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Preface

To compete in today’s volatile market with rapidly changing consumer tastes and
fierce competition, companies in the manufacturing and service industries are de-
ploying new mechanisms to increase sales, market shares, and profits. As an ef-
fective mechanism to segment a market comprising of consumers with different
needs, preferences, and willingness-to-pay, many firms have used product (or ser-
vice) variety with different price points to serve different segments of the market,
see Ho (1998). Ideally, the price of each of these products (or services) targets a
particular segment of customers. For example, airlines often use different terms
of sales (refundable/non-refundable, upgradable/non-upgradable, direct/connecting
flight, etc.) to sell economy class tickets at different prices. Likewise, retailers of-
ten sell the same product at different prices in different channels (company’s own
web site, dealers’ web sites, or company’s physical stores) or at different times (be-
fore, during, and after the selling season), see Talluri and van Ryzin (2005). Ample
academic literature in Operations Management and other areas considered these
strategies. However, as consumers become more knowledgeable about the product,
pricing, organizational and operational policies that the companies deploy for prod-
ucts and services, their purchasing begins to change dramatically.

In the academic Operations Management literature, consumer demand is often
assumed to be exogenous so that demand functions are usually modeled as well de-
fined and exogenously specified functions of price and/or other product attributes
such as quality. This type of modeling approach captures the “macro” view of con-
sumer demand and many OM models shed light on strategic and managerial issues
ranging from revenue management to supply chain management. Today, however,
many companies are beginning to take the “micro” view by selling each product and
service to a target segment by utilizing more sophisticated selling mechanisms en-
abled by information technologies (say, one-on-one marketing). Some of these sales
mechanisms are the following:

1. Mixed sales channels – To offer customers more options and price points,
Amazon.com sells both new books (owned by Amazon) and used books (owned by
independent used book sellers) which compete for demand from consumers.

v
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2. Automatic markdown pricing – To clear overstocked items, Landsend.com
pre-announces their price markdown schedule in advance so that consumers can
time their purchases according to the markdown schedule.

3. Portals – To provide the one-stop shopping experience for their customers,
Orbitz.com sells airline tickets for multiple airlines thus putting them in direct com-
petition with each other.

4. Group buying – To provide each individual consumer with the buying power
of the collective group, thebuyinggroup.com offers their members group discount
prices on items ranging from cell phones to office supplies.

5. Auctions – To create an online market for consumers who want to buy or sell
their items, ebay.com constructs different online auction mechanisms.

Anecdotal and empirical evidences suggest that, in these sales mechanisms, con-
sumer purchasing behavior is fundamentally different from that arising in more
traditional retailing environments. For instance, there is plenty of anecdotal evi-
dence suggesting that many consumers are becoming more strategic in the sense
that they postpone their purchases due to an anticipation of future price decreases.
Besides strategic purchasing behavior, there is empirical evidence indicating that
consumer’s purchasing decision is often affected by the purchasing decisions of
other consumers. For instance, Bikhchandani et al. (1992) develop a theory to ex-
plain how information cascades can induce the herd behavior among customers.
If a consumer’s purchasing decision is affected by informational factors pertaining
to pricing, product availability, product characteristics, and other consumers’ pur-
chasing decisions, the consumer demand becomes endogenous in the sense that it
now depends on the underlying sales mechanism as well as on the realized (total)
price that the consumer actually pays. As the demand pattern changes in response to
firms’ actions, firms must manage their supply operations effectively and efficiently
in order to meet these new challenges. Thus, the study of different sales mechanisms
and their implications for consumer demands and supply operations is very timely
and is of immediate practical relevance.

This book contains a collection of state-of-the-art OM models that examine the
implications of rational or strategic purchasing behavior under different retail for-
mats. These models provide new insights into how firms should operate in these
new channels using different sales mechanisms. The chapters in this book are writ-
ten by leading scholars who have initiated the quest for a deeper understanding of
consumer’s rational purchasing behavior under various sales mechanisms. More-
over, these scholars have continued their efforts in developing innovative ways for
companies to respond to this rational purchasing behavior.

We enjoyed the experience of working on this book and we sincerely hope that
this book will stimulate researchers in Operations Management and other areas to
explore further this exciting emerging area of research.
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Introduction

One primary focus of research in Operations Management field is to find ways to
make supply meet consumer demand. For decades, many OM researchers have de-
veloped various production planning and inventory control models and mathemati-
cal solution techniques with the intent of helping companies meet consumer demand
effectively and at a low cost. These models have certainly helped many companies
improve their internal operations. Our field continues to develop more sophisticated
solution techniques for solving various classical Operations Management problems.
However, another item on the agenda of our field is to broaden the scope of Opera-
tions Management, which is the key goal of this book.

In most Operations Management models consumer demand is assumed to be
exogenous so that demand is usually taken to be a well-defined and pre-specified
function of price and/or other product attributes such as quality. This modeling as-
sumption is quite reasonable for capturing the consumer demand on an aggregate
level. For example, there are many existing models explaining how firms can use
product (or service) variety with different price points to serve different segments
of the market (Ho and Tang 1998). However, to compete for market share, com-
panies in the manufacturing and service industries are now deploying other novel
mechanisms to segment a market comprising of consumers with different needs,
preferences, and willingness-to-pay.

When buying different variants of a basic product (or service) at different prices
with different terms of sales, consumers often need to process information about
product characteristics and make their choices in a rational manner. Hence, each
consumer’s purchasing decision is affected by the way information is being con-
veyed to them, by the way information is being analyzed by the consumer, and
by other consumers’ decisions (such as the herding effect in Bikhchandani et al.
1992). In addition, organizational factors such as the choice of sales channels, mar-
keting factors pertaining to product assortments (such as horizontal competition,
see Hotelling 1929) and vertical competition (see Lilien et al. 1992), different sales
mechanisms such as auctions (cf., Krishna 2002), and pricing (see Coase 1972 and
Besanko and Winston 1990) as well as operational factors related to product avail-
ability can have direct impact on consumers’ purchasing behavior. If these factors

ix



x Introduction

are considered by consumers, the consumer demand becomes endogenous in the
sense that it depends on the underlying sales mechanism as well as on the realized
price that the consumer actually pays.

To address these recent developments, this book presents a collection of state-
of-the-art Operations Management models with consumer-driven demand. This is
an emerging research area that focuses on the evaluation of different innovative
product, services, and sales initiatives, and in all of these chapters it is critical to
obtain a deeper understanding of consumer purchasing behavior first and then to
develop efficient response to this behavior. Not only is each chapter motivated by
various innovative service/product delivery mechanisms found in practice, but also
the models presented in each chapter are based on various well-established theories
in economics, marketing, operations management, and psychology that deal with
consumer purchasing behavior.

Overall Structure

This book is comprised of 18 chapters that are divided into 5 parts. The first part
(Chapters 1, 2, 3, and 4) examines consumers’ rational or strategic purchasing be-
havior under different business environments. Anticipating consumers’ behavior,
firms in these chapters use different response mechanisms to mitigate the negative
effect caused by the consumers’ rational/strategic purchasing behavior. As a re-
sponse to strategic customers, the second part (Chapters 5, 6, and 7) examines how
different organizational strategies (such as sales channels and customer selection
processes) can be deployed to increase profits. Chapters in the third part (Chapters 8,
9, 10, and 11) examine how companies can use product strategies to increase prof-
its when consumers are strategic. To counteract the strategic customers’ purchasing
behavior, the fourth part (Chapters 12, 13, 14, and 15) examines how companies
can use certain operational strategies (such as capacity/inventory/product avail-
ability and inventory display formats) to increase profits. Finally, in the fifth part
(Chapters 16, 17, and 18) the book describes how different pricing strategies can
enable firms to improve profits in the presence of strategic consumers.

Chapter Highlights

Part I: Rational Consumer Behavior: Endogenous Decision
Making Mechanisms

In Chapter 1, Gad Allon and Achal Bassamboo set the stage for the book by ex-
amining situations in which consumers treat information provided by the sellers
regarding product/service availability as unreliable. Thus, customers are strategic
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in the way they treat information and use it in decisions that they make regard-
ing buying/waiting. While it is often assumed that consumers’ purchasing behavior
is purely driven by utility optimization, in Chapter 2, Matulya Bansal and Costis
Maglaras examine a situation in which customers are “satisficers” instead of “op-
timizers”. Specifically, the authors consider the case in which the customers seek
to buy the cheapest product with quality above a certain customer-specific thresh-
old which may reflect, for example, bounded rationality of consumers. In the same
vein, in Chapter 3, Felipe Caro and Victor Marinez-de-Albeniz consider the case
when customers are insatiable so that companies can increase sales by frequent new
product introduction, and they determine how often the company should rotate its
assortment. Laurens Debo and Senthil Veeraraghavan in Chapter 4 study consumer
behavior in queues. In particular, they consider the issue of how customers might
be able to infer product quality from the length of the queue and they endogenize
customers’ decision to select the queue to join.

Part 1 sets the stage by proposing that consumers are either rational (e.g., op-
timizers, satisficers, insatiable) or strategic. Specifically, consumers are strategic
when they rationally anticipate and respond to future conditions. For example, an-
ticipating future price drops, a strategic consumer may delay his/her purchasing de-
cision. Therefore, dealing with rational/strategic consumers can be costly. As such,
companies need to develop effective mechanisms to mitigate the negative effects of
rational/strategic customers. This is the focus of the remainder of this book.

Part II: Organizational Strategies for Managing Rational/Strategic
Consumer Behavior

Motivated by proliferation of multiple channels that target multiple customer seg-
ments, Barchi Gillai and Hau Lee examine in Chapter 5 the use of a secondary (e.g.,
Internet) market that can enable retailers to clear inventories unsold in the primary
market. They demonstrate benefits of such strategies for retailers, manufacturers,
and consumers. In Chapter 6, Basak Kalkanci and Jin Whang highlight the fact that
it can be very costly to satisfy rational consumers (clients in a supply chain) in
a heterogeneous market since their aggregate orders may induce the bullwhip ef-
fect. Instead, they suggest that a supplier can improve profitability by focusing on
an optimal portfolio of clients that maximizes supplier’s long-run expected profit.
Considering situations when consumers are strategic and rationally respond to fu-
ture market conditions, Xuanming Su and Fuqiang Zhang review several existing
papers that demonstrate how decentralization can be beneficial to supply chain per-
formance in Chapter 7. Interestingly, they find that, when customers are strategic,
decentralized systems can outperform a centralized organization.
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Part III: Product Strategies for Managing Rational/Strategic
Consumer Behavior

As a way to entice rational/strategic consumers to make purchases, many compa-
nies now offer customized products to meet individual consumer’s specification.
In Chapter 8, Aydin Alptekinoglu, Alex Grasas, and Elif Akcali examine the im-
pact of consumers’ propensity to return products on product assortment decisions
and show that, when return policies are relatively strict, firms may prefer to carry
many eccentric products which are unlikely to be purchased by most consumers.
In Chapter 9, Sergio Chayet, Panos Kouvelis, and Dennis Yu illustrate how a firm
can optimally select production capacity and a set of products with different design
quality levels to maximize profits when facing consumers who select the products
in a self-interested manner by maximizing their consumption utilities. Kinshuk Jer-
arth, Serguei Netessine, and Senthil Veeraraghavan examine the conditions under
which a firm can increase profits by selling opaque products to strategic consumers
in Chapter 10. Opaque products allow an intermediary to hide identity of the prod-
ucts supplied by competing firms so as to reduce direct competition. Finally, in
Chapter 11, Ali Parlaktürk considers firms’ incentives to adopt mass customization
in the presence of self-interested consumers. He shows that it may not be desirable
to adopt mass customization even at zero cost due to its negative effect on price
competition and that charging different prices for customized products would lead
to a broader adoption of mass customization.

Part IV: Operational Strategies for Managing Rational/Strategic
Consumer Behavior

This part examines how firms can use various operational instruments to reduce the
negative effects associated with rational/strategic customers. Chapters 12, 13, 14,
and 15 present different mechanisms to reduce the extent of “strategic waiting” be-
havior in which customers postpone their purchasing decisions in anticipation of
future price drops. First, in Chapter 12, Yossi Aviv, Yuri Levin, and Mikhail Ne-
diak introduce a general framework by exploring five different operational mecha-
nisms: (a) credible price commitments (i.e., pre-announced pricing); (b) rationing
capacity; (c) credible capacity commitments; (d) internal price matching policies;
and (e) partial inventory information. Then Yossi Aviv, Christopher Tang, and Rui
Yin show how inventory display formats and reservations and Gerard Cachon and
Robert Swinney demonstrate how volume flexibility and design flexibility can pro-
vide effective mechanisms for reducing strategic waiting in Chapters 13 and 14,
respectively. Finally, Qian Liu and Garrett van Ryzin explain how a firm can reduce
strategic waiting behavior by using capacity rationing as a way to urge customers to
purchase early rather than facing higher stock-out risks in Chapter 15.
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Part V: Pricing Strategies for Managing Rational/Strategic
Consumer Behavior

In this concluding section several authors examine different pricing mechanisms to
mitigate the strategic consumer behavior. First, in Chapter 16, Eyal Biyalogorsky
demonstrates how contingent pricing can be an effective tool to shape consumer de-
mand so that inter-temporal price discrimination can be achieved when consumers
endogenously decide when to show up in the market. In Chapter 17, Minho Cho,
Ming Fan, and Yong-Pin Zhou show how threshold purchasing policy utilized by
the strategic consumer can benefit both the firm selling the product and its con-
sumers. Finally, in Chapter 18, Karan Girotra and Wenjie Tang illustrate how ad-
vanced purchase discounts can be an efficient pricing mechanism for achieving op-
timal outcomes for the firm and its strategic customers. Such discounts lead to better
information sharing, superior risk bearing, reduced supply–demand mismatches and
can lead to Pareto-improving outcomes for all actors in the supply chain.
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Cheap Talk in Operations: Role of Intentional
Vagueness

Gad Allon and Achal Bassamboo

Abstract Provision of real-time information by firms to their customers has become
prevalent in recent years in both the service and retail sectors. Service providers use
delay announcements to inform customers about anticipated service delays, whereas
retailers provide the customers with information about the inventory level and the
likelihood of a stockout. Often, this information cannot be credibly verified by the
customers. The question of which information should the firm share with its cus-
tomers is a complex one, and its answer depends among other things on the dynam-
ics of the underlying operations and the customer behavior.

This chapter addresses these issues by proposing a model in which customers
treat information provided by the service provider as unverified and non-binding.
The model thus treats customers as strategic in the way they process information,
as well as in making the decisions (that is, in service settings whether to join or
balk, and whether to buy or wait in retail), and the firm as strategic in the way
it provides the information. The customers and the firm are assumed to be self-
interested in making their decisions: the firm in choosing which announcements to
make and the customers in interpreting these and making the decisions. This allows
us to characterize the equilibrium language that emerges between the firm and its
customers. By doing that, not only do we relax the assumption that customers are
naive in their treatment of the announcements, but we also demonstrate that many
of the commonly used announcements arise in equilibrium in such a model.
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1.1 Introduction

Provision of real-time information by firms to their customers has become preva-
lent in recent years in both the service and retail sectors. Service providers use
announcements to inform customers about anticipated delays, whereas retailers pro-
vide the customers with information about the inventory level and the likelihood of
a stockout. Often, this information cannot be credibly verified by the customers. The
question of which information should the firm share with its customers is a complex
one, and its answer depends among other things on the dynamics of the underlying
operations and the customer behavior.

Most of the Operations Management literature addressing this issue analyzed
two categories of information provided to the customer: (i) full information – the
state of the system, as known to the system manager when the customer arrives,
and (ii) no information – where no information is provided, and customers must
base their decisions on their expectation regarding the system performance. The
main assumption made in the former category of literature is that customers treat
the information provided regarding the state of the system as a priori verified (i.e.,
credible) and act accordingly in making their decisions. The two main issues with
this assumption are the following: (i) Customers are seldom naive in their attitude
toward any information provided by interested parties and thus take such announce-
ments with a “grain of salt.” Moreover, under the assumption of “naivety,” it makes
sense for the firm to deviate from the truth-telling policy. The option that the firm
might lie, given that the customer always believes the firm, is never explored in the
literature. (ii) Further, prior work implicitly assumes that the announcements have
a literal meaning in terms of the availability (in retail) or delay (in services) or av-
erage waiting time. However, as stated above, many service providers use verbal
messages that need to be further processed in order for customers to make the deci-
sion. For example, without processing, it is not clear what “high volume of calls” or
“almost gone” mean in terms of delay in the system (in services) and availability of
the product (in retail) in these commonly used statements. This problem is clearly a
consequence of the first issue since, without processing, only announcements with
literal meaning are possible. The combination of these two issues contributed to the
fact that only simple (i.e., no-information or full-information) announcements were
discussed, while in practice we observe a much richer variety of announcements.

This chapter surveys models that address these issues. In particular, the customers
in these models treat information provided by the service provider as unverified and
non-binding. These models, thus, treat customers as strategic in the way they pro-
cess information, as well as in making the decisions (that is, in service settings
whether to join or balk and whether to buy or wait in retail), and the firm as strategic
in the way it provides the information. The customers and the firm are assumed to
be self-interested in making their decisions: the firm in choosing which announce-
ments to make and the customers in interpreting these and making the decisions.
Note that, while previous models assumed customers to be strategic in the way they
make decisions (being forward-looking) or in the way they form expectations, these
models are the first to study settings in which customers are strategic in the way
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they interpret information provided by other parties. That is, customers do not take
the messages or the information provided by the firm at their “face value.”

This allows us to characterize the equilibrium language that emerges between the
firm and its customers. By doing so, these models not only do relax the assumption
that customers are naive in their treatment of the announcements but also demon-
strate that many of the commonly used announcements arise in equilibrium. For
example, in services, the spectrum of possible equilibria will range from announce-
ments that are analogous to the verbal type, describing the volume of arriving cus-
tomers as high or low to the detailed waiting time announcements, both common
in service systems. In retail settings, it is shown that an informative language is not
possible between a single retail and its customers. These models are among the first
to show that the spectrum of announcements that exists in real-world applications
can emerge as an equilibrium of a game between the provider and her customers.

This chapter surveys the emerging literature that deals with the strategic nature of
the information transmission in a practical operational setting, where unverifiable,
non-committal, real-time information is provided by a self-interested firm to selfish
customers.

In this literature, the announcements made by the system manager is modeled as
“cheap talk,” i.e., pre-play communication that carries no cost. Cheap talk consists
of costless,1 non-binding, non-verifiable messages that may affect the customer’s
beliefs. It is important to note that while providing the information does not directly
affect the payoffs, it has an indirect implication through the customer’s reaction
and the equilibrium outcomes. The information has no impact on the payoffs of the
different players per se, i.e., the payoffs of both sides depend only on the actions
taken by the customer and queueing dynamics. This, in turn, means that if the cus-
tomer does not follow the recommendation made by the firm, he is not penalized,
nor is he rewarded when he follows them. However, as it will be shown, the an-
nouncements do have an impact on the service provider’s profits and the customers’
utility, in equilibrium. This is in agreement with both the cheap talk literature (see
Crawford and Sobel (1982)) and the operations management literature with strate-
gic customers. (See Naor (1969) for a queueing application and Aviv and Pazgal
(2008) for a retail application, where the information provided to the customer in
the form of full visibility of the state of the system does not alter the customer’s
utility directly; however, it allows him to make a knowledgeable decision and thus
affects his utility in an indirect manner.)

The focus of these models is dealing with the strategic interaction between the
customer and the firm in a setting in which their incentives are misaligned, when
unverifiable, costless, and non-binding information is provided to the customer. In
all of the instances described in this chapter, the information is always unverifiable

1 We assume that the cost associated with conveying the message is negligible. In most practical
service organizations, while the provider needs to incur fixed costs, for example, by investing in a
more sophisticated IT infrastructure to learn the state of the system, the marginal cost of providing
the information to the customer is insignificant. There is a voluminous literature starting with
Spence (1973) dealing with models where signaling is not costless, and the mere fact that players
are willing to incur a cost provides a signal.
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and has no contractual bearing. This is in contrast to service-level guarantees, such
as those made by Dominos Pizza, Ameritrade, and E∗trade to name a few, where
the commitment is both contractually binding and verifiable.

A Reading Guide and Equilibrium Concept

The next section reviews the classical cheap talk model introduced by Crawford
1982. We discuss the challenges one faces in developing a framework that echoes the
classical cheap talk model for dynamic operational settings. Section 1.3 describes
the cheap talk game in a service setting, and Section 1.4 describes the cheap talk
game in retail.2 These sections are almost independent and can be read in any order.
Section 1.5 summarizes the finding in the previous section and contrasts the equi-
librium language in the queueing with the retail one. We conclude the chapter by
surveying related literature and future direction. In this chapter, we refer to the equi-
librium concept as Bayesian Nash Equilibrium. A careful reader would note the re-
strictions imposed are in fact for Markov Perfect Bayesian Nash Equilbrium. How-
ever, for brevity, we will omit the phrase Markov Perfect and simply use Bayesian
Nash Equilibrium.

1.2 Classical Cheap Talk Game

In this section, we provide an overview of the cheap talk game introduced in Craw-
ford and Sobel (1982). This is a game played between a Sender who has some
private information and a Receiver who takes the action which impacts the payoff
of both players. We next define the game and highlight the key findings.

1.2.1 Model

The game proceeds as follows: The Sender observes the state of the world, which
we shall denote by Q, which is private information and is uniformly distributed on
the unit interval. The Sender then sends a signal (or a message) denoted by m ∈ M .
(Here M denotes the set of all signals that can be used by the Sender.) The Receiver
processes this information and chooses an action y which determines the players
payoff. The Sender obtains an utility which depends on (a) the action taken by the
Receiver y; (b) the state of the world Q; and (c) his bias which we denote by b and
is given by V (y,Q,b) = −(y− (Q + b))2. The Receiver, on the other hand, obtains
an utility which depends only on (a) his own action y and (b) the state of the world,
Q, and is given by U(y,Q) = −(y−Q)2. 3

2 All the proofs of the results in Sections 1.3 and 1.4 are in Allon et al. (2007) and Allon and
Bassamboo (2008), respectively.
3 We adopt a notation that is different from the one used in Crawford and Sobel (1982). This is
done in order to be consistent with the notation developed in the model used in the latter part of
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The Bayesian Nash equilibrium of the above game requires that (a) the Sender’s
signaling rule yields an expected-utility maximizing action for each of the state
of the world Q, fixing the action rule for the Receiver; and (b) the Receiver re-
sponds optimally to each possible signal using Bayes’ rule to update his prior, tak-
ing into account the Sender’s signaling rule and the message/signal received from
the Sender.

1.2.2 Key Results

For this classical cheap talk game, there always exists an equilibrium where no
information is transmitted from the Sender to the Receiver, irrespective of the pa-
rameters of the problem. In fact this is the only equilibrium of the game when the
bias b exceeds 1/4. However, when b is less than 1/4, informative equilibria ex-
ist. All these equilibria share the same structure that they partition the state space
(i.e., the unit interval) into finite number of intervals. On each of these intervals the
Sender uses the same message. Further, they show that the number of intervals is
bounded from above by an integer which is a function of the bias and is denoted by
N(b). The equilibrium where the sender partitions the state space into exactly N(b)
partitions is referred to as the most informative equilibrium. Further, it is shown that
among all the equilibria, both the Sender and Receiver are better off in expectation
under the most informative equilibrium.

1.2.3 Other Applications of the Classical Cheap Talk Model

A variety of papers study mixed-motive economic interaction involving private in-
formation and the impact of cheap talk on the outcomes. Farrell and Gibbons (1989)
study cheap talk in bargaining; in political context cheap talk has been studied in
multiple papers including Austen-Smith (1990) and Matthews (1989). A recent pa-
per by Ren et al. (2007) studies a cheap talk game where a retailer shares forecast
information with a supplier. These models almost exclusively focus on static envi-
ronments. In operational systems information, transmission which is typically done
in real time cannot be categorized in the classical model and the dynamic environ-
ment is, in general, multidimensional and complex.

1.2.4 Discussion

The framework used in this chapter echoes the cheap talk model proposed in
Crawford and Sobel (1982). Driven by the applications in operations, the models
have two novel features: first, the game is played with multiple receivers (customers)

the chapter. For instance, Q, which denotes the state of the world, would correspond to the queue
length in services and the quantity on hand for retail.
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whose actions have externalities on other receivers; and second, the stochasticity of
the state of the world (i.e., the state of the system) is not exogenously given but is
determined endogenously. In particular, the private information in these models (for
example, the queue length or the inventory position at any given time in service and
retail setting, respectively) is driven by the system dynamics, which in turn depend
on the equilibrium strategies regarding the information and actions of both the firm
and the customers. As we shall see, this multiplicity of receivers with externalities
and the endogenization impact both the nature of the communication as well as the
outcome for the various players. This endogeneity, which is crucial for modeling
operational setting with customer interaction, is absent in the previous cheap talk
literature.

To highlight the impact of the system dynamics, note that there are two types
of uncertainties faced in these models: (i) Uncertainty regarding the state of the
system when a customer arrives, which is a private information held by the service
provider. This type of uncertainty exists in Crawford and Sobel’s model as well.
(ii) Uncertainty regarding the evolution of the system: Even after announcements
are made and the customer decides on his action, both the service provider and the
customers are exposed to uncertainty regarding the future dynamics. Note that the
latter type of uncertainty is not modeled in Crawford and Sobel (1982). Hence, the
definition of the equilibrium concept would require solving a dynamic optimization
problem.

1.3 Service Application

In this section, we will survey an endogenized cheap talk model which studies the
equilibrium language emerging in a service setting. This model is motivated by the
prevalence of the practice of informing customers regarding anticipated delays. Call
centers often use recorded announcements to inform callers of the congestion in
the system and encourage them to wait for an available agent. While some of these
announcements do not provide much information – such as the common message,
“Due to high volume of calls, we are unable to answer your call immediately,” some
call centers go as far as providing the customer with an estimate of his waiting time
or his place in the queue. In many service systems where the real state of the system
is invisible to customers, delay announcements will affect customers’ behavior and
may, in turn, have significant impacts on the system performance.

1.3.1 Model

We consider a service provider, modeled as an M/M/1 system. Customers arrive
to the system according to a Poisson process with rate λ . Service times are expo-
nentially distributed with mean 1/μ . We assume that λ < μ . We assume that all
customers are ex ante symmetric: customers obtain a value R if they are served and
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incur a waiting cost that is proportional to the time spent in the system, with a unit
waiting cost of c. Thus, a customer arriving to the system obtains the following
utility:

U(y) =

{
R− cw if y = “join,”

0 if y = “balk,”
(1.1)

where y is the decision made by this customer and w denotes its sojourn time in
the system. Throughout the chapter, we shall assume that R > c/μ ; this assump-
tion ensures that in the absence of delays, the service is beneficial to the customer,
on average. Clearly, if R < c/μ , no customer will join regardless of the system an-
nouncements. When a customer arrives, the system manager has private information
regarding the number of customers currently waiting in queue, denoted by the ran-
dom variable Q. Its distribution will depend on the equilibrium strategies of both
the provider and the customers, unlike in the classical cheap talk games where the
distribution of the state of the world is exogenous.

We assume that if the customer is satisfied (i.e., he obtains non-negative utility
from the transaction), the service provider obtains a positive revenue of v, while if
the customer is dissatisfied (i.e., he obtains a negative utility), the service provider
incurs a cost of −v. Thus, the profit function captures the fact that the firm makes
higher profit when the customer is satisfied versus when he is not.

Formally, depending on the action taken by the customer, and his actual sojourn
time in the system, the firm obtains the following revenues:

π(y) =

⎧⎪⎨⎪⎩
v > 0 if y = “join” and R ≥ cw,

v ≤ 0 if y = “join” and R < cw,

0 if y = “balk.”

(1.2)

Such profit functions arise naturally in several settings. One such environment is
service processes outsourcing. Typically, the outsourcing firm requires the provider,
(for example, a call center) to provide an adequate and timely service to the referred
customers. The referring firm then pays the call center only for the satisfied cus-
tomers and penalizes the provider for the dissatisfied ones. Such a structure will
also arise in cases where the firm earns certain revenues from satisfied customers
but loses goodwill with every dissatisfied ones. Further, we would like to point out
that this analysis can be generalized for the setting where the firm’s profit from
a customer is a monotone decreasing function of the customer’s waiting time. An
alternative model is studied in Allon et al. (2007)

We assume that the customer decides whether to join or not based on the in-
formation he can infer from the system manager regarding the current state of the
system, denoted by I, in order to maximize its expected utility. Therefore, the cus-
tomer will join, if and only if R ≥ cE(w|I), where I is the information provided to
this customer.

Note that the customer’s and the service provider’s incentives are not completely
misaligned: both prefer short waiting times, which result in higher utility for the
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customer and higher profits for the service provider. At the same time, we observe
that the incentives are not perfectly aligned and this would lead to equilibria de-
scribed in the next section. We refer the reader to Farrell and Rabin (1996) for a
discussion of settings in which incentives are perfectly misaligned.

1.3.2 Problem Formulation

In this section we formally define the game between the service provider and the
customers. The equilibrium concept we employ is one of Bayesian Nash equilib-
rium, which is simply a Nash equilibrium in the decision rules that relate agents’
actions to their information and to the situation in which they find themselves. Re-
call that customers are indistinguishable and their strategies are ex ante symmetric,
both in their interpretations of the signals and in their actions. Let M = {m1,m2, . . .}
represent the set of feasible signals that the firm can provide to the customer. We can
represent the signaling rule by a function g : Z �→ M , where g(q) = m if the firm
uses the signal m when the queue length is q. Let y : M �→ {0,1} denote the strategy
of the customer, where y(m) is the probability that a customer joins when the firm
signals m. Consequently, we interpret y(m) = 1 as a “join” decision and y(m) = 0
as a “balk” decision and we will use this alternative terminology interchangeably.
Note that the above signaling and action rules restrict attention to pure strategies.
The requirements of a Bayesian Nash equilibrium in our context are rather intuitive.
Given a signaling rule for the system, customers with an action rule that dictates
joining the system when the signal is m will not deviate from this rule if their ex-
pected conditional utility, given by E[R− c((q+1)/μ)|g(q) = m], will be negative
by doing so. Given the customer’s action rule y(m), the firm will deviate from its
signaling rule g(q) if it maximizes its steady-state profit, i.e., if g(q) solves an ap-
propriate Markov decision process (see below) with respect to the action rule y(m).
The above is formalized in the following definition.

Definition 1. (Bayesian Nash Equilibrium) We say that the signaling rule g(q) and
the action rule y(m) constitute a Bayesian Nash equilibrium (BNE), if they satisfy
the following conditions:

1. Let N = inf{q : y(g(q)) = 0}. Let pN
q be the steady-state probability that the

number of customers in an M/M/1/N is q.4 For each m ∈ M , we have

y(m) =

⎧⎪⎪⎨⎪⎪⎩
1

∑{q:g(q)=m}
[
R− c q+1

μ
]
pN

q

∑{q:g(q)=m} pN
q

≥ 0,

0 otherwise.

4 Note that pN
q can be thought of as the beliefs of the agents on the state of the systems. These

beliefs are consistent with the strategy of the other players.
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2. With f ( j) = (v−v)P{W ( j +1)≤ R/c}+v, there exist constants J0,J1, . . . and γ
that solve the following set of equations:

J0 = max
m∈M

{
f (0)y(m)− γ

λ
+ J0(1− y(m))+ J1y(m)

}
=

f (0)y(g(0))− γ
λ

+ J0(1− y(g(0)))+ J1y(g(0))

Jq = max
m∈M

{
f (q)y(m)− γ

λ + μ
+

μ
λ + μ

Jq−1 +
λ

λ + μ
(Jq(1− y(m))+ Jq+1y(m))

}
=
{

f (q)y(g(q))− γ
λ + μ

+
μ

λ + μ
Jq−1

+
λ

λ + μ
(Jq(1− y(g(q)))+ Jq+1y(g(q)))

}
. (1.3)

In the above definition of BNE, the first condition uses the Bayesian rule for the
customer based on the signaling function g to determine whether to join or balk.
The second condition states that the composite function y ◦ g solves the admission
control-type MDP for the firm. In the optimality equations (1.3), the constant γ
represents the long-run average profit made by the firm under optimal policy, and
constants J0,J1, . . . represent the relative cost for states 0,1, . . ..

1.3.3 Informative Equilibria

While the definition of the pure strategy BNE in the previous section is complete,
it is not directly amenable for further analysis. Thus, the first step toward character-
izing the equilibria is to show that any pure strategy BNE can be described using a
threshold level. The next proposition shows that such a mapping always exists.

Proposition 1. Let the pair y(m) and g(q) be a pure strategy BNE such that N de-
fined in condition (1) of Definition 1 is finite. Then there exists a constant q such that
the pair (g̃(·), ỹ(·)) given by

g̃(q) =

{
m1 q ≤ q,

m0 otherwise.
, ỹ(m) =

{
1 m = m1,

0 otherwise.
(1.4)

forms a BNE with the same firm profit and customer utility.

The above result implies that instead of studying the actions taken by customers
and the announcement made by the firm in each state of the system (i.e., queue
length), we can focus on the threshold queue length, below which the customer’s
action will be “join,” while above which it will be “balk.” Note that the equilibria
characterized using the above proposition requires that the constant N in Definition
1 be finite. There may exist equilibria where the constant N is infinite. We shall
discuss these in Section 1.3.4.
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While every pure strategy BNE with finite N is equivalent to a pure strategy BNE
induced by some threshold, the converse is not true, i.e., not all thresholds induce
a pure strategy BNE. Indeed thresholds below q∗ defined by (1.5) below and above
a certain level cannot form a pure strategy BNE. Thus, given a threshold level, one
needs to verify that it indeed induces a pure strategy BNE via the functions g̃ and ỹ.
Since we frequently use this notion, we formally define it below.

Definition 2. We say that the threshold q induces a pure strategy BNE if the pair
(g̃(·), ỹ(·)) given by (1.4) forms a BNE, and this pair is said to be the induced BNE
by this threshold.

Before delving into the analysis of the model and the characterization of the equi-
librium, we would like to take a step back and develop intuition into the possible
regimes and outcomes. In order to do that, and knowing that we can focus on thresh-
old levels, we characterize two important threshold levels: the first, q∗, denotes the
threshold value above which a customer will not join, given that he has full in-
formation of the state of the system, and below which he will join. The second
threshold level, q̂, is motivated by the service provider’s point of view and denotes
the threshold level below which the service provider would like the customers to
join and above which she would like them to balk, if she had full control of their
actions.

Full Information

We will define q∗ to be the threshold value above which the customer will not obtain
positive utility, in expectation, given full queue length information. It is easy to see
that

q∗ =
[

Rμ
c

]
, (1.5)

where [·] is the bracket function; i.e., q∗ is the largest integer not exceeding Rμ/c.
Note that this threshold pertains to the marginal customer who decides to balk. We
will refer to this as the first-best from the customer’s perspective, as this maxi-
mizes the utility for the individual (selfish) customer. Note that, as shown in Naor
(1969), this threshold, which is based on self-optimization (to use Naor’s (1969)
terminology), falls short of maximizing the overall expected utility of the customer
population.

Full Control

From the service provider’s point of view, deciding on a threshold level amounts to
deciding what should be the finite waiting space in an M/M/1/k queueing system.
For each value of k, the expected number of customers joining the queue per unit
of time equals λ [(1−ρk)/(1−ρk+1)] where ρ = λ/μ . Let q̂ denote the optimal
waiting space. Thus, q̂ solves the following full control optimization problem:

q̂ = argmax
k

λ
1−ρk

1−ρk+1 [vβ (k)+ v(1−β (k))] , (1.6)
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where β (k) = P(Wk ≤ R/c), and Wk is the steady-state sojourn time of the customers
who join the M/M/1/k queue. The following proposition is given to show that such
a threshold exists and to discuss the properties of the objective function of the full
control optimization problem faced by the service provider.

Proposition 2. The function defined by

Π(k) := λ
1−ρk

1−ρk+1 [vβ (k)+ v(1−β (k))]

is unimodal in k, i.e., there exists k∗ ∈ {1,2, . . . ,∞} such that the function Π(k) is
strictly increasing for k < k∗ and strictly decreasing for k ≥ k∗.

Using these two quantities, q∗ and q̂, which are based on unilateral optimization
under full information to the customers and the full control of the service provider
respectively, we can identify three regions. These regions are based on the misalign-
ment between the customers and the service provider and correspond to different
levels of the so-called bias in the cheap talk literature. Each of these regions re-
sults in a different type of conflict of interest and thus different equilibria and out-
comes for both sides. Figure 1.1 depicts the different regions and the equilibrium
announcements in each one, which we will discuss next. We will initially outline
the key equilibrium in each of the three regions and the intuition behind them. The
intuition will be followed by a formal statement in Proposition 3. The three cases
are given below:

I. Complete alignment: q∗ = q̂. In this region, the interests of the two parties are
completely aligned, and thus the pure strategy BNE is as follows. The firm gives
two signals: (i) the first for low congestion, which can be denoted as “Low.” This
signal is announced if the queue length is below q∗. (ii) A second signal denoted

Customer’s Threshold q∗

Fi
rm

’s
T

hr
es

ho
ld

 q

Case III(b)

Case II

Case III(a)
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e I

q̃

Fig. 1.1 The three regions as defined in Proposition 3.4, based on full control and full information.
An informative equilibrium exists only in region IIIa and I.
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by “High,” which indicates high congestion, and is given when the queue length
exceeds q∗. Thus we have g(q) = “Low” if q < q∗ and g(q) = “High” otherwise;
the customer joins the queue when he/she receives the signal “Low” and balks
otherwise, i.e., y(“Low”) = “join”, y(“High”) = “balk.”
As stated before, this is the key equilibrium in this region; however, this need not
be the unique pure strategy BNE. As discussed in Allon et al. (2007) there are
multiple equilibria in this model. However, it can be shown that even the more
informative equilibria are equivalent to the one described above.

II. Overly patient customers: q∗ > q̂. In this region, if customers are endowed
with full information, they would like to join the system even when the service
provider would like them to balk (if she had full control). Thus, we use the term
“overly patient” to emphasize the fact that, in this case, customers are willing to
join a more congested system than what the firm would like. Specifically, when
the queue length is between q̂ and q∗, the customers would like to join whereas
the firm would like them to balk.
We will show that there is no threshold which is immune to defection by both the
customers and the firm and consequently that there is no BNE in pure strategies.
Indeed, for pure strategy BNE to exist the firm should be able to signal “High”
and customers who receive “High” should balk. The only threshold immune to
profitable deviation by the firm is q̂. Given that under any pure strategy BNE,
the customers respond to “High” by balking, a profitable deviation for the firm
from any other candidate threshold is to announce “High” at q̂. The customers,
however, know that q̂ < q∗ so that q̂ cannot induce an equilibrium: an arriving
customer that receives the signal that instructs him to “balk” can deviate from the
prescribed equilibrium strategy by joining; the customer will then earn positive
utility (since the only state in which he can receive such a signal is on the thresh-
old itself, which is, by assumption, below q∗), and thus detect (on average) that
such a deviation is profitable – hence ruling out the possibility of a pure strategy
BNE.

III. Impatient customers: q∗ < q̂. In this region, the service provider would like
the customers to join a more congested system than the one they wish to join.
Specifically, when the queue length is between q∗ and q̂, the firm would like the
customers to join, whereas the customers would like to balk. In order to study
this region, we define F(q) to be the customer’s expected utility if he finds q
customers in the system upon arrival and decides to join the queue; i.e., F(q) :=
R− c(q+1)/μ . We define for � < k,

G(�,k) =
k−1

∑
q=�

pk
qF(q), (1.7)

where pk
q := [ρq(1−ρ)]/(1−ρk+1) is the steady-state measure of the M/M/1/k

queue. Here, G(0,k) is interpreted as the average utility of a customer joining the
M/M/1/k queue.
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Then, we have two subcases to consider:

(a) G(0, q̂) ≥ 0: If the firm announces “Low” when the queue length is below
q̂ and “High” otherwise, the customer would like to join when they get the
“Low” signal, as their expected utility is positive (since G(0, q̂) > 0). Further,
since in equilibrium “High” would be announced only when the queue exactly
equals q̂, the customer would balk as they know that q∗ < q̂. This is optimal
for the firm and also describes our pure strategy BNE for this setting. Thus,
the firm is capable of achieving its first-best profits and operates as if it has
full control over the customer decisions.

(b) G(0, q̂) < 0: In this case there is no threshold-induced pure strategy BNE.
For pure strategies to exist the firm should be able to signal “Low” and cus-
tomers who receive “Low” should join. As in case II, the only threshold im-
mune to profitable deviation of the firm is q̂. However, the customers know
that q̂ > q∗, thus the threshold q̂ cannot constitute an equilibrium: an arriv-
ing customer that receives a signal that instructs him to “join” would obtain
negative expected utility and thus can deviate from the prescribed equilibrium
strategy by balking and obtaining zero utility. This rules out the possibility of
a threshold-induced pure strategy BNE.
The intuition of the above is as follows: if the expected utility of the customers
under an M/M/1/q̂ system, as given by G(0, q̂), is positive, they will have
no incentive to deviate. Any deviation here will lead to zero utility for the
customers. If, on the other hand, their utility is negative, they would be better
off by not joining at all. Consequently, the threshold q̂ cannot induce a pure
strategy BNE. Further, no other threshold is immune to profitable deviation
on the firm’s part. Thus, in case III(b) there does not exist a pure strategy
BNE. We emphasize, however, that in case III(a) the customer can be lured,
by using intentional vagueness, to join the system even in states in which they
obtain negative expected utility as long as their utility averaged over all state
in which they join is positive.

We turn now to the formal statement and proof of the equilibria we have dis-
cussed thus far. To this end, we let ΠFI and ΠFC be the firm’s profit under full in-
formation and full control, respectively. Let UFI and UFC denote the expected utility
of the customers under full information and full control, respectively. As discussed
before, ΠFC is the first-best profit for the firm and UFI is the first-best utility for the
customer. The next proposition summarizes the above result and also compares the
firm’s profit and expected customer utility under the different equilibria.

Proposition 3. I. If q∗ = q̂, then q∗ induces a pure strategy BNE. Under this equi-
librium the firm’s profit equals ΠFC and the expected utility of the customers is UFI.

II. If q∗ > q̂, there is no finite q that induces a pure strategy BNE.
III. If q∗ < q̂, then:

(a) If G(0, q̂) > 0, q̂ induces a pure strategy BNE. Under this equilibrium the
firm’s profit equals ΠFC and the expected utility of the customers is UFC.

(b) If G(0, q̂) ≤ 0, there is no finite q that induces a pure strategy BNE.
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To summarize the findings so far: we have identified three regions, each with a
different equilibrium behavior. We observed that a pure strategy BNE exists only
if the firm’s and the customers’ incentives are perfectly aligned or if the customers
are mildly impatient. We find that in these equilibria, only a two-signal language
is required, thus providing analytical support to the common “high congestion/low
congestion” announcement observed in practice. Proposition 3 establishes condi-
tions for the existence of pure strategy informative BNE’s as a function of the
system parameters and characterizes these whenever they exist. It also raises two
important questions: are the equilibria outlined above (where they exist) the only
equilibria. Further, does the lack of equilibria (for the appropriate regions) suggest
that no equilibrium language whatsoever is possible. To discuss these questions, we
shall consider these two types of equilibria. First, we show the existence of a bab-
bling equilibria, where the firm provides no information. Next, we extend the def-
inition of BNE to allow customers to randomize their actions. We characterize the
non-informative as well as the informative mixed strategy BNE. Here, the informa-
tive mixed strategy BNE is again a two-signal language. While other equilibria can
be constructed as well, they are equivalent to the two-signal equilibrium.

1.3.4 Non-informative and Other Equilibria

The equilibria constructed above are based on a signaling rule with two signals.
In practice, however, there are many service providers that share no information
whatsoever with the customer, whether it is direct information or one that is im-
plicit in the type of recorded music heard while waiting. Are these systems, where
no information is transmitted, in equilibrium? It turns out that such an equilibrium
may indeed exist in our setting. When it does exist, it is referred to as a “babbling”
equilibrium, to denote that no information is transmitted, and any information pro-
vided is treated by the customers as meaningless. In the setting of Crawford and
Sobel (1982), such an equilibrium mostly exists and is sometimes the only possible
one. In our model, however, such an equilibrium-in-pure-strategies exists only un-
der certain conditions derived below. In our model, a “babbling equilibrium” exists
in pure strategies if, in the absence of information, all customers join (otherwise,
given that customers know that all customers balk, they have an incentive to join
and earn positive utility). If all customers join, the resulting queueing system is an
M/M/1 queue (i.e., with infinite waiting space), in which case the average waiting
time is E[W ] = 1/(μ −λ ) and customers join if R ≥ cE[W ], i.e., if R ≥ c/(μ −λ ).
In this equilibrium, if indeed all customers join, the system manager can obtain the
following profits

πNI = λe−(μ−λ )(R/c)(v− v)+λv.

Observe that if R < c/(μ −λ ), we cannot have a babbling equilibrium. This
underscores one of the differences between the setting of Crawford and Sobel (1982)
and our setting. While the uncertainty in Crawford and Sobel (1982) is independent
of the equilibrium dynamics, in our setting there is a clear dependence between
the uncertainty (as embedded in the steady-state distribution of the queue) and the
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resulting equilibrium. This manifests itself in the fact that the babbling equilibrium
may not exist. To provide rigorous characterization we have the following result.

Proposition 4. There exists a pure strategy babbling equilibrium if and only if R ≥
c/(μ −λ ). Further, if q∗ < q̂ and G(0, q̂) < 0, i.e., Case III(b) of Proposition 3,
there does not exist a pure strategy babbling equilibrium.

The following proposition shows that even though a babbling equilibrium may
exist, the firm’s profit obtained under it is dominated by the firm’s profits under
the two-signal equilibria described above. Further, the overall customer’s expected
utility is lower under the babbling equilibrium as compared to that achieved under
the two-signal one.

Proposition 5. Assume that R ≥ c/(μ −λ ) so that the babbling equilibrium is a
pure strategy BNE. The firm’s profits under babbling equilibrium are always domi-
nated by the two-signal equilibrium described in Proposition 3, if it exists. Further,
the customers’ expected utility is higher under the equilibrium described in Propo-
sition 3 than under the babbling equilibrium, if it exists.

Proposition 5 emphasizes the value of communication. Even though a non-
informative (babbling) equilibria does exist, both the service provider and the cus-
tomers are always better off when they move to more informative equilibria if such
equilibria exist, i.e., to a two-signal equilibria. This communication does not neces-
sarily maximize the customer’s overall expected utility but it does improve it. The
logic behind Proposition 5 is as follows: Naor (1969) shows that when customers
are self-interested and can observe the length of the queue prior to joining, their op-
timal threshold q∗ will be higher than what the social optimum prescribes but it will
be finite. In our setting, we observe that for the two-signal equilibrium, the threshold
queue length is at least as high as q∗. Further, for the babbling equilibrium, when
it exists, the threshold is infinite. Thus, using information improves the customer’s
overall expected utility when compared to settings where the service provider is
giving no information. Note that this improvement is present in the absence of any
verification or credibility of the information provided by the service provider.

At this point, we remind the reader that in the region where the customers are very
impatient (region III(b)), there is no pure strategy BNE that is either informative or
non-informative. Without expanding the strategy set for the customer or the firm, it
is unclear how the system would behave in this parameter regime. In particular, the
customer behavior is unpredictable for the service provider. This issue is alleviated
by considering randomization on the part of the customer. We next discuss these
results in passing. For more details and formal analysis of these equilibria the reader
is referred to Allon et al. (2007).

Mixed Strategy Non-informative Equilibria

With the restriction to pure strategies BNE we have shown above that babbling
equilibria need not exist. When customers are allowed to use mixed strategies, such
equilibria always exist.
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The customers randomize among joining and balking, to form a mixed strat-
egy BNE as follows: they choose a probability of joining θ that satisfies R =
c/(μ −θλ ), if R < c/(μ −λ ) and θ = 1 otherwise. Under this equilibria, the arrival
process is thinned by the customer randomization such that an arriving customer is
indifferent between joining and balking. In particular, the customers do not have any
profitable deviation.

Informative cheap talk can be viewed as a mechanism to coordinate incen-
tives of the service provider and the customers when credible information can-
not be transmitted. If only babbling equilibrium exists, it might suggest that the
non-creditability is hampering any possibility of coordination whatsoever between
the players. This is exactly the issue we explore below when we examine whether
there is a possibility of improvement in the coordination between the service
provider and its customers.

Mixed Strategy Informative Equilibrium

Allon et al. (2007) shows that in addition to the babbling equilibria, there may ex-
ist more informative BNEs in mixed strategies. The results in Allon et al. (2007)
imply that there are only two possible types of two-signal mixed strategy BNE in
which randomization is used. The two types can be described as follows: The firm
announces “High” and “Low” based on the threshold qmix: (a) in the first type of
BNE, which we shall refer to as Join or Randomize equilibria, the customers who
receive “Low” join the system and the customers who receive “High” would join
the system with probability θ ∈ (0,1) and balk otherwise; (b) in the second type of
BNE, which we shall refer to as Randomize or Balk equilibria, the customers who
receive “Low” join the system with probability θ and balk otherwise, and the cus-
tomers who receive “High” would balk. Note that both of these types of equilibria
are completely defined by two parameters: the threshold qmix used by the firm for
signaling and the randomization parameter θ .

