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Abstract

It is recognised that the New Theory of the Resistance of Fluids was a turning point
in the genesis of the Fluid Mechanics, for the first time the motion of a fluid was

reduced to two differential equations in partial derivatives relating the velocities

and positions. Therefore, the physical problem of the fluid motion was converted

into a mathematical one.

However, the rapid evolution of the discipline, jointly with the difficulties

inherent in the work overshadowed d’Alembert’s contributions, so that the studies

have been carried out up to now are only partial ones and in some cases his findings

have been undervalued. We think that the book deserves an in-depth study in order

to bring both merits and defects to light.

Firstly, we present a translation into English of d’Alembert’s book, in which we

have tried to follow his original words, even when sometimes it results a bit literal

and unidiomatic.

The subsequent commentaries are divided in two parts. One is dedicated to the

circumstances in which this book was written and the state of the Fluid Dynamics at

that time. D’Alembert’s ideas on basic concepts, such as forces, pressures, fluids

and dynamics are also included. Finally, a brief analysis of the New Theory is made

in order to make the next stage easier.

The second part is dedicated to the New Theory. In order to highlight the genuine
contribution of d’Alembert to Fluid Mechanics and to extract his core contribution,

we have preferred to analyse the book by subjects, giving preference to those

related with the resistance over those other with little, if any, relation with it. The

reorganization of the articles and the use of his previous Latin Memoire, that
preceded the New Theory, contribute to mitigate the negative opinions about the

lengthiness and tortuosity that sometimes have been attributed to it. We have made

an effort to show how he manages to find the differential equations ruling the

velocities around the body and the streamlines pattern. Also how he contrives to

join the pressure forces over the body with its loss of momentum, which turns out to

be the resistance.
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Introduction

[I]2

Although the physics of the Ancients was neither as unreasonable nor as limited as

some modern philosophers think or say, it seems that they were not versed in the so

called physical-mathematical sciences, which consist in the application of the

calculus to natural phenomena. The matter that I undertake to treat in this book is

one of those which seems to have been the least studied from this point of view. I

say from this point of view, because the knowledge of the resistance of fluids is an

absolute necessity for the construction of ships that the Ancients may have pushed

further than us, they could not have been lacking in knowledge up to a point: it is

more than likely that experience had provided early on a few rules to determine the

shock and pressure of the water. But these rules, limited without doubt regarding

their practice, and, so to speak, purely traditional, have not come down to us.

With regards to the theory of this resistance, it is not surprising that the Ancients

had ignored it. If we may so express it we must take into account even their ignorance

for not to having wanted to achieve what was impossible for them to know and not to

have tried to make us believe that they had succeeded. The most subtle geometry is

permitted in order to try out this theory; the geometry of the Ancients, while also very

deep and very wise, could not go as far. It is rather the semblance of what they felt, as

their method of philosophizing was wiser than we commonly imagine. In this respect

the modern geometricians knew how to provide themselves with more help, not

because they were superior to the Ancients, but because they came later. The

invention of differential and integral calculus has put us in position to follow by

any means the movement of bodies even in their elements or last particles.

It is only with the help of these calculi that we are allowed to penetrate the fluids

and to discover the play of their parts, the action that these innumerable atoms of

which a fluid is composed exert on each other, and which at the same time appears

2The Introduction has been divided in seven sections to make easier to read.
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to be both united and divided, dependent and independent of each other. Also the

internal mechanism of the fluids, so dissimilar to that of solid bodies that we touch,

and subject to completely different laws, ought to be a particular object of admi-

ration for philosophers, if the study of nature, of the most simple phenomena, and

even of the very elements of matter, had not accustomed them to be unsurprised at

anything, or rather to be equally amazed at everything. As unenlightened as the

common people were about the first principles of all things, they neither had, nor

could have had, no more advantage than in the combination that they make of these

principles and the consequences they draw from them, and it is in this kind of

analysis that mathematics are useful to them . However, even with this help, the

resistance of fluids still enclosed such considerable difficulties, that the efforts of

the greatest men have been limited up to here to giving us a slight sketch.

After reflecting for a long time on this important matter with all the attention I am

capable of, it seemed to me that the slight progress made so far comes from the fact

that the true principles have not yet been grasped, and the matter should be treated

according to these principles. So I thought it my duty to apply myself to seek them and

how to apply the calculus to them, if this was possible. As these two objects must not

be confused and maybe modern geometricians have not paid enough attention to this

point. Often the desire to make use of the calculus is what determines the choice of the

principles; instead they should first examine the principles in themselves, without

thinking ahead to bend them by force to calculus. Geometry, which must obey Physics

only when it meets with it, sometimes commands it. Should it occur that the question

which one wishes to examine is too complicated for all the elements to enter into the

analytical comparison that one wants to make, the most inconvenient are separated

and substituted by others less annoying, but also less real, and, despite hard work, it is

surprising to reach to a result contradictory to nature; as if after having disguised,

truncated or altered it, a purely mechanical combination could give it to us.

I have proposed to myself to avoid this problem in the work I offer today. I have

searched the principles of the fluid resistance, as if the analysis should not enter

therein for anything, and I have tried to apply the analysis to these principles once

found. However, before I expound my work and the degree to which I have pushed

it, it will not come amiss to explain what has been done on this issue so far.

[II]

Newton, to whom the Physics and Geometry are so indebted, is the first, that I know

of, who has undertaken to determine by the principles of Mechanics the resistance

that a body moved in a fluid undergoes and to confirm his theory by experiments.3

In order to reach the solution of such a thorny issue more easily and perhaps to

present it in a more general way, this great philosopher envisages the fluid from two

3Cf. Book 2, Section VII, “The motion of fluid, and the resistance made to projected bodies”.
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different points of view. At first, he looks at it as a cluster of elastic particles, which

tend to move away from each other by a centrifugal or repulsive force, and that are

placed freely at equal distances. He also assumes that this cluster of particles

composing the resisting medium has very little density respect to the body, so

that the parts of the fluid pushed by the body can move freely without communi-

cating the motion they have received to the neighboring parts. According to this

hypothesis, Newton finds and proves the laws of the resistance for such a fluid; laws

fairly well known, so that we may be dispensed from reporting them here. From

these laws it follows that the resistance of a cylinder in such a fluid, namely the

force that retards its motion at every moment, is equal to the weight of a cylinder of

fluid with the same base, and whose height would be twice that from which a heavy

body should fall in order to acquire the same velocity as that at which the cylinder

moves. Newton makes it clear that, in this same assumption, the resistance of a

globe would be half that undergone by the circumscribed cylinder.

In his book titled Discourse on the laws of the communication of the Motion, the
famous Jean Bernoulli determined the resistance of fluids from the same hypothesis

and he represents this resistance by a fairly simple formula. In one of my works I

gave the demonstration that Bernoulli had removed;4 a demonstration in which I

apply any figure and any arrangement that can be supposed in the parts of the fluid

over the generality.

But it must be confessed that this formula is insufficient to determine the

resistance we seek. In all fluids which are known to us the particles are immediately

adjacent by some of their points, or at least they act upon each other almost as if

they were. Thus any body moved in a fluid necessarily pushes at one and the same

instant a large number of particles placed in the same row, and where each one

receives a velocity and a different direction according to its position. It is therefore

extremely difficult to determine the motion communicated to all these particles and

consequently the motion that the body loses at every instant.

These reflections had not escaped M. Newton. He recognized that his theory of

the resistance of a fluid composed of elastic scattered globules, if it may be

expressed thus, cannot be applied either to dense and continuous fluids where the

particles immediately touch themselves, such as water, oil, quicksilver; or to fluids

whose elasticity comes from a cause other than the centrifugal force of their parts,

for example for the compression and the expansion of these parts, as the air we

breathe appears to be. He also recognizes that in the same case wherein the fluid was

such as he has imagined, it should be also assumed that the velocity of the moving

body is large enough for the centrifugal forces of the parts of the fluid to have no

time to act, and thus to alter by this action the resistance coming from the single

force of inertia. From this it follows that this first part of Newton’s theory, and that

of M. Bernoulli is but a commentary of the former, are rather a research due to pure

curiosity as they are not applicable to nature.

4The Traité de l’équilibre et du mouvement des fluides.
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Also the illustrious English Philosopher has not thought it necessary to maintain

that. He considers the fluids in the compression state where they really are, as being

composed of particles adjacent to each other, and this is the second point of view

from which he envisages them. The method he employs in this new hypothesis for

solving the problem is to find first the velocity of a fluid stream that escapes from a

cylindrical vessel through a horizontal hole made at the bottom of the vessel, and

the pressure that a circular flat surface, exposed to the action of this current, would

suffer. For determining this pressure M. Newton employs a kind of approximation

and testing that would be difficult to give our readers the idea of here. We will be

satisfied by observing that this pressure depends on the height of the fluid, or what

amounts to the same thing, on the velocity with which it escapes, the diameter of the

hole, and that of the circular flat surface. By next increasing the capacity of the

vessel to infinity, but keeping the diameter of the hole, and substituting the

movement of the circular surface for that of the fluid, M. Newton discovers that

the resistance undergone by this surface is equal to the weight of a cylinder which

has the surface as its base and for its height half of one from where a heavy body

should fall to acquire an equal velocity to the actual velocity of the circular surface.

According to M. Newton the weight of such cylinder can then represent the

resistance that a solid cylinder of any length undergoes at each moment, having

as base the previous circular area in question; because whatever length of the

cylinder is, the base is the only part exposed to the shock of the fluid. Finally,

using an argument which will be discussed below, M. Newton equals the resistance

of a globe to that of the circumscribed cylinder. He also reaches the conclusion that

a dense, continuous and compressed fluid, such as it really is in nature, produces a

resistance four times lower than a cylindrical body and all things being equal, twice

less than a spherical body, as in the case of the fluid with elastic globules of the first

hypothesis.

But this second theory of M. Newton, although more in agreement with the

nature of the fluids, is still subject to many difficulties. In first place, it has as basis

the method by which this great geometrician determines the motion of a fluid

escaping from a cylindrical vessel; certainly a very ingenious method, but insuffi-

cient and faulty. The cataract that M. Newton assumed to be formed by the falling

of the fluid cannot exist, as M. Jean Bernoulli has made clear in his Hydraulica,5

because the fluid, that is supposed to flow into the cataract and to fall with all the

force of its weight without exerting any lateral pressure, cannot resist the pressure

of stagnant fluid surrounding it.6

In second place, if we refer several experiments made by the skillful physicists,

the pressure of a fluid in motion upon a circular surface is equal to the weight of a

5Cf. §LX, Scholium V. In Opera Omnia, Vol. 4, p. 483.
6The text is not clear. Following the Mss.2, “nullam in cataractae parietibus esse pressionem, qua

susteneri possit pressio fluidi extra cataractam stagnantis; proinde cataractam ob fluidi ambientis

pressionem omnino debere”:. “There is not any pressure upon the cataract walls which can support

the pressure of the stagnant fluid outside of the cataract. Therefore, the cataract must be destroyed

completely due the ambient fluid pressure.”

8 Introduction



cylinder whose height would be equal to what a heavy body should fall from in

order to acquire the same velocity of the fluid; from which it follows that this

pressure is double that determined by M. Newton using calculus.

In third place, by this new theory of the pressure in continuous fluids Newton

finds that the resistance undergone by a globe is equal to what a circumscribed

cylinder would undergo; while by his theory of the resistance of non-continuous

fluid he finds that the resistance of the globe is only half that of the cylinder. Let us

discover here what Newton relies on to establish the equality of resistance between

the globe and the cylinder in the second case. According to him, if a cylinder, a

sphere and a spheroid whose widths or bases are equal, are placed in the middle of a

cylindrical channel so that the axes of these body coincide with that of the channel,

these bodies will oppose an equal obstacle to the movement of the water in the

channel, because the spaces through which the fluid flows between the cylindrical

channel and each body are equal among them, and the fluid must move in the same

way in equal spaces. This is the only proof that M. Newton gives of this funda-

mental proposition, a proof which does not seem very strong

Because the space between the cylinder and each of the three bodies is only the

same in the plane where the greatest width or common base of the bodies is located;

in any other plane parallel to this the space between the cylinder and each of the

bodies is different, and therefore the fluid would be unable to move there in the

same way.

Moreover, even when the fluid moved with the same velocity in these different

spaces, it does not follow that these bodies underwent an equal pressure. Because

for example the water flowing between the channel and the cylinder presses the

cylinder so that it acts on its sides in lines perpendicular to the axis of the cylinder;

whereby it follows that the [pressure on the] cylinder walls destroy each other, and

that the true pressure supported by the cylinder comes only from the action of the

fluid that strikes the frontward base, and which is not widespread through the empty

space between the cylinder and the channel. Instead, the fluid flowing between the

channel walls and the surface of the sphere acts on the sphere surface along lines

perpendicular to its surface and therefore located obliquely respect to the axis of the

sphere, whereby is easy to conclude that the forces acting on each side of the axis

are not destroyed completely as in the case of the cylinder, but are partially

destroyed and partially contribute to form a single and unique pressure. This is

much greater as the direction of the primitive forces forms a more acute angle with

the axis of the sphere. Nothing is then less proved than this alleged equality of

resistance of the globe and of the circumscribed cylinder.

Finally, M. Newton supposes that the parts of the fluid, which by their oblique

and unnecessary motions can delay the movement of the fluid in the channel, must

be regarded as frozen and at rest, and as adhering to the front and rear surface of the

body; a hypothesis that is probably true to some extent, but it presented in so vague

way, that it seems intended to rather circumvent the difficulty of the problem more

than overcome it.

Despite these observations, we have nevertheless to admire the efforts and the

wisdom of this great philosopher, who, after finding the truth so happily in a large
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number of other issues, dared to pave the first road to solve a problem that no one

before him had ever attempted. Thus this solution, though not very exact, shines

throughout with inventive genius, this mind fertile in resources that nobody has

possessed in a higher degree than him.

[III]

Helped by the assistance that geometry and mechanics provide us today in greater

abundance, is it any wonder that we take a few more steps in the difficult and

extensive race that he has opened to us? Even the errors of great men are instructive,

not only by the views that they provide for ordinary persons, but for the useless

steps they save us. The methods that have misled them, seductive enough to

dazzle them, would have deceived us like them; it was necessary that they be

tempted by them, so that we could know the pitfalls. The difficulty is to imagine

another method, but often this difficulty consists more in choosing what we will

follow, than following once it is well chosen. Among the different routes that

lead to a truth, some have an easy entry, these are the ones we throw ourselves

upon at first; and if no obstacles are encountered until a certain path has been

traversed, then, as one only admits with pain to have made endeavored in vain,

then a way to avoid these obstacles is sought when it not possible to overcome

them. Other roads, on the contrary, do not present obstacles to their entry; their

access may be painful, but once these obstacles are overcome, the rest of the way

is easy to traverse.

It must be admitted to the rest, that the majority of the geometrician who have

attacked Newton concerning the resistance of fluids have not been more fortunate

than him; almost all have given us a lot of calculations instead of true principles.

However M. Daniel Bernoulli, who has united much light and philosophical spirit

to great sagacity in geometry, should be exempted. As he is the one who has gone

most deeply into this matter, he also seems to be the one to have the best knowledge

about the difficulties that it entails. In the second volume of the Memoirs of

Petersburg (year 1727) he proposes a formula for the resistance of fluids, whose

principles are different from those of M. Newton, but he does not seem to have been

highly satisfied, because he admits that this formula gives the resistance as being

four times that resulting from the experiments. The illustrious author then seeks by

ordinary methods the ratio of resistance of a fluid formed by any spheroids, and

after using these methods he establishes that the resistance of the globe is half that

of the cylinder; proposal he fought later in his Hydrodynamica. Indeed, the hypoth-
esis upon which this rests is not very accurate, because it is necessary to assume that

the parts of the fluid, when they strike the cylinder or globe, are either annihilated or

at least rebound in such a way that they do not encounter any other particle. This

hypothesis and some others, whose insufficiency is easy to appreciate, are the

expressed or implied basis of almost all works published so far on the resistance

of fluids, and consequently leave much to be desired in these works.
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In 1741, in Volume VIII of the same Memoirs of Petersburg, the great mathema-

tician of whom we are speaking gave a very ingenious and much more direct method

to determine the pressure that a fluid stream escaping from a vessel exerts against a

plate. Although it is supported by experiments the formula he proposes for this does

not seem to beyond doubt, as we hope to show in one of the chapters of this book. The

details of this review are too geometrical for us to give the idea in this Introduction.

Anyway, M. Daniel Bernoulli accepts that this theory of the pressure of a fluid

stream against a plate would not be very useful for determining the pressure of a plate

fully submersed in a fluid, because the motion of the fluid particles is very different in

the two cases. Indeed, in the case where the stream strikes the plane, as soon as the

particles of the fluid arrive at the plane they change direction, so that theymove parallel

to the plane, and they slide along the plate following the latest [plane] direction; which

does not occur when the plane is fully immersed in a deep fluid. As soon as the fluid

particles leave the front surface of the plane on which they have slipped, they are

pushed and returned to the rear surface by the moving fluid which surrounded them at

right and left; so that their direction, from being parallel to the plate, becomes

perpendicular, or at least makes a very large acute angle with this plate, as everyday

experience shows. Now then this reflux of particles and the pressure that may result on

the posterior surface must alter the pressure that the front surface undergoes.

[IV]

It follows from all we have said so far, that the theory of fluid resistance, although

handled by so many great mathematicians, is still very imperfect in its actual

elements. These reasons have led me to address this matter in a completely new

way, without borrowing anything from those who have preceded me in the same

work. The theory that I present in this book, or rather I will give the principles, has,

it seems to me, the advantage of not resting on any arbitrary assumption; I assume

only what no one can deny, that a fluid is a body composed of very small particles,

separate and able to move freely.

The resistance that a body undergoes when it impacts with another is just, strictly

speaking, the quantity of motion it loses. When the motion of a body is altered, we

can consider this motion as being composed of the one the body would have in the

following instant and of another which is destroyed. From this it is not difficult to

conclude that all the laws of the communication of motion among the bodies are

reduced to the laws of equilibrium. It is also to this principle to which I have

reduced the solution of all problems of dynamics in the first book I published in

1743.7 I have had frequent occasions to show its fertility and simplicity in the

various treaties that I have published since, and perhaps it would be useful to

enlighten us to some extent on the very obscure metaphysics of the percussion of

7Traité de dynamique.
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bodies and on the laws to which the resistance is subjected. Whatever it is, this

principle applies naturally to the resistance of a body in a fluid; and also to the laws

of equilibrium between the fluid and the body, to which I reduce the investigation of

this resistance. But one must not imagine that this research, although facilitated by

this means, is as simple as that of the communication of motion between two solids

bodies. Indeed let suppose that we had the advantage, of which we are deprived, of

knowing the figure and the mutual arrangement of the particles that compose the

fluid: the laws of their resistance and their action will surely be reduced to the

known laws of motion; because the investigation of the motion communicated from

a body to any number of surrounding corpuscles is only a dynamic problem, for

whose solution we have all the mechanical principles that we could wish. However,

the greater the number of particles is, the more difficult becomes to apply the

calculus to the particles8 in a simple and convenient way; therefore such a method

would be scarcely practicable in the search for the resistance of fluids. But we are

rather far from having all the data needed to be able to use this method. We ignore

not only the figure and the arrangement of the parts of the fluids; we even ignore

how these parts are pushed by the body and how these parts move among them-

selves. Anyway there is such a large difference between a fluid and an aggregate of

solid corpuscles, that the laws of pressure and equilibrium of the fluids are very

different from the laws of pressure and equilibrium of the solid. Experience alone

has taught us in detail the laws of hydrostatics, what the most subtle theory never

have made us suspect; and nowadays although experience has unveiled these laws,

no one has yet been able to find a satisfactory hypothesis for explaining and

reducing them to the known principles of the statics.

However, this ignorance did not prevent great progress made in the hydrostatics.

Since the philosophers cannot deduct the laws of their equilibrium immediately and

directly from the nature of the fluids at least they have reduced them to a single

principle of experiment, the equality of the pressure in all directions; principle that
has been taken (lacking a better one) as the fundamental property of fluids, and as

the one to which it was necessary to refer all others. Indeed, condemned as we are to

ignore the first properties and internal contexture of the bodies, the only resource

left to our shrewdness is to try at least to capture in each subject the analogy of the

phenomena and to recall all them in a small number of primitive and basic facts.

Thus, Newton, without assigning the cause of the universal gravitation, did not

leave to prove that the system of the world is only rested on the laws of this

gravitation. Nature is an immense machine whose main springs are hidden to us;

we do not see this machine except through a veil which conceals from us the

interplay of the most delicate parts. Among the most striking, and maybe if we dare

say it, the coarsest parts that this veil allows us to glimpse or discover, there are

several that the same spring sets in motion, and that’s mainly what we must seek to

unravel.

8In the original says “aux principes”; we think it is a misprint for “aux particules”.
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Therefore we cannot flatter ourselves even to deduce the nature of the theory of

fluid resistance and action, let us confine ourselves to deduce it, if possible, from the

hydrostatic laws that now are well founded, and on which several leading geo-

metricians, whom I mentioned in my Traité des Fluides, have worked on success-

fully. The purely experimental knowledge of these laws compensates the figure and

the arrangement of the parts of the fluids, and perhaps makes the problem easier to

solve than if we were confined to this former knowledge.

[V]

Therefore I commence this book by showing how the laws of the resistance of fluids

depend on the laws of their equilibrium, from where quite general and, it seems to

me, new and useful theorems result on the motion of a system of bodies or

corpuscles which act one upon another. Next I expound in relatively few words

the already known theory of the fluid equilibrium, and I make several comments on

this theory which could be considered of some importance.

From the above the laws of the pressure of a fluid either in motion or at rest are

derived in a rather simple way.

This research led me to that of the pressure of a fluid that strikes a body at rest. I

see first that the question is reduced to finding out the pressure of the thread of the

fluid that slides immediately over the surface of the body. For this it is necessary to

know the velocity of the particles of this thread, which I determine by two different

methods, which perhaps the geometricians may not find unworthy of their attention.

Once this velocity is found, the fluid pressure is necessarily deduced, but the formula

of this pressure requires a very complicated analysis of which I show the principles.

Next I come to the laws of the resistance of a fluid when the body is moved and

the fluid is at rest; and by a new and unique method I demonstrate that the pressure

of a fluid moving with a variable velocity against a body at rest is equal to the

resistance that this body would undergo in the fluid at rest when moved with similar

velocity. A proposition hitherto assumed as true by all hydrodynamic authors, but

whose rigorous proof is however quite difficult, as I flatter myself that my readers

will be convinced.

To render my theory more general, I give formulas for the resistance of the fluid

taking into account the weight, the friction and the viscosity of the particles. I

specially seek the laws of resistance in the case when there is a void between the

fluid and the rear part of the body, which as I prove can occur, even when the fluid is

not elastic. But I must admit that here the calculation throws very little true light,

and that perhaps it may be very difficult to submit the case in question to the

experiment itself.

Having thus developed my principles, I examine a hypothesis which several

hydrodynamic authors have used so far and I wish to make clear that if such a

hypothesis was followed in order to determine the resistance of a fluid, the resis-

tance would be nil, which is contrary to all experience.
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I deal next with the action of a fluid stream coming out from a vessel and that

strikes a plane, and I find that the pressure found is a little lower than the weight of a

cylinder that would have for its base the width of the stream and for the height twice

that of the fluid in the vessel; a result that agrees perfectly with the exact and

numerous experiments made by the Academy of Petersburg. Finally, I join to all

these researches thoughts on the resistance of elastic fluids, a matter which had been

barely touched until now, and on which I try to give some principles; but according

to all appearances, the resistance will be never well known by the theory alone.

These are the main objects of this book. To make my principles even more

worthy of the attention of physicists and geometricians, I thought it would be

appropriate to pay attention to how they can be applied to different issues that

have a more or less immediate relation to the matter I am dealing with; such as the

movement of a fluid flowing, be it in a vessel or in any channel, the oscillations of a

body floating in a fluid when the center of gravity of the submerged and

non-submerged parts is not in the same vertical line, and other problems of

this kind.

[VI]

Moreover, having proposed to myself to demonstrate everything in this book

rigorously, I found in the proof itself of the simplest propositions more difficulties

than could have been naturally suspected, .and it was not without difficulty that

concerning this matter I managed to demonstrate the most generally accepted truths

and it was not without pain that I managed to prove in this subject the truths more

generally accepted and the least precisely proven so far. But after having sacrificed

the easiness of calculation to the security of the principles, I should have naturally

expected that the application of the calculation to these principles would be most

painful, and this is also what happened to me. It seems to me even very likely that at

least in some cases the solution will entirely resist analysis. It is up to savants to

decide about this point; I thought I had worked very usefully if I had succeeded in

such a difficult matter, either to set myself or to make others discover how far the

theory can reach, and the limits where it should stop.

When I speak here of the limits to which the theory must be prescribed, I only

envisage those that can be available with the current supports, not with those which

could be obtained in the future and that are still to be found. Because in any matter

whatsoever, one should not be too hasty in raising a wall of separation between

nature and the human mind. For having learned to be wary of our industry, let us

prevent us from distrusting in excess. In the impotence that we feel every day in

overcoming as many obstacles as appear to us, we would be without doubt too

content if we could at least judge at first glance until where our efforts can reach.

But such is all the strength and weakness of our mind; it is often as dangerous to

pronounce on what it cannot do, as on what it can. How many modern discoveries

exist of which the Ancients had not even any idea? How many lost discoveries there
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are which challenged us too lightly? And how many others are reserved for our

posterity which we deemed impossible?

I would have liked to compare my theory of the resistance of fluids with the

experiments that several famous physicists have made in order ⁣⁣to determine

it. But after reviewing these experiments, I found so little agreement among them,

that there is not, it seems to me, any fact still perfectly found on this point. It does

not take more to show how delicate these experiments are. Also some persons very

skilled in experimental physics having undertaken recently to restart the experi-

ments, have almost abandoned the project due to the difficulties in the execution.

The multitude of forces, either active or passive, here becomes complicated to such

a degree that it is somehow impossible to determine separately the effect of each

one; and for example, to distinguish which comes from the force of inertia from that

resulting from the viscosity, and these with the effect that can produce the weight

and the friction of the particles. Moreover, when the effects of each of these forces

and the law that they follow were unraveled in one single case, we would be well

justified to conclude that in a case where the particles had acted quite differently, as

much by their number as by their direction, their positions and velocities, would not

the law of the effects be totally different? This subject could be in the number of

those where the experiments made in small scale have almost no analogy with

experiments made in large scale, and are sometimes even contradictory them;

where each particular case requests, so to speak, an isolated experiment, and

where therefore the overall results are still very faulty and very imperfect.

Finally, even when the experiment gives us the most exact and sharpest formulas

on the resistance of fluids, it will still be very difficult to compare these formulas

with those given by the theory. Because the calculation of the latter is extremely

complicated if it is not supported on any arbitrary and vague hypothesis. But either

this drawback to the analysis itself must be rejected, or it should be attributed to

difficulties that other will surmount more happily than I, it seems to me that at least

that no one can form any doubt on the truth of my principles. I even think to ensure

that if after determining the formula of resistance by the long and painful method

that these principles have forced me to use, this formula will be contradicted by the

experiment; such a contradiction would came only, it seems to me, from some

purely analytical assumptions that the application of geometry to physics necessar-

ily entails. In this case it would be necessary, it seems to me, to renounce fully to

any theory of fluid resistance and to consider it as one of those questions on which

the calculation can have no hold.

[VII]

For the rest, the difficulties of the calculations which I have just spoken of did not

seem so striking to the famous Royal Academy of Sciences and Belles Letters of

Prussia, and this consideration alone will be sufficient to induce me to avoid a

decisive tone, which is not in any way convenient to me. Having proposed for the
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price of 1750 the Theory of Fluid Resistance, this wise Company has judged it

convenient to postpone this award and to exhort the authors to make clear with

supplements the agreement of their calculations with the experiment; a condition

about which, however, it had not mentioned at all in its program of 1748. It was

natural to believe that then it asked simply for the true principles hitherto unknown,

and whose research seemed to be the object of a satisfactory work. I thought to have

discovered these principles and therefore I could compete for the awards. The piece

that I sent to Berlin on this object in the month of December 1749 is, with a few

additions, the book I give today. I contented myself in this piece in making seen the

agreement of my principles with the best known facts of the fluid resistance: such

are the ratio of the resistance with the square of speed; the changes that the fluid

viscosity causes in this ratio, especially when speed is very small; the pressure of a

fluid stream coming out from a vessel and that strikes a plate, the pressure

determined, as I have said, by accurate experiments; and some other similar

phenomena. The Academy, not having considered these researches as sufficient,

demands nowadays the formulas of the resistance all calculated and which are

agreement with experiments to be done. But feeling myself neither with wisdom

enough, nor strength enough, nor courage enough to finish in a short time a work so

delicate, so long and so painful, I thought I should refrain from competing again;

other reasons, in whose detail it is useless to enter, confirmed me in this resolution.

However, as it seemed to me that this Essay could be useful, I thought, for me to

assure the possession of what it contains, that I have to bring it to light before the

publication of the judgment of the Academy. I wish for the interest I take in the

advancement of the Science, that the Judges appointed by this illustrious Company,

which without any doubt have not proposed this question without assuring them-

selves if that solution was possible, would find something to entirely be satisfy

themselves in the works that will be sent to them for the contest.

For me, who has felt that the difficulty of calculations would make perhaps

impossible for me the comparison of theory and experiment that others could do

with more success, I have confined myself, as I have said, to show the agreement of

my principles with the more certain and best known facts; in all the rest I leave

much to be done to those who work in the future on the same matter. Maybe my

sincerity will be found very far from this pageantry of which one never renounces

when exposing their works; but only to my work should be given the place it can

have. I do not flatter myself for having pushed to perfection a theory that so many

great men have barely begun. The title of essay that I give to this book responds

exactly to the idea that I have of it, but I think to be at least on the true road; and

without daring to prepare the way I can have made, I will applaud with pleasure the

efforts of those who will be able to go further than me, because in the search for

truth, the first duty is to be fair. I still think I should give to those who afterwards

will go into this matter more deeply an advice notice which I start profiting from

myself: not to erect too lightly the formulas of the algebra as truths or physical

propositions. The spirit of calculus, that has hunted the spirit of system, rules

perhaps quite too much in its turn. Because in every century there is a dominant

flavor of philosophy; this flavor almost always drifts to some prejudices and the best
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philosophy is that which has the least of them in its train. It would be better, no

doubt, that it was never subject to any particular tone. The different knowledge

acquired and collected by scholars would be easier to join together and form a

whole. But every science seems somehow to receive and shake successively the law

from those who are most honored or most neglected, and philosophy takes, so to

speak, the coloring of the minds where it finds itself. In a metaphysician it is usually

all systematic, in a geometrician it is often all calculus; the method of the latter,

generally speaking, is probably the safest, but must not abuse of it and believe that

everything will be there reduced to it; otherwise we would not progress in tran-

scendent geometry more than to be proportionally more limited by the truths of

physics. We look like a man who had the sense of sight contrary to that of touch, or

in which one of these senses would be not perfected more that at the expense of the

other. As much can be achieved of utility in the application of geometry to physics,

the more circumspect one must be in this application. It is to the simplicity of its

object that geometry owes its certainty; as the object becomes more complex,

confidence darkens and walks away. It is necessary to know when to stop on

what is unknown, not to believe that the words Theorem and Corollary by some

secret virtue make the essence of a demonstration and that writing at the end of a

proposition what must be demonstrated will show what it is not.
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Chapter 1

Principles of Dynamics and Hydrodynamics

Necessary for the Understanding

of the Subsequent Propositions

Prop. I. Theorem

1. Let any system be composed of as many bodies as desired, which I designate as

A, B, C, D, etc. and let us suppose that these bodies are impelled by any forces φ, ψ ,
π, υ, etc., being A by the force φ, B by the force ψ , etc., and that at any instant these
bodies move with velocities V, U, v, u, etc., being A with velocity V, B with velocity

U, etc. It is easy to see that these bodies, if they were not impelled by the forces, φ,
ψ , π, etc., and besides there was not any obstacle to their movement, they would

retain in the next instant the velocities V, U, v, uwith same direction. But because of

the impelling forces and the mutual action that these bodies can exert ones upon

another, we suppose that in the next instant their velocities are changed to V0, U0, v0,
u0, etc. It is obvious that each one of the first velocities V, U, v, u can be considered

as composed of the velocities V0, V00; U0, U00; v0, v00; u0, u00; thus at the start of the

second instant, that I call dt, the body A actually tends to move with the velocities

V0, V00, φdt, the body B with velocities U0, U00, ψdt, the body C with velocities v0, v00,
πdt, the bodyDwith velocities u0, u00, ωdt, etc. But (by the hypothesis) of these three
velocities, which each body is impelled by, only one remains to each one; namely,

the velocity V0 for body A, the velocityU0 for the body B, the velocity v0 for the body
C, the velocity u0 for the body D. Therefore if the bodies A, B, C, D turned in to

move with the single velocities V00, φdt; U00, ψdt; v00, πdt00; u00, ωdt; there would not
be any motion in the system; or what is the same, the system would be at rest or in

equilibrium. At rest if the bodies are completely separated and loosed, not acting

each upon others; in equilibrium if these bodies are linked or adjacent, in such a way

they can exercise a mutual action one upon the other.

In the first case, the velocity V00 will be equal and directly contrary to φdt, and
similarly U00 will be equal and directed contrary to ψdt, etc. In the second case, it

will be sufficient for the balance, and therefore for the rest, that the forces A x V00, A
x φdt, B x V00, B x ψdt, C x v00, C x πdt, D x u00, D x ωdt, etc. destroy each other.
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This principle is of a very general use in order to solve all issues of dynamics. It

will be seen in this work how useful it is for determining the resistance of fluids.

Corollary I

2. Let the forces φ, ψ , π, ω, etc. be equal to zero, it is obvious that if the bodies A, B,
C, D etc. tended to move only with the velocities V0, U00, V00, u00 etc, they would be in
equilibrium among them. Hence it follows that the equilibrium would still remain

if, retaining the same direction, they tended to move with velocities gV00, gU00, gv00,
gu00 etc., where g is a coefficient or any number. Because the powers that are in

equilibrium and remain, whatever change that they might undergo, provided that

they retain the same direction and the same ratio among them.1

Corollary II

3. Having allways excluded the forces φ, Ψ , etc. regarding them as null, we assume

that the velocities V, U, v, u, etc., with which the bodies A, B, C, D,move or tend to

move in any instant, become by whatsoever cause gV, gU, gv, gu (g expressing any
coefficient) and retaining the same direction; I say that the velocities, which would

have been in the next instant V0, U0 v0, u0, will be gV0, gU0, gv, gu0 with the same

direction that they would have had the velocities V0, U0, v0, u0. To make the

demonstration easier to understand, we take only two bodies A, B (Fig. 1.1) and

being Aa, Bb the infinitely small spaces that these two bodies will describe in the

instant dtwith velocities V, U, and aα, bβ the infinitely small spaces that they would

describe in the next instant with velocities V0, U0. Let Aa, Bb be extended until

aa0 ¼Aa, and bb0 ¼Bb and let the parallelograms αα0, ββ0 be completed. It is

obvious (art. 1) that the bodies A, B would be in equilibrium if they tended to

traverse the small spaces aα0, bβ0 in the instant dt. Indeed, these small spaces aα0,
bβ0 represent the velocities V00, U00, because the velocities aa0 and bb0, that is to say

V and U are composed of the velocities aα, aα0 and bβ, bβ0, and that the velocities

V0, U0 are represented by aα and bβ.
Now let us imagine that the bodies A, B move following Aa and Bb with

velocities gV, gU; it is easy to see that in this case they trasverse the spaces Aa,
Bb in an instant equal to dt/g; and in next instant dt/g they would tend to move along

aa’ and bb’, that is to say, following aα, aα0, bβ, bβ0. Now well (hyp) the bodies A,
B, as they would tend to move aα0 and bβ0 in the next instant dt, are in equilibrium;

so they will also be in equilibrium if they tend to describe the same space in the time

dt/g (art. 2). Therefore the bodies A, B will describe actually in the second time dt/g
the spaces aα, bβ, so the velocities V0, U0 will change to gV0, gU0 maintaining the

same direction. Now what we have demonstrated here for a system of two bodies,

obviously will demonstrated in the same way for as many bodies as one wishes.

So etc.

1“Si potentiæ illæ omnes augeantur aut minuantur in ratione quavis data”. Mss.8. “If all those
powers were to increase or decrease in whatever ratio given.”
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Corollary III

4. The demonstration would be the same if one or many of the velocities V, U, v, u,
etc. were nil. Let, for example, the velocity U of the body B be equal to zero, and U0

its velocity in the next instant, then it will be Bb¼ 0, bb0 ¼ 0 and the sides bβ, bβ0 of
the parallelogram ββ0 will be equal and placed in a straight line. So that the velocity
U, which is assumed zero, may be regarded in this case as consisting of the equal

and opposite velocities U0, U00. That said, the demonstration remains the same, so if

the body A tends to move in any instant with the velocituy gV, and the body B is at

rest, in the next instant the body A will move with the velocity gV0 and the body

B with the velocity gU0.

Corollary IV and Fundamental

5. Let any system be with as many bodies as one likes A, B, C, D, etc. which are not
impelled by any accelerative force, and which, in the beginning, are supposed at

rest. When any velocity along any direction is impressed to only one of these

bodies, for example the body A, I say that the bodies A, B, C, Dwill describe curves,

certainly different from one another; but however each one in particular will be

always the same, whatever the initial velocity imparted to the body A was, provided

it was impressed in the same direction. Let α be the initial velocity impressed to the

body A, which by the mutual action of the bodies A, B, C, D is changed in the first

instant dt to V, and let U, v, u be the velocities that in the first time take the bodies

B, C, D under this action. Suppose then that in the second instant of time dt, these
velocities change into V0, U0, v0, u0; it is clear by the previous Corollary that if the

velocity impressed to the body A had been gα maintaining the same direction, the

actual velocities of bodies A, B, C, D in the first instant dt/g would have been gV,
gU, gv, gu, without changing direction. Therefore (Corol. 3) in the next instant dt/g
these velocities will change to gV0 gU0 gv0 gu0 and they will have the same direction

that the velocities V0, U0, v0, u0 would have had. Therefore, whether the initial

velocity imparted to the body A is α, or gα, where g is an arbitrary coefficient, the

bodies A, B, C, D, etc. will always describe the same curve, however with this

difference: that if in the case of the impressed velocity ¼ α, any portion of each of

Fig. 1.1 xxx
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these curves is described during a time t, the same portion will be described during

the time t/g in the case of the impressed velocity ¼ gα. Therefore, the time that

every body take to travel any part of the curve that describes will be inversely

proportional to the initial velocity impressed to the body A.

Corollary V

6. Let x be the rectilinear or curvilinear space described by one of the bodies, for

example A, in the first case when the impressed velocity is ¼ α, and let γ be the

velocity of the same body A when it has described this space x.
It is clear (art. 5) that if the initial impressed velocity had been gα, the velocity at

the end of the space x would have been gγ; because gα/gγ¼ α/γ. Therefore

whatever the initial impressed velocity to the body A is, the same velocity that

the body will have at the end of the space x will always be in the same ratio with the

initial velocity. Therefore if usually Q is denominated the initial velocity impressed

to the body A, q its actual initial velocity, and finally u its velocity at the end of the

space x, the fraction Q/u will be proportional to some function of x, and it will be of
the same fraction q/u as well. Therefore, naming X this function of x, it will give q/
u¼X, or taking the logarithmic differentials –du/u¼ ξdx, being ξ also a function

of x.

Corollary VI

7. So far we have excluded all accelerating or retarding forces. But if it is assumed

that each body is animated by a force proportional to the velocity, in this case all the

theorems proved in Corol. 2. 3. 4. etc. will be met. This last observation will be

useful in the sequel to determine the resistance of fluids taking into consideration

friction. Moreover, all previous theorems are, if I am not mistaken, entirely new.

Prop. II. Theorem

8. Let a solid body be submerged in a restful and non-elastic fluid; and, by
excluding of all the accelerative forces acting as much upon the body as the fluid,
let suppose that this body is given any impulse; I say:

1st. That whatever the initial velocity impressed to the body is, provided it is

impressed in the same direction, the body will always describe in the fluid the

same line, either straight or curved; but the time it will employ to traverse any

part of this line will be in inverse ratio of its initial velocity. This evident from

article 5.
2nd. That any particle of the fluid will always describe the same curve, whatever the

initial velocity impressed to the body is, and that in the moment when the body

has finished describing the space x, the velocity of the particle will always be in a
given ratio with the velocity of the body with the same instant. This is a

continuation of the same article 5.
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3rd. 2If the resistance of the fluid is assumed to depend only on the velocity of the

moved body, it can not be proportional to functions other than to the square of

this velocity. Because, let the initial velocity be g and at the end of the space

x the velocity ¼ u or zg, representing z a variable, t the time taken to traverse the

space x, and φ(u) a function of the velocity to which the resistance is propor-

tional. It will give by the general principle of the accelerative forces that φ(u)

dt¼ � du, or¼ � udu
φ uð Þ ¼ � zdzg2

φ zgð Þ. Now let in another case the initial velocity be g0,
the velocity at the end of the space x will be zg0 (art. 3) and it will give

dx ¼ � zdzg02
φ zg0ð Þ. Therefore comparing these two values of dx, it will give

g2

φ zgð Þ ¼ g02
φ zg0ð Þ, equation that must be acomplished in general, irrespective of z,

and which can not be met unless φ (zg)¼ z2g2. Therefore, φ(u)¼ u2. Q.F.D.

Corollary

9. Now in general let be R the resistance of the fluid, whether it depends on the

velocity alone, or on any other amount combined with it; it will give Rdx¼ � udu,
and dx¼ � udu/R. 3Now (art. 6), it gives in general dx¼ � du/uξ, so u/R¼ � 1/uξ,
and so R¼ ξu2. Therefore in general the resistance of the fluid is always propor-

tional to the square of the velocity multiplied by any function of the distance

traversed by the body.

So since ξ is a function of u/g (art. 6) it follows that the resistance R is as the

product u2 times of a function of u/g.

Scholium I

10. We will demonstrate later that the fluid resistance (excluding weight, friction

and elasticity) is actually proportional to the square of the velocity, so that the

function ξ of the space traversed is reduced to a constant.4 This proposal has been

regarded hitherto as true by all authors who have dealt with the action of fluids, and

many have demonstrated it in their way. But it seems to me that the proofs they give

are not very satisfactory. Because each of them is based on this single reason: the

more velocity the moving body has, the more it communicates to the fluid particles,

and the more it recieves at the same time from the particles of the same fluid. Well

now, it seems to me that nobody can deny that this reasoning is rather vague.

Others, claiming to treat this matter more accurately, found the resistance propor-

tional to the square of velocity, making all the assumptions we discussed in the

Introduction, and whose insufficiency we have demonstrated.

Morever, all these proofs, although not very convincing, all joined toghether in

the same conclusion, may make one suspect that certainly this conclusion is true,

and that the resistance of the fluids is actually proportional to the square of the

2In this article the letter g is used as the initial velocity, while in the preceding and followings

articles it is a multiplicative factor. Also the velocity relation at any point is here called z with the
same meaning as the former X.
3Strictly speaking the body mass should be introduced in the formula as, Rdx¼ �mudu.
4See Art. 87.
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velocity of the bodies which move therein. This is what we will discuss in more

depth later.

Scholium II

11. In general, it is obvious from the nature of our proof that in any system of bodies

which act on each other (excluding gravity, and all other external forces) the force

by which the motion of each body is altered at every moment is proportional to the

product of the square of the velocity times any function of the espace traverse.

Besides this, it is obvious from art. 5 that a body which moves in a single

homogeneous fluid, or which passes from a fluid into another, will always describe

the same curve, regardless of the initial velocity, provided it has the same direction.

Therefore a globe, for example, which passes obliquely from one fluid into another,

must always describe the same curve in its path if its angle of incidence on the lower

fluid does not change, whatever its initial velocity may be. This proves, to say in

passing, that if the light refraction is atributed to the resistance of the medium, it can

not be assumed that the difference of color, that is to say the different refrangibility

of the rays, comes from the difference in their velocities. See here my Treaty of the
Equilibrium and Motions of Fluids, I. III. Ch II.

Scholium III

12. It follows from all the principles establised so far, that the laws of the resistance

of fluids depend heavily on their equilibrium laws. We will therefore expound the

general laws of the Hydrostatics in the following chapter.
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Chapter 2

General Principles of the Equilibrium of Fluids

Propos. III. Theorem

13. Let ABCD (Fig. 2.1) be a fluid or any portion of fluid in which the particles are
impelled by any forces, so that they are equilibrium; I say, if, from any point P
placed inside that mass of fluid, are drawn the straight lines PA, PB to any two
points A, B of the surface ABCD, the point P will be equally pressed along BP and
along AB, or, what comes to be the same, the fluid contained in the channel or
siphon APB will be in equilibrium. In fact, nobody ignores that when a fluid is in
equilibrium, each particle P is pressed equally in all senses.

Scholium I

14. Even though the principle of the equilibrium of the rectilinear channels is, as

one can see, a very natural consequence of fluid pressure in all directions; however,

I must admit here that the late Mr. Maclaurin was the first who made use this

principle, which he applied to the important research on the figure of the Earth. See

his Treatise of fluxions art. 639, and his TreatiseOn the Cause of the ebb and flow of
the seas, Paris 1740.

Corollary I

15. If any point p is taken in BP, the pressure at p along Bp will be equal to the one

along Ap, so that the fluid enclosed within the rectilinear channel ApB would be in

equilibrium. Now the fluid enclosed in the APB channel would be as well; therefore

the fluid enclosed in any triangular channel ApP will be in equilibrium.

Corollary II

16. Thus the channel or rectangular siphon APCB (Fig. 2.2) would also be in

equilibrium; because drawing BP, we will see that the APB channel would be in

equilibrium and the PBC channel would be also (art. 15). So, etc.

© Springer International Publishing AG 2018

J. Simón Calero (ed.), Jean Le Rond D’Alembert: A New Theory of the Resistance
of Fluids, Studies in History and Philosophy of Science 47,

https://doi.org/10.1007/978-3-319-68000-2_2

25



Corollary III

17. If ED is drawn parallel to PC, it will be seen that the channel AEDB will be also

in equilibrium, therefore the rectangular channel EDCP must be also.

Corollary IV

18. Let AP (Fig. 2.3) be any curvilinear channel.1 I say that the fluid enclosed in the

channel will also be in equilibrium, because taking the axis Pp infinitely small, as

well as the arc Pp0, we will see (by the article 15) that the channels APp, App0 are
each other in particular in equilibrium. Therefore the channel APp0 will also be, and
it will be proved similarly that the channel APp0A will be in equilibrium, as well as

the channel BRQP; or the rectilinear channel APRB; therefore the curvilinear

channel APB will be also in equilibrium. Thus the principle of the equilibrium of

curvilinear channels is but a corollary of the simple principle of balance of

rectilinear triangular channels finishing in the fluid surface. Principle due to

M. MacLaurin.2

Fig. 2.1 xxx

Fig. 2.2 xxx

1We think that the definitions of the channels are not clear enough.
2In the Mss.19, he says that Clairaut had proved that, but with under a less general view.
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Corollary V3

19. Let M, N, O, Q (Fig. 2.4) be four points or particles of the fluid, infinitely close

each other, and located in such a way that MNQO is an infinitely small rectangle.

Let A be any fixed point inside or outside the fluid and in the MNOQ plane, AP
parallel to MO, and APM a right angle. It is assumed that the forces impelling the

points M, N, O, Q act in the plane MNOQ, or APM. It is obvious that instead of

power acting on M, for example two forces, can be assumed, one acting alongMO,
parallel to AP, the other alongMN, parallel to AZ; and similarly for the other points

N, O, Q. Let be AP ¼ x, PM ¼ y, R the force on pointM alongMO, and Q the force

of the same point along MN, MO ¼ α, β ¼ MN. Now imagine that the impelling4

forces of the points M, N, O, Q are proportional to any function of the distances

of these points to the lines AZ and PA. Finally, to make the proportion, let us

that the fluid is heterogeneous and the density δ of any particle M is proportional

to any other function of the lines AP and PM; in this case the force of the point

N is along NQ will be5Rþ βdRdy and the density of the column NQ ¼ δþ βdRdy, thus

the force of the column MO along MO being α�Rδ, that of the column NQ

along NQ will be α Rþ βdR
dy

� �
δþ βdδ

dy

� �
. By the same reasoning, it will be found

that the force of the column MN, being βQδ, the force of point O along OQ will be

þαdQdx , and the force of the column OQ along OQ ¼ β Qþ αdQ
dx

� �
δþ αdδ

dx

� �
;

because (art. 17) the rectangle channel MNQO must be in equilibrium. Therefore

the force of the columns MN and NQ along MN and NQ must be equal to that

of columns MO and OQ along MO and OQ. Therefore (neglecting what

should be neglected, that is to say, where the quantities αββ and βαα are found) it

Fig. 2.3 xxx

3The letter Q is used in two senses: as a geometrical point and as a force.
4In the Essay says “forces accélératrices”. We think this is a misprint for “forces sollicitatrices”,

because in the Mss. 20 is “vires sollicitatrices”.
5In general I refer to dR

dy ,
dR
dx ,

dδ
dy etc as the coefficients that dx, dy, etc would have in the

differentiation of the quantities R, δ, which (hyp.) are functions of x and y. M Fontaine was the

first who imagined this expression that is extremely convenient. (Original note).
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will give βQδþ αRδþ αβδdRdy þ αβRdδdy ¼ αRδþ βQδþ αβδdQdx þ αβQdδdx . Therefore

Qdδ
dx þ δdQ

dx ¼ Rdδ
dy þ δdR

dy , or what is the same thing
d Qδð Þ
dx ¼ d Rδð Þ

dy .

Corollary VI

20. Therefore, if the fluid is homogeneous, that is to say, if the density δ is constant,

it will give dQ
dx ¼ dR

dy; a proportion that was already known, but that nobody, it seems

to me, had yet demonstrated by a method as simple as we have just done. This

equation will be very useful to us in the following to determine the laws of the

resistance of homogeneous fluids, and the equation
d Qδð Þ
dx ¼ d Rδð Þ

dy to determine those

of the elastic fluids.

Fig. 2.4 xxx
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Chapter 3

General Principles of the Pressure Fluids,
in Motion or at Rest

Propos. IV. Problem
21. Let MNGH (Fig. 3.1) be a homogeneous fluid without weight, and that either it
is of an indefinite extension or enclosed in a reservoir of any size and shape. Place a
solid body BCDE anywhere one wishes inside this fluid, taking around that body a
fluid portion limited by the surface FOKL and assuming that all the particles of
either the fluid or the solid contained by the FOKL surface are impelled by such
forces that an equilibrium exists between the fluid and the solid. The pressure that
the fluid exerts on any point D of the solid body is impelled.

Let FB, OD be any lines that are terminated by the body surface and by the fluid

surface; it is obvious that the particles of the FO surface are impelled by forces that

are either absolutely zero, or at least are perpendicular the FO surface. In fact,

FOKL can be considered as the external surface of a fluid in equilibrium, since the

particles of fluid located outside the space FKPL are not required (hyp.) by any

force.1 Now, the fluid in the channel FBDO must be in equilibrium (art. 18),
therefore the weight of the OD channel is equal to the weight of the FBD channel.

Therefore the pressure in point D will be the same as if this point was pressed

perpendicular to the BDC surface by a force equal to the weight of the FBD
channel.

Corollary I
22. Let FB (Fig. 3.2) be a straight line, the weight of the particle Z along ZB ¼ φ,
FZ ¼ z, the pressure in B will be equal to which that becomes

R
φdz when z¼FB,

which I call K. Let be BD¼ s as well, and the weight of the particle V along VD¼ π;
the weight of the BD channel will be

R
πds. Therefore the pressure that the particle

Dd along DG undergoes, perpendicular to Dδ, will be equal to Dδ� (K +
R
πds);

1In Mss.25, it is said: “multis (hyp) viribus agitantur”: “they are impelled by many forces”.
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therefore the pressure resulting from the former along Dd, that is to say parallel to

BC, will be Dδ� K þ R
πds

� �� Dd
DK ¼ dδ� K þ R

πds
� �

, (because of the similar

triangles DKD, dDδ). Therefore, if the line FB is very small, it can be assumed

without noticeable error, that the pressure D parallel to BC is dδ� R
πds.

Fig. 3.1 xxx

Fig. 3.2 xxx
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Corollary II
23. Now let ψ be the gravitation force in the point V along RV¼ y, BR¼ x (Fig. 3.3),

this will give π ¼ ψdx
ds . Therefore πds ¼ ψ dx and so

R
πds¼ R

ψdx; so the pressure

in V along Vu will be
R
ψdx2; that is to say, it will be equal to the weight of a straight

column VN in which the parties would be impelled by the variable force ψ .3 In the

same way the pressure over the point u along uV will be equal, for the same reason,

to the weight that the column Nu would have; therefore the pressure at the point

V along VN will be equal to the weight of the column Vu, for which this theorem is

deduced.

If the parties V of the fluid contiguous to the BDCE surface are impelled along

VO, parallel to the axis BC, by a power ψ, which is different (if desired) for each

point V; I say that the weight that the body BDCE undergoes in virtue of all these

forces will be directed from C to B and will be equal to the weight that the body

would have along BC, if all the parts contained in each ordinate QV were pushed

parallel to BC by the same force ψ acting on the corresponding point V.

Fig. 3.3 xxx

2In the original “so the pressure in Vu will be. . .”. We think it is a lapse, we have followed the

Mss.27: “Igitur pression in V secundum Vu erit. . .”: “Therefore, the pressure at V following Vu
will be [ ], that is, of the same weight that the column NV, whose parts will be impelled by the same

force ψ . . .”
3Probably the term “variable” is a lapse, because the gravitation is obviously constant. Further-

more, in theMss. 27, this word is missed out: “cujus partes sollicitarentur eadem vi ψ. . .”, “which
parts are impelled by the same force ψ”.
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Corollary III4

24. Let be BDCE (Fig. 3.4)5 in a channel reentering itself and filled with fluid

[whose parts BD y BE are impelled by any forces, while the parts DC, EC are not

pressed by any force], and that the points N, n are those which correspond the

largest width Nn of the channel. Let suppose that these two points N, n are impelled

parallel to BC by a force φ [resulting from the forces acting upon BD and BE]; I say
that the pressure which results along BC will be ¼φ�Nn. Because the pressure φ
that acts on point N, it also acts [by the nature of the fluids] on all points R of

the portion NRC; so that the pressure R, acting perpendicularly to the channel

walls, is Rr�φ; from this pressure another results along rr0 that will be¼ Rr � φ�
Rr0
Rr ¼ φ� Rr0; therefore all the pressure along CB¼φ� R

Rr0 ¼φ�Nn.

Corollary IV
25. Let be BVDNCEB a channel whose all parts are impelled along VL by a constant

force ¼ ψ, the pressure of this channel along BC will be (art. 23) ψ
R
ydx,

designating
R
ydx as the mass of the body BDCE. Let suppose, besides this, that

the parties of the channel BVDN are impelled by variable forces π, which act along

VD, so that these forces π end at point N, which corresponds to the largest ordinate.
The resulting pressure from B to C will be

R
dy

R
πds (art. 22); now let Δ be the

value of
R
πds at N, it is clear that the pressure at N is Δ, and that this pressure (art.

Fig. 3.4 xxx

4In order to make this article three sentences taken from the Mss.28 are added. “Sit BDCE

canaliculus fluido plenus, cujus partes BL, Bl viribus quibuscumque sollicitentur, partes vero

LC, lC nulla vi premantur. Sit φ presio in L et in l, orta a viribus in BL et Bl agentibus, dico. . .”.
Mss.2800. “Let BDCE a small cannel full of fluid, whose parts BL, BI are impelled by whatever

forces, while the parts LC, IC are not pressed by any force. Let φ the pressure at L and l
due to the forces which act in BL and Bl, I say. . .”
5In the original the letter O is missing and r and r0 are changed.
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24) is the same in all parts of the NC channel; therefore the pressure from C to

B coming from the NCE channel will be Δ � b, b designing the largest ordinate Nn.

Therefore if we call G what
R
dy

R
πds becomes when y¼ON,6 the total pressure

along BC will be ¼ψ
R
ydx�Δ � b+G.

Note
26. So far we have looked at the body BDCE as a plane figure, or, what is the same

thing, as a solid generated by the parallel movement of a plane figure. However if

this solid were generated by the revolution of the figure BDCE around the axis BC,
then in this case naming the ratio of the circumference of the circle to the radius as

2π, in the above formulas
R
y2dx should be substituted instead of

R
ydx, πb

2

4
instead of

b, and 2πydy instead of dy.

Propos. V. Problem
27. Let ABCD (Fig. 3.5) be either a pipe or channel of indefinite length, whose
walls AB, CD, are extremely close each other, and whose width is always the same
in its upper part FABG, after that it grows from A till C, or at least it is variable.
Then let us suppose that in this channel a homogeneous fluid flows without weight,
so that in the indefinite and cylindrical part FABG the fluid velocity is uniform and

Fig. 3.5 xxx

6In the original y¼NL, it is a misprint.
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always the same. The fluid velocity is impelled at any point P of the channel ABCD,
and the pressure at the point P.

1st. It is obvious that all parts of the fluid contained in any slice PM always have

the same velocity, at least very nearly, both because PM is assumed to be very small

and because one can imagine a certain viscosity in the particles of the fluid,

whereby the particles that are contiguous each other in a slice PM adherence to

each other, and they have an equal velocity. For the same reason, all parts of the

slice AB have the same velocity. Therefore while the particles AB come into ab, the
particles PM will come into pm, so PMmp¼ABba or PM�Pp¼AB�Aa, because
PM and AB can considered as perpendicular to Pp and Aa. Therefore the velocity at
the point P is to the velocity at point A as Pp to Aa, that is to say, as AB to PM.

Therefore taking PM¼ y, AB¼ β, the constant velocity at A is b,7 and the velocity at
M or P is u, this will give u ¼ bβ

y .

2nd.8 Let AP ¼ x be and dt the instant used to traverse Pp; it is clear that at the
end of the instant dt the velocity u becomes u + du, in such a way that when the PM
particles pass to pm, the velocity with which they tend to move becomes u + du
(I use +du, although the velocity actually decreases from P to p, the width of the

channel from A to P is assumed growing in the Figure, but as du is negative when

x increases, it follows that u+ du is actually less than u). Now then, the velocity u is
composed of u+ du and –du; whence it follows (art. 1) that if the slice PM were

impelled by the single infinitely small velocity–du, or what is the same thing, by the

only accelerating force �du
dt , the fluid contained in the ABCD channel would be in

equilibrium. Therefore the pressure at P will be the same if the particles PM of each

slice were impelled by a force �du
dt ; well now, in this case it is found that making

Pp¼ ds, the pressure at P would be
R
Pp� �du

dt ¼ R
ds� �du

dt . Therefore because

ds¼ udt, it will give the pressure at P as
R �udu ¼ b2�u2

2
¼ b2 y2�β2

2y2 .

Corollary I
28. If (for any reason whatsoever) the velocity of the fluid in the cylindrical portion

ABGF was not always the same, so that b was variable, then putting in the place of

b any other variable v, I we t will have u ¼ vβ
y and �du ¼ β � �ydvþvdyð Þ

y2 . Therefore

the pressure in P would be �βdv
dt � R

ds
y þ βv

R dsdy
y2dt, taking v, dv and dt constants,

because the pressure which is sought is not the sum of pressures in a time t, but the

pressure in an instant dt. Therefore if in dsdy
y2dt one puts in the place of dt its value

ds
u or

yds
βv , it will give the pressure en P ¼ �βdv

dt � R
ds
y þ β2v2 � 1

2β2
� 1

2y2

� �
.

7The letter b is used here as velocity.
8In the beginning of the paragraph the symbol x is used for the vertical distance, but later it is

changed to s. Also P is used for a geometric point and for the pressure.
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Corollary II
29. If the fluid is assumed to be heavy, then taking g for the natural gravity, it is

clear that the PM particles impelled by the forces g� du
dt will be (art. 1) in

equilibrium between them. Therefore, 1st, if the velocity v is constant, the

pressure will be
R
ds g� du

dt

� � ¼ g � APþ b2
y2�β2ð Þ
2y2 to which must be added g�FA.

2nd, if the velocity v is variable, the pressure will be

g � AP� βdv
dt �

R
ds
y þ β2v2 1

2β2
� 1

2y2

� �
þ g� dv

dt

� � � FA:

Scholium I
30. If the ordinates PM decrease from A to P, then the fluid velocity will increase

from A to P, and the pressure will be from P to A. Therefore in this let the case

Q (Fig. 3.69) be the site where the channel width is the least, and therefore the fluid

velocity the greatest; it will be found that the pressure at P is equal to half of the

square of the velocity at Q minus half of the square of the velocity in P. Such that,

the pressure is highest in A and null in Q.

But perhaps one can say, how can it be that the pressure is not null at A, and on

the contrary it is greater than at another point? Because if there is some pressure at

A along AF, it must necessarily have an equal pressure along FA; now then, the fluid

(hyp.) moves uniformly from F to A, therefore at A there cannot be any pressure

along FA. I answer that having supposed the channel AFBG of indefinite length, the

pressure at A is supported by the only mass of fluid AFBG. In fact, if the fluid

Fig. 3.6 xxx

9That article is somewhat confused. The original Fig. 3.6 (left side) does not correspond with the

narrative description given. Rather it agrees with the right one, taken from Mss.34 and Fig. 12.
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contained in the cylindrical channel AFBG was not supposed undefined, then it

would be necessary that the velocity decreases at every moment, so that the velocity

increases in the narrowed channel ABMP; for the same reason that when a body

strikes another that moves the same direction, the velocity of the rear body

decreases and that of the previous body increases. To make it more noticeable, let

l be the length of the channel FABG assumed to be finite, and imagine that each

particle of this channel has received a velocity V that must change to U due to the

communication with the part AQNB; the velocity in PM will be vβ
y , and the pressure

at AB along FA will be equal to the pressure at AB along PA (art. 1); from where

V � Uð Þl ¼ U
R

dsβ
y is obtained, thereforeU ¼ Vl

lþ
R

βds
y

; so V�U is not zero unless l is

undefined. In any other case it will give U<V.

Corollary III
31. If the pipe is not vertical but inclined, as shown in Fig. 3.7, then drawing the

vertical AZ and the horizontal PZ, it will be necessary to put g�AZ instead of g�AP in

the two formulas of the precedent corollary, because the quantity gds changes into

g� Zz
Pp � Pp ¼ g � Zz.

Furthermore, if there is no accelerative and external force acting upon the fluid

more other than the natural gravity, we will give in the case of the art. 29, dvdt ¼ g and

in the case of the preceding article. dvdt ¼ gh, naming the cosine of the inclination of

the pipe FA as h. Thus in the first case the pressure will be equal to g � AP� βgR
ds
y þ β2v2 1

2β2
� 1

2y2

� �
and in the second case it will be g � AZ � βgh

R
ds
y þ β2v2 � 1

2β2
� 1

2y2

� �
.

Fig. 3.7 xxx
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Corollary IV

32. Since βv
y is the velocity at P or M, in general let vρ be the velocity at M, and

[in consequence] the pressure will be �dv
dt � R

ρdsþ v2

2
1� ρ2½ �, g being ¼ 0. This

expression will be of great use in the sequel.

Scholium II
33. In general, whether the fluid heavy or not, it can be assumed that the velocity v is
equal to that of a body impelled by the gravity g and falling from the height h.10

Therefore in the case of art. 27 we will have v2¼ 2gh, and the pressure P¼ gh
(ρ2� 1), thus the pressure P would be the same as that of a column of stagnant fluid

of gravity g and height h (1� ρ2). By this we see that the formula found here for the

amount of pressure can be used for registering and comparing easily known

pressures.

Scholium III
34. So far we have assumed the fluid density constant. If it was not, let δ be the fluid
density at P orM, and δ0 the density at A (Fig. 3.5). I say that the velocity at Pwill be
βvδ0
yδ . Since assuming the mass of ABba equal to that of PMmp, we will have

Aa� δ0 �Bb¼PM�Pp� δ. Therefore making βv
y ¼ vρ, and δ ¼ δ0

σ , we will have

the velocity atM ¼ vρσ, from where the pressure will be� δ0dv
dt

R σρds
v � δ0v

R dsd ρσð Þ
vds ,

that is to say (because dt ¼ ds
vρσ) equal to

�δ0dv
ds

R
ρds� δ0v2

R
ρd ρσð Þ, g being zero.

10Here we have followed the Mss. 36, because the Essay is not clear. The original text is “. . .la
vitesse v égale �a celle qu’acquêterait un corps sollicité par la pesanteur g et tombant de la hauteur

h soit variable, soit constante. Donc dans le premier cas on aura bb ¼ 2gh. . .”. It is not clear what
the words variable or constant refer to. The same is applicable to the mentioned first case. In the

Mss.36. “Generatim sive fluidum grave, sive non grave supponatur, potest spectari velocitas v

tanquam debita altitudini h ex qua corpus gravitate g sollicitatum caderet. Unde in casu art. 31. . .
erit vv ¼ 2gh.”Mss.36. “In general, assuming a fluid either heavy or not heavy, the velocity v can
be considered as the one due to a height h, from which a body falls impelled by the gravity g. From
this in the case of art. 31 it would be vv ¼ 2gh.”. It is worth noting that the Mss. 36 ends as

“Cæterum, methodus qua in præsenti capite pressionem fluidorum sive quiescentium, sive

motorum definivi, ex genuinis mechanic principiis deducta mihi videtur.” That is “For the rest,

it seems to me that the method that I have defined in this chapter for the fluid pressure, be they at

rest or in motion, is deduced from the genuine principles of mechanics.”
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Chapter 4

On the Pressure That a Fluid Exerts on a Body

at Rest and Immersed in It

35. In order to determine the resistance that a fluid, either in motion or at rest,

produces on a body that moves therein, we must first to determine the action that a

moving fluid exerts against a body at rest. Because we will show in the next chapter

that the whole theory of the resistance of fluids depends upon that, therefore we

begin by expounding our research on this subject.

4.1 Observations Necessary for the Understanding

of the Subsequent Propositions

36. Let QqGH (Fig. 4.1) be a homogeneous fluid and without weight, either

indefinite or enclosed in a vessel of any size and figure. The fluid moves from

Q to H, and let a solid body AECD be submerged in the fluid, which, notwithstand-

ing the action that the fluid exerts upon it, remains at rest for any cause that may be,

for example, the resistance of a power pushing the body from C to A, while the fluid
pushes from A to C. The pressure of the fluid upon the body ADCE is impelled.

1st. It is obvious that the particles of the fluid, if the body ADCE did not obstruct

them, must describe the lines parallel among them Tf, OK, PS, etc., but the presence
of the body, when the lines approach at some distance from the body, makes that

they have to change their direction gradually at F, K, S, etc. and describe the curves
FM, Km, Sn, etc. Those lines will differ more from a straight line as they are nearer

to the surface ADC, and on the contrary less different from a straight line as they are

more distant from that surface. So at a certain distance from the body ADEC, eg. ZY,
these curves will become straight lines; and the fluid contained in the space ZYHQ
will move uniformly, in the same way as if the solid body ADCE was not in the

fluid. It is necessary to say the same about the fluid which is at the other side of

AEC, and if this part AEC is equal and similar to ADC, the curves which the
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particles of the fluid describe at the side of AEC will be completely similar and

equal to those which are described at the side ADC.
2nd. Besides, since the body ADCE is assumed at rest and excluding all

accelerative forces that could act upon the fluid, it is obvious that the motion of

the fluid must be assumed to be in a permanent state; that is to say that the curves

FD, Km described in any instant by the particles are always the same; so that the

particles which have described, for example the straight line OK, will always
describe the curved line Km.

3rd. Every body in motion that changes direction only makes this change by

imperceptible degrees. From the foregoing, it follows that the particles moving in

the axis TF do not arrive at vertex A of the body. Because if they arrived at A, then
because of the right angle FAa, their direction TA must change in an instant to

another direction that will make with the former TA a finite angle. Therefore the

particles that move in the axis TF will start leaving this direction at least at some

small distance from A, for example F, and they will describe the curve FM that

touches the TF line in F, and the surface of body inM. Next this curve will coincide

and will slide exactly on the surface of the solid body MDL until a point L where it

will leave this surface, to reach and touch the axis TAC at R. From this it follows

that there are spaces FAM, CLR in front and behind the solid, where the fluid is

necessarily stagnant. The same should be said on the other side AEC.

Fig. 4.1 xxx
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4th. Let us suppose for convenience that the part AEC of the body is perfectly

similar and equal to the part ADC, in this case the action of the fluid will be exactly
the same on both sides, this is why we will only pay attention to the part ADC. Now,
let α be the velocity of the particles of the fluid in any instant, this velocity becomes

α0 in the next instant and let us assume that the velocity α is composed of velocities

α0 and α00; it is obvious (art. 1) that the particles of the fluid, if they tend to move

with the single velocity α00, would be in equilibrium, and in this case, the fluid

pressure would be the same as if it was stagnant and its parts were subjected to the

accelerative force α00/dt. Now then, let be α constant, that is to say, α¼ α0 and then

the particles are moved in a straight line, it will give α00 ¼ α0 – α¼ 0. Therefore the

body cannot undergo any pressure other than the fluid particles, whose velocity, or

direction, or both are changed by the encounter with the body.

5th. So let α and α0 be the velocities of these particles in two consecutive instants
(it is not necessary to notice that these quantities α and α0 are indeterminate and

different for each particle). It is obvious that these particles would be in equilibrium

if they were impelled to move by the accelerative force α00/dt. Therefore if γ is the
point where the particles that describe the TF line starts changing the velocity, the

pressure at D, for example, will be equal to the pressure that a fluid contained in the

γFMD channel, whose parts were driven by the force α00/dt different for each one,

would exert. The question, therefore, is reduced to finding both the curvature of the

channel γFMD and the forces α00/dt in this channel.

I remark at first that no pressure can result from the particles contained in the

portion FM, which touches the axis at F and the surface at M. To prove this, I

assume that the particle a (Fig. 4.2) of the part FM, describes in any instant the

small line ab, and in the next instant the line bc. Let us make bd equal and in the

straight line with ab, it is clear that the particle a, when it comes to b, would
describe in the next instant the line bd, if nothing w ere to prevent it. But as it is

forced to describe bc, it follows that the velocity ab or bd, that it had in the previous
instant, can be considered (art. 1) as composed of the velocity bc, that it has in the

next instant, and another velocity cd which must be destroyed. Therefore putting bi
parallel to dc, and ie perpendicular to bc, it is clear that the particle b impelled by

the forces be, eimust remain in equilibrium. That said, I say that be will be equal to
zero; said in general, that the accelerative or retarding force of the particle b along

bc must be null. Because if it was not, let us draw bm (Fig. 4.3) perpendicular to Fb
and nq which is infinitely close; therefore the part bn of the fluid contained in the

channel bnqm would have some pressure from b to n or from n to b. Therefore since
the fluid in the channel bnqm must be in equilibrium, it would need also some

action, at least upon one of parts bm, qm, qn to counteract the action of the part bn.
But it has been proven that the fluid is stagnant in the space FAM; so there is no

force that can act on bm, mq, qn; so the pressure on the channel bn along bn or nb is
null. Therefore the force along be (Fig. 4.2) of the particle b is equal zero; hence bi
or cd is perpendicular to bc, therefore there is not any pressure in the channel FM, if

this is not coming from the upper part γF (Fig. 4.1) or from the force ei (Fig. 4.2).
But as the latter is perpendicular to the channel walls, it follows that it does not exert
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any pressure from F to M; therefore the point M undergoes no pressure other than

that which t can come from the part γF (Fig. 4.1).

From above it follows that the velocity in the curve FM is either constant if it is

finite or infinitely small if it is variable. Because in the first case, the force along be
will be absolutely null; and in the second it will be infinitely small of the second

order, and consequently it can be considered as null. We will make clear later that is

the second case which takes place here,1 that is to say that the fluid velocity along

FaM must be infinitely small, or at least so small that it can be treated as zero.

