and stars?

It is indeed possible to measure the zenith distance of the planets and
stars at the meridian transit and other times during the night using sights
and quadrants, and the longitude and latitude can be determined from these
observations. But the text or the commentaries do not give any further details
concerning measurements done with instruments.
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90.R AdKHIHH RO THITH
10.2 Obtaining the natakala or the vayukala (RA)

HeATRAT ST IR Sifeesiar |
: femoTfaed =nfod wreew
ot qatoRTg BraRied dgad agEe: 1R

saumye Sankvaksaghate svamrnamiha disa bhabhujam lambakaghnim
krtvasmat trijyayaptam vidurapamagunastasya kotirdyujiva |
trijyabhakotighatad dinagunavihrtam capitam kalalagne

svarnam purvaparahne tribhavanarahitam tadbhavet vayukalah || 2 ||

When [the declination is] north, the product of Rcosine of altitude (Sariku) and
Rsine of latitude (aksajya), and the product of bhabhuja or chaya-bhuja and Reosine
of latitude (lambaka), have to be added to or subtracted from each other depending
upon their directions. [The result obtained] divided by the radius is known to be
the Rsine of declination (apamajya). The Rcosine of that [declination] is day-radius
(dyugya). The product of bhakoti and the radius is divided by dyujya and the arc of
that is added to or subtracted from kalalagna before noon or after noon respectively.
The right ascension (natakala or vayukala) is obtained by subtracting 3 rasis from
the result.

This verse, in sragdhara metre, essentially presents an expression for the
right ascension « (yayukala) of a celestial object in terms of its azimuth A,
and the zenith distance z.

In Figure 10.1, X is the position of a celestial body whose zenith distance
is z. Then, X F = Rcos z, is the $anku and, OF = Rsin z, is the mahacchaya
or just chaya. The chayabhuja is the projection of the chaya, Rsinz, along
the north-south line (or perpendicular to the east-west line) and is given by
RF = Rsin zsin A’, where A’ is the angle between the prime vertical and the
vertical passing through the celestial body.

Then it is stated that

Sanku x aksajya + chayabhuja x lambaka

apamajya = T )
trijya
or Rsing — Rcosstin¢:|:]j%sinzsinA’RcosqS. (10.1)

This is obtained by applying the cosine formula to the side PX in the spherical
triangle PZ X, which gives

sind = cos zsin ¢ — sin z cos ¢ sin A'. (10.2)

Note that in this figure PZX = 90 + A’, so that cos(90 + A’) = —sin A"
However, when X lies to the north of the prime vertical, PZX = 90— A’ (not
shown in the figure). Then, cos(90 — A’) = sin A’, and hence
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Fig. 10.1 Obtaining the natakala (R.A.) from the Sarnku and chaya.

sin § = cos z sin ¢ + sin z cos ¢sin A’. (10.3)

The two possible cases, given by (10.2) and (10.3), have been stated in the
verse. Having given the expression for Rsind (apamajya) it is said that dyujya
(Rcosd) may be obtained from that.

Now applying the sine formula to the triangle PZX (where H is the hour
angle),

sin H  sin(90 + A")  cos A’

sinz  sin(90 —8)  cosd’
or  H — sin-l (sinzcos A’)

cos 0

Rsinzcos AR
= Rsin + | =——2 7777
S < Rcosé )

bhakoti x trijya
— Rsin~! (a onx rljya) ; (10.4)
dyugya
as bhakoti or chayakotiis projection of the chaya along the east-west line and
is given by Rsinzcos A'.
Now in Figure 10.1, the time interval after the rise of I', referred to as the
kalalagna, is given by
kalalagna = I'E =90+ H + «,
or a = kalalagna — H — 90. (10.5)

where « is the natakala or vayukala which is the R.A. of X. Hence, using
(10.4) in (10.5) we have
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: W
o = kalalagna — sin™* (m) —90°. (10.6)

This is what is stated in the latter half of the verse. The verse also considers
two cases,

(i) the celestial body X lying in the eastern hemisphere (purvahna) and
(ii) X lying in the western hemisphere (aparahna).

While Figure 10.1 depicts the situation in the afternoon, Figure 10.2 corre-
sponds to the forenoon. In this case,

Fig. 10.2 Obtaining the vayukala (R.A.) from the Sariku and chaya.

H =90-X'E
=90— (I'E—I'X’)
= 90 — kalalagna + a. (10.7)
Therefore,
. A’
a = kalalagna + sin™* (smzcos> — 90, (10.8)
cosd

as stated before. Here H' is measured eastwards whereas H in Figure 10.1 is
measured westwards. Kalalagna is always measured westwards, whereas « is
measured eastwards in both Figure 10.1 and Figure 10.2.
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10.3 An alternate method for obtaining the vayukala

BRI IR HEE L RGN M RIBIREIE R R
ST A AT BRIl deaTgraehshi~dehiea: |
ITATH HIGGH [879q H IIRISadl ITh T

T ATATTgeRIsT ATl G AT R: 11 3 11

yadva yamyottarapakramapalagunayorghatatastrijyayaptam

Sankau samskrtya tasmat trigunakrtihatallambakakrantikotyoh |
ghataptam kalalagne ksipatu krtadhanustyajyatam prak kapale

kalo madhyahniko’yam bhavati punarasau vayukalastribhonah || 3 ||

Alternatively, the Rsine of the declination (apakramajya) along the south or north
is multiplied by Rsine of the latitude (aksajya) and divided by the radius. Having
applied this to the Rcosine of zenith distance ($ariku), multiply the result by the
square of the radius and divide by the product of the Rcosine of the latitude
(lambaka) and the Rcosine of declination (krantikoti). The result is added to the
kalalagna [when the Sun is in the western hemisphere] and is subracted from it
when [the Sun] is in the eastern hemisphere (prakkapala). And again three rasis are
added to or subtracted respectively, in order to obtain the madhyahnika-kalalagna.
Subtracting 3 rasis from this would result in the vayukala.