Intentional Vagueness

Allon et al. (2007) shows that unless the firm and the customer are perfectly aligned
(that is, q∗ = q̂), the equilibrium language always involves intentional vagueness.
For example, under region (IIIa), the firm uses intentional vagueness to lure cus-
tomer to join a system they would not join if they had full information. Under mixed
strategy equilibria, the firm uses intentional vagueness to ensure that the customer
randomizes between joining and balking.

Thus, the firm even though always tells the truth it is almost always an incomplete
truth.

1.4 Retail Application

In this section we shall apply the above framework to a retail setting. Here, a retailer
is trying to sell a product over a time horizon and provides availability information
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to the arriving customers who make a decision whether to buy or wait. For example,
the web-retailer sierratradingpost.com uses the tag “almost gone!” for some of the
products, and in its Frequently Asked Questions section explains this tag as follows:

If an “almost gone!” label appears next to the item, the sell out risk is very high. We rec-
ommend that you place your order immediately.

Several other web-based retailers, such as BarnesandNoble.com and Circuitc-
ity.com, allow customers to search for the availability of specific products for
in-store pick-up. Along the same lines, web-based travel agencies such as Expe-
dia.com allow customers to view the availability of airline tickets on specific flights,
prior to making the purchasing decision. Similarly, brick-and-mortar stores use dif-
ferent display modes to inform customers about availability. The different displays
range from showing ample stock per item to showing only a single item per available
product. In all of these examples, the information shared cannot be fully verified by
the customers. In the brick-and-mortar examples, a customer does not know if there
are more than a single item available even if only one is displayed and cannot verify
whether the stock is indeed low, even if a tag “almost gone!” is attached to an item in
web-retailing. In this section, we shall study a formal model and study the emerging
equilibrium language between the retailer and its customers. We shall also study the
setting when there are multiple decentralized information channels available to the
customers.

1.4.1 Model

Consider a firm that sells a product during a finite length regular season denoted by
[0,τ] followed by a sales season. Here, τ is a stopping time whose distribution is
known to both the firm and the customers. Thus, the sales period begins at a random
time and both the firm and its customers observe it only once the sales season starts.
Further, we assume that the cumulative distribution function of τ is Fτ . We shall
make the following assumption with regard to the distribution of the length of the
regular season, τ .

Assumption 1. E[τ − t|τ > t] is a non-increasing function.

Simply put, the above assumption requires that in expectation the “sales period”
is getting closer as time goes on. The impossibility result described in the chapter
would hold even under general conditions but to characterize the specific structure
of the equilibrium we shall make this assumption. Let Q = {Q(t) : t ∈ [0,τ]} be the
quantity on hand process, i.e., Q(t) denotes the number of products on hand at time
t ∈ [0,τ]. Thus, Q(0) denotes the initial inventory at the beginning of the regular sea-
son. Similarly, Q(τ) denotes the inventory at the end of the regular season and hence
the inventory which is being offered at a discounted price during the sales season.
Note that the actual evolution of the quantity on hand process Q(t) is determined by
both the arrival process of the customers and their buying decisions, which depend
on the information they have, which includes the information provided by the firm.



20 Gad Allon and Achal Bassamboo

Customers arrive according to a Poisson process with rate λ . We denote this ar-
rival process by N = {N(t) : t ∈ [0,τ]}, where N(t) is the number of customers that
arrived in the interval [0, t]. We assume that the firm sells the product for the price
p during the regular season. All units that are left at time τ are discounted and sold
at a random price S. We assume that S is a random variable which is independent
of all other stochasticity in the system and satisfies P(S ≤ p) = 1. Further, we as-
sume that the products during the sales season are sold instantaneously at time τ .
Thus, the firm’s revenue is p(Q(0)−Q(τ))+ SQ(τ). Customers are assumed to be
ex ante symmetric and obtain value v for the purchased product. Here, we assume
v > p. A customer that arrives at time t ∈ [0,τ] makes the decision whether to buy
immediately or wait for the sales season. (If Q(t) = 0 then there is no decision to
be made.) If he buys immediately, he obtains an utility of v− p which we assume
to be positive. If he decides to wait until the end of the period for the sale then
he obtains the product with probability A(Q(τ)), where A(x) is the probability that
any single customer can obtain the product during the sales period if the sale starts
with x units on hand.5 Depending on whether he is able to buy the product during
the sales season or not, he obtains (v− S)− cW (τ − t) or −cW (τ − t), respectively.
Here cW is the waiting cost incurred by the customer, associated with the inconve-
nience of not obtaining the product immediately. Hence his expected utility is given
by E[(v−S)A(Q(τ))− cW (τ − t)|τ > t], where the expectation is over the quantity
available at the beginning of the sales period, Q(τ). An alternative model where the
firm chooses the discounted price and the time of markdown is explored in Allon
and Bassamboo (2008).

We shall refer to A(Q(τ)) as the availability of the product during the sales sea-
son. The customer has the option to leave the market and obtain zero utility, but it
can be easily seen since v > p that the option of leaving the market is dominated by
the “buying now” option. One can envision a more elaborate model for the avail-
ability of the product during the sales season. All the structural results from the
chapter will continue to hold, even if the availability function depends on other fac-
tors. However, since the focus of this chapter is on the communication, we restrict
attention to the above described availability model.

1.4.2 No-Information and Full-Information Strategies

The main focus of this chapter is to characterize the ability (or lack thereof) to com-
municate unverifiable information to a strategic customer by a retailer. In order to
be able to discuss the specific model of communication we will initially discuss
the customers behavior under two benchmarks. These correspond to two possible
strategies on the firm’s part: (i) the strategy of providing no information, and (ii) the

5 We assume the probability that a customer can obtain the product during the sales period depends
on the demand during the period only through the number of sales that occurred. This corresponds,
for example, to cases where there are other customers that arrive during the sales period, and
do not arrive during the regular season. Cachon and Swinney (2007) describe these customers as
“bargain hunters,” who frequent the store only during the sales season. The resulting availability
for a specific customer in their model is similar to ours.
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strategy of providing the customer full information regarding the availability of the
item upon his arrival. The question whether these strategies would emerge in equi-
librium is a separate one and would be addressed later in the chapter when we study
the game between the retailer and its customers. There (see Section 1.4.3), we will
allow the firm to use different information sharing rules. We will next describe the
customers behavior in response to both of these strategies, forming an equilibrium
among themselves.

No-Information Solution

In this setting, we assume that the firm is not providing any information with regard
to the inventory position. Note that this is equivalent to the case where the customers
have decided to disregard any information provided by the firm. Since the customers
cannot observe the state of the system, they have to rely on the time to make their
decisions. Thus, the strategy of the customer shall simply be a function of time. The
customer’s strategy is represented by y = {y(t) : t ∈ [0,∞)}, where y(t) ∈ [0,1] is
the probability that a customer arriving at time t buys the product if faced with a
decision. (Note that if t > τ or Q(t) = 0 then the customer cannot buy the product
and there is no decision to be made.) We next define the notion of Bayesian Nash
equilibrium (NE) under no information:

Definition 3. We say that y forms a BNE under no information, if the following is
satisfied for all t ∈ [0,τ]:

y(t) ∈ argmax
θ∈[0,1]

θ [(v− p)− (v−S)E[A(Qy(τ))]+ cW (τ − t)|τ > t],

where Qy(τ) is the quantity on hand at time τ if the customers follow strategy y.

The definition requires that the customer buys with probability one if his utility
from buying is strictly greater than his utility from waiting, assuming other cus-
tomers follow their time-dependent strategies y. Similarly, his probability of buying
is zero if the utility from buying is strictly dominated by that obtained from waiting.
If the utilities from buying and waiting are equal, he randomizes between buying
and waiting.

The next result shows that there exists a BNE under no information in pure strate-
gies, i.e., a BNE for which y(m) ∈ {0,1}.

Proposition 6. There exists a NE under no information in pure strategies. Specifi-
cally, there exists τ̂ such that

y(t) =

{
1 t ≤ τ̂
0 t > τ̂

forms a pure strategy NE.

The above theorem shows that there exists an equilibrium among the customers
when the firm does not provide any information. One can view this equilibrium as
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self-organization of the customers among themselves in the absence of any infor-
mation. Further, this equilibrium exists in pure strategy, i.e., the arriving customer
would buy or wait with probability one, depending on the arrival epoch. Note that
under the monotonicity assumption 1, we have that there exists a threshold τ̂ until
which the customer buys and does not buy after that. However, if this assumption
is relaxed, then there still exists pure strategy equilibrium in which multiple switch-
over points exist, that is, a customer arriving up to time t1 will purchase the product,
a customer arriving between t1 and t2 will wait, and a customer arriving after t2 will
buy immediately, again.

Full Information Solution

In this setting we assume that the customers have perfect information regarding the
quantity on hand, based on which they make their buying/waiting decisions. The
customers’ strategy in this setting is defined via a mapping y : Z+ × [0,∞) �→ [0,1],
where y(q, t) is the probability that a customer arriving at time t buys the product
immediately when the quantity on hand is q and t ≤ τ . We next define the NE under
full information.

Definition 4. We say that y forms a NE under full information, if the following is
satisfied for all t ∈ [0,∞):

y(q, t) ∈ argmax
θ∈[0,1]

θ
[
(v− p)− (v−E[S])E[A(Qy(τ))|Q(t) = q,τ > t]

+ cW
E[(τ − t)|τ > t]

]
,

where Qy(τ) is the quantity on hand at time τ if the customers follow strategy y.

To characterize the NE under full information, without loss of generality we can
restrict ourselves to threshold-induced NE. The reason for this is the fact that for
any q, t ∈ Z+ × [0,∞), if y(q, t) = 0 then y(q′, t) = 0 for all q′ > q. In addition, if
two equilibria y and y′ differ on a set of Lebesgue measure zero, then the outcomes
of the games, in terms of the customers’ utility and the firm’s profit, are identical.
We next define the customer strategy induced by a threshold function η = {η(t) :
t ∈ [0,∞)}.

Definition 5. We say that a function η induces the customer strategy y if

y(q, t) =

{
1 q < η(t)

0 otherwise.

Further, we say that η induces a NE under full information if η-induced customer
strategy y forms a NE under full information.

The next result shows that there is a unique threshold η that induces a NE under
full information. To this end, note that since A(·) is a non-increasing function, we
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have that A−1, which denotes the inverse of A, is well defined and is also a non-
increasing function.

Proposition 7. There is a unique NE under full information and it is induced by
ηFI(·) which is defined as the pointwise solution to the following equation:

ηFI(t) =
⌈

A−1
(

(v− p)+ cW
E[(τ − t)|τ > t]

(v−E[S])

)⌉
. (1.8)

One might suspect that the utility obtained by an average customer endowed with
full information is higher than the utility obtained by an average customer under the
no-information equilibrium. However, this is not always the case, as shown in the
numerical study in Allon and Bassamboo (2008). Note that when we move from no
information to full information, all the customers have more information. The utility
obtained by a given customer in our model is driven not only by his own informa-
tion but also by the actions of the other customers, which drive the availability of
the product during the sales period. Further, these actions are driven by their own in-
formation set. When we move to full information, other customers are also making
more informed decisions, thus the average customer may obtain lower utility.

1.4.3 Cheap Talk Equilibrium

In the last section, we fixed the strategy of the firm with regard to information shar-
ing and studied the equilibrium emerging among the customers. In this section, we
explore the game played between the firm and its customers, where the firm is al-
lowed to use any information sharing strategy. In particular, the firm can choose full
information as well as no information but is not restricted to do so. To define the
single-retailer game formally, we shall start by defining the strategy of the customer
followed by the strategy of the firm.

Let M be the Borel set which comprises of feasible signals that the firm can use.
Let y : M × [0,∞) �→ [0,1] represent the strategy of the customers. Here, y(m, t) is
the probability that a customer arriving at time t, receiving a signal m ∈ M , buys
the product immediately. Thus, this customer waits for the sales period which starts
at time τ with probability 1− y(m, t). Let the space of feasible strategies for the
customer be denoted by Y . Let g : Z× [0,∞)×M �→ R represent the strategy of
the firm. Here g(q, t, ·) induces a probability measure on M from which the firm
announces a realization, if the quantity on hand at time t is q. Thus, we will impose
the condition that

∫
M g(q, t,m)dm = 1 for all q ∈ Z and t ∈ [0,∞). Let the space

of feasible strategies for the firm be denoted by G . Note that the quantity on hand
process Q is determined by the customer’s strategy as well as the firm’s strategy g.
Let μg,y(t) represent the distribution of the signal transmitted at time t if the firm
follows strategy g and the customers follow strategy y. A r.v. with measure μ shall
be represented by Xμ . Further, let the firm’s profit under the strategy pair g,y be
written as Π(g,y), and Qg,y(t) be the inventory on hand process under the strategy
pair g,y.
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Definition 6. We say that the pair (g,y) ∈ G ×Y forms a Bayesian Nash equilib-
rium (BNE) in the single-retailer game if and only if it satisfies the following two
conditions:

1. For all m ∈ M and t ∈ [0,∞),

y(m, t) ∈ argmax
y∈[0,1]

y
[
(v− p)

−E[(v− s)A(Qg,y(τ))− cW (τ − t)|τ > t,Xμg,y(t) = m]
]
.

2. Fixing the strategy of the customers y, the strategy of the firm g solves:

g ∈ argmax
g̃∈G

Π(y, g̃).

The above definition requires that both the firm and the customers do not have
any unilateral profitable deviation. Specifically, the first condition in the definition
requires that fixing the strategy of the rest of the customers and the firm, a customer
arriving at time t should not have any profitable deviation. Similarly, the second con-
dition requires that given the customer’s action rule y as fixed, the firm maximizes
its profit by using strategy g.

Next, we characterize the emerging equilibria in the single retailer game. We
prove that it is impossible for the firm to credibly communicate any information to
its customers. This result is equivalent to saying that the only type of equilibria that
may arise in such a game are non-informative. Thus, it is either the case that the
firm provides no information or the firm provides information, but the customers
disregard it in making their decisions due to the lack of credibility on the part of
the firm. The equilibrium language that emerges in this game does not carry any
information and is equivalent to babbling. We shall first define the class of equilibria
which are non-informative, and hence referred to as babbling equilibria.

Definition 7. We say that the pair (y,g) ∈ Y ×G forms a babbling equilibrium if
and only if the pair (y,g) forms a BNE and y(m1, t) = y(m2, t) for all m1,m2 ∈ M
and for all t ∈ [0,τ].

This definition states that a BNE is a babbling equilibrium if the customer’s ac-
tions in equilibrium do not depend on the information provided by the firm.

Note that Proposition 6 already established that such an equilibrium always exists
in pure strategies in the single retailer game. We next show that babbling is the only
type of equilibria that can arise in the single retailer game.

Proposition 8 (The impossibility result). Under any BNE of the single-retailer
cheap talk game, the customer’s realized buying behavior satisfies the following:

y(Xμg,y(t), t) = y∗(t) a.s.,

for almost all t ∈ [0,τ], where there exists a babbling equilibrium where the cus-
tomer purchases with probability y∗(t) at time t ∈ [0,τ].
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Proof. Consider any pair (y,g) ∈ Y ×G BNE of the above cheap talk game. We
shall first show that at any point in time the firm would provide a signal that would
maximize the probability of an arriving customer buying the product immediately.
That is,

y(Xμg,y(t), t) = max
m′∈M

y(m′, t).

For this, consider condition 2 in the definition of the BNE in the single retailer game.
It can be expressed using Markov decision process approach as follows: let V (q, t)
be the total expected profit starting from period t until the sales period and having q
units on hand. Since the firm would maximize its revenue, V (·, ·) should solve:

∂V (q, t)
∂ t

= max
m∈M

[λy(m, t)(p+V (q−1, t))+λ (1− y(m, t))V (q, t)

+h(t)E[S]q− (λ +h(t))V (q, t)], (1.9)

where h(t) is the hazard rate of τ which defines the beginning of the sales period.
The above can be reexpressed as

∂V (q, t)
∂ t

= max
m∈M

y(m, t)λ [p+V (q−1, t)−V (q, t)]+h(t)E[S]q−h(t)V (q, t).

(1.10)

Further, we have V (q, t) ≤ p +V (q− 1, t). Thus, we get the desired result that the
support of g(q, t,s) is a subset of argmaxm∈M y(m, t). So, we have

y(Xμg,y(t), t) = max
m′∈M

y(m′, t), a.s.

Define y(m, t) = argmaxm′∈M y(m′, t) for all m ∈ M and t ∈ [0,∞). We can easily
verify that the pair (y,g) is again a BNE. Further, by construction it is a babbling
equilibrium. This completes the proof. ��

The above proposition shows that no matter what signaling rule the firm uses,
the customers would simply ignore all the signals and make their buying decisions
irrespective of any information provided. Thus, in this cheap talk game no credibility
whatsoever can be created.

While a babbling equilibrium exists in all variants of the Crawford and Sobel
cheap talk game, Allon et al. (2007) demonstrate that it may fail to exist in games
with endogenized cheap talk. The result that there exists a pure strategy babbling
equilibrium in a retail setting is driven by the fact that customers want to mimic
other customers. This is in contrast to Allon et al. (2007) where, if no customer
joins/purchases the service, an individual customer would like to join the service.
See Section 1.5 for a detailed discussion.

Generalization of the Impossibility Result

In this section, we consider the setting where the pricing and the timing are done
endogenously by the firm. We assume that the valuation of the product at time t is
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given by v(t). The firm chooses the regular season price p, the sales period price s,
and the beginning of the sales period τ . An equilibrium for this generalized cheap
talk game can be defined in an analogous manner to Definition 7 where the strategy
of the firm now includes the pricing and timing as well. Next we state the general-
ization of the impossibility result.

Consider any equilibrium of the generalized cheap talk game. Fix the pricing
and the timing strategy of the firm. The signaling strategy of the firm and the buy-
ing/waiting behavior of the customer must also form a BNE equilibrium of a mod-
ified game where the pricing and the length of the regular season are exogenously
fixed. Further note that Proposition 8 also holds for the setting where the valuation
is decreasing. Thus this equilibrium must be non-informative. Further, note that if
there is no equilibrium for the generalized cheap talk game, the result holds trivially.
Thus we have the following general result.

Proposition 9. There does not exist any informative equilibrium for the generalized
cheap talk game.

The fact that only babbling equilibria exist in the single retailer game suggests
that the inability to credibly disclose information is hampering any possibility of
information sharing. We explore this issue next, examining whether it is possible
to improve coordination between the retailer and its customers by offering several
remedies and studying the resulting games.

1.4.4 Remedies and Discussion

Multiple Channels of Information

While the previous section showed that the only equilibrium that emerges in the
single retailer game is a babbling one, we next study a decentralized setting where
the existence of a second information provider enables the retailers to gain “some”
credibility.

There are numerous cases in practice where multiple channels sell inventory from
the same pool of inventory and independently provide availability information (this
inventory may either be physically co-located, or virtually pooled). For example,
Dicks.com and Modells.com – whose operations are both run by GSI commerce –
compete on the same pool of potential customers yet provide information on the
same pool of inventory for the same items. Many brick-and-mortar retailers such as
Barnes & Noble and Circuit City allow the customer to check the availability at the
different stores on their web sites. Furthermore, Wal-mart.com, BN.com, and Cir-
cuitcity.com have autonomy in managing their marketing and availability decisions.
Demery (2004) explains, “Channels run under different responsibility centers and
profit centers, so a dot-com, a catalog and brick-and-mortar store were run as sep-
arate businesses.” We shall show that this multiplicity of information sources can
actually help the firms to achieve some credibility. In cases in which such a system
is not yet implemented, allowing customers to obtain information through multiple
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channels can be viewed as a remedy to the inability to communicate unverifiable
information with only a single retailer.

To study this multiple-retailer setting and to explore how much credibility “de-
centralization” can create in this setting, we shall next define the model and proceed
to analyze it. We consider multiple autonomous sales channels of the same retailer
or multiple sellers sharing a common inventory whose status the customer cannot
see or verify. In this setting the sellers’ signals are based on the common inventory
and the customers make their buying decisions based on both signals. We assume
that the utility function and profit of the firms are similar to the previous section
with the following modification: the firms receive the profits from the products that
are sold through them. Note that similar analysis can be carried out for more general
systems, where the retailers carry some inventory “on-site” and share the rest.

To illustrate that an informative equilibria exists in this setting, we shall re-
strict ourselves to pure strategies. To describe the game formally, we denote the
strategies of the firms by functions g1 : Z× [0,∞) �→ M and g2 : Z× [0,∞) �→ M
to represent the signaling rule for the two sellers and y : M × M × [0,∞) �→
{“buy,” “buy-1,” “buy-2,” “wait,” “wait-1,” “wait-2”} to represent the purchasing be-
havior of the customer. Here gi(q, t) represents the signal given by the firm i = 1,2
to a customer arriving at time t when the common inventory on hand is q at time t.
Here y(m1,m2, t) is “buy” if the customer arriving at time t decides to buy with
equal probability from firm 1 and firm 2 when he receives the signals m1 ∈ M and
m2 ∈ M from firm 1 and firm 2, respectively. The function y is “wait” if the cus-
tomer decides to wait for the sales period and then buy from either one with equal
probability. The action “wait-1” corresponds to the customer deciding to wait for
the sales period and buy from retailer 1. The action “wait-2” is defined similarly
where the customer buys from retailer 2 in the sales period. Similarly, the actions
“buy-1” and “buy-2” correspond to the case when the customer decides to purchase
from retailer 1 and 2 with probability one, respectively. Let G1 and G2 be the set of
feasible strategies for the retailer 1 and 2. For i = 1,2, let Π i(g1,g2,y) be the profit
of the ith retailer if retailer 1 follows strategy g1, retailer 2 follows strategy g2, and
the customers follow strategy y.

For the purpose of this study, we shall restrict our attention to threshold-induced
strategies for the firms. We next define these strategies as follows:

Definition 8. Let ηi(t) i = 1,2 be a decreasing function over the time interval [0,∞).
The triplet of strategies (g1,g2,y) induced by η is defined as follows:

gηi
i (q, t) =

{
M1 q ≤ ηi(t)
M2 otherwise

, (1.11)

y(η1,η2)(m1,m2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
“buy” m1 = m2 = M1

“wait” m1 = m2 = M2

“wait −1” m1 = M2 and m2 = M2

“wait −2” m2 = M2 and m1 = M2

. (1.12)
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Further, let Πη be the total combined profit of the two firms under strategies η1 =
η2 = η .

This definition is based on the following logic for the customer’s action. Here
M1 corresponds to a “buy” state and M2 corresponds to a “wait” state. Note that the
announcement M2 that induces “wait,” can actually be a lack of a signal (i.e., the
firm is “silent” about the inventory status, and signals only if M1 is used). Thus, if
the firms agree about the information, the customer makes the decision as if there
is just one signal. However, if they disagree, then the customer decides not to buy
and wait for the sales period. Further, during the sales period the customer (who
came during the regular season) visits the firm that provided him the information
that it has ample inventory (did not signal M1) when the other firm did not provide
a similar signal.

Next we define the BNE for strategies induced by threshold functions (η1,η2).
For this let Qη1,η2 = {Qη1,η2(t) : t ∈ [0,∞)} be the quantity on hand process, where
Qη1,η2(t) is quantity on hand at time t under the strategies induced by (η1,η2).

Definition 9. We say that the triplet (g1,g2,y) ∈ G ×G ×Y induced by (η1,η2)
forms a BNE in the multi-retailer game if and only if it satisfies the following three
conditions:

1. For all m1,m2 ∈ {M1,M2} and t ∈ [0,∞), y satisfies the following:

a. y(m1,m2, t) is “buy” if

(v− p) ≥ E[(v− s)A(Qη1,η2(τ))− cw(τ − t)|gηi
i (Qη1,η2(t), t) = mi

for i = 1,2 and τ > t].

b. y(m1,m2, t) is “wait,” “wait-1,” or “wait-2” if

(v− p) < E[(v− s)A(Qη1,η2(τ))− cw(τ − t)|gηi
i (Qη1,η2(t), t) = mi

for i = 1,2 and τ > t].

2. Fixing η2 (hence gη2
2 ) and y, η1 solves

gη1
1 ∈ argmax

g∈G
Π 1(g,gη2

2 ,y).

3. Fixing η1 (hence gη1
1 ) and y, η2 solves

gη2
2 ∈ argmax

g∈G
Π 2(gη1

1 ,g,y).

In Section 1.4.3 we showed that a babbling equilibrium always exists. This equi-
librium trivially exists also in the multi-retail game. The next proposition shows
that there also exists a BNE where the firms reveal complete information regarding
their inventory to their customers. This BNE is induced by the threshold functions
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ηi = ηFI for i = 1,2, where ηFI is the function that induces the NE under full infor-
mation defined in Section 1.4.2.

Proposition 10. Let p > 2s. Then the strategy induced by ηi(·) = ηFI(·) for i = 1,2
forms a BNE.

The importance of this result stems from the somewhat negative result obtained in
Proposition 8, where it was shown that only a non-informative equilibria can exist in
the single retailer game. Here, we show that the presence of another retailer sharing
a common inventory can induce full revelation of the quantity in the common pool
at any given time. Thus, we show that competition moved the information sharing
from being completely non-informative to being fully informative.

This result also stands in stark contrast to the existing literature on cheap talk
games with multiple senders providing information regarding variability in a single
dimension. The key driver for the existence of a fully revealing equilibrium even
though the inventory status is one-dimensional is the fact that the customer can
“punish” the two senders differently given the signals. Even though both senders
are identical, when faced with a signal which is off-the-equilibrium path, the cus-
tomer punishes the senders in a differential manner. For example, if the quantity on
hand is greater than η(t), one firm announces “buy” and the other firm announces
“wait”: the customer punishes the firm announcing “buy” and rewards the one say-
ing “wait” by purchasing in the sales period from the firm that announced “wait.” In
this manner, the customer punishes the firm deviating and rewards the other. Note
that in some cases, such as when the equilibrium prescribes “buy,” the customer
punishes both firms if one firm deviates and tries to induce “wait.” The intuition is
that the customer may “need” to punish both firms to ensure that no firm tries to
induce “buy” while the equilibrium prescribes “wait.”

While the above proposition shows that the presence of competition or decentral-
ization allows firms to credibly disclose information to their customers, one should
note that decentralization may “destroy” the equilibrium as well if the gains of sell-
ing during the regular season are not high enough when compared to those gained
during the sales season. Since both firms are competing on the same customer pool,
it may create an incentive for a firm to deviate and defer their customers to the sales
season in the hope of exclusivity.

Next we pose the question whether there are any other informative equilibria
(which are induced by some function η) that are not equivalent to the above de-
scribed fully revealing BNE, yet provide the customer with some information re-
garding the availability level.

Proposition 11. There exist two functions η and η such that for any η1 = η2 = η ,
which induces strategies that form a BNE in the multi-retailer game, we have η ≤
η ≤ η .

The above proposition shows that there exist two functions η and η such that
any threshold which induces a BNE must lie between η and η . Figure 1.2 illus-
trates this result. Under any η that induces an equilibrium, at any point in time t,
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Fig. 1.2 Various thresholds that induce BNE. For each threshold function, the area below the
threshold represents a “buy” region and the area above the threshold represents a “wait” region.

the signals provided by the retailers depend on whether the inventory on hand lies
in the “buy” region or the “wait,” corresponding to the region below and above the
threshold, respectively. Note that the threshold function η must lie between η and
η at each point in time. Furthermore, these envelopes themselves induce BNE. The
exact characterization of these envelope thresholds is given in Allon and Bassam-
boo (2008). Here, we shall outline the intuition behind the characterization of these
thresholds.

The informative equilibria corresponding to η and η exhibit two extreme con-
sumer behaviors: one in which maximum volume of purchases is induced during
the regular season and one in which minimum volume is induced. Note that in both
of these equilibria the firms do not reveal the actual inventory level and use inten-
tional vagueness. For example, in the BNE induced by η , the number of purchases
is maximized by luring the customers to purchase in states of the inventory they
would not buy had they known the exact information. This is accomplished by giv-
ing one signal on the set over which the average utility obtained from waiting equals
the utility obtained by buying the product immediately. To illustrate the idea behind
intentional vagueness, consider the following scenario: Suppose at a certain point in
time t ∈ [0,∞), η(t) = 5, and say that τ > t and at this t had the customer known the
exact status of the inventory they would have bought if the inventory was below 3.
The firm uses the same signal as long as the inventory level is below 5, i.e., up to
3 (where the customer would have bought anyway) and also when the inventory is
4 (where the customer would not have bought). The firm, however, refrains from
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telling the truth for lower states, as it will not be able to induce customers to buy
when the inventory level is 4. This is due to the fact that the customer would then
be able to distinguish between the inventory being below 3 and the state being 4.

Noting the fact that there exist multiple equilibria, an important question to study
is which equilibrium does the firm prefer among these. To answer this question we
first note that any possible equilibrium must lie between the above-mentioned en-
velopes. Thus, while there is clearly multiplicity of equilibria in this model, one can
bound both the threshold functions that induce equilibria and the possible outcomes
for the firms.

Next, we identify the equilibrium which maximizes the profit for the firms. To
that end, we shall denote this threshold by η∗. Thus we have

η∗ ∈ argmax
η∈B

Πη ,

where B is the set of all decreasing functions that can induce a BNE and Πη is the
combined profit made by the firms under the BNE induced by η . Noting the fact
that if η1 and η2 both induce BNE, and η1 ≤ η2, then the firms’ combined profit is
higher under the BNE induced by η2, i.e., Πη2 ≥ Πη1 . Then, we have the following
corollary.

Corollary 1. If p > 2s then the profit maximizing BNE in the multi-retailer game is
induced by η , i.e., η∗ = η .

The above result shows that the presence of decenteralized information by multi-
ple parties may improve the firms’ profits, if managing to induce, non-cooperatively,
equilibrium using the threshold function η .

Third Party Endorsement

In many settings, organizations can create credibility by being endorsed by others,
often called “third-party endorsement.” These third parties typically do not have
a vested interest in the specific firm: they can either be firms that provide certifi-
cation or generate rating, or non-profit consumer organization. The same role can
be played by weblogs covering the specific industry, or bulletin boards where con-
sumers can share information regarding their purchasing experience. One can show
that these institutions may allow the retailers to credibly disclose availability infor-
mation. These third-party endorsements reduce the strategy space for the firm and
improves both firm’s credibility and the firm’s profit.

1.5 Summary

In this chapter, we survey the emerging literature of information sharing between
the firms and its customers. A novel framework of endogenized cheap talk is de-
veloped. In these models, the customers are not only strategic in their actions but
also in the way they interpret information, while the firm is strategic in the way it
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provides information. The developed framework helps answer questions concern-
ing the ability (or the lack thereof) to communicate credibly unverifiable real-time
information. This framework uses a game-theoretic construct to study this type of
communication and discusses the equilibrium language emerging between the firm
and its customers. We survey applications of this framework as applied to two mod-
els, which are central to the Operations Management literature: the first is a service
provider model, and the second is a retail or finite inventory model. We show that
one obtains diametrically opposite results with regard to information sharing in ser-
vice systems and retail systems.

In the setting of a single retailer, the only equilibrium language that may emerge
is the one in which no information is revealed to the customer. This result is in
contrast to the service setting where a single service provider can “create” some
credibility with respect to sharing real-time system information. Further, in the ser-
vice setting, non-informative, pure strategies equilibrium may not exist. These dif-
ferences in the nature of equilibrium emerge due to the following distinguishing
features of the service and retail operations: (a) In retail operations, the incentives
of the customers and the firm are aligned for low inventory levels (i.e., both “agree”
that the customer should purchase in these states) and misaligned for high inventory
level (i.e., the firm would like the customers to purchase; however, given that the
inventory is high the customers can improve their utility by postponing the purchase
to the sales season). However, in service operations, the service provider’s and its
customers’ incentives are aligned both when the number of customers waiting in
the system is “high” or “low.” The only misalignment is when the number of cus-
tomers is moderate. Since misalignment is limited in the service setting it helps the
provider create some credibility. Thus, the one-sided-only agreement in retail op-
erations games prevents the firm from creating any credibility when it is providing
the information on its own. (b) The non-existence of an equilibrium when no infor-
mation is provided in the service setting is due to the “contrarian” behavior char-
acteristic of queueing systems, i.e., customers prefer joining an empty system and
resent joining a congested one. On the other hand, customer behavior in retail is one
of mimicking, i.e., customers are more interested in buying if many customers buy
during the regular season, due to the fear of low availability during the sales season.

One of the strongest phenomena common to both settings is the use of intentional
vagueness. In the service setting, the firm might be vague either to lure customers to
join the systems in states they would otherwise balk or to create credibility. In the
retail setting, when an informative equilibrium exists (e.g., when the information
is provided by multiple autonomous retailers), the firm would always favor using a
language that is intentionally vague.

1.6 The Past and the Future

Recent literature in Operations Management analyzes and models the impact of
strategic customers on managing operational systems. We begin by surveying this
literature, both for queueing systems and inventory models.
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Queueing Models with Strategic Customers

The literature on queueing models with strategic customers began with Naor (1969),
who studied a system in which strategic customers observe the length of the
queue prior to making the decision whether to join or balk. There is a (partial)
conflict of interest between the self-interested customer and the interests of the
social-welfare-maximizing service provider. Naor (1969) shows that pricing can be
used to achieve the first-best solution. The follow-up literature that extends Naor
(1969) can be broadly divided into two: one that studies models where the firm of-
fers different grades of services (see Mendelson and Whang (1990) and the recent
paper by Afeche (2004)), and the other that focuses on competition in the presence
of congestion-sensitive customers (see Cachon and Harker (2002) and the recent pa-
per by Allon and Federgruen (2007)). All of these papers assume that the announce-
ments made by the firm are long-term averages (unlike real-time information), are
credible, and are treated as such by customers.

Inventory Models with Strategic Customers

The literature on inventory models with strategic customers can be broadly divided
into two categories: (a) models where no availability information is provided to
the customer and (b) models where customer are provided complete information
regarding availability.

Aviv and Pazgal (2008), which falls in the first category, study pricing strate-
gies for a retailer facing a stochastic arrival stream of customers. When customers
arrive, they have no information about the current state of the inventory, and thus
their model with fixed-discount strategy corresponds to our no-information model.
Cachon and Swinney (2007) consider a model of a retailer that sells a product with
uncertain demand over a finite selling season. The authors characterize the ratio-
nal expectation equilibrium between the firm, which sets its initial quantity level,
and the strategic customers, who choose whether to buy during the selling season
or during the clearance season. Cachon and Swinney (2007) study the impact of
quick response and the interplay between the existence of strategic customers and
this option. Su and Zhang (2007b) show that the presence of strategic customers
can impact the performance of a centralized supply chain when the customers form
rational expectation regarding quantities and prices. They show that, while firms
cannot commit to specific levels of inventory, decentralized supply chains can use
contractual arrangements as indirect commitment devices to attain the desired out-
comes with commitment.

Yin et al. (2007) and Su and Zhang (2007a) belong to the second category. Yin
et al. (2007) consider a retailer that announces the regular price and the sales sea-
son clearance price at the beginning of the selling season, as in our model. In the
presence of either myopic customers or strategic customers, the authors compare
two display modes: one where the retailers display all the available units (and cor-
responds to providing full information to the customers) and one where it shows
only one unit. Customers treat this one unit as a verifiable proof that the firm has at
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least one unit in stock. The authors show that the retailers will earn higher expected
profits under the “display one unit” format, when the customers are strategic. Su
and Zhang (2007a) study the role of availability and its impact on consumer de-
mand by analyzing a newsvendor model with strategic customers that incur some
search cost in order to visit the retailer. They contrast the rational expectations equi-
librium in a game where the availability information is not provided to the customer
with the scenario where such information is provided. It is shown that the retailer
can improve its profits in the latter. In order to deal with the lack of credibility of
the above information, the authors study availability guarantees, in which the seller
compensates the consumers in the event of stockouts.

Delay Announcements in Other Settings

There are several papers that study models in which either a service provider
shares waiting time information or a make-to-stock manufacturer shares lead time
information.

Hassin (1986) studies the problem of a price-setting, revenue-maximizing ser-
vice provider that has the option to reveal the queue length to arriving customers,
but may choose not to disclose this information, thus leaving the customers to de-
cide whether to join the queue on the basis of the known distribution of the waiting
times. The author shows that it may be – but not always – socially optimal to pre-
vent suppression of information and that it is never optimal to encourage suppres-
sion when the revenue maximizer prefers to reveal the queue length. Armony and
Maglaras (2004b) analyze a service system where arriving customers can decide
whether to join, balk, or wait for the provider to call within a guaranteed time. The
customers’ decisions are based on the equilibrium waiting time (which is equiva-
lent to not providing any information). Armony and Maglaras (2004a) extend the
above model to allow the service manager to provide the customers an estimate
of the delay, based on the state of the system upon their arrival. The authors show
that providing information on the estimated delay improves the system performance.
Armony et al. (2007) study the performance impact of making delay announcements
to arriving customers who must wait before starting service in a many-server queue
setting with customer abandonment. Customers who must wait are told upon ar-
rival either the delay of the last customer to enter service or an appropriate average
delay. Two approximations are proposed: (i) the equilibrium delay in a determin-
istic fluid model and (ii) the equilibrium steady-state delay in a stochastic model
with fixed delay announcements. The authors show that within the fluid-model
framework, under certain conditions, the actual delay coincides with the announced
delay.

Duenyas and Hopp (1995) study the problem of quoting customer lead times in
a manufacturing environment, both under infinite and finite capacity. For the latter,
the authors prove the optimality of different forms of control limit policies for the
situations where the lead time is dictated by the market and the firms are able to
compete on the basis of the lead time. Ata and Olsen (2007) study a related problem
for large systems under convex–concave cost structure.
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Dobson and Pinker (2006) develop a stochastic model of a custom production en-
vironment with pricing, where customers have different tolerances for waiting. The
authors model intermediate levels of information sharing (with a specific structure)
ranging from none to complete state-dependent lead-time information and compare
the performance from the firm’s and the customer’s perspectives. They show that
for this specific structure it is not always the case that sharing information improves
the profits of the firm. Guo and Zipkin (2007) study a model in which customers
are provided with information and make decisions based on their expected wait-
ing times, conditional on the provided information. Three types of information are
studied: (i) no information, (ii) queue length, and (iii) the exact waiting time (in
systems in which such information is available). The authors provide examples in
which accurate delay information improves or hurts the system performance.

1.6.1 Future Research

The framework surveyed in this chapter can also be applied to other operations
management settings where the customers cannot credibly verify the information
provided to them. One scenario worth exploring is the setting where the firm and
the customer engage in “long cheap talk,” i.e., the customer is periodically receiv-
ing information regarding the inventory. This is common in many retail settings
where customers can request to be notified about the future availability of products,
and service systems where the customer is informed repeatedly while waiting to be
served. It is also worth exploring how this framework applies to fashion retail oper-
ations where the customer’s utility depends either on the “exclusivity” of the item
or its “trendiness,” usually conveyed by the retailer.
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Chapter 2
Product Design in a Market with Satisficing
Customers

Matulya Bansal and Costis Maglaras

Abstract We study the product design problem of a revenue-maximizing firm that
serves a market where customers are heterogeneous with respect to their valuations
and desire for a quality attribute and are characterized by a perhaps novel model of
customer choice behavior. Specifically, instead of optimizing the net utility that re-
sults from an appropriate combination of prices and quality levels, customers are
“satisficers” in that they seek to buy the cheapest product with quality above a
certain customer-specific threshold. This model dates back to Simon’s work in the
1950s and can be thought of as a model of bounded rationality for customer choice.
We characterize the structural properties of the optimal product menu for this model
and explore several examples where such preferences may arise.

2.1 Introduction

How do consumers trade off price to quality of service in choosing a product among
various substitutable alternatives offered by the same or by competing firms? As
a concrete example, how do users tradeoff speed of an Internet service connection
with the price they have to pay? How should a firm design its product menu to
optimize its profitability taking into account the strategic consumer choice behav-
ior? The answers to these questions depend crucially on our understanding of how
consumers perceive delay (or, more generally, product quality), their degree of het-
erogeneity in terms of delay sensitivity, and value for the offered product and on
how delay costs and the prices of the various product options are combined and
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used in making a product choice decision. This chapter addresses the above ques-
tions under a novel model of choice behavior, where consumers rather than being
utility maximizers of some sort are “satisficers” in that they seek to buy the cheapest
product with quality above a certain consumer-specific threshold. This model dates
back to Simon’s work in the 1950s (Simon 1955, 1956).

As a running example we will consider a service provider (SP) offering a product,
such as an ISP connection or software-on-demand that is susceptible to congestion
effects and, therefore, delays; we use the terms consumer, customer, and, at times,
user, interchangeably. Potential customers are heterogeneous in their valuations and
delay sensitivities. Expected delay here captures the notion of quality, with lower de-
lay implying higher quality. The SP’s problem is to select a menu of product variants
that are defined through their price and associated delay that maximizes its expected
profits. A classical model of customer choice behavior for this problem is due to
Mendelson and Whang (1990) which postulates that a customer with valuation v for
the offered service enjoys a net utility of ui = v− (pi + c(di)) from the ith variant
that is priced at pi and has an associated delay of di time units and where c(·) is a
customer-specific delay cost function expressed in $ per unit of delay. Mendelson
and Whang (1990) used a linear delay cost function of the form c(di) = c ·di, Dewan
and Mendelson (1990) use a delay cost of the form c(d) = c ·(d−θ)+, van Mieghem
(1995) allowed for general, convex increasing delay functions, while Ata and Olsen
(2008) introduced delay functions that are convex increasing and then become con-
cave increasing after a point. Figure 2.1 shows the linear, quadratic, piecewise-linear
(convex increasing), and the proposed cost function vs. delay. Given a set of product
variants characterized by (pi,di) a customer will select product

i∗ = argmax
i

{v− (pi + c(di)) : v ≥ pi + c(di)}. (2.1)

Another alternative model that is close to the vertical differentiation literature could
postulate that the net utility associated with product variant i is ui = (v− pi)g(di),
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Fig. 2.1 The linear, quadratic, piecewise-linear, and proposed cost functions vs. delay.
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where g(·) is a multiplicative factor whose magnitude depends on the quality of
the offered product. Again, each customer would choose the product variant i that
would maximize the resulting net utility.

Most of the above papers have focused on social welfare optimization as op-
posed to revenue maximization that is of interest in this chapter; in the cases where
the revenue maximization objective has been considered, the emphasis has been on
markets with two types of customers and product menus with two variants, Afeche
(2005) and Maglaras and Zeevi (2006). The multi-type problem is hard, even in a
deterministic setting, and, perhaps more importantly, assumes that the utility max-
imizing customers are solving an intricate problem in order to make their choice
decision that in turn affects crucially the seller’s product design decision.

In some practical settings it might be more realistic to assume that customers
only care whether or not the product quality lies above a customer-specific thresh-
old, and not by how much; e.g., video conferencing is associated with a bandwidth
requirement, but additional bandwidth above that level is not necessarily beneficial.
In those settings it might be appealing to assume that customer preferences with
respect to the quality attribute are “dichotomous” such that all products with qual-
ity at least as good as a customer-specific quality threshold are acceptable to the
customer, while all products with quality below the customer-specific threshold are
unacceptable. From then on, among the acceptable products, if any, the customer
buys the cheapest one, provided the price of this product does not exceed customer
valuation.

An alternative motivation could be that the dichotomous decision rule is a sim-
plification of the fully rational decision described earlier that is based on net utility
calculations and serves as a “bounded rationality” surrogate for the potentially com-
plex decision rule embodied in (2.1) or similar variants to it.

The baseline model that we will consider herein is that of a firm selling a good or
service in a market of heterogeneous customers. The good or service is characterized
by a one-dimensional quality attribute, such as delay, and to maximize revenues,
the firm seeks to discriminate customers by creating multiple qualities and offering
them at different prices. We assume that differentiation does not entail any cost.
The firm offers M products, with p j and q j denoting, respectively, the price and
quality of product j, j = 1, . . . ,M. The capacity available to the firm is denoted
by C. We assume that there are N customer types that are segmented according to
their quality preferences. Each type i customer has a valuation vi for the product,
which is an independent draw from a general distribution F(·) with support [0,vi],
and a strictly positive density fi(·) on [0,vi], and, a quality threshold θi, such that he
or she is only willing to purchase product variants j whose quality q j is at least as
large as θi, i.e., q j ≥ θi. The quality threshold is common across all type i customers.
The size of the type i market segment is denoted by Λi. We assume that types are
labeled in such a way that ∞ > θ > θ1 > θ2 > · · · > θN > θ > 0, with a higher
value implying the desire for a better quality, and ∞ ≥ v1 ≥ v2 ≥ ·· · ≥ vN > 0, i.e.,
customers having higher quality thresholds have a maximum valuation at least as
high as the maximum valuation of customers having lower quality thresholds. Let
F̄i(·) = 1−F(·) be the complementary cumulative distribution function for type i
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valuations. We will assume that limp→∞ pFi(p) = 0, i = 1, . . . ,N, i.e., the revenue
from any customer type goes to 0 as the price goes to infinity (this holds trivially for
class i if vi < ∞).

Customers are satisficers in that they strictly prefer the cheapest product whose
quality exceeds their respective quality threshold and purchase that product if their
valuation exceeds its price. In more detail all type i customers prefer product χi(p,q)
given by

χi(p,q) =

{
argmin p j, ∃ q j ≥ θi,

0, otherwise,
(2.2)

where p j and q j denote, respectively, the price and the quality of the jth product
offered. If χi(p,q) = l, l ≥ 1, the demand from type i customers for this product
is given by ΛiFi(pl), and the revenue by plΛiFi(pl). If χi(p,q) = 0, then type i
customers do not find any product from the firm to be acceptable in terms of their
quality.

The firm’s revenue maximization problem is to choose the number of product
variants to offer, M, as well as the corresponding prices and quality levels p j,q j for
j = 1, . . . ,M to solve the following problem:

max
p,q,M

M

∑
j=1

p j

[
N

∑
i=1

Λi Fi (p j) 1{χi(p,q)= j}

]
(2.3)

s.t.
M

∑
j=1

N

∑
i=1

Λi Fi (p j) 1{χi(p,q)= j} ≤C, (2.4)

0 ≤ p < ∞, 0 ≤ q < ∞, (2.5)

1 ≤ M < ∞, M integer. (2.6)

The objective in (2.3) is the sum of revenues across the M products, where revenue
for product j equals the price of the product multiplied by the number of customers
that buy it. Equation (2.4) restricts the volume sold across customer types to be less
than or equal to the available capacity C. For convenience, we have assumed that
there exists a product 0 (corresponding to the case that customers do not find any
product from the firm to be acceptable) and set p0 = 0 and q0 = 0.

This chapter lists several possible applications of this choice behavior for prob-
lems of practical interest, study the above mathematical problem, and sketch out
several extensions. Our treatment is not exhaustive, but rather tries to highlight some
structural result that hinges on this novel choice model, and hopefully motivates fur-
ther work.

Satisficing is well known in the marketing and psychology literature, see, e.g.,
Iyengar (2006), and Schwartz et al. (2002), but seems to be novel in the context of
the revenue management and operations management literatures. First, satisficing
choice behavior can be the result of utility maximizing behavior in settings where
the offered service and its anticipated usage are such that the disutility due to quality
degradation is essentially flat until a certain threshold is reached and grows at a very
rapid (“infinite”) rate above that threshold. Perhaps more importantly, this threshold
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model of customer choice behavior can be motivated as an example of the “simple
payoff” function as discussed in Simon (1955). Alternatively, this functional form
can be motivated as the limiting case of the S-shaped utility functions, discussed,
for example, in Kahneman and Tversky (1979) and Maggi (2004). For example,
a utility function that would approximate w(q) is the exponential S-shaped utility
function

w̃(q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
β

+
β −1

β
(1− e−α(q−q)), if q ≥ q,

1
β

e−α(q−q), if q < q,

(2.7)

where α > 0, β ≥ 1, with the approximation becoming exact when β = 1 and α = ∞.
This is illustrated in Figure 2.2.
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Fig. 2.2 This figure shows how threshold preferences arise as the limiting case of S-shaped utility
functions discussed in prospect theory.

The satisficing model can be viewed as a limiting case of the vertical and horizon-
tal differentiation models. In the context of vertical differentiation, satisficing choice
behavior corresponds to using the function g(qi;θ) = 1 if qi ≥ θ , and g(qi) = 0,
otherwise; our model would require the g(·) function to be type dependent, which
is itself a slight extension of the vertical differentiation literature. In the context
of horizontal differentiation, suppose customers differ in their preferences over a
single-dimensional quality attribute θ in [θ ,θ ]. Under the traditional model of hori-
zontal differentiation (Hotelling 1929), the quality cost c(q) associated with a prod-
uct of quality q to a customer with preference θ is c(q) = t1(θ − q) if q < θ , and
c(q) = t2(q− θ), otherwise, where the transportation costs t1 and t2 are typically
assumed to be the same. Customers again find products that result in a non-negative
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utility acceptable and maximize their utility over acceptable products. In the lim-
iting, asymmetric case where t1 = ∞ and t2 = 0, the horizontal model of customer
choice behavior reduces to the threshold model of customer preferences.

The remainder of this chapter is organized as follows: Section 2.2 concludes with
a brief literature review. Section 2.3 presents several examples where modeling cus-
tomer behavior via threshold preferences is appealing. Section 2.4 characterizes the
structure of the optimal solution to the product design problem. Section 2.5 dis-
cusses three extensions to the original model and Section 2.6 offers some concluding
remarks.