Whence it follows that the velocity of the fluid, before starting to change the

direction at F, begins to change the magnitude in some point γ above the point F;
so that, it decreases after γ until F to become very small in F.

Corollary I

37. Therefore the pressure on any point D comes both from the part γF and from the

fluid particles that are in the channel MD. Now then as these latter particles move

along the body surface; the force α00/dt, destroyed in each one, is composed of

Fig. 4.2 xxx

Fig. 4.3 xxx

1This will be in §.52-53.
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another two, one along the surface MD, the other perpendicular to that surface. Let

call the first of these forces π, the second π0; we will see easily that the point D is

pressed perpendicular to the surface MD: 1st, by the sum of π forces in the curve

MD; 2nd, by the force π0 which acts upon the single point D. Now then, this latter

force, acts only on a single point D, being infinitely small compared to the sum of π
forces acting on the infinite number of particles placed in the curve MD, it follows
that the pressure upon point D is the sum only of the π forces. Therefore taking in

the arc MD any infinitesimal portion (Fig. 4.2) Nm¼ ds, the pressure in

D perpendicular to the surface of the body will be equal to
R
πds, and this quantityR

πds must be taken in such a way that
R
πds¼ 0 in M.

Corollary II

38. Therefore to determine the pressure at D, it is necessary to know the force π at

any point N (Fig. 4.2). So let u be the velocity of the particle N following Nm in any

instant and u + du its velocity in the next instant; it will give (art. 1) π¼ – du/dt. The
question is therefore reduced to finding the velocity u of any point N following Nm.
The following propositions are committed to doing this.

Proposition VI. Theorem

39. Whatever the velocity and density of the moving fluid and mass of the body
ADCE are (Fig. 4.1) as long as the body always keeps the same figure and the same
volume; I say that each of the curves FaMD, Kmd, which are all different from each
other, will be always the same.

At first I will prove that it can be assumed that each of these curves is always the

same; next I will prove that they must be necessarily to be supposed as such.

I

[1st.] Let U be the velocity of any particle m, when the velocity at γ is a. Next let us
assume a similar body, with the same figure and the same volume, exposed to

another fluid current whose velocity and density are whatever; and finally, let us

suppose that in both cases the curves FaM, Km, etc. and the two points γ, F are the

same. I am going to prove that this assumption is legitimate. Let ga be the velocity

at γ, g being an arbitrary coefficient; I say that the curves can remain the same,

provided that the velocity at m is gU, that is to say in general, whenever the velocity
at any point is changed at a ratio of g to 1 without changing the direction. Indeed,

the ratio of the velocity U at m to the velocity a depends only on the mutual distance

of the curves FM, Km at m, because the ratio of velocities U and a depends on the

width of the channel contained between the curves FM and Km. Therefore these

curves can remain the same, provided that the ratio of velocities U, a, does not

change; that is to say, provided that U becomes gU, a becomes ga.2

2nd. When the velocity is a at γ and U at m, the force α00/dt represents (art. 36)
the force that must be destroyed in each particle, so that the parts of the fluid

2“Eadem autem remanet hæc ratio, quando velocitas in M est. gU, in g vero ga” Mss.42.I. “If this
same reason is maintained, when the velocity at M is gU, at G it is ga”.
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impelled by the force α00/dt would be in equilibrium among them. Now then, if the

parts of a fluid, whose density is δ, are driven by any forces π are in equilibrium, it is

obvious that the equilibrium subsists if the force π becomes πg and density δh, g and
h being arbitrary coefficients, provided that the direction of the acting force on each
particle remains the same. Therefore the equilibrium of the fluid whose parties are

animated by the force α00/dt will not be disturbed if the fluid density is changed at

wish and each force α00/dt becomes gα00/dt, maintaining the same direction; now

then the curves described by the fluid particles always remain the same (hyp.). It is
obvious that if the velocities U generate3 the force α00/dt, the velocities gU will

generate gα00/dt. Therefore the force gα00/dt will be destroyed and therefore one can
assume that the curves FM, Km are the same in both cases.

II

Now I say, it follows from that that these curves are necessarily the same. Since the

particles of the fluid can always describe the same curves in the two cases, as we

have just proved. Therefore they really must describe them, since both the fluid

density and its velocity were given, and the figure and mass of the body, the way

that each particle must traverse is necessarily determined and unique. This reason-

ing is completely analogous to the one which is accepted by all geometers: if a body

is thrown in the vacuum, in the case of Newtonian attraction, there is always a conic

section that it can describe. Therefore it must actually describe this section, since

the way it should traverse is necessarily unique and determined.

Corollary I

40. Therefore whatever the fluid velocity a, its density and body mass are, U/a will

always be constant for the same point m, although different for different points; as

a becomes ga, U becomes gU, now then U/a¼gU/ga. Moreover, the velocities

U and gU will have the same direction at m, since the curves described by the point
m are the same in both cases.

Corollary II

41. Therefore if in general one assumes U/a¼ ρ, the quantity ρ will neither depend

on the fluid density nor the body mass, but only on the figure and volume of the

body, and the position of the point m. Therefore making AP ¼ x and Pm ¼ z, ρ will
be a function of x and z that will vary depending on the body figure ADCE.

Corollary III

42. Therefore, since the velocity has always the same direction, if this velocity is

split into two others, one parallel to AP, that I call aq, the other perpendicular to AP,
that I call ap, q and p will be functions of x and z which will depend neither on the

velocity, nor on the fluid density.

3“donnent” in the original, but in Mss.42.I is “exurgat”, whose meaning is rather to generate.
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Proposition VII. Theorem

43. Let us assume that any fluid particle N (Fig. 4.4)4 describes the two contiguous
sides and infinitely small FN, Nm of the curve FNm, and let aq be the velocity of
particle N in N parallel to AP; ap its velocity at N perpendicular to AP, q and p

being (art. 42) unknown functions of AP (x) and PN (z). Finally, let
dq¼AdxþBdz, and dp¼A0dxþB0dz, A, B and A0, B0 are similarly unknown
functions of x and z. I say that the force along NB perpendicular to AP, which must
be destroyed in the particle N, will be –(B0p –A0q)a2.

Becausewhen the particleN is atN, its force alongNB, which should be destroyed, is
the excess of the velocity that it has atF alongFE over the velocity that it has atN along

NB. Now then the velocity atN alongNB is equal to ap. Therefore the velocity atF along

FE is equal to ap� a � FE� dp
dz � a � NE� dp

dx, or a� (p�FE�B0 �NE�A0); now
then the velocity at F along FE is to the velocity at N along NB, as FE tomO or apdt, it

has NE ¼ FE�q
p . Therefore it will give ap : ap� a � FE� B0 � aq�FE�A0

p :: apdt : FE.

Therefore (considering FE as infinitely small, and consequently rejecting of its expres-

sion the third order quantities) it will find FE ¼ apdt 1� aB0dt� aA0qdt
p

� �
. Therefore

E� Om ¼ a2pdt2 � �B0 � A0q
p

� �
; therefore the force in N along NB, that is to

FE�Om
dt2

¼ �pB0 � A0qð Þa2. This Q.F.D.
Scholium

44. By similar reasoning aq : aq� a� NE�dq
dx � a�NE�p

pq � dq
dz :: aqdt : NE can be

found where NE�NO
dt2

is obtained (that is to say, the force which must be destroyed

at N along NO) equal to (–Aq�Bp)a2.
It is worth noting that the lines FN, Nm are always in a plane passing through the

axis of the body when the body is a solid of revolution. In the following

Fig. 4.4 xxx

4In this figure B, D and C are not used, however NB ¼ FE and NC ¼ NE.
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propositions, we only consider the types of solids generated by the revolution of

figure ADC (Fig. 4.1) about the axis AC, and we shall pay attention to only one

section ADC for the axis, because the calculation must be the same for all the rest.

Proposition VIII. Theorem

45. Being the same things as in art. 43, I say that B0 ¼ �a� P
z
and A0 ¼B.

Let KQM0 (Fig. 4.5) be the curve described by the fluid particles infinitely close

to the surface AMN, and let the ordinates PNM0, pnm0, be drawn infinitely close; NR
perpendicular to pm0 and NQ to AN or QM0m0.

1st. It is obvious that the fluid velocity in N along Nm is in inverse ratio of the

conical surface described by the revolution of NQ around FP. Therefore the

velocity at N is as 1
NQ�PN. Therefore if the velocity along Nm is called U, and PN¼ z

or y is made, it will give¼ α2a
Uz , a being the velocity at g and α a constant in order to

keep the law of the homogeneity.5

2nd. Now, the velocity U along Nm is composed of the velocity along NR that I

call aq, and the velocity parallel to Rm, that I call ap, so that U : qa∷Nm :NR; now
then because of the similar triangles QNM0, NRm, we have Nm :NR∷NM0 :NQ, so
U�NQ¼ aq�NM0. Therefore as NQ ¼ α2a

Uz , it follows that NM
0 ¼ α2

qz.

3rd. Let p and q be functions of AP (x) and PN(y), or in general functions of

AP¼ x and PM0 ¼ z, that is to say, let be the velocity of any particle a function of the

Fig. 4.5 xxx

5The point N can be seen either as on the body surface, or as belonging in general to a line in any

curve FN, whether contiguous to the body or not but described by the fluid particles. The ordinate

PN of this curve is generally called z, and when it becomes the ordinate of the body itself, I call it y.
In this and the following articles, the FN curve is not regarded as adjacent to the body surface, but

away from the body at such distance as liked. It is for not multiplying the figures that we consider it

as adjacent to the body in the Fig. 4.5. [Original note].
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distances to the lines AV and AP, it is clear that aq being the velocity atM0 alongM0r,
the velocity at N along NR will be: aqþ a � NM0 � dqdz ¼ aqþ α2a

qz � dq
dz. For the same

reason the velocity at M0 parallel to rm0 will be: apþ α2a
qz � dp

dz. Besides that, being

NM0 ¼ a2

qz , it will give:mm
0 ¼ a2

qz þ a2 � Pp � d
dx

1
qz

� �
þ Rm � a2 � d

dz
1
qz

� �
¼ a2

qz þ a2�dx�
d
dx

1
qz

� �
þ a2 � dz� ddz 1

qz

� �
. Therefore: rm0 ¼ Rmþ mm0 � Rr ¼ dzþ α2dx � d

dx
1
qz

�
þ

�
α2dz � d

dz
1
qzÞ

�
. Now then the velocity alongM0r is to the velocity atM0 parallel to rm0,

as M0r to rm0.

Therefore it will give the next equation:
aqþα2a

qz
dq
dz

apþα2a
qz

dp
dz

¼ dx
dzþα2dx� ddx 1

qzÞþα2dz� ddz 1
qzÞðð . Now

then dx
dy ¼ q

pbecause the velocity at N parallel to dx is equal to aq, and parallel to dz is

ap. Therefore we will have (neglecting quantities where α4 is found and dividing

the other for α2a) the following equation: 1
pqz

dq
dz � 1

ppz
dp
dz ¼ �d d

dx
1
qz

� �
q2

p2 � q
p
d
dz

1
qz

� �
.

Then pdq�qdp
zp2qdz ¼ qz2dq

z2q2p2du þ zqdq
z2pq2du þ q2

pz2q2
. Therefore �dp

dz ¼ dq
dz þ p

z. Hence, if dq¼Adx

+Bdz and dp¼A0dx+B0dz are made, it will give6: B0 ¼ �A� p
z.

4th. Now let T be any point above γ. The fluid contained in the channel TNM0t and
driven by the forces α00/dt, must be in equilibrium (art. 1), that is to say, the pressure
of the channelNM0 alongNM0 joinedwith the force of the channel TFMN alongFMN
must be equal to the force of the channel tKQM0; because in the channel Tt there is
not any pressure, since the velocity at T, t is uniform and rectilinear. Now then the

pressure on M that comes from channel TFMN is (art. 27) (a2�U2)/2 and the

pressure in M0 coming from the channel tKQM0 is for the same reason (a2�U02)/2
(naming U0 the velocity at M0 along Nm0). Therefore (U02�U2)/2 is equal to the

pressure of channel NM0 along NM0. But U2¼ (p2 +q2)a2. And U02 ¼ ðp02 þ q02Þ
a2 ¼ ðp2 þ q2Þa2 þ a2 � NM0 � dðp2þq2Þ

dz ¼ ðp2 þ q2Þa2 þ α2�a2
qz � dðp2þq2Þ

dz . Therefore:

U02�U2

2
¼ � pdp

dz þ qdq
dz

� �
α2a2

qz ¼ α2a2

z � B0p
q � B

� �
. Now then the force of channel NM0

along NM0 is (art. 43): NM0 � p� �B0 � Aq0
p2

� �
¼ α2a

qz p �B0 � A0q
p

� �
. Then we will have:

α2a
z � B0p

q � B
� �

¼ α2a
qz p �B0 � A0q

p

� �
. Therefore B¼A0. Q.F.D.

From those the following theorem results. Let qa be the velocity of the fluid

particles parallel to AP, ap its velocity parallel to AV, and let be dq¼Adx +Bdz,
A and B being functions of x and z, it will give dp¼Bdx�Adz� pdz/z or d(pz)¼
zBdx�Azdz.

Corollary I

46. So Adx +Bdz and zBdx –Azdzmust be exact differentials. We will see later how

A and B can be determined by these conditions, or what is the same, q and p.

6This sentence is unnecessary and confusing. If only to remind us that A¼ dq/dz and B
0 ¼ dp/dz.

There is also a misprint dy instead dp. This does not appear in the Mss.47-3rd.
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Corollary II

47. I do not need to announce that the same law that the quantities q and p follow

has so less place for the upper part FM and adjacent curves as for the part MD in

contact with the body surface and adjacent curves. It should be only noted that as

the curves FM,MD do not belong to the same equation, the values of q and p in the
curve FM will be determined for an equation other than that for the curve MD,
although in one and in the other dq¼Adx +Bdz and d(pz)¼ zBdx – zAdz must be

accomplished.

Another Proof of Proposition VIII

48. The equations dq¼Adx+Bdz and Bdx –Adz – pdz/z can still be found by

another slightly more general method than the previous one. I will explain this

method here very willingly, since it will be very useful to us later in the sequel of

these researches to determine the resistance which a fluid at rest produces to body

that moves therein.

First of all let N, C, D, B (Fig. 4.6) be four fluid particles, infinitely close each

other, separated from the body as desired, and placed so that NCDB is rectangular

parallelogram; N0, C0, D0, B0 four other fluid particles, forming a rectangle, so that

the axis AP is the common section of the two planes NCBD, N0C0B0D0, and NN0, BB0

infinitely small arcs described from the center P.
Now let us imagine that the particles N, C, D, B reach (Fig. 4.7) n, c, d, b. I say

that ncdb can be taken without error for a rectangular parallelogram. Because

having drawn Mnb0, b0bd0, nc, Gco, the parallelogram rectangle nb0d0c is formed;

it is obvious that the triangles nc0c, bdo0 are infinitely small of the third order (since

the line nc0 is infinitely small of the first one, and the difference of lines Gc, Mn is

infinitely small of the second order). Therefore the difference of triangles nc0c, bd0o
is infinitely small of the fourth order. LikewiseiIt must be said of the difference

between the triangles nb0b, cod; therefore the area of the figure nbdc can be

estimated equal to that of figure nb0d0c. Hence the small parallelepiped whose

bases (Fig. 4.6) are NN0B0B, CC0D0D will be changed into another one.

Fig. 4.6 xxx
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Now having made (Fig. 4.7)NM¼ aqdt,NC¼ α, NB¼ β, it will give:CG ¼ aqdt

þαdtadqdx and nc
0 ornc ¼ NCþ CG� NM ¼ αþ aqdtþ αdtadqdx � aqdt ¼ αþ αdtadqdx .

For the same reason it will find: nb0 ¼ β þ βdtadpdz . And if NN
0 ¼ k (Fig. 4.6) is done,

then it is obvious that N goes to n, the quantity k will become k PNþMn
pN

� �
¼ k þ kapdt

z .

Now then, as the particles N, C, D, B, N0, C0, D0, B0 become (Fig. 4.7) n, c, d, b, n0, c0,
d0, b0, etc, it must be that the infinitely small portion of fluid enclosed in the first

parallelepiped has to be equal to that which will fill the second parallelepiped.

Therefore: nc0 � nb0 � k þ kapdt
z

� � ¼ NC� NB� Nn. So

αβk þ kβαdtadpdz þ kβαdtadqdx þ kβapdt
z ¼ αβk. So dp

dz þ dq
dx þ p

z ¼ 0. So B0 ¼ �A� p
z, as

the 3rd of the art.45.

Now, the force at n along nb is (art. 43) a2p �B0 � A0q
p

� �
; and the force at n along

nc0 or nc ¼ a2q �A� Bp
q

� �
¼ a2 �qA� Bpð Þ (art. 44); now then these forces must

be destroyed (art. 1), and it will give (art. 20): d qAþBpð Þ
dz a2 ¼ d qA0þB0pð Þ

dx a2. That is to

say: qdAdz þ Adq
dz þ Bdp

dz þ pdB
dz ¼ qdA0

dx þ A0dq
dx þ B0dp

dx þ pdB0
dx . I say now that this equation will

occur if A0 ¼B, and B0 ¼ �A� p
z. Because Adx +Bdz and A0dx +B0dz being exact

differentials, it will give dA
dz ¼ dB

dx ¼ dA0
dx ; and dB0

dx ¼ dA0
dz or dB

dz ; therefore7:

Adq
dz þ Bdp

dz ¼ A0dq
dx þ B0dp

dx. Finally Adq
dz þ Bdp

dz ¼ AB� BA� Bp
z and

A0dq
dx þ B0dp

dx ¼ BA� AB� Bp
z . Therefore the two quantities

d qAþBpð Þ
dz and

d qA0þB0pð Þ
dx are

actually equal. So, etc.

Scholium I

49. It is worth noting that the equation
d qAþBpð Þ

dz ¼ d qA0þB0pð Þ
dx would not happen if

instead of assuming A0 ¼ B, it was assumed A0 þ B¼ λ, λ being a constant. Because

then Adq
dz þ Bdp

dz would be A A0 þ λð Þ þ A0 þ λð Þ �A� p
z

� � ¼ A0 þ λð Þpz; and A0dq
dx þ B0dp

dx

Fig. 4.7 xxx

7There was a major misprint with the next formula. It was written qdA
dz þ pdB

dz ¼ qdA0
dx þ pdB0

dx . See

Mss.50.
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would be ¼ A0dq
dx þ B0dp

dx . Therefore we will not be able to have
Adq
dz þ Bdp

dz ¼ A0dq
dx þ B0dp

dx

unless λ ¼ 0.

Scholium II

50. Before assigning the values of p and q by the conditions that have been found

above, it is good to know the values of p and q at the first instant. This research and
the comments with which we accompany it will be useful to determine the fluid

pressure, and we will show that the values of p and qmust have the same conditions

in the first instant as in the following ones.

Proposition IX. Problem

51. Let a bodyADCE (Fig. 4.1) be submerged in the midst of a stagnant fluidQGHq
and firmly stopped in the middle of this fluid. Then imagine that all parts of the fluid
receive from whatever cause any velocity u parallel to the body axisAC.What is the
change which the presence of the body must produce in the velocity of the parts of
the fluid and in its direction?

It is clear: 1st, that the particles of the fluid adjacent to the surface EAD cannot

move parallel to AC, they will be forced to change direction and the same will hold

for the parts neighboring to those, at least up to a certain distance from body; 2nd, a

portion of fluid FAMwhich will be stagnant must necessarily exist at the front of the

body (art. 36), and therefore that the motion will be suddenly destroyed. Hence it is

clear that the fluid particles at the first instant will describe the curves FaMD,
OKm, etc.

Moreover, it will be proved, as in art. 39, that the velocity of any point of the

fluid depends only on its position; then a velocity parallel to AC equal to Uq can be
assumed in the parts of the fluid, and another perpendicular to AC equal to Up,
U being in a given ratio with u; so instead of Uq, it can write uq and up instead of

Up, being q and p functions of x and z. It is therefore necessary (art. 1) that the parts
of the fluid moving by the velocities of tendency u, and –up,�uq are in equilibrium.

Now then, the velocity u being the same in all them, the parts would be already in

equilibrium in virtue of the single velocity of tendency u. Therefore they must be in

equilibrium in virtue of the singles velocities �up, �uq. Then if one

makes dq¼Adx +Bdy and dp¼A0dx+B0dz, at first B0 ¼ �A� p
z will be found, as

in the art. 45, Now as the channel NM0m0m (Fig. 4.5) must be in equilibrium, it is

necessary that the pressure of channel m0m along m0m joined to the pressure of

channel mN along mN to be equal to that of the channel M0m0 plus that of channel
M0N. That is to say that the pressure channel m0m minus that of channel M0N to be

equal to the pressure of channel m0M0 minus that of channel mN. Now making

Tt¼ β one obtains NM0 ¼ β2

qz and mm0 ¼ β2

q0z0 so that the pressures of the small

channels m0m andM0N are β2

q0z0 p
0 and β2

qz p, and their difference will be: β
2d p

qz

� �
¼ β2

qz A0dx�B0dz
q2z2 � pdz

zq2z2

� �
� β2p zAdxþzBdz

q2z2 þ dz
qz2

� �
, that is to say (putting for dz its value pdx

q

[and B0 ¼ �A� p
z]) equal to β2dx A0

qz � 2pA
q2z � 2p2

q2z2 � p2B
q3z

� �
.
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Now, the pressure of m0M0 minus that of mN must be equal (art. 15) to the

pressure of m0rM0 minus that of mNR; that is to say to the pressure of rM0 minus that

of RN, and to the pressure of m0r minus that of mR. Now then the pressure of rM0

minus that of RN is:NR� dq
dz � NM0 ¼ β2

qz Bdx; and pressure of m
0rminus of that mR

is: p0dz0 � pdz ¼ d
dz

p2

q

� �
β2dx
qz ¼ � 2pβ2Adx

q2z � 2p2β2dx
q2z2 � p2β2Bdx

q3z , thus it will give:

dx A0
qz � 2pA

q2z2 � 2p2

q2z2 � p2B
q3z

� �
¼ Bdx

qz � 2pAdx
q2z � p2Bdx

q3z � 2p2dx
q2z2 . From that A0 ¼ B results as

in article 45.
Hereafter it is clear that the quantities p and q are found at the first instant by the

same equations as in the following instants. But before determining them, it still

rests to us to make some essential remarks.

Remark I

52. The velocity of the particles from F until M in the fluid thread FaM (Fig. 4.3)

must be extremely small. Because let V be the velocity of the particle b along bn and
let us imagine, as in art. 36, the straight channel infinitely smallmqnb, it is clear that
all the particles that compose the channel are assumed to be animated by the

velocity u parallel to FA, and the particle nb of the velocity V along nb must be

in equilibrium. Now then the particles of the channel are obviously in equilibrium

being assumed to be animated by the velocity u which is the same in all them.

Therefore the equilibrium is not disturbed by the velocity V along bn, this velocity
must be null, or at least so small that it can be considered as null.

That is the rigorous demonstration of this proposition, and we can still be

convinced of its truth by the following reflection. In the first instant of the motion,

all particles receive a velocity u equal and parallel to AC, and this velocity is

suddenly and completely destroyed in the particles that fill the space FAM. Now

then it would be shocking that while the particles contained in the FAM space are

stopped suddenly, the particles that are on the curve FaM, and which are the limit of

this space, had a velocity not infinitely small, since nothing in nature is done by

leaps, but by insensible degrees; and if the velocity u becomes zero in whatever

particle, the velocity of the neighboring particle cannot be more than infinitely

small. Hence all convene in ensuring us that the velocity is very small in the

curve FaM.

Remark II

53. As curves FaM,MDL (Fig. 4.1) are of different nature, the values of p and qwill
be different for these two curves, so nevertheless these values are the same at the

point M. Moreover, we will not need to know the curve FaM; but it is necessary to

observe that the values of p and q are the same for the first instant and for the

following ones.

From that and from the article 45, it follows that from the first instant of the

impulse, the fluid begins to describe the curves FaMD, (Fig. 4.1) Km, Sn, etc. and in
the following instants it continues to describe them without any change happening

either in its direction or its velocity. Therefore not only in the first instant, but in the
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following ones, the velocity along the curve FaM is very small, or must be deemed

such. This is what we promised to prove in the article 36 n� 5.

4.2 On the Fluid Pressure at the First Instant

of the Impulse

54. As we shall see below this research is absolutely necessary for determining the

quantities p and q.
We have seen that the forces destroyed at the first instant in each particle are u and

–uq,�up; then the pressure resulting from the common velocity u to all particles and
parallel to AC will be μδu (art. 23) naming μ the body volume8 and δ the density of
the fluid, and this pressure will be along CA. Now in order to have the pressure that

comes from the velocities –uq, �up, or, which is the same, from the velocityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
along LDM, let be PM ¼ A, IL ¼ b. It will be seen (art. 28),9 1st that

this pressure is equal to the integral uδ
R
2πydy

R
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
taken so that it is zero

for y ¼ b, and that it finishes at the point M or y ¼ A. 2nd,the pressure along AC

expressed as the amount A2
R
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
uδ will need to be subtracted. That said,

first it will be remarked that
R
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
¼ R

pdyþ qdx because ds ¼ pdyþqdxffiffiffiffiffiffiffiffiffiffi
ppþqq

p .

Besides
R
2πydy(

R
pdy + qdx)¼Ω for y ¼ b, where the integral is taken so that it is

zero for y¼ A; finally, let us assume gain that
R
pdy+ qdx¼Γ for y¼ b [and zero for

y¼ A].10 Now take the integral
R
pdy + qdx so that it is zero for y¼ b, and the integralR

2πydy(
R
pdy + qdx), so that it is also zero for y ¼ b. I say that this integral will be

πΓA2� πb2Γ +Ω for y ¼ A. In order to prove it, let us express by
R
pdy0 + qdx0 the

integral pdy+ qdx taken so that it is zero for y¼ b, and by
R
pdy + qdx integral of the

pdy + qdx taken so it is zero for y ¼ A; it will give
R
pdy0 + qdx0 ¼Γ� R

pdy+ qdx.

Let also express by
R
2πydy0 the integral of 2πydy taken so that it is zero for y¼ b, and

it will give
R
2πydy0

R
pdy0 + qdx0 ¼ R

2πydy0(Γ� R
pdy + qdx).

Now then, first the integral of 2πΓydy0 when y ¼ A, is πΓA2� πΓb2; second, the
integral of 2πydy0

R
pdy + qdx, taken so it is zero for y ¼ b, it will be �Ω for y ¼ A.

Because this integral is evidently equal to
R
2πydy

R
pdy + pdx, taken negatively.

Therefore � R
2πydy0

R
pdy + qdx¼Ω. Therefore

R
2πydy0

R
pdy0 + qdx0 ¼ πΓA2

� πΓb2 +Ω. Therefore the value of uδ
R
2πydy

R
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
¼ uδ πΓA2 � πΓb2 þΩ

� �
.

The quantity πA2uδ
R
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ppþ qq

p
must be subtracted, that is to say πΓA2;

finally, μδu must be added; therefore the pressure at the first instant will uδ
(μ +Ω� πΓb2).

8In the text says mass.
9We do not see any sense to call to art. 26, we think that it is a misprint for art. 28.
10This is deduced from the context and it is mentioned in the Mss. 60.
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Corollary I

55. It can be easily proved by the experiment that μ +Ω� πΓb2¼ 0. Because a

weight may be found which is capable, by its own mass, of keeping the body ADCE
in equilibrium from the first instant of the impulse of the fluid, and of preventing

that the body is set in motion by this impulsion. Now then, the action of a weight

that is in equilibrium is equivalent to a finite mass animated by an infinitely small

velocity. Therefore, the force with which the weight will be in equilibrium will also

be infinitely small, thus the quantity uδ(μ+Ω� πΓb2) must be equivalent to a finite

mass animated by an infinitely small velocity or an infinitely small mass animated

by a finite velocity. So since the velocity u is finite, then it follows that uδ
(μ+Ω� πΓb2) should be necessarily infinitely small; that is equal to zero.

Corollary II

56. Let us suppose a body at rest in the middle of a stagnant fluid, and that an equal

velocity U parallel to the axis of the body is impressed to all parts of the fluid. We

have seen that from the first instant the fluid particles must move along threads

which will continue to be the same, while no new force arrives, and that they will

always be the same, no matter the impressed velocity U. Let us suppose now that in

one of the subsequent instants another velocityU0 is impressed to the fluid parts, it is

clear that this new velocity will disturb nothing in the threads, because if it had been

alone, it would have had to describe them; only the velocity at each point must

change in the atio U þ U0 to U.
This proposition will be very useful to us in the following.

4.3 Method for Determining the Fluid Velocity at Any

Point

57. To solve this subject, it is only necessary to determine the quantities p and q by
means of the conditions that have been found above (art. 45). However, in order to

solve this problem more easily, I will begin by solving it with the following

hypothesis, which is simpler, that dq¼Mdx+Ndz, and dp¼Ndx�Mdz.

Proposition X. Problem

58. Let MdxþNdz and Ndx�Mdz be exact differentials, we propose to find the
quantities M and N.

SinceMdx +Ndz is an exact differential, it follows thatMdxþ N
ffiffiffiffiffiffiffi�1

p
dzffiffiffiffiffi�1

p will be

also an exact differential; in the same way since Ndx�Mdz, then

N
ffiffiffiffiffiffiffi�1

p
dx�M

ffiffiffiffiffiffiffi�1
p

dz, or N
ffiffiffiffiffiffiffi�1

p
dxþ Mdzffiffiffiffiffi�1

p , will also be one. [Hence the sum and

the difference of these two quantities will be both exact differentials. Therefore

M þ N
ffiffiffiffiffiffiffi�1

p� �
dxþ dzffiffiffiffiffi�1

p
� �

and M � N
ffiffiffiffiffiffiffi�1

p� �
dx� dzffiffiffiffiffi�1

p
� �

will be exact differen-

tials. So dxþ dzffiffiffiffiffi�1
p ¼ du or Fþ xþ zffiffiffiffiffi�1

p ¼ u; dx� dzffiffiffiffiffi�1
p ¼ dt or Gþ x� zffiffiffiffiffi�1

p ¼ t;
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therefore M þ N
ffiffiffiffiffiffiffi�1

p ¼ α, and M � N
ffiffiffiffiffiffiffi�1

p ¼ β, udu and βdt will be exact differ-

entials. Thus α is a function of u, that is to say, M þ N
ffiffiffiffiffiffiffi�1

p
a function of

Fþ xþ zffiffiffiffiffi�1
p , and β is a function of t, that is, M � N

ffiffiffiffiffiffiffi�1
p

a function of Gþ x

� zffiffiffiffiffi�1
p ; from which the value of M and N will be obtained.

Corollary I

59. The functions q and p can be found also by the following method that is a little

simpler.11 Because ∂p
∂z ¼ � ∂q

∂x and
∂p
∂x ¼ ∂q

∂z, then qdx + pdz and pdx� qdz will be

exact differentials. Therefore qþ p
ffiffiffiffiffiffiffi�1

p ¼ fonct: Fþ xþ zffiffiffiffiffi�1
p

� �
and

q� p
ffiffiffiffiffiffiffi�1

p ¼ fonct: Gþ x� zffiffiffiffiffi�1
p

� �
. Therefore q ¼ 1

2
fonct: Fþ xþ zffiffiffiffiffi�1

p
� �

þ

1
2
fonct: Gþ x� zffiffiffiffiffi�1

p
� �

and p ¼
fonct: Fþxþ zffiffiffiffi

�1
p

� �
2
ffiffiffiffiffi�1

p �
fonct: Gþx� zffiffiffiffi

�1
p

� �
2
ffiffiffiffiffi�1

p .

Hence if one wants p and q to be real quantities, it must be assumed that G ¼ F,

and we will haveq ¼ ξ xþ Fþ zffiffiffiffiffi�1
p

� �
þ ffiffiffiffiffiffiffi�1
p

ζ xþ Fþ zffiffiffiffiffi�1
p

� �
þ ξ xþ F� zffiffiffiffiffi�1

p
� �

� ffiffiffiffiffiffiffi�1
p

ζ xþ F� zffiffiffiffiffi�1
p

� �
. With ξ xþ Fþ zffiffiffiffiffi�1

p
� �

and ζ xþ F� zffiffiffiffiffi�1
p

� �
designating

any functions of xþ Fþ zffiffiffiffiffi�1
p [and xþ F� zffiffiffiffiffi�1

p ], different from each other if one

wishes, but there are not any imaginary constants in them. Similarly we will have

p ¼
ξ xþFþ zffiffiffiffi

�1
p

� �
ffiffiffiffiffi�1

p þ ζ xþ Fþ zffiffiffiffiffi�1
p

� �
�

ξ xþF� zffiffiffiffi
�1

p
� �

ffiffiffiffiffi�1
p þ ζ xþ F� zffiffiffiffiffi�1

p
� �

. It is obvious

that in these values of p and q the imaginary quantities destroy themselves.

Corollary II

60. It must be noted that in the previous expressions the letter F is used only to place

the origin where one wants in the line AP. Now then as the nature of the problem the

origin can be placed where we like, it follows that F¼ 0 can be assumed by placing

the origin of x at the convenient point of the line AP,12 so that the expressions for

p and q become simpler.

We will have therefore13

q ¼ ξ xþ zffiffiffiffiffiffiffi�1
p

� �
þ

ffiffiffiffiffiffiffi
�1

p
ζ xþ zffiffiffiffiffiffiffi�1

p
� �

þ ξ x� zffiffiffiffiffiffiffi�1
p

� �
�

ffiffiffiffiffiffiffi
�1

p
ζ x� zffiffiffiffiffiffiffi�1

p
� �

p ¼
ξ xþ zffiffiffiffiffi�1

p
� �

ffiffiffiffiffiffiffi�1
p þ ζ xþ zffiffiffiffiffiffiffi�1

p
� �

�
ξ x� zffiffiffiffiffi�1

p
� �

ffiffiffiffiffiffiffi�1
p þ ζ x� zffiffiffiffiffiffiffi�1

p
� �

Thus if it is assumed, for example

11In the original M and N are written instead of q and p [Mss.55].
12Not clear in the text. We follow Mss.56.
13In the original the expression for q is missing [Ms.57].
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ξ xþ zffiffiffiffiffiffiffi�1
p

� �
¼ a xþ zffiffiffiffiffiffiffi�1

p
� �

þ b xþ zffiffiffiffiffiffiffi�1
p

� �2

and

ζ xþ zffiffiffiffiffiffiffi�1
p

� �
¼ e xþ zffiffiffiffiffiffiffi�1

p
� �

þ f xþ zffiffiffiffiffiffiffi�1
p

� �2

þ g xþ zffiffiffiffiffiffiffi�1
p

� �3

It will give

p ¼ �2azþ 2ex� 4bxzþ 2f x2 � 2f z2 � 6cx2zþ 2cz3 þ 2gx3 � 6gxz2

and

q ¼ 2ax� 2ezþ 2bx2 � 2bz2 þ 2f z2

Now then from these expressions, I deduce the following method to determine

p and q when dq¼Adx +Bdz and d(pz)¼ zBdx�Adz.

Proposition XI. Problem

61. To determine p and q for the conditions that q¼Adx +Bdz and d(Pz)¼
zBdx� zAdz are both exact differentials.14

Let p¼ a0x+ b0z+ c0x2 + e0xz+ f0z2 + g0x3 + h0x2z+ l0xz2 +m0z3 etc. Being a0, b0, c0,
etc. undetermined coefficients. Therefore pz¼ a0xz+ b0z2 + c0x2z+ e0xz2 + f0z3 + g0x3z
+ h0x2z2 + l0xz3 +m0z4 etc. Therefore d(pz)¼ (a0zþ 2c0xz+ e0z2þ 3g0x2zþ 2h0xz2 + l0z3)
dxþ (a0xþ 2b0z + c0x2þ 2e0xzþ 3f0z2 + g0x3þ 2h0x2zþ 3l0xz2þ 4m0z3)dz etc. So due
to dq ¼ � dxd pzð Þ

zdz þ dzd pzð Þ
zdx , we will have dq ¼ a0 þ 2c0xþ e0zþ 3g0ð x2 þ 2h0xzþ l0z2Þ

dzþ � a0x
z � 2b0��

c0x2
z � 2e0x� 3f 0z� g0x3

z � 2h0x2 � 3l0xz� 4m0z2Þdx. Now then

so that this quantity be an exact differential, it is necessary that

2c0 þ 6l0xþ 2h0z ¼ a0x
z2 þ c0x2

z2 � 3f 0 þ g0x3
z2 � 3l0x� 8m0z. It gives then a0 ¼ 0, g0 ¼ 0,

c0 ¼ 0, f’ ¼ 0, l’ ¼ 0, 4 m0 ¼ �h0; so pz ¼ b0z2 þ e0xz2 þ h0x2z2 � h0z4
4
, and

p ¼ b0zþ e0xzþ h0x2z� h0z3
4
. Being b0, e0, h0 undetermined coefficients.

From there the law of the quantity p is rather clear. Because it will give p¼ b0z
+ e0xz + h0x2z+m0z3 + n0xz3 + k0x3z+ r0x2z3 + s0x4z etc. An equation in which the

values of de m0, k0, s0 can be substituted by their equivalent in h0, n0, r0, etc.
respectively,15 and the unknowns b0, e0, h0, n0, r0 etc. will remain to be determined

by the nature of the curve AMD. [Once p is known, the quantity q will be easily

determined].16 QED.

14In the original A and B are written instead p and q [Ms.58].
15The original wording “in which the value ofm0 in h0, of k0 in n0, of s0 in r0, etc. can be determined”

has been changed, because the sense is to apply the relations between each pair of coefficients.
16We think that this sentence adds clarity to the text. From Mss. 58: “cognita vero p,

determinabimur facillime quantitas q” “But once p is known, we will determine the quantity q

very easily”.
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Corollary I

62. In order to determine now the coefficients b0, e0, h0 etc. it will be noted that

introducing y as z in the values of p and q, gives dy
dx ¼ p

q. Therefore a certain number

of points will be taken on the curve AMD, in which the values of dy/dx, y, and x are
known, and then the coefficients b0, e0, h0, etc. will be determined precisely in a

similar way as how the integration of a curve is found by approximation, making a

line of parabolic type to pass through a number of points of the curve [AMD].

Remark

63. Moreover, after the calculation of these coefficients, one still remains whose

absolute value is ignored, and this value will affect the value of all the others. This

is obvious, because when the top and bottom of the fraction p/q is multiplied by any

quantity m, its value will not change anything. therefore this coefficient must be

determined; moreover, the position must be found of the pointsM, L, (Fig. 4.1) that
determine the length of the fluid filet in contact with the curve; or, what is the same

thing, the abscissas must be found that have these points. So three new unknowns

must be found for the full solution of the problem. For this, it is noted that the

velocity at M and L must be very small, or equal to zero (art. 52); from where it is

deduced a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
¼0 atM and L. Therefore, calling C and D the abscissas of the

pointsM and L, and A, b their ordinates, which are known functions of C and D, we

must have: 1st, that has a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
¼0 or p2 + q2¼ 0 putting in p and q, C for x, and

A for y; 2nd, that p2 + q2¼ 0, putting in p and q, D for x, and b for y; 3rd, looking at
A and B as known as well as C and D, we will have the values for Γ andΩ, assigned

above (art. 54); now then, these values must be such that μ+Ω� πΓb2¼ 0 (art. 55).
Therefore this equation, along with the previous two, will serve to determine the

three unknowns that remain to us.

Corollary II

64. From the previous it is noticeable, that it is sufficient to know the velocity of the

fluid thread which is immediately adjacent to the body surface. Therefore, let the

quantities p and q supposedly be found, and put these quantities y in the place of z;
moreover let us assume that after this substitution p is divided by q and the quotient
is n; it will give p/q¼n or p¼qn and pz¼qnz, being always z in the place of y.
Therefore making dn¼ λdx +ωdz, it will give d(pz)¼ nzAdx + qzλdx+ qndz
+ nzBdz + zqωdz, now then we have d(pz)¼ zBdx�Azdz; these two values of d
(pz) are equal and identical,17 because the quantities p and qn are equal and

identical, so nzA + qzλ¼ zB et qn + nzB+ zqω¼ � zA. Hence it is deduced: 1st, A

¼ � zqωþzqnλþqn
n2zþz ; 2nd, B ¼ �nzqω�n2zqλ�qn2

n2zþz þ qλ ¼ �nzqω�qn2þqλz
n2zþz . Consequently

17I call identical amounts, those not only equal, but expressed with the same letters: for example
a2�b2

aþb ¼ a� b or (a2� b2)¼ (a + b)(a� b) is an identical equation. But I simply call equal the

quantities, which although the same, are expressed by different letters. For example y andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ax� x2

p
in the equation y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ax� x2

p
. [Original note].
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dq ¼ �zqωdx�zqnλdx�qndx
n2zþz þ �nzqωdz�qn2dzþqλzdz

n2zþz . Where because of λdx+ωdz¼ dn it is
dq
q ¼ � ndn

n2þ1
� ndxþn2dz

n2zþz þ λdz�ωdx
n2þ1

. Now then we have dy
dx or

dz
dx ¼ n. Therefore ndx¼ dz,

and λdz¼ nλdx; therefore in the filet AMD it will give dq
q ¼ �ndn

n2þ1
� dz

z þ nλd0x�ωdx
n2þ1

.

Now then nλdx� ωdx ¼ ndn� nωdz� ωdz
n ¼ ndn� ωdz n2þ1

n

� �
¼ ndn�

ωdx n2 þ 1ð Þ. Therefore dq
q ¼ �dz

z � ωdx.

Corollary III

65. It seems at first that nothing is easier than determining q by the equation found

in the previous art., since ω is given by n and n is given by the equation of the urve
dy/dx¼ n. But with only paying some attention to it, it will be seen that although the

equation of the curve or the value of dy/dx is given, n is not given for it. Indeed,

nmust be equal to p/q; then the ratio dy/dx can be expressed of an infinite number of

ways; and among these different expressions, which are not identical although

equal, one must be found that is equal to p/q, dq being Adx +Bdz and d(pz) being

zBdx�Azdz. For example, in the circle it is dy
dx ¼ a�x

y or ay�xy
2ax�x2, or

a
ffiffiffiffiffiffiffiffiffiffiffi
2ax�x2

p
�xy

y2 ; now

then one cannot take as one wishes one of these values for expression of n; it is also
required that the equation p ¼ qn be identical.

To see more clearly that n cannot be taken at will; it will be observed that from

equation dq
q ¼ �dz

z � ωdxwe obtain dq
q ¼ �dz

z � ωdz
n and dq

q ¼ �dz
z � dn

n þ λdx
n ; equations

from which precisely the same value of q must result. Now if n could be taken at

will, let n be taken so that in the first equation n is a function of z only. It will give
�ωdz

n ¼ �dn
n and

dq
q ¼ �dz

z � dn
n or¼ β

nz, β denoting a constant. Now, let n be equal to a

function of x only in the other equation, it will result λdxn ¼ dn
n and

dq
q ¼ �dz

z , or q ¼ β
n,

an equation very different from q ¼ β
nz. Thus etc.

In art. 64, we found nA + qλ¼B and qn+ nzB + zqω¼ � zA considering the

equation p ¼ qn as identical. Now in general let n0 be the value of dy/dx, so that

the equation p ¼ qn0 is not identical; and let be dn0 ¼ λ0dx+ω0dz, we will have

n0zAdx + qλ0zdx + qn0dz + n0zBdz + zqω0dz¼Bzdx�Azdz; therefore (because of

dz ¼ n0dx) we will find n0zA+ qλ0z+ qn
02 + n

02zB + zqω0n0 ¼Bz�An0z. Therefore
by this equation we will have the value of A in B, where z ¼ y. But as the unknown
B remains to be determined, this method is perhaps not very useful.

4.4 On the Pressure of the Fluid at Each Moment

66. Let us suppose that from the condition equations Adx +Bdz¼ dq and d(pz)¼
zBdx� zAdz the functions p and q have been found, as we have taught. Next, when

y is placed instead of z in these functions, the velocity at N (Fig. 4.1) will be equal to

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
; from which the pressure at N equal to a2

2
1� p2 þ q2ð Þ½ � (art. 27). As the

quantities p and q depend only on the body shape, it is obvious that the pressure at
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the point N is proportional to the square of the velocity, and in consequence the

pressure upon the entire surface is proportional to the same square.

Moreover, in order for this expression to be exact, it must be assumed that p2 + q2

is for all smaller than one, that is to say that the velocity along the filet MDL is

smaller than a in all the points, or at least it is not greater. However, if after having

determined p and q by calculation it would be found that p2 + q2 was > 1 in some

points, then at first one should seek the point where the value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
is

maximum, which will be done assuming pdp + qdq¼ 0. Then naming K the value offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
at this point, we will have a2

2
K2 � p2 � q2
� �

(art. 27) for the pressure at N.

Remark

67. Some readers perhaps may imagine that the velocity along the threadMDLmust

be greater than a; they can truly be based on daily experience, by which it seems

verified that the fluid accelerates when turning around the body. However ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
< 1 is found by calculation one should not rush to conclude that our

theory was contrary to experience. Because in this theory only the thread that

touches immediately the body surface is taken; this thread escapes observation,

and it may be that threads which are at very little distant from it have much more

velocity than it.

Corollary I

68. Let be K2> 1. In order to have the total pressure we must first integrate 2πydy

K2 � p2 � q2
� �

a2

2
(art. 26). Furthermore, the pressure at M is a2

2
K2, as well as in L,

since the velocity atM and L is zero or it is taken as such. It follows that the part AM

will be pressed (art. 24) along AC with a force a2

2
K2πA2, and the part LC in the

opposite direction with a force a2

2
K2πb2. Therefore it will add the quantity

a2

2
K2 πA2 � πb2

� �
to the pressure.

But if the velocity along the curve AMD was found to be smaller than a, that is to

say, if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
was in all points smaller than one, then instead of K2� p2� q2, the

1� p2� q2 is taken and instead of a2K2(πA2� πb2), the a2(πA2� πb2). Because the
pressure in F would always be a2

2
and this pressure would act on the arc AM by the

channel TFAM, and the pressure at L would also be a2

2
because the velocity at L is

zero, so that this pressure would act on the arc LC. Thus etc.
In general in all these cases, I called a2 φ the quantity found by the calculation

for the total pressure, which as one sees is proportional to a2, because φ will always

be the same regardless of a, since the position of the points L, M and the values of

p and q do not depend on a.

Corollary II

69. Let be KD ¼ γ the greater ordinate, we will haveR
2πydy K2a2

2
¼ K2a2

2
γ2 � A2
� �� K2a2

2
γ2 � b2
� �

. Therefore the total pressure will be

reduced in the first case to � R
2πydy p2 þ q2ð Þa2

2
, since

R
K22πydy +K2A2�K2b2

¼ 0. For the second case it will also be found that the total pressure will be reduced

to
R
2πydy p2 þ q2ð Þa2

2
.
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Therefore in general, if after having determined p and q by the method of art.
62, the integral �2πydy( p2 + q2) is taken so that it is cero atM and that the value of

this integral at L is named φ, it will give a2φ for the total pressure.

Corollary III

70. Let us suppose (Fig. 4.8) that the parts AD, DC are equal to each other, and let

the points V be taken, u equally distant from point D. It is clear that the value of n,
that is dy/dx, is the same in these points, but of different sign. Therefore if it is

assumed that the point K is the midpoint of AC and that the distance from this point

K to the origin of the x is h, the value of n must be a function of y and x, such that

making h� x¼ u, and taking u as successively negative and positive, n is the same

but of different signs. Therefore this function must be such as there is not any term

which does not contain an odd power of u or h� x. Therefore in the differential λdx
+ωdz, ω will be negative [art. 64].18 When h� x will be negative, but will always
keep the same value. Therefore in the points V, u the value ofω is the same, but with

different signs; from which it can be easily proved that the value of
R
ωdxwill be the

same in these points and of the same sign. So because of the equation
dq
q ¼ �dy

y þ ωdx, it follows that the value of q is the same at V and u, etc., thus the

value of p ¼ qn is also the same there, but with different signs. Therefore the value

of p2 + q2 will be the same at V and u.
Therefore in general let V and u be any two points equally distant from the point

D, so that the velocity at V and u is the same, the quantities � R
2πydy( p2 + q2) will

be of different signs at V and u, but of equal value.
From above it follows that the arcs LD,DM (Fig. 4.1) cannot be equal; because if

they were, then the quantity � R
2πydy( p2 + q2) would be equal to zero, so that the

body would not undergo any pressure from the fluid, which is against experience.

There is nobody that at first glance had not judged that the arcs DL,MD are always

equal when the body is composed of four similar and equal parts. Even more, if we

stand by the theory alone, it seems to me we would be moved to think, that these

arcs must be equal in effect. Hence it is clear how experiments are needed in the

present question.

In addition, it is clear that in order that the pressure be directed along AC, as
experience teaches, LD must be greater than DM, otherwise � R

2πydy( p2 + q2)
would be negative.

Remark I

71. Let us imagine (Fig. 4.8) the straight line RT19 that separates the parts of the

fluid where the velocity and direction are not changed from those where in which

the velocity and direction are changed; it seems to me that it can be proved by a

18Reference to art. 64 added for clarity.
19It is obvious that RT should be a straight line; because the parties that are at the right of this line

must have (hyp.) a rectilinear motion. [Original note].
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common and simple experiment that the line RT is quite close to the body. Let a

pendulum be exposed in a fluid current; at first such that it is equally away from the

channel walls where the fluid flows, the action of the fluid will move the pendulum

apart from the vertical position and the pendulum will rise in a vertical plane along

the direction of the fluid current. Then let the same pendulum be exposed again in

the same current, but so that it is so much closer to a wall than the other, it will seem

to rise to the same level as in the first case and in a vertical plane also along the

direction of the flow. Therefore, either the body is placed in the middle of the

channel, or much closer to a wall on the other, the pressure on the parties ADC, Adc
(Fig. 4.8)20 will be equal in both cases, and consequently the velocity in the parts

ADC, Adc as well. Whereby it results that the parts of fluid too near to the body are

the only ones where the motion is significantly changed by the effect of the body.

Remark II

72. We can prove the same proposition by means of a body that rises in a vessel full

of water; because the body always rises vertically at the same velocity from any part

of the vessel where it has been placed and as close to the walls that it is. Whence it

follows that it only communicates motion to the parties of the fluid that are quite

close to it. Finally, we can still observe that whatever the fluid velocity is, the RT
line (Fig. 4.8) must always (art. 39) be at the same distance from the body. Now

then experiment shows that when the velocity is very small the motion and direction

Fig. 4.8 xxx

20In the original says AMD y Amd, which corresponds with the quote to Fig. 23 in Mss. 66.
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of the parts of the fluid are not altered until a relatively small distance from the

body. So in general, it is quite close to the body, regardless of the velocity a.

4.5 The Resistance of a Plane Figure

73. So far we have considered solids of revolution exposed to the action or to the

resistance of a fluid. Let us now imagine a plane figure, or rather to avoid any

difficulty, let us imagine a cylindrical body whose cross section perpendicular to its

axis is the EADC curve (Fig. 4.1) and that it fills exactly the entire width of the

channel, which I assume to be a parallelepiped rectangle filled with water, and

whose height perpendicular to qGHQ is equal to that of the cylinder. It is clear that

can be content to consider what happens to one of the layers perpendicular to the

axis. Now, keeping the names of the art. 45, it will be easily found that B0 ¼ –A and

A0 ¼B; since we will only need to put α/q in the places of NM and α2/qz in the prove
of the art. 45, and to put zero instead of p/z in that of art. 48.

Then in this case we will have dq¼Adx +Bdz and dp¼Bdx�Adz, and the

general formula for the value of p and q will be easily found (art. 58). But it will not
be very easy to apply this formula to the different figures proposed; at least I have

not found a method, other than art. 61, to choose in this general equation, which is

the one that may agree with the equation of the given figure.

4.6 Notes on Our Solution to the Problem of Fluid Pressure

74. The solution that we give here for the problem of fluid pressure etc is based it

seems to me, on principles less vague and less arbitrary than all the ones that have

been given so far. Everything is rigorously proven, and this is perhaps why it is so

difficult to apply the calculation to it and to compare it with the experiment.

Because 1st, we only determine by approximation the values of the suitable p and

q in each case. 2nd, the analysis by which we propose to find them is so long that it

can discourage the most intrepid calculator. However, I do not think a more direct

and simple method can be found for determining the resistance and fluids pressure,

and I dare even assert that if this method does not agree with what will be found by

experiment, we should almost despair of finding the resistance of fluids by the

theory and by the analytical calculation; since all the physical principles on which

our analysis is supported have been demonstrated in rigor. There is only an

analytical hypothesis that could be absolutely questioned by us; it is that by

which we have assumed that p and q are functions of x and z so that TFMD,
OKm, etc (Fig. 4.1) are curves of the same nature and enclosed in the same general

equation. Strictly speaking, that assumption can be disputed to us, but in this case

we must give up all hope to determine the fluid pressure by calculation, and

consequently by the theory, because since we have proved that the values of the
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quantities p and q depend only on the position of the point at which they are, a more

general hypothesis could not be made for the calculation than to assume these

quantities are functions of x and z.

4.7 Reflections on the Experiments That Have Been Made

or That Can Be Made to Determine the Pressure

of the Fluids

75. The pressure of a fluid that strikes a body at rest can be determined by

experiments in two ways.

The first is to place the body in a fluid current and to find out through experi-

ments the action of the stream on the body; it seems to me that M. Mariotte has

made it by the simplest method. It consists in placing at first a horizontal axis in a

plane perpendicular to the current; after that, in a plane perpendicular to this axis,

two rods are attached, which form between them a right angle. At the end of one of

these rods, the body whose pressure is to be found is fixed, and the quantity of this

pressure will be known by the weight it is necessary to be put at the end of the other

rod, so that both are in equilibrium.

Mariotte found by this method that the fluid pressure against a flat surface

perpendicular to the stream is equal to the weight of a cylinder of fluid that had

this surface as base and whose height was that due to the velocity of the fluid. By

this method the pressure against a flat surface could be also determined easily that

would be exposed obliquely to the fluid stream.

To make this experiment easier and to make the calculations simpler, it is

convenient that the two rods be arranged in such a way that, as in the equilibrium

one is vertical and the other horizontal. To do that, the axis of the body, whose

pressure we wish to determine, must be perpendicular to the rod to which the body it

is attached.

In the case where we want to test the pressure of a flat surface situated obliquely

in respect to the current, this flat surface can be placed inclined relative to the rod,

and maintaining the two rods in their horizontal and vertical situation; or the flat

surface will be left in the same plane as the rod and then the two rods will be forced

to be inclined.

We can also determine the pressure by means of a pendulum that will be exposed

to the fluid stream; since this pendulum moves out of the vertical position and

having measured the angle at which it deviates, this proportion will be made: as the
total sine is to the tangent of that angle, so is the weight of the pendulum to the
pressure sought; an analogy so easy to prove that I do not think I need to dwell on it.

This latter method can be hardly employed conveniently except for determining

the pressure upon spherical bodies. To this regard, when it is employed to determine

the pressure of a rectangular plane or circular or oval, or made as a triangle, or in

general as any polygon, it should be noted that the center of pressure or the fluid is
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or must be supposed to be the center of gravity of the figure. The knowledge of this

center is needed to determine the lever arm on which the impulsive force of the

fluid acts.

76. The second method to find the fluid pressure by experiment consists in

finding out the resistance. We are going to talk about it the following articles.

Remark I

77. According to experiments that have been made so far by various authors, we

have πbpδ/2 for the pressure on the globe, b expressing the height due to the fluid

velocity, δ its density, p the natural gravity, 2π the ratio of the circumference of a

circle to its radius, and 1 and the radius of the globe. Which I prove in this manner.

The resistance that a fluid exerts against a body moving therein is equal, as we

will prove later, to the pressure that the same fluid, moved with a velocity equal to

that of the body, would exercise against the same body at rest. Moreover, following

the Proposition 39, Book 2 of Principia Mathematica of M. Newton, the resistance
of a fluid to a spherical body is to the force with which the complete motion of the

body may be destroyed or generated while it traverses the 8/3 of its diameter, as the

density of the fluid to that of the body. Now then, let θ be the time during which the

globe describe uniformly the 8/3 of its diameter with the velocity
ffiffiffiffiffiffiffiffi
2pb

p
, let be 1 the

globe the density, and consequently its mass 4π/3; the time θ will be16=3
ffiffiffiffiffiffiffiffi
2pb

p
, and

the resistance according to M. Newton will be 4π
3

ffiffiffiffiffiffi
2pb

p
ϑ

δ
1
¼ πbδp

2
. Such as this is the

formula of the resistance according to M. Newton, a formula that he says to have

confirmed by a large number of experiments.

In the Memoirs of the Academy of Petersburg Tom. 2M. Daniel Bernoulli gave
another formula for the resistance of globes, that he confirmed equally by experi-

ments, and which agrees, as will be seen, with the previous one. Here is the

proposition of M. Bernoulli. Let s be the space that a heavy body traverses freely

when falling in the interval of 1 s, na the space that a body would traverse in the

same time with uniform speed
ffiffiffiffiffiffiffiffi
2pb

p
, p0 the weight of a fluid cylinder whose base is

the circumference 2π described of radius 1, and whose height is a. M. Daniel

Bernoulli found that the pressure on the globe, or the resistance of the globe, is n2ap0
8s

or p0 ¼ πδap; therefore n2ap0
8s ¼ πδpn2a2

8s ; but as the spaces na and 2s are traversed in the

interval of a second (hyp.) it gives naffiffiffiffiffiffi
2pb

p ¼ 2sffiffiffiffiffi
2ps

p , or a2¼ 4bs. Therefore n2ap0
8s ¼ πδbp

2
.

Remark II

78. According to M. Newton, the resistance of the globe is equal to that of the

cylinder; thus the pressure on the latter would be πδbp/2, but following M. Daniel
Bernoulli, the pressure on the cylinder is double the pressure on the globe and

therefore it will be πδbp. This latter proposition seems to agree with the experi-

ments ofM. Mariotte, according to which the fluid pressure against a flat surface is

equal to the weight of a cylinder whose base would be that surface, and whose

height is equal to the line b. Moreover, M. Newton does not seem to have suffi-

ciently demonstrated the pretended equality of the two resistances, as has been

shown in the Introduction. With respect to fM. Daniel Bernoulli, he shows that the
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resistances are in the ratio of 1to 2, by the same method that M. Newton used in his

Principia Math. Book 2, Prop. 34; that method would not have taken place in the

case of a continuous fluid. M. Daniel Bernoulli ensures that he has tried several

experiments on the resistance cylinders, and that they agree with his theory;

disregarding the viscosity of fluids, which often contributes to increase the resis-

tance, especially in the cylindrical bodies. That is why, while waiting for new

experiments on this subject, we take πδbp and πδbp/2 for the pressures of the

cylinder and the globe.

Considering the fluid particles as small corpuscles of the fluid without elasticity

and separated one from another, as I have done elsewhere,21 it results from the

formulas that I have given, that the pressure on the cylinder would be 2πδpb; and
assuming that the particles of the fluid as small elastic corpuscles the pressure

would be 4πδpb. M. Euler, who, in his treatise titled Scientia navalis, has deter-

mined the resistance of fluids by ordinary principles, found the same results, and

rightly concluded that the theory on which they are supported should not be very

accurate, since it is contradicted by the experiment. Furthermore he observes in the

case of elastic corpuscles that the velocity communicated to the fluid particles

would be, according to the ordinary laws of motion, greater than the velocity that

would remain in the body; and then with this hypothesis a vacuum must be

produced in the outer part of the body, between the body and the fluid. From

which he rightly concludes that this hypothesis is not consistent with nature;

which, together with the reasons given in the Introduction, should determine him

to reject it.

Therefore, the wise geometrician we are talking about has then tried to prove by

another method that the pressure against a flat surface is bp; his reasoning can be

summarized here. Let us imagine a vessel full of water up to the height b in whose

bottom a circular hole is made and that a flat surface is applied to the hole. This flat

surface will be pressed by a force bp. Now let move this surface away at some

distance from the hole, the water will come out with the velocity due to the height h,
and it can be assumed that the pressure on the surface will be the same as before.
This last assumption is not true as we will prove in the following. Since the pressure

of a fluid stream that comes out from a vessel and that hits a plane is very nearly

equal to 2ph, not to ph, as happens when the surface is completely submersed in a

fluid. Also the author has not he given any proof of the assumption that we are

disputing; and we owe him the justice to say that he seems to have felt, or at least

suspected the little accuracy.

Remark III

79.M. s’Gravesande in his Elem. of Phys. Math. finds for the resistance of a globe a

very different quantity from those we have just given from M. Newton and.
Bernoulli. According to this author, the action of a fluid on a cylinder (excluding

the viscosity, the weight, and the friction of parts) is the same thatM. Bernoulli had
found. With respect to the pressure of the globe, it is not as 1 to 2, but as 2 to

21Treaty of the Equilibrium and Movement of Fluids, Book 3, Ch. 1. (Original note).

64 J. Simón Calero



3 (§.1950). M. s’Gravesande has confirmed this relation by experiments, and he

even undertook to demonstrate it geometrically. The demonstration he gives is the

same, as respect to the method, to that by which M. Newton and M. Bernoulli have
found the resistances in a ratio of 1 to 2, but with the difference that the authors

quoted have assumed that the action of the fluid perpendicular to each small

segment of a curve was in ratio to this small segment, to the square of the velocity

and to the square of the sine of incidence; whereas according to the principles of

M. s’Gravesande, the action was in the compound ratio of the segment of the curve,

the square of the velocity and simple sine of the incidence. From this comes the

difference of the ratios of 1 to 2 and of 2 to 3.

It is true that the assumption ofM. s’Gravesande seems contrary to the principle

accepted so far by all hydraulic authors, namely, that the action of a fluid which

shocks obliquely against a flat surface is as the square of the sine of incidence, being

all other things equal. But we must confess that this proposition has so far been

poorly proved. Because this demonstration that has been given is based on this

single consideration (Fig. 4.9): that the more the surface AB is oblique to the flow of

the fluid, less are the particles that strike it, since the number of these particles is

represented by ab perpendicular to the direction of fluid aA. Besides this, less is the
force with which each of these particles strikes the plate; so that this compound

ratio leads to the square of the sine of incidence. Now we would prove by the same

reasoning that the oblique pressure that a stagnant fluid would exert against the

surface AB would be in the ratio of this surface and the square of the sine of

incidence; because aA is the direction of gravity, it seems that abmust represent the

number of particles, and the force of gravity acting on AB seems to be the sine of the

angle aAB. However it is known by the hydrodynamic principles that the pressure

upon AB is for AB only, whatever the positioning of this surface is relative to the

fluid; because the fluids act equally in any direction, the pressure on the surface AB
is always the same as if the fluid was perpendicular to that surface.

On the other hand, however, if the fluid pressure on the surface AB was assumed

to be proportional only to the surface AB, so that in this regard a moving fluid is

considered as a fluid at rest; it would follow that this pressure would not depend in

any way on the position of the surface, which is contrary to experience; because

there is no one who has experienced that resistance is even greater when the surface

is more directly opposite to the fluid stream. Therefore the sine of incidence must

Fig. 4.9 xxx
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enter into the value of the pressure; but how should it go in? This is what seems to

me very difficult to decide. M. Daniel Bernoulli in the Tom. 8 of the Mem.

Petersburg finds that the pressure of a fluid stream is proportional to the amplitude

or width of the flow and the simple sinus of the incident, which, as can easily be

seen, means the square of the sine. But he admits that his formula is vague and

uncertain, and he promises to make experiments on that. With regard to

s’Gravesande, that I know, he does not bring any experiment to show that the

pressure is simply in the ratio of the sine of incidence, and even if attention is paid

to the position of the vanes in windmills, the truth of this proposition can be

doubted. For the following experiment, the more advantageous position of the

vanes is when they have 54� of inclination, assuming that the pressure is propor-

tional to the square s2 of sine of the incident s; whereas, if it is assumed proportional

to simple sine s, the angle would be found of 45�, which is contrary to the

experiment. Indeed, in the case of the square of the sine, the wind effort to rotate

the wing is proportional to s2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
, which has a maximum for 1� s2¼ 1/3; in the

hypothesis of simple sine the effort is proportional to s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
which is a maximum

for s¼ 1/2.

We have already observed that the quantity of the globe pressure determined by

M. s’Gravesande appears confirmed by the experiments he reports (§.1495) and that
this quantity is very different from that which M. Newton and Bernoulli have also
confirmed by experiments. However M. Daniel Bernoulli admits in his

Hydrodynamique that experiments give nothing as the theory, the pressure of the

globe equal to half that of the cylinder. But what should he respond to the

experiment that himself had done? With regard to the cylinder pressure,

M. Mariotte, Bernoulli and s’Gravesande find it by the same theory; but besides

that it is very difficult to determine this pressure by experiments; s’Gravesande
admits that those he made on this subject do not agree with his formula. It would

therefore be necessary to repeat all these experiments again and to begin by

determining the pressure of a fluid that strikes obliquely against a flat surface.

This is can be easily performed by means of the method specified in article 75.
The experiments of M. Mariotte, Bernoulli, Newton and s’Gravesande on the

resistance of the globe should be then repeated. But even when in any particular

experiment the oblique pressure of a flat surface had been found proportional to the

simple sine of the incidence, this would not be a reason to admit the theory of

M. s’Gravesande. Since this theory has all the defects which we have expounded in
the Introduction.
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Chapter 5

On the Resistance of Fluids to the Bodies

Moving Therein

5.1 General Observations on the Various Classes of Fluids

80. All fluid wherein a body moves is elastic or non-elastic. I called elastic fluid one

whose parts can be contracted so they occupy a lesser space than before their

compression, and reciprocally they dilate so that they occupy a larger space than

before their expansion. I called non-elastic fluid one whose parts can be neither

contract nor dilate, but always occupy the same space, whatever the force be that

compresses them.

81. If a body moves in a fluid of the latter class and the fluid is either indefinite or

is enclosed in a finite vessel and closed on all sides, so that it fills its volume

completely; in this case it neither should have and nor can have a vacuum between

the parts of the fluid and the surface of the body that moves therein. Because, there

could be no empty space, unless the parts of the fluid do not contract themselves,

which goes against the hypothesis.

82. It could occur otherwise [the empty space] if the body moves in a non-elastic

fluid contained in a vessel which is not closed in all sides. As is for example,

stagnant water in a basin and in which a body is immersed that is not far from the

upper surface of the water, and that its weight is also equal to the volume of water; I

add this condition to be able to exclude the weight of the body and the fluid more

easily. When an upward impulse is given to that body towards the upper surface of

the standing water, it is clear that by this impulse the fluid is pushed in the front part,

which is the part that is between the water surface and the upper surface of the body.

Thus, as the parts that are on the surface of the water can freely move upwards, it

may occur that the motion impressed to the body indeed compels these parts to

move in that way, so that the surface of the water in that place loses its state and its

straight and horizontal figure, and it rises above its level. Then nothing prevents that

a void could be produced between the rear surface of the body and adjacent parts of

the fluid; especially if the motion impressed to the body is large enough so that the
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pressure is communicated from the first instant to the surface of the water, and so

that the fluid adjacent to the rear part of the body cannot spring forth with enough

velocity into the empty space that the body will leave behind.

83. If the fluid is elastic, whether finite or indefinite, it is obvious that the parts of

the fluid must necessarily be contracted in the front of the body and dilated at the

rear part. In many cases it may even happen that the fluid rushing into the void left

behind the body does not completely fill this vacuum, which will happen if the

velocity that the fluid must have in virtue of its compression is less than the velocity

impressed to the body.

84. We will divide our research on the resistance of the fluids. In the first we will

deal with the resistance of non-elastic and indefinite fluids, or, what is equivalent,

those contained in an undisturbed vessel and closed on all sides; so that they fill its

volume exactly. That is to say (usually speaking) of the fluids resistance in the case

where no vacuum between the fluid and the body is produced.

In the second part, we will deal with the resistance of the non-elastic and finite

fluids; that is where a vacuum is produced behind the body.

Finally in the third, we will discuss the resistance of the elastic fluids. We destine

a separate section1 to each of these parts, and in these sections we will deduce

several important remarks.

5.2 The Resistance of Non-elastic and Indefinite Fluids

85. Before determining this resistance, it is worthwhile to make some necessary

observations in order to understand the subsequent calculations.

1st. At first, we will exclude the viscosity and friction of the fluid parts in this

research, whose effect we will examine later separately.

2nd. We will also exclude at first the weight, both for the body and the fluid and

we will consider later its effect separately.

3rd. If the fluid is compressed by any force other than gravity, we will not pay

any attention to this compression; for the reason that however large it may be it

could not provide any changes to the resistance in the case where no vacuum is

produced behind the body.

Because let a body be at rest in whatever compressed fluid, one half of which is

ADC (Fig. 4.8), and let us draw from any point V the line Vu parallel to the axis AC.
The fluid (hyp.) being equally compressed on all sides, the points V, u are pressed by
equal forces along VZ and uz [perpendicular to the surface ADC]2; therefore if these
forces are changed by others along VF and Vu along uf and uV, it will be easily

proved that the forces along Vu and uV are equal between themselves, and that the

1“Chapter” in the original.
2“Ad superficiem ADC perpendiculares”, Mss. 77–2�.
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forces along VF and uf are also destroyed by the opposing forces along FV and fu.
Therefore the compression of the fluid cannot produce any motion in the body.

Once that the body is set in motion by any cause, the compression on the points

V and u will always be the same, since (hyp.) there is never a vacuum between the

fluid and the body, and the force that compresses the fluid always acts equally.

So whatever the fluid compressing force is, it should neither produce any motion

in the body, nor any change in its motion. This observation was already made by

M. Newton and I am surprised that some authors, otherwise very skillful, have

thought that the resistance should be zero in an infinitely compressed fluid. Here is

their reasoning. If a fluid, they say, is infinitely compressed, the empty space that a

body moving therein leaves behind will be filled on the way by fluid particles which

rush in with infinite speed. I agree; but I say that for this same reason the resistance

in the front part must be much too large, because it is obvious that the compression

at the front part is contrary to the body movement; so if the compression at the rear

part makes the motion easier in some way, the compression at the front part must

retard it in some way; so that the compression at the front part and at the rear always

tends to produce equal and directly opposite effects.

Thus the compression of the fluid must be taken for nothing in the case where

there is no vacuum is produced between the fluid and the body.

4th. We proved in the art. 83 that whatever the initial velocity of the moved body

is, the fluid particles always describe the same curves. Now it can be proved by a

similar reasoning that whatever the initial velocity of the body moved is, the

number of parts to which it communicates the motion in the first instant is always

the same; and that the parts of the fluid that are moving at the instant when the body

is at the end of any space x are always the same, whatever the velocity of this body

is at the end of that space. Now then, the experience shows that when a body moves

very slowly, only the particles close to the body receive motion, so that the action of

a body moving slowly through a fluid extends only until a short distance from itself.

Therefore the action of a body moving with any velocity in a fluid must also extend

until a short distance from itself, and the same thing results from the art. 71 and 72.
Moreover, in all the following propositions, as above, we will only need to regard

the fluid particles immediately contiguous to the body surface.

Prop. XII. Problem

86. Let us determine the velocity that a body of whatever shape, moved with
whatever velocity, communicates to the parties of a fluid without weight and of
any density, when it is moving in such fluid,

As in art. 48, N, B, C, D, (Fig. 4.4) let four fluid particles be arranged so that they
form a rectangular parallelogram whose side NC is parallel to the trajectory of the

body. It is clear that at each moment the velocity of these particles can be regarded

as composed of another two; namely, of a velocity equal and parallel to the moving

body at that instant, and of another velocity which will be the respective velocity of

3Art. 38 in the original. In Mss.77–3� the art. 14 is referred, which corresponds to the art. 8.
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these particles with respect to the body. Let u be the rectilinear velocity of the body
in any instant and V the relative velocity of the particle N; thus the absolute velocity
of this particle will be composed of the velocity u and the velocity V. The first of

these velocities u is along CN, parallel and equal to the body velocity, with respect

to the second velocity V it can be regarded as composed of the two other velocities,

one that I call v, which will be along NC, and the other that I name v0, which will be
along NB.

