Springer Theses
Recognizing Outstanding Ph.D. Research

lvan Levkivskyi

Mesoscopic Quantum
Hall Effect

71 Springer




Springer Theses

Recognizing Outstanding Ph.D. Research

For further volumes:
http://www.springer.com/series/8790


http://www.springer.com/series/8790

Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent
field of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series
will provide a valuable resource both for newcomers to the research fields
described, and for other scientists seeking detailed background information on
special questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

e They must be written in good English.

e The topic should fall within the confines of Chemistry, Physics, Earth Sciences,
Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

e The work reported in the thesis must represent a significant scientific advance.

o If the thesis includes previously published material, permission to reproduce this
must be gained from the respective copyright holder.

e They must have been examined and passed during the 12 months prior to
nomination.

e Each thesis should include a foreword by the supervisor outlining the signifi-
cance of its content.

e The theses should have a clearly defined structure including an introduction
accessible to scientists not expert in that particular field.



Ivan Levkivskyi

Mesoscopic Quantum
Hall Effect

Doctoral Thesis accepted by
the University of Geneva, Switzerland

@ Springer



Author Supervisor

Dr. Ivan Levkivskyi Prof. Eugene Sukhorukov
University of Geneva University of Geneva
Geneva Geneva

Switzerland Switzerland

Co-Supervisor
Prof. Jiirg Frohlich
Swiss Federal Institute of Technology

Zurich

Switzerland
ISSN 2190-5053 ISSN 2190-5061 (electronic)
ISBN 978-3-642-30498-9 ISBN 978-3-642-30499-6 (eBook)

DOI 10.1007/978-3-642-30499-6
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012940717

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Supervisor’s Foreword

The quantum Hall effect is one of the central subjects of the modern condensed
matter physics. This effect manifests itself in the universal quantization of the Hall
resistance of a two-dimensional electron gas, exposed to a perpendicular magnetic
field. Being a linear function of the magnetic field in weak fields, the Hall resis-
tance in strong fields develops a number of plateaus as a function of the filling
factor v, which is given by the ratio of the number of electrons in a two-dimen-
sional electron gas per magnetic flux quantum. In a two-dimensional electron gas
implemented in semiconductor hetero-structures, the quantization of the Hall
resistance at integer filling factors (integer quantum Hall effect) is so precise that it
provides one of the most accurate values for the fine structure constant, and serves
as a modern resistance standard. In the regime of the fractional quantum Hall
effect, with the filling factor given by rational fractions, two-dimensional electron
gas supports exotic quasi-particle excitations with fractional charge and fractional
statistics and other unusual properties. Being one of the first examples of the
topologically non-trivial state of matter, the quantum Hall effect has received a
strong attention of experimentalists and theorists. Nevertheless, despite 30 years of
intensive research and after two Nobel prizes awarded in this field, the rich and
complex physics of the quantum Hall effect is not yet fully understood.

Another fascinating domain of the modern condensed matter physics, which has
shown a remarkable success in the previous decades, is the mesoscopic physics. In
a broad sense, it studies how the microscopic, quantum laws of nature manifest
themselves at the macroscopic scale, in the classical world that we observe.
Recently, a rapid progress in fabrication of small semiconductor heterostructures
has made it possible to investigate electronic properties of quantum Hall systems
at mesoscopic scale. Already first experiments in this direction have shown
unexpected and puzzling results, such as the non-monotonous decoherence and
phase rigidity in quantum Hall interferometers, missing energy paradox, non-
Gaussian noise effects, etc. New exciting mesoscopic experiments are under way.
The thesis of Ivan Levkivskyi theoretically investigates the physics behind these
phenomena.
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The mesoscopic properties of the systems exhibiting quantum Hall effect are
determined by the chiral edge states, which are the quantum analogs of skipping
orbits of electrons, arising at a boundary of two-dimensional electron gas in the
magnetic field. Because of the reduced dimensionality of these states, the Coulomb
interaction strongly alters their physical properties. It turns out, that the Fermi
liquid theory, commonly used for the description of many-electron metallic sys-
tems, fails in one dimension. It becomes more appropriate to represent quantum
Hall edge states in terms of weakly interacting collective boson excitations, which
may be viewed as edge deformations of incompressible quantum Hall liquids. In
order to describe mesoscopic properties of such states, the thesis develops several
theoretical methods, including the non-equilibrium bosonization technique, the
classification of the effective models of quantum Hall edge states, and the
microscopic low-energy projection technique.

The non-equilibrium bosonization technique allows one to reduce the problem
of finding non-equilibrium correlation functions of one-dimensional strongly
interacting electrons to the evaluation of averages over the ensemble of free fer-
mions. When applied to quantum Hall edge states at integer filling factors, this
technique provides an elegant explanation to the mentioned above puzzling
experimental results. However, Dr. Levkivskyi goes ahead and predicts a new
phenomenon of noise induced phase transition in electronic quantum Hall inter-
ferometers. The edge states in such interferometers play the role of optical beams,
and the interference effects are experimentally observed by measuring Aharonov—
Bohm oscillations in the average current as a function of the magnetic flux. When
edge states are exposed to a non-equilibrium noise, this leads to the suppression of
the phase coherence and reduces the amplitude of Aharonov—-Bohm oscillations.
The phase transition manifest itself in the non-analytic dependence of the ampli-
tude of Aharonov-Bohm oscillations on the parameters of the noise. The important
role in this phenomenon is played by non-Gaussian noise effects.

The classification of edge models at fractional filling factors relies on the
minimal physical requirements to the effective theory of quantum Hall edge states
to be gauge invariant, to be able to describe electron and quasi-particle excitations,
and on the requirement of single-valuedness of these excitations with respect to
electron coordinates. For simple filling fractions v = 1/m, where m is odd integer,
such minimal and physically appealing requirements uniquely fix the model of
edge states, which is not the case for more complex states, such as v = 2/m.
Dr. Levkivskyi then proposes to classify the effective models on the basis of the
statistics of quasi-particle excitations. He argues, that the strong Coulomb inter-
action at the edge reduces further the number of possible models. He then proposes
to differentiate remaining models in experiment be measuring scaling dimensions
of most relevant quasi-particle excitations with the help of quantum Hall inter-
ferometers. This idea, supported by concrete theoretical predictions, yet waits for
the experimental realization.

Finally, the microscopic low-energy projection technique has been developed in
the thesis in order to address a conceptual problem that arises in the effective
theory of open quantum Hall systems at fractional fillings, confined to a region
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with topologically non-trivial shape. This problem, formulated as a paradox, has
attracted a strong attention of the mesoscopic physics community. To be brief, the
interference of fractionally charged quasi-particles is expected to lead to
Aharonov-Bohm oscillations with periods larger than the flux quantum. However,
according to the Byers—Yang argument, observables of an electronic system are
invariant under adiabatic insertion of a quantum of singular flux. Not only
Dr. Levkivskyi resolves this seeming paradox. By doing so, he bridges the gap
between two entirely different theoretical approaches to the quantum Hall physics,
the microscopic and the effective theories of quantum Hall edge states.

In summary, the work of I. Levkivskyi opens a new broad domain of research at
the intersection of the mesoscopic and the quantum Hall physics. The mesoscopic
phenomena in quantum Hall systems are very rich and fascinating. They shed new
light on the complex physics and represent one of the few cases where the
sophisticated theoretical constructions, such as, e.g., the topological quantum field
theory, can be used successfully in order to quantitatively describe complex
experimental situations.

Geneva Prof. Eugene Sukhorukov
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Chapter 1
Introduction

The quantum Hall effect, one of the central subjects of the modern condensed matter
physics, continues to attract attention of both experimentalists and theorists after
30years of its discovery [1]. This effect, observed in a two-dimensional electron gas
in strong magnetic fields, has several exciting features such as the precise quanti-
zation of the Hall conductance in units of e2 / h, excitations with fractional charge
and fractional statistics, etc. The low energy physics of the quantum Hall effect is
determined by edge excitations, because there exists a gap for excitations in the bulk
of the two-dimensional gas. Properties of quantum Hall edge excitations have been
investigated in a number of experimental and theoretical works (for a review, see
[2, 3]). However, only recently the progress in the fabrication of novel mesoscopic
devices [4] has made it possible to focus closely on the electronic properties of
quantum Hall edge, which were not well understood earlier.

The first experiments with these devices have shown unexpected results, such
as strongly non-monotic dephasing in Mach—Zehnder electronic interferometers [5],
fast equilibration along quantum Hall edge [6, 7], unusual periodicities of Aharonov—
Bohm oscillations [8—12], etc. The appearance of such results indicates, that the
physics of quantum Hall effect is not fully understood after 30 years of research.
Namely, the mesoscopic effects in the quantum Hall regime have not been given a
necessary attention and need to be studied further. Therefore, the mesoscopic physics
of the quantum Hall effect has been chosen to be the subject of our theoretical inves-
tigation. In this introduction we recall basics of mesoscopic physics and quantum
Hall effect, briefly describe the recent experimental findings, and present the outline
of the thesis.

1.1 Mesoscopic Physics

We start the introduction with a brief reminder on the mesoscopic physics. This area
of the condensed matter physics appeared in early 1980s as a result of the attempts
to answer one simple and important question. It is well known that the conductance
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Fig.1.1 The main length scales that determine the physics of a condensed matter system are shown
in a typical order. Mesoscopic length scales are the scales at which the system is in transition from
quantum to classical behavior. Typical values of these scales are given in the Table 1.1

Table 1.1 Typical values of lengths scales for three-dimensional metals and for two-dimensional
electron gas in GaAs—AlGaAs heterostructures

Metals Two-dimensional electron gas
Interactomic distance a~ few A ——
Fermi wavelength Ap ~ few A Ar ~ 40nm
Mean free path [ ~ 100nm I ~1-100 pm
Electron collision length le—e ~ 1-10pm le—e ~ 10 pm
Electron—phonon scattering length [, p, ~ 10 pm—few mm  ——// ——

of a macroscopic conductor is given by the Ohm’s law G = ¢S /L, where o is the
conductivity of a material, S is the cross-section, and L is the length of the sample.
The question is at which length scales the Ohmic behavior of the conductance breaks
down. First experimental answers to this question launched a series of theoretical and
experimental works which have formed an entirely new broad area of the condensed
matter physics. In the mesoscopic physics, one studies the electronic transport in con-
ductors whose characteristic length scales are in between the quantum microscopic
and classical macroscopic worlds. The physical behavior of conductors at these, so
called, mesoscopic scales is very reach: There are several interesting effects such as
the conductance quantization [13—15], the Coulomb blockade [16, 17], and the weak
localization [18] effects, etc.

Important characteristic length scales which determine behavior of a sample are
the following (see Fig. 1.1 and Table 1.1). The inter-atomic distance, a, is the smallest
characteristic distance of a solid [19]. The behavior at such scales is purely quantum.
It determines the band structure e(k) of the material and the value of the Fermi energy,
E r. Next, the Fermi wavelength is defined as A\r = 27/ kF, where the Fermi wave-
vector kr is determined by the equation e(kr) = EF. Although A\r may be larger
than the inter-atomic distance, the physics at this scale is still quantum. Indeed, the
Fermi wavelength is the shortest de-Broigle wavelength which electrons can have
in the sample. Therefore, all electrons behave as waves at distances smaller than the
Fermi wavelength. The mean free path, /, is the length covered by an electron before
the initial momentum of the electron is relaxed by elastic scattering off impurities.
The corresponding time scale 7;,, = [/vF, where the Fermi velocity is defined as
vp = (1/h)0e(k)/Oklk,, is called the momentum relaxation time. This scale takes
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very different values depending on a material. The behavior at this scale might be
quantum or classical depending on whether this scale is smaller or larger than another
important scale, the phase relaxation length, /4, since the static disorder itself cannot
lead to dephasing. The phase relaxation length is probably the most important length
scale, but it is also the most difficult to calculate and measure. At this scale the
behavior of a conductor becomes classical. Ohm’s law is typically established when
the size of the system is larger than the Fermi wavelength, mean free path, and
the phase relaxation length [4]. Processes at the inelastic lengths, such as electron—
electron collision length, /. _., and electron—phonon collision length, l,_ ,;, lead to
the thermalization of electrons and of the whole sample.

Most of the pioneering works in mesoscopic physics have been done with three-
dimensional metals. However, all modern experiments are made with the so called
two-dimensional electron gas, since it has very high mobility. The mobility is an
important characteristic of a material defined as follows. In the presence of an external
electric field, E, the steady state of electrons is reached when the rate of momentum
change induced by the field is equal to the rate of its decay due to scattering off
impurities:

dp dp
E scattering - Z field”

(1.1)

The left hand side of the above equation can be rewritten as a ratio of the average
momentum to the momentum relaxation time, so that we have:

—4 _¢E, (1.2)

where vq is the average drift velocity, and m is the effective mass of an electron or
hole. Then the mobility of a charge carrier is defined as the ratio of this drift velocity
to the value of the applied electric field:

Ud
p=4 = . (1.3)
The typical value of the mobility for three-dimensional metals is ~10* cm?/Vs,
while for a two-dimensional electron gas it can be as high as ~107 cm?/V-s [20].
In terms of length scales, it means that the mean free path for two-dimensional
electrons is ~100 pm, so that it is much easier to fabricate samples for studies of the
mesoscopic effects.

1.1.1 Two-Dimensional Electron Gas

The two-dimensional electron gas with the best characteristics is obtained at the
interface of GaAs and AlGaAs semiconductors (see Fig. 1.2). If these two materials
are brought in contact, then the electrons from the wide gapped AlGaAs, which
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(a)

n-AlGaAs i-GaAs

N

Fig. 1.2 The two-dimensional electron gas in semiconductor heterostructures. (a) The layer of
two-dimensional electron states which is formed at the interface between n-doped AlGaAs and
undoped GaAs is shown in blue color. (b) The band structure of these materials before they brought
in contact. E is the top of the valence band, E¢ is the bottom of the conductance band, Ef is the
Fermi level. (¢) The band structure after the equilibrium has been established. The positive charges
on Si donors are shown by red plus symbols, two-dimensional electron states are shown in blue
color

has higher Fermi energy, spill over to GaAs. These electrons leave a positive charge
behind themselves which creates electrostatic potential and bends the bands as shown
in Fig. 1.2. In equilibrium, the Fermi level is constant in space. The electron density
is sharply peaked near the interface forming a thin conducting layer which is called
two-dimensional electron gas. The highest mobility (up to & = 3 - 107 cm?/V-s) is
obtained by the so called modulation doping technique, where the concentrations
of Si donors and of Al in AlGaAs are varied with the distance from the interface
(see Chap. 1 of Ref. [21] for details). The typical values of main length scales in
two-dimensional electron gas in comparison to metals are listed in Table 1.1.

Importantly, at the temperatures much lower than the level spacing in the effec-
tively formed quantum well in z-direction, only the lowest quantized state Wy (z) is
occupied, so that the total wave function of each electron factorizes:

Y(x, y,2) = Yo (x, y). (1.4)

This means that from the quantum mechanical point of view, the dynamics of elec-
trons is indeed two-dimensional. This is why the state of electrons at the surface of
this semiconductor heterostructure is called two-dimensional electron gas.
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The single particle spectrum of two-dimensional electron gas is quadratic,

hz 2 2
E= (k). (1.5)

with very small effective mass m = 0.067 - m,. To calculate the density of states
of two-dimensional electrons, we consider a rectangular sample with dimensions
L, and Ly and area S = L,L,. In such sample, assuming periodical boundary
conditions, the wave vectors are quantized with Ak; = 27/L;, where i = x, y.
This means that the total number of states with the energy less than E is equal to
N(E) = w- 2mE /K% /(Aky Aky). Finally, we come to the result that the density
of states per unit area, per spin is constant:

1dN(E) _om

in contrast to the three-dimensional case, where it behaves as \/E . This result sim-
plifies some calculations in two dimensions. For example, in the degenerate limit,
kpT <« EF, one has the following relation for the total density of electrons:
ny = 2deV(E)fF(E) = mEp/7rFL2, where the factor 2 accounts for the two
spin states. The Fermi wave vector for the two-dimensional electrons is thus given

by the expression:
kp = /2mng, (1.7)

and the Fermi wavelength A\r = 40 nm for the typical value of electron density is
ng = 1012 cm™2. It is interesting, that this length scale, which also determines the
average distance between electrons, is much larger than the inter-atomic distance in
the bulk of GaAs.

1.2 Quantum Hall Effect Basics

In this section we recall basic notions of the Hall physics and main experimental
findings in the regime of the quantum Hall effect.

1.2.1 Classical Hall Effect

We start with the description of a simple Drude model of the classical Hall effect [19].
Our starting equation is a generalization of Eq. (1.2) in the presence of the magnetic
field perpendicular to the plane of two-dimensional electron gas:

mig S >

—=e[E+vde/c]. (1.8)

Tm
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Putting all linear in drift velocity terms on the left hand side, one gets the system of
two linear equations for the two components of the velocity:

mjetm —B/c vy [ Ex (1.9)
B/c  mjetm ) \vy )] \E, )" )
In the next step, we note that the current density vector is given by the product of

the charge density en, and the average drift velocity: j = evgn,. Substituting this
equation in the Eq. (1.9) and using the definition of the resistivity tensor p,

-

E =pj. (1.10)

we find that the diagonal and off-diagonal components of the resistivity are given
by:

1
Pxx = Pyy = _ens‘uy (1.11a)
B
Pxy = —Pyx = —. (1.11b)
engc

This well known result has been used for several decades for the characterization
of semiconductor samples. Importantly, the Hall resistivity py, depends only on such
characteristic of material as the density of charge carriers ng. Therefore, one can first
find this density measuring the Hall resistivity and using Eq. (1.11b), and then restore
the value of the mobility from Eq. (1.11a). Here we would like to mention also the
relations between resistivity p and conductivity & = /™! tensors in two dimensions

for the further use:
Pxx

Oxx =0yy = 55 (1.12a)
Y p%x +pxy
Pxy
Oxy = —Oypx = 55— (1.12b)
p%x +p§y

Thus, in the limit of a clean system, ;x — 00, one has p,y = 0 and o,y = 0 at the
same time.

1.2.2 Experimental Results

There are several experimental methods to determine the resistivity tensor of a mate-
rial. A popular experimental setup for the determination of this tensor for a two-
dimensional sample, the so called Hall bridge, is shown in Fig. 1.3. In this setup, one
drives a constant current, typically of the order of a few nA, through the sample in x
direction and measures potentials at four voltage probes.
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Fig. 1.3 The setup for the

measurement of longitudinal ( 4 ] ( Vs ]

and Hall resistivity of a two- | L |
dimensional electron gas | |
sample. A weak current is ] — w —_ ]

driven in x direction, while

. y
the potentials at four voltage
probes are measured X -

NS

The quantities which one is interested in are the longitudinal voltage drop V, =
Vi1 — V», and the Hall voltage Vi = V, — V3. The resistivity tensor can be then found

form the relations: Vo W v
x H
Pxx = Tf, Pxy = T (1.13)

Following the common convention, we will refer to all off-diagonal components as
to Hall components, i.e., we denote oxy = oy, Ryy = Ry, etc. Importantly, the
expression for the Hall resistivity is universal, i.e. it is independent of the sample
dimensions. This means that one does not need to measure these dimensions with
high accuracy to get the precise value of the Hall conductivity. Such situation is
possible only in two dimensions, where the resistivity and resistance have the same
dimensionality.

The first measurements of the longitudinal and Hall resistance of the high quality
two-dimensional electron gas in a strong magnetic field have given exciting results.
Namely, around the values of the magnetic field which correspond to the integer
values of Landau levels filling factor (1.26) the longitudinal resistance becomes
suppressed by a factor as high as 10'3, while at the same time the Hall resistance
becomes equal to

Ry = (1.14)

h
ne?’
where n is the integer closest to the value of the filling factor [1]. The precision
of quantization of the Hall resistance at these so called Hall plateaus is extremely
high, and can be as high as 6Ry /Ry ~ 107! in the modern samples. Such a high
precision makes it possible to use the quantum Hall effect for metrology applications
and for the precise determination of the fine structure constant. This is possible in
particular due to a very small value of the longitudinal conductivity of a sample.
Namely, if the longitudinal conductivity is zero, one can write the current trough an
arbitrary cross-section a — b as

Locp = /dﬁ = aH/df. E=opVae,. (1.15)

So that the voltage drop between points a and b is independent of the geometry.
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Among other interesting results, it is worth mentioning that the conductivity in the
regime of integer quantum Hall effect has a very simple scaling behavior [22, 23].
Namely, around every plateau, numbered by an integer n, the conductivities satisfy
the following relation

(axx/aff’))z n (hcrH/e2 —n— 1/2)2 — 1, (1.16)

where 07(10) depends only on the temperature. It is interesting, that in spite of such
precise quantization and universal behavior, the distribution of currents in a sample
at Hall plateaus is highly inhomogeneous and changes between the plateaus and even
at the same plateau [24].

Later, it has been found that in more clean samples and at lower temperatures Hall
plateaus appear near the values of magnetic field which correspond to the fractional
values of Landau levels filling factor with odd denominators (see Fig. 1.4), such as
v =1/3,2/3,2/5, etc. [25]. This effect is now called the fractional quantum Hall
effect. One of the most exciting features of the fractional quantum Hall effect is the
presence of the excitations with fractional charge. The existence of such excitations
has been confirmed recently by measurements of the shot noise of backscattering
currents in samples with a narrow constriction [26, 27]. The Shottky formula for the
power S of this shot noise reads:

S =e*(I), 1.17)

where (I) is the average current, and e¢* is the elementary charge. The experiments
show that at, e.g., v = 1/3 the charge is ¢* = ¢/3. Finally, there has been observed a
Hall plateau at the filling factor with even denominator, namely at v = 5/2 [28]. It has
been recently suggested, that some excitations at this value of the filling factor might
have the so called non-Abelian statistics [29]. At present, there are no experiments
contradicting this suggestion.

To conclude, we see that the quantum Hall effect exhibits extremely reach physics.
Two Nobel prizes have been awarded for the works on quantum Hall effect. Never-
theless, even after more than thirty years of research, some experiments, in particular
those discussed in this thesis, continue bringing unexpected results. Most of them uti-
lize complex mesoscopic devices, fabrication of which has become possible recently.
These experiments are described below in details. However, before we proceed with
the discussion of these results, we consider some basic theoretical aspects of the
quantum Hall effect.

1.2.3 Landau Quantization

We start by considering the quantum mechanical problem of motion of a single
electron in two dimensions in a homogeneous magnetic field directed perpendicular
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Magnetic Field (T)

Fig. 1.4 Experimental results for the longitudinal and Hall resistance in a strong perpendicular
magnetic field. The longitudinal resistance shows strong deeps at the values of magnetic field which
correspond to rational values of Landau levels filling factor. The Hall resistance shows precisely
quantized plateaus near these points. The effect is strongly pronounced near the integer values of
the filling factor and near the simple fractions such as, e.g., v = 1/3. The plateaus corresponding to
fractional fillings are observed only in very clean samples. Reprinted figure with permission from
[28]. © American Physical Society 1987

to the plane [30]. The Hamiltonian for an electron in the electromagnetic field is
given by H = (p — eA/c)?/2m, so that the Schrodinger equation has the following
form: S,
(p—eA/c)
—— (. y) = E¥(x, y), (1.18)
2m
where A is the vector potential of the magnetic field, and p = —ihV is the momentum
operator. It is useful to choose the so called Landau gauge for the vector potential of
the homogeneous magnetic field directed along z-axis:

Ay =—By, A, =0, (1.19)

where B is the magnitude of the field. Substituting this equation in Eq. (1.18), we
find that the Schrédinger equation acquires the following form:

(ihdy — eBy/c)?  h*0?
x = eBY/OT TN ) e, y) = Evir, ). (1.20)
2m 2m
The differential operator on the left hand side of Eq. (1.20) is translationary
invariant in the x-direction, so that one can use the wave function of the following
form:

¥(x, y) = explikx]x(y). (1.21)
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Substituting this equation in Eq. (1.20), we get

2592
(hk + eBy/c)> h~0
( 5 == X0 = Ex(). (1.22)
m 2m
One can easily see that this is nothing but the Schrodinger equation for the harmonic
oscillator whose equilibrium position yg and the frequency w, are given by

hek eB
Yo=—%, We=—

5 (1.23)

me’
Thus we conclude that the energy levels for the electron in the magnetic field, the so
called Landau levels, are given by the expression:

En, k) = hw, (n—{-%) , (1.24)

where 7 is a positive integer number. Importantly, these energies are independent of
quantum number k, which implies a strong degeneracy.

To calculate the number of states in a single Landau level, we consider a rectan-
gular sample with dimensions L, and L, and with periodic boundary conditions.
The wave vector k is then quantized in multiples of Ak = 27/L,. The maximum
value of the wave vector kmax can be found from the condition that the position of
the center of oscillator yo(kmax) takes the value Ly and from Eq. (1.23). Thus, the
total number of states is N = kmax/Ak = Ly Ly -eB/2mhc, and the density of states
per unit of area is given by

1

, (1.25)
2
2rly

eB
nLL = ——
LL 2mh

where we have introduced the so called magnetic length: [p = /e B/hc. In fact, the
magnetic flux through the area 2771% is equal to the flux quantum ®( = hc/e. Next,
we can define the Landau levels filling factor as the ration of electron density to the

Landau level density of states:
Ux

V=

. (1.26)
nrr

From a different point of view, the filling factor is the number of electrons per flux
quantum. One can check, as well, that the density of states at a Landau level is equal
to the density of states of two-dimensional electron gas in the absence of the magnetic
field integrated over the energy interval hw,:

m
i = — e (1.27)
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L
dE

Fig. 1.5 Density of states of the two-dimensional electron gas without (left panel) and with (right
panel) magnetic field. The cyclotron gap is typically larger than Zeeman splitting. The Landau levels
in a magnetic field are highly degenerate, so that the total number of states in a level is equal to the
number of states of two-dimensional electron gas in corresponding (marked) interval of energies

where we have taken into account the fact that there is one state for each spin projec-
tion. The energy splitting between two states of an electron with different projection
of spin along the magnetic field is given by the Zeeman energy. It is typically smaller
than the cyclotron energy, so that the density of states of two-dimensional electron
gas in magnetic field looks as shown in Fig. 1.5.

Naively, the Landau quantization may explain the appearance of at least integer
quantum Hall effect. Namely, one could argue that when one increases the magnetic
field, the density of states at Landau levels grows and the levels move up. When
each level crosses the Fermi level, one would observe a conductivity peak, while
when the Fermi level is between the Landau levels, one would see a plateau. In fact,
such situation is not possible, because there are no states in between the Landau
levels, and therefore the Fermi level is always stuck at the last partially filled level
until it gets completely empty. Indeed, straightforward linear response calculations
(see Chap. 11 of Ref. [21]) for the conductivity of non-interacting two-dimensional
electrons give a simple linear dependence on the magnetic field. Moreover, one can
show that the resistivity tensor should be equal to

A 0 —B/engc
p= (B/ensc 0 ) (1.28)

in arbitrary translational invariant system. In order to do so one just needs to note
that in the reference frame moving with a veloc1ty v with respect to the lab frame
there appears an electric field E=-9x B/c =—jX B/enéc This is a very robust
picture, valid in classical and quantum situations. Thus, for the quantum Hall effect to
be observed, one needs to break the translational invariance, e.g., by adding disorder.
To explain the fractional Hall effect, one needs to consider the electron—electron
interactions as well.
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1.3 Theoretical Approaches to Quantum Hall Effect

In this section we consider three most important approaches to the theoretical descrip-
tion of the quantum Hall effect. We start with the single particle description of the
integer quantum Hall effect, then we discuss the effective theory of quantum Hall
effect, and, finally, the microscopic variational function approach to the fractional
quantum Hall effect.

1.3.1 Single Particle Picture

Let us consider the classical motion of an electron in a strong magnetic field and
an external potential. If this potential is constant, then the motion of an electron is
described by the equation 7(¢) = R + 7' (w,t), where 7’ (w,t) describes the circular
motion around the center 13, with coordinates X, ¥ which do not depend on time.
In the presence of a non-trivial external potential ¢ it is instructive to consider the
motion of this guiding center, defined in a general situation as:

R=7+ B x ¥/Buw,. (1.29)

The equation of motion of an electron in terms of this coordinate is BxR= %gp(?).
In a strong magnetic field the radius of cyclotron motion is small and one can replace
() by p(R) assuming a smooth potential. Then the guiding center drifts along the
equipotential lines:

c

5 B x Vo, (1.30)

Gy = R —
so that ¢(X (¢), Y (t)) = const. Typical trajectories in a disorder potential in a two-
dimensional sample are shown in Fig. 1.6. Electrons drift clockwise around hills and
counter-clockwise around valleys. There are also trajectories which go through the
whole sample.

In the semi-classical picture, these drift trajectories correspond to wave functions
localized along the equipotential lines. The energy of a state with such wave function
is shifted from the Landau level energy by an amount ¢ E, approximately equal to
the value of the potential at the position of the corresponding equipotential line. For
example, although in a homogeneous electric field ¢(x, y) = Ey eigenfunctions
(1.21) are not changed, their energies are no longer degenerate: They depend on the
wave vector k, so that Eq. (1.24) takes the form

En, k) = hw, (n + %) + ep(yo(k)), yo = k3. (1.31)

Importantly, the states that are far from a Landau level are all localized, since they
drift around the hills or valleys of the potential, while the states near the Landau
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Fig. 1.6 Schematic illustration of the semi-classical picture of the electron motion in a typical
potential profile. The value of the potential is indicated by the intensity of the gray shadow. The
electrons drift along the equipotential lines, which are shown by thin black lines. The direction
of the drift velocity is determined by the local electric field and is indicated by the black arrows.
Electrons encircle the hills and valleys of the potential landscape, but there are also equipotential
lines which propagate through the whole sample. In the quantum case, the electron wave functions
are localized along these equipotential lines

level propagate through the whole sample and may contribute to transport. The
actual density of states in a disordered sample thus looks as shown in Fig. 1.7. The
localized states create a “reservoir” for the Fermi level, so that the scenario described
at the end of Sect. 1.2.3 becomes possible.

An important question which may arise is whether the described quasi-classical
picture is applicable in the extreme quantum limit of strong fields, where Er =~
hwe. In order to clarify this point, let us consider the commutation relation for the
coordinates of the guiding center. Using definition (1.29), one finds that

(X, Y] =il3. (1.32)

Therefore, in strong magnetic field limit, [z — 0, the coordinates of the guiding
center become effectively classical. Intuitively, this can be understood by considering
the expression for magnetic length 1129 = hc/eB. The Plank constant enters this
equation in the form of the ratio to the magnetic field, thus the strong magnetic field
suppresses quantum effects. Moreover, the disorder in real samples is typically very
smooth, because the impurities are separated from the two-dimensional electron gas
plane by a distance of order of 100nm, while the magnetic length is of order of
10nm. Therefore, the semi-classical approximation is applicable.

Next important effect which needs to be explained is the high precision of the
conductance quantization. The key feature of the motion in a magnetic field, which
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Fig. 1.7 Electron density of states in a disordered sample. Left panel: The disorder leads to broad-
ening of the Landau levels. The conducting, delocalized states are present in the dashed regions
near the centers of Landau levels. The gray shadow indicates the localized states, which are more
widely spread in energy. Right panel: The positions of the corresponding states are shown in the
real space. The positions of the edge states are shown by thick black lines. The value of the Fermi
energy in this figure corresponds to the situation at a Hall plateau

is responsible for this phenomenon, is the fact that the coordinates of electrons
are proportional to their momenta (1.23). This means that the states with opposite
momenta are located at the opposite sides of a macroscopic sample. This, in turn, leads
to strongly suppressed backscattering, and as follows from the Landauer—Biittiker
formalism, to the quantization of conductance. Namely, let us consider the situation
where the Fermi level is in the mobility gap, as shown in Fig. 1.7. Only delocalized
states near the Fermi level, i.e. the states near the actual edge of a sample contribute
to the current. Each state gives a contribution to the current proportional to its group

velocity:
dk 1 OE(n, k)
I =eZ/%v(n,k) =e2/deT. (1.33)

Performing the change of variables in the above integral, we come to the conclusion
that the current is given by

Ap
I EZ/dE ezv (1.34)
= — =n—yv, .
h A h
0

where n is the number of filled Landau levels and V is the potential difference
between the two edges.

The described above picture is, of course, an idealization. According to the experi-
ment [24], there always exist some delocalized states in the bulk of a two-dimensional
electron gas, which also carry some current density. However, it is important that
scattering between the states in the bulk does not spoil the quantization of the Hall
conductance. When the Fermi level is close to the Landau level, the edge states
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Fig. 1.8 Schematic illustration of the percolation transition in random potential landscape. Left
panel: Most of the states are empty, so that the electrons fill only few “lakes” of localized states.
This is an insulating state. Middle panel: At half filling the shoreline percolates, so that the states
from opposite edges approach each other. In this state the conductance is finite because of the
strong backscattering. Right panel: Most of the states are filled, so that there are only few “dry
islands”. This state is also insulating. However, two opposite edge states contribute to a quantized
Hall conductance

percolate through the whole sample, as show in Fig. 1.8, and may approach each
other. This means that in between the Hall plateaus the backscattering is no longer
suppressed, and the longitudinal conductivity o, has a large peak, in agreement
with the experimental results. Moreover, the quantum percolation picture predicts
the scaling behavior of the length L of the “shoreline” between filled and empty
states as a function of the detuning 0 from the Landau level:

L~ 57773, (1.35)

This prediction is also in a good agreement with experiments [31].

The idea that the transitions between different Hall plateaus exhibit scaling behav-
ior has shown to be very fruitful. Namely, the theoretical studies of renormalization
group flow of the conductivity tensor demonstrate a good agreement with the exper-
imental behavior (1.16). The renormalization group flow found in these works for a
non-interacting two-dimensional system in a magnetic field and with Gaussian cor-
related disorder is shown in Fig. 1.9. The longitudinal conductivity oy, goes to zero
as the size of the system grows, while there are several fixed points at o,y = 0 and
oy = ne?/ h. This result agrees with the experimental finding that the most precise
quantization is obtained for the conductance of large samples.

It turns out that the fixed points of the renormalization group flow in quantum Hall
effect have a topological nature. To show this, we follow the ideas proposed in works
of Thouless (see Chap. 11 of Ref. [21] and references therein). Indeed, let us consider
atwo-dimensional electron gas sample with a geometry where the voltage source and
the ammeter are replaced with two fluxes, as described in Fig. 1.10. In this geometry,
the current operators are conjugated to the corresponding fluxes I; = 0H/0®;,
i = x,y, where H is the Hamiltonian of the system. Taking this into account, we
come to the conclusion that the Kubo formula for the Hall conductance reads:
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Fig. 1.9 Two-parametric renormalization group flow of the conductivity, in units of 2/, of a
non-interacting electron gas in random delta correlated potential, after Ref. [32]. The electron gas
becomes insulating in the infrared limit. The Hall conductivity in this limit takes integer values at
corresponding IR fixed points

e @(1)

Fig. 1.10 Topological arguments for the integer quantization of the Hall conductance. Left panel:
One can replace the voltage source (V) and the ammeter (A) in the classical Hall bar geometry with
the two fluxes. Then, one can use the flux @, to generate the voltage drop, and the flux ¢ to monitor
the current. The topology of two-dimensional electron gas in such gedanken setup is equivalent to
the torus with a single hole. The edge state at the edge of this hole does not contribute to the current
and can be shrank. The conductance of the two-dimensional electron gas in such setup is given by
the topological invariant (1.37). Right panel: The Corbino disk is threaded by a singular flux tube
shown in blue color. When the flux is adiabatically increased, the induced electric field leads to the
charge current shown by short red arrows. The flux quantum can be gauged away, which leads to
the conclusion that the corresponding transferred charge should be integer

OH Py OH OH Py OH

=i h(\¥, o
Gy =ih( 0|8CI>X (H — Ep)2 00, 0d, (H — Ep)? 0,

[Wo), (1.36)

where Py projects off the ground state, and E is the ground state energy. Next, we
rewrite this equation using the expression for the derivatives of the wave function,
|OWo/0®;) = Po(H — Eo)~'0H/0®;| W), given by the first order perturbation
theory, so that:
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Here we have formally integrated Eq. (1.36) in the range of one flux quantum and
divided it by ®2, since the conductance should not depend on the boundary conditions
set by ®;, if the Fermi level is inside the mobility gap. The wave function is periodic
with respect to the singular fluxes, thus |Wo)(®,, ®y) can be considered as mapping
from the torus (®,, ®,) to the complex projective space of wave functions. The
integral in (1.37) is thus the integral of the Jacobian of this mapping. Such integral is
topologically invariant and can take only integer values. Mathematically speaking,
the Hall conductance is given by the first Chern number of this mapping.

Another simple and reliable argument has been proposed by Laughlin in [33] and
developed by Halperin in [34]. Namely, they consider the Corbino disc threaded by
the singular magnetic flux tube, as shown in Fig. 1.10. When one changes the flux,
the induced electric field around the flux induces the Hall current and therefore the
charge is transferred form one edge of the disk to another:

0P
AQ =/dtl =/dtaH§ =ogAd. (1.38)

After the insertion of a flux quantum, the system should move from one eigenstate
to another, since the singular flux quantum is a pure gauge. Since the charge of an
arbitrary excitation is integer times the electron charge, we conclude that the Hall
conductance should be integer times ¢/ h.

All our considerations in this section concern the non-interacting electrons. In
real samples electrons do interact, and one may wonder about the applicability of
discussed results. However, the last two considerations, in fact, do not rely on the
absence of interactions. Indeed, as soon as the Fermi level lies in a mobility gap, and
if the ground state on a torus is non-degenerate, or only integer charged excitations
are present in the system, then at least one of these two arguments holds, and the
Hall conductance must be quantized as oy = n - €%/ h, with integer n. Therefore,
the discovery of fractional values of the Hall conductance in units of >/ h came as a
surprise. It implies, that both mentioned conditions might be broken simultaneously
in a system with strong interaction. And indeed, the minimal charge of excitations
was experimentally found to be less than electron charge in the regime of fractional
quantum Hall effect. The explanation of this striking phenomenon and other features
of the fractional quantum Hall effect are discussed in the next two sections.

1.3.2 Effective Theory

In this section we start our consideration of the fractional quantum Hall effect with
the simplest, and probably the most powerful approach to the quantum Hall physics:
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the effective theory. The main idea of this approach is to construct the low-energy
action of the quantum Hall effect from general arguments, without recurse to any
microscopic calculations, as in, e.g., the Landau—Ginzburg theory of the supercon-
ductivity. We start by considering an infinitely extended incompressible quantum
Hall liquid, and address boundary effects later. Let us assume that a quantum Hall
liquid carries a conserved current J#, where the index p = 0, 1, 2 enumerates time
and spatial coordinates. The continuity equation, J,J* = 0, may be solved by intro-
ducing potentials B,;:

JH = LeWa,,BA. (1.39)

2w

From now on, we use units where ¢ = i = 1 and adopt the Einstein summation
convention, unless specified otherwise. The current is invariant under the gauge

transformations
B, — B, +0,0. (1.40)

This means that the action for the field B;, should be also gauge-invariant with respect
to this transformation. Generally, one can therefore write

S[B] = ao/d3r6“”)‘BH8VB,\ +a1/d3r8[HBy]8[”B”] o (1.41)

By counting dimensions, it is easy to see that the first term in the above action, the
so called Chern—Simons action

So[B] = v / d*re" B0, By, (1.42)

has zero dimension. By contrast, the second, Maxwell-like term, as well as all other
possible terms not displayed in Eq. (1.41), have lower dimensions, i.e., they are
irrelevant at large distance and low energy scales. Note that the action (1.42) breaks
the time reversal symmetry, which is not prohibited for a system exposed to an
external magnetic field. It is also important to mention, that the action (1.42) is
topological, i.e., it does not depend on the metric of a manifold on which it is defined
(see Appendix F for a more detailed discussion).

Next, the interaction of the quantum Hall current with an external electromagnetic
field, described by a vector potential A, is given by the term:

1
Sil’l[[A’ B] = /d?’I’AHJN = %/dgjrAHEl“//\ayB)\- (143)

Integrating out the fields B,,, we arrive at an effective action for the electromagnetic
field in the Chern-Simons form:

1

Setr[A] = @nan

/ dre A,0,A,. (1.44)
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The average current (J#) = 6Sefr[A]/6A,, is then given by the Hall’s law:
(JMy = o™, A\, (1.45)

where oy = 1/ (872ay) is the Hall conductivity. Thus, we conclude that for an
infinitely extended quantum Hall liquid the action (1.42) correctly describes the
quantum Hall current. Already at this point we must notice, that the ground state of
topological theories is typically degenerate on compact manifolds [35], so that the
assumption made in the Thouless argument may in fact be incorrect.

Having constructed the gauge invariant low-energy action for an incompressible
quantum Hall liquid, we proceed with the analysis of the spectrum of local excitations.
It has been demonstrated [35] that all the states in the topological field theory with
the Chern—Simons action (1.42) are described by Wilson lines (see Appendix F). For
instance, an operator which annihilates a local excitation at point r and creates it at
point 7" has the following form:

r

Wy (r,r') = exp iq/dr“’BH , (1.46)

I

where ¢ is a constant. In order to demonstrate this, we note that the charge operator
Qem is given by the integral of the charge density JO = (1/2m)e"*0, B, over a
space-like region enclosed by some contour . Therefore, it may be written as the
counter integral

Oem = (1/271')/ dr"B,,. (1.47)
Y

One can show that the commutator of these two operators is given by [Qem, W, ] =
+gW, /(4may), if the v encloses only one of the two points r and r’, and it vanishes
otherwise. Therefore, the operator W, creates two local excitations with the charges
q/(@rmagp) and —q/(4mag). For the details of the derivation, see Appendix F.

Next, we note that the statistical phase 61, of two excitations (1.46) with charges
q1/(4mag) and gp/(4may), is determined by braiding the corresponding Wilson
lines, [35] and is equal to 01, = 7q1q2/4may (see Appendix F for the derivation).
We apply the constraint that the spectrum of excitations in the effective theory must
contain electrons. This means that the excitation (1.46) with unit charge has to have
the Fermi statistics. Thus we require T(drag)? /4may = mm, where m is an odd
integer. This constraint gives oy = m /4, and therefore the Hall conductivity takes
the value oy = 1/87%ag = 1/27m in units e = /i = 1, which corresponds to the
so called Laughlin series of the fractional quantum Hall effect states at filling factor
v=1/m.

Apart from an electron, which corresponds to g = m, there are also other local
excitations (1.46) with other values of g. The natural condition on the physical
excitations is that they must have a single valued wave-function, or in terms of
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Fig. 1.11 Schematic illustration of the statistics of excitations in two dimensions. The final quantum
state of three quasi-particles on the left panel can be different from the state of quasi-particles on
the right panel. This is because the trajectories on the right are topologically inequivalent to those
on the left. The consecutive application of the permutations shown here to several quasi-particles
naturally has a group structure and form the so-called braid group [36]

effective theory, an integer statistical phase with respect to electrons. In the considered
case this leads to the condition that the number g should be integer. Interestingly, the
state (1.46) with ¢ = 1 has fractional charge Q. = e/m. Therefore, the Laughlin
argument is no longer applicable. Moreover, these excitations have the so called
fractional statistics, i.e., their statistical phase is § = 7/m.

Such exotic statistics are in fact allowed only in two dimensions. This state-
ment follows from the idea that the space of quantum states is a representation of a
symmetry group of a system. An arbitrary many-body system always has the par-
ticle exchange symmetry, thus such a system in three or higher dimensions is the
representation of the permutation group [30]. In other words, the exchange of two
particles can only lead to the additional phase multiplier -1 in the wave function. In
two dimensions, however, this multiplier does not need to be only +1, since the path
of one particle going around another is not contractible (see Fig. 1.11). Therefore,
the space of states should be a representation of the so called braid group, which
is much more wider than the permutation group [36]. In spite of the fact that the
theory predicts such kind of excitations in quantum Hall systems, there is no direct
confirmation of their existence up to now.

The discussed above effective model describes quantum Hall effect at filling
factors v = 1/m only. To describe other filling factors, one needs to assume that there
are several separately conserved currents distinguished by some quantum numbers,
so that the total current is

1 3
="k = o > €9, Byy. (1.48)
« «

In the case of the integer quantum Hall effect the physical meaning of this quantum
number is obvious: it is just the Landau level number. Namely, in the low energy limit
electrons from any two Landau levels are distinguishable, and the effective theory
for v = n is described by the direct sum of n copies of action (1.42) with ag = 1/4.
In the case of complex fractions, physics of these quantum numbers is not always
clear. Nevertheless, one may consider the action of the following form:
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S[B, A] = (1/471')ZKaﬁ/d3re’w’\B(mayBﬁ)\+/d3rAﬂJ", (1.49)
af

where K, is an integer valued matrix, so that af K Q_/; = 2nopg. Finally,
the effective theory approach does not exclude the models with the non-Abelian
Chern-Simons action [37]. The excitations in such models form a non-Abelian rep-
resentation of the braid group, so that the exchange of two quasi-particles leads to
multiplication of a wave function by some finite-dimensional unitary operator. This
kind of excitations, if exist, are very useful for quantum computation applications,
however, as it has been already mentioned, they have not yet been found experimen-
tally.

We have described the effective theory of an infinitely extended quantum Hall
state. In the situation where a quantum Hall liquid at filling factor v = 1/m is
confined to a finite region D, the total effective action in the presence of an external
electromagnetic field,

1
S[A, B] = So[B] + SinlA, B] = 4—/d3re~“[2Au —i—mB#]@yB)\, (1.50)
s
D

is not gauge invariant. Namely, one can easily see that under a gauge transformation
A, - A,+0,o, B,— B,+0,0 (1.51)

the action (1.50) transforms as S[A, B] — S[A, B] + 6S[A, B] with

3S[A, B] = %/d%ﬂ”[zaﬂa +md,5]0, By
T
D

1
= / d’r2a +mpB1e™ d,b,, (1.52)
oD

where b, is the restriction of the bulk field B, to the boundary OD. A physical reason
for the gauge anomaly is the fact that in a quantum Hall liquid confined to a finite
region the bulk Hall current (1.39) is not conserved. Consequently, the electric charge
may be accumulated at the edge of the system.