2.2 Literature Survey

Our work builds upon several different areas of revenue management. The
primary motivation for our work stems from the interface between marketing,
psychology, and prospect theory focusing on customer behavior models. In his
classic papers (1955; 1956), Simon questioned the pervasive assumption of agent
rationality made in economic models. Citing constraints on information availability
and computational capacities of individuals, (1955) Simon proposed “simple payoff
functions” such as the one considered in this chapter as an approximation to model
complex agent utility. Simon (1956) introduced the idea of “satisficing” to model the
behavior of an organism facing multiple goals. In more recent research in psychol-
ogy, researchers distinguish between “maximizers” and “satisficers,” as discussed
in Iyengar (2006) and Schwartz et al. (2002). Wieczorkowska and Burnstein (2004)
refer to individuals exhibiting satisficing behavior as adopting an “interval” strat-
egy as opposed to a “point” strategy (maximizing). Schwartz et al. (2002) mention
that indeed individuals might not be maximizers or satisficers along all dimensions.
In our case, customers satisfice with respect to quality while they maximize with
respect to price.

In their famous paper Kahneman and Tversky (1979) propose that individual
utility is concave for gains, while being convex for losses. Such utility functions
are discussed in Maggi (2004). As discussed earlier, our utility function for quality
attribute can be thought of as the limiting case for the S-shaped exponential utility
function discussed here. The deadline delay cost structure discussed in Dewan and
Mendelson (1990) prescribes zero cost for delay below a certain delay threshold and
linear delay costs thereafter. Our delay cost function, like Dewan and Mendelson
(1990), posits a zero cost for delay below a customer delay threshold and infinite
(or large enough to deter customer from buying this product) costs thereafter.

The second stream of literature that is related to our work studies the second-
degree price discrimination problem by a monopolist facing customers that differ
in their preference for a quality attribute. Two classic papers are due to Mussa and
Rosen (1978) and Moorthy (1984). In Mussa and Rosen (1978), customer utility
is linear in quality, and quality is continuous. In Moorthy (1984), customer util-
ity is allowed to be non-linear, but quality is discrete. In both cases, customers are
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maximizers. Both Moorthy (1984) and Mussa and Rosen (1978) discuss strategic
degradation of quality by the monopolist to maximize revenues. This idea of inten-
tionally degrading product quality when offering a product to less quality-sensitive
customers so as to achieve differentiation is well known and also discussed in
Afeche (2005) and Shapiro and Varian (1998) among other places. In addition to the
above papers that discuss the product design problem under vertical differentiation,
the product design problem has also been discussed under horizontal differentiation,
e.g., Hotelling (1929) and Salop (1979). Duopoly models of product differentiation
are considered in Moorthy (1988), Shaked and Sutton (1982), Wauthy (1996), etc.
We also study the product design problem under threshold preferences to simulta-
neous and sequential duopoly models of market entry.

Each of the various application areas that we briefly touch upon later on has a
potentially extensive literature that we will not review in this chapter in much detail,
but rather simply offer a few passing references. In the area of revenue maximization
for queues, in addition to the above-mentioned papers, we also highlight Katta and
Sethuraman. There is a fast-growing literature in revenue management that con-
siders the strategic consumer choice behavior, e.g., in deciding when to purchase
a product in anticipation of the dynamic price path and associated rationing risk
adopted by the seller. In this area we refer the reader to the review article by Shen
and Su (2007), Liu and van Ryzin (2005), Su (2007), Cachon and Swinney (2007),
and Bansal and Maglaras (2008). All of these assume a fully rational model of cus-
tomer behavior. This chapter proposes a satisficing model of consumer choice be-
havior for this problem. Versioning of information goods has been studied in Bhar-
gava and Choudhary (2004) and Ghose and Sundararajan (2005), while Shapiro and
Varian (1998) presents several examples of versioning of information goods. Several
researchers have addressed the problem of identifying the optimal inventory policy
in the presence of multiple demand streams that differ in their tolerance for the
minimum fillrate or the maximum leadtime they are willing to accept. Such a spec-
ification of acceptable quality levels closely mirrors our model of threshold-based
preferences and is considered, for example, in Klejin and Dekker (1998). Finally,
Kim and Chajjed (2002) study the product design problem of a monopolist firm of-
fering a product with multiple quality attributes to a market of customers under the
classic model of customer choice. The market consists of two customer segments,
so at most two products need to be offered. We briefly discuss the extension of our
model to the case of multiple quality attributes under some lexicographic ordering.

2.3 Applications and Variations to Basic Model

This section presents a non-exhaustive list of instances of product design problems
where the study of customer satisficing behavior may be natural from a practical
viewpoint.
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2.3.1 Delay Differentiation

In the introduction we briefly reviewed an application of the proposed approach
toward the problem of revenue maximization for a service that is susceptible to
congestion effects and delay. Our model in this setting is based on a deterministic
relaxation that disregards the equations that govern the steady state behavior of the
queueing facility that is offering that service; this relaxation can be justified in an
asymptotic setting where the market size of processing capacity of the system grows
large along the lines of Maglaras and Zeevi (2006).

Delay sensitivity can also arise in other contexts, such as in retailing for fashion
goods, where customers may be sensitive as to the time until which they wish to
purchase the product; e.g., upon its introduction, in the middle of the regular selling
season, after the season has ended. The resulting formulation is identical to the one
discussed in the introduction.

2.3.2 Capacity Differentiation

There are several applications where the quality attribute corresponds to the capac-
ity allocated to a customer, such as in the case of an Internet service provider (ISP)
that offers bandwidth to domestic and business “end-users.” Customers are hetero-
geneous in their valuations and have threshold preferences with respect to capacity,
i.e., the minimum bandwidth they require. There are N customer classes, with class
i customer valuations distributed as Fi(·) and class i having a capacity threshold θi,
the minimum capacity that they desire. We assume that θ1 > θ2 > · · · > θN . Then
denoting as c j the capacity associated with product j offered by the firm, class i cus-
tomers seek to buy the cheapest product j such that c j ≥ θi. The firm’s optimization
problem can be stated as follows:

max
p,c,M

N

∑
i=1

M

∑
l=1

pi Λi Fi (pi) 1{χi(p,c)=l} (2.8)

s.t.
N

∑
i=1

M

∑
l=1

Λi Fi (pi)ci1{χi(p,c)=l} ≤C, (2.9)

0 ≤ p < ∞, 0 ≤ c < ∞, (2.10)

1 ≤ M < ∞, M integer. (2.11)

Equations (2.8), (2.10), and (2.11) are analogous to (2.3), (2.5), and (2.6) in the gen-
eral problem, where ci now denotes the quality of product i. Note that the capacity
allocations ci enter the seller’s capacity constraint (2.9) in a way that is different
than in the problem formulated in the introduction and potentially problematic due
to the product terms Fi(pi) ci; we show later on that due to the structure of the above
problem, the capacity constraint simplifies and retains its tractability.



2 Product Design in a Market with Satisficing Customers 45

2.3.3 Rationing Risk Differentiation

Consider a monopolist firm that seeks to sell a homogeneous product to a market
of heterogeneous, strategic customers that vary in their valuations and degree of
risk aversion and where the firm seeks to discriminate its customers by creating ra-
tioning risk over time, i.e., by offering the product at different prices and fillrates at
different times over the selling horizon; see, e.g., Liu and van Ryzin (2005) for the
case where risk preferences are homogeneous and Bansal and Maglaras (2008) for
a model where risk preferences may vary across customer types; both of these pa-
pers considered utility maximizing choice behavior. With satisficing behavior, cus-
tomers will a threshold that corresponds to the minimum acceptable fillrate that they
are willing to accept. Customers are strategic, observe (or know) the entire pricing
and rationing risk trajectories used by the seller, and accordingly make the optimal
timing decision to enter the market and purchase the product. The firm’s product
design problem is to identify the optimal number of products to offer to this market,
along with their prices and fillrates. Fillrates r satisfy 0 ≤ r ≤ 1, and a fillrate of r
implies that only a proportion r of customer requests are fulfilled by the firm. Fill-
rates here correspond to our notion of quality, with a higher fillrate implying a better
quality. There are N types and type i customers have a fillrate threshold θi, implying
that type i customers prefer the cheapest product j with fillrate r j > θi (notice we
assume that the inequality is strict). We assume 1 > θ1 > θ2 > · · · > θN > 0.

One possible way to motivate such choice behavior is by assuming that cus-
tomers have a limit on the relative payoff variability they are willing to tolerate. The
expected payoff to a customer with valuation v upon deciding to purchase a product
with price p and fillrate r is given by (v− p)r and the variance of this payoff is
given by (v− p)2r(1− r). Let A denote the customer threshold for the variability
the customer is willing to tolerate. Hence this customer would seek to purchase the
cheapest product such that

stdev
mean

=

√
(v− p)2r(1− r)

(v− p)r
≤ A, (2.12)

where A is a fixed fraction. This reduces to r ≥ 1/(1+A2), implying that customer
has threshold preferences with respect to the rationing risk where the rationing
threshold is given by 1/(1+A2). Also, a low desire for variability leads to a higher
rationing threshold, which is intuitive.

The optimization problem that the firm faces can be expressed as follows:

max
p,r,M

N

∑
i=1

M

∑
l=1

pi Λi Fi (pi) ri 1{χi(p,r)=l} (2.13)

s.t.
N

∑
i=1

M

∑
l=1

Λi Fi (pi) ri 1{χi(p,r)=l} ≤C, (2.14)
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0 ≤ p < ∞, 0 ≤ r ≤ 1, (2.15)

1 ≤ M < ∞, M integer. (2.16)

The objective (2.13) is the sum of revenue over the N classes, where class i revenue
is the product of price pi, the number of class i customers that are willing to buy at
this price, ΛiFi (pi), and the fillrate associated with this product, ri. Equation (2.14)
enforces the constraint that available capacity does not exceed sales, where the vol-
ume sold to class i customers is the product of class i demand and the fillrate corre-
sponding to the product they purchase. The presence of the quality attribute r in the
objective (2.13) and the capacity constraints (2.14) distinguishes this problem from
the general problem (2.3), (2.4), (2.5), and (2.6).

2.3.4 No Capacity Constraint: Versioning of Information Goods

Consider a monopolistic software firm that serves a market of heterogeneous cus-
tomers. To differentiate customers, the firm creates several versions of the software,
and sells better versions at higher prices. Higher priced versions may have more fea-
tures, a better user interface, and faster speed. Customers do not necessarily desire
the fastest version, or the version with the most features, rather they seek to buy
the cheapest product that satisfies their product and computational requirements. In
such a setting it might be realistic to model customer choice behavior using thresh-
old preferences. We will assume that the software product being sold by the firm is
characterized by a one-dimensional quality attribute. The resulting revenue maxi-
mization problem is (2.3), (2.5), and (2.6).

2.3.5 Costly Quality Differentiation

So far quality differentiation has been costless, but this need not be the case. One
popular example is in the sale of mp3 music players, such as the iPods. In partic-
ular, customers may have threshold preferences with respect to the mp3 player’s
storage capacity and seek to purchase the cheapest mp3 player with capacity above
their specific threshold. The storage capacity of a mp3 player is a measure of the
number of songs it can store, and customers that desire to carry along a larger num-
ber of songs have higher thresholds. The seller seeks to differentiate customers by
selling mp3 players with different storage capacities at different prices, but in this
case note that the higher quality products are more costly to produce. We will de-
note the marginal cost of a product with quality q j as s(q j), where s(·) is a strictly
increasing function of its argument. Then, the seller’s product design problem can
be formulated as follows:

max
p,q,M

M

∑
j=1

N

∑
i=1

(p j − s(q j)) Λi Fi (p j) 1{χi(p,q)= j} (2.17)
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s.t.
M

∑
j=1

N

∑
i=1

Λi Fi (p j) 1{χi(p,q)= j} ≤C, (2.18)

0 ≤ p < ∞, 0 ≤ q < ∞, (2.19)

1 ≤ M < ∞, M integer. (2.20)

Formulation (2.17), (2.18), (2.19), and (2.20) is the same as (2.3), (2.4), (2.5), and
(2.6), except for the objective, which is modified to reflect that the profit upon selling
a unit of product j changes from p j to p j − s(q j).

2.4 Analysis of General Model

2.4.1 Model Assumptions

Assumption A: 1. The hazard rates of the valuation distributions, hi(v) :=
fi(v)/Fi(v), are decreasing in desired quality levels, i.e., hi(v) < hi+1(v), ∀v ∈
[0,vi+1], 1 ≤ i < N. 2. ri(λ ) = λ F̄−1

i (λ/Λi) is strictly concave in λ for i =
1, . . . ,N.

Assumption B: hi(v) are decreasing and bounded below for i = 1, . . . ,N.

Discussion of modeling assumptions: To facilitate exposition and analysis we
have assumed that the set of threshold quality levels is discrete and as such there
are a finite and discrete set of customer types; this can be viewed as a discretiza-
tion of a potentially continuous distribution of quality threshold preferences. As-
sumption A (1) on the hazard rates is equivalent to assuming that ηi(v) < ηi+1(v),
∀v ∈ [0,vi+1], 1 ≤ i < N, where ηi = v fi(v)/Fi(v) is the demand elasticity of cus-
tomer class i. That is, customers that desire higher quality levels are more inelastic
than those desiring lower quality levels and, therefore, are less likely to walk away as
the price is increased. The assumptions that hazard rates are monotonic and that the
per class type in terms of arrival rates is concave are not restrictive. For example,
the uniform, exponential, pareto, half-logistic Rayleigh distributions satisfy these
assumptions. Finally Assumption B can be replaced with either (a) hi(v) are non-
decreasing for i = 1, . . . ,N or (b) hi(v) are decreasing and ∂ (1/hi(v))/∂v < 1 for
i = 1, . . . ,N.

2.4.2 Structural Results

First, we show that without loss of generality the firm only needs to offer products
with quality levels in the set {θ1,θ2, . . . ,θN} and, second, that products with dis-
tinct prices must have distinct quality levels that are increasing in prices, and vice
versa.
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Lemma 1. The following hold:
(a) It suffices to offer quality levels that lie in the set {θ1,θ2, . . . ,θN}.
(b) For any two distinct products (pi,qi) and (p j,q j), qi > q j ⇔ pi > p j.

Lemma 1 leads to the following corollary.

Corollary 1. Suppose the firm offers 1 ≤ k ≤ N distinct products at qualities
θi1 , . . . ,θik , 1 ≤ i1 < i2 < .. . < ik ≤ N, at prices pi1 , pi2 , . . . , pik , respectively. Then
pi1 > pi2 > .. . > pik and (a) pi1 < vi1 and (b) pik > 0.

Lemma 2. Any k ≤ N products partition the N customer classes into contiguous
sets, i.e., if class i−1 and i+1 customers buy product j, then so do class i customers.

Our next result shows that it is always optimal to offer the highest quality product.

Lemma 3. The highest quality θ1 is always offered.

Lemma 3 leads to the following corollaries about the firm’s one-product solution
and the optimal product menu when the maximum valuations of all customer classes
are the same.

Corollary 2. The firm’s one-product problem can be formulated as follows:

max
p1

{ N

∑
i=1

p1 Λi Fi(p1)
∣∣∣∣ N

∑
i=1

Λi Fi(p1) ≤ C

}
. (2.21)

Corollary 3. If vi = v, i = 1, . . . ,N, then all classes buy a product from the firm.

Lemmas 1–3 lead to the following formulation of the firm’s revenue maximiza-
tion problem.

Proposition 1. The firm’s problem (2.3), (2.4), (2.5), and (2.6) can be formulated as
follows:

max
p

N

∑
i=1

pi Λi Fi (pi) (2.22)

s.t.
N

∑
i=1

Λi Fi (pi) ≤C, (2.23)

pN ≤ pN−1 ≤ ·· · ≤ p1, i = 1,2, · · · ,N, (2.24)

pi ≤ vi i = 1,2, . . . ,N, (2.25)

where pi denotes the price of the product being offered at quality θi.

Proposition 1 simplifies considerably the firm’s product design problem. The firm
no longer needs to optimize over M and q, the number of qualities to offer and the
vector of qualities, respectively, making the formulation (2.22), (2.23), and (2.24)
more amenable to direct analysis.
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Lemma 4. Suppose qualities θm and θn are offered in the optimal solution, with
m+1 < n. Then qualities θl , m+1 ≤ l ≤ n−1, are also offered.

For homogeneous valuations, Lemma 4 leads to the following corollary.

Corollary 4. If v1 = v2 = · · · = vN, then it is optimal to offer exactly N products.

2.4.3 Computation

The optimal solution to the revenue maximization problem can be easily computed.
Under our assumption that Fi(.) is continuous, this problem involves maximizing
a continuous function over a compact set, and hence by Weierstrass theorem, an
optimal solution exists. Compactness, note that the feasible set is bounded and that
since the Fi(.) are continuous, it is closed as well.

Instead of proceeding with a direct analysis of (2.22), (2.23), and (2.24), we
will first restate the problem in terms of the demand rate vector as the optimization
variable; this is typical in the revenue management literature. Specifically, for each
class i, define λi = ΛiFi(pi), so that pi = F −1

i (λi/Λi) because we assumed that
Fi(.) is continuous and increasing. We will also drop the monotonicity constraint
(2.24) but later on verify that it is automatically satisfied by the optimal solution.
The product design problem (2.22), (2.23), (2.24), and (2.25) reduces to

max
λ

N

∑
i=1

λi F
−1
i

(
λi

Λi

)
(2.26)

s.t.
N

∑
i=1

λi ≤C, (2.27)

0 ≤ λi ≤ Λi, i = 1, . . . ,N, (2.28)

which is a concave maximization problem over a polyhedron and the same prob-
lem that arises in the context of multi-product pricing problem studied in Maglaras
and Meissner (1998). The first-order conditions are both necessary and sufficient to
characterize the optimal solution for (2.22), (2.23), and (2.24) or equivalently (2.26)
and (2.27).

Proposition 2. The optimal solution to the product design problem (2.22), (2.23),
(2.24), and (2.25) is given by

pi =
Fi(pi)
fi(pi)

+ μ − ηi

fi(pi)
, (2.29)

μ
(

C−
N

∑
i=1

Λi Fi(pi)
)

= 0, (2.30)

μ ≥ 0, C−
N

∑
i=1

Λi Fi(pi) ≥ 0, (2.31)
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ηi(vi − pi) = 0, ηi ≥ 0, vi − pi ≥ 0. (2.32)

Here μ is the Lagrange multiplier associated with the capacity constraint (2.23)
and ηi is the Lagrange multiplier associated with the constraint pi ≤ vi. Following
the assumptions made earlier in this section, the optimal prices satisfy the mono-
tonicity constraint (2.24).

It is worth noting that the product design problem with fully rational customers
making decisions according to a decision rule of the form of (2.1) is intractable
with more than two customer types (N > 2). This arises for two reasons. First, the
product design problem cannot be reformulated as a function of the demand rates
λi, and as a result the objective need not be concave in prices. Second, the quality
decisions complicate the seller’s problem substantially. One popular approach is to
formulate the problem as a direct mechanism that captures the behavior embodied in
(2.1) through the incorporation of appropriate incentive compatibility and individual
rationality constraints, but these may not be convex in general; when N = 2 the
problem simplifies using algebraic manipulations that cannot be exploited when
N > 2.

2.4.4 k < N Products

For practical purposes the seller may only wish to restrict the number of products
offered to the market. Such a strategy might be attractive when some customer types
are similar or when administrative costs (not considered in our model) are high.
It may also be driven by branding considerations (e.g., in the rationing example,
the firm may not want to offer more than two products, so that customers that are
rationed out do not discover that the product is available in a later period). We will
assume that the firm seeks to offer k < N products at qualities θm1 ,θm2 , · · · ,θmk ,
with 1 ≤ m1 < m2 < · · · < mk ≤ N, mk+1 := N + 1. Then, in a manner similar to
Lemmas 1–3, it can be shown that it is optimal to set m1 = 1, and p1 > p2 > · · ·> pk.
The firm’s product design problem can be formulated as follows:

max
p

k

∑
l=1

pl

ml+1−1

∑
j=ml

Λ j F j (pl) (2.33)

s.t.
k

∑
l=1

ml+1−1

∑
j=ml

Λi Fi (pl) c ≤C, (2.34)

0 ≤ pk ≤ pk−1 ≤ . . . ≤ p1, (2.35)

p j ≤ vm j+1−1, j = 1, . . . ,k. (2.36)

In the following, we will assume that h̃l(·) satisfies Assumptions A and B, where

h̃l(v) =
∑ml+1−1

j=ml
f j(v) Λ j

∑ml+1−1
j=ml

F j(v) Λ j

.
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An example of a distribution that satisfies the above constraints is the exponential
distribution with parameters α1 < α2 < · · · < αN . Next, formulating the problem in
terms of arrival rates, we obtain a concave maximization problem on a convex set,
leading to the following characterization of optimal prices.

Proposition 3. The optimal prices are characterized by

pl =
∑ml+1−1

j=ml
F j(pl) Λ j

∑ml+1−1
j=ml

f j(pl) Λ j

+ μ − ηl

∑ml+1−1
j=ml

f j(pl) Λ j

, (2.37)

μ
(

C−
k

∑
l=1

ml+1−1

∑
j=ml

F j(pl) Λ j

)
= 0, (2.38)

μ ≥ 0, C−
k

∑
l=1

ml+1−1

∑
j=ml

F j(pl) Λ j ≥ 0, (2.39)

ηl (vil−1 − pl) = 0, ηl ≥ 0, vil−1 − pl ≥ 0. (2.40)

Here μ is the Lagrange multiplier associated with capacity constraint (2.34) and
ηl is the Lagrange multiplier associated with constraint (2.36). The monotonicity of
prices in (2.35) is ensured by our assumptions on h̃(·).

The pricing problem given a preselected set of quality levels is simple, but the
problem of identifying the optimal set of quality levels is combinatorial in nature.
Since m1 = 1 following Lemma 3, identifying the optimal k product solution re-
quires solving

(N−1
k−1

)
problems. This can be computationally expensive for large k;

however, solving the k = 2 problem requires solving N −1 problems to identify m2

and is hence easily done.

2.5 Extensions

We next discuss a few extensions to the model studied in the previous section. First,
we look at the example of capacity differentiation to illustrate how the baseline
model can be extended to address the applications mentioned in Section 2.2. Second,
we briefly review how one could treat a model with two or more quality attributes
for which customers have dichotomous preferences. Finally, we offer some results
on optimal product menu design in a duopoly setting.

2.5.1 Capacity Differentiation

The extension of the results of the previous section to the case where the quality
attribute is the capacity that is allocated to each type of customer is fairly straight-
forward. For simplicity, in addition to the assumptions set forth in the previous sec-
tion we will also restrict attention to valuation distributions for each customer type
that have infinite support. In this setting, it is easy to verify that Lemmas 1 and 2 as
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well as their associated corollaries continue to hold. For Lemma 3 and 4, we need
to slightly modify the proofs.

Lemma 5. It is always optimal to offer the highest capacity product.

The above result is slightly different from Lemma 3. In particular, we can no
longer say that the optimal single product offering involves selling the highest ca-
pacity product. However, adding the highest capacity product to the existing product
offering certainly increases revenues. Hence in the optimal product menu uncon-
strained by the number of products that are offered, the highest capacity product
will always be offered.

Lemma 6. Suppose the firm offers products at capacities θm and θn, where m+1 <
n. Then it is optimal for the firm to offer products at capacity θl , m+1 ≤ l ≤ n.

Together Lemmas 5 and 6 imply that if θk is the lowest capacity that is offered
by the firm, then it is optimal to offer products with capacities θ1, . . . ,θk−1. The fol-
lowing corollary shows that in fact it is optimal to offer all N products at capacities
θ1, . . . ,θN .

Corollary 5. It is optimal to offer N products.

Following Corollary 5, the service provider’s revenue maximization problem can
be reformulated as follows:

max
p

N

∑
i=1

pi Λi Fi (pi) (2.41)

s.t.
N

∑
i=1

Λi Fi (pi) θi ≤C, (2.42)

0 ≤ pN < pN−1 < · · · < p1 < ∞. (2.43)

We can solve the firm’s revenue maximization problem (2.41), (2.42), and (2.43) by
reformulating it in terms of arrival rates, wherein we obtain a concave maximiza-
tion problem over a polyhedron. The first-order conditions lead to the following
characterization of the optimal prices.

Lemma 7. The optimal prices are given by pi = Fi(pi)/ fi(pi)+ μθi, i = 1, . . . ,N,
where μ is the Lagrange multiplier associated with the capacity constraint.

The k < N products problem can also be solved in a similar fashion, though
solving it now requires

(N
k

)
effort.

2.5.2 Multiple Quality Attributes

Our results extend naturally to the case where customers have threshold prefer-
ences with respect to more than one quality attribute. For simplicity, we discuss
the two-attribute case here, which we will denote by θi and α j, i = 1,2, · · · ,N1,
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j = 1,2, · · · ,N2. Without loss of generality, we assume that ∞ > θ1 > θ2 > · · · >
θN1 > 0, ∞ > α1 > α2 > · · · > αN2 > 0, with higher values again denoting a desire
for higher qualities. A type (i, j) customer is associated with the quality thresholds
θi and α j. Suppose the firm offers M products, where product l has price pl and
quality attributes q1

l and q2
l . Then, a satisficing type (i, j) customer selects the fol-

lowing product:

χi, j(p,q1,q2) =

{
minl pl , q1

l ≥ θi, q2
l ≥ α j,

0, otherwise.
(2.44)

Analogous to the assumptions of Section 2.3, we assume that the supports of the
valuation distributions satisfy the following ordering conditions v1, j > v2, j > · · · >
vN, j,∀ j and vi,1 > vi,2 > · · · > vi,M,∀i. Also assume that

fi,1(v)
Fi,1(v)

<
fi,2(v)

Fi,2(v)
< .. . <

fi,M(v)
Fi,M(v)

, ∀i,

f1, j(v)
F1, j(v)

<
f2, j(v)

F2, j(v)
< .. . <

fN, j(v)
FN, j(v)

, ∀ j.

Hazard rates fi, j(p)/Fi, j(p) are monotonic and λi, jFi, j(λi, j/Λi, j) is concave. Then,
the results in Lemmas 1–4, Proposition 2, and their associated corollaries can be
extended in a straightforward manner. As in Proposition 3, the k product problem
can also be addressed, though the problem complexity increases significantly now
(there are

(N1N2
k

)
ways to choose k product quality combinations).

2.5.3 Duopoly

We finally consider some partial analysis of the case of two firms competing in a
market with satisficing customers that satisfy the assumptions in Section 2.3. We
examine the cases of simultaneous and sequential entry in order. As in Moorthy
(1988), Shaked and Sutton (1982), and Wauthy (1996), we restrict attention to the
case where each firm can offer only a single product and study a two-stage non-
cooperative game. In the first stage, firms choose the quality level at which they
seek to offer a product. In the second stage, given their and the competitor’s quality,
firms choose the prices at which to sell their product at. As in the above-mentioned
papers, we focus on perfect Nash equilibria.

We begin by analyzing the second stage of the game, the price equilibrium. The
two firms will not offer the same quality, else it will lead to a Bertrand game wherein
profits would be zero. Hence we assume that firm 1 offers quality θi and firm 2 offers
quality θ j, i < j. Following Lemma 1 (which continues to hold), pi > p j for two
products to be offered. Then, the optimization problem for the firm offering quality
θi can be written as follows:

max
pi

{
pi

j−1

∑
l=i

Fl(pi) Λl

∣∣∣∣ j−1

∑
l=i

Fl(pi) Λl ≤C, pi ≥ 0

}
. (2.45)
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Define p∗1 to be the optimal price in (2.45). The optimization problem for firm of-
fering quality θ j can be written as follows:

max
p j

{
p j

N

∑
l= j

Fl(p j) Λl

∣∣∣∣ N

∑
l= j

Fl(p j) Λl ≤C, p∗1 > p j ≥ 0

}
. (2.46)

Define p∗2 to be the optimal price in (2.46). The following lemma characterizes the
Nash equilibrium in prices.

Lemma 8. Equations (2.45) and (2.46) define a Nash equilibrium in prices (given
fixed qualities).

For simultaneous entry case we obtain the following result.

Proposition 4. The unique product equilibrium occurs with firm 1 selecting quality
θ1 and firm 2 selecting quality θ2, if the following condition is satisfied:

max
p1

{p1 F1(p1) Λ1 | F1(p1) Λ1 ≤C}

≥ max
p3

{
p3

N

∑
l=3

Fl(p3) Λl

∣∣∣∣ N

∑
l=3

Fl(p3) Λl ≤C, p∗2 > p3 ≥ 0

}
, (2.47)

where p∗2 = argmaxp2{p2 F2(p2) Λ2 | F2(p2) Λ2 ≤C}.

The analysis of the sequential entry is facilitated through the following notation:

R1(l, p) = {p Fl(p) Λl | Fl(p) Λl ≤C}, (2.48)

R1(l) = max
p

R1(l, p), pl
1 = argmax

p
R1(l, p), (2.49)

R
1(l, p) =

{ N

∑
u=l+1

p Fu(p) Λu

∣∣∣∣ N

∑
u=l+1

Fu(p) Λu ≤C, p < pl
1

}
, (2.50)

R
1(l) = max

p<pl
1

R
1(l, p), pl

1 = argmax
p<pl

1

R
1(l, p), (2.51)

R2(l, p) =
{ N

∑
u=l

p Fu(p) Λu

∣∣∣∣ N

∑
u=l

Fu(p) Λu ≤C, p < pl
2

}
, (2.52)

R2(l) = max
p<pl

2

R2(l, p), pl
2 = argmax

p<pl
2

R2(l, p), (2.53)

R
2(l, p) =

{ l−1

∑
u=1

p Fu(p) Λu

∣∣∣∣ l−1

∑
u=1

Fu(p) Λu ≤C

}
, (2.54)

R
2(l) = max

p
R

2(l, p), pl
2 = argmax

p
R

2(l, p). (2.55)

R1(l, p) denotes the revenue achieved by firm 1, if it offers quality θl at price p and
firm 2 decides to offer quality θl+1. R1(l) is the optimal revenue achieved in this
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case, and pl
1 denotes the revenue-maximizing price. R1(l, p) denotes the revenue

achieved by firm 2, if firm 1 offers quality θl at price pl
1, and firm 2 offers quality

θl+1 at price p. R1(l) denotes the optimal revenue achieved in this case, and pl
1

denotes the corresponding revenue-maximizing price. R2(l, p) denotes the revenue
achieved by firm 1, if it offers quality l at price p < pl

2 and firm 2 decides to offer
quality θ1 at price pl

2. R2(l) is the optimal revenue achieved in this case, and pl
2

denotes the revenue-maximizing price. R2(l, p) denotes the revenue achieved by
firm 2, if firm 1 offers quality θl , and firm 2 offers quality θ1 at price p. R2(l) denotes
the optimal revenue achieved in this case, and pl

2 denotes the corresponding revenue-
maximizing price. The following proposition characterizes the optimal qualities to
offer.

Proposition 5. The first entrant chooses to offer quality

i = argmax
l=1,2,...,N

R(l), (2.56)

R(l) =

{
R1(l), if R

1 ≥ R
2
,

R2(l) otherwise.
(2.57)

The quality chosen by the second entrant then is θ1 if R1
i < R2

i , and θi+1 otherwise.

We note that while in the simultaneous case the two best quality products are
offered if an equilibrium exists, in the sequential entry case, neither of the two best
qualities may be offered. This is in contrast with the optimal two-product solution
of a monopolist firm, where the first product is always offered at the best quality,
while the quality of the second product depends upon the problem parameters.

2.6 Concluding Remarks: Satisficers vs. Utility Maximizers

In this chapter, we have analyzed the product design problem for a seller facing a
market of satisficing customers. The product design problem is tractable and enjoys
several nice structural properties about the optimal number of products, the quality
levels of the offered products, the structure of the product manu if the seller wants
to restrict the number of offered products, and the structure of the optimal policy in
a simplified duopoly setting. We also note that the ability to solve for the optimal
menu in a multi-type market is a significant improvement over what can be done
with classical models of vertical and horizontal product differentiations or mecha-
nism design approaches for utility maximizing customers.

Satisficing provides a plausible approach to model bounded rationality in some
revenue management and operations management contexts that we believe has both
analytical and practical importance. An obvious issue that we have not addressed
concerns the empirical validation of the satisficing customer choice behavior, which
is an interesting problem that has been only partially addressed in the marketing and
psychology literature.
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2.7 Proofs

Proof of Lemma 1: Part (a). Since any customer class i is indifferent between the
quality levels that lie in the interval (θl−1,θl ], l = 1, . . . ,N, where θ0 := θ , at most
one price can be charged for any quality level in (θl−1,θl ], l = 1, . . . ,N. Hence,
offering one quality level in (θl−1,θl ], l = 1, . . . ,N, suffices, which without loss of
generality, we can fix to θl . Part (b). Following (a), the quality levels qi and q j lie in
the set {θ1,θ2, . . . ,θN}. Suppose qi > q j while pi < p j. Then, every customer strictly
prefers product i over product j. Hence the firm can drop product j from its product
line without affecting its revenues. This would contradict our assumption that the
firm only offers products that generate non-zero demand, and so pi > p j. Suppose
now that pi > p j but qi < q j. In this case, all customers strictly prefer product j
to product i, which therefore generates zero demand. Again, this contradicts our
assumption that the firm only offers products that generate non-zero demand and
hence qi > q j. �
Proof of Corollary 1: The monotonicity of prices, pi1 > pi2 > · · · > pik , follows
from Lemma 1. Part (a). If pi1 ≥ vi1 , then Fi1(pi1) = 0, implying that nobody will
purchase this product, and it can be dropped. This violates our assumption that only
products that offer a non-zero demand are offered. Hence, pi1 < vi1 . Part (b). Sup-
pose pik = 0. Consider setting pik to 0.5min{pik−1 ,vik} > 0 wherein the aggregate
demand decreases while revenues increase. Note that pik−1 > 0, since products k and
k−1 are distinct. Hence pik > 0 in the optimal solution. �
Proof of Lemma 2: Since type i−1 buys product j, q j ≥ θi−1 > θi, i.e., the quality
of product j is higher than the quality threshold for type i. Since type i + 1 buys
product j, p j = minql≥θi+1 pl ≤ minql≥θi pl , i.e., product j is the cheapest product
offered by the firm with quality greater than or equal to θi. Hence it is optimal for
type i to buy product j. �
Proof of Lemma 3: Let θk, k > 1, be the highest quality offered at price p to the
market in the optimal solution. Also suppose that customers from classes l, k ≤ l ≤ i
are currently buying this product. Consider increasing the quality of the offered
highest quality product from θk to θ1 and increasing its price from p to p+ε , ε > 0,
such that ∑i

l=1 Fl(p + ε)Λl = ∑i
l=k Fl(p)Λl . The left hand side is continuous and

decreasing in ε , exceeds the right hand side for ε = 0, and is less than the right hand
side for ε = ∞. Hence, such an ε > 0 exists. Since the demand does not change while
revenues increase (we increased the price), the original solution cannot be optimal
and we have a contradiction. �
Proof of Corollary 2: Following Lemma 3, if a single product is offered by the
firm, then it is offered at the highest quality θ1. The one-product problem formula-
tion then follows. �
Proof of Corollary 3: Since at least one product is offered, following Lemma 3,
the highest quality product is offered. Let p1 denote its price. Then p1 < v, else this
product will generate zero demand. Since any other products would be offered at a



2 Product Design in a Market with Satisficing Customers 57

lower quality level, and hence price (following Lemma 1), at least some customers
from each class would buy from the firm. �
Proof of Proposition 1: Following Lemma 3, quality θ1 is always offered. Hence,
all customer classes 1, · · · ,N would buy a product from the firm, subject to their val-
uations exceeding the price p1. If k < N products are offered in the optimal solution
at qualities θm1 ,θm2 , · · · ,θmk , with m1 < m2 < · · ·< mk ≤ N, m1 = 1,mk+1 := N +1,
and prices pm1 > pm2 > · · ·> pmk , then setting prices to be p j = pmi ,mi ≤ j < mi+1,
i = 1, · · · ,k, in the above formulation would lead to the same solution. Finally,
any solution of (2.22), (2.23), and (2.24) is consistent with customer behavior, in
that type i customers would buy the product priced at pi. Hence the formulation
is correct. �
Proof of Lemma 4: Suppose it is optimal for the firm to offer k < N products
(lemma holds trivially if k = N). Then there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ N
such that product l, 1 ≤ l ≤ k, is being offered at quality θil . Following Lemma 3,
i1 = 1. Suppose there exist indices m,n such that m + 1 < n, il = m, il+1 = n for
some 1 ≤ l ≤ k−1. These correspond to products with qualities θm and θn, respec-
tively. In case such indices do not exist (since k < N and i1 = 1, this case occurs
only when the k products are offered at qualities θ1, . . .θk), the lemma holds. Even
then for the first case of the following two, we set m = k, n = N + 1, pN+1 = 0,
θN+1 = 0. For the second case, we consider only the possibility where such indices
do exist. Let us denote the prices of these two products by pm and pn, respectively,
with pm > pn (since θm > θn and following Lemma 1). There are two cases to
consider.

Case (a): pm < vm+1: Consider adding a product at quality level θm+1 and price
pm − δ , δ > 0 such that pm − δ > pn and increasing the price of the product be-
ing offered at quality θm from pm to pm + ε , ε > 0, such that pm + ε < vm and
pm + ε < pil−1 , where pil−1 is the price of the θl−1 best quality product offered by
the firm, if any, and ∞ otherwise. The change in demand ΔD = ΛmFm(pm + ε)+
∑n−1

u=m+1 ΛuFu(pm −δ )−ΛmFm(pm)−∑n−1
u=m+1 ΛuFu(pm). Using the first-order Tay-

lor expansion, we can write ΔD = −εΛm fm(pm) + δ ∑n−1
u=m+1 Λu fu(pm) + o(ε) +

o(δ ). Similarly, the change in revenue ΔR = Λm(pm + ε)Fm(pm + ε)+(pm −δ )×
∑n−1

u=m+1 ΛuFu(pm −δ )−Λm pmFm(pm)− pm ∑n−1
u=m+1 ΛuFu(pm). Again, ΔR = εΛm

(Fm(pm)− pm fm(pm))+δ ∑n−1
u=m+1 Λu(pm fu(pm)−Fu(pm))+o(ε)+o(δ ).

We want to show that there exist δ ,ε , small such that ΔD < 0, ΔR > 0. To this
end, choose δ such that δ ∑n−1

u=m+1 Λu fu(pm) = γεΛm fm(pm), where 0 < γ < 1. This
implies that ΔD =−εΛm fm(pm)(1−γ)+o(ε) = −δ [(1− γ)/γ]∑n−1

u=m+1 Λu fu(pm)+
o(δ ), which is < 0 when ε (or equivalently δ ) is small enough. Substituting this
value of δ and simplifying, we get

ΔR =
εΛm fm(pm)pm

∑n−1
u=m+1 Λu fu(pm)

[ n−1

∑
u=m+1

Λu fu(pm)
(

1
ηm(pm)

−1+ γ − γ
ηu(pm)

)]
+o(ε).
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Now

ηm(pm) < ηm+1(pm) ≤ ηu(pm) ⇔ 1
ηm(pm)

>
1

ηm+1(pm)
≥ 1

ηu(pm)
.

Hence, for ε sufficiently small, it suffices to show that

1
ηm(pm)

−1 > γ
(

1
ηm+1(pm)

−1

)
,

which holds from above and the fact that we can choose any γ that satisfies 0 <
γ < 1.

Case (b): pm > vm+1: In this case, classes m + 1 ≤ u < n do not buy any prod-
uct. Consider adding a product at quality level θm+1 and price vm+1 − ε , ε > 0, and
increasing the price of the product offered at θn from pn to pn + δ , δ > 0 such
that pn + δ < vn and vm+1 − ε > pn + δ . Let θr be the next best quality after θn

that is offered by the firm (set it to r = N + 1, θN+1 = 0, pN+1 = 0, as mentioned
earlier, if there is none). The change in demand ΔD = ∑n−1

u=m+1 Fu(vm+1 − ε)Λu +
∑r−1

u=n Fu(pn + δ )Λut j − ∑r−1
u=n Fu(pn)Λu. Using the first-order Taylor expansion,

ΔD = ε ∑n−1
u=m+1 fu(vm+1)Λu−δ ∑r−1

u=n fu(pn)Λu +o(ε)+o(δ ). Similarly, the change
in revenue, ΔR = ∑n−1

u=m+1 Fu(vm+1 − ε)Λu(vm+1 − ε) + ∑r−1
u=n Fu(pn + δ )Λu(pn +

δ )−∑r−1
u=n Fu(pn)Λu pn, which can be written as ΔR = vm+1ε ∑n−1

u=m+1 fu(vm+1)Λu −
δ ∑r−1

u=n Λu(pn fu(pn) − Fu(pn)) + o(ε) + o(δ ). Choose ε ∑n−1
u=m+1 fu(vm+1)Λu =

γδ ∑r−1
u=n fu(pn)Λu, with 0 < γ < 1, so that

ΔR = δ
r−1

∑
u=n

fu(pn)Λu pn

(
vm+1γ

pn
−1+

Fu(pn)
pn fu(pn)

)
+o(δ ).

For δ sufficiently small, a sufficient condition for ΔR > 0 is that vm+1γ/pn > 1,
which is true if we choose γ > pn/vm+1. This is possible, since the only restriction
on our choice of γ was 0 < γ < 1, and pn < vn ≤ vm+1.

Hence in both cases, we obtain a contradiction. �
Proof of Corollary 4: In the proof of Lemma 4, under the assumption that vi =
constant for all i = 1, . . . ,N, the second case in the proof never arises. The proof of
the first part is applicable for all k, 1 ≤ k < N, irrespective of whether there are holes
in the product offering or not. Hence we know that ∀k < N, offering k +1 products
over k products increases revenues. Also from Lemma 1, we know that it suffices to
offer at most N products. Hence, it is optimal to offer exactly N products. �
Proof of Lemma 5: Suppose that the highest quality product is being offered at ca-
pacity θk and price pk in the optimal solution, where k > 1 (else the lemma holds).
Note that pk < ∞. Also suppose that the next highest quality product was being
offered at θm, m > k. (Set m = N + 1 if no other product is offered.) Consider in-
troducing an additional product at capacity θ1 and price p1 = pk + ε , ε > 0, such
that p1 > pk(θ1/θk). Also, increase the price of product with capacity θk to pk +δ ,
δ > 0, such that ΔD = θ1 ∑k−1

l=1 ΛlFl(pk +ε)+θk ∑m−1
l=k Λl [Fl(pk +δ )−Fl(pk)] = 0.
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The first term is positive and decreases as ε increases, while the second term
is negative and decreases as δ increases. Hence, there exist ε > 0, δ > 0, such
that pk + δ < vk, pk + ε < v1, and ΔD = 0. As a result, demand is unchanged,
while the cost per unit capacity for products sold to classes 1 . . .k increases to
min{p1/θ1,(pk +δ )/θk} > pk/θk. Hence the total revenue increases via the intro-
duction of this product at θ1. �
Proof of Lemma 6: As in Lemma 4, consider two indices m,n where m + 1 <
n, such that products are offered at θm and θn, but none in between. Following
Corollary 1, pm < ∞. Consider adding a product at θm+1 and price pm − δ while
increasing the price of the product with capacity θm to pm + ε . Then,

ΔD =
n−1

∑
l=m+1

ΛlFl(pm −δ )θm+1 +ΛmFm(pm + ε)θm

−
n−1

∑
l=m

ΛlFl(pm)θm = −εθmΛm fm(pm)

+δθm+1

n−1

∑
l=m+1

Λl fl(pm)+(θm+1 −θm)
n−1

∑
l=m+1

ΛlFl(pm)+o(ε)+o(δ ).

Since θm+1 < θm, choose δ sufficiently small so that ΔD < 0. Similarly,

ΔR =
n−1

∑
l=m+1

ΛlFl(pm −δ )(pm −δ )+ΛmFm(pm + ε)(pm + ε)

−
n−1

∑
l=m

ΛlFl(pm)pm

= εΛmFm(pm)− εΛm pm fm(pm)

+
n−1

∑
l=m+1

Λlδ [−Fl(pm)+ pm fl(pm)]+o(ε)+o(δ ).

Hence ΔR > 0 if εΛmFm(pm)(1−ηm(pm)) > δ ∑n−1
l=m+1 ΛlFl(pm)(1−ηl(pm)).

Define A = ΛmFm(pm)(1 − ηm(pm)) and B = ∑n−1
l=m+1 ΛlFl(pm)(1 − ηl(pm)).

From our assumption on elasticities ηm < ηl ,m≤ l ≤ n. There are three possibilities:
(i) A > 0,B > 0: choose δ sufficiently small (compared to ε) =⇒ ΔR > 0.
(ii) A > 0,B < 0: =⇒ ΔR > 0.
(iii) A < 0,B < 0: choose ε sufficiently small (compared to δ ) =⇒ ΔR > 0.
Hence introducing a product at θm+1 increases revenues. �

Proof of Corollary 5: In the proof of Lemma 6, substituting n = N + 1, and
introducing a dummy product with θN+1 = 0, pN+1 = 0, does not affect line of
argument. Hence we conclude that if only first k capacities are being offered, intro-
ducing a product at capacity θk+1 also increases revenues. Applying this argument
iteratively and following Lemma 1, we conclude that it is optimal to offer exactly N
products. �
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Proof of Lemma 8: Firm 1 has no incentive to change its price, since given the
quality θi of its product, this is the optimal price for it to charge subject to its capac-
ity. Firm 2 needs to offer a lower price than firm 1 to be able to generate non-zero
revenues, since θi > θ j. Hence, given its quality θ j and capacity C, p∗2 is the op-
timal price for firm 2 to charge. Finally the resulting customer choice behavior is
consistent with the formulation in (2.45) and (2.46). �
Proof of Proposition 4: Suppose the product equilibrium occurs at 1 < i < j ≤ N.
Given choice of quality θ j by firm 2, firm 1 will find it advantageous to offer quality
θ1, for it increases revenues when the price equilibrium with product qualities fixed
is considered. Hence, in the Nash equilibrium, i = 1. Next consider the case where
j > 1. In this case, given that firm 1 chooses to offer quality θ1, firm 2 revenue would
increase if it offers quality θ2 instead of θ j, given the price equilibrium that would
occur with these qualities. Hence j = 2 in the Nash equilibrium. Next we consider
whether i = 1, j = 2 constitutes a Nash equilibrium. Clearly, firm offering θ2 does
not have an incentive to deviate. As for the firm offering θ1, the best alternative is to
offer quality θ3 instead. This happens only if

max
p1

{p1 F1(p1) Λ1 | F1(p1) Λ1 ≤C}

< max
p3

{
p3

N

∑
l=3

Fl(p3) Λl

∣∣∣∣ N

∑
l=3

Fl(p3) Λl ≤C, p∗2 > p3 ≥ 0

}
,

where p∗2 = argmaxp2{p2 F2(p2) Λ2 | F2(p2) Λ2 ≤C}. �
Proof of Proposition 5: Since firm 1 chooses its quality first, and with the knowl-
edge that firm 2 will subsequently choose the optimal quality to offer following firm
1’s choice, there are two situations to consider. Given firm 1’s choice of quality θl ,
firm 2 would offer either a better quality, in which case it is optimal for firm 2 to
offer θ1, or a worse quality, in which case it is optimal for firm 2 to offer θl+1. The
revenues resulting for firm 2 in these two situations are denoted by R

1(l) and R
2(l)

for firm 2, respectively. Firm 2 chooses quality θ1 if R
1(l)≥ R

2(l), in which case the

revenue achieved by firm 1 is given by R1(l) in equilibrium. If R
1(l) < R

2(l), then
firm 2 chooses quality θl+1, and consequently, firm 1 obtains R2(l) in revenue in
equilibrium. This leads to (2.57). Given the optimal revenue achievable by firm 1 if
it offers quality θ1 to the market, firm 1 then optimizes over qualities θl , l = 1, . . . ,N,
to identify the optimal quality to offer, as summarized by (2.56). �
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Chapter 3
The Effect of Assortment Rotation on Consumer
Choice and Its Impact on Competition

Felipe Caro and Victor Martı́nez-de-Albéniz

Abstract The recent success of fast fashion retailers has changed the (affordable)
fashion industry dramatically. These companies, such as Zara, are characterized by
a flexible supply chain that has allowed them to reduce design and production lead
times to just a few weeks, rather than months. More importantly, they are using these
capabilities to change the assortment (i.e., introduce new products) more frequently,
which many practitioners claim increases sales, since there is evidence showing
that customers visit more often the stores with fresher products. We propose in this
chapter a customer consumption model with satiation and multiple competing re-
tailers. The model implies that the consumers will spend a higher share of their
budget in retailers that renovate the assortment at a faster pace. Using the insights
from the model, we determine how often retailers should change the assortment in
the competitive equilibrium.