Now, when the body is at the end of any space, the absolute velocity of the

particle N, must have (art. 8)4 the same relation to the present velocity of the body,

whatever it is, and the particle N must have the same position relative to the body

and the same direction. Therefore since the absolute velocity of the particle N along

NE is u� v and along NB is v0, it is clear that the ratio of u� v to u depends on the

position of the particle N in relation to the body and space r already traversed by the
body. Now as u�v

u ¼ 1� v
u, it follows that the ratio of v to u, and of v

0 to u depends on
the space r traversed by the body and the position of the point N.5

In addition, (art. 6) �du
u ¼ ξdr, being ξ a function of the space r traversed by the

body. So (art. 9) r will be a function of u/g. Therefore the ratios of v to u and v0 to
u depend on u/g and the position of the point N; that is to say on u/g and x and z.
Now, in the thread AMD (Fig. 4.5) v

v0 ¼ dx
dy is given, that is, equal to a function of

x and y. So the expression of the ratio of v/u and v0/umust be such that dividing v by
v0 and making z¼ y, u/g vanishes and disappears from the ratio. Then let us suppose

at first that the quantity u/g is not found in the ratio of v to u and v0 to u and let us see
what will result from this hypothesis.

Let, as in the article 48, be v¼ uq, et v
0 ¼ up, NB¼ α, NC¼ β, NN

0 ¼ k
(Fig. 4.6),6 dq¼Adx + Bdz, dp¼A

0
dx + B

0
dz, it will be found, as in art. 48,

αβk ¼ α� updtþ updtþ udtB’α
� �

β � uqdtþ uqdtþ udtAβð Þ k þ kpudt
z

� �
. From

which B0 ¼ �A� p
z will be derived as in the same article. Thereupon this

equation takes place whether the fluid moves or is at rest. Besides, it will be

proved again by the same reasoning as in art. 43 (Fig. 4.4) that uq : uq� qd
u� u� NE� dq

dx � u� NE�p
q � dq

dz :: uqdt : NE. Therefore NE¼ uqdt� qdudt� u2

qAdt2� u2pBdt2; and it will also be given FE¼ updt� pdudt� u2pA
0
dt2� u2

qB
0
dt2. So the particle N, impelled by the forces du

dt � qdu
dt � u2qA� u2pB along

NC and�pdu
dt � u2pA0 � u2qB0 along and NB, must be in equilibrium Now then,

the force du/dt is the same for all points N, B, C, D, so that the NBCD
channel parts impelled by this force are in equilibrium. Therefore the

4This assertion is in art. 6.
5The space traversed in the two previous mentions is written as x, but it is changed to r in the next
paragraph and the x passes to be the axis coordinated. We have taken r for the space to avoid

ambiguity.
6In the original it is Fig. 4.7. Also the values α and β taken here are changed with respect to art.

48, even though this does not affect to the subsequent steps.
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particle N [art. 48] must be in equilibrium driven by single forces

�qdu
dt � u2qA� u2pB and �pdu

dt � u2qA0 � u2pB0. So substituting B0 by its

value –A� p/z, [and operating as in art. 48] it will have

du
dt

dq
dz þ

d u2qAþu2Bpð Þ
dz ¼ du

dt
dp
dx þ

d u2qA0�u2Ap�u2p2

z

� �
dx . So since in this equation p and

q do not depend on the unknown u, separately we must have du
dt

dq
dz ¼ du

dt
dp
dx; this

is dq
dz ¼ dp

dx or B¼A
0
, and

u2d qAþpBð Þ
dz ¼ u2d qA0þpA�p2

z

� �
dx or

d qAþpBð Þ
dz ¼ d qA0þpA�p2

z

� �
dx . This

equation does not differ from that of art. 48 d qAþpBð Þ
dz ¼ d qA0þpB0ð Þ

dx , assuming B
0

¼ �A� p/z and A¼B
0
; because we have seen (art. 48) that the latter

equation is then reduced to zero: thus the conditions already B¼A
0
and B

0

¼ �A� p/z satisfy the equation
d qAþpBð Þ

dz ¼ d qA0þpA�p2

z

� �
dx , from which no new

condition results. So the equations B¼A
0
et B

0 ¼ �A� p/z also take place

either when the fluid moves, or when the fluid is at rest and the body moving.

Scholium I

87. Had we assumed v
u ¼ qφ u

g

� �
and v0

u ¼ pφ u
g

� �
, q and p denoting functions of x and

z, and φ(u/g) any function of u/g, we would arrive at the same equations.

Let us find here the reason why we assumed the functionφ u
g

� �
¼ 1. If we assume

v
u ¼ qφ u

g

� �
, we would find, as it is very easy to see, the pressure proportional to

u2φ u
g

� �2

, which should not be surprising, since in general the resistance R (article

9) is proportional to ξu2, being ξ a function of u/g; therefore the resistance would

not be proportional to the single square of the velocity. Now we are going to

demonstrate in the next art. that effectively it is only proportional to this square.

Scholium II

88. Let be u the variable velocity of the body at every moment, and let us assume

that during all the time of the motion of the body the system of fluid and body is

carried away in the opposite direction with variable velocity u equal to that[u]. It is
obvious that the body will remain at rest, and it will be the fluid which will strike it

with a variable velocity u, but by the primitive laws of motion the fluid pressure on

the body will not be changed. Now I say that in this case the fluid pressure against

the body is proportional to u2, because if it is assumed that any accelerating or

retarding force proportional to kdt acts in every instant upon the parts of the fluid,

the threads will not be disturbed (art. 56), but the velocity of each particle will be

increased or decreased at each instant by a quantity proportional to kdt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
.

Therefore, if velocity is u at any instant, the pressure at this instant will be formed:

1st, by a quantity proportional to φu2δ (art. 68) that comes from the velocity u; 2nd,
by a quantity which comes from velocity of tendency kdt that is δkdt(μ+Ω� πΓb2)
(articles 54 and 56). Now then (art. 55) this quantity μ +Ω� πΓb2¼ 0, thus the

fluid pressure is simply proportional to u2.
So far all the authors of hydraulics have taken as a principle that the resistance of

a moving body in a fluid is equal to the pressure that this fluid, moving with the

same velocity, would exert against the body assumed at rest. However, 1st, they
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have not paid attention to this velocity being variable, the resulting pressure could

contain the element du, and in consequence would not be proportional to u2; 2nd,
even considering, as they would have done, this variable velocity to an uniform

velocity, they have only proved in a very vague way that the pressure was like u2;
see above art. 10. It seems to me that we have fully satisfied all these difficulties,

proving that the coefficient of du/dt is zero, and that the coefficient φ of u2 is always
the same, whatever u is.

It is necessary only to remark that in the first instant the pressure is not

proportional to u2, but it is equal (art. 54) to δu(μ+Ω� πΓb2), that is to say zero.

Then let a body be pushed into a stagnant fluid with an initial velocity U, and this
body after a time t has a velocity u. It is clear that it can be considered as driven

along CA (Fig. 4.1) at every moment by the force ofþdu
dt . Let us apply to the system

of fluid and body the initial velocity–U, and at each successive instant dt the
velocity þdu

dt along AC; it is clear that the body will be at rest, and however it will

continually pushed along AC by a forceþdu
dt , which will be balanced by the pressure

of the fluid.

Propos. XIII. Problem

89. The same things being supposed ast in the previous article, let us determine the
resistance of the fluid.

The force which tends to move the body in the instant dt is þdu/dt. Let μ be the

volume of the body and Δ its density; therefore μΔ will be its mass and μΔdu/dt will
be the force along CA. This force must be balanced (art. 1) by the pressure of the

fluid, that is to δφu2 � δdu
dt μþΩ� πΓb2
� �

. So since μ +Ω� πΓb2¼ 0, it will give

μΔdu
dt þ δφu2 ¼ 0.

Corollary

90. So�du
u2 μΔ ¼ φδdt is the formula to find the velocity of a body which moves in a

fluid. Hence it is obvious that the resistance of the fluid, all other things being equal,

is proportional to u2φδ, that is to say it is equal to the pressure that this fluid would

exert upon the body assumed at rest, if this fluid came to strike it with velocity u. As
we have said this proposition so far was recognized to be true, but it does not mean

that there was no less need to prove it. Because the pressure of a fluid uniformly

moved with the velocity a upon a body at rest is a2φδ, instead of the pressure of a

fluid at rest upon a body that moves therein with a variable speed u is u2φδ�
du
dt δ πΓb2 �Ω� μ

� �
, however this quantity cannot be reduced to u2φδ, unless πΓb2

�Ω� μ¼ 0. This did not seem easy to prove, because of the difficulty of

expressing the quantities Γ and Ω analytically; but fortunately we have reached
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the end for the consideration of the primitive velocity of the body, without needing

to know these quantities.

Propos. XIV. Problem

91. With everything the same, let us find the resistance of a body moved in a fluid,
having regard to the gravity of the fluid and the body, and assuming that the body
rises in the fluid.

The weight is not something other than a force which acts equally on all the

particles of the fluid along parallel lines; it is easy to prove by the same reasoning as

the art. 48 and 49 that we will have A
0 ¼B and B

0 ¼ �A� p/z. Besides this, the fluid
pressure which comes from its relative velocity and from the force �du/dt must be

increased in the pressure gμδ which comes from the gravity of the body, and it must

be reduced by the quantity gMΔ which comes from the effort of the fluid under its

own weight, and which acts from below upwards. So the pressure φu2δ, found in the
art. 89, must be increased by the quantity gμδ� gμΔ. So it will give

�du ¼ φu2δdt
Δμ þ gδ

Δ � g
� �

dt.

Propos. XIV-B. Problem7

92.With everything the same, let us find the resistance of the fluid having regard to
the viscosity and the friction of the parts.

1st. The friction of the fluid over the body may only come from the relative

velocity of the fluid respect to the body.

2nd. The experiments made by the famous Musschenbroek teach us that the

friction is proportional to the velocity, hence it follows that if the relative velocity at

any point is called U, the friction is proportional to nU, n denoting a coefficient to

be determined by experiment, and which is the resistance coming from the friction

when the velocity U is equal to 1.

3rd. The equations B0 ¼ �A� p
z and A

0 ¼B still take place here. Since the forces

lost by each fluid particle, defined in the art. 48, must be decreased by the forces

unp and unq; because the friction that decreases the velocity can be represented by a
force which would act in the opposite sense to the direction of the velocity.

Therefore the force �unp must be subtracted from the force lost along NB (Fig.

4.4) and the force �unq from the lost force along NC. Then, it will give (art. 86)8

�nudqdz þ dudq
dtdz þ u2 d qAþBpð Þ

dz ¼ �nudpdx þ dudp
dtdx þ u2 d qA0þB0pð Þ

dx , and as neither p nor

q depend on u, we will have dq
dz ¼ dp

dx separately and
d qAþBpð Þ

dz ¼ d qA0þB0pð Þ
dx ; from

which A
0 ¼B and B0 ¼ �A� p

z. is obtained as in the article 48. Therefore the

pressure from A to C found in the previous calculations, must be decreased in

(article 54) unδ
R
2πydy

0 R
pdy

0
+ qdx

0 � unδπΓA2; that is, we need to add (article

54) unδ(Ω� b2Γπ). Consequently we will have for the general equation9

7In the original this propositions repeats the same number as the previous one, therefore I have

called it XIV-B.
8Said 86 in the original.
9This equation and the successive ones derived from it have a misprint in the place of dt.
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�μΔdu
dt ¼ φu2δ� gδμþ gΔμ� unδΩþ unδΓπb2. And as –Ω+Γπb2¼ μ (article

55), it will give �μΔdu
dt ¼ φu2δdtþ gδμ� gΔμþ unδμ.

Remark

93. The resistance proportional to velocity, which we talk about here, is due to

friction10 of the parts of the fluid and body. This friction comes from the unevenness

of the body surface. But there is also another resistance that comes from the

viscosity11 of the parts of the fluid; and, as far as we can conjecture from all

experience, it can be regarded as a constant force. Because, 1st, there are many

bodies that, although having a greater specific gravity than water, do not descend

into the water. Now then, as this descent is only prevented by the viscosity of the

water parts, it follows that the viscosity is necessarily in a finite ratio with the

gravity. Indeed, any body being just slightly heavier than water would always

descend if the viscosity was proportional to some power of velocity; because

making the velocity equal zero, the viscosity would be zero, and so it would not

oppose the first descent of the body. 2nd, anybody has observed this viscosity in the

drops of water, as it often prevents the drops from falling when they are adhered to

the lower surface of any body. Therefore viscosity, whether it comes from a

compressive force or from the attraction of parts, is a constant force such as gravity,

though very small compared to it.

The only objection that can be made against this reasoning is that any pendulum,

provided it is a little heavier than water, always adopts the vertical position in the

water, and it returns to it when it is moved out slightly; this would not happen if the

viscosity was an opposing force. Because let be g gravity and α the viscosity force,

it is clear that the pendulum should stop in any case where it will make an angle or

smaller or equal to α/g with the vertical; which nobody until now has noticed, as I

know. But as the angle α/g is very small, and consequently not easy to observe, and

also any extraneous motion coming from the air or from the surrounding bodies can

disturb this experience. I do not consider that the objection in question is large

enough to make me reject a truth that seems consistent with reason, and which is

supported by infinity of experiments. In the work that we have already mentioned

M. s’Gravesande finds (§. 1911) that the pressure of a fluid in motion against a body

at rest is proportional in part to the single velocity, due to the fluid viscosity, and in

part to the square of the velocity due to the force of inertia. The intensity of these

two pressures against a cylindrical body appears to be in a ratio of 20 to 39 following

the experiments he made, §.1930 and 1945. The first, which comes from the

viscosity, is independent, as M. s’Gravesande says, of the shape of the body

(§.1916); but it is not the same with the second, because in a globe it is the 2/3 of

that of the cylinder, and in a right-angled cone it is as the half diameter of the base is

to the side, §.1917, 1918 etc.

10In the original “frottement”.
11In the original “ténacité”.
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When the fluid is at rest and the body in motion, then according to

M. s’Gravesande the total resistance is again composed of another two: one part

is constant, the other is due to the square of the velocity (§.1975). He proves that a
part of the resistance is constant because a body moved in a fluid finally stops;

which does not happen if the resistance simply dependent on the velocity (§. 1963).
This test reinforces what we have already given about the same proposition at the

beginning of this article. In effect, when the resistance is assumed to be as u2, or as
u or as u2 + u we will always find that t, that is the time of the body motion, is equal

to infinity; although t is finite when a constant term enters in the expression of the

resistance.

But how is the force that comes from the cohesion of the parts proportional to the

velocity in the case of the moving fluid, and constant in the case of the fluid at rest?

This is whatM. s’Gravesande tries to explain, §.2065 et seq., but using an argument

that seems to me very obscure. Besides, I do not see that he has made any

experiment to verify the difference; or rather, in the same experiments that he

made on the pressure of a fluid in motion, he remarks (§.1914) that the theory does

not agree with experiment when the velocity is very small, but that the pressure

given by the experiment (§.1911) is greater than what is found by the theory. This

proves, it seems to me, that the fluid pressure that comes from the viscosity is not

strictly proportional to the velocity.

However, I must admit that considering the opinion itself of s’Gravesande,
independently of the obscure and insufficient evidences in which he has sought to

support himself. This opinion may seem founded to some extent, at least at first

glance. That is to say, it can be thought that the pressure of a moving fluid against a

body at rest, and the resistance that a moving body experiences in a fluid at rest are

not the same in the case where the viscosity of the parts of the fluid is considered; if

the viscosity is understood as the difficulty of separating the fluid particles. Indeed,

when a body moves, it is clear that the difficulty in separating the particles is an

obstacle for it, which must necessarily make it lose velocity. But when the body is at

rest, and it is the fluid which strikes, one cannot see distinctly how the viscosity of

the parties increases the pressure. Because this viscosity seems to be a simply

passive force capable of resistance rather than action.

However, considering this issue more carefully, it is soon perceived that the

viscosity is a force by which the particles of the fluid resist their division; so that if

the fluid particles have precisely only a justly low velocity so they could not be

detached from each other, these parts would move in virtue of that velocity as it an

absolutely solid body would; and the fluid would move together with the body, so

that the fluid particles would not have any relative velocity in relation to the body.

To clarify our thoughts better, in a fluid let us suppose a body at rest slightly heavier

than the fluid, but that remains suspended therein due to the adherence of parts of

the fluid; the whole system will therefore remain at rest. Let us now give a velocity

equal and contrary to that with which the body tends to descend; it is obvious that

the body and the fluid will be transported with this velocity in the same manner as if

they formed a solid body; and they are transported in the opposite direction to which

the body tends to move along. Thus it is seen how the viscosity of the particles may

5 On the Resistance of Fluids to the Bodies Moving Therein 75



be reduced to the action of a force tending to move the body in an opposite direction

to which it moves along. The viscosity can be further reduced to an active force,

considering that when a body, that is slightly heavier than the same volume of fluid,

remains suspended due to the viscosity of the fluid; it is in the same case, if the

viscosity is excluded, as if the weight of fluid was increased in such a quantity so the

fluid and the body were in equilibrium. From that it also follows that the viscosity

can be supposed equal to a constant force, since the effect of the viscosity is

equivalent to that which would result from an increase of the weight in the fluid.

It seems to me that we have distinguished very well founded three classes of

resistance: the first is constant, coming from the viscosity of the fluid particles, that

is to say, the resistance that the particles oppose to being divided; the second

proportional to the velocity, and coming from the friction that the fluid particles

undergo when they slide on the body surface by virtue of their relative velocity; the

third proportional to the square of the velocity, coming from the force of inertia.

The constant resistance does not depend on the body figure or velocity, or even on

its width. Because this resistance comes mainly from parts of fluid that are found in

the axis AC extended to A (Fig. 4.1),12 and that the body is forced to separate in

order to move itself, now then, the number of particles to separate is as the distance

traversed; therefore the live force lost is proportional to this space. Indeed, this

resistance can be compared with sufficient likelihood to the effect of the gravity or

to the force of a spring wire, which will be always the same.

Corollary

94. So if it is assumed that g0 is the part of the resistance that must be constant and

one considers the weight of the fluid and the body as much as the viscosity and the

friction of the parts, it will give �μΔdu
dt ¼ φu2δþ gδμ� gΔμþ unδμþ g0δ. This is

the general equation of motion of a body in a fluid. It is reduced to �du
αu2þβuþγ ¼ dt,

being α, β and γ constants. Now, the integration of this equation has no difficulty.

Let u + k et u+ k
0
be the two roots of the factor of the quantity u2 þ βu

α þ γ
α, we will

have αt ¼ � 1
k�k0

log uþkð Þ gþk0ð Þ
uþkð Þ gþk0ð Þ , indicating g the initial velocity of the body.

Therefore
uþkð Þ gþk0ð Þ
uþk0ð Þ gþkð Þ ¼ c�αt k�k0ð Þ ; which gives the value of u in t.13 Now if k is

imaginary as well as k0, these expressions can easily be reduced to real quantities by
the method I explained in the Memories of Academy of Sciences of Prussia 1746.

Thus the solution of the problem is now reduced to a pure difficulty of analysis.

That is why I go on to other researches, contenting myself with making the

observation that I arrived at this formula by an entirely new method.

12It seems that it refers to Fig. 4.1.
13We notice that the letter c corresponds with number e.
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5.3 On the Use of Pendulum Experiments to Determine

the Resistance of Fluids Whose Velocity Is Very Small

95. At first one can easily ensure by the experiments of the pendulum if the

resistance is roughly as the square of the velocity when the velocity is very small.

To find it, let us imagine a pendulum that describes very small arcs; let be p the

natural gravity, A the point where it is assumed that the body starts to move at any

instant (Fig. 5.1),14 AM¼ y, DM¼ s, QP¼ x, AD¼B, CD¼ a, u the velocity at M,

m the mass of the pendulum, f the resistance that the fluid would produce upon the

massmmoved with a velocity
ffiffiffiffiffiffiffiffi
2ph

p
. It will givepdx� f u2dy

2phm ¼ udu in the hypothesis

of the resistance as the square of the velocity; from which it follows u2 ¼ 2px� R
f u2dy
phm 0; now then x ¼ B2�s2

2a and s¼B� y; from which it is clear that u2 is very nearly

equal to
p 2By�y2ð Þ

a � R fdy
phm

2pBy�py2

a

� �
. Therefore, u2 ¼ p 2By�y2ð Þ

a � f
Rhm By2 � y3

3

� �
.

So to find the point A00 up to where the body rises, u¼ 0 must be taken, which will

give ADA0 ¼ 2B� 2f B2

3phm. Therefore AA
0 ¼ 2f B2

3phm. Now assuming the resistance as the

square of the velocity, phmf must be equal to a constant n. So 0 ¼ 2B2

3n .

96. Now it is easy to see that from whichever point A the body starts to move, the

very short time that it uses to make a vibration, that I call τ, will always be about the
same. So looking A0A00 as an infinitely small quantity and equal to �dB, and also

assuming τ ¼ dt, we will have -dB proportional to 2B2dt
3n . Therefore if it is assumed

that the first arc traversed by the body is equal to B0, we will find that 3n
2B � 3n

2B0 is

proportional to t. In order for the resistance to be as the square of the velocity, B
0�B
B0B

must be a constant quantity, t expressing the time that the pendulum is moving. Let

Fig. 5.1 xxx

14The symbol a is used with two meanings, and in the next article α is also changed. To avoid any

mistake we have introduced A0, A0 0 in the places of the points a and α in this article and τ for α in

the next maintaining them until §.98 inclusive.
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us see now how it will be ensured by the experiment, if the resistance is as the

square of the velocity.

97. A pendulum of arbitrary length CD (Fig. 5.2) will be made to move in the

fluid whose resistance we want to determine. Care should be taken that the

suspension in C is such that the friction can be counted for nothing; for that we

can use a rope cord attached between two plates of very polished copper or steel

from which the pendulum will be suspended. Next we will mark the point O from

which we let the pendulum fall and we will be note the points B, M to which it

ascends after two times t, t0. I say that the resistance will be as the square of the

velocity if OB
DB :

OM
DM∷t : t0.

Assuming that this proportion is indeed found to be true, or very nearly true, it

will be easy to know the constant n. For this, let be τ the time of one vibration of the

pendulum, which can be determined with great accuracy by counting the number of

vibrations it makes in a given time; it is clear that it can be assumed f
pm ¼ n

T, where

T denoted a time constant, but unknown. Therefore we will have �dB ¼ 2dtB2

3Th and
3h
2B � 3h

2B0 ¼ t
T ¼ tf

pmτ; so
1
B � 1

B0 ¼ 2t
3τn ; so n ¼ 3tB

0
B

2τðB0�BÞ ¼
3t
2τ

BD�DO
OB .

98. If it is found that the resistance is not proportional to the square of velocity, in

this case the resistance will be assumed equal to þ f u2

2ph þ kuffiffiffiffiffiffi
2ph

p , as we did in art. 94;

but in this case it will be very difficult to determine by experiments with pendulum

the coefficients f, g, k, because the formula that would give the value of B at twill be
extremely complicated. So I think in this case the analysis in order to determine

these coefficients is almost an insuperable difficulty because the almost impossi-

bility of finding a simple and convenient equation between the times and the spaces

traversed. However, it seems to me that from all assumptions that can be made on

the fluid resistance, the more truthfully and less subject to dispute is the one given

here. It would be wished that a way to easily compare it with experiments could be

found.

Moreover, let us see here in the most convenient way that is possible, the method

I have devised to reduce the experiments to the calculus.

Fig. 5.2 xxx
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We will have u2 ¼ p
a 2By� y2ð Þ � f

ahm By2 � y3

3

� �
� 2gy

m � 2k
m

ffiffiffiffiffi
2ah

p
R
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2By� y2

p
.

Now, if π is called the ratio of the circumference of a circle to its radius, wet will find
0A

0 0 ¼ 2f B2

3phm þ 2ga
pm þ 2kaπB

2pm
ffiffiffiffiffiffi
2ha

p . Making f
pm ¼ τ

T ¼ dt
T we will have dB ¼ 2B2dt

3Th þ 2agdt
fT þ

akπBdt
fT

ffiffiffiffiffiffi
2ah

p or dt
T ¼ � 3hdB

2

B2þkπ3
ffiffiffiffi
2ha

p
f Bþ3hga

f

.

It can be therefore assumed dt
T ¼ �3hdB

2 BþGð Þ BþAð Þ, G and A being imaginary or real;

from where 1
T ¼

R
3h

2 A�Gð Þ
dB
BþA � dB

BþG

� �
is drawn and

2 A�Gð Þt
3hT ¼ log BþA

BþG
B0þA
B0þG

. So t is

proportional to log BþA
BþG � log B0þA

B0þG
. From this it follows that by three observations

A and G are known, and therefore h
f and

g
f . First of all let us observe the arc B

0 in the
first descent, and after let us observe the three arcs β, β0, β00 in the times t, t0, t00 which
are in arithmetic progression, it will give this continuous geometric progression

:�: 1 : βþA

B
0þA

B
0 þG
βþG : ðβ

0 þAÞðB0þGÞ
ðB0þAÞðβ0þGÞ :

ðβ0 0þAÞðB0þGÞ
ðB0 þAÞðβ0 0þGÞ. Hence the values of A and G will be

obtained, by a very long indeed calculation; further, instead of T putting its value
pmτ
f , we will have

2 A�Gð Þtf
3hpmn ¼ log BþA

B0þA
B0þG
BþG . Therefore

pm
f or the relation of f to pm is

also known.

Remark

99.M. Daniel Bernoulli, in tome 3 of the Memories of Petersburg, proposed himself

to determine by theory the movement of a heavy body in a medium whose

resistance is in part constant by the viscosity, and in part proportional to the square

of the velocity. Having applied the calculation to the experiments, he found that the

viscosity with which water resists a globe whose weight in water would be a grain15

would be equivalent to about1/4 the weight of the globe; a result that seemed

suspect toM. Bernoulli as giving a too big value for the resistance that comes from

viscosity. He observes moreover, that according to the experiments of M. Newton,
Book 2, Prop. XL, Sch., this resistance occurs only in very slow movements and

that in the others the resistance is more like the square of the velocity.

In tome 5 of the same Memories, this great geometrician continues treating the

same subject. He first applies the calculation to the experiments of pendulums made

by M. Newton, Book 2, Prop. 31, Sch. and he find, after having weighed and

discussed all the circumstances, 1st that in pendulums whose motion is not too

slow the resistance is almost like square of the velocity, 2nd that in slower motions a

constant force joins that resistance. 3rd finally, in extremely slow motions, it seems

very difficult to determine accurately enough the law that follows the total resis-

tance, because the experiments do not agree then with the theory. However,

M. Bernoulli believes that even in this case the theory should not be completely

rejected, because the experiments are so delicate that it seems difficult to conclude

anything certain and positive from them. Perhaps, moreover, they would better

agree with the theory if in the case when the motions are very slow the resistance is

15A grain is equivalent to1/72 livres (0.0531 g).
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imagined proportional to fu2 + ku+ g, as we have done. Moreover, it seems to me

that the formula that has been given, p. 135, Tome 5 of the Mém. of Acad. of

Petersburg, does not accurately represent the difference in the arcs traversed in the

hypothesis of resistance proportional to fu2 + g; this is what can be made sure by

comparing our two methods.

The author finds that by calling t the arc of the first descent, the ascended arc will
be t� 4

3
nt2, the resistance being as the square of the velocity, which is consistent

with what we have found. From that he concludes that after a number of oscillations

equal to l, the ascended arc will be approximately represented by the geometric

progression � 4
3
nl

� �
t2 þ 4

3
nl

� �2
t3� 4

3
nl

� �3
t4, etc., whose sum is t

1þ4
3nlt

; which is still

consistent with our calculation, as we can easily see even although we have used a

different method and denominations.

But it is not the same in the case of resistance as the square of the velocity plus a

constant; because as from the excess of the descended arc over the next ascended

arc, that is 4mag þ 4
3
nt2 as the author has found and we do as well, I do not see how the

author concludes that t� 4mla
g

� �
: 1þ 4

3
nlt

� �
will be the arc ascended after a number

of oscillations equal to l. On the contrary it seems to me that following the very

short and very simple method that we have used, it will give (keeping the names

given by the author) ¼ R �dt
4ma
g þ4

3
nt2
, which is very different from the value of l which

would be derived from the equation t� 4mla
g

� �
: 1þ 4

3
nlt

� � ¼ r, r expressing the

ascended arc.

5.4 Examination of an Hypothesis Which Would Lead

to Strange Paradoxes on the Resistance of Fluids

100. All the authors who have so far treated the motion of fluids enclosed in vases

have taken as hypothesis that all parts of the fluid placed in the same horizontal line

have the same vertical velocity. This hypothesis, that is, or at least it appears to be,

confirmed by experiment, had so captivated me that I had thought at first to derive

from it the theory of fluids resistance. But having paid attention to the resulting

calculations, I noticed that there were many cases in which the fluid resistance will

be null according to this theory, and that it lead to a lot of other consequences very

contrary to experience. Maybe it will not be useless to explain this more at length.

101. Let a body be ANB (Fig. 5.3), which I will take, for convenience, as a flat

surface and that here I will consider only one half because the other half is assumed

similar and equal to this one. Let this body be immersed in a fluid, which is enclosed

in a cylindrical vessel,16 QV being one of the walls. The body moves from B to

A and the line PNV is perpendicular to AP. It is obvious that the point Nwill come at

16It should be understood as prismatic instead of cylindrical.
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n, so that the space OANVQ decreases by an amount equal to AaNn¼ aA⨯PN. So
the parts of the fluid contained in NV must necessarily move towards ku; so if the

velocity of all these parts parallel to Vu is assumed the same, all parts NV will keep

themselves in the situation ku parallel to NV and it will give NVuk¼ANKa.
Therefore Vu ¼ PN�Aa

NV . Let u be the velocity of the body along Aa, PN¼ y, PV¼ a

and v the velocity of the particles NV, it will give v ¼ uy
a�y. Having said that, I look

for the fluid resistance in the following way.

102. Let be M the mass of the body, V the velocity imprinted at the first instant,

V0 the actual velocity that it must have because of the resistance of the fluid. In the

first instant the particles placed in any line NV will move parallel to Vu with the

velocity V0y
a�y. So (art. 1) the pressure of these particles is the same as if they tended to

move with the same velocity parallel with uV, now then in this case the pressure

would be (art. 23) δ
R
ydx V0y

a�y ; therefore MΔ V � V0ð Þ ¼ δV0 R ydx y
a�y ; so

V0 ¼ MΔV

MΔþδ
R

y2dx
a�y

. So since M¼ R
ydx, it will give V0 ¼ MVR

yadx
a�y

assuming Δ¼ δ. But

here is the drawback according to this formula: in the first instant of the motion

following the experiment V¼V
0
is; but following the formula V ¼ V0 this happens

only in the case which a is infinitely large. Because then
R yadx

a�y ¼
R
ydx ¼ M ; in

other cases, it is
R yadx

a�y > M, and therefore V>V
0
, and the smaller a is, so V0 will be

smaller in respect to V. But I do not know any experiment that proves that the

velocity lost at the first instant is greater when the vessel is narrower. It even

appears that the figure of vase contributes nothing, or almost nothing, to the

resistance, because, as it has been proved above, the motion that the body commu-

nicates to the fluid particles extends up to a very short distance around it (art. 71 and
72).

103. I will prove now that in the next instants, the fluid resistance would be

absolutely null if the parts contained in the line NV all had the same velocity parallel

to AP. In effect being uy
a�y the velocity of the particles NV in any instant dt, these

particles, when they reach in the next the instant the situation ku, will have the

velocity u0y0
a�y0, y

0 denoting the line pk and u0 the velocity of the body in this second

Fig. 5.3 xxx

5 On the Resistance of Fluids to the Bodies Moving Therein 81



instant. So the pressure will be the same, as if all parts of the line NV were impelled

parallel to uV by a force equal to 1
dt

u0y0
a�y0 � uy

a�y

� �
. Now u0 ¼ u+ du,

y� y0 ¼ pk � PN ¼ Nnþ Vuð Þdydx ¼ udtþ uydt
a�y

� �
dy
dx. So the pressure along AB

will be ¼ δ
R
ydx ydu

a�yð Þdt þ δ
R

au
a�yð Þ2dt udtþ uydt

a�y

� �
dy
dx ydx ¼ δdu

dt

R y2dx
a�y þ δ

R au2ydy

a�yð Þ2 þ
δ
R au2y2dy

a�yð Þ3 ¼ δdu
dt

R y2dx
a�y þ δau2

R ady

a�yð Þ3 ¼ δdu
dt

R y2dx
a�y þ a2δu2

2
1

a�yð Þ2 � 1
a2

� �
¼ δdu

dt

R y2dx
a�y,

because the second part is equal to zero when x ¼ AB.17 So δdu
dt

R y2dx
a�y is the fluid

pressure; therefore if the vessel is very wide, this pressure will be null or may be

regarded as null; and if the vessel has not a large extension it will give
MΔdu
dt ¼ δdu

dt

R y2dx
a�y, which is absurd. 1st, because in an infinity of cases MΔ will not

be¼ δ
R y2dx

a�y, as
R y2dx

a�y depends on the figure of the vessel; now then, the shape of the

vessel has not any influence on the amount MΔ
δ , which depends only on the shape of

the body, its density and that of the fluid. 2nd, when even it would occur in some

cases by chance thatMΔ was equal δ
R y2dx

a�y, then du may be taken as one would like

and the problem will be undetermined, which is still absurd; since the fluid and the

body are given, the quantity of resistance and velocity at every instant is necessarily

determined and not arbitrary.

Scholium I

104. In the previous art. we have only considered the velocity of the fluid particles

parallel to AP. But we would find also the resistance null if we had considered the

actual velocity of the fluid particle that are immediately contiguous to the body

surface. Let us suppose, for convenience, that the curve ANB is composed of two

equal and similar parts AO, OB, and let be AN¼ s, and ds
dx ¼ Y, this quantity will be

the same at the corresponding points of the arcs AO, OB.
Now, since the absolute velocity of the particles of fluid parallel to AP is uy

a�y, and

the velocity of the body ANB in opposite direction is u; it follows that the velocity
relative to the body will be uy

a�y þ u ¼ au
a�y, as this velocity is parallel to AP.

Therefore the velocity of these particles along the surface of the body will be uaY
a�y.

So 1st, the body is pressed by the fluid with a force equal to�δdu
dt μ, which acts along

AB. 2nd. The velocity lost at the point N is
u0aY
a�y � uaY0

a�y0 ¼ aYdu
a�y þ audY

a�yð Þdy þ auY
a�yð Þ2

� �
udtþ uydt

a�y

� �
dy
dx, and for the point V directly

opposed to N, it will be � aYdu
a�y � audY

a�yð Þdy þ auY
a�yð Þ2

� �
udtþ uydt

a�y

� �
�dy
dx . Hence it is

easy to see that the pressure is the same as if the points N and V were impelled

17This formula has an error in the third term of the third equality, which must be
R ady

a�yð Þ3, whose

integral between 0 and y is
R ydy

a�yð Þ3 ¼ � 1
a�y � 1

a

� �
� a

2
1

a�yð Þ2 � 1
a2

� �
. However, the final result does

not change because its value between 0 and AB is also zero. The error comes from the Mss.90.
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by the only force adu
dt

Y
a�y. So the resulting pressure will aduδ

dt

R dy
ds

R
Yds
a�y. Therefore it

will give �μΔdu ¼ �μδduþ aδdu
R

du
ds

R
Yds
a�y, from where du ¼ 0 is deduced, and

consequently the velocity u is constant, and the resistance null. Which is absurd.

Thus etc.

Scholium II

105. It should not be concluded from the latter that the hypothesis, which has just

been rejected for finding the resistance of fluids, has also to be rejected when it

comes to determining the motion of a fluid in a vessel. The experiment, that must be

our guide here, proves that in the latter case the assumption in question gives an

analytical result fairly consistent with the observation, whereas in the first case the

result of the calculation gives null resistance, which is absolutely contrary to

experience. Moreover, we shall have occasion later to examine by our principles

the laws of motion of a fluid in a vase.

5.5 About the Resistance of Non-elastic and Finite Fluids

106. We have seen (art. 82) that this resistance occurs when a body, submerged in a

fluid close to the upper surface of this fluid, rises up and tends to move towards this

surface. Because if the body was deeply immersed in the fluid, and the fluid was not

elastic, then there would be no vacuum behind the body, however great its velocity

was. Indeed, no matter what the velocity is, the communication of motion is always

made (art. 85 no. 4) to the same number of parts; now when the velocity is very

small, the experiment proves that the parts to which the body communicates motion

are few, and they are very close to the body. Therefore the motion communicated to

the fluid in the case in question would not be extended to the upper surface of the

fluid; then in order to produce a vacuum behind the body, when the fluid is not

elastic, it is necessary that the motion is extended up to the surface and that the part

of this surface, which is perpendicularly above the body, rises somewhat above the

level.

From this it follows that even in cases when there is a vacuum behind the body,

the parts to which the motion is communicated are not far distant from the body.

Thus for this reason only it could be enough just to regard the contiguous parts to

the body surface, if this did not follow otherwise from art. 1, 21 and 22.

107. Now then, before determining the resistance in this case, we notice that the

number of particles to which the body communicates motion here is not always the

same, as in the case when no vacuum is produced behind the body. Because the

proposition from which we have deduced this theorem in art. 8 only takes place

when the particles of fluid are not impelled by any accelerating force, so that its

effect is null; which happens when there is no vacuum behind the body, because

then (art. 85 n�. 3) the effect of compression is null. It is not the same when a

vacuum is produced, because then the velocity with which the parts of the fluid tend
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to move due to their compression must be combined with that which the body

communicates to them, either directly or by means of other parts.

108. Now, in order to determine the resistance it must be observed: 1st, that the

vacuum, that will be behind the body, will be much greater as the body velocity will

be greater in relation with that which the particles of the fluid would erupt in an

empty space due to their compression; 2nd, that these particles, being compressed

along perpendicular lines to the body surface, should jump in the same direction; so

that if the body moves, for example, along CA (Fig. 5.4), the particle placed in

O behind the body will be moved alongOG perpendicular to the body surface. Thus

the velocity along OG, when the particle does not leave the body, is to the body

velocity along CA as dy is to ds. Then, if V is the velocity that the compression of

particles of the fluid must give to them, there will be V to u as dy to ds, and the

vacuum will begin to be produced behind the body in the point where V
uwill be equal

to dy
ds. From this it follows that there will not be any vacuum if V¼ u or if V> u; and

that it will be only when V< u; and that this vacuum will be much lower, all other

things being equal, as u will be smaller. Because the smaller u will be, the more the

ratio V
u will approach to unity; therefore also the point where dy

ds ¼ V
u will be near the

point C, since dy
ds ¼ 1 at C and equal to zero at D.

Propos. XV. Problem

109. Find the resistance of a heavy fluid, compressed, of finite extension and
non-elastic.

Let O be the point where dy
ds ¼ V

u ; DK¼ b; KV¼ Z, the parts ADC and Adc are

assumed similar and equal, finally, let ψ be the force that compresses [all]18 the

fluid particles. The compression upon the part odADO along ACwill be ψδπZ2; now

Fig. 5.4 xxx

18Mss.104.
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it can be assumed ψ ¼ pξ, that is to say, equal to the pressure of a fluid whose

gravity would be p and the height ξ. In this case, by the laws of hydrodynamics, we

will haveV ¼ ffiffiffiffiffiffiffi
2pξ

p
; because a fluid compressed by a force ψδ¼ pδξ escapes with a

velocity of
ffiffiffiffiffiffiffi
2pξ

p
, that is to say with the velocity that a body of weight p will acquire

falling from a height ξ. Besides that, the pressure along CA coming from the weight

of the fluid will be δg(ArN +NVODN) that must be subtracted from the weight

gμΔ of the body.19

With respect to the part of the resistance of the fluid that comes from the inertia,

we will prove, as was done in the article 55, that the part�du
dt will be multiplied by a

coefficient equal to zero, and that only the part φu2δ will remain. Therefore

neglecting the friction and viscosity of the parts, we will have

�μΔdu
dt ¼ φu2δ� δg ArN þ NVODNð Þ þ μΔgþ πpξδZ2, an equation20 from which

the value of u cannot be deduced as function of t, because the quantities ArN,
NVODN and Z are variables and they depend on the position of the point O, which
itself depends on u. But at least it can always have the value of t as function of u,
which comes to be about the same.

Scholium I

110. If pressure ψ only comes from the weight of the parts of the fluid, then the term

πpξZ2δdt should be deleted in the above equation.

Scholium II

111. See here how the quantity φ will be determined. It is obvious that it is equal to

the value of
R
2πydy(1� p2� q2) when y¼OL, this value being equal to zero at any

point of Fig. 6.1. Now to find this point let A and B be the abscise and the ordinate

that respond to it; we will seek the quantity which must multiply�du
dt in the formula

of the fluid pressure, and as this quantity must be zero, then we will have the

unknown A and B; and consequently the value of φ.

5.6 On the Resistance of Elastic Fluids

112. The fluids we have treated so far have been supposed to be unable to occupy a

larger or smaller space by the action of any force whatever this is. So that if a body

moves in such a fluid of an indefinite extension, it will never produce vacuum behind

the body and the fluid will always maintain the same density behind the body.

113. It is not the same when the fluid is elastic. Because when a body moves in

such a fluid, the fluid is expanded at the rear part of the body and condensed at the

front part; and the compression of a part and the expansion of the other are greater

in the measure that the body moves with higher velocity. Furthermore, neither

19Let note that by Arn and NVODN, we understand here the solid generated by the revolution of

these figures around the AC axis. (Original Note).
20In the original there are several dt misprinted and in §.92, 94 as well.
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compression nor expansion are the same in all points of the surface, be in the front

or in the back. For example, a globe which moves in an elastic fluid, and let us

imagine a line parallel to the direction of the globe passing through the center of the

globe; it is obvious that the compression of the fluid is greatest at the front end of

this diameter and that the expansion is the greatest at the rear end. From this it

follows that the compression and dilatation will be smaller in any point of the

surface, in the measure this point will be further away from the ends of the assumed

diameter; so that in the line which is in the middle between the front and back

surface, that is to say, in the great circle which is separated 90� from these ends

there are neither any compression nor any dilatation; which we may also prove as

follows. Since the compression of the fluid is produced at the front of the body and

the dilatation takes place at the rear part, and that nothing happens in nature other

than by insensible degrees, the fluid contiguous to the body must pass from the state

of compression to the dilatation through insensible degrees. Therefore, after the

point where the compression is the greatest, it must decrease to a point where

compression is changed to dilatation, and consequently the fluid must not be dilated

or compressed in this latter point.

114. Given this, the fluid dilates in the rear part because the motion of the body

leaves an empty space behind the body into which the fluid rushes with more

velocity in the measure its compression is greater.

So, asM. Robins has noted the first, if the velocity of the body is greater than that
with which the fluid can jump into an empty space, then an empty space behind the

body will necessarily remain. From this consideration M. Robins rightly concludes

that the laws of the resistance for elastic fluids must be very different from those of

the resistance for non-elastic fluids, especially in the cases when a vacuum is

produced behind the body. Because, as M. Robins noted very well, if the resistance

of a non-continuous fluid, composed of parts separated from each other, is greater

than that of a continuous fluid, this is because in a continuous fluid a reflux of

particles is produced behind the body by a kind of circular motion, which helps to

reduce the resistance of the fluid upon the front surface. From this he concludes that

in an elastic fluid, when a vacuum is produced behind the body, the resistance is

much greater than in a continuous fluid, because the motion and the circular reflux

of the parts cannot take place then. Now, according to M. Newton, the resistance

that a non-continuous fluid causes to a cylinder moving therein is four times the

resistance that a continuous fluid causes to the same cylinder; moreover, the

resistance that a continuous fluid causes to a globe is equal to that of the same

fluid to the cylinder. Finally the resistance that a non-continuous fluid causes to a

globe is a half that the same fluid causes to a cylinder.

Therefore, M. Robins concludes, the intensity of the air resistance to a cannon

ball when a vacuum is formed behind the ball, is twice as large (excluding the

velocity) than in those cases in which no vacuum is produced.21 Besides, as in the

21The original is confused and unclear. In Mss.115 “in iis casibus in quibus nullum fit vacuum”:

“In those cases in which no vacuum is produced”.
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case when there is a vacuum, the fluid is condensed much at the front part,

M. Robins judges that the resistance increases also by this circumstance; so that,

according to him, the intensity of the air resistance upon a cannon ball moving very

rapidly is three times what it would be if the ball was moving with a medium

velocity, so that no vacuum was left behind it. This proposition, or, if it is preferred

this conjecture, seems to be confirmed by the experiments that Robins has made.

But as he has not given another theory on this subject, I thought that it would not be

useless to show some views here on this matter. Since the air is the only elastic fluid

we know, I will deal here only with the air resistance.

Observations

115. [1st]. The air in its natural state is compressed by a force equal to that of a

column of water about 32 pieds.22 Now, the air is about 800 times lighter than the

water. So the air in its natural state is compressed by a force corresponding to an air

column of approximately 32 � 800 pieds. So if the air compressed by this force

rushes into an empty space, its velocity would be that which a heavy body would

acquire in falling from a height of 32 � 800 pieds. Now a heavy body traverses

15 pieds per second, therefore in a second it would traverse 30 pieds with a uniform

motion. So the air moving with the aforementioned velocity would traverse in one

second a space of 30�
ffiffiffiffiffiffiffiffiffiffiffi
32�800

p ffiffiffiffi
15

p ¼ 2
ffiffiffiffiffi
15

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � 8 � 4 � 100p ¼ 2

ffiffiffiffiffi
15

p � 8 � 2 � 10 ¼
328

ffiffiffiffiffi
15

p ¼ 320
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 1

p ¼ 320 4� 1
8

� � ¼ 1280� 40 ¼ 1240 pieds. Therefore in

order to produce a vacuum behind the body, its velocity must be greater than

1240 pieds per second.

2nd. Let δ0 be the density of the air in its natural state, δ its density in another

state, experience makes us see that the compression of air in direct ration to its

density can be assumed fairly accurately; therefore the compression will be

32 � 800�δ/δ0. But the velocity with which the air would erupt in a void space

will always be equal, regardless of the density δ, to which a heavy body would

acquire falling from the height of 32 � 800 pieds, which will always be 1240 pieds

per second. Because when the air has a density δ, its compression is equal to the

weight of a column of 32 � 800 pieds and of the density δ.
3rd. Let there be a body DAdC (Fig. 5.5) which moves in an elastic fluid, so that

it goes from DAdC to D0a0d0c. It is obvious from what has been said in art. 113, that
the largest compression of the fluid will be at A, the largest dilatation in C, and at

D there will be neither compression nor dilatation. Therefore if Nn is drawn parallel
and equal to Aa, and NV perpendicular to AD, it is obvious that the compression will

be smaller in the measure that the line NV will be smaller. Besides this, the

compression at A is greater in the measure that the velocity is greater. Therefore,

naming as above δ0 the density of the air in its natural state, u the velocity of the

body, that is to say of point A; it seems to me that it will not deviate far from the

truth, assuming that the density at A is δ0 1þ nu
G

� �
, designating G some known

22A pieds of Paris equals to a 0.325 m. The air density at sea level and at 15� is 1.219 kg/m3,

therefore 1/820 of the water. The air pressure in the same conditions is 101.3 kPa.
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velocity that makes the density δ¼ δ
0
+ nδ

0
. For the same reason the density at N is

will be δ0 1þ nu
G

NV
Aa

� � ¼ δ0 1þ nu
G

dy
ds

� �
; and this density, which is greater than the

natural density in the part DAd, will become lower in the part DCd, where dy
ds is

negative.

4th. The air particle which is at O tends to move, whatever its density δ is, with a
velocity of 1240 pieds per second. So to find the part OCo that the fluid does not

touch, we have only to search for the point O where �udy
ds ¼ 1240 pieds; a problem

easy to solve, especially when the figure is a globe.

This all well understood, here is how we seek the resistance of elastic fluids in

the case when no vacuum is made behind the body; and in those when a vacuum is

produced.

5.7 Principles Necessary for Determining the Pressure

of an Elastic Fluid23

116. The parts of the fluid that move in the front surface DAd can be, as in the case

of the non-elastic fluids, regarded as having simultaneously two velocities. One of

which, that I call u, is equal and parallel the velocity of the body and the other is

composed of two respective velocities uq, up, one of which is parallel to AC, and the
other to Dd; being p and q functions of x and z. Besides that, the density δ is still a
function of x and z. So considering here, as in Fig. 4.6, the points N0, N, B0, B, C0, C,

Fig. 5.5 xxx

23The content of the next articles is related to the previous one. However, in the Table of Content it

is listed as a separate entry, for this reason we have named it as an additional section.
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D0, D which form an infinitely small rectangular parallelepiped and which are near

the surface of the body, the density after the point N reached at n will become δ
þdδ

dx uqdtþ dδ
dz updt and the rectangular parallelepiped NN0B0BDD0C0CN, whose

mass is αβkδ, will turned into another whose mass will be αþ αdp
dt udt

� �
β þ βdq

dx udt
� �

k þ kpdt
dz

� �
δþ dδ

dxuqdtþ dδ
dzupdt

� �
; now then this second parallelepiped must be equal

in mass to the first. So it will give δ dp
dz þ dq

dx þ p
z

� �þ qdδ
dx þ pdδ

dz ¼ 0, that is to say
d δpð Þ
dz þ d δqð Þ

dx þ δp
z ¼ 0.

Besides this, it will be found (art. 86) that the force along NC that must be

destroyed is dudt � qdu
dt � u2Aq� u2pB, and the force that must be destroyed along NB

is �pdu
dt � u2pA0 � u2qB0. So (art. 19 and 20) we will have:

du
dt

d δ�δqð Þ
dz � u2d δqAþδpBð Þ

dz þ du
dt

d δpð Þ
dx þ u2d δqA0þδpB0ð Þ

dx ¼ 0:

117. In order to use this equation, we have only to assume δ¼ δ( u, x),24 that is to
say equal to a function of x and u, so that dδdz ¼ 0, and the remaining equations will be

exactly similar to those of the art. 86; so that we will need no more than to

determine δq and δp by the same method used in art. 61 to determine p and q.
Ones these quantities are found, it will be noted that δ ¼ δ0 1þ nudy

ds

� �
and putting for

dy
ds its value at x that I suppose ξ, which is given by the equation of the curve, we will
have δ¼ δ

0
(1þ nuξ); therefore δ(u, x)¼ δ

0
(1þ nuξ), so knowing δ, and having

found δp and δq, it will give p and q. Using these quantities and the method of

art. 66 the fluid pressure will be determined at every instant and therefore its

resistance.

In the case when a vacuum must be produced behind the body a method

analogously to the Section 5th will be employed.

Moreover, other hypotheses more realistic about the value of δ would make the

calculation even more complicated; and all this is no more than a cursory attempt.

24In the original, δ¼ u,X. We understand it as δ¼ δ(u, x).
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Chapter 6

Oscillations of a Body Floating in a Fluid

6.1 Rectilinear Oscillations

118. Let there be a body DAd (Fig. 6.1) consisting of two equal and similar parts

placed on either side of the axis AC, and which we consider for more convenience

as a plane figure. Let us imagine that this body is placed on the surface of a fluid at

rest, so that the axis AC is vertical and the immersed part KAN in the fluid is a little

less weighty than an equal volume of fluid. We ask, What is the law of oscillation of

bodies?

1st. We will find by the method of art. 86 that the parts of the fluid, besides the

velocity which is common with the body, will have a respective velocity composed

of two partial velocities and uq and up. 2nd. The coefficient of du/dt in the formula

of the fluid pressure upon the body will be null, for the same reasons that have been

expounded. Then there will only remain in the formula of the pressure the term that

comes from the weight of the body and the one that will contain the square u2. Now
as the velocity is very small here, because the oscillations are very small, it is

permissible to ignore this term. So that if the fluid density is called δ, Δμ the body

mass, P the part which is submersed in the instant dt and p the gravity; we will be

have du
dt ¼ μΔp�Pδp

μΔ . Using this formula it is possible to solve the problem easily. In

Vol. 4 of his works Bernoulli1 has given a solution which can be consulted;

moreover it will also be found in the next article. But it was necessary for the

correctness of this solution to prove that the fluid pressure in this case comes only

from the gravity and that the inertia [of the parts of the fluid] must be counted for

nothing2; what no one had proven yet.

1Johann Bernoulli, father of Daniel and his Opera Omnia.
2In the Mss.107, “and ignoring the resistance that comes from the inertia of the fluid parts”: And I

ignore the resistance derived from the inertia of the parts of the fluid.”
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6.2 Curvilinear Oscillations

119. The oscillations of a floating body in a fluid are not rectilinear except in one

case, namely where the center of gravity of the total mass and the one of the

submerged part are in the same vertical straight line. If they are not in this straight

line then the action of the fluid in order to lift the body, which acts along a line that

passes through the center of gravity of the submerged part, no longer passes through

the center of gravity of the body. Thus, according to the principles of dynamics, the

center of gravity must rise up in a vertical line, while the body rotates about the

same center. To make this more clear, let there be a power acting along the line gf
(Fig. 6.2); I say that the center of gravity of the body will move along a line parallel

to gfwith the same velocity that it would have if the direction gf of the power passed
through the center of gravity, and the body will turn at the same time around its

center of gravity with the same velocity that it would have if the center was fixed

and the power had the direction gf.
120. Then let C be the center of gravity of the body, BOD the submerged parts,

BA¼ b, AD¼ a, E the midpoint of BD, G the center of gravity of the part BOD,
CF ¼ β, α the quantity of space that the center C traverses vertically. We will find

that AE ¼ b� aþb
2
, and EI ¼ b� β � aþb

2
. Let N also be the weight3 of the

submerged part BOD; this weight diminishes the amount α (a + b) when the center

C travels upwardly the space α, so that the center of gravity G passes to another

point g, so that EG :Gg : :N : α(a+ b); therefore Ii or Ff⨯N¼EI⨯ α(a + b); there-
fore Ff ¼ αðaþbÞ

N � b
2
� a

2
� βÞ�

.

121.4 Now, let suppose that the body rotates around the center C from D to Q, so
that the angle described by the unitary radius in the time t is equal to ε. Then Cg
being the almost vertical line, it is clear that in this rotation the center gwill advance
horizontally a quantity equal to ε(CA +GI)¼ ε(e+ f ), naming CA¼ e and GI¼ f.

Fig. 6.1 xxx

3This is not weight, but a volume or a two-dimensional surface. The same is applied to the next

time the term weight appears.
4There are some misprints corrected. Besides, the symbols b, N andQ are used with two meanings.
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In addition (Fig. 6.3), let the angle ACa¼ ε, Ca¼CA� α or CA, what comes to the

same thing here, and bad perpendicular to Ca; BDd will become the submerged

part. Then let be BQ¼ 1/3 b, so that Q is the center of gravity of sector BNb, and if

one makes Ai¼ β0, the distance from the center of gravity of the part bND to the line

CA will be found to be very close to β0 � 2
3
b εb2

2N , because
εb2

2
represents the sector

BNb. Also due to the dND area, the distance from the center of gravity of the

BDd part to the AC line will be β0 � 2
3
b εb2

2N � 2
3
b εa2

2N : So since (Fig. 6.2)

β0 ¼ Ai ¼ CF� fF ¼ β � α aþbð Þ b
2
�a

2ð Þ
N , it follows that when bd (Fig. 6.3) is in the

horizontal position, the distance from the center of gravity of the part bOd to the

line CA is ε eþ fð Þ þ β � α aþbð Þ b
2
�a

2ð Þ
N � εb3

3N � εa3

3N , and as in this expression α and ε are
variables, we can be put y instead of α and x in the place of ε. Now the force which

Fig. 6.3 xxx

Fig. 6.2 xxx
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raises the body up is pδ N � y aþ bð Þ � b2x
2
þ a2x

2

h i
; because when the center C has

traversed the space y vertically and the body has turned the quantity x, the

submerged part is pδ N � y aþ bð Þ � b2x
2
þ a2x

2

h i
; now the body weight pΔM must

be subtracted from this force Therefore it will give the first equation
MΔd2y
dt2 ¼ pδ N � y aþ bð Þ � b2x

2
þ a2x

2

h i
� pΔM.

122. Moreover let ΔG be the sum of the products of each particle of the body by

the square of their distance to the center of gravity C, it will give ΔGd2x
d t2 equal to the

product of the force which tends to raise the body and the distance from CA to the

center of gravity of the submerged part; because the direction of this force passes

through this center of gravity. We will therefore have

ΔGd2x
d t2 ¼ pδN β � y aþbð Þb�a

2
�b3x

3
�a3x

3

N þ x eþ fð Þ
� �

; second equation, which, with the

previous one, will serve to determine the quantities x and y, as we will see in a

moment.

123. Let α be the space that a heavy body traverses in the time θ, and

Nδ�ΔM¼ kΔM; it will give d2y ¼ 2αdt2

θ2
k � δy aþbð Þ

ΔM � δb2x
2ΔM þ δa2x

2ΔM

� �
, and

d2x ¼ 2αdt2

θ2
δ
ΔG Nβ � y b2�a2

2
� b3x

3
� a3x

3
þ Nx eþ fð Þ

h i
.

Before coming to the integration of these equations, we notice that in the

solution he gave to this problem the celebrated Johann Bernoulli, has only attended
to the case when the center C is motionless, or b¼ a, and wherein the submerged

part always has the same volume. Whence y¼ 0, k¼ 0,

d2x ¼ 2αdt2

θ2
δ
ΔG Nβ � b3x

3
� a3x

3
þ Nx eþ fð Þ

h i
. Now then, a pendulum of length

1 would have a motion determined by the equation d2x ¼ 2αdt2

θ2
φ� xð Þ, being φ

the initial angle of the pendulum with the vertical; and a pendulum which had a

length l, and is isochronous with the oscillating body, would have as equation of its

movement ld2x ¼ 2αdt2

θ2
π � xð Þ or d2x ¼ 2αdt2

θ2
π
l � x

l

� �
, from which it is derived

1
l ¼ δ

ΔG
b3þa3

3
� N eþ fð Þ

h i
; which agrees, as can easily be seen, with the formula

of Bernoulli, in which e+ f is negative, the quantity that he calls
R
δr2p is here ΔG,

and that he calls gV is gNδ.5 But it is clear that our formulas are much more

extensive and they can generally be used to determine the very small oscillations

of a floating body. I say very small, because the oscillations can be quite large

although the initial distance CF (Fig. 6.2) is very small; for example it is what

would happen if the bodyQDO was an ellipse whose major axis was almost vertical

to the surface of the fluid.

124. Now for integrating the two equations that give the oscillatory motion, it is

proposed to integrate these two generic ones d2x+Axdt2 +Bydt2 +Mdt2¼ 0, and d2

y+Cydt2 +Dxdt2 +Pdt2¼ 0, which are more general and where M and P are con-

stants, or functions of t, and A, B, C, D any constant coefficients. The second of

5The g now represents the gravity.
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these equations will be multiplied by an undetermined coefficient ν, then it will be

added to the first, then x+ νy will be assumed proportional to Ax +Dνx+By+Cνy,
that is to say Aþ Dν ¼ BþCν

ν . From here an equation will be obtained that will

provide two values for ν, which I call ν0 and ν00. Now let x+ ν0y¼ u and x+ ν00y¼ z,
whereby the equations will change to these two d2uþ (A+Dν0)udt2 +Γdt2¼ 0 and

d2zþ (A+Dν00)zdt2 + ρdt2¼ 0; being Γ and ρ functions of t or constants.
Now it is easy to integrate each of these equations by known methods. See the

Memoirs of the Paris Academy of 1745 and those of the Prussia of 1748. That is

why I do not delay more on this subject, contenting myself to have reduced the

problem to the calculus.

Scholium I
125. If b and a were approximately equal, then the equations will become much

simpler, because we will have d2y ¼ 2αdt2

θ2
k � δy aþbð Þ

ΔM

� �
and

d2x ¼ 2αdt2

θ2
δ
ΔG Nβ � b3x

3
� a3x

3
þ Nx eþ fð Þ

h i
, equations that will integrated sepa-

rately. If in the second of these equations the coefficient of x is positive, that is to

say, ifN eþ fð Þ > b3þa3

3
, that is to say> 2a3

3
, the value of xwill no longer contain arcs

of a circle and the oscillations will not be infinitesimal.

For that reason, an ellipse whose major axis is nearly vertical to the surface of the

fluid will not make small oscillations. Let suppose at first that this ellipse is a circle

and b¼ a, it will giveN eþ fð Þ ¼ 2a3

3
, as it is easy to prove by the static principles. If

the figure is an ellipse whose minor axis is to the large one as ρ to 1, and the major

axis is very close to the vertical, then we will have N eþ fð Þ ¼ 2a3ρ
3ρ3 , and conse-

quentlyN eþ fð Þ > 2a3

3
. On the contrary, if it is the minor axis that is almost vertical,

then it gives eþ fð Þ ¼ 2a3ρ3

3ρ and N eþ fð Þ < 2a3

3
. So then the oscillations are small

and the solution is only good for this case.

Scholium II
126. I have assumed so far that the fluid was indefinite, so that its surface does not

rise with that of the body, but it still remained at the same level. But if the fluid was

contained in a finite vessel, here is how it would necessary then to solve the

problem.

It was found that if the fluid surface was still always at the same level,

the submerged part of the solid at the end of time t would be �y aþ bð Þ � b2x�a2x
2

.

So if the width of the fluid at the surface is called k0, the fluid must be lowered

at the end of time t by an amount equal to
y aþbð Þþb2x�a2x

2

k0�a�b , therefore the sunken

part will become N � y aþ bð Þ � b2x�a2x
2

� ¼ y aþbð Þ2�x aþbð Þ2 b�að Þ
2

k0�a�b ¼ N � k0y aþbð Þ
k0�a�b �

k0x b2�a2ð Þ
k0�a�b ; and the distance from the center of gravity to the line CF will be

reduced by the amount
y aþb2b�a

2ð Þ
k0�a�bð ÞN þ x

2
aþbð Þ2 b�að Þ2

2

k0�a�bð ÞN ; whence it follows that this

distance will become x eþ fð Þ þ β � y b2�a2ð Þk0
2N k0�a�bð Þ � x

4

b2�a2ð Þ2
N k0�a�bð Þ � b3xþa3x

3N . Therefore it
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will give d2x ¼ 2adt2

θ2
δ
ΔG Nβ � y b2�a2ð Þk0

2N k0�a�bð Þ � b3x
3
� a3x

3
� x

4

b2�a2ð Þ2
N k0�a�bð Þ þ N eþ fð Þ

� �
and

d2y ¼ k � δy aþbð Þk0
ΔM k0�a�bð Þ þ

δk0x b2�a2ð Þ
2ΔM k0�a�bð Þ

� �
2adt2

θ2
.

If the body must make only rectilinear oscillations, in this case x ¼ 0, and

d2x ¼ 2adt2

θ2
k � δy aþbð Þk0

ΔM k0�a�bð Þ
h i

.

Scholium III
127. So far we have considered only plane figures. Now let us see what the

oscillations of a solid should be, and at first let us take the solids of revolution. In

the first place it is easy to see that the center of gravity of the solid and that of the

sunken part will always be in the same plane passing through the axis of the body

and perpendicular to the fluid surface. Once that is put, the problem will not have

more difficulty than the one we have solved for the plane figures. Here is only what

must be observed.

Let QBOD (Fig. 6.3) be the cut of the solid by a plane perpendicular to the fluid

surface and wherein the oscillation must be made. Retaining the names given

above, we will simply introduce: 1st, in the place of a þ b, the entire surface that
is the common section of the solid and fluid surface. 2nd, in the place of N, the
sunken; solid part and in the place of M, the entire solid. 3rd, in the place of G, the
sum of the products of the particles by the square of their distances to a horizontal

axis perpendicular to the plane QBOD. 4th, in the place of b
2
and a

2
, the distance from

the line CA to the center of gravity of two parts of the horizontal surface that have

AD and AB for abscissa, whose distances, in the case in question, are equal or

deemed such, because the body is a solid of revolution. 5th, in the place of εb
2

2
and εa2

2
,

we can set εqb3 and εpa3, assuming that 4Dqb3 and 4Dpa3 are the solids that these
portions of surface would form rotating about their ordinates, D being taken to

designate the right angle π
2

� 	
. 6th, finally in the place of 2

3
b and 2

3
a, we will put the

distance from the line CA to the centers of gravity of these solids, which is roughly

the same for both and that will be called r and s, so that r� s will be an infinitely

small quantity, or supposed as such.

Let A and B be the two parts of the surface that have AD and AB for abscissas,

h and l the distances of their centers of gravity to the line CA, by the principle of

P. Guldin, known by the geometers it will give εqb3¼Ahε, εqa3¼Blε; therefore it

will gived2y ¼ 2adt2

θ2
k � δy AþBð Þ

ΔM

h i
andd2x ¼ 2adt2

θ2
δ
ΔG Nβ � 2rxhAεþ Nx eþ fð Þ½ �, for

the case where the surface of the fluid does not elevate with the body; and in case it

elevates, the fluid surface will be called K0, and it will give

d2x ¼ 2adt2

θ2
δ
ΔG Nβ � 2rxhAþ Nx eþ fð Þ½ � and therefore d2y ¼ 2adt2

θ2
k � δy AþBð ÞK0

K0�A�B

h i
.

We assume here for convenience B ¼ A, andh ¼ l.
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6.3 Oscillations of a Body of Irregular Shape

128. The problem becomes much more difficult when the body is of irregular shape.

To solve it, at first I imagine the two vertical lines CA and GI (Fig. 6.4) through
which, in the first instant, pass the centers of gravity of the body and of the

submerged part. I make a plane to pass through these lines which forms with the

body the vertical section QBOD perpendicular to the fluid surface. Next the

horizontal line Cp is drawn through the center C; let us imagine that this line Cp
turns around the fixed point C in any plane inclined as desired with the surface of

the fluid, but in such way that when changing situation the plan QBOD remains

perpendicular to the surface of the fluid. The movement of the line Cp may be

regarded as composed of two movements, one in a plane perpendicular to the fluid

surface, the other in a plane parallel to this same surface and which will be around a

vertical passing through C.6

129. As the motion of the axis Cp is very small and the line AI is also very small,

it is clear that the latter of these two motions will only produce an infinitesimal

rotation of second order in the center of gravity G that can be ignored, and besides

this same motion will not make any part of the body either to emerge or to sink.

But it is not the same with the motion of the line Cp perpendicular to the surface
of the fluid. For let BZDY (Fig. 6.5) be the common section of the body and the fluid

surface, ZY perpendicular to BD, and γ, γ0 the center of gravity of the wedges

formed by the solid parts ZDY, ZBY turning around the ordinate ZY. Naming the

angle of this rotation η, it is easy to see that the sunken part will become N� ηqb3

+ ηpa3, and the center of this part will be: 1st it will go backward horizontally and

parallel to DB in a vertical plane in the quantity η (e+ f ); 2nd, it will advance in the

Fig. 6.4 xxx

6For coherence with the former we assume that the following can be classified as a new Article,

with the same reasoning as in Chap. 5, Sect. 5.7.
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same plane parallel toDB by the quantityuA� ηqb3

N þ VA� ηqa3

N ; 3rd, it will advance

horizontally and parallel to Vγ by the quantity�uγ0 � ηqb3

N þ Vγ � ηqa3

N ; 4th finally, it

will be also rise vertically by some quantity not useful for our solution.

130. Now, in order to have the total body motion, it will be necessary, as I have

done elsewhere,7 to imagine a section perpendicular to QBOD (Fig. 6.4) passing

through QA, which rotates about the axis Cp with an angular motion P.8 Due to this
motion: 1st, the center of gravity will be moved horizontally in an opposite

direction to the angle dP at a velocity equal to P(e+ f ). 2nd, if R and S (Fig. 6.6)

are taken as the centers of gravity of the wedges formed by the parts DYB, DZB
rotating about DB, and these wedges are called q0 ⨯AY3⨯P and p0 ⨯AZ3⨯P, we
will see that the center of gravity will advance in the direction of the angle dP by a

Fig. 6.5 xxx

Fig. 6.6 xxx

7See Recherches sur la précession des Equinoxes, article 26 et seq. (Original note).
8According with the context of the entire article, it seems to refer to an angle P rotating with a

velocity dP/dt.
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quantity equal to P�q0AY3

N � yRþ P�p0AZ3

N � SZ0 and it will advance parallel to AD by a

quantity equal to q0AY3

N � P� yA� p0AZ3

N � P� Z0A.
131. In addition, let a (Fig. 6.7) be the center of gravity of the area BZDY; it will

be found that while the body rises perpendicular by the quantity α, the center of

gravity of the part submerged advances in an opposite sense to AY by the quantity
α�BZDY

N � ab, and it advances in the sense of AD by the quantity α�BZDY
N � bA.

132. So by joining the different quantities that we have calculated, in the vertical

line σρ (Fig. 6.8) it will give the point ρ where the center of gravity of the

submerged part after the time t is found, so that

Aσ ¼ AI þ ηðeþ f Þ � uA�ηqb3
N � γA�ηpa3

N � q0AY3�P�yA
N þ p0AZ3�P�Z0A

N � α�BZDY
N � bA, that

I call β�ω; and ρσ ¼ uγ0 � ηqb3

N � Vγ � ηpa3

N � P�q0AY3

N � yR� P�p0AZ3

N � SZ0þ
α�BZDY

N � ab, that I call z.

133. Finally it is confirmable that after time t the sunken parts will be

N� α �BZDY + ηpa3� ηpb3�AY3⨯Pq0 +AZ3⨯Pp0, that I call N� k for

abbreviate.

Fig. 6.7 xxx

Fig. 6.8 xxx
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134. Let us imagine now, following the method taught in my Recherches sur la
précession des Equinoxes, that while the body has its various motions, there are: 1st,

letG be the forces that have to be destroyed parallel to the planeQBD (Fig. 6.4) and to

the fluid surface, and that their distance to this plane is χ and its distance to the surface
of fluid ξ; 2nd, let F be the forces that must be destroyed at every instant parallel to the

surface and perpendicular to the plane QBD, that their distance to the vertical plane

passing through QA and perpendicular to plane QBD is θ and the distance to the

surface of the fluid ζ: finally, 3rd, let the vertical forces to be destroyed be π0, and their
distance to the vertical plane AY (Fig. 6.6) is ν0 and their distance to the plane QBD is

μ0. These forces must be balanced with the vertical forces of the body, namely: 1st,

with the forces gδM and –gδ(N� k),9 one of which is applied, or considered as

applied, to A, and the other at a distance of YA¼ β�ω, and at a distance of BD¼ z;

2� with the vertical force þMΔd2x
dt2 applied at A. The sum of these three forces is

g N � kð Þ � gδM � MΔd2x
dt2 , and it can therefore be reduced to a single one that I call π”,

which joined with the force π0 will be π00 + π0, I which I call π, and let whose distance
to the line AY be named ν and let the distance to the line AD be named μ. So now we

have three powersG, F, π whose positions are given and they must be in equilibrium.

This condition gives

Fζ � πμ ¼ 0:

Gξ� πν ¼ 0

Fθ � Gχ ¼ 0

And for the principles of the statics it will give, πμ¼ π0μ0 + gΔNz; et

πν¼ π0ν0 + gΔν(β�ω).
Now, let be K/2 half the sum of the products of each particle by the square of

its distance to the axis Cp (Fig. 6.4), and J10 to the sum of the products of

each one by the square of its distance to a plane vertical passing through GA,
ε the angle described during the time t by the projection of the axis Cp on

a horizontal plane, y the cosine of the angle that Cp makes with the horizon.

It gives,11 1st. Gξ� π0ν0 ¼ K
2

�yd ydyffiffiffiffiffiffiffiffi
1�y2

p
� �

� 2ydεdP� ydP2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
� ydE2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p �
þ Jð�d2y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
þ ydε2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
Þ � K

2
ðd2y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
� y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
dP2Þ

�Jyd ydyffiffiffiffiffiffiffiffi
1�y2

p
� �

.