In order to restore the gauge invariance of the effective theory, we take into account
the boundary degrees of freedom. It is easy to see that the simplest boundary action

S[61= 1 / &r [DidDyd — h(Dy) + b, 0,0] . (153)
oD

where the coordinate x parameterizes the boundary, cancels the gauge anomaly
(1.52), if one assumes that the edge field ¢ transforms as
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o= d—Q2/ma— 0, (1.54)

and the covariant derivative is given by the expression
D,¢ = 0,0+ (2/m)a, + b,. (1.55)

Note that the commutation relations for the field ¢(x) are determined by the first
term in the canonical action (1.53):

,
[0c6(x), p(3)] = %6@ — ). (1.56)

However, the precise form of the boundary Hamiltonian density (m/4m)h(Dy ) is
not fixed by the effective theory. The only requirement is that the Hamiltonian density
should be a positive definite function of Dy¢. The simplest possible expression
h = v(Dy ¢)2, justified in the case of smooth confining potentials at the boundaries,
gives the Hamiltonian

H= @/dx(l)xqs)z, (1.57)
4

and leads to the chiral edge dynamics with a linear dispersion law, as it follows from
the equation of motion. Finally, the expression for the charge density at the edge of
a quantum Hall system may be found by evaluating the derivative p = —JS/da, of
the total action with respect to the boundary field. The result reads:

1
p=5-Dso. (1.58)
T

Next, we analyze the spectrum of local excitations at the edge. It is natural to
assume that such excitation may be created by the local operator (1.46) with the
Wilson line starting and terminating at the boundary 0D of the quantum Hall system.
Note, however, that this operator is not gauge invariant. Similarly to the situation with
the gauge anomaly in the action S[A, B], this problem can be fixed by taking into
account the edge degrees of freedom. In particular, the gauge invariant operator that
creates a Laughlin quasi-particle and quasi-hole at the edge of a quantum Hall system
may be written as

3
Wi(&, &) exp i/m/ dar'A, | = ¢ ?™ exp i/ drt [Bu + %Au:| eI
¢ ¢

(1.59)
where the one-dimensional coordinates x and x’, and two-dimensional coordinates £
and ¢ are the different parameterizations of the boundary 9 D. The gauge invariance
of the operator (1.59) may be checked by directly applying the transformations (1.51)
and (1.54).
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We are particularly interested in the situation where the operator (1.59) describes
tunneling of a Lauglin quasi-particle. In this case, the tunneling points £ and &', are
very close to each other: ¢ — &'. Then the integrals in the operator (1.59) vanish,
and denoting the resulting tunneling operator with .A; »(&), we write:

Al = /W7o, (1.60)

The operator (1.60) creates a pair of local charges at the boundary 0D of the value
1/m and —1/m, which may be checked by evaluating the commutator of this operator
with the charge density operator (1.58) with the help of Eq. (1.56). It then becomes
obvious, that an electron annihilation operator at the edge can be written as

Yel(x) = explim¢(x)]. (1.61)

This operator has the charge 1 and the fermionic statistical phase.

Finally, it is instructive to write down the oscillator mode expansion for the edge
field ¢. Considering, for a moment, a single edge, we denote its length by W, choose
the gauge A, = B, = 0, and apply periodic boundary conditions on the field to
arrive at the expression:

G(x) = —pn/m+2nNx/W + >,/ Z—;/ [akeikx + a,je*”“] : (1.62)

k>0

where the creation and annihilation operators for plasmon modes satisfy the com-
mutation relations [ag, aZ,] = (1/m)é, and zero modes satisfy [N, e!¥¥] = ¢!9N
Substituting this expansion into the edge Hamiltonian (1.57), we arrive at the
expression
H =mvmN*/W +m Yy vkaja. (1.63)
k>0

Thus we conclude, that the edge Hamiltonian describes chiral edge plasmon modes
with the linear dispersion. The effective model of the edge states with the Hamiltonian
(1.63), also referred to as the chiral conformal field theory, successfully describes
several recent experiments (see, e.g., Ref.[38]). Equation (1.61) withm = 1isnothing
but the main equation of the bosonoization theory, discussed in details in Chap. 2 of
this thesis. This equation provides a connection between the effective theory and the
single particle approach. We will also show in what follows, that the effective theory
is a sort of the “meeting point” of several theoretical approaches to quantum Hall
effect. Again, one may introduce several edge fields to describe complex fractions.
The general classification of multi-field models is more complicated than in the bulk
case. It is discussed in detail in Chap. 6.
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1.3.3 Microscopic Approach

The effective theory of the quantum Hall effect agrees well with the single particle
description of the integer quantum Hall effect and provides a consistent picture of
the fractional quantum Hall effect. However, some microscopic considerations are
needed to understand the nature of the ground state degeneracy and of the fractional
charge arising in the context of the effective models. Moreover, it is important to find
the physics of the new gap, which leads to the fractional quantization of conductance.
Some works on the renormalization group flow of conductivity (see, e.g., Ref.[39])
suggest that the interaction leads to additional fixed points. In order to understand
their nature we will use the variational function method, also referred to as the
microscopic approach. Within this method, it is more convenient to use the axial
gauge for a homogeneous magnetic field,

1 1
Ax = —EBy, Ay = EB}C, (164)

and to introduce complex coordinates z = x + iy in the xy plane of the two-
dimensional electron gas. In this gauge and using these coordinates, the single
electron Schrodinger equation may be written as

hwe 205, 121 = _ -
S| —4300+ 5 +20 70 |4 D) = B, D), (1.65)
B

where O is a short notation for 0/0z. Next, one can introduce operators
a = \/5(8 + z/4) and b = ﬁ(é + z/4), which form two canonical pairs, so
that [at, a] = [bT, b] = 1, while all other commutators are zero. In terms of these
operators, the Hamiltonian of the electron in magnetic field is equivalent to the
Hamiltonian of a degenerate oscillator:

H = hw(a'a+1)2). (1.66)

The ground state wave function y(z, z) is fixed by the conditions a|igy) =
blip) = 0. The solution of these equations is given by v (z, 7) = exp[—|z|2/4l%],
thus one concludes that the wave functions

Umn(z,2) = @)™ (b expl—|z|?/413] (1.67)

are the eigenfunctions of Eq. (1.65). Here the quantum number n is the Landau
level number, and the number m is the eigenvalue of the angular momentum L =
h(z0 — 25) = ha'a — b'D) along the axis perpendicular to the two-dimensional
electron gas plane. This operator commutes with the Hamiltonian, thus one obtains:

Lipm (2, 2) = hmihy n(z, 2). (1.68)
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It is important to note, that the lowest Landau level states are given by 1, 0(z, 2) =
7" exp[—|z|? /41%]. In other words, any wave function on the lowest Landau level
can be written as:

¥(z,7) = f(2) expl—Iz|*/4l3], (1.69)

where f(z) is a purely analytic function of the complex coordinate z.

Let us first consider a ground state of a system of N noninteracting electrons. In
the absence of the disorder, the ground state is degenerate, since electrons can occupy
states with arbitrary angular momenta. But if one assumes a very weak potential with
a minimum at the origin, then the electrons will preferably occupy the states with
lower angular momenta. The ground state is then given by the Slater determinant of
corresponding states from the lowest Landau level:

1z; ...Z{V_l
1Z2 ...Z2 N |Z

e P 1 € 3
lzy ... Z%l

The determinant on the right hand side of the above equation is nothing but a
Vandermonde determinant, and the wave function of N electrons can be rewritten

as: N N |Z-|2
Wizt o) = [ J@ —zpexp [—Z?] (1.71)
i B

i<j

Note that this wave function vanishes if an arbitrary pair of electrons has same
coordinates, as it should be for fermions.

The electron density in the state described by Eq. (1.70) can be calculated as the
sum of single-particle contributions:

N-1 |2m |Z|2
PR =D [n() = 12 z T [‘W] (1.72)
m=0

The sum on the right hand side of the above equation is simply the first N terms of
the Taylor expansion of exp[—|z|? /2! 129]. Therefore, the density is constant and equal
tol/ 27‘(‘[]29 in the bulk of the quantum Hall droplet and exponentially decays at the
edge, as shown in Fig. 1.12. Note, that this state is incompressible, since it costs a
cyclotron gap to add an electron in the bulk of a droplet.

Next, we proceed with the construction of a variational wave function for inter-
acting electrons. We start with the quantum problem of motion of two interacting
electrons in the magnetic field. Moreover, we would like to constrain them to the low-
est Landau level. The wave functions in the case of an axially symmetric interaction
potential V (|z1 — z2|) should be an eigenfunction of the relative angular momentum.
As we have seen above, at the lowest Landau level, the angular behavior determines
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Fig. 1.12 Density of electrons in an axially symmetric quantum Hall droplet in units of the density
1/ 27Tl§ of the fully filled Landau level is plotted as a function of the distance from center in units
of the magnetic length /. Blue, solid curve is the density profile for the state (1.70) describing the
filling factor v = 1 state. Red, dashed curve is the density profile for the state (1.75) describing the
filling factor » = 1/3 state. Note slight variations of the density and the overshoot at the edge

the radial behavior as well. Therefore, the wave functions of two electrons

lzil 1zl

, (1.73)
413

W (21, 22) = (21 — 22)™ (21 + 22)M exp

where m is the relative angular momentum and M is the center of mass momentum,
are the eigenfunctions for an arbitrary interaction potential, once we neglect mixing
of Landau levels. Only the corresponding eigenvalues

_ (mM|V|mM) (1.74)
T (mM|mM) '

Um
referred to as Haldane pseudo-potentials [40], will be different for different interac-
tion potentials. The discrete energy spectrum (1.74) is obtained here for the repulsive
interaction due to the presence of the homogeneous magnetic field. Intuitively this
can be viewed as two electrons orbiting around each other so that the repulsion force
is balanced by the Lorentz force.

Now we proceed with the analysis of the variational N-electron wave function
proposed by Laughlin [41]:

N

|zi
U (z1,...,2N) = H(Zi —2z;)"exp —Z :

2
4l

|2
(1.75)

i<j i



1.3 Theoretical Approaches to Quantum Hall Effect 27

The fermion statistics of electrons requires the number m to be odd integer. Atm equal
to one, this function coincides with the Slater determinant (1.70). For larger values
of m, wave function (1.75) as a function of coordinates of each pair of electrons has
a zero of order m, which helps to reduce the Coulomb energy. In order to understand
why this wave function is a good approximation, let us write down the electron

interaction potential as
V=22 vwPuip). (176)

m' i<j

where v, are the Haldane pseudo-potentials and P, (ij) is the projector on the
state with relative angular momentum m’ for particles with numbers i and j. If we
assume that all pseudo-potentials v,,, = 0 for m’ > m, then the wave function (1.75)
is an exact eigenfunction of (1.76) with zero energy. This is because the relative
angular momentum of each pair of electrons in the state (1.75) is at least equal
to m. Moreover, since the angular momentum takes integer values, this state has a
gap. Indeed, an excitation in the state with m = 3 forces at least one pair of electrons
to have the relative angular momentum 1, which costs energy of the order of v;.

The Haldane pseudo-potentials for the long-range Coulomb potential are non zero,
of course, they decay with m. Nevertheless, the numerical simulations show, that the
Laughlin variational wave function (1.75) has a very large overlap with the true
ground state of the system [41]. Moreover, the state (1.75) is adiabatically connected
to the true ground state, i.e., when one adiabatically switches off all higher-order
pseudo-potentials the gap never closes. Thus we conclude that the wave function
(1.75) is indeed a good approximation. Importantly, the Laughlin wave function is
m-fold degenerate on a torus [42], which confirms the effective theory result.

In the next step, we consider local excitations of the ground state (1.75). In order to
create a local excitation, one can pinch the state (1.75) with a singular flux at the origin
and increase the value of the flux from zero to the flux quantum. The flux quantum is
apure gauge, therefore, the system must arrive at an eigenstate. The exact behavior of
the wave function is complex and is difficult to describe. However, far away from the
flux, every single electron eigenstate shifts as ¥, 0(2, 2) = ¥m+1,0(z, 7). Using this
simple argument, Laughlin has proposed in Ref.[41] the following wave function
for a quasi-particle localized at the point &:

N
Wan(zr, v ©) = [ [€ =20 Wetar, ., 2n) (1.77)

For the filling factor v = 1, i.e., for m = 1, this state is nothing but the state (1.70)
with an electron annihilated at the point £. For higher values of m, the state (1.77)
might be considered as an eigenstate of the model with finite number of non-zero
pseudo-potentials. Numerical calculations show that this state is also very close to a
real eigenstate for a system with the Coulomb interaction [41].

In order to find the electron density in this state for the case of m # 1, we use
the so-called classical plasma analogy [41] (for the details, see the discussion in
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Sect. 8.3.1). The main idea of this approach is to rewrite the density of electrons in
the state (1.77) as the density of the classical two-dimensional Coulomb gas:

pe(z) = /d221 o dPzy D@ = ) Wan (1 e 2N O

= /dzm c.d*zy 262(1 —zi)e "En (1.78)
i

where m plays a role of the inverse temperature, and the energy is given by the
following expression

lzi)* 1
Ep=-> In|z —z,|2+2[2 112 — Iz —£|2]. (1.79)

l<J

The first term describes the Coulomb repulsion of fictitious two-dimensional parti-
cles, the second term describes ahomogeneous neutralizing background, and the third
term is an external charge at the point £. It is well known, that the two-dimensional
Coulomb plasma has a uniform density in the bulk equal to the background density
p=(1/4m)-Alz |2/2ml%3 = (1/m)-1/2xl%, so that the filling factor for the function
(1.75) is, naturally, v = 1/m. Importantly, the two-dimensional plasma screens the
charge of an additional particle at the Debye length [, thus there is a local deep in
the density at this point with the total charge e/m. Intuitively, on the classical level
this state can be understood as a vortex in the electron liquid. It is stable, because
the Coulomb forces, which tend to shrink the hole, are balanced by the Lorentz
force. The existence of such stable fractionally charged excitations again confirms
the results of the effective theory.

Moreover, one can show that the excitations (1.77) obey fractional statistics. In
order to do so, let us calculate the Berry phase for the situation where one quasi-hole
is moved around the other along a contour I, as illustrated in Fig. 1.13:

fds (Wan (€. )

r

1
Z}{d§<“l’qh(§v f/)|ZE|‘I’qh(f»f/))~ (1.80)

r

8EI‘Ith(f &)

Here we calculated the derivative using Eq.(1.77). Next, rewriting the right hand
side of the above equation in terms of the electron density, we get:

]{dg/dz pegtt) (Z) — o /dzng(z), (1.81)

D
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Fig. 1.13 Tllustration of the

calculation of the Berry phase

in Eqgs.(1.80) and (1.81).

The quasi-hole at point £ is

adiabatically moved along the

contour I" with the help of,

e.g., auxiliary “box” potential.

The second quasi-hole is

placed at the point £’. The Q
resulting phase is proportional 13
to the total charge in the region r
D enclosed by the contour I'

where p¢ ¢/(z) is the electron density in the state with quasi-holes at points § and
&', and D is the region enclosed by the contour I'. The integral in (1.81) has two
contributions: the contribution from the homogeneous density 27 B - area(D)/m®
corresponding to the Aharonov—Bohm phase, and the contribution from the quasi-
hole 27/m corresponding to the statistical phase, in agreement with the effective
theory.

Until now, we have not discussed the conductivity of the state (1.75). It is indeed
equal to (1/m)e?/ h, since the state (1.75) is translationary invariant in thermody-
namic limit, and its conductivity is determined only by its density. The situation in
the presence of a disorder and bounding potential is similar to the situation in the
integer quantum Hall effect regime. The only difference is that now the quasi-holes
are localized around the hills of the potential landscape, providing a reservoir for
the Fermi level and thereby supporting the plateaus of finite width. One cannot use
directly the percolation picture, as in integer quantum Hall effect, to explain the peaks
in longitudinal conductance, since the wave function (1.75) is not a Slater determi-
nant. Alternatively, one can argue that the islands occupied by localized quasi-holes
and quasi-particles grow if the filling factor detunes from v = 1/m, and tunneling
between these islands leads to non-zero longitudinal conductivity.

In particular, let us consider the transition between v = 1 and v = 1/3 plateaus.
As magnetic field increases, the density of states grows, and electrons condense in the
valleys of the potential landscape. At some point the Coulomb repulsion overcomes
the impurity potential so that a correlated state, given by (1.75) withm = 3, becomes
energetically favorable, even if some quasi-particles are localized in the valleys, as
illustrated in Fig. 1.14. This is possible only in quite clean samples, where the impurity
potential is not too strong. The same situation arises at the values of the magnetic
field corresponding to partially filled higher Landau levels, so that there also exist
plateaus at v = 4/3,7/3, etc.

The above considerations explain the appearance of a new gapped state with
fractionally charged excitations only for specific fractional values of the filling factor,
such as v = 1/m, while the experiments show Hall plateaus at several other values.
In order to explain these other plateaus, Bert Halperin proposed the idea that if the
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Fig. 1.14 Schematic illustration of the transition between integer quantum Hall effect at filling
factor v = 1 and fractional quantum Hall effect at v = 1/3 in the presence of the disorder potential.
Left panel: In strong magnetic fields electrons occupy all the states in the valleys of the potential
landscape, i.e., they form lakes described by the functions similar to (1.70). Right panel: At even
stronger magnetic fields, the magnetic length Ip ~ 1/ VB becomes very small and the Coulomb
energy starts to dominate. It is then energetically favorable for electrons to form the Laughlin state
(1.75) with the three times smaller density. However, some quasi-particles occupy states in the
valleys. Note that the state (1.75) is not a Slater determinant, and the picture in the right panel is
very schematic

density of quasi-holes is large enough they also condense in a Laughlin type state
(see Chap.7 of Ref. [43]). To understand this situation it is useful to introduce the
so-called quasi-particle representation of the wave function:

_[T1n EIRY u o TT 4
)= [ TTgew (- 5 )o@ o [[@ - a0 [T
1

2
4mljy I<k I
(1.82)
Then, numerical calculations show that the Schrodinger equation for the “wave func-
tion” (&1, ..., &) of quasi-holes is very similar to the Schrodinger equation for

electrons in the perpendicular magnetic field of some effective value, provided one
has chosen o = 1/m. Thus, one can conclude that the wave function with the quasi-
particle representation

1
2
4mly

M
&) =[G — &> exp| -

k<l

M
> lal? (1.83)
1

should be a good approximation for the eigenstate. Repeating this procedure several
times we obtain the so called hierarchic construction. This construction explains the
appearance of the Hall plateaus at complex filling fractions. Note, that one can relate
several sorts of quasi-particles in this construction with several separately conserved
currents in the effective models, thus clarifying the nature of these currents. Finally,
we would like to note that higher levels of the hierarchy can be energetically favorable
only in very clean samples, where the Hall plateaus are narrow. Thus, in the limit of
a very clean sample one restores the picture with which we have started at the end
of Sect. 1.2.3, namely, the linear dependence of the Hall resistance on the magnetic
field.
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Microscopic approach also clarifies the nature of gapless boundary degrees of
freedom predicted by the effective theory. Namely, we have shown that all the quan-
tum Hall effect states are incompressible. On the other hand, the edge deformations of
an incompressible liquid of finite area should be gapless. In other words, these edge
degrees of freedom are the quantum analogs of the edge magneto-plasmons in clas-
sical physics. These excitations have the same properties for integer and fractional
quantum Hall states, and as we show below in Chaps. 3 and 5, they present a more
natural language for the description of edge physics than the single particle edge
states. In the end, we note the edge physics might be quite complicated because of
the edge reconstruction phenomenon, the presence of neutral hydrodynamic modes,
etc. However, these phenomena are not considered in the present thesis, since they
seem to be irrelevant for understanding of the existing low-energy mesoscopic exper-
iments. Moreover, we have not addressed several interesting topics in the quantum
Hall effect theory in this introduction, because we concentrate on the basic ideas
important for the problems considered in the thesis.

1.4 Quantum Hall Effect at Mesoscopic Scales

In the previous sections, we have described the basic physics of the quantum Hall
effect in the bulk and at the edge of a sample and discussed earlier experimental
observations. The recent progress in the fabrication of semiconductor heterostruc-
tures at mesoscopic scale has made it possible to realize more complex experiments,
which utilize and study the quantum Hall edge states. In what follows, we describe
these experiments in some detail.

1.4.1 Mesoscopic Systems Utilizing Edge States

The quantum Hall edge states have several exciting properties which make them
interesting objects for experimental investigation. Namely, they are almost an ideal
realization of one-dimensional electron wave guides. This fact has led to the emer-
gence of a new branch in the experimental mesoscopic physics dubbed as electron
optics. This name is connected to the fact that the electrons in quantum Hall edge
states are similar to photons, namely, they have the following properties:

e chirality: electrons propagate unidirectionally, similar to photons;

e controlled backscattering: although there is no intrinsic backscattering along the
quantum Hall edge, it may be realized by bringing two edge states of opposite
chirality close to each other, thereby constructing a semi-transparent beam splitter.

However, there are also important differences between the quantum Hall edge states
and photons:

e fermion statistics: electrons are fermions in contrast to photons which are bosons;
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Fig. 1.15 Fabry—Perot, Mach—Zehnder, and Hanburry-Brown-Twiss electronic interferometers
are schematically shown. Left panel: The Fabry—Perot interferometer is the easiest interferometer
to fabricate. It contains two counter-propagating edge states connected by quantum point contacts
which serve as beam splitters, shown in red color. Middle panel: The Mach—Zehnder interferometer
is the true two-path interferometer. Details of its fabrication are discussed below. Right panel:
The Hanbury-Brown—Twiss interferometer allows to observe the two-particle coherent effects for
electrons originating from two independent sources

e non-zero charge: electrically charged electron are strongly interacting particles, in
contrast to photons which do not interact in a trivial way.

Such similarities on the one hand and differences on the other hand attract a great
attention of both experimentalists and theoreticians, searching for a new physics.

Most of the modern experiments on quantum Hall edge states are focused on
exploring of their mesoscopic properties. The first important process which deserves
a special attention is dephasing. Namely, one may study the value of the corre-
sponding length scale and its dependence on the temperature, applied voltage bias,
etc. In addition, one may study different sources of dephasing such as interactions,
external noise, etc. Another interesting process which occurs at mesoscopic scale is
the equilibration of edge states. Namely, one may investigate the main mechanisms
of equilibration, the characteristic length scales, etc. The processes of dephasing are
studied with the help of various types of interferometers (see Fig. 1.15). The simplest
interferometer to fabricate is the Fabry—Perot interferometer [44]. It has, however,
some drawbacks, such as additional side effects masking interesting physics, e.g.,
multiple reflections effects and the Coulomb blockade effect. An ideal two-path
interferometer which is free from these effects is the Mach—Zehnder interferometer
[45]. In addition, one may study the many-particle interference effects in a more
complex Hanburry-Brown—Twiss interferometers [46]. The idea of using this type of
interferometers for the investigation of the two-particle Aharonov—Bohm effect has
been proposed in [47] and realized recently in [48] with the help of quantum Hall
edge states.

Let us illustrate the principles of electronic interferometry with the example of
the Mach—Zehnder interferometer. The idea of the electronic Mach—Zehnder inter-
ferometer is the same in all recent experiments [5, 49-54]. The region of the sample,
where the two-dimensional electron gas is present, is topologically equivalent to so
called Corbino disk (see Fig.1.16). There are at least two Ohmic contacts: one is
grounded, and the second is biased by the potential difference Ap. The current /
is detected at one of the Ohmic contacts. In fact, experiments that we discuss have
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Fig. 1.16 The electron micro-photograph of the Mach—Zehnder interferometer fabricated in the
University of Basel [53, 54]. The electron gas is confined to the etched region which is topologically
equivalent to the Corbino disk. The inner Omic contact S2/D4 is connected to the measurement
circuit with the help of a metallic air bridge. Two air bridges are also used to apply negative potential
to the two quantum point contacts marked as QPC A and QPC B. The electron wave packets are split
at the QPC A into coherent superposition of two packets which go either along one edge or another
one, which are marked by the yellow and brown lines. These two paths enclose the magnetic flux,
which can be varied by applying a negative voltage to the modulation gate marked as MG. After
Ref. [53]

used several Ohmic contacts for the convenience of the measurement, although only
two contacts are required for the realization of Mach—Zehnder interferometer. Two
quantum point contacts play a role of beam splitters which mix outer edge channels
(thin blue line in Fig. 1.17). The inner channels (black line in Fig. 1.17) are always
reflected from quantum point contacts.

Typically, the transparencies of two quantum point contacts were varied between
Tp = 0and T; = 1, £ = L, R. However, the most interesting physics has been
observed in two limits: in the regimes of weak tunneling 7y — 0 and of weak
backscattering 7, — 1. In the first regime one of the outer channels is biased (upper
channel in Fig. 1.17) and almost completely reflected at the first quantum point con-
tact. Then it runs on the same (upper) part of the Corbino disk. The channel that
originates from the second (lower) Ohmic contact is grounded. In the second regime
(shown in Fig. 1.17 as example) the biased channels are almost fully transmitted at
the first quantum point contact to the opposite (lower) part of the Corbino disk. The
physical consequences of the difference between these two regimes will be discussed
later in Sect. 3.4.

Two Ohmic contacts are connected solely via scattering at two quantum point con-
tacts. Consequently, there are two paths between Ohmic contacts, which contribute
to the total current /. The first path is reflected at the right quantum point contact
and transmitted at the left one, while it is the other way around for the second path.
It is easy to see that two paths enclose a loop with the nonzero magnetic flux. The
Aharonov—Bohm phase associated with it may be changed either by varying slightly
the strength of the magnetic field, or by varying the length of one of the paths with the
help of the modulation gate placed near the corresponding arm of the interferometer.

According to the frequently used single-particle picture [4], the electron edge
states propagate as plane waves with the group velocity vr at Fermi level. They are
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Fig. 1.17 The Mach—Zehnder interferometer is schematically shown as a Corbino disk which
contains the two-dimensional electron gas. In strong magnetic field at filling factor » = 2 two chiral
one-dimensional channels are formed and propagate along the edge of two-dimensional electron
gas. Inner channels (black line) are always reflected from both quantum point contacts, while outer
channels (blue line) are mixed by quantum point contacts. Bias Ay applied to the upper Ohmic
contact causes the current / to flow to the lower Ohmic contact. This current is due to scattering at
quantum point contacts and contains the interference contribution sensitive to the magnetic flux ¢
and leading to Aharonov—Bohm oscillations. After Ref. [38]. © American Physical Society

transmitted through the Mach—Zehnder interferometer (see Fig. 1.17) at the left and
right quantum point contacts with amplitudes #; and tg, respectively. In the case
of low transmission, two amplitudes add so that the total transmission probability
oscillates as a function of the Aharonov—Bohm phase ¢ap and bias A pi.. The visibility
of the oscillations of the differential conductance G = dI/d Ay is defined as

_ gmax - gmin

= . 1.84
gmax + gmin ( )

Vg
Then the Landauer—Biittiker formula [S5] applied to the differential conductance
gives the following result for the visibility and the Aharonov—Bohm phase shift:

2|1L1R]

Vg = —5—
EARRTHENNTAE

AL
Appp = ;AM, (1.85)

where AL is the length difference between two paths of the Mach—Zehnder interfer-
ometer. Thus we arrive at the result that in the absence of interaction the visibility is
independent of bias, while phase shift grows linearly with bias.

1.4.2 Formulation of Problems and Outline

The first experiments with Mach—Zehnder interferometers brought completely unex-
pected results. The most remarkable observation made in experiments [5, 49-54] is



1.4 Quantum Hall Effect at Mesoscopic Scales 35

__ 60
=
< 40 i -
£ ik
v | SRR o T T .
0 # 'S VF
= 0 W s _.3". ', \"“\—_
2 . = = -
L4 -
::‘g o -y s et d
o . " 5
- ,\'h’. ity

Source DC Bias (uV)

Fig.1.18 Experimental results for the dependence of the visibility and phase shift of the Aharonov—
Bohm oscillations on the voltage bias obtained in Ref. [5] using lock-in technique at the filling
factor v = 2. Note the lobe type pattern of the visibility with respect to the bias and the phase jumps
on 7 at zeros of the visibility. Reprinted figure with permission from [5]. © American Physical
Society 2006

that the simple single-particle picture of edge states described in the previous section
fails to correctly describe the Aharonov—Bohm effect in Mach—Zehnder interfer-
ometers. Essentially, the results can be summarized as following: The visibility of
Aharonov—Bohm oscillations is not constant, but rather strongly depends on bias
Ap. It oscillates, showing a new energy scale, and may vanish at specific values of
bias (see Fig.1.18). Although this behavior is observed in subsequent experiments,
the details are different and very important for understanding the underlying physics.
Therefore, we group these observations according to specific important features of
the experimental set-up, and describe them in detail in Chap. 3. There are only few
experiments on the equilibration of edge states yet, but they have already shown
unexpected results. Namely, it has been found that at filling factor v = 2 the equi-
libration length is very short, and the measured energy flux along the edge is lower
that the naive theoretical bound [6, 7].

Besides mentioned above unexpected experimental results, there are purely the-
oretical problems concerning the physics of edge states. One of them is that
the effective theory allows several models for each complex fraction, e.g., for
v = 2/3,2/5,3/7, etc. At the same time, no experimental ways to discriminate
these models have been proposed. Moreover, there are no general theoretical argu-
ments that allow to choose a specific model. Another theoretical problem is related
to the so called Byers—Yang paradox. Its formulation is very simple: The exis-
tence of fractionally charged quasi-particles naively leads to the Aharonov—Bohm
oscillations with periods larger than the flux quantum. On the other hand, the micro-
scopic Hamiltonian is invariant under the insertion of the singular flux quantum.
There have been earlier attempts to resolve this paradox, but all of them rely on
assumptions which require further justifications (see Chap. 8).

These unexpected and intriguing experimental results together with existing theo-
retical problems became a subject of further extensive investigations. A part of these
investigations forms the basis of this thesis. All the material presented in the thesis
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is split in two parts. First part is devoted to the study of the mesoscopic effects in the
integer quantum Hall effect. Namely, in this part we:

e develop a new theoretical approach to one-dimensional interacting systems: the
non-equilibrium bosonization technique. We describe it in Chap. 2 and then apply
this technique to several situations discussed in the following chapters;

e explain in Chaps.3 and 4 all the unexpected results of experiments on dephasing
in Mach—Zehnder interferometers with the help of a single model;

e make predictions for the temperature dependence of dephasing length in Chap. 3
and for the equilibration length scales in Chap. 5. We also investigate the dephasing
of quantum Hall edge states due to coupling to external noise in Chap. 4 and predict
the noise induced phase transition.

In the second part we generalize the ideas of the previous part to address the
fractional quantum Hall effect and study the specific features of the fractional states.
Namely, in the second part we:

e develop, in Chap. 6, the classification of effective edge models in terms of the
plasmon modes which is based on the results of the previous part;

e propose an experiment, in Chap.7, which allows to distinguish possible effective
models for complex fractions using edge state interferometry;

e provide explicit derivation of the effective theory from the microscopic approach
in the case of a non-trivial topology and thus resolve the Byers—Yang paradox; see
Chap. 8.

Finally, the detailed summary together with a discussion of the obtained results for
both parts is provided in Chap.9.
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Part 1
Integer Quantum Hall Effect



Chapter 2
Equilibrium and Non-Equilibrium Bosonization

In this chapter we consider one of the most important theoretical methods in
one-dimensional physics—the bosonization approach. This method allows one to
exactly diagonalize the Hamiltonian of interacting fermions [1, 2]. The main result
of this method is that the excitation spectrum of such a system in one-dimension
consist of gapless boson modes, in striking contrast with the Fermi liquid picture.
This is because the restricted dimensions enhance the scattering between the elec-
trons and completely destroy the quasi-particle picture in one dimension. We start
with the basic introduction to the bosonization approach in Sect.2.1. Then we com-
pute the equilibrium correlation functions of interacting fermions in the framework
of this approach. Finally, in Sect.2.3 we generalize the bosonization technique to
the non-equilibrium situation and introduce a new method—the non-equilibrium
bosonization, which will be used in several chapters of this thesis.

2.1 Bosonization of One-Dimensional Fermions

2.1.1 One-Dimensional Interacting Systems

Let us consider a system of one-dimensional fermions. These can be electrons in
quantum wires, quantum Hall edge states, etc. Here we would like to introduce a
general approach, where one considers n one-dimensional channels of either same or
different chiralities. In the case of integer quantum Hall effect,  edge states have the
same chirality, while in fractional Hall states some one-dimensional channels might
have opposite chiralities. Let us denote the operator of annihilation of an electron in
a state with wave vector k in ath channel as cg,,. These operators obey the fermionic

Some text sections in this chapter are reproduced from Phys. Rev. B 78, 045322 (2008), Phys.
Rev. Lett. 103, 036801 (2009), © American Physical Society.

I. Levkivskyi, Mesoscopic Quantum Hall Effect, Springer Theses, 41
DOLI: 10.1007/978-3-642-30499-6_2, © Springer-Verlag Berlin Heidelberg 2012
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E E

k

Fig. 2.1 Illustration of the linearization of spectrum of one-dimensional electrons. Left panel shows
the spectrum of electrons in quantum wires. The electrons with energies near the Fermi energy Er
give a contribution to transport. Thus, one can linearize the actual spectrum (black curve) and replace
it with two branches (red, straight lines) of left and right moving chiral electrons with the same
Fermi velocity. Right panel shows the situation at the edge of a two-dimensional electron gas in the
regime of integer quantum Hall effect. Here the Fermi surface is located near the actual edge of the
sample. Different branches correspond to different Landau levels.The spectrum can be linearized in
this case too, and one obtains several channels of the same chirality. Note that the Fermi velocities
are generally different in the case of integer quantum Hall effect (Color figure online)

anti-commutation relations, i.e.,

{e] ., cwp) = Gwdags 2.1)

while all other anti-commutators are zero. The free single-particle Hamiltonian can
be written as:

A
Ho=> D €raCloChar 2.2)

o k=—A

where ¢, are single-particle energies (see Fig.2.1), and we introduced an ultraviolet
cut-off A. If one is interested in low energy physics, such as a transport through the
system, then one may choose A < Er and linearize the spectrum of fermions, so
that ez, = vrqk, where the wave vector in each channel is defined with respect to
the corresponding Fermi wave vector. For convenience, we also redefine the index
a so that it enumerates the Fermi points, for example, the left and right movers in a
quantum wire, referred as two different channels.

Next, we would like to introduce the set of fermion field operators in each channel
as follows:

Yo (x) = «/LW Zk: ckae’™, (2.3)

where W is the length of the system. These operators obey the standard anti-
commutation relations {1/12 (x), g(y)} = 0apd(x — y), and the free Hamiltonian
(2.2) can be written in terms of these operators as following:

Ho=—i Y vra / dx il (1) Dt (). 2.4)
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A naive definition of the charge density operator at a point x in terms of the fermion
field is po(x) = z/;l (x)¥q (x). However, such definition leads to the divergent result
for the ground state density:

(pa)) = (/W) D" " F 0] cpa) = 1/ W) D (efacka). (25

kK k
This result is partly an artifact of the introduced linearization, but in the case of
quantum Hall effect it has a physical meaning. Namely, there is no preferred choice
of minimal momentum, starting from which we attribute a state to the edge and not

to the bulk. Fortunately, this divergent contribution is constant. Therefore, we define
the edge density operator where this divergent constant is subtracted:

Pa(X) = 198 (N)ha () = ) ()Ya (x) — (W] ()P0 (X)) (2.6)

One can check that the fermion operator annihilates a unit local charge:

[tha (x), pg(N)] = baptba(X)d(x — y). 2.7)

Finally, we would like to take into account the fact that electrons interact with each
other. In general, the interaction Hamiltonian is a functional of the density H =
Ho + Hint[pa(x)]. Here we will consider only the case of (screened) Coulomb
interaction, so that:

Hin = / / dxdyUns(x — y)pa()p3(0), 2.8)

where U,g(x — ) is the Coulomb interaction potential.

2.1.2 Bosonic Fields and Hamiltonian

In this section we would like to introduce and investigate the Fourier modes of the
density field which are defined as following,

Pra = (I/W)/dxeikxpa(x) =(1/W) Dl ipachar k #0, (2.9)
k/
and the zero mode operator:

Ta = (I/W)/Pa(x)d% (2.10)

representing the homogeneous part of the charge density. One can check the relation
P—ka = p,ta, which follows from the fact that the density field is real. Importantly,
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the operators (2.9) have bosonic nature, namely, one can check that the commutators
of two such operators are zero:

(pras Pl =0, k # —k'. (2.11)

However, for the case k' = —k and o = (3 the above commutator is ill defined
if the summation in the definition (2.9) goes up to infinity. The expression for this
commutator can be written in terms of the occupation number operators ng, =

i .
CraCkat

[Pka» p—k(y] = (]/Wz)[ Z (”k’*k,a - nk’w) + Z (”k’*k,a - nk’u)]' (212)

kK'<—A K>—A

If we assume, that all the states below the cut-off are always filled, then we can shift
the summation variable in the second sum and get

k

_ 2.13
2nW ( )

[Pk p—kal =

where we have taken into account the quantization of the wave vector Ak =27/ W,
and the sign stays for the chirality of the corresponding channel. This anomalous
commutator will be important in Chap. 6 for the connection between the bulk and the
edge effective theories in the classification of the edge model of fractional quantum
Hall effect. Here we only note, that this commutation relation completes the canonical
bosonization of the density operators.

The most important step in the bosonization procedure is to express the fermion
fields in terms of the density fields [1, 3]. Namely, one can check that the expression:

1 27 .
Yo (x) = —=exp [i% + 270 - Tax + Z —pkae’k"] , (2.14)
Ja — k

where ¢, is zero mode canonically conjugated to 7, and a = 27 /A, has all the
properties of the electron operator. First of all, one can check that the commutation
relation with charge density operators (2.7) holds for the operator (2.14). Second,
the operator (2.14) has fermionic statistics:

[l (0, Y3} = Sapd(x — ¥). (2.15)

In fact, it is more convenient to introduce new fields ¢,(x), related to the
densities as

1
pPa(x) = 2_8x¢w(x)- (2.16)
YIS

Then, it follows from (2.16), (2.11) and (2.13) that these fields satisfy the commuta-
tion relations of the following form:


http://dx.doi.org/10.1007/978-3-642-30499-6_6
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[Pa(x), pp(y)] = Limsgn(x — y)das 2.17)

where the sign stays for the chirality of the corresponding channel. In terms of the
boson fields ¢, Eq. (2.14) becomes much simpler:

Yo (x) = %e"%“). (2.18)

This expression is one of the main equations of the bosonization approach.

In the next step we represent the Hamiltonian (2.2) in terms of the boson fields
as well. In order to do so, we note that the equation of motion for the density modes
generated by this Hamiltonian is given by:

[Ho, pral = vrakpra- (2.19)

Taking into account the commutation relations (2.11), (2.13) for bosons, one
concludes that the Hamiltonian could be expressed as follows:

Ho=> ”4’; dx Dy b (x))* (2.20)

This result can be obtained alternatively substituting Eq. (2.18) into Eq.(2.4) and
performing point splitting procedure [4]. Thus, we finally conclude, that in the case
of interactions sensitive to the long wavelength part of the densities, the total Hamil-
tonian becomes quadratic:

dxd
H=Hot M= 3 [ [ G Vaslr = 90.6a00,0500. @20

" 8

where the interaction potential is simply shifted by the Fermi velocity,
Va/ﬁ = Uu()’ + 27TUF06(1(}5(X - ). (2.22)

In fact, the effective edge theory action of fractional quantum Hall edge states (1.53)
in absence of external fields coincides with the result of the bosonization approach.
This means that the boson language is more universal than the fermion one, since
the fermion single particle description exists only for integer quantum Hall effect,
while the boson action of the same structure can be used to describe both integer and
fractional quantum Hall effect.


http://dx.doi.org/10.1007/978-3-642-30499-6_1
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2.1.3 Quantization of Boson Fields and Zero Modes

In this section we consider some important details of the above discussed con-
struction, namely, the role of zero modes. The boson fields ¢, (x) can be written
in terms of boson creation and annihilation operators aza = /W/2rkpy and
ara = ~/W/2Tkp_ia, which commutes as [aza, a3l = dapdkk, and in terms
of the modes ¢, 74, as

2w . .
Da(X) = o + 27 - Tox + Z,/ WE [akaelkx + azae_’kx] ) (2.23)

k>0

We would like to recall that zero modes satisfy the canonical commutation relation
[Tas o]l =i/ W, where W is the total size of the system. In the end of calculations
we take the thermodynamic limit W — oo, so that W drops from the final results.
The Hamiltonian acquires the following form in terms of the introduced operators:

H=(1/2m) D kVag(aj,ars + W/D D VasO)mams, (2.24)
kaf af

where V,,5(k) is the Fourier transform of the potential (2.22).

The vacuum for collective excitations is defined as ax,|0) = 0. The special care
has to be taken about zero modes, because as we show in Sect. 3.4, zero modes
determine charging effects and phase shifts, which are not small and important for
the explanation of some experimental results in Chap. 3. From the definition (2.10)
it is clear that the zero mode 7, has a meaning of a homogeneous density at the
channel a. Therefore, we define “vacuum charges” Q,,

Tal0) = Qal0), (2.25)

which are in fact charge densities at the one-dimensional channels accumulated in
accordance with electrochemical potential in a given channel. The energy E( of the
ground state, defined as H|0) = E|0), is then given by

Eo = (W/2) Z Vap(0)QaQp- (2.26)

af

Since the edge excitations in integer quantum Hall effect propagate along the
equipotential lines, edge channels can be considered as metallic surfaces. We there-
fore can apply the well known electrostatic relation [5] for the potentials A, of the
edge channels:

Apia = (1/W)SE/6Qa = D Vap(0)Qp. (2.27)


http://dx.doi.org/10.1007/978-3-642-30499-6_3
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Thus the quantity V,,5(0) is the inverse capacitance matrix. Using now Eq.(2.24),
(2.25), and the commutation relation for zero modes, we arrive at the following
important result for the time evolution of zero modes

Qa(®) =D Vay OAus,  @alt) = o — Apiat. (2.28)
B

Sometimes, the zero modes discussed in this section are included in the fermion
field in terms of the so called Klein factors. We think, however, that the formulation
proposed here is more straightforward and clear, and thus can be easily generalized
to different situations.

2.2 Correlation Function at Finite Temperature

After we have recast the Hamiltonian in a quadratic form, one can easily diagonalize
it. Namely, one only needs to find a transformation matrix for boson fields, which
preserves the commutator structure (2.17) and diagonalizes the interaction matrix
(2.22). For the purely chiral case of integer quantum Hall effect such transformation
is just an orthogonal transformation g, ; so that gq’ =1and

Vap (k) =D qajw;k)q;p. (229)
J

Here w; (k) are the dispersion relations of the boson eigenmodes, which depend on
the particular form of the interaction. Relation (2.16) indicates that these boson eigen-
modes are in fact plasmons, the collective charge excitations. In the case of a short
range interaction the dispersion is always linear w;(k) = vk, and the transforma-
tion matrix is independent of k. Therefore, one can introduce diagonal fields defined
as ¢j(x) = gjada(x). In terms of these fields, every fermion operator has a form
o = exp (i > i Pj 10) j), where p; = gjq. In fact, similar operators with different
values of the coefficients p; appear in context of the effective theory of fractional
quantum Hall edge. Thus, for further convenience we will do all the calculations in
terms of these coefficients.

The main quantity which determines the physics of a fermion system is the time
dependent two-point correlation function. In our case it can be written in the following
form:

i (x, DY(0,0)) = POK (x, 1), (2.30)

where the first factor is the zero-mode contribution and the second one is the con-
tribution of the oscillator operators. The phase induced by zero modes is given by
wo =2, iPj (m;)(x — v;t) and in the case of integer quantum Hall effect it can be

! Note that Ay, ; is the electrochemical potential, because our definition (2.22) contains a single-
particle contribution.



48 2 Equilibrium and Non-Equilibrium Bosonization
written in a simple physical form:
o = Apat —2mQnx. (2.31)

In the next step, we calculate the contribution of fluctuations. For the equilibrium
state, this contribution can be rewritten in terms of the boson fields as:

In[K (x,1)] = Z pipj{[oi(x, 1) — ¢i(0,0)]¢;(0,0)). (2.32)

i

Introducing the notation X; = x + o;v;t, where o; denotes the chirality of the
corresponding eigenmode, we express the fields in terms of creation and annihilation

Operators,
27 . v v
6. 1) =i Z,/ﬂ[a,- (k)i 1 al (ke ”‘Xf]. (2.33)
k

Substituting this expression into Eq.(2.32), we obtain the following expression for
the fluctuations contribution

A

dk . )
InK = Zp?/ 7 {fj(k)(e—zkxj _ ]) + [] + fj(k)](ezkx_, _ 1)] i (234)
70

where f;(k) = [exp(Bv k) — 177! are the equilibrium boson occupation numbers
at inverse temperature (3, and A is the ultraviolet cutoff.

The best way to proceed is to expand the occupation numbers in Boltzmann factors,
fik)y =227 exp(—fuv;n k), and integrate each term separately. This gives us

K =-=> p; > In[AGBvjn— X))]. (2.35)
j

n=—oo

Combining this expression with Eq.(2.30), we finally arrive at the following result
for the fermion correlation function:

. N\ -6
i (e, D9(0,0)) oc 0 [ | [;—’T sinh (w&)} , (2.36)

i

where §; = piz. The total scaling dimension of the correlation function A = >, ¢;,
which determines the power law behavior or the correlation function at small times
may be different in different cases. For example, in the situation of quantum wires it
is expressed in terms of the Luttinger parameter [3]. Below in the thesis we calculate
this dimension in several particular situations. However, it is important to note that
the scaling dimension can be only equal to 1 in the situation of purely chiral system.
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Ha

Hp

Fig. 2.2 Example of the situation where the equilibrium bosonization cannot be used. Typically,
the distribution function of one-dimensional electrons is fixed by the reservoir from which they
originate. But in the situation with tunneling (shown by the red, dashed line) between two edges
with different chemical potentials, the distribution function of outgoing electrons in the bosonic
language is strongly non-equilibrium, if the tunneling is not weak (Color figure online)

Indeed, in this case
D 6= P} =D diadai = oo =1, 2.37)
i i i

because of the orthogonality of the transformation. Therefore, the correlation function
in chiral systems behaves as W ()1(0)) ~ 1/t even in the presence of interaction.