3.1 Introduction

The fashion industry has seen enormous changes in the past years. We have wit-
nessed the emergence of new firms that, over a decade, have continuously grown
to become market leaders. The Inditex group from Spain, owner of the Zara chain,
surpassed Gap in the first quarter of 2008 as the world’s biggest clothing retailer,
see The Guardian (2008). H&M from Sweden has also become a major player in
the industry. These newcomers have recently offered higher profitability than tradi-
tional retailers, e.g., in 2007 H&M had a ROA of 32.6% and Inditex of 17.7% vs.
10.6% for Gap Inc.
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The main difference between these new players and traditional retailers is that
H&M and Inditex are best of breed among fast fashion retailers. Fast fashion is
a relatively new business strategy that can be succinctly defined as “cutting-edge
fashion at an affordable price” for Zara, see Ferdows et al. (2002), or equivalently
as “fashion and quality at the best price” for H&M, see H&M (2007). The fast fash-
ion business strategy relies upon a distinctive operations strategy, which combines
different elements. In what follows, we first present a detailed review of the fast
fashion operations strategy. We then focus on a key factor of success that has re-
ceived little attention in the past, namely, the role of assortment rotation to increase
sales.

Structurally, fast fashion retailers exhibit a high level of vertical control, some-
times involving ownership of a large portion of the value chain, such as stores or
even manufacturing facilities. In particular, the control over manufacturing implies
that production is monitored closely, even when it is outsourced to external suppli-
ers. Given the latter, information systems play an important role from production to
point-of-sales data. The systems need not be very sophisticated, see McAfee et al.
(2004) or McAfee (2004), but enable the feedback of real-time sales information
into distribution, production, and even design decisions. The information provided
by these systems is leveraged through the use of modern distribution platforms for-
warding the merchandise to the stores under JIT principles.

Moreover, fast fashion retailers offer an assortment which is a mix of two types
of products: basic items, e.g., a gray pull-over, a white T-shirt, a pair of plain blue
jeans, and fashion items, e.g., the dress that a celebrity was wearing at the Oscar’s.
As a result, a fast fashion supply chain typically has a dual structure. It is combi-
nation of (i) an efficient supply chain, used for basic items that minimize cost, and
(ii) a responsive supply chain, used for fashion items, following the definitions of
Fisher (1997). As put by H&M (2007), “The time from an order being placed un-
til the items are in the store may be anything from a few weeks up to six months.
The best lead time will vary. For high-volume fashion basics and children’s wear
it is advantageous to place orders further in advance. In contrast, trendier garments
in smaller volumes have to be in the stores much quicker.” Indeed, basic items do
not include a strong fashion component, are available every season, and have a sta-
ble and predictable demand. Hence, an efficient supply chain is the most appro-
priate for this class of products. It should minimize the total cost from factory to
store, including raw materials (purchase in high volumes), production (outsourcing
to low-labor-cost countries), and distribution (use of inexpensive shipping, e.g., mar-
itime). In contrast, fashion items require a responsive supply chain that can bring the
product quickly to the store if needed, since such a trendy product exhibits highly
uncertain demand and is perishable. This implies a flexible production system that
minimizes lead time, even at a higher cost. This can be achieved by minimizing
the time from design to store, including raw materials (pre-positioning of raw ma-
terials and postponement of design), production (locally, reactive capacity through
reservation contracts), and distribution (local sources, expedited shipping).

Following Hayes et al. (2005), the structural choices above are complemented
with infrastructural decisions. These include a strong operations-driven culture, with
a tendency for centralized decision-making. Decisions are taken in a coordinated
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fashion by cross-functional teams. This is perfectly aligned with the vertical control
mentioned above. In particular, inventory at the stores is usually managed centrally
from the headquarters and replenished more than once a week. This allows them to
carry low levels of inventory at the stores, hence maximizing the effectiveness of
shelf space. Also, production policies vary depending on the type of item. Fashion
products are typically produced in small batches, whereas basics are made in large
volumes. Finally, a main characteristic is that fast fashion retailers constantly adjust
their assortment in the store. They introduce new products on a regular basis, e.g.,
weekly. In particular, fashion items have a very short life cycle, as they have to
be replaced by trendier ones. As a result, the number of products offered by a fast
fashion firm every year is much larger than that of a traditional retailer, even though
the number of products in the store at any given time is similar. For example, in
2001, Zara offered 11,000 distinct products, compared to 2,000–4,000 offered by its
key competitors, see Ghemawat and Nueno (2003).

Figure 3.1 illustrates these differences between two fast fashion retailers (Zara
and H&M) and a traditional one (The Gap). Figure 3.2 shows the financials of these
firms.

Some research has been done to link these operational characteristics to compet-
itive advantage. The main focus has usually been the advantage derived from a re-
sponsive supply chain. This builds on the study of quick response (QR), which since
1980s has been described as the only viable strategy under the current conditions in

Zara (Spain) H&M (Sweden) The Gap (U.S.A.)

Vertical Fully integrated. Controls every link From design to store
integration Subcontracts cutting, in the chain but but outsources

[2007] sewing, and shipping does not own factories production
No. of stores 1,361 1,522 >1,572

worldwide [2007]
No. of countries 68 28 21

[2007]
Distribution of 60% Southern Europe 64% Northern Europe 79% North America
stores – Main 13% Northern Europe 19% Southern Europe 9% United Kingdom

locations [2007] 8% Latin America 12% North America 7% Japan
Assortment 40% Basic >70% Basic 99% Basic

composition [2006] 60% Fashion <30% Fashion
Sourcing – Main 50% Spain and prox. >60% Asia 97% outside U.S.A.
suppliers [2006] 34% Asia <40% Europe

14% Rest of Europe
Lead times Efficient SC: 6 Months Efficient SC: 6 Months Efficient SC: 9 Months

- Dual SC [2006] Responsive SC: 2–5 Weeks Responsive SC: 3–6 Weeks
Refreshment Twice a week Daily Occasionally

fashion [2006]
Pricing Overall, higher than H&M Lowest among Comparable to Zara,
[2002] (especially out of Spain) Fast Fashion if not higher

Marketing 0.3% of Revenues 3–4% of Revenues Comparable to H&M
[2002]

Fig. 3.1 Operating characteristics of Zara, H&M, and The Gap. Sources: annual reports and public
press.
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Inditex H&M Gap Inc.
(EUR) (SEK) (USD)

Revenue (Net Sales) 9,435 78,346 15,763
8,196 68,400 15,923

Gross Margin 56.7% 61.1% 36.1%
56.2% 59.5% 35.5%

Operating (EBIT) Margin 17.5% 23.5% 8.3%
16.6% 22.4% 7.7%

Net Margin (ROS) 13.3% 17.3% 5.3%
12.3% 15.8% 4.9%

Working Capital /Sales -6.1% 9.7% 10.5%
-6.1% 10.2% 17.3%

Inventory Turns 4.39 4.08 5.14
4.54 3.90 4.93

Asset Turnover 1.33 1.88 2.01
1.43 1.92 1.86

ROA 17.7% 32.6% 10.6%
17.6% 30.4% 9.1%

Leverage 1.69 1.3 1.83
1.67 1.28 1.65

ROE 30.0% 42.3% 19.5%
29.3% 38.9% 15.0%

GMROI 5.74% 6.40% 2.90%
5.83% 5.72% 2.71%

Fig. 3.2 Financials of the Inditex group (owner of Zara), H&M, and Gap Inc. In each entry, the
first line is data for 2007, the second line for 2006 (1 USD = 0.65 EUR = 6.08 SEK). Source:
annual reports.

the apparel market, similar to what just-in-time manufacturing has meant to the auto
industry (Hammond and Kelly 1990). Single-firm models without competition that
analyze QR include Fisher and Raman (1996) and Iyer and Bergen (1997). More
recently, Caro and Martı́nez-de-Albéniz (2005) have examined the benefits of QR
in inventory competition. Also, the impact of QR on strategic consumers has been
explored by Cachon and Swinney (2007). On a different direction, given the more
responsive supply chain, Caro and Gallien (2007) study how this can be leveraged
to learn about demand and implement an optimal dynamic assortment.

Surprisingly, the role of assortment rotation on the competition for consumers has
been relatively unexplored. Higher assortment rotation clearly sets apart fast fashion
retailers from the rest, see Just-style.com (2005): “Fast fashion is a complete move

consumers interested and coming into our retail stores once a month, we’ve got to
have a steady flow of new stuff for them to see.” According to El Paı́s (2008), the
strategy of launching two collections per year is “jurassic.” “We acquire clothes 12
times a year, and every time that we enter a store we want to see something new.
Otherwise, we get bored.” 1 Thus, introducing products to the store more often is a

1 Translation by the authors.

away from the two seasons a year method. It accepts that if we’re going to keep
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valuable way for retailers to increase their sales. In fact, anecdotal evidence suggests
that this is a key lever to attract customers to the store. For instance, the H&M annual
report (2007) states, “New items every day make the stores interesting and lively.
Having a number of collections each season also means that the store changes its
appearance often. The aim is that customers should always be able to find something
new and exciting.” Due to higher assortment rotation, Zara receives more visits to
its stores than the competition: 17 visits per year per consumer on average vs. 3.5 in
the industry, see Ghemawat and Nueno (2003).

The objective of this chapter is to shed light on how companies should use assort-
ment rotation to increase customers’ expenditure in the store. For this purpose, we
propose a multi-period consumption model where consumers become satiated. Sa-
tiation occurs when they visit a store and realize that the assortment has not changed
much from the previous visit. As a result, they consume less at that store. We model
this effect by using a discounted utility model that takes into account the satiation
level, a measure of aggregate previous consumption. We consider multiple retail-
ers competing for the consumers’ budget. The model implies that the consumers
will spend a higher share of their budget in retailers that renovate the assortment at
a faster pace. Using this insight, we determine how often a retailer should change
the assortment, both when its competitors are passive and in the competitive equi-
librium. The rest of this chapter is organized as follows. Section 3.2 reviews the
literature. Section 3.3 presents the model and characterizes how the customers split
their budget among the competing retailers. Section 3.4 determines the retailers’
strategies regarding assortment rotation. We conclude in Section 3.5. Note that this
chapter is based on research presented in Caro and Martı́nez-de-Albéniz (2009).

3.2 Literature Review

Assortment decisions have gained significant relevance as product variety has be-
come a major component in the value proposition of an increasingly large number of
companies. In terms of research, product variety and assortment planning have re-
ceived plenty of attention in the marketing and operations literature. Here we briefly
describe the findings that are related to the model which we present in the next
section.

In the marketing literature, the work on variety-seeking is relevant to ours. Most
of the research available is empirical and based on experiments or panel data.
The focus has been on understanding and leveraging the purchase behavior among
variety-seeking customers, which can be defined as the tendency to switch brands
(or not repeat a recent purchase) induced by the utility derived from the change itself
(Givon 1984, Kahn et al. 1986). At least three different possible explanations have
been given for this phenomenon: (i) customers get bored or satiated with their most
recent purchase; (ii) customers prefer to change due to external constraints; and (iii)
customers switch brands in an attempt to diversify and hedge against uncertainty in
their preferences (see Kahn (1995) for a detailed description). Note, however, that
variety-seeking is not always prevalent. In some situations, by switching brands, a
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customer might derive disutility. This generates purchase inertia or a reinforcement
behavior (variety-avoidance). Whether a customer seeks or avoids variety is idiosyn-
cratic to the individual, but also depends on the type of product and the time elapsed
between successive purchases (Chintagunta 1998).

In the operations literature, there are two strands of work that are relevant to
our paper: assortment planning and product variety management. The work on
assortment planning has centered on a single firm that wants to find the optimal set
of products to offer, and the problem has been mostly studied as a single-shot deci-
sion (van Ryzin and Mahajan 1999, Smith and Agrawal 2000). The work by Caro
and Gallien (2007) is one of the few exceptions that looks at assortment planning
as a dynamic problem in which new products can be introduced with a two-fold
purpose: to replace those that are not selling and also to test new variants. We refer
the reader to Kök et al. (2008) for further references on assortment planning. In
terms of the product variety management, the operations literature has focused on
how companies can cope with product proliferation. Though a larger variety can
increase revenue and market share (especially under the presence of variety-seeking
customers), it comes at a cost. Therefore, a vast amount of research has been devoted
to exploit product and process design to deliver a higher level of variety quickly and
cheaply (see Ho and Tang 1998).

All the papers mentioned above look at a single firm. There has been some work
that studies variety-based competition in which products are characterized by a re-
duced set of attributes (typically one or two), and offering more variety means more
options available in terms of those attributes. Most of these models are either based
on Hotelling (1929) single attribute locational model (e.g., Alptekinoğlu and Corbett
2008) or on the choice probabilities derived from the multinomial logit model (e.g.,
Cachon et al. 2008). We refer the reader to Lancaster (1990) and Anderson et al.
(1992) for further references and discussion along these lines.

In our model, firms also compete for customers but the main competitive lever is
the assortment rotation, i.e., the frequency of assortment changes. As mentioned in
Section 3.1, there is evidence showing that stores that change the assortment more
often are visited more frequently. Based on this observation, we view fast fashion
shoppers as variety-seeking customers that are satiated with their previous purchase
and look for stimulation in new garments. In order to capture this behavior, we
propose a multi-period utility model with satiation that builds on the consumption
model developed by Baucells and Sarin (2007). We expand their model by con-
sidering multiple choices competing for the same budget. A firm can decrease its
customers’ satiation rate (and increase their expenditure) by rotating the assortment
more often. Moreover, since customers have a limited budget (to spend on apparel),
the expenditure at a given firm will also depend on how often its competitors change
their respective assortments. Therefore, a game arises. From the marketing litera-
ture, we allow for customer heterogeneity in terms of their preference for variety (or
satiation sensitivity), and from the operations literature, we consider diverse cost
structures to represent different process capabilities to offer variety.

As mentioned above, our model links a common operational lever, i.e., the as-
sortment rotation strategy, with a typical market-oriented indicator, i.e., sales. For
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a single firm, this link has been studied mostly for durable goods such as personal
computers, cellular phones, or toys (see Lim and Tang (2006) and the references
therein). In contrast with the latter, this paper is motivated by the apparel indus-
try, and to the best of our knowledge, our work would be the first to study the link
between assortment rotation and sales in a competitive setting.

3.3 The Multi-period Utility Model with Satiation

In this section we present the utility model with satiation that we use later as a
building block in the competitive game. Our approach builds on the consumption
model by Baucells and Sarin (2007). We believe that a consumption model provides
the right foundations since the goal of the chapter is to shed light on the optimal
assortment renewal rate, rather than the optimal assortment at each point in time.
Therefore, we only care about the expenditure at each retailer, and we do not model
explicitly what the actual products are that are bought, as is usually the case in
assortment models based on Hotelling’s framework or on the multinomial logit (c.f.
Section 3.2). Similarly, our model does not account explicitly for substitution or
cannibalization effects, though they still might occur.

Consider an individual customer that maximizes its utility over T periods (say
months). We think of an aggregate budget per period for the category (apparel) that
can be shared in multiple retailers. Although one could integrate a saving decision
into our model, it would unnecessarily complicate it. We assume that future con-
sumption is less valuable to the consumer and is discounted at a rate δ per period.
Let i and n denote one particular firm and the total number of firms, respectively.
We denote by xit the dollar amount spent at retailer i in period t.

As in Baucells and Sarin (2007), we assume that the contribution of the cur-
rent consumption is an increment over the satiation level achieved due to previous
consumption. Formally, when there has been previous consumption at retailer i, we
model the incremental utility generated as a function of how many of the products
are “old,” i.e., they were already on display in the previous period. The customer
already bought some of them and therefore exhibits some level of satiation with the
previous purchases that remain in the current assortment. Thus, let yit be the satiation
level with the assortment at retailer i at the beginning of period t, which can be seen
as a consumption stock level that remains from the previous period. The incremen-
tal utility derived from consuming xit in period t is defined as ui(yit + xit)−ui(yit),
where ui(z) is an increasing and concave function that represents the utility derived
from a consumption stock level z.

Of course, the relationship between yit and xi1, . . . ,xit−1 depends on the retailer’s
assortment rotation policy. When the retailer keeps a share γi of the assortment un-
touched in between periods, then the average amount previously consumed that is
still in the store is such that

yi,t+1 = γi(yit + xit), (3.1)
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where γi is called the satiation retention factor at retailer i. If the assortment changes
completely, γi is 0, whereas it is equal to 1 if no changes occur between periods.
Similarly, if 30% of the assortment changes between periods, then of the previ-
ously consumed products, only 70% is still on display. An implicit assumption
is that the products that change in the assortment are picked at random, which
may not be exact, but we believe it is a good first approximation.2 Thus, de-
pending on each retailer’s policy for assortment rotation, the customer will ex-
perience a higher or lower satiation factor. We examine the retailer’s problem in
Section 3.4.

The customer problem can thus be defined as

max
T−1

∑
t=0

δ t

(
n

∑
i=1

ui(yit + xit)−ui(yit)

)
s.t.

n

∑
i=1

xit = Wt ∀ t = 0, . . . ,T −1

yi,t+1 = γi(yit + xit) ∀ i = 1, . . . ,n, t = 0, . . . ,T −1
xit ≥ 0 ∀ i = 1, . . . ,n, t = 0, . . . ,T −1.

(3.2)

Here, Wt is the budget of the consumer for period t. Alternatively, using a dynamic
programming formulation, with Vt(yt) the “utility-to-go” from period t to the last
one, we can write

Vt(yt) = max
∑n

i=1 xit≤Wt
xit≥0

{ n

∑
i=1

ui(yit + xit)−ui(yit)+δVt+1 (γ • (yt + xt))
}

(3.3)

and VT (·) = 0, where
(

γ • (yt + xt)
)

i
= γi(yit + xit).

In order to avoid end-of-horizon effects, we consider the infinite horizon case
T = ∞ with a stationary per period budget Wt ≡W . As a result, Vt is stationary, i.e.,
Vt ≡V and satisfies the following Bellman equation (see Bertsekas 2000):

V (y) = max

{ n

∑
i=1

ui(yi + xi)−ui(yi)+δV (γ • (y+ x))
}

. (3.4)

In addition, let vi(z) ≡ ui (z)− δui(γiz) be the (stationary) incremental utility func-
tion. If vi is concave and v′i is convex, it can be shown that, starting from a non-
satiated state (i.e., for all i, yi0 = 0), the optimal policy xit ,yit converges as t → ∞ to
levels xi∞,yi∞ such that xi∞ = (1− γi)zi∞ and yi∞ = γizi∞ where

v′i (zi∞)
1−δγi

= μ , (3.5)

and μ ensures that ∑n
i=1(1− γi)zi∞ = W .

2 An alternative view is the following. If we know that a product at retailer i lasts on average �i

periods in the store, then by Little’s law, a fraction 1/�i is replaced per period. Thus, γi = 1−1/�i.
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This result is non-trivial and the formal proof is given in Caro and Martı́nez-de-
Albéniz (2009). Note that it complements the results in Baucells and Sarin (2007),
in particular it supports the observation that consumptions tend to stabilize around
an “equilibrium level” in the periods that are not in the beginning (impact of initial
satiation state) or the end (impact of budget terminal value being zero).3 In addi-
tion, our result is similar to the one found in Popescu and Wu (2007), in a different
context. Popescu and Wu consider a dynamic pricing model where the current price
proposed has an influence on the future demand. Interestingly, they show that all the
optimal price paths converge to a steady-state price, which is similar to our conver-
gence to steady-state consumption.

For the remainder of this chapter, we consider the steady-state consumption xi∞,
given by μ , which depends on the particular per period budget W of the customer,
and yi∞:

xi∞ =
1− γi

γi
yi∞. (3.6)

3.4 Competing on Assortment Rotation

3.4.1 The Competitive Setting

In the previous section, we elucidated the relationship between assortment rotation
at each retailer and the steady-state consumption xi∞ of an individual consumer. We
build on the results above and study the behavior of the retailers under competition.
We allow for heterogeneity among customers in terms of their preferences (utility
function), and we use j and m to denote one (type of) customer and the total number
of customers (or types), respectively.

The competition is based on assortment rotation, which we define as ri ≡ 1− γi.
To be precise, each retailer i must choose ri which represents the faction of the
assortment that will change in between periods. The remaining fraction will still
be available in the next period, and therefore the choice of ri determines the satia-
tion factor γi that customers experience at retailer i. We assume that the firms have
stores that can hold a comparable number of SKUs, and hence we can work with the
fraction rather than the absolute number of unchanged products. We are implicitly
assuming that the satiation factor is the same for all consumers, which would be an-
other departure from the model by Baucells and Sarin (2007). Note that the satiation
model in Section 3.3 can be extended to the general case when the satiation factor
is a consumer-specific function of the assortment rotation. However, this would add
an extra layer of complexity and might deviate the attention from the main focus of

3 It is worth noting that Baucells and Sarin (2007) consider a finite horizon and a total budget that
is shared among the T periods.
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the chapter. For a similar reason we have ignored price decisions and postponed it
for future work.

We view the choice of ri as a strategic decision for a retailer and cannot be
changed easily. Indeed, the rotation has a very strong influence in many parts of the
firm (see Ho and Tang 1998), in particular (1) the product development function,
since rotating the assortment more implies developing higher number of products
per period and (2) the supply chain, since introducing more products implies smaller
production quantities, higher transportation costs, and smaller inventory levels. For
a firm that rotates a fraction ri of the assortment every period, we model its total
costs as

Ci

1− ri
. (3.7)

The parameter ri is an idiosyncratic component and represents the firm’s ability to
offer variety over time. We model the total cost as an increasing and convex function
of ri to represent the fact that each marginal increase of the assortment rotation
becomes increasingly harder to achieve.

Thus the average profit per customer for a given retailer in steady state is

πi(ri,r−i) =
m

∑
j=1

θ j xi j(ri,r−i)− Ci

1− ri
, (3.8)

where θ j represents weight of customer (type) j and xi j(ri,r−i) is the steady-state
expenditure which is obtained from solving (3.5). If necessary, the cost parameter Ci

can be normalized for the units in (3.8) to match. The weights θ j can be given by a
population distribution (for instance, θ j = 1/m in the uniform case) or by the relative
budget levels, i.e., θ j = Wj/∑ j ′ Wj ′ , where Wj ′ is the per period budget of customer
(type) j ′. The strategic assortment rotation game has a (pure) Nash equilibrium if
there is an n-vector r∗ such that no single firm can improve its profits by changing
its assortment rotation unilaterally.

The steady-state expenditure is defined implicitly by (3.5). In order to obtain a
closed-form expression we must specify the utility function ui j. We use the power

from utility function ui j(zi j) = αβ j
i j z

1−β j
i j /(1 − β j) if 0 ≤ β j < 1, and ui j(zi j) =

αi j ln(zi j) if β j = 1, which has been widely used because of its mathematical
tractability (see Baucells and Sarin 2007). The parameters αi j and β j give us some
degree of flexibility to model heterogenous customers. The αi j parameters cap-
ture any preference not due to consumption, and the parameter β j characterizes the
customer’s marginal utility: the larger the β j, the more sensitive is the customer’s
marginal utility to changes in the consumption stock level.4 In particular, if β j equals
zero, then the utility is linear and the consumer will spend all its budget at the re-
tailer with the highest αi j, regardless of whether the assortment changes or not.
That would be the case of a customer who derives the same utility from repeating

4 Formally,
d2ui j

dz2
i j

zi j

ui j
= −β j . Note that β j also captures the customer’s risk aversion, but in our

deterministic setting that interpretation is less relevant.
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a previous purchase (e.g., from buying again the same pair of pants or the same
T-shirt) and does not care about new products and assortment rotation whatsoever.
We use this to model consumers that are rotation indifferent and do not derive any
additional utility from renewing their wardrobe.

Given the power form utility function, from (3.5) and (3.6), the steady-state
expenditure can be expressed as follows:

xi j(ri,r−i) =
αi j ri

(
1−δ (1− ri)1−β j

1−δ (1− ri)

)1/β j

n

∑
k=1

αk j rk

(
1−δ (1− rk)1−β j

1−δ (1− rk)

)1/β j
Wj. (3.9)

Unfortunately, the expression on the right hand side of (3.9) might not be unimodal
in ri since it could have a local maximum at one. This would pose some technical
difficulties (the best-response function could eventually be discontinuous). How-
ever, ri = 1 represents a 100% assortment rotation (i.e., the store is totally renewed
each period), an extreme that is unrealistic if we consider periods to be months since
it would be prohibitively expensive. In fact, even Zara, which is regarded as the fast
fashion retailer with highest assortment rotation, still has some products that last a
few months in the store (mostly basic items, see Figure 3.1). This provides further
support for the choice of the cost function given by (3.7). Then, under mild con-
ditions over Ci, it is possible to show that the best-response function for retailer i,
which is derived from maximizing (3.8), is continuous in the competitors’ actions
r−i. Since the action space is compact ([0,1]n), a Nash equilibrium is guaranteed to
exist (see Caro and Martı́nez-de-Albéniz (2009) for details). Moreover, given that
the profit function (3.8) is expressed in closed form, it is straightforward to ver-
ify (numerically) whether the equilibrium is unique, which was the case in all the
experiments described below.

3.4.2 The Competitive Equilibrium

In this section, we study the outcome of the strategic assortment rotation game, un-
der the assumption that consumers have power form utility functions. We begin by
looking at the form of the best-response function of a given retailer. For that purpose,
we consider the case with two firms (n = 2) and only one type of customers (m = 1,
θ1 = 1), which is variety-seeking with β = 0.5. For simplicity, throughout this sec-
tion we assume αi j = 1 ∀ i, j and we normalize the per period budget Wj = 1 ∀ j.

In Figure 3.3 we plot the best-response function for the two retailers. For both, we
consider two different cost structures: (L) Ci = 0.05 and (H) Ci = 0.25. We regard
the first case (L) to represent a retailer that has a relatively low assortment rotation
cost and therefore is prone to introduce new products very frequently. The second
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case (H) is the opposite and represents a retailer with a slow design process and
rigid supply chain, and therefore new product introductions are more costly.

A first observation from Figure 3.3 is that the extremes ri = 1 and ri = 0 are
never the best competitive response when β j > 0. The fact that a 100% assortment
rotation (ri = 0) is never optimal is not a surprise, given our choice of the cost
function in (3.7). Again, this is supported by what has been observed in practice
(see the discussion after (3.9)). The fact that zero assortment rotation (ri = 0) is not
optimal either is also intuitive since we are considering variety-seeking customers
(β j > 0), and therefore satiation plays a role in how they allocate their budget. Note
that Figure 3.3 seems to indicate that ri = 0 is the best response to r−i = 0 (and that
would make it an equilibrium). However, the best-response curves do not actually
intersect. In fact, if the competitor (−i) does not rotate its assortment at all, then
it is optimal for retailer i to slightly change its assortment over time (i.e, select
ri = ε , with ε very small but strictly positive) to attract more expenditure to itself at
a minimum cost (this is certain to occur since β j > 0).

A second interesting observation in Figure 3.3 comes from comparing the equi-
libria under different cost structures. Consider retailer 1 who plays r1, and suppose
first that both retailers have low (L) assortment rotation costs. Then, the outcome
is the (symmetric) equilibrium ELL in which both retailers will rotate the most
(around 72% in Figure 3.3). This would represent the exclusive competition be-
tween two (identical) fast fashion retailers (think of Zara vs. H&M). If retailer 2
is actually not as efficient managing variety and has high (H) assortment rotation
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costs, then the outcome becomes the (asymmetric) equilibrium ELH in which the
retailer 2 rotates significantly less (around 38%), but also retailer 1 will renovate
its assortment slightly less often (only 68%). This would represent the competitive
game between a fast and a traditional retailer (think of Zara or H&M vs. The Gap).
The fact that competition becomes less intense slows down the assortment rotation
at both retailers. If now retailer 1 also has a high (H) cost structure, then it will ro-
tate even less and the outcome is equilibrium EHH , in which both rotate 42%. What
is surprising is that in this situation retailer 2 will decide to rotate more (compared
to ELH ). In other words, when the cost of retailer 1 increases, the best response of
retailer 2 is to rotate at a higher pace in order to regain some of the market share that
retailer 1 must let go. Finally, if retailer 2 becomes the firm with low (L) assortment
rotation costs, then its best response is to rotate even faster. Retailer 1 is not be able
to keep up and will prefer to rotate further less. In that case, the outcome of the game
becomes equilibrium EHL, which is the mirror of ELH .

The equilibrium transitions described above are further explored in Figure 3.4.
The top and bottom graphs show the equilibrium action and the profits, respectively,
for both retailers as a function of C2, while the cost structure of retailer 1 is low
(L) and high (H) in the left and right graphs, respectively. Note that the profits are
normalized by πHH , i.e., the profits obtained in the symmetric equilibrium EHH

when both firms have high (H) cost structures. Obviously, retailer 2 rotates less as it
becomes harder (more costly). On the contrary, for retailer 1, the equilibrium assort-
ment rotation first increases (when C2 < C1) and then decreases (when C2 > C1). In
other words, if retailer 2 has a lower cost structure that gradually becomes more ex-
pensive, then retailer 1 can improve its profits by rotating the assortment faster. This
is what occurs (reversed) in the transition from equilibrium EHH to EHL for retailer
1 and from equilibrium ELH to EHH for retailer 2. If the cost structure of retailer 2
continues to increase beyond C1, then competition becomes less intense and retailer
1 can rotate less and still improve its profits. This is what occurs in the transition
from equilibrium ELL to ELH for retailer 1 and (in reverse) from equilibrium EHL to
ELL for retailer 2.

Finally, we consider the case when there are two types of customers. A frac-
tion θ of the population is variety-seeking with β1 = 0.5 as in the previous figures,
and the remaining fraction 1− θ is rotation indifferent, i.e., has β2 = 0. The equi-
librium assortment rotation and profits as a function of θ ∈ [0,1] are depicted in
Figure 3.5 (for the profits, we use the same normalization constant as in Figure 3.4).
When θ = 0, none of the customers is affected by satiation, and therefore in equi-
librium the assortments do not rotate (for both retailers). However, as the proportion
of variety-seeking customers increases, the assortment rotation observed in equilib-
rium increases, just as expected. The profits decrease as θ increases since in order to
remain competitive the retailer must rotate its assortment more often, which comes
at an expense.

Based on Figure 3.5, in terms of assortment rotation, the competitive scenarios
can be ordered as follows (for any proportion of variety-seeking customers θ ):

rLL
1 ≥ rLH

1 ≥ rHH
1 ≥ rHL

1 . (3.10)
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Fig. 3.4 Sensitivity of the equilibrium assortment rotation ri with respect to C2. Retailer 1 has
C1 = 0.05 (left) and C1 = 0.25 (right).

The ordering indicates that for either a low (L) or high (H) cost structure, the assort-
ment rotation is higher under symmetric competition vs. the asymmetric case (i.e.,
ELL and EHH compared to ELH and EHL, respectively). This has a direct implication
on profits. In fact, the order of the competitive scenarios in terms of profits is the
following:

πLH
1 ≥ πLL

1 ≥ πHL
1 ≥ πHH

1 . (3.11)
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Fig. 3.5 Sensitivity with respect to the fraction of variety-seeking customers θ .

In other words, given a cost structure, a retailer prefers an asymmetric competi-
tor. That a fast fashion retailer would prefer a traditional competitor is no surprise.
However, what is less obvious is that a traditional retailer would also prefer the
asymmetric case, i.e., it would rather compete against a fast fashion retailer than
against another retailer that has high assortment rotation costs as well. The asym-
metric competition is less intense and therefore is beneficial to both players. This is
one of the key insights derived from the strategic game. Interestingly, we obtained
a similar conclusion in a tactical model that we used to study the benefits of quick
response under competition (see Caro and Martı́nez-de-Albéniz 2005).

3.5 Conclusions

We have developed a model that recognizes the importance of assortment rotation
in a competitive setting and under the presence of variety-seeking customers. Our
work is motivated by the abundant examples of apparel retailers that no longer plan

Our study shows that for any retailer, some degree of assortment rotation is de-
sirable (unless the entire population is indifferent to variety over time). The optimal

their assortments based on static collections, but rather refresh and change the prod-
uct offer on a regular basis. This strategy increases customers’ expenditure at the
store (possibly due to more frequent shopping visits), but also involves a higher
operational cost.
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rotation pace depends on the firm’s cost structure, but it significantly pays off to
develop capabilities that allow to manage variety efficiently. However, one of the
key findings of this chapter is that firms would still prefer to remain non-identical
(in terms of their assortment rotation costs) since then competition is less intense.

Despite the motivation, it is important to mention that our model is not exclu-
sively for trendy items. Though changing the assortment seems natural for fashion
products, what our model really emphasizes is the importance of the change itself,
rather than the specific type of product that is being replaced. This could add a sec-
ond dimension to the problem that would be worth exploring. In fact, selecting the
right (type of) products to rotate might make a difference. Take, for instance, the
cases of Zara and H&M. Zara is well known for mostly rotating the trendy items
which are also the most expensive to produce (with a short lead time). H&M ren-
ovates its high fashion products as well (which represent a smaller fraction than at
Zara, see Figure 3.1) and also rotates a large subset of products that have a fashion
component but are not the latest trend. These items are actually produced in ad-
vance at a low cost. We believe this fact explains in part the difference in financial
performance shown in Figure 3.2.

Other extensions that might be worth exploring are the following. We believe that
our model captures one of the essential features that explains the success of fast fash-
ion retailers. However, as it was mentioned in Section 3.1, there are other elements
in fast fashion which could enrich our model. Similarly, besides the assortment ro-
tation decision, it would be interesting to add price positioning as in Alptekinoğlu
and Corbett (2008) and Cachon et al. (2008). Finally, an empirical validation of our
model is a promising thread for future work.
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McAfee A, Dessain V, Sjöman A (2004) ZARA: IT for Fast Fashion. Harvard Business School

Case 9-604-081
El Paı́s (2008) Estrenar ropa dura segundos, January 2
Popescu I, Wu Y (2007) Dynamic pricing strategies with reference effects. Operations Research

55(3):413–429
Smith SA, Agrawal N (2000) Management of multi-item retail inventory systems with demand

substitution. Operations Research 48(1):50–64
van Ryzin G, Mahajan S (1999) On the relationship between inventory costs and variety benefits

in retail assortments. Management Science 45(11):1496–1509



Chapter 4
Models of Herding Behavior in Operations
Management

Laurens G. Debo and Senthil K. Veeraraghavan

Abstract When new innovative products and services are introduced into the
market, the consumers often do not have complete information about the quality
of such products or services. Even though they collect information from several
sources, their private information about the product is generally noisy and inaccu-
rate. Under such cases, the consumers complement their private information with
some available public information based on what /other/ consumers chose. For ex-
ample, customers might look at the queue length information in choosing a restau-
rant/sports bar, or examine available sales information while choosing a recently
released book, or observe stock-out information in buying a new electronic prod-
uct. In these cases, the consumers might ignore their own private information and
could decide to wait in the longer queue, or to purchase a more popular book, or to
wait for a stocked-out electronic product. Modeling consumer behavior with such
positive externalities causes the overall demand to be significantly different from
traditionally modeled consumer demand. Not surprisingly, such consumer decision
processes also significantly impact firms’ capacity decisions: Long queues or stock-
outs might signal better quality and thus generate more demand. Operations man-
agement literature in this area is nascent and emerging. In this chapter, we present
current results in the operations management literature from papers that model con-
sumer herding behavior and explore important future research directions.
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4.1 Introduction

They also serve who only stand and waite.
John Milton (1608-1674), On His Blindness1

Queues are not only a nuisance in one’s life. Queues can also attract potential
customers to a service or product whose utility is not well known prior to the pur-
chasing decision. In addition, for some goods, it is difficult for the seller to commu-
nicate precisely the information that allows determining the utility of the good to
its potential customer base.2 Think of a dinner at a restaurant, going to a play or a
movie, or choosing a ride in an amusement park. These goods involve a ‘physical’
experience, a ‘service’ that is difficult to evaluate ex ante. The good can also be a
product. Think of a new, innovative product such as a gadget with new features.
Before buying the product, customers are not certain about the utility they will en-
joy if they buy the product. The product could deliver some positive net surplus,
or may not be worth the spent money. In many cases, customers do not know the
net value of the product. A natural reaction to this lack of information is to seek
complementary information about the product quality before making a purchasing
decision. Such information could come from expert opinions, reviews, specialized
literature, etc. In this chapter, we focus on another one such potential source of
information that comes from the operational arena: the congestion level or queue
length for a service or the waiting time for a product. Long waits indicate that many
customers in the line have decided to buy the good, and hence, an arriving potential
customer may infer that the waiting customers must have had a strong indication
that it is worthwhile waiting for the product or service. Hence, those who only stand
and wait, as Milton says in his poem, i.e., the customers that are in the queue, they
also have a purpose (they serve): In our case, they have a signaling purpose. How-
ever, the customer’s inference problem from a queue length is complicated by many
factors. First of all, long lines or waiting times also are a nuisance that reduce the
utility of the product. Consider, for example, a new gadget or toy that seems to be
very popular and difficult to obtain during the holiday season when these ought to
be given as gifts. If customers cannot obtain it during the holiday season, the joy
or utility significantly decreases; or consider a restaurant with a long waiting line.
Even though this may indicate that the food is of good quality, a hungry stomach
may prefer joining a shorter queue at another restaurant.

Moreover, some customers in long lines may have better information than other
customers. This knowledge could come from subscribing to specialized journals
which provide more information on services/products. Serious theater-goers in New
York (Broadway) and London (West End) presumably know more about shows and
musicals, and their quality, than visiting tourists who might prefer to follow what
others do. Typically, it is difficult to identify the individual customers who possess
better information. Finally, on several occasions all the tables at the more popular
restaurant may be occupied, or all seats for a particular play might have been sold

1 We thank Christine Parlour for bringing this poem to our attention.
2 These goods are thus experience goods.
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out. Therefore, some customer may have been forced to choose their ‘second-best’
alternative due to capacity constraints. In that case, queue length information does
not really matter. The above factors make inferring information from queue lengths
non-trivial. We shall consider some specific examples that make the context we
study interesting.

When hybrid cars were introduced, first by Honda (Insight) and then by Toyota
(Prius), they were very novel products significantly different in design and perfor-
mance from gasoline-based automobiles. Consequently, there was significant and
widely prevalent uncertainty about which car was a better product. It has been
widely acknowledged in several new articles that customers often had to wait as
long as 6–8 months for the Prius (Boldt 2006) whereas the Honda hybrid car was
immediately available (hybridcars.com 2008, Wards Auto Database 2006). Waiting
time (and wait list numbers) was immediately available from dealerships. Individual
experiences of several car owners are available at automotive sites such as hybrid-
cars.com. It can be inferred that wait lines for Toyota Prius were generally signif-
icant and the queues for Honda Insight were empty (since they were immediately
available). When it came to light hybrid sedans, many more customers purchased
Toyota Prius cars than its competitor despite long queues. In 2006, Toyota Prius had
much higher sales (more than 50,000) and by far was the market leader with more
than 50% of the market that included luxury SUVs and hybrid SUVs and almost
monopolized the light hybrid sedan market. In contrast, Honda Insight had really
poor sales selling less than 500 cars (edmunds 2006) so much so that plans are
currently afoot to shut down the production of Insight models. For this significant
difference in success of seemingly similar products, we offer an explanation based
on queuing.3 Many new customers might have taken congestion information into
account before deciding to wait for the more popular product.

It has been commonly observed that people queue up for innovative mobile phone
(Lewis 2008), electronic goods such as Playstations (Pullen 2007), and even good
coffee (Saporito et al. 2001). However, such herding behavior is not only restricted
to consumer products such as cars, shows, books, and movies but could also occur
in decisions by patients made in health-care sector. For instance, every year since
1998, more than 1,000 donated kidneys have gone unused in the United States. In
2005 alone, for example, 14.1% of recovered kidneys went unused, a disconcerting
amount for a scarce commodity on which life depends. Zhang (2008) in a study of
275 donated kidneys at a major transplant center shows that herding behavior could
explain such a loss. The quality of a donated kidney is uncertain, and a patient in
the queue may reject a kidney (despite being way behind in the queue), because he
infers that several patients ahead of him in the queue turned down that kidney. Such
observation (given the knowledge of their queue position) decreases their confidence
in the quality of the kidney available, and patients choose to wait for a better kidney.

3 Other explanations also exist. Brand value and brand loyalty could explain some of the difference
in sales. There were design issues that tempered the sales of some hybrid cars. For instance, Honda
Insight was a two seater. Toward the end of this chapter, we discuss briefly some empirical issues
associated with estimating the causes of such demand patterns.
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In a famous example, Becker (1991) notes a puzzling context of two seafood
restaurants in Palo Alto, one always crowded and the other nearly empty, even
though they have similar prices and amenities, and writes,

Suppose that the pleasure from a good is greater when many people want to consume it,
perhaps because a person does not wish to be out of step with what is popular or because
confidence in the quality of food, writing or performance is greater when the restaurant,
book or theater is more popular.

Such an assumption would indicate that all customers have a higher ex post utility
when they consume the more popular product. Becker’s model is static and postu-
lates that demand for a good is directly, positively influenced by other customers’
demand or its popularity by assuming a functional form. However, customers could
also be using other customers’ decisions to bolster their own decisions. In fact,
there is evidence that customers join longer queues when waiting to consume coffee
(Adamy 2008), or lunch (Hill 2007).

Indeed, in several real scenarios customer decisions are influenced by others.
Popular literature (Surowiecki 2003, Libert et al. 2007) discusses several notewor-
thy examples of such decision making in large populations. In general, customers
do not decide in a ‘vacuum’ whether to buy a product whose quality is uncertain:
Consumers are influenced by what they observe around them. Such customer-to-
customer interactions are important determinants that shape a firm’s demand or
market share, especially for services with a high experiential content that can-
not be communicated easily, or, for new, innovative products of which some fea-
tures are unknown. Furthermore, operational levers like the service rate influence
the queue length and hence play a role. In most operations management models,
however, the demand for a product is exogenously given and is not directly af-
fected by the characteristics of the operational system. For products or services with
the characteristics described above, such independence between demand and op-
erational characteristics like congestion level or queue lengths is not realistic: On
one hand, queue lengths influence the demand for a product; on the other hand,
the demand for a product also influences the queue lengths. As a result, the de-
mand for a product and operational characteristics need to be determined simulta-
neously. We explore this simultaneity with great care in the models we develop and
analyze.

For this chapter, we provide an overview of the theoretical underpinnings of the
customer choice behavior in congestion-prone environments characterized by a high
degree of quality uncertainty. We focus on how typical operational variables such as
the queue length enter in the decision-making process of rational Bayesian agents.
The formal study of rational Bayesian agents is a natural benchmark against which
‘real customer behavior’ needs to be compared. Such behavior can be tested, e.g.,
under laboratory-controlled circumstance. Finally, behavioral experiments as well
as analytical models would form a theoretical basis for further empirical work help-
ing us to unravel complex customer-to-customer interactions. The models presented
in this chapter are thus a small first step to improve our understanding. Ultimately,
a better understanding of such strategic customer behavior may allow firms better
anticipate the product demand or change their capacity strategy, communication, or
location strategy.
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4.2 Related Literature

Our research objectives are closely linked to two broad literature but yet sepa-
rate literature streams. The first stream deals with congestion: Naor (1969) is the
seminal paper that analyzed congestion in systems with decentralized joining deci-
sions. Naor’s work, as well as the subsequent literature (notably, Mendelson 1985,
Mendelson and Whang, 1990) that it triggered, mainly focusses on the complexities
of negative externalities caused by congestion. Hassin and Haviv (2002) provide an
excellent survey of this literature. Typically, agents arrive at a service system and
need to decide whether to join the queue in front of a single facility or whether to
balk, or, in case there are multiple facilities in front of which a queue is formed,
they need to decide which queue to join, if any. Agents may or may not observe the
system congestion upon arrival. Researchers study how the social welfare generated
when agents make individual, utility maximizing decisions differs. when a central
planner decides which customers to join. Naor found that too many customers joined
a single queue in the decentralized case because they do not take into account the
externalities (i.e., waiting costs) their joining decision imposes on other customers.
Hence, in order to maximize the total welfare created, the expected welfare over the
whole customer population, a tax needs to be imposed. Whinston (1977) considers a
queue-selection problem, and shows that joining shorter queues minimizes the cus-
tomers’ expected waiting time, while also maximizing the total welfare, when the
service times are exponentially distributed (assuming all customers join one of the
two queues). Whitt (1986) provides a counterexample with non-exponential service
times in which the total surplus is not maximized when customers join the short-
est queue. In this literature, the value of the service for which the queue is created
is generally known with certainty. In a related context, see Su and Zenios (2004,
2005), who study patient choice in kidney allocation in queues considering negative
externalities.

In a separate literature stream, the impact of uncertainty about the (common)
value of an asset when agents make a sequential decision about whether to pur-
chase the asset or not is studied. Each agent has private but inaccurate information
about the asset value and observes the outcome of the decisions (to buy the asset or
not) of his predecessors. In their seminal papers, Banerjee (1992) and Bikhchandani
et al. (1992) find that an equilibrium purchasing decision can be characterized by
‘herding,’ i.e., agents may ignore their private information and take the same deci-
sions as the previously arrived agents. The authors demonstrate that the influence of
the observed decisions of the predecessors could be so strong that individuals ignore
completely their own information and follow their predecessor’s decision. Herding
can be socially inefficient as agents can make the wrong decision; i.e., buying an
asset with negative value or not buying a high-value asset. The externalities present
in herding models are positive: Due to their lack of information, customers follow
each other’s decisions. The herding literature typically assumes that arriving cus-
tomers observe the full history of actions of their predecessors and do not consider
waiting externalities.

Chamley (2004) notes that an analysis of the above interesting problem that em-
ploys ‘optimization behavior for the consumers, and a dynamic analysis with imper-
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fect information ...’ remains to be done. This objective is the main focus of our chap-
ter on ongoing research on herding behavior in operations management research. To
our knowledge, there are only a few papers in herding literature that consider herd-
ing behavior under the limited amount of information. None of the papers consider
customer waiting costs (negative externalities) that form the crux of issues related to
queuing in services. Smith and Sorensen (1998) consider a model where all arriving
agents sample exactly two observations. The actions that each agent observes are
exogenously generated using a seed population. Smith and Sorensen are interested
in the probability of convergence to the truth. In Banerjee and Fudenberg (2004),
in each period a continuum of customers simultaneously choose their actions af-
ter observing exogenously chosen N previous actions. Callander and Horner (2006)
focus on market heterogeneity, i.e., how the agents in the market are differentially
informed, and argue how a minority of informed agents can cause other uninformed
agents to follow shorter queues. The state space is restricted, and waiting costs are
absent. We relax these assumptions and consider queue lengths upon arrival as a
more natural but restricted, endogenously censored information set for an arriving
customer.

There has been some literature on learning behavior and externalities in
operations management. Gans (2002) studies customers who choose among various
service providers with uncertain quality. Customers learn the true quality of every
service provider through (expensive) repeated service sampling. There is no con-
gestion externalities in the model (i.e., each customer learns about the service only
by experiencing the service and not by observing the choices of other customers).
Kumar and Parlakturk (2004) consider the behavior of self-interested customers in
a general queueing network and show that a variety of scheduling rules lead to per-
formance degradation of the network. Johari and Kumar (2008) consider positive
and negative externalities in a network in a non-queueing context. For this chapter,
we solely focus on positive and negative externalities caused by herding behavior
combined with waiting costs.

In the remainder of this chapter, we analyze equilibrium outcomes with both
positive (information) externalities and negative congestion externalities. We first
present the simplest case in which there is one queue. Next, we extend the analysis
to the two-queue case.

4.3 Herding in a Single Queue

In this section, we consider a single-queue system as in Debo et al. (2008b). We first
develop a model and then explain the insights obtained from the analysis.

4.3.1 The Model

Debo et al. consider an experience good (a product or a service) of which the exact
service value of the good or service, V , is the same for all customers, but unknown.
It is the net utility of obtaining the service.4 The quality of the good cannot be cred-

4 We keep the price exogenous and only consider variations in the net utility.
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ibly communicated to customers. V can take two values, vω ∈ R for ω = � or h,
with v� < vh. v� and vh are common knowledge. The customers’ prior belief that the
product is high quality is ph. It takes time to service (i.e., provide the good to) each
customer. The service time is exponentially distributed with mean 1

μ and is inde-
pendent across customers. Consumers suffer disutility from waiting, with a waiting
cost of c ≥ 0 per unit time. Consumers are risk neutral and arrive sequentially at the
market according to a Poisson process with parameter λ .5 If agents arrive faster than
they are serviced, they form a queue. The queue is served on a first-come first-served
basis. Upon arrival at the market, all customers observe the queue length in front of
each service facility; n ∈ N � {0,1, · · ·}. Besides observing the queue length, each
customer receives a private signal s ∈ S � {g,b}. This signal is an imperfect in-
former of which service facility provides the highest value in the market; s ∈ S is
such that Pr(s = g | V = vh) = Pr(s = g | V = v�) = q, i.e., if the true state is that
the product’s value is high, each customer receives a signal s = g (s = b) with prob-
ability q (1− q). Without loss of generality we assume q ∈ (

1
2 ,1

)
. Note that as q

approaches 1, the signal becomes more informative (i.e., it has a high probability of
being correct). On the other hand, as q approaches 1

2 , the signal becomes uninforma-
tive. Consider any customer that arrives at the market. Let A � {0,1} be the set of
possible actions that the customer can take upon arrival; a = 1 represents joining the
queue and a = 0 represents the customer not entering the system. A mixed strategy
for a customer is then a mapping σ : A ×S ×N → [0,1]. σ j(a,s,n) denotes the
probability that customer j joins the queue after observing state n. Thus, we have
that ∑a∈A σ j(a,s,n) = 1. Define load factor or traffic intensity as ρ = λ · (1/μ).
The arrival rate can be arbitrarily different compared to the service rate, 0 < ρ < ∞.
We make the following assumptions about the parameters.