9In the original the symbolΔ is used both for the body and fluid density. We have maintainedΔ for

the fluid and introduced δ for the body.
10In the original, the letter M is used both the body volume and the moment of inertia. We have

maintained M for the volume and introduced J for the second. Also, the moment of inertia should

be respect an axis perpendicular to the plane mentioned.
11These equations are derived from formulas found in my Recherches sur la précession des
Equinoxes, for determining the rotation of a body animated. (Original note).
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2nd.

Fθ � Gχ ¼ Jð2ydydεþ y2d2εÞ þ K
2

�
� 2ydydεþ ð1� y2Þd2εþ d2P

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p �
þ

K
2
d2ε� K

2
2ydydPffiffiffiffiffiffiffiffi

1�y2
p þ K

2
d2P

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
.

Finaly 3rd.

Fζ � π0μ0 ¼ K
2

2y2dydεffiffiffiffiffiffiffiffi
1�y2

p � yd2ε
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
� yd2P

� �
þ Jð2ydydε

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
þ yd2ε

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
Þ�

K
2
ð2dydPþ yd2PÞ.
Substituting these values in the above equations, it will give three new equations,

of which comparing the second with the third,12Kd2P ¼ �d dε
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p� �
þ gδNzdt2

will be found; and as y is very little different from 1 and ε very small, it will give

simply d2P¼ gΔδNzdt2. Also if the first equation is examined, it will be seen that,

neglecting all other terms that are infinitely small, it can be reduced to

gδN β � ωð Þ ¼ K þ Jð Þ �yd ydyffiffiffiffiffiffiffiffi
1�y2

p
� �

� d2y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p� �
¼ K

2
þ J

� �
d2η, assuming

y¼ cos η. With respect to the second equation, it will be reduced to

M � K
2

� �
d y2dεð Þ þ K

2
d dP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p� �
¼ 0, or as y is almost equal to1,

J � K
2

� �
dε ¼ 0.

135. Then it will give

1st MΔd2x
dt2 ¼ gδ N � kð Þ � gδM

2nd gδN β � ωð Þdt2 ¼ K
2
þ J

� �
d2η

3rd Kd2P¼ gΔδNzdt2

So introducing in the place of β-ω and z their values in P and x, and giving

analytical values to the constants AY (Figs. 6.5, 6.6 et 6.7), AZ, yA, Z0A, uA, VA,
BZDY, bA, uγ0, Vγ, yR, SZ0, ab, we will arrive at three equations of this form,

d2x ¼ Hxþ LPþ KηþΩð Þdt2
d2η ¼ H0xþ L0Pþ K0ηþΩ0ð Þdt2

d2P ¼ H00xþ L00Pþ K00ηþΩ00ð Þdt2

Whose integration can be easily completed by the method which I have already

mentioned above, and have explained at length in the 4th volume of the Memoirs of

the Royal Academy of Sciences of Prussia, in the year 1748.

136. It is seen in this solution that 1st, that since dε¼ 0, the line Cp, that we have
taken as the body axis, has only an almost imperceptible motion parallel to the

surface of the fluid, and the body has only proper rotation in two planes

12In the next and subsequent formulas, the moment of inertia K is missing but we have included it.
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perpendicular to each other and both vertical. This is not surprising if it is consid-

ered that the forces acting here on the body are merely vertical. 2�. It follows from
the first equation (art. 134) that force π00 is equal to

�gδM þ gδ N � kð Þ � MΔd2x
dt2 ¼ 0. In addition, we will easily find that the forces

G, F, π0 are also each one equal to zero, for this we only require to look for the

expression of each of these forces that are in my Recherches sur la précession des
Equinoxes, and to remember that for the property of the center of gravityR
μ sinX¼ 0,

R
μ cosX¼ 0,

R
μ(a� b)¼ 0. Because it is a known law and a proven

static, that whatever plan is made to pass through the center of gravity of a body, the

sum of the products of each particle by its distance from the plane is zero. 3rd, it is

easy to know by completing the calculations we just indicated here, that in any case

the solid will only make infinitely small oscillations, that is to say, it will tend to

restore its equilibrium state.
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Chapter 7

On the Action of a Fluid Stream That Exits

from a Vessel and Strikes a Plane

137. About this question, that has some relation to the theory of fluid resistance, I

thought it would be good to deal with it here, not only because its solution is easily

deduced from my principles, but also because it will give me the opportunity to

make some new observations about this matter, and consistent with the experiment.

I will remark at first with M. Daniel Bernoulli, that whenever a fluid stream

(water for example) strikes perpendicularly on a plane, all water particles leave the

plane along lines parallel to the direction of the plane. This is better understood

(I use here the terms of Bernoulli) in Fig. 7.1, wherein AB marks the axis of the

stream flow that strikes the EF plane. It is clear that the threads that make up the

stream bend at a small distance from the plane; so that at E and F where they leave

the plane, their direction become parallel to the plane or perpendicular to the axis

AB.
138. Let us suppose that AB (Fig. 7.2) is the opening of a vessel from which the

waters flow with a uniform velocity to strike the plane CD. We only consider here a

half of the plane CD and the orifice AB, because the other side will be exactly the

same. 1st. It is clear by all that has been said, that the velocity of the particles at D,
in the way that it is parallel to AC, will be zero. So if the velocity parallel to AC is

expressed by a function q of CP(x) and PN(z); q must be a function such that it

becomes zero when x is zero, that is to say that all it terms are multiplied by x. 2nd
by the same reasoning as in art. 36 it can be proved that the velocity is constant in

the extreme and external curve BMD.
Because Mm, mm0 being two small segments of the curve described by the

particle M in equal and consecutive instants, and let mn be equal in straight line

with Mm. Moreover let the velocity mn be regarded as composed by the actual

velocity mm0 and a velocity m0n that has to be destroyed. It is clear by the

hydrostatic principles that m0n must be perpendicular to the curve BMD; there-
fore mn¼mm0. So the velocity in the curve BMD is constant.

139. Moreover, as the hole AB is supposed quite small and all the parts of the

slice AB have the same vertical velocity, the supposition that all the parts of any
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slice PM, parallel to AB, also have the same vertical velocity, which will not be far

from the truth. So that if Pp is the distance traversed by the particle P in the instant

dt, PMmp is constant, that is to say proportional to instant dt. Now then, we have

just proved that taking the instant dt constant, Mm must be constant, because the

velocity in the curve BMD is constant. Therefore Mm must be proportional to

PMmp, from where the curve equation is obtained as follows.

140. Let AP¼ x, PM¼ y, GS¼ s, AB¼ a, we will have ydx¼ ads, because when
x¼ 0, it is dx¼ ds and y ¼ a; therefore y2dx2¼ a2dx2 + a2dy2. So dx ¼ adyffiffiffiffiffiffiffiffiffi

y2�a2
p .

Now Let v be the particle velocity at A, the velocity at PM will be va
y , and if the

lines AB, PM would be of equal width, the pressure at any point of PM would be
y
dt

R vady
y2 dx ¼ y

R vady
y2 dx va

ydx, since dt ¼ ydx
va ; therefore the pressure would be y

R v2a2dy
y3

¼ v2a2y 1
2a2 � 1

2y2

� �
if AB and PM were equal. But AB not being equal to PM, the

pressure that would come from the part BbM must be subtracted from the previous

quantity. Now, the vertical pressure at any point of the curve BM, would be v2a2

1
2a2 � 1

2y2

� �
which multiplied by dy and integrated next will give the quantity that is

Fig. 7.1 xxx

Fig. 7.2 xxx
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necessary to subtract of the previous one. It gives consequentlyR
v2a2dy 1

2a2 � 1
2y2

� �
¼ v2

2
y� að Þ þ v2a2

2y � v2a2

2a . So let v2¼ 2ph, and the pressure at

PM will be phy� pha2

y � phyþ pha� pha2

y þ pha ¼ 2pha� 2pha2

y .

141. Some readers may imagine that the pressure on PM should be the same as if

AB was equal to PM, because following the hydrostatic principles, if a fluid is given

whose all parts are impelled by any force parallel to AC, which is the same in all

points of the same slice PM; this fluid exerts the same pressure as if all ordinates PM
were equal. But it should be noted that in addition to the force �dv

dt there are other

forces here. Because 1st, in the curve BMD the destroyed force is perpendicular to

the curve. Therefore this force is composed of two others, one parallel to AC equal

to �dv
dt and the other perpendicular to AC. The same must be said for the other

points with the ordinate PM, which describing the curve lose not only a force

�dv/dt parallel to AC, but another force perpendicular to AC. Hence it follows that
the pressure atM, for example, which would equal to� R

dv
dt

dx if there was only the

force �dv
dt which will be null. Because this pressure would be the same as the

pressure of the channel BM which must be null (art. 27) because the equality of

velocities at B and M; and the pressure at another point, for example N, is equal to
those of the channel BMN. So as the pressure of the channel BM is zero, this

pressure is the same as if it came from the only part MN; instead of if there was no

more than the force�dv
dt and the fluid was enclosed in a vessel ABDC, the pressure at

Nwould be the same as if it came from the only column βN. Because in that case the
weight of BM would not be zero, but the weight of βN. Thus it is not without reason
that we have determined the pressure as we have done in art. 140, without regarding
PM and AB as equals.

142. Let see here the conclusions that can be drawn from the above theory. It is

clear by the equation dx ¼ adyffiffiffiffiffiffiffiffiffi
y2�a2

p that when x¼ AC, dx/dy is never zero, unless y is

assumed infinity. Now then, this assumption cannot be made physically, because

from this it is follows that the direction of the fluid, when it reached the CD plan is

not exactly parallel to that plane, but it makes an angle as acute to the plane CD, as
this plane CD is longer in relation to the orifice AB. However, as this length is quite

large let b be the length of the plane, and 2pha� 2pha2

b will almost be given for the

fluid pressure. Therefore b being much greater than a, it is clear that the pressure

will be a little lower than 2pha, which fits perfectly with the experiments made by

M. Krafft, and reported in Volume 8 of the Memoires of Petersburg; because,

according to these experiments, the action of a fluid stream that strikes upon a

plane is a little less than the weight of a fluid cylinder whose base is a and the height
2 h. This is to say, whose base is the opening of the hole and the height is equal to

twice the height due to the velocity of fluid.

Scholium I

143. In previous articles, for ease of calculation we have assume that the vessel

was a parallelogram rectangle; but if it was considered as a cylinder, then it would be

y2dt¼ a2ds and dx ¼ a2dyffiffiffiffiffiffiffiffiffi
y4�a4

p , equation that cannot be reduced to logarithms, as the
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equation dx ¼ adyffiffiffiffiffiffiffiffiffi
y2�a2

p , but can be reduced the rectification of conic sections. See

Memories of the Academy of Science Prussia year 1746, Vol. 2. With regard to the

pressure, taking 2π for the ratio of the circumference to the radius, it will be found

in the following manner.

The velocity at PM is va2

y2 ; therefore if PM was equal to AB, the pressure would

be πy2 2v2a4ð Þ 1
4a4 � 1

4y4

� �
¼ πy24pha4 1

4a4 � 1
4y4

� �
; now, if from this quantityR

ph 1� a4

y4

� �
2πydy ¼ πphy2 � πpha2 þ phπa4

y2 � phπa2 is subtracted, the pressure

at PM will be 2πpha2 � 2πpha4

y2 ; expression that agrees again with the experiments

of Krafft.

Scholium II

144. If the weight of parts of the fluid is taken into account, then the vertical

velocity can be assumed the same in all parts of one slice PM, but the velocity at the

curve BMD is not constant. Now then, in this case the lost velocity m0m must be

combined in such a way with the weight, which acts vertically, so that a single force

perpendicular to the surface of the curved results. Therefore taking PMpm constant

and p for gravity, it is necessary that Mm grows by the quantity pdt2 dx
ds; that is to

say that due to dt ¼ ydx
va it will give d2s ¼ py2dx2

v2a2
dx
ds; thus

ds2

2
¼ py2dx2

v2a2 xþ py2dx2

v2a2 h.

Therefore dx2 þ dy2 ¼ y2dx2

2pha2 2pxþ 2phð Þ, that is to say (making h + x ¼ n) dn2

þdy2 ¼ y2ndn2

ha2 ; equation difficult to integrate, but the integral can be found at least

by approximation as follows.

Obviously we would have dx ¼ adyffiffiffiffiffiffiffiffiffi
y2�a2

p , if p was zero; so that we would have

x ¼ alog
yþ

ffiffiffiffiffiffiffiffiffi
y2�a2

p
a . Therefore introducing this value for x in the secondmember of the

equation dx2 þ dy2 ¼ y2dx2

2pha2 2pxþ 2phð Þ, we would have dx ¼ dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

a2
�1þy4

ahlog yþ
ffiffiffiffiffiffiffiffi
y2�a2

p
a

� �r ;

equation that represents almost exactly the curve BMD, above all in the points that

are not too close to D.
Now, to determine the pressure in PM, it must be noted that the force destroyed

in every particle PM in the instant dt is d va
y

� �
þ pdt: from where we easily conclude

that the pressure determined in the art. prev. must be increased by a quantity equal

to the weight of the entire vein ABDC. Now the weight of the fluid ABDC is about

the same as if dx ¼ adyffiffiffiffiffiffiffiffiffi
y2�a2

p ; therefore
R
pydx ¼ R apydyffiffiffiffiffiffiffiffiffi

y2�a2
p ¼ pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � a2

p
¼

pa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
, so the total pressure will be 2pha� 2pha2

b þ pa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
. This expres-

sion does not seem to agree with the experiments of Krafft; at least in the cases

when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
> 2ha2

b , which can happen often. But it must be noted that in the

experiments of Krafft, the water came out of the vessel through a vertical hole

following a horizontal direction, whence it follows that its weight had no share in

the effect of pressure. It might be necessary to make new experiments on fluid

pressure coming out of a vase in a vertical direction. But these experiments are

difficult to perform; whatever they may be it is sufficient for us that all those that
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have been made to date on this matter, and whose accuracy can be counted, are

consistent with our theory.

Scholium III

145. The expression that we have just given for the pressure of a fluid flowing from

a vessel is a little different from that given by the famousM. Daniel Bernoulli in the
Vol. 8 of the Memoirs of the Academy of Petersburg. According to him, the

pressure of a fluid that comes out from a vessel is equal only to the quantity

2pha. Now then, we find it to be a little smaller.

In order to know where the difference comes from, we make some observations

on the method of Bernoulli.
He assumes at first that the curves described by each thread of fluid may be

considered as channels in which a body moves. Therefore let BMD (Fig. 7.3)1 a

channel in which a small body, that I call m, moves and naming v the height due to
the velocity at M. Let us seek with Bernoulli the sum of all the momentary powers

parallel to the axis.2

Let the tangential power atM¼ p3 and variable according to any law one wishes;

the resulting force parallel to AC will be pdxdt
ds . Besides this, the centrifugal force at

M ¼ 2mvdt
R , being R the radius of curvature atM, and the resulting for parallel to AC

is 2vmR dtdyds; and as dt ¼ dsffiffiffiffi
2v

p this latter force will bemdy
ffiffiffiffi
2v

p
R ; therefore the sum of the two

pressuresmdy
ffiffiffiffi
2v

p
R þ pdxdt

ds ; now then making ds constant, we haveR ¼ � dyds

d2x
, and more

fdt ¼ �mdvffiffiffiffi
2v

p . Therefore the pressure will be � d2x
ffiffiffiffi
2v

p
ds � mdvdx

ds
ffiffiffiffi
2v

p , whose integral will be

� mdx
ffiffiffiffi
2v

p
ds þ m

ffiffiffiffiffi
2k

p
, meaning for

ffiffiffiffiffi
2k

p
the initial velocity at B.

Fig. 7.3 xxx

1This description does not correspond with the former Fig. 7.2, but with the Fig. 29 of the

Manuscript, that we include as Fig. 7.3.
2We notice that now v is the height due to the velocity and in this definition the gravity is missing.

The same happens in the Mss.98. Likely he is following the Bernoulli’s text, which is written in

that way.
3The letter p is now used as the tangential force at M.

7 On the Action of a Fluid Stream That Exits from a Vessel and Strikes a Plane 107



Therefore if dx
ds ¼ 0, as occurs at the point where the fluid reaches the plane, the

pressure at these points is m
ffiffiffiffiffi
2k

p
; and if the velocity of fluid is assumed constant,

then the pressure will be m
ffiffiffiffiffi
2k

p
1� dx

ds

� � ¼ m
ffiffiffiffiffi
2k

p
when dx/ds¼ 0. So in all cases,

the sum of the momentary pressures from B until D is m
ffiffiffiffiffi
2k

p
.

Now let
ffiffiffiffiffiffi
2A

p
be the uniform velocity of the exiting water, let whatever time t be

taken at will, and let us assume that during this time a quantity of water m comes

out; let p4 be the power that supports the plane. Therefore it will give t ¼ m
ffiffiffiffiffiffi
2A

p
; or

p ¼ m
ffiffiffiffi
2A

p
t . Now then (hyp.) the mass m comes out uniformly during the time t with

the velocity
ffiffiffiffiffiffi
2A

p
through the hole 1: so 1� ffiffiffiffiffiffi

2A
p � t ¼ m; therefore t ¼ mffiffiffiffi

2A
p ; and

p¼ 2A. According to Bernoulli that is the pressure of the water; where he concludes
that it is equal to the weight of a water cylinder whose base would be the hole, equal

to 1, and height 2A.
It seems to me that this theory is reduced to the following propositions.

That in the first instant dθ of a time whatever t, through the orifice AB n particles
flow and consequently the number of them is

R
n. It is obvious that if we assume the

hole AB divided in very small portions dα, we will have n ¼ dθdα
ffiffiffiffiffiffi
2A

p
; because at

the same time dθ the particle n that comes out will be greater, as the velocity
ffiffiffiffiffiffi
2A

p
will be greater. So for the same reason in whatever time t, or

R
dθ, the number of

particles that come out will be
R
tdα

ffiffiffiffiffiffi
2A

p
.

Now, after they have come out from the orifice AB, each of the n particles

reaches the plan CD describing any curve with any velocity, with the only circum-

stance that its motion becomes parallel to the plane CD when it arrives at this plane.

Then the sum of the pressures of any particle dα since it goes through the hole AB
until it reaches CD will be dα

ffiffiffiffiffiffi
2A

p
, and the sum of the pressures of all the parts dα

that come out simultaneously from the orifice AB will be
ffiffiffiffiffiffi
2A

p R
dα; therefore in

time t the pressure will be
ffiffiffiffiffiffi
2A

p R
tdα

ffiffiffiffiffiffi
2A

p
. So that the pressure Bernoulli considers

as instantaneous will be 2A
R
dα, that is to say equal to the product of the width of

the orifice by 2A.
It seems pretty clear from these propositions that the pressure determined by

Bernoulli is the sum of the pressures that the particles coming out of the vase at the

same time, exert upon the plane from the instant they come out of the hole until the

time they reach the plane CD. But it seems to me that the sum of these pressures

does not represent the true pressure in question here. Because the sum of these

pressures acts only in a finite time, that is to say in the time that the particles employ

to reach from the orifice of the pipe to the plane CD. Now then, what is asked here is

the instantaneous pressure that all fluid particles filling the space ABCD in that

instant, exert in the same instant upon the plane CD. This pressure, if I am not

mistaken, is different from that ofM. Bernoulli. Since we consider the particles that
describe the curve BMD, as fully covering this curve in any instant, and as we seek

the pressure that they exert in this instant upon the plane we will find, using the

same method of M. Bernoulli, 1st, that the pressure coming from the centrifugal

4Now p has the meaning of a force.
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force is 2v
R dsdyds ¼ �2vd2x

ds ; 2nd, that the pressure coming from the tangential force is

� dvffiffiffiffi
2v

p
ds
dsdxds ¼ � dvdx

ds ; therefore the pressure of any particle is � 2vd2x
ds � dvdx

ds , whose

integral is �2vdxds þ 2k þ R
dvdx
ds . Now then, when dv is negative, that is to say when

the velocity decreases from A to B, this amount is less than �2vdxds þ 2k. Thus the

pressure in each curve is 2k�P, P being a positive quantity � R
dvdx
ds . Therefore,

since the number of the curves is equal to the number of points of the orifice AB, it
follows that if we call this orifice 1, the pressure will be equal to 1⨯ (2h�P), that is
to say less than that of M. Daniel Bernoulli; and more consistent with the one we

have given.

We must admit, however, 1st, that when the velocity increases from A to B, the
latter formula would provide a pressure greater than 2 k, which is contrary to

experience; 2nd, that this same formula agrees with that of Bernoulli in the case

dv ¼ 0, that is to say when the speed is supposed constant in all the curves. But this
latter hypothesis, as well as the method itself, seems subjected to some difficulties.

Because, let be ANC and BMD (Fig. 7.4) two curved or channels infinitely close

one to other, and let be formed the channel ANMB. It is clear that due to be constant
the velocity (hyp.), the pressure in the parts AN and BM is null (art. 27) as well as in
the part AB. But in the channel MN there is some pressure that comes from the

centrifugal force of the parts, therefore the channel ANMB could not be in equilib-

rium; this is contrary to art. 18; from where it follows that the velocities at N and

M cannot be equal. So since the velocity in channel BMD is necessarily constant, it

follows that it cannot be in the inner channel ANC. Besides, if the fluid velocity in

each curve BD and Vd (Fig. 7.2) was constant, then by the general formula for the

pressure, found in art. 27, it follows that the pressure at D and d would be null, and
thus the plane would not support any effort, which is contrary to experience. With

regard to the method which we have used to determine the fluid pressure as equal to

2k�P, it is faulty that the centrifugal force ought not to multiply the two forces by

dy/ds and dx/ds. This is a result of everything that has been said in this book on the

laws of fluid pressure.

It seems to me that we approach much closer to the truth with the hypothesis we

have made that all the parts of the fluid in the same slice PM have the same velocity

parallel to AC. We must admit however, that this assumption cannot be perhaps

rigorously true, as it can be concluded from what has been said in art. 100.
Before finishing this research, I must warn that following M. Daniel Bernoulli,

the experiments he has made agree perfectly with his theory. I preferred, however,

the experiment of Krafft that, it seems to me, are more numerous, and they all agree

with the pressure a little lower than 2a. Perhaps to draw any true conclusions on this

subject, it would not be useless to recommence the ones and the others.

Scholium IV

146. Moreover, the method that I explained in this book could be applied to the

research of the pressure of a fluid stream. But the calculation would be difficult.

Indeed, let QAq (Fig. 7.5) be the circular plane exposed to the fluid thread and FA
the central thread; it will be proved, as it was done in art. 36, no. 3 and 5, that the
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fluid is stagnating in a space FAM and that the velocity along FM is very small.

Hence it follows: 1st, if we call a the fluid velocity and we make Am¼AM, the

pressure on Mam will be equal to a2/2 multiplied by the circle whose diameter is

Mam. 2nd, the values of p and qmust be determined by methods similar to those of

equations art. 45 and 48, and if AQ is called y, the pressure at Q will be
R
2πydy

a2

2
1� p2 � q2ð Þ; this integral being taken so that it is zero where AQ¼AM. 3rd, that

the value of q is expressed as a function of x and z, and taking the origin of x in A,
this function must be null making x¼ 0, because the velocity q, perpendicular to the
FA, is zero along the plane AM. Therefore, the quantity q must contain x in all its

terms. It is easy to find an infinite number of values of q which satisfy these

conditions, especially if the plane is considered supposed as a single line; because

then dq¼Adx+Bdz and dp¼Bdx�Adz. But the problem remains undetermined

anyway. That is what I obliged me to look for another route perhaps less rigorous

and less direct in order to find the pressure of a fluid stream against a plane.

Scholium V

147. What we have said here about the action of a fluid stream against a flat surface,

can also be applied to the action that a current exerts against a plan submerged in

it. The values of p and q seem to me indeterminate in these cases, or rather

indeterminable; in such a way that it is as impossible to compare the theory with

Fig. 7.4 xxx

Fig. 7.5 xxx
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the experiment, even in this case that seems the simplest of all. Besides, it seems to

me that, all things being equal, the pressure of a fluid stream coming out of a vase

and that acts against a plane must be greater than that of a fluid in which the plane is

fully immersed. Because in the first case it is only the anterior surface of the plane,

which is exposed to the action of the fluid; whereas in the second case the fluid acts

on the posterior surface of the plane and partially counterbalances, by the pressure it

exerts, that which supports the anterior surface. All this is according to experience,

whereby, in effect, the pressure in the first case is greater than the pressure in the

second (art. 75 y 142).
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Chapter 8

Application of the Principles Outlined in This

Essay in the Research of the Motion of a Fluid

in a Vessel

148. As the principles I have given in this book to determine the laws of fluid

resistance seem to me to have a lot of scope, I thought it would not be useless to

show in some way how to apply them to the research of the movement of fluids in

any vessels or channels. But as these researches are not directly related here to my

subject, I content myself by only stating the principles.

At first let us imagine a vessel of any figure and with an indefinite length HGLI
(Fig. 8.1), in which a quantity of fluid ABFE is enclosed, which is standing in the

vessel supported by the FE bottom, and that suddenly the bottom FE is taken away.

We ask what the fluid motion should be.

To make the calculus easier, at first we consider the vessel as a plane figure, and

we will take the origin of x at C, the vertical being x and y or z the horizontal. If the
vessel was cylindrical, it is obvious that the fluid would fall like the ordinary heavy

bodies, so that naming g the natural gravity, t the time since the beginning of the

fall, and u the velocity at the end of time t, we will have u¼ gt. But the curvilinear
shape of the vessel must completely change the value of u, so that after a time t the
horizontal and vertical velocities must be a function of t, x, z. Now then in the first

place, these velocities must be between them such as making z¼PM¼ y, the
relationship they have with each other is equal to the function of x and y, which
represents the ratio of dx to -dy at the point M; and this condition has to take place

whatever the time t is. Therefore if the vertical velocity is called Q, and horizontal

P it must be Q
P ¼ dx

�dy, placing in Q and P y instead of z. So it is necessary that

t vanishes entirely in the division ofQ by P; which cannot happen unless we assume

Q¼ θq, P¼ θp, being θ a function only of t, and q, p functions of x and z.
149. That said, let d(θq)¼ qTdt+ θAdx + θBdz, and d(θp)¼ pTdt + θA0dx + θB0dz,

we will easily find a similar method to the art. 48: 1st, that: θB’¼ � θA; 2nd, that
the horizontal accelerating force that must be destroyed is –θB0p� θA0q� pT, and
the vertical force g�Bθp�Aθq� qT, hence it follows that it will give
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∂
∂z g� Bθp� Aθq� qTð Þ ¼ ∂

∂x �θB0p� θA0q� pTð Þ; equation which will be satis-

fied assuming A0 ¼B; as in the art. 48. Therefore we will have:

dq ¼ Adxþ Bdz

dp ¼ Bdx� Adz

From these equations the general form of the quantities p and q will be

determined.

150. Now, in the beginning of the motion, when the time is t¼ 0, the surfaces

AB, EF are horizontal, the force lost must be perpendicular to these surfaces; from

which it follows that p must be zero when x¼ 0, and when x¼CD, whatever value
that z has. Moreover, if the walls of the vessel are not perpendicular to the lines AB,
EF at A, B, F, E, it must be that q¼ 0 when x¼ 0 and z¼CB, and when x¼CD and

z¼DF. Because the motion of the particles A, B, F, E cannot be take place other

than following the walls of the vessel, p¼ 0 can only take place in those points that

q¼ 0 as well.

It should also occur that in the beginning of the motion, when t¼ 0, the pressure

in the channel CD is null, which gives
R

g� d θqð Þ
dt

� �
dx ¼ 0,1 the integral is taken so

that it is null when x ¼ 0, and when x¼CD. From this we can conclude that the θ
function should be such that making t¼ dt, we have dθ

dt ¼ 1. So θ¼ t.2

Fig. 8.1 xxx

1The differential symbol is missing in d(θq), and also in the next formula.
2The equation should be dθ/dt¼ g, that is θ¼ gt. This affects the next formulas.
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151. Through all the above conditions and the curvature of the walls BM that is

known, and in which �dx/dy must be equal to q/p, we will have the value of the

coefficients to enter in q and p.
152. Let us suppose that after any time t, the two surfaces of the fluid are acb and

edf (Fig. 8.2), and let us call a to Cc and b to Cd. I say at first, that assuming that

a and b are known, it will be possible to find the curves acb and edf, because in each
of these curves the force lost must be perpendicular to the curve from which it

follows that if we call s to Pm, it must be �ds
dx ¼ g�q�Aqt�Bpt

�pþBqt�Apt , putting s for z in p and

q, what will give the two curves. These two curves are known, and closing a and b
in their equation, we see here how we determine the quantities a, b. 1� It should be

noted that the mass of fluid is given acbfdea; first equation. 2nd, the pressure in the
CD channel must be zero, hence

R
(g� q� tAq� tBp)dx¼ 0 is obtained when

x ¼ a, and when x ¼ b. From which we will have the value of a and b in t, and
the problem will be completely solved.

Remark I

153. If the vessel was considered not as a plane figure, but as a solid body, then

B0 ¼A should not be assumed; but B0 ¼ �A� pt
z as in art. 48 Otherwise the

calculation will be the same as in the previous article.

Remark II

154. If the fluid, instead of flowing always inside the vessel, escapes from it, then

the calculation will again be the same as in the previous art. with the difference, that
whereas in the former case (art. 152) the mass of the fluid acbfec was constant, it

Fig. 8.2 xxx
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will no longer be here; this condition has to be changed to another, as that in the

curve edf let s ¼ DF when x ¼ CD (Fig. 8.3). This is the only change we require to

make to the calculation.

155. This method of determining the motion of a fluid is much more rigorous

than the one I used in my Traité de l’Equilibre et du mouvement des Fluides, but the
calculation is so difficult that we must almost give it up. Moreover, the experiment

seems to agree fairly well with the theory that we have established in the work cited.

Fig. 8.3 xxx
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Chapter 9

Application of the Same Principles to Some
Research on Streams in Rivers

156. Let be Bm (Fig. 9.1) the bottom of the river, CM its upper surface, and let it be

assumed that the river flows from C to M, and that its riverbed is of equal width

everywhere. Drawing at will the horizontal Qo and the vertical AQ, it is true that we
can express the horizontal and vertical velocities of any point o by p and q, that is to
say by the functions of QA, as x, and Qo, as z. In addition, it will be found by the

methods already explained, that if dq¼Adx +Bdz, we will have dp¼Bdx�Adz.
Therefore, 1st, [It is possible to] know the quantities q and p with a coefficient, as in
art. 62.

2nd. The horizontal and vertical forces to be lost at the surface CMmust produce

a single one which, combined with the weight, is perpendicular to the surface; from

this condition we will obtain the differential equation of the CM surface. Assuming

that we know the depth of the river at two points C andM, the quantities of lines AC,
AP, PM known, together with the equation of the curve CM, they all will be used to

find the unknown coefficient of the quantities p and q.

Remark I
157. The problem is even easier to solve when it is not assumed that the bottom Bm
is given, but that it is assumed as a figure at will. Then let be TV ¼ u, we have only

to take dx
du ¼ q

p ¼
ffiffiffiffiffi�1

p
Δ xþ u

ffiffiffiffi�1
p

� �

þΔ x� u
ffiffiffiffi�1

p
� �h i

Δ xþ u
ffiffiffiffi�1

p
� �

�Δ x� u
ffiffiffiffi�1:

p
� �

Remark II
158. Behold the problem generally solved, but here a comment to be made is

presented. As it is assumed that the fluid reaches a steady state, it is clear that the

CM surface always remains the same, and therefore all points of this surface move

along the same surface, so that qp ¼ dx
dy is at the surface CM; now then dx

dy ¼ g�Aq�Bp
Bq�Ap is

as well, therefore gp�Bp2¼Bq2 and qdy¼ pdx must be at the same time the

equation of the curve AM.
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Let us see here, I think, how these two conditions can be met. Let us suppose the

points A and C are given, and the curve Bm as well. Two very general functions of

x and z, with a large number of undetermined coefficients, will be taken for q and p.
The curve CM will be assumed as represented by the equation gp�Bp2¼Bq2, the
coefficients always remaining undetermined. Let us imagine next that the curve CM
is drawn, and having taken in both curves CM and Bm jointly as many points as

coefficients to be determined, these coefficients will be found by the equations
q
p ¼ dx

dy,
q
p ¼ dx

du et gp�Bp2¼Bq2.

Remark III
159. Instead of taking the origin of coordinates in A, if deemed more convenient we

may take the origin at G; it will only be necessary to put y instead of x, �dy instead
of dx, etc. Everything else remaining as before.

Remark IV
160. If the surface CM is not required as permanent, but that it changes at every

moment; in this case q
p ¼ dx

dy should not be assumed, but instead of this equation we

would have another; in effect, the equation of the surface is in general g�Aq�Bp
Bq�Ap ¼ dx

dy.

Fig. 9.1 xxx

Fig. 9.2 xxx
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Now then, when the surface CM changes to cm (Fig. 9.2), q becomes q +Aqdt

+Bpdt; p to p�Apdt +Bqdt; A to Aþ dA
dx qdtþ dA

dz pdt; B does to Bþ dB
dx qdtþ dB

dz pdt;

finally dx becomes dx+ dt(Adx +Bdy) and dy does to dy+ dt(Bdx�Ady). From it

2A g�Aq�Bp
Bq�Ap dtþ Bdt� B g�Aq�Bpð Þ2

Bq�Apð Þ2 dt ¼ d g�Aq�Bp
Bq�Ap

� �

is obtained, placing for dA, dq,

dB, dp, its values qdAdx dtþ pdAdz dt, Aqdt +Bpdt, q
dB
dx dtþ pdBdz dt, �Apdt+Bqdt. There

will be an equation which, assuming q and p are taken at will with undetermined

coefficients, will state only finite quantities because the term dt, found in all terms,

can be eliminated. This equation will be used to determine the coefficients q and

p by mean of the two curves CM and Bm. I have only indicated the method here,

because the details would lead me too far.

However, I must note here that some time ago a handwritten theory on river

currents fell into my hands. The method that the author employs, though less simple

and less accurate than mine, nevertheless has something, it seems to me, to do with

it, but I am able to prove that I had found the principles on which my method is

supported by the end of 1749, that is to say, more than a year before the Memoire in

question fell into my hands, and more than 8 months before it could fall into them. It

would not be impossible that the method outlined in my book was unknown to the

author of the Memoire I am talking about, and that it would have helped him in his

research on the flow of rivers.
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Chapter 10

Appendix

This Appendix will include some reflections on the laws of the Equilibrium of

Fluids that I have not thought necessary to include in the body of the work in order

not to interrupt the sequence of matters, but they seem to me worthy of being

submitted to the judgment of the wise; and besides they have a fairly immediate

relation with the subject of this book.

10.1 Reflections on the Laws of the Equilibrium of Fluid

161. The equation
d δQð Þ
dx ¼ d δRð Þ

dy found in art. 19 may be also found by some other

method, which I will explain here, because it will give me the occasion to make

some quite important observations on the laws of the equilibrium of Fluids.

LetM,N,m,O, (Fig. 10.1) be four points of the fluid and such: 1st, that the forces
that impel the pointsM, m, are directed along the lines MN, mO both perpendicular

toMm; 2nd, thatMN is to mO as the force along mOmultiplied by the density atM.

It is obvious that in the infinitely small straight channel MNOm, the small columns

MN, mO will be in equilibrium between them. Thus the small channels Mm, NO
must be also in equilibrium between them. Now then, as all the points of the channel

Mm are impelled (hyp.) by perpendicular forces toMm, the weight of this channel is
null. Therefore the weight of the channel must also be null, that is to say, the forces

acting on the points N,Omust be perpendicular to NO at the points N,O. Now I will

prove that for this condition to take place, it is necessary that
d δQð Þ
dx ¼ d δRð Þ

dy .

Let be Mm ¼ ds, the force along MN will be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Q2

p
, and it can be assumed

MN ¼ dζ

δ
ffiffiffiffiffiffiffiffiffiffi
R2þQ2

p , being dζ an undetermined1 quantity but infinitely small. Now let be

1In the original is “determinée” and in the Mss. 21 “indeterminata”.
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the force at m along mO be equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R02 þ Q02

p
, it will give (hyp.)

mO� δ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R02 þ Q02

p
¼ MN � δ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Q2

p
. Therefore mO ¼ dζ

δ0
ffiffiffiffiffiffiffiffiffiffiffiffi
R02þQ02

p ;

and carrying NR parallel to Mm, it will give RO ¼ dζ

δ0
ffiffiffiffiffiffiffiffiffiffiffiffi
R02þQ02

p � dζ

δ
ffiffiffiffiffiffiffiffiffiffi
R2þQ2

p ; now then

R0 ¼ Rþ Pp� dR
dx � KM � dR

dy (I write -KM because AP(x) increases, PM(y)

decreases); even more, Pp or mK ¼ Mm�Qffiffiffiffiffiffiffiffiffiffi
R2þQ2

p ; because due to the similar triangles

MmK, MVN, it gives mK : Mm :: VN : MN :: Q :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Q2

p
. Therefore

Pp ¼ Qdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p
,
; it can be found as well KM ¼ Rdsffiffiffiffiffiffiffiffiffiffi

R2þQ2
p ; so

R0 ¼ Rþ dR
dx

Qdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p � dR
dy

Rdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p ; more δ0 ¼ δþ dδ
dx

Qdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p � dδ
dy

Rdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p ; finally, for

the same reason it will give Q0 ¼ Qþ dQ
dx

Qdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p � dQ
dy

Rdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p . So

1

δ0
ffiffiffiffiffiffiffiffiffiffiffiffi
R02þQ02

p ¼ 1

δ
ffiffiffiffiffiffiffiffiffiffi
R2þQ2

p þ 1

δ R2þQ2ð Þ32
�RdR

dx
Qdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p þ RdR
dy

Rdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p � QdQ
dx

Qdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p þ QdQ
dy

�

Rdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p þ QdQ
dy

Rdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p
�

� 1

δ2
ffiffiffiffiffiffiffiffiffiffi
R2þQ2

p dδ
dx

Qdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p � dδ
dy

Rdsffiffiffiffiffiffiffiffiffiffi
R2þQ2

p
� �

. So as RO was found

above to be equal todζ 1

δ0
ffiffiffiffiffiffiffiffiffiffiffiffi
R02þQ02

p � 1

δ
ffiffiffiffiffiffiffiffiffiffi
R2þQ2

p
� �

; it will giveRORN, that is to say, the angle

ONR ¼ RO
ds ¼ dζ

δ R2þQ2ð Þ2 � RQdR
dx þ R2dR

dy � Q2dQ
dx þ QRdR

dy

� �
� dζ

δ2 R2þQ2ð Þ
Qdδ
dx � Rdδ

dy

� �
.

Now let Mm, Mμ be two adjacent and equal sides of the curve QMm, Nr and Nr
parallel to these sides (Fig. 10.2); and let MN be extended to G; it is obvious that
MN, perpendicular (hyp.) to the curve MN in M, divides into two equals the angle

μMm. Therefore it will also divide into two equals the angle RNr; moreover, let μo
be toMN as the force

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Q2

p
alongMNmultiplied by the density atM is to force

along μo multiplied by density at μ; for ro we will have the same value as RO but

negative. Therefore the angle RNO ¼ rNo. But we have proved that the force that

the point N impels must be perpendicular to the curve ONo; so if Ng is the direction
of this force, we will have the angle ONg ¼ gNo; ONo ¼ RNr and RNr

2
¼ ONo

2
, that is

Fig. 10.1 xxx
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to say RNG ¼ ONo
2

¼ ONg. So RNG¼ONg and GNg¼ONR. Now Q/R is the

tangent of the angle NMV, and Q0/R0 of the angle FNg let Q0 ¼Q + k and

R0 ¼R + m, the difference of the angles NMV, FNg, that is to say the angle

GNg will be Rk�Qm

R2þQ2 , as it is known by the geometricians (because, if y/x is the

tangent of an angle, the differential of this is angle will be xdy�ydx
x2þy2 ); now we

have here k ¼ dQ
dy � VN þ dQ

dx �MV ¼ dQ
dy

dζ

δ
ffiffiffiffiffiffiffiffiffiffi
R2þQ2

p Qffiffiffiffiffiffiffiffiffiffi
R2þQ2

p þ dQ
dx

dζ

δ
ffiffiffiffiffiffiffiffiffiffi
R2þQ2

p Rffiffiffiffiffiffiffiffiffiffi
R2þQ2

p ;

and m ¼ dR
dx

dζ

δ
ffiffiffiffiffiffiffiffiffiffi
R2þQ2

p Rffiffiffiffiffiffiffiffiffiffi
R2þQ2

p þdR
dy

dζ

δ
ffiffiffiffiffiffiffiffiffiffi
R2þQ2

p Qffiffiffiffiffiffiffiffiffiffi
R2þQ2

p . Therefore the angle GNg ¼
dζ

δ R2þQ2ð Þ2
R2dQ
dx þ RQdQ

dy � QRdR
dx � Q2dR

dy

� �
. Therefore since we have just proved that

the angle GNg ¼ ONR, and we found above the value of the angle ONR, by
comparing these two values, we will have the equation

� R2þQ2

δ
Qdδ
dx � Rdδ

dy

� �
þ R2dR

dy � Q2dQ
dx ¼ R2dQ

dx � Q2dR
dy . Therefore transposing and mul-

tiplying by δffiffiffiffiffiffiffiffiffiffi
R2þQ2

p , it becomes δdQ
dx þ Qdδ

dx ¼ δdR
dy þ Rdδ

dy , that is to say,
d δQð Þ
dx ¼ d δRð Þ

dy .

Scholium I
162. In the second method by which we demonstrated (previous art.) the equation
d δQð Þ
dx ¼ d δRð Þ

dy a rather important observation is presented. If we assume, with the

authors that have so far dealt with this matter, that the density is constant in each

layer QMm, ONo in particular, but that it varies at will from one layer to the other,

for the law of equilibrium we will find only the equation
d Qð Þ
dx ¼ d Rð Þ

dy , that is to say,

the same that would be found if the density δ was constant all over. However, if in
the same case where the density is not uniform, the equation that results from the

equilibrium was sought by the method of art. 19, it would be
d δQð Þ
dx ¼ d δRð Þ

dy . Then,

how can these two equations can take place at the same time in the present case?

Fig. 10.2 xxx
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I answer that the density being constant in each layer (hyp.), it will give

dxdδdx þ dydδdy ¼ 0; therefore since dy ¼ �Rdx
Q , we will be find Qdδ

dx � Rdδ
dy ¼ 0. Hence

the equation
d δQð Þ
dx ¼ d δRð Þ

dy is reduced to δdQ
dx ¼ δdR

dy , that is to say, dQ
dx ¼ dR

dy. But it

should be noted that the equation dQ
dx ¼ dR

dy takes place in this case only for layers

QMm, ONo in which the direction of gravity is perpendicular, while the

equation
d δQð Þ
dx ¼ d δRð Þ

dy takes place on whatever layer one wishes, whether per-

pendicular or not to the direction of gravity. From this I conclude that the

method of art. 19 is the only really general one to determine the laws of the

equilibrium of fluids. Whereupon see the Théorie de la Terre, by M. Clairaut.

Scholium II
163. Moreover, in art. 161 I assumed the density variable, even in every curve

especially in QMm, Ono, and I do not believe that this assumption has anything

absurd. As long as the equation
d δQð Þ
dx ¼ d δRð Þ

dy takes place, and that the force of

gravity is perpendicular to the first layer QMm, the mass of the fluid will be always

in equilibrium whatever the law of the density is in each layer in particular. So I

think I can advance in general, that any heterogeneous mass of fluid will always be

in equilibrium, providing that the previous equation is observed. It is true that

experience seems to contradict this assertion, because it shows us that fluids of

different density cannot mix together. But the reason which prevents this mixing is

that, gravity being the same for all these fluids, the
d δQð Þ
dx ¼ d δRð Þ

dy cannot take place

until they are mixed.

Scholium III

164. It should also be noted that equation
d δQð Þ
dx ¼ d δRð Þ

dy only takes place assuming δ,

R and Q as variable functions of x and y. But I see no reason to be limited to this

assumption. Effectively, in order to facilitate the calculation, let us assume that the

density δ is constant everywhere; why would not we assume R and Q functions not

only of x and y but also of a third variable z,2 represented for example by any line

RQ, Rq (Fig. 10.2) which would be variable for the different layers QMm, Ono, and
constant for the same layer? That said, the same value as above would be found for

the angle ONR (art. 161); but in the expression of the angle GNg k must be

increased by the quantity dζdQdz , and m by the quantity dR
dz dζ. Therefore the value

found above for the angle GNg would be increased by dζ
R2þQ2

RdQ
dz � QdR

dz

� �
; so

comparing the two values of the angles GNg, ONR, we will have
dQ
dx � dR

dy þ RdQ
dz � QdR

dz ¼ 0.

Now, let R and Q be functions of x and z only, so that dR
dy ¼ 0 ; it will give

dQ
dx þ RdQ

dz � QdR
dz ¼ 0. Thus taking for Q any function of x and of z, R will be found

2In the original the symbol for this variable is ζ, which has been used already with another meaning

and also in this article. To avoid such confusion we have introduce z in its place, which affects the
entire article.
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easily. Because we will find dQdz

Q2dx
¼ QdR

dz � RdQ
dz

� �
dz
Q2. So treating x as constant, it will

give
R

dQdz

Q2dx
¼ R

Q þ ξ, being ξ any function of x; and
R

dQdz

Q2dx
the integral of dQdz

Q2dx
treating

z as variable.
As the force R is assumed perpendicular to the curve at Q, q, etc. we must be

careful to take the function Q, so that in all points Q, q, etc. of the line RQ this

function is equal to zero. Therefore, taking AB perpendicular to AP and RQ, and
making RB ¼ a, Q must be a function of x, a, z, so making x+ a¼ z, this function
becomes zero. This can easily found by infinite ways.

It is easy to see that the latter formula would be dQ
dx � dR

dy þ RdQ
dz � QdR

dz ¼ 0, in

which the density δ is assumed constant, this is more general than the formula
dR
dy ¼ dQ

dx , found in art. 162 for the same case. However, the equations dR
dy ¼ dQ

dx and
d δRð Þ
dy ¼ d δQð Þ

dx are the only ones that we have used in this work, because they are the

only ones to which the calculation seems to be able to be applied in the research for

the resistance of fluids.

Scholium IV
165. It is clear by the previous scholium that all parts of fluid contained in whatever

layer Ono are equally pressed by the fluid that is above, since the weight of the

columns MN, mO, μo is the same. As soon as there is equilibrium in the fluid, each

inner layer Ono, to which the direction of gravity is perpendicular, is pressed

equally in all its points. Can we not conclude from this with likelihood, that the

pressure must be equal at all points of the first layer or outer surface mMμ? In this

case the forces along μo, MN, mO should be equal among them; but in the lower

layers it would not be necessary that the inherent force in each particle was the

same, it would be sufficient that each particle was equally pressed by the weight of

the above column.

Besides, if we consider the particles of the fluid in the mMμ layer as small

globules that press each other, and ignoring the lower layers, by static principles we

can easily find that for these globules to be in equilibrium it is necessary that at any

point M the force that acts along MN is inversely proportional to the radius of that

evoluted in M. If this proportion takes place, and, besides this, the force must be

constant inM according to what we just observed, it follows that in the outer surface

mMμ all osculatory radii should be equal; and thus a fluid may not be in equilib-

rium, unless its outer surface is flat or spherical.

However it can be shown by the following reasoning that the surface of a fluid in

equilibrium is not subject to either of these two figures.

Let us imagine a fluid whose parts are in motion; it is obvious that in countless

cases its surface will not be flat or spherical. So let OPQR (Fig. 10.3) be this surface

in any instant, P, Q, two points or corpuscles placed upon this surface, whose

velocities are u, v, and that these velocities in the next instant are changed to u0, v0;
finally, let the velocities u, v be considered as composed by u0, u00, v0, v00. It is
obvious (art. 1) that if the points P and Q were impelled to move with the singles

velocities u00, v00, they would remain in equilibrium. Therefore as the velocities u, u0,
v, v0 are given, or assumed as given, it follows that forces can always be found that
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would maintain the points P, Q, in equilibrium on the surface of fluid OPQR; and it
is the same with the other points. So whatever the figure the surface OPQR of a fluid

has, there is always a possible system of forces which would maintain it in

equilibrium.

From the foregoing results at least this first consequence: that the principle of the

equality of forces in the outer surface and the [inverse]3 proportionality of these

forces with the osculator radius cannot be both true. Moreover, it must be admitted

that neither one nor the other is supported well by solid foundations. Because at

first, for the principle of [inverse] proportionality of the forces with the osculator

radius was true, it should have been proved not only that the particles of fluids are

globules, which is very uncertain, but also that the effort of the globules acts only on

those contiguous to them in the same layer, and nothing on those that are behind;

which is not true. In respect to the principle of the equality of the forces, it is

obvious that if it was accepted, all the theories which have been given about the

shape of the Earth should be regarded as false, considering it as a fluid, and having

regard to the attraction of the parts and to the axis rotation. I do not pretend to

decide; I just want to show that if the principle of the equality of pressure on the

outer surface is rejected, we must necessarily agree that the equality pressure of the

inner layers is only, so to speak, an accidental property and not a fundamental law

of fluid equilibrium.

Also MacLaurin, the first to speak of these layers Ono (Fig. 10.4)4 to which the

weight is perpendicular and that he called level surfaces, did not deduce the law of

equilibrium from the equality of pressure on these surfaces. But after taking in the

interior of the fluid a column Pp of any direction whose weight is equal to that of the
column AO, he was content to derive, by a simple corollary, that the surface Op
through all points p and through the point O will be a level surface. We have

thought that we must follow his method fully in this regard.

Scholium V
166. Moreover, the same method, by which we have proved that the outer surface of

a fluid can always be in equilibrium with a suitable system forces, can also be used

to prove that an heterogeneous fluid, or several fluids of different densities, can

Fig. 10.3 xxx

3See previous paragraph.
4In the original this Fig, is numbered as 49. We have changed to 10.4 in order to maintain the order

of appearance in the text. The same is applied to Figs. 47 and 48, changed to 10.5 and 10.6

respectively.
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always be in equilibrium whatever way these fluids are mixed and arranged,

provided that a suitable system of forces is assumed. We do not need, to be

convinced, more than imaging a heterogeneous fluid whose parts are mixed as we

like, assuming next that these parts have any motion and to apply here the reasoning

of art. 165.
So we have reason to suppose that in a fluid in equilibrium, each level surface is

not necessarily of a uniform density throughout its extent.

Scholium VI
167. We have just to show that it is not necessary that the level surfaces be of

uniform density throughout their extent. We will now see that if a fluid is made up

of different layers, each of which is of uniform density, it is not necessary for the

equilibrium that these layers be level layers.

To prove this, let DAEF (Fig. 10.5) be a fluid mass whose parts are impelled by

whatever forces, it is obvious that all the forces acting on each particle P can be

reduced to two, one acting along PC, the other along a perpendicular to PC. For
simplicity of the calculation let us assume that the second force is very small

compared to the first; each layer EADF will differ very little from a circle.

That said. Let CA¼ r, the angle ACP¼ z, CP¼ r+ αρZ, being α a constant very

small and that is the same for all layers, ρ a function of CA(r) and Z a function of the

angle z, or rather of its sinus, etc., it is obvious that P
0π
Pπ ¼ αρdZ

rdz . Even more, the force

at P along PC is ρ0 þ αρ00Z0 (ρ0, ρ00 being functions of r, and Z0 a function of z) and
the force perpendicular to CP is αρ000Z00; it is clear that the force acting along PC can

be divided into two, one perpendicular to the layer ADP at P, the other in the same

direction of this layer, and this latter will be ρ0 αρdZrdz . With respect to the force αρ000Z00

perpendicular to PC, the resulting force along PP0 is also αρ000Z00, because Pπ and

PP0 differ only in an infinitely small amount of the third order. So the force along

P0P is αρρ0 dZrdz � αρ000Z00� �
, and this function multiplied by P0P or rdz and by the

density of the layer APD, which I call δ, it will give the expression

αdz δαρρ0 dZrdz � δαρ000Z00� �
for the force of the small particle P0P. Now, the force

along CP is ρ0 þ αρ00Z0, and it is Pp¼ dr+ αZdρ; as the density is δ, it will give the
force on pP along pP equal to δ(ρ0 þ αρ00Z0)(dr+ αZdρ). Therefore the force of p0P0

minus that of Pp will be αδdr ρ0 0dZ0
dz þ αδρ0dρdZdz. Now then (art. 17) it is required that

Fig. 10.4 xxx
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the channel pp0P0P is in equilibrium, that is to say, that the force of p0pminus of that

of P0P is equal to the force of p0P0 minus of the pP; So
dZ
dz d δρρ0ð Þ � Z00d δrρ000ð Þ ¼ δρ00drdZ

0
dz þ δρ0dρdZdz will be the general equation of

equilibrium.

For the layers to be of level, it would be required that the force along P0P was

equal to zero, that is to say that ρρ0 dZrdz � ρ000Z00 ¼ 0; hence it follows that making
dZ
dz ¼ �Z00, as is necessary, would give d(δρρ0)� d(δrρ000)¼ 0. However this equa-

tion is much less general than the previous one, which is easy to see, but to prove

this let us suppose at first dZ
dz ¼ �Z00 ¼ � dZ0

dz , the previous equation will give d

(δρρ0 � δrρ000)¼ � δρ00dr� δρ0dρ, which is only reduced to δρρ0 � δρ000r¼ 0 in the

case when ρ00 ¼ � ρ0dρ
dr .

Secondly, let us suppose that d(δρρ0)� δρ0dρ¼ � δρ00 ¼ � d(δrρ000). And we

will have dZ
dz � Z00 ¼ � dZ0

dz ; which gives yet another different equation of d

(δρρ0 � δrρ000)¼ 0.

Scholium VII
168. Moreover it should be clearly noted that in the previous scholium it is assumed

that the fluid was made up of an infinite number of layers whose densities increase

or decrease by insensible degrees, or rather infinitely small ones; so that two

infinitely close layers of this fluid do not differ more than infinitely little in density.

Let us suppose now that the fluid is composed of several differently dense layers

and whose density difference is finite. I say that the fluid can be still in equilibrium,

although the surfaces that separate these different layers were not of level. Indeed,

let AFEB (Fig. 10.6) a vessel in which is enclosed a stagnant homogeneous liquid

whose density is δ and whose parts are driven by the natural gravity g. Having
drawn any oblique line DC, let us imagine that the part ADCB becomes of the

Fig. 10.5 xxx
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density δh, and the force that drives every particle of this part becomes g/h; it is
obvious that the fluid will remain in equilibrium, and however the surface DC
which separates the part ADCB, DCEF whose densities are between them as h is to
1, is not of level. In this hypothesis, if two lines dc, dc parallel to DC, are drawn, one
above and the other below, the weight of the two channels DCcd will be the same,

although the fluid is of a different density in the one and the other, because the

weight is inverse ratio to the density.

So when a fluid is made up of layers of different densities, it is not necessary for

the equilibrium that the layers are of level. Perhaps we will object that is to admit a

law too unnatural and too weird, which is to assume that the weight of a fluid

particle could be in inverse ratio to its density; since in this case two points infinitely

close Q, q, would be driven by forces whose difference would be finite. My answer

to this is: 1st, that this pretended inconvenience does not occur in the case when the

infinitely close layers differ infinitely little in density, since (Scholium 6) the forces

acting on a point P, can then be regulated by a function only of its distance from

C and the angle ACP, function in which the density does not enter. 2nd, it does not

seem to me more absurd to suppose that two points infinitely close Q and q are

driven by accelerating forces whose difference is finite, than to assume that the

densities of these points Q, q, have between them a finite rapport; now then, the

latter assumption has never surprised anyone. 3rd, moreover it is quite true that if

weight depends only on the position of the particles, the points infinitely close Q, q,
will be driven by forces that only differ infinitely little from each other. Why limit

ourselves to assuming that impelling forces depend only on the particle positions? If

two contiguous fluids and with different density are in motion, can it not make the

accelerating forces driving them unequal? Now that posed, as the force of gravity is

the same for the two fluids, it follows that the forces that must be destroyed will be

different.

Finally, it must be observed, that for each layer EADF (Fig. 10.4) to be roughly a

circle, it is required that Z, Z0, Z00 are functions of the sine of the angle ACP, so that
the value of these quantities remains the same when the angle z increases, either by

the circumference or several times the circumference.

Fig. 10.6 xxx
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Scholium VIII
169. On this occasion I will remark that it seems to me that the problem of the figure

of the Earth has not yet been solved in a rather general way, with the hypothesis that

the attraction is in inverse ratio to the square of the distance and that the Earth is

made of an amassment of fluids of different densities. Indeed, let CA¼ r, (Fig. 10.4)
CP¼r+ rρz2 (naming z the sine of the angle ACP, and taking the layer EADF as an

ellipse), R density of this ellipse, c [2π] the circumference of radius 1, φ the ratio of

the centrifugal force to the weight at the equator, [ρ the ratio of the difference

between the axis and the equator to the axis],5 A which becomes
R
Rr2dr, and

F which becomes
R
Rdρ when 2r becomes the axis of the earth. It will be found:

1st, that force at point P along Pπ is 2z
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p 2cρ
R

Rr2dr

r2

	
� 2c

R
Rd r5ρð Þ
5r4 � 2crF

5

þ 2cr
R

Rdρ

5
� crAφ



; this force must be multiplied by Pπ ¼ rdzffiffiffiffiffiffiffiffi

1�z2
p and by the density

R, in order to obtain the force along Pπ; therefore the difference between the

forces along pp0 and PP0 is 2zdzd 2cRρr
r2

R
Rr2dr � 2cRr

5r4

R
Rd r5ρ

� �� 2cRr2F
5

�

þ 2cRr2
R

Rdρ

5
� Rcr2Aφ

�
.

2nd. Now, in order to obtain the equation of the spheroid this quantity must be

equated to the weight of p0P0 minus of the pP, which is6 2zdzdr Rd rρð Þ
dr

2c
R

Rr2dr

r2

�

� 4cρR
r2

R
Rr2dr þ 6cR

R
Rd r5ρð Þ
5r4 � 4cRr

5
F� R

Rdρ
� �� 2cRAφr

�
:

Then let
2cρ

R
Rr2dr

r2 � 2c
R

Rd r5ρð Þ
5r4 � 2crF

5
þ 2cr

R
Rdρ

5
� crAφ ¼ 2Kc, K expressing

an indefinite variable. We will have: 1st, multiplying this last equation by 5r4

and differentiating twice the following equation: d2ρ� ρdr2 6
r2 � 2RrR

Rr2dr

� �

þ 2Rr2drR
Rr2dr

dρ ¼ r2R
Rr2dr

d
d Kr4ð Þ

r4

� �
. 2nd, moreover the equilibrium equation will give

2zdzd RrKð Þ2c ¼ 2zdzd d rρð Þ
dr

2cR
R

Rr2

r2 � 8cRρ
R

Rr2dr

r2 þ 2cR
R

Rd r5ρð Þ
r4 þ 4cRK

	 

, which

divided by 2cR and multiplied by r4, and then differentiated, it gives

d2ρ� ρdr2 6
r2 � 2RrR

Rr2dr

� �
þ 2Rr2drdρR

Rr2dr
¼ 2

r3
R

Rr2dr
d r4d KRrð Þ

R

� �
� 2drd Kr4ð Þ

h i
. Com-

paring this differential equation of second degree with the previous one, and

removing what is destroyed, results in 1

r3
R

Rr2dr
d r3KdR

R

� �
¼ 0, or r5KdR

R ¼ Mdr,

5Taken from the Clairaut, who calls it “ellipticity”. Part II, Chap. II, §.XXIX.
6All these formulas are in the work of M. Clairaut about the shape of the Earth; these can be

achieved by different methods. (Original note).
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being M any constant. So the general equation is d2ρ ¼ ρdr2 6
r2 � 2RrR

Rr2dr

� �

� 2Rr2R
Rr2dr

þ r2R
Rr2dr

d
h
d MRdr

r

� �
1
r4

i
.

Scholium IX
170. If M ¼ 0, then we have dR ¼ 0 or K ¼ 0, that to say, the density is constant or
the force along P0π is null, and hence whatever layer EADF of level. The spheroid

equation is then d2ρ ¼ ρdr2 6
r2 � 2RrR

Rr2dr

� �
� 2Rr2drdρR

Rr2dr
, which is the only one that has

been found so far, but which is not as general as the previous one.

It will give again d2ρ ¼ ρdr2 6
r2 � 2RrR

Rr2dr

� �
� 2Rr2drdρR

Rr2dr
, 1st, when Rdr

rdR is equal to a

constant, that is to say, when R¼Arn, being A and n being whatever constants. 2nd,
when d Rdr

rdR

� �
will be equal to Br4dr, being B constant, that is to say when dR

R will be

equal to dr
r Cr5þGð Þ being C and G constants. In all other cases the equation of the

spheroid will be more complicated than what has been assigned to it so far by wise

geometricians who have dealt with this matter.

When r¼ 1, it is necessary that K¼ 0, because the first layer must be necessarily

of level. Therefore, the value of R cannot be assumed as Rdr
r5dR

¼ 0, or what is the

same, dRdr ¼ 1, when r ¼ 1; which can be made by an infinite number of ways. In

general it is only necessary to assume the equation between R and r represented by a
curve whose tangent coincides with the ordinate R when the abscissa r ¼ 1, the
ordinate R being finite.

Scholium X
171. By the method we propose here to determine the figure of the elliptical Earth, it

is easy to see that once the layers are of level, the weight of pP and p0P0 are equal.

Indeed, when the layers are of level, we have K ¼ 0, d2ρ ¼ ρdr2 6
r2 � 2RrR

Rr2dr

� �

� 2Rr2drdρR
Rr2dr

; now then, in the same case we have M ¼ 0, and the general equation is

reduced to d2ρ ¼ ρdr2 6
r2 � 2RrR

Rr2dr

� �
� 2Rr2drdρR

Rr2dr
. So the principle of level layers, and

that of equality of force between the columns and pP and p0P0 give the same eq. I

will discuss this subject elsewhere further.

THE END
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Chapter 11

General Considerations

11.1 The Manuscript and the Essay1

Late November 1749. Jean Le Rond d’Alembert had just completed the last

corrections of a manuscript and was ready to send it to the Academy of Sciences

of Berlin in order to compete for the prize on the resistance of fluids for 1750.2

Leonhard Euler had proposed the prize to the Academy the year before.

D’Alembert had finished the manuscript in the last days of October, and now he

added an appendix and some minor details. He thought he had opened up a new way

of understanding the phenomena of fluid motion by introducing the capacities of

mathematical analysis in the unruly world of Fluid Mechanics. Until then only the

most outstanding geometricians had dared to penetrate it, and almost always with

quite meagre results. His new ideas would extend not only the borders of Fluid

Mechanics, but would also provide new tools. D’Alembert was very proud of

this work.

Early January 1750. The five competing works received at the Academy were

sent to the Jury, composed by Euler, Johann Kies and Augustin Nathanaël

Grischow.3 In May the same year the Academy made public the decision to delay

the award of the prize for 2 years, because none of the works submitted fulfilled the

proposed conditions. Therefore the former participants, or any new other ones, were

asked to provide experimental evidence for their calculations.

1These Commentaries incorporate the suggestions and comments done by Larrie Ferreiro

and Manuel Sellés.
2Most of the information given here has been taken from Grimberg [1998].
3Both were German. Grischow was a mathematician and became member of the Academy of

Berlin in 1749 and professor of Optics in 1950. In 1751 he gave up this position for the Academy

of San Petersburg. Kies was mathematician and astronomer and professor of Mathematics and

astronomer of its observatory.
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D’Alembert was very discouraged by this decision, and matters worsened further

when at the end of year some news reached Paris giving rise to suspicions about the

impartiality of the jury.4 It seems that he had already decided to withdraw his work

then and to publish it separately. As a consequence his relations with Euler cooled,

and their correspondence was cut short for more than 10 years. As regards the prize,

it was awarded in June 1752 to Jakob Adami.5

What was the true reason the prize was not awarded to d’Alembert? This is an

open question that we cannot answer. Clifford Truesdell, one of the most renowned

historians of Mechanics in the last century, made some conjectures about it, which

are not very favourable to d’Alembert.6 He thinks that it seems very improbable for

Euler to have expected that the experiments could provide some results in accor-

dance with the theories. This is very likely true. The available experiments were

quite few in number, inconclusive, sometimes contradictory, and carried out in a

very limited range of options as d’Alembert himself explains. Therefore, according

Truesdell, “the reason given out was only a pretext, offered in place of the truth,. . .
that d’Alembert’s reasoning was inaccurate, tortuous, incomprehensible, and that in

illustration of his equations he had not succeeded in exhibiting a single flow”. We

might agree with the difficulty in reading the text, and also that there are matters

that bear little or no relation with the fluids; but at the same time there is matter in

the Essay that deserves a more favourable judgment. Besides, if it were true that

Euler did not believe that practice could confirm the theory, what did he and the

Jury expect for the new submission? What is more, if the veiled intention was to

eliminate d’Alembert, then the winning work in the postponed contest would need

to be of rather better quality, which, according to the prestige and capabilities of

d’Alembert did not seem easy to expect. In the end, the almost unknown winner

contributed nothing to Fluid Mechanics while d’Alembert undoubtedly did,

although following quite a tortuous path.

At the end of December 1751, the Academy of Paris approved the Essai d’une
nouvelle Théorie de la résistance des Fluides for printing. This was the French

version of the Latin manuscript, which had the long title Theoria resistentiae quam
patitur corpus in fluido motum, ex principiis omnino novis et simplissimis deducta,
habita ratione tum velocitatis, figurae, et massae corporis moti, tum densitatis &
compresionis partium fluidi.7 Both are basically the same although with some

4According to Robert Bradley (p. 257), Grischow was summarily dismissed from the Academy of

Berlin when he furtively contracted an engagement with the Academy of San Petersburg. This

made him feel humiliated and he tried to make trouble revealing to d’Alembert and others his

version of the events related to the prize delay.
5For the work Specimen Hydrodynamicum de Resistentia Corporum in Fluidis Motorum. See
Annex III for more details.
6Truesdell [1954], pp. LVII–LVIII.
7Theory of the resistance undergone by a body moving in a fluid, deduced only from new and very
simple principles, both in the given relation with the velocity, shape and mass of the moving body,
and the density and pressure of the parts of the fluid.
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minor corrections, a certain reorganization and the addition of a few new articles.8

D’Alembert justifies the title of Essay as being an intent to open up a new route in

the subject, expecting others to follow and further extend the limits he had discov-

ered [Intro. VII].

In October 1752,9 the Essay comes to light.10

In the Introduction of the Essay, he bitterly addresses the decision of the Berlin

Academy. He states that he only pretended to agree with the best known experi-

mental issues of the resistance, and he also remarks that this requirement had not

been included in the bases of the prize. He also hints at “other reasons, in whose

detail it is useless to enter” [Intro. VII], pointing out the aforementioned suspicion

of lack of impartiality. To manifest his dissatisfaction and in order to retain the

priority of the findings of the Essay, he tried to publish it prior to the judgment of

the Jury. This haste was somewhat inopportune for the work, since we think that

many of the criticisms made about the obscurity and reading difficulties could have

be avoided with a more relaxed editing. To finish his comments about this matter,

he adds with some irony “that the Judges appointed by this illustrious Company,

which without any doubt have not proposed this question without assuring them-

selves if that solution was possible, would find something to entirely be satisfy

themselves in the works that will be sent to them for the contest” [Intro. VII].

Another rather important question is to what extent this work served Euler for his

own subsequent developments, specifically for the three Fluid Memoirs of 1755.

Gérard Grimberg would have liked to know the opinion of Truesdell, due to his

familiarity with the texts of this period of both authors.11 However, Truesdell adds

nothing; on the contrary he says that Fig. 4.5 of the Essay, which depicted the

streamlines around a body, is very similar to Euler’s in the translation of Benjamin

Robins’ Gunnery.12 We think that this interpretation is inexact; Euler’s figure

showed the body with a single layer contouring it; d’Alembert’s is rather more

complicated. Regarding the fluid flow, Euler assumed that normal and tangent

forces would exist at each point of the surface, both being functions of the local

angle and the layer thickness; but there was still no rule or formula for this

thickness. A qualitative jump exists between both cases.

Before publishing the three Memoirs, Euler read the “Principia motus

fluidorum” in the Berlin Academy in 1752.13 In this work Euler’s ideas on how

to deal with fluid motions appear for the first time with clarity, and although the

scope was limited to non-compressible fluid and two-dimensional motions, it was

the root of his later works. There are at least two points in which the “Principia”

8Grimberg [1998] presents a table with the correspondence between the points of the Manuscript

and the articles of the Essay (p. 364), and the list of the new articles added (p. 14). In The Annex II

we have completed this correspondence.
9October was probably the month when the Essay came to light. See Annex II.
10We will use the names of Essay and Manuscript, or abbreviated to Mss.
11Grimberg [1998], p. 11.
12Truesdell [1954], p. LII. Euler [1745], Fig. 4.3.
13Published later in 1761.
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follows the Essay. One is the constancy of the volume enclosed by a surface

evolving in the motion. In the Essay this volume is a parallelepiped, defined by

eight particles in each vertex, that moves and changes shape, but with the quantity

of enclosed fluid remaining the same [Fig. 4.6 and §.48]. In the “Principia” it is a

triangle, whose surface will be constant when each vertex moves.14 The second one

refers to the measure of the pressure by means of a column of fluid. We recall that

Daniel Bernoulli had introduced the water height manometer in his experiments,

and even Newton gives inklings of this idea. However, in the Essay this idea

acquires the value of a measurement, what it means to know a quantity, to record

and compare it with others [§.33]. In the “Principia” this idea is defined in a similar

way, the difference being that Euler considers the pressure as an internal action

among neighbouring particles.15 A third point could be added: d’Alembert had

showed the existence of mathematical relations between the velocities in a fluid,

thus opening up a vast new field for Fluid Dynamics. In these circumstances it was

almost inevitable that Euler threw himself into this new world. The huge capacity

he had for absorbing any new idea is well known. However, did Euler have these

ideas in mind before? We cannot dismiss the probability, but no evidence exists, at

least as far as we know.

Regrettably for d’Alembert, the Essay was only in the limelight for few short

years, as Euler’s Memoirs eclipsed it almost completely. The brief time between

both works and the rivalry between the authors has inclined some modern scholar

consider them as if they were in a contest. Scientists have always competed to be

the first to make any discovery and to receive public recognition for it; but this has

been a competition without winners or losers, they have strived to move science a

step forward by aiming at a far distant goal. In our present world full of contests, not

only in the cultural life but in the omnipresent world of sports, full of winners for

anything under the sun, full of ranks and lists, we have become too much aggressive

and competitive. In our humble opinion, we would better avoid translating our

present environment to those more relaxed times.

René Dugas, after recognizing that the Euler Memoirs can be taught today

almost without changing a line, points out: “Suddenly, the Essay found itself

dethroned, but it would be ungrateful of us to forget it, because the light that we

owe to the mathematical genius of Euler is obviously derived from the cutting of the

rough diamond extracted by d’Alembert”.16

14First Part, §.14-ss, Fig. 2.1.
15Ibid, §.43.
16Dugas [1952], p. 12.
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11.2 Fluid Mechanics in the Eighteenth Century

Let us start with a general view of the scope and evolution of the Fluid Mechanics in

the eighteenth century, which will serve to obtain a better understanding of

d’Alembert’s contribution.17

Fluid Mechanics was a part of General Mechanics, maybe the hardest to grasp.

In its genesis two major milestones can be identified. The first was the Book II of

Newton’s Principia, in 1674, where we find the beginning of Fluid Mechanics as a

modern scientific discipline by establishing the impact theory as an explicative

model of fluid behaviour. This theory assumed that fluids were constituted by

individual particles, which impacted upon a body in motion. It is remarkable that

a theory which in the end turned to be unrealistic provided the foundation stone of

the theorisation of fluids.