2.3 Non-Equilibrium Bosonization

In the previous section we have solved the interacting one-dimensional Hamiltonian
and found the fermion correlation function. However, we did this only for an equilib-
rium state of electrons. In fact, the more general non-equilibrium conditions can not
be included in the usual bosonization approach. For example, the problem appears
in the situation where electron distribution function f(e) at the boundary is not a
Fermi function fr(e — w) but has a double step shape, i.e.,

f(€&) = Rfrp(e— )+ Tfr(e— p2). (2.38)

Of course in this situation one can bosonize the Hamiltonian and the fermion oper-
ators, but it is extremely difficult to express the distribution function (2.38) in terms
of bosons. In order to treat the situations of such kind, as, e.g., illustrated in Fig. 2.2,
we propose the non-equilibrium bosonization technique.



50 2 Equilibrium and Non-Equilibrium Bosonization

2.3.1 Non-Equilibrium Boundary Conditions and Full Counting
Statistics

The Hamiltonian (2.21), together with the commutation relations (2.17), generates
equations of motion for the fields ¢,. This equations have to be accompanied with
boundary conditions. The key idea of the non-equilibrium bosonization approach is
to describe the non-equilibrium state in terms of these boundary conditions. Namely,
we write:

1
Orba(x,1) = =2— > / dyVop(x = )Oydp(y, 1), (2.39)
k)
0,90 (0, 1) = 27 ja (0). (2.39b)

Here (1/27)0,;¢(x, t) is the expression for the edge currents in terms of the boson
fields, and j, (¢) are the operators of current in terms of fermion degrees of freedom
at the boundary. For example, in the situation depicted in Fig.2.2, the j,(¢) are the
tunneling currents.

The equations of motion (2.39a) are first order linear differential equations. Thus,
these equations together with the boundary conditions (2.39b) can be easily solved
with the help of the Green’s functions method. The answer generally has the following
form:

Polx, )= / dt'Gop(x, 1 —1)Qp(t), (2.40)
E

where, the Green’s function G,p(x,t — t") depends on the particular form of the
interaction potential U,s(x — y), and we have introduced the charge operators

defined as
t

Qa(r) = /dt/ja(t/)- (2.41)

Therefore, by solving Eq.(2.39), one may express the correlation functions of the
fermion fields 1/, in terms of the correlation function of the charge operator:

Wi 0va(y.0) =] <exp [—i / di'Gag(x, 1 — t’)Qe(t’)}
B

X exp |:i / dt'Gap(y, —r’)Qﬂ(z’)D. (2.42)

Here, averaging on the right hand side is defined over the free electrons, e.g., over
the distribution function (2.38). All the interaction effects are encoded in the Green’s
function. In general, the fields ¢, influence fluctuations of the currents j,, leading
to the dynamical Coulomb blockade in the quantum low-energy regime [6], and to
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cascade corrections to noise in the classical limit [7]. Importantly, simplification
arises in such situations where such back-action effects are absent, e.g. for chiral
edge states [8, 9]. As a consequence, the electron transport through the quantum
point contact (see Fig.2.2) is not affected by interactions, which has been recently
confirmed in the experiment [10, 11].

In a chiral case with a short range interaction, the Green’s function of Eq. (2.39a)
can be found explicitly and it is given by a sum of delta functions. One can check by
the direct substitution, that the solution for the boson fields is given by the following
equation:

Ga(x. 1) =21 D qajqipQp(t — x/v)). (2.43)
iB

The above expression simplifies further in several cases considered in this thesis
because of the special form of the transformation matrix ¢. In these cases one can
express the correlation function (2.42) via the so called generator of full counting
statistics of noise, defined as [12]

Yo\, 1) = <ei/\Q(t(I)g_i/\Q(v(0)). (2.44)

This quantity is the quantum analog of the Fourier transform of the distribution
function P(Q) of charge y(\) = (¢'*¢) = [dQP(Q)e'*2. Main property of the
generator (2.44) is that it gives all the irreducible moments of the current in the
long-time limit:

7\ log(xa)/t = (1) (2.45)

The full counting statistics generator (2.44) has been extensively studied recently
[13], and it is known in several situations. In the next chapters we will study and
use this generator for the statistics of electrons tunneling through a quantum point
contact.

2.3.2 Equilibrium Boundary Conditions: A Simple Test

The simplest test of the non-equilibrium bosonization approach is to consider an
infinite quantum Hall edge and formally split it in two parts at the point x = O.
Then, the boundary conditions at this point describe only the thermal equilibrium
fluctuations of the charge density. Thus, one can calculate the electron correlation
function within our approach, and compare it to the well known result for the finite
temperature correlator in a chiral one-dimensional system (2.36). The solution of
the equations of motion (2.39) in the system with single channel and short range
interaction is simple:

ox, 1) = Q( — x/v), (2.46)

where v = vr 4+ U/27w. The non-equilibrium bosonization prescription gives
the expression for the correlation function z[ff(x, HY(0,0) = x@m,t — x/v).
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The thermal fluctuations have Gaussian statistics, therefore one can write down the
generating function as follows:

loglx(\, )] = —(A*/2)(Q2%(1) — 200 (1) 00 (0) + 02(0)). (2.47)

Taking into account the definition of charge operator (2.41) one can rewrite this result
via the power spectrum of current fluctuations:

dw

55— EON®E (2.48)

loglx (A, )] = —(\2/2) /

where S, (w) = [ dte’“!(jo (1) jo (0)).

In the next step we use the expression for the fermion current to calculate the
equilibrium noise power spectrum. The current of non-interacting fermions at finite
time can be written as:

i) = / / dEdwc]  gcpe™. (2.49)

Using this expression and the statistics of the Fermi distribution, one can find that
the noise spectrum at inverse temperature /3 is given by the following equation [14]:

Sa(w) = - —2 2.50
alw) = gm (2.50)
Note, that r.h.s. of this equation is proportional to the Bose equilibrium distribution
function. Substituting this expression in Eq. (2.48) one gets:

dwl —emivt

_ 12 2
log[x()\, t)] =\ /47T 5 m

2.51)

This integral can be evaluated expanding in Boltzmann factors and integrating each
term. Finally, we take into account that in our situation A = 27 and come to the
conclusion that the correlation function equals to

/5
sinh[7(t — x/v)/5]

YT (x, 1)1(0,0) = (2.52)

We see that the result is consistent with the predictions of the usual bosonization
approach (2.36).

To summarize, here we have explicitly illustrated that the usual bosonization
approach may be split in two steps. First one is the calculation of the statistics
of the boundary conditions, and the second one is the solution of the equations of
motion for the excitations at the edge. Below, in Chap.4, we make another test of
non-equilibrium bosonization by considering an example of a more complex system.
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2.4 Conclusions

We have shown that the bosonization approach is very powerful tool for the theo-
retical description of one-dimensional systems. The main idea of the bosonization
approach is to rewrite the fermion field operators in terms of new collective boson
fields. This allows one to recast the Hamiltonian of the interacting one-dimensional
fermions with linear spectrum in a quadratic form and thus diagonalize it and find
correlation functions of electrons. This approach is suitable, however, only for find-
ing the equilibrium correlation functions. The non-equilibrium generalization of the
bosonization procedure, introduced in this section, allows one to reduce the prob-
lem of finding a non-equilibrium correlation function of an interacting system to the
problem of finding some correlation functions of non-interacting electrons.

The key idea of this approach is to take advantage of the absence of back-action
of the interaction effects on the statistics of processes which determine the boundary
conditions. Such situation is realized in chiral systems with short range interaction
and several other systems. In some of these cases, the non-equilibrium bosonization
allows one to rewrite the correlation function in terms of the full counting statistics
generator. As we will see below, this method gives a simple and efficient approach
to several problems.
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Chapter 3
Interaction Induced Dephasing of Edge States

First experiments on finite bias dephasing in electronic Mach-Zehnder interferome-
ters utilizing quantum Hall edge states showed unexpected puzzling results. In this
chapter we use the bosonization approach to show that these experiments at filling
factor v = 2 can be explained using the model which takes into account Coulomb
interaction at the edge of the sample. In addition, we make predictions for temperature
dependence of dephasing of the quantum Hall edge states within the framework of
this model. The main idea of the electronic Mach-Zehnder interferometer is described
in Sect. 1.4.1. Here we start with the detailed description of experimental setups and
results.

3.1 Experimental Results

All experimental setups can be roughly grouped in two types, depending on the
biasing scheme. Here we describe the specific features of experimental setup of each
type and the corresponding experimental results.

3.1.1 Only Interfering Edge Channel is Biased

The first experimental situation that we wish to address is reported in Ref. [1]. In this
experiment the bias is applied to the outer channel only. This situation is achieved by
splitting incoming inner and outer channels with the help of an additional quantum
point contact, so that two channels originate in fact from different Ohmic contacts.
This allows to apply different biases to the two channels at the same edge.

Some text sections in this chapter are reproduced from Phys. Rev. B 78, 045322 (2008),
© American Physical Society.

I. Levkivskyi, Mesoscopic Quantum Hall Effect, Springer Theses, 55
DOLI: 10.1007/978-3-642-30499-6_3, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 3.1 Schematic representation of the experimental set-up in Ref. [1]. Only one edge channel of
the Mach-Zehnder interferometer is biased. Left panel shows the weak tunneling regime: Outer edge
channels that propagate at different arms of the Mach-Zehnder interferometer are weakly coupled
to each other at two quantum point contacts. Right panel shows the weak backscattering regime:
Outer edge channels almost completely propagate through quantum point contacts to opposite arms
of the Mach-Zehnder interferometer and only weakly coupled via backscattering. After Ref. [2].
© American Physical Society

The Mach-Zehnder interferometer in this situation is schematically shown in
Fig. 3.1 for the regimes of weak tunneling 7, — 0 (left panel), and of weak backscat-
tering 7y — 1 (right panel). This schematics is obtained from Fig. 1.17 by splitting
each Ohmic contact attached to the Corbino disk and deforming two interfering paths
so that they run from left to right. After this procedure, the symmetry between two
scattering regimes becomes obvious: In order to go from the set-up on the left panel
of Fig.3.1 to the one on the right panel, one simply needs to flip the interferometer
vertically. This symmetry is important, and will be shown in Sect. 3.4 to result in the
symmetry between weak tunneling and weak backscattering regimes.

The Ref. [1] discovered an unexpected Aharonov-Bohm effect which is incon-
sistent with the single-particle picture of edge channels. The following observations
where reported:

e Lobe-type structure in the dependence of the visibility of Aharonov-Bohm oscil-
lations on the DC bias with almost equal widths of lobes. The visibility vanishes
at specific values of the bias. This behavior persists for various fixed values of
magnetic field and for various transparencies of quantum point contacts;

e The rigidity of the Aharonov-Bohm phase shift followed by sharp 7-valued jumps
at the points where the visibility vanishes;

e The stability of both mentioned effects with respect to changes in the length of
one of the interferometer paths.

The experiment [1] was theoretically analyzed in several recent works [3—6]. The
Ref. [3] focuses on v = 1 case and suggests that the suppression of the visibility is due
to the resonant interaction with the counter-propagating edge channel located near
one of the arms of the interferometer.! At present, this idea seems to be a reasonable
guess, as far as the dephasing at v = 1 is concerned. However, the experiments [1]

U InFig. 1 of the Ref. [1] the counter-propagating edge state goes from the source S3 to quantum point
contact QPCO and under the air bridge comes very closely to the upper arm of the interferometer,
which is the part of the channel between quantum point contact QPC1 and quantum, point contact
QPC2.
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Fig. 3.2 Schematic representation of the experimental set-up in Refs. [7, 8]. Two incoming edge
channels of the Mach-Zehnder interferometer are biased with the same potential difference Ay, and
other channels are grounded. Left panel shows the weak tunneling regime, while the right panel
shows the weak backscattering regime. After Ref. [2]. © American Physical Society

and [7, 8] concentrate on the v = 2 regime, where two edge channels coexist. These
and new experiments [9—12], where the counter-propagating edge channel has been
removed, prompt a new theoretical analysis. The authors of the Ref. [4] consider a
long-range Coulomb interaction at the edge and make an interesting prediction about
the temperature dependence of the visibility. However, they are not able to propose
an explanation of the lobe-type behavior of the visibility. The Refs. [5, 6] suggest
that dephasing in Mach-Zehnder interferometers is due to shot noise generated by
the partition of the edge channel at the first quantum point contact. While this idea
may correctly capture a part of the physics at v = 1, the drawback of this explanation
is that the shot noise vanishes in weak tunneling and weak backscattering regimes,
where the experiments nevertheless demonstrate strong dephasing. Moreover, the
experiment which we discuss below illuminates the special role that the second
inner edge channel at v = 2 plays in dephasing.

3.1.2 All Edge Channels are Biased

In contrast to the work [1], the experimental set-up in Refs. [7, 8] does not contain
an additional quantum point contact that would allow to split two edge channels at
v = 2 and to apply potentials to each of them separately. Therefore, in Refs. [7,
8] two edge channels that originate from the same Ohmic contact are biased by the
same potential difference A . For the convenience of the following analysis we again
unfold the Mach-Zehnder interferometer on Fig. 1.17 and represent it schematically
as shown in Fig.3.2.

Now it is easy to see the asymmetry between regimes of weak tunneling and of
weak backscattering. In the first regime (left panel) two channels on the upper arm of
the interferometer are equally biased with the potential difference A . The situation
is different in the second regime (right panel): The inner channel is biased on the
upper arm of the interferometer, while the outer channel is biased on the lower arm.
We believe that this asymmetry is responsible for entirely different behavior of the
visibility of Aharonov-Bohm oscillations in the experiment [7, 8]:
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e Lobe-type structure with the visibility vanishing at certain values of bias is
observed only in the weak tunneling regime. The central lobe is approximately
two times wider than side lobes. In the weak backscattering regime the visibility
shows oscillations and decays as a function of the bias;

e No phase rigidity is found at all transparencies of quantum point contacts;

e The asymmetry in the visibility as a function of the transparency of the first quan-
tum point contact is observed. In particular, the visibility always decays as a
function of the bias in the regimes of weak tunneling. In contrast, in the regime
of weak backscattering the visibility first grows around zero bias, and only then it
decays.

It is the last observation which is very important. It indicates that charging effects
induced by different biasing of edge channels may be responsible for differences in
the results of experiments [1] and [7, 8]. This idea seems to agree with the conclusion
of the authors (P. Roche, private communication) of the experiment [9]. In this chapter
we develop this idea and propose a simple model that is capable of explaining on a
single basis all the experimental observations described above. Namely, we assume
a strong (Coulomb) interaction between two edge channels that belong to the same
quantum Hall edge. The interaction effect is complex: First of all, it leads to charging
of edge channels and induces experimentally observed phase shifts. Second, the
interaction is partially screened, which leads to the emergence of the soft mode and
of a new low energy scale associated with it. The width of lobes in the visibility
and the temperature dependence are determined by this energy scale. Finally, the
interaction is responsible for the decay of coherence at large bias.

Further details of our model are given in Sect.3.2. In Sect.3.3 we express the
visibility of Aharonov-Bohm oscillations in terms of electronic correlation functions.
In Sect.3.4 we present a detailed comparison of our results with the experimental
observations. Finally, in Sect. 3.5 we briefly summarize our results.

3.2 Model of Mach-Zehnder Interferometer

Before we proceed with the mathematical formulation of the model we wish to stress
the following points. The experimentally found new energy scale [1, 7-12] is very
small. For instance, the width of lobes in the visibility is approximately 20.V. We
show below that this energy is inverse proportional to the size of the Mach-Zehnder
interferometer, few micrometers. Thus it is much smaller than any other energy scale
associated, e.g., with the formation of compressible strips [13]. Therefore, we use an
effective model appropriate for the description of the low energy physics of quantum
Hall edge excitations. Namely, we consider the inner and outer edge channels at v = 2
as two chiral boson fields and introduce the Luttinger-type Hamiltonian [14—16] to
describe the equilibrium state. Second, we introduce the density-density interaction,
which is known to be irrelevant in the low-energy limit [ 17]. This fact has no influence
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on the physics that we discuss below, because we focus on the processes at finite
energy and length scale, which take place inside the Mach-Zehnder interferometer.

3.2.1 Fields and Hamiltonian

We assume that at filling factor v = 2 there are two edge channels at each edge of the
quantum Hall system and two chiral fermions associated with them and denoted as
Yas(x),« = 1,2 and s = U, D. Here the subscript 1 corresponds to the fermion on
outer channel, and 2 to the fermion on inner channel (see Fig. 3.3), while the index s
stands for upper and lower arms of the interferometer. The total Hamiltonian of the
interferometer

Hiot = Ho + Hint + Hr (3.1

contains single particle term Hy, interaction part Hiy, and the tunneling Hamiltonian
Hr.
The single-particle Hamiltonian describes free chiral fermions [17]:

Ho = —ive 3, [ dx ], Bt (32)
as

where vF is Fermi velocity, which is assumed to be the same for each edge channel.
This assumption is not critical, because, as we will see below, the Fermi velocity is
strongly renormalized by the interaction.

We postpone for a while a detailed discussion of the interaction and at the moment
write the interaction Hamiltonian in terms of local densities p,s in the following
general form:

o = (172 Y [ [ drdy Unsx = 9o, (3:3)

afs

Note that this effective Hamiltonian is not microscopically derived. However, the
experiment indicates (P. Roche, private communication), that the interaction has a
Coulomb long-range character and leads to charging effects at the edge. Below we
show that once this assumption is made, it leads to a number of universalities in the
Mach-Zehnder interferometer physics and correctly captures most of the experimen-
tal observations.

We have already mentioned in the introduction that the interference in Mach-
Zehnder interferometers originates from scattering processes at quantum point con-
tacts. In the case when interaction is strong, the scattering has to be assumed weak
and treated perturbatively. Fortunately, this limitation does not detract from our the-
oretical approach, because neither the interference nor its suppression are necessarily
weak in the case of weak scattering. Moreover, we would like to stress again that
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7 2DEG, V=2

: v

Fig. 3.3 Structure of the quantum Hall edge at » = 2. Two chiral electrons, 115 and 1y, are
propagating along the edge. Tunneling is possible only from and to the outer channel (¢4, blue
line). After Ref. [2]. © American Physical Society

most interesting physics takes place in the regimes of weak tunneling and of weak
backscattering.
Both regimes can be described by the tunneling Hamiltonian:

Hr=A+A"=3 (Ac+4), €=L.R, (34)
4

where the tunneling amplitude

Ag = 1¢] p ()1 (xe) (3.5)

connects outer edge channels and transfers the electron from the lower arm to the
upper arm of the Mach-Zehnder interferometer. It is worth mentioning already here
that at low energies the electron tunneling is relevant and leads in fact to the Ohmic
behavior of the quantum point contacts, in agreement with experiments [1, 7, 8].
The Aharonov-Bohm phase may now be included in the tunneling amplitudes via
the relation 1}t;, = |tptL|ePaB,

3.2.2 Bosonization

In order to account for the strong interaction at the edge, we take advantage of the
commonly used bosonization technique [16], and represent fermion operators in
terms of chiral boson fields ¢qs:

Pas o€ €190, (3.6)

which satisfy the commutation relations [¢qs(x), @as(¥)] = imsgn(x — y). The
Hamiltonian of the edge states in terms of these fields can be written as

dxd
H=Ho+ Hine = Z // %Vaﬁ(x - )’)ax¢(m(x)ay¢ﬁs(y)v 3.7

(,V,()),S

where the interaction potential is shifted by the Fermi velocity,
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Vap = Uag + 2T0E60g0 (X — ). (3.8)

The crucial point is that now the Hamiltonian (3.7) for quantum Hall edge is quadratic
in boson fields.

Next, we quantize fields by expressing them in terms of boson creation and anni-
hilation operators, ajm (k) and aqs (k),

[ 27 . - .
¢as(x) - SDas + 27T7Tas X + Z m [aas (k)elkx + ao'és(k)eilkx]. (39)
k>0

The vacuum for collective excitations is defined as a.s(k)|0) = 0. As we have
discussed in Sect.2.1.3, the special care has to be taken about zero modes, because
as we show in Sect.3.4, zero modes determine charging effects and phase shifts,
which are not small. Zero mode 7, has a meaning of a homogeneous density at the
edge channel («, s). Therefore, we define “vacuum charges” Q

Tas|0) = Qasl0), (3.10)

which are in fact charge densities at the edge channels, generated by the bias, as
discussed in Sect. 2.1.3. The time evolution of zero modes induced by the Hamiltonian
is then given by

Qas(t) = Z V(;ﬁl Apgs,  as(t) = Qas — Apias t, (3.11)
B

where A, s a bias voltage applied to corresponding edge channel. These voltages
are equal to either Ay or 0, depending on the biasing scheme as have been discussed
in the Sect.3.1.

3.2.3 Strong Interaction Limit and the Universality

It is quite natural to assume that edge channels interact via the Coulomb potential.
It has a long-range character and the logarithmic dispersion V,g(k) o log(ka).
Here a is the shortest important length scale, e.g. the width of compressible stripes
[13], or the inter-channel distance. The dispersion is important in the case v = 1,
because it generates dephasing at the homogeneous edge [4]. However, taken alone
the dispersion is not able to explain lobe-type behavior of the visibility. What is more
important it is the fact that the logarithm may become relatively large when cutoff at
relevant long distances.

We therefore further assume that the Coulomb interaction is screened at distances
D, such as Ly,Lp > D > a, where Ly and Lp are the lengths of the arms
of the Mach-Zehnder interferometer. In fact, some sort of screening may exist in
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Mach-Zehnder interferometers. For instance, in the experiments [1, 7—12] the cutoff
length D may be a distance to the back gate, or to the massive metallic air bridge.
There are several consequences of screening on the intermediate distances D. First
of all, it allows to neglect the interaction between two arms of the interferometer
(see however the discussion in Sect. 3.4). Second, at low energies we can neglect the
logarithmic dispersion and write

sz[)’(x -y = Va;[)’(;(x -y, (3.12)

so that for the Fourier transform we obtain V,,5(k) = V,,3(0) = V3. And finally, the
mutual interaction between inner and outer edge channels, located on the distance
of order a < D from each other, is strongly reduced.

Therefore, one can parametrize the interaction matrix as follows

Uu+vu—v
Vad_ﬂ(u—vu—i—v)’ (3.13)
where
u/v =1log(D/a) > 1, 3.14)

is anew large parameter, the most important consequence of the long-range character
of Coulomb interaction.
Indeed, we now diagonalize the interaction, V = ¢' Aq, with the result

u0 1 11
A=27T(0U), q=ﬁ(1—l)’ (3.15)

Thus we find that the Coulomb interaction at the v = 2 edge leads to the separation
of spectrum on the fast (charge) mode with the speed u and slow (dipole) mode with
the speed v. In Sect. 3.4 we show that the lobe structure in the visibility is determined
by slow mode, while the fast mode is not excited at relevant low energies. That is
why at v = 2 the logarithmic dispersion of the Coulomb interaction is not important
for explaining lobes.

Moreover, the Coulomb character of the interaction leads to the following uni-
versality. We show later that the coupling of electrons in the outer channel to the
fast and slow mode is determined by the parameters 6; = |g1;|%, which satisfy the

sum rule
Dai=D lqul* =1, (3.16)
i i

that follows from the unitarity of the matrix g. For the special choice (3.13) of the
interaction matrix coupling constants are equal,

51 =6 =1/2, (3.17)
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which has an important consequence, as we show in Sect.3.3. Note that in the limit
of strong long-range interaction, # >> v, the result (3.17) is stable against variations
of the bare Fermi velocity vy and is not sensitive to the physics of edge channels
at distances of order a, leading to the universality of dephasing in Mach-Zehnder
interferometers.

Finally, we partially diagonalize the Hamiltonian by introducing new boson oper-
ators via aqs (k) = 2 ; qai dis(k). Using Egs. (2.24), (3.13), and (3.15), we obtain
new Hamiltonian for the quantum Hall edge

H=">"[uka (k)i (k) + vk a3 (k)azs ()] + (W/2) D" VosTasmps, (3.18)
s,k a,B,s

which completes our discussion of the model.

3.3 Visibility and Phase Shift

In this section we consider the transport through the Mach-Zehnder interferometers
shown in Figs. 3.1 and 3.2 and evaluate the visibility of Aharonov-Bohm oscillations.
Both regimes, of weak tunneling and of weak backscattering, can be considered
on the same basis, by applying the tunneling Hamiltonian approach [18]. In the
derivation presented below we follow the Ref. [3]. We introduce the tunneling current
operator I=N p = i[Hr, Np], which differs for two regimes only by the sign. Here
Np = f dxwf p¥1p is the number of electrons on the outer edge channel of the lower
arm of the interferometer. Then we use Egs. (3.4) and (3.5) to write

I =i(AT — A). (3.19)

We evaluate the average current to lowest order in tunneling and obtain
o0
I= / di{[A"(1), AO)]). (3.20)
—0o0

where the average is taken with respect to ground state in quantum Hall edges. Finite
temperature effects will be considered separately in Sect.3.4.3.
It is easy to see that the average current can be written as a sum of four terms:

1= I, lw= / dr{[A](1), AcO)]), (3.21)

e

where I 1 and Irp are the direct currents at the left and right quantum point contact,
respectively, and I g + Igp is the interference contribution. In our model there is
no interaction between upper and lower arms of a Mach-Zehnder interferometer,
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Lu
X X
L LD R

Fig. 3.4 Schematics of Mach-Zehnder interferometer introducing notations: Ly and Lp are the
lengths of the upper and lower paths of the interferometer, respectively. The coordinates of the
left and right quantum point contact are denoted by x; and xg, respectively. The magnetic flux
threading the interferometer results in the Aharonov-Bohm phase pap. After Ref. [2]. © American
Physical Society

therefore the correlation function in (3.21) splits into the product of two single-
particle correlators:

Loy = tfle’/df [(ZZJIU(XE, D1y (xer, 0)) (1o (xe, t)i/JlTD(qu 0))
— (W1 (e, 0y (ke DN (e, Oap (ke )] (322)

We note that the operator wL applied to the ground state creates a quasi-particle
above the Fermi level (with the positive energy), while the operator 115 creates a hole
below Fermi level (with the negative energy). This implies that in the first term in
(3.22) all the singularities are shifted to the upper half plane of the complex variable
t, and in the second term singularities are shifted to the lower half plane. This means
that only one term contributes, depending on the sign of bias Ay which determines
the direction of current. Apart from this, there is no difference between two terms.
Therefore, we choose, e.g., the first term, shift the counter of integration C to the
low half plane, and rewrite Eq. (3.22) as follows:

Ly = t}ty / dt (], (e, D10 (e, 0)) X (0] ) (e, D1 (e, 00)*, (3.23)
C

where the correlators are defined in such a way that they have singularities on the
real axis of 7.

The correlators are evaluated in Sect.2.2 using the bosonization technique with
the result

expli Apst — 2mi Q15 (x¢ — x¢7)]
(x¢ — xpr — ut)® (xp — xp — v1)%2 "

i (W (e, D15 (xpr, 0)) = (3.24)

One remarkable fact we prove below is that for x, = x the only role of the inter-
action is to renormalize the density of states at Fermi level, nyp = 1/ (u®1v%). This
immediately follows from the sum rule (3.16). Therefore, for the direct currents we
readily obtain
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Lye = 2mn% |t
e =2t Ap, (3.25)

i.e. the quantum point contacts are in the Ohmic regime, in agreement with experi-
mental observations.

In order to present the visibility in a compact form, we introduce the electron
correlation functions of an isolated edge, normalized to the density of states (see
Fig.3.4 for notations):

exp[27i Q15 Ls]

KO = L — Lo

s =U,D. (3.26)

This functions contain all the important information about charging effects (phase
shift generated by zero modes), and dephasing determined by the singularities. Next,
adding all the terms I = > Iy we find the differential conductance G = d1/d Ap:

G = 2mng(ItL” + tr]?) + 2nF |tLtg] Im{ei% / dre' ™ (1 — Ar)Kz‘,(t)KD(o},
c
(3.27)
where the time shift At is the charging effect,

At = 27107, (QiuLly — QipLp), (3.28)

which depends on the bias scheme, and will be calculated in Sect. 3.4 for a particular
experimental situations. It is important to note that in the weak backscattering regime
(see Figs.3.1 and 3.2) tunneling occurs from the lower arm of the interferometer,
therefore one should exchange indexes U and D.

The first term in Eq. (3.27) is the contribution of direct incoherent currents through
quantum point contacts, while the second term is the interference contribution, which
oscillates with magnetic field. Therefore, the visibility of Aharonov-Bohm oscilla-
tions (1.84) in the differential conductance G and the Aharonov-Bohm phase shift
take the following form

Vg(Ap) = Vg(0)IZal, Apap = arg(Zas), (3.29)

where the visibility at zero bias Vg(0) is given by Eq. (1.85) for a non-interacting
system, while all the interaction effects enter via the dimensionless Fourier integral

d
Tap(Ap) = / 2—7:iexp(iAut)(t — ADK (K p(1), (3.30)
C

with the counter C shifted to the lower half plane of the variable 7. This formula,
together with Egs. (3.26) and (3.28) is one of the central results and will serve
as a starting point for the analysis of experiments. However, before we proceed
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with detailed explanations of experiments, we would like to consider two examples
quickly.

The first example, a non-interacting system, serves merely as a test for our theory.
In this case using relevant parameters, the vacuum charges Q17 = Au/vr, Q1p = 0,
the group velocities u = v = v, coupling constants ; = 1, 5o = 0, we obtain the
correlators Ky (1) = (t—LU/vF)_1 exp(iAuLy/vp)and Kp(t) = (t—LD/vp)_l.
The time shift At = Ly /v follows from Eq. (3.28). We substitute all these results
to Eq. (3.30) and finally obtain:

dt el‘A[L(l*LU/UF)

Iag = —_—— —¢

iAuAL/vp’ (331)
2wt — LD/UF

c

so that the visibility |Zag| = 1, and the phase shift is Apap = ApAL/vF, in
agreement with Eq. (1.85).

Next, we consider a more interesting situation when the interferometer is in weak
tunneling regime, and one of its arms, e.g. the upper arm of the interferometer, is
much shorter than the other, Ly <« Lp. Then the properties of the function Zap
are determined by excitations at the lower arm of a Mach-Zehnder interferometer at
energies of order v/L p. At this energies the electronic correlator in the upper arm
behaves as a correlator of free fermions: Ky (¢) = 1/t. Therefore, for the visibility
we obtain

dt .
Tap = / o A K b (1), (3.32)
C

i.e. it is simply given by the Fourier transform of the electron correlation function
at the edge. This leads to an interesting idea to use a strongly asymmetric Mach-
Zehnder interferometer for the spectroscopy of excitations at the edge of quantum
Hall system.

We now use the opportunity to analize the role of the coupling coefficients ¢; in
this simple situation. The absolute value of the Fourier transform of the function K p
is shown in Fig. (3.5). We see that §; = §, = 1/2 is the special point. In this case, and
taking the limitu — oo, the Fourier transform gives |Zag| = |Jo(AuL p/2v)|, where
Jo is the zero-order Bessel function. Thus the lobes in the visibility of Aharonov-
Bohm oscillations are well resolved only in the limit of strong long-range interaction.
Therefore, an asymmetric Mach-Zehnder interferometer can be used to test the char-
acter of the interaction. From now on we assume that 6; = d, = 1/2.

3.4 Discussion of Experiments

In this section we present a detailed analysis of experiments described in the intro-
duction. It is convenient to rewrite Eq. (3.30) in slightly different form by using Eq.
(3.26) with 01 = 9, = 1/2 and shifting the time integral:
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Fig. 3.5 The absolute value of the Fourier transform of the electronic correlation function K p ()
plotted as a function of the dimensionless bias AuL p /v for different values of the coupling coef-
ficient ;. After Ref. [2]. © American Physical Society

dt t exp(i Aut)

Tan (A = 7{c i [1, o G+ A =Ly jv) 339

where v; = u and v, = v, and the contour of integration C goes around the branch
cuts (see, e.g., Fig.3.6). These branch cuts, which replace single-particle poles of
correlation functions for free electrons, originate from the interaction. On a mathe-
matical level, they are the main source of the suppression of the coherence, because
at large argument Ay the Fourier transform (3.30) of relatively smooth function
quickly decays. We will use this fact for the analysis of dephasing. Physically, when
electron tunnels, it excites two collective modes associated with two edge channels,
and they carry away a part of the phase information.

On the other hand, charging effects reflected in the parameter At lead to the bias
dependent shift of the Aharonov-Bohm phase, Agpag. As it follows from Eq. (3.29),
the phase slips by 7 at points where the visibility vanishes. Away from these points,
in particular at zero bias, the phase shift is a smooth function of the bias. Therefore,
it is interesting to consider the value Oa, Agap at Ay = 0 where |Zag| = 1, which
can be found from the expansion Zag = |Zaple' 2?2 = 1 +i(Ja, Apap)Ap in the
right hand side of Eq. (3.33). We find it exactly:

OAPAB u+v
—— =1y — 2At, ty = L Lp), 3.34
9 0 0==" (Ly + Lp) (3.34)

where the first term 7 is the contribution of the quantum mechanical phase accumu-
lated due to the propagation of an electron along the Mach-Zehnder interferometer.
The second term, found from Eq. (3.28), is the contribution of the charge accumu-
lated at the arms of Mach-Zehnder interferometer due to the Coulomb interaction
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between edge channels. Partial cancellation of two effects leads to the phase rigidity
found in Ref. [1]. This effect is discussed below.

Finally, all the experiments found that the visibility Vg oscillates as a function
of the bias Ap. Our model reproduces such oscillations and helps to understand
their origin. Indeed, two well defined collective modes with speeds u# and v lead
to the formation of four branch points in the integral (3.33), which give relatively
slowly decaying contributions. These contributions come with different bias depen-
dent phase factors, so that the function Zap (A ) oscillates. The period of oscillations
is determined by the smallest energy scale €, which is given by the total size of the
branch cut and can be estimated as

2uv
€= .
(u—v)(Ly + Lp)

(3.35)

In the case u > v, the parameter u cancels, so that the period of oscillations is
determined by the slowest mode, and by the size of the interferometer.

We would like to emphasize that oscillations in the visibility appear only when at
least two modes are relatively well resolved. Our model predicts a power-law decay of
the visibility. In experiments [1, 7, 8] the visibility seems to decay faster. There might
be several reasons for this, e.g. low frequency fluctuations in the electrical circuit
[19, 20], or the electromagnetic radiation [21, 22]. Intrinsic reasons for dephasing
deserve a separate consideration. We have already mentioned that the dispersion of
the Coulomb interaction, neglected here, may lead to strong dephasing [4]. However,
it affects only the fast mode, while the slow mode contribution to the integral (3.33)
maintains the phase coherence. Therefore taken alone the dispersion of Coulomb
interaction is not able to explain strong dephasing at v = 2. The experiments seem
to indicate that the slow mode is also dispersive, which may be a result of strong
disorder at the edge or, more interestingly, of the intrinsic structure of each edge
channel [23].

Having stressed this point, we now wish to focus solely on the phase shift and
oscillations in the visibility. We use the fact that u > v and simplify the integral
(3.33) by neglecting terms containing 1/u:

_ ﬂ t exp(iAut)
Tan = %C 27 (t + A [, JGt A —L,Jv) (3.36)

This expression contains one pole and one branch cut (see Fig. 3.6). Therefore, it can
be expressed in terms of the zero order Bessel function Jy. After elementary steps
we find:

Ap
AR = e_iA“A’[F(Au) —iAt / dA;/F(Au’)]

—00

F = /240 Jo(ApALJ2v), (3.37)
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Fig. 3.6 Analytic structure of the Fourier integral (3.33) in case of single biased channel [1]. Left
panel: Two branch cuts (shown apart for convenience) of the integrand come from the product of two
single-particle correlation functions. Right panel: In the limit # >> v two branch points correspond-
ing to the fast mode shrink to a single pole att = — L/ /2v, while the slow mode produces the branch
cut going from¢ = Ly /2vtot = Lp/v— Ly /2v. The blue line shows the contour of integration C.
After Ref. [2]. © American Physical Society

where fo = (Ly + Lp)/2v,and AL = Lp — Ly. We now proceed with the analysis
of experiments discussed in the introduction.

3.4.1 Only Interfering Edge Channel is Biased

We start with the experiment [1]. Using Eqgs. (3.11) and (3.13) we find

Ois 1 vhuu—v\ [ Ay
= . 3.38
(st druv \u —vv+u )\ Aps (338)
In the weak tunneling regime, shown on the left panel of Fig. 3.1, only outer channel in

the upper arm of the interferometer is biased, Ap1y = Apand Apoy = Apap = 0.
Therefore we obtain

u-+v
O = 4—A,u, O1p =0. (3.39)
TUv
Then Eq. (3.28) gives At = Ly (u + v)/2uv. Substituting At into Eq. (3.34), we

find that at zero bias
OApap _ u+v

IAp  2uv

AL. (3.40)

Therefore, for the symmetric interferometer, AL = 0, the phase shift is independent
of the bias, away from phase slip points where the visibility vanishes. This may
explain the phenomenon of phase rigidity observed in Ref. [1], if we assume that
the interferometer is almost symmetric in this experiment. Indeed, the period of
oscillations of the visibility is given by the energy scale (3.35). Therefore, the overall
phase shift between zeros of the visibility can be estimated as AL/(Ly + Lp) < 1.

The integral (3.36), evaluated numerically, is plotted in Fig.3.7 for two val-
ues of the asymmetry, Lp/Ly = 1.15 and 1.35. Our main focus is first few
oscillations of the visibility (upper panel), which reveal charging effects. We
would like to emphasize several points. First, the width of the central lobe is
equal to the width of side lobes. This is because in the case of the symmetric
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Fig. 3.7 The intrinsic visibility of Aharonov-Bohm oscillations |Zag| and the Aharonov-Bohm
phase shift arg(Zap) in the case of a single biased channel [1]. Upper panel: The visibility is plotted
as a function of the bias in units v/ Ly for Lp = 1.15Ly (solid line) and for Lp = 1.35Ly (dashed
line). Lower panel: The phase shiftis plotted for Lp = 1.15L . After Ref. [2]. © American Physical
Society

interferometer, Ly = Lp = L, the branch cut shrinks to the pole (see Fig.3.6),
so that two poles are at t = L /2v. Then Eq. (3.36) gives |Zag| = | cos(AuL /2v)]|.
Second, the small variation of the length L p of the lower arm has only minor effect on
the position of lobes, while the amplitude of oscillations is considerably suppressed.
Finally, the lower panel of Fig.3.7 illustrates the phenomenon of phase rigidity for
almost symmetric interferometer, Lp = 1.15Ly. The Aharonov-Bohm phase shift
changes slowly inside the lobes and slips by 7 at zeros of the visibility. All these
observation are in agreement with the experiment [1].

To conclude this section we would like to remark that the visibility in the regime
of weak backscattering (see the right panel in Fig.3.1) can be obtained by simply
replacing Ly and L p. This is because in our model the charging effects are important
only in the part of the Mach-Zehnder interferometer between two quantum point
contacts, where they induce phase shifts. For the same reason, the transparency
of the second quantum point contact does not affect the visibility [7, 8]. In the next
section we show that the symmetry between weak tunneling and weak backscattering
is broken if the bias is applied to two edge channels.
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Fig. 3.8 Analytic structure of the Fourier integral (3.33) in case when two edge channels are biased
[1], and in the weak tunneling regime (see Fig.3.2). Left panel shows branch cuts of two single-
particle correlation functions, while in the right panel the limit u > v is taken. The branch cut
extends fromt = Ly /v tot = Lp/v. After Ref. [2]. © American Physical Society

3.4.2 All Edge Channels are Biased

Next we analyze the experiment [7, 8]. The details of this experiment are discussed
in the introduction. In the weak tunneling regime (see the left panel of Fig.3.2) two
edge channels are biased and almost completely reflected at the first quantum point
contact. Therefore, Eq. (3.38) gives

Ap
QIU = 5 > QID = 07 (341)

27u

and from Eq. (3.28) we find At = Ly /u.
Taking now the strong interaction limit, # > v, we find that At — 0. Therefore,
in the integral (3.36) the pole corresponding to the fast mode cancels (analytical
structure of the integral is shown in Fig.3.8), so that the visibility can be found

exactly:
Zag = expliAp(Lp + Ly)/2v]Jo(ApAL/2v), (3.42)

where AL = Lp — Ly . The visibility of Aharonov-Bohm oscillations, given by the
absolute value of the integral (3.42), is shown in Fig. 3.10. One can see that in contrast
to the case when only one channel is biased [1], the central lobe is approximately
two times wider than side lobes, in agreement with the experimental observation [7,
8]. Moreover, the width of lobes is determined by the new energy scale, ¢ = v/AL.
Finally, inside the lobes the phase shift Apap = Au(Lp + Ly)/2v always grows
linearly with bias, so no phase rigidity should be observed.

We now switch to the regime of weak backscattering (see the right panel of
Fig.3.2). In the upper arm only inner channel is biased, while only outer channel is
biased in the lower arm of the interferometer. Using again Eq. (3.38), we obtain

u—v u-+v
Ap, Qip =

Oiv =— Aps. (3.43)

dmuv dmuv

Then from Eq. (3.28) we find that At = (Lp + Ly)/2v + (Ly — Lp)/2u.

The analytical structure of the integral (3.36) is shown in Fig.3.9. It looks some-
what similar to the structure shown in Fig. 3.6 for the case of single biased channel.
However, the principal difference between these two cases is that the singularities
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Fig. 3.9 Analytic structure of the integral (3.33), same as in Fig. 3.8, but in the weak backscattering
regime. The right panel shows the pole at t = —(Ly + Lp)/2v and the branch cut, which extends
fromt = —(Lp — Ly)/2vtot = (Lp — Ly)/2v. After Ref. [2]. © American Physical Society
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Fig. 3.10 The intrinsic visibility of Aharonov-Bohm oscillations |Zag| in the case when two edge
channels are biased [7, 8] and for strongly asymmetric interferometer, Lp = 1.8Ly. It is plotted
as a function of bias Ay in units of v/ Ly for the regime of weak tunneling (solid line) and for the
regime of weak backscattering (dashed line). After Ref. [2]. © American Physical Society

in Fig.3.9 are strongly asymmetric with respect to + — —t¢. In order to see a con-
sequence of this fact we take the limit # >> v and write At = (Ly + Lp)/2v. For
the phase shift (3.34) at small bias we obtain 0Apag/0An = —(Ly + Lp)/2v.
Therefore, in the weak backscattering regime and when two channels are biased no
phase rigidity can be observed.

The most remarkable new feature of the visibility (see Fig. 3.10) is that, in contrast
to the cases considered above, it grows as a function of bias around Ay = 0, in full
agreement with the experiment [7, 8]. It may even exceed the value 1 if two quantum
point contacts have approximately same transparencies, so that Vg (0) is close to 1.
This behavior may look surprising, because it is expected that dephasing should
suppress the visibility of Aharonov-Bohm oscillations below its maximum value
(1.85) for a non-interacting coherent system. However, one should keep in mind that
according to our model oscillations of the visibility as a function of bias originate
from charging effects which are caused by the Coulomb interaction between edge
channels. Therefore, simple arguments which rely on the Landauer formula for the
conductance do not apply.

Thus in the experimental set-up where two edge channels are biased [7, 8] there
is a strong asymmetry between weak tunneling and weak backscattering regimes,
which is easily seen in Fig. 3.10. In order to clarify the physical origin of this effect,
we evaluate the integral (3.36) in the limit of strong interaction u > v and for
a symmetric Mach-Zehnder interferometer, Ly = Lp = L. Then the branch cut
shrinks to the pole, and we obtain the following simple result:
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Tag = At/tg+ (1 — At/1)e! 10, (3.44)

where typ = L /v is the time of the propagation of the slow mode between two quantum
point contacts. We find that quite similar to the result for the phase shift (3.34), here
we also have a competition of two terms, Ar given by Eq. (3.28), and of the flight
time tp. Whether the visibility grows or decays depends on the sign of the second
term in Eq. (3.44).

In the experiment [1] At = L/2v = /2, so that the visibility always decays. On
the other hand, the experiment [7, 8] represent an intermediate case. In the regime of
weak tunneling we have At = 0, while in the regime of weak backscattering At = fo,
so that in both regimes the visibility is constant for the symmetric Mach-Zehnder
interferometer. Therefore, in Fig.3.10 we had to consider a strongly asymmetric
interferometer with Lp = 1.8Ly . Note however, that once Ar exceeds slightly g,
the visibility easily becomes growing function at small bias. This is exactly what
happens if we relax our assumption of good screening of the interaction and allow
opposite arms of the interferometer to interact. Indeed, in order to be electro-neutral
the system compensates such interaction by decreasing further the charge Q1 below
the value given by Eq. (3.43), so that now At > #y. We have checked numerically
that this assumption alone gives rise to a good agreement with the experiment [7, 8]
even in the case of symmetric interferometer.

3.4.3 Effects of Finite Temperature

The temperature dependence of the visibility of Aharonov-Bohm oscillations in
Mach-Zehnder interferometers has been recently measured in Ref. [10]. The most
interesting fact is that the visibility scales exponentially with the total size of the
interferometer Vg oc e~ /% This is in obvious contradiction with the prediction
Vg o e~ AL/l for free electrons, [24] where dephasing is due to energy averaging.
Moreover, the coherence length scales with temperature as [, oc 1/T, which does
not agree with the prediction based on Luttinger liquid model for v = 1 [4]. Here
we show that the experimentally observed temperature dependence of the visibility
can be explained within our model.