Consider the situation in the afternoon, as shown in the Figure 10.1. Applying
the cosine formula to the side ZX = z in the spherical triangle PZ X,

cos z = sin ¢sind + cos ¢ cos d cos H,
cos z — sin ¢ sin §

or Rsin(90 — H) = RcosH = R

cos ¢ cos 0
Rsind.Rsin ¢
Rcosz — ———
— RZ. R
Rcos¢.Rcosd

. apakramajya X aksajya
Sanku —

trijya
lambaka x krantikoti

= |(trijya)* x

as indicated in the verse. Therefore,

cos z — sin ¢ sin &

90 — H (degrees) = sin™* (degrees).

cos ¢ cos 0
It is stated in the verse that this has to be applied to kalalagna, either pos-
itively or negatively depending on whether X lies in the eastern on western
hemisphere. It may be recalled from (10.5) that when X is in the western
hemisphere, kalalagna = 90 + H + «. Hence,
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madhyahnika-kalalagna = 90 + «
= kalalagna + (90 — H) — 90,
and, vayukala = a = madhyahnika-kalalagna — 90, (10.9)
as stated in the verse.

Consider the situation in the forenoon, when X is in the eastern hemisphere
as depicted in the Figure 10.2. In this case,

cos z — sin ¢sin §

90 — H' (degrees) = sin* (degrees),

cos ¢ cos 0

and, kalalagna = EI' = EX' + X'T" = 90 — H' + «, as we saw earlier. Hence
kalalagna— (90— H') = «, and we have to subtract the arc from the kalalagna.
Again,
madhyahna-kalalagna = 90 + «
= kalalagna — (90 — H') + 90,
and, vayukala = o = madhyahna-kalalagna — 90, (10.10)

as stated in the verse.

90.% TAHRTBHITTH

10.4 Definition of the natakala

gfehmUese I7 WE dadHvee |
AR IS Thler: T == |1 ¢ |l

TSI AT HETESTI ST |

R PRI Tdhieedal 9ad |14 |l

ghatikamandale yatra sprstam tannatamandalam |
tatpradeso vayukalo natakalah sa cocyate || 4 ||

sarvesamapi madhyahne mahachayaiva dohprabha |
kalalagnam trirasyunam natakalastada bhavet || 5 ||

Vayukala corresponds to the place on the equator where the secondary to the
equator (tannatamandala) [passing through the celestial object] touches it. And
this is [also] referred to as the natakala.

In the noon mahacchaya itself is the chayabhuja for all [planets]. Three signs sub-
tracted from the kalalagna at that time would be the natakala.

In Figure 10.1 or 10.2, the secondary to the equator (ghatikanatavrtta)
passing through the object X intersects the equator at X’. This point cor-
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responds to the natakala or vayukala. In fact natakala, as used in the earlier
verses corresponds to the Right Ascension, I'X’ = «.

As may be seen from Figure 10.1, at noon, A’ = 90, as the Sun (X) will be
on the prime meridian. In this case, chayabhuja will be

Rsin zsin A’ = Rsin z = mahacchaya.

This is true of any celestial object X on the meridian. Hence the use of the
word ‘sarvesam’ (for all). Also, H = H’ = 0 at noon. Then kalalagna = 90+«
and hence at noon, the natakala = a = kalalagna — 90, as stated in Verse 5.

90.4 TTIHTHN SHIFIT

10.5 Obtaining the latitude from the vayukala

ARG STehIT | SRAT<E Thedd |
TpETIShT Yl ek ol g: | & Il
IRHRITCThITCY el AT FISaT |

eI atd e aenite o Jw=ad 1l o |l

natakalabhujakrantim vyastadikkam prakalpyatam |
sphutapakramakotighnim sphutakrantigune punah || 6 ||

paramakrantikotighne krtva tasmat trijivaya |
labdho bhavati viksepah tatkotim ca samanayet || 7 ||

Obtain the Rsine of declination (kranti) associated with the natakala, which is
taken to be in the opposite direction and multiply it by the Rcosine of the true
declination. [The result] has to be applied to the product of Rcosine of maximum
declination (paramakranti) and the Rsine of the true declination (sphutakrants).
This divided by the radius is the Rsine of the latitude (viksepa). The corresponding
Rcosine may [also] be obtained.

This verse presents the expression for the latitude of a celestial object in
terms of its R.A. «, and declination §. The formula given in the verse may be
expressed as

Rsind x Rcose — Rsinasine x Rcosd
7 .

Rsinfg = (10.11)

Here the Rsine declination (krantijya) of the R.A. (natakala) o is Rsin asin e
(as the declination of a point on the ecliptic with longitude X is Rsin Asine)
and this is what is referred to as ‘natakalabhujakranti’ in the verse. Also the

! The term W“ﬁmﬁ (natakalabhujakranti) should be understood as
TARTGIR T 9T %lﬁ'it, d¥T: ST (natakalasambandhing ya krantih, tasyah bhuja).
Mathematically it represents the quantity R sin asine.
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term wiksepa used in last quarter of the verses refers to the Rsine of the lati-
tude (Rsin 8) and not just the arc 8. Also in (10.11) the choice of the negative
sign for the second term in RH S is as per the prescription in the verse that
the krantijya of the natakala is taken in the opposite direction.