The second milestone was the publication of the three aforementionedMemoires
by Leonhard Euler in 1755, where the equations of hydrodynamics, today known as

Euler equations, were presented in such a way that has practically not aged, so that

any modern reader could understand them. The fluid is no longer considered as a

particle amount but as a continuous media. We must underline that the fluids were

still considered physically as being constituted by particles, and because of this the

impact theory made sense, but the new models had to assume the particles were

continuous as the only way to fulfil the apparent reality. A consequence of this was

that the flow field had a complex internal structure defined by the differential

calculus, which contrasted with the simplicity of the former impact model.

This huge leap, from a fluid taken as an aggregate of particles impacting

discretely on a body to a continuum media flowing along streamlines regulated

by differential equations, was the outcome of the efforts of the most brilliant

geometricians in the 68 years that transpired between the Principia and the Mem-
oirs. It was a “great theorization” that yielded a set of equations that shone like a

beacon upon a summit and remained there unsurpassed for many years, even for

centuries. Although they continued to shine with almost ethereal beauty, in practice

they had practically no application due to the lack of appropriate mathematical

resources. What is more, one of the few available derivations showed that the fluid

resistance of a moving body ought to be zero, a fact that contradicted the most

obvious real data. In some way it provoked the need for experimentation as an

alternative. This was very noticeable in two technical areas where the fluid resis-

tance was demanded: the ballistic and the nautical.

Though we have attributed the paternity of fluids science to Newton, we cannot

forget two precursors: Christiaan Huygens and Edmé Mariotte. Both interpreted the

action of a fluid upon a solid as shocks of particles against bodies and conducted

experiments on this subject in the 1670s. Huygens studied the effect of a jet on a

plate and Mariotte the force that a current of water, which was the Seine River,

exerted on plate immersed in it. The values obtained byMariotte were very accurate

17We follow Simón Calero [2008].
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and close to present day figures. In addition, Huygens considered the resistance as

proportional to the square of the velocity for the first time.

Newton thought that both air and water were composed of separate particles able

to move independently. In the air they were spatially separated and they moved

impelled by centrifugal forces among them. By contrast, in water the particles were

in contact with each other, so that the motion of any individual one was conditioned

by its neighbours. In any case, a solid body moving in a fluid would strike the

particles thus transferring momentum, which would be the resistance. The calcula-

tion was feasible in the air with some simplifying assumptions, but practically

impossible in a liquid. For this reason Newton followed two different methods for

each case.

Newton supposes that an elastic fluid is formed by particles at rest, repelling

each other by centrifugal forces inversely proportional to the distances between

them. However, he simplifies this model removing the centrifugal forces, leaving

the particles at rest and equally spaced. He called the resulting fluid “a rare

medium” but he argued that its action upon a moving body would be almost

identical to the real fluid. For the individual impacts of the particles there were

two possibilities: one that they rebound elastically as in a mirror, the other that they

remain motionless after the impact in an inelastic shock. The difference was that in

the first case the momentum transferred was double that in the second. This

comprised the impact theory; we note that the local effect in any point depended

only on the geometry of this point relative to the velocity. Another relevant issue

was that there would only be impacts in the front part of the body, leaving a shadow

zone behind it. Therefore, for a body with a given geometric shape it was mathe-

matically possible to calculate the reflection angle at any point of its surface.

Knowing the individual mass of each particle and the impact rate, that is to say

the fluid density and the body velocity, the resistance was easily obtained. In the

particular case of a flat plate moving perpendicular the resulting force was CD ¼ 4
for the elastic hypothesis and CD¼ 2 for the inelastic; for a sphere both values were
reduced to a half.18

We have to point out that once the hypothesis of the rare medium is accepted, the

impact theory is fully backed by Newtonian mechanics. That is the reason we think

of it as the first appearance of the fluid as a scientific discipline. However, this was

not applicable in any way to the resistance of liquids. For these Newton strived for

an alternative way to overcome the unmanageable aggregate of particles. The idea

was to divide the problem in two parts. The first was to produce a jet stream, like the

discharge of a vessel through a hole in the bottom, and to obtain the exit velocity

depending on the depth of the fluid. The second was to place a sphere inside that jet,

or another body, and assume that the force exerted upon it was equal to the weight

of the column of fluid over the body up to the water level, that is to say the depth of

the vessel. The mathematical solution would be equivalent to a problem with the

18We use the coefficient of resistance, CD, instead of the real force in order to make the results

more understandable.
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depth as a parameter, which once eliminated, would give the resistance as a

function of the velocity. This method had two weaknesses: one, the procedure for

calculating the jet velocity as a function of the vessel depth; the other, the assump-

tion that the force on the sphere is equal to the imaginary column of liquid above

it. For the first one Torricelli’s theorem could be used. At this point, let us recall that

this law establishes that the efflux velocity of the liquid is that which a heavy body

would acquire when falling from a height equal to the depth. Torricelli enunciated

this law in 1644 based on experimental evidence and there were many attempts to

confirm it, but without conclusive results. However, Newton did not follow it, but

made an ad hoc reasoning that led to a velocity equivalent to a fall from half of the

liquid depth. With the subsequent calculations, the resistance coefficient turned to

be CD ¼ 2, irrespectively of the body shape. This was almost double that of

CD ¼ 1.2 measured by Mariotte in the river Seine for a plate.

Newton would change his views on liquids somewhat in the second edition of

the Principia, 1713, but in the meantime a group of geometricians entered the stage.

Their interest swung between pure applications to more practical aspects such as

ships or hydraulic machines. They all accepted the impact theory, without distinc-

tion whether it was liquid or air, using CD ¼ 1 as the proportionality coefficient;

probably because they thought that nature expresses itself in whole numbers,

therefore the measurement CD ¼ 1.2 would be an approximation of the reality.

Jakob Bernoulli stood out among them for the differential analysis he carried out on

two dimensional body shapes, sail curvature, ships velocities and leeward, etc. His

brother Johann also studied the sails and a more complete theory of ship

manoeuvring. Finally, Philippe de La Hire and Antoine Parent presented several

works in the field of hydraulic machines.

In the second edition of the Principia Newton presented an exhaustive review of

this part, but now maintaining the discharge with the name of “cataract”. Briefly,

just before the discharge started, Newton assumed that there was a funnel of ice

inside the vessel, from the broad upper side to the small hole in the bottom. The

water would run down sliding on the ice going out at the exit hole. Then, if the ice

were to melt instantly, Newton assumed the descending liquid would continue as

before without mixing with the recently melted water. Furthermore the exit jet

would contract, reducing its section to a half, which he justified for experimental

measurements. The result was that now the efflux velocity coincided with

Torricelli’s predictions. With respect to the force upon the object placed in the

stream, the equivalent water cylinder would be now replaced by something like a

pinnacle, also initially made of ice, which would melt just as the funnel did. The

shape of the pinnacle would be between a semi-spheroid and a cone, and its weight

the arithmetic average of them. Summarizing, he used a set of ad hoc constructions
and tricks in order to reach CD ¼ 0.5, which was the figure he was looking for since
it was the result of the experiments he had made dropping balls in a tank of water. In

these experiments Newton, who was an excellent experimenter, measured the time

that a sphere took to fall in a tank of a given depth. With the corresponding

mathematical formulas, which linked all the experiment parameters and in addition

taking the assumption of CD ¼ 0.5 the agreement of the theory and experimental

11 General Considerations 141



results was very good. In addition he carried out a similar experiment dropping

spheres from the dome of Saint Paul’s church in London, which also resulted in a

very good agreement. As a conclusion, the resistance of a sphere turned out to be

CD¼ 0.5, in both water and air. However, it is remarkable that he had found that the

resistance in the air of such a sphere was CD ¼ 2 or CD ¼ 1, as we have explained

before.19

The hypothesis of the cataract was criticized by many writers of the time, one of

them being d’Alembert.20 However the impact theory was taken as reference for

many years, although successive authors added corrections, resulting in the mixed

and hybrid versions of impact theory. We think that its survival was simply due to

the lack of an alternative.

The impact theory continued as a reference in the decade of the 1720s. Daniel

Bernoulli, Johann’s son, tried to confirm its results by experiment in 1727. He

proposed an imaginary experiment of a plate inside a fluid flow; the force gener-

ation was similar to the impacts mechanism, and obviously the conclusion was the

same. The novelty was that he accompanied the reasoning with an experiment for

measuring the force that the jet, produced by the discharge of a vessel through a

hole in the bottom, would exert upon a plate. Similar experiments had been carried

out by Huygens and Mariotte who had obtained a force equivalent to CD ¼ 4;

however Bernoulli found a CD¼ 1, because he placed a small cone on the plate. If a

sphere had taken the place of the cone, he estimated that this value would be

reduced to CD ¼ 0.5. The difference between theory and practice is remarkable.

At the same time, Bernoulli began to explore the fluid motions in channels,

where the fluid was now regarded as a continuum instead an aggregate of particles.

Several articles were dedicated to this subject so that in the next decade this

hypothesis was the dominant one. The key work of those years was the

Hydrodynamica, completed in 1733 but published in 1738. Now the regulating

principles in the fluid motion in vessels, discharges, pipes and channels were the

continuity, the plane section hypothesis and the conservation of live forces. For the

first time a relation between velocities and pressures came to light.

In 1735, Daniel Bernoulli presented a rather important article about the impact

of a jet upon a plate. Until then, with the impact theory, the effect of a jet was

equivalent to the resistance of a body in a submerged motion: they all were impacts.

But now he pointed out the inexactness of that assumption, and he indicated that the

jet was deflected progressively when it approached the plate, so that it finished in a

sliding motion parallel to the surface. With this new model the streamlines entered

into Fluid Mechanics.

19The resistance of a sphere is function of a non-dimensional parameter call Reynolds number. At

low Reynolds the flow regime around the sphere is laminar, and the resistance is about CD ¼ 0.5.

At high Reynolds the regime becomes turbulent and CD ¼ 0.2. The transition between both

regimes happens at a Reynolds about 5�105. The experiments of Newton were at a Reynolds less

than 7�104, which is a laminar regime. Definitely, Newton was lucky.
20Essay, Intro-II.
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The Hydraulica, by Johann Bernoulli, continued in the wake of the

Hydrodynamica of his son Daniel. He insisted that it had been written in 1732

although it was published in 1742. There was a murky story of the father’s jealousy
of his son, with some plagiarism included. Nevertheless, there were many and

significant new ideas in theHydraulica. He introduced the concept of internal force,
which allowed the separation of the fluid by imaginary surfaces. Simon Stevin had

done something similar with the principle of solidification for a fluid at rest, but

now we are dealing with a fluid in motion, which is rather different. One more

contribution was the use of Newtonian mechanics, although Johann also employed

the live forces. Johann’s work was a worthy continuation of Daniel’s, and we think

that the known theorem of Bernoulli should be renamed as Bernoullis’.
Many and diverse works came to light in the 1740s decade including two of the

most important naval treaties of the entire century; one due to Pierre Bouguer in

1746; another by Euler, in 1749. Obviously to calculate the forces on the hull and

sails, a fluid theory has to be included in any naval treaty. Bouguer used the impact

theory aided with a practical value which coincided with the Mariotte experiment;

he also proposed a new theory for the flow in the stern, which can be interpreted as a

fluid irruption. Euler proposed a construction based on the fluid that a body dragged

into motion, this being a variant of the impact theory also. For the calculation of the

resistance he supposed that the body transferred either momentum or live force, this

yielded two results: CD¼ 2 or CD¼ 1 respectively. Euler chose the second based on

the experimental results.

In 1742, Benjamin Robins published the New Principles of Gunnery, which, as
its name suggests, was devoted to artillery, and a fundamental part of this was the

resistance of projectiles. Robins called into question the Newtonian ideas for the

motions in air and liquids. He said that when a body moves in a liquid at any

velocity or in air at low velocity, the fluid completely surrounded the body; but, in

the motion in air at high velocity, a vacuum would be produced behind it, because

there would not be time for the air to fill the space left by the body. Obviously there

would be intermediate situations when this space was only partially filled. Robins’
estimations for the resistance tripled the values given by Newton. To confirm his

theory he carried out experiments consisting of firing small balls with a canyon and

measuring the velocity at various distances with a ballistic pendulum, a device of

his invention. He found a good agreement with the theoretical predictions. Given

the interest of the matter, the Prussian authorities commissioned Euler to write a

translation of the book into German which was published in 1745. Euler completed

the translation with very extensive comments, taking Robins ideas much further,

both in the theoretical aspects and in the analysis of the experimental data.

Euler assumed that the fluid surrounded the body in a thin layer where physical

impacts completely disappeared. He analysed the evolution inside this layer

according to the geometrical properties of the surface, relating the pressure with

the velocity, but he did not provide any means of calculating the velocity. However,

in accordance with the geometry of the body contour, he obtained that the total

force upon the body could be nil in some types of bodies. For the motions in air at

high and medium velocity, he introduced a hypothesis about how much air would
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enter in the space left behind and how much resistance was induced in the process,

which had to be added to the frontal resistance. The result was that the total

resistance was proportional to the velocity instead of its square, which was some-

what surprising. Finally, in the reduction of the experimental firings he found values

around CD ¼ 1.2–1.3 according the firing rounds. We note that these experiments

were supersonic, and the CD found was a good figure for the present day according

to the Mach number.

In 1744, d’Alembert in his Traité still used the impacts as the basic mechanism

for producing resistance, interpreting it as a change of the body momentum, which

was nothing new. However, he also tried to extend the impacts to an elastic fluid. In

the same book he also studied the motion in tubes by the conservation of the live

forces, complemented with plane section motion, which he called the “principle of

experience”.

Now Alexis Clairaut entered the scene. His Théorie de la figure de la Terre,
1743, opened up the mathematization of the fluids. The book responded to the shape

that the Earth would take assuming it to be a rotating fluid. This can be traced back

to the polemic the scientific community engaged in as to whether our planet was

flattened at the poles, as Newton expounded, or elongated, as a consequence of the

Cartesian vortices. The controversies caused rivers of ink to flow, not only in the

fields of science, but also in politics attaining even nationalist overtones. In this

atmosphere the Academy of Paris sponsored two expeditions, one to Lapland,

another to Viceroyalty of Peru, in present day Ecuador, with the aim of measuring

a meridian degree to solve the question, in what may be understood as a crucial

experiment.

For the shape of the Earth, Newton took as basic criterion the immobility of two

channels coming from the pole and equator and meeting at the centre. On the other

hand Huygens, taking gravity as derived from the Cartesian vortices, established

that any channel in the surface should be in equilibrium. Both conditions were

necessary, but Pierre Bouguer showed that they were not equivalent. Clairaut also

tried to solve the problem using channels. However, the solution that he found was

that the equilibrium depended only on the nature of the field forces which acted

upon the fluid, irrespective of the fluid itself. Furthermore, the problem was reduced

to a partial differential equation between the components of that field of forces. The

fluidic problem was reduced to a mathematical one.

As we already know, d’Alembert presented his Memoir about the resistance to

the Academy of Berlin in 1749, however it ended up published as the Essay in 1752
As we will show later on this work was a major step in the mathematization of the

fluids, in addition we underline that for the first time the body and the fluid were

considered as a system in which the body induces a velocity field on the entire fluid,

not only over its surface.21

In the same year, Euler read in the Academy of Saint Petersburg the paper

“Principia motus fluidorum”, dedicated to two-dimensional and incompressible

21Grimberg [1998], p. 37.
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fluid motion, which would be the seed of the new approach and the doorway to the

three Memoirs of 1755. In these, Euler established the equations of hydrodynamics.

He took as physical principles the continuity, the existence of the pressure as an

internal force and any other mass force. He applied all of them to a differential

element of fluid which would move according to Newtonian mechanics. All this

was expressed with clear concepts and a clean and powerful application of differ-

ential calculus. The results were the continuity and momentum equation in partial

derivatives. He also glimpsed what we call today the state equation, which would

relate pressure and fluid density and even temperature. This equation together with

the former ones would enclose the entire theory of fluid motion. These Memoirs

represented the summit of Fluid Mechanics for the whole century and it would take

many years to add something meaningful to them. However, alongside this bril-

liance there was the lack of mathematical resources to solve the equations that

appear in them.

There is an additional theoretical work to mention in the century, the Memoir by

Joseph Louis Lagrange in1781, in which he introduced the discontinuity surfaces

and the small perturbations theory.

Some modern authors think that the inability of the fluid theory to explain the

resistance of a body motivated the increase in experimental works. Our opinion is

that these works ran in a parallel way; let us remember Robins. In any case, there

were very good experimenters, some dedicated to determining the resistance of

single geometrical forms, such as spheres, wedges, plates; others dealing with ships

in towing basins. Let us mention Jean-Charles Borda, in 1763 and 1767; Charles

Bossut, in 1777–1778, Frederik Henrik Chapman, 1768. There were others who

experimented with machines, such as John Smeaton, 1759.

To finish, apart from the two aforementioned naval treaties by Bouguer and

Euler, there were three more relevant ones: one by Jorge Juan y Santacilia, 1771,

another by the above-mentioned Chapman, 1775, and yet another by Euler, 1773.

The fluid theory used by Jorge Juan was very peculiar as he assumed that the

resistance was depending on the depth and proportional to the velocity. The other

two treaties employed the impact theory; it is surprising that this theory was still in

use, although all the authors knew that it was false. However, as there was no

alternative they were forced to use it.
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Chapter 12

D’Alembert’s Dynamic Conceptions

D’Alembert published his Traité de Dynamique in 1743, when he was 26 years old.
It was here where he expounded his ideas about dynamics, including what is known

as his “general principle”. This is enunciated in the second part of the Traité, but the
general ideas are in the first one. “The general principle has since become the object

of considerable celebration and misunderstanding in the history of mechanics”.1

We will give here a brief summary of this book according to our lights. For a

better understanding we recommend the work on this matter given by Firode,2 who,

apart from the deep and extensive analyses of the Essay, tries also to understand

d’Alembert’s thoughts using his contributions to the Encyclopédie as a

complement.

In the Essay, d’Alembert reflects his pride in the novelty and importance of his

contributions, the high quality of his demonstrations and their superiority over those

of his predecessors. What is more, he had no qualms in dismissing them in a way

that sometimes borders on insolence. He wanted not only to deduce the mechanical

principles from the clearest notions, but to show the uselessness of those proposed

so far [Pref. iv].3

He based the dynamics on three laws: the force of inertia, the composite motion

and the equilibrium, which he considers as being necessary consequences of the

principle of sufficient reason.4 In his own words “at least I hope to make clear from

this Treaty that all this science can be deduced from these three principles” [§1].

1Fraser [1985].
2La Dynamique de d’Alembert, 2001.
3This quote and the followings are from the Traité de Dynamique, 1743.
4Cf. Darrigol [2005], p. 12-ss.
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The force of inertia is the property of the bodies to remain always in the same

state they were. Any change from this state will require the action of an external

cause [§3], which he calls “power” or “driving cause” [§5].5 Among all these

causes, which can be “occasional” or “immediate”,6 only the impulsion ones

allow us to determine the effects through knowledge of the cause. In all the other

cases theses causes are entirely unknown, which implies that we have to infer

them from the acceleration or retardation of the motion. Thus if the body receives

continually, from the “power that accelerates”, a velocity increment du in

constant time intervals dt, the equation φdt¼ du, which relates both du and dt,
is given by hypothesis [§19]. However as he explains, most of the geometricians

had a different view on this matter. For Daniel Bernoulli the equation was a

contingent truth, while for Euler it was a necessary one. D’Alembert insists on

considering it only as a definition, understanding by the term “accelerative force”

something to which the velocity increments are proportional [§19]. We are not

going to enter in such discussion; but we have to agree that the ontological

concept of force was difficult to explain, and d’Alembert was sensitive to it as

a philosopher as well as a mathematician.7 Besides, our understanding is that

d’Alembert‘s position, taking φdt¼ du as hypothesis or definition, is nearer to

Euler than to Bernoulli.8

The second law is the composite motion, which means that when a body is

subjected to two whatever powers, the resultant motion will follow the diagonal of

the parallelogram produced for the powers, which is also known as the Varignon

rule [§21]. This vector composition can be also applied inversely to decompose a

velocity in two components. Thus, when a body strikes a “plane immobile and

impenetrable”, the impact velocity can be divided in two components, one perpen-

dicular and another tangent to the plane. The first will be destroyed in the impact,9

but not the other which will remain unchanged; therefore the body will change its

direction [§30]. Another case of composition of motion occurs when a body runs

along a curved line, because the continuous change of direction will require a

“central force”, which has the same nature as an accelerative force. This latter

“force” will be perpendicular to the curve and normal to the tangent; that is to say,

pointing to the centre of the curvature whereby it receives the name of “central”

[§26].

5He says that a body is set in motion by a “power” or “driving cause” (puissance or cause motrice)
[§5] and that a body will remain at rest unless an “external cause” (cause étrangère) moves it [§3].
Also, a body moving uniformly will continue in this state unless an “external cause”, different to

the “driving cause” acts upon it [§6].
6For the following, see [§19]
7Ru [1994b] compares d’Alembert with a sort of two-faced Janus, because in his thinking there is a

strong dependence between science and philosophy.
8See the analysis of Veronica Ru [1994b] for the meaning of the accelerative force.
9About the nature of these impacts we recommend to see Firode, “The notion of the body” (p. 76),

where he states “He [d’Alembert] resolutely adopts the idea of a world made of hard [dur] atoms

where the phenomenon of shock necessarily entails a loss of movement and a failure of the

principle of continuity” (p. 81).
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The third law of equilibrium states that “if two bodies whose velocities are in

inverse proportion to their masses and which move in opposite directions in such a

way that one cannot move without displacing the other, an equilibrium will exist

between these two bodies” [§39]. That is, equilibrium will exist when the sum of the

total quantity of motion of the impacting bodies is zero, which can be extended to

any number of bodies.

These principles show, as he himself manifests [Pref. xxiij] that D’Alembert

pursues a mechanics of effects, instead of a mechanics of causes, thus trying to

avoid the causa agens, especially if it is referred to as force. He declares clearly and
brilliantly “I have completely banned forces inherent in a moving body, obscure

and metaphysical beings which are only capable of spreading shadows on a science

that is clear in itself” [Pref. xvi]. These “forces inherent in a moving body” seem to

point to the “motive force impressed” of Newton’s Second Law. However, the word
force is widely used in the Traité, but as he affirms in one of his final remarks “I

must warn that in order to avoid circumlocution, I often used the obscure term force
. . . but I have never pretended to attach to these terms ideas other than those

resulting from the principles I have established” [Pref. xxxiv]. In more practical

terms “we do not have a precise and distinct idea about the word force other than
restricting this term to express an effect” [Pref- xxj]. Furthermore about the

uncertainty of the causes: “we will never take the ratio of two forces other than

for its effects, without examining if the effect is really like its cause or it is a

function of this cause; a completely useless examination, because the effect is

always given independently of the cause, experiment or hypothesis” [§19].
He classifies the power or driving causes in two kinds; one, those that are

manifested at the same time as the effect produced by them; the other, all those

that are only known by the effects although we completely ignore their nature.

Examples of the first class are the motion with mutual actions and collision among

bodies; and an example of the second one is the general gravitation [Pref. x]. The

accelerative force, as given by the equation φ¼ du/dt, is the tool he introduced as

the effect of those unknown causes. It has the dimension of acceleration; a word

almost unused in the entire Treaty and Essay, although it is not really that. The

acceleration is a kinematic concept that can be thought as being inside a time-

geometrical system. On the contrary, the accelerative force implies a dynamical

behaviour, that is to say causes and motions acting jointly.

We think that all these remarks require a short reflection. First of all, let us

remember that the word “force” in Enlightenment Mechanics was not a clear

concept and was subjected to many interpretations by each author.10 In a general

view the force was the equivalent of the Latin vis, used in the Mechanics of the

XVII and XVIII centuries. This vis had a broad scope, which could be summarized

as a cause able to produce a physical effect.11 It occurred as vis inertiæ, vis viva, vis

10Cf. Firode, Chapter 1, “The criticism of forces”.
11In the Oxford Latin Dictionary, the word vis has 28 entries. We find relevant (1) “Physical

strength exerted on an object, force, violence”. (6) “Forceful or vigorous action or movement”.

(15) “Power to produce some physical effect, potency, virtue”.
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gyratoria, vis acceleratio, etc. It was Newton who produced a precise definition of

the force as physical agent in the Principia by the well-known equation F¼ d(mv)/
dt.12 D’Alembert thought that the vis or force was a rather vague meaning, even

while accepting its existence, and consequently he directed his gaze to the effects

that are clearly discernible. Therefore the equation φ¼ du/dt, which can be under-

stood as a mirror reflection of Newton’s, would be the way towards reducing these

causes to physical entities able to be measured.

As we have seen, the power or force appears naturally in any dynamic system.

However, there are also powers in the static systems, and these powers or causes

only interact among themselves through the bodies that they attempt to move [§43].
That means that the statics must be considered as a particular case of the dynamics.

Therefore the analysis would be taken by as the virtual motion of the bodies,13

which implies that the equilibrium is one instant in a dynamic process. The action of

powers must then be understood as the product of a body multiplied by its velocity

or accelerative force. The single product miui¼miδxi/δt would correspond to the

virtual displacement of all the bodies, restricted by the constraints of the system,

and the application of the third law. The other case, with the accelerative force,

would point to midui/dt, clearly the Newtonian expression for a force. D’Alembert

could argue that this is a consequence of a hypothesis, not a law, but in practical

terms both arrived at the same point. Despite all the attempts to avoid considering

the forces as main actors, they end up taking the stage.

His basic and famous principle is stated in the second part of the Traité. The
principle is a combination of the composed motion and equilibrium laws. Firstly he

posed the following problem:

Given a system of bodies, arranged in relation to the others in any manner whatever; let us

suppose that a particular motion is impressed on each one of these bodies, which the system

cannot follow because of the action of the other bodies. Find the motion that each body

should take. [§50]

First, let a velocity~u be impressed on each body mi; according to the constraints

among bodies and boundaries, the system will respond with a velocity ~vi at each
body. Now let ~ui ¼ ~vi þ ~wi. The principle states that if each body were impressed

with the velocity ~vi, they all would retain the motion without harming each other,

and if they were impressed with ~wi the system would remain at rest. We can make a

free interpretation assuming that ~wi is the consequence of the constraint effects,

both internal and external. Therefore if the applied velocity was~ui ¼ ~vi, there is no

12In fact, Newton gave two definitions for this law (Law II and Def. VIII), neither being equal to

the equation shown that is due to Johann Bernoulli. What is more, according to Westfall (p. 471),

both definitions are incompatible between themselves. However, this assertion is debatable

considering the nature of the two successive concepts of “moment” that Sellés [2006] found in

Newton’s mechanics. See also Hankins [1967].
13The virtual work, as we understand it today, was introduced for the first time by Johann

Bernoulli.
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place for such constraints and the bodies would move freely. On the other hand, if

~ui ¼ ~wi, the constraints would not allow any motion.

In the Essay [§.1] he presents a new version of this principle. Each body, mi is

animated at any instant by a velocity~vi and impelled by a force ~φi. After an instant

dt, due to the effect of the force~φidt jointly with the internal actions of the rest of the
bodies, the body mi will move with a velocity ~vi

0, so that ~vi
00 ¼ ~vi �~vi

0. Now, if
each body was impelled by the velocities~vi

00 and ~φidt, there would be no motion in

the system, that is to say, it would remain at rest or in equilibrium. At rest if the

bodies were separated without any link among them, because ~vi
00 ¼ ~φidt would

occur. In equilibrium, when the bodies were contiguous and interacting among

themselves, because all the mi~vi
00 and mi~φidt would be destroyed, and the entire

system would end up in equilibrium, that is to say
X�

mi~vi
00 � mi~φidt

� ¼ 0.

Obviously if there were no forces at all, the solution would be
X

mi~vi
00 ¼ 0.

We can appreciate that in this version the body masses and the time come into

play, although the latter as a differential. Something that is a little surprising is the

coexistence of~vi
00which is a finite quantity with~φidtwhich is a differential one. We

have to interpret ~vi
00 either as the result of a collision or a shock whose effect is

instantaneous, or as a differential quantity that could be assumed as d~vi
00.14 We

could jump to Newtonian mechanics identifying the acting forces as ~Fi ¼ mi~φi,

which would arrive at the expression
X�

~Fi � mi~φi

� ¼ 0, where ~φi would be the

acceleration and mi~φi a fictitious force, called d’Alembert’s force. This is how his

principle has been incorporated to ordinary mechanics, “stripped of his philosophy

of motion”.15 It has the peculiarity of sidestepping the intervention of internal

forces, which in many cases can be advantageous.

In a more general way, nowadays the d’Alembert principle is understood as the

condition
X�

~_p i � ~Fi

�
δ~ri ¼ 0, which a dynamic system meets; ~_p being the

momentum, ~Fi the external forces and δ~ri any virtual displacement consistent with

the system constrains. It is a generalization of Newton’s second law and it is

equivalent to the Euler-Lagrange equations of motion.

14We advance that in the Essay, after declaring explicitly that everything always changes by

insensible degrees, he makes a similar change in the velocity, expressed as α to α0 0, which gives an
accelerative force α00/dt [§.36-4th].
15Darrigol, p. 13. This treatment is applied to the Atwood machine as an example. This machine

consists in two masses connected by a string over a pulley. When the masses are equal there is no

motion, but when they are different the motion has constant acceleration.
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Chapter 13

Forces and Fluids in the Essay

13.1 Forces and Pressures

The term force is one of the most widely employed in the Essay, more than two

hundred and fifty times, only surpassed by the word pressure. Considering

d’Alembert’s warning that he would only use the word force in order to avoid

circumlocution, this repetition seems somewhat surprising.

The forces in theEssay can be classified in two classes: one derived from a potential

field, another coming from dynamic effects. For the first one, the most representative

force is the gravity, which acts vertically in any point of the fluid and produces an equal

pressure in any direction, like he says. He extends this idea to other fields of forces,

with vertical and horizontal components not constants but able to produce the same

type of local pressure. This generalization of the gravity is clear in the analysis of the

fluid at rest [§.21–26 andAppendix], where he identifies the forces along a channel as a
weight or the total force upon a body with the weight. These forces come always from

an external cause and they affect the fluid either in motion or at rest.

Obviously, he has a clear concept of what gravity means. He had stated in the

Encyclopédie,1 that gravity is the force in virtue of which the bodies fall to the ground,
and weight is the effect of this force upon a particular body. In the Essay the term

weight is used with the same meaning as weight. However, sometimes the gravity is

mentioned as natural gravity, which could indicate the possibility of a non-natural

gravity. In fact, this does happen in the case of an elastic fluid [§.109].
The other class of forces are related the motion of the fluid. They are the acceler-

ative forces. That means that when a fluid particle moves changing its velocity an

1Under the entry gravité. We have tried to use the entries written by d’Alembert in the

Encyclopédie for clarification purposes. However, most of the relevant matters of the Treaty and
the Essay had been incorporated in the Encyclopédie. As an example, the Intro. I–IV is almost

totally in the entry of Fluide.
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accelerative force must exit upon it “whichmust be destroyed” by the forces acting on

such particle. Although d’Alembert uses the word particle, it should be understood

more properly like a mass differential element. The accelerative forces necessarily

imply, or lead to, the internal forces in the fluid, even though he does not manifest it

explicitly. However, he carries out integrations of these forces along narrow pipes

[§.27-2nd], and in some way he accepts the same principle along a streamline [§.45-
4th]. In our opinion, the concept of internal forces is in accordance with his basic

principles. For him a fluid is an aggregate of corpuscles, or minuscule bodies, in

contact among themselves, and the forces are transmitted through them by direct

contact. Therefore in a fluid in motion, the external forces, coming from a field of

forces or for the effect of any wall will be conveyed through the corpuscles to any

internal point where they will manifest their effect as a change in velocity.

The term power is used a few times, mostly as equivalent to a force. Also this is

used alternatively in the oscillation of bodies in water, referring to the buoyancy

[§.119], and in the action of a jet against a plate [§.145] as well. Finally, in the elastic
fluids [§. 80, 85, 109, 115], the force is associated with the compression; which can be

understood as if the fluid were inside a flexible externally compressed vessel.

D’Alembert mentions the word pressure more than three hundred times, more

than half of them followed by the qualifier “along”. However the pressure is not

defined anywhere, as Truesdell notes.2 In the Encyclopédie, “the pressure is prop-
erly the action of a body which makes an effort to move another; such is the action

of a heavy body supported on a horizontal table”. Compare with the definition for a

driving force “the cause that moves a body”, given also in the Encyclopédie, the
difference seems quite subtle: one is a cause, the other the action. In the entire Essay
the pressure is shown as an action of the fluid along a direction. This is clear from the

very beginning, when he notes the philosophers have reduced the laws of the fluid

equilibrium to a single principle of experiment “the equality of the pressure in all

directions. . . and to which it was necessary to refers all others” [Intro. IV].3 That is, at
any point inside a fluid, either at rest or in motion, there will be same “pressure along”

any direction; this will be applicable to a channel, a streamline or the surface of a

body. In many cases it alternates and plays the same role as a force, especially when

the fluid is moving around a body and the pressures destroy accelerative forces.

The term pressure for d’Alembert differs of our present understanding. For us the

pressure is represented by a magnitude p whose effect upon any differential surface
d~σ inside a fluid would be a force as d~F ¼ pd~σ.4 For d’Alembert the term pressure

means exactly thisd~F, that is a force and a direction, which he refers to as “pressure

along”. For the total force on a body, which would be ~F ¼
Z

pd~σ, he maintains the

same wording: pressure upon the body.

2Truesdell [1954], p. LII.
3In the Encyclopédie, under the entry Fluide (III), he says that it had been established by Pascal in
his Traité de l’équilibre des liqueurs.
4In fact the pressure is an isotropic tensor p̿ ¼ pδij, which in a simplified way can be represented

by a scalar magnitude p.
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The d’Alembert’s intention of building a fluid mechanics without the recourse of

internal pressures has been discussed for several authors. Truesdell states that, he

“managed somehow to avoid [the pressure], since it is now extremely difficult to

conceive hydrodynamics without the pressure as protagonist”.5 Darrigol thinks that

despite obtaining the equations without the recourse of pressure, d’Alembert uses

this concept in the derivation of the Bernoulli’s equation, and that “Plausibly, he

favoured a derivation that was based on his own principle of dynamics and thus

avoided obscure internal forces”.6 Guilbaud dedicates a chapter to this matter,

analysing the forces from the Traité de l’équilibre up to the Opuscules
mathématiques.7

We think that his understanding of pressure is an internal force directed to any

direction and with a magnitude which is constant for every point of the fluid. This

magnitude would be the pressure in our conception. He avoids this concept

although uses its consequences, which are forces, naming them pressures. This is

very clear in a quiescent fluid impelled by a field of forces. In the case of motion,

when the fluid runs through a very narrow pipe of variable section, he finds that the

pressure along the pipe’s centre line depends on the velocity. In fact what he really

finds is the difference of forces between two physical sections obtained by the

destruction of the accelerative forces generated by the change of velocity. In the

Essay he combines both gravity and motion whose effects are equivalent. Further-

more, what is an important issue, he states that the pressure at a point inside a fluid

is the same that the weight of a column of a certain height of the same fluid at rest;

this height will be taken as its measure [§. 33]. This height is a scalar magnitude.

The last term to deal with is the resistance, the main object of the book and

mentioned some as one hundred an eighty times. He states in a general way that

“the resistance that a body undergoes when it shocks with another is just, strictly

speaking, the quantity of motion it loses” [Intro. IV]. Therefore, the resistances

implies a change in the velocity, and this change du/dt is an accelerative force that

applies to the body will give a total force R¼mBdu/dt, that is the resistance

[§.89–90]. In the Essay the resistance is always considered as a loss of momentum

and not related to any force, with the exception of the two mentioned articles. We

notice that for us the resistance is the force that undergoes a body moving in a fluid

either at constant or variable velocity, while for him the term is only to the second

possibility.

Thus, the effect of moving fluid upon a stationary body and the effect of a

quiescent fluid upon a body at motion have a different physical origin. The first are

the pressures, in turn related to the gravity, and the second the momentum loss. He

will prove that both are equals.

Summarizing and making a kind of transliteration of the former concepts. We

could consider the “accelerative forces” equivalent to “internal forces”, the

5Truesdell [1954], p. CXVIII.
6Darrigol [2005], p. 23.
7Guilbaud, Chap. VIII.
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“pressure along” to “forces due to the pressure” and the “resistance” to “loss of

momentum”. In addition, we can take the rule, or law, that the “accelerative forces

must be destroyed” equivalent to “the change in momentum must be equal to the

forces”. Having this in mind, the d’Alembert dynamics can be converted in the

Newtonian one.

13.2 Conception of Fluids

As we have seen, throughout the eighteenth century the idea of a fluid evolved from

an aggregate of particles to a continuous media. This evolution occurred in the rest

of Mechanics,8 but with the fluid it implied changing the model of resistance

generation.

Two statements in the Essay show what d’Alembert understands by a fluid:

– “I assume only what no one can deny, that a fluid is a body composed of very

small particles, separate and able to move freely” [Intro. IV]

– “In all fluids which are known to us the particles are immediately adjacent by

some of their points [of contact], or at least they act upon each other almost as if

they were” [Intro. II].

The first assumption is established when he seeks for a non-arbitrary foundation

to support the entire fluid theory. The second, made when commenting Johann

Bernoulli’s work, is a complement to the first. That is to say a fluid is an aggregate

of independent particles, but each of them is limited in motion by its neighbours.

This was a common idea in those times.

Each particle is subjected to the laws of motion, and consequently the fluid,

taken as a whole, will be subjected the same laws which he had defined previously.

“Let us suppose in fact that we had the advantage . . . of knowing the figure and the

mutual arrangement of the particles that make up the fluid: the laws of their

resistance and their action will surely be reduced to the known laws of motion;

because the research of the motion communicated from a body to any number of

surrounding particles is only a dynamic problem, for whose solution there are all the

mechanical principles that could be desired.” [Intro. IV] Obviously, this possibility

could be accepted as an asymptotic truth but it is practically impossible, because “as

larger the number of particles is, it becomes more difficult to apply the calculus to

the particles in a simple and convenient way,. . .but we are rather far from having all

the data needed to be able to use this method”. Furthermore, he believes there is a

deep ignorance of the entrails of the system, because “we ignore not only the figure

and the arrangement of the parts of the fluids; we yet ignore how these parts are

pushed by the body and how these parts move between them.” As a consequence

“such a method would be scarcely practicable in the search for the resistance of

8See Maugin, Continuum Mechanics through the Eighteenth and Nineteenth Centuries, Chap. 2.

156 J. Simón Calero



fluids”. Summarizing, the laws of motion previously established are useless with

the fluids.

Therefore, faced with this situation he is obliged to find another way to solve the

problem.9 The solution is to handle the fluids as a continuous media, as occurs in the

hydrostatics. He said “There is anyway such a big difference between a fluid and an

aggregate of solid particles, in so much as the laws of pressure and equilibrium of

the fluids are very different from the laws of pressure and equilibrium of the

solid”.10 The conception of a fluid as an aggregate of particles is an heir of the

solid bodies, and he wants to deal with the fluids as a different class of matter. That

is why he jumps to hydrostatics. In the Encyclopédie he will explain this process in
a more straightforward way, ending by “that [for the fluids] the laws of their

equilibrium and their motion are a problem . . . for whose solution we are obliged

to recourse to new principles.11 Once we enter the realm of hydrostatics, we have

almost to forget the former theories, because: “Experience alone has taught us in

detail with the laws of hydrostatics, what the most subtle theory has never made us

suspect”, which he underlines as “and nowadays as well as the experiment has made

known these laws, no one has been even able to find a satisfactory hypothesis for

explaining and reducing them to the known principles of the statics” [Intro. IV].

In the Essay, the fluid taken as a set of particles is confined to the first chapter, in
the all the rest of the book the fluids are treated as continuous. However, despite

what we have explained previously, there is no sharp separation between both

concepts because some of the theorems derived for the fluid-particle conception

will be introduced later in the fluid-continuous concept. The most relevant of these

is the one in which the resistance that the fluid exerts on a moving body is found to

be proportional to the square of the velocity [§.8-3rd]. That is to say links exist

between both conceptions. Probably, d’Alembert never completely renounced the

idea of the particles as the main constituents of the fluid, and the use of the

continuum was rather a tool. This can be asserted because throughout the Essay
the wording suggests that he was always thinking of particles. However, as the

brilliant mathematician he was, he knew that in a continuous media there are no

9Somehow this reminds us of the attitude of Newton searching for a way to determine the

resistance in the liquids.
10These ideas are expressed even more roundly in the Introduction of the Traité de l’équilibre:
“The Mechanics of the solid bodies, being supported on metaphysical principles independent of

the experiment, allows the exact determination of the principles that must be the foundation of

others. The fluid theory, on the contrary, must necessarily have the experiment as base, from which

we only receive light well defined”. [vi].
11Under the voice of “Fluide” (15th meaning). Reflections on the equilibrium and motion of fluids.

“If the figure and mutual arrangement of the particles that make up the fluids were known, it would

not need principles other than those of ordinary mechanics to determine the laws of their

equilibrium and their motion; because this is always an identified problem, in order to find the

mutual action of several bodies that are linked among themselves and whose figure and respective

arrangement is known. But as we ignore the form and the disposition of the fluid particles, the

determination of the laws of their equilibrium and their motion is a problem, which considered as

purely geometric, does not contain enough data and for whose solution it is obliged to recourse to

new principles”.
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particles at all, but differential elements. That is why we believe that for him the

fluids had a dual nature: particles and continuous.

All the above is applicable for non-compressible fluids, but nothing is explained

about the internal composition of the compressible or elastic ones; only that the

single fluid of this type known is the air [§.114]. In the Encyclopédie,12 it seems that

pure air is assumed to be composed by small spherical bubbles whose size would

change with compression; therefore these bubbles would take the role of the

particles, all the aforesaid being applicable to the elastic fluids.

These explanations refer to ideal fluids, because the real ones are also affected by

other forces, which he calls friction and viscosity [§.92–94]. Friction results from

the effect of the unevenness of the surface over which the fluid runs thus generating

an additional resistance proportional to the velocity. Viscosity is a force among the

particles themselves producing another force that is constant; and which could be

assimilated with the superficial tension.

13.3 Experience and Experiments

The word experience is used in the Essay more than one hundred times. Under this

term we can understand two meanings: one the experience in a general sense, and

the other the experiments. This one has a very precise sense in physics as a question

asked of Nature in order to discover its laws and mechanisms, and it has been a

basic stone in the Physics for several centuries. The definition given in the

Encyclopédie for experience with the sense of experiment is almost identical to

our present understanding.13 However, in a general or philosophical sense its

meaning is quite close to knowledge accumulated over time, close to our present

word experience.14 Therefore, the experience applied to the technical view has to be

understood as the accumulation of data coming from observation and experiments.

We want to point out that sometimes these observations not need to be supported by

precise measures but they can be simple facts; for example, the resistance of a body

moving in water. However, both categories, common sense observations and the

experiments, are rather different. The problem is that the line between them is very

fuzzy for d’Alembert.

12Under the lengthy entry “Air”; properties, (III) elasticity.
13In the Encyclopédie: “Experiment is the test of the effects arising from the mutual application or

motion of natural bodies, in order to discover certain phenomena and their causes”. In the Oxford
dictionary: “A scientific procedure undertaken to make a discovery, test a hypothesis, or demon-

strate a known fact”.
14In the Encyclopédie: “Experience commonly means the knowledge acquired through life, jointly

with the reflections that have been made on what we have seen, . . .”. In the Oxford dictionary:

“The knowledge or skill acquired by a period of practical experience of something, especially that

gained in a particular profession”.
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His most relevant to invocation to the experience is the equality of the pressure
in all directions [Intro. IV]. For him, the single principle must be considered as the

fundamental property of fluids. The second call to experience is when he finds the

nullity of the pressure upon a body in a fluid stream [§.70], which also moves him to

ask for more experiments.

He also introduces the observed fact that the perturbation produced in a fluid by a

body vanishes with the distance as a hypothesis [§.36-1st], which could be in

conflict with the theory itself. Besides, he assumes that these perturbations are

limited only to very near the body surface [§.71–72], an argument which is not very

rigorous because is not supported but any experiment. We also add that it is

unnecessary.

The last surprising call to experience is when he wants to show that the resulting

force in an impulsive action upon a body is null [§.55]. He proposes an imaginary

measuring apparatus, or experiment, and he imagines the result as well.

Apart from these relevant cases, most of the mentions in the Essay correspond to
experiments. D’Alembert was a pure mathematician, not an experimenter. How-

ever, he proposes experiments based on pendulums to measure the resistance whose

bob is inside a water flow [§.75]. For very slow motions he presents an elaborate

mathematical treatment [§.95–98].
Finally, he clearly comments the other authors’ experiments in three places of

the Essay. One is after the study of the motion of a fluid around the body, with

Mariotte, Newton, Daniel Bernoulli and ‘s Gravesande [§.72–79]. The second is

when he explores the non-inertial resistance, with ‘s Gravesande [§.93] and Daniel

Bernoulli [§.99]. The third is for the non-elastic fluids, with Robins [§.114–115].
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Chapter 14

Brief Analysis of the Contents of the Essay

Our main intention is to highlight the genuine contribution of d’Alembert to Fluid

Mechanics. Therefore, instead of running through the Essay article by article, we

have preferred to extract the core contribution and to bring it clearly to the light.

Nevertheless this does not mean that we have renounced analysing the entire book.

Some of the criticisms that the Essay has received are of its being lengthy and

tortuous; we will try to mitigate these opinions by breaking up the lengthiness in

small pieces and simplifying the tortuousness by reorganizing the articles.

Strictly speaking, we are following the d’Alembert own intentions. In the

Introduction [Intro. V], he successively displays his master plan detailing the object

of the work and the items to be addressed. Our interpretation coincides partially

with this list.

Furthermore, a glance at the Table of Contents shows that the Essay is divided
into nine chapters plus an appendix, and is preceded by an introduction. Each one

contains a certain number of articles numbering 171, which are the basic building

blocks of the book. There are two chapters rather larger than the rest, the IV and V,

and both of these are also divided into sections and cover more than a half of the

total number of pages and articles as well, which clearly indicates the importance of

the matters treated therein. The theory of fluid motion around a body is developed in

these chapters, although part of them dealt either with applications or collateral

matters of the main theory. We understand that what d’Alembert does is to make the

“theory of fluid motion around a body”, instead of the “resistance of the fluid”

because this is a consequence of the motion.

With respect to the rest of the chapters, the first three ones are introductory. The

VI is dedicated to the oscillation of bodies in a fluid; we think that this has little if

anything to do with the resistance. The last three chapters are somewhat related to

the subject, but not too much. Finally, the appendix revolves around the hydrostat-

ics pointing to the problem of the shape of the Earth, which is a little away from the

main topic as well.
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After these initial and general ideas, let us go into greater detail what we

consider the core of his contribution. This is divided in two cases: a body at rest

in a moving fluid and the contrary, a body in motion and the fluid at rest. There is an

intermediate step between both cases: the impulsive motion of a fluid against a body

at rest. Strictly speaking this intermediate case could be understood as a special

application of the first one, but we think it is convenient to analyse separately. All

this is preceded by some preliminaries.

14.1 The Preliminaries

The preliminaries, or basic tools, are covered in the three first chapters. In the first

one he presents his dynamic principle applied to a system of bodies subjected to

forces as we have already explained. There are two points we want to highlight. One

[§.5], assuming the system is at rest, if a velocity is applied to a single body, this one

will induce the rest of the bodies to move, each one following its own trajectory.

Now, all these trajectories will be always the same, irrespectively of the magnitude

of the initial velocity given to the body. Obviously they will move faster or slower,

but each of them along the same spatial trajectory. This is a glimpse of the

uniqueness of the velocity field, which d’Alembert considers as fundamental.

The second point refers to a body submerged in a fluid and moving with an initial

velocity [§.8]. The fluid is constructed by a set of individual tiny bodies that, jointly
with the main body, will constitute a system. The former uniqueness of the motion

is applicable here, and accelerative forces will appear in the evolution with time.

Consequently, a resistance will be generated upon the main body, which this must

be proportional to the square of the velocity applied to this body. We note that the

law of the square is demonstrated with a system of individual bodies.

In the second chapter the fluid impelled by external forces is considered as a

continuum of variable density in equilibrium. This means that whichever point of

the fluid will be equally pressed in any direction [§.13]. Consequently, the fluid

inside any closed channel must be at equilibrium. The general equation of hydro-

statics is obtained founded on this premise [§.19]. This equation is an extension of

Clairaut’s, although d’Alembert’s found it by a different method.

The third chapter is twofold. The first part deals with a body placed inside a fluid

with both the fluid and body at rest. The proposed problem is firstly to determine the

force that the body undergoes at any point of its surface, which he calls pressure,

and finally to find the total one on the body [§.21]. The second part refers to a fluid

moving along a very thin tube of variable section; that is to say, one-dimensional

motion. The problem is to find the relation between the pressure and the fluid

velocity at any point. The solution is similar to the one that was obtained by the

Bernoullis, father and son. It is here where the pressure is considered as equivalent
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to the weight of a column of the same fluid, which can be used for measuring and

comparing pressures [§.33].1

14.2 Body in a Fluid Stream

Let us take a body, assumed axisymmetric, placed motionless in a stream of fluid

moving with a uniform velocity and parallel to the body axis. It is clear that the

streamlines, which are parallel to each other upstream, will curve in order to

surround the body, and consequently the particles moving along the streamlines

will change both direction and velocity [§.36]. The first key point that d’Alembert

establishes and proves is that the pattern of this streamlines field is always the same,

irrespectively of the magnitude of the upstream velocity [§.38].The velocity at any

point, obviously tangential to the local streamline, can be broken down in two

components: one along the main axis of the body and other perpendicular to it. Each

of them will be proportional to functions which are independent of the velocity.

These two functions, known as velocity functions, depend only on the body shape

and they are an invariant of the system.

The second key point that he proves is that the two mentioned velocity functions

are linked through another two partial derivative equations obtained following the

principles of fluid dynamics [§.45]. Nowadays these two equations are called

continuity and irrotationality. Therefore the fluid problem was converted to a

mathematical one, which is to find two functions that meet those equations and

are consistent with the boundary condition on the body contour. These two func-

tions turn out to be the velocity functions, which will be the solution of the problem.

Once these functions are known, and known the magnitude of the upstream

velocity, the two local velocities at any point are obtained, and the pressure is

derived using the Bernoulli equation [§.66]. Then the total force upon the body will
be the result of the integration along its surface of the components of the differential

pressure forces. This force, which he calls total pressure, turns out to be propor-

tional to the fluid density and to the square of the upstream velocity.

However, this mathematical problem was almost impossible to solve at that

time. D’Alembert tries to find a way of transforming the velocity functions in real

and imaginary values of a complex variable [§.57]. This would be a very powerful

tool, but it usefulness had to wait many years, until the possibility of conformal

transformations among different solutions appeared. This method must be consid-

ered as an outstanding contribution, although it refers more to the mathematical side

than to the fluids themselves. D’Alembert even tries to find an approximate solution

based on a polynomial of power in the complex field [§.60].

1The precedent of this idea was the apparatus used by Daniel Bernoulli in his experiments.

Cf. Comm. Acad. Petrop., Vol. IV, 1729 (1735).
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Two more remarks. One, he did not apply the mathematical model to the entire

fluid, because he understood that in some parts of the body such as the two apex,

there would be a conflict with experience. For this reason he introduces some

artefacts in order to match theory and experiment [§.36]. Second, even when the

solution of the problem was impossible in a general way, for geometrical consid-

erations in some cases, he finds that the total force on the body turned out to be null,

which is clearly against experience [§.70]. Facing this shocking result, he

interpreted it as a consequence of the aforementioned difficulties of matching

theory and experience. This would be named later as d’Alembert’s paradox.
Finally, in any case, we have to note that the force upon the body is directly

related to the upstream pressure, this is probably why he named this force fluid

pressure. As we have said previously, the pressure is measured as the weight of a

column of fluid, therefore, at the end the force upon the body is backed up by the

gravity.

14.3 Fluid Impulsive Velocity

Before entering into the opposite problem, that is to say a moving body and fluid at

rest, he introduces the case of the impulsive velocity [§.51], which could be

considered as a variant of the former case. Initially both body and fluid are at rest

and suddenly the fluid is given a velocity that will take the system to the same

configuration as the previous case. The fluid pattern instantaneously generated will

be represented by the same two velocity functions, which also will meet the same

differential equations.

The pressure will be also produced in a similar way as a function of the local

impulsive velocities applying the equilibrium of closed channels. The calculation is

made by means of Bernoulli’s equation, but using the non-steady terms. The total

impulsive pressure upon the body, called pressure at the first instant, is the integra-

tion of the local pressures over the body surface. The result is the product of three

factors: the density, the velocity jump and a mathematical expression that is

function of the geometry of the body [§.54]. This was a very interesting finding;

however d’Alembert said that for an experiment it can be easily proved that this first

instant pressure must be zero [§.55]. The reasoning is based on an imaginary

mechanism with a weight for retaining the body against the effect of the first

impulse. He assumed that this weight would be in equilibrium; therefore, for the

virtual work principle, it would be equivalent to a finite mass with an infinitely

small velocity, or on the contrary, to a finite velocity and an infinitely small mass.

As the density is finite, this small infinitely small mass implies a null force. We find

several mistaken steps in this reasoning, as we will show later.

For us this is the biggest mistake made by d’Alembert in the entire Essay, and we
do not understand how he could make it. The impulsive motion was a brilliant idea

and the formulas he obtained are according with the values of what nowadays is

known as apparent or added mass.
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14.4 Body Moving in Fluid at Rest

A body moving in a fluid at rest communicates a velocity to each particle of this

fluid, which implies that the body momentum is reduced in a quantity equal to the

one transferred to the particles. This change in momentum is the resistance that the

body undergoes or fluid resistance [Intro. IV]. Comparing this case with that of

moving fluid, we can see that the force upon the body has a different source in each

case; in the first it comes from the pressure, in the second from the momentum lost.

Additionally, in the first case, the fluid is maintained at constant velocity with time,

while in the other the body loses velocity continuously.

Until then the authors had assumed that both motions were equivalent, what is

sometimes known as the reciprocity principle. This can be justified because the

laws of motion used were the same either when the system is at rest or has uniform

velocity. Nevertheless, d’Alembert thought that this hypothesis had to be proved

[§.90].
Firstly he finds that the streamline field measured with respect to the axis fixed to

a body moving at a variable velocity is also invariable, and regulated by the same

equations as when the fluid was moving and the body at rest [§.86]. Now, and what
is a key point, if upon this system constituted by the body and fluid, a velocity was

suddenly applied equal to that the body has, but in the opposite direction, the

situation would be equal to a fixed body and a moving fluid, which equivalent to

the first case. However, this would be true only instantaneously, because the body

was losing momentum and consequently decelerating itself. According to the terms

already expressed for the impulsive velocity the streamline configuration will not

be affected [§.88]. However, as the body velocity is not constant, to keep it

motionless a continuous set of differential impulsions will be required, which

also follow the impulsion rules. Therefore after the first finite impulse the body

will receive two forces continuously: one due to fluid pressure as stated in the first

case, which is proportional to the density and square of the velocity. The second,

due to the successive differential impulses necessary to maintain the velocity

constant, turns out to be proportional to the density, acceleration and a function

that depends on the geometry of the body. This function has the dimension of a

volume, therefore we call it virtual volume, and that he considers it to be null [§.89].
This has two consequences: the equality of the pressure and the resistance, even in

the case of non-uniform motion, and the proportionality of the resistance with the

square of the velocity. As he underlines, both things had been taken as true until

then, but they had never been rigorously proven [§.90].
We wish to note that for the definition of the resistance of the body d’Alembert

was obliged, we would even say he was trapped, to assume a non-uniform motion

because he understood the force as a result of the change of momentum, and

consequently the velocity must also change. In order to link the two cases he has

to use the impulsive velocity, although regrettably we insist, he makes the mistake

of taking the term of impulsive effect as null. However he includes this term with as

a virtual volume in all the formulas, but warns us that it is null. The resistance ends
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by coinciding with the Newtonian mechanics: the product of the body mass times

the acceleration.

Looking back to theManuscript we can appreciate an evolution in d’Alembert’s
thoughts. In it the impulsive motion came inside the second case as recourse to

solve the problem, while in the Essay it takes a separate analysis, making the

approach clearer and better structured.

At this point we close his basic and sound contribution to Fluid Dynamics, which

takes up no more than a third of the Essay. This was a real breakthrough at that time

as Truesdell stated, “Nevertheless, despite its many defects, the Essay is a turning
point in mathematical physics. For the first time, a theory is put (however

obscurely) in terms of a field satisfying partial differential equations”.2 This merit

is only tarnished by the above mentioned mistake, and some other minor ones.

2Truesdell [1954], p. LVII.
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Chapter 15

The Essay’s Introduction

We have divided the Introduction in seven clearly differentiated parts.1 D’Alembert

begins the Essay with a tribute to the Ancients presented by a chain of statements

[Intro. I]. The Physics of the Ancients is not so limited and unreasonable as some

modern philosophers think. The difference between them and us lies in our knowl-

edge of differential and integral calculus. The Ancients had a wiser method of

philosophizing than we commonly imagine; but modern geometricians have more

resources, not because we are superior, but only because we have come later on the

scene.

D’Alembert thought that the internal mechanism of the fluids should be a

particular object of admiration for the philosophers. Only by means of modern

resources is it possible to approach a rather complex matter. Notwithstanding this

help, the resistance of fluids still encloses such considerable difficulties that even

the greatest men have been able to give us only a slight sketch.

He points out that the main cause of the slight progress made so far was the

wrong election of the true principles upon which calculus must be applied. He

makes clear these two concepts: principles and calculus, and warns about the

mistake of substituting principles for calculations, which will end in results contrary

to the reality of Nature. Moreover, he points out that modern geometricians could

incur in this fault. After all the previous kind words, this is the first subject he takes

in depth: the principles and calculus; which nowadays we understand as being the

theories for modelling a phenomenon and the mathematical development for

representing its real evolution. He will come back to this subject at the end of the

Introduction [Intro. VII]. In any case he declares that he will find out the principles

first and apply the calculus after. However before presenting his principles he will

review the work done previously by other authors.

1The parts II–V correspond to the Manuscript §1–6 although enlarged. Also parts I–IV have

passed almost entirely to the Encyclopédie under the entry of Fluide.
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Newton deserves a major place [Intro. II]. D’Alembert shows Newton’s hypoth-
esis about the fluid composition, the theoretical results obtained and the lack of

agreement with experiments carried out by other authors. It is surprising that he

does not refer to Newton’s experiments, he only makes a brief mention later [§.79].
D’Alembert makes a very detailed analysis with comments and criticisms, partic-

ularly of the cataract. He finishes recognizing that “he dared for first time to clear a

way to solve a problem that no one before him had ever attempted. Thus this

solution, though not very exact, shines throughout with this genial inventor, this

mind fertile in resources that nobody has possessed in a higher degree than him.”

Newton’s mistakes move him to make some reflections about how the errors of

great men are useful for those who came after [Intro. III]. He affirms that most of the

authors that had criticized Newton had been less fortunate than him; with the

exception of Daniel Bernoulli of whom he mentions the studies on the resistance,

and also the effect of a stream against a plate, making note the differences between

theory and experiment in both.

After these presentations, he declares that the fluid resistance must be addressed

by a completely new method without owing anything to the predecessors [Intro.

IV]. The first step is that “a fluid is a body composed of very small particles,

separated and able to move freely”, assumption “that no one can deny”. Two more

propositions are added to the former: one, that the resistance is the quantity of

motion lost by the moving body, and other that the dynamics can be reduced to the

equilibrium, as he established in the Traité de Dynamique.
In a fluid of this kind a moving body can be taken as another particle, obviously

not small but conceptually as if it were. If we knew the entire particle disposition

and the mutual interaction among them, the problem would be converted to a static

one and it would be resolved. However this is impossible, because “we are rather far

from having all the data needed to be able to use this method”. At this juncture, the

fluid of particles is transformed into a continuous fluid supported by the hydrostat-

ics. Furthermore, if the dynamics of solid bodies can be reduce to the statics, the

dynamic of fluids or hydrodynamics, will likewise be reduced to the hydrostatics.

However our knowledge of the hydrostatics does not derives from any hypoth-

esis, but from “a single principle of experience, the equality of the pressure in all
directions; principle that they have considered (lacking a better one) as the funda-

mental property of fluids”. To this fundamental statement, and trying to justify

somewhat the lack of theoretical support, he adds a line of reasoning explaining that

if we are condemned to ignore “the first properties and internal contexture of the

bodies, the only resource left to our sagacity is to try at least to capture in each

subject the analogy of the phenomena and to recall all of them in a small number of

primitive and basic facts” [Intro. IV]. The example given is Newton and gravitation.

We quote d’Alembert’s beautiful words: “Nature is an immense machine whose

main springs are hidden to us; we do not see this machine except through a veil

which conceals from us the interplay of the most delicate parts. Among the most

striking, and maybe if we dare say it, the coarsest parts that this veil allows us to

glimpse or discover, there are several that the same spring sets in motion, and that’s
mainly what we must seek to unravel”. [Intro. IV],
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Once the plan of the work is expounded [Intro. V], he addresses the question of

the experimental verification of the resistance [Intro. VI]. His main objection refers

to the paucity of agreement existing among the results obtained in the experiments

carried out by physicists, no fact being perfectly founded in them. He recognizes

that the experiments were so delicate that some skilled persons abandoned the task.

There are also difficulties in separating the different effects acting on the particles,

so that it could occur that “the experiments made in small [scale], have almost no

analogy with experiments made in large [scale], and sometimes even contradict

them” [Intro. VI]; this indicates that he considered the scale effect to be very

significant. From this he deduces the necessity of dedicated experiments for each

particular case, concluding that a general result would be faulty and imperfect. But

after saying that, there is a quite surprising change of viewpoint. If the experiment

leaves us with very clear and exact formulas, and the lack of agreement still

persists, the problem would be in the hypothesis taken for the fluid, so it would

have “to renounce fully all theories of fluid resistance and to consider them as one

of those questions on which the calculation can have no bearing” [Intro. VI].

The Introduction ends with bitter references to the Berlin Academy [Intro. VII],

in the terms we have already mentioned. In the last paragraph he adds some more

reflections about his work and basic principles used, insisting again on the differ-

ences between theories and their application.

15 The Essay’s Introduction 171



Chapter 16

The Preliminaries

16.1 Principles of Dynamics

As we have already commented, d’Alembert presents the general principle of

dynamics in a somewhat different way from the Traité de Dynamique [§.1]. Let
us assume a system of bodies, each of them moving with a velocity~vi and impelled

by a force ~φi, which we understand as accelerative. If this force did not exist, each

body would maintain the velocity ~vi, but due to the force ~φi and the mutual links

among all the bodies, the velocities will change to~v0i, so that~vi ¼ ~v0i þ~v00i. Then,
i-body will tend to move with the sum of the velocities ~φidt,~v

0
i and~v

00
i, but the final

one will be only ~v0i ; therefore, if each i-body was forced to move with the two

velocities ~φidt and ~v00i, the system will remain in equilibrium.

In the case that all the bodies are separated and loose without any action among

them, the above condition would be ~φidtþ~v00i ¼ 0. That is to say each body would

move as if it were alone, and the system would remain at rest. However, in a more

general case when mutual actions exist, either by contiguity or links, the compo-

nents of the set mi~φidtþ mi~v
00
if g must destroy themselves,1 that isX�

mi~φidtþ mi~v
00
i

� ¼ 0. Then the solution of the problem is reduced to finding

the set ~v00if g that meets the above condition. Once this is done, the velocities ~v0if g
after the time dt are ~v0if g ¼ ~vi �~v00if g, which will be the new velocities ~vif g for the
new instant. Therefore we will have ~vi tð Þf g and consequently the bodies position

~ri tð Þf g and the trajectories of each body Ci

�
~r
�� �

. So the problem will be solved.

1We note that this paragraph was not in the Mss.7.
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The general solution is also valid if the forces ~φi were zero. As before there will

be a solution ~v00if g for
X

mi~v
00
i ¼ 0. Furthermore, if the bodies tended to move

with k~v00if g, being k any number, the equilibrium would persist [§.2].
As a consequence in a system without forces, or if we simply ignoring them

[§.3], the velocities at any moment ~vi will evolve to ~v0i. Now, if for any cause the

first velocity changed to k~vi, the second one would become k~v0i. The proof he

presents is based on the distances traversed by any particle in the time dt, which
would be~vidt; then, with the velocity k-times greater, these spaces would be crossed

by the bodies in a time dt/k and consequently the resultant~v0i would change to k~v0i.
This reasoning implies that ~v00i has also to change to k~v00i. This occurs in a system

integrated by solid bodies where the motion is transmitted by collisions that transfer

momentum.

The above reasoning is also valid if some of the velocities are null [§.4]. This
leads to the limit case when all bodies are at rest except one, which would have a

velocity ~v0 [§.5]. This case is considered by d’Alembert as fundamental. It is clear

that the only moving body will induce motion in the entire system, and each body

will follow a trajectory Ci. All these trajectories will always be the same,

irrespective of the magnitude of ~v0, obviously maintaining their direction. The

difference for each ~v0 will be the time inverted in traversing each curve. Thus

calling the modulus of the given velocity u0, if the time taken to traverse the space

x of C0 is t, with ku0it would be t/k. It is clear that the velocity u at the point x is a
function of this space as u¼ u0z(x)[§. 6]. It is easy to prove that du/u¼ z0(x)dx/z
(x)¼ � ξ(x)dx.2 This reasoning can be considered as a glimpse of the uniqueness of

the velocity field.

Before he goes further, he explains that all these corollaries deduced with zero

external forces, would be also valid with velocities proportional to the forces [§.7].
This is clear because if~φi ¼ kφ~vi, the velocity~φidt can be considered as a part of~vi,
although under this circumstance ~vi would be variable with time.

Bearing in mind that a fluid was considered to be an aggregate of very small

particles that are separate and able to move freely [Intro. IV], then in the case of

motion, these particles transfer the motion to the contiguous ones by thrusts and

collisions and always maintain the momentum. Therefore the motion of a solid

body submerged in a still and non-elastic fluid can be analyzed as a system of

bodies in which the solid body takes the place of a single large body, and the rest of

the fluid is composed of innumerable tiny particles [§.8]. As we have seen, the

trajectory followed by the body will always be the same, regardless the initial

velocity it was given. Consequently, the same principle will applicable to rest of the

particles. Besides, if the resistance of the fluid was assumed as depending on the

velocity, it has to be proportional to the square. We note that he has defined the

resistance in the Introduction [Intro. IV]3 as the quantity of motion lost by a moving

body, which also implies a velocity lost, expressed as –mdu, which will be related to

2D’Alembert uses the sign minus, probably expressing that the velocity is decreasing.
3This paragraph does not have an antecedent in the Manuscript.
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an accelerative force mφ or simply φ. To prove this, let us take the velocity u at any
point as u¼ u0z(x), thus for the “general principle of the accelerative forces” φ(u)

dt¼ � du, or φ(u)dx¼ � udu. Combinimg both
zdz

dx
¼ �φ u0zð Þ

u20
is reached; the first

member depends only on the distance x, while the seconds depends on the initial

conditions. Based on this fact, d’Alembert says that this can only be met if

φ u0zð Þ ¼ z2u20. This is not completely correct, because the condition of indepen-

dence of the second member respect to u0 is expressed as
∂
∂u0

φ u0zð Þ
u20

� �
¼ 0, whose

solution is φ u0zð Þ ¼ K xð Þz2u20, that is φ(u)¼K(x)u2.
Now, for the resistance R [§.9], which is the momentum lost, we will have

Rdt¼ �mdu, or Rdx¼ �mudu. Introducing the relation du/u¼ � ξ(x)dx,
obtained previously, we will have R¼mξ(x)u2.

“We will demonstrate later that the fluid resistance (excluding gravity, friction

and elasticity) is actually proportional to the square of the velocity, so that the

function ξ of the space traversed is reduced to a constant” [§.10]. He claims that it is

the first time that the proposition of the proportionality of the resistance with the

square of the velocity is demonstrated. Also, he argues that the proofs given by

previous authors were unsatisfactory; because they were based on the argument of

the double action of the particles. That means for the first action, that the motion

communicated and received by the body from any other particle is increased

proportionally to the velocity; and for the second action, that the number of

particles attained by the body is increased at the same rate as well. This reasoning

could only be fully justified by a motion similar to the Newtonian rare medium, and
seems to him rather vague, an opinion we agree with.

There is another consequence applicable to a completely different subject: light

moving in a fluid [§.11]. The body in motion will be a light corpuscle that passes

obliquely from one fluid to another through a separating surface, which, we add,

could be between air and water. The physical phenomenon is called light refraction

and it is well known that the refraction angle depends on the colour of the light.

According to Newton’s theory, each colour corpuscle has a different velocity,

which is the reason of the colours separation in the refraction. However, according

to d’Alembert the curve described by a moving particle does not depend on the

velocity, therefore, all colour refraction angles must be equal, and it cannot be

assumed that the difference in refraction of the rays comes from the difference in

their velocities.

The Chapter I finishes with the statement that the laws of the resistance of fluids

depend heavily on their equilibrium laws [§.12]. We have seen that he related the

resistance with the accelerative force [§.8-3rd], and this latter with the equilibrium

[§.1]. Therefore, we have to go on to Hydrostatics.

One additional remark, so far he considers the fluids as corpuscular entities, in

the next, and further chapters, they become continuous media. The leap between

both conceptions could be understood as a pass to the limit, although the discrete

and continuous media are completely different from a mathematical point of view,
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and consequently give rise to a different type of solution. However, d’Alembert

introduces the theorem R¼mξ(x)u2, obtained for the discrete media, and used it in

the continuous as a bridge between both.

16.2 General Principles of the Fluid Equilibrium

The foundation stone of the continuous fluid is “a single principle of experience, the
equality of the pressure in all directions; principle that has been taken (lacking a

better one) as the fundamental property of fluids, and as to which it was necessary to

refer all others” [Intro. IV]. This principle is still considered to be a fundamental

property of fluids.4

In order to find out the fundamental law of the equilibrium, d’Alembert follows

the path previously travelled by others authors in their studies of the problem of the

shape of the Earth,5 and especially Alexis Clairaut for the solution expounded in the

Théorie de la figure de la Terre, tirée des Principes de l’Hydrostatique. However

4A classic text such as the Hydrodynamics of Horace Lamb states: “The fundamental property of a

fluid is that it cannot be in equilibrium in a state of stress such that the mutual action between two

adjacent parts is oblique to the common surface”. The first edition was published in 1879. We

quote the reprinting of the sixth edition in the Cambridge University press, 1945. Cf. p. 1.
5The question was either the Earth was flattened or elongated at the poles. Newton opted for the

first solution as a result of his theory of gravitation. As he stated in the Principia, assuming our

planet as a fluid in rotation, if two channels were driven to the center, one from one pole and the

other from the equator, both must be in equilibrium but the latter will be alleviated due to the

centrifugal force, therefore equator channel must be longer than the pole one. As a consequence he

estimated the flattening in 230/231.On the other hand was the Cartesian theory of gravitation, in

which external vortices were responsible for the attraction of the bodies. These vortices dragged

the bodies towards the center of the earth, an action which Descartes denominated “conatus”. With

this theory the magnitude of the flattening should be less than the Newtonian one, in a value of

576/577.

In counterpoint to these values stood the geodesic measurements of the meridian arcs made in

France at the end of the eighteenth century by such distinguished geometricians as Picard and

Cassini. From those it was concluded that the Earth had an oblong shape, stretched towards the

poles, with a difference in diameters of 1/262. This opposition between the theoretical derivations

and experimental measurements, together with the difficulty of accepting the theses of Newtonian

mechanics, radicalized the scientists’ positions, and divided the Academy of Sciences of Paris, and

even came to have national and theological implications. In words of Lafuente “Theory

vs. experiment, Newtonianism vs. Cartesianism, laicism vs. scholasticism, savant vs. Academic,

England vs. France, all were, in the end, powerful alternatives to stir up controversy and kindle all

the passions” (p. 48).