Indeed, according to results of Sect. 3.3, at high temperatures, neglecting charging
effects which merely influence the prefactor, the visibility can be estimated as Vg
f dtK ;_‘) (1) Ky (). Here the correlators are given by the hight-temperature asymptotic
form (7.26), where X, has to be replaced with Ly — v, . Then in the non-interacting
case (i.e. for 0y = 1, o = 0, and v{ = vr) we obtain the result

Vg « / dte™T 2 lt=Ls/vrl o =TT AL/VE (3.45)

which agrees with the prediction in Ref. [24]. On the other hand, in our model
01 = 6 = 1/2, so we obtain
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Vg o / dte™™ Lo l=Ls/val o =(LutLD)/2; (3.46)
where the dephasing length
uv
ly= ————. 3.47
v 7T (u —v) ( )

Thus we find that the visibility scales exponentially with the total size of the inter-
ferometer, and the dephasing length scales as [, oc 1/T, in full agreement with the
experiment [10].

Two remarks are in order. According to Egs. (3.46), (3.47), and to the results of
Sect. 3.3, the temperature dependence and the period of oscillations of the visibility
are determined by the same energy scale ¢, given by Eq. (3.35). On the other hand, the
decay of the visibility as a function of the bias Ay at zero temperature is determined
by a larger energy scale €. It is equal to € = v/AL, or, in case of the symmetric
interferometer, depends on the dispersion of the slow mode.

Second, we note that v and u are the group velocities of the collective dipole
and charge excitations, respectively. Very roughly, they are determined by the spatial
separation between edge modes a, and by the distance to the back gate D. On the
v = 2 Hall plateau, the separation a grows with the magnetic field, because the inner
edge channel moves away from the edge of the two-dimensional electron gas until it
disappears in the end of the plateau. Therefore, in contrast to the bare Fermi velocity,
the velocity of the slow mode increases with the magnetic field. This may explain
the non-monotonic behavior of /,, observed in Ref. [10]. Indeed, according to Eq.
(3.47) the decoherence length first increases with the magnetic field starting from
the value I, = v/7T. Then it reaches the maximum value at v ~ u and goes down
to the value I, ~ u /7T on the plateau v = 1.

3.5 Conclusion

Earlier theoretical works [20-22, 24] on dephasing in Mach-Zehnder interferom-
eters predicted a smooth decay of the visibility of Aharonov-Bohm oscillations as
a function of temperature and voltage bias. Therefore, when the Ref. [1] reported
unusual oscillations and lobes in the visibility of Aharonov-Bohm oscillations as a
function of bias, this was a great puzzle, attracted considerable theoretical attention.
Reference [3] suggested the first explanation that is based on the long-range Coulomb
interaction between counter-propagating edge states leading to resonant scattering
of plasmons. Although this phenomenon may be encountered in a number of experi-
mental situations, new experiments [7—12] unambiguously pointed to physics related
to the intrinsic structure of the quantum Hall edge.

In the present chapter we focus on the intrinsic properties of the edge and propose
a simple model which is able to explain almost every detail of existing experiments.
The key ingredient of our theory is the assumption that two chiral channels at the
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edge of v = 2 electron system interact via the long-range Coulomb potential. This
leads to number of universalities, in particular, to the separation of the spectrum
of edge excitations on slow and fast mode (plasmons), and to equal coupling of
electrons to both modes. When electrons scatter off the quantum point contacts,
which play a role of beam splitters in the electronic, they excite plasmons, depending
on the energy provided by the voltage bias. The plasmons carry away the electron
phase information, which leads the the decay of the visibility of Aharonov-Bohm
oscillations as a function of bias.

The remarkable property of our model is that at zero temperature the phase infor-
mation emitted at the first quantum point contact can be partially recollected at the
second quantum point contact. This leads to oscillations and lobes in the visibility
which can be interpreted as a size effect. The new energy scale in these oscillations,
associated with the total size of the Mach-Zehnder interferometer and with the slow
mode, determines also the temperature dependence of the visibility.

Physically, the lobes of visibility in our model are quite similar to the neutrino
oscillations effect in the high-energy physics. Namely, the main reason for appear-
ance of lobes is the existence of two distinct bases: basis of states created by the
tunneling Hamiltonian, analogous to the “flavour eigenstates”, and the edge Hamil-
tonian eigenstates, analogous to the “mass eigenstates”. Each electron which tunnels
to the edge thus splits in two plasmon modes—charged and dipole, which propagate
with different velocities:

lelectron) = ¢ 2#E/V|charged) + ¢! #E/V|dipole). (3.48)

At the distances where the phase difference between these two states is, e.g., m, their
sum is orthogonal to the initial state and the visibility is zero. In other words, the
electron evolves to a different “flavor”. While at distances where the phase difference
is, e.g., 2m, the initial electron state is restored.

Importantly, within the framework of the same simple model we are able to explain
a variety of ways the interaction effects manifest themselves in different experiments
[1, 7-12]. This includes the lobe-type structure observed in Refs. [1, 7, 8], the phase
rigidity that was found only in Ref. [1], the growing visibility and the asymmetry
of the Aharonov-Bohm effect discovered in Ref. [7, 8]. All these phenomena can
be interpreted as charging effects. Indeed, edge channels in quantum Hall systems
move along the equipotential lines and can be regarded as one-dimensional metals.
Therefore, they accumulate ground state charges, which lead to electronic phase
shifts, depending on the bias scheme (see Figs.3.1 and 3.2). These bias dependent
phases determine the overall Aharonov-Bohm phase shift and the specific behavior
of the visibility as a function of the voltage bias.

Finally, experimentally observed decay of the visibility as a function of bias
seems to be stronger than what our model predicts. We think that this effect cannot
be explained by the long-range Coulomb interaction alone, and may originate from
the dispersion of the slow mode due to disorder, because of the intrinsic structure of
each edge channel [23], or from the external noise, as discussed in the next chapter.
This point deserves a careful experimental and theoretical investigation. Moreover, it
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is interesting to find out how charging and size effects discussed here may influence
the interferometry at other filling factors, where quite similar processes can take
place [25]. Although the first theoretical steps have already been taken [26-30] the
experiment, as usual, may bring new surprises.
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Chapter 4
Noise Induced Dephasing of Edge States

Single particle theory of quantum Hall edge states suggests that at integer fill-
ing factors the low-energy edge excitations are free chiral electrons. If this were
the case, it would imply that edge excitations remain coherent at long distances,
and would call for various quantum information applications. Results of tunneling
spectroscopy experiments [1] reasonably agree with the free-electron description of
edge states. In contrast, the first experiment on Aharonov-Bohm oscillations of a
charge current in the electronic Mach-Zehnder interferometer [2] has shown that the
phase coherence is strongly suppressed at energies, which are inverse proportional to
the interferometer’s size. Moreover, subsequent experiments [3—10] have found that
the visibility of Aharonov-Bohm oscillations as a function of voltage bias applied
to the interferometer shows unusual lobe-type behavior, suggesting that a strong
Coulomb interaction might be responsible for dephasing of edge electrons.

Early attempts to explain the unusual Aharonov-Bohm effect in Mach-Zehnder
interferometers focused on the filling factor v = 1 state, and suggested different mech-
anisms of dephasing, including the resonant interaction with a counter-propagating
edge state [11], the dispersion of the Coulomb interaction potential [12], and non-
Gaussian noise effects [13, 14]. To date, however, all the experiments, reporting
multiple side lobes in the visibility function of voltage bias, have been done at filling
factor v = 2. In the previous chapter, we have shown that in this case the long-range
Coulomb interaction splits the spectrum of collective charge excitations at the quan-
tum Hall edge (plasmons) in two modes: a fast charge mode and a slow dipole mode.
At low energies, only slow mode is excited at the first quantum point contact. It car-
ries away the electron phase information, but may be absorbed at the second quantum
point contact. This process partially restores the phase coherence at specific values of
voltage bias, and generates multiple lobes in the visibility. At the same time, thanks
to the chirality of edge states, the electron transport through a single quantum point
contact is not affected by interaction.

Some text sections in this chapter are reproduced from Phys. Rev. Lett. 103, 036801 (2009),
© American Physical Society.

I. Levkivskyi, Mesoscopic Quantum Hall Effect, Springer Theses, 77
DOLI: 10.1007/978-3-642-30499-6_4, © Springer-Verlag Berlin Heidelberg 2012
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Fig.4.1 Schematic of the electronic Mach-Zehnder interferometer. Two chiral channels are formed
at the edge of a quantum Hall liquid at filling factor v =2. Outer channels (shown by blue lines)
are mixed at two quantum point contacts and form an Aharonov-Bohm loop. Electrons are injected
into the interferometer through an additional voltage biased quantum point contact, which is placed
at the distance D from the interferometer and has transparency 7'. After Ref.[15]. © American
Physical Society (Color figure online)

We argue that there are two sources of dephasing in the Mach-Zehnder interfer-
ometers: interaction and coupling to non-equilibrium noise generated by quantum
point contacts. In this chapter, we apply the non-equilibrium bosonization approach
to the model proposed in the previous chapter in order to investigate the second
source of dephasing. Importantly, the experiments [3—10] can be roughly grouped in
two categories according to the biasing scheme. In the experiments of the first group
[3, 4, 6, 7], the bias is applied only to the interfering channel with the help of addi-
tional quantum point contact. In this chapter, we focus on this group of experiments,
where electrons are injected into a Mach-Zehnder interferometer via an additional
quantum point contact, as shown in Fig.4.1 and study how the partitioning noise
created by this quantum point contact affects the interference.

4.1 Experimental Setup and the Model

The model of a Mach-Zehnder interferometer, introduced in Chap. 3, is discussed
here only briefly. We note, that experimentally relevant energy scales are very
small [3-10]. Therefore, it is appropriate to use an effective theory describing
edge states at filling factor v =2 as collective fluctuations of the charge density
Pas(X) = Ox@qs(x) /27, where o = 1, 2 enumerates channels at the quantum Hall
edge, and s = U, D enumerate arms of the interferometer. The total Hamiltonian of a
Mach-Zehnder interferometer, H = Ho+ >_,(A¢ + AZ), contains a term describing
edge states

o = o3 2, [ drdyVas(x = 90uus (00,650, (@1
afs

where the kernel, V,g(x — y) = 27vrdapd(x — y) + Uqg(x — ), includes a
free fermion contribution with the Fermi velocity vg, and the Coulomb interaction
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potential U, 3. Vertex operators

Ag = teexpligip(xe) —ig1u (xp)l, 4.2)

where ¢ = L, R, describing electron tunneling between outer edge channels of the
interferometer at the left and right quantum point contact, are treated perturbatively.
The Aharonov-Bohm phase pap is taken into account via the relation for tunneling
amplitudes, 13t;, = |trtL|eiPAB.

The electron current is defined as a rate of change of the electron number in the
lower arm, I = i[H, Np]. To leading order in tunneling amplitudes, its average
value is given by the linear response formula

(I) = /dtZ([AZ(t),Ap(O)]). (4.3)
et

Here the average is evaluated with respect to the non-equilibrium state created by
partitioning of the outer channel at the quantum point contact. The Aharonov-Bohm
oscillations in the differential conductance G = d(I)/d Ay are characterized by the
visibility

Gmax — Gmin

Vap(Ap) = —.
AB a Gmax + Gmin

4.4)

Using the linear response formula for current, one easily finds that both the visibility
and the phase shift of Aharonov-Bohm oscillations are expressed in terms of the
same complex function (see Sect.3.3), namely

Vas = VoOIT(Aw),  Apas = arg T(Ap), (4.50)
T d
T(Ap) = Oa / L KoL, 0K(L. 0, 4.5b)
T
—00

where Vo oc 2|t2tr1 /(1122 + |tr|?), and

K (x, 1) o (exp[—igis(x, 1)]exp[igrs(0, 0)]) (4.6)

are the electron correlation functions [16] at the outer channels of the interferometer.
Thus the visibility of Aharonov-Bohm oscillations probes a non-equilibrium state of
a quantum Hall system via the correlators K (x, t).
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4.2 Correlation Functions

According to the non-equilibrium bosonization technique, the equations of motion
generated by the Hamiltonian (4.1) have to be accompanied with a boundary
condition:

1
00ty = = 5= [dyVast = 0B,0n 00 @
B
i as(—=D, 1) = 27 jos (1). (4.7b)
We place the boundary at the point x = —D, where the upper outer channel is

interrupted by a quantum point contact. By solving equations (4.7a) one may express
the fields ¢ in terms of currents j,. In general, the fields ¢, influence fluctuations
of the currents j,s at a quantum point contact, but such back-action effects are absent
for chiral edge states, as we have shown in Chap.2. As a consequence, in the case
of v =2 the electron transport through a single quantum point contact is not affected
by interactions, which has been recently confirmed in the experiment [8, 9].

Following the argumentation in Chap. 3, we assume that the Coulomb potential
is screened at distances d, with L > d > a, where a is the distance between edge
channels. The screening may occur due to the presence of either a back gate, or a
massive air bridge (see discussion in Sect. 3.2.3). Therefore, at low energies one can
neglect the logarithmic dispersion of the Coulomb potential and write

Uap(x — y) = Uapd(x — y). (4.8)

Nevertheless, the long-range character of the interaction, i.e., the fact that d > a,
allows one to approximate U, 3 = mu, where u/vr ~ log(d/a) > 1. As aresult, the
spectrum of collective charge excitations splits in two modes: a fast charged mode
with the speed u, and a slow dipole mode with the speed v >~ vF.

It is important to stress that the condition d 3> a results in a sort of universality:
the solution of equations of motion (4.7a) in terms of the charged and dipole mode,

Prs(x, 1) = %[éu(x — vt) + oy (x — ut)] (4.92)
Pos(x, 1) = %[cﬁu(x —vt) = dog(x — ut)] (4.9b)

is only weakly sensitive to perturbations of our model, in particular to those that
account for different bare Fermi velocities of edge channels and slightly different
interactions strengths.

Applying now boundary conditions (4.7b) to the result (4.9) we finally solve
equations of motion in terms of the boundary currents:
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Iy ty

Sro(e, 1) =7 / ' L) + jos ()] + 7 / d'Lis() — jas(@)]. (4.10a)
) Ty . Iy

bas(r, 1) = 7 / A Ls () + s ()] = 7 / d'Lis() — jas(@)]. (4.10b)

—00 —0o0

where we have introduced notations t, =t — (x + D)/u,and t, =t — (x + D)/v.

At relevant energies, v/L, the charged mode is not excited, which leads to a
universality in the electron transport predicted in the previous chapter and observed
in experiments [3—10]. Here, taking the limit u — oo simplifies the solution (4.10),
and we obtain the result

P15(x, 1) = —m[Q15(1) + Q25 (1) + Qi5(fy) — Qo (f)], (4.11)

where the charge operators are defined as Qs (f) = fi o dt’ jos(t)).

Finally, we further assume that the noise source is located far away from the inter-
ferometer, D >> L, which reasonably agrees with the experimental situation [3—10].
This assumption does not spoil the physics that we address, and may be relaxed later.
It implies that all four charges in the solution for the field ¢ (x, ¢) are uncorre-
lated and contribute independently to the correlation function (4.6). Therefore, the
correlator K (x, t) splits in the product of four terms

Ky (L, 1) < x15(m, )X15(7, 1 = L/v)Xx25 (7, 1)x25 (=7, 1 — L /), (4.12)
where the generator of full counting statistics is defined as following [17]:
Yas(\, 1) = (ei)\Qos(l)e*i/\Qa.v(O)>. (4.13)

Averaging on the right hand side is defined over free electrons.

Equation (4.12) can be illustrated by the following physical picture. Each electron
splits in two plasmon modes by the interaction after tunneling at the quantum point
contact, as shown in Fig.4.2. These modes propagate with different speeds and
become uncorrelated at distances x > Apu/v. Thus, there are four independent
contributions to the correlation function in the outer edge channel, since tunneling
to each of the edge channels leads to the emission of two plasmons. Each of these
plasmons carries a +e/2 charge in the outer channel, and therefore they are counted
with A = Fm at the next quantum point contacts.
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Fig. 4.2 Schematic illustration of the Coulomb interaction effect at the HQ edge at filling factor
v =2. The electron wave-packet of the charge e created in the outer edge channel (black, lower
line) decays into two eigenmodes of the Hamiltonian (4.1), the charged and dipole mode, which
propagate with different speeds and carry the charge e/2 in the outer channel. As a result, the wave
packets do not overlap at distances larger than their width, and contribute independently to the
electron correlation function with the coupling constant A = —7. Similar situation arises when an
electron is injected in the inner channel (blue line), however in this case the charged and dipole
states carry opposite charges at the outer channel. Thus, there are four independent contributions
to the correlation function in the outer edge channel. After Ref. [18]. © American Physical Society
(Color figure online)

4.3 Situation with Non-Equilibrium Gaussian Noise

In the context of the noise detection physics [17] the dimensionless counting variable
A in the expression (4.13) for the full counting statistics generator plays the role
of a coupling constant. Typically, it is small, A < 1, so that the contributions of
high-order cumulants of current noise to the detector signal are negligible [19]. In
contrast, in the physical situation that we consider in the present paper A = =,
implying that the shape of the distribution function may be strongly affected by
high-order current cumulants. Nevertheless, it is instructive to first consider Gaussian
fluctuations, simply truncating the cumulant expansion at second order in A. In this
case the correlation function (4.12) may be evaluated exactly. The are many reasons
for starting the analysis from considering an example of a Gaussian noise: First of all,
in equilibrium the current fluctuations in a chiral one-dimensional system are always
Gaussian. Second, as we show in the Appendix C, the dispersion of the charged and
dipole modes leads to a suppression of higher order cumulants at large distances.
Finally, on the Gaussian level it is easier to investigate and compare contributions
of zero-point fluctuations and of non-equilibrium noise to the electron correlation
function.

Expanding the right hand side of Eq. (4.13) up to second order in charge operators
and taking into account Eq. (2.41), we obtain:

1oglxas A 0] = iAjas)t — A Jas (1). (4.14)

The Gaussian noise contribution to the above expression is given by the following
integral:

1 dwS,s (W) i
Jos (1) = E/#ﬁnz“ —e ¥, =0, (4.15)
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Fig. 4.3 Spectrum of noise power. Left panel shows quantum contribution Sq(w) generated by the
incoming Fermi sea. This contribution vanishes at low frequencies Sq(0) = 0 and dominates at
small times. Right panel shows non-equilibrium contribution Sy, (w). This contribution determines
the behavior of the second cumulant (4.15) at large times J,,(#) o< Sy (0)|¢]. After Refs. [15, 18].
© American Physical Society

where the non-symmetrized noise power spectrum is defined as
Sas (W) = / dte™" (8 jos (1)8 jos (0)) (4.16)

and 0 jas (1) = jas(t) — (Jas)-

For a quantum point contact far away from equilibrium, SAux > 1, one may
simply set the temperature to zero. Straightforward calculations based on the scat-
tering theory [20] give the following result for the spectral density of noise (4.16) of
a quantum point contact:

Sas (W) = Sq(w) + Ras Tas Sn (W), (4.17)

where Sq(w) = (1/2m)wb(w) is the quantum, ground-state spectral function, and
Sn(w) = >4 Sqlw £ Ap) — 284(w), is the non-equilibrium contribution (see
Fig.4.3). Note, that the noise power spectrum (4.17) is different from the power
spectrum in a non-chiral case [19].

Evaluating the integral (4.15) we come to the following expression

Jas (@) = (1/477)[log 1 + 2Ry Tas f (Apn)], (4.18)

where the logarithm comes from the quantum contribution, and the dimensionless
function f(Apt), which describes the non-equilibrium part of noise, is given by

1

F(Aut) = /dT

0

1—7

) (1 —cos AutT). 4.19)

This function has a quadratic behavior f(Aput) ~ Ap*t?/4 at small times t — 0,
while in the long-time (classical) limit, a dominant contribution to this function is
linear in time:

f(Apt) = (7/2)|Apt]. (4.20)
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Finally, taking into account that (j.s) = AuTas/2m, we find that the cumulant
generating function is given by:

10g[Xas (A, )] = i(A/2m) ApTast — (A\/2m)*[log 1 — T Ras Tos | Apt]]. (4.21)

We now focus on the specific situation shown in Fig. 4.1, namely, we set Tip =
Thp =Ty =landTiy = T = 1— R. We evaluate the electron correlation function
(4.12) in the upper arm of the Mach-Zehnder interferometer, using Eq.(4.21), and
arrive at the result

expli AuT (t — L/2v)]
JiG =L exp[—ﬂ'RT(lAutl + |Aut — AML/v|)(/44]2,2)

On the right hand side of Eq. (4.22), the numerator in the first term originates from the
average current T Ap/2m in (4.14), the denominator is the contribution of the quan-
tum noise Sq(w), and the last term comes from the non-equilibrium noise S, (w) and
describes dephasing. The correlation function in the lower arm of the interferometer
can be obtained from Eq. (4.22) by setting A = R = 0 with the result

Kp(L, 1) o< 1//t(t — L/v). (4.23)

This correlation function coincides with the result (2.36) found in Sect.2.2 in the
framework of the usual bosonization approach. Moreover, for a ballistic channel,
and for L = 0 the electron correlation function coincides with the one for free
electrons. This explains the fact that in the v = 2 case, the Coulomb interaction does
not affect an electron transport through a single quantum point contact [8, 9], and
justifies our approach.

Next, we use the results for correlation functions K to evaluate the integral (4.5b).
For a large voltage bias LAu/v >> 1, we obtain the following result for a Gaussian
noise

Ky(L,t) «

A X
T(Ap) & Epday sin (WE—“) e~ An/Es (4.24a)
Ib
2mv 4v
Ep=—, Eg = ) 4.24b
b= df = T ( )

Thus the visibility Vap, given by Eq. (4.5a), shows a lobe-type behavior: It oscillates
as a function of voltage bias A, vanishes at certain values of bias, and decays. Since
the function Z (A ) is real, the Aharonov-Bohm phase shift Apap jumps by 7 at zeros
of the visibility and remains constant between zeros, thus showing the phase rigidity
[3]. The distance between zeros of the visibility, E}p, is determined by the average
current of transmitted electrons, and can be viewed as a “mean-field” contribution
to the correlator (4.22). The dephasing rate, i.e., the scale of exponential decay of
(4.24a), Eqt, is determined by the current noise power. The ratio 2Ey, /(mEgr) = R
is given, in general, by the Fano factor of Gaussian noise.
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4.4 Noise Induced Phase Transition

In fact, the actual noise of the quantum point contact is non-Gaussian. Thus, in
this section, we consider non-equilibrium partitioning noise and show, that in this
situation the asymptotic behavior of the visibility undergoes a noise induced phase
transition.

4.4.1 Non-Gaussian Noise in Markovian Limit

In what follows, we consider non-Gaussian noise, and show that the contribution
of high-order cumulants of current is indeed not small. Note, that the ground state
contribution of the current noise, Sq, that dominates at short times, is pure Gaussian.
Therefore, the denominator in the expression (4.22) remains unchanged. In the long
time limit, the dominant contribution to the full counting statistics generator comes
from the non-equilibrium part of noise, S,. For a quantum point contact, it is given
by the well known expression [17] for a Binomial process.

Let us briefly recall the derivation of these important expression. In the long-time
limit, the charges Q(¢) and Q(0) commute and can be treated as classical quantities.
Thus, the full counting statistics generator is given by:

X()\9 t) — <ei/\[Q([)_Q(O)])’ (425)

where we have omitted the channel indexes for brevity. This classical quantity can
be found directly, if one takes into account that the probability of transmission of Q

particles for N attempts is given by the distribution Py(Q) = CST2RN~C:

(ei)\Q> _ Z PN(Q)eMQ _ Z CS(TEM)QRN—Q’ (4.26)
0 o

where T is the transmission probability in a single event and R = 1 — T. Using
the Newton binomial formula for the last sum in Eq.(4.26), we get the following
expression for the full counting statistics generator:

Xtw\ 1) = (R + TeMHN, 4.27)

where N = Aput/2m is the number of electrons that contribute to noise. Applying
the analytical continuation A — 7, we obtain

A
log[x 10 (=, 1)] = 2—‘;’[10g T — R| +in0(T — R)]. (4.28)

where the imaginary part contributes to the effective voltage bias in the first term of
the correlator (4.22), while the real part is responsible for dephasing.
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Fig. 4.4 The visibility of Aharonov-Bohm oscillations is shown as a function of the normalized
voltage bias for different transparencies of the quantum point contact that injects electrons. It is
evaluated numerically using the Gaussian approximation at low bias, and Markovian full counting
statistics at large bias. The visibility shows several lobes for T > 1/2 (blue curves), while it has
only one side lobe (red curves) for T < 1/2. The black curve shows the visibility at critical point
of the phase transition. Dashed lines indicate the position of zeros. After Ref. [15]. © American
Physical Society

A remarkable property of Eq.(4.28) is that high-order cumulants of current add
up to cancel the dilution effect of a quantum point contact. Therefore, the continuous
variation of the mean-field contribution in the correlator (4.22) is replaced with the
jump in the voltage bias across a Mach-Zehnder interferometer at the point 7 = 1/2.
We evaluate the integral (4.5b) in the limit LA /v > 1 and arrive at the result (4.24a),
as in the Gaussian case, but with new energy scales:

E _2771) Fo — 2mv
b = 7 df_L|log(T—R)|’

T>1/2. (4.29)
The rigidity of zeros of the visibility for T > 1/2 is clearly seen in Fig.4.4. For
T < 1/2, the visibility may be found by taking the limit Ej, — oo in Eq.(4.24a)
with the result

T(Ap) (1 — Ap/Egp)e M Ear, (4.30)

Thus, the only zero of the visibility scales as Ay = Eg¢, given by the expression
in (4.29).

The behavior of the visibility of Aharonov-Bohm oscillations, shown in Fig. 4.4,
may be considered a phase transition, because strictly speaking, it arises in the clas-
sical regime, where the number of electrons that contribute to this effect is large,
N > 1. The transition occurs at the critical point, A\ = 7w, T = 1/2, where the
moment generator x 1y (A, ¢) of a Binomial process vanishes, and can be viewed as a
result of entanglement between electrons of the noise source and those that contribute
to Aharonov-Bohm oscillations. However, quantum fluctuations of N at critical point
smear out the sharp transition.
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4.4.2 Quantum Correction at Critical Point

Finding quantum corrections to the full counting statistics of non-interacting elec-
trons requires the evaluation of Fredholm determinants, which is best formulated in
the wave-packet basis [17]. In the present situation a simplification arises from the
fact, that in the long-time limit the dominant contribution to the generator (4.13)
comes from non-equilibrium electrons in the energy interval Ap. We can thus write
the full counting statistics generator (4.13) as following:

v\, 1) = (WU () U (1)), (4.31)

where the N-electron wave function (xi, ..., xy|¥V) = det,,, W, (x,,) describes the
“train” of incoming wave-packets, Q is the charge counting operator, which counts
the transmitted states, and U (¢) is the evolutionary operator. The exponent of the
counting operator can be written as ¢/*¢ = 1 — P + ¢/* P, where P is the projector
on the subspace of transmitted states.

The states of electrons in the “train” can be well approximated by the functions

W, (x) = [ Ap sin[(Ap/2)(x/vp — 1) +7Tn]' 4.32)

2nrvr (Ap/2)(x/vp —1t) + 7n
Such wave packets are normalized as f dx|W, (x)|*> = 1. If electrons under the
action of U (¢) were transmitted through the quantum point contact (which is placed
at x = 0 for the convenience) with the probability 7" and reflected with the probability
R = 1—-T,this would lead to a Binomial process. However, the fact that wave packets

have a finite width leads to the small probability P, = f E 0o dx Wn2 (x) for electrons
not to reach the quantum point contact, which can be well approximated with

P, = [7(Apt — 27n)] L. (4.33)
This fact is schematically illustrated in Fig.4.5.

Thus, taking into account all three possibilities, the moment generating function
can be written as

xvih 1) = [ I = P)(R + Te) + Pyl (4.34)

Far from the critical point this expression gives the Eq. (4.27) plus small corrections
of order of log N. While at the critical point, A\ = 7, T = 1/2, Eq.(4.34) gives the
following result

A
loglxiu] = X log(Py) = — =X flog(rapn — 11 (4.35)
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Fig. 4.5 Illustration of quantum corrections due to the finite width of wave packets. At point
x = 0, electron wave packets are transmitted with probability 7" or backscattered with probability
R. Transmitted packets are shown in red color, backscattered ones are shown in blue color. Each
wave packet has a power-law tail of wave function in the region before quantum point contact. Thus
the probability P, not to reach the quantum point contact is equal to the area of the gray shadow.
It is given approximately by Eq.(4.33) (Color figure online)

Therefore, the asymptotics of the cumulant generator is not linear in time.
One can notice that the imaginary part of log[x1y] comes from a branch cut of
the logarithm of Eq.(4.34) and grows gradually in the interval

T — R~ 1/Q2x°N). (4.36)

Therefore, the quantum corrections smear out the discontinuity in (4.28). Using
Eq. (4.35) we find that exactly at the critical point the visibility scales at large biases
as follows:

Vap & 0. exp{—e[log(n?e) — 11}/ve, &= AuL/2mv > 1. (4.37)

The result of a numerical evaluation of the visibility integral for this situation is
shown by black line in Fig.4.4.

4.5 Conclusions

First experiments on electronic Mach-Zehnder interferometers brought interesting
results and attracted significant attention of theoreticians. The effects found in these
experiments at relatively low bias, such as, e.g., lobe type structure of the visibility
and the phase rigidity with respect to bias can be explained by the presence of the
strong Coulomb interaction at the edge. It has been found in the experiments, that the
visibility decays rapidly at relatively large bias. We argue, that this effect is explained
by coupling of electrons to the non-equilibrium noise generated at quantum point
contacts. Therefore, we use the non-equilibrium bosonization technique to describe
the effects of the quantum point contact, which dilutes the impinging edge channel.

Apart from diluting the incoming electron channel, this additional quantum point
contact generates a partition noise. The Mach-Zehnder interferometer turns out to
be strongly coupled to this noise, so that non-Gaussian effects, characterized by
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irreducible moments (cumulants) of the current noise, become important. We express
the visibility of Aharonov-Bohm oscillations in the differential conductance in terms
of the cumulant generating function, and find that in the limit of large voltage bias, all
the current cumulants add up to cancel the dilution effect of an additional quantum
point contact. We predict, that this leads to a phase transition at the quantum point
contact’s transparency 7' = 1/2, where the visibility function of voltage bias abruptly
changes its behavior. Quantum fluctuations smear out the sharp transition in the
vicinity of the critical point. Far from the critical point, the noise contributes only to
the exponential envelope of the visibility.

We think that a similar behavior of the visibility, i.e., the exponential decay at
large bias, will be caused as well by the noise emitted by the first quantum point
contact of the interferometer. This statement, however, deserves further quantitative
justification. The present theory takes into account interaction effects, discussed in
the previous chapter, and the external non-equilibrium noise. Already at this point,
one gets almost perfect fit to experimental data of several experiments, with few fitting
parameters. Moreover, the proposed model leads to strong qualitative predictions,
such as the existence of the noise induced phase transition, which can serve as an
additional justification of the theory.
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Chapter 5
Energy Relaxation at the Quantum Hall Edge

On the theoretical side, there are two main points of view on the physics of quantum
Hall edge states. One group of theories [1, 2] suggests that at integer values of the
Landau levels filling factor the edge excitations are free chiral fermions. The second
group of theories is based on the concept of the edge magneto-plasmon picture [3-6].
The fundamental edge excitations in these theories are the charged and neutral col-
lective boson modes.

The domain where these two approaches meet each other is the low-energy effec-
tive theory [7-9]. In the framework of this theory, both fermion and boson excitations
are two forms of the same entity. Namely, they can be equivalently rewritten in terms
of each other:

Y(x, 1) ~ explig(x, 1)]

where 1 (x, t) is the fermion field, and ¢(x, t) is the boson field. However, this
transformation is highly nonlinear, and in the presence of strong Coulomb interaction
fermions are not stable and decay into the boson modes which are the eigenstates of
the edge Hamiltonian.

Results of tunneling spectroscopy experiments [10] reasonably agree with the
free-electron description of edge states. However, the first experiment on Aharonov-
Bohm oscillations of a current through the electronic Mach-Zehnder interferometer
[11] has shown that the phase coherence of edge states is strongly suppressed at
energies, which are inversely proportional to the interferometer’s size. Moreover,
several subsequent experiments on Mach-Zehnder interferometers at filling factor
v = 2 have shown puzzling results on finite bias dephasing [12-19] theoretically
studied in [20-24]. Namely, the visibility of Aharonov-Bohm oscillations in these
experiments is found to have a lobe-type pattern as a function of the applied voltage
bias. Such results are difficult to explain in terms of the fermion picture, while they
all follow naturally from the plasmon physics (see Chap.3) where the Coulomb
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interaction plays a crucial role. Thus the boson picture of edge excitations might be
more appropriate.

In contrast to the mentioned above non-local experiments, some local measure-
ments do not seem to be able to differentiate between two physical pictures of edge
states. For example, both theories predict Ohmic behavior of the tunneling current,
unless it is renormalized by a non-linear dispersion of plasmons (see Appendix A).
Moreover, the equilibrium distribution of the bosons is equivalent to the one of
fermions (see the demonstration of this fact in Sect.5.3.3). Therefore, it might be
interesting to investigate non-equilibrium local properties of edge states.

5.1 Experimental Results

Non-equilibrium behavior of one-dimensional systems has been a subject of intensive
theoretical [25-28] and experimental [29-33] studies for a long time. However, only
recently it has become possible to measure an electron distribution f (¢) as a function
of energy e with high precision [34]. The main idea of the experimental technique is
to restore the function f(€) by measuring the differential conductance G of tunneling
between two edges through a single level in a quantum dot:

G(e) x 0 f(€)/ 0k, (5.1)

where ¢ is the energy of the quantum dot level, controlled by the gate voltage V.
This technique has been used in Refs. [34-36] in order to investigate the energy
relaxation at quantum Hall edge states at filling factor v = 2. The schematics of
these experiments is shown in Fig.5.1. The main result of Refs. [34-36] is that the
electron distribution relaxes toward local equilibrium Fermi distribution, and the
energy splits equally between the two edge channels.

The first theoretical models based on the fermion picture [37] and on the plasmon
approach [38] have come basically to identical conclusions. Namely, both works
predict equal distribution of the energy between the edge channels, in agreement
with the experimental findings. In other words, based on the results of Refs. [37, 38]
the experimentalists are not able to discriminate between two alternative descriptions
of the physics of quantum Hall edge. Thus, it seems to be important and timely to
reanalyze the problem of the energy relaxation at the quantum Hall edge in order to
make new, model specific and distinct predictions that can be verified experimentally.
This is exactly the purpose of this chapter.

Here we show that the Coulomb interaction strongly affects the spectrum of col-
lective edge excitations and leads to the formation of charged and dipole plasmons
modes, which propagate with different velocities. They carry away the energy of elec-
trons injected through the quantum point contact and equally distribute it between
edge channels at distances L¢x from the quantum point contact. In addition to this
observation, which agrees with findings of previous works [37, 38], we stress that
the same process splits the wave packets of injected electrons, and leads to strong
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Fig.5.1 Schematics of the experiments [34—36]. The shaded region is filled by the two-dimensional
electron gas in the regime of the quantum Hall effect. At filling factor v = 2 there are two chiral
edge states shown by the blue (the outer channel) and the black (the inner channel) lines. The
quantum point contact of the transparency 7" and biased with the voltage difference Ay, injects
electrons into the outer channel, and thus creates a non-equilibrium electron distribution. After the
propagation along the quantum Hall edge, the distribution is detected at distances L from the source
with the help of a quantum dot with a single level controlled by the gate voltage V. After Ref. [39].
© American Physical Society (Color figure online)

coupling of electrons to the noise of the quantum point contact current. The regime
of weak injection, i.e., when the transparency of the quantum point contact is small,
T « 1, deserves a special consideration. In this regime the current noise at relevant
time scales becomes Markovian, and as a result, the function —9 f (¢) /Je acquires a
Lorentzian shape (this effect resembles a well known phenomenon of the homoge-
neous level broadening). Interestingly, the width of the Lorentzian scales as 7 Ay at
small 7', where Ay is the voltage bias applied to a quantum point contact. In con-
trast, the width of the eventual equilibrium Fermi distribution of thermalized electrons
scales as /T A p. If thermalization takes place at longer distances, Leq > Lex, then
the intermediate regime described here may be observed in experiment with a weak
injection. This would indicate that interactions strongly affects the physics at the
edge and that the fermion picture becomes inappropriate.

In order to theoretically describe the experiment [35, 36] and to quantitatively
elaborate the physical picture, we use the non-equilibrium bosonization technique,
which has been introduced in Chap.2. The main idea of this approach is based
on the fact that in a one-dimensional chiral system one can find a non-equilibrium
density matrix by solving equations of motion for plasmons with non-trivial boundary
conditions. Then, one can rewrite an average over the non-equilibrium state of an
interacting system in terms of the full counting statistics [40] generators of the current
at the boundary. In the situation considered in this chapter, because of chirality of
quantum Hall edge states, interactions do not affect the transport through the quantum
point contact alone. This leads to a great simplification, because in the Markovian
limit the full counting statistics generator for free electrons is known [40].
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The structure of the chapter is following: In Sect.5.2 we briefly recall the non-
equilibrium bosonization technique. Next, we use this technique in Sect.5.2.1 in
order to find the electron correlation function for different distances from the quantum
point contact. Finally, we use these results to find the electron distribution function in
Sect. 5.3, and present our conclusions in Sect.5.5. Several important technical steps
and the phenomena resulting from the non-linearity of the spectrum of plasmons are
described in Appendices A and C.

5.2 Theoretical Model

The relevant energy scales in recent mesoscopic experiments with the quantum Hall
edge states [12-19, 34] are very small. Therefore, it is appropriate to use the low-
energy effective theory of the quantum Hall edge. One of the advantages of this
theory is that it allows to take into account strong Coulomb interactions in a straight-
forward way [21]. However, an additional complication arises from the fact that in
the experiment [34] the injection into one of the two edge channels creates a strongly
non-equilibrium state. We, therefore, use the method of non-equilibrium bosoniza-
tion, proposed in Chap. 2, which is suitable for solving the type of a problem that we
face.

According to the low-energy theory of quantum Hall edge, considered in previous
chapters, the collective fluctuations of the charge densities p,(x) of the two edge
channels, o = 1, 2, at filling factor v = 2 are the only relevant degrees of freedom
at low energies. These charge densities may be expressed in terms of the chiral
boson fields, ¢ (x), as po (x) = (1/27)0x do(x). This fields satisfy the commutation
relations [¢q(x), ¢g(y)] = imdagsgn(x — y). The vertex operator

Yo (x) = % el e (5.2)

annihilates an electron at point x in the edge channel «. The constant a in the pre-
factor is the ultraviolet cutoff, which is not universal and will be omitted and replaced
by other normalizations. One can easily check, with the help of the commutation
relations, that the operators (5.2) indeed create a local charge of the value 1 at point
x, and satisfy fermionic commutation relations.

The edge Hamiltonian has the quadratic form in terms of the boson fields:

1
= 8?%: Vs / dx 0, 6o (1)D B33, (5.3)

where the kernel contains free fermion contribution as well as the Coulomb interac-
tion potential:
Vaﬂ = 27TUF5Q,H + Uaﬂv (5.4)
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which is assumed to be screened at distances d smaller than the characteristic length
scale L in experiments [12-19, 34], i.e., L > d. Screening may occur due to the
presence of either a back gate, or several top gates. Nevertheless, it is very natural to
assume that the screening length d is much larger than the distance a between edge
channels, d > a, which does not exceed few hundreds nanometers. Therefore, one
can write

Uap = mu, u/vr ~log(d/a) > 1, (5.5)

i.e., the in-channel interaction strength is approximately equal to the intra-channel.
As aresult, the spectrum of collective charge excitations splits into two modes: a fast
charged mode with the speed u, and a slow dipole mode with the speed v >~ vp (see
the detailed discussion in Sect.3.2.3).

In the non-equilibrium bosonization prescription, the equations of motion for the
fields ¢, have to be complemented with boundary conditions 0, ¢ (0, 1) = 27 jo ().
The solution for the equations of motion for the boson field has been found in Sect. 4.2
and it is given in our situation by the following expression:

P1(x, 1) = w[Q1 (1) + Q2(t) + Q1(1w) — Q2(t)], (5.6)

where Q,(t) = fioo dt'jo(t), ty, =t — x/u, and t, = t — x/v. The physical
meaning of this result is rather simple: when charges are injected into the channel
a = 1 and 2, they excite charged and dipole mode (note the minus sign in the fourth
term on the right hand side) which have different propagation speeds # and v. As a
result, these charges arrive at the observation point x with different time delays x /u
and x /v, and make a contribution to the field ¢ at different times.

5.2.1 Correlation Function

The experimentally found [34-36] electron distribution function at the outmost quan-
tum Hall edge channel is given by the expression:

fle)= /dtei€l<¢I(L, NY1(L, 0)). (5.7
Rewriting this expression via the boson fields we finally obtain
f(e) x /dteietK(t), K(t) = (e7/01ED 1 (L0), (5.8)

where we have introduced the electron correlation function K, evaluated at coincident
points at distance L from the quantum point contact. The proportionality coefficient
in (5.8) may be found from the condition that f (¢) takes a value 1 for energies well
below the Fermi level.
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When substituting this result into the correlation function in Eq. (5.8) one may
use the statistical independence of the current fluctuations at different channels and
split the exponential functions accordingly:

K(t) = (e*iW[Ql(lu)+Q1(tu)]eiW[Ql(tu*t)JrQl(tu*t)])
% <e—i7T[Q2(fu)—Qz(tu)]eiW[Qz(tu—l)—Qz(lu—f)]>_ (5.9)

In the rest of the chapter we will be interested in the correlation function at relatively
long distances L >> v1., where 7. ~ 1 /Ay is the correlation time of fluctuations of
the current through a quantum point contact. (We show below that at this length scale
the energy exchange between two channels takes place.) In this case, the partitioned
charges Q,, taken at different times 7, and t,,, are approximately not correlated, as
illustrated in Fig.4.2. This assumption is quite intuitive and may be easily checked
using Gaussian approximation. We, finally, arrive at the following important result':

K (1) = xi (=7, Dxa(m, X2 (=7, 1), (5.10)

i.e., the electronic correlation function (5.9) may be expressed in terms of the full
counting statistics generator:

Yo\, 1) = (ei/\Qw(t)e_i/\Qu(O)). (5.11)

Expression (5.10) presents formally a full solution of the problem of evaluation
of an electron correlation function. Generators of the full counting statistics for free
electrons in this expression, defined as (5.11), may be represented as a determinant of
a single particle operator [40], and eventually, evaluated, e.g., numerically. However,
a further analytical progress is possible in a number of situations, which are impor-
tant for understanding physics of the energy relaxation processes. For example, the
electron correlation function may be found analytically away from equilibrium for
the case of a Gaussian noise. Interestingly, in the short-time limit, t < 1/Ap, the
main contribution to the correlation function comes from zero-point fluctuations of
boundary currents, and it behaves as a free-fermion correlator, i.e., it scales as 1/¢. In
the long-time limit, 7 3> 1/Ap, the non-equilibrium zero-frequency noise dominates,
and the electron correlation function decays exponentially with time. This is exactly
the limit where a non-Gaussian Markovian noise should also be taken into account.

The physical situation that we consider in this chapter corresponds to the strong
coupling A = =, implying that the shape of the distribution function may be
strongly affected by high-order current cumulants. Nevertheless, it is instructive
to first consider Gaussian fluctuations, simply truncating the cumulant expansion at
second order in A. Indeed, on the Gaussian level it is easier to investigate and compare
contributions of zero-point fluctuations and of non-equilibrium noise to the electron

I Note that for = 1 the solution of equations of motion for boson field is ¢(x, t) = 27 Q(t —x/u)
and the correlation function (5.9) is given simply by x (2, t). The interaction only re-normalize
the velocity in this situation, so that the electrons are effectively free and counted with A = 2.
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correlation function. In this case the correlation function (5.9) may be evaluated
exactly. Moreover, we show in the Appendix C, the dispersion of the charged and
dipole modes leads to a suppression of higher order cumulants at large distances L,
and the noise becomes effectively Gaussian.

For the purpose of further analysis we need the electron correlation function in the
long-time limit. The cumulant generating function in this situation has been found
in Sect.4.3:

i\ A2
loglva(\ 0] = 5~ AuTat = (5=) (ogt = 7R TalApt]),  Apt > 1. (5.12)
27 27

Finally, substituting this resultinto Eq. (5.10), and setting 71 = T and 7> = 1 accord-
ing to the situation shown in Fig. 5.1, we obtain the electron correlation function in
the long-time limit:

K(t) o (1/1)e P ARTI=mRT AU/ A )y s 1. (5.13)

Note, that the right hand side of Eq. (5.13) contains the quantum contribution in the
form of a single pole, as for free fermions, as well as the non-equilibrium contribu-
tion in the form of an exponential envelop, those width is determined by the noise
power at zero frequency, S1(0) = RT Ap /2w (see Fig.4.3). The phase shift of the
correlator is determined by the “average” voltage bias (Au) = AuT of the incoming
stream of electrons, diluted by the quantum point contact. However, we show below
that this mean-field like effect of the dilution is strongly modified by a non-Gaussian
component of noise.