Assumption 1. (i) Either c > 0 or ρ < 1.
(ii) pgvh +(1− pg)v� > c/μ > pbvh +(1− pb)v�.

Part (i) ensures that the system is stationary, i.e., the expected queue length re-
mains finite. If there are congestion costs (so that c > 0), even if all agents believe
the good to be of high quality there is a maximum queue length. If there are no
congestion costs, then the arrival rate of agents to the market is less than the service
rate μ . Part (ii) states that an agent who acts only on the basis of her own signal
and ignores any information in the observed queue length joins an empty queue if
and only if her signal is good, i.e., when the updated valuation upon receiving a
good (bad) signal is higher (lower) than the cost of waiting until the service is done.
This is similar to the usual assumption in the cascades literature that an agent who
ignores the information provided in other agents’ actions will acquire the product if
she has a good signal, but not if she has a bad one.

5 Arrivals according to Poisson process is likely even when customers are strategic. In a recent pa-
per, Lariviere and van Mieghem (2004) model a system in which customers find congestion costly
and therefore plan to arrive when the system is under-utilized. They show that when customers
choose arrival times strategically, the equilibrium arrival pattern approaches a Poisson process as
the number of customers gets large.
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Let σ j(a,s,n) be the strategy of customer j. As all customers are homogeneous
ex ante, we consider symmetric strategies; σ j = σ for all customers j. Fix the strat-
egy of all uninformed customers j′ = j at σ . Customer j’s belief of that service
value is high upon observing that n is p′s (n,σ). Due to the memoryless property
of the exponential distribution, the expected time to serve each agent in the queue
(including the one currently being served) is 1/μ . Thus, for the randomly arrived
agent, the expected total waiting time before he leaves the system is (n + 1)(1/μ).
Given his signal and observed queue length (s,n), the agent’s expected net utility
from joining the queue is

u(s,n,σ) = E(V | n,s;σ)− n+1
μ

c

= p′s(n;σ)vh +
(
1− p′s(n;σ)

)
v� − n+1

μ
c. (4.1)

In a symmetric equilibrium, the agent’s expected payoff in state (s,n) from playing
the strategy σ is σ(s,n)u(s,n,σ). Hence, σ defines a perfect Bayesian equilibrium
if it maximizes this expected payoff in each state (s,n).

Definition 1. A strategy σ is a stationary Markov perfect Bayesian equilibrium if,
for each s ∈ {g,b} and each n ∈ N,

σ(s,n) ∈ argmax
x∈[0,1]

xu(s,n,σ), (4.2)

where u(s,n,σ) is defined by (4.1) and p′(s,n;σ) is defined by Bayes’ rule for any n
that is reached on the equilibrium path with a positive probability. As usual, perfect
Bayesian equilibrium places no restrictions on belief p′(s,n;σ) if n is not reached
with a positive probability.

Let p(s) = Pr(V = vh | s). Then, from Bayes’ rule,

p(g) =
ph q

ph q+(1− ph)(1−q)
and p(b) =

ph(1−q)
ph(1−q)+(1− ph)q

.

For a given strategy vector σ , let πω (n,σ) be the long-run probability that the

system state is n conditional on V = vω , with σ representing the customer’s
strategy. With the PASTA property (Wolff, 1982), πω (n,σ) is also the proba-
bility that the queue is in state n for any randomly arriving customer, condi-
tional on V = vh. Using Bayes’ Theorem, the updated density of the service
value is

p′(s,n;σ) =
πh (n,σ) p(s)

D(s,n,σ)

where D(s,n,σ) is a normalization constant:

D(s,n,σ) = πh (n,σ) p(s)+π� (n,σ)(1− p(s)) .
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Let BR(σ) be the best response to σ . Then, σ ∈ BR(σ) if and only if{
u(s,n,σ) > 0 ⇒ σ(1,s,n) = 1,

u(s,n,σ) < 0 ⇒ σ(0,s,n) = 1.
(4.3)

Then σ∗ is a pure strategy equilibrium if σ∗ ∈ BR(σ∗). A mixed strategy is deter-
mined analogously. We are now ready to characterize the equilibrium strategies of
all customers, i.e., we characterize σ∗. The following lemma follows immediately.

Lemma 1. The equilibrium strategy satisfies

σ∗(s,n) = 1 ⇔ l (n,σ) >
1− p(s)

p(s)
((n+1)/μ)c− v�

((n+1)/μ)c+ vh

where

l (n,σ) .=
πh (n,σ)
π� (n,σ)

when π� (n,σ) > 0 and l (n,σ) = +∞ when π� (n,σ) = 0.

The intuition is the following: The likelihood ratio, which is the ratio of the long
run probability that the queue length is n when the true quality is V = vh over the
long run probability that the queue length is n when the true quality is V = v�, deter-
mines whether a customer with signal s joins the queue or not: when the likelihood
ratio is higher than a certain function that depends on the signal, s, and is linearly in-
creasing in the queue length. Obviously, (1− p(b))p(b) > (1− p(g))/p(g), from
which follows that if a customer with a bad signal joins the queue at a certain length,
a customer with a good signal will do the same, but not the other way around. Next,
we describe other insights that can be obtained from this model.

4.3.2 Insights from the Single-Queue Model

Debo et al. discuss the insights first that can be obtained from the case with c = 0.
Then, the queue exerts a pure information externality: When the product quality
is high (V = vh), then more customers will obtain a good signal and, keeping all
else equal, will be more likely to join the queue. As a result, it may be expected that
queues are longer when the product quality is high. This is reflected in the following
proposition that is proven in Debo et al. (2008b).

Proposition 1. When c = 0,
(i) σ∗(1,g,0) > 0 and σ∗(1,g,n) = 1 for all n ≥ 1,
(ii) there exists an nb ∈ {1,2,3} such that σ∗(1,b,n) = 0 for 0 ≤ n < nb and
σ∗(1,b,n) > 0 otherwise.

Proposition 1 introduces a lower threshold on the queue length: Below a certain
queue length no customer that receives a bad signal ever joins the queue. Customers
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with a good signal though join a queue of any length with a strictly positive prob-
ability. Hence, short queues are ‘pushed forward’ only by customers with a good
signal. Then, it is logical that as the queue length grows above a certain threshold
customers with a bad signal will ignore their private information and join the queue.
Debo et al. refer to this a ‘local herding’: Irrespective of their signals, all customers
join queues that are long enough. Note, however, that due to the service completion
process any arbitrarily long queue will dwindle to zero with probability 1. In that
case, the joining rate will again be determined by the customers with good signals
only, until the queue reaches again a certain length. Pure information externalities
introduce thus cyclic behavior. Similar behavior will be observed in the two-queue
system that will be discussed in the next section.

As an implication of this equilibrium queue joining behavior is that when, e.g.,
the prior that the product is of high quality, p, is ‘strong,’ say more than 1

2 , short
queues are undesirable: They filter out the customers with the bad signals, i.e., when
the true state of the world is high, not enough customers will have joined the queue
and hence consumed the product. It is easy to determine a measure of total customer
surplus (which is the ex ante utility of all customers that join the queue). Debo et al.
demonstrate the following proposition.

Proposition 2. When c = 0, v� = −vh, and ρ < (2p−1)/(p+q−1), there exists a
μ̂ such that the customer surplus decreases in the service rate for μ > μ̂ .

The intuition is the following: As the prior is strong, it will be more likely that the
state of the world is high and thus that it is desirable from the customer’s perspective
to join. When decreasing the service rate, the queue will dwindle less often to zero
and operate at lengths where all customers join.

It is natural to ask what will happen when queues also exert negative external-
ities, c > 0. For sure, as the value is finite and the waiting costs are a linearly in-
creasing function of the queue length, there must exist a queue length above which
no customer joins. This is an intuitive threshold strategy discussed by Naor (1969)
and the subsequent queuing literature. It would be intuitive to conjecture that the
equilibrium strategy is determined by means of two thresholds: an upper threshold
above which no customer joins and a lower threshold below which no customer
joins. Such strategy structure would be a straightforward combination of queuing
and herding theory. The following proposition, derived by Debo et al., however,
demonstrates that the equilibrium joining strategies are in general not of the thresh-
old type: ‘holes’ may exist. ‘Holes’ are queue lengths at which only customers with
a good signal join, while for queues that are just shorter or longer by one customer,
all customers join. This is a surprising finding. It indicates that the new insights can
be obtained from this model that are not present in either the herding or queuing
literature.

Proposition 3. When c > 0, customers with a good signal play a threshold strategy:
(i) There exists an n such that σ∗(1,g,n) > 0 for 0 ≤ n < n and σ∗(1,g,n) = 0 for
all n ≥ n.
(ii) There exist parameter values for which the customers with a bad signal do not
play a threshold strategy.
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The intuition of this finding is the following: Waiting costs always increase lin-
early in the queue length. The updated valuation, however, always is between two
bounds. When at some queue length the valuation for the customers with the bad
signal is lower than the waiting costs, only customers with a good signal join the
queue. This introduces a ‘filter.’ All customers with a bad signal observing a queue
that is just only longer than the queue length at which no bad customer joins infer
that only a customer with a good signal can have joined previously. This ‘boosts’
his belief that the quality is high. It may well be the case that the increase in value
is higher than the extra waiting costs. Hence, a hole can be created. A hole is in
essence a manifestation of combining both positive and negative externalities con-
tained in queue lengths. Finally, Debo et al. address the question whether decreasing
the service rate may still be beneficial for the customer surplus. From their numeri-
cal experiments, they find that when the waiting costs are not dominant, it may still
be beneficial to decrease the service rate.

4.4 Herding and Queue Selection

In this section, we extend the previous model in different directions, based on
Veeraghavan and Debo (2008a, b). We introduce (1) a two-queue system, without
waiting costs and (Veeraraghavan and Debo, 2008a) with waiting costs (Veeraragha-
van and Debo, 2008a, b), (2) finite buffer sizes (Veeraraghavan and Debo, 2008b),
and (3) heterogeneity with respect to the signal quality: The signal strength may not
be the same for all customers (Veeraraghavan and Debo, 2008b).

We discuss qualitatively how these features change the model set-up and insights
that can be obtained from our analysis. We first discuss the most straightforward
two-queue model of the single-queue model of the previous section: with a homo-
geneous customer base and finite buffers. Then, we extend the analysis to a hetero-
geneous base and large buffers. Finally, we present two applications of our models:
In the first application, we compute the market share and blocking probability of
two service facilities with a small buffer and a heterogeneous customer base; in the
second application, we explore motivations of service facilities with small buffers
to co-locate.

4.4.1 The Model

Now, we consider two service facilities whose values (V1,V2) are the same for all
customers, but unknown. It is the net utility of obtaining the service.6 Its joint dis-
tribution F(v1,v2) over [v,v]× [v,v] with v < v ∈ R is common knowledge. Let

6 We keep the price exogenous and only consider variations in the net utility. It may thus be that
one facility is higher priced and brings more utility than the other; as long as the net utility is
symmetrically distributed (which may be reasonable), our model is valid.
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f (v1,v2) be the density function of distribution of the valuations. We make no fur-
ther distributional assumption on the f (·) except that it is symmetric and continuous.

Upon arrival at the market, all customers observe the queue length in front of
each service facility; n = (n1,n2) ∈N � {0, · · · ,N}×{0, · · · ,N}. The market con-
sists of K classes of customers.7 αk represents the fraction of customers belonging
to class k ∈K � {1, ...,K}; therefore ∑k∈K αk = 1. Each customer of class k receives
a private signal sk ∈ S � {1,2}. For each customer class, this signal is a (possibly
imperfect) informer of which service facility provides the highest value in the mar-
ket; sk ∈ S is such that Pr(sk = 1 | V1 > V2) = Pr(sk = 2 | V1 < V2) = qk, i.e., if
the true state is that server i provides better value than server j, each customer of
type k receives a signal sk = i (sk = j) with probability qk (1− qk). Without loss
of generality we assume qk ∈

[
1
2 ,1

] ∀ k. Further, some customers have better (but
not necessarily precise) information than others. We order the customer classes in
descending order of private informedness or signal strength, i.e., class 1 customers
have the sharpest information in the customer base and qn < qm for m < n. Note that
as qk approaches 1, the signal becomes more informative (i.e., it has a high proba-
bility of being correct). On the other hand, as qk approaches 1

2 , the signal becomes
uninformative. Consider any customer that arrives at the market. Let A � {0,1,2}
be the extended set of possible actions that the customer can take upon arrival; 1
represents joining server 1, 2 represents joining server 2, and 0 represents the cus-
tomer not entering the system. A mixed strategy for a customer is then a mapping
σk : A ×S ×N → [0,1]. σ j

k (a,s,n) denotes the probability that customer j of
class k joins queue a after observing state n. Balking can be considered as the action
of joining queue 0, i.e., a customer always balks if σ j

k (0,n) = 1. Further, we have

∑a∈A σ j
k (a,s,n) = 1.

Assumption 2. E[Vi|Vi < V−i]−Nc(1/μ) > 0.

We assume expected valuations are such that E[Vi|Vi < V−i]−Nc(1/μ) > 0 (and
therefore E[Vi|Vi > V−i]−Nc(1/μ) > 0). Such service valuation ensures that a self-
interested customer does not balk from a queue that is just N −1 persons long. This
assumption allows us to focus on the key phenomenon of interest: the equilibrium
queue selection behavior as it eliminates cases of balking from the system merely
because of waiting costs.

Let σ j
k (0,s,n) be the strategy of customer j of class k. As each server can con-

tain N customers, all arriving customers are blocked when there is no waiting space,
i.e., σ j

k (0,s,(N,N)) = 0.8 In other words, if the servers are full, the customers are
blocked regardless of their type. When one queue is full and there is waiting space
available in the other queue, customers join the other queue, even if it provides
lower valuation than the blocked queue since the net utility from the queue is pos-
itive. Therefore, the actions are σ j

k (1,s,(n,N)) = 1 and σ j
k (2,s,(N,n)) = 1 (for

7 For modeling purposes it suffices to consider heterogeneity in K = 2. However, all of our insights
hold for several classes.
8 No waiting customer is ‘bumped’ to accommodate another. The customers differ only in their
private information (which is unidentifiable), not in service priority.
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n ∈ {0, ...,N −1} and ∀ k, j). The actions represent customers joining the queue
of a competing service facility when their preferred server is full.

As all customers of a certain class are homogeneous ex ante, we consider sym-
metric strategies within each class (and allow for varying strategies across different
classes); σ j

k = σk for all customers j in each class k. Fix the strategy of all unin-
formed customers j′ = j at σ = {σk,k ∈ K} where σk represents the strategy of
customers in class k. Customer j’s belief of the service value upon observing n is
f ′k (v1,v2 | n,s;σ). Given his signal and observed queue length (s,n), the agent’s
expected net utility from joining queue i is

uk(i,s,n,σ) = Ek (Vi | n,s;σ)− cni/μ ,

with

Ek (Vi | n,s,σ) =
∫ v

v

∫ v

v
vi f ′k (v1,v2 | n,s;σ)dv2dv1, i ∈ {1,2} .

Definition 2. A strategy σ is a stationary Markov perfect Bayesian equilibrium if,
for each s ∈ {1,2} and each n ∈ N,

σk(i,s,n) ∈ argmax
x∈[0,1]

xuk(i,s,n,σ), (4.4)

where f ′k (v1,v2 | n,s;σ) is defined by Bayes’ rule for any n that is reached on the
equilibrium path with a positive probability. Perfect Bayesian equilibrium places no
restrictions on belief f ′k (v1,v2 | n,s;σ) if n is not reached with a positive probability.

For a given strategy vector σ , let πi (n,σ) be the long run probability that the
system state is n conditional on Vi > V−i, with −i denoting 2(1) if i = 1(2), with
σ representing the customer’s strategy. With the PASTA property (Wolff, 1982),
πi (n,σ) is also the probability that the queue is in state n for any randomly arriv-
ing customer, conditional on Vi > V−i. Recall that the prior of the service values is
symmetric. Define then pk (s) as the updated prior of a customer belonging to class k
after obtaining signal s. Then, with Bayes’ Theorem, it is easy to see that pk (1) = qk

and pk (2) = 1− qk. Using Bayes’ Theorem further, for all customer classes k, the
updated density of the service value is

f ′k (v1,v2 | n,s;σ) =

⎧⎪⎪⎨⎪⎪⎩
pk (s)πi (n,σ)

Dk(n,s,σ)
f (v1,v2) v1 > v2

(1− pk (s))π−i (n,σ)
Dk(n,1,σ)

f (v1,v2) o/w

where Dk(n,s,σ) is a normalization constant for customers in class k:

Dk(n,s,σ) = pk (s)πi (n,σ)
∫ v

v

∫ v1

v
f (v1,v2)dv2dv1

+(1− pk (s))π−i (n,σ)
∫ v

v

∫ v

v1

f (v1,v2)dv2dv1.
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Let BRk (σ) be the best response of a customer of class k to σ . Then, σk ∈ BRk (σ)
if and only if⎧⎪⎨⎪⎩

uk(i,s,n,σ) > uk(−i,s,n,σ) ⇒ σ j
k (i,s,n) = 1

uk(−i,s,n,σ) > uk(i,s,n,σ) ⇒ σ j
k (−i,s,n) = 1

max(uk(i,s,n,σ),uk(−i,s,n,σ)) < 0 ⇒ σ j
k (0,s,n) = 1.

(4.5)

Then σ∗ is a pure strategy equilibrium if σ∗
k ∈ BRk (σ∗) ∀k ∈ K. A mixed strat-

egy is determined analogously. We are now ready to characterize the equilibrium
strategies of all customers, i.e., we characterize σ∗. The following lemma follows
immediately.

Lemma 2. Assuming n1 > n2, the equilibrium strategy satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ∗
k (1,s,n) = 1 ⇔ pk (1)

1− pk (1)

Δ + n1−n2
μ c

Δ − n1−n2
μ c

< l (n,σ)

σ∗
k (s,s,n) = 1 ⇔ pk (2)

1− pk (2)

Δ + n1−n2
μ c

Δ − n1−n2
μ c

< l (n,σ) <
pk (1)

1− pk (1)

Δ + n1−n2
μ c

Δ − n1−n2
μ c

σ∗
k (2,s,n) = 1 ⇔ l (n,σ) <

pk (2)
1− pk (2)

Δ + n1−n2
μ c

Δ − n1−n2
μ c

where

l (n,σ) .=
π1 (n,σ)
π2 (n,σ)

when π2 (n,σ) > 0 and l (n,σ) = +∞ when π2 (n,σ) = 0 and Δ = E[V1|V1 > V2]−
E[V2|V1 < V2].

Notice that similarity with Lemma 1: When the likelihood ratio of the long run
probability of finding the system in state n with n1 > n2, conditional on V1 > V2, is
higher than some function that depends on the signal s and is increasing in the differ-
ence in queue lengths, it is rational to join the longer (shorter) queue. Otherwise, in
equilibrium, customers join the queue that is indicated by their private information.
Due to the symmetry in values and service rates, when n1 = n2, the equilibrium ac-
tion is σ∗

k (s,s,n) = 1, i.e., ‘follow the signal.’ This is intuitive: When the two queues
are equally long, no information about the relative value can be obtained; hence, in
equilibrium, customers follow their private information.

Recall that for the single-queue case, Debo et al. defined ‘local herding,’ when a
customer with a bad signal joined a queue only because it is long enough. In the two-
queue case, we seek for situations where at some state ‘join the longest queue’ is
part of an equilibrium. This is an interesting observation since action as without the
quality uncertainty, which is fundamental to our framework, no rational customer
would ever join the longest queue, provided both the servers are symmetric ex ante.
We will interchangeably refer to ‘joining the longest queue’ behavior and ‘herd’
behavior in the remainder of this chapter.
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4.4.2 Insights from the Two-Queue Model: Homogeneous
Customer Bases and Small Buffers

Determination of equilibrium strategies with two queues is significantly more com-
plex than with a single queue. The reason is that for a given strategy, σ the long
run probabilities of a two-dimensional queuing system needs to be determined. As a
single queue is a birth–death process, a closed form expression can be obtained eas-
ily. For two queues, no closed form expression is known to exist (Kingman, 1961).
However, determining the long run probabilities is only a sub-problem when deter-
mining equilibrium strategies. For a given strategy σ needs to satisfy the conditions
of Lemma 2. For N = 25, there are 676 possible states out of which 600 (excepting
the diagonal and boundaries) need to be determined in equilibrium, giving rise to
3600 ≈ 10286 candidate equilibrium profiles.

Hence, we start in this section with the lowest possible buffer space (N = 2) and
homogeneous customers (K = 1), as in the single-queue case. Somewhat surpris-
ingly, if all the customers are endowed with the same quality of private information,
no customer will join the longest queue. In other words, the herding behavior that
we identified for a single queue disappears! This at first puzzling result will reveal
two important determinants of herd behavior in a queue selection setting: Buffer
size and heterogeneity of the consumer base are necessary drivers of herd behavior
in congestion-prone environments. Essentially, when there is not enough variation
in the outcome (i.e., queue length) possible, no herd behavior will occur.

To illustrate this effect, we consider the strategies of the partially informed cus-
tomers for whom q1 = q. As we have only one customer class, we drop the subscript
k. When N = 2, all actions except for the states (1,0) and (0,1) are determined: On
the boundary states, customers join the other queue; at (2,2), the system is full and
customers balk. On the diagonal states, (n,n), customers follow their signal. Hence,
in state (1,0) (and symmetrically in state (0,1)), customers can follow their sig-
nal, the shortest queue, or the longest queue. Keeping the remaining aspects of the
model the same as before, we explore the decisions of customers at state (1,0).
We use notation l(n;σ) to represent the likelihood ratio function when customers
play strategy σ at n. Let lL, lF , and lS indicate the likelihood ratios l

(
(1,0);σL

)
,

l
(
(1,0);σF

)
, and l

(
(1,0);σS

)
.

To understand the equilibrium strategies better, we characterize the behavior of
likelihood ratio functions with respect to the market parameters.

Lemma 3. When N = 2, c > 0 and K = 1 with q1 = q:

1. The likelihood ratios lL, lF , and lS are all decreasing in ρ .
2. limρ→0 lL = limρ→0 lF = limρ→0 lS = q/(1−q) ≥ 1.
3. limρ→∞ lL = limρ→∞ lF = limρ→∞ lS = 1.
4. lF > lL > lS.

We provide only a short description below. Lemma 3(1) shows that for a given q,
the likelihood ratios are decreasing with the traffic intensity. Hence, as the traffic
intensity increases, it becomes less likely to see a longer queue at the better server.
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This is true for any queue joining strategy adopted by the customers. However, it is
always true that the longer queue is more likely to occur at the better server since
all likelihood ratios are more than one (from Lemma 3(3)). Thus, queue lengths
do provide some information but do not provide perfect information. But they do
not provide perfect information since all likelihood ratios are bounded by q/(1−q)
(Lemma 3(2)). Finally, note that lF > lL > lS: If customers follow their signal, the
longer queue is more indicative of quality more often than situations in which cus-
tomers ignore their signals and follow the longer queue (or shorter queue). If arrival
rates are low, boundary effects are minimal. When everyone follows their signal, the
longer queue fully correlates to the better service provider. Hence, the likelihood ra-
tios when all customers follow their signal are much higher than other likelihood
ratios when the arrival rate is low (compared to the service rate). Now, we derive the
following conditions on the equilibrium.

Proposition 4. When N = 2, c > 0 and K = 1 with q1 = q:

1. σL is never an equilibrium strategy.
2. When 0 ≤ cτ < Δ(2q−1), σ∗ = σF .
3. When Δ(2q−1) ≤ cτ < Δ(2q−1)/[(1−q)2 +q2], σ∗ = σF for ρ ∈ (0,ρ) and

σ∗ = σS for ρ ∈ (ρ,∞), where ∃ some (ρ,ρ) such that ρ < ρ .

4. When Δ(2q−1)/[(1−q)2 +q2] ≤ cτ , σ∗ = σS.

Notice that Proposition 4(1) presents an interesting result: Customers do not join
the longer queue in a homogeneous customer base, even when waiting costs are
zero. In other words, in a customer base with limited waiting space, when the in-
formation quality of all customers is the same, customers do not follow other cus-
tomers, even when there are no waiting costs. Proposition 4 is also a markedly dif-
ferent result from Veeraraghavan and Debo (2008), where c = 0, but there is an
infinite buffer space in front of each service facility (N = ∞). Thus, the size of the
buffer space is a key determinant of the equilibrium joining behavior.

In the presence of waiting costs, the equilibrium behavior of customers is a com-
plex function of waiting costs, traffic intensity, and signal strengths. In Proposition 4,
results (2)–(4) specify the equilibria for every waiting cost and at all arrival rates.

Consider the case (2) when cτ < Δ(2q− 1). Recall Δ is the marginal updated
valuation of the better service/product over the worse product. Since we assume
V1 > V2 wlog, a customer arriving at (1,0) expects an additional valuation Δ from
facility 1 (longer queue), conditional on it being the better server. An arriving cus-
tomer receives a private signal of strength q. Suppose she follows her signal. With
probability q, the signal is ‘correct’ and she receives an additional utility Δ . With
probability 1− q the signal is ‘false’ and she receives lower valuation and suffers
a disutility −Δ . Therefore, the expected additional utility for this customer from
following her signal is qΔ +(1−q)(−Δ) = Δ(2q−1). If the customer held perfect
private information (i.e., q = 1), then the updated valuation due to his perfect infor-
mation equals Δ . Similarly, if the customer held fully imperfect private information
(i.e., q = 1/2), then the noisy signal obfuscates all information about product qual-
ity (and Δ(2q−1) = 0). Since the expected additional utility from following one’s
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own signal Δ(2q−1) is greater than the waiting cost cτ , all customers follow their
signal, i.e., σ∗ = σF ; this result is captured in Proposition 4(2).

Let us examine result (4) to understand (3) better. To reason Proposition 4(4), let
us examine the term

Δ
2q−1

q2 +(1−q)2

in detail. First note that

Δ
2q−1

q2 +(1−q)2 ≥ Δ(2q−1)

since q2 +(1−q)2 ≤ 1.
What is the strongest information that a customer arriving at (1,0) can infer about

the valuation of the service through the choice of the previous customer? Suppose
that the arriving customer is able to perfectly (by some means) know the private
signal of the previous customer in the queue. Her confidence in the valuation of the
service is highest when the previous customer’s signal is identical to her own signal.
Recall, the signals are independently and identically distributed, and each signal is
‘true’ with probability q. Therefore, conditional on observing two identical signals,
the signals are correct with probability q2/[q2 +(1−q)2] and they are both false
with probability (1−q)2/[q2 +(1−q)2].

When the signals are true, the customer receives an additional valuation Δ from
following the signal. When they are false, she suffers some loss of utility −Δ . There-
fore the expected valuation in following her private (and an identical previous) sig-
nal is

q2

q2 +(1−q)2 Δ +
(1−q)2

q2 +(1−q)2 (−Δ) =
q2 − (1−q)2

q2 +(1−q)2 Δ =
2q−1

q2 +(1−q)2 Δ .

Note Δ(2q−1)/[q2 +(1−q)2] is the strongest update on the valuation a customer
can form based on her private signal, and by fully knowing the signal of the previous
customer. If even this maximal information is less than additional waiting cost cτ ,
the customer would have to forgo following her signal and instead join the shorter
queue since waiting costs dominate. Therefore, if the waiting costs are such that
cτ > Δ(2q−1)/[q2 +(1−q)2], the customers will always follow the shorter queue.

Now we focus our attention on the intermediate cost region defined in Propo-
sition 4(3). This result combines information externality with queuing effects in
an elegant way. This is the first known result in our knowledge that combines
longer queue joining choice behavior with arrival traffic intensity. In general the
customer (she) arriving at (1,0) cannot perfectly infer the private signal of the cus-
tomer who is currently in the queue. All she can infer from the public informa-
tion (state of the system) is that there is currently one additional customer in the
longer queue. Thus, updated valuation of the arriving customer is bounded above
by Δ(2q−1)/[q2 +(1−q)2] and bounded below by her own private information
Δ(2q−1).
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To elaborate, a customer arriving at state (1,0) does not know with certainty
whether she observes the state through a prior service departure (transitions from
(2,0) and (1,1)) or through a prior arrival (transition from (0,0) to (1,0)). There-
fore, she is not sure if the customer in the queue followed his signal or joined the
shorter/longer queue when he joined the queue. In other words, service departure
process complicates any information that can be gleaned about the private signal
of the customer currently in the queue. If the previous event was an arrival, the
customer currently in the queue (he) moved the state of the system from (0,0) to
(1,0) by following his signal (since all customers follow their signals if the queue
lengths are equal). However, the arriving customer is not sure if the previous event
was an arrival. The more sure she is that the last event was an arrival, the higher the
valuation she obtains from following her signal.

If the traffic intensity is very low, states with higher occupancy are less likely
than (0,0), and therefore the last event is more likely to be an arrival at (0,0) (rather
than a departure from less probable higher states). Thus, under low traffic inten-
sity, arriving customers have higher updated valuation and hence can overcome the
additional waiting cost and follow their signal.

When the traffic intensity is high, departures from (2,0) and (1,1) are more
likely, and hence the customer’s updated valuation is lower. When Δ(2q − 1) ≤
cτ < Δ(2q−1)/[(1−q)2 +q2], the updated valuation is likely to be higher than the
waiting cost cτ when the traffic is light than when the traffic intensity is high. Hence,
customers follow their signal at low traffic (when ρ < ρ) and join shorter queues un-
der high traffic intensities (when ρ > ρ). With the derived results we compare the
equilibria in two similar markets in Section 4.4.4.

4.4.3 Insights from the Two-Queue Model: Heterogeneous
Customer Bases and Large Buffers

In the previous section, we found that the herding behavior identified in a single-
queue setting does not emerge in a two-queue setting with limited buffer space
(N = 2) and homogeneous customers (K = 1). We show in this section that the
buffer size and heterogeneity are key determinants of herding behavior. As for the
single-queue case, it is convenient to split the discussion into the case with only
positive information externalities; c = 0 as in Veeraraghavan and Debo, 2008a, and
in the case with both positive informational externalities and negative waiting ex-
ternalities. Veeraraghavan and Debo (2008a, b) analyze special cases: when c = 0
and N = ∞ and when c > 0 and N = 2. They extend their insights by means of a
computational study for large values of N and c > 0. We first discuss the special case
c = 0 (no waiting costs), N = ∞ (infinite buffer space), and K = 1 (homogeneous
customer base). Moreover, we only look at one customer class; hence, we drop the
index k.
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Proposition 5. When N = ∞, c = 0, and K = 1, σ∗(1,s,(n1,0)) = 1 for n1 > 0,
σ∗(2,s,(0,n2)) = 1 for n2 > 0, and σ∗(s,s,(0,0)) = 1.

According to the proposition, without waiting costs or buffer limitations, joining
the longer queue is an equilibrium. Only when both queues are empty will an ar-
riving customer follow his/her signal. Veeraraghavan and Debo (2008a) show that
customers arriving at (n1,0) or (0,n2) are actually indifferent between joining the
longer queue and following their signal. However, there cannot exist an equilibrium
in which customers randomize between both strategies. Proposition 5 reveals some
interesting implications: At any point in time, at least one server will be idling. The
service provider with the truly higher quality will be busy qρ fraction of time, while
the other service provider will be busy (1−q)ρ fraction of time (see Corollary 7
in Veeraraghavan and Debo, 2008a). As in the single-queue case, cycling occurs
again. This time, the cycle is composed of one queue attracting all customers while
the other queue remains empty. Depending on the signal strength, q, the higher qual-
ity queue will attract more cycles than the lower quality queue. Veeraraghavan and
Debo consider a number of extensions to the base model and find that the quali-
tative properties of the equilibrium are robust to multiple servers for each queue
and servers that ‘go out of business’ after idling for some time. The authors also
discuss the case when the service rates are not known but are correlated with the
service value: When better service is slower, they find that following the longer
queue is again an equilibrium. In this case, as the service rate of the better ser-
vice provider is the lowest, queues have a double signaling function: Long queues
are not only ‘traces’ of customers’ private signals but also an indication that the
service process is slow and hence the quality is high. Both are reasons for joining
the longer queue. The situation is different when better service is faster. Then, cus-
tomers cannot solidly infer from long queues that the quality is high. Queues then
provide mixed signals; hence, joining the longer queue is not an equilibrium when
the difference in service rate between the high- and low-quality service provider
is large.

Now, we turn to the case with waiting costs, c > 0. We consider two classes of
customers: A fraction α of the population is perfectly informed about which ser-
vice provider is the better one (i.e., they obtain a signal that is perfectly correlated
with the state of the world, q1 = 1), while the remainder of the population is unin-
formed (i.e., they obtain a signal that is not correlated with the state of the world,
q2 = 1/2). When N = 2, all actions except for the states (1,0) and (0,1) are de-
termined: At (1,0) and (0,1) customers can follow their signal, the shortest queue,
or the longest queue. We indicate these strategies by means of σF, σS, and σL,
respectively, and the corresponding likelihood ratios at (1,0) as lF, lS, and lL, re-
spectively. The queue joining strategy of the perfectly informed customers is trivial:
They join the queue that yields the highest net benefit: If their private information
reveals s = 1, then they join queue 1 if Δ > [(n1 −n2)/μ ]c. Otherwise, they join
queue 2. For the uninformed customers, as their signal is uninformative, σF will
never be part of the equilibrium. We can simply conjecture an equilibrium strategy
and verify with Lemma 2 when all conditions are satisfied.
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Proposition 6. When N = 2, c > 0, and K = 2 with q1 = 1
2 , q2 = 1, α1 = 1−α ,

and α2 = α , there exists a value of Δ̂ such that in a heterogeneous market with a
fraction α of fully informed customers, the equilibria structure over all parameter
values is as follows:

1. When Δ̂ < cτ < Δ , σ∗
2 = σS is an equilibrium for all uninformed customers ∀

ρ > 0.
2. When αΔ < cτ < Δ̂ , there exist two values of ρ such that ∀ ρ ∈ (ρ,ρ), such that

lL > (Δ + c/μ)/(Δ − c/μ) and{
σ∗

2 = σL ∀ ρ ∈ (ρ,ρ)
σ∗

2 = σS ∀ ρ > 0.

3. When cτ < αΔ , there exists a value of ρ such that ∀ ρ ∈ (0,ρ) such that lL >
(Δ + c/μ)/(Δ − c/μ) and there exists a value of ρ̂ such that ∀ ρ ∈ (ρ̂,∞) such
that lS < (Δ + c/μ)/(Δ − c/μ) and{

σ∗
2 = σL ∀ ρ ∈ (0,ρ]

σ∗
2 = σS ∀ ρ ∈ (ρ̂,∞).

Furthermore, we have that ρ̂ < ρ .

From Proposition 6, we notice that joining the longer queue can be an equilib-
rium strategy when the waiting cost, c, is not too high. Proposition 6 is a markedly
different result from the results in the previous section, with homogeneous infor-
mation, in which customers do never join the longest queue. Thus, heterogeneity in
the signal quality is a key determinant of the equilibrium queue joining behavior.
Interestingly, only when the arrival rate is low compared to the service rates will
joining the longest queue be an equilibrium strategy even when there are no waiting
costs (c = 0). Recall that when N = ∞ and c = 0 (Proposition 5), joining the longest
queue was an equilibrium for any arrival rate. The reason is that as the buffer space
is very restricted, high arrival rates make the system always full. As a result, not
much information can be gleaned from a longer queue. In contrast, when the arrival
rate is very low, there is a high probability that the customer in the longer queue
is an informed one and hence joining the longer queue is rational for uninformed
customers. Hence, the buffer is a ‘damper’ on the customer learning ability from
queues.

4.4.4 Equilibrium Strategies: Numerical Examples with N = 25

In this section, we explore which characteristics identified in the previous sections
for either N = 2 or N = ∞, which are amenable for analysis, are robust. For inter-
mediate values of N, we rely on computations to determine the equilibrium strategy.
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The computed equilibrium strategy can be surprisingly complex. Yet some key fea-
ture identified in the c = 0 and N = ∞ and in the c > 0 and N = 2 case remains
persistent. In Figure 4.1, we show the computed equilibrium strategy for N = 25,
c > 0, and K = 2 and different parameter settings in the N space. The white area
indicates that the equilibrium action is to follow the signal. A horizontal bar when
n1 > n2 indicates that the equilibrium action is to join the longer queue (i.e., n1)
at n. A vertical bar indicates that the equilibrium action is to join the shortest queue
at n. From comparing the subplots in Figure 4.1, we obtain the following insights:

• As the signals get stronger, the customers follow their private signals more often
(i.e., at more arrival states).

• As the fraction of more informed customers in the market increases, the less
informed customers join longer queues at more states.

• The longer queue joining behavior is more pronounced when the arrival rates are
low. As the arrival rates increase, the customers follow their private signals at
more states.

The above insights are expected and hence confirm the confidence in our model.
There are few other interesting observations that our model can further explain:

• When one queue is empty, the customers join the other non-empty queue even
though they incur higher waiting costs. This may be expected when the wait-
ing costs are zero (see Veeraraghavan and Debo 2008a). It is intriguing that the
effect persists when the waiting costs are strictly positive. As long as the mar-
ket contains more informed customers, the less informed customers reason out
that empty queue is more likely to be worse, since no informed customers are
currently in that queue. Given that there are informed customers in the market,
what inference does an arriving customer make from an empty queue? The only
way an empty queue would happen at a better server is if there are no informed
customers in the customer base. If there is a fully informed customer in the mar-
ket currently, clearly he is at the non-empty queue and then the non-empty queue
would be surely better. Therefore, when one queue is empty, the information con-
tent in the non-empty queue gets stronger as the non-empty queue gets longer
(since the conditional probability that there are no informed customers in the
market decreases, the number of customers in the market increases). This ex-
plains often-found observations of customers choosing busier restaurants over
empty restaurants.

• However, the behavior described above changes immediately off the boundary
states. Customers might join the shorter queue immediately of the boundary. Less
informed customers may join the shorter queue when the shorter queue contains
a single customer. This is the effect of dissenting actions of ‘informed minor-
ity.’ The shorter queue possibly points to the one lone dissenting outlier which
indicates to the arriving customers that the shorter queue is better. What does
an arriving customer infer? Given that there are perfectly informed customers in
the market, as long as the longer queue is too long, there could be one informed
customer in the market who chose to dissent with the ‘herding’ majority. Note
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Fig. 4.1 Equilibrium strategy in the N space for N = 25, c > 0, K = 2, and ρ = 0.9. On the top
row, left (right) panel, g = 0.99 (0.99) and α = 0.6. On the middle row, left (right) panel, g = 0.75
(0.99) and α = 0.6 (0.2). On the bottom row, left (right) panel, g = 0.90 (0.75) and α = 0.2. The
empty/blank area indicates that at these queue lengths, join the longest queue is the equilibrium
action at n, a horizontal bar when n1 > n2 indicates that joint the longer queue is the equilibrium
action at n and a vertical bar indicates that join the shorter queue is the equilibrium action at n.
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that this shorter queue joining occurs when the longer queue is not sufficiently
long: Queue lengths at such states point more to decisions made by arriving cus-
tomers (buffer size effects are minimal).

• As the longer queue gets sufficiently congested, but not too long, customers’ pri-
vate information outweighs information gleaned from a lone dissenting minority.
Since the longer queue is not too long, the information from the long queue is in-
sufficient to overcome the strength of the private signal. Thus, the less informed
customers follow their own private signals.

• When the queue difference is large, the value from customers’ private infor-
mation and the notion that the shorter queue points to a dissenting informed
customer are both weak. First, long queues are more likely to have perfectly
informed customers, and shorter queues might have some customers, because
few customers chose an inferior alternative after being blocked at the longer
queue. Under both perspectives, the longer queues provide sufficiently strong,
quality information for less informed customers to overcome their private in-
formation. Then, the customers join the longer queue ignoring their private
information.

In the following sections, we revert to N = 2 and study the aggregate performance
measure of each service facility, assuming that customers make equilibrium queue
selection decisions.

4.4.5 The Effect of Herding on the Market Share and Blocking
Probability of Service Providers with Small Buffers

In this section, we compare the performance measures of different forms of mar-
ket heterogeneity for N = 2 and K = 2. Let M represent the market heterogeneity{
(αk,qk)k∈K

}
. Assume without loss of generality that service facility 1 is better than

service facility 2. When the customers select a service facility based on their private
information only,9 the potential demand rate of service facility 1 is λ ∑k∈K αkqk and
the potential demand rate for service facility 2 is λ ∑k∈K αk (1−qk). As a result,
all customer bases for which ∑k∈K αkqk = m will generate the same potential de-
mand rate mλ for service facility 1 and (1−m)λ for service facility 2. In particular,
having m = α + 1

2 (1−α) = q should lead to the same potential demand rate in
the customer bases Ma =

{(
α, 1

2

)
,(1−α,1)

}
and Mb = {(1,q)}. Now, we com-

pare the loss rate, market share, and net arrival rate of service provider 1 for Ma

and Mb. With queuing externalities, two effects will be introduced. First, the finite
capacity will force some overflow and cause some spillover. Second, the strategic
customer behavior will make customers deviate from following their private signal.

9 Even if g = 1
2 and the signal is uninformative, after observing the signal, the customers remain in-

different. We assume that they join with equal probability any queue. This is the same as assuming
that the customers follow their signal, even if it is uninformative.
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Fig. 4.2 Market share, net arrival rate, and probability of entry as a function of the arrival rate
for both Ma with σ∗

1 = σF, σ∗
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Ma =
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α, 1
2

)
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}
and dotted curves indicate market Mb = {(1,g)} The parameters are

m = α + 1
2 (1−α) = q = 0.825 and c = 0. In the right panel the probability of entry (not getting

blocked) is shown as a function of the arrival rate for both Ma with σ∗
1 = σF, σ∗

2 = σL and Mb
with σ∗ = σF.

Let λ ∗
1 (M) be the equilibrium arrival rate to the better service facility, then we plot

in Figure 4.2.

Market Share

The left frame in Figure 4.2 shows

λ ∗
1 (Ma)

λ ∗
1 (Ma)+λ ∗

2 (Ma)
versus

λ ∗
1 (Mb)

λ ∗
1 (Mb)+λ ∗

2 (Mb)
,

i.e., the market share of the better service facility for each of the market
compositions.
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For low arrival rates, the market share of the high-quality service facility in-
creases first and then decreases for Ma but always decreases for Mb. Also note that
the market share of the better service facility in a market with queueing delays can
exceed its market share in a market without any such delays. This is the first result
to our knowledge that shows the market share of a service facility improving in a
market with congestion externalities. Intuitively, as λ → ∞, the market share tends
to 1/2 for both market compositions.

Effective Arrival Rate

In the middle frame of Figure 4.2 the effective arrival rates to each firm in both
the customer bases are provided. In particular λ ∗

1 (Ma) versus λ ∗
1 (Mb) provides the

effective arrival rate to the service facility.
For low arrival rates, the demand rates for the high- and low-quality service fa-

cilities are close to mλ and (1−m)λ , respectively. Note the effect of increased
arrival rate: The net demand at the worse service facility improves directly at the
expense of the better service facility. Even though the potential arrival rates with
heterogeneous and homogeneous signal qualities are the same, the latter effect is
mitigated when customers have heterogeneous qualities of their signal strengths.
In other words, a high-quality service facility prefers a heterogeneous customer
base composition, while a low-quality service facility prefers a homogeneous cus-
tomer base composition. As long as there are limited buffer spaces, and some pos-
itive valuation from the worse server, customers might be forced to choose their
‘second-best’ option. Therefore the spillover effect increases with higher traffic in-
tensity. Intuitively, as λ → ∞, the demand rate tends to μ for both customer base
compositions.

Entry Probability

The right frame of Figure 4.2 shows the probability of an arriving customer enter-
ing the system, i.e., probability of not being blocked, in each market. Recall that a
customer is blocked when there is no waiting space available. She enters the better
service facility with probability

λ ∗
1 (Ma)+λ ∗

2 (Ma)
λ

versus
λ ∗

1 (Mb)+λ ∗
2 (Mb)

λ
,

in each of the customer base compositions.
For a low arrival rate, notice that the loss due to blocking for customer base com-

position Ma is lower than for Mb. Thus when arrivals are sparse more customers
enter the heterogeneous customer base compared to a comparable homogeneous
customer base. Therefore, heterogeneity in market information allows for more
customers to join the market (but the difference is small). Intuitively, as λ → ∞,
the entry probability at the service facilities tends to 0 for both customer base
compositions.
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4.4.6 Herding and Co-location of Service Facilities
with Small Buffers

In this section, we explore possible motivations for service facilities with a hetero-
geneous customer base (K = 2) to co-locate. This can be geographical co-location
as well as virtual co-location (i.e., making congestion levels visible on-line, e.g., via
a third-party website such as opentable.com). In the service industry, supply motiva-
tions (labor pooling, knowledge spillovers or proximity to a natural resource) have
been studied as determinants for geographical co-location (Kolko, 2007, Kimes and
Fitzsimmons 1990).

Spillovers between the service facilities provide another congestion-driven moti-
vation to co-locate. In this section, we study the role of strategic customer behavior
as a determinant for co-location. To that end, we compare the net arrival rates in
our model with the net arrival rates that would be obtained if the customers were to
make first a service facility choice and then either join the facility or balk if there
is no waiting space. This model is equivalent to one in which the switching costs
from one facility to another one are infinitely high. The net arrival rate to the high
(low) quality service facility is mλ ((1−m)λ ). Each facility is modeled as a single
queue with two waiting spaces. Note that in general, when signals are somewhat in-
formative, more customers arrive at the better service provider. As the arrival rates
increase, the better service facility is generally full, and blocked customers choose
their second alternatives. Thus, a poorer quality service facility survives by attract-
ing spillover demand by locating close to the high-quality service facility. However,
do better service facilities have an incentive to be co-located with worse service
facilities? Our answer critically depends on the customer equilibrium: Using the ex-
ample in Figure 4.3, we discuss the effect of service facilities locating close to each
other. On the left panel, we demonstrate the increase in entry probability (to any of
the two service facilities) with co-location. Note that when the firms are co-located
the customers are more likely to be served due to the reduced probability of being
blocked. However, the increased net demand in the customer base does not neces-
sarily assist both the firms under all arrival rates. On the right panel, we demonstrate
how the increase is split between the high- and low-quality firms. When arrival rates
are low, longer queue joining is in equilibrium. Because of this positive externality,
more customers who would choose low-quality service join the high-quality ser-
vice. The high-quality service provider always gains from co-locating, but the low-
quality service provider does not always improve its throughput. When the arrival
rates are high, joining the shorter queue is in equilibrium. Under this equilibrium,
an opposite effect is observed: The low-quality service provider improves its net de-
mand by co-locating, but the high-quality firm increases its throughput only when
the arrival rates are sufficiently high. As λ → ∞ the service providers are almost
always full and the number of customers served at each firm remains the same (1/τ)
whether co-located or not. In summary, in the presence of waiting costs, at low ar-
rival rates information externalities help high-quality service providers and at high
arrival rates, spillover externalities assist low-quality service providers. Depending
on the customers’ waiting costs and their arrival rates, both the firms in the market
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Fig. 4.3 Comparison of the net arrival rate changes (right panel) and entry probability (left panel)
for the service firms by co-locating adjacent to each other. In the example, we examine an Ma

market with parameters τ = 1, c = 0.56,Δ = 1 and m = 0.755. At low arrival rates (when ρ < 0.3),
σL is in equilibrium (customers join the longer queue).

could improve their demands. When one firm is better off (and the other firm is
hurt) by co-locating, a financial arrangement (transfer payment, etc.) that benefits
both firms could be worked out.

Hence the high-quality service facility gains at low arrival rates. As arrival rate
increases, the better service provider is more likely to be full.

The better service facility gains from locating closer to the worse service facility,
when joining the longer queue behavior is observed in equilibrium. The latter occurs
when the waiting costs are low and the market is heterogeneous.

4.5 Discussion and Further Research Opportunities

In this chapter we have discussed how customers infer information about the qual-
ity of a product or service from typical operational variables like queue lengths. We
believe that this research is important to understand better how demand is generated
for goods with considerable uncertainty about the quality. A first step is to under-
stand the equilibrium demand. What did we learn from the analyses above? At the
highest level, we think that the following features are interesting:

1. Positive information externalities create cyclic behavior. We have seen that for
the single- and two-queue systems.

2. Positive information externalites combined with negative waiting externalities
result in complex equilibrium strategies that are not of the threshold type.

3. Heterogeneity as well as sufficient queue buffer space is potential triggers
‘herding.’
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4. In the single queue, increasing the service rate (keeping the potential arrival rate
constant) may lead to lower total welfare, even when the waiting costs are pos-
itive. In the two-queue case, increasing the service rates (keeping the potential
arrival rate constant) may lead to more herding (i.e., joining the longer queue
behavior).

It will occur to the reader that even though our model is very sparse (it can be
described with only a few parameters), they are quite rich descriptively. Obviously,
we have omitted a large number of factors that we conjecture may play a role in the
real world. Nevertheless, we think that our model provides a useful ‘first’ step by
combining the insights from two literatures: the herding and the queueing literature.
Our results suggest that the insights into the respective literatures cannot be simply
‘superposed’ but that new phenomena emerge.

Our models can be extended in at least four important ways. We consider those
extensions in the following sections.