Fig. 10.3 Obtaining the Rsine of the latitude from the R.A.
By considering the spherical triangle K PX as shown in Figure 10.3, and
applying the cosine formula for the side KX = 90 — 3, we get,

c0s(90 — 3) = cos e cos(90 — ) + sin esin(90 — &) cos(90 + A”),

or sin 8 = cosesind — sin asin e cos d, (10.12)

which is the same as (10.11) given in the verse.

90.& TGRS THEHITT

10.6 Obtaining the longitude from the vayukala

AT AT RIASTIT (e TehIesT & |

SR T=eT2TRTE AT YRHT Shi=aT gall drdr

ot gt HeTETaTaaETd: WEgHGTEe: || ¢ ||

bhuyah ksepagunam sphutamapagune krtvamuna tadita
dorjyasatribhavayukalajanita viksepakotya hrta |
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antyakrantisarahata paramaya krantya hrta capita
svarnam tulyabhidasaghatavasatah syadvayukalasphutah || 8 ||

Apply the Rsine of the latitude (viksepa) to the Rsine of the true declination
(sphutapakrama), and that is to be multiplied by the Rsine of the sum of three rasis
and the R.A. (natakala), and divided by the Rcosine of the latitude (viksepa). [This,
again] has to be multiplied by the versine of maximum declination (paramakrants)
and divided by Rsine of maximum declination (antyakranti). The arc of the [result
obtained] has to be added to or subtracted from the R.A. (natakala) depending on
the similarity or otherwise of [the directions of declination and latitude], since there
is a product. This would give the true longitude (sphuta) from the R.A. (vayukala).

In the previous verse an expression for the latitude [ of a celestial object
was presented as a function of o and 4. This verse gives an expression for
the longitude A (sphuta) as a function of 5, a and é. This is actually done
by means of a correction term to be applied to the R.A. or natakala. The
correction term given in the verse may be expressed as:

Rcos
This term has to be applied to the natakala positively or negatively depending

on whether the directions of viksepa and krantijya are opposite or the same
respectively. Therefore, the true longitude is given by

Rsin™! { X (Rsin5+Rsinﬁ)R T

1—
A=a+sin~! [Cosa x (sin 6 + sin B) x (COSE)] . (10.13)
cos 3 sin e

The rationale for the above expression is as follows. Rewriting equation
(9.18) we have,

(10.14)

A= a4 sin-! {(Sind—l—sinﬁ) x (1 — cose) COS)\:|

sin e "cosd

Now consider the spherical triangle PK X in Figure 10.3. Here PKX =90 —
APX =90-6,KPX =90+4a, and KX = 90— . Applying the sine formula

we have,

COSA  cos«
cosd cosf’

(10.15)

Using (10.15) in (10.14), we get

i (L=cose) ) (10.16)

Cos &
A=a+sin™! | ——— x (sind + sin ) -
cos 3 sin €

which is the result (10.13) given in the verse. Here the quantity in the bracket is
positive or negative depending upon the sign of the product cos a(sin 6+sin ).
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10.7 An alternate method for obtaining the longitude
from the madhyahnakalalagna

TS TTATGTHGHH HARISHTIA WS |

GO AT e gl dehliedTas [y s e 1 % Il
=Tl < IO AT RIS e R WaT |

st gaRmEATEt @R = $atd = Fege: = 1 9o 1l

yadva svamadhyahnagakalalagne
krtasuliptavivare svadorjyam |
ksepantimakrantivadhena hatva
tatkotighatena vibhajya labdham || 9 ||
capikrtam ca svamrnam prakuryat
viksepadorjyaharidaikyabhedat |
tribhonite’smin punarayanamsam

vyastam ca kuryat sa nijasphutah syat || 10 ||

Or, having obtained the Rsine of pranakalantara from the sva-madhyahna-kalalagna
and applying the result to itself, [the Rsine of the result obtained] has to be mul-
tiplied by the product of the Rsine of latitude (ksepajya) and Rsine of maximum
declination (antyakranti) and divided by the product of their Rcosines. The arc of
[the result obtained] is added to or subtracted from the corrected (samskrta)-
madhyahnakalalagna depending on whether the directions of Rsine of latitude
(viksepa) and Rsine of longitude (dorjya) are the same or different respectively.
Then, by subtracting 3 signs and the amount of precession (ayanamsa), the true
longitude (sphuta) is obtained.

The two verses above essentially give yet another method to obtain the
true longitude (sphuta) from the madhyahnakalalagna. Let A be the mad-
hyahnakalalagna corrected by the pranakalantara, Ac. That is,

X' = madhyahnakalalagna + Ac.

Then the expression for the true longitude A given by the verse is

Rsin 8 Rsine Rsin X

A=)\ + Rsin™*
St RcosBRcose

- 90. (10.17)

The ayanamsa has to be subtracted from A to obtain the nirayana longitude.

In Figure 10.4, I'X’' = ) is the true longitude, and I'T’ = «, is the right
ascension. And I'X' — I'T" = X\ — o/ = A« is the pranakalantara, where o
is the R.A. of X’ which has the same longitude as X and lies on the ecliptic.
Now the madhyahnakalalagna (o 4+ 90) corrected by pranakalantara is given

by
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Fig. 10.4 Obtaining the true longitude from the madhyahnakalalagna.

N=IT+90+IX —IT
=(IT-TIT)+90+I'X’
=TT +90+ A\,
or A=XN+TT"—90
~ )N+ X'Y —90,

as TT' =~ X'Y. Now recalling the equation (9.38), we have

Rsin 8 Rsine Rcos(I'Y)

RsinX'Y =
S RcosBRcose

315

(10.18)

(10.19)

(10.20)

Now, again from the figure, I'’X’ = I'Y + X'Y . Substituting this for "X’ in

(10.18), we have

N=IT-TIT)+90+IY+X'Y
=TT +X'Y +TY +90,
or Iy =XN+TT' - X'Y —90
~ N —90.