Next, we consider the situation of non-Gaussian noise. Note, that the quantum
ground state part of the current noise, Sy, that dominates at short times, is pure
Gaussian. Therefore, the denominator in Eq. (5.13) remains unchanged. In the long
time, Markovian limit, the dominant contribution to the full counting statistics gen-
erator comes from the non-equilibrium part of noise, which, e.g., is described by Sy
in Gaussian case. For a quantum point contact, the Markovian full counting statistics
generator is given by the well known expression [40] for a Binomial process:

Apt
log[x1 (7, )] = 2—“[10g IT — R| —im0(T — R)]. (5.14)
7

Substituting this expression to the correlation function (5.10), we arrive at the result
K([) 16 '¢ (l/t)e—ie(T—R)Aul-HOg |T—R|Au|l|/7l’ (5 15)
where the imaginary part of the exponent determines the effective voltage bias, while

the real part is responsible for dephasing.
Interestingly, at the point 7 = 1/2 the dephasing rate is divergent, and the effec-

tive voltage bias drops to zero abruptly for 7 < 1/2. It has been predicted in Chap. 4
that this behavior may lead to a phase transition in the visibility of Aharonov-Bohm
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oscillations in electronic Mach-Zehnder interferometers. We will argue below that
no sharp transition arises in the electron distribution function. However, it leads to
its strong asymmetry with respect to the average voltage bias (Au) = T Ap of the
outer channel.

5.3 Electron Distribution Function

In this section we use the results (2.52), (5.13) and (5.15) for correlation function
of electrons to evaluate and analyze the electronic distribution function. We start
by noting that the experiments [34-36] are done in a particular regime of strong
partitioning 7 ~ 0.5 at the quantum point contact injecting current to the channel
a = 1. This detail, which seem to be irrelevant from the first glance, is in fact of
crucial importance. Indeed, as it follows from the expressions (5.13) and (5.15),
the main contribution to the integral in Eq. (5.8) for the correlation function comes
from times ¢ of the order of the correlation time 7. ~ 1/Au, where our results
based on the Markovian noise approximation are not valid. However, the numerical
calculations show that the non-equilibrium distribution in this regime is very close
to the equilibrium one. Therefore, the equilibration of electrons, which is reported
in the experiment [34] to occur at distances v/Apu, may in fact take place at even
longer distances Leq > v/Ap due to an unknown mechanism not considered here.

Indeed, if the chiral Luttinger liquid model of quantum Hall edge states is valid,
then neither the strong interaction between electrons of two edges taken alone, nor
the weak dispersion of plasmons resulting from a long-range character of Coulomb
interaction may lead to the equilibration, because the systems remain integrable. Thus
it seems to be reasonable to assume that the equilibration length Leq may indeed be
quite long. Therefore, in order to explore the physics of collective charge excitations
at intermediate distances we propose to consider a regime of weak injection at the
quantum point contact: T < 1. Firstly, we note that in this case our results (5.13)
and (5.15) may indeed be used to evaluate the electron distribution function, because
the main contribution to the integral in Eq. (5.8) arises from Markovian time scales.
Secondly, and more importantly, in this regime the electron distribution function
acquires a strongly non-equilibrium form and the width of the order of T Ay, which
plays a role of the new energy scale. Moreover, the advantage of the weak injection
regime is that it allows to investigate a non-trivial evolution of the distribution func-
tion, which arises due to bosonic, collective character of excitations and goes via
several well distinguishable steps.

5.3.1 Short Distances

At distances of the order of the energy exchange length scale

Lex = v/Ap (5.16)


http://dx.doi.org/10.1007/978-3-642-30499-6_2

5.3 Electron Distribution Function 99

the initial double step distribution function is strongly perturbed by the interaction
between channels. As we argued in Sect. 4.2, at distances L >> L¢ the charged and
dipole modes split and make independent contributions to the electron correlation
function. Therefore, we may rely on the result (5.15). Applying the limit 7 < 1 to
this expression and evaluating the Fourier transform, we find:

_ af(e) _ FCng/m
de 62+F§g’

e =2T Ap/7. (5.17)

Here, the missing prefactor in the correlation function has been fixed by the require-
ment that f(e) = 1 at e - —oo. Thus, we conclude that energy derivative of the
distribution function acquires a narrow Lorentzian peak, which is shifted with respect
to the average bias (Au) = T Ap and centered at € = 0. The last effect is a unique
signature of the non-Gaussian character of noise. Because of the electron-hole sym-
metry of the Binomial process, in the limit R < 1 the Lorentzian peak obviously
has a width I'yy = 2RA /7 and centered at € = Ap.

We stress again, that the result (5.17) holds only for small enough energies close
to the Fermi level, namely, for |¢| < Ay, where the main contribution arises from the
noise in Markovian limit. In fact, the result (5.17) fails at large energies in somewhat
non-trivial way. Namely, it is easy to see that any electron distribution function has
to satisfy the sum rule

(Ap) = 60+/d6f(6) =— / deecdf(€)/0e, (5.18)
€0 —00

where € is the cutoff well below the Fermi level, and the “average” bias (Au) = T Ap
in the case of linear dispersion of plasmons. This sum rule simply expresses the
requirement of the conservation of the charge current and implies certain amount
of asymmetry in the distribution function. In the present case, such an asymmetry
arises in the power-law tails of the function —3 f (¢€) /O¢ and originates from quantum
non-equilibrium noise. It can be seen in Fig.5.2, where the results of numerical
calculations are shown.

Moreover, at energies of the order of Au the power-law behavior of the func-
tion (5.17) has to have a cut-off, because the quantum point contact does not provide
energy much larger than the voltage bias. Quantitatively, this follows from the conser-
vation of the energy. We demonstrate below that for the system with linear dispersion
of plasmons, the heat flux in the outer channel can be written entirely in terms of the
single-electron distribution function (in unites e = h = 1),

Im = (1/27r)/d66[f(6) —0(Ap) — o)l (5.19)
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as in the case of free electrons. We use the subscript m in order to emphasize the fact
that it is this quantity that has been measured in the experiment [35, 36]. In Sect. 5.4
we show that at distances L >> L.y the total heat flux injected at a quantum point
contact splits equally between two edge channels, therefore integrating Eq. (5.19)
by parts and substituting the heat flux for a double-step distribution, we obtain

I = (5.20)

(TAp? 1 / ,0f(€)  TR(Ap)?

————— — — [ dee =
4 41 Je 8T

for L > Lex. One can see from Eq. (5.17) that indeed the power-law behavior
has to have a cut-off at |¢] ~ Apu. We stress, however, that this summation rule is
less universal than the one given by Eq. (5.18), because it accounts only a single-
particle energy of electrons and fails in the case of a non-linear spectrum of plasmons,
considered in Sect. 5.4 in detail.

5.3.2 Intermediate Distances

So far we have considered the case of a linear spectrum of plasmons. This is a
reasonable assumption, taking into account the fact that non-linear corrections in the
spectrum of plasmons lead to a nonlinear corrections in the Ohmic conductance of
a quantum point contact. However, the experiments [34-36] seem to be done in the
Ohmic regime. Nevertheless, even in the case of a weak dispersion in the spectrum
of the both modes of the sort?

kj(w) = w/vj +vjwisignw), j=1,2, (5.21)

barely seen in the conductance of a quantum point contact, an intermediate length
scale L, may arise at which high-order cumulants of current are suppressed, and the
noise becomes effectively Gaussian. This situation occurs when the wave packets of
the original width v /(T A ) overlap. A simple estimate using the nonlinear correction
(5.21) gives the length scale

Lg = 1/7(TAp)?*, ~ = min(y;). (5.22)

We support this conclusion by rigorous calculations in Appendix C.

The dispersion is weak, if yvT Ay < 1. This implies that Ly > Ley, and leads
to the possibility to observe non-Gaussian effects at distances Lex < L <K Lg,
discussed in the previous section. Obviously, the same requirement also guarantees

2 Note that it is not possible to observe the non-Gaussian regime for » = 1. This is because the
Markovian contribution is zero in this case, i.e. log(R + Tei’\) = 0 for the value A = 27 which is
realized in this case (see footnote 1). This means that the double step function will propagate until
the distances (5.22) at which the higher order cumulants starts to get suppressed.
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Fig. 5.2 Energy derivative of the electron distribution function, —0 f/Je, is shown for different
distances L from the quantum point contact injecting current. The transparency of the quantum
point contact is set to 7 = 0.05 and voltage bias is Ay = 40 V. Black, solid line is —0 f (¢) /D¢
for short distances Lex < L < Ly, so that the noise is non-Gaussian (5.17). Red, dashed line
is —0 f (¢)/Oe for intermediate distances Ly <« L <« Leq, where the noise is Gaussian (5.23).
Blue, dotted line is the derivative of the Fermi distribution function at the temperature given by
Eq. (5.26). The vertical dashed line is a guide for eyes at the energy equal to the effective voltage
bias (Ap) = TAp = 2 V. Inset shows the same distribution functions in the integrated form.
They are shifted vertically by 0.2 intervals for clarity. After Ref. [39]. © American Physical Society
(Color figure online)

that dispersion corrections to the Ohmic conductance of a quantum point contact
are small. This allows us to neglect corrections to the quantum part of the electron
correlation function and to use the result (5.13) for a Gaussian noise. Substituting
this result to the equation (5.8), we obtain

_ af(e) . Ing/m
de  (e—(Au)>+TZ

Ty =T Ap/2. (5.23)

in the case Ly < L <« Leq. One can see, that the width of the function (5.23) is
almost twice as large compared to the one the function (5.17). Moreover, the function
(5.23) satisfies the sum rule (5.18). Therefore, we do not expect any asymmetry in the
high-energy tails of this function, in contrast to the situation with the non-Gaussian
noise. The comparison of distribution functions in these two regimes is shown in
Fig.5.2.

So far we have considered a situation where both charged and dipole mode are
dispersive. If for some reason the dispersion of one of the modes is negligible, then
higher order cumulants are suppressed only by a factor of two. The derivative of the
electron distribution function in this situation is given by the Lorentzian
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af(e) (Thg +Tg)/2m
e (e—(Ap)/2)2 + (Tng + I'y)2/4

(5.24)

centered at (Ap)/2 = ApT /2 with the width (g + I'g)/2 = (1/7 + 7/4) AuT.
This is because one mode brings only Gaussian component of the Markovian noise,
while the other one brings full non-Gaussian noise.

5.3.3 Long Distances

Next, we consider the distribution function at long distances, L > Leq, after the
equilibration takes place. The temperature of the eventual equilibrium distribution
may be found from the conservation of energy. In the next section we show that the
heat flux produced at the quantum point contact splits equally between two edge
states. In the situation of linear dispersion the distribution function acquires the form

fle = (5.25)

1 + e(e_(A#))/ ch ’

The possibility of such equilibration process is suggested by the fact that the equilib-
rium distribution of bosons implies the equilibrium distribution for electrons, as has
been shown in Sect.2.3.2. Obviously, the distribution (5.25) satisfies the sum rule
(5.18), while the energy conservation condition (5.20) may now be used in order to
find the effective temperature:

Feq = 3T /272 Ap, (5.26)
where we have used T < 1.

‘We conclude that the width of the equilibrium distribution scales as JT ,in contrast
to the case of a non-equilibrium distribution at shorter distances from the current
source, where it scales linearly in 7. Therefore, if T is small, an equilibrium and
non-equilibrium distributions may easily be distinguished, as illustrated in Fig. 5.2. In
the situation where the dispersion can not be neglected, the equilibrium distribution
of fermions is not given by the Fermi function (5.25), see Appendix A. This situation
deserves a separate consideration, which is provided in the next section.

5.4 Measured and Total Heat Fluxes

We have seen that in the case of weakly dispersive plasmons, yvT Au < 1, the non-
linearity in the spectrum leads to the suppression of high-order cumulants of current
noise at relatively long distances, which strongly affects the distribution function. On
the other hand, the direct contribution of the non-linear correction in the spectrum
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to local physical quantities, such as the quantum point contact conductance and the
heat flux, is small and has been so far neglected. Nevertheless, it may manifest itself
experimentally in a quite remarkable way. In this section we show that the weak
dispersion in the plasmon spectrum contributes differently to the measured heat flux
(5.19) and to the actual heat flux expected from the simple evaluation of the Joule
heat. As we demonstrate below this may, under certain circumstances, explain the
missing energy paradox in the experiment [35, 36].

We start by noting that the measured flux (5.19) at the distance L form the quan-
tum point contact may be expressed entirely in terms of the excess noise spectrum
Sa(w) = Sa(w) — (1/2m)wb(w) of edge channels right after the quantum point
contact, where S, (w) is defined in (4.16). Namely, in Appendix B we derive the
following result:

Inm(L) = 41-1 / dw{S1W)[1 + cos(AKL)] + Sr(w)[1 — cos(AKL)]},  (5.27)

—00

where Ak = ki (w) — k2(w), and k;(—w) = —k;(w). Importantly, this result holds
for an arbitrary non-linear spectrum & j (w) of the charged and dipole modes, and for
anon-Gaussian noise in general, i.e., high-order cumulants simply do not contribute.

One can easily find two important limits of Eq. (5.27): for L = 0 we immediately

obtain an expected result
[e¢])

Im(O)zé / dw S (W), (5.28)

—00
while at L — oo the cosine in (5.27) acquires fast oscillations, and we get

oo

1
In(00) = 7 / dw[S1 (W) + S2(W)]. (5.29)

—00

To be more precise, this happens at L > Loy = v/Ap. At zero temperature Sy
vanishes, and the single-electron heat flux I, created at the quantum point contact,
splits equally between edge channels: I, (00) = I, (0)/2. Note also, that in the case
of linear dispersion S, = T, R, Sn, where S, is shown in Fig.4.3.

In the next step, we rewrite the same measured flux in terms of the plasmon
distributions n (k) = (Ez;: (k)aj(k)), see Appendix B:

1 dk
In(00) = Z/ 7w?(k)n,-(k) + Iy, (5.30)
j

1 dk
=5z ZJ:/ Wi = ;K7 (5.31)
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where v; = Ow; /0k are the plasmon speeds at k = 0. The term I is the contribution
to the measured flux from quantum smearing of the zero-temperature electron dis-
tribution function fj(e) close to the Fermi level, which originates from a non-linear
dispersion of plasmons.

Here an important remark is in order. The integral (5.31) may diverge at large
k and has to be cut off at the upper limit. This is because there is no guarantee of
the free-fermionic behavior of the correlator K (¢) at short times and of the zero-
temperature electron distribution function fo(e€) at large energies. Thus, the integral
(5.19) has to be also cut off, which is what in fact is done in experiment. In contrast,
the spectrum of plasmons is linear at small k, and thus the distribution function
fo(e) has a free-fermionic behavior close to the Fermi level. Our definition of I
corresponds to the normalization of fy(€) to have a discontinuity of the value —1 at
€ = (Ap). The experimentally measured I/ may differ from the one defined in (5.31)
by a constant, which is, on the other hand, independent on the voltage bias A .

Next, we note that the actual total heat flux in the case of a non-linear dispersion
of plasmons acquires the completely different form?

1 Oow;
=5 ;/dk@—k’wj(k) n;(k), (5.32)

and thus in general I, # In/2, contrary to what has been assumed in the experiment
[35, 36]. This may explain the missing energy paradox. Indeed, assuming the low w
spectrum of the general form

ki =w/vj +vywh, j=1,2, (5.33)

where 7, are small, and equilibration of plasmons at L — oo, i.e., n;(k) =
np(e/eq) = 1/[exp(e/ 'eq) — 1], we obtain the missing heat flux as

Ci+1
Im—1Iq— /2= D cjvjviTef (5.34)

j=1.2

where the constants ¢; = (1/4m) f dzz%tnp(z) are of the order of 1. This result
implies that experimentally, the missing heat flux may be found investigating its bias
dependence and the spectrum of plasmons.

Let us consider an example where the dispersion of charged plasmon at small &
arises from the screened Coulomb interaction [3]:

3 We note, that in general the heat flux cannot be associated with the conserved Noether current,
because the Hamiltonian (3.2.1) is not local. Nevertheless, the continuity equation for the heat flux
I, given by (5.32), may be derived in the semi-classical limit kv < A, which is of interest here.
Moreover, one can show that for any interaction matrix (5.4) the energy flux of zero modes of
plasmons does not contribute to the total heat flux, if it is defined as the Joule heat created at the
quantum point contact.
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Fig. 5.3 Typical spectrum of A w( k’) -
charged plasmon in the case .- - j
of the Coulomb interaction | g T __ _.Ow/0k
screened at distances d < >
1/ k. This spectrum is concave, L
therefore dw/0k < w(k)/k. .
After Ref.[39]. © American e
Physical Society .

w/k = 2[Ko(ka) — Ko(kd)] = 21In(d /a) — (1/2)(kd)* In(2/kd), (5.35)

where a is the high-energy cutoff, d is the distance to the gate, suchas ka < kd < 1,
and o is the MacDonald function. The low-k asymptotics of this spectrum is illus-
trated in Fig.5.3. One can see that the spectrum is concave, so that in this case the
measured heat flux (5.30) is larger than the half of the actual heat flux (5.32). In
addition, the effect is weak, because kd ~ 0.1 in the experiment [35, 36]. Thus,
the dispersion of the Coulomb interaction potential alone is not able to explain the
missing flux paradox. Various mechanisms of convex dispersion are still possible
and will be investigated elsewhere.

5.5 Conclusions

Earlier theoretical works on quantum Hall edge states may be divided into two groups:
fermion based theories and the boson based theories. Recent interference experiments
suggest that the boson approach might be more appropriate for the description of
the edge physics. However, both groups of theories give the same predictions for the
local physical quantities at equilibrium. Moreover, the first theoretical works based
on fermion [37] and boson [38] approaches and addressing the non-equilibrium local
measurements, have not been able to make qualitatively distinct predictions. In this
chapter we show that it is nevertheless possible to test and differentiate between two
approaches with the local non-equilibrium measurements.

We address recent experiments [35, 36] with quantum Hall edge states at filling
factor 2, where an energy relaxation process has been investigated by creating a non-
equilibrium state at the edge with the help of a quantum point contact and reading
out the electron distribution downstream using a quantum dot. We use the non-
equilibrium bosonization approach [41] in order to describe the gradual relaxation
of initially non-equilibrium, double-step electron distribution to its equilibrium form.
In the framework of this approach the non-equilibrium initial state is encoded in the
boundary conditions for the equations of motions that depend on interactions. We
show that the electrons splitin two plasmons: fast charged and slow dipole mode. Thus
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<-3<\/7A/J,

- x TAp

v/Ap 1/yAp? 1/"}/T Ap? Leq L

Fig. 5.4 Different length scales for energy relaxation processes and corresponding distribution
functions in each regime are schematically shown. Red, first curve: The initial double-step distrib-
ution function. Black, second curve: At distances L > Ay /v the distribution function is strongly
asymmetric with respect to the “average” bias (Au) = T Apu. Green, third curve: At distances
L > 1/yT?Ap? the distribution function is a Lorentzian with the width that scales as T A . Blue,
fourth curve: The final equilibrium Fermi function at large distances. For small transparencies its
width scales as ~/T A . After Ref.[39]. © American Physical Society (Color figure online)

the electron correlation function (5.10) is expressed in terms of the four contributions,
each having form of the generator of full counting statistics of free electrons with
the coupling constant A\ = . Evaluating the Fourier transform of this function, we
find the energy distribution function.

Before reaching eventual equilibrium form, the distribution function evolves via
several steps, and its energy derivative acquires a Lorentzian shape:

af(e) r/x
de  (e—e)?+T2%

lel S Ap, (5.36)

where values of the width I and centering ¢ are different in corresponding regimes.
Each of the regimes, summarized below and illustrated in Fig. 5.4, has its own dom-
inant processes:

(1) First, after tunneling through the quantum point contact, electrons excite plas-
mons, which then split in two eigenmodes: one is charged fast mode with the speed
u, and the other is slow dipole mode with the speed v. This process takes place
at distances Lex = v/Apu, where Ap is the voltage bias across the quantum point
contact. In this regime Eq. (5.10) applies, which eventually leads to the distribution
(5.36) with the width I' = I'yg = 2ApuT /7 centered at ¢g = 0.

(i1) Next, a weak dispersion of plasmons, e.g., of the form k = w/v +7wzsign(w),
leads to broadening of wave-packets of the energy width € and to their overlap. This
process takes place at distances L >> 1/~ve>. As a result, high-order cumulants of
the current injected at the quantum point contact are suppressed at distances L >
Ly =1/v(TA ,u)z, the noise becomes Gaussian, and the derivative of the electron
distribution function acquires the shape (5.36) with the widthI' = I'y = mAuT /2,
centered at g = AuT.

(iii) A situation is possible, where the dispersion of one mode, most likely of the
charged mode, is much stronger than the dispersion of the second mode, i.e., v, > 7y.
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In this case, the previously described regime splits in two separate regimes. First,
at distances L = 1/7,(T Ap)? the contribution of the charged mode to high-order
cumulants of noise become suppressed, which leads to the distribution (5.36) with
the parameters I' = (I'ng + I'g)/2 and €9 = AuT /2. Then, at longer distances
L = 1/7,(T Ap)? the noise becomes fully Gaussian.

(iv) The interaction may lead to broadening of the wave-packets, but they do not
decay, which implies that the interaction alone does not lead to the equilibration.
This means that a different, weaker process may lead to the equilibration at distances
Leq much longer than the discussed above length scales. In the tunneling regime,

T « 1 the width of the eventual equilibrium distribution scales as JT , in contrast
to the above regimes, where it scales as 7. Thus, to observe the described variety
of regimes, we propose to perform measurements at large voltage biases and low
transparencies of the quantum point contact utilized to inject electrons.

Finally, we suggest a possible explanation of the paradox of missing heat flux in
the experiment [35, 36]. So far we have discussed the effects of weak dispersion. We
have found that in the case of a strong dispersion of plasmons, the measured heat
flux in the outmost edge channel, experimentally determined with the procedure
described by Eq. (5.19), is different from the actual heat flux per channel, defined
by Eq. (5.32). The screened Coulomb interaction leads to a rather weak dispersion
of the charged plasmon, and the effect is of the opposite sign, because the spectrum
in this case is concave. Nevertheless, other mechanisms of the convex dispersion are
possible. They will be considered elsewhere.
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Part 11
Fractional Quantum Hall Effect



Chapter 6
Classification of Effective Edge Models

In previous chapters, we have shown that the bosonic description of the integer
quantum Hall effect is the most natural one. Moreover, we have seen that the presence
of plasmon edge modes with different velocities, v;, is crucial for the explanation of
some experiments. Namely, the separation of spectrum on fast and slow mode, and
the specific values of the mixing matrix between eigenmodes and electron modes
lead to a number of universalities at the mesoscopic scale. Therefore, we think that
the presence of edge modes with different velocities may be also important in the
case of fractional filling factors. In order to investigate this question, we use the
effective theory approach introduced in Sect. 1.3.2.

We note that in contrast to prime filling factors, minimal physical requirements that
an effective model of a quantum Hall edge has to satisfy do not fix a model uniquely
in the case of complex filling fractions. There were some attempts to classify allowed
effective models of a quantum Hall edge [1, 2]. These works, in our opinion, do not
devote necessary attention to the case of edge modes with different velocities. In
this chapter, we propose a classification of edge models, based on the idea that all
eigenmodes of the edge Hamiltonian are chiral collective bosonic charge excitations.
The spectrum of local quasi-particles in such models is described with the help of
the mixing matrix between the bosons and local quasi-particles.

We start our construction with the formulation of main physical requirements
to a quantum Hall edge model. Next, we consider a simple hydrodynamic model
which satisfies all these conditions. In Sect. 6.2 we generalize our analysis to multi-
channel models. Finally, in Sects.6.2.2 and 6.2.3 we investigate the properties of
local excitations in different edge models.

Some text sections in this chapter are reproduced from Phys. Rev. B 80, 045319 (2009),
© American Physical Society.

I. Levkivskyi, Mesoscopic Quantum Hall Effect, Springer Theses, 111
DOI: 10.1007/978-3-642-30499-6_6, © Springer-Verlag Berlin Heidelberg 2012
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6.1 Effective Theory of Quantum Hall Edges

The effective theory presented in this section provides a description of the low-
energy physics of a quantum Hall edge. While the correct model of edge states may
depend on microscopic details of a two-dimensional electron gas, there are general
physical requirements that greatly reduce the number of relevant models [3-5]. These
requirements are as follow:

e Cancellation of anomaly. 1t is well known that the Chern—Simons theory of an
incompressible quantum Hall state is anomalous, i.e., in the presence of a boundary,
its gauge variation is given by a non-vanishing boundary term. The effective model
of edge states has to be chosen in such a way as to cancel the anomaly of the bulk
action in order for the complete theory to be gauge invariant.

e Existence of an electron operator. A two-dimensional electron gas consists of
electrons. Thus, on a microscopic level, the quantum Hall state is described by
an electron wave function. This implies that, in the effective edge theory, there
should exist at least one local operator describing the creation or annihilation of
an electron or hole, i.e., with a charge e and Fermi statistics.

e Single-valuedness in the electron positions. Similarly, because the quantum Hall
state describes electrons, its wave function must be single-valued in the electron
positions, irrespective of whether quasi-particles are present. As a consequence, in
the effective theory the mutual statistical phase of a quasi-particle and an electron
must be an integer multiple of 7.!

Below we use these requirements to construct the most simple effective models
of quantum Hall edge states and to classify various multi-field models in Sect.6.2.

6.1.1 Chern—Simons Theory and Gauge Anomaly

First of all, in an incompressible quantum Hall fluid the electric current density, j, in
the bulk of the system [8] is related to the electromagnetic potential A by Hall’s law

j" = o™ o, A, 6.1)

where the constant o0y = v/2m is the Hall conductivity and the rational number v is
the filling factor; (here and below, we use units where ¢ = i = 1, and the Einstein
summation convention is followed, unless specified otherwise). The effective action
that leads to Hall’s law (6.1) via j# = §Scs/6A,, is the three-dimensional Chern—
Simons action

1 'We define the statistical phase 61, of two operators v and v, via the relation ¥ (x)¢y(x") =
e’912w2 (x")%1(x). The microscopic construction [6] shows that so defined statistical phase indeed
takes integer values for single valued excitations of the Laughlin state [7].
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I'[a]

2
Zz

Fig. 6.1 The Hall current in the bulk (blue, curved arrows) has an anomaly at the edge (i.e.,
it is not conserved). This anomaly must be canceled by the anomaly (Examples of the anomaly
inflow at the edge in some other physical systems are provided by [9, 10]) of the edge current (red,
straight arrows). Therefore, there is an anomalous boundary action I"'[a] that is constrained by the
requirement of anomaly cancellation in the bulk effective action S[A]. After Ref.[11]. © American
Physical Society

Seq = %H / dPr " A,0, A, 6.2)
D

where D is the product of the time axis and some spatial domain.

Action (6.2) is anomalous, i.e., it has a nonvanishing gauge variation in the pres-
ence of a boundary. Indeed, gauge transforming the potential Ay — Ay + J\ f in
Eq.(6.2) by an arbitrary gauge function f(r) and integrating by parts, we obtain the
variation of the action:

§Ses = %H BPr 9, A T, 6.3)

oD

This anomaly originates from the fact that the current (6.1) is not conserved at
the boundary: 0, j* # 0, for r € OD. Indeed, taking the derivative of Eq.(6.1), we
find that

O j" = ope 9,A,0,0p, (6.4)

where the function 6p takes values p = 1 and 6p = O inside and outside the
domain D, respectively.

The anomaly must be compensated by boundary degrees of freedom (see Fig.6.1)
coupled to the electromagnetic field. Namely, the total effective action, after the
boundary fields are integrated out, is given by a sum of two terms,

Stot[A] = Ses[A] 4 I'[a], (6.5)

where a is the electromagnetic field at the boundary, a = Alyp, and I'[a] is an
anomalous action at the edge [12]. The anomaly in I must be such that, under a gauge
transformation a) — ay + 0, f, this action acquires a variation that cancels exactly
the one of the bulk action, see (6.3): 6" = —dS¢s. Under this condition, Si[A] is
gauge-invariant. Consequently, the edge current J, defined as J# = 0(S¢s +I") /da,,,
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is anomalous, with divergence given by
o' =o€ oay (6.6)

This divergence cancels the divergence (6.4) of the bulk current. Below we discuss
various models that incorporate these general ideas, starting from a simple hydrody-
namical model.

6.1.2 Hydrodynamics of Incompressible Edge Deformations

Next, we recall some arguments in Ref. [13], with some modifications taking into
account the physics related to long-range Coulomb interactions. Edge excitations can
be viewed as deformations of the boundary of an incompressible quantum Hall liquid
caused by the bulk current flowing towards the edge (see Fig.6.2). We parametrize
these deformations by a function y = h(x, t) and consider a low-energy limit, so that
h < €5, where ¢, is the characteristic wave length of the deformations. Introducing
an auxiliary boundary at a distance y from the edge, with £, >> yo > h, we represent
the edge current J = J, as the integral J = ffyo dyjy, and, for the accumulated
charge density at the edge, p = J;, we write p = noh, where ngp = vB/27c is the
density of the quantum Hall liquid and B is the magnetic field value.

An unpleasant aspect of this approach is that the edge current explicitly depends
on the auxiliary cutoff at y = —yg. However, we show that the resulting equation
of motion for the edge deformations, /(x, ), does not contain this cutoff, and hence
the edge current can be redefined to depend on % only. Indeed, charge conservation
implies that 0;p + OxJ = j,, where the bulk current density j, is taken at the
boundary y = —yp. Using Eq.(6.1) and fixing the gauge a, = 0, we write J =
orle(x, h) — p(x, —yp)], where ¢(x, y) is the total electrostatic potential in the
plane of the quantum Hall fluid. Substituting this expression for the current in the
continuity equation, we observe that the terms containing yy cancel, and the equation
of motion takes the form 0;p 4+ o0, = 0. Finally, we split the potential ¢ into
two parts and write Oy = Oy — E,, where wp 1s the potential at the edge caused
by its deformation, and E  1s the external electric field evaluated at y = h. While E Y
depends on % in general, in the low-energy limit it can be taken at y = 0, to leading
order in &. The equation of motion then reads,

Op+ onOspn = opEy. (6.7)

After a redefinition of the edge current, J = oy ¢y, the cutoff parameter yy is gone.

In order to close the equation of motion, we need a relation between the defor-
mation 4 and the potential ¢j,. In the long wave-length limit, we can simply write
wn = —0,H = —(1/np)0,H, where H is the density of electrostatic energy at the
edge. This leads to an equation that is, in general, non-linear in the field p. Passing
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Fig. 6.2 Deformations of the boundary (thick line) of an incompressible quantum Hall fluid (shown
in gray) are parameterized by the function y = h(x, t). The auxiliary boundary, where bulk and
edge currents match, is indicated by the dashed line y = —yy. After Ref. [11]. © American Physical
Society

to a low-energy limit, this equation can be linearized, and we arrive at the result:
Oip —vOyp = oy Ex, (6.8)

where v = (oy/ n(z))a,% (0) is the group velocity of the edge excitations. For a stable
quantum Hall liquid, 6,% H (0) is positive, and this equation describes the propagation
of chiral excitations.

There are two contributions to the electrostatic energy: one is due to the confining
potential at the edge and the second one is due to Coulomb interactions. Consequently,
the group velocity of edge excitations can be written as a sum of two terms,

v=cE/B+opnpv, (6.9)

where the first term is the velocity of drift in the electric field E at the edge of
the quantum Hall liquid, and the second term is proportional to the integral V =
f dx'Uc(x — x") of the Coulomb interaction potential U¢ at the edge. This integral
is logarithmically divergent and has to be cut off at the distance, d, to the metallic
gate and at the microscopic width of the edge a, so that V ~ In(d/a).

Here an important remark is in order. The first term in Eq. (6.9) may be interpreted
as a bare velocity, vo, of excitations. Restoring physical units, it can be estimated as
vy ~ (eE/h)lz, where [p is the magnetic length. The ratio o := oy /vg ~ ez/hvo
plays the role of a dimensionless interaction constant. Depending on the confinement
at the edge, it is always larger than 1, and, in a typical experiment [14-22], o > 10,
which may justify the hydrodynamical model considered here. Moreover, the long-
range character of the Coulomb interaction and the fact that d > a leads to a large
parameter V. As a result, the hydrodynamical charged mode is always present in
the spectrum and determines the scaling dimension in non-chiral models, as we
demonstrate in Sect.7.2.
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6.1.3 Quantization of Edge Excitations

In order to quantize edge excitations, we consider the total electrostatic energy density
H(p) = (v/201)p* as a Hamiltonian that generates the homogeneous version of the
equation of motion (6.8), see Ref. [13]. This equation is diagonal in Fourier space,
O, px — ivkpy = 0. We therefore write the Hamiltonian as

v
Hy = —pkp—r, (6.10)
oH

where k > 0. We identify the “momentum” with P, = py and the “coordinate” with
X = ip—x/omk, so that the equations of motion take the form 9; X = OHy /0Py
and 0y Py = —0H}/0X. Then the canonical commutator [ Xy, Py/] = iy leads to
the commutator [p(x), p(x)] = ioy0,d(x — x’) in real space.

Next, we construct an electron operator. For this purpose it is convenient to rep-
resent the charge density in terms of a field ¢(x),

px) = g O p(x), (6.11)

™

with commutation relations

[6(x"), p(x)] = imsgn(x —x"). (6.12)

Here, and in the following, we use the term “filling fraction”, v, and “Hall conductiv-
ity”, o, synonymously; but we always mean the latter. Then the electron operator
takes the form

P = el (6.13)

of alocal vertex operator; see, e.g., Ref. [23]. For this operator to describe the creation
and annihilation of an electron or hole, we require that

[Qem, €991 = €97, (6.14)

where Qem = [dxp = (/v/27) [ dxO,¢ is the total electric charge at the edge.
This requirement implies that the charge of an electron is equal to —1. Using the
commutation relations (6.12) we find that

g =1/Jv. (6.15)

In addition, an electron operator (6.13) must obey fermionic commutation relations.
Applying the Baker—Campbell-Hausdorff formula, we find that €199 piq00") =
eI’ ¢la0(") i g O (), Using Eq.(6.15) and imposing Fermi statistics, we conclude
that

& = —1. (6.16)
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This implies that the filling factor is given by v = 1/m, where m is an odd integer
number. In Sect. 6.2, we show that this limitation can be overcome by constructing
a multi-channel edge model.

According to the third principle formulated at the beginning of this section, the
theory may describe quasi-particles with the vertex operators ¢”? that must be local
relative to the electron operator ¢/4?. Thus the statistical phase, 6, of such quasi-
particles with respect to an electron has to be an integer multiple of 7. Using again
the commutation relation (6.12), we arrive at the result that

0=7p-q=nmn,
and the quasi-particle operator takes the form:
Uy = €MV, (6.17)

where n is an integer. Such operators describe Laughlin quasi-particles [7]. The
correlation functions of quasi-particle operators may be calculated easily, with the
result ,

(Ol (x, 1)1, (0, 0)[0) = (x + v1) ™", (6.18)

where |0) denotes the ground state of a quantum Hall fluid with filling fraction v.
Taking into account that v = 1/m, the properties of the operators (6.17) are as
follows: they carry a charge ¢g(n) = n/m and have the scaling dimensions A(n) =
n®/m. Thus, for an elementary quasi-particle with charge 1/m, we have that A i, =
1/m, and, for an electron, A¢] = m.

6.1.4 Gauge-Invariant Formulation

We recall that the above derivations have been carried out in a fixed gauge a, = 0.
In this section we reformulate the theory of edge excitations presented above in a
gauge-invariant form suitable for a generalization to multi-channel fluids considered
in Sect.6.2. We first rewrite the action § = f dt Zk>0[Pkal X — Hi] in the linear
approximation as

S[¢] = 4i / didx[0;00:6 — v(Ox )’ + 2/ SEy], 6.19)
T

where we have included a term describing the coupling to an electric field E.. This
action can easily be generalized to nonlinear edge modes by replacing the term
(v/47)(dy ¢)? with the full Hamiltonian H (p). However, the dynamics in general is
not integrable.

Next, we replace derivatives 0,,¢ in action (6.19) with their gauge-invariant form
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D¢ = 0,6+ vay, (6.20)

and integrate the last term by parts using the relation E.= e““\ﬁua A We then arrive
at the following action

S[¢] = 4i / dtdx[D;¢ Dy — v(Dy)*] + Z/—; / dtdxea,dyg.  (6.21)
T i

It is easy to check that by fixing the gauge a, = 0, one returns to action (6.19).
The first term in action (6.21) is invariant under the gauge transformation a;, —
a, + 0. f, ¢ — ¢ — /v f. The second term yields the gauge variation

0S[o] = —(u/47r)/dtdxe“A8MaAf, (6.22)

i.e., the edge action has the desired anomaly: It exactly cancels the anomaly (6.3)
of the bulk action. Thus, the effective theory described by the total action Siy =
Scs[A] + S[@] is gauge-invariant. The boundary effective action I'[a] in Eq. (6.5) is
obtained by integrating out the field ¢.

One may then check that the gauge-invariant edge current has the correct anom-
alous divergence (6.6). To see this, we take a variational derivative of the total action
with respect to the boundary potential a. This yields the following expression for the

edge current:
J = ﬁqus, Je = —ﬁvpxqs. (6.23)
2w 2w

In a gauge where a,, = 0, this expression reproduces definition (6.11) of the charge
density as well as the definition of electron operator (6.13). Indeed, Eq. (6.23) for
the edge current follows from point-splitting of the operator 7+ in the presence
of an electromagnetic field. Note that the current satisfies the relation J, = —vJ;,
which exhibits its chiral nature. Finally, by varying action (6.21) with respect to ¢,
we obtain the equation of motion for ¢, which is used to evaluate the divergence of
the current (6.23). We then arrive at Eq. (6.6), i.e., the edge current has the desired
anomalous divergence.

We conclude that the hydrodynamical model, when applied to quantum Hall states
with v = 1/m where m is an odd integer, satisfies all the requirements formulated
at the beginning of this section. In Sect. 6.2, we show that by considering more than
one bosonic mode at the edge of a quantum Hall liquid, one can construct effective
edge models for general filling factors.
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6.2 Multi-Channel Edge Models

As shown in Sect.6.1.3, a single-channel hydrodynamical model of the quantum
Hall edge cannot describe all observed filling fractions. We therefore consider more
general multi-channel edge models. A natural generalization of single-field action
(6.21) to many fields is given by

1
Ston) = - 3 [ dtdrioiDioiD.6: — u(Doi )
1
+o- z / dtdx[Q;e" a, 0\ ), (6.24)

where o; = =£1 encodes the chirality of the ith channel, v; is the propagation speed,
and Q; is the constant of electromagnetic coupling of the field ¢;. The covariant
derivatives are defined by D, ¢; = 0,,¢; +0; Q;a,. We emphasize that any quadratic
gauge-invariant action for chiral bosons can be brought to the unique form (6.24) by
redefining the fields. Here we consider the general case with different propagation
speeds, v;, for different edge modes, because recent experiments [14, 16-22] show
that this can occur.
The requirement of anomaly cancellation for edge action (6.24) implies that

> 00} =v. (6.25)

One can see that, in contrast to a single-channel edge where the last term in action
(6.21) is uniquely fixed by the Hall conductivity, in the multi-channel situation only
the “length” of the vector Q; is fixed to be /v, while, at this point, its direction is
still arbitrary.

6.2.1 Kinematics of Edge Models

In order to check the second physical requirement, the existence of excitations with
the quantum numbers of electron, we consider a general vertex operator

p=exp|iD q;)|. (6.26)
F

where g; are some constants. Taking into account commutation relations

[O0xi(x, 1), b ', 0] = —2mio6;jo(x — x'), (6.27)
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which follow from Eq. (6.24), we find that the statistical phase of operator (6.26) is
given by:
0=m> 0iqiqi. (6.28)
i

The electric charge operator is given by Qem = (1/27) Zi o f dx0y¢;, in accor-
dance with Eq. (6.24). Therefore, one finds with the help of Eq. (6.27) that the charge
of field operator (6.26) is given by

Qem = Y _0iQig;. (6.29)

Here, as in the integer quantum Hall effect, it is possible to have several electron
operators differing from each other by some quantum numbers. These quantum
numbers can originate, e.g., from several condensates in hierarchic construction (see
Sect. 1.3.3). We label different electron operators by an additional index «,

Yo =exp (i D qajdj | (6.30)
J

and assume that the number of electrons coincides with the number of channels.?
All electron fields must have a unit charge, which implies that

> 0i0iqai = 1, (6.31)

and appropriate relative statistical phases, 7K g3, compatible with relative locality
and Fermi statistics. This implies that the numbers

Kop = 0iqaidpi (6.32)
i

must be integers and that, for « = (3, these numbers must be odd integers.

In Fig. 6.3 we schematically illustrate conditions (6.31) and (6.32) for the simple
example of two channels with the same chiralities. One sees that in contrast to the
single-channel case, in multi-channel models there is a freedom in choosing electron
operators, even if the coupling constants Q; are fixed. This freedom implies that
different microscopic quantum Hall wave-functions may lead to the same action in
the low-energy limit. In this case the low-energy projections of electronic operators
may in principle be different. In fact, multi-channel models are fully determined
by the numbers ¢,;, while the values of coupling constants Q; can be obtained by
solving Eq. (6.31):

2 In fact, the introduced matrix ¢,; is an analogue of the well known Cabibbo—Kobayashi—Maskawa
matrix in particle physics.
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Fig. 6.3 Schematic illustration of the conditions for electron operators in a chiral two-field model.
The requirement for the statistical phase of an electron operator to be fermionic is q(zl | +q(2¥2 =2k+1.
This means that the end points of vectors q, = {qq;} (drawn in blue) lie on the circle of radius
+/2k 4 1. The condition of unit charge, Q1¢41 + Q29,2 = 1, implies that the end points of vectors
q, lie on the line perpendicular to the vector Q = {Q;}. The length of this vector is fixed by the
anomaly cancellation condition (6.25), namely |Q| = /v. Therefore the distance from the line
through the end points of the vectors q, to the origin is fixed to be 1/,/v. We denote the angle
between Q and the ¢; axis by ¥, and the angle between the electron vectors by ¥/_. After Ref.
[11]. © American Physical Society

Qi =01 Y q;, (6.33)

The physical requirements for the effective theory can therefore be formulated as
constraints on the g-matrix. Namely, the requirement that elements of the matrix K
given by Eq. (6.32) are integer numbers has to be accompanied by the condition that

Z K(;ﬁl =v, (6.34)
a,3

which follows from the requirement of anomaly cancellation (6.25) and from
Eq.(6.33).

Note that we have reformulated the constraints on the matrix g as constraints on
the matrix K. In Sect. 6.2.2 we show that the kinematic information about an effective
model is encoded in the matrix K. More precisely, the spectra of statistical phases
and charges of quasi-particles are entirely determined by K. For every filling factor
this matrix takes values from a discrete set. For instance, in two-channel models this
corresponds to the discrete set of choices of lengths of electronic vectors q,, and their
relative angle ¥J_ (see Fig. 6.3). From the relation (6.32) it follows that the remaining
freedom in the matrix ¢ for a given matrix K is the angle 9 of the simultaneous
rotation of two vectors (. In Sect. 6.2.2 we show that the dynamical properties of the



122 6 Classification of Effective Edge Models

model, such as the correlation functions, are not determined by the matrix K only,
but depend on the whole matrix ¢, e.g., on the angle ¥ in the case of two fields.

6.2.2 Local Excitations

Next, we determine all quasi-particle operators in accordance with the requirement
that they have integer statistical phases relative to all electron fields (6.30). Quasi-
particle operators are vertex operators of the form

b=exp|i D pjoj|- (6.35)
j

Their statistical phases relative to electronic fields are given by

9/’@0 =7 Z OiPiqai = Thq- (636)

1

The numbers n,, must be integers. The solution of Eq. (6.36),

pi=0i Y 4 ng, (6.37)
B

is a linear combination with integer coefficients. Therefore, the whole set of allowed
quasi-particle operators forms a lattice, which is dual to the lattice spanned by elec-
tronic vectors ¢q,; (see Appendix E and Ref. [8] for a detailed discussion of this
point).

It is interesting to note that the statistical phase and the charge of a quasi-particle
operator labeled by the numbers n, can be expressed solely in terms of the matrix
K. For the statistical phase we have that

0 _
- = Zaipip,» = Z{);nal(ajlng. (6.38)
i a, |

It also follows from Egs. (6.33) and (6.37) that the charge of the operator in (6.35) is
given by
Qem = D 0iQipi = ) K jns. (6.39)
i af

Note that the summation over the index « in this equation may be viewed as the
multiplication by the vector (1, 1, ..., 1).
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It may happen that different matrices K generate the same set of quasi-particles.
This is the case when corresponding electronic vectors ¢g,; form different bases
of the same lattice (see the discussion in Appendix E). An example of such an
equivalence is depicted in Fig.7.1. In the language of matrices ¢, an equivalence
is the consequence of the fact that an integral transformation ¢’,; = >’ 3 Tapqpi

(i.e., one with the elements 7,53 and Tafgl being integer numbers) is nothing but an
automorphism of the integral lattice generated by a change of basis. Using definition
(6.32), this equivalence may also be written as

K < K =TKTT, (6.40)

Since the matrix 7 transforms an electronic basis, it preserves the charge of an
electron. Taking into account Eq. (6.39), this important condition implies that the
matrix 7" should preserve the vector (1, 1, ..., 1).

6.2.3 Scaling Dimensions of Local Excitations

We conclude this section by presenting the correlation functions of the quasi-particle
operators (6.35). A detailed calculation of this function is contained in Sect.2.2 and
yields

(01¢" (x, )50, 0)[0) o< /0™ [ Ttx + aivit) ™7™, (6.41)

1

where the exponents are given by

2
sim) = p? = [anilna:| , (6.42)

Here n = {n,}, and g is a phase, the exact value of which is discussed in Sect.7.3.
The scaling dimension of the correlation function, defined via its long-time behav-
ior, is given by

A(m) =>"5(n). (6.43)

Expressed in terms of the g-matrix, it reads

Am) =D pi = nalqq") jns. (6.44)
i a,f

An explicit calculation of A in the non-chiral case with two fields is given in Appen-
dix D. The scaling dimensions A are not fully determined by the matrix K, while
according to Eq. (6.38), the statistical phases
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v > dioi (6.45)

™

are given by the matrix K. Comparing Eqgs. (6.43) and (6.45) we conclude that A >
0 /7, where equality holds in a purely chiral case.