The controversies caused rivers of ink to run, but their positive side was that the Academy of

Sciences of Paris sponsored two important scientific expeditions: one to Lapland and the other to

the Spanish Viceroyalty of Peru, in present-day Ecuador. The aim of both was to measure the

meridian arcs in two very separate latitudes. With these measurements, together with those made

in France, the intention was to obtain the longitude of a meridian degree at various points of the

Earth, and thus to clarify the value of the Earth’s flattening. It was a crucial experiment about

whose was the true theory: whether it was that of Newton or that of Descartes.
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d’Alembert does not quote this author, instead he cites Colin MacLaurin, who, he

says, was the first to make use of this principle in his research in the Treatise of
fluxions [art. 639] and On the Cause of the ebb and flow of the seas, [§.14].6

D’Alembert assumes a mass of fluid whose particles are subjected to forces so

that the fluid remains in equilibrium [§.13]. There is no indication about the nature

of these forces; they could be understood as virtual accelerative forces, as we have

explained. However, we think that even when this fluid mass can be understood in a

very general manner, he probably has in mind the Earth considered as a fluid mass.

Consequently these forces would be due to the action of gravity plus rotation; that is

to say, the weight. Later this will seem clearer [§.21].
In any case, an internal point as P (Fig. 16.1) is pressed equally in all directions.

This is also applicable to the particles of the channels PA and PB, which both reach
to the surface, therefore the fluid in the rectilinear siphon APB is in equilibrium as

well [§.13]. Next, by adding and subtracting channels is easy to prove that any

closed one, rectilinear or curvilinear, must be in equilibrium [§.15–18].
Now, let R(x, y) andQ(x, y) be the forces acting along each axis upon any particle

and SMNT (Fig. 16.2) a small rectangular channel [§.19]. Due to the equilibrium,

the force at the vertex N will be related to the S via either the columns ST plus TN or

SM plus MN. Omitting the channel width for simplicity, we have:

dpSTN ¼ ρRdxþ ρþ ∂ρ
∂x

dx

� 	
Qþ ∂Q

∂x
dx

� 	
dy ð16:1aÞ

Fig. 16.1 Channels in a

fluid

6In the Manuscript, it is only quoted the second work as Paris 1740, p. 210, prop. 1, art. 3.
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dpSMN ¼ ρQdyþ ρþ ∂ρ
∂y

dy

� 	
Rþ ∂R

∂y
dy

� 	
dx ð16:1bÞ

Being ρ(x, y) the fluid density. Equating and eliminating the second order terms

the resulting expression is:

∂ ρQð Þ
∂x

¼ ∂ ρRð Þ
∂y

ð16:2Þ

D’Alembert says: “proportion that was already known but that nobody, it seems

to me, had yet demonstrated by a method as simple as we just have done” [§.20].
Certainly, a similar proposition, but with constant density, had been established

by Clairaut applying also the equilibrium of the internal channels. However,

Clairaut considers that the expression Rdx +Qdy must be an exact differential,

because the total force between two points L and H, expressed asI H

L

ρ Rdxþ Qdyð Þ, is always the same independently of the path taken from L to

H. Then, according to a theorem obtained by him previously, a sufficient condition

for the functions R and Q is ∂Q
∂x ¼ ∂R

∂y.
7 Comparing both approaches, apart from the

inclusion of the density, D’Alembert’s seems to us more physical while Clairaut’s is
more mathematical.

Fig. 16.2 Closed

rectangular channel

7Cf. Traité, §XVI–XVII.
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16.3 Pressure on Submerged Bodies

The next step is to place a body inside a fluid and to calculate the effects of the fluid

forces on it. We encountered some difficulties in understanding of the text. On the

one hand, almost all the terms relatives to the forces (force, pressure, power,

gravitation and weight) are used in quite a few pages; on the other, it seems that

the French version from the Manuscript was rather careless.8

Let us assume a weightless fluid, which can be either indefinite or finite, with a

body G placed inside the fluid and surrounded by a surface Σ, as shown in Fig. 16.3
[§.21]. Inside Σ, both body and fluid are subjected to forces in such a way that they

are in equilibrium, while outside Σ there are no forces by hypothesis. The problem

is to find the pressure at any point of the body depending on the forces on the fluid.

In fact, the surface Σ “can be considered as the external surface of a fluid in

equilibrium”, because the forces upon it “are either absolutely zero or at least

perpendicular to Σ”. The hypothesis of the absence of forces outside Σ is not

absolutely necessary; in the Manuscript it is said that those particles “are impelled

by many forces”,9 which is also partially true, because the condition must be the

perpendicularity of forces upon Σ, or in others words, that Σ has to be a level curve.

Fig. 16.3 Body in fluid

8Truesdell wrote that this chapter contained many propositions and corollaries which were

incomprehensible for him [p. LII]. We will try to solve some of these incomprehensibilities and

uncertainness scrutinizing theManuscript in order to untangle what d’Alembert’s original thoughts
could have been.
9“Nam siquidem particulæ fluidi extra spatium [Σ] positæ, multis (hyp.) viribus agitantur”Mss.25.
“Because the fluid particles placed outside Σ are impelled by many forces [hyp.].
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Now, the channel FBDO, formed by the segment FO over Σ and BD over the

body plus any other two lines FB and DO, must be at equilibrium and consequently

the “weights” of channels OD and FBD are equal. “Therefore the pressure in point

Dwill be the same as if this point were pressed perpendicular to the BDC surface by

a force equal to the weight of the FBD channel”. It is obvious that we have to

understand the term “weight” in a different way as the effect of the gravity forces,

such as pD ¼ ρ
H
FBD

~f � d~s ¼ ρ
H
OD

~f � d~s, being ~f the forces, which could coincide

with the gravity in some cases, but not in general.

The application of the above to a more conventional body [§.22] does not follow
this procedure strictly. The body, Fig. 16.4, is submerged in a limited fluid and

subjected only to vertical forces. The above mentioned Σ will be the fluid horizontal

surface crossing at F, and the forces will be only a function of the depth, called x,
without any lateral component in accordance with Eq. 16.2.

The pressure at the point V on the surface is the result of two addends, one

vertically from F to B, plus a second one from B to V along the surface. In the first

the “weight” is expressed by a function φ(x) and in the second by π(s), s being the

distance along the surface. The result, in which we have included the density, will

be:

pV ¼ ρ

ZB

F

φdxþ ρ

IV

B

πds ð16:3Þ

It seems clear, as d’Alembert will show in next article [§.23], that πds¼φdx, and
according to the previous procedure, the solution would be the integration vertically

from Σ to V.
The resulting pressure along the axis X will be dFx¼ pVdy, that, neglecting the

first addend if it is small, leads to:

Fig. 16.4 Body in fluid

under vertical forces
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dFx ¼ dy � ρ
IV

B

πds ð16:4Þ

Two points to highlight. We have included the density in order to maintain the

coherence of the formulas; this is not used in the Essay, although in theMss.26 there
was a paragraph saying that it had been omitted as it was considered as being one,

but it should be included. The second point is that d’Alembert employs “pressure

along” instead of force, this is a constant fact throughout the entire book, as we have

explained before.

If the previous force was gravity [§.23], designated as ψ , it would be π ¼ ψdx
ds, soR

πds¼ R
ψdx. Therefore the pressure on point V will equal to the weight of the

column VN; that is dFx¼ � ρg(xU� xV)dy, with ψ ¼ g, which is the ancient prin-

ciple of Archimedes.10

If ψ is not constant ψ(x) the total “weight” of the body could be calculated by a

double integrating of dFx from E to D (Fig. 16.5). However, an alternative method

is the sum of horizontal layers:

Fig. 16.5 Body submerged

10In the Essay says “the variable force ψ” which we think is a lapse for “the force ψ”, as expressed
in the Manuscript [Mss.27].
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W ¼ ρ

Z xC

xB

c xð Þψ xð Þdx ð16:5Þ

This is easy to prove becauseZZ
ψ xð Þdxdy ¼

Z xC

xB

dx

Z c xð Þ

0

ψ xð Þdy ¼ R xC
xB

c xð Þψ xð Þdx, with c(x) being the con-

tour of the body.

There are two applications for a body surrounded by a channel (Fig. 16.6). The

wording of the first one [§.24] would be more comprehensible with the insertion of

three sentences picked out from the Mss. 28. The body, whose maximum width at

nN is b, is surrounded by the channel BDCE and subjected to any force in the upper

part that is EBD; while there is no force at all in the lower part, ECD. The result of

the upper forces will be a pressure at E or D, said pE¼ pD, that will be transmitted to

the entire lower channel, because of the absence of forces. Therefore it results an

upwards force F¼ ρpEb.
The next one [§.25] is based on the same configuration, but superimposing two

force fields. One, ψ , constant and vertical, acts upon the entire channel; whose

results is ρψ
R
yds, being

R
yds the surface of the body. The other, a variable

tangential force π acts only upon the upper part, resulting in a force on the body

of ρ
R
dy

R
πds, and also a pressure as has been said in the previous case at D and

E of ρ
R
πds, which generates an upward force of ρb

R
πds. The final result will be

Fig. 16.6 Body surrounded

by a channel
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Fx ¼ ρψ

Z
ydsþ ρ

Z
dy

Z
πds� ρb

Z
πds ð16:6Þ

The Mss. 29 says that this corollary will be very useful later for defining the

resistance of fluids.

Finally, everything said so far for a symmetrical and plane body can be

transformed for an axisymmetric one with some minor mathematical changes

[§.26].

16.4 Motion in Tubes

One more general principle is required to complete the fundamentals of the pressure

in fluids: it consists of the change in pressure along a streamline, i.e. the Bernoulli

theorem or an equivalent. This subject had been already addressed by D’Alembert

in the Traité de l’équilibre.
For the basic approach [§.27], let us take a very narrow pipe (Fig. 16.7) whose

part FABG has a constant section that increases from A to D, or at least changes.
Through the pipe a homogeneous and weightless fluid flows with the constant

velocity in any slice. This occurs because PM is assumed to be very small and is

also due to the adherence of the particles in virtue of their viscosity. In other words,

it is a unidimensional motion.

The fluid velocity when passing from the point P to p, separated by dx, will
change from v to v+ dv. Therefore applying the fundamental principle of motion,

the slice PMmp would be in equilibrium if it was impelled by the accelerative force

φ¼ du/dt. If the pressure at PM is p, the force acting on the slice will be Sdp, being
S(x) the section of the tube, and its mass ρSdx. Therefore, the equilibrium equation

will be:

Sdpþ ρSdx
du

dt
¼ 0 ð16:7Þ

Taking the section AB, where the change of section starts, as reference for

continuity we have Su¼ S0u0, and the solution of former equation will be:

p� p0 ¼
1

2
ρ u20 � u2
� � ¼ 1

2
ρu20 1� S20

S2

� 	
ð16:8Þ

We must notice that d’Alembert introduces neither the section nor the density,

assuming them as unity; and also that p� p0 is indicated by the single variable P,
which means that p0¼ 0 at AB.
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From the above formula it is easy to see that the pressure increases when the area

does. Then, if the section of the tube decreased (Fig. 16.8),11 consequently the

pressure would do so likewise, which would lead to negative values. To avoid that,

in a rather confused explanation [§.30], d’Alembert takes the pressure as null at QN
and maximum at AN, using Eq. 16.8 to find the values at any intermediate point.

However this leads to another problem, because if there is any pressure force on AB
upwards along AF, there should be another one from F to A; but as the fluid moves

uniformly from F to A, no force can exist along FA.
To solve the question he imagines that the length of the tube AFBG is infinity,

and that the pressure at AB is supported by the continuous impact of the fluid mass

above it. If such a length, called l, was finite, this mass would be ρS0l and its

momentum ρS0lu0; in the impact with the mass AQNB the former velocity u0 will
change to v, so that ρS0l v� u0ð Þ ¼ ρv

R
S0
S dx. Therefore v ¼ S0l

lþ
R

S0
S dx

u0, and v¼ u0

Fig. 16.7 Fluid motion in

narrow tube

11The narrative description given in the Essay for this figure does not correspond at all with the

depicted as Fig. 3.6 in the Essay [§.30]. The one we show here is similar to that given in the

Manuscript as Fig. 12.
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would takes place only if l¼1. Obviously this a misleading reasoning, because a

power is always required to maintain the flow, as pressures, velocities and powers

are physically related.

Now, d’Alembert develops three variations of Eq. 16.8. In the first, the assump-

tion of the constancy of u0 is eliminated, which leads to a non-stationary motion

[§.28]. In this case, du is obtained from the continuity equation as d(uS)¼ d(u0S0),
giving du ¼ S0

S du0 � u0S0
S2

dS, which introduced in Eq. 16.7, and after making some

operations, leads to:

pþ 1

2
ρu2

� 	
� p0 þ

1

2
ρu20

� 	
¼ �ρS0

du0
dt

Zx

x0

dx

S
ð16:9Þ

The second is the introduction of the gravity, both when u0 is constant or variable
[§.29]. The equation will be now:

pþ 1

2
ρu2 þ ρg xþ lð Þ

� 	
� p0 þ

1

2
ρu20 þ ρgl

� 	

¼ � S0

Zx

x0

dx

S
þ l

0
@

1
Aρ

du0
dt

ð16:10Þ

Fig. 16.8 Tube narrowing
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Where the length l of the part FA is included. We have jointed the terms in brackets

to show the similitude with the Bernoulli equation.12 If the tube is inclined an angle

θ with the horizontal, g must be changed to g cos θ [§.31].
Taking the velocity as u¼ κu0 the terms involving pressure and velocity can be

expressed as p� p0 ¼ 1
2
ρu2 1� κ2ð Þ [§.32–33]. Besides, the velocity can be related

to the height h by u2¼ 2gh, therefore the pressure can be written as p� p0¼ gh
(1� κ2). Then, “the pressure would be the same as that of a column of stagnant fluid

of gravity g and height h (1� κ2). By this it is seen that the formula found here for

the amount of pressure can be used for registering and comparing easily known

pressures” [§.33]. This is a method for measuring the pressures, irrespectively of

how they have been produced.13

The third is assuming that the density is variable [§.34]. There are only a few

lines dedicated to it, but it deserves some attention. In the tube, both section and

density are related to their values at the section AB by means of two

non-dimensional parameters κ ¼ S0
S and σ ¼ ρ0

ρ . Consequently κσ ¼ u
u0

and

du¼ u0d(κσ) + κσdu0, which introduced in Eq. 16.7 leads to the equation:

p� p0 ¼ �ρ0u
2
0

Z
κd κσð Þ � ρ0

du0
dt

Z
κdx ð16:11Þ

It is clear that κ(x) is given by the geometry of the pipe, but this does not happen

with the density σ(x), which will be an additional unknown.

12See Annex I.
13As we have mention previously, Guilbaud analyzes the antecedents of this formula in the Traité
de l’équilibre.
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Chapter 17

Resistance of a Body Moving in a Fluid

This is the core of the Essay and Chaps 4 and 5 deal with it. We prefer to take this

matter as a whole, leaving for a posterior analysis the parts of these chapters not

clearly connected to the subject. This manner of dealing with it tries focus on the

more essential items, which in our opinion would fully justify the Essay. As we
have explained before, d’Alembert attacks the problem in three steps: moving fluid,

impulsive fluid and moving body. We consider see each step in detail.

17.1 Fluid in Motion

The model used is depicted in Fig. 17.1. An axisymmetric solid body ADCE is

placed in a fluid stream flowing uniformly from Q to H [§.36]. The fluid, which is

homogenous and weightless, unlimited or confined in a vessel, will exert an action

upon the body, which is maintained at rest by any external means, for example a

power pushing upstream. The goal is to find out the fluid pressure upon the body.

But before going into the matter, and in order to understand the subsequent

propositions, d’Alembert presents five necessary observations.

1st. Particle trajectories. Upstream all fluid particles move following parallel

lines, shown as T, P1, P2, Pz in Fig. 17.1. However the presence of the body makes

them change their direction gradually at some distance from the body, F, K1, K2,

etc., and makes them describe the curves FD, K1S1, K2S2, etc. The curvature of

these lines is greater the closer they are to the body, and at some distance the lines

become straight as if there were no body, as in line PzSz. This means that the effect

of the body is assumed to be confined to a finite dominion of the fluid.

2nd. Steadiness of the velocity field. Excluding any accelerative forces upon the

fluid, the motion is steady state, so that the curve pattern is always the same.

According to our present terminology we call these curves streamlines or
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trajectories. Although both are conceptually different, they coincide when the

motion is in a steady state.1

3rd. Stagnation zone. “ Each body in motion that changes direction only changes

by imperceptible degrees”. This is the ancient and well known aphorism nature non
facit saltus [nature does not make leaps] that was raised and named as principle of

continuity by Leibniz, and which took on real meaning within differential calculus.

Then the particles in the axis TF should must change their direction abruptly by 90�

when arriving at the apex A, contradicting the former statement. Therefore in order

to avoid this kind of turn, they leave the axis at a point F and touch the body at M;

from here they will slide over the body surface until point L, where they will

separate in an inverse process to reach the axis again at R. Therefore two particular

Fig. 17.1 Body in a fluid in

motion

1A trajectory is the path traversed for a particle along the time, which is represented by the

equation ~x ¼ ~x tð Þ depending on the initial conditions. The results are x(t) and y(t), which
represents the trajectory in a parametric form. A streamline is the geometrical place of the tangent

to the velocity in an instant. Its equation is y¼ y(x, x0) is determined by y
0 ¼ vx/vy, also depending

on an initial parameter for each one. In steady state condition at any point the trajectory is always

tangent to the velocity, therefore it will coincide with the streamline.
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spaces will be formed, the FAM in the front and the LCR in the back, “where the

fluid is necessarily stagnant”.

4th. Pressure generation. In the motion the velocity of fluid particles changes

either the direction or the magnitude, or both at the same time. The difference

between the velocity at any instant and the next one will be the accelerative force.

Then “the fluid pressure would be the same as if it were stagnant and its parts were

subjected to the [former] accelerative force”; and consequently the body can only

undergo the pressure that comes from these forces.

5th. Pressure calculation. The force upon the body, which is called pressure as

we have seen, depends on the accelerative force along the channel TFMD, therefore
the problem is reduced to finding both the curvature of this channel and the forces

in it.

17.1.1 Stagnation Zone

The existence of the stagnation zone brings some additional problems. Let us look

at this area in more detail. It is limited by a streamline which leaves the axis

tangentially at the point F (Fig. 17.2) and reaches the body also tangentially at M,

hence it has to be curved. To prove “that no pressure can result from the particles

Fig. 17.2 Stagnation zone
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contained in the part FM” [§.36 last by one], he assumes firstly that no accelerative

force acts along FM; or what comes to the same thing, the velocity must be

constant. If it was not, in the channel bnqm, there would be some pressure from

b to n, which should be compensated by pressures on the others sides, “but it has

been proved that the fluid is stagnant in the space FAM” and obviously in the

channel as well. We must note that the only proof shown was a supposition in order

to avoid a finite turn at A. With respect to the normal forces, whose effect is to curve

the trajectory, it is true that they will not produce any pressure along FM, as they

will be “perpendicular to the channel walls”; however, they will affect the sides bm
and nq, altering the hypothetical equilibrium. Furthermore, the line FM, along

which the particles are moving, is contiguous with a quiescent fluid, which implies

a discontinuity in the velocities; hence the stillness of the inside fluid seems very

difficult to understand. In fact this construction reminds us rather too much of

Newton’s cataract, so much criticized by many authors and even by Newton himself

in the Introduction [Intro. II].

Nevertheless after this previous reasoning, d’Alembert surprisingly presents two

alternatives for the velocity along FM [§.36 last]. One, where it is constant and

finite as stated above; the other, where it can be variable, moreover in this case the

velocity must be infinitely small, so that it can be taken as null. “We will make clear

later that it is the second case which takes place here”, which means that he discards

all the previous arguments leaving them with a sense of inconsistency. The afore-

mentioned clarification will appear later in [§.52]. Following his reasoning, if the

velocity along FaM is null, this means that the particles undergo a deceleration

along the axis from their original value upstream at T up to zero at F. The

non-answer question is which accelerative force is the responsible for this.

Looking at the Manuscript, we found that the Essay [§.36] corresponds almost

equally to theMss.39, with the exception of the paragraph referring to the smallness

of the velocity. In the Manuscript the hypothesis of the constancy of the velocity

along TFM is fully developed. “We have supposed for more generality that the

velocity, though uniform in channel FaM, is not necessarily uniform in the TF part,

or necessarily equal to the uniform fluid velocities at various points in the TG line”.2

According to this (Fig. 17.4), the velocity vT at T starts changing at G to reach vF at
F, which is maintained until N. Nevertheless, the paragraph ends by affirming that

vT¼ vF, which will be proved in Mss.52. This proof is really given in the previous

Mss.51. We must note that between Mss.39 and Mss.51 the development of the

velocity equations and their relations takes place. This means that the true nature of

this zone will become clear later, and d’Alembert presents an advance of it in

Mss.39. InMss.51, he makes use of the streamlines structure of Fig. 17.4 in order to

show that the point G must coincide with F and B with K, based on that in the

channel FNMK the force in the side FK is null. He starts by assuming that the

2“Supposuimus autem majoris generalitatis causa velocitatem in canali FaM, licet uniformen, non

tamen necessario uniformem esse in parte TF, seu necessario æqualem velocitati uniformi fluidi in

variis punctis lineæ Tg” [Mss. 39-5th].
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velocity at G, besides being equal to the one at T, reduces its magnitude, but

maintains its direction until F, where it turns in the angle ε. There are three different
reasons to prove that ε is an infinitely small angle of the second degree. Firstly, a

finite angle would imply that the curvature should change by an instantaneous jump

(per saltum). Secondly, if the angle would be infinitely small but of first order, i.e. a

tangent point, a pressure along the channel FK would be required, but TPKF is in

equilibrium. Thirdly, that any force that were to exist on FK, would be governed by

the equation ∂p
∂x ¼ ∂q

∂z þ λ instead of ∂p
∂x ¼ ∂q

∂z, but this is not possible as operating the

equations λ¼ 0 is obtained. Besides, the points G and F must coincide, because the

width of TPFK must be constant and the velocity as well [Mss.52]. We found all

these arguments rather weak, and probably this is why d’Alembert did not include

these articles in the Essay. He only included the final results and also recovered the
arguments dedicated to the former λ case, but in a different context [§.49].

Coming back to the Essay [§.36-last], it seems that d’Alembert was satisfied with

the conclusion of all the previous arguments that lead to vT¼ vF. According to this,
all fluid particles will have this velocity, except those inside the stagnation zone;

consequently the curve FaM (Fig. 17.2) would be a discontinuity line between

u and zero. Probably, later on when he analyses the impulsive motion, he would find

the need of reducing the size of this area, taking it to be almost null [§.52–53].
Consequently he came back and added the new clarification. We advance his new

concerns: “Now it would be shocking that while the particles contained in the FAM
space stop suddenly, the particles that are on the curve FaM, which is the limit of

this space, have a velocity not infinitely small, since nothing is done in nature by

leaps, but by insensible degrees” [§.52]. Obviously, the solution was this reduction.
To modern eyes, this is closer to our present understanding of the phenomena. This

solution was not introduced in the rest of the Essay, which maintains the large

stagnation zones following the Manuscript. The size of the stagnation zone has no

effect on the derivation of the velocity equations, but it is relevant in the calcula-

tions of the total force upon the body.

17.1.2 Streamline Field Invariance

D’Alembert clearly establishes that whatever the upstream velocity and fluid

density are, the set of curves followed by the particles are always the same

[§.39]. In other words, the streamline configuration or field is an invariant; or in

broader terms this means the uniqueness of the solution. As we have explained, as

the motion is a steady state, the streamlines are also trajectories.

This will be proven in two premises. First, “that it can be assumed that each of

these curves is always the same”; second, “that they must be necessarily supposed

as such”. That is to say, if the uniqueness of the field can be a solution, this must

be it.
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For the first premise two proofs are presented. One is based on the flow

continuity [§.39-I-1st], as the fluid is supposed to run between a streamline and

the neighbouring one, changing the velocity according to the separation between

them. In in general way let express each curve in parametric coordinates as x¼ x
(s, ζ) and z¼ z(s, ζ), ζ being a parameter for each of them and s the distance

traversed; for example, taking the plane at T as reference (Fig. 17.1), ζ could be

the ordinate for each streamline. The separation between the curves ζ and ζ + dζ
would be an expression like dw¼w(s, ζ)dζ and consequently the relation between

the velocity at T and at any other point will be w(sT, ζ)vT¼w(s, ζ)v, so atM it would

be vM¼W(sM, ζ)vT. Next, let us take another velocity at T as vTA¼ kvTwhich would
generate a new set of curves xA(s, ζ) and zA(s, ζ), which would lead to v¼WA(s, ζ)
vTA. Therefore, the velocity at point M it would be vMA¼WA(sM, ζ)kvT. Now let us

also assume that vMA¼ kvM which would lead to WA (s, ζ)¼W (s, ζ): this is the

same set in both cases, which means that d’Alembert’s first premise is legitimate.

The second proof concerns the accelerative forces [§.39-I-2nd] that act upon all

particles and “that must be destroyed” by the forces π to maintain the equilibrium

among them. This means ~π ¼ ρd~v=dt, according to the wording of the text even

though this formula is not written. The acceleration ~γ ¼ d~v=dt can also be

expressed in terms of the geometry of the streamlines. This is a bit more compli-

cated because the normal and tangential components exist for both acceleration and

force, as he had just recognized in the previous articles [§.37–38]. At any point the

normal acceleration would be γn ¼
v2

RC s; ζð Þ ¼
W2 s; ζð Þ
RC s; ζð Þ v

2
T and the tangential

dv

dt
¼ dv

ds

ds

dt
¼ W s; ζð Þ dW s; ζð Þ

ds
v2T ; therefore in general we would have

~π ¼ ρv2T~Γ s; ζð Þ. Now, working as in the first step, on changing both density and

velocity to ρA¼ hρ and vA¼ kv, the configuration ~ΓAwould be equal to the~Γ if~πA is
assumed equal tohk2~π. We warn that in the text g is used instead of k2, which would
not make any difference, but to say that for a velocity gv the accelerative force

becomes gγ is not correct, it must be g2γ as he will find later in [§.43]. We only add

that he never mentioned that the forces needed to move the fluid or to maintain the

body at rest, must be also multiplied by the factor g or k2.
The second premise was that “since the particles of the fluid can always describe

the same curves in the two cases,. . . Therefore they really must describe them”

[§39-II]. However, the only argument in favour of this is that the “reasoning is

completely analogous” to the motion in the vacuum under a Newtonian gravita-

tional force that leads to a unique conic section, ellipse, parabola or hyperbola; a

reasoning “which is accepted by all geometricians”. Nevertheless, there is a rather

big difference between this and the gravitation case. This is backed by a theory

substantiated in mathematical formulations that support the uniqueness of the

solutions; something which is lacking, at least until now, in the fluid motions. We

think that if anything, he could have applied as a justification here the propositions

of the uniqueness of trajectories obtained for the body motions in systems [§.3–6].
Finally, the set of curves “neither depend on the fluid density nor on the body

mass, but only on the figure and volume of the body”. Also the rate v/vT at any point
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will be always the same; then the two components vx and vz along the axis X and

Z can be expressed by two functions q and p as:

vx x; zð Þ ¼ vTq x; zð Þ; vz x; zð Þ ¼ vTp x; zð Þ ð17:1Þ
This two non-dimensional functions q and p will completely define the problem,

which will depend only on the body shape [§.40–42].
The problem would be reduced therefore to a search for these two functions.

However q and p are not completely independent of each other, but they are linked

through some relations. D’Alembert’s next task will be to find these relations. It is

here where his talent shines to most advantage, and where his major contribution to

fluid mechanics lies, without forgetting the establishment of the invariance of the

fluid field and the separation of the velocity into its two components. Nevertheless,

the way in which he approaches the question is sometimes not easy to follow.

Although the idea is brilliant the explanations are somewhat confused, with fre-

quent changes in the meaning of the symbols, lengthy and tortuous paths, and

everything aggravated by misprints. We will try to present his reasoning as clearly

as possible, introducing modern terminology in order to make easier reading.3

17.1.3 Velocity Field Equations

The first thing that d’Alembert carries out is the kinetic analysis of the motion of a

fluid particle along a streamline. The particle comes from the point F in the instant

t� dt, to reach N in t, and afterwards m in t+ dt (Fig. 17.3).

Fig. 17.3 Particle

trajectory

3We have to remember that the typographical recourses available then were limited, which obliged

him to repeat the symbols frequently. Years later the aids of the sub index would make the tasks

clearer and easier. An example is given in the next note.
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The variations of both q and p can be expressed as [§.43]4:

dq ¼ ∂q
∂x

dxþ ∂q
∂z

dz; dp ¼ ∂p
∂x

dxþ ∂p
∂z

dz ð17:2a; bÞ

Therefore, the accelerations will be:

γx ¼
dvx
dt

¼ vT
∂q
∂x

dx

dt
þ ∂q

∂z
dz

dt

� �
¼ v2T q

∂q
∂x

þ p
∂q
∂z

� �
ð17:3aÞ

γz ¼
dvz
dt

¼ vT
∂p
∂x

dx

dt
þ ∂p

∂z
dz

dt

� �
¼ v2T q

∂p
∂x

þ p
∂p
∂z

� �
ð17:3bÞ

In the Essay they both have negative signs, because they are taken as acceler-

ative forces, or forces that must be destroyed. This analytical treatment of the fluid

along a streamline is carried out here for the first time, and it allows the finding of

the subsequent relations in partial derivatives.5

These equations are obtained in the Essay by a geometrical approach based on

Fig. 17.3 [§.43–44]. The forces are (FE�Om)/dt2 and (NE�NO)/dt2 along the axis
OZ and OX respectively. The velocities at N are vFq and vFp; and at F they were the

result of subtracting from the former the differential part due to the segments FE
and EN; applying Eq. 17.2a, b and considering that the slope at N is q/p.

Now we come to the axisymmetric body, Fig. 17.4, and the fluid layer infinitely

near the surface that surrounds it. This layer starts upstream as a circle of radius wT

and becomes a conical ring around the body, whose width at the point N is w cos γ.
Assuming that w is very small respect to the radius y, the continuity condition leads
to the equation [§.45-1st-2nd]:

πw2
TvT ¼ 2πzwv cos γ ¼ 2πzvTqw ð17:4Þ

Now the streamline slope at M is obtained by two different ways: one uses the

velocities, the other the variation of the channel width. The calculation is made

mixing kinematic and geometry and it is a bit cumbersome [§.45-3rd].
In the first one, vTq and vTp being the components of the velocity at N, the values

at M are:

vx ¼ vT qþ ∂q
∂z

w

� �
; vz ¼ vT pþ ∂p

∂z
w

� �
ð17:5Þ

Introducing the value of w ¼ w2
T

2qz
from Eq. 17.4, the slope will be

4In the Essay these equations are expressed as dq¼Adx+Bdz and dp¼A
0
dx+B

0
dz, that is ∂q

∂x ¼ A,
∂q
∂z ¼ B, ∂p∂x ¼ A0 and ∂p

∂z ¼ B0.
5Rouse, History of Hydraulics, p. 102 and Grimberg [1998], p. 42–43.
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ΓM ¼ pþ
w2
T

2qz
∂p
∂z

qþ w2
T

2qz
∂q
∂z

ð17:6Þ

For the second, the ordinate of pointM is z¼ y+w, being y¼ y(x) the contour of
the body. Then the slope will be ΓM ¼ dy

dx þ dw
dx , but

dy
dx ¼ p

q, then:

ΓM ¼ p

q
þ d

dx

w2
T

2zq

� �

¼ p

q
� w2

T

2

1

z2q

dz

dx
þ 1

zq2
dq

dx

� �

¼ p

q
� w2

T

2zq2
∂q
∂x

� w2
T

2

1

z2q

∂q
∂z

þ 1

zq2

� �
p

q

ð17:7Þ

Equating both, reducing and neglecting the terms in w4
T , we arrive at:

�∂p
∂z

¼ ∂q
∂x

þ p

z
ð17:8Þ

This is the first velocity equation.

If the former equation is backed by the kinematics, the second one will be

backed by the forces. The pressures at points N and M can be deduced by means

of the equation Eq. 16.8, or Bernoulli, applied to the channels TFN and PKM,

knowing that the conditions for the upstream T and P are the same [§.45-4th]. So,
we have:

Fig. 17.4 Flow around an

axisymmetric body
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pM ¼ 1

2
ρ v2T � v2M
� �

; pN ¼ 1

2
ρ v2T � v2N
� � ð17:9Þ

Therefore:

Δp ¼ pN � pM ¼ 1

2
ρ v2M � v2N
� � ð17:10aÞ

At N the total velocity is defined by the components q and p as v2N ¼ q2 þ p2
� �

v2T
and for M the q and p from Eq. 17.5. After the corresponding operations, and

neglecting the w2 terms, the above formula becomes:

Δp ¼ ρv2T p
∂p
∂z

þ q
∂q
∂z

� �
w ð17:10bÞ

But we have found that in the channel NM exists and an accelerative force

γz ¼ v2T q
∂p
∂x

þ p
∂p
∂z

� �
, (Eq. 17.3b), which produces the force ργzw that must be in

equilibrium. Therefore, equating both:

∂p
∂x

¼ ∂q
∂z

ð17:11Þ

This is the second velocity equation that, jointly with the Eq. 17.8, will define the

relation between the velocity and space.

With the aid of Eq. 17.8 the Eq. 17.2b can be rewritten as:

dp ¼ ∂q
∂z

dx� ∂q
∂x

dz� pdz

z
ð17:12aÞ

d pzð Þ ¼ z
∂q
∂z

dx� z
∂q
∂x

dz ð17:12bÞ

This one and the Eq. 17.2a have to be exact differentials [§.46]. We can see that

in both formulas there are only the derivatives of q, as ∂q/∂x and ∂q/∂z.
The equations and their exact differentials are valid for the entire fluid, which is

more clearly explained in theMss. 49.6 In the Essay [§.47], he notes that the values
for q and p meet these conditions in the upper part of FM and adjacent curves, for

MD and also its neighbouring curves. However the curves FM and MD do not

belong to the same equation. This is a consequence of the different nature of both

6“In demonstration præcedenti eum tantum fluidi rivulum contemplati sumus, qui superficiem

corporis MD immediate tangit. Sed patet æquationes [Eq. 17.12a], et [Eq. 17.12b] eodem præcise

ratiotinio inveniri posse pro quovis alio rivulo, existente generatim z distantia puncti cujus vis M0

ab exe AP, sive punctum illud sit superficies MD, sive non.” Mss.49. “In the preceding demon-

stration we contemplated the fluid thread that immediately touched the body surface

MD. However, it is obvious that the equations [Eq. 17.12a] and [Eq. 17.12b] can be found by

the same reasoning used for any other thread. . .whose point M’ is at the MD surface or not.”
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curves: MD is clearly defined by the body geometry, while FD is only the limit of

the stagnation zone, conjectured but not defined. He might have applied here the

hypothesis of the smallness of this zone.

Before continuing d’Alembert proposes obtaining the former equations by

another method: “somewhat more general than the previous one” [§.48]. The
difference is that in the previous method the calculations were made in the fluid

layer nearest to the body, which involved the body as a component in the process,

while now the calculations will be made in the fluid layer farthest from the body

with the only condition of axisymmetric motion. The differential element taken is

now in the midst of the fluid flow and isolated and separated from the body. It

consists of a fraction of a rectangular ring of radius z, with a width Δz and height

Δx, limited by two meridian planes forming an angle Δθ; which can be considered

almost as a parallelepiped (Fig. 17.5). This element will evolve in the fluid motion,

changing its position but maintaining its volume, except for differences of high

order. This idea will be used extensively by succeeding authors.

The initial volume of the differential element is ΔV¼ΔxΔz(zΔθ) and after an

interval of time dt the previous dimensions will change in factors of 1 + vF(∂q/∂x)
dt, 1 + vF(∂p/∂z)dt and 1 + vF(q/z)dt. By the constancy of the volume, in dt it will
vary in:

ΔxΔz zΔθð Þ ¼ z 1þ vT
∂q
∂x

dt

� �
1þ vT

∂p
∂z

dt

� �
1þ vT

p

z
dt

� �
Δθ ð17:13Þ

Calculating and eliminating the higher order terms, the expression already

known Eq. 17.8 is found again. Basically, there is a strong parallel with the former

procedure, since in both the continuity is the basis of the reasoning; here as a

differential element, there as layer of fluid. In both cases it is a kinetic construction.

In order to obtain the other equation, d’Alembert reduces the motion to a

hydrostatic equilibrium by applying the general principle considering the acceler-

ative forces γx and γz as a force field, because “these forces must destroy them-

selves” [§.48]. Then, applying the condition of hydrostatic equilibrium (Eq. 16.2) to

these forces, the result would be:

Fig. 17.5 Volume fluid in

motion
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∂γx
∂z

¼ ∂γz
∂x

ð17:14Þ

Considering Eq. 17.3a and 17.3b:

∂
∂z

q
∂q
∂x

þ p
∂q
∂z

� �
¼ ∂

∂x
q
∂p
∂x

þ p
∂p
∂z

� �
ð17:15Þ

Operating, we attain:

∂q
∂z

∂q
∂x

þ q
∂2

q

∂x∂z
þ ∂p

∂z
∂q
∂z

þ p
∂2

q

∂z2
¼ ∂p

∂z
∂p
∂x

þ p
∂2

p

∂x∂z
þ ∂q

∂x
∂p
∂x

þ q
∂2

p

∂x2
ð17:16Þ

Now, he affirms that this equation will occur if the two velocity equations

Eq. 17.8 and Eq. 17.11 are met. Taking the two expressions for the velocity

Eq. 17.1 as exact differentials and applying Eq. 17.11 to them, he finds

∂2
p

∂x2
¼ ∂2

q

∂z∂x
;

∂2
q

∂z2
¼ ∂2

p

∂x∂z
ð17:17Þ

We think that an easy way to arrive at these expression would be to derivate

Eq. 17.11 directly with respect to x and z. In any case, the Eq. 17.15 is simplified to:

∂q
∂z

∂q
∂x

þ ∂p
∂z

∂q
∂z

¼ ∂p
∂z

∂p
∂x

þ ∂q
∂x

∂p
∂x

ð17:18Þ

But in accordance with Eq. 17.1 and Eq. 17.11 both members of this equation are

equal to�p
z
∂q
∂z , “therefore the two quantities ∂γx/∂z and ∂γz/∂x are actually equal”.

[§.48].7

Summarizing, the equality of the cross derivatives of the acceleration is proven,

assuming the existence of the two velocity relations that are employed several times

in the developments, which we add is a quite elaborate and intricate procedure. This

means that these equations are a sufficient condition for the motion, although not a

necessary one. That is to say, there will be possible motions that do not follow these

hypotheses.

7Truesdell [1954], p. LIV, considered that this step is false because the d’Alembert principle only

can be applied when the solution is known by other methods. He found that the solution given by

Eq. 17.16 is more general that the former Eq. 17.11 and “to reconcile both he has to recourse to a

logical fallacy”; Truesdell thinks that this shows the “unreliability of the principle”. Grimberg

[1998], p. 51, rebuts these arguments stating that the use of the principle is rigorous, and that the

error that could be attributed to d’Alembert is to be interpreted in modern terms as saying that the

conservation of the acceleration field (Eq. 17.14) is irrotational, which is not always true.
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Apparently, as a sequel of the previous reasoning [§.49], he establishes a new

condition for Eq. 17.14. This condition is a remnant from theMss.51, where, as we
have said before, it was one of the proofs for the constancy of the velocity on the FN
curve. Here it is out of place.

Before going on to the next subject it is worth noting the modern form of

d’Alembert’s two equations. The first one Eq. 17.8 can be written as div ~v ¼ 0 or

∇ �~v ¼ 0,8 which means the constancy of the fluid contained in an element ΔxΔz in
its evolution with time, therefore the equation is also called a continuity. The

second equation Eq. 17.11 would be as rot ~v ¼ 0 or ∇�~v ¼ 0,9 which means

that the fluid element does not rotate with time,10 that is, the motion is irrotational.

In the case of a plane figure instead of a body of revolution [§.73] the equation
Eq. 17.11 remains the same but the Eq. 17.8 changes to:

�∂p
∂z

¼ ∂q
∂x

ð17:19Þ

This case is considered as if the fluid were flowing through a rectangular channel

bounded by the walls qh and QH (Fig. 17.1) and the planes qhQH, and another

plane parallel to it at some height; the body would be a cylinder whose section was

the figure given and which would cover the full height.

In this point we skipped the order followed in the Essay jumping until what we

estimate as the logical sequel: the determination of the functions q and p.

17.1.4 Determination of the Functions q and p

D’Alembert was not fully satisfied at having established the equations of p and q, so
he also tried to find a method to calculate them in practical cases. He knew that this

was a very difficult task, so he had the brilliant idea of drawing a bridge from here

up to a class of functions of complex variables, transforming the problem from real

to complex variables. These jumps from one field to another, opening up new roads,

are frequent in great mathematicians. However the difficulties remained and the

method of complex functions would not yield fruits until almost 150 year later.

First, he assumes the hypothesis that dq¼Mdx+Ndz and dp¼Ndx�Mdz
[§.57], and he proposes as a new mathematical problem of finding M and N,
being Mdx +Ndz and Ndx�Mdz exact differentials [§.58].

8The divergence of a vector field means the capacity of sinking or sourcing of a field element.
9The rotational means the rotation of one field element.

10It is easy to see that the side Δx of any element would turn in dt the angle ∂vz
∂x dt and Δz will turn

∂vx
∂z dt, consequently they must compensate each other.
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If the two former expressions are exact differentials; both Mdxþ Nidzi and

Nidx�Midz are as well.11 Introducing dx� idz and dx + idz as factors,12 that they
are also exact differentials, and carrying out several linear manipulations, it is

found:

Mdxþ Ndzþ i Ndx�Mdzð Þ ¼ M þ iNð Þ dx� idzð Þ ð17:20aÞ
Mdxþ Ndz� i Ndx�Mdzð Þ ¼ M � iNð Þ dxþ idzð Þ ð17:20bÞ

Which means:

M þ iN ¼ Φ Fþ x� izð Þ M � iN ¼ Ψ Gþ xþ izð Þ ð17:21Þ
Where both F and G are constants and Φ and Ψ are any complex functions. Next,

remembering that the velocity equations for the two-dimensional case were

(Eq. 17.19 and Eq. 17.11):

∂p
∂z

¼ �∂q
∂x

;
∂p
∂x

¼ ∂q
∂z

ð17:22a; bÞ

That means that both qdx + pdz and pdx� qdz are exact differentials [§.59] and
therefore applying Eq. 17.21 we have:

qþ ip ¼ Φ Fþ x� izð Þ ð17:23aÞ
q� ip ¼ Ψ Gþ xþ izð Þ ð17:23bÞ

In these expressions we find that the two components of the flow field have been

converted into a single complex variable q¼ q+ ip, or into its conjugate �q ¼ q� ip,
and the xz-plane in the complex z-plane, where z¼ x+ iz and �z ¼ x� iz. The result
is that the flow field now is expressed by a complex function q¼ q(z). The equations
Eq. 17.2a, b are the first occurrence of the Cauchy-Riemann equations.13 By

addition and subtraction of these and with some considerations that end by taking

both F and G as zero, the values of p and q can be separated as:

p ¼ �iξ x� izð Þ þ ζ x� izð Þ þ iξ xþ izð Þ þ ζ xþ izð Þ ð17:24aÞ
q ¼ iξ x� izð Þ þ iζ x� izð Þ þ ξ xþ izð Þ � ζ xþ izð Þ ð17:24bÞ

Now the problem of finding p and q has been transformed into a search for the

complex functions ξ(z) and ζ(z) which must depend exclusively on the geometry of

the body. The solution continues to be difficult, and to cope with this d’Alembert

assumes “as an example” [§.60] that both ξ and ζ are third degree polynomials with

11D’Alembert employed
ffiffiffiffiffiffiffi�1

p
to express the imaginary unit, but we will prefer the symbol i. This

one was used occasionally by Euler although it becomes of general application with Gauss in the

nineteenth century.
12In the Essay they are written as dxþ dz

i and dx� dz
i .

13Truesdell [1954], p. LV.
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unknown coefficients, ξ¼ az+ bz2 + cz3 and ζ ¼ e�zþ f �z2 þ g�z3. These formulas

once introduced in Eq. 17.24a and 17.24b and operating give p and q as poly-

nomials of third degree for p and of second degree for q with five different

coefficients.

At this point we would like to highlight that the introduction of complex variable

functions was a very noticeable contribution.14 The development of the complex

algebra was still in its early phases and had to wait until the next century for a full

understanding. The application of this method to two-dimensional aerodynamics

would come at the beginning of the twentieth Century, when Jukowski presented

the conformal transformation w¼ z+ 1/z which converted a circle and its already

known flow field from the z-plane to an airfoil in the w-plane. This allowed the

understanding of the aerodynamic lift and its relation with the velocity circulation,

as established by the theorem of Kutta-Jukowski.

Coming back to the expansion in complex series, he probably found it tedious to

deal with the successive development of (x� iz)n, but taking advantage of the

structure of the polynomials obtained previously, he changes to a direct expansion

of powers of x and z which seemed easier for computing [§.61]. So, p would be a

polynomial of degree m that must meet the well-known dq ¼ ∂q
∂x dxþ ∂q

∂z dz and

d pzð Þ ¼ z ∂q∂z dx� z ∂q∂x dz. Therefore:

p ¼
X
iþj�m

αijx
izj ð17:25Þ

In the Essay only a third degree polynomial is used, although the formula is

ended by an “etc”. Identifyingd pzð Þ ¼ ∂ pzð Þ
∂x dxþ ∂ pzð Þ

∂z dzwith the former d(pz) it will

give ∂q
∂x ¼ �1

z
∂ pzð Þ
∂z and ∂q

∂z ¼ 1
z
∂ pzð Þ
∂x that introduced in the definition of dq leads to:

dq ¼ �∂ pzð Þ
∂z

dx

z
þ ∂ pzð Þ

∂x
dz

z
ð17:26Þ

That expresses dq as function de p and is also an exact differential. Introducing

the p from the polynomial expansion in this expression, we reach:

dq ¼ dz
X

iαijx
i�1zj � dx

X
jþ 1ð Þαijxizj�1 ð17:27Þ

The condition of exact differential will be:

X
i i� 1ð Þαijxi�2zj � �

X
jþ 1ð Þ j� 1ð Þαijxizj�2 ð17:28Þ

This is actually an identity, so it must be accomplished for whatever x and z.
Expanding both sides we will have two polynomials, and equalizing the terms of the

14Morris Kline quotes this case as the first historical contribution of the complex variable functions

[Chap. 27], although complex numbers had already been used for solving other mathematical

problems.
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same power a certain number of linear equations among pairs of the coefficients αij
will be found. At the end we will have for the αij calculation a recurring formula

such as: (i+ 2)(i+ 1)αi+ 2, j+ ( j + 3)( j+ 1)αi, j+ 2¼ 0, jointly with α0j¼ 0 and α1j¼ 0.

For this, the final series for p will only have a limited number of terms with an even

smaller number of independent coefficients. In the case of m¼ 3, there are four

terms and three unknowns; written as p ¼ b0zþ e0xzþ h0x2z� 1
4
h0z3. In the case of

m¼ 4 there are seven terms and five unknowns and if m¼ 5 there are eleven and

eight respectively.

There is no mention for q in the Essay, although in theMss.58 it said that is very
easy to find it. Presumably going back through Eq. 17.26 and looking for a new

polynomial, such as q¼ ∑ βijx
izj, whose coefficients βij will be functions of the αij.

The practical way to calculate the αij for a given body, whose contour is defined
by the equation y¼ f(x) [§.62], will be to choose a certain number of points (xk, yk),
in accordance with the unknowns of the polynomial p. In each of them the velocity

is tangent, that is
pk
qk
¼ dy

dx

� �
k
¼ ηk, therefore we will have a set of equations as

pk� ηkqk¼ 0, each of them an homogenous polynomial in the unknowns α. The
solution of this system due to its homogeneousness will only give the relative

values of the α, but not the absolute ones, so an additional condition is needed

[§.63]. This will come from the equality ψ ¼ μþΩ� πΓz2L ¼ 0, defined in

Eq. 17.42. However, in this formula the positions of the two stagnation zones,

points xM and xL in Fig. 17.1, intervene directly and also through the calculation of

Ω and Γ, which will introduce two more unknowns. Besides, in both points the

velocity is zero, that is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
¼ 0, which would give the position of M and L,

and with such positions and ψ ¼ 0 the last unknown would be determined. How-

ever, we think that this was only wishful thinking on d’Alembert’s part, and very

likely the problem has no solution by means of this kind of polynomials. What is

more, there are more boundary conditions not mentioned in the Essay: such as that

upstream and downstream the velocity is uniform, which means that when

x¼ �1, then q¼ 1 and p¼ 0. Besides this is applicable laterally, either at

z¼ �1 or at the channel walls, if these walls exist. It is difficult to believe that

d’Alembert did not realise advert these incompatibilities, because he keeps insisting

that this solution was correct [§.74].
Nevertheless d’Alembert persists in the searching for a method to solve the

problem. The new idea is to concentrate the effort on the fluid thread adjacent to the

body [§.64], leaving out the rest of the fluid. On the surface p¼ ηq and also

pz¼ ηzq, “z being always the same as y”; which differentiated gives d(pz)¼ ηzdq
+ qηdz+ qzdη; introducing dη¼ ηxdx+ ηzdz and dq ¼ ∂q

∂x dxþ ∂q
∂z dz leads to:

d pzð Þ ¼ ηz
∂q
∂x

þ qzηx

� �
dxþ qηþ ηz

∂q
∂z

þ qzηz

� �
dz ð17:29Þ

This equation must be an identity, and he insists that identity means not only

equality but the equation must be expressed with the same symbols as the already

well known d pzð Þ ¼ z ∂q∂z dx� z ∂q∂x dz. That means the equality of the terms in dx and
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dz., therefore ∂q
∂z ¼ η ∂q

∂x þ qηx and �z ∂q∂x ¼ qηþ ηz ∂q∂z þ qzηz. From these two linear

equations ∂q/∂x and ∂q/∂z are obtained:

∂q
∂x

¼ �q

z

ηþ zηηx þ zηz
1þ η2

ð17:30aÞ
∂q
∂z

¼ �q

z

η2 þ ηηz � zηx
1þ η2

ð17:30bÞ

Introducing these equations in dq and after a chain of operations, bearing in mind

that p¼ ηq and the value of dη, the following equation results:

dq

q
¼ �dz

z
� ηzdx ð17:31Þ

This formula is simple and even elegant, and “it seems at first that nothing is

easier than determining q by this equation . . ., since ηz is calculated from η and this
is given by the equation of the curve dz/dx¼ η” [§.65]. However, d’Alembert warns

against this idea because “the ratio dz/dx can be expressed of an infinite numbers of

ways,... which are not identical although equal”. It is a consequence of the identity

requirement, because the same curve can be expressed algebraically by different

equations, and each of them will have also different formulations for η. As he points
out “η cannot be taken at will”. To prove it, two variants of the former Eq. 17.42

will resulted if dx is substituted using η¼ dz/dx, or ηz from dη¼ ηxdx+ ηzdz. These
two are:

dq

q
¼ �dz

z
� ηzdz

η
;

dq

q
¼ �dz

z
� dη

η
þ ηxdx

η
ð17:32a; bÞ

Each one give a different solution for q.
At this point let us quit a moment and look to the ηx and ηz parameters. The body

contour has been defined as a function as z¼ f(x), that can be expressed in a more

general way as C(x, z)¼ 0, in which the former is contained. The set Cx, Cz, Cxx, Cxz

and Czz are obtained by derivation as:

η ¼ �Cx

Cz
; ηx ¼ � ηCzx þ Cxx

Cz
; ηz ¼ � ηCzz þ Cxz

Cz
ð17:33Þ

The derivatives are expressed by sub-indexes in order to make the writing easier.

Obviously for the explicit case C� f(x)� z¼ 0, they are η¼ f
0
, ηx¼ f

0 0
and ηz¼ 0.

The circumference is presented as an example, the function C can adopt several

forms as x2 + z2� a2¼ 0 or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
� z ¼ 0 or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z2

p
� x ¼ 0, all of them

different. Consequently, the algebraic expressions of the η-derivatives will be also
different for each one, which is the reason for the diversity in the q functions.

The last attempt is to equalize, not to identify, the two former expansions of d
(pz), to obtain:
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ηz
∂q
∂x

þ qηxzþ qη2 þ η2z
∂q
∂z

þ zqηηz ¼ z
∂q
∂z

� ηz
∂q
∂x

ð17:34Þ

“But as the unknown ∂q/∂z remains to be determined, this method is perhaps not

very useful”. That closes his attempts for a solution.

For our part, before leaving this matter, we have to note a failure in this reasoning,

which lies in the assumption of the identity of d(pz) and d(ηzq) functions. The

phenomena is stated as limited to the adjacent layer to the body, which implies that

both dx and dy are not independent, but linked by the tangent condition, the aforesaid
dz¼ ηdx. It does not make sense to think of dηwith dx¼ 0 and dz 6¼ 0; rather it should

be dη¼ (ηx+ ηηz)dx¼ z
0 0
dx, which would affect the subsequent calculations.

17.1.5 Pressure Upon the Body

The pressures upon the body depend on the accelerative forces on its surface. At

any point, like D for example, this force has two components: the tangent and the

normal, named π and π
0
respectively. The pressure upon D is assumed as being the

sum of π along TD because the action of π
0
on the point is infinitely small; this

means that only the component
R
πds is significant [§.37]. But as π¼ � dvN/dt, the

question is reduced to finding vN along the line TD [§.38], and this velocity is

related to q and p by Eq. 17.1.

Therefore, once the functions p and q are known for a given body, the next step is
to calculate the pressures over its surface and the total force upon it [§.66]. From
p and q the velocity at the point N is vN ¼ vT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
and by means of the theorem

of Bernoulli (Eq. 16.8) the pressure would be: P� PT ¼ 1

2
ρv2T 1� p2 � q2

� �
. We

have included in this formula the density ρ and the pressure PT upstream where

p ¼ 0 and q ¼ 1; d’Alembert takes it as zero, which is the source of several

problems. Thus in the same article he indicates that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
must be less than one

along the threadMDL (Fig. 17.1), otherwise negative pressures would appear; but if

the calculations lead to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
> 1 in some points; then, it will necessary to seek

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
is maximum, which will happen when pdp+ qdq¼ 0, and to take

this point as reference. Calling it K, and k2 ¼ p2K þ q2K we have:

P� PK ¼ 1

2
ρv2T k2 � p2 � q2

� � ð17:35Þ

This can be interpreted either as he accepts negative pressures or that there must

be some pressure at infinity. His remark that “some readers may perhaps imagine

that the velocity along the thread MDL must be greater than vT; they can truly base

themselves on daily experience, seems to verify that the fluid accelerates when

turning around the body” [§.67] causes us some surprise However, if the calculation

indicates that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
< 1, the explanation is that “in this theory only the thread

that immediately touches the body surface is taken; this thread escapes observation,
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and it may be that threads which are at very little distance from the body have much

more velocity than it”. It seems just a pretext, we recall that something similar was

argued in the flow through a tube [§.30].
The force, which he calls total pressure, is obtained by the integration of

1

2
ρv2T2πy k2 � p2 � q2

� �
dy along the surface, this is the reason for using y instead

of z [§.68]. This integral will be:

φ ¼ 2π

ZL

M

k2 � p2 � q2
� �

ydyþ πk2y2M � πk2y2L

¼ �2π

ZL

M

p2 þ q2
� �

ydy

ð17:36Þ

Where the two stagnation areas are excluded because in them the velocity is null,

that is p ¼ q ¼ 0. In the case of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
< 1 the solution will be the same.

The value of φ depends only on the body shape and is independent of the

velocity, because the points M and L are independent as well. Then the “total

pressure” will be ρv2Tφ [§.68–69]. Let us observe the similitude with our present

formulation of the resistance as D ¼ 1

2
ρv2TCD, where CD is the drag coefficient.

Now we are faced with one of the most commented items in the history of Fluid

Dynamics: the paradox of d’Alembert, although it was not known by this name until

sometime later [§.70]. The paradox would embarrass scientists for more than a

century and a half.15 For a body with equatorial symmetry (Fig. 17.6), the slope at

Fig. 17.6 Symmetrical

body

15About this paradox cf. Simón Calero [1996] and Grimberg et al. [2008].
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the points V and V0 have the same value but different signs; therefore pV¼ pV0 and

qV¼ � qV0, so the integral element ( p2 + q2)ydy at V balances the corresponding

element at V0. Then if the arcs LD and DM were equal, the integral “would be equal

to zero, so that the body would not undergo any pressure from the fluid, which is

against experience”. Therefore these arcs cannot be equal, although at first glance

anybody could consider both as equal. To quote him “if we stand by the theory

alone, we would be moved to think . . . that these arcs must be equal in effect”. It is

clear that d’Alembert is rather surprised by this result and the only way to escape

from it is to assume some difference between these arcs. As experience also teaches

LD>DM,otherwise the pressure would be negative. He reverts to experiment once

again: “Hence it is clear how experiments are needed in the present question”.

Years later, in his his Opuscules Mathématiques,16 he will come back to this

problem under the title of “Paradox proposed to geometricians on the resistance of

fluids”. There he will avoid the stagnation zones by supposing the body to have a

small cone shape at both ends in order to eliminate the possibility of any arbitrary

assumptions to explain the vanishing of the resistance: it becomes a true paradox.

This surprising result had appeared before in Fluid Mechanics. Euler had arrived

at similar results in his commentaries to the translation of Robins’ Gunnery.
However, Euler had approached the problem using a method derived from the

impact theory, while d’Alembert, as we have seen, used the fluid field equations for

the first time. D’Alembert requires the equatorial symmetry of the body, while

Euler needs certain geometrical conditions at the ends of the body. In spite of their

differences, both tried to escape from this embarrassing conclusion, by imagining

the existence of fluid zones in which the theory is not satisfied.

The paradox was a matter of discussion during many years. Quite soon after,

Borda would touch the subject using the live forces to arrive at a similar solution.17

Almost a century later, Saint-Venant pointed to the viscosity as being responsible

for the resistance18; but the final answer came with Ludwig Prandtl, who introduced

the boundary layer concept in 1904.19

After the mathematical development, d’Alembert ponders on his solution of

which he is rather proud [§.74]. “It seems to me [it is] based on principles less vague

and less arbitrary than all the ones that have been given so far. Everything is

rigorously proven, and this is perhaps why it is so difficult to apply the calculation

to it [the problem of resistance] and to compare it with the experiment”. The last

sentence is surprising, but his concerns refer to the procedure used to find q and p by
approximations, a method “so long that it can discourage the most intrepid

16Vol. V, 1768 Memoire 34, I.
17Grimberg et al. [2008].
18Cf. Darrigol [2005], p. 134.
19With the “Über Flüssigkeitsbewegung bei sehr kleiner Reibung”, (Motion of Fluids with very

little Viscossity), Heidelberg, 1904. However, althought the boundary layer was a “breakthrought

to bridge the gap between theory and practice”, “it took years before the scope of the new theory

was recognized”, as Michael Eckert points out (p. 38).
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calculator”. He continues “However, I do not think a more direct and simple

method can be found for determining the resistance and fluids pressure, and I

even dare to assert that if this method does not agree with what will be found by

experiment, it should almost despair of finding the resistance of fluids by theory and

by the analytical calculation; since all the physical principles on which our analysis
is supported have been demonstrated in rigor”. This method is obviously the

assumption of the existence of the functions q and p, although “strictly speaking

that assumption can be disputed, but in this case all hope to determine the fluid

pressure by calculation and therefore by theory, must be renounced”.

We appreciate in these words a hint of insolence that differs from the spirit of the

author of the “Preliminary Title” of the Encyclopédie. We are inclined to consider

this article, which is without any precedent in the Manuscript, as an angry reaction

against the Academy of Berlin.

The analysis of the pressure upon a body should finish here, but there are two

articles that we have skipped [§.71–72], which deserve to be commented. In these

d’Alembert tries to show that according to experiment the perturbation induced by

the body is limited to the fluid layers nearest to the body. This idea is repeated

several times in the Essay, and is the final attempt at calculating q and p [§.64–65],
and in consequence the body resistance [§.85-4th] and also motions in plane

sections [§.101]. We think that the first occurrence of this idea was the statement

limiting the velocity field by a parallel line [§.36-1st]; which is repeated here as the
line TR (Fig. 17.6) “that separates the parts of the fluid where the velocity and

direction are not changed from those where the velocity and direction are changed”

[§.71]. Outside this line q¼ 1 and p¼ 0, and both velocity equations Eq. 17.8 y

Eq. 17.11 are met, therefore motions with this condition can exist, but it is an

additional condition rather than a theoretical hypothesis. As an common example

we can consider the motion in a channel whose walls were planes inside the fluid; it

is clear that qo¼ 1 and po¼ 0 outside the channel as before, while inside it would be

qi 6¼ 1 and pi 6¼ 0. That is to say the separation would be a discontinuity that must be

supported by a physical wall, otherwise it would disappear. Even more, moving this

wall closer to the body would change the streamline pattern- in order to comply

with the new conditions.

However, d’Alembert proposes a “common and simple experiment” to prove

that the separation line, TR in Fig. 17.6, is quite close to the body. The body will be

the bob of a pendulum which is placed in the middle of a channel, and which due to

the effect of the resistance is displaced from the vertical in a plane parallel to the

flow. Next, the pendulum is moved laterally “so that it is much closer to one wall

than the other”, and “[the bob] will seem to rise to the same level in a vertical plane

also passing through direction of the flow”. Therefore the forces around the body

are equal both when the pendulum is in the lateral or middle position. “Whereby it

results that the parts of fluid nearer to the body are the only ones where the motion is

changed significantly by the effect of the body”. This experiment could be carried

out and the practical extension of the perturbed zone could be shown with a very

careful measurement of the displacement angles, both in the sense of the stream and

perpendicular to it. However, no such experiment was made.
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In the next article [§.72] another even stranger experiment is proposed. A

floating body is placed in the bottom of a vessel full of water and the time it

takes to reach the surface is measured. He says that this time is always the same,

independently of its position, either near the walls or in the centre. If the pendulum

string deviation is not an easy task to measure, the determination of the velocity

would be even more difficult.

The article finishes with a rather striking argument. In accordance to the unique-

ness of the streamline field, the position of the line TR must be always at the same

distance from the body. However he adds “the experiment shows that when the

velocity is very small the motion and direction of the parts of the fluid are not

altered until a relatively small distance from the body. So in general, it is quite close

to the body, regardless of the velocity a”. This is a fallacy, because he is mixing

absolute and relative velocities. Besides, to propose an experiment, whatever it may

be, and to invent the results based on facts as vague and ambiguous as the

experiment is to act in a manner unworthy of him.

In an infinite and ideal fluid the body perturbation would spread until infinity,

although in a decreasing ratio. In practical terms, with real fluids such perturbation

vanished at a certain distance, as experience shows. This is probably what

d’Alembert wants to introduce it in order to comply with experience. However,

his concerns to restrain the body effect only to a very near part of the fluid are not

clear to us. We think it is an unnecessary proposition, because the pressure on the

body depends only on the fluid layer touching the surface, no matter how the rest of

the velocity field is.20

17.2 Impulsive Motion

The values obtained for q and p correspond to any instant of the motion, now “it is

good to know the values of p and q at the first instant” [§.50]. This leads to we have
called impulsive motion, which here he considers as” useful to determine the fluid

pressure”, and in some articles later on he insists is “absolutely necessary” [§.54].
This matter underwent an important modification from the Manuscript, because
there the impulsive motion was considered as a limit of accelerated motion and his

analysis included in the moving body case, while in the Essay they are separated,

resulting in and clearer but more elaborate view.21

20Just as an example, taking the sphere potential from Appendix, the velocity increment produced

by the body at the diametric plane perpendicular to the fluid velocity is vi¼ v0(a/z)
3/2; that is, 1/2 at

the surface, 1/16 at a radius and so on.
21TheMss.77–84 covers the moving body, which includes the impulsive case as part ofMss.83 and
some ofMss.80. Part of them plus many additions are integrated in the impulsive case of the Essay
[§.50–56]. The rest of theseManuscript articles are moved to the §.86–90 of the Essay, with minor

modifications. See the Annex II for more details.
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Both body and fluid are at rest. Suddenly the fluid receives an impulse so that it

jumps as a whole to a finite velocity. The question is to find out the effect produced

by the body upon the fluid parts [§.51]. This problem may seem strange at first

glance; however it was not only a mechanism to start the motion, but can also be

extended for the generation of non-steady motions. As far as we know, it is the first

time that this type of motion is presented.22

Two things are clear [§51]. First, that the fluid particles contiguous to the body

surface, EAD in Fig. 17.1, will be forced to change their direction, and the same will

apply to the neighbouring ones, at least until a certain distance. Second, a stagnation

zone will formed in the apex, represented as FAM. As a consequence the fluid

particles will describe the curves PiSi, which will be the same as those formed in the

case of moving fluid.

In the Essay two velocities are introduced, called U and u. The latter is clearly
the impact or jump, which we prefer to designate as uI, while the origin of U is not

clear. “A velocity parallel to AC equal toUq can be assumed in the parts of the fluid,

and another perpendicular to AC equal to Up, U being in a given ratio with u; such
that instead of Uq, it can be written uq and up instead of Up”. It seems to us that

U was a consequence of u through an unknown relation. We find some enlighten-

ment in theMss.83A.23 Here the body is not fixed but moves with a velocity v; then
once the fluid receives the velocity u there will be a relative fluid velocity V, which
can be broken down into Vq and Vp.24 It seems possible that in the new wording in

the French version, U takes the place of the former V, even when it was unneces-

sary. Therefore, we will have the same q(x, z) and p(x, z) as before, and the velocity
components uIq and uIp.

D’Alembert continues “Now it is necessary (art. 1) that the parts of the fluid

moving due to the velocities of tendency uI and –uIp, �uIq are in equilibrium. Now

then, the velocity uI being the same in all them, [therefore] they would be already in

equilibrium in virtue of the single velocity of tendency uI. Therefore they must be in

equilibrium in virtue of the singles velocities–uIp, �uIq”. We find the expression

“velocity of tendency” for the first time in the Essay,25 and that it is associated with
the equilibrium. Firode points out that d’Alembert makes use of this notion for

explaining the equilibrium of two bodies at rest which could be moved.26 Besides,

we also remember that the mentioned art. 1, deals with the response and equilib-

rium conditions of a system of bodies to applied velocities [§.1]. Therefore, if uI
induces uIp and uIq, according with the art.1 the system would be in equilibrium

22Truesdell [1954], p. LIV, said that this type of motion was asserted by Lagrange and Cauchy

years later.
23We have divided the Mss.83 in three parts; 83A up to “perpendicular et ¼ vp”; 83B up to “Ergo

A0 ¼ B”; 83C the rest.
24In Mss.83A says that V is composed of qv and pv. Probably it is a misprint.
25It will appears once more in §.88.
26Cf. p. 32. He quotes the Traité de dynamique (p. xiv) “All geometricians agree that two bodies,

whose directions are opposite, are in equilibrium when their masses are in an inverse ratio to the

velocities which they tend to move with.”
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applying �uIp and �uIq. We have given the expression
X�

mi~vi
00 � mi~φidt

� ¼ 0

to explain this. In the present circumstances~vi
00 ¼ uI, which reduces the formula to

MuI �
X

mi~φidt ¼ 0, being M¼ ∑mi and that in some way the last sentence

justifies the quote: the equilibrium in virtue of –uIp, �uIq. Next he goes on to

analyse the equilibrium of the channel MNnm (Fig. 17.8). In the Mss.83, he arrives
at the same point but he jumps directly to it from the mention of art. 1.

For clarification, we can imagine a body inside an accelerated fluid as in

Fig. 17.7. If both fluid and body densities were equal, they would move together

without any relative velocity. As result, the acceleration _u F will produce a pressure

varying linearly and decreasing to the rear of the body; therefore the body will be

subjected to a force FV ¼ ρFVB _u F, similar somehow to a buoyancy force, which

must be equal to the inertia force FI. Though if the body density was greater than the

fluid one, it would move with the acceleration _u B, which means _u F � _u B relative to

the fluid and a new force ρFχ
�
_u F � _u B

�
would appear, where χ is the resistance or

pressure coefficient for accelerated motion, which plays the same role that φ does

for the constant velocity. So the new equilibrium equation would be:

ρFVB _u F þ ρFχ
�
_u F � _u B

�� FE ¼ ρBVB _u B ð17:37Þ

Fig. 17.8 Impulsive

pressures

Fig. 17.7 Body in an

accelerated fluid
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Where FE represents any other external force which might exist. If the body were to

stay motionless, that is to say _u B ¼ 0, the following must occur:

FE ¼ ρF VBþχð Þ _u F ð17:38Þ
The first addend is the buoyancy produced by the acceleration in the entire fluid,

and the second is due to the body itself, and more precisely to the streamline field

generated. If _u F ¼ 0, then

FE ¼ � ρFχ þ ρBVBð Þ _u B ð17:39Þ
According to this formula, the acceleration resistance can be interpreted as the

body mass ρBVB increased by ρFχ. Then this last term is often called added or

virtual mass, which can be explained as the consequence of the kinetic energy

transferred to the fluid. This effect is important in phenomena where the body and

fluid density are comparable, such as in naval architecture or turbo-machinery and it

is very relevant in motions with air bubbles.

The equation � ∂p
∂z ¼ ∂q

∂x þ p
z (Eq. 17.8) is obtained here from the constancy

condition as in Fig. 17.5 and Eq. 17.13. We recall that it is based on the continuity

principle, whose physical conception is also applicable to the impulsions. However,

it is not possible to say the same about the forces. In the moving fluid they were

derived from the Bernoulli equation (Eq. 16.8) for steady state, which is not suitable

here. The way that d’Alembert follows is to calculate the impulsive pressures in the

closed channel MNnm, represented separately in Fig. 17.8, and establishing the

condition that the pressure at pointm from Nmust be equal along both Nnm or NMm
[§.51]. That is: ΔpNn+Δpnm¼ΔpNM +ΔpMm; but ΔpNn¼ΔpNR+ΔpRn and

ΔpMm¼ΔpMr+Δprm, so the equation can be reorganized as:

ΔpNM � Δpnmð Þ þ ΔpMr � ΔpNRð Þ þ Δprm � ΔpRnð Þ ¼ 0 ð17:40Þ
It includes only terms on segments parallel to axis X or Z, and they are also

grouped conveniently.

In order to obtain the difference in impulsive pressure between two near points,

we will use the Bernoulli equation now for a non-steady motion (Eq. 16.9). If these

two points are separated by the distance Δx, the searched pressure will be

ΔpΔx ¼ �ρΔx _u . We can consider uI ¼ _u τ with τ! 0, therefore ΔpΔxτ¼ � ρΔxuI
in general, but if we consider the generic Δx as lx or lz and the corresponding

velocities as uIq and uIp, the jumps in pressure in the directions of X and Z become

–ρuIqlx and –ρuIplz respectively; which can be represented as �lxq and �lzp
omitting the other factors that are constant, and the impulsive pressures are related

to the geometry.