Substituting (10.21) in (10.20), we have

(10.21)
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Rsin 8 Rsine Rsin N

inX'Y =
Fsin Rcosf3 Rcose
_1 [Rsin8 Rsine Rsin \
X'Y = Rsin™! . 10.22
o Rsin { Rcosf8 Rcose } (10.22)
Using (10.22) in (10.19), we obtain
Rsin 3 Rsine Rsin X
=X sin~! - 10.2
A=A+ Rsin { Rcosf3 Rcose } %0, (10.23)

which is the same as (10.17). Subtracting the ayanamsa from the above ex-
pression, we will obtain the true nirayana longitude of the celestial body as
mentioned in the verses. Here, the second term is positive, when the viksepa
(Rsin 8) and dorjya (Rsin \') have the same sign, and the arc has to be added
to A’; while it is negative when they have the opposite signs, and the arc has
to be subtracted from ), as stated in the verse.

90.¢ ITHAGRITTH
10.8 Concluding remarks

foTateRzY Ifhgh To=a:

S TOTASTHAT STIRToaT 73 |

At = stz Hrowa fow:
T AT des™ 3o 1199 |l

i RraqRATITST: Sty gsar

R R Teg AT e a=reyH |
FTIAOTTHAT TP Fw:
Firafie foea: =g Iearya=d: 11 92 ||

ganitamidamadesam yuktiyuktam pathantah

bhuvi ganitajananam agraganya bhaveyuh |

api ca gativisesat kalarupasya visnoh
subhrsamanubhavanto yanti taddhama suddham || 11 ||
iti Sivapuranamagramajaeh ko’pi yajva

kimapi karanapaddhatyahvayam tantrarupam |
vyadhitaganitametat samyagalokya santah

kathitamiha vidantah santu santosavantah || 12 ||

Those who study and comprehend (pathantah) all the mathematical principles
supported by rationales (yuktiyuktam) enunciated here, would become the foremost
leaders in the community of mathematicians in this world. Moreover, blessed with
the compassion of Lord Visnu, who also manifests in the form of time, they would
attain His pristine abode.



10.8 Concluding remarks 317

Thus someone, who has performed sacrifices (yajva) hailing from the village by
name Sivapura, has composed a work called Karanapaddhati, in the form of a
Tantra. By assiduously going through this mathematical work and understanding
whatever has been set out here, may the noble ones become happy.

It was conjectured by Whish that the phrase “ganitametadsamyak” may be
encoding the ahargana of the time of composition of this text (Whish 1834).
This ahargana, which works out to be 1765653, corresponds to the year
1733 CE.2

2 On the date of Karanapaddhati, see the discussion in the Introduction.



Appendix A
Vallyupasamhara and continued fractions

Ever since the work of Aryabhata on the kuttaka procedure for solving linear
indeterminate equations, Indian astronomers and mathematicians have been
using this method to solve a variety of problems. The method, also referred
to as kuttakara, basically makes use of a technique called wvallyupasamhara
which is analogous to the continued fraction expansion of a ratio of integers.
The wvallz introduced by Aryabhata is nothing but the column composed of
the quotients which arise in the mutual division of the integers. The vallyu-
pasamhara method of transforming the vallz is essentially the recursive process
of calculating the successive convergents of the associated continued fraction.

In Karanapaddhati Putumana Somayaji displays a very sophisticated un-
derstanding of the mathematical properties of the continued fraction expan-
sion of a ratio of two integers G, H.! Usually, G is the guna or gunakara and H
is the hara or haraka, and their ratio (£) is the rate of motion of a particular
planet or its apogee or node etc. Thus, G being the corrected revolution num-
ber and H the total number of civil days, they are indeed very huge numbers.
Chapter 2 of Karanapaddhatiessentially presents the method of approximating
the ratio g by the successive convergents of the associated continued fraction.
Karanapaddhati also reveals a very sophisticated understanding of the prop-
erties of the convergents including a very interesting “remainder theorem”, as
we shall explain in this appendix.

A.1 Simple continued fraction and its convergents

We start with the ratio of two integers %, where G is the gunakara and H is
the haraka. Normally H is larger than G and it is useful to consider the ratio
%. We now discuss the continued fraction expansion of g Dividing H by G,
we get

! For an introduction to continued fractions, see Khinchin 1964.
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H 1
Z =g+ =, Al
a a1 I (A1)
where ¢; is the quotient and r1 < G is the remainder. Now dividing G by rq,
we get
G
— =@+ = (A2)

r2
1 7’1.

Continuing in this manner, we obtain a series of quotients and remainders

1 3

72Q3+77

T2 T2
ra L om

2 g ——. (A.3)
Ti—1 Ti—1

As these quotients (g;) and remainders (r;) are obtained by the mutual
division of the numbers H, GG, we can write

H 1
— =q1+ . (A4)
G 1
q2 + i
Q3+ 1
g +

Ti—1

Since % is a ratio of two integers, the process will terminate for some n,
when 7, = 0. We thus have

H
g2 + i
G5+ ———T

qQ+...+—
an

This process of mutual division is also the well known process (so called Eu-
clidean algorithm) for finding GCD of the numbers H, G which is in fact given
by rp—1.

The above equation gives the simple continued fraction expansion of g If
we truncate the above process at any intermediate stage k < n, then we get
one of the so called convergents of the continued fraction given by
ZLZ =q + ! 1 . (A.6)

q2 + 1
@B+ —1
g+ ...+ —
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In particular, we have

H ¢
o _q H, = G =1 A7
G 1 ( 1 =41, G1 )7 ( )
Hy 1
Ga N q2
+1
= % (Hy = q1q2 + 1,G2 = ¢2), (A.8)

and so on.