6.3 Conclusions

In this chapter, we have reviewed the construction of a low-energy theory [3-5, 8,
24] of fractional quantum Hall edge states based on the requirement of the anomaly
cancellation. We have shown that for v = 1/m, where m is an odd integer, a minimal
model can be derived from an elementary hydrodynamics, while other filling factors
require the introduction of several edge channels (6.24). The classification of such
models, based on the physical requirements formulated at the beginning of Sect. 6.1,
amounts to the classification of matrices (6.32) for statistical phases of electrons.
Quasi-particle operators in each model are found to be indexed by vectors in the
dual of an odd integral lattice [8]. Their charges and statistical phases are given by
Eqgs. (6.38) and (6.39).

We have proposed the following strategy to find inequivalent models for a given
filling factor. First of all, one must find all solutions, K, of Eq.(6.34) for a given
filling factor v, up to equivalence defined by proper integral transformations (6.40).
This procedure fixes the kinematic content of the theory. Second, one must choose
those parameters that are not constrained by the general conditions formulated at
the beginning of Sect. 6.1. These parameters are the propagation speeds, v;, of chiral
edge modes, and the explicit basis, q,, of vectors labeling electron field operators
which consistent with the chosen matrix K . This last step is equivalent to choosing an
element of the pseudo-orthogonal group SO (N4, N_), where N1 are the numbers
of modes with corresponding chirality.

Importantly, we have found that the scaling dimensions of quasi-particles depend
on the last ingredient of the model in a non-chiral case. This result is consistent with a
situation in the quantum wires, where the scaling dimensions depend on the Luttinger
parameter [25]. In the next chapter, we will focus on the case of two channels, and
show that the strong Coulomb interaction at the edge, which plays an important role
in the integer case, allows to fix this degree of freedom.

Finally, we have considered only simplest Abelian models of the edge states.
Although these models seem to be most relevant, it is also interesting to investigate the
non-Abelian models too. Some first attempts in this direction have been already made
[24]. However, the other physical ingredients of the classification, such as different
propagation velocities of eigenmodes, might significantly change the results.
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Chapter 7
Spectroscopy of Quantum Hall Edge States
at Complex Filling Factors

The quantum Hall effect is a fascinating example of macroscopic quantum
phenomena. Its large-scale physics is governed by the requirement of anomaly can-
cellation at the boundary of the system. It provides an example of the so called
“holographic principle” (another well known examples of the holographic princi-
ple are described in the papers [1-4]), which means that the physics of the system
confined to some region is encoded in the physics of the degrees of freedom at the
boundary of this region (see Fig. 6.1). Understanding the physics of the quantum Hall
edge states is therefore important for an understanding of the quantum Hall effect in
general.

In the theoretical description of incompressible quantum Hall fluids, the “holo-
graphic principle” manifests itself in the presence of chiral edge channels in the low-
energy effective theory [5]. These boundary channels are thought to be described by
chiral conformal field theory [6—8]. As we have shown in the previous chapter, the
possible structure of this description is highly constrained by the requirements of
locality, the gauge invariance (charge conservation), and the presence of excitations
describing electrons (i.e., with quantum numbers of an electron or hole) in the spec-
trum. These requirements allow one to classify possible effective low-energy models
for all observed filling factors [9, 10]. However, without taking into account micro-
scopic properties of a particular incompressible quantum Hall state, the requirements
mentioned above usually do not determine the low-energy effective theory uniquely.
Already in examples of incompressible Hall fluids corresponding to simple fractions,
suchasv = 2/3,2/5, etc., there are several physically inequivalent models satisfying
all the requirements even if one limits one’s attention to models with the smallest
possible number of edge channels. This situation calls for experimental tests of the
theory.

There are several proposals to test the quantum Hall edge physics. Concrete
attempts for such tests have been made in three directions: measurement of the

Some text sections in this chapter are reproduced from Phys. Rev. B 80, 045319 (2009),
© American Physical Society.

I. Levkivskyi, Mesoscopic Quantum Hall Effect, Springer Theses, 127
DOI: 10.1007/978-3-642-30499-6_7, © Springer-Verlag Berlin Heidelberg 2012
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electric charge, of the statistical phase, and of the scaling dimension of excitations
(quasi-particles and electrons). The scaling dimension of the electron field opera-
tor may be tested via the I-V curve at a tunnel junction [11]. This idea has been
experimentally implemented in Refs. [12, 13]. The results of these experiments
caused an extensive discussion of the well known “2.7 problem” [14]. The interpreta-
tion of the experiments described in Refs. [12, 13]is not straightforward, and one may
need to take into account the existence of compressible strips [ 15] at the edge, of disor-
der

[16, 17], and of electron-phonon interactions [18]. The charge of quasi-particles
may be probed by measuring the Fano factor of the tunneling current [19]. Currently,
fractional charges have been observed in several experiments [20-22] at different
filling factors. Several proposals have been made to use the Fabry-Perot [23] and
the Mach-Zehnder [24] electronic interferometers, which utilize quantum Hall edge
channels, in place of optical beams, for measurements of fractional charge and of
anyon statistics of quasi-particles [25, 26].

In this chapter we propose an experiment that would allow one to find out which
effective model describes a particular filling factor. The idea is to use quantum Hall
interferometers in order to measure simultaneously the charge and the scaling dimen-
sion for each species of quasi-particles that may tunnel through a quantum point con-
tact. Aharonov-Bohm oscillations in a Mach-Zehnder interferometer have recently
been investigated experimentally in Refs. [27-30] and showed surprising behavior.
This has been addressed in several theoretical works [31-36]. The main result of this
chapter, Eqgs. (7.25) and (7.31) describing the Aharonov-Bohm-oscillating contribu-
tion to the current through a Fabry-Perot interferometer at low and high temperatures,
shows that the Fourier spectrum of the current as a function of the flux can be used
to extract the scaling dimensions and charges of quasi-particles. As an example, we
consider the well observed filling factor v = 2/3 in some detail. We present possible
effective models for this filling factor and discuss how they can be distinguished
from each other with the help of their spectra of scaling dimensions.

An important property of the v = 2/3 state is that all minimal models of its edge
degrees of freedom contain two edge channels. A similar situation is encountered at
v = 2, where it has been shown that the long-range Coulomb interaction between
the channels leads to some universalities [32]. In this chapter we show that Coulomb
interactions fix a freedom in the choice of the edge Hamiltonian, so that scaling
dimensions are fully determined by the matrix (6.32) of statistical phases of electrons
(see Sect.7.2). We start this chapter with the explicit determination of the spectrum
of scaling dimensions for the most plausible (minimal) models corresponding to
v = 2/3. Section7.2 is devoted to an analysis of the role of Coulomb interactions.
Finally, in Sect. 7.3, we investigate transport trough an electronic interferometer and
show how scaling dimensions of excitations can be extracted from Aharonov-Bohm
oscillations of the current through the interferometer.
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7.1 Minimal Models for Filling Factor v =2/m

In this section we apply the ideas discussed in the previous chapter to the particular
case of filling factors v = 2/m. In Ref. [16, 17] it has been shown that models with
a large number of edge channels may be unstable under the influence of disorder.
To avoid such complications, we limit our analysis to models with the smallest
possible number of fields. Moreover, we consider models with minimal statistical
phases of electron field operators, because they are most relevant physically.!

A direct solution of Eq.(6.34) is complicated. Fortunately, in Ref. [10], some
general results have been proven for the case where the statistical phases of electron
operators are smaller than 7r: all two-field models for v = 2/m are described by
matrices K of the following form:

K, = (Z Z) (7.1)

Equation (6.34) then imposes the following constraint on matrix (7.1):

2a —2b 2
V= —

S or T ah 72

Thus, for v = 2/m, the parameters a and b are related by a + b = m, where the odd
integer a enumerates the models.

For a purely chiral model, the scaling dimensions of correlation functions (6.44)
are given by the statistical phases. Therefore, for a K-matrix of the form (7.1), they
are given by the expression

1
Am) = ——sla(nf +n3) = 2bmnal, (7.3)

and the charge of excitations can be evaluated as

ny +np
Qem = . (7-4)
m

For non-chiral models, the expression for the charges of quasi-particles remains
the same, while the scaling dimensions (6.44) depend on an additional parameter,
U+, (see Appendix D). In Sect.7.2, we show that, in the limit of strong Coulomb
interactions, this parameter takes the universal value ¥ = 0. The scaling dimensions
are then given by

1
A(n) = m[b(n% + n3) — 2aniny]. (7.5)

! Numerical simulations [37] show that for larger values of statistical phases the quantum Hall state
is not stable, and electrons form a Wigner crystal [5].
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e %
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<

Fig. 7.1 Illustration of equivalence of two quantum Hall lattices. For two channels of different
chiralities, the statistical phase satisfies 0 /7 = ‘112 — q22. Using this fact, one can easily see that
the red, upper pair of vectors correspond to K-matrix (7.6) and the blue, lower pair of vectors
correspond to the K -matrix (7.7), two vectors in the middle are slightly shifted for clarity. Note that
these pairs of vectors are just different bases of the same lattice (which is dual to the one shown in
the figure). Therefore the spectra of statistical phases in models (7.6) and (7.7) are identical. Finally,
the dashed line constrains the charge of the electrons to be 1. The fact that all electron vectors lie
on the same line implies that the constants Q; are the same for both models. This means that the
charges Qem = 2 gi Q; of excitations in one model coincide with those in the second model.
Here we choose the angle ¢ = 0, in accordance with the conclusion of Sect.7.2. After Ref. [38].
© American Physical Society

We have already mentioned that any two-field solution of Eq. (6.34) corresponds
to one of the matrices (7.1), up to equivalence described by the transformations
(6.40). An important example is the K -matrix proposed, e.g., in Ref. [39—41]:

10
K::(0_3). 76)

This matrix describes a non-chiral model of the v = 2/3 state obtained by particle-
hole conjugation of the v = 1/3 state. In this state, the density at the edge first
increases to v = 1 and then drops to zero, which implies the presence of two edge
channels with opposite chiralities. Another K-matrix for v = 2/3 state appears in
the context of the composite fermion approach [42]:

12
K:(N). (1.7)

It turns out that model (7.6) is equivalent to (7.7), in the sense of (6.40). Indeed, one
can apply an integral change of variables transforming one K -matrix into the other
one:
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Table 7.1 Scaling dimensions of excitations in different models of the v = 2/3 state

Kq Am) Ao, A1 Az, Ar A
Ks 31 (5(n} +nd) +4niny) 5. 8.5

K3 33 +n3) $.1.3.3.3

K, 2(n? +n3 — niny) 2,2,222

K ZQn2 +n3) +niny) 5.3, 8.4

For each model described by a matrix K, we provide the general expression for the scaling dimen-
sions A(n) of quasi-particle operators labeled by pairs of integer numbers (n1, n2). The minimal
values A, for excitations of charge ¢, as well as the scaling dimensions of electron operators are
listed in the right column. After Ref. [38]. © American Physical Society

(2)65)625)=6h)

This transformation is of the type of (6.40), because it has the property that

1o\ (10

2 —1 “\2-1)"
and it leaves the vector (1, 1) invariant. The equivalence of these two models is
illustrated in Fig.7.1.

For v = 2/3, the matrices (7.1) with the smallest diagonal elements (i.e., with
smallest statistical phases of electron operators) are the following ones:

1@:(32), K5=(_52_52) (7.8)
Klz(;f), K1=(_41_41). (7.9)

Note that the matrices (7.9) have negative determinants, and hence, in contrast to the
matrices (7.8), they describe non-chiral states. We summarize the values of scaling
dimensions of excitations in models (7.8) and (7.9) in Table7.1.

It is important to note that, for every model, the minimal scaling dimension is
Amin = Ayy3, i.e., the operator of the Laughlin quasi-particle is the most relevant
one. We note that between four models, the model K is presumably most stable
with respect to disorder, because it has the largest scaling dimension Ag. Moreover,
the electron operator in this model is the most relevant operator among operators
with unit charge. In addition, numerical simulations [43] and some microscopic
considerations [39-41] confirm that the model with matrix K; is most likely to
describe the v = 2/3 state. However, some signs of a phase transition in the v = 2/3
state have been observed [44—46]. This indicates that other models may also be
realized under certain conditions; see Ref.[10].

and
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7.2 The Role of Coulomb Interactions

We have shown in Sect. 6.2.3 (see also Appendix D) that, in the non-chiral case, the
scaling dimensions of excitations depend not only on the “kinematic” structure of
the theory encoded in the K -matrix, but also on the angle ¥, . This angle parametrizes
the relation between the propagating modes and the electron operators. There is,
however, an important class of systems in which this parameter appears to be uniquely
and universally fixed. This is, for instance, the case in a system with two edge modes
and strong Coulomb interactions. This fact has been discussed in Ref. [32]. The
results of the analysis in Ref. [32] are essentially in perfect agreement with the
experimental data of Refs. [27-30, 47-50]. Although in Ref. [32] only the case
v = 2 is considered, we will show below that the conclusion of this analysis applies
without significant changes to fractional fluids, too.

Let us assume that effects of disorder are negligible. This may be a reasonable
assumption for an electronic interferometer, the size of which is typically only a
few microns. In this case, the generic form of the Hamiltonian is given by a sum
of the free Hamiltonian, the Coulomb interaction term, and a term describing the
interaction with an external electromagnetic field a,,:

H ="Ho + Hc + Hindlal. (7.10)

We show below that the actual form of the free Hamiltonian Hj is not important.

Assuming the distance, a, between the edge channels to be of the order of their
thickness, /, or smaller (see Fig. 7.2 for notations), the Coulomb interaction term can
be written as:

He = (1/2)/dde’pem(X)Uc(x — x") pem (x), (7.11)

where pem(x) is the total one-dimensional charge density at the point x, and
Uc(x — x') is the Coulomb potential. We further assume that the interaction is
screened at distances d, with L > d > a, where L is the size of the interferom-
eter. This screening can occur due to the presence of the back gate, or the massive
air bridge (see Ref. [32] for a more detailed discussion). As a consequence, we can
neglect the dispersion of the Coulomb interaction and write Uc (x —y) = V§(x —y),
where the interaction constant, V ~ In(d/a), is large. Finally, the interaction with
an external electromagnetic field is described by

Hintla] = — / dxpem (x)ay (x), (7.12)

in the gauge a, = 0.

In the limit when In(d/a) > 1, the Coulomb interaction exceeds the correlation
energy. One of the most important consequences of this fact is that, independently
of the form of free Hamiltonian, the full Hamiltonian is diagonal in the basis where
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a,

Fig. 7.2 Illustration of the effects of the strong long-range Coulomb interaction. Left panel shows
important spatial scales at the quantum Hall edge: the width of the channels /, the distance between
two channels a, and the screening length of the Coulomb interaction d. The universal limit is
achieved when d > a, [. Right panel shows possible configuration of electronic excitations (blue
vectors) in the universal strong interaction limit. Exactly this situation arises at v = 2, as shown in
Ref. [32]. After Ref. [38]. © American Physical Society

one mode, ¢1, is charged, with Q1 /27 0,1 = pem, and the other one, ¢7, is a dipole
mode of total charge zero. Thus we can write

1 1
H = HlZ/Ui(axqbi)z— EQl/ataxgbl, (7.13)

where the speed of the charged mode, vy = oy V, is much larger than the speed vy
of the dipole mode determined by the free Hamiltonian (see the discussion at the end
of Sect.6.1.2). Comparing Eq.(7.13) with (6.24), we conclude that Q> = 0, which
means that the dipole mode does not couple to the external electromagnetic field.
The condition of the anomaly cancellation (6.25) therefore implies that Q1 = /v.
Thus, the angle between the vector Q and the g;-axis is fixed to the universal value
U4+ = 0. This is illustrated graphically in Fig.7.2.

7.3 Experimental Determination of Scaling Dimensions
of Quasi-Particles

7.3.1 Charge Current Through Interferometer

We have shown in Sect.7.1 that there are several possible models for the filling
factor v = 2/3 satisfying all the physical requirements formulated in Sect.6.1.
It is worth noticing that all these models have the same minimal fractional charge,
1/3, but different spectra of scaling dimensions. The experiment proposed in this
section may allow one to determine scaling dimensions and, as a result, to identify
the physically relevant model of the quantum Hall edge. This experiment is based
on the idea to make use of an electronic Fabry-Perot interferometer.
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Fig. 7.3 A Fabry-Perot interferometer is schematically shown as a Hall bar, containing a two-
dimensional electron gas, shown in gray shadow. In a strong magnetic field, at a filling factor
v = 2/3, two one-dimensional chiral channels are formed at the edges and propagate along the
boundaries of the two-dimensional electron gas (shown by thin black lines). Both channels are
partially transmitted at the left and right quantum point contacts. A bias voltage Au, applied at
the upper Ohmic contact, causes a current / to flow to the lower Ohmic contact. This current is
caused by scattering of quasi-particles at the quantum point contacts (shown by red, dashed lines)
and involves an interference contri bution sensitive to the magnetic flux @ that can be changed by
a slight modulation of the length of one of the arms

Electronic Fabry-Perot interferometers have been realized and investigated exper-
imentally in Refs. [51-57]. The experimental sample consists of a two-dimensional
electron gas confined to a Hall bar (see Fig. 7.3). In the quantum Hall effect regime,
several effectively one-dimensional conducting channels are formed at the edge.
The modes in these edge channels are used as beams in the interferometer, while two
quantum point contacts serve as beam splitters. Two Ohmic contacts connected to
the Hall bar emit and absorb electrons. One contact is biased with a voltage A > 0,
and the other one is grounded and serves as a sink for a current /.

There are two paths for quasi-particles to travel from the upper Ohmic contact
to the lower one. The first possibilities are to pass the left quantum point contact
and to be reflected off the right one. The second possibility is to bounce off the left
quantum point contact. It is easy to see that a nonzero magnetic flux is enclosed by
these two paths. Consequently, the current / oscillates as a function of the magnetic
flux through the interferometer. The Aharonov-Bohm flux may be varied with the
help of a modulation gate near one of the arms of the interferometer that can slightly
change the length of this arm.

We assume that there are several types of excitations, labeled by integers ny,
which can tunnel between the arms at the quantum point contacts. They are created
by operators

U =exp (i 2 pid;). pim =0, > g na. (7.14)
i o

Thus, the tunneling Hamiltonian is given by

Hr =D ety nc0Vpalxe) +he.= > (Ag,,. + Azn) , (7.15)

Z,n Z,n
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where the subscripts U, D indicate that the quasi-particles are created and annihilated
at the upper arm and at the lower arm of the interferometer (see Fig.7.4). Moreover,
te.n are the tunneling amplitudes of particles of type n at the left and right quantum
point contacts, £ = L, R. These amplitudes include the Aharonov-Bohm phase shift:

tR,n . O]
arg T = 2mi Qem(n)go, (716)
n

where @ is the flux through the interferometer and ®( = hc/e is the flux quantum.

The current through the interferometer is defined as a rate of change of the elec-
tromagnetic charge Qem = Zi (Q;/2m) f dxdy¢; in one of the arms of the interfer-
ometer (see Fig. 7.4 for notations):

[ =i[H, Qem] = i[H7T, Qem]. (7.17)

Calculating the commutator in Eq. (7.17) with H7 as in Eq.(7.15), we arrive at the
following expression for the current operator:

[=3"i0mm)(Arn— A} ). (7.18)

{,n

We evaluate the average current, [ = Tr(ﬁf ), to leading order in the tunneling
amplitudes #,

+00
1= Qemm / dt{[A] (1), Ay n(0)]), (7.19)

£,/ n

where the operators A’ »» A¢n are taken in the interaction representation, and aver-
aging is defined as (.. .’) :=Trpo(...), where pg is the density operator of discon-
nected arms. In Eq.(7.19) we have taken into account that ( 1//5, Yrm) X On,m, Which
is a consequence of zero-modes.

Itis easy to see that Eq. (7.19) for the current is a sum of four terms: I = >,/ Iy,
where ¢, ¢/ = L, R. The first two terms,

+00
Iee = Qem(m) / dt{[A] (). Aen(0)]), (7.20)

correspond to incoherent tunneling at either one of the two quantum point contacts.
The other two terms depend on the magnetic flux @ and lead to interference:

+00
Io =ILr+Ir =2 Y Qem(mRe / dt([Al (). ALa(O)]).  (7.21)

—00
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Fig. 7.4 Schematic representation of the Fabry-Perot interferometer. Quasi-particles of electric
charge Qem(n) tunnel at points x; and xg, with tunneling amplitudes #7, , and tg pn, respectively.
They propagate along paths of length Ly and L p and acquire an Aharonov-Bohm phase pap =
27t Qem (m)®/ dg. The upper arm is biased with Ap

We focus our attention on the interference term, because it allows us to discriminate
between contributions from different excitations. Using Eq. (7.15), we write:

+00
Io =2 OemmRe 1L nth , / dt
x { WDk, 0V o Cor, )W e DY iz, 0))
~ (U L VDR D) Wualin, OV R 0)) . (7.22)

The correlation functions are evaluated in Sect.2.2. The result is:
—d; ()
St . vi . X
(g (x, )Y (0, 0)) o expligo(n)] H [n_T sinh[7 T (¢ + o; ;)]] . (7.23)
. l
1

The phase ¢o(n) in this equation is determined by the structure of zero-modes and
requires a separate consideration. Introducing zero-modes ¢; and 7r; via ¢; (x) = ¢; +
2w xm; +osc., we write the corresponding term in Eq. (7.13) as Ho = 7 W D _; v; 71?,
where W is the total size of the system. The total charge at an edge is given by Qe =
W (rr1). The expectation values of the zero-modes can be related to the applied voltage
bias Au by appealing to the well known electrostatic formula Au = 8§(Ho)/8 Qem.
From this equation it follows that (1) = A /vy, while for the dipole mode (7r;) = 0,
because it is not biased.”> We assume that charge fluctuations are negligible due to
the large capacitances of edge channels connected to Ohmic contacts. Thus, the
contribution of zero-modes is given by (e27iPiTi(x+ojvjt)y = 2mipj{mj)(x+ojv;t)
Substituting the expectation values of zero modes, we find the phase of correlation
function (7.23):

2 We assume that both quantum point contacts are either in a weak tunneling regime or in a weak
backscattering regime.Moreover, we further assume that two channels at each quantum Hall edge
originate from the same Ohmic contact, and therefore, they are equally biased.
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oo = 3 pi () +o1it) = AuQen(i + ). (7.24)

1

Apparently, this phase is linear in the bias Au.

7.3.2 Low-Temperature and High-Temperature Behavior
of Current

In the zero-temperature limit, 7 = 0, the correlation functions are given by formula
(6.41). The time integral in Eq. (7.22), at small biases Ay < v; /Ly, @ = U, D, then
yields

lp = Z Cn(Ap)?2 ™1 cog [271 Qem(n)%} , (7.25)

where the Cy,, are some (unimportant) constants. In the high-temperature limit,
correlation function (7.23) scales as

ot _ . X
i (W (x, )¥a(0,0)) o exp [ Zi:nTS, ()|t + o; o 1]- (7.26)

With help of this expression, we can calculate the high-temperature asymptotics of
the tunneling current. Substituting the correlation function (7.26) into Eq.(7.22),
we obtain the following integral:

+o0
. —nT Y |t+0; Lo /vi|8; ()
I  Re / dt A T2AM, i ) (7.27)
—00

In the limit 7 >> A, we approximate e/ 2% ~ 14 i Aput, where only the second
term makes a non-zero contribution:

“+00
—nT Y |t+0iLa/vi|8; (n)
lo & ApT?A™ / dtt-e e . (7.28)
—0o0

In the high-temperature limit, the largest contribution to this integral comes from a
small region around one of the points t = —o; L, /v;, where the argument of the
exponential function acquires the smallest absolute value. Then the time integral can
be estimated as
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+o00
—nT Y |t+0i Ly /vi|8; (n)
/dlt~e i o T le T/ Tom), (7.29)

—00
where the energy scale Tp(n) is given by

oiLy i

—"‘ l. (7.30)

T() (n) o' i’

Using this result, we finally arrive at the asymptotics of the oscillating part of the
current of the following form:

1 1 2AM) =1~ T/ To( @
—=§CT o) 2 n)— |, 7.31
AL g n e €08 | 271 Qem( )q>0 ( )

where the C}, are some constants. For a symmetric interferometer, in the limit
v1 > vy, Eq.(7.30) for characteristic energy simplifies to

L
7;"! () = min(8; (n), 82(“))172' (7.32)

The range of applicability of our result (7.25) is limited by the conditions Au <
vi/Ly, @ = U, D. Outside of this range, the dependence of the visibility on the
bias is non-monotonic, because of charging effects, as has been observed in the
experiments [27-30]. Moreover, the behavior (7.25) is valid only if Ax > T. For
typical experiments [51-57] this implies that 1uV < Ap < 10 V. We conclude
that it would not be easy, but possible in principle, to extract the exponents of the
power-law behavior in Eq. (7.25).

To summarize, the large periods of oscillations can be used to discriminate
between different effective models. Namely, they can be fitted by measuring the
current through the interferometer as a function of the magnetic flux ® and of the
bias Ap. Evaluating the Fourier transform with respect to @, one can investigate
the scaling in A of different harmonics corresponding to contributions of the most
relevant excitations for any charge Qcp. To identify the correct model, one must
compare the experimentally measured scaling dimensions A with those in the table
of Sect.7.1. Once the correct model (i.e., its K-matrix) is identified, one may use the
temperature dependence (7.31) as an independent check of the theory.

7.4 Conclusion

In the last decade, several proposals for experimental tests of the physics at a quantum
Hall edge have been made. They are based on measurements of the electric charge,
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the statistical phases and the scaling dimensions of quasi-particles. Some of them
have been realized and have shed light on the properties of fractional quantum Hall
edges. However, some experiments have brought up open questions. For instance,
in the experiment [13], the I-V curve has shown a perfect power-law behavior. How-
ever, the measured exponents, which are thought to be proportional to the scaling
dimensions of the quasi-particle operators, have turned out to be different from those
predicted by theory. Thus, electronic interferometers, which have already shown sev-
eral interesting features, may be considered to be promising tools for probing the
properties of the quantum Hall edge.

These interferometers might be especially useful in the problem of determination
of effective model for complex filling fractions. We have applied the classification
of effective models to the example of fluids with filling fraction v = 2/m, and,
in particular, with v = 2/3. We have shown that for v = 2/3 there are at least
four inequivalent models satisfying all physical conditions and having the smallest
possible number of fields. It is important to note that, in every effective model, the
minimal fractional charge is 1/3.

For models with two fields, we have shown that Coulomb interactions lead to
universal values of electromagnetic couplings. This universality allowed us to eval-
uate the scaling dimensions of quasi-particles, see (6.44), with the result given in
Eq. (7.5). We have calculated the Aharonov-Bohm-oscillating contribution to the cur-
rent through a Fabry-Perot interferometer at low and high temperatures, Eqs. (7.25)
and (7.31), and shown that the Fourier spectrum of the current as a function of the
flux can be used to extract the scaling dimensions of quasi-particle operators. This,
in turn, leads to the opportunity to discriminate between different effective models.

Our method of identifying the correct model can be applied to fluids with arbitrary
filling fractions and can be summarized as follows:

e First, for a given filling fraction v, one should find solutions of Eq.(6.34) for
K -matrices, up to equivalence, as described in Eq.(6.40). In other words, one
must identify the effective models satisfying the physical requirements formulated
in Sect.6.1. The most interesting solutions are those with the smallest possible
number of fields and minimal statistical phases of electron field operators.

e Second, using Egs. (6.39) and (6.44), one should calculate the spectra of charges
and scaling dimensions for every model.

e Finally, one should attempt to measure the A p-scaling of the Fourier components
of the current trough a Fabry-Perot interferometer and compare it with theoretical
predictions, in order to identify a correct model.

It is interesting to generalize our approach, which takes into account the strong
Coulomb interaction, to fractions such as v = 5/2, which are possibly described
by non-Abelian quantum Hall states. The first works which investigate the role of
the Coulomb interaction in the bulk of quantum Hall interferometers [58, 59] have
shown a great success. Thus, taking into account the Coulomb interaction at the edge
of v = 5/2 states might be a reasonable next step.
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Chapter 8
Microscopic Theory of Fractional Quantum
Hall Interferometers

Since its discovery, in 1980, the quantum Hall effect [1] has been a very rich source
of interesting problems related to topological and correlation effects in condensed
matter systems. As we have mentioned in the introduction, it has been predicted
[2—4] that, at fractional fillings of the Landau levels, besides the collective modes
the quantum Hall edge states of the two-dimensional electron gas also describe
quasi-particles with fractional charges and fractional statistics [5]. For instance,
in quantum Hall liquids with filling factor v = 1/m, where m is an odd integer,
Laughlin quasi-particle excitations have an electric charge e* = ¢/m, where e is the
elementary electric charge, and anyonic statistics. Such excitations can be scattered
between opposite edges at narrow constrictions forming quantum point contacts, thus
contributing to a backscattering current.

The fractional charge of Laughlin quasi-particles has been confirmed experimen-
tally in measurements of the shot noise of weak backscattering currents [6, 7]. The
quasi-particle charge in these experiments is inferred from the Fano factor of noise,
which is the ratio of the noise power to the average backscattering current. Although,
at present, there is a consensus on the interpretation of the experimental results, this
type of measurement does not, in general, represent a direct test of the fractional
charge of quasi-particles.! Indeed, the Fano factor of noise is not universal and may
be reduced or enhanced for various reasons [9]. For instance, the so called “charge
fractionalization” in nonchiral one-dimensional systems [10, 11] is a property of
collective modes that has nothing to do with the existence of fractionally charged
quasi-particles. Nevertheless, this phenomenon reduces the Fano factor of noise at
relatively high frequencies.”

! Very recently, unexpected values of quasi-particle charges, determined via shot noise measure-
ments, have been reported in [8]. These results may indicate that the Fano factor of a weak backscat-
tering current is not determined solely by the quasi-particle charge.

2 The use of the term “charge fractionalization” in this context is somewhat unfortunate, because,
in contrast to the quasi-particle fractionalization, the corresponding process is completely classical
in nature. In fact, it is very similar to the displacement current in electrical circuits.

I. Levkivskyi, Mesoscopic Quantum Hall Effect, Springer Theses, 143
DOI: 10.1007/978-3-642-30499-6_8, © Springer-Verlag Berlin Heidelberg 2012
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source D e/m

source

Fig.8.1 Anelectronic analogue of an optical Mach—Zehnder interferometer is shown schematically.
Upper panel shows a gedanken formulation of the Aharonov—Bohm effect: Quasi-particles with
fractional charge e¢/m propagate from a source to a drain via two beam splitters, and enclose a
singular magnetic flux ®. Lower panel shows a schematic sketch of a typical experimental realization
of the Mach—Zehnder interferometer in a quantum Hall system [14-22]. Chiral edge states, shown
by arrows, play the role of optical beams. They are split at two quantum point contacts indicated
by dashed lines. The source and drain are Ohmic contacts. The quantum Hall liquid is confined to a
region with the topology of a Corbino disk (indicated by gray shading). The magnetic flux through
the interferometer is typically changed by a modulation gate, shown as a blue triangle. However, it
is possible, at least in principle, to insert a singular magnetic flux through the hole in the Corbino
disk

A direct measurement of the quasi-particle charge should rely on its definition as
a coupling constant in the interaction Hamiltonian which couples matter to the elec-
tromagnetic field and on the quantum nature of quasi-particles. The most appealing
approach is to make use of the Aharonov—Bohm effect [12, 13], which relies on the
fact that the interference of quasi-particles is affected by a magnetic flux. Following
a commonly used formulation of this effect, we consider a gedanken interference
experiment shown in the upper panel of Fig. 8.1. Quasi-particles of charge e/m
traverse two beam splitters and follow paths that enclose a singular magnetic flux
®. The relative phase between the two amplitudes, for the upper and lower path, is
shifted by an amount of 27 ®/m ¢, which leads to Aharonov—Bohm oscillations
in the current from the source to the drain as a function of the flux ® with quasi-
particle period m ®¢. Then the quasi-particles can be detected by differentiating their
contribution to the Aharonov—Bohm effect from electron oscillations with period
®(. Such gedanken experiment can be realized in electronic quantum Hall interfer-
ometers, studied extensively in recent experimental [14—-32] and theoretical [33—40]
works, in particular, in a Mach—Zehnder interferometer shown schematically in the
lower panel of Fig. 8.1.
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8.1 Byers-Yang Paradox

The gedanken formulation of the Aharonov—Bohm effect however leads to a paradox:
in any electronic system, including fractional quantum Hall systems, Aharonov—
Bohm oscillations should have an electronic period @, according to the Byers—Yang
theorem [41]. This is so, because, after adiabatic insertion of a flux quantum through
a hole in the sample, an electronic system relaxes to its initial state, since the flux
quantum can be removed by a single-valued gauge transformation.

Indeed, let us consider the gedanken experiment, illustrated in upper panel of
Fig. 8.1. In this formulation, the interferometer consists of two quantum Hall edges of
infinite length coupled at two quantum point contacts located at the points &7 and &g.
We denote the boson field describing the upper and lower arms of the interferometer
as ¢y (x) and ¢ p (x) correspondingly. The system shown in Fig. 8.1 is open, therefore
one can neglect zero modes in the expansion (1.62) for these fields. Next, we describe
quasi-particle tunneling with tunneling operators

Agp(&0) = eidu)(xe)e—l'(DU(X,'g)7 (8.1)

where £ = L, R. To leading order in tunneling operators (8.1), the oscillating contri-
bution to the current through the interferometer s givenby I = 2Re [ dt ([.A:rlp &L, 1),
Agp(&r, 0)]). Using Eq. (1.58) and integrating out the field B,,, we find that the phase
of the oscillating term is given by (1/m) [ . A,dx", where -y is the contour around the
interferometer. In the situation, where the singular flux @ threads the interferometer
we find that i
Agp(€1) Agp(€R) o< exp (l) , 8.2)
m®q
i.e., the period of Aharonov—Bohm oscillation is m ®q, contrary to the Byers—Yang
theorem. Apparently, the problem with the naive approach arises because it considers
a Mach—Zehnder interferometer as an infinite system. In order to resolve the paradox,
we need to consider a realistic, finite quantum Hall systems, even if it is strongly
coupled to Ohmic reservoirs, as shown in the lower panel of Fig. 8.1. In what follows,
we address the problem on the microscopic level, and then compare the results to
the effective theory predictions.

There have been several theoretical attempts to resolve this paradox [42-48].
In early work [45, 46], Thouless and Gefen have considered the energy spectrum
of a quantum Hall liquid confined to a Corbino disk and weakly coupled to Ohmic
contacts, see Fig. 8.2. They have found that as aresult of weak quasi-particle tunneling
between the inner and the outer edge of the Corbino disk, the energy spectrum,
and consequently, “any truly thermodynamic quantity” is a periodic function of the
magnetic flux with the electronic period ®¢. Although Thouless and Gefen have
made an important first step towards understanding the Aharonov—Bohm effect in
quantum Hall interferometers, their analysis is rather qualitative, and some of their
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@, 29, 3, d

Fig. 8.2 The energy spectrum of a quantum Hall fluid at v = 1/3 in a Corbino disk is schematically
shown. The dashed lines show the Coulomb charging energy of an isolated quantum Hall fluid,
as a function of the magnetic flux & threading the Corbino disk. Different branches correspond to
different numbers of quasi-particles at the edges. It is suggested in Refs. [45, 46] that in the presence
of inter-edge quasi-particle tunneling, and for weak coupling to metallic reservoirs, an energy gap
opens at the degeneracy points, where different branches intersect. The authors then argue that if
the flux varies adiabatically, the quantum Hall fluid follows the ground state, so that the energy is
a periodic function of the flux with the electronic period ®¢

statements concerning the tunneling rates and currents are not firmly justified.’> The
results of their work are difficult to interpret at the level of effective theories. But, more
importantly, they cannot easily be generalized to the situation where the magnetic
flux is varied with the help of a gate voltage. This situation has stimulated further
interest in the fractional Aharonov—Bohm effect.

More recently, a number of authors (see Refs. [42, 43, 47, 48]) have proposed
that the correct description of the Mach—Zehnder interferometers should take into
account the presence of additional quantum numbers in a quantum Hall state. In the
thermodynamic limit, averaging the quasi-particle current over these quantum num-
bers is claimed to restore the electronic Aharonov—Bohm periodicity. These quan-
tum numbers are usually introduced ad hoc, with minimal justification. Depending
on the particular theoretical discussion, they are represented either in terms of so
called Klein factors in the tunneling operators [49], or as additional phase shifts
induced by quasi-particles localized at the inner edge of the Corbino disk [43]. We
are aware of only one attempt to justify theoretically the introduction of Klein fac-
tors in Mach—Zehnder interferometers: in their recent work [44], Ponomarenko and
Averin implement a resummation of electron tunneling processes between the inner
and outer edge and claim that there is a duality to weak quasi-particle tunneling,
where the Klein factors arise naturally. However, their analysis is done entirely at the
level of an effective theory, where weak quasi-particle and weak electron tunneling

3 Note, in particular, that the average values of physical observables are not determined solely by
the energy spectrum of a system, but also by the matrix elements of the observables. Thus, one is not
able to make a definitive conclusion on the periodicity of observables based on the consideration
of the spectrum alone.
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are the two fixed points of a renormalization group flow. There is no guarantee that
microscopic considerations will yield the same result.

8.2 Outline of Microscopic Theory

In view of shortcomings of previous theoretical arguments, we reconsider the physics
of quantum Hall interferometers on the microscopic level. Namely, we propose a
microscopic model of a quantum Hall interferometer with the Corbino disk topol-
ogy, schematically shown in Fig. 8.3. A quantum Hall liquid at filling factor v = 1/m,
confined to a region between two circles of radii ryy and rp, is described by Laughlin-
type wave functions (8.3) and (8.4). The inner and outer edges of the quantum Hall
liquid are connected to Ohmic contacts at points £y and £p via strong electronic
tunneling. Weak quasi-particle backscattering at two quantum point contacts is indi-
cated in Fig. 8.3 by dashed lines. It is described by the overlap of Laughlin states
with an additional quasi-hole located at points &§; and & for the left quantum point
contact, and at g and £ for the right one. The position of Ohmic contacts with
respect to quantum point contacts determines whether the interferometer is of the
Mach—Zehnder or Fabry—Perot type, as illustrated in Fig. 8.6 below. We generalize
the Laughlin wave function (8.3) and (8.4) in order to take into account the defor-
mation of quantum Hall edges caused by the modulation gate and Ohmic contacts.
Exactly same procedure may be applied in order to describe more realistic quantum
point contacts, for which §; ~ &} and {g >~ .

We then use weakly deformed Lauglin states to construct the subspace of low-
energy excitations of a quantum Hall system. The microscopic wave function (8.5)
and (8.6), resulting from weak incompressible deformations, is parameterized by an
infinite set of variables #;. We invoke the classical plasma analogy [5] and follow the
steps of Ref. [50] in order to project the microscopic Hamiltonian onto the subspace of
these deformations. After the projection, the variables #; turn into oscillator operators
ay with canonical commutation relations (8.32). These operators describe gapless
plasmon excitations at the edge of the quantum Hall liquid. The projected Hamil-
tonian (8.41) contains the oscillator part with a linear spectrum and the Coulomb
charging energy, which depends on the number of quasi-particles, M, and the num-
ber of electrons, N, in the quantum Hall system. The projected tunneling operators
take the form of vertex operators (8.49). They are well defined single-valued opera-
tors, in contrast to quasi-particle operators taken alone. Interestingly, we do not find
any trace of additional Klein factors [49] in the tunneling amplitudes.

Soderived low-energy theory agrees well with the effective theory of quantum Hall
edge states [2—4], generalized to take into account the finite size of a quantum Hall
system, the non-trivial topology of a Corbino disk, and the effects of a modulation gate
and of a singular magnetic flux. The effective theory arises as a boundary contribution
to the topological Chern—Simons field theory [51] of a quantum Hall state in the bulk
of two-dimensional electron gas in the presence of external electromagnetic field.
In the context of this theory, our microscopic results for the relative phase of the
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e

Fig. 8.3 Illustration of our model of a quantum Hall interferometer. The two-dimensional electron
gas in the quantum Hall effect regime is confined to a Corbino disk region, shown by grey shadow.
The inner and outer edge of the two-dimensional electron gas are circles of radii rp and ry,
respectively. At the points {y and £p the Corbino disk is connected to Ohmic reservoirs. The
location of the inner Ohmic contact is such that the particular interferometer shown here is of
the Mach—Zehnder type. If, in contrast, the inner Ohmic contact is attached to the upper part of
the Corbino disk, then such an interferometer belongs to a Fabry—Perot type. The quasi-particle
tunneling between the inner and the outer edge takes place at two quantum point contacts, shown
by dashed lines, that connect the points £, and 52, with¢ = L, R

tunneling amplitudes taken at different spatial points acquire a simple meaning: it
can be viewed as a phase picked up by a Wilson loop along the interferometer contour
(8.67). There are two contributions to this phase: one is the contour integral of the
gauge fields, the other one comes from the charge accumulated at the edges.
Having constructed the low-energy theory of an isolated quantum Hall system, we
proceed with the analysis of the quasi-particle transport through the interferometer
in response to the voltage bias applied to Ohmic contacts. In our model, Ohmic
reservoirs have large capacitances, therefore they perfectly screen edge charges. In
other words, any variations of zero modes, gate voltages, or a magnetic flux lead to the
charge accumulation at Ohmic contacts, which is described by a local deformation
of the edge. This property of Ohmic contacts agrees with the observation [52] that on
the effective theory level strong coupling to Ohmic contacts leads to a strong local
elongation of edge states near Ohmic contacts. We treat electron and quasi-particle
tunneling perturbatively to describe rare transitions that change the numbers Np and
Ny of electrons at the inner and outer edge of the Corbino disk, respectively, and
the number, [ = 0, ..., m — 1, of quasi-particles at the inner edge. The dynamics
of the interferometer on a long time scale is described by a master equation for
the probability of finding the system in a state with certain values of the numbers
Np, Ny, and [. Strong coupling to Ohmic contacts, as compared to quasi-particle
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tunneling, leads to the equilibration of inner and outer edge states with corresponding
electro-chemical potentials.

Solving the master equation in the quasiparticle sector, we finally find the station-
ary current through the interferometer as a function of the singular magnetic flux ®
and the flux @ induced by the modulation gate voltage, thereby establishing the
main result of this chapter. Namely, we find that quasi-particle tunneling rates in the
case of a quantum Hall interferometer with the Mach—Zehnder topology (see Fig.8.6)
depend on the magnetic flux via the combination (& 4+ &)/ P + . Therefore, after
the summation over the number /, the Aharonov—Bohm oscillations in the stationary
current acquire the electronic periodicity simply because the shift of the flux by the
quantum @ is compensated by the shift of / by 1. And conversely, for a quantum
Hall interferometer with the Fabry—Perot topology, tunneling rates are independent
of the singular flux ® and the number /, therefore the stationary current oscillates as
a function of ® ¢ with the quasi-particle period m ®. In both cases the Byers—Yang
argument is satisfied, and the paradox is resolved.

The rest of this chapter is organized as follows. In Sect. 8.3 we construct the
ground state wave function of an electronic interferometer in the fractional quantum
Hall effect regime. In Sect. 8.4 we derive the low-energy theory of the interferometer
by projecting the microscopic Hamiltonian and quasi-hole wave function overlaps
onto the subspace of states corresponding to small incompressible deformations of a
quantum Hall liquid. In Sect. 8.5, we propose a model of Ohmic contacts, consider
the effects of a singular magnetic flux and of a modulation gate, and develop the
kinetic theory of an open quantum Hall interferometer away from equilibrium.

8.3 Microscopic Description of a Quantum Hall Interferometer

In this section we construct the many-particle wave functions of the ground state
and of gapless excited states of an isolated quantum Hall interferometer with the
Corbino disk topology, and extend our results to the case of an open, connected to
Ohmic reservoirs, interferometer in Sect. 8.5. We do this step by step, starting from
the Laughlin wave function and manipulating it, in order to arrive at a realistic model
of the interferometer. We first present the most important steps before we prove
them in Sect. 8.3.1, using the classical plasma analogy [5]. The variational wave
function, proposed by Laughlin in Ref. [5] and later justified by Haldane and Rezayi in
Refs. [53, 54], describes an approximate ground state, | N'), of a quantum Hall system
with N electrons at filling factor v = 1/m:

N N |Z'|2
(z|N) =E(z,- —z)) exp(—zi“@). (8.3)

Here z denotes a set of complex coordinates z; = x; 4+ iy; describing the position of
the ith electron, i = 1... N, and [p = /hc/eB is the magnetic length. It is known
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[55] that the wave function (8.3) describes a circular droplet of a quantum Hall liquid
of constant density ppg = 1/ (27Tm1123) and of radius r = Ip+/2mN.

In the next step, we add to the state (8.3) a macroscopic number, M, of Laughlin
quasi-particles [5] at the origin:

N
zIN, M) = []M zIN). (8.4)

In Sect. 8.3.1 we explicitly show that the wave function (8.4) describes a quan-
tum Hall state of constant electron density pyg inside a Corbino disk, as shown in
Fig. 8.3. The inner hole of the disk has aradiusrp = Ip /2M, while the outer radius
of the disk is given by ryy = Ig+/2(M + mN).

Additional small incompressible deformations of the quantum Hall liquid disk
may be described as follows. We note that all states of the lowest Landau level can
be described by holomorphic functions of electron coordinates. We therefore look
for a wave function of the form [50, 56]

N
@IV M.0) = exp[m > wien (I, M), (85)

where the function

w@) =y ud (8.6)
k

is analytic inside the Corbino disk (shown in Fig. 8.3), and t denotes a set of para-
meters #, k € Z. In Sect. 8.3.1 we show that the shape of the deformed disk is given
by the solution of a two-dimensional electrostatic problem, with w(z) playing role
of an external potential.