Coming back to Eq. 17.40 and the Fig. 17.8, the channel width NM is w, which
was defined by πw2

T ¼ 2πzw (Eq. 17.4), and the segment Rn in found by dz/dx¼ p/q
at the point N. To obtain nm and rm. we must use dw and d( p/q). With all these

observations it is easy to arrive at:

Δpnm � ΔpNM ¼ d wpð Þ ¼ w2
T

2
d

p

qz

� �
ð17:41aÞ
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ΔpMr � ΔpNR ¼ w
∂q
∂z

dx ¼ w2
T

2qz

∂q
∂z

dx ð17:41bÞ

Δprm � ΔpRn ¼ w
∂
∂z

p2

q

� �
dx ¼ w2

T

2qz

∂
∂z

p2

q

� �
dx ð17:41cÞ

Which introduced in Eq. 17.40 gives:

�d
p

qz

� �
þ 1

qz

∂q
∂z

dxþ 1

qz

∂
∂z

p2

q

� �
dx ¼ 0 ð17:42Þ

Operating this formula with the aim of eliminating ∂p/∂z, and leaving only dx as

factor, we arrive at ∂p
∂x ¼ ∂q

∂z already found in Eq. 17.11. Summarizing, the velocity

field is equal and ruled by the same equations; in his own words “the quantities p and
q are found at the first instant by the same equations as in the following instants”.

To find the pressures generated in the first instant of the impulsive motion it is

considered “absolutely necessary for determining of the quantities p and q” [§.54]. For
the pressure along a streamline d’Alembert makes use of the Bernoulli equation in a

non-steady motion Eq. 16.9, whose term �ρS0
du0
dt

Zx

x0

dx

S
is converted to pI¼ ρ

R
vds

taken du0
dt ! vI. In the Mss.80 the body was moving under acceleration, and the

pressure had one term for the steady motion and another for the non-steady one

which is not necessarily impulsive.27 Expanding the formula for the impulsive

component28:

pI ¼
I

ρvIds ¼ ρuI

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p2

p
ds ¼ ρuI

I
qdxþ pdy ð17:43Þ

This integral is extended along any streamline and in particular on the body

contour. Taking the point M, in which the front stagnation zone APM finished

(Fig. 17.9), as reference, the pressure would be: p xð Þ ¼ pM þ ρuI

I x

xM

qdxþ pdy.

Therefore, the force, or pressure as he calls it, upon the body turns out to be:

FB ¼ ρuI

Z
PMLI

2πyp xð Þdy

¼ ρuI

Z
PMDLI

2πy pM þ ρuI

Ix

xM

qdxþ pdy

0
@

1
Ady

ð17:44Þ

27The pressure at a point is �ρdudt
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2
p

dsþ ρu
2

2
1� p2 þ q2ð Þ, Mss.80.

28We have: ds2¼ dx2 + dy2 and ¼ uI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p2

p
dt, dx¼ uIqdt, dy¼ uIpdt, and soffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ p2
p

ds ¼ qdxþ pdy.
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The part of the integral due to pM is zero, as well as the part upon the front PM.

For the rear IL the pressure from C to A is constant over the circle of radius yL. The
calculation in the Essay is a bit confused due to handling of the integral limits. This

is done with the help of two functions:

Γ ¼
I xL

xM

pdyþ qdx ð17:45aÞ

Ω ¼
Z xL

xM

2πrdr

I x

xM

pdyþ qdx ð17:45bÞ

In accordance with Eq. 17.38 χ ¼ Ω� πy2LΓ, and including the term of the

volume, the “pressure at the first instant” will be:

DI ¼ ρuI VB þΩ� πΓy2L
� � ¼ ρuIψ ð17:46Þ

This formula can also be used when the velocity is variable, u(t), because the

velocity can be assumed as the successive application of duI differential increments

to match u(t) [§.56]. Besides, the formula can also be applied to accelerated

motions, like D ¼ ρψ _u [§.88] or in Mss.80. This fact, which the force upon an

accelerated body is proportional to the acceleration and to a factor ψ , has to be

recognized as a very important finding for d’Alembert. This factor has two addends:

Fig. 17.9 Body in fluid

impulsion

17 Resistance of a Body Moving in a Fluid 213



the body volume plusΩ� πΓy2L, by which it can be understood as a virtual or added
volume.29

Nevertheless, and regrettably, he will ruin the merit of this finding in the next

article, in which he aims to prove that this force is zero. Here we reproduce the

article integrally.

It can be easily proved by the experiment that μ+Ω� πΓb2¼ 0 [VB þΩ� πΓy2L ¼ 0
	
.

Because a weight may be found which is capable, by its own mass, of keeping the body

ADCE in equilibrium from the first instant of the impulse of the fluid, and to prevent that,

the body is set in motion by this impulse. Now then, the action of a weight that is in

equilibrium is equivalent to a finite mass animated by an infinitely small velocity. There-

fore, the force with which the weight will be in equilibrium will also be infinitely small,

thus the quantity uδ(μ +Ω� πΓb2) [ρuI VB þΩ� πΓy2L
� �

] must be equivalent to a finite

mass animated by an infinitely small velocity, or an infinitely small mass animated by a

finite velocity. So since the velocity u is finite, then it follows that uδ(μ+Ω� πΓb2) [ρuI
VB þΩ� πΓy2L
� �

] should be necessarily infinitely small; that is equal to zero. [§.55].

The first sentence is rather surprising because he invokes the experiment in order

to contradict something that has been proved mathematically; and even more, the

experimental proof comes in the form of an imaginary or thought experiment. The

idea is to support the impulsive effect upon the body by means of a weight. In

Fig. 17.10 we depict our interpretation of this experiment or measuring device; it

consists in a beam balance which will transfer the momentum received by the body

through a lever to a mass. The lever is assumed to have equal arms for simplicity. It

Fig. 17.10 Imaginary

apparatus

29As an exercise, we can apply the above formula ψ to one sphere. The velocity potential for it is

given in Annex I in spherical coordinates as v ¼ �R2

r3 cos θ; although it would be more easier to

work with this type of coordinates, we have transform this formula to cylindrical coordinates.

Then,q ¼ �R3

2
x2 þ y2ð Þ�3

2 þ 3R3x2

2
x2 þ y2ð Þ�5

2 andp ¼ 3R3xz
2

x2 þ y2ð Þ�5
2. On the contour x2 + y2¼R2

is xdx+ ydy¼ 0 and we have q½ 	C ¼ �1
2
þ x2

R2 and p½ 	C ¼ 3
2
xy
R2; and pdyþ qdx½ 	C ¼ �1

2
. Operating we

obtain for ψ ¼ π
4

3
πR3 � x3L

6
þ x3M

6
� R2

2
xM � xLð Þ


 �
; which for the case without stagnation zones,

xM¼ �R and xL¼R gives ψ ¼ 4
3
πR3 þ 2

3
πR3 ¼ 2πR3. That means an added mass equivalent to

half a sphere; this result coincides with the one given in the Annex I.
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is obvious that initially the system must be maintained at rest by a kind of fixing S,
otherwise the weight will fall down.

Physically, a percussion on the body will induce an instantaneous velocity vu in
the system formed by the body mass mB¼ ρBVB and the weight mass mw, according

to the relation ρuIψ ¼ (mB+mW)vu. More realistically the system will have no

velocity in the first instant, but the weight W will start moving upwards and the

body to the right. In addition they are both submitted to an acceleration gmW/

(mB +mW) due to the gravity acting upon W, and in consequence both will keep

moving during a time tu ¼ ρuIψ
gmW

, which is the time taken to transfer the fluid impulse

ρuIψ to potential energy. Next the motion would reverse to the initial position if we

ignore the resistance in the steady state motion. We can see that the only way to

prevent motion would be to use an infinity weight. This is the first error. In the case

of considering that the resistance after the impulsion is ρφu2, as he does later [§.88],
this force would be transmitted to the right hand lever of the balance, so that the

vertical force would be mwg� ρφu2, thus the evolution of the system would depend

on the sign of this quantity.

Next comes the equivalence of the action of a generic weight in equilibrium to a

finite mass animated by a infinitely small velocity. But what does “the action of a

weight in equilibrium” mean? This reminds us of the virtual works principle used in

the Traité de Dynamique as we have explained previously, where the action of

powers was understood to be the mass times velocity. Thus, if the generic weight

was Wand the m the finite mass, the necessary power to keep the weight in

equilibrium during the instant δt would be δF¼mδv¼Wδt. He continues by saying
that this force is infinitely small, which is correct, but it acts in an infinitely small

time, thus to maintain the situation permanently an accelerative force δv/δt would
be needed. Translating this to our case, δFwould be the force upon the body, so that

δF¼ δ(ρψuI), which we understand should be δ(ρψuI)¼ ρψδuI, and δuI could be

either a differential impulse as in [§.56] or δuI ¼ _u δt a constant acceleration, which
is the same thing; in either case the weightWwould be in equilibrium. However, his

assessment is different. He considers that the virtual force δF can be understood in

two ways δF¼mδv or δF¼ vδm: one with an infinitely small velocity and a finite

mass and the second one the reverse. It is clear that mathematically this is correct,

but not physically as the motion allowed to the massmmust be infinitesimal. This is

the second error. Then he ponders ρψuI as being equivalent to one of these two

possibilities, and he takes the second as being the valid one, arguing that uI is finite.
But in addition to what we have said, uI is the velocity of the fluid, and not the

virtual velocity of the body. This is the third error.

The reasoning given in the Mss. 83 had some differences. The body is free

without any counterbalance weight. The impulse uI produces a velocity v on the

body and the pressure ρψv, which must be equal to the quantity of motion lost by

the body, so ρBVB uI � vð Þ ¼ ρv VB þΩ� πΓy2L
� �

. “However the experiment con-

firms that the velocity lost in the fluid motion in the first instant is infinity small,

which clearly agrees with this principle: nothing in nature is done by leaps, all
change in motion is resolved by insensitive degrees. Therefore uI� v¼ 0;
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consequently ρv VB þΩ� πΓy2L
� � ¼ 0”.30 We see that he had accepted the transfer

of momentum, only he says it is null because it goes against the continuity principle

and the supposed experiment. The incongruence is obvious: following this principle

it will be impossible to produce the jump uI. Furthermore, he is inventing the result

of an experiment that was not carried out.

Summarizing, we find his entire reasoning weak and tricky, belittling his previ-

ous contribution. We have to say again that in our opinion this is his biggest mistake

and we are unable to justify the causes that led him to introduce these strange

reasons. Even more, he likes to boast of himself, sometimes arrogantly, as the

champion of rigorous reasoning, so then why does he renounce all these principles?

17.3 Body in Motion

This is the third phase of the process. The body is set in motion by an initial

velocity; but this motion will be slowed down due to the effect of the fluid, and

consequently will move with a non-uniform velocity. This is important, because the

resistance undergone by the body will be equal to the rate of the momentum lost by

it. Thus we have the initial velocity vB0, the instantaneous one vB(t) and the space

traversed r(t). Now, the theorems obtained for a set of individual bodies [§.6–9] are
applicable to this system. Basically they establish that the entire set of trajectories

induced by the motion of a single body is unique, irrespective the magnitude of the

initial velocity, and depending only on the space traversed by that body. This is

complemented by the laws for the velocity �dvB/vB¼ ξ(r)dr and for the resistance

R ¼ ξ rð Þv2B. All these parameters are referred to axis fixed to the fluid; however,

d’Alembert will try to prove that the flow pattern relative to the moving body is

constant and equal to the one already obtained in the two previous phases [§.86].
We make a presentation of the problem with the help of Fig. 17.11.

Both fixed (XZ) and body (XY) axis are positive to the right side, while the body
moves to the left, which means that the depicted velocity vB is negative. A fluid

particle, such as P, will traverse a closed trajectory P0P1P2P3 with a velocity ~UP

relative to the fixed axis, induced by the approaching body. The trajectory starts at

P0, reaching the maximum at P2, when the body is just behind it, and comes back to

P0 again when it is far away on the left side. Moreover from the previous [§.8], ~UP

depends on the body position r and also on its initial velocity vB0. That is to say
~UP ¼ ~UP vB0; rð Þ. Then, considering the motion relatively to the body axis, the

above particle P will have a relative velocity~v and will follow a trajectory like the

30Experientia autem constat velocitatem quam in fluido motum amissit primo instant, esse infinite

parvam, quod quidem huic alteri principio congruit, nihil in natura per saltum fieri, omnem, que

motus mutationem per gradus insensibiles absolvi. Ergo u� v¼ 0, proinde VB þΩ� πΓy2L¼0.

Mss.83C.
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curve TNSF. Therefore the absolute velocity will be ~UP ¼ ~vþ~vB, whose compo-

nents along both axis are vB+ vx and vz.
Now, as the trajectories only depend on the modulus of the initial velocity vB0,

31

as expressed in [§.6], the rates (vB + vx)/vB and vz/vB are functions of the relative

position of the particle with respect to the body and of the space traversed

by it, depicted as ~p and r [§.86]. However, the body velocity also has to meet

�dvB/vB¼ ξ(r)dr [§.6], therefore both vx/vB and vz/vB will depend on the position

and the initial velocity vB0. In these circumstances he poses the question whether

vB0 would disappear in vx/vz or not. He points out that this happens in the body

contour y(x), because on it dy/dx¼ vz/vx. “Then let us suppose at first that the

quantity vB0 is not found in the ratio of vx to vB and vz to vB and let us see what

will result from this hypothesis” [§.86].
The first thing is to define the functions q and p as vx¼ vBq and vz¼ vBp. Next,

taking a point as reference like N, a parallelepiped similar to Fig. 17.5 is placed here

and the constancy of the fluid enclosed is applied in the same way as in [§.48]. We

need not repeat all the formulation, already given in Eq. 17.8, and the result is ∂p
∂z

¼ � ∂q
∂x � p

z .

The following step is to analyse the acceleration in a streamline passing by N, as
was shown in Fig. 17.3, and applying a reasoning as in [§.43]. However, in deriving
the acceleration it must be taken into account that vB changes with time; that is γx
¼ dvx

dt ¼ d vBqð Þ
dt and γz ¼ dvz

dt ¼ d vBpð Þ
dt , therefore the term dvB

dt has to be added to γx as
32:

γx ¼
dvB
dt

þ q
dvB
dt

þ vB
2 q

∂q
∂x

þ p
∂q
∂z

� �
ð17:47aÞ

γz ¼ p
dvB
dt

þ vB
2 q

∂p
∂x

þ p
∂p
∂z

� �
ð17:47bÞ

Fig. 17.11 Body moving in fluid

31D’Alembert understands this dependency taking the body velocity as vB0/g, being g a factor.
32In the Essay §.86 the body’s velocity is taken positive towards the left. This explains the

difference in signs of our formulas Eq. 17.47a and 17.47b.
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This will take the place of the Eq. 17.3a and 17.3b, although with additional

terms. Appling the cross derivatives condition Eq. 16.2, as had been done in [§.48],
we will arrive at the new equation that replaces Eq. 17.25:

dvB
dt

∂q
∂z

þ vB
2 ∂
∂z

q
∂q
∂x

þ p
∂q
∂z

� �
¼ dvB

dt

∂p
∂x

þ vB
2 ∂
∂x

q
∂p
∂x

þ p
∂p
∂z

� �
ð17:48Þ

The dvB
dt has no effect in this equation since it affects the entire fluid. As q and p do

not depend on the velocity vB, the former can be split in two equalities, one equal to

the former Eq. 17.25 and subjected to the same reasoning, and the other:

dvB
dt

∂q
∂z

¼ dvB
dt

∂p
∂x

ð17:49Þ

This has the solution ∂q
∂z ¼ ∂p

∂x. Consequently the set of streamlines around the

body is identical whether it is the body or the fluid moving or at rest, leaving open

the possibility, at least in theory, for the calculation of the velocities.

Nevertheless, before proceeding, let us go back to the assumption of vx¼ vBq
and vz¼ vBp [§.87]. Given the above mentioned reasons of dependency of vB on vB0,
he proposes an alternative formulation like vx¼ qκ(vB0) and vz¼ pκ(vB0), being κ
any function. The final equations would be the same and the pressures would be

proportional to v2Bκ vB0ð Þ2, “which should not be surprising, since in general the

resistance R (article 9) is proportional to ξu2”. Besides, he says that κ(vB0)¼ 1 will

be proven in the subsequent articles.

Now, after all that had been said, d’Alembert heads straight on to determine the

fluid resistance; the next articles [§.88–90] are very important items in his thoughts.

The main idea is to apply to the whole fluid and body system an impulse velocity

equal in magnitude to what the body has, but in the opposite direction. After that

operation, the body will be left at rest and the fluid will strike it at the velocity vB,
“but for the primitive laws of motion, the fluid pressure on the body will not be

changed” [§.88]. The situation is converted into the case of fluid in motion and body

at rest, in which the fluid pressure upon the body could be calculated, at least at

theory. But, to which “primitive laws of motion” does he refer? However, the body

was not moving at constant velocity, but with an acceleration _v B ; therefore, the

body is only motionless for an instant, and to keep this state an additional differ-

ential impulse must be given to this system, which will be precisely � _v Bdt. In the

Essay this is expressed as “any accelerating or retarding force proportional to kdt”
acts in every instant upon the parts of the fluid”, which will not disturb the

streamline pattern, as was said in [§.56], and it will increase or decrease the velocity
proportionally to kdt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
. Now, this kdt, called “velocity of tendency”, will

produce a pressure of kdt VB þΩ� πΓy2L
� �

, but as he has taken ψ ¼ VB þΩ� πΓ
y2L as zero [§.55] the pressure is null. Two small comments: in the next paragraphs

dvB/dt will take the place of k, and the expression “velocity of tendency” had been

also used in the impulsive motion [§.51].
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Summarizing, the pressure at any instant will contain two addends. One, ρφv2B
coming from the velocity; the other, ρ _v Bψ from the “variable velocity”, that is _v B.

Both φ and ψ have been defined in Eq. 17.36 and Eq. 17.46 respectively. However,

as he has taken ψ ¼ 0, the “fluid pressure” is only proportional to v2B. Additionally,
κ(vB0)¼ 1, as he had announced in [§.87].

He argues that all authors of hydraulics had taken “for principle that the

resistance of a moving body in a fluid is equal to the pressure that this fluid, moving

with the same velocity, exerts against the body assumed at rest” [§.88].33

D’Alembert claims that they have not paid to attention the situation where the

velocity is variable, and therefor there will be an additional term of resistance

proportional to _v B, besides another term proportional to v2B. Furthermore, he

continues saying that these authors have only proved the proportionality with v2B
“in a very vague way”. We think this is very important because it is the first time, as

far we know, that these two components are found although he had taken the second

as zero. He considers a merit for himself to have proved “that the coefficient of dvB/
dt is zero, and that the coefficient φ of v2B is always the same, no matter what vB is”.

Before entering into the calculation of resistance, we wish to mention that until

now, the forces or pressures upon the body have been translated to the pressure

exerted by fluid in motion, which in turn are also referred to the forces of gravity.

However, the resistance undergone by the body must be equal to the momentum lost

by it, or, in a clear Newtonian reference, the mass times acceleration. Thus [§.89], at
any instant, this force will be ρBVBdvB/dt, being VBthe volume of the body and ρB the
density. This force must be balanced by the pressure [ρφv2B þ ρψdvB=dt]. That is:

ρBVB
dvB
dt

þ ρψ
dvB
dt

þ ρφvB
2 ¼ 0 ð17:50Þ

He insists on ψ ¼ 0, but the term is included in the equation, which to our

understanding means that the main fact is the existence of the term itself. So the

former equation becomes the well-known expression:

ρBVB
dvB
dt

þ ρφvB
2 ¼ 0 ð17:51Þ

The arguments are repeated in the next article [§.90], but it is worth noting the

statement: “This did not seem easy to prove [that ψ ¼ 0], because of the difficulty of

expressing the quantities Γ and Ω analytically; but fortunately we have arrived at

the end for the consideration of the primitive velocity of the body, without needing

to know these quantities”. The sentence “primitive velocity of the body” looks

33We assume that among the mentioned authors of hydraulics Newton was included as he had

stated that “the action of a medium upon a body is the same (by Cor. V of the Laws) whether the

body moves in a quiescent medium or whether the particles of the medium impinge with the same

velocity upon the quiescent body” [Book 2, Prop. XXXIV].
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obscure, but it seems that he was fully convinced that the term in _v B must be null in

any case.

In all the previous calculation both fluid and body were considered weightless. If

the gravity is assumed as acting along the X axis, all the reasoning will be the same,

but two additional terms will appear, one coming from the weight of the body and

other from its buoyancy. That means that the pressure ρφu2 must be incremented in

gVB(ρB� ρ) [§.91].
Before leaving what is for us the more relevant part of the Essay, it is time for

some reflections. We have to acknowledge the merit of d’Alembert in how he was

able to determine the resistance leaving aside the forces as physical entities which

he does not deny, but avoids for their “metaphysical” character. We recognize as

truly brilliant how the fluid resistance, which is loss of momentum, is transferred to

the pressures, which are backed by the gravity. Besides, along the way he found

how the resistance was also affected by the acceleration; which proved that the

reversibility fluid-body was not applicable to non-steady motions. For all this he

deserves to be praised. However, adducing contrived reasons in an indirect way, he

pretends to have proven that the acceleration effect was null. We regret that he

misunderstood the true consequences of his former development; furthermore, we

say again and for the last time, this was his major mistake in the entire Essay. For
this he deserves to be criticized. Two faces of the same great man. We do not know

the opinions of his contemporaries concerning this problem; in particular we would

like to know if Euler noticed anything. Among his modern scholars, Dugas and

Truesdell comment on it, but they only say that he was wrong.34

34Dugas [1952], p. 11 and Truesdell [1954], p. LVI.
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Chapter 18

Other Resistances and Fluids

18.1 Friction and Viscosity

The resistance analysed until now comes from the transfer of momentum between

fluid and body and it can be understood as being derived from the inertia of matter.

However, the authors knew that there were other sources of resistance related to the

properties of the fluids, as yet not well known, and named with ambiguous terms

like lubricity, slipperiness, fluidity or viscosity. As one example, apart from the

resistance due to the inertia, Newton spoke of two more arising from the viscosity

and friction,1 assuming the first to be constant and the second proportional to the

“moment of time”, that is the velocity.2 Later he identified “the resistance arising

from the want of lubricity” as proportional to the velocity gradient,3 which is how

the viscosity is understand nowadays.

D’Alembert starts assuming that “the friction of the fluid over the body may only

come from the relative velocity of the fluid respect to the body” and that the friction

is proportional to the velocity according to the experiments made by

Musschenbroek [§.92].4 Therefore the friction must be proportional to the velocity

as μv, being μ a coefficient to be determined experimentally. Consequently the

forces at any point of a body must be decreased by �μvBq and �μvBp along the

respective axis; that means that. The quantities�μvB
∂q
∂z and�μvB

∂p
∂x must be added

at the left and right sides of equation Eq. 17.48. The calculation of the pressure due

to μvBq and μvBp over the body surface is mathematically equivalent to the effect of

1Principia, Book 2, Prop. XL, Sch., p. 366.
2Ibid. Prop. XIV, Sch.
3Ibid. Sec. IX, Hypothesis.
4He did not specify what these experiments were. We have browsed both the Elementa Physicæ
and the Essai de Physique without success.
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the impulsive velocity already studied, so

Z
Σ
~vd~σ ¼ vB Ω� πΓy2L

� �
; withΩ and Γ as

defined in Eq. 17.45a, b. And according to his supposition ψ ¼ VB �Ωþ πΓy2L
¼ 0 it follows that Ω� πΓy2L ¼ VB. Thus including the gravity as well, the

equivalent to formula Eq. 17.51 would be:

ρBVB
dvB
dt

þ ρφv2B þ gVB ρB � ρð Þ þ λρvBVB ¼ 0 ð18:1Þ

But besides this force of friction, there is another resistance, “that comes from

the viscosity of the parts of fluid; and, as far as we can conjecture from all

experiments” [§.93]. Proofs of its existence are the floatability of bodies heavier

than water and the drop retention when they adhere to the lower surface of a body.

Nowadays we know that these phenomena derive from the superficial tension,

something unknown to at this time. However, it seems as if d’Alembert had some

doubts about it; we think that it was easier for him to understand the resistance due

to the friction, rather than the one derived from the viscosity, because “whether it

comes from a compressive force or from the attraction of parties, [it] is a constant

force such as gravity, though very small compared to it”. In this way he raises an

objection to the constancy of this force because a pendulum moving in water should

stop not at the vertical, but instead close to it due to this constant force. The answer

given is that the angle would be very small and not easy to observe. But in its favour

he says that it is “a truth that seems consistent with reason, and which is supported

by an infinity of experiments”.

Next, he takes a lengthy commentary on the experiments and ideas of ‘s
Gravesande about this matter [§.93].5 We will comment later on these experiments,

but as d’Alembert explains, that author tried to determine the relative value of the

two components of the pressure of a fluid moving against a body at rest: one

proportional to the single velocity v, and due to the fluid viscosity, and the other

to its square v2, due to the force of inertia, something like k1v+ k2v
2. However, for

the case of a body moving in a fluid, ‘s Gravesande thought that the term k1v should
be substituted by a constant one, otherwise the body would never stop. This is

mathematically correct, as d’Alembert says, but he puts the question of how it can

be explained that in one case the viscosity produces a force proportional to the

velocity, and in the other case it is constant. He found ‘s Gravesande’s arguments

obscure if the viscosity is understood as the force that particles oppose to being

divided, as he thinks. Thus, when the body moves it must separate the particles and

this makes it lose velocity, but in the other case the viscosity seems more a passive

force rather than an active one. After some more reflections he ends by admitting

that the viscosity is equivalent to increasing the weight of the fluid.

Calling κρ to this force, the former equation became [§.94]:

5Physices Elementa Mathematica Experimentis Confiermata.
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ρBVB
dvB
dt

þ ρφv2B þ gVB ρB � ρð Þ þ λρvBVB þ κρ ¼ 0 ð18:2Þ

This general equation of the motion can be reduced to the type �du
αu2þβuþγ ¼ dt,

which had been study previously and whose solution is
uþkð Þ gþk0ð Þ
uþk0ð Þ gþkð Þ ¼ e�αt k�k0ð Þ. The

problem is now reduced to the analysis, therefore he leaves it and goes on to other

researches, though he notes that he came to this formula by an entirely new method.

As a final comment, neither of these sources of friction or viscosity has

supported the test of time. The only one that has prevailed is the interpretation of

the viscosity as proportional to the velocity gradient, which was established by

Newton in the vortex motion,6 but it was not included in the theories until many

years later.

18.2 Resistance in Non-elastic and Finite Fluids

“All fluid wherein a body moves is elastic or non-elastic”; we would say compress-

ible or uncompressible. The elastic fluids can be compressed or expanded when the

container recipient is reduced or enlarged, which does not happen with the

non-elastic ones [§.80].
Besides the classification, based only on the fluid itself, d’Alembert adds another

depending whether or not a vacuum is produced in the fluid behind a moving body.

However, this effect can always happen in the elastic ones, but only under some

circumstances in the non-elastic fluids.

In the non-elastic one, if the fluid is infinite or it is confined inside a vessel closed

on all sides, there will be no possibility for such a vacuum [§.81]. However, if the
vessel has an open side, like a pond, and the body is moving near the free surface, as

in Fig. 18.1, the upper level will be altered and the fluid rearranges itself internally

and an empty space is produced behind the body [§.82]. Obviously enough velocity
is needed.

For an elastic fluid, either indefinite or enclosed, there will be always a com-

pression in the front and an expansion in the back of the body, which allows the

formation of an empty space. Depending on the velocity, the vacuum part could be

partially refilled by the surrounding air which will rush inside [§.83].
The ideas of the vacuum left behind the bodies in motion, and the capability of

the fluid to fill it had some relevance in the epoch. Let us recall that the impact

theory implied a vacuum behind the body, or more precisely in its shadow, which

was clearly contrary to daily experience. The direct observation of the whirls in the

stern of a boat, or another similar object, seemed to reveal that the fluid falls down

into this space. Pierre Bouguer in his Traité du Navire7 used this idea to explain the

6Principia, Book 2, Sec. IX, Hyp.
7Cf. Lib. V, Sec. VII.

18 Other Resistances and Fluids 223



resistance in the stern of the hull of a vessel, assuming that the water entered in the

space left by the motion with a fall velocity as it fell from a height equal to the

depth. For the air there were studies by Daniel Bernoulli in the Hydrodynamica8

about the velocity with which the air penetrated in a vessel at vacuum. Later on in

the Gunnery, Robins studied this matter in detail as d’Alembert recognized, and as

we shall see further on.

Therefore, there are three different cases: the non-elastic and infinite, which we

have studied, the non-elastic and finite, and the elastic. Let us deal with the

second case.

D’Alembert explains that the void is generated only when the body moves fast

and is near the surface. The deeper the body is, the greater the velocity should be in

order to produce a vacuum, in such a way that if it is deeply submerged a vacuum

will never exist. Due to the movement of the fluid particles, he also thinks that the

fluid surface must rise above the stationary level [§.106]. Also the number of

particles affected in the motion differs whether a vacuum is produced or not,

because of the lack of contact between body and fluid in the vacuum zone [§.107].
To deal with the vacuum he introduces a velocity due to the compression of the

particles, which will be the eruption velocity of the fluid when it enters a bubble, as

shown in Fig. 18.1. This velocity, which we call vc, is the same over the entire

Fig. 18.1 Motion in a finite

fluid

8Cf. Sec. X, §32-ss.
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surface of the bubble [§.108]. We know that it will depend on the depth, but for now

it is assumed to be constant throughout the entire fluid.

When the body moves upwards, the velocity vB is broken down at any point of

the surface in two components, one tangential and other normal, called vt and vn.
The hypothesis of d’Alembert is that the vacuum will be produced if vn> vc; that is,
the compression velocity of the surrounding particles is not fast enough to erupt and

fill the empty gap left in the motion.

For the tangency condition vn ¼ vB
dy
ds, therefore there will be a vacuum in the

surface points if vB
dy
ds > vc; consequently, if vB� vc there will be no vacuum at all. A

similar idea had been used by Bouguer as mentioned before.

We note that d’Alembert superimposes these new velocity components vt and vn
on the former ones vBq and vBp, knowing that vB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p2

p
was tangential to the

body. In the Mss103 he had tried to relate vc
vB
with p and q, but nothing is mentioned

in the Essay. We may think of this criterion as arbitrary, but we have to agree that

the problem was too complicated and the proposal had the advantage of being easy

to deal with.

The origin of vc is the force that compress all the particles of the fluid equally

[§.109], and which is designed as ψ . Although he does not explain how this force

could be generated, an interpretation could be a constant pressure upon the free

surface as pe¼ ρψ , which would be transmitted uniformly to the entire fluid mass.

Now he suggests that ψ can be assumed as the pressure of a fluid under a gravity g0

and a height hψ such as ψ ¼ g0hψ, and thenvc ¼
ffiffiffiffiffiffiffiffiffiffiffi
2g0hψ

p
. This modified gravity does

not exist in theMss.104, but only the ordinary one g is considered; even though both
solutions are equivalent in the end. D’Alembert, probably wanted to highlight that

this pressure “comes from another cause other than gravity” [Mss.105]. We have to

add, that strictly speaking, as the fluid is heavy, the depth must be also taken into

account in this calculation, so that vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0hψ þ 2g xþ xDð Þp

; probably the second

addend is considered too small so it can be ignored.

The pressure at any point would be p¼ ρψ + ρg(x+ xD)¼ ρg0hψ + ρg(x + xD)¼,

and the total force over the body Fx ¼
Z y0

0

ρπy2 ρg0hψ þ g xþ xDð Þ� �
dy, resulting

in:

Fx ¼ ρ πy20g
0hψ � g VNDO þ VANrð Þ� � ð18:3Þ

The first term is the “compression” due to ψ, and the second the buoyancy, being
VNDOand VANr the volumes generated in the rotations of areas NDO and ANr. Then
the equation of the movement will be:

�ρBVB
dvB
dt

¼ ρφv2B � ρg VNDO þ VANrð Þ þ ρBgVB þ ρg0πy20hψ ð18:4Þ

An Equation where the values of VNDOand VANr depend on the position of the

point O, which itself depends on vB.

18 Other Resistances and Fluids 225



In the case where the pressure ψ comes only from the weight, the term ρg0πy20hψ
should be removed [§.110], but nothing is said about the velocity due to the

compression. In the Mss.105 it is added that now that velocity is

vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g xþ xDð Þp

, which will be variable.

It only remains to find the value of φ asφ ¼
I O

I

2πy 1� p2 � q2
� �

dy, where the

position on the point I is unknown, which must correspond with the end of the

stagnation zone. The suggested method is to introduce the resistance due to the

acceleration in Eq. 18.4, and make it equal to zero [§.111]. No more details are

given, but in the Mss.104 it is identified as �ρ dvB
dt VLODNA þΩð Þ ; then with the

assumption of its nullity VLODNA +Ω(I)¼ 0, from where the position of I can be

found and after the quantity φ.

18.3 Resistance of Elastic Fluids

As we have seen, for an inelastic and undefined fluid, in other words incompressible

and unlimited, a vacuum behind the body never will be produced [§.112]. However
when the fluid is compressible, or non-elastic, it will always be produced, because

in the motion the fluid is condensed in the front part and expanded in the rear, both

with greater intensity in the measure that the velocity is higher. Besides, the highest

values of both will be at the respective ends, changing gradually along the body

surface until an intermediate point where neither will exist, because everything in

nature happens by insensible degrees [§.113]. The rear dilatation will produce a

vacuum, “because the motion of the body leaves an empty space behind the body

into which the fluid rushes with more velocity in the measure that its compression is

greater” [§.114].
After these general considerations, d’Alembert introduces Robins’ ideas on this

matter, recognizing that he was the first to assume the existence of an empty space

behind the body when the velocity was great enough. In the Gunnery9 Robins

questioned Newton’s theories, which he substituted by his own ideas. His brilliant

analysis was complemented by experimental measurements of the projectile veloc-

ities using ballistic pendulums, an instrument of his invention.

Robins thought that all fluids were continuous.10 Moreover, if they were com-

pressed enough or were moving at slow velocity, a vacuum will never take place;

this happens always in water and also in air with the body at low velocity. However,

9The Gunnery was translated into German by Euler as Neue Grunds€atze der Artillerie, aus dem
Englischen des Herrn Benjamin Robins €ubersetzt und mit vielen Anmerkugen versehen published

in Berlin 1745. Euler also added very extensive commentaries to explain the total and partial

vacuum generation, and he did a much better exploitation of the experimental results. It is not

known if d’Alembert knew this book.
10“All the fluids. . . that their particles either lie contiguous to each other, or at least act on each

other in the same manner as if they did” [Gunnery, Chap. II. Prop. I, p. 69].
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if the fluids were not compressed enough a vacuum can be produced. Here we note

that unlike d’Alembert, he never admitted the possibility of a vacuum in liquids.

Robins agreed with Newton’s solutions, who give a resistance coefficient of

CD¼ 0.5 for a sphere in a liquid, and CD¼ 1 for a slow corpuscular motion, that is

two times the former. However, when the velocity went faster, the degree of

compression on the frontal part was also increased giving a factor up to three

times, so CD¼ 1.5.11 D’Alembert explains Robins’ thoughts and ideas of how, in

a continuous motion, the flow of particles from the front to the rear part of the body

helps to reduce the resistance. However, when there is a vacuum this reflux cannot

take place, and consequently the resistance is increased. D’Alembert concludes

“this proposition, or, if it is preferred, this conjecture seems to be confirmed by

experiments that Robins has made. But as he has not given another theory on this

subject, I thought that it would not be useless to expose here some views on this

matter”.

After the comments about Robins, d’Alembert introduces some observations

about the air [§.115-1st], which is the only elastic fluid known at that time. The air,

in its natural state, “is compressed by a force equal to that a column of water about

32 pieds [10.4 m]”.12 And as the air is 800 times lighter than the water then “the air

is compressed by a force corresponding to an air column of approximately 32x800

pieds [8,320 m]”. That means that the atmosphere is assimilated to a sea of air with

constant density and a depth of 25,600 pieds, a very common idea in this epoch.

Then at ground level, thinking in terms of a vessel discharge, the air would erupt at

1240 pieds per second [403 m/s]. Consequently, if the body moves at a higher

velocity, a vacuum must be produced.

The compression force is taken as a measure of the atmospheric pressure [§.115-
2nd], like fa¼ ρagha, being ρa“the density of the air in its natural state” and

ha¼ 25,600. Now, if ρ is “the density in another state”, the compression would

be ha
ρ
ρa
, and the force f¼ ρgha. That means that the air will always erupt in an empty

space with the same velocity ve ¼
ffiffiffiffiffiffiffiffiffiffi
2gha

p
, as he clearly points out.

In the Fig. 18.2 a body is shown moving in an elastic fluid, and passes from the

position ADCd to aD0cd0 [§.115-3rd]. It is clear that the greater compression will

happen in the front, being Aa a measure of it, and it will decrease when moving

backwards on the surface, as shown by the segment NV. Therefore, “it seems to me

that it will not deviate far from the truth assuming that the density at A is ρ ¼ ρa

1þ εvBvε

� �
”, which means that when the velocity was vε the density would be the

natural density multiplied by (1 + ε); both vε and ε being known values. For another

11Ibid. p. 72.
12The pied of Paris was equivalent to 325 mm. According to the present values, the standard

atmospheric pressure at sea level is 101.3 kPa and the air density 1.219 kg/m3, therefore this

density is 1/820 of the water. The atmosphere equivalent high is 8480 m and the eruption velocity

408 m/s.
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point, as N, the factor NV
Aa ¼ dy

ds must be added as ρ ¼ ρa 1þ εdyds
vB
vε

� �
, a formula

applicable from the compression at A to an expansion at C, where dy
ds is negative.

Finally, the criterion for determining the vacuum zone is equivalent to the one

used before in the non-elastic and finite fluids, which was that the normal compo-

nent of the body velocity was greater than the velocity of compression, which here

is 1240 pieds/s. That is the vacuum starts at the point where �udy
ds ¼ 1240 pieds per

second [§.115-4th].
It seems clear that d’Alembert envisaged that some relation should exist between

velocities and densities, because the local velocities depend on pressures and these

can alter the natural densities. He was right, but the tools needed for that were in the

realm of the thermodynamics, a science still far off from d’Alembert and his

world.13

For determining the pressure he follows the same procedure as in non-elastic

cases, although he includes the density [§.116]. The first step is to take a differential
element of the fluid, as shown in the Fig. 17.5, and to express the constancy of the

mass contained in the element, instead of its volume as he did before. The right side

of the equation Eq. 17.13 must now include the factor ρþ ∂ρ
∂x vBqdtþ ∂ρ

∂z vBpdt
� �

due to the variation of the density. The new result is:

Fig. 18.2 Motion in elastic

fluid

13The relation between the density at any point and the stagnation one is ¼ ρ1 1þ γ�1
2
M2

� � 1
γ�1,

where γ is the ratio of specific heats and M the Mach number. For low velocities the formula is

approximated as ρ¼ ρ1(1 + 4.325 � 10�6v2), where we note v2 instead of v. For a velocity of

35 m/s, which would be a hurricane, the ratio of densities is about 1.005, almost nothing. We wish

to note that the effect of the compressibility was almost insignificant in the field of aviation until

the appearance of jet motors allowed the velocity to be increased to sonic levels.
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∂ ρqð Þ
∂x

þ ∂ ρpð Þ
∂z

þ ρp

z
¼ 0 ð18:5Þ

We note that the possible variation of the density with time has not been

considered.

The equation for the acceleration Eq. 17.14 needs the density as a factor
∂ ρaxð Þ
∂z

¼ ∂ ρazð Þ
∂x resulting:

dvB
dt

∂ρ
∂z

� ∂ ρqð Þ
∂z

þ ∂ ρpð Þ
∂x

	 


� v2B
∂
∂z

ρq
∂q
∂x

þ ρp
∂q
∂z

	 

� ∂
∂x

ρq
∂p
∂x

þ ρp
∂p
∂z

	 
� �

¼ 0 ð18:6Þ
There are only a few indications about how to use this equation [§.117]. Firstly,

it is assumed that ρ¼ ρ(u, x) so that ∂ρ∂z ¼ 0, and that the remaining equations will be

exactly similar to those used in the analysis of the body moving in a fluid. He also

says that ρp and ρq can be found by the method of approximation by series. As the

body contour is known, the density along it can be calculated by the equation

ρ ¼ ρa 1þ εdyds
vB
vε

� �
, and finally the quantities p and q and the pressures.

All this seems no more than a weakly founded list of intentions. For the case in

which a vacuum is produced, there is only a sentence to point to the case the

non-elastic fluids.

In the Mss.117 and App. he tries to work out the solution by a series approxi-

mation. We will never know why d’Alembert omitted this reasoning in the Essay;
probably, given the magnitude of the problem, which he was aware of, he preferred

just to leave a brief outline. In this sense, the last words of [§.117] which I quote

may be significant: “other hypothesis more real on the value of ρ would make the

calculation even more complicated; and all this is no more than a light essay”

[§.117].
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Chapter 19

Experiments and Theories

19.1 Reflections on Experiments

D’Alembert quotes experimenters in several places in the Essay using the results of
their experiments in his own reflections as we have already seen. There are also

mentions in the Introduction, but apart from this, he adds a complete section

[§.75–79] concerning experimenters under the title “Reflections on the experiments

that have been made or can be made to determine the pressure of fluids”. The title is

a bit surprising, because it is not clear what he wanted to say when he refers to

experiments that can be made. We imagine the shadow of the Berlin Academy

behind these words and very likely the inclusion of this separate section was

motivated by the criticism received in the rejection of the Manuscript. It contained
three articles, Mss.73–75 + A, that were a scholium to a corollary, and were rather

short.

Edmé Mariotte, Isaac Newton, Daniel Bernoulli and Willem Jacob van’s
Gravesande, who are all well known to us, are the experimenters who appear in

this section. ‘S Gravesande will be quoted again [§.93]; and also Benjamin Robins

[§.114] and Krafft [§.142–143].
Before beginning our comments, we should clarify a couple of concepts about

measurement of the resistance in the epoch. Firstly, the fluid velocity was com-

monly expressed by a height, as we have said previously. Instead of the concept of

“distance traversed by unit of time”, they employed “the height due to velocity”,

this was the height from which a body must fall in order to reach the fluid velocity,

or otherwise the vertical ascension it reached if the velocity was turned upwards.

We have called this magnitude “kinetic height”, and its value is hR¼ v2/2g. This
concept was widely used by all the authors, and its decline commenced with the

introduction of the differential equations in the motion. Secondly, for quantifying

the resistance there were two magnitudes. One, was to relate it to the force able to

annul the body momentum in a certain time, this was used by Newton. The other
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was to assimilate the resistance to the weight of a cylinder of fluid whose base was

the cross-section of the body and with a certain height. This last led to height that

was related with the former hR. Both are quoted in the Essay. In what follows we

will make almost exclusive use of the resistance coefficient CD, because this is

closer to our modern understanding.

Mariotte was the first who obtained experimental values for a square plate inside

a stream. The experiments were carried out in the river Seine and the apparatus was

basically a plate attached to a set of rods and balanced by a weight, everything fitted

in boats anchored in the river. The experiment, as related in his Traité,1 consisted in
a squared plate of 6 pouces (162 mm) in a current of 3 ¼ pieds/s (1.06 m/s) with a

balance weight of 3 ¾ livres (18 N),2 working with this figures the value CD¼ 1.22

results. Mariotte repeated the experiment moving the boat closer to the river bank

with less velocity and obtaining CD¼ 1.25.

D’Alembert reports only CD¼ 1, which corresponds to a cylinder with a height

equal to the kinetic one [§.75]. We think that his interpretation follows the wishful

principle that considered t that Nature loves integer numbers, therefore the decimals

were only deviations from the true value. He also says that this apparatus was the

simplest, which is true; and he adds a quite long list of observations and comments,

that are rather superfluous and irrelevant for any experimenter, who would surely

know how to do his own job. Even more, he proposes a pendulum within the same

framework.3 The Mariotte test was very simple, but it seems odd that in 70 years

nobody had repeated it, or if somebody did there was nothing published.4

When he talks about Newton [§.77] D’Alembert quotes the value of CD¼ 0.5 for

the resistance of a sphere in a liquid,5 obtained by the theory of the cataract. He also

adds “this formula that he [Newton] says to have confirmed by a large number of

experiments”. Certainly Newton carried out a set of experiments6 that consisted in

letting a globe fall in a water tank and measuring the falling time. In the descent the

globe is subjected to gravity and buoyancy, and the falling velocity increases

asymptotically until it reaches the limit velocity. The process is regulated by a

differential equation, whose solution Newton gives as a table to use in the calcu-

lations. He made twelve rounds with globes of different diameters and weights,

around one inch (25 mm) and from 70 to 300 grains (4.5 to 20 g) in two tanks of

112 and 186 inches (2.8 and 4.7 m) depth.7 However, besides those experiments, he

1Traité de movement des eaux, p. 214–216. This value is close to the present one.
2The conversion factors for the Paris measure units are: 1 pied¼ 324.83 mm; 1 livre ¼ 0.4895 kg;

1 pouce ¼ 1/12 livre.
3Respect of the use of pendulums for measure the resistance we only know the works of Newton,

who tried to measure the damping ratio as an index of the exponent of the velocity [Book 2, Prop.

31, Sch.]. Although in theory the correlation is possible, in practice there are many problems,

whose results did not satisfy him.
4Pierre Bouguer in his Traité du navire (1746) [Book. III.I.II.§.I] presents an experimental value of

CD ¼ 1.21 without quoting the source, but it is very close to Mariotte’s figures.
5Principia [Book 2, Prop. 39].
6Ibid. Prop. 40. This was included in the second edition.
7For conversion, 1 inch ¼ 25.4 mm, 1 foot ¼ 12 inch and 1 grain ¼ 0.0648 g.
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also made some more with globes falling from the apex of the dome of Saint Paul’s
church in London at 220 feet (67 m), now with a diameter of 5 inch (127 mm) and a

weight of 510–640 gr (33–41 g). Newton checked the results calculating the space

that theoretically the balls must traverse in the registered time assuming CD¼ 0.5

and, comparing the space with the tank depth, he found a very good agreement. We

have taken several cases from his data, and working back we have obtained a CD

coefficient from 0.51 to 0.57, quite close to the present values.8

Regarding Bernoulli [§.77], d’Alembert presents the formula given with its

justification, which turns to be the same as the previous one, that is CD¼ 0.5 and

“that he has equally confirmed by experiments”.9 This experiment was the effect a

jet produced in a vessel discharge through a hole in the bottom upon a plate as

shown in Fig. 19.1.10 We are sure that the experiment was carried out, but Bernoulli

does not give any practical data, although he says that type of experiment had been

done many times before.11 However, it is worth explaining how Bernoulli reached

his conclusions. Previously, in his “Disertatio”, he had tried to find the resistance by

an imaginary experiment based in inelastic impacts that yields CD¼ 4, the same as

Newton, which is obvious because he had used the impact principles. In these

circumstances he moved to the aforementioned experiment but included a small

cone in the zone where the fluid impacted, which reduced the effect to CD¼ 1, as

can be seen in the left hand picture of Fig. 19.2. The next step was to assume that

this cone was an sphere, and to apply the rule of the square of the sinus for the

impact angle, which made an additional reduction to CD¼ 0.5.

D’Alembert summarizes the situation [§.78]. For Newton both the globe and the
cylinder in a liquid have the same resistance, the aforesaid CD¼ 0.5, although he

“does not seem to have sufficiently demonstrated the pretended equality”. For

Bernoulli the pressure on the cylinder is double that of the globe, but he proved

this based on Newton’s theory for corpuscular fluids, which would not be applicable
to a continuum. He also recalls that the value for the cylinder agrees with Mariotte’s
results. However, he quoted that “Daniel Bernoulli assures that he has tried several
experiments on the resistance cylinders, and that they agree with his theory;

disregarding the viscosity of fluids, which often contributes to increasing the

resistance, especially in the cylindrical bodies”. And he continues “That is why,

waiting for new experiments on this subject, we take πδghk and πδghk/2 for the

pressures of the cylinder and the globe”, which in our words are CD¼ 1 and

CD¼ 0.5 respectively.

8We have to note that in the flow surround a sphere there are two regimes: laminar and turbulent. In

the first the resistance is about 0.52, but in the turbulent regime it comes down to 0.2. The transition

in governed by a value of the Reynolds number of about 5 � 105. Fortunately for Newton, all the

cases were laminar.
9“Disertatio de actione fluidorum in corpora solida et motu solidorum in fluidis”, Comm. Acad.
Petrop. Vol. II, 1727.
10Ibidem.
11Experiments of this kind had been made by Huygens and Mariotte.
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However, d’Alembert recalls his own work in the previous Traité de l’équilibre12

where he assumed the impact theory obtaining the same values as Newton, CD¼ 4

for elastic corpuscles and CD¼ 2 for non-elastic ones [§.78]. Also he mentions

Euler’s work in the Scientia navalis, where he took CD¼ 1 for a plate based on a

discharge of a fluid stream against a plate. Really Euler worked theoretically with

Fig. 19.1 Daniel Bernoulli experiment

Fig. 19.2 Gravesandre

apparatus

12Traité de l’équilibre et de mouvements des fluides, Book. 3, Chap. 1.
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two assumptions; one found in the transfer of momentum, basically similar to

inelastic impacts, giving CD¼ 2; the other on a transfer of live force, resulting in

CD¼ 1, and accepting the latter because it agrees better with the experiments.13

There is another theory from Euler, based on the force that a lid with a hole

undergoes before the hole is open, which D’Alembert also rejects.

The last author quoted is ‘s Gravesande, one of the most relevant experimenters

of the age [§.79] and his experiments on fluid resistance.14 Figure 19.2 shows a

reproduction of the measuring apparatus.15 It was quite large; the length of the four

pillars being about one and a half meters.16 The water fell from the reservoir on the

top through a tube, which had the function of test chamber with 105 mm diameter

and a length of 471 mm. The tube discharged to a channel of rectangular section.

The flow regulation was made by four taps, two with the same opening width, the

third double and the four triple. By opening and closing them adequately seven flow

regimes could be achieved. The forces were measured by a scale placed on the top

of the apparatus. The model was set in the middle of the tube fitted to the scale plate

by an horsehair.

He uses four test models, shown on the left: two spheres, of 13.1 and 18.5 mm

diameter, the second having a double cross section, a cylinder and a right-angled

cone, both also of 13 mm diameter. For each one he made a test round registering

the force for each of the seven velocities.17 He assumed that the resistance had two

addends, such as k1v+ k2v
2, which he called prima and secunda causa, and that k1

was equal for the three models of the same diameter. Therefore in order to obtain k2,
he used results of each round which are presented in a table separating both

components. Instead of the true velocity he used the number of taps opened, that

is 1 to 7 and 1 to 49, assuming the proportionality of taps and velocity. As an

example, working with the data we have found that the velocity at level 6 was

0.36 m/s. The values for the globe were 20 and 26, 20 and 20 for the cone, and

20 and 39 for the cylinder.18 Considering the secunda causa the resistance of a

globe is 2/3 of the cylinder and for the cone 1=
ffiffiffi
2

p
, which is the ratio of half the

diameter to the side.19

He found that the cylinder had a resistance equal to the kinetic height, and the

sphere had 2/3 of this, that is CD¼ 1 and CD¼ 0.67.20 The experimental data were

presented in a table of his Physices [§.1945]. For the velocities 0.182 and 0.364 m/s,

13Scientia navalis, I.§.465–473.
14Physices Elementa Mathematica Experimentis Confirmata, we use the 3rd edition, 1749. Under

Qua Experimenta Resistantiis institumtur, §.1908–1952.
15Op. cit. Tab. LIX, p. 542, descripted in §.1897–1907.
16The lengths are given in Rhenish foot, equal to 314 mm. The masses in Dutch pound, equal

0,494 kg.
17Cf. §.1908-ss.
18Ibid §.1911, 1923 and 1930.
19Ibid §.1918–1920.
20Ibidem §.1918, 1950.
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the forces measured were 2.34 and 9.36 for the sphere and 3.51 and 14.04 for the

cylinder, expressed in grains (1.48, 5.90, 2.21 and 8.85 mN); as the diameter was

half inch (13.1 mm). The calculation turns out to be CD¼ 0.66 and CD¼ 0.99 in

both cases. ‘s Gravesande attributed this difference between globe and cylinder is

due to the fact that the component of the force in the body surface is proportional to

v2 sin θ, instead of v2sin2θ, which he admits contradicts a principle that was taken as

true by all the authors of Hydraulics.

These ideas and experiments of Benjamin Robins are quoted in [§.114]. Robins
made remarkable experiments in order to prove his theories.21 He used a canon that

fired spherical lead bullets of 3/4 in (19 mm) and a mass of 1/12 lb. (37.8 g) against

a ballistic pendulum located at different distances from the muzzle. Then with a

round of firing he obtained the velocity at each pendulum and consequently the

deceleration, which was used to find the resistance. Obviously, he needed a quite

large number of firings in order to know the tolerances involved in the process.

Furthermore he employed several power charges to produce different muzzle

velocities. Summarizing, the pendulum was placed at distances about from 7 to

76 m, and the velocities registered from 520 down to 400 m/s, which corresponded

with Mach numbers 1.5 to 1.2. He found coefficients of CD¼ 1.2 and CD¼ 0.78 that

are in good agreement with our present values. Robins completed these experiments

with firings over a lake, measuring the flight time and reducing the power charge to

obtain a muzzle velocity of 122 m/s, resulting in CD¼ 0.5 coinciding with Newton’s
values. We add that Robins was also the inventor of the ballistic pendulum, and that

his trials were the first made at supersonic velocities.

The experiment of George Wolffang Krafft are mentioned in [§.142, 145],
whose apparatus is shown in Fig. 19.3.22 It consists in a vessel with a hole near

the bottom where several mouthpieces are inserted. The water jet hits a vertical

plate fitted to an arm of a balance that rotated around an axis at H. A weight placed

on the left side of the arm, not represented in the original figure, but which we

imagine as W, compensated the force produced by the water upon the plate. The

efflux water velocity was measured by the trajectory in a free exit until the point X.
The diameter of the vessel was 15/16 English feet (286 mm) and the height 2 feet

(610 mm). There were three mouthpieces with 13.6 mm diameter but with no

details of the length, only that one was long, another short and flush the third.

The aim was to correlate forces upon the plate with the velocities and the weight of

the equivalent water column. Krafft made a large number of experiments, and he

added to these the one that had been made before by Daniel Bernoulli using a

similar apparatus, although with a small vessel.23 Bernoulli obtained a correlation

between force and column weight of 0.95 and Krafft from 0.81 to 0.92.

These are the more relevant experiments made before d’Alembert. However, the

most significant experiments would have to wait until the next decade when Jean-

21See Gunnery, Chap. II, Prop. II and III.
22This Figure has been taken from the Comm. Acad. Petrop., Vol. VIII.
23In the “De legibus. . .”, Comm. Acad. Petrop., Vol. VIII.
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Charles de Borda, better known as the Chevalier Borda, tested single geometrical

forms in water and air, whose results were published in 1763 and 1767.24 Some

years later in 1776, d’Alembert himself participated with Charles Bossut and

Condorcet in another work focused on maritime matters. Probably his contribution

was limited to the mathematical analysis of the data.25 This work was continued by

Bossut alone in 1778.26

19.2 Experiment with Pendulums

The pendulum as an instrument to measure the resistance had been used by other

authors, such as Newton and Daniel Bernoulli. In the Essay there are several

mentions of this device and an extensive study [§.95–99] for it use “when the

velocity is very small”. He presents the mathematical theory of a pendulum as an

experimental apparatus, but he does not include any data and neither has he tried to

apply the results obtained by other authors. His mathematical skilfulness shines

here but adds no insight to the problem of resistance As far as we know, the

Fig. 19.3 Krafft apparatus

24Both with the title of “Expériences sur la Résistance des Fluides” in the Memoirs of the Paris
Adadémie.
25Nouvelles expériences sur la résistance des fluides.
26“Nouvelles expériences sur la résistance des fluides” in the Memoirs of the Paris Adadémie.
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conclusions obtained previously with pendulums were not clear, and probably

d’Alembert wanted to help with a more detailed mathematical study, but in our

opinion this should have been accompanied either by new experimental test data or

by a re-elaboration of the known results. However, d’Alembert was in a theoretical

realm here and quite remote from the practical reality.

We wish to highlight that the pendulum is not such a simple instrument as it

looks. The damping effect is not only due to the fluid resistance, but also from

friction in the fixing point and other string effects such as stiffness, vibration, etc. In

addition, the motion is not stationary, which brings in the effect of the added mass;

what is more, depending on the size of the basin, deposit or room where the

experiment is carried out, the induced fluid motion in the successive oscillation

could disturb the mass motion.

D’Alembert’s idea was to measure the damping and from it to determine whether

the resistance is only proportional to the square of the velocity or not, and in any

case to obtain the numerical values of the regulating parameters.

The pendulum and its associated parameters are shown in Fig. 19.4. Firstly only

the resistance for the square is considered [§.95]. The mass m starts from the point

A, traverses the arc B until the lowest point D and it would ascend up to the A0,
which is symmetrical to A if there had not been any resistance, but how as it exists

the mass will reach the point A00 below the former A0. The evaluation of the

resistance of the bop is made relatively to a known condition, that is to say if at a

velocity ur the resistance is f, then at u it will be f
u2

u2r
. The dynamic equation at a

point M will give27:

gdx� f

m

u2dy

u2r
¼ udu ð19:1Þ

This is a nonlinear differential equation that he resolves by an approximate

method. His first step is to assume that there is no resistance, that is f ¼ 0, which
would give 2gx¼ u2. Now introducing the arc y instead of x by means of the

approximation cos θ ¼ 1� θ2

2
and s¼ aθ, the result for the velocity is

u20 ¼
g

a
2By� y2
� �

. The final step is to substitute the u in the second term of the

former Eq. 19.1 by u0 and integrating this term, which leads to:

u2 ¼ g

a
2By� y2
� �� 2g

ma

f

u2r
By2 � y3

3

� �
ð19:2Þ

This approximation is justified if the coefficient f=mu2r is small. With u¼ 0 we

will have the value of yA 0 0 as a second degree equation. However, a simplified

solution is attained following a similar line of reasoning [§.96]. Taking f¼ 0, the

27He represents the reference velocity by a kinetic height and uses p for the acceleration of the

gravity.
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solution would be y¼ 2B given by the first member of the above formula, which

introduced in the second member leads to ΔB ¼ 2B� y ¼ 4f B2

3mu2r
¼ 2B2

3nc
. Where ΔB

corresponds to the arc segment A0A00 and nc ¼ mu2r
2f

. After k oscillations the formula

can be written as ΔBk ¼ 2B2
k

3nc
. Where ΔBk means the arc lost in the vibration k-th.

Now, supposing the period as almost constant, the former equation in finite differ-

ences can be transformed into a differential one like �dB ¼ 2B2

3nc
dt
τ , being

dt
τ the

differential of the number of vibrations [§.96]. The solution between any two

vibrations, like v1 and v2, will be

1

B2

� 1

B1

¼ 2 t2 � t1ð Þ
3ncτ

ð19:3Þ

He points out that if the resistance is proportional to the square of the velocity

“B
0�B
B0B must be a constant quantity”.

In the practical application [§.97] there are several intermediate constants and

geometrical remarks, but at the end the constant nc is found with two experimental

determinations.

An additional point, that he calls a vibration, corresponds to a half period. It also

implies that two successive vibrations finish at different heights of the vertical.

Nonetheless it makes no effect on the theory.

In the next case the resistance will not only be proportional to the square, but also

to the single velocity plus a constant value; that is to say, the friction and the

viscosity. Obviously this is a rather more complicated case [§.98].

Fig. 19.4 Pendulum in

fluid
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The resistance is now expressed by three terms f ¼ f 0 þ f 1
u

ur
þ f 2

u2

u2r
, in which

we maintain the former criterion in respect to a reference velocity ur. Using a

similar procedure to the previous case the value for the velocity will be

u2 ¼ g

a
2By� y2
� ��

Zy

0

f 0 þ f 1
u0
ur

þ f 2
u20
u2r

� �
dy ð19:4Þ

Where u0 is the velocity without resistance. After the pertinent calculations and

taking y¼B in the upper limit of the integral, the value for the ΔB results in

ΔB ¼ 2a

gm
f 0 þ

πB

mur

ffiffiffi
a

g

r
f 1 þ

4B2

3mu2r
f 2.

We agree with him that the determination will be very laborious but not so much

as to consider it insuperable. His proposal to make it easier follows the same pattern

as the introduction of an associated differential equation and a new parameter

defined as T ¼ mu2r
2f 2

, which converts the former equation to a differential one

�dB ¼ af 0u
2
r

gf 2
þ πBf 1

2f 2

ffiffiffi
a

g

r
þ 2B2

3

� �
dt

T
ð19:5Þ

Now T takes the place of τnc. The expression between brackets is a second

degree equation in B that is written as (B +G)(B+A), both G and A can be

calculated as functions of
f 0
f 2
and

f 1
f 2
. The solution, after some transformations, is:

ti � t0ð ÞA� G

T
¼ ln

B0 þ A

Bi þ A

Bi þ G

B0 þ G
ð19:6Þ

With at least three observations all the parameters can be obtained, although

“indeed by a very long calculation”.

The section on pendulums closes with some remarks about two works of Daniel

Bernoulli, both dedicated to the analysis of experimental data, and attempting to

find the value of the viscosity in the resistance [§.99].
In the first of these works,28 Bernoulli assumed that the effect of the viscosity

was equivalent to reducing the weight of the body, just like d’Alembert does here.

Bernoulli analysed the motion of a body falling in a tank, and next he took some of

the experiments that Newton had made29 in order to check his own formulas.30 He

thought that the viscosity was the cause of the difference between the descent times,

both theoretical and measured. Therefore, working with the formulas and assuming

28Comm. petrop., vol III. “Dissertationis de actione fluidorum in corpora solida et motu solidorum

in fluidis”, part VI.
29Principia, Book II, Prop. XL. He took the round three in the Newton’s experiments.
30In Comm. Acad. Petrop., vol II.
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CD¼ 0.5, he found that the viscosity was equivalent to 71/266, which is 0.27 of the

total weight, a quite high percentage.31 After that, he expressed some concerns

about the accuracy of the experiments at very slow velocity in order to determine

the viscosity. When the motion is faster the formulas agreed with the experiments,

but at low speed it was not so easy.

In the second remark d’Alembert refers to two works about the motion of

pendulums in fluids.32 In the first work Daniel Bernoulli studied the motion of

pendulum resisted by a force proportional to the square of the velocity, and in the

second work the viscosity was added. In both, the theoretical analysis was

complemented by an experimental correlation, whose data was taken from the

experiments made by Newton with pendulums.33

Bernoulli applied Newton’s data to these formulas in both cases, and at the end

he concluded that when the motion is not too slow the resistance is almost

proportional to the square of the velocity, that at slower velocities there are both

the former resistance plus a constant one, and when the velocity is extremely slow it

is very difficult to determine the law of resistance. However this does not invalidate

the theory, because the experiments are very delicate and therefore it is difficult to

extract any consequence. D’Alembert, who quotes these notes, suggests that prob-

ably it would be better to use the formula fu2 + ku+ g that he had proposed.

Besides, he states that the formula given by Bernoulli in the second case does not

agree with the equivalent one obtained by him.

31With the same formulas but taking another case of Newton’s experiments, this value would

be 0.45.
32Comm. Acad. petrop., vol V. Dissertatio brevis de motibus corporum reciprocis seu oscillatoris,

quae ubique resistentiam patiuntur quadrate velocitatis suae proportionalem. (106–125) and

“Additamentum ad theoremata. De Motu Corporum curvilineo in mediis resistentibus, in quo

resistentiae considerantur quae partim quadratis velocitatem partim momentis temporum

proportionales sunt”. (126–142).
33Principia, Prop. XXXI, Sch. Bernoulli took the first experiment.
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Chapter 20

Other Motions

Under this title three type of motions are included, the flow in a vessel, the river

currents and the jet against a plate; they all are somewhat related to the general

theory. Furthermore we add the motion by plane sections, although we have found

it difficult to classify.

20.1 Motion in a Vessel

D’Alembert had studied the discharge of a vessel in his Traité de l’équilibre with

the assumption of motion by plane sections. Now, he wants to outline the applica-

tion of the new principles to this problem, however, “as these researches here are

not directly [related] to my subject, I will only state the principles” [§.148].
Figure 20.1 shows a vessel that has a part of it filled with the fluid ABFE held in

place by the surface EF that acts as a plug. Suddenly, this plug is removed and the

fluid starts to move due to the action of gravity. He notes that if the vessel was

cylindrical, the fluid would fall down likes a heavy body, so that after a time t the
velocity would be u¼ gt. However, the curved walls make both vertical and

horizontal velocities to be a function of t, x and z; that is to say ux(t, x, z) and uz(t,

x, z). He observes the tangency condition in the walls, so at any time�dy
dx ¼ uz

ux

���
w
,

Then he assumes ux¼ θ(t)q(x, z) and uz¼ θ(t)p(x, z), being q and p non-dimensional

functions, as in the previous cases. In some way this problem is equivalent to the

body in a fluid, but now the body has been converted into the vessel. In a similar

way, we will have [§.149]:

dux ¼ d θqð Þ ¼ q
dθ

dt
dtþ θ

∂q
∂x

dxþ θ
∂q
∂z

dz ð20:1aÞ
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duz ¼ d θpð Þ ¼ p
dθ

dt
dtþ θ

∂p
∂x

dxþ θ
∂p
∂z

dz ð20:1bÞ

These equations handled as before lead to ∂p
∂z ¼ � ∂q

∂x, the well-known Eq. 17.8.

Also, for the accelerative forces

γx ¼ g� θ
∂q
∂z

p� θ
∂q
∂x

q� q
dθ

dt
ð20:2aÞ

γz ¼ �θ
∂p
∂z

p� θ
∂p
∂x

q� p
dθ

dt
ð20:2bÞ

Making
∂γx
∂z ¼ ∂γz

∂x the resulting equation will be satisfied with ∂p
∂x ¼ ∂q

∂z, the

Eq. 17.11. Consequently, dq ¼ ∂q
∂x dxþ ∂q

∂z dz and dp ¼ ∂q
∂z dx� ∂q

∂x dz. “From these

equations the general form of the quantities p and q will be determined”.

When the motion starts, the upper and lower surfaces are horizontal and the “lost

force” must be perpendicular to them, which implies p¼ 0 both in AB and EF,
because there are no lateral forces; even more, if the walls are not perpendicular,

q¼ 0 must be fulfilled by the tangency condition [§.150]. At t¼ 0 the force in the

column CD must be null, which gives

Z xD

xC

g� d qθð Þ
dt

� �
dx ¼ 0. He says that

making t¼ dt results in dθ
dt ¼ g, then θ¼ gt.1 We do not agree with this affirmation,

because the integral in t¼ 0 can be written as g xD � xCð Þ ¼ _θ

Z xD

xC

qdx, but at dt

Fig. 20.1 Discharge of a

vessel

1Instead of dθ/dt¼ g, it is dθ/dt¼ 1, and θ¼ 1.
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both xD and xC will change to xD + dxD and xC+ dxC, also _θ to _θ þ d _θ . Then we will

have g dxD þ dxCð Þ ¼ €θdt

Z xD

xC

qdxþ _θ qDdxD � qCdxCð Þ; which means that _θ is not

constant.

The determination of q and p is made by the tangency condition on the walls. It

seems that he thinks of the polynomial method [§.151].
After some time t the upper and lower surfaces lose their horizontality and

become the curves acb and edf as shown in Fig. 20.2, which can be determined

knowing the segments a¼Cc and b¼Dd [§.152]. His idea is based on the perpen-

dicularity of the forces on the surfaces. Thus assuming the upper curve as s(x), at
any point its slope must be �ds

dx ¼ γx
γz
; introducing q and p, already known, in

Eq. 20.2a, b as q(x, s) and p(x, s), also θ¼ gt will lead to the differential equation

�ds
dx ¼

1�q�qt∂q∂x�pt∂q∂z
�pþpt∂q∂x�qt∂q∂z

. Now to relate the above a and b with time two more data are

needed; one, that the volume of the fluid is given, and the second that the pressure

on the channel CD must be null, that is

Z xd

xc

g� q� qt
∂q
∂x

� pt
∂q
∂z

� �
dx ¼ 0.

“From which we will have the value of a and b in t, and the problem will be

completely solved” [§.152].

Fig. 20.2 Motion with

curve surfaces
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The vessel, so far, has a continuous wall so the fluid mass is always the same. If

there was an exit, for example at EF, the previous condition should be changed in

the sense that the former curve edf should be EdF [§.154].
He recognizes that this method is more rigorous than the one used in the Traité

de l’équilibre, “but the calculation is so difficult that we must almost give it up”

[§.155]. This is true; nevertheless, we have to recognize his willingness in trying it.

20.2 Streams in Rivers

To speak plainly, the reason for the inclusion of this problem in the Essay is a claim
against the manuscript Recherches sur le Mouvement des Rivières by Euler,

presented in the Berlin Academy in May 1751,2 which was known by d’Alembert

shortly after. He affirms that “the method the author employs, though it seems to me

less simple and less accurate than mine, has something in common with it” [§.160].
He continues to argue not only that he already had found his principles before that

manuscript fell into his hands, but he also hints “it would not be impossible that the

method outlined in my book was unknown to the author of the Memoir I speak of,

and that it would not have helped him in his research on the flow of rivers”. He gives

only an outline of the problem and this in a rather careless way to our understand-

ing. Grimberg has made a comparative analysis of both solutions and points out that

they coincide in the hypothesis, but differ in the variables and methods.3

Figure 20.3 presents the riverbed BN and the flowing water CMNB. The fluid

will meet the two equations dq ¼ ∂q
∂x dxþ ∂q

∂z dz and dp ¼ ∂q
∂z dx� ∂q

∂x dz, assuming

q and p as a polynomial structure [§.156]. The condition for obtaining the equation

of the surface CM is that the forces combined with the gravity must be perpendic-

ular to it. Once this equation is known along with two points at the surface, C andM,

and their points corresponding in the riverbed, B and N, the unknown coefficient

q and p can be found.

He remarks that the solution would be easier if the riverbed was a shape taken at

will, instead of being a given one [§.157]. We understand that he means that the

riverbed was a mathematical expression able to support the use of complex func-

tions. So the tangency condition on the bottom of the riverbed would be
dx
du ¼ q

p ¼ i Δ x�iuð ÞþΔ xþiuð Þ½ �
Δ x�iuð Þ�Δ xþiuð Þ where the real and imaginary parts of q and p given are

taken as in Eq. 17.23a, b.

When the river motion becomes steady, both the velocity tangency and the

perpendicularity of the forces must be met at the surface [§.158]. Therefore
dx
dy ¼ q

p and dx
dy ¼ γx

γz
; introducing the values of the acceleration from Eq. 17.3a, b

and adding the gravity, we have gp� p2 ∂q
∂z ¼ q2 ∂q

∂z.

2It was published inMemoirs of the Berlin Academy, vol. XVI, 1767. The date of presentation was

given by Jacobi.
3Grimberg [1998], p. 73–75.
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Finally, if themotion is not steady the above equationsmust be changed [§.160]. After

a time dt the surface CM becomes cm and q, p, ∂q∂x and
∂q
∂z become qþ q ∂q

∂x þ p ∂q
∂z

� �
dt;

p� p ∂q
∂x � q ∂q

∂z

� �
dt; ∂q

∂x þ q ∂2
q

∂x2 þ p ∂2
q

∂x∂z

� �
dt;∂q∂z þ q ∂2

q
∂x∂z þ p ∂2

q
∂z2

� �
dt. Also dx and dy

become dx+dqdt and dy+dpdt, also d dx
dy

� �
¼ d2xdy�d2ydx

dy2 . Substituting all these values

we will have the rather complicated equation:

d
g� ∂q

∂x q� ∂q
∂z p

∂q
∂z q� ∂q

∂x p

 !
¼ 2

∂q
∂x

g� ∂q
∂x q� ∂q

∂z p
∂q
∂z q� ∂q

∂x p

 !
dtþ ∂q

∂z
dt

� ∂q
∂z

g� ∂q
∂x q� ∂q

∂z p
∂q
∂z q� ∂q

∂x p

 !2

dt ð20:3Þ

We agree with his last note “I have only indicated here the method, because the

details would lead me too far” [§.160].