A.2 Properties of the convergents

Consider the simple continued fraction expansion of g:

1

Lt —1 —
q3 +
3 q4 + ...
The successive convergents are
0« Hy o +1 Hy g3+ +a (A.10)
G, 1’ Go @ Gs q3q2 +1 ’

We shall now proceed to explain the properties of convergents. First we shall
show that the following recursion relations are satisfied by Hy, Gy for k > 2:

Hy = quHi—1 + Hi—2, (A.11)
Gr = qprGr_1 + Gi_o. (A.lZ)

The proof is by induction on k. Clearly from (A.10), we see that (A.11)

and (A.12) hold when k = 3. Assuming that these equations hold for k, we
shall show that they hold for k + 1. From (A.6), it is clear that g:—ﬁ is same
Hp 1

as = with g replaced by g + P

Therefore,
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qk + JHyp—1 4+ Hy_o
@ + 5 )Gr1 + Grs

Hygy1 (
- (
~ (grrar + D He 1 + g1 He 2
—(

Gri1

Qk+1

Qe+1qk +1)Gr-1 + qry1Gr—2
~ Qera(@eHyg 1+ Hy o) + Hy
@1 (@kGr—1 + Gr—2) + G
Qe Hp + Hiq

 qe1Gr + Gy

Thus, we have shown that the recurrence relations (A.11) and (A.12) are valid
for all & > 2.
We shall now show another important property of Hy’s and Gy’s, namely

Hy,Gry1 — Hy1 G = (-1)F. (A.13)
From the recurrence relations (A.11) and (A.12), we see that

Hi,Grv1 — Hi1Gr = Hi(qo+1Gr + Gr—1) — (@1 Hi + Hi—1)Gie
= H,Gr—1 — Hp_1Gy,
= —(Hg-1Gr — HGi—1)

= (=1)" ' (H\Gs — HyGh)
= (=1~ (A.14)

From the above relation we can also derive yet another interesting property
of the convergents, namely

Hp1 Hy 1
- == A.15
Gri1 Gy GGy ( )
We can easily see that
Hypn  Hy  qepaHe + Hiy Hy
Git1 Gr  @+1Gr+ G Gy
_ (Hp1 G — HyGi1)
Gr+1Gk
—1 k—1
(=1) (A.16)

- Gr1Gr'
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A.3 Remainder theorem of Karanapaddhati

The Karanapaddhati states and makes extensive use of a "remainder theorem”
which gives the difference between the number g and its convergents g in
terms of the remainder r; which is obtained in the mutual division of H, G.

Now from the previous discussions, we know that the ratio

o yn_Gutrn

= a G (A.17)

The difference between the actual ratio and its first approximation (A.7) can
be written as

H H1 GQ1 —+ 7

5 - Gil = T —q1
T1
" (A19)
Therefore,
GHl - HG1 = qu —H= —T1. (A].g)
Now, from (A.4)
H o+ 1
=g —
G a2
™
o
= + _—
n qar1 + T2
_ (q1q2 + 1)r1 + qire (A.20)
q2m1 + T2 ’ ’
Using (A.8) in the above we have,
H  Hari+aqra
- = "= A21
G Gory + 1o ( )
Therefore,
G(Hary + qira) = HGory + Hr,
or (GH2 - HGQ)T’l = 7(qu - H)T‘Q
=Triry, (A22)

where we have used (A.19). Hence,

GH2 — HG2 = Ta. (A23)
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Now we present the general version of the above remainder relation which
the Karanapaddhati states and makes extensive use of.

Theorem

If % is the i*" convergent of g and r; is the i*" remainder in the mutual

division of H and G, then

HG,L - GHZ = (—1)i_17"7;. (A24)

Proof:

We have already seen that (A.24) is valid for ¢ = 1,2. Now, we shall assume
that relation (A.24) is true for some ¢ and then show that it is true for i + 1.
To be specific let ¢ be even so that

Using the recursion relations

Git1 = Gigiv1 + Gia,
and H; 1 = Hiqiy1 + Hi 1,
we obtain
HGiyy —GHip = (HG; — GH;)qip1 + HGi—1 — GH;
= —Tiqit1 T Ti-1- (A.26)

In the expression for the continued fraction of % considered earlier, the re-

mainder 7;11 is obtained by dividing r;_; by r;. The corresponding quotient
is ¢;+1 (see section A.1). Hence, r;_1 can be written as

Ti—1 = TiQi+1 + Tit1,
or Ti+1 = _(Tiqi+1 — Ti—1)~ (A27)

Thus from (A.26), we have
Ti+1 = (HGZ'+1 - GHZ'+1), (A28)

thereby proving the above theorem.
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A.4 Some applications of the Remainder theorem

The above Remainder theorem is used in the computation of dvitiyaharas de-
scribed in the second chapter of Karanapaddhati. The third chapter of Karana-
paddhati also introduces what are called kendraphalas which are nothing but
the remainders (r;;) which arise when we mutually divide the alpaharas H;
and alpagunakaras G;. Let r;; be the j'" remainder when we mutually divide
H; and G;. This is called the j** kendraphala of the haraka H;. Applying the

above remainder theorem (A.24) to gl, we clearly obtain

i

ri; = (-1 (H;G; — G Hj). (A.29)

This is what is referred to as haradesa (when j is odd) and gunadesa (when j
is even) in the Section 3.4.



Appendix B

Epicycle and eccentric models for manda
and sighra corrections

Chapter 7 of the text describes the procedures for finding the true geocen-
tric longitudes of the planets beginning with the mean longitudes. Here, we
explain the epicycle and eccentric models which form the basis for these com-
putations.’