We utilize the wave function (8.5) in two ways. First of all, small incompressible
deformations are known to be the gapless excitations of the quantum Hall state
[55]. Therefore, in order to describe the low-energy physics, we will use the wave
functions (8.5) to project the microscopic Hamiltonian of the interferometer onto the
subspace corresponding to incompressible deformations. Second, we investigate the
effects of a modulation gate located near one of the arms of the interferometer, and of
two Ohmic contacts. Both effects may be described by local edge deformations: the
charge expelled by the modulation gate or added to the interferometer, is eventually
localized at Ohmic contacts. Thanks to the linearity of resulting equations in the case
of weak deformations, the spectrum of excitations and properties of the ground state
of a realistic model of a quantum Hall interferometer may be first studied separately.
We use so derived results in Sect. 8.5, where we investigate the Aharonov—Bohm
effect in the current through a quantum Hall interferometer connected to Ohmic
reservoirs.
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8.3.1 Plasma Analogy and Incompressible States

The classical plasma analogy [5] has proven to be an efficient method in the analysis
of quantum Hall states [57-61]. It relies on the important observation that the norm
of the Laughlin wave function may be written as the partition function of an ensemble
of N classical particles interacting via the two-dimensional (logarithmic) Coulomb
potential. In the large-N limit the evaluation of the partition function reduces to
solving a two-dimensional electrostatic problem. Here we apply this method directly
to the wave function (8.5). We write

7 = /dzzl cd’zy|ZIN, M, t))? = /dzzl .d?zye MEn (8.7)

where the inverse temperature of the plasma is m and the energy is given by the
expression:

Z M
== Injg —z;? +Z[2'llz —Zzlnmz—zRew(m}. (8.8)
i

i<j

Introducing the microscopic density operator p(z) = »; 82(z — zi), we can
formally write

Ep=—y / / 2w p(2)p(w) In |z — w]? — / Pp@pen@).  (8.9)

where
|z |2

212

Pext(2) = ln |22 + 2Re w(z), (8.10)

and normal ordering is assumed in the first term on the right hand side of Eq. (8.9) in
order to remove the self-interaction contribution. This representation makes it obvi-
ous, that the partition function (8.7) describes a gas of charged particles interacting
via the two-dimensional Coulomb potential that are confined by the external potential
pext(z). The firstterm in Eq. (8.10) describes the interaction with a neutralizing homo-
geneous background charge of density ppg = (1 /4m)A(|z)? /2ml ) =1 /27Tml2 The
second term can be viewed as describing repulsion from a macroscopic charge M /m
at the origin. Finally, the last term describes the effect of an external (chargeless,
since ARe w(z) = 0) potential on the particles in the gas.

The next step is to approximate the integral over coordinates in Eq. (8.7) by a
functional integral* over the density p(z):

Z = / Dp(z)e mEnlel, (8.11)

4 Note that the functional integration in Eq. (8.11) over p(z) is constrained to the domain p(z) > 0.
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By doing so, we neglect the Jacobian of the transformation from variables z to p(z)
[62]. Taking the Jacobian into account is crucial for the correct description of the
physics at the microscopic length scale /g, which however is not a subject of our
considerations. After this approximation, the evaluation becomes straightforward.
We note that the energy of plasma is a quadratic function of the density. Hence the
average density (p(z)) = Z~Y(N, M, t|p(z)|N, M, t) is given by the solution of the
saddle-point equation d Ep /6 p(z) = 0, which reads

/ Pw(p)) In |z — wl? + peu(s) = 0 (8.12)

for the domain where (p(z)) # 0. Thus, an ideal quantum Hall liquid may be
described by solving two-dimensional electrostatics problem.’

Important consequences of this simple equation are the following ones. First, it
implies that the total potential vanishes in the region where (p(z)) # 0, i.e. where
the two-dimensional electron gas is not fully depleted. In other words, the Coulomb
plasmais a “perfect metal” that completely screens the external potential wex¢. Apply-
ing the Laplacian to (8.12), we find that (p(z)) = puy, i.e., the Coulomb plasma is
distributed homogeneously to screen the background charge. This confirms that the
wave function (8.5) describes an incompressible deformation of the quantum Hall
droplet. In particular, the wave function (8.4) describes the approximate ground state
of a quantum Hall interferometer with the shape of a Corbino disk. Indeed, the
plasma analogy suggests that the hole in the Corbino disk is formed symmetrically
around the origin, where the macroscopic charge M /m is located. It serves to screen
this charge, so that the total potential vanishes in the region occupied by the two-
dimensional electron gas. Because of perfect screening, the shape of the outer edge
is, however, independent of the shape and position of the hole and displays the sym-
metry of boundary conditions in the background charge distribution, see first term
in Eq. (8.10).

We now investigate the effect of the potential w(z) perturbatively. Let us denote
by D the region to which the quantum Hall system is confined. We search for the
solution of Eq. (8.12) in the form (p(z)) = ppg, forz € D, and (p(z)) = 0 otherwise.
Thus we can rewrite Eq. (8.12) as

pbg/dzw In|z — w|2 + @ext(2) = 0.
D

Introducing a small deformation, D = Dy + 6D, and taking into account that
the integral over the undeformed Corbino disk, Dg, cancels the first two terms in
Eq. (8.10), we arrive at the following result

5 It is expected that two-dimensional electrostatics for an ideal Coulomb plasma holds for 1/v =
m < 7, while for larger “inverse temperature” m there is a tendency to Wigner crystallization [55].
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Oy(0)

Fig. 8.4 A quantum Hall liquid, whose ground state is given by Eq. (8.5), is shown schematically.
The dashed lines show the edges of the unperturbed Corbino disk, while an incompressible defor-
mation is shown by the full lines. The region of constant electron density (p(z)) = ppg is shown by
the grey shadow. The shape of this region is determined by the complex function w(z) defined in
Eq. (8.6). The Fourier components of charge density oy accumulated at the outer edge are given by
the coefficients # of the regular part of the Laurent series for w(z), while the Fourier components
of charge density op accumulated at the inner edge are given by the coefficients 7_; with k > 0 of
the singular part of w(z) [see Eq. (8.15)]

pbg/dzwln |z — w| + Rew(z) = 0. (8.13)
oD

In polar coordinates (see Fig. 8.4), the boundaries of the deformed disk can be
parameterized as r(0) = ry & 05(6)/pvg, where s = U, D, and o,(0) are the one-
dimensional charge densities accumulated at the inner and outer edge due to the
deformation.

Because of perfect screening in the two-dimensional Coulomb plasma, one can
solve Eq. (8.13) independently for each edge. Using the series expansion

In(z —w) =In(w) = > /w/k, |z| < |wl, (8.14)

k>0

and the explicit expression (8.6) for the potential w(z), we solve Eq. (8.13) by power
series. The result can be presented in the form of Fourier series:

2rryoy(0) = 2Re D kirge’™, (8.152)
k>0

2rrpop(0) = 2Re2kt_kr5ke—”“’. (8.15b)
k>0

These series show how the microscopic wave function (8.5) determines the shape of
the deformed Corbino disk.

Finally, we analyze the effects of a modulation gate and of a singular magnetic
flux on an isolated quantum Hall droplet, as illustrated in Fig. 8.5. According to the
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Fig. 8.5 The effects of a modulation gate and of a singular flux are illustrated. Left panel The
modulation gate locally depletes the quantum Hall liquid. Due to the incompressibility of the
quantum Hall liquid, the repelled charge is accumulated homogeneously along the edge. Right
panel In the language of the Coulomb plasma, the multiplier in the wave function (8.19) depending
on the singular flux can be viewed as a point-like charge placed in the center of the inner hole. It
homogeneously shifts both edges to preserve the electro-neutrality

result (8.15), the deformation caused by the modulation gate can be described by the
wave function

N
PG /7
(zIN, M, Dg) =exp| — — f\— ) |{zIN, M), (8.16)
o=on -3 201(2)]
where we have introduced the function
f(x):Zxk/kz—ln(l—x). (8.17)

k>0

Indeed, the one-dimensional charge accumulated as a result of the deformation has
the following form:

@ |
ruoy () = —mTfO(m — ) — %) (8.18)

where 6 is the argument of the position, £, of the modulation gate. This function
correctly captures the effects of a modulation gate on an isolated interferometer: the
local depletion of the two-dimensional electron gas at the point £ = rye? and the
homogeneous expansion of the quantum Hall liquid due to its incompressibility. This
observation agrees also with the fact, that the function (8.17) of a complex variable
x is electro-neutral from the two-dimensional electrostatics point of view, because it
has two branch points, at x = 1 and x = oo. Finally, it is easy to check that the flux
through the depleted area under the modulation gate, — B f (ou/pog)rudl, is indeed
equal to Pg.

After the adiabatic insertion of a singular magnetic flux ® through the hole in
the Corbino disk at the origin, the wave function is multiplied by the phase factor
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[1; exp[—i®/Pg arg z;]. At the same time, the wave function is deformed by the
spectral flow preserving its single-valuedness. This effect is described by the addi-

tional multiplier [ [; z;b /®0 The overall effect of a singular flux on the wave function
(8.4) can thus be represented by replacing the original wave function with

N
ZIN, M, ®) =[]z ™z IN, M). (8.19)

1

Thus, in the presence of a singular magnetic flux, the plasma energy contains an
additional term

@ 2
SEp = o Zi:m Izi . (8.20)

In the language of the Coulomb plasma it describes the addition of a charge ®/m ®
in the hole of the interferometer at the origin. This homogeneously shifts the edges
of the Corbino disk by an amount

o 1
m®g 277 pog ’

ory = s=U,D, (8.21)

as illustrated in Fig. 8.5.

8.3.2 Low-Energy Subspace

Having found the set of states (8.5) describing incompressible deformations of a
quantum Hall liquid, we proceed to construct operators generating the subspace of
such low-energy states when applied to the undeformed ground-state and finding their
commutation relations. First of all, let us introduce zero-mode operators changing
the number of electrons N and quasi-particles M in the system

SOMIN, M, t) = N, M + 1,t), (8.22a)
eONIN, M, t) = N +1,M,t). (8.22b)

States with different numbers of electrons N are obviously orthogonal. The orthog-
onality of states with different numbers of quasi-particles M follows from the fact
that in a symmetric Corbino disk such states have different angular momenta. Taking
this observation into account, one derives from the definitions (8.22) the following
commutation relations for the operators of zero modes®

6 To be precise, the operators (8.22) are not unitary if N and M are finite. However, in the thermo-
dynamic limit (N, M — oo) these operators become unitary and satisfy the commutation relations
(8.23).
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[M,el®M] =% [N,el?N] = eV, (8.23)

Next, we introduce deformation operators ays, s = U, D, for any k > 0, acting on
the right as

aw|N, M, t) = —ivkrii N, M, 1), (8.24a)

axpIN, M, t) = —ivkrp e [N, M, t). (8.24b)

The states (8.5) are coherent states under the action of these operators. In order to

find commutation relations for these operators, we need to evaluate scalar products
of the states (8.5).

We start with the norm of a wave function, which is given by the square root of

the partition function of the Coulomb plasma, (8.7) and (8.11), and evaluate the “free

energy”
Fpi = —(1/m)log(2). (8.25)

Considering the potential w(z) as a perturbation, we obtain
e
Fy = Fo+ %// d*zd*win |z — w|?,
oD

where the constant Fj is the contribution from the unperturbed state and from the
determinant of the Gaussian integral. We evaluate this integral with the help of the
solution (8.15) and present the result as a bilinear form in the coefficients #,

Fp(t", 1) = Fo — D kU it 4 rp ™ 05t p + tit g + 17171, (8.26)
k>0

The holomorphic structure of this bilinear form allows us to extend the result for the
norm Z = exp{—m Fp(t*, t)} to the scalar products

(N, M, tIN, M, ') = exp{—mF(t", t)}. (8.27)

Next, we define differential operators, via their matrix elements, as follows:

0 0
W|—|N, M, t') = —(V|N, M, t). 8.28
( |8zk| .M, t) at,;( IN, M, ) (8.28)

A straightforward calculation then yields:

0
(N M, t=-IN, M, t'y = mk[rdke; +1¢ (N, M, t|N, M, t'). (8.29)
k
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Using deﬁnition (8.24), we may write (N, M, tla;, IN, M,t") = (N, M, t/|lawy|
N, M,t)* = z«/—rutk N, M,t|N, M,t’). Substituting this equation in Eq. (8.29)
we ﬁnally express the adjoint operators acting on the states |N, M,t), via the
parameters g, as

P (9
aly =~ JE( o mkt_k). (8.30)

-k
$ iry, ( 0 )
a., = —— — mkty). (8.31)
D ik N0t
Using Eqgs. (8.24), (8.30) and (8.31) for the operators ai and their adjoints and
the relation [0/01, ty'] = —Oxk,’ We obtain the commutation relations:
" 1
[aks, ak/s/] = — Ok Oss' - (8.32)
m

Similarly, one finds that [azs, az/ o1 = laks, aps’]l = 0. Thus the deformation opera-

tors, ay and azs, introduced in (8.24) satisfy canonical commutation relations, and
the subspace of incompressible deformations has a natural Fock space structure with
respect to these operators.

8.4 Projection onto the Low-Energy Subspace

Starting from the microscopic model, we now explicitly derive the low-energy effec-
tive theory of an interferometer. For this purpose, we project the microscopic Hamil-
tonian and overlaps of wave functions of quasi-particles at the two edges onto the
low-energy subspace constructed above. The projection of these operators is defined
by O — P O P, where the orthogonal projection P is written as:

P = Z/Hdztkndzt [N, M,t)(N,M,t|N, M, t')" (N, M,t'|, (833)

where the inverse is defined in the sense of the inverse kernel. We first implement
the projection procedure for a symmetric Corbino disk. Then, in Sect. 8.5 we take
advantage of the fact that incompressible deformations are weak and lead to linear
relations (8.13) and (8.15), and simply shift oscillator operators in order to take into

7 This commutation relation follows form the definition of the derivative operator (8.28), which
differs from the standard one.
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account additional deformations caused by Ohmic contact, modulation gate, and
singular magnetic flux.

8.4.1 Edge Hamiltonian

The microscopic Hamiltonian for N electrons, restricted to the lowest Landau level,
is given by the expression

N N
H=> UG)+ > V(z -z, (8.34)

i<j

where V (|z]) is the potential of the screened three-dimensional Coulomb interaction
and U (z) is the confining potential, which forces electrons to form the interferometer.
Note that we have omitted the kinetic energy operator, since, acting on the lowest
Landau level, it gives a constant contribution, N fw./2, where w, = eB/m,c is the
cyclotron frequency.

To find the projection of the microscopic Hamiltonian onto the subspace of incom-
pressible deformations H = P H P one needs to evaluate the matrix elements

N,M,t|H|N, M, t
E(z*,z’)=< LIA] '>. (8.35)
(N,M,t|IN,M,t)

We first consider diagonal matrix elements E (t*, t) in (8.35). They can be rewritten
in terms of the electronic density in the deformed state as follows:

1
E(t*,t) ~ / d2ZU(Z><p(Z)>+§ / / d*zd*wV (12 — w) (p(2)) (p(w)), (8.36)

where we have applied the approximation (p(z)p(w)) =~ (p(z)){p(w)), neglecting
the “exchange” contribution, which is justified in the large-N limit.

Next, we express the projected Hamiltonian in terms of the deformation operators
(8.24). To this end, we consider small deformations of the state (8.4) and take into
account the fact that the density is constant, (p(z)) = ppg, for z € D. Writing the
deformed region as D = Dy + § D, one can expand the integral (8.36) in the small
deformation § D and evaluate the correction term with the help of the result (8.15):

E(t",t) = Eo+m ) [eu®) o) kif e +ep()(rp) ke* 4] (8.37)
k>0

where E| is the energy of a quantum Hall system confined to an undeformed Corbino
disk, and the last two terms originate from the deformation ¢ D. The excitation spectra,
es(k), s = U, D, are determined by the three-dimensional Coulomb interaction and
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by the confining potential:

2T
kU’ k o
ey = KUk /dch(Z}ﬂ sin f|)[e'k‘a — 7. (8.38)
2mmppets M 2

Using again the holomorphic structure of the bilinear form (8.37) to extend this
result to off-diagonal matrix elements, we arrive at the projected Hamiltonian in the
following form:
H=Eo+m > > eik)aj a. (8.39)
s=U,D k>0

We further assume that the potential V describes Coulomb interactions screened
at a distance d. In the low-energy limit, i.e., for kd/ry < 1, the deformation energy
in (8.38) is then linear as a function of the mode number: £5(k) =~ vsk/rg, where
the constants v, are the group velocities of edge excitations. The energy of the
undeformed state takes the following form as a function of the number of electrons
N and the number of quasi-particles M:

Up 2 vy

M? + (M +mN)?. (8.40)
2mrp 2mry

Eo(N,M) =

Replacing the mode number with the wave vector k — krg, we arrive at the final
expression for the edge Hamiltonian

H=Eo(N.M)+m D> > vkaja. (8.41)
s=U,D k>0

We conclude this section with the following important remark. The right hand side
of Eq. (8.38) contains two terms: the first one originates from the confining potential
and the second one comes from Coulomb interaction. Consequently, the velocities
of edge excitations contain two contributions:

vy = cE(ry)/B + (e2/mh) In(d/lp). (8.42)

The first term is the drift velocity, proportional to the boundary electric field, E (r;),
while the second one is proportional to the “Coulomb logarithm”. The ultraviolet
cutoff in (8.42) is determined by correction terms in a 1/N-expansion of the two-
point density correlation function. In fact, result (8.42) coincides with an expression
proposed earlier in Ref. [38] in the framework of the effective theory on the basis of
the classical electrostatic picture.
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8.4.2 Tunneling Hamiltonian

The tunneling Hamiltonian of an interferometer may be written as a sum of tunneling
operators at the left and right quantum point contacts:

Hr= D [Ap&) + Al

{=L,R

The tunneling operator Ag, () is an operator annihilating a quasi-particle at a point
&’ on one edge and recreating it at a point £ on the other edge. At low energies, the
tunneling operator can be defined as an operator whose matrix elements in deformed
states are equal to the overlaps of two states with quasi-particle located at the opposite
edges:

(N, M, t|Agp(©IN, M, t) /Hdzzl (N, M. L] (©)]z)

x (z|Ygp(€)IN, M', ). (8.43)

However, here we face the problem that a wave function of a quantum Hall system
with one quasi-particle, (z |1qp(§)IN, M, t), is not well defined. This is because one
is not able to remove a charge 1/m form a system consisting of electrons. Therefore,
we first construct the electron tunneling operator 4¢] and then derive the quasi-
particle tunneling operator from the observation that tunneling of m quasi-particles
at the same point is equivalent to tunneling of an electron.

The electron operator is formally defined by (z1, ..., zn|[Yel()|V) = /N + 1
(z1, ..., 2N, &|V), which leads to the result:

(zl0a(©IN +1, M, 1) = e PAGImO TTie — 2™z N, M.1), (8:44)

i

where we omitted a combinatorial factor, because it can be absorbed into the tunneling
amplitudes. Then, using the expression (8.43) with operators ¢, replaced by 1)) from
Eq. (8.44), we obtain

(N ML AG(©OIN. 1) = e @) [ [ -
X (€ — Z™(N, M, t|z)(z|N, M'.{').  (8.45)

where we have dropped the prefactor (¢/¢*) exp[—(|£]*+€'|%)/ 41%), because for a
short tunneling path, ¢’ — &, which is typically the case, it has no essential physical
meaning and may be absorbed into the tunneling amplitude. Now, it becomes obvious
that the matrix element of the quasi-particle tunneling operator may be written as
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(N M.t Ag©IN. M) = e [ TTaae -2
X(5*_Z;k)<N’M’E|Z><Z|N7M/7£/>v (846)

i.e., roughly speaking, we set Aqp, = Aél/ " We would like to stress, that this quasi-
particle tunneling operator is unique and well defined. First of all, in term of the
electron coordinates z;, the matrix element (8.46) is a single-valued function, i.e.,
the criterion (iii) formulated in the beginning of the Sect. 6.1 is satisfied. Second, this
matrix element is also a single-valued function of the coordinates of the tunneling
points £ and &’. Thus, on the microscopic level no ambiguity of the definition of a
tunneling operator arises.

In order to evaluate the matrix elements (8.46), we first assume that t’ = t, as in
the previous section, and then generalize our findings. The product [];({’ — z;) in
Eq. (8.46) can be rewritten as exp [Zl In(¢' — Z,-)], and one obtains similar expres-
sion for []; (§* — zJ). Expanding the logarithms in power series (8.14) on the inner,
|€] < |zi|, and outer, |£'| > |z;| edges, we arrive at the following expression for the
matrix elements (8.46):

(N, M, t|Agp(OIN, M', t) = explw(§) +w™(€") + NIn{']

.. et
x /Hd 7iZ; eXp _Z kg + k(z¥)k
; k>0 '

X (N, M, t|z)(z|N, M, t). (8.47)

Taking into account that mzlz (z|N,M',t) = 0/0t(z|N, M’ t), and
mzi(z;")_k(N, M, t|z) =0/0t* (N, M,t|z), wepull outof the integral the power
series in z;. Then we use the fact that (N, M, t|z) []; l*: (N, M+1,t|z) torewrite
Eq. (8.47) in the following form:

(N, M, t|Agp(OIN, M, t) = explw(§) +w*(€") + NIn{]

1 1 €H* 0
XeXP{__Z[kﬁ’kﬁt +_k at—*k:H
X (N,M+1,t|N, M t). (8.48)

One can immediately see that the matrix element (8.48) vanishes unless M’ = M +1.

Finally, using Eq. (8.26) for the logarithm of the norm Z = (M, N,t|N, M, t)
and definition (8.24), we can write the projection of the tunneling operator (8.43) in
terms of the deformation operators as follows:

Ap(©) = exp[ —idm + NIn€' + iy (€) — igh©)]. (8.49)
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where we have introduced the subindex O to denote the quasi-particle tunneling
operator for a symmetric Corbino disk, i.e., before deformations that are considered
in Sect. 8.4.3. We have also introduced the following fields:

w(é)—z <ru/§’>kaZU+(§’/ru>"aku], (8.50a)
k>()

pp(&) = Z [<§/rD)kakD+<rD/£> ap)- (8.50b)
k>0

Here several remarks are in order. One can easily see that the quasi-particle tun-
neling operator (8.49), together with definitions (8.50), almost coincide with the
tunneling operator found within the effective theory, given by Egs. (1.60) and (1.62).
These operators differ only by the parametrization of the boundary 9D of a quantum
Hall system [two-dimensional coordinates ¢ = re' % in (8.49) versus one-dimensional
coordinates x = r# in (1.60)], and by zero modes, which are different in the case
of single edge considered in introduction. Note, also, that the wave number k in
Eqgs. (8.50) has to be replaced with the wave vector: k — kr;. We would also like to
mention that two tunneling operators (8.49) taken at to different points commute:

[Ao(§L), Ao(€r)] = 0. (8.51)

This is because two fields ¢; in (8.49) have opposite chiralities, and in the case of
symmetric Corbino disk considered so far their contributions to the exponent of the
commutator cancel exactly. Is this property a consequence of the symmetry of the
Corbino disk, or it can be extended to an arbitrary geometry? We propose the fol-
lowing argument, which suggests the universality of the relation (8.51). Note, that
in order to arrive at the expression (8.49) for the quasi-particle tunneling operator,
we have dropped the prefactor (¢/¢*)M in the electron tunneling operator (8.45), and
consequently, the prefactor (¢/¢*)M/™ motivating this by the proximity of tunneling
points in a real experimental situation. If we relax this requirement and assume an
arbitrary location of tunneling points at the boundaries of the Corbino disk, then the
commutator [Ag(€L), Ao(£r)] acquires additional contributions from zero modes
and from the oscillators. It turns out, that these contributions cancel exactly, suggest-
ing the universality of the commutation relation (8.51).

Next, we find the projected charge density operators at the edges of a quantum
Hall system, pp(#) = Pop(@)P — M/2wmrp and py (@) = Poy(@)P + (M +
mN) /2wmry, by rewriting the result (8.15) directly in terms of the operators (8.24):

pp(0) = —

39@1)(5) -

(8.52a)

2amrp’

M +mN

pu(0) = —399011(5) L —— (8.52b)
TTmry
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here the homogeneous contributions describe the charge accumulation caused by
the variation of quantum numbers M and N. We note that again these results agree
with the effective theory presented in Sect. 6.1. In particular, setting M = 0 in
Eq. (8.52b) and changing the parametrization of the boundary, we arrive at the expres-
sion (1.58), complemented by (1.62). Note also that Egs. (8.52) lead to the following
commutation relations

1

nmry

[Ao (), ps ()] = £=——0(0 — 0,). Ao (&), (8.53)

where the angles 6p and 0y parameterize the position of the tunneling point in
coordinates of the inner and outer edge. These commutation relations show that the
tunneling operator (8.49) creates a pair of point-like charges of magnitude +1/m.

Finally, we must find the projection of the operators of electron tunneling from
the quantum Hall edges to the Ohmic contacts. This can be done by applying the
technique used above to the electron annihilation operator (8.44). The result of the
projection is given by

Ay = el exp[impu ()] exp [ —idn + (mN + M) In&y] (8.54)

for tunneling from the outer edge to the upper Ohmic contact (see Fig. 8.3 for
notations), while the tunneling operator on the inner edge is given by

Ap = CJB exp [imapD(fD)] exp [ —i¢N +im¢o+ Mln §D], (8.55)

where cy and cp are the electron operators in Ohmic reservoirs.

8.4.3 Deformations of the Ground State

We are now in the position to investigate the effects of the deformation of the symmet-
ric Corbino disk on the collective and local excitations. Let us consider for this pur-
pose the combined effect of the ground state deformation, described by some function
wa(z) =D tarz¥, and of the deformations caused by excitations, w(z) = >, ez
The total deformation function then reads

wiot(2) = w(@) + wa(2) = D (i + tar) 2" (8.56)
k

This function has to be substituted to the wave function (8.5). According to the
classical plasma analogy, the deformation w, adds to the charge density at the edge,
given by Egs. (8.15). However, since we consider the deformation of a ground state,
e.g., by amodulation gate, the Coulomb energy (8.37) of the overall deformation does
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not change. We therefore choose to keep the definition (8.24), so that the Hamiltonian
(8.41) of the collective modes remains unchanged.

At the same time, the ground state deformation effects the adjoint operators of the
collective modes. This simply follows from the scalar products of deformed wave
functions:

<N7 M? E |N7 M’ E/> = exp [ - mel(t]j + t:jkka t]i + tdk)]’ (857)

where Fp is given by Eq. (8.27). Repeating steps that lead to Egs. (8.30) and (8.31),
we find the adjoint operators acquire a simple shift:

aZU - aZU + i‘/z(”lkﬂ;k + rﬁkfd,—k), (8.58a)
alp = afp +iNkGhta+ ke . (8.58b)

Obviously, this shift does not change canonical commutation relations (8.32).

Next, we evaluate the modified quasi-particle tunneling operator Agp (). For
doing so, we repeat steps starting from Eq. (8.46) and leading to the result (8.49),
but now using new collective mode operators (8.58) and the deformation function
(8.56). The result of the calculations reads

Agp(©) = Ag(§) exp {2i Im[w] (§) — wy (O]}, (8.59)

where we have introduced the functions

wi@ =t wi@ = ta w7, (8.60)

k>0 k>0

which are the parts of wy; = w:[ + w, , analytical respectively inside the inner
edge and outside of the outer edge of the Corbino disk. Thus the sole effect of the
deformations of the ground state of the symmetric Corbino disk is the appearance of
the phase shift in the quasi-particle tunneling operator. The structure of the term is
also quite natural: deformations of the outer edge lead to the phase shift in the mode
(py via the function wj, while the deformations of the inner edge, controlled by the
function w , shift the mode ¢ p.

Next, we note that using Egs. (8.15) one may express the phase shifts in (8.59) in
terms of the one-dimensional charge densities accumulated at the edges as a result of
the deformations: 28¢9[me (&) = ryoy(0) and 20pImw, (§) = —rpoy(0). Thus,
we may conclude that neutral deformations caused, e.g., by a modulation gate, lead to
the phase shifts in the tunneling operator, which may be evaluated as simple contour
integrals of the charge densities accumulated at the edges. In the next section, on the
other hand, we would like to consider variations of zero modes, d N and § M, which
lead to specific variations of the charge densities at the edge. These effects may be
described by the phase shifts already accounted for in the bare tunneling operator
(8.49), accompanied by the phase shifts due to neutral deformations considered so
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far. Taking into account the Eqgs. (8.52) we finally arrive at the following simple and
general result:

Agp(&) = Ao(§) exp {idpy (x) —idpp(x)}, (8.61a)
Spy = 27r/dx’(5py(x’), Sop = 27T/dx5pD(x), (8.61b)

where for the convenience we choose the one-dimensional parametrization, x’ =
ry® and x = —rp6, which accounts for the opposite chiralities of the edge states,
and we recall that Ag is the bare quasi-particle tunneling operator for a symmetric
Corbino disk, given by Eq. (8.49). The operators d¢p;y in this expression account for
the specific phase shifts, which are the subject of the next section, while the operator
Ay determines the scaling behavior of tunneling rates.

To summarize this section, Egs. (8.49-8.55) complete the projection procedure,
and the resulting low-energy theory of a quantum Hall system isolated in a Corbino
disk agrees well with the effective theory of Refs. [2] and [3, 4]. However, in addition
to this important conclusion, we obtain an information which cannot be extracted
from the effective theory alone. Namely, the effective theory does not specify pre-
cisely how zero modes enter the tunneling operators. For example, our direct micro-
scopic calculations suggest that the quasi-particle tunneling operators (8.49) do not
contain the zero mode M that counts the number of quasi-particles localized in the
central hole of the Corbino disk. Moreover, we do not find traces of additional Klein
factors [49] in the tunneling operators.

8.5 Quantum Hall Interferometer Away From Equilibrium

In this section we return to the model of a quantum Hall interferometer, shown in
Fig. 8.3, and investigate various effects of inserting a singular magnetic flux, apply-
ing a modulation gate voltage, and of attaching Ohmic contacts. The most important
effect is the accumulation of the charge density at the edges, dp;. It leads to the
phase sift in quasi-particle tunneling operators, which may be easily evaluated using
Eq. (8.61b). Electron tunneling operators (8.54) and (8.55) also acquire the phase
shifts, but they cancel in tunneling rates. In contrast, the phase shifts of quasi-
particle tunneling operators add to the Aharonov—Bohm phase in the oscillating
part of the quasi-particle tunneling rates. The consequence of this is twofold. First,
the Aharonov—Bohm effect may be observed by simply applying a modulation gate
voltage or a singular magnetic flux. We, then, find the corresponding periods of
Aharonov—-Bohm oscillations. Second, the phase shifts d¢;, and consequently the
quasi-particle tunneling rates, depend on the variations of zero modes, N and 0 M.
Therefore, we describe tunneling processes, and eventually a stationary quasi-particle
current on a long time scale, by solving the master equation for the probability
distributions in the space of zero modes.
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8.5.1 Ohmic Contacts

So far, we have considered a quantum Hall system to be confined inside a Corbino
disk and electrically isolated from the measurement circuit. In fact, such a system,
complemented by two quantum point contacts connecting inner and outer edges of
the Corbino disk, may nevertheless be considered a quantum Hall interferometer.
The time-dependent quasi-particle current in such a system may be investigated by
using, e.g., the time domain capacitance spectroscopy method [63, 64]. As we will
see, there is no reason for the quasi-particle Aharonov—Bohm effect not to be observed
in such measurements with the Mach—Zehnder interferometer. However, the Byers—
Yang theorem is formulated for a stationary current, and our original naive argument
presented at beginning of this chapter considers a Mach—Zehnder interferometer as
an opens system. Experimentally [16], such a situation is achieved by attaching a
quantum Hall system to Ohmic contacts.

A correct physical description of Ohmic contacts to quantum Hall edge states is
a complex theoretical problem. We think that despite several attempts [52, 65, 66],
this problem has not been fully solved. In particular, we are not aware of a discussion
in the literature about how different models of Ohmic contacts can be discriminated
(or verified) experimentally. The difficulty of modeling Ohmic contacts is related to
the fact, that Ohmic reservoirs, typically being realized by heavily doping a part of
the semiconductor substrate, represent entirely different physical system than a two-
dimensional electron gas in a quantum Hall state. In this situation it is best to rely on
minimal obvious requirements for a model to correctly describe an Ohmic contact:
(1) An Ohmic contact is a metallic reservoir, which has a large capacitance, and as
a result, suppresses fluctuations of the total charge localized at quantum Hall edges;
(i) it has a resistance much smaller than that of the system, and creates negligible
noise; (iii) Ohmic contact efficiently equilibrates edge states. If such requirements are
satisfies, it becomes experimentally difficult to distinguish a model Ohmic contact
from an ideal one.

Here we focus on the first requirement and address other two in Sect. 8.5.2. An
ideal Ohmic contact suppresses charge fluctuations at the edges by accommodating
all the excess charges arising from variations of zero modes, and of the magnetic
field flux. Thus, no variations of the charge densities dp; arise except at the points
&y = rUeixéf/’U and £p = rpe”*P/"U  where Ohmic contacts are located, and at
the position (g = rUeix/G/ U of the modulation gate, see Fig. 8.3. Denoting these
charges with Qy, Op, and Qg¢, respectively, we may write:

dpu(x') = Quo(x’ — xp) + Q6o (x" — xg), (8.62a)
dpp(x) = Qpd(x — xp). (8.62b)

These equations have to be substituted to Eq. (8.61), giving phase shifts to quasi-
particle tunneling operators.

Next, we evaluate the excess charges in different situations. When the zero mode
N changes by d N due to the electron tunneling at Ohmic contacts, this leads to the
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L

Fig. 8.6 Schematic illustration of the interferometers of the Mach—Zehnder type (left panel) and
of the Fabry—Perot type (right panel)

accumulation of the charge at the outer edge of the Corbino disk at the upper Ohmic
contact, therefore Oy = N. When the zero mode M changes by dM as a result
of quasi-particle tunneling at quantum point contacts, this leads to the accumulation
of the charge at the upper Ohmic contact, Qy = dM/m, and depletes the charge
at the inner Ohmic contact, Qp = —dM/m. If one applies the modulation gate
voltage in order to deform the (outer) path of the interferometer, and thus changes
the total magnetic flux through it by ®¢, according to Eq. (8.18) this leads to a
neutral deformation and removes the charge ®/m® at the point ;. Therefore,
in this case Qg = —®g/mPy. However, since the homogeneous part of the edge
density is screened by Ohmic contacts, the excess charge is accumulated at the upper
Ohmic contact, and thus Qy = ©5/m . Finally, adiabatically threading a singular
magnetic flux ® through the hole in the Corbino disk leads to the homogeneous shift
of the edges, given by Eq. (8.21). And again, Qy = ®/m®p and Qp = —D/m Dy,
as a result of perfect screening by Ohmic contacts. Adding all the effects considered
here, we obtain

M D+ d
oy =N+ M 2% (8.63a)
m m®q
oy M _ @ % 5.63b)
b= mdgy’ ¢ = m®dg’ '

Already at this level we can trace the Byers—Yang argument: changing the magnetic
flux & by the flux quantum may be compensated if one reduces the number of
quasi-particles M by 1.

The result of the variations of the excess charges is twofold. First of all, the charges
Qy and Q p are screened by Ohmic reservoirs with their own charge capacitances Cy
and Cp, which are much larger than the capacitances of the Corbino disk. Therefore,
the equation (8.40) for the ground state energy has to be replaced with the following
expression
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ZaN

£ 3

Fig. 8.7 Two possible choices of the integration path in Eqgs. (8.65), (8.66), and (8.67) are shown.
In both cases the result is the same: if one chooses the lower (blue) contour, then the contributions
of the edge densities are zero, while the bulk fields give the phase 27 (6 M + &/ dg). If one chooses
the upper (red) contour, then the contribution of the bulk fields is zero, since the contour does not
enclose the hole. However, the contribution of the charge density, accumulated at the edge near the
Ohmic contact, gives the contribution exactly equal to the calculated above

QAZ Cs vy
Ey = R —_— 1, 8.64
0= 2 2C, P (8.64)
s=U,D

i.e., the states with different values of zero modes are almost degenerate, which leads
to their strong fluctuations in equilibrium. We will see, however, that these fluctu-
ations do not suppress the Aharonov—Bohm oscillations. Second, as demonstrate
below, to leading order in tunneling the Aharonov—Bohm oscillation in tunneling
rates originate from the term Agp (£1)Agp(&R), which contains a closed path inte-
gral over the densities (8.62) and thus depends on excess charges. However, before
evaluating this term, we would like to make an important remark.

We stress, that by choosing the positions of Ohmic contacts with respect to the
positions of the quantum point contacts as shown in Fig. 8.6, one can model both
Fabry—Perot and Mach—Zehnder type interferometers based on the Corbino disk
topology. If the Ohmic contacts are located at the opposite sides of the Corbino
disk, as illustrated in the left panel, there are only two coherent paths connecting
them, which is the case for a Mach—Zehnder interferometer. In contrast, if the Ohmic
contacts are located on the same side of the Corbino disk (see the right panel), then
there are several coherent paths connecting them, which differ by the number of
reflections between the quantum point contacts, as in the case of a Fabry—Perot type
interferometer.

We expect, that the singular magnetic flux ® threading the hole of the Corbino disk
enters differently the quasi-particle tunneling operators in the cases of Mach—Zehnder
and Fabry—Perot type interferometers. And indeed, when evaluating the term .A:gp &)
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Agp(&r) with the help of expressions (8.61), (8.62) and (8.63), one should also take
into account the position of the inner Ohmic contact, which leads to

; M b+ P
AL (1) Agp(€r) = ALED Ao(Er) exp [—2m (7 T WOG)] (8.65)

for a Mach—Zehnder type interferometer, and

(8.66)

) 2mwi ®
AL (L) Aqp(Er) = AG(EL) Ao(gR)exP[_ i G]

deO

for a Fabry—Perot type interferometer. The difference in these results agrees with the
observation that the Fabry—Perot interferometer does not enclose a singular magnetic
flux. Note, also, that when evaluating the phase shifts in (8.65) and (8.66) as integrals
of the densities d ps over closed paths, there are four possibilities to choose these paths.
Two of them are shown in Fig. (8.7): one is connecting the tunneling points in the
lower part of the Corbino disk, and the other encloses the upper part of it. As one can
see from Egs. (8.63), the difference is equal to 27w N, i.e., two paths are equivalent.

Finally, we note that all the results obtained here may be formulated on the level
of the effective theory. On can use Egs. (1.58) and (1.59) in order to find the phase
factor in the product of the two tunneling operators:

Aj]p(ﬁL)qu(SR) o exp {27ri /dx[épy(x) —6pp(x)]

+i / Bydr" + (2i /m) / Audr“}, (8.67)
Y

v

where the contour y connects tunneling points £z, £} , £ and {g, and the accumulated
edge densities d py are integrated along the corresponding parts of the edges. It follows
from the action (1.50) that (B,) = —A,/m + B, where the second term is the
topological contribution of the charge localized at the inner edge, i.e., |. . Budx" =
27 M /m, for an arbitrary contour y enclosing the hole in the interferometer. In other
words, the bulk and edge degrees of freedom are not completely decoupled in the
case of a non-trivial topology. It is also important to mention, that the total phase
(8.67) is independent of the choice of the contour «y (see Fig. 8.7). This is because the
tunneling operators in our approach are single valued and bring this property over to
the level of the effective theory.

8.5.2 Current Through the Interferometer

To satisfy the second and third criteria of an ideal Ohmic contact (see Sect. 8.5.1),
we consider a quantum Hall interferometer with strong electron tunneling to Ohmic
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E Ny Np

Fig. 8.8 Schematic illustration of the processes at Ohmic contacts and quantum point contacts.
Upper panel: Electrons tunnel between Ohmic contacts and quantum Hall edges, preserving the
incompressibility of the quantum Hall liquid. These processes change the numbers Ny and Np.
Lower panel: Tunneling of a quasi-particle from one edge of the Corbino disk to another leads to the
reconstruction of the wave function and changes the number / by 1. It is accompanied by a change
of the electric charge at the inner edge by the value 1/m

reservoirs and weak quasi-particle tunneling between inner and outer edge (see
Fig. 8.8). The strong electron coupling to Ohmic contacts guarantees that the inner
and outer edge states are in equilibrium with the metallic reservoirs with correspond-
ing electro-chemical potentials ;1 and 1 p. The charge current between Ohmic con-
tacts, arising as a response to the potential difference Ay = py — pp, is due to
weak quasi-particle tunneling at the quantum point contacts. It is then convenient to
introduce a new notation for zero modes. We denote by Ny and Np the numbers of
electrons at the outer and inner edge of the interferometer, respectively. The number

of quasi-particles localized on the inner edge is denoted by [ =0, ..., m — I:
OM = —mNp — 1, (8.68a)
0N = Ny + Np. (8.68b)

The electron quantum numbers, Ny and Np, change due to tunneling at the Ohmic
contacts while the quantum number / changes by 1 when a quasi-particle tunnels
from one edge to the other, as illustrated in Fig. 8.8.

We consider the zero modes to be classical variables and derive a master equation
for the probability distribution functions. Quantum coherence manifests itself in
oscillations of the quasi-particle tunneling rates as functions of the magnetic fluxes ®
and ®¢. These oscillations originate from the interference of the two quasi-particle
tunneling amplitudes at the left and right quantum point contact. Formally, these
oscillations stem from the ®-dependent phase factor in the tunneling operators. The
strong coupling to Ohmic contacts implies that, after every event of quasi-particle
tunneling, the edge states relax to the equilibrium state described by the probability
distribution function
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L 8=, msNy)
P/(Ny, Np) = Z e s , (8.69)

where [ is the inverse temperature, and Z; is the partition function. The probability
P;(Ny, Np) depends on the number / of quasi-particles via the ground-state energy
Ey(Ny, Np, 1), given by Egs. (8.63) and (8.64). Importantly, one does not need to
specify the precise form of coupling to the Ohmic contacts, because the only role of
this coupling is to equilibrate the edge states.

To lowest order in quasi-particle tunneling, the full distribution function of zero
modes may be written as

P(Ny,Np,l) =P;Pi(Ny, Np), (8.70)

where P is the probability of finding the system in a state with [ quasi-particles, and
P;(Ny, Np) plays the role of a conditional probability of finding the interferometer
in a state with Ny and Np electrons at the edges, for a given number / of quasi-
particles. Then, considering quasi-particle tunneling as a weak process that changes
the number /, we may describe it with the master equation

Pr=Q Pt + 95, P — (@ + Q)P (8.71)

where Q;r and Q2;  are the rates of transition from the state with / quasi-particles to
the state with [ 4+ 1 and [ — 1 quasi-particles, respectively. These rates are given by
the expression:
Q= D WS (Ny,Np)P(Ny, Np), (8.72)
Nu.Np

where Wli (Ny, Np) are the rates of quasi-particle tunneling between two states with
fixed numbers of electrons, Ny and Np.

At time scales much larger than the characteristic times of tunneling, the interfer-
ometer reaches a steady state regime with Py =0.1tis easy to see that in this regime
the following quantity is independent of /

I =QP—Qp Py (8.73)

This quantity is in fact the charge current that we are looking for. This follows from
the expression for the current

I =(1/m) Z(Ql+ — Q)P (8.74)
1

8 On may check that solving the detailed balance equation with tunneling rates calculated with the
amplitudes (8.54) and (8.55) leads to the distribution (8.69).
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and from the periodic boundary condition, Py = 7P,, which can be verified
directly using Eqgs. (8.69) and (8.70). Note that the detailed balance equation
QfP; = QP41 is satisfied only if / = 0. Thus, the quantum Hall interfer-
ometer in a non-equilibrium steady-state regime represents an interesting example
of a system with broken detailed balance.

We evaluate the tunneling rates Wli(NU, Np) to leading order in the tunneling
Hamiltonian Hr = A + A', where A = Agp(€r) + Agp(€r). A straightforward
calculation, based on the Fermi Golden Rule, gives the following expression:

Wt (Ny, Np) = / dt Tr{pegP(Ny, Np, DA (1) A0)}, (8.75)

and a similar expression for W, (Ny, Np). Here the operator P(Ny, Np, [) projects
onto states with given numbers Ny and /, and the operator peq is the equilibrium
density matrix for the oscillators. Now we consider the solution of the master equation
(8.71) with tunneling rates given by (8.75) for two possible types of the quantum
Hall interferometer (see Fig. 8.6).

In fact, one can find the periodicity of current without an explicit evaluation of
the integral in (8.75). Indeed, in the case of the Mach—Zehnder interferometer the
product of two tunneling operators which gives the coherent contribution to (8.75)
has the following dependence on the zero mode / and the fluxes [see Eq. (8.65)]:

. e O+ P
A(I]p(fL)qu(fR) X exp [27'” (E — W@G)] . (8.76)

Importantly, the flux enters these products and, thus, the transition rates (8.72) solely
in the combination [ — (® + @)/ Pgp. A shift of the flux & by one flux quantum
®( may be then compensated by the shift / — / + 1. The quasi-particle current is
given by Eq. (8.74), where the probabilities satisfy Eqs. (8.73) with the constraint
> Pi = 1. All these equations are periodic in / with period equal to m and invariant
under the replacement Qli — Qlﬁl. This implies that the average current has the
electronic periodicity, I (Au, ®) = I(Au, ® 4+ d¢), in agreement with the Byers—
Yang theorem.
For example, the solution of Egs. (8.73) and (8.74) for v = 1/3 gives the average
current
Qrefef — 5

I = — — —,
>+ 9 9,90

(8.77)

which is explicitly periodic function of ® with the electronic period ®¢. At the
same time, each tunneling rate Q[i has a quasi-particle periodicity. Therefore, the
quasi-particle periodicity with respect to a singular flux may in principle be observed
via, e.g., the current noise measurements at finite frequencies. The last fact does not
violate the Byers—Yang theorem, because this theorem applies only to a stationary
state and to long-time measurements.
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In contrast to the above, it follows from Eq. (8.65) that the coherent combination
of the tunneling amplitudes does not depend on / in the case of the Fabry—Perot inter-
ferometer. Therefore, the current has a quasi-particle periodicity m ®q with respect
to the modulation gate. Note however, that this does not violate the Byers—Yang the-
orem. The quasi-particle periodicities with respect to the modulation gate allow one
to perform the edge spectroscopy proposed in Ref. [38]. The product (8.66) does not
depend on the singular flux, however, which is natural, since the interference contour
does not go around the flux tube. The periodicity of the current with respect to the
singular flux is thus determined only by the Coulomb blockade effect, if present in
case of weak coupling to Ohmic contacts, and it is equal to ®g.