4.5.1 Introducing Asymmetry

Many analytical results in the two-queue setting hinge on the symmetry assumption:
service rates, prior beliefs that customers possess, arrival rates, etc. This assumption
allowed us to demonstrate that following the longest queue behavior was driven
by the quality uncertainty and not by any other factor. Obviously, when the quality
is perfectly known, a faster service rate of higher expected quality may be very
compelling reasons to join the longest queue. Hence, it is interesting to study the
queue joining behavior in asymmetric settings in the presence of quality uncertainty
(see also Veeraraghavan and Debo, 2008a). For instance, customers may always join
the longer queues if there is uncertainty about service rates. A firm that provides
slower service may gain market share in such scenarios. Moreover, such a model
would be an important intermediate block when studying competitive setting, .e.g.,
service rates or prices, as will be discussed in the next point.

4.5.2 Introducing Capacity Decisions of Firms

The most important decisions that have been fixed in our models are the pricing and
service rate decisions. A myriad of new issues arise when considering these. First,
one needs to be careful about what exactly the service firms know. Do they know the
quality of their own product or service? If so, consumers will glean information not
only from the queue length upon arrival but also from the prices! Whenever firms
can signal quality with their prices, the queue length information and herding behav-
ior may become irrelevant. Hence, the question is what the complementary value of
queue length are to firms that cannot signal quality through prices. If the firm does
not know the quality of its own product (which may well be the case), then the
firm can set prices that eliminate the herding behavior. When will that be the case?
Finally, firms can set prices flexibly, incorporating congestion information and/or
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learning from past customer purchasing behavior. Besides pricing, capacity selec-
tion or competition is a major interesting firm decision that needs to be analyzed
further. Debo et al. (2008b) showed that the social welfare can be increased when
the capacity is decreased, even when waiting is expensive. How can optimal capacity
strategies be determined? How do service firms compete with each other in capacity
when positive and negative congestion externalities exist? We believe that there are
many open and interesting questions that emerge from our framework and are not
yet answered. For instance, consider the question of service delays. Afeche (2006)
shows that a service provider could strategically delay services when customers be-
long to various priority classes. Debo et al. (2008a) show such service delays could
occur in queues where the server provides credence goods. Anand et al. (2008) show
that in labor-intensive services, a high-quality service provider might slow down on
the provision of service and charge higher prices at the same time. So, would a ser-
vice provider strategically delay services, if customers herd? How would the cus-
tomers’ herding behavior change when the service provider delays service? Such
questions remain open. Tractable characterization and approximations developed in
Maglaras and Zeevi (2003) appear to be a promising avenue that could yield analyt-
ical characterizations of the equilibrium behavior, as well as the optimal pricing and
capacity decisions in the cases where service value is uncertain.

4.5.3 Empirical and Laboratory Testing of Herd Behavior
in Queues

There are many factors that need to be understood in order to pave the way for
empirical verification of the impact of congestion on real-life customer choice. Our
modeling framework would suggest the following important ones:

1. Uncertainty about the service rates impact the inference from queue lengths in
a way that can reinforce or annihilate the in–out result. Hence this internal un-
certainty about service value needs to be appropriately constructed in empirical
models.

2. Waiting costs significantly complicate the customer’s value assessment. We find
that some cycling still exists but is less pronounced than without waiting costs. It
is therefore important to correctly estimate decision maker’s waiting costs.

3. Heterogeneity in terms of the preference for each of the service choices, in terms
of signal strength, in terms of prior belief about the service providers, etc. signif-
icantly impacts the information that can be derived from the congestion levels.

4. Asymmetric priors about the service quality of both firms; one firm could have a
strong reputation for quality, while the other firm has a weak reputation.

5. Bounded rationality. Customers may follow some heuristic instead of Bayes’
rule. What heuristic rules customers might follow itself is quite unknown.
Decision analysis has some research devoted to understanding and estimating
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irrational herding. (See, for example, Simonsohn and Ariely (2008), which dis-
cusses how rational sellers behave when selling to non-rational customers.)

Finally, we would like to point out that empirical verification of such phenomena
is challenging. It has been a consideration of many experimental economists re-
cently. Manski (2000) discusses many identification problems that need to be over-
come for a rigorous empirical verification of the interaction effects similar to those
noted in Becker’s (1991) model. The problem continues to remain challenging from
empirical verification point of view. The marketing literature and some literature on
social networks have been currently exploring ideas set forth by Becker and other
social economists. Many of the results require data acquired from both primary and
secondary sources.

4.5.4 Herding on Other Operational Information

Herding does not necessarily have to be triggered by queue length or congestion in-
formation. The underlying key idea is that information about the quality of a product
diffuses not only via ‘social’ word-of-mouth processes but may also via indicators
that are typically studied in operations management and operations research. Our
contribution lies in identifying the co-existence of public information (like queue
lengths) together with private information that impacts the consumer purchasing
decision. Debo and van Ryzin (2008) study herding behavior triggered by infor-
mation about stock-outs. In their paper, stock-outs are a signal of high demand for
a product, and hence an indication that many customers received information that
the quality of the product is high. Hence, stock-outs may increase the willingness
to buy.

However, somewhat unfortunately, the willingness to buy is the highest when it
is the most difficult for the customers to obtain the product. Hence, it is not sure that
herding behavior increases the realized sales.

Finally, a recent set of models analyze stock-out-related behavior. There is rich
potential for future work that examines herding behavior with customer response to
stock-outs, especially in newsvendor-type settings. Stock and Balachander (2005)
show that stock-outs might be used as instruments to signal quality to consumers.
Of course, the question whether such signals can increase sales is still an interesting
unexplored research question. In a recent paper, Tereyagoglu et al. (2008) discuss
how a newsvendor can increase profits by limiting production quantities, when a
fraction of consumers are strategic and exhibit conspicuous consumption. Profits can
be improved by pricing some of the hard-to-obtain goods higher. Swinney (2008)
considers the pricing and quantity decisions of a monopolist selling to a market
of strategic customers who have ex ante uncertain about the value of the product
being sold.

In conclusion, we believe that through our models, we provide an initial step
in understanding how consumers internalize both positive and negative congestion
externalities. We think that our framework may be a rich one for further research.
Really!
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Chapter 5
Internet-Based Distribution Channel for
Product Diversion with Potential
Manufacturer’s Intervention

Barchi Gillai and Hau L. Lee

Abstract We study a setting in which two channels of distribution are used by re-
tailers for selling their merchandise. The first is the traditional channel of retail
stores, which the retailers use early in the product lifecycle, and the second is an
Internet-based channel, which is used by the retailers later on to reach new market
segments for disposing of their excess inventories. In addition, we investigate the
implications of the manufacturer’s decision to intervene by offering additional units
for sale through the online channel. It is assumed that demand in the secondary
market1– the market that the retailers and manufacturer reach through the online
channel of distribution – is mainly price driven and that the equilibrium unit price in
this market is determined endogenously so as to equal demand and supply and clear
the market. Thus, through their inventory replenishment decisions, the retailers and
manufacturer can collectively influence future demand level and the equilibrium unit
price in the secondary market. We assume a large number of retailers, an assump-
tion that is appropriate for an Internet-based market. To simplify the analysis, we
further assume that all retailers are identical. We derive the retailers’ optimal order
quantity, the manufacturer’s optimal number of units to offer for sale in the sec-
ondary market, and the resulting secondary market equilibrium unit price. We show
that when the retailers are the only ones to use the online channel, all entities along
the supply chain benefit, including the retailers, manufacturer, and primary- and
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secondary-market customers. Intervention in the secondary market will not always
be in the manufacturer’s best interest, as it may reduce her total expected profits.
Furthermore, the retailers as well as primary-market customers will always be worse
off from the manufacturer’s intervention, while the secondary-market customers will
always benefit from this move.

5.1 Introduction

E-marketplaces, Internet destinations that bring diverse companies together to con-
duct electronic commerce on a secure business platform, are becoming a popular
way for companies to conduct business and are available in a variety of forms. For
example, these e-marketplaces can be private, characterized by a one-to-many type
of relationship; public, involving multiple buyers and multiple sellers who use the
Internet as a hub for their business transactions; or virtual private, – used by multiple
buyers and multiple sellers but do not involve any interaction among buyers, so that
each of them sees the system as a private e-marketplace. E-marketplaces may also
differ in their target industry: some focus on a single industry, such as apparel or
electronics, while others are more diverse, offering a wide variety of product cate-
gories. Furthermore, e-marketplaces may be used by companies for trading primary
materials for production or for trading indirect materials for business operations.
Finally, e-marketplaces can serve as the primary market, that is, as a main chan-
nel of distribution; as the secondary market, for the disposal of excess inventories;
or as both. In this chapter we focus on the impacts of e-marketplaces that serve as
secondary markets.

There seem to be several business models that companies can follow when using
the Internet for disposal of their excess inventories. The first model is based on sell-
ers offering their excess inventory directly to potential buyers through online web-
sites that provide a meeting place for multiple buyers and sellers. Items in these sites
are oftentimes sold via auctions. One example of such an online auction marketplace
is Liquidation.com (http://www.liquidation.com/). EBay (http://www.ebay.com), the
online auction and shopping website which started as a marketplace for individuals
and small businesses to buy and sell goods and services online, launched in 2005
its business and industrial category, breaking into the industrial surplus business.
A second model relies on companies that serve as middlemen: they buy the ex-
cess inventory from manufacturers, OEMs, or anyone else that has excess inventory
and then offer it for sale online at discount prices. Examples of companies that
provide such services include 4 Star Electronics (http://www.4starelectronics.com/)
– a leading supplier of obsolete or discontinued electronic components; Freelance
Electronics (http://www.rcfreelance.com/) – a distributor of obsolete and hard-to-
find military and commercial electronic components; and WholesaleApparelSource
(http://www.appareloverstock.com/) – which purchases over-stock and shelf-pulled
apparel in large volumes from large department stores, U.S.-based brand represen-
tatives, and industry suppliers and offers them for sale to small-to-mid-sized apparel
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retailers and other businesses. While the second model is likely to be more conve-
nient for organizations, requiring them to spend less time and effort on selling their
excess inventories, the price they receive for their over-stock goods may be lower
compared to the alternative of online auctions.

While in all the examples mentioned above each of the websites chose a single
business model to follow, some online retailers offer both options. For example,
Overstock (http://www.overstock.com/) offers for sale surplus tech products that it
buys at liquidation prices and sells to consumers at an average 60% of retail price
(Taylor, 2001). In addition to its direct retail sales, Overstock has also offered online
auctions on its website since September 2004.2

A hybrid of the two business models described above is offered by companies
such as Part-Miner (http://www.partminer.com), which launched in September 2007
its online ChipMarket trading platform (http://www.chipmarket.com) for selling and
sourcing excess electronic component inventories. While they do not purchase any
excess inventory themselves, they do more than just providing companies with a
platform for online auctions. Rather, ChipMarket provides potential sellers with a
number of services to help them price their goods according to up-to-date mar-
ket conditions and reach a large number of potential buyers. In parallel, potential
buyers can submit requests for quotes (RFQs), which are matched by ChipMarket
with items available for sale. Virtual Chip Exchange (http://www.virtualchip.com/),
a private marketplace for buyers and sellers of computer chips and semiconductors,
operates under a business model similar to that of ChipMarket and also provides a
number of value-added services to their members.

Another business model involves websites that simply provide a platform for
companies to advertise and offer for sale their refurbished and over-stocked items.
One such example is the Clearance Center of Cnet (http://clearance.cnet.com/),
which lists items available for sale at clearance price. Those interested in buying are
directed to the site of the manufacturer (or another organization) that offers these
items for sale.

There are a variety of reasons for companies to use e-marketplaces as secondary
markets. For example, when a company introduces new products, its old products
may become obsolete and need to be phased out. Oftentimes the product life cy-
cles of the old and new products overlap, and so the company must take steps to
assure that sales of the old products do not interfere with the new product intro-
duction. One such strategy is to introduce the new products first in a few targeted
channels and use secondary markets to sell off the old ones to channels that focus
on more mature products (Billington et al., 1998). Another potential use of sec-
ondary markets is for the disposal of excess inventories, which are usually a result
of inaccurate demand forecast. One industry that can substantially benefit from such
use of secondary markets is apparel goods. Due to the long lead times for design,
order, and production, which can reach up to 9 months, orders must be based on
early estimates of expected demand, which can vary dramatically from actual de-
mand. In addition, for both apparel retailers and vendors the cost of under-stocking

2 Source: http://en.wikipedia.org/wiki/Overstock.com
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substantially exceeds the cost of over-stocking, inciting them to carry generous
safety stocks. Finally, tight space constraints force retailers and vendors to quickly
dispose of surplus merchandise at the end of each season (Doctorow and Saloner,
2000). Off-price or off-style retailers such as TJ MAXX or Burlington Coat Factory
can then be used for selling excess inventories to other, more price-conscious, seg-
ments of the market. B2B and B2C e-markets, such as QRS and BlueFly, provide
another means for selling off excess inventories to wholesalers or end consumers.
Secondary markets are also commonly used for sale of older models of consumer
electronic goods, since due to their short life cycle and the proliferation of product
options manufacturers and retailers in this industry are likely to be left with ex-
cess inventories of some models. Secondary markets such as Virtual Chip Exchange
may also provide a platform for spot markets, allowing companies with over-stock
to sell their excess inventories to companies that have under-forecasted their de-
mands. Such spot markets are quite common for semiconductors and electronic
components.

Companies prefer to sell their excess inventories through Internet-based sec-
ondary markets so as to avoid polluting their normal sales channel. Furthermore,
companies may prefer to use the services of online retailers such as Overstock de-
spite the extremely low price they are likely to obtain for their excess inventories in
order to better maintain their brand image and distance themselves from the sale of
low-demand or returned items.

While retailers who use secondary markets to sell off their excess inventories
clearly benefit since these markets provide an additional source of profit, it is not
clear how the secondary markets affect the retailers’ suppliers and primary-market
customers. One of the goals of this chapter is to investigate the impacts of secondary
markets on the entire supply chain.

Furthermore, Internet-based secondary markets can be easily accessed by other
players along the supply chain. In particular, once the e-marketplace is established,
the manufacturer that builds and supplies the goods to the retailers might adopt it
as an additional channel of distribution, for directly reaching the secondary-market
customers. But will it be in the manufacturer’s best interest to take such an ac-
tion? To participate in the secondary market the manufacturer must build addi-
tional goods, increasing her total production costs. Moreover, it is assumed that the
secondary-market equilibrium unit price is endogenously determined to equal sup-
ply and demand and clear the market. Thus, if the equilibrium unit price is relatively
low, the revenues generated from it might not be sufficient to cover the manufac-
turer’s additional production cost. In addition, assuming that the retailers are aware
of the manufacturer’s decision to take part in the secondary market, they might de-
cide to lower their initial order quantity, thus leading to a reduction in the manu-
facturer’s profit from her sales to the retailers. Suppose the manufacturer decides
to participate in the secondary market; how will it impact the retailers’ expected
profits? And how will the customers in both the primary and secondary markets be
affected? In this chapter we try to provide answers to these questions. We study the
conditions under which the manufacturer is most likely to benefit from participation
in the secondary market and show how her participation will impact the expected
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profits to the retailers, as well as the expected service level in the primary and sec-
ondary markets.

The remainder of this chapter is organized as follows. Section 5.2 reviews the
relevant literature. In Section 5.3 we describe the problem in detail. Section 5.4 ana-
lyzes the equilibrium of the model given that a secondary market is used only by the
retailers and studies its impacts. Section 5.5 assumes that the manufacturer decides
to take part in the secondary market and studies the potential impacts of that deci-
sion on the retailers and the primary and secondary-market customers. Section 5.6
concludes the chapter, discusses the limitations of the model, and includes some
promising directions for future research. All proofs are in the Appendix.

5.2 Literature Review

There are several areas of research related to the use of Internet-based marketplaces
for adjusting inventory levels. One such line of research studies auctions, which are
commonly used as the mechanism for conducting business in online markets. There
has been extensive research in economics on the theory of auctions. For overviews
of auction literature, see, for example, McAfee and McMillan (1987), Klemperer
(1999), and Elmaghraby (2000). Some papers, such as Vakrat (2000) and Wurman
et al. (1998), focus on online auctions and study their optimal design and expected
behavior. In this chapter we do not strive to study the mechanism of online secondary
markets, but rather we focus on the impacts of using such a distribution channel on
manufacturers, retailers, and consumers.

A number of studies focus on the use of spot markets to complement bilateral,
fixed-price contracts with suppliers. The combination of bilateral contracts and spot
markets allows supply chain participants to simultaneously realize the benefits of
both relationship-based and market-based coordination (Grey et al., 2005). One ex-
ample of this line of research is Mendelson and Tunca (2007), who examine the
case where manufacturers first contract with the supplier to purchase commodities
at a fixed price and then trade on a spot market, which is open to all, when more in-
formation about market demand and production costs is available. Kleindorfer and
Wu (2003) survey the underlying theory and practice in the use of options, which
play an important role in integrating long-and short-term contracting between mul-
tiple buyers and sellers, in support of emerging B2B markets. The paper focuses on
capital-intensive industries and reviews economic and managerial frameworks that
have been proposed to explain the structure of contracting in these markets. Some
papers, such as Rudi et al. (2001), Axsäter (2003), and Sosic (2006), consider the use
of lateral transshipments, rather than online auctions, for rebalancing inventories.

Our model differs from earlier work, in that it does not consider the e-marketplace
as a mechanism for rebalancing inventories among manufacturers, but rather as a
means – especially for retailers or distributors – to reach new market segments,
usually more price sensitive, for selling off their excess inventories. Nike’s product
rollovers are a good example when such an assumption is most appropriate: when
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new shoe models are introduced the company first displays them at premium retail-
ers like Footlocker or Niketown, while it uses discounters and outlets to sell its older
shoe models (Billington et al., 1998). Many apparel companies have adopted such
a strategy and use B2C solutions for selling off their excess inventories. One paper
that studies the subject of channel diversion is Eppen and Iyer (1997), who analyze
the problem of a catalogue merchandiser that also owns outlet stores, which provide
her with the opportunity, as the season evolves, to divert inventory originally pur-
chased for the “big book” to the outlet store. Kouvelis and Gutierrez (1997) study
a similar topic while focusing on some of the special opportunities and challenges
imposed by global markets, which offer a “style goods” producer more selling op-
portunities by exploiting the difference in timing of the selling season of geograph-
ically disperse markets. Rosenfield (1989) does not specify the means for disposing
of excess inventory. Rather, he assumes a fixed salvage value for each unit of inven-
tory and determines the optimal number of slow-moving units to keep in stock. Our
model differs from the above-mentioned research work in several aspects, one of the
major ones being their assumption of an exogenously determined unit salvage value.
Such an assumption does not accurately represent online secondary markets, where
oftentimes prices are determined endogenously to equal total supply and demand
and clear the market. Modifying this assumption substantially changes the expected
impacts of the secondary market on the various players within the supply chain.

Another difference between our model and some of the earlier related work men-
tioned above is that some of these studies consider a limited number of participants
in the secondary market, whereas we assume a large number of participants. Such
an assumption more accurately represents many of the Internet-based markets. Mil-
ner and Kouvelis (2007) justify their assumption of a limited number of suppliers
and buyers by focusing on markets for industrial goods with some degree of design
specification, as opposed to undifferentiated commodities. Lee and Whang (2002),
who are the first to focus on the use of online secondary markets as a tool for im-
proving inventory management, do consider a large number of participants in the
secondary market and endogenously derive the optimal decisions for the retailers,
along with the equilibrium market price of the secondary market. But, unlike our
model, they assume that the secondary market is used for rebalancing inventories
among a group of retailers. Some aspects of this research work can be viewed as an
extension to the line of research which studies the impacts of inventory centraliza-
tion by a group of retailers on the manufacturer whose goods the retailers stock. The
first attempt to study this topic was made by Anupindi and Bassok (1999).

Another difference between our model and Lee and Whang (2002) is that they as-
sume that trading in the secondary market is conducted solely by the retailers, while
we allow the manufacturer to take action and intervene in the secondary market by
releasing a quantity which was built in advance for sale in that market. We then
determine the conditions under which taking such action would be in the manufac-
turer’s best interest and study the potential impacts of this decision on the retailers
as well as on the primary and secondary-market customers.

Other related research work includes Tunca and Zenios (2006), who study the
competition between procurement auctions, which are used for the purchase of
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low-quality parts, and long-term relational contracts, which can ensure the quality of
the procured products or services and therefore are used for high-quality parts. Peleg
et al. (2002) consider a setting with both long-term and auction-based purchases and
determine conditions under which each strategy is expected to yield better results.
Their model assumes that both sources are used by the manufacturer to purchase
commodities from her supplier. Choi et al. (2004) consider the use of Internet-based
secondary markets for selling off excess inventory, but under a different setting com-
pared with our model. They consider a supply chain which is integrated by a returns
policy. With the advance of e-commerce, the returned products can be sold by the
manufacturer on the e-marketplace, most likely with a higher price compared to
their salvage value. Esteban and Shum (2007) focus on the automobile industry,
where it is the consumers, rather than retailers or manufacturers, who trade in the
secondary market, and the goods traded are used cars, which differ in value based
on their age and model.

5.3 Problem Description

We consider n identical retailers who use a traditional distribution channel, such as
retail stores, for reaching their primary market customers. We focus our attention
on one type of product, which is ordered from a single manufacturer. It is assumed
that products in the primary market are sold during a single season. This assumption
is appropriate for many products in the high-tech and fashion industries, which are
characterized by relatively short product life cycles that may not allow the retailers
to resupply stocks from the manufacturer after their initial purchase. Unit production
cost to the manufacturer equals c, and each unit is sold to the retailers at a unit price
p1 and by the retailers to their primary-market customers at a unit price r1, where
r1 > p1 > c holds. D1, the demand faced by each retailer in the primary market,
is uncertain with a known distribution function F(·) and a finite mean E(D1) = μ .
F(·) is differentiable over [0,∞), with F ′(·) = f (·). In addition, the retailers may
use an Internet-based distribution channel to reach other, more price-sensitive seg-
ments of the market, for selling off their excess inventories at the end of the selling
season. Retailers choose their replenishment strategy so as to maximize their ex-
pected profits. To study the impacts of the Internet-based secondary market and the
manufacturer’s potential intervention in that market we analyze the following three
models:

1. No secondary market. Under this scenario, products are sold only to the
primary-market customers. The sequence of events is as follows: prior to the
beginning of period 1, each retailer places with the manufacturer an order for Q
units. After the orders are shipped to the retailers, demand xi is realized for each
retailer i, where xi is independently drawn from F(·) and is satisfied as much as
possible from the retailers’ existing inventory. Any unfilled demand is lost for-
ever, and the salvage value of the units left unsold by the end of the period is zero.
This is the standard setting of the newsvendor problem. Under this scenario, each
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retailer determines her initial order quantity Q by solving the following optimiza-
tion problem:

max
Q≥0

{
Π I

R = r1Ex min(Q,x)− p1Q
}

The optimal stock level that maximizes Π I
R satisfies

F(QI) = (r1 − p1)/r1 (5.1)

2. Retailers-only secondary market. This model extends the previous setting and
provides the retailers with the opportunity to use an Internet-based distribution
channel to access a secondary market at the end of the first period for disposing
of their excess inventory. It is assumed that the secondary market is mainly cost
driven. That is, the demand faced by each retailer in that market is characterized
by a deterministic function of the form a(1− p2/b), where p2 is the secondary-
market unit price and a and b are known and strictly positive constants. It is
further assumed that the customers served in the secondary market belong to a
different market segment than the primary-market customers, and so secondary-
market demand level is independent of primary-market demand realization. One
example that fits well with this assumption is the apparel industry. Places that of-
fer branded and fashion merchandise, such as Macy’s and Bloomingdale chains
or Levi’s stores, tend to have customers with much different characteristics com-
pared to those who shop at retailers such as Ross or TJ MAXX, which offer
off-price and off-style merchandise. Price in the secondary market is determined
endogenously so as to equal demand and supply and clear the market. Thus, the
retailers’ decision regarding their order quantity Q will ultimately have an impact
on demand level and the equilibrium unit price in the secondary market. The se-
quence of events is as follows: prior to the beginning of period 1 each retailer i
places an order for Q units with the manufacturer. After the units are delivered,
demand xi is realized and satisfied as much as possible from the retailers’ existing
inventory. Any unfilled demand is lost. At the end of the first period the retail-
ers sell their excess inventory in the secondary market, which is characterized
by an aggregated demand that satisfies D2 = na(1− p2/b) and an equilibrium
unit price p2 that is endogenously determined to clear the market. We investigate
the resulting impacts of the existence of the secondary market on the optimal
strategy chosen by the retailers as well as the expected profits for the manufac-
turer and retailers, and the expected supply chain performance in the primary
market.

3. Manufacturer’s intervention. Under this scenario, the manufacturer may choose
to take part in the secondary market and use it as an additional channel of distri-
bution so as to increase her total sales level and profitability. The term “Interven-
tion” used throughout the chapter does not intend to imply that the manufacturer
uses any type of manipulation to discourage the retailers from participating in
the secondary market. Rather, it refers only to the manufacturer’s decision to
participate in that market by offering additional quantity for sale. The sequence
of events is as follows: prior to the beginning of period 1 each retailer i places an
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order for Q units with the manufacturer. It is assumed that the manufacturer has
a single production opportunity; thus after Q becomes known the manufacturer
decides on nK, the additional quantity to build for the secondary market, and runs
a production cycle of n(Q+K) units. The manufacturer then delivers Q units to
each retailer and keeps the nK units in inventory to be sold later in the secondary
market together with the retailers’ excess inventory. The progression of events is
the same as the previous case. We study the conditions under which participating
in the secondary market will be in the manufacturer’s best interest, and the ex-
pected impact of the manufacturer’s intervention on the retailers’ profits as well
as the supply chain performance in both the primary and the secondary markets.

It is assumed that all units are sold in the secondary market at the same unit price
p2 and that no transaction fees or transportation costs are incurred. In addition,
we restrict p2 from taking on negative values; thus whenever total supply in the
secondary market exceeds na, p2 is forced to equal zero. Given the assumption of a
short selling season, the majority of the inventory holding costs incurred can most
likely be attributed to the fixed cost of holding and operating a warehouse, or other
storage space. Inventory holding cost will therefore not impact the optimal solution
and thus is omitted from the mathematical model.

Sections 5.4 and 5.5 study in detail the two models described above that involve
the sale of goods in a secondary market. The analysis is conducted under the as-
sumption that all retailers are identical and equally smart, that is, each of them can
assume that all other retailers will follow the same logic when choosing their re-
plenishment strategy. Throughout the chapter, a boldface better denotes the n-vector
of corresponding variables, e.g., Q = (Q1,Q2, . . . ,Qn).

5.4 Retailer-Only Secondary Market

When the retailers are the only ones to use the Internet-based distribution channel for
disposing of their excess inventories, each retailer chooses her initial order quantity
Q based on the following optimization problem:

max
Q≥0

{
Π II

R = r1Ex min(Q,x)− p1Q+ pII
2 Ex(Q− x)+

}
(5.2)

s.t. pII
2 is endogenously determined to clear the market

Moving backward in time, the symmetric equilibrium Q is defined in the follow-
ing way:

1. Given Q and x, unit price for the secondary market pII
2 is determined so as to

equal supply and demand and clear the market.
2. Based on the expected secondary-market unit price, each retailer chooses QII so

as to maximize her expected profit over the two periods.
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We next determine the equilibrium unit price pII
2 and the optimal inventory

level QII .

Secondary Market Unit Price

Given any Q and x, total demand in the secondary market as a function of p2 is
given by na(1− p2/b) whereas total supply is ∑n

i=1(Q−xi)+. The secondary market
unit price p2 is determined by equating total supply and demand, so that in market
equilibrium

p2 = b− (b/na)∑n
i=1(Q− xi)+ (5.3)

In an Internet-based market, it is typically the case that the number of retailers
is relatively large, usually in the order of hundreds. Indeed, this expanded reach is
considered to be one of the key powers of the Internet. In this case, we can use the
law of large numbers to find the limiting value of ∑n

i=1(Q− xi)+:

lim
n→∞

1
n

n

∑
i=1

(Q− xi)+ = E(Q− x)+ =
∫ Q

x=0
(Q− x) f (x)dx =

∫ Q

x=0
F(x)dx � Γ (Q)

For convenience, we denote Γ (Q) �
∫ Q

x=0(Q− x) f (x)dx throughout the chapter.
Thus, for a large enough n, and given that the equilibrium secondary-market unit

price cannot take on negative values, p2 can be simplified to

pII
2 = lim

n→∞
p2 = b [1−Γ (Q)/a]+ (5.4)

Primary Market Order Quantity

The solution to the optimization problem stated in (5.2) will satisfy

F(Q) =
r1 − p1 +

(
d pII

2 /dQ
)

Γ (Q)
r1 − pII

2
(5.5)

Given the assumption of a sufficiently large n, each retailer is a price-taker in the
secondary market, i.e., d pII

2 /dQ = 0. Consequently, the above result can be simpli-
fied to

F(Q) =
r1 − p1

r1 − pII
2

(5.6)

Let Qii be the quantity that satisfies (5.6). Qii has a newsvendor-type solution,
where r1 − p1 represents the cost of under-stocking and p1 − pII

2 represents the cost
of over-stocking. Plugging the limiting value of pII

2 as given in (5.4) into (5.6), we
obtain

F(Qii) =
r1 − p1

r1 −b+(b/a)Γ (Qii)
(5.7)
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Since both F(Qii) and Γ (Qii) increase in Qii, the right-hand side of (5.7) de-
creases in Qii while its left-hand side increases in Qii. Therefore, (5.7) will have at
most a single unique solution.

The order quantity Qii as specified in (5.7) will be optimal only as long as it
results in a non-negative equilibrium unit price pII

2 . Let Q be the value of Q that
satisfies Γ (Q) = a, which, based on (5.4), yields pII

2 = 0. If we denote QII as the op-
timal order quantity, then QII will be equal to Qii only as long as Qii ≤Q. Otherwise,
if Qii > Q, the retailers will prefer not to use the Internet-based channel as it will
yield an equilibrium unit price equal to zero (since it is assumed that the secondary-
market equilibrium unit price cannot take on negative values). Consequently, the
retailers will prefer to set QII equal to QI , the optimal order quantity with no sec-
ondary market. In summary, QII , the optimal order quantity given a retailers-only
secondary market, will satisfy

QII =

{
Qii if Qii ≤ Q

QI if Qii > Q
(5.8)

5.4.1 The Impacts of the Secondary Market

We next study the potential impacts of the secondary market on the manufacturer,
each of the retailers, and the primary-market customers.

Impact on Optimal Order Quantity

By comparing (5.6) with (5.1), and given that the secondary-market unit price pII
2

cannot take on negative values, it is clear that the introduction of the secondary
market will always lead the retailers to increase their initial order quantity Q.

Theorem 1. In equilibrium, the retailers’ use of a secondary market for disposing of
excess inventory will always lead the retailers to increase their initial order quantity.

With the introduction of the secondary market, the salvage value of any unsold
units remaining at the end of the first period is increased from zero to pII

2 . Conse-
quently, the retailers face lower average cost, which provides an incentive for them
to increase their initial order quantity Q.

Impact on Expected Profits

Profits to the manufacturer are determined by her sales level to the retailers at the
beginning of period 1. Thus, based on Theorem 1, it can be easily verified that the
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introduction of the secondary market will always increase the manufacturer’s total
profit, as summarized in Lemma 1.

Lemma 1. In equilibrium, the secondary market will always increase the manufac-
turer’s profits.

As for the retailers, as stated in Lemma 2, they will never be worse off by par-
ticipating in the secondary market since it provides them an additional source of
profit.

Lemma 2. In the presence of the secondary market the retailers will always in-
crease their expected profits.

Impact on Supply Chain Performance

We next study how the retailers’ use of the Internet-based distribution channel im-
pacts the performance of the supply chain in the primary market. We focus our
attention on two supply chain measures, namely consumer sales and stockout level.
It can be verified that the retailers’ higher order quantity will improve both these
performance indicators, as summarized in Lemma 3.

Lemma 3. In equilibrium, the introduction of a secondary market will always result
in a higher sales level and a lower stockout level in the primary market.

In summary, we can conclude that the retailers’ use of a second distribution chan-
nel to reach new market segments and dispose of their excess inventory will benefit
all entities along the supply chain: the manufacturer, retailers, primary-market cus-
tomers, and secondary-market customers.

Impact of Secondary-Market Characteristics

We next study how the characteristics of the secondary-market demand function
affect the expected profits for the manufacturer and the retailers. Theorem 2 sum-
marizes the impact of the secondary-market demand characteristics on the retailers’
expected profits.

Theorem 2. Π II
R , the expected profit for each retailer, increases in a, the upper limit

on secondary-market demand observed by each retailer, and in b, which reflects the
sensitivity of secondary-market customers to changes in unit price and also repre-
sents the upper limit on the secondary-market unit price.

For any value of Q, an increase in either a or b increases total demand in the
secondary market, and consequently the secondary-market equilibrium unit price
p2. Thus, it results in higher profits for the retailers from the secondary market while
not affecting their profits associated with sales in the primary market. By adjusting
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their initial order quantity based on the new values of a or b, the retailers can only
further improve their expected profits.

As for the manufacturer, she too will benefit from a higher value of a or b.

Theorem 3. The manufacturer’s profit Π II
M increases in a, the upper limit on the

secondary-market demand observed by each retailer, and in b, the upper limit on
the secondary-market unit price.

The profits to the manufacturer are a linear function of the retailers’ initial order
quantity QII . Since a higher value of a or b means an increase in the maximum
potential market size and/or in the equilibrium secondary-market unit price, as well
as lower sensitivity of secondary-market demand to changes in unit price, it will
always result in the retailers increasing their initial order quantity. And a higher
order quantity Q will necessarily translate into higher revenues and profits for the
manufacturer.

In summary, we can conclude that the larger the potential size of the market the
retailers can access through the Internet-based distribution channel is, and the less
sensitive customers in this secondary market are to changes in unit price, the more
beneficial the secondary market will be for the retailers and the manufacturer.

While the Internet provides a relatively easy way for retailers to reach a large
number of potential customers, oftentimes these customers may be quite price sen-
sitive. Thus, it can be a mixed blessing for the retailers. While the advantages of the
Internet as a channel of distribution for selling off excess inventory are clear, the
retailers (as well as the manufacturer) will benefit the most if they are able to attract
somewhat less price-sensitive market segments.

5.5 Manufacturer’s Intervention

While originally the manufacturer may prefer to sell her products only through the
retailers’ main channel of distribution to ensure high product positioning, once a
secondary market is established the manufacturer may decide to take part in it as
a means for improving her profitability. To do so, the manufacturer may produce
some additional quantity nK to be sold through the online channel together with the
excess inventory sold by the retailers. It is assumed that if the manufacturer decides
to intervene in the secondary market, the retailers will be aware of that decision
ahead of time. In this section we analyze how the manufacturer’s intervention in
the secondary market will impact her expected profits and determine the conditions
under which it is beneficial for her to take such action. In addition, we analyze the
impacts of the manufacturer’s decision to intervene in the secondary market on the
retailers’ actions and their expected profits, as well as on the overall supply chain
performance in both the primary and the secondary markets. Given the detailed
problem description specified in Section 5.3, for any value of Q the manufacturer
will determine K (Q) as follows:
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K(Q) = argmax
{

Π III
M = n

[− [Q+K (Q)]c+ p1Q+ pIII
2 K (Q)

]}
(5.9)

s.t. pIII
2 is endogenously determined to clear the market

The retailers choose their order quantity Q based on the following optimization
problem:

max
Q≥0

{
Π III

R = r1Ex min(Q,x)− p1Q+ pIII
2 Ex(Q− x)+

}
(5.10)

s.t.

{
pIII

2 is endogenously determined to clear the market

K(Q) satisfies (5.9)

One should note that for the retailers to be able to solve the optimization prob-
lem as specified in (5.10) they should be able to determine the value of K as a
function of their order quantity Q. In particular, the retailers will need to have vis-
ibility to the value of the manufacturer’s unit production cost c. Assuming that the
retailers have access to such information is quite unrealistic; however, we make
this assumption in order to simplify the problem and allow us to focus our at-
tention on the secondary market, the effects its existence has on the behavior of
the retailers and the manufacturer, and the resulting impacts on the entire supply
chain.

Moving backward in time, the symmetric equilibrium order quantity Q and the
production level K are defined in the following way:

1. Given K,Q, and x, unit price for the secondary market pIII
2 is determined so as to

equal supply and demand and clear the market.
2. Given Q, the manufacturer chooses K so as to maximize her profits.
3. Based on the expected secondary-market unit price and the expected value of K,

each retailer chooses QIII so as to maximize her expected profit over the two
periods.

Secondary-Market Unit Price

The secondary market unit price p2 is determined by equating total supply and de-
mand, so that in market equilibrium

p2 = b− b
a

(
K +

1
n ∑n

i=1(Q− xi)+
)

(5.11)

As in Section 5.4, for a large enough n, and given that p2 cannot take on negative
values, we can use the law of large numbers to simplify p2 and obtain

pIII
2 = lim

n→∞
p2 = b

[
1− K +Γ (Q)

a

]+

(5.12)
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Comparing (5.4) with (5.12) we can verify that as expected, for any given Q the
participation of the manufacturer in the secondary market reduces the equilibrium
unit price p2.

Secondary-Market Production Level

For any given Q, the optimal production level for the secondary market KIII(Q) is
obtained based on (5.9), where pIII

2 satisfies (5.12). Since KIII(Q) cannot take on
negative values, the resulting optimal production level for the secondary market is

KIII(Q) = [a(b− c)/(2b)−Γ (Q)/2]+ (5.13)

Let Q̂ be the value of Q that satisfies Γ (Q̂) = a(b− c)/b. Then for all Q > Q̂,
KIII(Q) should be set equal to zero. That is, even if the manufacturer considers
initially to potentially take part in the secondary market – a decision made before
the retailers place their orders – it will not always be in her best interest to actu-
ally build some nK > 0 units to be sold in the secondary market. Rather, when the
retailers’ initial order quantity is relatively large, the level of excess inventory re-
maining for sale in the secondary market is also expected to be high. Consequently,
the secondary market equilibrium unit price will be so low that it will result in the
manufacturer losing money for each unit she builds for sale in that market.

Based on (5.12) it can be verified that for all Q ≤ Q̂ the resulting value of pIII
2 is

strictly positive and satisfies pIII
2 > c.

Primary-Market Order Quantity

The initial order quantity to maximize the retailers’ optimization problem as stated
in (5.10) is

F(Q) =
r1 − p1 +

(
d pIII

2 /dQ
)

Γ (Q)
r1 − pIII

2
(5.14)

As in the previous section, given a sufficiently large n, each of the retailers is
price-taker in the secondary market, i.e., d pIII

2 /dQ = 0. Consequently, the above
result can be simplified to

F(Q) =
r1 − p1

r1 − pIII
2

(5.15)

Let Qiii be the quantity that satisfies (5.15). Based on the limiting value of pIII
2 as

given in (5.12) and assuming that KIII(Q) is strictly positive, (5.15) can be simplified
to

F(Qiii) =
r1 − p1

r1 − [a(b+ c)−bΓ (Qiii)]/2a
(5.16)
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Since both F(Qiii) and Γ (Qiii) increase in Qiii, the left-hand side of (5.16) is
an increasing function of Qiii while its right-hand side decreases in Qiii. Therefore,
there can be at most a single value of Qiii that satisfies (5.16).

The order quantity Qiii as specified in (5.16) will be feasible and thus optimal
only as long as it results in non-negative equilibrium unit price pIII

2 and production
quantity nK(Qiii).

Consider first those cases where Qiii > Q̂ holds. To analyze the optimal solution
under these circumstances, we would first like to study the relationship between
Qii and Qiii. As noted earlier, for any given Q, pIII

2 (Q) < pII
2 (Q) will always hold.

Therefore, and by comparing (5.6) and (5.15), we can conclude that Qiii < Qii al-
ways holds (for a formal proof of this result, see Theorem 4). Therefore, for all
those cases in which Qiii > Q̂ , necessarily Qii > Q̂ will hold as well. Thus, since the
manufacturer will not participate in the secondary market for any Q > Q̂, if Qiii > Q̂
holds, it will be optimal for each retailer to place with the manufacturer an order
for Qii units, the optimal order quantity for a retailers-only secondary market. This,
however, will be true only as long as Qii is feasible, that is, as long as Qii ≤ Q,
where Γ (Q) = a. Otherwise, if initially the secondary market provided no value to
the retailers, it will continue to be of no value after the manufacturer’s decision to
consider participation in that market. Thus, it will be optimal for the retailers to not
use the Internet-based channel of distribution, and consequently, their optimal order
quantity will be equal to QI . It can be verified (see the proof of Lemma 4) that in this
case QI > Q̂ will hold, which means that by placing an order for QI units, the retail-
ers will not change the manufacturer’s decision to not participate in the secondary
market. Thus, we can conclude that if initially the secondary was of no value to the
retailers, it will be of no value to the manufacturer as well.

We next focus our attention on those cases where Qiii ≤ Q̂ holds. In this case the
optimal number of units nK to be built by the manufacturer for sale in the secondary
market will be strictly positive, and by placing an order for Qiii units, each of the
retailers will optimize his expected profits given the manufacturer’s intervention in
the secondary market.

However, one must keep in mind that the retailers are the ones to take the first step
by placing their orders with the manufacturer, and only then will the manufacturer
decide how many additional units nK to build for sale in the secondary market.
What, then, if Qiii is smaller than Q̂, but Qii, the optimal order quantity with no
manufacturer’s intervention, is larger than Q̂? It can be proved (see Theorem 5)
that the manufacturer’s intervention in the secondary market will always reduce the
retailers’ expected profits. Therefore, whenever Qiii ≤ Q̂ but Qii > Q̂ holds, it will be
optimal for each of the retailers to place an order for Qii units, which will force the
manufacturer to stay out of the secondary market and will result in higher expected
profits for the retailers compared to the outcome when they each place an order for
Qiii units.

Let QIII be the optimal order quantity given the manufacturer’s potential inter-
vention in the secondary market. Lemma 4 summarizes the discussion above and
lists the optimal value of QIII under the different scenarios, while Figure 5.1 dis-
plays these results graphically.



5 Internet-Based Distribution Channel for Product Diversion 131

Fig. 5.1 Optimal order quantity QIII .

Lemma 4. QIII , the optimal order quantity given the manufacturer’s intervention in
the secondary market, will satisfy

QIII =

⎧⎪⎪⎨⎪⎪⎩
Qiii if Qii ≤ Q̂

Qii if Q̂ < Qii ≤ Q

QI if Qii > Q

Consequently, and based on (5.12) and (5.13) as well as on the results obtained in
Section 5.4, and since Q̂ < Q always holds, we can derive the value of the secondary
market equilibrium unit price, as summarized in Figure 5.2.

Fig. 5.2 Secondary-market equilibrium unit price pIII
2 .
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5.5.1 The Impacts of the Manufacturer’s Intervention

We next study the impacts of the manufacturer’s intervention in the secondary mar-
ket on the expected profits for the manufacturer and the retailers, as well as the
performance of the supply chain in both the primary and the secondary markets. To
do that, we first study the impact of the manufacturer’s intervention on the optimal
order quantity Q.

Impact on Optimal Order Quantity

It turned out, as summarized in Theorem 4, that each retailer’s optimal order quan-
tity given the manufacturer’s decision to participate in the secondary market will
always be smaller than or equal to the retailers’ optimal order quantity given a
retailers-only secondary market.

Theorem 4. In equilibrium, QIII ≤ QII will always hold.

The manufacturer’s decision to offer additional units for sale in the secondary
market will necessarily drive this market’s equilibrium unit price down, which will
make any excess inventory remaining at the end of the first period of less value
for the retailers. Consequently, it will become optimal for the retails to reduce their
initial order quantity.

Furthermore, under those scenarios where ordering Qii units will force the man-
ufacturer out of the secondary market, or when initially a retailers-only secondary
market was of no value to the retailers, the manufacturer’s decision to consider par-
ticipation in the secondary market should have no impact on the retailers’ optimal
replenishment strategy, since the manufacturer will in practice not intervene in the
secondary market.

Impact on Expected Profits

We next want to determine under what conditions the manufacturer will benefit from
taking part in the secondary market. The secondary market clearly provides an ad-
ditional source of revenue for the manufacturer. However, it also leads to additional
production costs for building the goods to be sold in the secondary market. In ad-
dition, once the retailers become aware of the manufacturer’s intention to take part
in the secondary market, it will become optimal for them to adjust their initial or-
der quantity downward, as shown in Theorem 4, thus lowering the manufacturer’s
profit from her sale to the retailers. Overall, the manufacturer will benefit from her
decision to intervene in the secondary market if and only if

Π III
M −Π II

M = n
[
(p1 − c)

(
QIII −QII)+KIII(pIII

2 − c)
]
> 0 (5.17)
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Unfortunately, due to the complexity of the solutions for QII and QIII , (5.17)
cannot be simplified any further and should be checked numerically for each situa-
tion to determine whether or not it is in the manufacturer’s best interest to consider
intervention in the secondary market.

To gain some insights into the conditions under which the manufacturer is most
likely to benefit from participating in the secondary market, we have conducted a
small numerical analysis, based on the parameter values given in Table 5.1, and
under the assumption that D1 is exponentially distributed with mean 1.

Table 5.1 Parameter values for numerical analysis.

n = 100 c = 0.5 p1 = 2,2.5,3 (3 scenarios) r1 = 5 a = 3.5 b = 1

In particular, the numerical analysis provides us with a better understanding of
the impacts of the secondary-market demand characteristics on the value of this
market for the manufacturer. In addition, we gain insights into the impact of the
ratio between the manufacturer’s and the retailers’ initial profit margins, measured
by p1 − c and r1 − p1, respectively, on the manufacturer’s likelihood of benefiting
from intervening in the secondary market. The complete results of the numerical
analysis are available in the Appendix.

As described in Section 5.3, the secondary-market aggregated demand func-
tion satisfies D2 = na(1− p2/b). Figure 5.3 shows how the gap between Π III

M and
Π II

M changes as a function of a, while Figure 5.6 shows the change in value of
Π III

M −Π II
M as a function of b. Both figures were constructed based on three values of

p1, the price charged by the manufacturer for each unit sold to the retailers. Since the
manufacturer’s unit production cost c and the retailers’ primary-market unit price r1
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remain unchanged in this numeric example, a higher value of p1 corresponds with
a higher profit margin for the manufacturer and a smaller profit margin for the re-
tailers. Figures 5.4 and 5.7 show how each retailer’s initial order quantity Q and
the manufacturer’s proportional quantity offered for sale in the secondary market K
change as a function of a and b, respectively, to help us interpret the results pre-
sented in Figures 5.3 and 5.6.
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Fig. 5.4 Change in QII, QIII, and K as a function of a (p1 = 2.5).

Figures 5.3 and 5.4 study the impacts of a, the potential size of the secondary
market, on the decisions made by the retailers and manufacturer, as well as the
change in the manufacturer’s expected profits. For extremely low values of a, the
size of the secondary market is so small that it will result in an equilibrium unit
price p2 smaller in value compared with the manufacturer’s unit production cost
c. Thus, it will be optimal for the manufacturer to set K = 0, and for the retailers
to order QII units, the optimal order quantity given no manufacturer’s intervention.
As a increases, so will the secondary-market equilibrium unit price, thus making
it optimal for both the manufacturer and the retailers to have more units avail-
able for sale in the secondary market. However, the manufacturer’s participation
in the secondary market will lead the retailers to increase their initial order quan-
tity more gradually, shrinking the manufacturer’s profit from sales to the retailers.
For intermediate values of a, the manufacturer’s profits from the secondary market
will not be sufficient to compensate for the reduction in profits from her sales to
the retailers, and consequently, her decision to intervene in the secondary market
will reduce the manufacturer’s expected profits. Only for sufficiently high values
of a, when the secondary-market equilibrium unit price p2 is sufficiently high, and
the gap between QII and QIII becomes relatively stable even as the manufacturer
increases her product offering in the secondary market, will the manufacturer be
able to increase her total expected profits through participation in the secondary
market.
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As for the impact of the unit price p1 on the retailers’ behavior and the man-
ufacturer’s profitability, a smaller p1 means that the retailers’ profit from sales in
the primary market is higher, which makes the secondary market relatively less
attractive. Consequently, as can be seen in Figure 5.5, with smaller values of p1

the manufacturer’s intervention in the secondary market will result in a more drastic
decline in the retailers’ optimal order quantity Q. Going back to Figure 5.3, we see
that for small values of a, which translate into a small size of the secondary market,
the expected profits in the primary market are the main driver behind the retailers’
behavior, and consequently the intervention of the manufacturer in the secondary
market will have less impact on their initial order quantity Q. Therefore, for small
values of p1 the value of Π III

M −Π II
M will be “less negative.” However, the steeper

decline in the retailers’ initial order quantity for smaller values of p1 will also lead
to a more gradual increase in the manufacturer’s total profits as a function of a.

–0.14

–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

0

0.02

0 1 2 3 4 5 6 7 8

I
Q

II
I

-
Q

II

a

p1=2 p1=2.5 p1=3

Fig. 5.5 Change in order quantity Q as a function of a.

Next, consider the impacts of b, which represents the sensitivity of the secondary-
market customers to unit price, on the market behavior.