B.1 Equation of centre and the manda-sphuta of planets

As explained in Section 1.10 of Chapter 1, the mean longitude is calculated for
the desired day by computing the number of mean civil days elapsed since the
epoch (called the ahargana) and multiplying it by the mean daily motion of the
planet. Having obtained the mean longitude, a correction known as manda-
phala is applied to it. In essence, this correction takes care of the eccentricity
of the planetary orbit around the Sun. The equivalent of this correction is
termed the ‘equation of centre’ in modern astronomy, and it is a consequence
of the eccentricity of the orbit of the planet. The longitude of the planet
obtained by applying the mandaphala is known as the manda-sphuta-graha,
or simply the manda-sphuta.

The procedure for finding the mandaphala can be explained with the help
of an epicycle or an eccentric circle model represented in Figure B.1. Here
the mean planet P, moves at a uniform rate on the ‘deferent’ circle or the
kaksyavrtta, of radius R, whose circumference is usually taken to be 21600
minutes, so that R = % ~ 3438’. This circle is centered around O, which is
bhagolamadhya (centre of the celestial sphere), and OI" is in the direction of
mesadi, or the first point of Aries. This is the reference direction for measuring
the longitudes. The longitude of the mean planet P, is given by I'OPy = 6.
OU is in the direction of the ‘mandocca’ or the apside. The ‘manda-sphuta’ P

! For a more detailed overview of planetary models in Indian Astronomy, the reader is
referred to {TS 2011}, Appendix F, pp. 487-535.
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is situated on an epicycle which is a small circle of radius r around Py, such
that Py P is parallel to OU. The longitude of the mandocca is I'OU = 6,,.

U
(mandasphu/tg} -~ 77| (directian of
P.- mandoccu)_

Fig. B.1 Obtaining the manda-sphuta in the epicycle and eccentric circle models.

We have another equivalent picture of this in the eccentric circle model.
Here, O’ is a point at a distance r from O, in the direction of OU. Then the
manda-sphuta P moves uniformly around O’ at the same rate as Py around O
in a circle of radius R, the ‘pratimandala’ (eccentric circle) or the grahavrtta,
which is represented by a dashed circle. The motion of P around O would not
be uniform.

Now, draw a line PN perpendicular to OFy which is extended. The differ-
ence between the mean longitude and the mandocca is

UOPy = PPyN = 0y — 0, = Opn, (B.1)

which is known as the mandakendra. The dohphala and the kotiphala are
defined as
dohphala = PN = |rsin(0n.x)], (B.2)

and

kotiphala = PyN = |r cos(0mi)|- (B.3)

Now, the mandakarna K is the distance between the planet P and the center
of the deferent circle O. When the mandakendra 0,,; is makaradi, that is,
when 270° < 6,,,, < 360° and 0° < 0, < 90°, then the mandakarna is given
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by
K =0P
= [(ON)? + (PN)?]*
= [(R+ |rcos(f — 0)])? + |rsin(fo — 6,)[2] 2, (B.4)

as shown in the figure. Similarly, when the mandakendra 0, is karkyadi, that
is, when 90° < 0,1 < 270°, then the mandakarna is given by

K =0P
= [(ON)*+ (PN)*]?
= [(R— |rcos(fp — 6m)])* + |rsin(by — 6,,)] %, (B.5)

as shown in the figure.

In Figure B.1, the longitude of the planet, generally referred to as manda-
sphuta, is given by I' opP = Oms- Denoting the difference between the mean
and true planets (POPy = |0y — 6yms|) by A6, we have

PN = OPsin(POP,) = K sin(Af). (B.6)
Considering the triangle PPyN, PN is also given by
PN = PPysin(PByN) = |rsin(0m)|- (B.7)
Equating the two expressions for PN,

K sin(6y — 0) = |rsin(@nmg)|,
r sin (6
or sin(Af) = M (B.8)
K
In most of the Indian astronomical texts, the epicycle radius associated with
the equation of centre, r, is stated to be proportional to the mandakarna, K,

so that
r Tm

K R’
where 7, is the specified value of the radius in the text.? Using this in (B.8),

we have (6
sin(Ag) = W. (B.9)
It may be noted that (B.9) does not involve the mandakarna K.
Now the manda-sphuta of the planet 6,,s; can be obtained from the mean

planet 6y by applying A€ to it. It is clear that 6,,; < 6y, when the man-

2 In fact, as discussed in Section 7.1, the specified value of epicycle radius 7., also depends
upon the mandakendra, 0,,.
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dakendra is mesadi (0 < 6, < 180°), and 6,,s > 6y, when it is tuladi
(180° < B < 360°). That is,

Oums = 0o £ A0,

where the value of Af is obtained using (B.9), and the ‘+’ and ‘—’ signs are
applicable when the mandakendra is tuladi and mesadi respectively.

B.2 Sighraphala and the Sighra-sphuta or the true longitude
of planets

While the mandaphala is the only correction that needs to be applied in the
case of the Sun and the Moon for obtaining their true longitudes (sphuta-
grahas), in the case of the other five planets, two corrections, namely the
manda-samskara and $ighra-samskara, are to be applied in order to obtain
their true longitudes. The application of the Sighraphala essentially converts
the heliocentric longitude into the geocentric longitude. The true longitude of
the planet obtained by applying the Sighraphala is known as the Sighrasphuta-
graha, or simply $ighra-sphuta, or just sphuta.