20.3 Jet Stream Against a Plate

For a quite long time the effect of a jet against a plate and the resistance of a

submerged plate were considered as equivalent phenomena.4 Furthermore, the first

experiments concerning the resistance were carried out measuring the force of a jet

from a hole in a vessel against a plate fitted to a scale.5 It was Daniel Bernoulli who

understood that this identification was faulty and backed the case experimentally.6

D’Alembert recognized his work [§.137] and explained that this question had some

relation to the resistances of fluids, and that “its solution is easily deduced from my

Fig. 20.3 Motion of a river

4Simón Calero [2008], p. 137-ss.
5Jean-Baptiste du Hamel in his Regiæ Scientarum Academiæ Historia Parisiis, quoted experi-

ments in 1669.
6Comm. Acad. Petrop. Vol. VIII, “De legibus quibusdam mechanicis. . ., 1736 (1741).
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principles, and besides [this problem] will give me the “opportunity to make some

new observations about this matter consistent with experience”.

A general view of the flow is depicted in the Fig. 20.4. The stream is assumed

with plane sections and flowing from an upper vessel through the exit AB with a

velocity v0. Due to the presence of the plate CD the jet will expand following the

curve BMF and it will end parallel the plate. For this discharge he establishes two

points: first, the velocity along the curve BMF is constant, and second, if the size of

the hole is small the fluid moves by parallel sections [§.138]. The first one is

justified for the same reasons given the analysis of the stagnation zones [§.36],
where he said only normal forces act upon the fluid contour and no tangential ones.

Therefore the velocity along BMF must be v0. From the second one, it is clear that

the vertical velocity in any slice has be constant, “which will not be far from the

truth” [§.139]. Therefore, at a point of the contour, such asM, the vertical velocity,

obtained by continuity av0¼ vy, must be equal to the vertical component of the

tangential one, that is v ¼ v0
dx
ds. Combining both velocities dx ¼ adyffiffiffiffiffiffiffiffiffi

y2�a2
p is found

[§.140]; whose solution is x ¼ a ln
yþ

ffiffiffiffiffiffiffiffiffi
y2�a2

p
a [§.144] which can be also expressed as

y ¼ acoshxa. It easy to see that this equation does not meet the condition of tangency

with CD at infinity, as will be pointed out later [§.142].
As an additional consequence the pressure must be constant as well upon the

entire slice. To prove it, d’Alembert repeats [§.140] the same steps that he had made

before [§.27]. Assuming the pressure at the exit as p0, and using Eq. 16.8, it is:

p ¼ p0 þ
1

2
ρv20

1

a2
� 1

y2

� �
ð20:4Þ

Fig. 20.4 Jet against plate
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Next comes the calculation of the force upon the surface PM, which he names

“pressure on PM”. As we can see, PM is not a physical object but an imaginary one,

therefore this force is an internal one that will turn out to be real when the surface

coincides with the plate CD. But there is one thing more, the force upon PM will be

pMy, however the calculation that he makes gives the force on the fluid mass ABMP.
Effectively, “the pressure that would come from the part BbMmust be subtracted

from the previous quantity [pMy]” [§.140]. This means that he is computing all the

forces upon the fluid part, and obviously the one coming from AB is taken as null

because p0 acts upon the entire fluid, which is equivalent to taking it as zero. To

calculate the pressure over a free surface like BM is not easy, so he imagines BM as

a physical wall. Therefore the force obtained will be the thrust, or reaction, of the

fluid upon the upper vessel.

According to this, and following his steps, the force at any point will be:

F ¼ p�
Z y

a

pdy ¼ ρv20a 1� 1

y

� �
¼ 2ρgah0 1� 1

y

� �
ð20:5Þ

Where h0¼ 2gv2 is the height due to velocity or the kinetic height. It means that the

force is less than double of the weight of a fluid column of hv height and base a. He
tries to explain all this in a rather confused article [§.141]. However, an easy way to
arrive at this formula would be evaluating the momentum lost in the fluid dominion

ABMP; the fluid mass rate is _m ¼ ρav0, therefore F ¼ _m v0 � vð Þ.
He points out that according to this equation the curve BM will cross the plane

CD when x¼AC and dx/dy 6¼ 0. “It follows that the direction of the fluid when it

reached the CD plane is not exactly parallel to that plane, but makes an angle with

the plane CD which is more acute the farther it is from AB ” [§.142]. Therefore, if
the plane is large the force will be always a little less than 2ρgah0, which agrees

with Krafft’s experiments.7

In the case that the vessel is circular rather than rectangular, the motion is

axisymmetric [§.143]; the continuity would be a2v0¼ y2v and the contour equation

would be dx ¼ a2dyffiffiffiffiffiffiffiffiffi
y4�a4

p , whose solution leads to elliptic integrals, but the final force

will be:

F ¼ 2ρgπa2h0 1� a2

y2

� �
ð20:6Þ

As D’Alembert says, it is “An expression that agrees again with Krafft’s exper-
iments”. In fact these experiments and also Bernoulli’s were made with this

configuration.

So far, no forces acting upon the fluid have been assumed, but now the weight is

added [§.144]. The first consequence is that the hypothesis of the constancy of the

velocity along the contour cannot be maintained, because the gravity component

7Comm. Acad. Petrop., “Vi venæ aquæ contra planum incurrentis experiment”, Vol. VIII, 1736

(1741).
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tries to lengthen the element Mm, written as ds in Fig. 20.4. Based on the well-

known equation s ¼ 1
2
gt2 he takesds ¼ gtdtdx

ds
andd2s ¼ gdt2dxds, sinceg

dx
ds is the above

mentioned gravity component. The value dt is substituted as before, arriving at

d2s ¼ gy2dx2

v2a2
dx
ds, which he integrates as 1

2
ds2 ¼ y2dx2

v2a2 xþ mð Þ, or:

dx2 þ dy2 ¼ 2y2dx2

v2a2
xþ mð Þ ð20:7Þ

This equation is difficult to integrate. An approximate solution is to introduce in

place of x in the right member its value without gravity, called x0(y). Then it will

give a relation between dx and dy like dy2 ¼ 2gy2x0 yð Þ
v2a2 � 1

� �
dx2, “ an equation that

represents almost exactly the curve BMD, above all in the points that are not too

close to D” [§.144].
For the force on the plate the weight of the fluid must be added, i.e. the formula

ΔF ¼ ρg
R
y0dx ¼ ρga

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
, calculated assuming the contour of the case

without gravity. He notes that this does not agree with Krafft’s experiments,

although they all were made for a horizontal jet.

Next, d’Alembert engages in a lengthy commentary about Bernoulli’s solution,
quoting his experiments and also Krafft’s ones. His comments about Bernoulli

[§.145] are sometimes difficult to follow because in the explanations d’Alembert

gives he translates the same symbols that Bernoulli had used which causes confu-

sion with the symbols d’Alembert used formerly. Bernoulli thought that the motion

was as if the fluid flowed in narrow channels through which a small body moved

driven by a tangential force (Fig. 20.5).8 That is how he envisaged what later we

will be call streamlines.

Although the development was carried out using the kinetic height, we think that

is easier for us to use the ordinary velocity and in order to simplify the presentation.

At a point N the fluid moves with a tangent acceleration _u ¼ udu=ds and a

centripetal u2/R, being R the curvature radius equal to R¼ dsdy/d2x. The projection
of both on the axis X will give the vertical acceleration _uv and consequently duv
¼ _uvdt; after some operations we will obtain

duv ¼ du
dx

ds
þ u

d2x

ds
¼ d u

dx

ds

� �
: ð20:8Þ

Integrating along the ENG curve, the change of the vertical velocity would be:

Δuv ¼ u
dx

ds

����
G

E

¼ uG
dx

ds

� �
G

� ue ð20:9Þ

He assumed that the slope in the point G was null, so Δuv¼ � ue for any

streamline. For the calculation of the force upon the plane, he evaluated the

8Ibid.
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momentum change in a time dt; such as Fdt ¼ �ρΔuv _m edt ¼ ρau2edt. Taking into

account the Eq. 20.7 it would be:

F ¼ ρau2e � ρauGue
dx

ds

� �
G

ð20:10Þ

Which was reduced to F ¼ ρau2e , which is equal to the weight of a column of

base a and height twice the kinetic he.
D’Alembert makes a fine analysis of that theory, rightly pointing out that each

streamline has a different velocity when arriving at the border of the plate. There-

fore, the hole AB must be divided in elements da and the total force will be the

integration of all them. He calculates the vertical component of force on the element

ds following the same method as Bernoulli, which will bedf v ¼ �ρ _u vds. Operating
with the previous values this is:

df v ¼ �ρu2
d2x

ds
� ρudu

dx

ds
¼ �ρd u2

dx

ds

� �
þ ρudu

dx

ds
ð20:11Þ

Whose integral is:

f v ¼ �ρu2
dx

ds

����
G

E

þ ρ

Z G

E

udu
dx

ds
dx ¼ ρu2E � ρuG

dx

ds

� �
G

� P ð20:12Þ

The term P ¼ �ρ

Z G

E

udu
dx

ds
dx is always positive because u is decreasing.

Therefore, considering the slope at G as zero, the force of any channel is

f v ¼ ρu2E � P ¼ 2gρhe � P, and the total force some as F¼ 2gρahe�
R
Pda,

always less than 2gρahe.
He states that this formula coincides with Bernoulli’s when du¼ 0, which means

constant velocity in all the curves, “but this latter hypothesis, as well as the method

Fig. 20.5 Bernoulli

solution
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itself, seems susceptible to some difficulties”. In this line he builds a close channel

formed by two streamlines and two horizontal lines and analyses the equilibrium

conditions, assuming constant velocity. As he finds contradictions between

Bernoulli’s hypothesis and the consequences of the constant velocity, he concludes
that the method is faulty, claiming that his own hypothesis of the constancy of the

velocity in any slice comes nearer to the truth. We find this argument circular,

because d’Alembert conclusion is based on du¼ 0, which was not an hypothesis in

Bernoulli’s equations. We think that Bernoulli’s assumptions were more realistic,

but had the added difficulty of obtaining the parameter for each streamline.

To finish with this article, d’Alembert expresses his preferences for Krafft’s
experiments, first because he made more, and they also gave a slightly lower value

than the expected ones. The first is true, Bernoulli only made one experiment and

Krafft seven. The second is not exactly true, the agreement was 0.95 for Bernoulli

and from 0.81 to 0.92 in the seven of Krafft.

“Moreover, it could be applied to the research of the pressure of a fluid stream

the method that I explained in this book [functions q and p]. But the calculation

would be difficult” [§.146]. A stagnation zone would be produced in the centre,

mFM, where p¼ q¼ 0 (Fig. 20.6), and on the plate q¼ 0 and ∂q
∂z ¼ 0. The pressure

on the plate would be 1
2
v2
R
2πydy 1� p2 � q2ð Þ. He thinks of q only as a sum of

powers of x and z, which means that q should contain x in all the terms. In this

condition the problem is undetermined, so for this reason he tries “to look for

another route to find the pressure of a fluid stream against a plane, though perhaps

less rigorous and less direct”.

He extends the problem to a plate moving inside a fluid [§.147]. “The values of
p and q seem to me indeterminate in these cases, or rather indeterminable; in such a

way that is as impossible to compare the theory with the experiment, even in this

case that seems the simplest of all”. That is somehow surprising, because they are

two quite different phenomena, which Bernoulli clearly separated.

Summarizing, the entire issue is developed by means of the plane sections

hypothesis, at least as an approximation in which he believes up to a certain extent.

It is only in the two last articles [§.146–147], where he tries to explain how to apply

his principles but with few words and less results. This somewhat different to a

“solution. . . easily deduced from my principles” [§.137] as he had stated at the

beginning.

20.4 Hypothesis of the Plane Sections

The hypothesis of the plane section was a common issue in the study of fluid motion

in vessels. D’Alembert himself had considered it as a “truth of Nature” in the

Traité,9 and there the applications seemed to agree quite well with the experiments.

He confesses to have been so captivated by this hypothesis that he thought to use it

9Traité de l’équilibre, §.10.
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for deducing the fluid resistance theory. However, he notes that in many cases its

application led to the result of null resistance and other consequences very contrary

to experience. “Maybe it will not be useless to explain this more at length” [§.100].
According to his words, and just as a conjecture, probably in the wake of the

Traité de l’équilibre he tried to find the resistance using this method but without

success. However, in our opinion, once he established the new theory, the plane

section hypothesis must be abandoned. Even when in some cases it could be

acceptable, these would be exceptions, never a rule. Therefore, it is quite surprising

that he pretends to prove that the consequences of an invalid theory are against the

logic of Nature. We consider this reasoning to be flawed in its origin. Nevertheless,

we will go through his explanations.

A body AKB [§.101], assumed to be two-dimensional and symmetrical, half of

which is represented in Fig. 20.7, advances with velocity u in a vessel or channel

limited by the wall QQ0. Any point N, moves to N0 in the time dt and the fluid

contained in the area aANn is displaced to TT0N0N and forced to move backwards

with a velocity v. For the continuity condition it is clear that (a� y)v¼ uy. That
means that the fluid between the body and the wall is moving in plane sections

whose velocity increases from the point A to a maximum at K and decreases

afterwards to zero at B. So this mass of fluid is subjected first to acceleration,

later to deceleration, i.e. accelerative forces. The former velocity v is measured with

respect to the channel, and its value relative to the body would be vr ¼ uþ v ¼ au
a�y.

With this configuration d’Alembert analyses three different cases.

In the first one [§.102] the body is in repose and it is pushed suddenly with a

velocity u0. The body will respond with another velocity such as “u00 the actual

velocity that it must have because of the resistance of the fluid”. We can understand

this as a pass to the limit with an acceleration u0/τ when τ! 0, as we have done

before. In any case the momentum lost by the body must be equal to that acquired

by the particles in motion, so

SBρB u0 � u00
� 	 ¼ ρ

I
C

v00dy ¼ ρu00

I
C

ydy

a� y
¼ ρu00

Z B

A

y2dx

a� y
ð20:13Þ

The identification of the two last integrals is founded on the hydrostatic theorem

[§.23] and Eq. 16.5. Solving for u00:

Fig. 20.6 Impact
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u00 ¼ SBρBu0

SBρB þ ρ
R B
A

y2dx
a�y

ð20:14Þ

Now, without giving any reason, the particular case when both densities are

equal, ρ¼ ρB is taken. Also, as SB¼
R
ydx, the new velocity would be:

u00 ¼ SBu0R B
A

aydx
a�y

ð20:15Þ

D’Alembert makes three annotations to this result. One, that “in the first instant

of the motion following the experiment u00¼ u0”, while the formula shows u00< u0
except when a¼1. This is quite surprising, because the model proposed is based

on that the body after receiving u0 responds with u00. The second is that u00 is

smaller in the measure a is smaller; to which he argues: “I do not know any

experiment that proves that the velocity lost at the first instant is greater in the

manner as the vessel is narrower”. This assertion makes no sense; moreover the fact

that he does not know these possible experiments is not a valid argument. Third, the

apparently most meaningful argument, i.e. that the vessel figure does not seem to

influence the motion “because, as it has been proved above, the motion that the

body communicates to the fluid particles extends up to a very short distance around

it (art. 71 and 72)”. What he calls proof is just an estimation based on very weak

arguments that he accepts as true, and it would be contrary to the hypothesis by

which the velocity is equal in the entire plane. Again he invokes experiment; we

should point out that is a fictitious experiment, an experiment he invented to

accommodate the desired solutions.

From our point of view, if the body is given the velocity u0 and there had been a
resistance, it would start moving slowly until it stopped and its momentum SBρBu0
should have been transferred to the fluid. But in the end the entire fluid would be at

rest, because its motion only occurs in the fluid dominion limited by two vertical

planes at A and B; therefore the initial momentum SBρBu0 would have vanished.

Consequently, there cannot be any resistance. Another way to prove this is the

calculation of
H
C

ydy
a�y ¼ �a ln a� yð Þ � y½ �C, in Eq. 20.12 which is zero, irrespective

of the body density.

Fig. 20.7 Body moving in

channel
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In the second case [§.103] the body moves with a variable velocity u(t) and this

will affect the velocity v of any parallel section and also its acceleration _v . In the

calculations u and u0, y and y0 are used as values at t and t+ dt. Here we have a

discrepancy with the interpretation of y0. In the Essay it is taken as y(x+ udt + vdt),
while it should be y(x+ udt), because the velocity v is relative to the channel and its
acceleration is due to the change in the height a� y, which obliges the fluid

particles at a point to move faster or slower according to the contour slope at this

point. The physical displacement of the body udt cannot be added with the dis-

placement of the fluid vdt. Then the value for _v will be:

dv

dt
¼ d

dt

uy

a� y

� �
¼ y

a� y

du

dt
þ u

d

dy

y

a� y

� �
dy

dx

dx

dt
¼ y

a� y

du

dt
þ au2

a� yð Þ2
dy

dx

ð20:16Þ
We notice that dv/dt has two addends; the first only takes place in non-uniform

motions, while the second always exists. Therefore:

SBρB
du

dt
¼ ρ

du

dt

I
C

y

a� y
þ ρau2

I
C

dy

a� yð Þ2 ð20:17Þ

The second term is null, and applying t the hydrostatic theorem o the first one as

before, we will have:

SBρB
du

dt
¼ ρ

du

dt

Z
y2dx

a� y
ð20:18Þ

He finds this equation absurd, since to meet it this SBρB must be equal to ρ
R y2dx

a�y,

which will not happen in an infinity of cases because one term depends on the body

mass and the other on the vessel shape. Furthermore, if it is so, any value of du
would be valid.

We have to add that in the derivation in the Essay the additional term au2y

a�yð Þ3
dy
dx

appears, which is due to the mentioned introduction of vdt, which leads to
H
C

ydy

a�yð Þ3,

which is zero. Therefore, it would have not altered the former conclusions.

One more comment. This case can be reduced to the first, assuming u(t) as an
integration of differential pulses, so du¼ u0dt. He has done the same in the body

moving in a fluid [§.56, §.388].
In the third case [§.104] the particles contiguous to the surface will move

tangentially, which seems more realistic. This velocity will be such that the velocity

relative to the body, that we have called vr, will be a component of the velocity

along the surface vt, that is

vt ¼ vr
ds

dt
¼ ua

a� y

ds

dx
ð20:19Þ
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Also, for convenience the body will be symmetric with respect to the meridian

section. The value for _vt is

dvt
dt

¼ a

a� y

du

dt

ds

dx
þ au2 � 1

a� yð Þ2
dy

dx

ds

dx
þ 1

a� y

d2s

dx2

 !
ð20:20Þ

Now for the calculation of the total pressure he will integrate correctly along the

contour and take the horizontal component that is Fx ¼ ρ
H

dvt
dt dx.

Just for the examination of the forces at both sides of any strip of dy the second
term of dvt/dt is disregarded, because its two addends change the sign while the first
does not change10 (Fig. 20.8). Therefore the final equation is:

�SB ρB � ρð Þdu
dt

¼ ρ
du

dt

I
a

a� y
ds ð20:21Þ

He introduces the term SBρ, which is equivalent to the buoyancy of the body. The
factor _u appears on both sides, which means that _u ¼ 0, and as a consequence

u constant, and the resistance null, “which is absurd”.

Let us note that the solution is similar to the previous case, but his commentaries

are different, even although in both they finish with an invocation to the absurd.

In the final scholium [§.105], he affirms the hypothesis of the plane section

should be rejected because its results of null resistance are against experience.

However, it is not a reason for rejecting it in the discharge of vessels, because in this

case the hypothesis is fairly consistent with the experiments and “experience must

be here our guide”.

We insist that the hypothesis must be rejected in itself, because it is contrary to

his main findings in fluid dynamics. We think that that the argument he uses are

inconsistent and the entire section does not add any contribution to his Essay. It was
unnecessary and misleading.

Fig. 20.8 Velocities in a

symmetric body

10In terms of xy, dsdx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
and d2s

dx2 ¼ y0y00

2
ffiffiffiffiffiffiffiffiffi
1þy02

p .
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Chapter 21

The Oscillation of Floating Bodies

This chapter is dedicated to the oscillations of a body floating in a fluid, obviously a

liquid. The procedure is to calculate the forces generated when the body is

subjected to small perturbations, such as displacements and rotations, from the

equilibrium position. The resulting forces and moments, jointly with the body mass

and geometry, will determine the dynamics of the system, usually interpreted as

pendulum oscillations.

The body displacements generate hydrostatic forces, but they also induce

motions in the fluid and consequently hydrodynamics forces. D’Alembert does

not ignore this fact, and considers this motion similar to a body in a fluid

already studied by him; therefore the velocity induced will have the components

up and uq leading to pressure terms in du/dt and u2. However, on one hand he

had assumed that the coefficient of the du/dt was null, and on the other he also

considers that the effect of the u2 can be neglected because both the velocity

and the oscillation amplitude are very small [§.118]. In the Mss.106 he made a

more detailed analysis in order to justify the nullity of the coefficient of du/dt as
a consequence of the tangency of the velocity to the body surface, but he did not

include these arguments in the Essay. In the end, only hydrostatic forces intervene,

which means that this problem has little to do with the fluid resistance. The topic of

the floating oscillations, apart from its theoretical interest, was very important in

ships, the biggest machines of those days. It was linked to the static stability of a

ship, a very old problem that after almost two millennia arrived at a solution with

the “invention of the metacentre” more or less a decade before the writing of the

Manuscript.1 Geometricians such as César Marie de La Croix,2 Pierre Bouguer,3

1See Chapter 4 “Inventing the Metacenter” of Ships and Science by Larrie D. Ferreiro.
2“Commentationes de statu aequilibrii corporum humido insidentium”, Comm. Acad. Petrop.,
Vol. X.
3For the metacenter see Traité du navire, Book II, Sect. II. The Sect. III is dedicated to the

oscillations and in Ch. II the formula is given.
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Leonhard Euler,4 Johann5 and Daniel6 Bernoulli made contributions to this subject.

They all only considered the static components, it was d’Alembert who envisaged

the dynamic effects, even when he denied the du/dt component, from which the

added mass is derived, and, as we have said, is quite significant in naval

engineering.

Three cases are studied in the Essay: vertical displacement, vertical displace-

ment coupled with rotation; and oscillations of an arbitrarily shaped body, that is,

one, two and three degrees of freedom. The first two are flat or two-dimensional

bodies, which are later transformed to axisymmetric ones. The methodology

followed is to displace the body from its initial situation, and to calculate the forces

and moments generated and next to apply the general equations of dynamics like

m€x ¼ F xð Þ and I€θ ¼ M θð Þ. Once the differential equations are presented he makes

comments and simplifications, but for their solution he refers to other works.

21.1 Rectilinear Oscillations

The first one, called “straight oscillations” [§.118], is shown in Fig. 21.1, where the
body is subjected to the weight gρBVB and the buoyancy gρVS, so that:

ρVB
du

dt
¼ gρBVB � gρVS ð21:1Þ

The buoyancy depends on the vertical displacement, or better the difference with

the equilibrium position, in which both forces are equal; leading to an equation type

Fig. 21.1 Straight

oscillations

4Scientia navalis, In the Chapter 4 “The oscillation of ships” and Vol. 2, §381–387.
5“De corporum aquae insidentium oscillationibus, et de invenienda longitudine penduli simplicis

oscillationibus illis isochoni”, Opera omnia, vol. 4, p. 286–296, 1742.
6“De motibus oscillatoriis corporum humido insidentium”, Comm. Acad. Petrop., Vol. XI.
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m€x ¼ kx. He insists in that it is necessary to prove that the “fluid pressure. . . comes

only from the gravity”, i.e. that the components of du/dt and u2 are null.

21.2 Curvilinear Oscillations

For the “curvilinear oscillations” [§.119] we present the body in Fig. 21.2, C and

G being the centres of gravity and buoyancy respectively, separated horizontally by

the distance β and vertically by ζ.
Initially the fluid level is at BD, and after a time t the body moves upwards x, and

rotates counter clockwise the angle θ; therefore the rectangle BDD1B1 emerges, and

the wedge BAB2 also emerges while the opposite DAD2 immerses. We have shown

them separately in the Fig. 21.2 for clarity. D’Alembert makes a lot of effort for a

detailed geometric calculation of these three geometrical forms [§.120–122] as a
function of the variables x and θ; once these calculations are made they are

converted in forces and moments with respect to the centre of gravity. It is easy

to see that there will be a vertical force of � aþ bð Þx� 1
2
b2θ þ 1

2
a2θ, a counter

clockwise moment of�1
2
ρg b2 � a2

� �
x� 1

3
ρgb3θ � 1

3
ρga3θ, and another additional

moment of ρgVSζθ due to the buoyancy center displacement to G2.

According to the principles of dynamics, one equation for the forces and another

for the moments will result, which are:

MB
d2x

dt2
¼ ρgVS � ρBgVB � ρg aþ bð Þx� 1

2
ρgb2θ þ 1

2
ρga2θ ð21:2aÞ

I
d2θ

dt2
¼ ρgVSβ � 1

2
ρg b2 � a2

� �
x� 1

3
ρgb3θ � 1

3
ρga3θ þ ρgVSζθ ð21:2bÞ

Fig. 21.2 Curvilinear

oscillations
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The terms ρgVS� ρBgVB for the force, and ρgVSβ for the moment are due to the

initial outbalance of the body, since it is separated from the equilibrium position;

they are both supposed to be small.

He compared this solution with Johann Bernoulli’s one, who assumed that the

centre of gravity C was fixed and the body was symmetrical. The motion is

assimilated to an isochronous pendulum, measuring the frequency as its length,

which, we have to say, was a common practice at the time [§.123].
For the integration of the two equations he refers to a previous work that he had

sent to the Academies of Paris and Prussia [§.124]. These equations belong to the

generic type

d2x

dt2
þ Axþ ByþM tð Þ ¼ 0 ð21:3aÞ

d2y

dt2
þ Cyþ Dxþ P tð Þ ¼ 0 ð21:3bÞ

Two linear equations, whose variables can be separated by a linear transforma-

tion as u¼ x+ ν0y and w¼ x+ ν00y, obtaining the next two ones, that are easier to

solve:

d2u

dt2
þ Euþ F tð Þ ¼ 0 ð21:4aÞ

d2w

dt2
þ Gwþ H tð Þ ¼ 0 ð21:4bÞ

One particular case [§.125] is when a ¼ b, that is the centre of gravity is the

middle of BD, which gives two equations with separated variables:

MB
d2x

dt2
¼ ρgVS � ρBgVB � 2ρgax ð21:5aÞ

I
d2θ

dt2
¼ ρgVSβ � 2

3
ρga3θ þ ρgVSζθ ð21:5bÞ

Leaving out the constant terms, which would be very small or null, both

equations are of the type €x� ω2
nx ¼ 0. For the positive one the solution is a

harmonic function such as x¼ x0 cosωnt, but for the negative it is x¼ x0 coshωnt,
which is divergent.7 The first of these equations always gives a harmonic solution,

but the second depends on the condition ζ � 2a3

3VS
, which will give the maximum

value of ζ required to keep the dynamic stability. Otherwise, “the value of θ will no
longer contain circle arcs and the oscillation will not be infinitesimal”; we would

say that the motion is unstable. We must remember that the metacentre in a ship was

7A physical example for the first can be a mass retained by a spring or a pendulum and for the

second the same mass now rejected by the spring or the same pendulum at the upper position.
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the maximum height that the centre of gravity can reach above the buoyancy centre

to maintain the ships stability. The classical definition for it is:

BM ¼ 2

3

R
y3dx

VS
ð21:6Þ

Where y(x) is the hull section at the water level. In our case this section is a

rectangle of constant width a. Therefore, as could not be otherwise, BM ¼ 2a3

3VS
.

If the fluid was not indefinite but contained in a limited vessel, the fluid level

varies at the same time as the body moves [§.126] and some changes in the

equations will be necessary. So, if the width of the vessel is wF, and the emerged

surface is ΔVS¼ aþ bð Þxþ 1
2
b2θ � 1

2
a2θ, therefore the fluid level will vary

ΔxF ¼ � ΔVS

wF� aþbð Þ, we include the minus sign to note that the value is contrary to

the body fluid displacement. This value is introduced in the equations, which

become a bit more complicated.

He presents the particular case when the body makes only rectilinear oscillations

with θ ¼ 0, which will give:

MB
d2x

dt2
¼ ρgVS � ρBgVB � ρg aþ bð ÞwF

wF � aþ bð Þ x ð21:7Þ

Finally [§.127], if the body was not plane but a solid revolution whose section

QBOD was the meridian-section, the theory will still valid, although the geometric

forms immersed and emerged wedges would be more complicated to express.

21.3 Irregular Bodies

“The problem becomes much more difficult when the body is of irregular shape”

[§.128]. It is true, because now there are three rotations plus the vertical motion. We

give only an outline of the method he used, which we think is correct; however, the

complicated geometry, the variables used, and several misprints have made fol-

lowing the calculations difficult.

Figure 21.3 shows a body of this type whose flotation line is BHDJ. The centres
of gravity and buoyancy are at C and G. This body is sectioned by a vertical plane

QBOD that contains both C and G. Now, let us assume a system of axis fixed to the

body: one vertical (CX), another horizontal contained in the former plane (CZ) and
the third perpendicular to them (CY).

First step will be to calculate the hydrostatic volumes produced when the body

rotates around the former axis and when it moves vertically. The method is the same

as used before with the emerging and immersing wedges, but more it is complicated

due to the geometry. He assumes that the vertical rotation will only produce second

degree effects that can be ignored [§.129]. For the other two rotations an additional
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summered volume with a centre of gravity will be produced linearly depending on

the angle. So, for η around the line HJ it would give VWη¼ αηη for the volume and

yWη¼ βηη and zWη¼ γηη for its centre of gravity [§.129]. Similarly when it rotates

around BD, the results would be VWP¼ αPP and yWP¼ βPP and zWP¼ γPP [§.130].
Additionally, a vertical displacement α would be VWx¼ αxα and yWx¼ βxα and

zWx¼ γxα [§.131]. Taking the three volumes jointly the total submerged part will be

VS�VWη�VWP�VWx¼VS�VW, the initial volume being VS [§.133]. The centre
of gravity will be at the point W, whose coordinates are a bit more complicated to

find, but they can be expressed as yW¼ aηη + aPP + axα¼ωY and

zW¼ zI+ βηη + βPP+ βxα¼ zI�ωZ; they all are linear functions [§.132]. From

these formulas it is clear that in the case of no motions at all, the submerged volume

would be VS at zI.
Now, the forces that act upon the body will be its weight gMB applied at the

gravity centre C, plus the buoyancy ρFg(VS�VW) at the point W and upwards.

The dynamic analysis is twofold, one the rotation and other the vertical motion

[§.134]. The latter is easier, because it is regulated by the sum

π00 ¼ ρFg VS � VWð Þ � gMB � gMB
d2x
dt2 .

To solve the problem, d’Alembert notes that he will use the method previously

taught in his work the Precession of the Equinoxes. The idea is to assume that the

body is subjected to three forces F, G and π0, one parallel to each axis and applied

respectively in the points PF(θ, 0, ζ), PG(ξ, χ, 0) and Pπ0(0, ν0, μ0), as shown in

Fig. 21.4, “which must be destroyed”; that is, as we understand it, they have to be

equal to the corresponding accelerative forces or d’Alembert forces. But addition-

ally the previous π00 must be added to π0, given π¼ π0 + π00. Also the application

point must change considering that the two first terms of π00 are acting at the former

W and the third at C, as πμ¼ π0μ0 + gρFVSωY and πν¼ π0ν0 + gρFVS(zI�ωZ), where

he has implicitly assumed that VW�VS.

The equilibrium will be expressed by these three equations:

Fζ � πμ ¼ 0 ð21:8aÞ
Gξ� πν ¼ 0 ð21:8bÞ
Fθ � Gχ ¼ 0 ð21:8cÞ

Fig. 21.3 Irregular body
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We could understand the problem considering that the body is impelled by an

external moment ~C due to the hydrostatic forces, they are all vertical and are called

π0, which will induce a moment Ci around each of the three axis and which must be

“destroyed” by another moment like Ii €θi. However, he takes ~C ¼ ~r � ~F, which
gives as result an arbitrary set of forces and application points, but π0 being the only
real one.

The motion of the body, defined by a trihedron fixed to it, with respect to the

initial position, is made by three successive rotations. The first one is the angle

P around the axis Z, with the velocity _P and the acceleration €P; next is the angle η
over Y with _η and €η; and the last one is the angle ε around the body axis X. In the

calculations d’Alembert takes y¼ cos η for the second rotation as a new variable

instead of η. We can see here something quite similar to what would be called later

Euler’s angles. For the moments of inertia only two are considered, one with respect

to Cp, and other to the plane ZX; we do not understand the reason, because the latter
should be about the axis Cq.

In the development of the three components of Ii €θi, nonlinear terms appear

containing y, dy, d2y, dε, dε2, d2ε and dP, dP2, d2P in rather complicated equations

[§.134], with the lack of the appropriated moment of inertia. To obtain a solution he

has to simplify them, neglecting the motion around X and taking the rest of the

angles as small. This leads to three equations [§.135] which we present here slightly
modified for a better understanding:

ρBVB
d2x

dt2
¼ gρFVS � gρF VB � VWð Þ ð21:9aÞ

Kη
d2η

dt2
¼ gρFVS zI � ωZð Þ ð21:9bÞ

KP
d2P

dt2
¼ gρFVSωY ð21:9cÞ

Fig. 21.4 Dynamic forces
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Where VB and VS are the body and submerged part volumes, and ρB and ρF the

densities, KP and Kη the moment of inertia, some of which are given in a different

way in the Essay. The three functions VW, ωZ and ωY have been defined previously,

and they are linear polynomials of x, η and P. The above differential equations are a
linear system whose solution had been made in his work about the Precession of the

Equinoxes, to which it refers.

Finally [§.136], he makes some additional comments about the former

hypotheses.
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Chapter 22

Reflections on Fluid Equilibrium

D’Alembert finished with an Appendix in the Essay containing “some reflections on

the laws of the Equilibrium of Fluid that I have not thought necessary to include in

the body of the work in order not to interrupt the sequence of matters, but they seem

to me worthy of being submitted to the judgment of the wise; and besides they have

a fairly immediate relation with the subject of this book”. Behind these words his

main aim was the problem of the shape of the Earth.1

He comes back to the law of equilibrium equation
∂ ρQð Þ
∂x ¼ ∂ ρRð Þ

∂y , previously

deduced [§.19], that now he will be obtain by another method. Let us recall that

the former was based on the equilibrium of a close rectangular channel, now the

condition is the same, but the channel is limited by curves upon which the forces are

perpendicular [§.161]. In Fig. 22.1 this new channel is represented as MNOm,
whose side Mm is perpendicular to the force A acting upon M. Besides, the two

lateral MN and mO are also perpendicular at Mm and whose respective lengths are

inversely proportional to the densities. This means that both have the same

“weight” dζ¼ ρ �MN �A¼ ρ0 �mO �A0, the apostrophe denotes the conditions at m,
and dζ is an auxiliary parameter. It is clear that there will not be any force acting on

the channel Mm due to the perpendicularity, therefore the forces acting at N and

O must be perpendicular to NO neglecting higher order terms. In this framework

d’Alembert proposes to prove that in order for this to take place the following

equation must be met
∂ ρQð Þ
∂x ¼ ∂ ρRð Þ

∂y .

First, it is clear that from the geometry and the force components there are several

relations at M among the different parameters involved, such as A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Q2

p
,

tan α ¼ Q
R ¼ dy

dx, dx¼ sinαds, dy¼ cosαds, etc.; also dR ¼ ∂R
∂x dxþ ∂R

∂y dy, dQ ¼ ∂Q
∂x dx

þ ∂Q
∂y dy and dρ ¼ ∂ρ

∂x dxþ ∂ρ
∂y dy.

1In the Appendix the Mss.21–24 are included and complemented with six more articles.
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The basic idea is to equate the angle dε1, obtained from the weight coming fromM¸
to the angle dα, from the external field of forces. D’Alembert starts with

dε1 ¼ RO
ds ¼ mO�MN

ds and after he makes a very fine and detailed analysis in which

intervene the geometry and derivatives for both mO and MN. We can try to simplify

the procedure, although following the same path as him. The quantity RO can be

interpreted as RO¼ d(MN) and as MN ¼ dζ
ρA, then RO ¼ d MNð Þ ¼ d 1

ρA

� �
¼

∂
∂x

1
ρA

� �
dxþ ∂

∂y
1
ρA

� �
dy. After operating, we will have:

dε1 ¼ dζ

ρ R2 þ Q2
� �2 �RQ

∂R
∂x

þ R2 ∂R
∂y

� Q2 ∂Q
∂x

þ QR
∂Q
∂y

� �

� dζ

ρ2 R2 þ Q2
� � Q

∂ρ
∂x

� R
∂ρ
∂y

� � ð22:1Þ

We have to note that dy is taken as negative because the slope of mM is. Now,

enlarging mM with the segmentMμ, of equal length, and drawing the perpendicular
μo with the same weight as MN and mO we will have ro¼ �RO and dε1¼ dε2.

The angle dα is formed by line Ng perpendicular to Ono and NG, which is an

extension ofMN. Now, for geometrical considerations dε1¼ dε2¼ da. As tanα ¼ Q
R,

it follows that dα ¼ RdQ�QdR

R2þQ2 ; and after another set of calculations we obtain for dα:

dα ¼ dζ

ρ R2 þ Q2
� �2 R2 ∂Q

∂x
þ RQ

∂Q
∂y

� QR
∂R
∂x

� Q2 ∂R
∂y

� �
ð22:2Þ

Fig. 22.1 Channels in equilibrium
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As dε1¼ da, equating the last two equations we find again
∂ ρQð Þ
∂x ¼ ∂ ρRð Þ

∂y . This

lengthy demonstration could be shortened as Grimberg points out,2 because the

sides of the two mentioned angles are perpendicular tos each other.

At this point [§.162], d’Alembert recalls that when the density is constant at each

layer the general equation is simplified to ∂Q
∂x ¼ ∂R

∂y, and he raises the point of how

both equations can occur at the same time. His answer is that at any of these layers

the density will meet ∂ρ
∂x dxþ ∂ρ

∂y dy ¼ 0 and also dy
dx ¼ �R

Q for the perpendicularity;

combining both expressions Q ∂ρ
∂x ¼ R ∂ρ

∂y is obtained. Now expanding
∂ ρQð Þ
∂x ¼ ∂ ρRð Þ

∂y

and applying the last equality the condition ∂Q
∂x ¼ ∂R

∂y is found. He remarks that this

last one only occurs if the “weight” is perpendicular to the layer, while the former

does not require this condition. Therefore he concludes “that the method of art.
19 is the only really general one to determine the laws of the equilibrium of fluids”.

We quote here Truesdell’s remark about the falseness of this assertion.3

With regards to the fluids of heterogeneous density, he thinks that the fluids will

be in equilibrium if the general equation is met [§.163]. However he mentions the

case of fluids of different densities that cannot mix together, which is confirmed by

experiment. He advances a curious explanation for this: “But the reason which

prevents this mixture is that gravity is the same for all these fluids, is that the

equation could not take place when they are mixed”.

The quantities R, Q and ρ have been considered as functions only of x and y.
Now he introduces the possibility of another variable, and as an example he takes

the particular case of a third variable z for R and Q, which would be constant for

each layer, but different from one to other, and taking ρ as a constant [§.164]. This
would imply a change in the angle dα, given Eq. 22.2, so that this angle should be

increased by the term dζ
R2þQ2 R ∂Q

∂z � Q ∂R
∂z

� �
, so ∂Q

∂x ¼ ∂R
∂y will be now:

∂Q
∂x

� ∂R
∂y

þ R
∂Q
∂z

� Q
∂R
∂z

¼ 0 ð22:3Þ

Leaving aside another simplification, at the end d’Alembert says that even when

the former Eq. 22.3 is more general, only
∂ ρQð Þ
∂x ¼ ∂ ρRð Þ

∂y and ∂Q
∂x ¼ ∂R

∂y will be

applicable to the research of the fluid resistance.4

The former reasoning refers to a layer inside a fluid that can be assumed as

unlimited. Now, he takes the case of a finite fluid, which is limited by a surface. In

the unlimited fluid any inner element was pressed by the column above it; this does

not occur when there is an external surface. The question that d’Alembert presents

is what happens in this type of fluid [§.165]. One solution could be that the pressure
is equal in the entire surface, since all its elements are equally pressed from the

2Grimberg [1998], p. 373.
3Truesdell [1954], p. LVI.
4In the Mss.23 he notes in hydrostatics or hydrodynamics.
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inner side. Another possibility is to consider that this layer consists of globules,

each one pressed by the next, but ignoring the layer below. This should be

equivalent to an inflated elastic globe; it is easy to see that the lateral tension in

the skin is related to the internal pressure so pRc¼ kT, the curvature radius being Rc,

which is in an inverse ratio with the force, that is to say the pressure. As conse-

quence, the external surface must be either plane or spherical. He thinks that other

external configurations can exist, so he assumes that one or several points are

moving, which means that there will be a set of forces in order to maintain this

condition. Therefore, any shape of the surface can be sustained by the

corresponding forces. Other arguments are directly against the possibility of any

globule layer and the equality of the forces. At the end he tries to follow the

hypothesis given by MacLaurin, who considered the external surface as a level one.

A related problem arises when the fluid is a blend of various fluids of different

densities, either they make a homogenous or heterogeneous mixture [§.166]; and
since there are reasons to assume that each level layer need not necessarily be of the

same density in all its extension. To prove that the isopotential and isodensity layers

need not coincide [§.167], he presents a mass of fluid made up of layers of equal

density (Fig. 22.2).

DAEF is a layer of density ρ(r0) whose geometry is defined by r¼ r0 + αηZ(θ),
being α very small parameter common for all the layers, so that DAEF is very close

to a circle. It is clear that the angle ε at the point P is tan γ ¼ dr
rdθ � αηdZ

r0dθ
. This point

P is subjected to a central force along PC like FC¼ f0 + αfCZC and a normal one

along PP0 as FT¼ αfTZT. Let summarize the parameters involved; α is common for

the entire fluid, r0 jointly with η(r0) define the curve; f0 and fC(r0) are for the normal

forces; and fT(r0) the tangent ones and the functions Z, ZT and ZC. The goal of

d’Alembert is to find the relation among all them in order for the equilibrium to

exist.

The closed channel PP0QQ0 must be in equilibrium, which means that [QQ0]
+ [QP]¼ [Q0P0] + [P0P] or [QQ0]� [P0P]¼ [Q0P0]� [QP]. The force upon PP0 is
the sum of the FC and FT components, that is dFPP0 ¼ (FC sin γ +FT cos γ)rdθ¼
(FCγ +FT)rdθ, which, neglecting the high order terms, turns out to be

dFPP0 ¼ αρf0ηdZ� αfTZTdθ. For the force on QP we have dFQP¼FCdr¼ ρ
( f0 + αfCZC)(dr0 + αZdη), which operating, and also neglecting terms, results in

dFQP¼ ρ( f0dr0 + αf0Zdη + αfCZCdr0). For the segments QQ0 and P0Q0 the forces

are calculated as dFQQ0 ¼ dFPP0 + d2FPP0 and dFP 0 Q0 ¼ dFPQ+ d
2FPQ, and for the

equilibrium of the channel d2FPP0 ¼ d2FPQ. All this leads to:

dZ

dθ
d ρf 0ηð Þ � ZTd ρf Tr0ð Þ ¼ ρf 0

dZ

dθ
dηþ ρf C

dZC

dθ
dr0 ð22:4Þ

This will be the general equation of the equilibrium for that configuration. Now,

if the layers are level it would be required that the forces along PP’ were zero,

which means ηf0dZ� ZTdθ¼ 0

D’Alembert continues analysing several particular cases such as dZ
dθ ¼ �ZT ,

which would produce d(ρf0η)� ZTd(ρfTr0)¼ 0, or dZ
dθ ¼ �ZT ¼ � dZC

dθ , which
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would give ρfCdr0� ρf0dη. However, we do not see what the purpose of these

transformations is.

All this has supposed that the density changes continuously. However, he affirms

that the solution would be valid if the fluid had finite discontinuities, and that level

surfaces crossing those discontinuities could exist [§.168].
The last three articles point directly to the shape of the Earth. “I will remark on

this occasion, that it seems to me that the problem of the figure of the Earth has not

yet been solved in a rather general way, with the hypothesis that the attraction is in

inverse ratio to the square of the distance and that the Earth is made of a mass of

fluids of different densities” [§.169]. He goes directly to this problem which had

been addressed by Clairaut, from whom he declares he takes the main formulas.5

Clairaut had studied the Earth as a solid rotating body, made up of solid spheroids of

different densities and with an elliptical shape and surrounded by a finite layer of

fluid. The problem was to find the shape of the fluid layer assuming both density and

shape of the solid part to be known (Fig. 22.3).

Clairaut calculated the forces at any point at the surface of the external layer due

to attraction of both the solid and fluid parts, according to Newton gravitation law.

Assuming that the shape is very near to a circle, along CM he found a force

FC ¼ 4π Aþ ρF
3
1� a3ð Þ	 


, where A ¼
Z a

0

ρr2dr, a ¼ CE
CF, ρ the density of the

elliptical layer dr, ρF the fluid one and CM¼ 1. In the force along CV there are

two components, one due the elliptical shape and the other from the Earth’s

rotation. The first one is FVE ¼ 8π
5
q Dþ ρF εF � a5εa

� �	 

, where D ¼

Z a

0

ρd εr5
� �

,

ε is called “ellipticity” being ε ¼ EE0�NS
EE0 and q¼MQ. For the effect of the rotation,

the ratio of the centrifugal force to the gravity is introduced as φ, and then

FVC ¼ 4πqφ Aþ ρF
3
1� a3ð Þ	 


. Finally, Clairaut said that the ellipticity of the exter-

nal surface follows the ratio 2qεF ¼ FVEþFVC

FC
.

Fig. 22.2 Isodensity

fluid mass

5Théorie de la figure de la Terre, Part II, Chap. II.
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From his part, d’Alembert’s considers the Earth to be made up entirely by a fluid

arranged in spheroidal elliptical layers expressed as r¼ r0(1 + εsin
2θ) (Fig. 22.2),

each layer with a density ρ(r0) [§.169].
6 The rotation is also taken into account as a

ratio of the centrifugal force to the weight in the equator. The problem is to find an

equation that relates ε with r0.
Using the same method as Clairaut, he calculates the forces and equilibrium in

the channel PP0Q0Q, as he had done before (Fig. 22.2). The formulas given are

rather complex, so we will skip them until the final general equation:

d2εþ 2ρr20R
ρr20dr0

dr0dε� ε
6

r20
� 2ρr0R

ρr20dr0

� �
dr20

� r20R
ρr20dr0

d
1

r40
d

Mρdr0
r0dρ

� �� �
¼ 0 ð22:5Þ

In this formula, M ¼ Kr50
ρ

dρ

dr0
, K ¼ ε

R
ρr20dr0
r20

�
R
ρd εr50

� �
5r40

� r0 F

5
þ r0

R
ρdε

5

� r0 Aφ
2

, and F¼ R
ρdε are a set of linked constants up to φ and A. The first is the ratio

of the centrifugal force and the second is related to the weight at the equator, although

the value of A is not well defined.

Then, the former equation could be rewritten as:

d2ε

dr20
þ Q1 r0ð Þ dε

dr0
þ Q2 r0ð Þεþ Q3 r0; ε;K;φ½ � ¼ 0 ð22:6Þ

Really, this is an integral-differential equation, due to the complexity of the

last term.

Now, d’Alembert will try to analyse the conditions that makes Q3¼ 0, which

would reduce the equation to:

Fig. 22.3 Earth

constitution by Clairaut

6For coherency we use the variables r0, ρ, ε and sinθ instead r, R, ρ and z.
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d2ε

dr20
þ Q1 r0ð Þ dε

dr0
þ Q2 r0ð Þε ¼ 0 ð22:7Þ

“Which is the only one that has been found so far, but that is not as general as the

previous one” [§.170]. He explores the possibility of M¼ 0, which could be either

dρ¼ 0 or K¼ 0. The first means constant density and the second that the spheroids

are also level surfaces. Another possibility is that
ρdr0
r0 dρ

¼ Cte, which implies

ρ ¼ Ar n0 , or d
ρdr0
r0 dρ

� �
¼ Br40dr0.

Finally, in the last article [§.171], he insists in the fact that the principle of the

level surfaces (M¼ 0) and the equality of the weight of the columns (K¼ 0) give the

same equation. Finishing: “I will discuss this subject later in depth”.
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Annexes

Annex I

Fluid Mechanics Equations

A particle of an ideal and non-viscous fluids moving along a trajectory is ruled by

the following equations:

Dρ

Dt
þ ρ∇ �~v ¼ 0 ðA1Þ

ρ
D~v

Dt
¼ �∇pþ ρ~f m ðA2Þ

ρ
De

Dt
¼ �∇~qR � p∇ �~v ðA3Þ

Which are respectively the continuity, momentum and energy equations. The

operator D/Dt, called substantial or material derivative, represents the variation of

any physical property along the trajectory. For a fixed system of axis they former

equations become:1

∂ρ
∂t

þ∇ � �ρ~v� ¼ 0 ðA4Þ

ρ
∂~v
∂t

þ ρ
�
~v �∇�

~v ¼ �∇pþ ρ~f m ðA5Þ

ρ
∂e
∂t

þ ρ
�
~v �∇�

e ¼ �∇~qR � p∇ �~v ðA6Þ

The first two are known as Euler’s equations.

1We note that for a property like φ results Dφ=Dt ¼ ∂φ=∂tþ~v �∇φ .
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If the forces derive from a potential as ~f m ¼ �∇U, the second one is rewritten

as:

∂~v
∂t

þ �
~v �∇�

~v ¼ �∇p

ρ
�∇U ðA7Þ

Introducing the vorticity ~ω ¼ ∇�~v it can be written as:2

∂~v
∂t

þ 1

2
∇ ~vj j2
� �

�~v� ~ω ¼ �∇p

ρ
�∇U ðA8Þ

The motions in which ~ω ¼ 0 are called irrotational.

Bernoulli Equation

In order to analyze the motion along the trajectory at any point, we express the

velocity as~v ¼ v~is, being~is the unitary versor of the trajectory. Then the Eq. A2 will
be:

Dv~is
Dt

¼ �∇p

ρ
�∇U ðA9Þ

Which developed becomes:

~is
Dv

Dt
þ v

D~is
Dt

¼ �∇p

ρ
�∇U ðA10Þ

Now projecting the forces upon the trajectory, that is multiplying be~is, it results:

Dv

Dt
þ v~is � D

~is
Dt

¼ �
~is �∇p

ρ
�~is �∇U ðA11Þ

As~is � D
~is
Dt

¼ 0 and~is �∇ □ð Þ ¼ ∂ð Þ
∂s

, the equation is:

∂v
∂t

þ v
∂v
∂s

¼ �1

ρ

∂p
∂s

� ∂U
∂s

ðA12Þ

2We recall
�
~v �∇�

~v ¼ 1

2
∇ ~vj j2
� �

�~v� �
∇�~v

�
.
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Rearranged:

∂v
∂t

þ ∂
∂s

v2

2
þ U

� �
þ 1

ρ

∂p
∂s

¼ 0 ðA13Þ

When the density is constant we have the Bernoulli equation for a non-steady

motion:

∂v
∂t

þ ∂
∂s

v2

2
þ p

ρ
þ U

� �
¼ 0 ðA14Þ

If the motion is steady, the equation will take its more common expression:

v2

2
þ p

ρ
þ U ¼ CS ðA15Þ

Where CS is a constant for the particular trajectory, which in the steady motion is

also a streamline.

If the motion is irrotational and the density constant, the velocity will have a

potential φ, such as ~v ¼ ∇φ. Therefore the Eq. A8 will become:

∇
∂φ
∂t

þ 1

2
∇φj j2 þ p

ρ
þ U

� �
¼ 0 ðA16Þ

Consequently:

∂φ
∂t

þ 1

2
∇φj j2 þ p

ρ
þ U ¼ C tð Þ ðA17Þ

Where C(t) is a constant that does not depend on the particular trajectory. Once

known φ, this formula can be used to find the pressures and the forces upon any

surface.

Non Steady Motion of a Sphere

The potential flow a sphere placed in a moving is:

φ r; θð Þ ¼ uF r þ R3

2r2

� �
cos θ ðA18Þ

Expressed in spherical coordinates, where R is the radius. This potential corre-

sponds to a Rankine oval when the source and the sink coincide in a doublet. The

pressure at any point of the sphere is given from A17.
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p ¼ �ρ
∂φ
∂t

þ 1

2
∇φj j2

� �
ðA19Þ

This pressure is relative to the upstream conditions, which means that C(t)¼ 0.

The first term in the bracket corresponds to the non-steady motion and the second to

the steady one.

The force upon the sphere will be:

F ¼
Z
Σ
p~nd~σ ¼ 2

Z π

�π
pπR2 sin θ cos θdθ ðA20Þ

The three components of the velocity along the versors~ir,~iθ and~iψ are:

φr ¼ uF 1� R3

r3

� �
cos θ, φθ ¼ �uF 1þ R3

r2

� �
sin θ, φψ ¼ 0 ðA21Þ

Which results to be on the sphere surface r¼R:

φr ¼ 0, φθ ¼ �3

2
uF sin θ, φψ ¼ 0,

1

2
∇φj j2 ¼ 9

8
uF sin

2θ ðA22Þ

It is clear that over the sphere there is only tangential velocity φθ. Therefore, the

force due to the steady component turns out to be Fs¼ 0, which is according with

the d’Alembert’s paradox.
For the non-steady component,

∂φ
∂t

¼ 3R

2
_u F cos θ ðA23Þ

For the force we will have:

FnsF ¼ 2πR3ρ _u F ðA24Þ
For the case of a sphere moving in a steady fluid, the potential velocity is:

φ r; θð Þ ¼ �uB
R3

2r2
cos θ ðA25Þ

Repeating the calculations, the force to maintain the sphere in an accelerated

motion will be:

FnsB ¼ �2

3
πR3ρ _u B ðA26Þ

The result of A24 can be broken in two parts. One
4

3
πR3ρ _u F would correspond

to the translation component of A18, that is _u Fr cos θ, and it is equivalent to the
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buoyancy of a sphere under the acceleration _u F. The other would be
2

3
πR3ρ _u F

comes from the doublet of the potential and turns to be obviously equal to

accelerated motion whose result is given in A26. The value
2

3
πR3ρ is known like

virtual or added mass ma. The reason of this name is because when a sphere of mass

M is thrusted with a force F in a fluid, the dynamic equilibrium will be

F� ma _u ¼ M _u , that is, equivalent to apply the force to a mass of M+ma.

Annex II

Essay Manuscript Correspondence

Essay Mss. Essay Mss.

In-I 24 28

In-II 1–2 (1) 25 29

In-III 2–6 (1) 26 30

In-IV 27 31

In-V 28 32

In-VI 29 33 (4)

In-VII 30 34

1 7 31 33 (4)

2 8 32 35

3 9 33 36

4 10 34 37

5 11 35 38

6 12 36 39 (5)

7 13 37 40

8 14 38 41

9 15 39 42

10 16 40 40

11 17 41 44

12 18 42 45

13 19 (2) 43 46

14 44

15 45 47

16 46 48

17 47 49

18 48 50

19 20 49 51 (6)

20 21 (3) 50

21 25 51 83b (7)

22 26 52

23 27 53

(continued)
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Essay Mss. Essay Mss.

54 80 96

55 83c 97

56 98

57 99

58 54 100 90

59 55 101

60 56–57 102

61 58 103

62 59 104 91

63 60 (8) 105

64 61 106 102

65 63 (8) 107

66 108 103 (14)

67 109 104 (15)

68 110 105 (16)

69 111

70 62 (9) 112 114

71 66 113

72 67 114 115

73 115 116 (17)

74 116 117

75 73 (10) 117 116

76 118 107 (18)

77 74 119 108

78 75 120 109 +A

79 121

80 76 122

81 123 110

82 124 111 +A

83 125

84 126 112 (19)

85 77 127

86 78 128

87 79 129

88 80, 83c (11) 130

89 82, 84 131

90 132

91 85 133

92 86 134

93 87 +A (12) 135

94 88 (13) 136

95 137 92

(continued)
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Essay Mss. Essay Mss.

138 93 (20) 155

139 156

140 157

141 93A 158

142 94–95 159

143 96 160

144 97 161 21 (3)

145 98–101 (21) 162

146 163 22 (22)

147 164 23

148 165 24 (10)

149 166

150 167

151 168

151 169

153 170

154 171

Manuscript Articles Not Included in the Essay

50

51 (6)

52

64

65

68

69

70

71

72

80 (11)

89

81

104 (15)

106

113

118

119
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1. Enlarged and modified.

2. Some modifications. In Mss. Clairaut is mentioned, but not in the Essay.
3. Only the first lines of Mss. 21 pass to Essay. The rest goes to §.161–162, with

some changes.

4. The §.31 only includes the last line of Mss.33.
5. The final paragraph of Mss., related to Mss.52, is changed.
6. The §.49 consists only the last lines of Mss. 51.
7. The Mss.83 is divided in three parts as (a), (b) and (c). The (a) has not

correspondence in the Essay, the (b) is the second part of §.51, and the (c) is

the §.55.
8. Some minor changes.

9. Some changes.

10. Enlarged.

11. Only few lines fromMss.80 and a new argumentation substituting theMss.83c.
12. Enlarged.

13. Enlarged with mathematical developments.

14. The points 5th and 6th of Mss.103 are not included in §.108.
15. The §.109 is almost new, only a formula comes from Mss.104.
16. The §.110 has a single statement that corresponds to the point 1st of Mss. 105.
17. The point 5th of Mss.115 is omitted in §.115.
18. The §.118 has many changes although with the same basic idea.

19. There are some differences.

20. The §.138 takes only the first few lines of Mss.93 and it is enlarged.

21. The last part of §.145 corresponds to Mss.101 but quite enlarged.

22. The references to Clairaut are omitted in the Essay.

Annex III

Notes About the Specimen Hydrodynamicum de Resistentia

Corporum in Fluidis Motorum

Jakob Adami was a J. U. P. (Juris Utriusque Doctor, that is a Doctor in Canonical

and Civil Law) as declared in the Specimen, but very little information about him is

available. It seems that he was an amateur mathematician who lived in Aurich. He

corresponded with Euler after 1746 and some of his letters have been preserved, in

which Euler encouraged and appreciated his researches in hydrodynamics.3

This is not the place to make a review of this 66 page memoir written in Latin.

We only will give a brief summary. Adami’s theory is based in the live forces

mechanics, using the potential ascent as a measure of the live force, in the sense

expressed for Daniel Bernoulli in his Hydrodynamica [III.§.1]. Basically he

3Juškevič, p. 26.
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considers that the live force of the moving fluid is transferred to a body as a dead

force, which is the resistance. Even more, the makes the different between the

efficacious (vis efficax) and inefficacious (vis inefficax) dead force, the first one only
is resisted by the inertia, and no effect is given by the second [§.III].

He starts assuming a body inside a channel whose fluid is pushed by a piston that

moves accelerated (Fig. 1). The live force is transmitted to the layers and converted

to efficacious force upon the body [§.VIII]. The resulting force turns out to be

H
dw

dx
LB � HEð Þ þ HS2B

H � SBð Þ2 w, where E ¼
Z

dx

H � y
and w is the potential ascent,

w ¼ v20
2g

and
dw

dx
¼ dv0

gdt
. When the motion is steady the first term disappears. In this

case if the piston is removed and the channel is full with moving fluid the results is

the same [§.X]. He says that this force is due to the acceleration of the fluid in the

narrowing channel between the body and walls, and that is necessary to add another

force due to the single velocity, which is
HSB

2H � SB
w [§.XIX]. Therefore, the total

force will be
HS2B

H � SBð Þ2 wþ HSB
2H � SB

w [§.XXII]. When the size of the body is

infinitely small respect to the channel width, the former resistance is reduced to
1

2
SBw [§.XXIV]. According to this he proves that the resistance is equal to one-half

of the weight of a column of fluid with the same base and height w [§.XXVIII], that

is
1

4
ρSBv

2
0, equivalent to CD¼ 0.5 in our present terminology. But if the velocity

were not constant the amount ρVB
dv0
dt

must be subtracted of the former [§.XXX].

If the body has the shape as shown in Fig. 2, the fluid would be accelerated until

the maximum body width and after decelerated to the initial velocity. In this case

the resistance would be H
dw

dx
LB þ LC � HE� HFð Þ þ HSB

2H � SB
w, where F is

equivalent to E but applied to the afterbody [§.XXXIII].
Adam applies these formulas to the case of a globe [§.XXXI] in a proposition

similar to the one presented by Newton in the Principia, Book 2, Prop. 39. He also

Fig. 1 Body as a piston
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takes Newton’s experiments [Ibidem, Prop. 40] about globes descending in a water

tank and from the Saint Paul cathedral for applying the theory [§.XXXVIII–XLIX].
Something similar is done for a globe in horizontal motion, in order to compare

with the Robins experiment as presented in the German translation of the Gunnery
[§.LIV–LVIII]. Finally, he studies the problem of the efflux of fluid through a hole

in a vessel, which is not a problem of resistance, but he mentions the Daniel

Bernoulli experiment quoted in the Hydrodynamica [Sect. 3, Exp. Primum].

After this summary, we can conclude that Adam does not present a real theory

but an application of the live force theories. Adam’s Specimen can be considered as
a sequel of the Hydrodynamica, while d’Alembert’s Essay is a completely new

approach to the resistance problem.

We finish quoting “Whoever Jakob Adami was, he has left no trace in the history

of hydrodynamics”.4

Fig. 2 Closed body

4Ibidem, p. 28. However, he presented another work to the Academy of Berlin in 1752: “De

effluxu aquarum ex vasis, aperturam in latere habentibus: disquisitio mathematica”.
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Notes on the Translation and Manuscript

The original of the Essay used has been downloaded from the Bibliothèque national

de France by the application Gallica. The copy has a stamp reading Bibliothèque de
l’Arsenal and a handwritten letter from d’Alembert dedicated to the Marquis

d’Argenson, which is reproduced below.

It seems plausible that this copy was one of the first ones and that he sent it to the

Marquis as a personal sign of gratitude. D’Alembert’s letter finishes with “on Friday
13”. Looking at the 1752 calendar, the only Friday 13 was in October. This allows

us to think that the Essay came to light in this month.

The Essay has been considered by some scholar as tortuous with careless

wording,5 for our part we only add that it is not easy to translate to English. We

have tried our hardest to achieve clarity; however, we have kept a literary transla-

tion for some words, even when the text may look somewhat repetitive and

awkward, in order to maintain the text closer to what could have been d’Alembert’s
thoughts and also his ambiguities, especially with reference to the physical concept

of force and related matters. In this sense a basic glossary of those words is added

here. Besides, sometimes for clarification we have made use of the Latin Memoir
that d’Alembert had sent to the Berlin Academy 2 years before.6

In the original text of the Essay there are only two advertised errata, which we

have corrected. However there are some more, and also several misprints which

have all been corrected, although we have only underlined the major ones.

Another difficulty in understanding comes from the use of the mathematical

symbols used. Sometimes the same symbol is applied to a physical variable as well

as to a geometrical entity. Other times and quite often, the symbol for a variable

5We refer specially to Truesdell [1954], who apart of considering the work “tortuous and lengthy”

(p. LI) also says that “the wording is even more careless than the average at the time” (p. LVII).

Also Dugas, considers that “this memoir [seems] very arduous and very complex” (p. 12).
6We have followed the copy typed from the manuscript included in the Thesis of Gérard Grimberg.

The translation from the Latin of the texts quoted has been done with the aid of Carlos Solı́s.
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changes from one article to the next, and sometimes the same symbol is used for

two different variables. We have noted these occurrences.7

Basic Glossary

French English Latin

choquer to shock ocurro

corps body corpus

corpuscule corpuscle corpusculum

élasticité elasticity elasticitas

équilibre equilibrium equilibrium

expérience experiment experimentum

finie finite finitus

force force vis

force accélératrice accelerative force vis acceleratrices

force centrifuge centrifugal force vis centrifuga

force suivant force along vis secundum

frapper to strike impingo

frottement friction frictio

globe globe globus

globule globule globulus

gravité gravity gravitas

impulsion impulsion impulsum

indéfinie indefinite indefinitus

mass mass massa

particule particle particula

pesant heavy gravis

poids weight pondor

pessanteur weight gravitas

pression pressure pressus

pression suivant pressure along pressus secundum

presser to press premo/conor

puissance power potentia

repos at rest quiescens

résistance resistance resistentia

ténacité viscosity tenacitas

tranche slice sectio

vase vessel vas

veine stream vena

vide vacuum vacuum

7We have to understand that the resources of the sub-index were not available yet.
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Monsieur

Je vous dois sans doute des excuses d’oser vous dédier cet ouvrage sans vous en
avoir demandé la permission: Mais, ou votre modestie n’auroit pas accepté mon

hommage, et je voulois me satisfaire; ou elle m’auroit interdit tout éloge, et je
voulois dire �a mon aire la verité, je vous prie d’etre bien persuadé que de tout ce que
j’ay ecrit ou que j’ecrirai jamais, rien ne me sera plus cher et plus precieux que les

trois premieres pages de ce livre oserois je flatter que vous voudrez bien les

recevoit, comme le present d’un philosophe, et comme le seul temoignage, mais

le plus authentique que je puisse vous donner du respect et de l’attachemens

inviolable avec les quels je serai toute ma vie

Monsieur

Ce vendredy 13

Votre très humble et très obeissans serviteur, D’Alembert

Sir

Without doubt I owe you some excuses for daring to dedicate this work without

having asked your permission. However, either your modesty would not have

accepted my homage, and I wished to satisfy myself, or it would have forbidden

me all praise , and I wished to speak the truth in my own way, I beg you to be

persuaded that of all that I have written or that I will ever write, nothing will be

more dear and more precious to me that the first three pages of this book I dare to

pride myself that you will wish to receive them, as the present of a philosopher, and

as the only testimony, but the most genuine that I can give you in this respect and of

the inviolate attachment with which I will be all my life

Sir

This Friday 13

Your most humble and most obedient servant, D’Alembert
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Berlin XI.

———. 1761. Principia motus fluidorum. Novi Comm. Acad. Petrop VI: 1756–1757.
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�a plusieurs voix. Paris: Édition des Archives Contemporaines.

Firode, Alain. 2001. La Dynamique de d’Alembert. Montreal/Paris: Bellarmin/VRIN.

Fraser, Craig. 1985. D’Alembert Principle: The Original Formulation and Application in Jean
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Maugin, Gérad A., 156

N
Newton, Isaac, 6–10, 12, 66, 138–144,

149–151, 157, 159, 170, 175, 176, 190,

219, 221, 223, 226, 227, 231–234, 236,

237, 240, 241, 269, 281

P
Parent, Antoine, 141

Prandtl, Ludwig, 206

R
Robins, Benjamin, 87, 137, 143, 145,

159, 206, 224, 226, 227, 231,

236, 282

Rouse, Hunter, 194

Ru, Veronique Le, 148

S
Sellés, Manuel, 135, 150

s’Gravesande, Willem Jacob, 64, 66, 75, 159,

222, 231, 234–236

Smeaton, John, 145

Solı́s, Carlos, 283

T
Torricelli, Evangelista, 141

Truesdell, Clifford, 136, 137, 154, 155,

166, 179, 198, 200, 209, 220,

267, 283

W
Westfall, Richard S., 150

292 Index


	Abstract
	Contents
	Part I: A New Theory of the Resistance of Fluid
	To Monseigner the Marquis D’ArgensonMinister of State
	Introduction
	[I]
	[II]
	[III]
	[IV]
	[V]
	[VI]
	[VII]

	Chapter 1: Principles of Dynamics and Hydrodynamics Necessary for the Understanding of the Subsequent Propositions
	Chapter 2: General Principles of the Equilibrium of Fluids
	Chapter 3: General Principles of the Pressure Fluids, in Motion or at Rest
	Chapter 4: On the Pressure That a Fluid Exerts on a Body at Rest and Immersed in It
	4.1 Observations Necessary for the Understanding of the Subsequent Propositions
	4.2 On the Fluid Pressure at the First Instant of the Impulse
	4.3 Method for Determining the Fluid Velocity at Any Point
	4.4 On the Pressure of the Fluid at Each Moment
	4.5 The Resistance of a Plane Figure
	4.6 Notes on Our Solution to the Problem of Fluid Pressure
	4.7 Reflections on the Experiments That Have Been Made or That Can Be Made to Determine the Pressure of the Fluids

	Chapter 5: On the Resistance of Fluids to the Bodies Moving Therein
	5.1 General Observations on the Various Classes of Fluids
	5.2 The Resistance of Non-elastic and Indefinite Fluids
	5.3 On the Use of Pendulum Experiments to Determine the Resistance of Fluids Whose Velocity Is Very Small
	5.4 Examination of an Hypothesis Which Would Lead to Strange Paradoxes on the Resistance of Fluids
	5.5 About the Resistance of Non-elastic and Finite Fluids
	5.6 On the Resistance of Elastic Fluids
	5.7 Principles Necessary for Determining the Pressure of an Elastic Fluid

	Chapter 6: Oscillations of a Body Floating in a Fluid
	6.1 Rectilinear Oscillations
	6.2 Curvilinear Oscillations
	6.3 Oscillations of a Body of Irregular Shape

	Chapter 7: On the Action of a Fluid Stream That Exits from a Vessel and Strikes a Plane
	Chapter 8: Application of the Principles Outlined in This Essay in the Research of the Motion of a Fluid in a Vessel
	Chapter 9: Application of the Same Principles to Some Research on Streams in Rivers
	Chapter 10: Appendix
	10.1 Reflections on the Laws of the Equilibrium of Fluid


	Part II: Introduction to the Essay
	Chapter 11: General Considerations
	11.1 The Manuscript and the Essay
	11.2 Fluid Mechanics in the Eighteenth Century

	Chapter 12: D´Alembert´s Dynamic Conceptions
	Chapter 13: Forces and Fluids in the Essay
	13.1 Forces and Pressures
	13.2 Conception of Fluids
	13.3 Experience and Experiments

	Chapter 14: Brief Analysis of the Contents of the Essay
	14.1 The Preliminaries
	14.2 Body in a Fluid Stream
	14.3 Fluid Impulsive Velocity
	14.4 Body Moving in Fluid at Rest


	Part III: Analysis of the Essay 
	Chapter 15: The Essay´s Introduction
	Chapter 16: The Preliminaries
	16.1 Principles of Dynamics
	16.2 General Principles of the Fluid Equilibrium
	16.3 Pressure on Submerged Bodies
	16.4 Motion in Tubes

	Chapter 17: Resistance of a Body Moving in a Fluid
	17.1 Fluid in Motion
	17.1.1 Stagnation Zone
	17.1.2 Streamline Field Invariance
	17.1.3 Velocity Field Equations
	17.1.4 Determination of the Functions q and p
	17.1.5 Pressure Upon the Body

	17.2 Impulsive Motion
	17.3 Body in Motion

	Chapter 18: Other Resistances and Fluids
	18.1 Friction and Viscosity
	18.2 Resistance in Non-elastic and Finite Fluids
	18.3 Resistance of Elastic Fluids

	Chapter 19: Experiments and Theories
	19.1 Reflections on Experiments
	19.2 Experiment with Pendulums

	Chapter 20: Other Motions
	20.1 Motion in a Vessel
	20.2 Streams in Rivers
	20.3 Jet Stream Against a Plate
	20.4 Hypothesis of the Plane Sections

	Chapter 21: The Oscillation of Floating Bodies
	21.1 Rectilinear Oscillations
	21.2 Curvilinear Oscillations
	21.3 Irregular Bodies

	Chapter 22: Reflections on Fluid Equilibrium

	Annexes
	Annex I
	Fluid Mechanics Equations
	Bernoulli Equation
	Non Steady Motion of a Sphere

	Annex II
	Essay Manuscript Correspondence
	Manuscript Articles Not Included in the Essay

	Annex III
	Notes About the Specimen Hydrodynamicum de Resistentia Corporum in Fluidis Motorum


	Notes on the Translation and Manuscript
	Bibliography
	Primary Sources
	Secondary Sources

	Index