When the value of b is extremely low, any small change in the secondary-market
unit price will have a big impact on total demand of this market’s customers. This
means that when supply is constant, any small increase in the value of b will lead
to a significant increase in the value of the equilibrium unit price p2. Even when the
retailers and the manufacturer offer more units for sale in the secondary market, by
increasing the value of Q and K, respectively, the impact on p2 would be relatively
minor, thus allowing them to reap a significant amount of profit from the secondary
market. While the manufacturer’s intervention will still result in the retailers in-
creasing their initial order quantity Q more gradually, the difference between QII

and QIII will be relatively small, due to the huge potential for profits in the sec-
ondary market. Thus, as is demonstrated in Figure 5.6, the net effect of an increase
in the value of b when its original value is very small will be a significant increase
in the manufacturer’s expected profits.
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Fig. 5.7 Change in QII, QIII, and K as a function of b (p1 = 2.5).

As the value of b increases, any change in the total quantity offered for sale in the
secondary market will have a more significant impact on the equilibrium unit price.
Consequently, for intermediate values of b both the retailers and the manufacturer
will increase their product offering to the secondary market more gradually. Fur-
thermore, as the manufacturer’s participation in the secondary market has a larger
impact on the equilibrium unit price, the retailers will be more cautious in increas-
ing their initial order quantity, resulting in a growing gap between QII and QIII (see
Figure 5.7). Overall, the manufacturer will see a decline in her total expected profits
from sales to the retailers and the secondary-market customers.

As the value of b further increases, it becomes of less value for the manufac-
turer to participate in the secondary market due to the more significant impact any
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additional unit offered for sale will have on the equilibrium unit price in this market.
Consequently, it will become optimal for the manufacturer to gradually reduce nK,
the total number of units she offers for sale in the secondary market, as a means to
avoid both a very low equilibrium unit price in the secondary market and a steep re-
duction in Q, the initial order quantity placed by the retailers (see Figure 5.8). With
the value of K declining, so will the impact of the manufacturer’s participation in the
secondary market on the retailers’ initial order quantity Q (see Figure 5.9). It is in-
teresting to note that for high values of b, while the gap between the manufacturer’s
expected profits with and without intervention in the secondary market decreases in
b, even for very high values of b the net effect of the manufacturer’s intervention in
the secondary market is a reduction in her total expected profits.

As for the impact of the unit price p1 on the retailers’ behavior and the manufac-
turer’s profitability: for very low values of b, with a retailers-only secondary market
the retailers’ initial order quantity QII is much higher for smaller values of p1 due
to the retailers’ higher profit margin associated with such scenarios. Once the man-
ufacturer decides to intervene in the secondary market, the retailers will reduce their
initial order quantity by a larger amount (in absolute terms, due to the higher value
of Q for lower values of p1). And since for small values of b the secondary-market
equilibrium unit price pIII

2 is very low (closer in value to c, the unit production cost),
most of the manufacturer’s profits come from her sales to the retailers. Therefore,
for lower values of p1, and for small values of b, the manufacturer’s intervention in
the secondary market will result in a more gradual increase in her profitability. For
very low values of p1, the manufacturer’s intervention may even reduce her total
profits compared with a retailers-only secondary market.
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Fig. 5.8 Change in K as a function of b.

As b increases and the size of the secondary market becomes more stable, the
retailers’ focus shifts back to the primary market. And since a smaller value of p1

means higher profit margins for the retailers from sales to the primary market, the
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manufacturer’s intervention will lead to more gradual decline in their optimal order
quantity Q (see Figure 5.9). Another contributor to the more gradual decline in the
value of Q with the manufacturer’s intervention is the smaller quantity K offered by
the manufacturer for sale in the secondary market for lower values of p1: smaller p1

means higher profit margins for the retailers and therefore a higher order quantity
Q. This will result in the retailers having a larger leftover quantity to be sold in the
secondary market, which will make this market less attractive for the manufacturer
due to the resulting lower equilibrium unit price p2 and will therefore result in a
lower K (see Figure 5.8). The more gradual decline in the retailers’ order quantity is
translated into a more gradual decline in the manufacturer’s profitability for lower
values of p1 and higher values of b, as demonstrated in Figure 5.6.

Suppose that the manufacturer decides to take part in the secondary market. How
will her intervention affect the retailers’ expected profits? It turns out the retailers
will always experience a decline in their expected profits due to the manufacturer’s
intervention, as summarized in Theorem 5.

Theorem 5. In equilibrium, the manufacturer’s intervention in the secondary mar-
ket will always lead to lower expected profits for the retailers compared to a
retailers-only secondary market.

While the retailers may adjust their initial inventory level to mitigate the impact
of the manufacturer’s intervention on their profitability, it will never be sufficient for
increasing their total profit to a level higher than their expected profit prior to the
manufacturer’s intervention in the secondary market.

Thus, the manufacturer’s intervention takes away from the retailers some of the
value the Internet-based distribution channel provided them with. However, as sum-
marized in Theorem 6, the manufacturer’s intervention will never reduce the retail-
ers’ expected profits to a level lower than in the absence of the secondary market.
We can therefore conclude that the retailers will always benefit from establishing the
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Internet-based distribution channel for disposing of their excess inventory, despite
the possibility of the manufacturer’s intervention in that channel.

Theorem 6. In equilibrium, the manufacturer’s intervention in the secondary mar-
ket will never reduce the retailers’ expected profits to a level lower than Π I

R, their
expected profits given no secondary market.

As for the total supply chain profits, the way they are affected by the manufac-
turer’s intervention in the Internet-based channel of distribution is indeterminate.
The results of the numerical analysis demonstrate that the expected profits of the
manufacturer and all retailers combined can either increase or decrease as a result
of the manufacturer’s intervention (see Figures 5.10 and 5.11). No simple conditions
could be obtained to determine when expected supply chain profits are to increase.
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Fig. 5.10 Change in supply chain profits as a function of a.

Impact on Supply Chain Performance

We next study how the manufacturer’s intervention in the secondary market will im-
pact the supply chain performance in the primary and secondary markets, measured
by consumer sales and stockout levels. Consider first the primary market: since the
manufacturer’s intervention will always lower the retailers’ initial order quantity
Q, this will have a negative impact on supply chain performance in this market, as
summarized in Theorem 7.

Theorem 7. In equilibrium, the manufacturer’s intervention in the secondary mar-
ket will always reduce sales level and increase stockout level in the primary market.

As for the secondary-market customers, they always benefit from the manufac-
turer’s intervention, as summarized in Theorem 8.
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Theorem 8. In equilibrium, the manufacturer’s intervention in the secondary mar-
ket will always increase the total number of units offered for sale through this chan-
nel and reduce its equilibrium unit price.

Finally, since both the manufacturer and the retailers completely clear off their
inventories through the secondary market, the manufacturer’s intervention in the
secondary market increases the combined sales level in the primary and secondary
markets, thus increasing the manufacturer’s total market share if and only if

QII < QIII +KIII (5.18)
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Our numerical analysis illustrates that the manufacturer’s intervention in the sec-
ondary market will not necessarily increase her total market share (see Figure 5.12,
which is based on the following parameter values: n = 100, c = 0.5, p1 = 3 ,r1 = 5,
a = 3.5). In this example the manufacturer is able to increase her total market share
most of the time, and in those instances where the manufacturer’s intervention re-
sults in a lower market share, the decline is very small. However, there may be other
instances where the manufacturer’s intervention in the secondary market will result
in a more significant reduction in her total market share.

5.6 Discussion and Conclusion

In this chapter we study a setting in which a group of identical retailers may use a
second, Internet-based, channel of distribution for disposing of their excess invento-
ries. We assume that demand in the Internet-based secondary market is mainly price
driven and that the equilibrium unit price is endogenously determined so as to equal
supply and demand and clear the market. We investigate how the use of the Internet-
based distribution channel impacts all players along the supply chain. We further
study the impacts of the manufacturer’s decision to intervene in the secondary mar-
ket by offering additional units for sale. We show that all parties along the supply
chain, including the manufacturer, retailers, and customers in both the primary and
secondary markets, benefit from the retailers’ decision to use the second distribu-
tion channel for selling off their excess inventories. Furthermore, we show that it is
not always in the manufacturer’s best interest to intervene in the secondary market,
due to the negative impact such a decision will have on the retailers’ initial order
quantity, and given that the equilibrium unit price in the secondary market may end
up being lower than the manufacturer’s unit production cost. Moreover, the reduc-
tion in the retailers’ initial order quantity may be so significant that even with the
additional quantity offered for sale by the manufacturer, her total market share may
be reduced. Thus, the manufacturer should carefully study the characteristics of the
markets before announcing her intention to participate in the secondary market. As
for the retailers, they will always be worse off from the manufacturer’s decision to
intervene in the secondary market. However, even with the manufacturer’s interven-
tion, their profits are still expected to be higher compared to the case where they
do not make any use of the Internet-based channel of distribution. Therefore it is
in the retailers’ best interest to use the Internet for reaching new market segments
for disposing of their excess inventories, even if they suspect that the manufacturer
may later decide to intervene in that market. Primary market customers will also be
worse off from the manufacturer’s decision to intervene in the secondary market,
due to the reduction in the retailers’ initial order quantity, which will have a nega-
tive impact on expected stockouts and service level in the primary market. On the
other hand, secondary market customers will benefit from the manufacturer’s inter-
vention since it will increase the total number of units offered for sale and reduce
the equilibrium unit price in that market.
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The model is built on several strong assumptions. One of them is the assumption
that the retailers are aware of the manufacturer’s unit production cost c when making
their decision regarding their initial order quantity Q in the case of a secondary
market with a manufacturer’s intervention. A more realistic assumption would be
to assume that the retailers assign some probability distribution function to c, with
a mean value of c̃. Thus, and based on (5.12) and (5.13), the retailers will assume
that for any order quantity Q, the manufacturer will build a total of nK̃ units for sale
where K̃(Q) = [a(b− c̃)/(2b)−Γ (Q)/2]+, which will result in a secondary-market
equilibrium unit price p̃2 = b[1−(K̃ +Γ (Q))/a]+. Based on (5.15) and (5.16), each
of the retailers will then place an order for Q̃ units, where Q̃ satisfies

F(Q̃) =
r1 − p1

r1 − p̃III
2

=
r1 − p1

r1 − [a(b+ c̃)−bΓ (Q̃)]/2a

The manufacturer, however, will still base her decisions on the true value of c,
and so the total number of units she will build for sale in the secondary market will
be equal to nK(Q̃) = n[a(b− c)/(2b)−Γ (Q̃)/2]+. Consequently, the secondary-
market equilibrium unit price will satisfy p2(Q̃) = b[1− (K(Q̃) + Γ (Q̃))/a]+. In
this case, the impact of the manufacturer’s intervention in the secondary market will
be based in part on the level of accuracy of the retailers’ assumption regarding the
value of c. The analysis will be further complicated if the different retailers have
different levels of information or make different assumptions regarding the value of
the unit production cost c.

Another restrictive assumption of the model is the independence of demand be-
tween the primary and secondary markets. While this assumption may hold in some
situations, in many instances there may be some form of correlation between de-
mand levels in the primary and secondary markets. For example, in the hi-tech in-
dustry, if the performance of a product is lower than expected, it is likely to lead to
relatively low demand levels in both markets. Another example might come from
the fashion industry: an item which was very popular in the primary market is likely
to have high demand in the secondary market as well. One way to modify the model
to include such correlation is to make a, the maximum size of the secondary mar-
ket, a function of ∑n

i=1 xi, the total demand in the primary market. For example, a
positive correlation between the markets may be modeled by setting

a′ = a

[
β +(1−β )

( n

∑
i=1

xi

)/
nμ

]
where a is the maximal size of the secondary market with no correlation and a′
replaces a in our model as the upper limit on the size of the secondary market.
β ∈ [0,1] represents the degree of correlation between the primary and secondary
markets: when β = 1 the two markets are uncorrelated; as β gets closer to zero the
secondary-market demand function becomes more positively correlated with the
actual primary-market demand. The fraction (∑n

i=1 xi)/nμ compares the demand
realization in the primary market with the expected primary-market demand. As
the average demand realization in the primary market increases compared to its
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expected level μ , so will the value of a′, the potential size of the secondary market.
Similarly, a negative correlation between the two markets may be modeled by setting

a′ = a

[
β +(1−β )

(
1−

( n

∑
i=1

xi

)/
nμ

)]
Given a secondary market with no manufacturer’s intervention, retailer i will then

choose her initial order quantity Q to maximize

max
Q≥0

{
Π II

R = r1Exi min(Q,xi)− p1Q+Ex j , j =i

[∫ Q

xi=0
pII

2 (Q− xi) f (xi)dxi

]}
where

pII
2 = lim

n→∞

[
b− (

b/na′
) n

∑
i=1

(Q− xi)+
]

= b− (
b/a′

)
Γ (Q)

Similar modifications should be made to Π III
R , for the case where the manufac-

turer decides to intervene in the secondary market.
Our model also assumes that all information is available to all decision makers

at the point in time when decisions are made. Specifically, we assume that both
the retailers and the manufacturer know the exact characteristics of the secondary-
market demand function at the beginning of the first period. Since the characteristics
of any market tend to change over time, in reality it is more likely that the exact
demand information for the secondary market is revealed closer to the beginning of
the second period, while at the beginning of the first period the manufacturer and
the retailers only have some early signal of the secondary-market characteristics. In
that case, the potential impacts of the secondary market will be a function of the
accuracy of the secondary-market initial demand signal.

We also assume that the retailers and the manufacturer are the only potential
sources of supply for the secondary market. It is possible though that the secondary
market already exists and can be characterized by some demand and supply curves.
The decision of the retailers or the manufacturer to use the Internet-based channel of
distribution for reaching this market will then lead to a shift in the secondary market
supply curve. For example, if the original cumulative supply curve in the secondary
market is characterized by a linear function of the form

S = n [u+ vp2]

then the retailers’ decision to offer their remaining inventories for sale in that market
will change the total supply curve for the secondary market to satisfy

S′ = n [u+ vp2]+
n

∑
i=1

(Q− xi)+

Assuming that demand in the secondary market is still given by the function
D2 = na(1− p2/b) then given an initial order quantity of Q, and assuming that n is
sufficiently high, the limiting equilibrium unit price p2 will satisfy



144 Barchi Gillai and Hau L. Lee

pII
2 =

a− [u+Γ (Q)]
v+(a/b)

Similar modifications should be made to the model, given the manufacturer’s
decision to intervene in the secondary market.

Finally, to simplify the model we assume that secondary-market demand is char-
acterized by a linear and deterministic function of the secondary-market unit price.
One implication of this assumption is the need to modify the optimal decisions of
the manufacturer and retailers so as to guarantee a non-negative equilibrium unit
price. One way to overcome this problem is by using a different function for D2, the
cumulative demand in the secondary market, such as

D2 = na/p2

where a is some positive constant. Clearly, such a demand structure will guaran-
tee a non-negative equilibrium unit price in the secondary market. A more realistic
assumption would be to characterize the demand in the secondary market by some
stochastic distribution function. However, making such an assumption substantially
complicates the analysis.

5.7 Appendix

Proof of Lemma 1. Let ΠM be the manufacturer’s profit. Then based on Theorem 1

Π II
M = nQII(p1 − c) ≥ nQI(p1 − c) = Π I

M

Proof of Lemma 2. Given no secondary market, the expected profits to each re-
tailer satisfy

Π I
R(QI) = r1Ex min

(
QI ,x

)− p1QI

Next, suppose that the retailers decide to use the Internet-based distribution chan-
nel to access the secondary market for selling off their excess inventory, but choose
to leave the initial order quantity equal to QI . In that case the secondary market will
provide an additional source of profit for the retailers while not affecting their ex-
pected profit from the primary market. That is, Π II

R (QI) = r1Ex min(QI ,x)− p1QI +
pII

2 (QI)Ex(QI − x)+ ≥ Π IR(QI).
Ordering the optimal order quantity QII instead of QI can only further increase

the retailers’ expected profits. That is, by definition, Π II
R (QII)≥Π II

R (QI) will always
hold. Combining the two results we obtain that Π II

R (QII)≥ Π II
R (QI)≥ Π I

R(QI); thus
we can conclude that by accessing the secondary market the retailers will always
increase their total expected profits.

Proof of Lemma 3. Expected sales level by each retailer in the primary market
is equal to Exmin(Q,x), which is an increasing function of Q; expected stockout
level in the primary market is equal to Ex(x−Q)+, which is a decreasing function
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of Q. Based on Theorem 1, the introduction of the secondary market will always
increase the retailers’ optimal order quantity, which will consequently lead to higher
expected sales level and lower expected stockout level in the primary market.

Proof of Theorem 2. Each retailer’s expected profit satisfies

Π II
R = r1Ex min(Q,x)− p1Q+ pII

2 Γ (Q)

Differentiating Π II
R with respect to a, and based on the value of pII

2 as given in (5.4),
we obtain

dΠ II
R

da
=

dΠ II
R

dQ

∣∣∣∣
Q=QII

dQII

da
+(b/a2)Γ 2(QII)

We next determine the value of (dΠ II
R /dQ)|Q=QII and dQII/da:

dΠ II
R

dQ

∣∣∣∣
Q=QII

= r1QII f (QII)+ r1
[
1−F(QII)

]− r1QII f (QII)

− p1 +
d pII

2

dQ
Γ (QII)+ pII

2
dΓ (QII)

dQ

= r1
[
1−F(QII)

]− p1 − b
a

F(QII)Γ (QII)+ pII
2 F(QII)

= −b
a

F(QII)Γ (QII)

To obtain the value of dQII/da we differentiate both sides of (5.7) with respect
to a:

f (QII)
dQII

da
= − r1 − p1

[r1 −b+(b/a)Γ (QII)]2

[
− b

a2 Γ (QII)+
b
a

F(QII)
dQII

da

]
After rearranging terms, and using the limiting value of pII

2 as given in (5.4), we
obtain

dQII

da
= Γ (QII)

b(r1 − p1)
a
[
a f (QII)(r1 − pII

2 )2 +b(r1 − p1)F(QII)
]

Based on the above results we obtain

dΠ II
R

da
=

dΠ II
R

dQ

∣∣∣∣
Q=QII

dQII

da
+(b/a2)Γ 2(QII)

= −b
a

F(QII)Γ 2(QII)
b(r1 − p1)

a
[
a f (QII)(r1 − pII

2 )2 +b(r1 − p1)F(QII)
]

+
b
a2 Γ 2(QII)

=
b
a

[
f (QII)(r1 − pII

2 )2

a f (QII)(r1 − pII
2 )2 +b(r1 − p1)F(QII)

]
Γ 2(QII)
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To determine whether f (QII) is positive or negative, we differentiate (5.7) with
respect to Q:

f (QII) =
r1 − p1

a(r1 − pII
2 )2

F(QII) > 0

Thus we can conclude that dΠ II
R /da > 0.

Next, we study how each retailer’s expected profit function changes in b:

dΠ II
R

db
=

dΠ II
R

dQ

∣∣∣∣
Q=QII

dQII

db
+
[
1−Γ (QII)/a

]
Γ (QII)

To obtain the value of dQII/db we differentiate both sides of (5.7) with respect to b:

f (QII)
dQII

db
=

r1 − p1

[r1 −b+(b/a)Γ (QII)]2

[
−1+

1
a

Γ (QII)+
b
a

F(QII)
dQII

db

]
After rearranging terms, and using the limiting value of pII

2 as given in (5.4), we
obtain

dQII

db
=

(r1 − p1)[a−Γ (QII)]
a
[

f (QII)(r1 − pII
2 )2 +(b/a)(r1 − p1)F(QII)

]
Based on the above results we obtain

dΠ II
R

db
= −b

a
F(QII)Γ (QII)

(r1 − p1)[a−Γ (QII)]
a
[

f (QII)(r1 − pII
2 )2 +(b/a)(r1 − p1)F(QII)

]
+
[
1−Γ (QII)/a

]
Γ (QII)

=
[a−Γ (QII)]

a
Γ (QII)

[
f (QII)(r1 − pII

2 )2

f (QII)(r1 − pII
2 )2 +(b/a)(r1 − p1)F(QII)

]
=

pII
2 (r1 − pII

2 )2 f (QII)Γ (QII)
b
[

f (QII)(r1 − pII
2 )2 +(b/a)(r1 − p1)F(QII)

]
Since, as shown earlier, f (QII) > 0, we can conclude that dΠ II

R /db > 0.

Proof of Theorem 3. The manufacturer’s profit function satisfies Π II
M = nQII(p1 − c).

Differentiating Π II
M with respect to a yields

dΠ II
M

da
= n(p1 − c)

dQII

da

Based on the proof of Theorem 2, dQII/da satisfies

dQII

da
= Γ (QII)

b(r1 − p1)
a
[
a f (QII)(r1 − pII

2 )2 +b(r1 − p1)F(QII)
]

Because f (QII) > 0, as shown in the same proof, we obtain that dQII/da > 0 and
consequently dΠ II

M/da > 0.
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Next we study the behavior of the manufacturer’s profit function with respect
to b. Differentiating Π II

M with respect to b yields dΠ II
M/db = n(p1 − c)(dQII/db).

Based on the proof of Theorem 2, dQII/db satisfies

dQII

db
=

(r1 − p1)pII
2

b
[

f (QII)(r1 − pII
2 )2 +(b/a)(r1 − p1)F(QII)

]
Again, since f (QII)> 0, we obtain that dQII/db > 0 and consequently dΠ II

M/db > 0.

Proof of Lemma 4.

Scenario 1: Qii ≤ Q̂ and Qiii ≤ Q̂: in this case, it will be beneficial for the manu-
facturer to participate in the secondary market, and therefore the retailers’ optimal
order quantity is equal to Qiii.

Scenario 2: Qiii ≤ Q̂ and Q̂ ≤ Qii ≤ Q: based on Theorem 5, the manufacturer’s in-
tervention in the secondary market will always reduce the retailers’ expected profits.
Therefore the optimal behavior for the retailers would be to each order Qii units and
force the manufacturer out of the secondary market.

Scenario 3: Qiii > Q̂ and Q̂ ≤ Qii ≤ Q: with Qiii being greater than Q̂, the manufac-
turer will be better off by not participating in the secondary market, which brings us
back to the scenario of a retailers-only secondary market. In this case, the retailers’
optimal order quantity will be equal to Qii.

Scenario 4: Qiii ≤ Q̂ and Qii > Q: this scenario is infeasible. When Qii > Q holds,
it will result in a negative unit price pII

2 (Qii). Based on (5.1) and (5.6), this will in
turn lead to Qii < QI to be true. At the same time, if Qiii ≤ Q̂ then pIII

2 (Qiii) ≥ 0
holds. Therefore, and based on (5.1) and (5.15), Qiii ≥ QI will hold. Combining
these results, and given that Q̂ ≤ Q will always hold, we obtain Q < Qii < QI ≤
Qiii ≤ Q̂ ≤ Q, which is infeasible.

Scenario 5: Q̂ < Qiii ≤ Q and Qii > Q: this scenario is infeasible. Under this
scenario,

KIII(Qiii) <

[
a(b− c)

2b
− Γ (Q̂)

2

]
= 0

and

pIII
2 (Qiii) = b

[
1− (K +Γ (Qiii))

a

]
> b

[
1− Γ (Qiii)

a

]
> b

1−Γ (Q)
a

= 0

Thus, similar to the proof of Scenario 4 above, we can obtain that Qiii ≥ QI will
hold, while at the same time Qii < QI will hold as well. Combining all these results
we obtain Q < Qii < QI ≤ Qiii ≤ Q, which is infeasible.

Scenario 6: Qiii > Q and Qii > Q: with Qiii > Q > Q̂, it is of no value for the
manufacturer to participate in the secondary market. And since Qii > Q holds, the
secondary market does not bring any value to the retailers either. Consequently, each
retailer should place with the manufacturer an order for QI units and not make any
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use of the second, Internet-based, channel of distribution. Since pII
2 (Qiii) < 0 for all

Qiii > Q, which results in Qiii < QI to hold, this means that placing an order for
QI units will not change the manufacturer’s decision to not use herself the Internet-
based distribution channel.

Proof of Theorem 4.

Scenario 1: Qii ≤ Q̂ and Qiii ≤ Q̂. In this case QII = Qii and QIII = Qiii. Based on
(5.4) and (5.12), it can be verified that for any Q, pII

2 (Q) > pIII
2 (Q) will always hold.

In particular, pII
2 (Qii) > pIII

2 (Qii) will always be true. Consequently,

FII(Qii) =
r1 − p1

r1 − pII
2 (Qii)

>
r1 − p1

r1 − pIII
2 (Qii)

will hold as well. Next suppose that Qiii > Qii holds. Since pIII
2 decreases in Q,

assuming that Qiii > Qii holds will result in (r1 − p1)/(r1 − pIII
2 (Qii)) being greater

than (r1 − p1)/(r1 − pIII
2 (Qiii)). Combining the two results we obtain

FII(Qii) =
r1 − p1

r1 − pII
2 (Qii)

>
r1 − p1

r1 − pIII
2 (Qii)

>
r1 − p1

r1 − pIII
2 (Qiii)

= FIII(Qiii)

Since F(Q) is an increasing function of Q, we obtain from the above results that
necessarily Qii > Qiii holds. But this contradicts our initial assumption that Qii is
smaller than Qiii. Thus, we can conclude that in equilibrium Qiii must take on a
value smaller than Qii.

Scenario 2: Q̂ < Qii < Q. In this case QII = QIII = Qii.

Scenario 3: Qii ≥ Q and Qiii ≥ Q. In this case QII = QIII = QI .

Proof of Theorem 5. When the manufacturer does not take part in the sec-
ondary market, total profit to each retailer satisfies Π II

R = r1E min
(
QII ,x

)− p1QII +
pII

2 E(QII − x)+, where pII
2 = b− (b/a)Γ (QII).

When the manufacturer participates in the secondary market, each retailer’s ex-
pected profit is Π III

R = r1E min
(
QIII ,x

)− p1QIII + pIII
2 E(QIII − x)+, where pIII

2 =
b− (b/a)(KIII +Γ (QIII)). Then

Π II
R = r1E min

(
QII ,x

)− p1QII +
[

b− b
a

Γ (QII)
]

E(QII − x)+

≥ r1E min
(
QIII ,x

)− p1QIII +
[

b− b
a

Γ (QIII)
]

E(QIII − x)+

≥ r1E min
(
QIII ,x

)− p1QIII +
[

b− b
a

Γ (QIII)− b
a

KIII
]

E(QIII − x)+ = Π III
R

Proof of Theorem 6. Given no secondary market, total profit to each retailer
satisfies Π I

R = r1E min
(
QI ,x

)− p1QI . Given the manufacturer’s intervention in the
secondary market, each retailer’s expected profit satisfies Π III

R = r1E min
(
QIII ,x

)−
p1QIII + pIII

2 (QIII)E(QIII − x)+. Then
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Π III
R = r1E min(QIII ,x)− p1QIII + pIII

2 (QIII)E(QIII − x)+

≥ r1E min(QI ,x)− p1QI + pIII
2 (QI)E(QI − x)+

≥ r1E min(QI ,x)− p1QI = Π I
R

Proof of Theorem 7. Sales level in the primary market, Ex min(Q,x), increases
in Q, while stockout level in the primary market, Ex(x−Q)+, decreases in Q. Based
on Theorem 4, the manufacturer’s intervention in the secondary market will always
reduce the retailers’ initial order quantity Q. Consequently, expected sales level in
the primary market will necessarily go down while expected stockout level will
go up.

Proof of Theorem 8. We focus our attention in this proof only on those cases where
Qii ≤ Q̂, since this is the only case in which QII and QIII are not equal in value.

When the secondary market is only used by the retailers to dispose of their excess
inventory, then the expected size of the secondary market is nΓ (QII). When the man-
ufacturer takes part in the secondary market, its expected size is n

[
Γ (QIII)+KIII

]
.

For simplicity, we denote yII := Γ (QII) and yIII := Γ (QIII)+KIII ; thus, we would
like to prove that yIII ≥ yII always holds.

Based on (5.6) and (5.15),

F(QII) =
r1 − p1

r1 − pII
2

and F(QIII) =
r1 − p1

r1 − pIII
2

As shown in Theorem 4, the manufacturer’s intervention will always reduce the
retailers’ initial order quantity; thus F(QII) ≥ F(QIII) or

r1 − p1

r1 − pII
2
≥ r1 − p1

r1 − pIII
2

After rearranging terms, we obtain that pII
2 ≥ pIII

2 .
Based on (5.4) and (5.12), the secondary market equilibrium unit price for a

retailers-only secondary market will equal pII
2 = b

[
1−Γ (QII)/a

]
= b

(
1− yII/a

)
,

while the secondary market equilibrium unit price for a secondary market with man-
ufacturer’s intervention will satisfy pIII

2 = b
[
1− [

KIII +Γ (QIII)
]
/a
]
= b

(
1− yIII/a

)
.

Since the manufacturer’s intervention will reduce the equilibrium unit price, we ob-
tain that b

(
1− yII/a

)≥ b
(
1− yIII/a

)
or yIII ≥ yII .

Results of Numerical Analysis

The numerical analysis was conducted with the following parameter values:

n = 100 c = 0.5 r1 = 5.

1. No secondary market: Table 5.2 summarizes the numerical results for the
three values of p1, given the use of a single, traditional channel of distribution,
with no secondary market.
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Table 5.2 Numerical results given no secondary market.

p1 Q_I PI_I_R PI_I_M

2 0.916 1.167 137.444
2.5 0.693 0.767 138.629
3 0.511 0.468 127.706

No Secondary Market

Table 5.3 Numerical results for a variable a, given p1 = 2.

a Q_II p_II PI_II_R PI_II_M Q_III K_(Q_III) P2_III PI_III_R PI_III_M
0.8 1.086 0.471 1.339 162.900 1.086 0.000 0.471 1.339 162.900
0.9 1.105 0.515 1.359 165.788 1.102 0.008 0.509 1.356 165.359
1.0 1.122 0.552 1.375 168.338 1.112 0.030 0.530 1.365 166.858
1.1 1.137 0.584 1.389 170.573 1.120 0.052 0.547 1.373 168.230
1.2 1.150 0.611 1.402 172.553 1.127 0.075 0.562 1.379 169.498
1 3 1 162 0 635 1 413 174 323 1 133 0 097 0 575 1 385 170 674

Retailers-Only Secondary Market Manufacturer's Intervention

1.3 1.162 0.635 1.413 174.323 1.133 0.097 0.575 1.385 170.674
1.4 1.173 0.656 1.423 175.913 1.138 0.121 0.586 1.390 171.785
1.5 1.182 0.674 1.432 177.353 1.143 0.144 0.596 1.395 172.841
1.6 1.191 0.691 1.440 178.665 1.147 0.168 0.605 1.399 173.851
2.0 1.219 0.743 1.466 182.918 1.161 0.263 0.632 1.412 177.550
2.5 1.245 0.787 1.490 186.728 1.172 0.384 0.654 1.422 181.674
3.0 1.263 0.818 1.506 189.510 1.180 0.506 0.669 1.430 185.498
3.5 1.278 0.841 1.519 191.640 1.185 0.629 0.680 1.435 189.1323.5 1.278 0.841 1.519 191.640 1.185 0.629 0.680 1.435 189.132
4.0 1.289 0.859 1.529 193.320 1.190 0.753 0.688 1.439 192.651
4.5 1.298 0.873 1.537 194.685 1.193 0.877 0.695 1.442 196.083
5.0 1.305 0.885 1.544 195.818 1.196 1.001 0.700 1.445 199.459
6.0 1.317 0.902 1.554 197.580 1.201 1.249 0.708 1.449 206.091
7.0 1.326 0.916 1.562 198.885 1.204 1.498 0.714 1.452 212.617
8.0 1.333 0.925 1.568 199.905 1.206 1.747 0.718 1.454 219.077

Table 5.4 Numerical results for a variable a, given p1 = 2.5.

Retailers-Only Secondary Market Manufacturer's Intervention
a Q_II p_II PI_II_R PI_II_M Q_III K_(Q_III) P2_III PI_III_R PI_III_M

0.5 0.809 0.492 0.876 161.740 0.809 0.000 0.492 0.876 161.740
0.8 0.855 0.650 0.918 171.000 0.834 0.066 0.582 0.900 167.420
0.9 0.865 0.682 0.927 173.000 0.840 0.089 0.599 0.904 168.786
1.0 0.874 0.709 0.935 174.740 0.844 0.113 0.613 0.908 170.019
1.1 0.881 0.731 0.942 176.200 0.847 0.137 0.625 0.911 171.110
1.2 0.888 0.751 0.947 177.500 0.850 0.161 0.634 0.914 172.168
1 3 0 893 0 767 0 952 178 640 0 853 0 186 0 643 0 916 173 187

Retailers Only Secondary Market Manufacturer s Intervention

1.3 0.893 0.767 0.952 178.640 0.853 0.186 0.643 0.916 173.187
1.4 0.898 0.782 0.957 179.600 0.855 0.210 0.650 0.918 174.146
1.5 0.903 0.795 0.961 180.520 0.857 0.234 0.656 0.920 175.059
1.6 0.907 0.806 0.964 181.300 0.859 0.259 0.662 0.922 175.926
2.0 0.919 0.841 0.975 183.800 0.864 0.357 0.679 0.926 179.182
2.5 0.930 0.870 0.985 186.000 0.868 0.481 0.692 0.930 182.934
3.0 0.937 0.890 0.991 187.460 0.871 0.605 0.702 0.933 186.486
3.5 0.943 0.905 0.996 188.600 0.874 0.729 0.708 0.935 189.9243.5 0.943 0.905 0.996 188.600 0.874 0.729 0.708 0.935 189.924
4.0 0.947 0.916 1.000 189.400 0.875 0.854 0.714 0.936 193.236
4.5 0.951 0.925 1.003 190.120 0.876 0.979 0.717 0.938 196.564
5.0 0.953 0.932 1.005 190.670 0.878 1.103 0.721 0.939 199.847
6.0 0.958 0.943 1.009 191.520 0.879 1.353 0.725 0.940 206.315
7.0 0.961 0.951 1.012 192.150 0.880 1.603 0.729 0.941 212.728
8.0 0.963 0.957 1.014 192.620 0.881 1.852 0.732 0.942 219.098

10.0 0.967 0.965 1.017 193.300 0.882 2.352 0.735 0.943 231.767
15.0 0.971 0.977 1.021 194.220 0.884 3.601 0.740 0.944 263.250
20.0 0.973 0.982 1.023 194.690 0.885 4.851 0.743 0.945 294.612
25.0 0.975 0.986 1.024 194.980 0.885 6.101 0.744 0.945 325.933
30.0 0.976 0.988 1.025 195.170 0.886 7.351 0.745 0.946 357.233
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Table 5.5 Numerical results for a variable a, given p1 = 3.

Retailers-Only Secondary Market Manufacturer's Intervention
a Q_II p_II PI_II_R PI_II_M Q_III K_(Q_III) P2_III PI_III_R PI_III_M

0.5 0.622 0.682 0.558 155.525 0.606 0.049 0.599 0.545 151.960
0.8 0.644 0.789 0.575 161.000 0.616 0.122 0.652 0.553 155.908
0.9 0.649 0.810 0.579 162.175 0.618 0.146 0.663 0.555 156.957
1.0 0.653 0.827 0.582 163.125 0.620 0.171 0.671 0.556 157.925
1.1 0.656 0.841 0.585 163.900 0.621 0.196 0.678 0.557 158.808
1.2 0.658 0.853 0.587 164.600 0.622 0.220 0.684 0.558 159.651
1 3 0 661 0 864 0 588 165 175 0 623 0 245 0 689 0 559 160 476

Retailers Only Secondary Market Manufacturer s Intervention

1.3 0.661 0.864 0.588 165.175 0.623 0.245 0.689 0.559 160.476
1.4 0.663 0.873 0.590 165.700 0.624 0.270 0.693 0.560 161.283
1.5 0.665 0.881 0.592 166.150 0.625 0.295 0.697 0.560 162.047
1.6 0.666 0.888 0.593 166.550 0.626 0.320 0.700 0.561 162.813
2.0 0.671 0.909 0.597 167.775 0.628 0.419 0.710 0.562 165.713
2.5 0.675 0.926 0.600 168.800 0.629 0.544 0.718 0.564 169.157
3.0 0.678 0.938 0.602 169.500 0.630 0.669 0.723 0.565 172.501
3.5 0.680 0.947 0.604 170.025 0.631 0.793 0.727 0.565 175.7623.5 0.680 0.947 0.604 170.025 0.631 0.793 0.727 0.565 175.762
4.0 0.682 0.953 0.605 170.400 0.632 0.918 0.730 0.566 179.031
4.5 0.683 0.958 0.606 170.725 0.632 1.043 0.732 0.566 182.233
5.0 0.684 0.962 0.607 170.950 0.633 1.168 0.734 0.566 185.415
6.0 0.685 0.968 0.608 171.325 0.633 1.418 0.736 0.567 191.774
7.0 0.686 0.973 0.609 171.588 0.634 1.668 0.738 0.567 198.116
8.0 0.687 0.976 0.609 171.800 0.634 1.918 0.740 0.567 204.425

Table 5.6 Numerical results for a variable b, given p1 = 2.

Manufacturer's InterventionRetailers-Only Secondary Market
b Q_II p_II PI_II_R PI_II_M Q_III K_(Q_III) P2_III PI_III_R PI_III_M

0.8 1.189 0.687 1.439 178.365 1.144 0.425 0.597 1.396 175.656
0.9 1.232 0.765 1.478 184.830 1.164 0.540 0.639 1.415 182.103
1.0 1.278 0.841 1.519 191.625 1.185 0.630 0.680 1.435 189.118
1.1 1.325 0.914 1.561 198.780 1.207 0.701 0.720 1.455 196.556
1.2 1.375 0.985 1.604 206.220 1.230 0.760 0.761 1.476 204.232
1.3 1.427 1.052 1.648 214.005 1.253 0.808 0.800 1.497 212.134
1 4 1 481 1 117 1 692 222 098 1 276 0 847 0 839 1 518 220 160

Manufacturer s InterventionRetailers Only Secondary Market

1.4 1.481 1.117 1.692 222.098 1.276 0.847 0.839 1.518 220.160
1.5 1.536 1.178 1.737 230.468 1.301 0.880 0.877 1.540 228.290
1.8 1.713 1.340 1.870 256.995 1.377 0.949 0.988 1.606 252.920
2.0 1.836 1.431 1.955 275.415 1.432 0.977 1.058 1.652 269.332
2.5 2.142 1.601 2.145 321.225 1.578 1.008 1.220 1.769 309.248
3.0 2.419 1.707 2.291 362.903 1.737 1.002 1.359 1.886 346.539
3.5 2.656 1.774 2.398 398.430 1.903 0.974 1.474 1.999 380.276
4.0 2.853 1.816 2.476 427.935 2.070 0.933 1.567 2.103 409.9954.0 2.853 1.816 2.476 427.935 2.070 0.933 1.567 2.103 409.995
4.5 3.016 1.845 2.534 452.340 2.232 0.886 1.639 2.195 435.681
5.0 3.151 1.866 2.577 472.665 2.384 0.837 1.696 2.274 457.664
5.5 3.265 1.881 2.611 489.720 2.525 0.788 1.739 2.341 476.417
6.0 3.362 1.892 2.638 504.225 2.653 0.742 1.773 2.397 492.446
7.0 3.516 1.908 2.677 527.430 2.873 0.660 1.820 2.484 518.135
8.0 3.634 1.919 2.704 545.130 3.052 0.591 1.851 2.546 537.627
9.0 3.727 1.926 2.724 559.035 3.197 0.534 1.872 2.591 552.838

10.0 3.802 1.932 2.740 570.240 3.318 0.486 1.887 2.626 565.010
11.0 3.863 1.936 2.751 579.465 3.418 0.445 1.898 2.653 574.958
12.0 3.915 1.939 2.761 587.175 3.503 0.410 1.907 2.674 583.237
14.0 3.996 1.944 2.775 599.355 3.639 0.355 1.919 2.705 596.223
16.0 4.057 1.947 2.786 608.513 3.743 0.312 1.927 2.728 605.936
18.0 4.104 1.950 2.793 615.660 3.824 0.279 1.933 2.744 613.476
20.0 4.143 1.952 2.799 621.390 3.889 0.252 1.937 2.756 619.499
22 0 4 174 1 953 2 804 626 085 3 943 0 229 1 941 2 766 624 42022.0 4.174 1.953 2.804 626.085 3.943 0.229 1.941 2.766 624.420
24.0 4.200 1.954 2.808 630.000 3.988 0.210 1.943 2.774 628.515
26.0 4.222 1.955 2.812 633.315 4.026 0.195 1.945 2.780 631.978
28.0 4.241 1.956 2.814 636.165 4.058 0.181 1.947 2.786 634.943
30.0 4.258 1.957 2.816 638.633 4.087 0.169 1.949 2.791 637.512
35.0 4.291 1.958 2.820 643.575 4.144 0.145 1.952 2.800 642.644
40.0 4.315 1.959 2.824 647.280 4.187 0.127 1.953 2.805 646.490
45.0 4.334 1.960 2.827 650.168 4.220 0.113 1.955 2.810 649.478
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Table 5.7 Numerical results for a variable b, given p1 = 2.5.

Retailers-Only Secondary Market Manufacturer's Intervention
b Q_II p_II PI_II_R PI_II_M Q_III K_(Q_III) P2_III PI_III_R PI_III_M

0.8 0.881 0.732 0.942 176.260 0.845 0.519 0.619 0.910 175.195
0.9 0.911 0.819 0.968 182.220 0.859 0.636 0.664 0.922 182.236
1.0 0.943 0.905 0.996 188.540 0.873 0.730 0.708 0.935 189.886
1.1 0.976 0.989 1.025 195.220 0.888 0.805 0.753 0.948 197.975
1.2 1.011 1.071 1.055 202.280 0.903 0.867 0.797 0.962 206.407
1.3 1.049 1.152 1.086 209.720 0.919 0.918 0.841 0.975 215.081
1 4 1 088 1 230 1 118 217 580 0 935 0 961 0 884 0 989 223 939

Retailers Only Secondary Market Manufacturer s Intervention

1.4 1.088 1.230 1.118 217.580 0.935 0.961 0.884 0.989 223.939
1.5 1.129 1.306 1.152 225.840 0.951 0.998 0.928 1.004 232.954
1.8 1.266 1.518 1.257 253.140 1.004 1.079 1.055 1.049 260.640
2.0 1.367 1.645 1.331 273.320 1.042 1.115 1.137 1.080 279.410
2.5 1.644 1.902 1.516 328.860 1.146 1.168 1.334 1.165 326.581
3.0 1.932 2.077 1.682 386.440 1.264 1.185 1.516 1.256 373.164
3.5 2.200 2.189 1.815 440.080 1.396 1.178 1.678 1.352 418.051
4.0 2.435 2.260 1.916 486.940 1.541 1.154 1.819 1.450 460.2704.0 2.435 2.260 1.916 486.940 1.541 1.154 1.819 1.450 460.270
4.5 2.634 2.307 1.991 526.800 1.693 1.117 1.936 1.546 499.005
5.0 2.802 2.339 2.048 560.440 1.847 1.073 2.032 1.636 533.788
5.5 2.945 2.361 2.092 588.940 1.999 1.024 2.109 1.717 564.477
6.0 3.066 2.378 2.126 613.240 2.145 0.973 2.169 1.789 591.314
7.0 3.261 2.401 2.175 652.280 2.407 0.876 2.253 1.905 635.044
8.0 3.411 2.415 2.209 682.100 2.629 0.790 2.306 1.989 668.469
9.0 3.528 2.424 2.233 705.560 2.814 0.716 2.341 2.052 694.548

10.0 3.622 2.431 2.251 724.460 2.968 0.653 2.365 2.098 715.362
11.0 3.700 2.437 2.265 740.000 3.098 0.599 2.382 2.134 732.327
12.0 3.765 2.441 2.277 752.980 3.208 0.553 2.395 2.163 746.405
14.0 3.867 2.447 2.294 773.480 3.385 0.478 2.412 2.204 768.415
16.0 3.945 2.450 2.305 788.920 3.519 0.421 2.424 2.232 784.828
18.0 4.005 2.454 2.314 800.940 3.625 0.376 2.432 2.252 797.538
20.0 4.053 2.456 2.320 810.580 3.710 0.339 2.437 2.268 807.672
22 0 4 092 2 458 2 327 818 460 3 780 0 309 2 442 2 280 815 94322.0 4.092 2.458 2.327 818.460 3.780 0.309 2.442 2.280 815.943
24.0 4.125 2.459 2.329 825.060 3.838 0.284 2.445 2.289 822.821
26.0 4.153 2.460 2.335 830.620 3.888 0.262 2.448 2.297 828.631
28.0 4.177 2.461 2.338 835.400 3.930 0.244 2.450 2.303 833.604
30.0 4.198 2.461 2.339 839.560 3.967 0.228 2.452 2.309 837.909
35.0 4.239 2.463 2.343 847.860 4.041 0.196 2.455 2.319 846.506
40.0 4.270 2.464 2.348 854.080 4.097 0.171 2.458 2.327 852.941
45.0 4.295 2.465 2.352 858.920 4.140 0.152 2.459 2.332 857.941

2. Secondary market, variable a: For this part of the numerical analysis, the
value of b was set to equal b = 1. Tables 5.3, 5.4, and 5.5 summarize the nu-
merical results for p1 = 2, p1 = 2.5, and p1 = 3, respectively, given a secondary
market – either with or without the manufacturer’s intervention.

3. Secondary market, variable b: For this part of the numerical analysis, the
value of a was set to equal a = 3.5. Tables 5.6, 5.7, and 5.8 summarize the nu-
merical results for p1 = 2, p1 = 2.5, and p1 = 3, respectively, given a secondary
market – either with or without the manufacturer’s intervention.
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Table 5.8 Numerical results for a variable b, given p1 = 3.