For obtaining the Sighraphala also, epicycle/eccentric circle models are used,
and the procedure is similar to that for the mandaphala. This is illustrated
in Figure B.2. The manda-sphuta Py moves on the ‘deferent’ circle or the
kaksyavrtta of radius R = 3438 around the centre of the celestial sphere O. Its
longitude is given by 6,,; = 'OP,y. OS is in the direction of the $ighrocca, S,
whose longitude is 8, = I'OS. We will discuss its physical significance later.
Then, the Sighra-sphuta P is situated on a Sighra-epicycle of radius rs around
P, such that PyP is parallel to OS.

Here also, we have an alternate picture of this in the eccentric circle model.
Let OS = r, the radius of sighra-epicycle. Draw a circle of radius R around
S, which is the pratimandala (dashed circle). Then, the Sighra-sphuta P is the
point on this circle, such that its longitude with respect to S is 6,,s = rsSp.

Now, draw a line PN perpendicular to OFy which is extended. The differ-
ence between the Sighrocca and the manda-sphuta is

SOPy = PPyN =0y — 05 = O, (B.10)

and is known as the ‘Sighrakendra’. Again, the dohphala and the kotiphala are
defined as
dohphala = PN = |rssin(fs)|, (B.11)

and
kotiphala = PyN = |rs cos(0sk)|. (B.12)
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Pratimandala - ~
| . Bsk

, &V ) . sighra—epicycle
P

Fig. B.2 Obtaining the sighra-sphuta in the epicycle and eccentric models.

Now, the Sighrakarna K, is the distance between the planet P and the center
of deferent circle, O. When the Sighrakendra, 0, is makaradi, that is, when
270° < B4 < 360° and 0° < O, < 90°, then the Sighrakarna is given by

K,=OP

= [(ON)? 4+ (PN)?]
= [(R+ [rs cos(Osk)])? + |rsin(0ax ) ]
sighrakendra 04 is karkyadi, that is, when 90° < 64, <

N

(B.13)

N|=

Similarly, when the
270°, then the Sighrakarna is given by

K,=0P
= [(ON)? + (PN)?]
[(R — |rs cos(Bsr)|)? + |rsin(f.p)] ]
Now, the Sighrasphuta or the true longitude is the geocentric longitude of

planet P with respect to O, and is given by 0, = I OP. The Sighraphala, Af,
is the difference between the true longitude 6, and the manda-sphuta O,,s.

N

(B.14)

Nl=
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Hence, we have .
Abg =0, ~ 05 = PhOP.

Considering the right angles OPN and PyPN, we have

PN = OPsin(PyOP) = PyPsin(PPyN), (B.15)

or,
K, sin(Af,) = |ry sin(0s:)], (B.16)
or, Rsin(A6,) = |r, Sin(esk”Ki. (B.17)

S

Therefore, the $ighraphala Af; may be written as

.y [ |rssin(Os)]
Af, = sin (Ks .

The $ighra-sphuta of the planet 6, can be obtained from the manda-sphuta,
Oms, by applying Af, to it. It is clear that

op = oms =+ Aosv

where ‘+’ and ‘—’ signs are applicable, when the Sighrakendra is mesadi and
tuladi respectively.

Note that unlike in the case of mandaphala, the karna, K, occurs explicitly
in the expression for the Sighraphala, Afs. For the exterior planets, Mars,
Jupiter and Saturn, the manda-sphuta is the true heliocentric planet, and
the Sighrocca is the mean Sun. For the interior planets, Mercury and Venus,
the karanapaddhati seems to follow the traditional planetary model where the
mean planet is taken to be the mean Sun to which the equation of centre is
applied, and the $ighrocca is the mean heliocentric planet.?

3 For the first time in the history of astronomy, a correct formulation of the equation
of centre and the latitudinal motion of the interior planets was presented by Nilakantha
Somayaji based on a revised planetary theory outlined in his Tantrasarngraha (c. 1500)
and other works (See for instance {TS 2011}, pp. 508-523). Karanapaddhati does not
discuss this model explicitly. But, as noted in Section 7.19, the Commentary II suggests
that the prescription in the verse 26 of Chapter VII that the manda correction for the
interior planets should be applied to their “nijamadhyama” implies that the correction is
actually to be applied to their sighroccas. If this interpretation is adopted, then Putumana
Somayayji is also following the modified planetary model of Nilakantha according to which
what was traditionally known as the Sighroccas of the interior planets are indeed the
madhyama-grahas or the mean planets. However, barring a few such instances, there is
no explicit statement in Karanapaddhati to the effect that the text is following the revised
planetary model proposed by Nilakantha.



Appendix C
Alpagunakaras and alpaharakas of the planets

In this appendix we present the tables of alpagunakaras and alpaharakas, which
have been computed for various planets following the procedure discussed in
Section 2.5.2.

alpagunakaras| alpaharakas

alpagunakaras|alpaharakas G; H;
Gi Hi 1 3232

1 27 1 3233

82 2 6465

28 765 3 9698

115 3142 8 25861

143 3907 27 87281
38868 1061939 170 549547
116747 3189724 197 636828
155615 4251663 43904 141925363
1050437 28699702 131909| 426412917
2256489| 61651067 175813| 568338280
10076393| 275303970 483535 1563089477
12332882| 336955037 1142883| 3694517234
34742157 949214044 1626418| 5257606711
81817196(2235383125 10901391|35240157500

Table C.2 The alpagunakaras and al-
paharakas of Moon’s apogee.