8.6 Conclusion

Recently, the physics of Aharonov—Bohm oscillations in electronic interferometers
has become a subject of a debate. A number of works have claimed that only the
electronic periodicity may be observed in Mach—Zehnder interferometers based on
quantum Hall states at fractional filling factors v = 1/m. We have briefly reviewed
those papers at beginning of this chapter. Here we recall that the main argument
against the observability of Aharonov—Bohm oscillations with a longer, quasi-particle
periods is based on the Byers—Yang theorem, which states that the steady-state current
through the interferometer oscillates with the electronic period @ as a function of
the singular magnetic flux @ threading the interferometer’s loop.

We construct the microscopic model of a quantum Hall interferometer to find how
and in which cases the electron periodicity can be restored. Our starting point is the
Laughlin wave-function which is a good approximation for the true ground state of
quantum Hall liquid. We consider small incompressible deformations of the ground
state of an electronic interferometer and project the microscopic Hamiltonian onto
the subspace of states which describe these deformations. The projected Hamiltonian
(8.41) and projected tunneling operators (8.49) are consistent with chiral conformal
effective theory [2-4] modified in order to take into account the non-trivial topology
of the system. Interestingly, we do not find any trace of additional Klein factors [49]
in the quasi-particle tunneling operators, which are not excluded by the effective
theory. Moreover, these operators are the single-valued functions of the coordinate
of the tunneling point.

The crucial ingredients of our model are Ohmic contacts. We describe them as
regions of the edges, which accommodate any excess charge, thus perfectly screen-
ing slow charge fluctuations at the edges. Ohmic contacts have large capacitance and
lead to the equilibration and dephasing of edge states. The current through the inter-
ferometer caused by a bias voltage applied to the Ohmic contacts is found with the
help of the master equation describing tunneling at quantum point contacts. We find
that the tunneling rates in a Mach—Zehnder interferometer oscillate with the number
of quasi-particles /. Therefore, after the resummation over /, the current through the
interferometer oscillates as a function of the magnetic flux with the electronic period
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®(. Meanwhile, in the Fabry—Perot interferometer case, the tunneling rates are inde-
pendent of /, and the current oscillates with the period m @ as a function of the flux
induced by a modulation gate. Thereby, the Byers—Yang paradox is resolved.

In conclusion, we note that the proposed microscopic construction of the effective
theory of an electronic interferometer can be generalized to states with other filling
factors, in particular, to the states with non-Abelian statistics of excitations. Moreover,
our results can be easily generalized to systems with a different geometry. Although,
the physics in general will remain the same, detailed considerations may bring new
interesting results. In view of our new findings concerning the nature of the quasi-
particle interference, it is very interesting to reconsider the effects of quasi-particle
exchange and statistics.

References

. K.v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

X.-G. Wen, Phys. Rev. B 41, 12838 (1990)

. J. Frohlich, A. Zee, Nucl. Phys. B 364, 517 (1991)

. J. Frohlich, T. Kerler, Nucl. Phys. B 354, 369 (1991)

. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

. L. Saminadayar, D.C. Glattli, Y. Jin, B. Etienne, Phys. Rev. Lett. 79, 2526 (1997)

R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, D. Mahalu, Nature, 389,

162 (1997)

8. M. Dolev, Y. Gross, Y.C. Chung, M. Heiblum, V. Umansky, D. Mahalu, Phys. Rev. B 81,
161303(R) (2010)
9. Y.M. Blanter, M. Biittiker, Phys. Rep. 336, 1 (2000)

10. 1. Safi, H.J. Schulz, Phys. Rev. B 52, 17040 (1995)

11. H. Steinberg, G. Barak, A. Yacoby, L.N. Pfeiffer, K.W. West, B.I. Halperin, K. Le Hur, Nat.
Phys. 4, 116 (2008)

12. W. Ehrenberg, R.E. Siday, Proc. Phys. Soc. B 62, 8 (1949)

13. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

14. 1. Neder, M. Heiblum, Y. Levinson, D. Mahalu, V. Umansky, Phys. Rev. Lett. 96, 016804 (2006)

15. 1. Neder, F. Marquardt, M. Heiblum, D. Mahalu, V. Umansky, Nat. Phys. 3, 534 (2007)

16. Y. lJietal., Nat. (Lond.) 422, 415 (2003)

17. P. Roulleau, F. Portier, D.C. Glattli, P. Roche, A. Cavanna, G. Faini, U. Gennser, D. Mailly,
Phys. Rev. B 76, 161309 (2007)

18. P. Roulleau, F. Portier, D.C. Glattli, P. Roche, A. Cavanna, G. Faini, U. Gennser, D. Mailly,
Phys. Rev. Lett. 100, 126802 (2008)

19. L.V. Litvin, H.-P. Tranitz, W. Wegscheider, C. Strunk, Phys. Rev. B 75, 033315 (2007)

20. L.V. Litvin, A. Helzel, H.-P. Tranitz, W. Wegscheider, C. Strunk, Phys. Rev. B 78, 075303
(2008)

21. E. Bieri, Correlation and Interference Experiments with Edge States, Ph.D. thesis, University
of Basel (2007).

22. E. Bieri, M. Weiss, O. Goktas, M. Hauser, C. Schonenberger, S. Oberholzer, Phys. Rev. B 79,
245324 (2009)

23. J.A.Simmons, H.P. Wei, L.W. Engel, D.C. Tsui, M. Shayegan, Phys. Rev. Lett. 63, 1731 (1989)

24. J.A. Simmons, S.W. Hwang, D.C. Tsui, H.P. Wei, L.W. Engel, M. Shayegan, Phys. Rev. B 44,
12933 (1991)

25. EE. Camino, W. Zhou, V.J. Goldman, Phys. Rev. Lett. 95, 246802 (2005)

26. EE. Camino, W. Zhou, V.J. Goldman, Phys. Rev. B 72, 075342 (2005)

N LA W~



References 175

217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.

52.
53.
54.
55.
56.

57.
58.
59.
60.
61.
62.
63.
64.
65.

66

F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. Lett. 98, 076805 (2007)

F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. B 74, 115301 (2006)

R.L. Willett, L.N. Pfeiffer, K.W. West, PNAS 106, 8853 (2009)

R.L. Willett, L.N. Pfeiffer, K.W. West, arXiv:0911.0345

F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. B 76, 155305 (2007)

W. Zhou, EE. Camino, V.J. Goldman, Phys. Rev. B 73, 245322 (2006)

E.V. Sukhorukov, V.V. Cheianov, Phys. Rev. Lett. 99, 156801 (2007)

J.T. Chalker, Y. Gefen, M.Y. Veillette, Phys. Rev. B 76, 085320 (2007)

I. Neder, E. Ginossar, Phys. Rev. Lett. 100, 196806 (2008)

S.-C. Youn, H.-W. Lee, H.-S. Sim, Phys. Rev. Lett. 100, 196807 (2008)

L.P. Levkivskyi, E.V. Sukhorukov, Phys. Rev. B 78, 045322 (2008)

LP. Levkivskyi, A. Boyarsky, J. Frohlich, E.V. Sukhorukov, Phys. Rev. B 80, 045319 (2009)
D.L. Kovrizhin, J.T. Chalker, Phys. Rev. B 81, 155318 (2010)

B. Rosenow, B.I. Halperin, Phys. Rev. Lett. 98, 106801 (2007)

N. Byers, C.N. Yang, Phys. Rev. Lett. 7, 46 (1961)

C.L. Kane, M.P. Fisher, J. Polchinski, Phys. Rev. Lett. 72, 4129 (1994)

K.T. Law, D.E. Feldman, Y. Gefen, Phys. Rev. B 74, 045319 (2006)

V.V. Ponomarenko, D.V. Averin, Phys. Rev. Lett. 99, 066803 (2007)

D.J. Thouless, Y. Gefen, Phys. Rev. Lett. 66, 806 (1991)

Y. Gefen, D.J. Thouless, Phys. Rev. B 47, 10423 (1993)

D.E. Feldman, A. Kitaev, Phys. Rev. Lett. 97, 186803 (2006)

D.E. Feldman, Y. Gefen, A. Kitaev, K.T. Law, A. Stern, Phys. Rev. B 76, 085333 (2007)
R. Guyon, P. Devillard, T. Martin, I. Safi, Phys. Rev. B 65, 153304 (2002)

A. Boyarsky, V.V. Cheianov, O. Ruchayskiy, Phys. Rev. B 70, 235309 (2004)

M. Marino, Chern-Simons Theory, Matrix Models, and Topological Strings (Oxford University
Press, Oxford, 2005)

V.V. Ponomarenko, D.V. Averin, Europhys. Lett. 61, 102 (2003)

F.D.M. Haldane, E.H. Rezayi, Phys. Rev. Lett. 54, 237 (1985)

F.D.M. Haldane, in Ref. [55], Chap. 8

R.E. Prange, S.M. Girvin (eds.) The Quantum Hall Effect, (Springer, New York, 1987)
J. Frohlich, The Fractional QHE, CS Theory, and Integral Lattices, in Proceedings of ICM’94,
Basel, Boston, 1995, ed. by S.D. Chatteji. (Birkhéduser Verlag, Berlin, 1995)

A. Cappelli, C.A. Trugenberger, G.R. Zemba, Phys. Lett. B 306, 100 (1993)

B. Blok, X.G. Wen, Phys. Rev. B 43, 8337 (1991)

I. Kogan, A.M. Perelomov, G.W. Semenoff, Phys. Rev. B 45, 12084 (1992)

V. Gurarie, C. Nayak, Nucl. Phys. B 506, 685 (1997)

R. de Gail, N. Regnault, M.O. Goerbig, Phys. Rev. B 77, 165310 (2008)

F.J. Dyson, J. Math. Phys. 3, 140, 157, 166 (1962)

0O.E. Dial, R.C. Ashoori, L.N. Pfeiffer, K.W. West, Nature 464, 566 (2010)

H.B. Chan, P.I. Glicofridis, R.C. Ashoori, M.R. Melloch, Phys. Rev. Lett. 79, 2867 (1997)
C.L. Kane, M.P.A. Fisher, Phys. Rev. B 52, 17393 (1995)

C. de C. Chamon, E. Fradkin, Phys. Rev. B 56, 2012 (1997)



Chapter 9
Summary of Results

In this thesis, we have considered the physics of the quantum Hall effect at mesoscopic
length scales. This physics is mainly determined by the edge states, which are the
only gapless excitations. We have investigated such mesoscopic effects as interaction
induced dephasing of edge states, noise induced dephasing, and equilibration along
the quantum Hall edge channels. This investigation allowed us to explain several
experiments, to make some experimental proposals and to resolve certain theoretical
problems as summarized below.

9.1 Integer Quantum Hall Effect

We developed a new theoretical technique which allows one to extend the bosoniza-
tion approach to the non-equilibrium situations. The main idea of this technique is
to include the non-equilibrium effects via the corresponding boundary conditions in
the equations of motion for the boson field operators. Thus, all the information about
the interaction is encoded in the Green function of these equations, while the non-
equilibrium state is encoded in the boundary conditions. The calculation of electron
correlation functions for an interacting system can be therefore reduced to finding of
averages over the free electrons. In certain cases, this approach allows one to express
the correlator in terms of the full counting statistics of the boundary charges.

We have proposed a simple physical model which describes dephasing in the elec-
tronic Mach-Zehnder interferometer at integer filling factors. This model explains
very recent experimental results at filling factor v = 2, such as the unusual lobe-
type structure in the visibility of Aharonov-Bohm oscillations, phase rigidity, and
the asymmetry of the visibility as a function of transparencies of quantum point con-
tacts. According to our model, dephasing in the interferometer originates from strong
Coulomb interaction at the edge of two-dimensional electron gas. The long-range
character of the interaction leads to a separation of the spectrum of edge excitations
on slow and fast mode. These modes are excited by electron tunneling and carry

I. Levkivskyi, Mesoscopic Quantum Hall Effect, Springer Theses, 177
DOI: 10.1007/978-3-642-30499-6_9, © Springer-Verlag Berlin Heidelberg 2012



178 9 Summary of Results

away the phase information. The new energy scale associated with the slow mode
determines the temperature dependence of the visibility and the period of its oscil-
lations as a function of voltage bias. Moreover, the variation of the lobe structure
from one experiment to another is explained by specific charging effects, which are
different in all experiments. We propose to use a strongly asymmetric Mach-Zehnder
interferometer with one arm being much shorter than the other for the spectroscopy
of quantum Hall edge states.

We have considered dephasing in the electronic Mach-Zehnder interferometer
strongly coupled to current noise created by a voltage biased quantum point contact.
We find the visibility of Aharonov-Bohm oscillations as a function of voltage bias
and express it via the cumulant generating function of noise. In the large-bias regime,
high-order cumulants of current add up to cancel the dilution effect of a quantum
point contact. This leads to an abrupt change in the dependence of the visibility on
voltage bias which occurs at the quantum point contact’s transparency 7' = 1/2.
Quantum fluctuations in the vicinity of this point smear out the sharp transition.

We have used the proposed non-equilibrium bosonization technique in order to
construct the theory of the energy relaxation process at the quantum Hall edge. We
find that the relaxation of the energy distribution function goes through several inter-
mediate asymptotics. Namely, the distribution function at short distances is found to
be strongly asymmetric due to the non-Gaussian noise effects. At larger distances, the
higher order cumulants become suppressed and the distribution function becomes a
symmetric Lorentzian. Importantly, the width of this Lorentzian scales linearly with
transparency 7 of quantum point contact, in striking contrast with the Fermi distri-
bution function, whose width scales as +/7 at low transparencies. Thus, we propose
to make measurements at low transparencies in order to discover all the intermediate
regimes of relaxation. We also have found that the missing energy flux in recent
experiments can be explained by the non-linear dispersion of edge plasmons.

9.2 Fractional Quantum Hall Effect

We considered the classification of the edge effective models in fractional quantum
Hall regime. This classification is based on the idea that the fundamental edge degrees
of freedom are gapless chiral bosons. The main requirements to the effective model
such as gauge invariance and existence of the electron excitation in the spectrum
significantly reduces the number of allowed models. These edge models are then
classified by the integer valued matrix of the relative statistical phases of electron
excitations, velocities of edge modes, and mixing matrix between the electrons and
boson eigenmodes. The last two objects have shown to be important in the description
of the mesoscopic experiments in integer case. Strong Coulomb interaction at the
edge leads to a number of universalities, similar to integer case, and allowed us to
reduce further the number of edge models with two edge states.

We also propose direct experimental tests of the effective models of fractional
quantum Hall edge states. We illustrate the general classification of edge mod-
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els with the example of a quantum Hall fluid at filling factor v = 2/3 and show
that, in this example, it is impossible to describe the edge states with only one
chiral channel and that there are several inequivalent models of the edge states
with two fields. We focus our attention on the four simplest models of the edge
states of a fluid with v = 2/3 and evaluate charges and scaling dimensions of
quasi-particles. We study transport through an electronic Fabry-Perot interferome-
ter and show that scaling properties of the Fourier components of Aharonov-Bohm
oscillations in the current provide information about the electric charges and scal-
ing dimensions of quasi-particles. Thus Fabry-Perot interferometers can be used to
discriminate between different effective models of fluids corresponding to the same
filling factor. They therefore can be used to test fundamental postulates underlying
the low-energy effective theory of edge states.

We propose a resolution of the Byers-Yang paradox by considering a micro-
scopic model of an electronic interferometer made from a quantum Hall liquid at
filling factor v = 1/m in the shape of a Corbino disk. Depending on the position
of Ohmic contacts attached to the disk one distinguishes interferometers of Fabry-
Perot and Mach-Zehnder type. An approximate ground state of such interferometers
is described by a Laughlin type wave function, and low-energy excitations are incom-
pressible deformations of this state. We construct a low-energy effective theory by
projecting the state space of the liquid onto the space of incompressible deformations
and show that the theory of the quantum Hall edge so obtained is a generalization
of a chiral conformal field theory. A quasi-particle tunneling operator in our theory
is found to be a single-valued function of tunneling point coordinates, and its phase
depends on the topology, determined by the positions of Ohmic contacts. We describe
strong coupling of the edge states to Ohmic contacts and the resulting quasi-particle
current through the interferometer with the help of master equation. We find that the
coherent contribution to the average quasi-particle current through Mach-Zehnder
interferometers vanishes after the summation over quasi-particle degrees of free-
dom. Remaining contribution originates from electron tunneling and oscillates with
the electronic period, in agreement with the Byers-Yang theorem. Importantly, in
contrast to previous models our theory does not rely on any ad-hoc constructions,
such as Klein factors, etc. When a magnetic flux through Fabry-Perot interferom-
eters is varied with a modulation gate, current oscillations have the quasi-particle
periodicity, thus allowing for the spectroscopy of quantum Hall edge states.

To conclude, we have applied several approaches to the quantum Hall effect
at the mesoscopic length scales, such as single-particle, effective, and microscopic
approach. We have found that all these approaches suggest a common picture of edge
states based on boson modes. Within this single simple picture, we have explained
several experimental results and made some predictions, part of which has been
already confirmed. Finally, we have shown that the physics at the intersection of
two areas research such as the quantum Hall effect and the mesocopics is very reach
and interesting and certainly deserves further intensive theoretical and experimental
investigation.
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A Solution of Equations of Motion

In this appendix we solve the equations of motion (2.39a) with the boundary
conditions (2.39b) in the case of the potential U,g(x — y) of a finite range, where
the plasmon spectrum is non-linear. For doing this, we first write down the normal
mode expansion for the edge boson fields:

2 . .
Ba(0) = @ + 27 mox + 30\ lae™ +alee L (A)
k

We consider zero modes to be classical variable, because the commutator
[Ta, o] = i/W vanishes in the thermodynamic limit W — 0. Then, we rewrite the
Operators a in the new basis aj, which diagonalizes the edge Hamiltonian (4.1):

ap (1) = aje (A2)

where j = 1,2, and w;(k) is the dispersion of the jth mode. In the case, where the
in-channel interaction strength is approximately equal to the intra-channel one,
Uus(x —y) = U(x—y), and the interaction is strong, U(k) = [dxe®U(x) >
27up, the transformation to the new basis is simple and universal:

1 . )

alk(t) _ 75 (leke_lml(k)l + azke—lmz(k)t), (A3a)
1 : )

azk(f) — 7§ (alke—lwl(k)l _ aZke—w)z(k)r) . (A3b>

Some text sections in this chapter are reproduced from Phys. Rev. B 78, 045322 (2008), Phys.
Rev. B 80, 045319 (2009), Phys. Rev. Lett. 103, 036801 (2009), Phys. Rev. B 85, 075309 (2012),
© American Physical Society.
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Then, w; (k) = k[vr + U(k) /7] for the charged plasmon, and w,(k) = vk for the
dipole mode, where v ~ vp.

In the next step, we use the boundary conditions (2.39b) to connect the current
operators to the operators (A.2):

- i aa)] Tk . .
ay = w—la W Ui(or1) + ja(wr)], (A.4a)
l ow
= akz‘/ [j1(2) = ja(e2)], (A.4b)
wherej, (@ f dte’j.(t), and we have wused the obvious relation

Jo(—m) :]I(co). Finally, substituting relations (A.4a, A.4b) into Eq. (A.3a) and
then to the expansion (A.1), we find the solution of the equations of motion for the
boson fields. In particular,

b1 (x, 1) = = 27(ji)t + 5 / _{Jl ) (e + ehor)

K (A.5)
+]2(w) (eiklx _ eikzx) }efiwt7
where we set k;j(—) = —kj(w). In addition, we have omitted the contribution of

the zero mode 7, because we need local correlators, and replaced the zero mode
¢, (2) by its expectation value.

B Evaluation of the Measured Heat Flux

The experimentally found heat flux defined in Eq. (5.19) may be written in time
representation as

] ei(Au)r
I, = —i0, {K(t) it Lo. (B.1)
Then, we may use Eq. (5.8) and results of the Appendix A in order to evaluate the
correlation function K(z). The difficulty of finding this function is related to the
fact that according to Eq. (A.5) the correlators of the operator ¢, (f) are determined
by the currents j,(f), which are in general non-Gaussian. However, in the present
case we need to take the limit + — 0 in Eq. (B.1). The high-order cumulants of
currents originate from a non-equilibrium process and are suppressed at short
times fAp < 1. Therefore, we are allowed to evaluate K(f) in Gaussian
approximation.

This may be done by expanding the right hand side of the Eq. (5.8) to second
order in ¢;:
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InK(t) = ([¢1(t) — ¢1(0)]#,(0)) + 2mi(j1)t, (B.2)

where the averaging is over the fluctuations of the currents j,. We then use the
Eq. (A.5) and the stationary correlators of the currents

(a(@1)js(2)) = 2780 (01)bapd(wr1 + 2) (B.3)
to present the electron correlation function in the following form
InK =1nK, +27i(j;)t — Int. (B.4)

Here the fluctuation contribution reads

o0

do —iw
ann:ﬂ/E(e —1)

oo

X {S;(w)[l + cos(AKL)] + Sy (w)[1 — cos(AkL)]},

where we have introduced the excess noise spectral densities S, (w) = S, (w) —
wf(w) /27 and Ak = ki (w) — ko (o).

It is easy to see that for a non-vanishing contribution to I, given by the
expression (B.1), we need to expand In K, to second order in ¢. Note, however, that
linear in ¢ term in this expansion adds to the corresponding term in Eq. (B.4) to
give 2mi(Ap)z. This follows directly from the definition (5.18) of the “average”
bias, which in time representation may be written as (Au) = 270, [tK(1)],_.
Therefore, only 2 term in In K, contributes to I,,, and we obtain

1
In = —Eaf In Ko (7)],_- (B.6)

Finally, we use Eq. (B.5) and obtain the result (5.27).
Next, we want to rewrite the measured flux I, in terms of the plasmon

distributions n;(k) = (Ezj (k)a;(k)), j = 1,2. For doing so, we now use Eqgs. (A.1)
and (A.3a, A.3b), repeat the steps that lead to (B.5), and take the limit of L > L.

The result may be presented in following form:

00 o0
dk 1 dk o
InK, = —Z/? nj(k)[1 — cos(w;t)] +§Z/7 (7" —e7M), (B.7)
iy )

where the last term is the quantum contribution due to the non-linear plasmon
dispersion, and v; = Ow,;/0k are the plasmon speeds at k = 0. Substituting
expressions (B.7) into Eq. (B.6), we obtain the final result (5.30) and (5.31) for the
measured heat flux.
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C Suppression of Higher Order Cumulants

Here we show that a weak dispersion of plasmon modes leads to the suppression of
the contribution of higher order cumulants of current j, to the electron correlation
function at long distances L from the source of currents. We demonstrate this using
an example of the weakly dispersive spectrum of plasmons in the form
kj = /v; + y;0*sign(w), j = 1,2. Since we are interested in the behavior of the
electron distribution function close to the Fermi level, we need the long-time
asymptotics of the electron correlation function K (). Therefore, the contributing
currents j, can be considered Markovian processes and fields ¢,, can be treated as
classical variables.
Let us consider the nth cumulant:

ML, 1) = ([91(L,1) = $1(L, 0)]"). (C.1)

According to Eq. (A.5), at large distances L > Lex = v;/Ap and long times tAp >
1 it may be written as

=> ML), (C.2)

where:

"4 )
(n) Ll —27TS" /H 601 et _ ])

X (s(a)l + . +wn) [EZZIkI(wI)L—|—€i21k2(w[)L]

(C.3)

and S((f ) = {2 ). Here we have neglected the cross terms containing fast
oscillating functions. These terms have the same origin as fast oscillating terms
in (5.27) and vanish at distances L > L.x. Dropping those terms is also equivalent
to neglecting in (5.9) correlations of charges taken at different times ¢, and #,.

Finally, we note that in our particular case, where the quantum point contact is
connected to the outmost edge channel only, Sg") =0 forn > 2.

One can easily see that ), k;(w;) = >, v;wjsign(ey), because the integrals in
(C.3) are limited to >, ; =0. For the second cumulant this implies that
ki(w1) + ki(w,) =0, ie., the dispersion correction cancels too. Therefore the
second cumulant is not suppressed at long distances. Below we consider high-
order cumulants. Using the identity 276(w; + ... + w,) = [drexpli(w; + ...+
,)T] we can write

o0

M"Y (L,1) = Z/ dr[Fi(r,1,L)]" (C.4)

where we have introduced the integrals
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i [do, _; L
F=— e it _ eszJrz”,yLw mgn(w). C5
At large distances Lvy; > #* the contribution to the integrals F; comes from small

o, where one can approximate e ' — 1 ~ —iwt. Therefore, Eq. (C.5) can be
further simplified:

. . . t ;
Fj _ (t/z)/dwetw‘rJrzy]szmgn(w) x eirrz/47jL. (C6)
YL

Substituting this result into Eq. (C.4) and then to (C.2), we find that

n—1

MO(L1) o 1Y 50y (i)T n>2, (C.7)

e j=12 ,YJL

where, we recall, the sum is over the plasmon eigenmode number j and over the
channel number o.

We note, that at large distances L the cumulants M) (L, t) are suppressed by the
small dimensionless parameter 1> /7L < 1. In our case S(1"> ~TAp and S(Z”) =0,
therefore high-order cumulants may be neglected at distances larger than
Ly=1 /’yj(TAu)z, and noise may be considered Gaussian. Obviously, if only
one plasmon mode of two is dispersive, e.g., 7, = 0, then at distances L > L, the
cumulant (C.2) is suppressed by the factor of 2. One can interpret the result (C.7)
as the renormalization of the effective coupling constant A in (5.11), which is
caused by spreading of a plasmon wave packets due to the dispersion.

D Calculation of Scaling Dimensions

Using Eq. (6.42) for ¢;, we calculate the total scaling dimension A. As it has
already been mentioned, in the general (non-chiral) case, the scaling dimension is
a function of the full matrix ¢g. Therefore, apart from the matrix K, it depends only
on one additional variable, which can be fixed by choosing the Hamiltonian. We
are interested in a matrix K of the following form:

K:(Z Z) (D.1)

The connection between matrices K and ¢ in the non-chiral case is K = goq”.
Therefore we can introduce the following parametrization of the matrix g,

[ cosh?; sinhv,
q/Va= (cosh 95 sinhY, ) ’ (D-2)
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where cosh(d, — ) = b/a. Although the case a<O0 requires a different
parametrization, it leads to the same result.

The evaluation of the scaling dimension A(n) = n(gq”) 'n requires to invert
the matrix:

T cosh 219, cosh( + )
9 = a(cosh(ﬂl + ) cosh 219, ' (D-3)

For convenience, we introduce the angle ¥, = ¢; + 9, which takes arbitrary
values, and the angle ¥_ = 9, — 9, which is fixed by the condition

coshd_ =b/a. (D.4)

Inverting the matrix gq” (see Eq. D.3), we find the following expression for the
scaling dimensions:

so=ta () (3 X)) e

AL = bcoshd, £ Vb? —a?sinh ¥,
B = —acoshd,.

where

We see that A indeed depends on the additional free parameter, the angle 9. .

If we assume that the strong long-range Coulomb interaction is a dominant
contribution to the Hamiltonian, then we may approximate ¢; = g2, or
equivalently, ¥, = —¢;. This condition leads to cosh?. =1 and sinhd; =0,
so that the expression for the scaling dimension simplifies:

s () (% () oo

Calculating the product, we arrive at the final result (7.5).
Next, we evaluate the exponents 6, and 6,. In the chiral case, which we consider
as an example, K = gq’, and the following parametrization is required

e <cosz91 sima,) o)

cost, sint,
with the condition that cos(¥, — 1) = b/a. Then, using definition (6.42), we find

61(n) = (ny cos ¥y — ny cos ¥,)?, (D.8)

a
a2 — b2

63(n) = ﬁ (ny sindy — ny sint,)”. (D.9)
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Thus, we see that by measuring the exponents §; and 6, one can in principle
extract the parameter .. However, we stress again that, for strong Coulomb
interaction, ¥y = 0. In this case, expressions for exponents simplify. Namely,
taking into account that a + b = 2/v, we find that

(m—m)® Y 2 D.10
S ) =) (D.10)

(S] (n) = I

In the non-chiral case, analogous calculations lead to similar expressions:

(m —m)*

) = —a)

6(n) = = (n) + my)’. (D.11)

ESNIAN

E Mathematical Aspects of the Theory of Quantum Hall Lattices

In this section we wish to describe briefly the quantum Hall lattice construction
proposed in Refs. [1, 2]. This construction is a mathematical reformulation of
physical requirements for the effective theory of a quantum Hall system discussed
in Sects. 6.1 and 6.2. It provides a method, based on using invariants of lattices, to
classify physically allowed low-energy effective models of quantum Hall edge
states. The main physical consequences of the lattice construction include a
determination of the minimal charge of quasi-particle, of the minimal number of
edge channels, for given filling factor, etc. Here we summarize the lattice con-
struction and present the results without proof.

First, we recall that action (6.24) of the effective theory is parameterized by the
vector of coupling constants, Q = {Q;}, introduced in Sect. 6.2. Local excitations
are represented by vertex operators, exp (i Zj qjqu), and labeled by vectors
q = {¢:}; so the sum of two such vectors corresponds to the product of operators.
Defining the scalar product:

(a,b) = aibo, (E.1)

where o; is the chirality of i" channel, we represent the electric charge (6.29) of an
excitation corresponding to the vector q and the statistical phase (6.28) of two
excitations corresponding to q; and q, as

Oem = (Q,q), 012 =7(q;,q), (E.2)

respectively.

As discussed in Sect. 6.2, after fixing the coupling constants Q; (i.e. fixing the
action), we have to choose electronic excitations. We denote them with q,,. Multi-
electron excitations form an integral lattice I':

& I' = {koq, |k, € Z}. (E.3)
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It has been mentioned in Sect. 6.2.2 that choosing some different sets of ele-
mentary electronic excitations is equivalent to choosing different bases in the same
lattice I'. Thus, the lattice I describes an effective theory in a basis-independent
way. The condition that the electric charge (Q, q) of any combination of electrons
q € I' is integer implies that the vector of couplings Q belongs to the dual lattice
I'*. Thus, by choosing the lattice I" and a vector Q of its dual, one selects a
particular effective model.

Next, important physical constraints on the effective models discussed in
Sect. 6.1 can be formulated as following:

e The condition of anomaly cancellation, for a given filling fraction v, implies that
Q.Q) =v.

e The correct charge of electronic operators is guaranteed if the greatest common
divisor of the coordinates of Q in I'* is equal to 1, because this divisor is equal
to the minimal value of (Q,q) for q € I

e The correct statistical phase of electronic excitations is a consequence of the
condition (Q, q) = (q,q)(mod2), Vq € T.

The spectrum of allowed local excitations follows from the requirement that the
wave function of the quantum Hall state is single-valued in the presence of an

excitation exp (i ijjgbj). We mentioned in Sect. 6.1 that this condition is

equivalent to having integer relative statistical phases between electrons and quasi-
particles:

(P.q,) €Z. (E.4)

Thus, the lattice of allowed excitations is I'* O I'. As we have shown in Sect. 6.2,
the scaling dimension, A, of the correlation function of the excitation p does not
depend on the Hamiltonian in a purely chiral theory. It is equal to the statistical
phase A = (p, p). So, for purely chiral models, the pair (I', Q) provides complete
information about the effective theory. In order to do explicit calculations, one
needs to introduce a particular basis for I'. It is, however, not trivial to verify
whether two different bases generate the same lattice. To distinguish effective
models and, therefore, classify them, one needs basis-independent information
about lattices. Such information is provided by lattice invariants.

To classify the pairs (I',Q) satisfying the conditions discussed above, we
introduce most important lattice invariants. Obvious invariants are the filling factor
v = ny/dy, with ng and dy as coprime integers, and the dimension (or rank) of the
lattice N = dimT'. One may show that, for any basis, {e,}, of T, the determinant
of the Gram matrix Ar = det(e,,es) is also an invariant [3]. An interesting
property of this determinant is the factorization Ar = Idy, where [ is an integer
number called level. Moreover, one may show that, for any basis {e*} of IT'*, the
greatest common divisor g = ged(Q', ..., QV) of the numbers Q% = Ar(Q, %) is
an invariant, and that [ = \g, where A is an integer. This number A is an important
parameter often called the charge parameter. It determines the minimal possible
electric charge of a quasi-particle:
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1
¢= min [Q,p)|=

E.5
pel™ (Q.p)#0 Ay (E5)

Finally, one introduces two further invariants, called minimal and maximal
relative angular momenta. The minimal relative angular momentum is defined as
lpin = min ,q)- E.6

min = 1 <Q_q):l(q q) (E.6)

Introducing the set, Bq, of all possible electronic bases, {q,}, of T, for a given Q

(i.e., such that VYa:(Q,q,) = 1), one defines the maximal relative angular
momentum as

lax = min (max o o ) E.7
min (max(q, .q,) (£7)

The invariants ¢,,;, and ¢,,,x cannot take arbitrary values. For instance, in purely
chiral models, they are constrained by the inequality 1/v < /{yin < fax.

The simplest examples of such lattice construction appear in the case of
dimension N = 1. For one-dimensional lattices, there is only one independent
invariant £,x = fmin = Ar = m, where m is an odd integer. This number is
nothing but the statistical phase of an electron, therefore Q = 1/1/m and the filling
factor v = 1/m. Moreover, it is easy to see that the level / = Ar/dy = 1, hence the
charge parameter A = 1, and we find that the minimal electric charge is e* = 1/m.
We conclude that the quantum Hall lattices

[, = {nvVme|n € Z} (E.8)

with coupling Q,, = e/y/m and v = 1/m are the only ones allowed for N = 1.

For the two-field case, N = 2, the construction of allowed lattices is more
complex. From the definition of relative angular momenta it follows that we may
choose electronic bases with a Gram matrix of the following form:

gmin b
(L) £

We consider lattices with £, <7, which are physically most relevant.! Then one
may simply list all models by going through all possible values of ;,x, #min and b
[1]. Furthermore, we limit our attention to the case fpin = fmax, Which is most
important in the context of Chap. 7.

For convenience, we choose coordinates such that Q = (1/v,0). The condition
of unit charge, (Q,q,) =1, for a = 1,2, partially fixes the form of electron
vectors, q,, in these coordinates. Namely, q, = (1/+/v,s) and q, = (1/+/v, —s),
where the number s is yet to be determined. It follows from the requirement

! Numerical simulations [4] show that for larger values of statistical phases the quantum Hall
state is not stable, and electrons form a Wigner crystal [5].
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|q1|2 = |q2|2 = lmax that s?> = 0 — 1/v. The mutual statistical phase of two
electrons, 61, = 7(1/v —s?), should be an integer. This implies that fp.x +
012/m = 2/v is an integer number. Thus we see that the special case lmin = fmax
corresponds to v = 2/m where m is an integer. Note that, for £, <7, the converse
statement is also true, i.e., for v = 2/m, all the two-dimensional lattices have
gmin = Emax~

After some elementary calculations, we find that for v = 2/m Gram matrix
(E.9) may be expressed as:

émax emax - l
K = ( ' z ) (E.10)

max ~— émax

From condition (6.34), applied to Eq. (E.10), we find that the level
1 =20 —m = 2s*. Therefore, all the lattices in the case v = 2/m can be
parameterized by only two numbers, m and /. It is important to observe that, for all
these lattices, A = 1. Hence, for two-field models with v =2/m, the minimal
charge is always ¢* = 1/m. Introducing a pair of orthogonal vectors, €; >, so that

qi, = \/m/2e; £ \/1/2e,, the lattices may be written explicitly as
J— {\/m/2(n1 + I’lz)el =+ 4/ l/2(n1 — n2)62|l’l1_2 S Z}, (Ell)

and the couplings Q,,; = \/2/me;. Finally, we stress that K-matrices (7.8) and
(7.9) proposed in Sect. 7.1 are exactly the Gram matrices (E.10) for the particular
case v =2/3.

F Quantization of Chern-Simons Theory

The purpose of this appendix is to recall basic aspects of the quantization of the
topological Chern—Simons theory,” described by the action (1.42), which is
invariant under the gauge transformations (1.40). The most important property of
the action (1.42) is that it is topologically invariant. This action is generally
covariant, i.e., it does not depend on the metric tensor g, and it is invariant under
arbitrary smooth transformation of coordinates. Indeed, under the change of
coordinates X — y"'(x"), the B,, field transforms as B,y /dx", so that the action
takes the following form in the new coordinates:

d3 ! J !
So[B] = ao / d’xe"*B,0,B) = oy / ﬁew’w JYJ\B,0,By,  (F.1)
€

nYv

2 In our presentation, we choose readability over mathematical rigor. A more detailed and
rigorous discussion can be found in, e.g., Ref. [6].
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Fig. F.1 Schematic illustration of the topological invariance of the Chern—Simons theory. The
vacuum average (F.4) for the contours C; and C;, (shown by red lines) on the left is equal to the
average for the contours shown in the center. At the same time, the averages for the contours
shown in the middle and on the right may be different, because the corresponding contours are
topologically inequivalent, i.e., they can not be transformed to each other by smooth deformations

where ijl =y /0x* is the Jacobian of the transformation. Next, by using the

property of the antisymmetric tensor e**
T T = €Y det (F.2)

we find that the action remains unchanged in new coordinates. Note, that the
situation is different with the Maxwell-type contribution to the action (1.41), which
has been neglected in the low-energy limit. This contribution must explicitly
depend on the metric g, in order to be generally covariant:

Si1[B] = oy /d3r\/detgF#,,FApg’Mg”’J, (F.3)

where F, = 0,B, — 0,B,.

The topological invariance of the action (1.42) implies that the expectation
value of an arbitrary observable depends only on the topological properties of this
observable. For example, the vacuum average of the “fluxes” through the contours
C] and C2

L(Cy,C) = 2ia0<f B, dx" j{ B,dx") (F.4)
ol G

does not depend on the shapes of the contours, as illustrated in Fig. F.1. This is
because the shape of the contours can be changed with the help of the coordinate
transformations, while the action is invariant under such transformations.

In the next step, we analyze the equations of motion for the fields B, in order to
identify physical states in the Chern—Simons theory. Variation of the action (1.42)
with respect to B, yields:

¢"29,B) = 0. (F.5)

Introducing time and spacial components, B, = (B,,E), as well as the “electric”
E= ﬁBt — 0,B and “magnetic” B = 0B, — 0,B, fields, we rewrite Eq. (1.40) as
follows:

E,=E,=B=0. (F.6)
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~4,79,79; 979574,

Fig. F.2 Simple examples of states in the Chern—Simons field theory, created by Wilson lines
(shown in red color). The state shown on the left is created by the operator
explig [, Budx" —iq [;? B,dx"]. All the endpoints (shown by black dots) lie on the plane 7 = 0.
The state shown on the right is a more complex example of allowed states. Note the “charge
conservation” condition (F.10) at all vertexes (shown by red dots)

Thus, the dynamics of a quantum Hall liquid is similar to the dynamics of a
condensate in a superconducting metal. Moreover, in a topologically trivial region,
the only solution of the equations of motion (F.5) up to the gauge transformations
(1.40) is

B, =0. (F.7)

Physically, this behavior reflects the presence of a gap for charge density
excitations in bulk, which are, therefore, not present in the effective theory. We
conclude, that the dynamics of a quantum Hall liquid is trivial, unless some
topological defects are present.

The topological defects, which bear some similarities with Abrikosov vortexes
in superconductors, may be described by the so called Wilson line operators:

WIC] = exp iZqi/Budx”’ ) (F.8)

1 C;
They are generally parameterized by the set C = {C;, ¢;} of contours C; with
numbers ¢;. The operator (F.8) creates the vortexes along contours C; with
“vorticities” g;. It turns out that, as we show in the following, these vortexes are
local quasi-particle excitations with charges proportional to g;. The space of states

of the quantum Hall liquid described by the action (1.42) is then defined as a linear
span of all vectors

IC) = WIC]|0), (F.9)

created by Wilson lines which end on the surface ¢ = 0, and satisfy the condition

Zqi =0 (F.10)


http://dx.doi.org/10.1007/978-3-642-30499-6_1
http://dx.doi.org/10.1007/978-3-642-30499-6_1

Appendices 193

Fig. F.3 An example of the scalar product (F.11) in the Chern—Simons theory. Left and right
states are described by corresponding Wilson lines. The dashed line shows the position of the
plane t = 0. The Wilson line creating the left state should be inverted in time and combined with
the Wilson line which creates the right state. The scalar product is then given by the average of
the resulting closed Wilson line, which can be evaluated with the help of Eq. (F.12)

at all vertexes. In the following we show, that this condition guarantees the gauge-
invariance of the theory. Two examples of such lines are presented in Fig. F.2.
Obviously, the lines with the same endpoints z; and vorticity ¢;, which are
topologically equivalent, create the same state.

The scalar product of two arbitrary states (F.9) is given by the expression

(CilC,) = (WICT +Cal), (F.11)

where C7 denotes the set of contours, which are time reversed with respect to the
contours of the set C ;. This procedure is illustrated in Fig. F.3. We show below,
that the scalar products of vectors created by Wilson lines with different endpoints
or with non-matching g; are zero, i.e. the corresponding states are orthogonal. For
non-vanishing products, the average on the right hand side of Eq. (F.11) can be
found as a Gaussian path integral:

(We) = /DBN exp1 iSo[B] —i—iZqi]{Budx" : (F.12)

G

The set C =C7+ C, contains only closed contours. Therefore, taking into
account the condition (F.10), we conclude that all the scalar products in the theory
are gauge invariant. The definition (F.11) of the scalar product completes the
construction of the quantum Chern—Simons theory. In what follows, we use this
definition in order to find properties of the excitations created by Wilson lines.

One of the most important properties of local excitations is their statistical
phase. In the Chern—Simons theory, the statistical phase 61, of two excitations,
labeled by ¢; and ¢, is defined as the relative phase of the wave functions, which
differ by braiding of corresponding Wilson lines. In the example shown in
Fig. F.4, the overlap of the wave functions is equal to exp(2i6,). In order to find
this phase, one needs to evaluate the corresponding vacuum average. Using the
Gaussian character of the theory, we write
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Fig. F.4 The calculation of the statistical phase 6, of two excitations labeled by ¢; and ¢, is
illustrated. The scalar product of the two states shown on the left hand side is equal to exp(2i;5).

According to Egs. (F.11) and (F.16), the resulting Wilson line on the right hand side is pro-
portional to the linking number of the two loops C; and C,

o = L2 ( f B,dx" f Budv') = LL f{ " f dy"Gu(x—y), (F.13)

Cl C2 C] C2

where the correlation function is defined as
Guv(x —y) = (Bu(x)Bu(y)). (F.14)

And again, because the action (1.42) is quadratic, the correlation function is the
Green function of the corresponding equations of motion (F.5):

"P0\G, (x — y) = (i/200)8" 8(x — y). (F.15)
Applying the Stokes’ theorem in Eq. (F.15) to the integral over the contour Cj,
we find that

01, = M/ nudzx% dy"o(x — ), (F.16)
4()&0

D, C

where n, is the unit vector, orthogonal to the surface D; bounded by C;. The
integral on the right hand side of Eq. (F.16) is known as the linking number
L(Cy, Cy) of the contours C; and C,. It counts how many times one of the contours
pinches through a surface bounded by another. This number is obviously
independent on the choice of the surface, and is topologically invariant. In the case
we consider, illustrated on right hand side of the Fig. F.4, this number equals to
one, and thus the statistical phase is

0, = 1192 (F.17)

404() '

Another important property of local excitations is their charge. First, we note
that the Wilson lines (F.8) contain open contours and therefore are not gauge-
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Fig. F.5 The evaluation of the value of charge operator Qp, defined in Eq. (F.19), is illustrated.
Left panel Only one endpoint z, is inside the region D. Therefore, Eq. (F.21) gives Qp = gq/4may.
Right panel Both endpoints z; and z; belong to the region D, therefore the charge is zero. These
results are easily understood in terms of the linking number of the boundary ~ enclosing the
charge, and of the Wilson line C, obtained as a combination of the initial (solid) Wilson line and
of the corresponding time-reversed (dashed) line (see Eq. F.20)

invariant. The states (F.9) transform under the gauge transformations (1.40) as
following:

1

IC) — exp{iZqiﬂ(zi)}|g>. (F.18)

In other words, the states (F.9) behave as wave functions of charged particles
localized at points z;. From this it follows that any two states |C) and |C") with
different end points of Wilson lines, or with non-matching g;, are orthogonal. This
is because the overlap of those states vanishes upon the integration over the gauge
8.

In order to find the values of charges of the quasi-particles, we recall that the
connection between the bulk current density of the quantum Hall liquid and the
Chern—Simons field is given by Eq. (1.39). Therefore, the operator of the charge
confined in a region D, namely, Qp = [, d*zJ°, can be written as

1 1
Op = > / d*z¢%"3,B, = > ]{ B, dx", (F.19)

™
D ol

where we have applied the Stokes’ theorem, and the contour « = 0D is the
boundary of the region D (see Fig. F.5).

Next, we can formally evaluate the following average using the result (F.17) for
braiding:

ix
Aoy

(Clexp(iAQp)|C) = eXP{— Z aiL(v,Ci) } (€lc). (F.20)

It follows from Eq. (F.20), as well as from the orthogonality of the states with
different end points of Wilson lines, that all the sates (F.9) are the eigenstates of
the charge operator (F.19), so that one can write
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00 WIC] = - > bl € DIWIC, (F21)

where the step function 6 is equal to one if the endpoint z; lies inside the region D,
as illustrated in Fig. F.5. In other words, each Wilson line indeed annihilates a
local excitation with the charge g;/4mayp at endpoint z;. In Sect. 6.1 we show that
the charge of the quasi-particles is quantized. This effect resembles the quanti-
zation of the magnetic flux in superconductors.
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