Table C.1 The alpagunakaras and al-
paharakas of Moon.
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alpagunakaras|alpaharakas
Gi H;
1 686
1 687 alpagunakaras|alpaharakas
85 58394 Gi H,
171 117475 1 87
256 175869 1 88
427 293344 31 2727
1537 1055901 63 5542
6575 4516948 94 8269
14687| 10089797 251 22080
153445| 105414918 11640 1023949
475022| 326334551 23531 2069978
1103489| 758084020 176357 15513795
1578511{1084418571 199888 17583773
8996044|6180176875 42152837(3708106125
Table C.3 The alpagunakaras and al- Table C.4 The alpagunakaras and al-
paharakas of Mars. paharakas of Mercury.

alpagunakaras|alpaharakas

G H;
1 4332

1 4333

3 12998

4 17331
123 532928

127 550259
250 1083187
377 1633446
627 2716633
12917 55966106
91046| 394479375

Table C.5 The alpagunakaras and alpaharakas of Jupiter.



alpagunakaras|alpaharakas
Gi H;

1 224

1 225

674

7 1573

10 2247

37 8314

47 10561

84 18875

131 29436

477 107183

608 136619

1693 380421
2301 517040
3994 897461
6295 1414501
29174 6555465
35469 7969966
738554| 165954785
5205347|1169653461
11149248|2505261707
27503843(6180176875

C Alpagunakaras and alpaharakas of the planets

alpagunakaras|alpaharakas
G, H;

1 10764

1 10765

5 53824

11 118413

16 172237

27 290650

97 1044187

221 2379024
2307| 24834427
4835 52047878
7142| 76882305
111965|1205282453
231072(2487447211
574109|6180176875

Table C.6 The alpagunakaras and al-
paharakas of Venus.

Table C.7 The alpagunakaras and al-
paharakas of Saturn.

alpagunakaras|alpaharakas
G; H;

1 6792

2 13585

3 20377

8 54339

59 400750

67 455089

126 855839
445 3022606
1016 6901051
2477| 16824708
5970 40550467
14417| 97925642
49221 334327393
309743|2103890000

Table C.8 The alpagunakaras and alpaharakas of Moon’s node.



Appendix D

An introduction to the Vakya method of
Indian astronomy

D.1 Introduction

The term vakya literally means a sentence consisting of one or more words. In
the context of astronomy, it refers to a phrase or a string of letters in which nu-
merical values associated with various astronomical parameters are encoded.
The vakyas are composed using the katapayadi system' of numeration. The
strings used in composing the vakyas are chosen so that they not only repre-
sent numerical values, but are also in the form of beautiful meaningful phrases
and sentences that convey worldly wisdom and moral values.

The wvakya method of finding the true longitude of the Sun, Moon and
the planets (sphutagraha) is a brilliantly designed simplified version of the
methods outlined in the various Siddhantas.? As per the Siddhantas, we first
find the mean longitudes of the planets and then apply a few samskaras® to
get their true positions. On the other hand, the vakya method, by making
use of a few series of vakyas presents a shortcut directly leading to the true
longitudes of the planets at certain regular intervals,* starting from a certain
instant in the past. We will discuss about this instant, which is also closely
linked with other notions such as khanda and dhruva, during the course of our
discussion. At this stage it would suffice to mention that this vakya method
provides a simple elegant method for computing the true longitudes without

L For the katapayadi system, see Section 1.2.

2 This appendix presents an introductory overview of the vakya method of Indian astron-
omy. For further details see {CV 1948}, {KP 1956}, {VK 1962}, {SC 1973}, Hari 2001,
2003, Madhavan 2012, Pai 2011, 2013, Pai et al 2009, 2015, 2017, Sriram 2014, 2017,
Sriram and Pai 2012.

3 The mandasamskara is to be applied in the case of the Sun and the Moon, whereas
both the mandasamskara and $ighrasamskara are to be applied in the case of the other
five planets.

4 The interval is usually one day for the Moon, and in the case of planets it varies widely
and depends on several factors which include their rates of motion with respect to their
mandocca and Sighrocca.
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having to resort to the normal procedure of calculating a whole sequence of
corrections involving sine functions etc., which would be quite tedious and
time consuming. Therefore, the vakya method became very popular in south
India and even today some parnicangas are brought out using the vakya method
in the southern states of India.

Ancient Indian astronomers were aware of various kinds of periodicities
in the motions of celestial bodies. One such periodicity is the 248-day cycle
during which the Moon’s anomaly completes nearly 9 revolutions.® They used
this cycle to find the true longitude of the Moon at the sunrise for each day
of the cycle and expressed them as phrases or “wvakyas”, from early times.
These are the 248 ‘ Vararuci-vakyas® which are attributed to an astronomer
Vararuci, who is also credited with the invention of the letter-numeral system
of numeration, known as the katapayadi system. Vararuci probably hailed from
Kerala and is usually dated prior to the 4" century CE.

The canonical text of the Parahita system, Grahacaranibandha of Hari-
datta (7*" Century), introduces vakyas for the manda and Sighra corrections
which are referred to as the manda-jyas and Sighra-jyas. The fully developed
vakya system is presented in the famous karana text of the 13" century,
Vakyakarana which gives the method of directly computing the true longi-
tudes of the Sun, the Moon and the planets using ‘vakyas. Manuscripts of
this work are available in various manuscript libraries of south India, espe-
cially Tamilnadu. Kuppanna Sastri and K. V. Sarma estimate that it was
composed between 1282 and 1306 CE . The author of this work is not known,
but probably hailed from the Tamil speaking region of south India. It has
a commentary called Laghuprakasika by Sundararaja who hailed from Karict
near Chennai. The work is based on ‘Mahabhaskariya’ and ‘ Laghubhaskariya’
of Bhaskara I belonging to the Aryabhata School, and the Parahita system of
Haridatta prevalent in Kerala.

Madhava of Sarigamagrama (c. 1360-1420), the founder of the Kerala school
of mathematics and astronomy, composed two works namely, ‘ Venvaroha’ and
‘Sphuta-candrapti which describe the vakya method for the Moon, and are
appended by accurate candra-vakyas which give the true longitudes of the
Mo