Retailers-Only Secondary Market Manufacturer's Intervention
b Q_II p_II PI_II_R PI_II_M Q_III K_(Q_III) P2_III PI_III_R PI_III_M

0.8 0.638 0.762 0.571 159.613 0.612 0.579 0.632 0.550 160.739
0.9 0.659 0.855 0.587 164.675 0.622 0.698 0.680 0.558 167.944
1.0 0.680 0.947 0.604 170.025 0.631 0.793 0.727 0.565 175.762
1.1 0.703 1.038 0.621 175.675 0.641 0.871 0.774 0.573 184.051
1.2 0.727 1.128 0.639 181.675 0.651 0.935 0.820 0.581 192.719
1.3 0.752 1.217 0.659 188.038 0.661 0.988 0.867 0.589 201.618
1 4 0 779 1 305 0 679 194 800 0 672 1 034 0 913 0 597 210 784

Retailers Only Secondary Market Manufacturer s Intervention

1.4 0.779 1.305 0.679 194.800 0.672 1.034 0.913 0.597 210.784
1.5 0.808 1.391 0.700 201.963 0.683 1.073 0.960 0.606 220.103
1.8 0.905 1.641 0.770 226.200 0.718 1.161 1.097 0.633 248.891
2.0 0.979 1.797 0.822 244.825 0.744 1.203 1.187 0.652 268.576
2.5 1.202 2.141 0.967 300.563 0.814 1.272 1.408 0.705 318.932
3.0 1.468 2.401 1.121 367.000 0.896 1.306 1.620 0.764 370.176
3.5 1.748 2.578 1.263 436.900 0.991 1.319 1.819 0.830 421.666
4.0 2.011 2.691 1.379 502.863 1.100 1.315 2.003 0.902 472.6004.0 2.011 2.691 1.379 502.863 1.100 1.315 2.003 0.902 472.600
4.5 2.245 2.763 1.468 561.250 1.224 1.297 2.167 0.980 522.121
5.0 2.446 2.810 1.536 611.525 1.360 1.267 2.310 1.061 569.207
5.5 2.618 2.843 1.588 654.525 1.505 1.228 2.429 1.141 612.948
6.0 2.765 2.866 1.629 691.350 1.653 1.182 2.526 1.217 652.711
7.0 3.003 2.895 1.686 750.650 1.942 1.083 2.665 1.350 719.739
8.0 3.184 2.914 1.725 795.975 2.201 0.985 2.751 1.452 771.909
9.0 3.326 2.925 1.752 831.600 2.424 0.897 2.806 1.529 812.654

10.0 3.441 2.934 1.773 860.275 2.612 0.820 2.842 1.586 845.038
11.0 3.535 2.940 1.788 883.850 2.772 0.753 2.867 1.630 871.299
12.0 3.614 2.945 1.800 903.550 2.909 0.696 2.885 1.664 893.000
14.0 3.738 2.951 1.818 934.600 3.127 0.602 2.908 1.713 926.748
16.0 3.832 2.956 1.830 957.950 3.294 0.530 2.923 1.746 951.787
18.0 3.905 2.959 1.840 976.125 3.424 0.473 2.933 1.769 971.111
20.0 3.963 2.961 1.846 990.700 3.529 0.427 2.940 1.787 986.482
22 0 4 011 2 963 1 851 1002 625 3 616 0 389 2 945 1 800 999 00622.0 4.011 2.963 1.851 1002.625 3.616 0.389 2.945 1.800 999.006
24.0 4.050 2.964 1.855 1012.575 3.688 0.357 2.949 1.810 1009.407
26.0 4.084 2.965 1.858 1021.000 3.749 0.330 2.952 1.819 1018.185
28.0 4.113 2.967 1.863 1028.200 3.802 0.307 2.954 1.826 1025.692
30.0 4.138 2.967 1.865 1034.462 3.847 0.287 2.956 1.832 1032.187
35.0 4.188 2.969 1.871 1046.975 3.938 0.246 2.960 1.844 1045.146
40.0 4.225 2.970 1.874 1056.375 4.007 0.216 2.963 1.851 1054.840
45.0 4.255 2.971 1.876 1063.687 4.060 0.192 2.965 1.857 1062.366
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Axsäter S (2003) A new decision rule for lateral transshipments in inventory systems. Management
Science 49(9):1168–1179

Billington C, Lee HL, Tang CS (1998) Successful strategies for product rollovers. Sloan Manage-
ment Review 39(3):23–30

Choi TM, Li D, Yan H (2004) Optimal returns policy for supply chain with e-marketplace. Inter-
national Journal of Production Economics 88(2):205–227

Doctorow D, Saloner G (2000) QRS corporation. A case study. Graduate School of Business,
Stanford University, EC-14

Elmaghraby W (2000) Supply contract competition and sourcing policies. Manufacturing and Ser-
vice Operations Management 2(4):350–371

Eppen GD, Iyer AV (1997) Improved fashion buying with Bayesian updates. Operations Research
45(6):805–819



154 Barchi Gillai and Hau L. Lee

Esteban S, Shum M (2007) Durable-goods oligopoly with secondary markets: The case of auto-
mobiles. The RAND Journal of Economics 38(2):332–354

Grey W, Olavson T, Shi D (2005) The role of e-marketplaces in relationship-based supply chains:
A survey. IBM Systems Journal 44(1):109–123

Kleindorfer PR, Wu DJ (2003) Integrating long- and short-term contracting via business-to-
business exchanges for capital-intensive industries. Management Science 49(11):1597–1615

Klemperer P (1999) Auction theory: A guide to the literature. Journal of Economic Surveys
13(3):227–286

Kouvelis P, Gutierrez GJ (1997) The newsvendor problem in a global market: Optimal centralized
and decentralized control policies for a two-market stochastic inventory system. Management
Science 43(5):571–585

Lee HL, Whang S (2002) The impact of the secondary market on the supply chain. Management
Science 48(6):719–731

McAfee R, McMillan J (1987) Auctions and bidding. Journal of Economic Literature 25:699–738
Mendelson H, Tunca TI (2007) Strategic spot trading in supply chains. Management Science

53(5):742–759
Milner JM, Kouvelis P (2007) Inventory, speculation, and sourcing strategies in the presence of

online exchanges. Manufacturing and Service Operations Management 9(3):312–331
Peleg B, Lee HL, Hausman WH (2002) Short-term e-procurement strategies vs. long-term con-

tracts. Production and Operations Management 11(4):458–479
Rosenfield DB (1989) Disposal of excess inventory. Operations Research 37(3):404–409
Rudi N, Kapur S, Pyke DF (2001) A two-location inventory model with transshipment and local

decision making. Management Science 47(12):1668–1680
Sosic G (2006) Transshipment of inventories among retailers: Myopic vs. farsighted stability. Man-

agement Science 52(10):1493–1508
Taylor C (2001) They love the slump. Time Global Business B24–B25, June
Tunca TI, Zenios SA (2006) Supply auctions and relational contracts for procurement. Manufac-

turing and Service Operations Management 8(1):43–67
Vakrat Y (2000) Online auctions. PhD dissertation, University of Rochester
Wurman PR, Walsh WE, Wellman MP (1998) Flexible double auctions for electronic commerce:

theory and implementation. Decision Support Systems 24(1):17–27



Chapter 6
Managing Client Portfolio in a Two-Tier
Supply Chain

Basak Kalkanci and Seungjin Whang

Abstract Suppliers in a variety of industries today face the challenge of managing
their business where the utilization of their capacities fluctuates dramatically over
time. The fluctuations can be attributed to the business cycle of the economy, as well
as to the amplification of demand variability as one moves upstream (i.e., the bull-
whip effect). In this chapter, we investigate the source of the fluctuations by analyz-
ing a two-tier supply chain where the supplier serves many clients whose demands
are subject to individual trends and the business cycle of the general economy. We
present conditions under which the bullwhip effect or the stabilizing effect of the
clients’ orders is felt by the supplier. We also analyze how the supplier can build
an efficient client portfolio by analyzing the impact of a new client on the expected
profit of the supplier in a newsvendor setting. We derive the key performance indi-
cators that can guide a supplier in the right direction of the client portfolio. Thus,
by understanding the clients’ ordering behaviors and its impact on capacity deci-
sions, the supplier can strategically select an efficient client portfolio, so that the
risk-neutral supplier would maximize the expected long-term profit.

6.1 Introduction

Consider a supplier who has made a large investment in capacity in expectation of
future demands. The supplier would face the challenge of managing the business if
the economy slows down and the expectations do not materialize. Examples of such
a business pattern would include semiconductor foundries (e.g., TSMC and UMC),
manufacturing service providers (e.g., Foxconn and Flextronics), industrial parts
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Fig. 6.1 Utilization chart of TSMC, UMC and Chartered (http://www.icknowledge.com/our
products/utilization.html).

manufacturers (e.g., Intel and LG–Phillips LCD), and equipment manufacturers
(e.g., Cisco and Applied Materials). See, for example, Figure 6.1 that plots quar-
terly utilization rates of top three pure-play foundries – TSMC, UMC, and Char-
tered – in 2001–2007. The utilization significantly fluctuates over the years, ranging
between 41 and 108% of its nominal capacity. The average utilization is, respec-
tively, 85.85, 74.57, and 62.07% at these firms, with standard deviation (coefficient
of variation) 19.68% (22.93%), 16.27% (21.81%), and 20.68% (33.32%). Also we
observe that fluctuations at these three foundries are exposed to the same cycle, i.e.,
the economy’s business cycle, far from meeting the usual independent and iden-
tically distributed (iid) demand assumption. This chapter attempts to answer two
questions: Why do we see such fluctuations of utilization at the upstream sector? Is
it all attributed to the business cycle or is the bullwhip effect also responsible? And,
how can the supplier alleviate the exposure to the congestion–starvation cycles by
building an efficient client portfolio?

In order to answer the questions, we develop a two-tier supply chain model (see
Figure 6.2) in which one supplier serves multiple long-term industrial clients who
themselves face stochastic demands from their respective consumers. Foundries, for
example, face a diverse set of clients selling in different end-consumer sectors like
computers, medical equipment, consumer electronic devices, and telecommunica-
tion gears. The demands in different sectors are subject to individual market trends
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Fig. 6.2 Supply chain structure.

and fluctuations, as well as to the business cycles of the general economy. To cap-
ture this, we assume that consumer demands arriving to a client are correlated over
time, and that consumer demands facing different clients are also correlated with
each other.

In this “doubly correlated demands” setting, the first question revisits the bull-
whip effect that refers to the phenomenon where “orders to the supplier tend to
have larger variance than sales to the buyer” in a supply chain (Lee et al. 1997).
One of the four causes of the bullwhip effect is demand signal processing which
relates to how the firms update their forecast based on the observed demand. In a
multiperiod inventory control setting where demands are serially correlated in time,
a downstream firm would rightfully update demand forecasts based on the observed
demand. If the observed demand is larger than expected, the firm would place an
even larger order with its supplier. This is to raise the inventory to account for the
adjustment of expected demand based on new information, as well as the one-for-
one replacement of the last-period demand. A symmetric phenomenon – placing a
smaller order than actual demand – happens when the downstream firm observes
a lower-than-expected demand. Lee et al. (1997) offer a proof of the bullwhip ef-
fect in a model with one supplier and one buyer, but it is not clear if the effect
will continue to exist in the presence of multiple buyers where the inventory risk
pooling effect coexist with the bullwhip effect. Indeed, Baganha and Cohen (1998)
report the opposite of the bullwhip (a stabilizing effect) at the macroeconomic level
at the distribution center in a three-tier supply chain and present a model to explain
this situation. We also present the conditions under which the bullwhip effect or
the stabilizing effect arises in a multibuyer context where customer demands are
correlated.

To answer the second question of client portfolio design, we analyze the impact
of a new additional client on the expected profit to the supplier. The marginal impact
is assessed in terms of the mean and variance of the demand portfolio. The tradi-
tional approach to portfolio design is mean–variance analysis in investment theory;
a risk-averse investor would design a portfolio of stocks in consideration of the
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trade-off between the mean return and the variance. The result of the analysis is
the efficient frontier. There exists a continuum of viable mean–variance pairs on the
efficient frontier that are not dominated by other pairs attainable within a given bud-
get constraint. One mean–variance pair on the frontier may be optimal to an investor
with a specific utility function, but not necessarily so to another investor. This is the
approach taken by Carr and Lovejoy (2000) in their analysis of demand portfolio.
By contrast, we follow an alternative route of portfolio design where a risk-neutral
supplier would maximize the expected profit by choosing the right level of capacity.
In so doing, the supplier faces the newsvendor type of trade-off between overage and
underage costs. Too much capacity will lead to idle capacity and wasted investment,
while too little capacity results in loss of goodwill with her valued clients. Under
normal demands, the optimal capacity decision would lead to an expected profit
that increases in the mean demand and decreases in its variance. Thus, when a new
client is added, the new demand stream could increase the volatility, as well as the
mean, of total demand, so it may more than offset the gain in the expected revenue.
Note that this approach is possible due to the unique nature of inventory manage-
ment settings where both mean and variance endogenously affect the expected profit
objective, without invoking the usual risk-averse utility assumption.

Our marginal analysis approach, as opposed to the usual optimization approach,
seems reasonable in the context of client portfolio, since unlike the stock portfolio
problem, no supplier is likely to enjoy full degrees of freedom in choosing the entire
portfolio of clients for her convenience. Hence, we instead highlight the right KPIs
(key performance indicators) that would guide a supplier in the right “direction” of
the portfolio. The supplier can strategically use it to assess the current position of
the firm, as well as to recruit the best available client.

The rest of this chapter is organized in five sections as follows. The next section
briefly reviews the literature related to this work. In Section 6.3 we develop the
basic model of doubly correlated supply chain and derive some preliminary results
for later sections. Sections 6.4 and 6.5 form the core of the work. Section 6.4 derives
the conditions for the bullwhip effect or the stabilizing effect in the two-tier supply
chain. Section 6.5 offers the marginal analysis when a new client is added to the
existing portfolio. The last section provides limitations of the model and directions
of further research, followed by concluding remarks.

6.2 Literature Review

This work falls into the general field of demand management that studies a broad
class of demand-side controls. Examples of demand-side controls include pricing
and tariff structures (Wilson 1993), priority assignment (Mendelson and Whang
1989), seat protection levels (Brumelle and McGill 1993), admissions policy (Kelly
et al. 1998), and others. For an excellent overview of revenue management
(a substantial subset of demand management), readers are referred to the book
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The Theory and Practice of Revenue Management (2004) by Talluri and van Ryzin.
Our work follows the earlier work by Carr and Lovejoy (2000) that studies an op-
timal demand portfolio. They consider a supplier who has fixed capacity but faces
a random yield. On the demand side, the supplier has a set of “raw” correlated ran-
dom demands to choose from. The supplier’s opportunity set is general, including
a linear combination of raw demands and priority-based customer selection rules,
each of which can be ultimately translated to demand distributions. The authors ask,
“What is an optimal demand distribution with fixed capacity?” They offer mean–
variance analysis and characterize the efficient frontier.

This work follows their work by extending the analysis to a multiperiod set-
ting with serially correlated demand streams. The model assumes double corre-
lation of demands in time and client demands. For the sake of exposition, how-
ever, we restrict the supplier’s opportunity set to Boolean (accept/reject) choices
under fixed capacity. Another key difference between the two works is the sup-
ply chain structure. Their supply chain has a single tier represented by a supplier
selling to multiple end-consumers, while ours consists of two tiers: a supplier and
multiple industrial clients serving end-consumers. By including the customer’s cus-
tomers in our model, we can better capture the specific nature of the business
environment of the industrial sector (i.e., pure foundry or manufacturing service)
we analyze. In particular, this enables us to endogenize the potential bullwhip ef-
fect in this supply chain, thereby allowing us to discuss broader issues of variance
analysis.

Another stream of research that is relevant to this work is the bullwhip litera-
ture led by Forrester (1961), Sterman (1989), and Lee et al. (1997). More recently,
Baganha and Cohen (1998) present a three-tier supply chain model (a supplier, dis-
tributor, and multiple retailers) in which they study the potential role of the distrib-
utor as a “stabilizer” of order flows in the supply chain. They identify a chain of
factors – cost structure, inventory policy, and order patterns - that drive the bullwhip
or the stabilizing effect at the distribution center. That is, the fixed cost of order-
ing leads to the optimality of an (s,S) policy to the retailer, which in return results
in negative serial correlation in each retailer’s orders. The authors observe that the
variance of each retailer’s orders is higher than the variance of the market demand.
This implies that the aggregate market demand has a lower variance than the aggre-
gate orders at the distribution center. However, under certain conditions, the optimal
order policy (that happens to be a myopic one) by the distributor would reduce the
variability of the demand faced by the supplier. A general lesson is that correlation
over time matters to bullwhip and stabilization effects. Positive (or negative) cor-
relation is associated with higher (or lower) variability on upstream orders. In our
study, we restrict our attention to how the variability is propagated by the retailers
and we observe that under a general forecasting model and correlation among retail-
ers, it is possible to observe bullwhip or stabilization effect. We show similar results
to Baganha and Cohen (1998) on serial correlation in a slightly different frame-
work. In addition, we show that correlation among clients is a driver to accelerate
or ameliorate the bullwhip.
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6.3 The Basic Model

We closely follow the setup and notation of Lee et al. (1997) and extend it to a multi-
client setting. Suppose there are N clients (he) who order from the same supplier
(she) at each period. To client i, there is a delay of νi periods between ordering and
receiving the goods. We let νN = (ν1,ν2, · · · ,νN). The timing of the events in a
typical period (or period 1) is as follows: At the beginning of period t, a decision to
order a quantity zt from the supplier is made and executed. Next, the goods ordered
νi periods ago arrive. Lastly, demand is realized, and the available inventory is used
to meet the demand. Excess demand is backlogged. We assume that excess inventory
can be returned without cost. Let hi, πi, and ci denote the unit holding cost, the unit
shortage penalty cost, and the unit ordering cost for client i, respectively. Also, let γ
be the cost discount factor per period.

Each client i faces serially correlated demands following the first-order autore-
gressive process (AR(1))

Di,t = di +ρiDi,t−1 +ui,t , for 1 ≤ i ≤ N, (6.1)

where Di,t is the demand arriving to client i in period t. We define

ρN := [ρ1,ρ2, ...,ρN ],

where each element, ρi, is a constant that satisfies −1 < ρi < 1. Likewise, we let
dN := [d1,d2, ...,dN ]. AR(p) for some integer p or its variation (e.g., MS-AR(p))
is widely used to describe economic cycles. Our formulation of demands as AR(1)
attempts to emulate economic cycles with a minimum burden on mathematics and
notation.

Also, we define Ut as

Ut := [u1,t ,u2,t , ...,uN,t ],

and assume that it is independently and identically distributed with a multivariate
normal distribution N(0,Σ N) for each t. The covariance matrix of Ut , Σ N , is given by
Σ N

ii = Var(ui,t) = σ2
i and Σ N

i j = Cov(ui,t ,u j,t) = σi j, for i = j. Thus, our model allows
double correlation across time periods and across clients’ markets. di is a positive
constant that is assumed to be significantly greater than σi, so the probability of a
negative demand is negligible. We also assume that the covariance between any Di,t

and D j,t (where i = j) is constant with respect to t. For simpler notation, we omit
the superscripts on νN, ρN, dN, and Σ N whenever we can avoid any confusion.

Optimal order-up-to quantity for client i is given by

S∗i,1 = di

νi+1

∑
k=1

1−ρk
i

1−ρi
+

ρi(1−ρνi+1
i )

1−ρi
Di,0 +K∗

i σi

√√√√νi+1

∑
l=1

(νi+1

∑
k=l

ρk−l
i

)2

, (6.2)
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where

K∗
i = Φ−1

(
πi − ci(1− γ)/γνi

hi +πi

)
.

Therefore, the optimal order amount z∗i,1 for client i is given by

z∗i,1 =
ρi(1−ρνi+1

i )
1−ρi

(Di,0 −Di,−1)+Di,0. (6.3)

The supplier receives orders from N clients that add up to ∑N
i=1 z∗i,1 in period 1.

We first study the properties of ∑N
i=1 z∗i,1 in the following lemma. Define Δ(ρ,Σ ,ν)

as

Δ(ρ,Σ ,ν) =
N

∑
i=1

αi(ρ,ν)σ2
i +2

N

∑
i=1

N

∑
j>i

βi j(ρ,ν)σi j,

where

αi(ρ,ν) :=
2ρi(1−ρνi+1

i )(1−ρνi+2
i )

(1+ρi)(1−ρi)2

and

βi j(ρ,ν) :=
(1−ρνi+1

i )(1−ρν j+2
j )ρi(1−ρ j)+(1−ρν j+1

j )(1−ρνi+2
i )ρ j(1−ρi)

(1−ρi)(1−ρ j)(1−ρiρ j)
.

Lemma 1. Letting ZN := ∑N
i=1 z∗i,1, we have

(a) E[ZN ] =
N

∑
i=1

E[Di,0] =
N

∑
i=1

di

1−ρi

(b) Var(ZN) = Δ(ρ,Σ ,ν)+Var(
N

∑
i=1

Di,0) = Δ(ρ,Σ ,ν)+
N

∑
i=1

σ2
i

1−ρ2
i

+2
N

∑
i=1

N

∑
j>i

σi j

1−ρiρ j

(c) Cov(z∗i,1,z
∗
j,1) = σi j

[
1

1−ρiρ j

+
(1−ρνi+1

i )(1−ρν j+2
j )ρi(1−ρ j)+(1−ρν j+1

j )(1−ρνi+2
i )ρ j(1−ρi)

(1−ρi)(1−ρ j)(1−ρiρ j)

]

6.4 The Bullwhip Effect with Multiple Clients

Suppose that the client portfolio of the supplier consists of N clients whose indi-
vidual demands follow an AR(1) process as (6.1) for i = 1,2, · · · ,N. Then, we can
define the current client portfolio of the firm as
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PN := [D1,t ,D2,t , ...,DN,t ],

whose process can be parameterized by (ρ,Σ ,ν ,d). We use Δ(PN) interchangeably
with Δ(ρ,Σ ,ν). From Lemma 1(b), we find that the variance of total orders to the
supplier comprises of two terms: the variance of consumer demand and Δ(PN).
Hence, Δ(PN) is the determinant of the bullwhip effect or the stabilizing effect, as
reported in the following proposition.

Proposition 1. If Δ(PN) > 0 (Δ(PN) < 0), the variance of total client orders is
strictly larger (smaller) than that of total client demand.

The proposition demonstrates that the supply chain may potentially experience
either the bullwhip effect or the stabilizing effect depending on Δ(PN). Note that
Δ(PN) is the result of using the middle tier of clients and would not exist if the sup-
plier sells directly to end-consumers (bypassing the clients). Thus, we call Δ(PN)
“the middle-tier factor.” If all ρi’s are positive and client demands are independent
or uncorrelated (i.e., σi j = 0 if i = j), the second term will equal zero, so the sup-
ply chain will always experience the bullwhip effect. Even when some pairs of de-
mands are negatively correlated, the bullwhip effect will prevail if total covariance
is negative and small in absolute value. Only when there exists strong negative cor-
relation among client demands enough to offset the variance terms, the stabilizing
effect will be at work. Note that as the number N of clients increases, the sum of
N(N − 1) pair-wise covariance terms will dominate the sum of N individual vari-
ance terms. Thus, the correlation factor will mostly determine the presence of the
bullwhip effect or the stabilizing effect. Given that demands in an industrial sector
are more or less subject to the same business cycle, demands are more likely to be
strongly positively correlated, hence the bullwhip effect would be the likely out-
come. We conclude that fluctuations facing the upstream supplier will be driven by
both the intrinsic volatility in the consumer market and the bullwhip effect within the
supply chain.

To see if inventory risk pooling could mitigate the bullwhip effect, consider the
variance of the average order size (i.e., Var(∑N

i=1 z∗i /N)). From Lemma 1(b), we see
that the first term of the middle-tier factor divided by N2 decreases as N grows, but
even for a large N, the factor does not converge to zero. Instead, it approaches the
average covariance of the portfolio. Thus, pooling helps, only in a minor form, to
mitigate the bullwhip.

Pooling is also at work when the supplier forecasts the aggregate demand. Ag-
gregate orders arriving to the supplier enable the supplier to access more data and
more accurately observe the economic trend than any individual client. But unfor-
tunately, this advantage is significantly eroded since the supplier reads the market
signals one period later than her clients. In summary, the supplier may be in a good
position to pool inventory risk as well as demand signals, so she may better detect
the market trend, but her signals may arrive distorted, and one period too late.

Indeed, this is what might have happened at Cisco in 2001 when it announced a
$2.69 billion loss, including a $2.25-billion write-off of obsolete excess inventories.
In his CIO Magazine article, Berinato (2001) discusses how such a sophisticated
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manufacturer like Cisco could completely miss the sign of bubble burst that most
others had detected. See Lee and Whang (2005) for more detailed discussions.

6.5 Client Portfolio

We now study the impact of a client newly added to an existing client portfolio.
For the analysis, we consider the following scenario. In period 1, the supplier finds
the opportunity of serving client N + 1 to its existing portfolio PN to form a new
portfolio PN+1. Next, the supplier can adjust its capacity K to maximize her profit
by serving the new portfolio of clients. Capacity cost C(K) per period is linearly
increasing; i.e., C(K) = cK for some c > 0. Capacity is normalized so that one unit
is required to produce one unit of the goods ordered by any client. After the capacity
is installed, stochastic orders from the clients are realized, which is repeated each
period for a long time. In order to facilitate our analysis, we assume that νi = 1 for
all i, implying that it takes one period to fulfill the order.

The order fulfillment process in each period is as follows. Each client places
an order with the supplier at the beginning of any period t. The supplier accepts
the orders up to the capacity, and the orders beyond the capacity are turned down
and forever lost. The supplier starts production of the orders (to be completed and
delivered in period t +1). Next, the client receives the goods ordered in period t−1.
The supplier earns r per unit of capacity utilized, but if she fails to serve the orders
of the portfolio, she incurs the cost p per unit for loss of goodwill, in addition to
the lost revenue r. Denoting the sum of orders from the clients by Z, we solve the
following newsvendor-type problem in order to find the optimal capacity K:

Π(Z) := max
K

rE(Z)− (p+ r)
∫ ∞

K
(Z −K)dF(Z)− cK.

Here, F(·) represents the distribution function of Z.
Since this is a newsvendor-type problem, the optimal capacity K∗ is given by the

critical fractile solution K∗ = F−1((p+ r− c)/(p+ r)). In particular, if F is given
by N(μ ,s2), we have K∗ = μ + ks with k = Φ−1((p+ r− c)/(p+ r)), where Φ(·)
is the cumulative density function of standard normal distribution. In this case, the
expected profit is Π(Z) = (r−c)μ−s(p+r)φ(k), where φ(·) is the standard normal
density function (Porteus 2002).

As it turns out, ZN (defined in Lemma 1) is indeed normally distributed as the
following lemma reports.

Lemma 2. ZN follows N(μ ,s2), where μ = ∑N
i=1 di/(1−ρi) and

s2 = Δ(PN)+
N

∑
i=1

σ2
i

1−ρ2
i

+2
N

∑
i=1

N

∑
j>i

σi j

1−ρiρ j
.
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Lemma 2 implies that ZN+1 is also normally distributed. In order to evaluate
the net worth of a new client, the supplier computes the difference in the optimal
value of the objective between Z = ZN and Z = ZN+1 (defined as in Lemma 1). The
following proposition reports the impact of the new client on the key metrics of the
portfolio.

Proposition 2. The impact of the new client on the mean, variance, and expected
profit of the portfolio is given as follows:

(a) E[ZN+1]−E[ZN ] = E[DN+1,0] =
dN+1

1−ρN+1
.

(b) Var(ZN+1)−Var(ZN) = Δ(PN+1)−Δ(PN)+Var

(N+1

∑
i=1

Di,0

)
−Var

( N

∑
i=1

Di,0

)
=

2ρN+1(1+ρN+1)(1−ρ3
N+1)+1

1−ρ2
N+1

σ2
N+1

+2
N

∑
i=1

[
ρ2

N+1(1+ρi)+(1+ρN+1)(1+ρi +ρ2
i )+

ρ2
i ρ2

N+1

1−ρiρN+1

]
σi,N+1.

(c) Π(ZN+1)−Π(ZN) = (r− c)
dN+1

1−ρN+1
− (p+ r)φ(k)

·
[√

Var(ZN)+Δ(PN+1)−Δ(PN)+Var

(N+1

∑
i=1

Di,0

)
−Var

( N

∑
i=1

Di,0

)
−
√

Var(ZN)

]
.

The proposition offers specific metrics for evaluating the impact of a new client. In
particular, adding a new client does not necessarily increase the profit to the supplier.
Even if the mean always increases, its variance may also increase more than enough
to offset the mean increase. For instance, a client with a demand stream that is pos-
itively correlated with the other clients will definitely increase the variance of the
orders since the coefficients of σ2

N+1 and σi,N+1 are both nonnegative in part (b)
of the proposition. Hence, if the increase in the mean demand is not very high, the
profits of the supplier can actually decrease by adding the new client to the portfolio.

The increase in the variance to the supplier has two sources: end-consumers and
the clients in the middle tier. An inefficient middle-tier company, as well as the
volatile market, contributes to the poor performance to the supplier. By contrast, a
client who brings complementary demands and is capable of controlling the bull-
whip phenomenon represents a hedging opportunity to the supplier. His business
volume will move in the reverse direction to the business cycle, so it will positively
contribute to both the mean and variance of the portfolio.

6.6 Conclusion

In this chapter, we have analyzed upstream volatility in a two-tier supply chain with
a supplier serving many clients whose demands are stochastic and are subject to
individual trends as well as to the business cycle of the economy. To capture such
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a demand structure, we have assumed that consumer demands arriving to a client
are serially correlated, and that consumer demands facing different clients are also
correlated.

In the first part of this chapter, we look at the source of the fluctuation felt by the
supplier by analyzing how the volatility is propagated to the upstream through the
clients’ orders. We observe that the variance of the orders consists of the variance of
the total demand of the clients and an additional term that occurs solely due to the
first tier of clients, which we call the “middle-tier factor.” Hence, depending on the
correlation structure, lead times and the clients’ individual trends, the middle-tier
effect may lead to the bullwhip or the stabilizing effect in this supply chain. More-
over, as the number of clients increases, the correlation structure will be dominant
in determining which effect will be present. We see that our results may differ from
Lee et al. (1997) due to the correlationship among many clients in the system. As
an example, when all clients adjust the order-up-to levels to the observed demand,
the stabilizing effect can occur if the client demands are strongly and negatively
correlated. However, given that the clients tend to be in the same industrial sector,
they are usually subject to the same business cycle and have positively correlated
demands. Hence, the bullwhip effect is likely to occur in this supply chain.

In the second part of this chapter, we study how the supplier can build an efficient
client portfolio by analyzing the impact of a new client on the expected profit of the
supplier in a newsvendor setting. We use this setting due to its natural representation
of the trade-off between the mean and variance of the total orders from the clients.
We observe that although a new client always increases the mean of the total orders,
he may also increase the variance of the orders substantially and actually lead to a
decrease in the expected profits of the supplier.

In order to help the supplier in the evaluation of a new client, we provide specific
metrics. These metrics point out that the new client’s mean demand, his impact
on the variance of the existing clients’ total demand and his middle-tier factor are
important factors to consider for the supplier. The change in the variance of the
total demand is governed by the volatility of the new client’s consumer market as
well as how it is correlated with other clients. Therefore, a large and stable consumer
market, a complementary demand pattern to the current client portfolio, and efficient
operations to mitigate the bullwhip are the desired attributes for a new client.

Some factors in the model, such as the new client’s mean demand and his impact
on the variance of the total demand, are static and are largely determined by the
nature of the client’s business. Others, however, provide opportunities for improve-
ment through the collaboration between the client and the supplier. For example, the
middle-tier effect can be reduced by practices such as Vendor-Managed-Inventory
(VMI) and Continuous Replenishment Programs (CRP), which eliminate the middle-
tier, and information sharing of sell-through and inventory status data, which pre-
vents losing sight of the true demand in the marketplace (Lee et al. 1997). Therefore,
the attitude of the potential client toward working closely with the supplier is also
an important factor and must be considered by the supplier during the evaluation
process.
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Appendix

Proof of Lemma 1

Clients’ aggregate order is given by

N

∑
i=1

z∗i,1 =
N

∑
i=1

[
ρi(1−ρνi+1

i )
1−ρi

(Di,0 −Di,−1)+Di,0

]
. (6.4)

Since Di,t follows an AR(1) process and −1 < ρi < 1 (which implies that
the demand process is weakly stationary (Hamilton 1994)), E[Di,0] = E[Di,−1] =
di/(1−ρi). Therefore,

E

[ N

∑
i=1

z∗i,1

]
=

N

∑
i=1

E[Di,0] =
N

∑
i=1

di

1−ρi
. (6.5)

This establishes the first part of the lemma.
Since

Di,0 −Di,−1 = Di,0 − Di,0 −di −ui,0

ρi

= −
(

1−ρi

ρi

)
Di,0 +

di +ui,0

ρi
, (6.6)

the variance of both sides of (6.4) can be rewritten as

Var

( N

∑
i=1

z∗i,1

)
= Var

( N

∑
i=1

[
−(1−ρνi+1

i )Di,0 +
1−ρνi+1

i

1−ρi
di +

1−ρνi+1
i

1−ρi
ui,0 +Di,0

])
. (6.7)

The term [(1−ρνi+1
i )/(1−ρi)]di is constant, so it will be omitted in the follow-

ing steps. This means that the variance of ZN is independent of the mean of clients’
demands (which equals di/(1−ρi)) as long as ρi’s stay constant.

Expanding (6.7), we get

Var

( N

∑
i=1

z∗i,1

)
=

N

∑
i=1

(1−ρνi+1
i )2 Var(Di,0)

+2
N

∑
i=1

N

∑
j>i

(1−ρνi+1
i )(1−ρν j+1

j )Cov(Di,0,D j,0)

−2
N

∑
i=1

(1−ρνi+1
i )

1−ρνi+1
i

1−ρi
Cov(Di,0,ui,0)
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−2
N

∑
i=1

N

∑
j=1, j =i

(1−ρνi+1
i )

1−ρν j+1
j

1−ρ j
Cov(Di,0,u j,0)

−2
N

∑
i=1

(1−ρνi+1
i )Var(Di,0)

−2
N

∑
i=1

N

∑
j=1, j =i

(1−ρνi+1
i )Cov(Di,0,D j,0)

+
N

∑
i=1

(
1−ρνi+1

i

1−ρi

)2

σ2
i

+2
N

∑
i=1

∑
j>i

(
1−ρνi+1

i

1−ρi

)(
1−ρν j+1

j

1−ρ j

)
Cov(ui,0,u j,0)

+2
N

∑
i=1

1−ρνi+1
i

1−ρi
Cov(ui,0,Di,0)

+2
N

∑
i=1

N

∑
j=1, j =i

1−ρνi+1
i

1−ρi
Cov(ui,0,D j,0)+Var

( N

∑
i=1

Di,0

)
.(6.8)

We divide this expression into three parts, AN , BN , and CN . They are defined as

AN =
N

∑
i=1

(1−ρνi+1
i )2 Var(Di,0)−2

N

∑
i=1

(1−ρνi+1
i )

1−ρνi+1
i

1−ρi
Cov(Di,0,ui,0)

−2
N

∑
i=1

(1−ρνi+1
i )Var(Di,0)+

N

∑
i=1

(
1−ρνi+1

i

1−ρi

)2

σ2
i

+2
N

∑
i=1

1−ρνi+1
i

1−ρi
Cov(ui,0,Di,0)+Var

( N

∑
i=1

Di,0

)
, (6.9)

BN = −2
N

∑
i=1

N

∑
j=1, j =i

(1−ρνi+1
i )

1−ρν j+1
j

1−ρ j
Cov(Di,0,u j,0)

+2
N

∑
i=1

∑
j>i

(
1−ρνi+1

i

1−ρi

)(
1−ρν j+1

j

1−ρ j

)
Cov(ui,0,u j,0)

+2
N

∑
i=1

N

∑
j=1, j =i

1−ρνi+1
i

1−ρi
Cov(ui,0,D j,0), (6.10)

CN = 2
N

∑
i=1

N

∑
j>i

(1−ρνi+1
i )(1−ρν j+1

j )Cov(Di,0,D j,0)

−2
N

∑
i=1

N

∑
j=1, j =i

(1−ρνi+1
i )Cov(Di,0,D j,0). (6.11)
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We first simplify AN , which excludes covariance terms across different clients.
Since the process Di,t is weakly stationary, Var(Di,0) = Var(Di,−1) = σ2

i /(1−ρ2
i ).

Since Di,0 −ui,0 = di +ρiDi,−1 by (6.1) and we have

Var(Di,0 −ui,0) = Var(Di,0)+Var(ui,0)−2Cov(Di,0,ui,0)

Var(di +ρiDi,−1) = ρ2
i Var(Di,−1),

Cov(Di,0,ui,0) can be found by equating the right-hand sides of the last two equa-
tions given above and equals σ2

i .
We rewrite (6.9) as

AN =
N

∑
i=1

(1−ρνi+1
i )2 σ2

i

1−ρ2
i

−2
N

∑
i=1

(1−ρνi+1
i )

1−ρνi+1
i

1−ρi
σ2

i

−2
N

∑
i=1

(1−ρνi+1
i )

σ2
i

1−ρ2
i

+
N

∑
i=1

(
1−ρνi+1

i

1−ρi

)2

σ2
i +2

N

∑
i=1

1−ρνi+1
i

1−ρi
σ2

i

+Var

( N

∑
i=1

Di,0

)
.

We collect the terms involving σ2
i in the equation above and obtain

N

∑
i=1

1−ρνi+1
i

1−ρi

[
1−ρνi+1

i

1+ρi
−2(1−ρνi+1

i )− 2
1+ρi

+
1−ρνi+1

i

1−ρi
+2

]
σ2

i

+Var

( N

∑
i=1

Di,0

)
=

N

∑
i=1

1−ρνi+1
i

1−ρi
· 1

1−ρ2
i

[
(1−ρνi+1

i )(1−ρi)−2(1−ρνi+1
i )(1−ρ2

i )

−2(1−ρi)+(1−ρνi+1
i )(1+ρi)+2(1−ρ2

i )
]
σ2

i +Var

( N

∑
i=1

Di,0

)
=

N

∑
i=1

2ρi(1−ρνi+1
i )(1−ρνi+2

i )
(1+ρi)(1−ρi)2 σ2

i +Var

( N

∑
i=1

Di,0

)
.

Now, we simplify BN . First, we find the value of Cov(ui,0,D j,0). Note that D j,0 =
d j +ρ jD j,−1 +u j,0 by (6.1) and we have

Var(D j,0 +ui,0) = Var(D j,0)+Var(ui,0)+2Cov(D j,0,ui,0)

=
σ2

j

1−ρ2
j

+σ2
i +2Cov(D j,0,ui,0)

Var(d j +ρ jD j,−1 +u j,0 +ui,0) = ρ2
j

σ2
j

1−ρ2
j

+σ2
j +σ2

i +2Cov(u j,0,ui,0).
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Cov(ui,0,D j,0) can be found by equating the right-hand sides of the last two
equations given above and noting that Cov(u j,0,ui,0) = Cov(ui,0,u j,0) = σi j. There-
fore, Cov(ui,0,D j,0) = Cov(D j,0,ui,0) = Cov(u j,0,ui,0) = σi j. This also implies that
Cov(Di,0,u j,0) = σi j. Then, we rewrite BN as

BN = −2
N

∑
i=1

N

∑
j>i

(
(1−ρνi+1

i )
1−ρν j+1

j

1−ρ j
+(1−ρν j+1

j )
1−ρνi+1

i

1−ρi

)
σi j

+2
N

∑
i=1

∑
j>i

(
1−ρνi+1

i

1−ρi

)(
1−ρν j+1

j

1−ρ j

)
σi j

+2
N

∑
i=1

N

∑
j>i

(
1−ρνi+1

i

1−ρi
+

1−ρν j+1
j

1−ρ j

)
σi j

= 2
N

∑
i=1

N

∑
j>i

[
−1−ρνi+1

i

1−ρi

1−ρν j+1
j

1−ρ j
(1−ρi −ρ j)

+
1−ρνi+1

i

1−ρi
+

1−ρν j+1
j

1−ρ j

]
σi j. (6.12)

Finally, we consider CN . Due to Cov(Di,0,D j,0) = Cov(D j,0,Di,0),

N

∑
i=1

N

∑
j=1, j =i

(1−ρνi+1
i )Cov(Di,0,D j,0)

=
N

∑
i=1

N

∑
j>i

[(1−ρνi+1
i )+(1−ρν j+1

j )]Cov(Di,0,D j,0).

As a result, we can simplify CN as

CN = 2
N

∑
i=1

N

∑
j>i

(1−ρνi+1
i )(1−ρν j+1

j )Cov(Di,0,D j,0)

−2
N

∑
i=1

N

∑
j=1, j =i

(1−ρνi+1
i )Cov(Di,0,D j,0)

= 2
N

∑
i=1

N

∑
j>i

[
(1−ρνi+1

i )(1−ρν j+1
j )− (1−ρνi+1

i )− (1−ρν j+1
j )

]
·Cov(Di,0,D j,0). (6.13)

Our stationarity assumption on the covariances of Di,t and D j,t implies that
Cov(Di,0,D j,0) = σi j/(1−ρiρ j). This can be derived from the relations

Var(Di,0 +D j,0) = Var(Di,0)+Var(D j,0)+2Cov(Di,0,D j,0)
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and

Var(Di,0 +D j,0) = Var(ρiDi,−1 +ρ jD j,−1 +ui,0 +u j,0)

= ρ2
i Var(Di,−1)+ρ2

j Var(D j,−1)+σ2
i +σ2

j +2ρiρ j Cov(Di,−1,D j,−1)+2σi j.

Since last parts of the equalities above must be equal and we have Cov(Di,0,D j,0)=
Cov(Di,−1,D j,−1), Cov(Di,0,D j,0) = σi j/(1−ρiρ j). Therefore,

CN = 2
N

∑
i=1

N

∑
j>i

[
(1−ρνi+1

i )(1−ρν j+1
j )− (1−ρνi+1

i )− (1−ρν j+1
j )

]
· σi j

1−ρiρ j
. (6.14)

Combining AN , BN , and CN , we get

Var
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∑
i=1

z∗i,1

)
=
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2ρi(1−ρνi+1
i )(1−ρνi+2
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+
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1−ρiρ j
− 1−ρν j+1

j
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σi j +Var
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Di,0

)
. (6.15)

We can simplify the second term on the right-hand side of the equation above. Sub-
tracting (1−ρνi+1

i )/(1−ρiρ j) from (1−ρνi+1
i )/(1−ρi), we get

1−ρνi+1
i

1−ρi
− 1−ρνi+1

i

1−ρiρ j
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i )
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1
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)
=
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.

Similarly,
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j
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j
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.

We can also rewrite

−1−ρνi+1
i

1−ρi

1−ρν j+1
j

1−ρ j
(1−ρi −ρ j)+
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i )(1−ρν j+1

j )
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as
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(1−ρνi+1
i )(1−ρν j+1
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− 1−ρi −ρ j
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+
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.

Then, Var(∑N
i=1 z∗i,1) can be further simplified as
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=
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Since
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)

= (1−ρνi+1
i )(1−ρν j+2

j )ρi(1−ρ j)

and, by symmetry,

(1−ρνi+1
i )(1−ρν j+1

j )ρiρ j(1−ρi)+(1−ρν j+1
j )ρ j(1−ρi)2

= (1−ρν j+1
j )(1−ρνi+2

i )ρ j(1−ρi),

Var(∑N
i=1 z∗i,1) is given by

Var

( N

∑
i=1

z∗i,1

)
=

N

∑
i=1

2ρi(1−ρνi+1
i )(1−ρνi+2

i )
(1+ρi)(1−ρi)2 σ2

i

+2
N

∑
i=1

N

∑
j>i

1
(1−ρi)(1−ρ j)(1−ρiρ j)

·[(1−ρνi+1
i )(1−ρν j+2

j )ρi(1−ρ j)

+(1−ρν j+1
j )(1−ρνi+2

i )ρ j(1−ρi)]σi j
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+Var

( N

∑
i=1

Di,0

)
. (6.18)

The sum of the first two terms equal to Δ(ρ,Σ ,ν) and is the difference between
Var(∑N

i=1 z∗i,1) and Var(∑N
i=1 Di,0). Also,

Var

( N

∑
i=1

Di,0

)
=

N

∑
i=1

σ2
i

1−ρ2
i

+2
N

∑
i=1

N

∑
j>i

σi j

1−ρiρ j
.

This completes the second part of the lemma.
We use (6.18) to find Cov(z∗i,1,z

∗
j,1). By (6.16), Var(z∗i,1 + z∗j,1) equals

Var(z∗i,1 + z∗j,1) =
2ρi(1−ρνi+1

i )(1−ρνi+2
i )

(1+ρi)(1−ρi)2 σ2
i +

2ρ j(1−ρν j+1
j )(1−ρν j+2

j )

(1+ρ j)(1−ρ j)2 σ2
j

+2
1

(1−ρi)(1−ρ j)(1−ρiρ j)
[
(1−ρνi+1

i )(1−ρν j+2
j )ρi(1−ρ j)

+(1−ρν j+1
j )(1−ρνi+2

i )ρ j(1−ρi)]σi j

+
σ2

i

1−ρ2
i

+
σ2

j

1−ρ2
j

+2
σi j

1−ρiρ j
. (6.19)

Var(z∗i,1 + z∗j,1) also equals

Var(z∗i,1 + z∗j,1) = Var(z∗i,1)+Var(z∗j,1)+2Cov(z∗i,1,z
∗
j,1). (6.20)

Noting that

Var(z∗i,1) =
2ρi(1−ρνi+1

i )(1−ρνi+2
i )

(1+ρi)(1−ρi)2 σ2
i +Var(Di,0)

and equating (6.19) and (6.20), we get

Cov(z∗i,1,z
∗
j,1) = σi j

[
1

1−ρiρ j

+
(1−ρνi+1

i )(1−ρν j+2
j )ρi(1−ρ j)+(1−ρν j+1

j )(1−ρνi+2
i )ρ j(1−ρi)

(1−ρi)(1−ρ j)(1−ρiρ j)

]
. (6.21)

Proof of Lemma 2

Using (6.3) and (6.6) and noting that Vi = 1 for all i, we can write z∗i,1 as

z∗i,1 = ρ2
i Di,0 +(1+ρi)di +(1+ρi)ui,0 (6.22)
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Following the notation in Hamilton (1994), we expand Di,0 in terms of ui,t as

Di,0 =
di

1−ρi
+

∞

∑
k=0

ρk
i ui,−k.

Therefore,

z∗i,1 = ρ2
i

di

1−ρi
+ρ2

i

∞

∑
k=0

ρk
i ui,−k +(1+ρi)di +(1+ρi)ui,0

=
di

1−ρi
+

∞

∑
k=1

ρk+2
i ui,−k +(1+ρi +ρ2

i )ui,0.

Since ZN = ∑N
i=1 z∗i,1, we can write ZN as

ZN =
N

∑
i=1

[
di

1−ρi
+

∞

∑
k=1

ρk+2
i ui,−k +(1+ρi +ρ2

i )ui,0

]
=

N

∑
i=1

di

1−ρi
+

∞

∑
k=1

N

∑
i=1

ρk+2
i ui,−k +

N

∑
i=1

(1+ρi +ρ2
i )ui,0. (6.23)

Define Sk as

Sk =

{
∑N

i=1(1+ρi +ρ2
i )ui,0 if k = 0

∑N
i=1 ρk+2

i ui,−k if k > 0.

Sk follows a normal distribution since Ut follows a multivariate normal distribu-
tion and therefore, any linear combination of its components must also be normally
distributed. Hence, the sum of Sk’s are also normally distributed since Ut at each
t is independent from each other. This proves that ZN is normally distributed with
N(μ ,s2).

The mean and the variance of ZN are provided in Lemma 1. Therefore,

μ = E[ZN ] =
N

∑
i=1

di

1−ρi
and

s2 = Var(ZN) = Δ(PN)+
N

∑
i=1

σ2
i

1−ρ2
i

+2
N

∑
i=1

N

∑
j>i

σi j

1−ρiρ j
.

Proof of Proposition 2

By Part 1 of Lemma 1, E[ZN ] = ∑N
i=1 E[Di,0] and E[ZN+1] = ∑N+1

i=1 E[Di,0]. Then, it
is straightforward to show that
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E[ZN+1]−E[ZN ] = E[DN+1,0] =
dN+1

1−ρN+1
.

The difference of the variance between old and new client portfolios is given by

Var

(N+1

∑
i=1

z∗i,1

)
−Var

( N

∑
i=1

z∗i,1

)
= Δ(PN+1)−Δ(PN)+Var

(N+1

∑
i=1

Di,0

)
−Var

( N

∑
i=1

Di,0

)
= Δ(PN+1)−Δ(PN)+Var(DN+1,0)+2

N

∑
i=1

Cov(Di,0,DN+1,0).

Cov(Di,0,D j,0) = σi j/(1−ρiρ j) as demonstrated in Lemma 1. Then,

Var(DN+1,0)+2
N

∑
i=1

Cov(Di,0,DN+1,0) =
σ2

N+1

1−ρ2
N+1

+2
N

∑
i=1

σi,N+1

1−ρiρN+1
. (6.24)

We use (6.15) in order to simplify Δ(PN) when all lead times are equal to 1:

Δ(PN) = Var

( N

∑
i=1

z∗i,1

)
−Var

( N

∑
i=1

Di,0

)
=

N

∑
i=1

2ρi(1−ρ2
i )(1−ρ3

i )
(1+ρi)(1−ρi)2 σ2

i

+2
N

∑
i=1

N

∑
j>i

[
−(1+ρi)(1+ρ j)(1−ρi −ρ j)+(1+ρi)+(1+ρ j)

+
(1−ρ2

i )(1−ρ2
j )

1−ρiρ j
− 1−ρ2

i

1−ρiρ j
− 1−ρ2

j

1−ρiρ j

]
σi j.

The second part of the above expression can be rewritten as[
−(1+ρi)(1+ρ j)(1−ρi −ρ j)+(1+ρi)+(1+ρ j)

+
(1−ρ2

i )(1−ρ2
j )

1−ρiρ j
− 1−ρ2

i

1−ρiρ j
− 1−ρ2

j

1−ρiρ j

]
σi j

=
[
(1+ρi)

(
1− (1+ρ j)(1−ρi −ρ j)

)
+(1+ρ j)−

1−ρ2
i ρ2

j

1−ρiρ j

]
σi j

=
[
(1+ρi)

(
1− (1−ρ2

j )+ρi(1+ρ j)
)
+(1+ρ j)−

1−ρ2
i ρ2

j

1−ρiρ j

]
σi j

=
[
(1+ρi)ρ2

j +(1+ρi)ρi(1+ρ j)+(1+ρ j)−
1−ρ2

i ρ2
j

1−ρiρ j

]
σi j

=
[

ρ2
j (1+ρi)+(1+ρ j)(1+ρi +ρ2

i )− 1−ρ2
i ρ2

j

1−ρiρ j

]
σi j.
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Therefore,

Δ(PN) =
N

∑
i=1

2ρi(1−ρ2
i )(1−ρ3

i )
(1+ρi)(1−ρi)2 σ2

i

+2
N

∑
i=1

N

∑
j>i

[
ρ2

j (1+ρi)+(1+ρ j)(1+ρi +ρ2
i )− 1−ρ2

i ρ2
j

1−ρiρ j

]
σi j. (6.25)

That gives

Δ(PN+1)−Δ(PN) =
2ρN+1(1−ρ2

N+1)(1−ρ3
N+1)

(1+ρN+1)(1−ρN+1)2 σ2
N+1

+2
N

∑
i=1

[
ρ2

N+1(1+ρi)+(1+ρN+1)(1+ρi +ρ2
i )− 1−ρ2

i ρ2
N+1

1−ρiρN+1

]
σi,N+1.

Combining Δ(PN+1)−Δ(PN) with (6.24), we get

Var

(N+1

∑
i=1

z∗i,1

)
−Var

( N

∑
i=1

z∗i,1

)
=

2ρN+1(1+ρN+1)(1−ρ3
N+1)+1

1−ρ2
N+1

σ2
N+1

+2
N

∑
i=1

[
ρ2

N+1(1+ρi)+(1+ρN+1)(1+ρi +ρ2
i )+

ρ2
i ρ2

N+1

1−ρiρN+1

]
σi,N+1.

This completes the second part of the proposition. One point to note is that the
coefficients of σ2

N+1 and σi,N+1 are both nonnegative. It is straightforward to show
that the coefficient of σi,N+1 is nonnegative. The fact that the coefficient of σ2

N+1 is
also nonnegative can be best seen from

2ρN+1(1+ρN+1)(1−ρ3
N+1)+1 = 2ρN+1(1−ρ2

N+1)(1+ρN+1 +ρ2
N+1)+1

= 2ρN+1(1−ρ2
N+1)+2ρ2

N+1(1−ρ2
N+1)(1+ρN+1)+1.

The second term in the last equality is nonnegative. The first term, 2ρN+1 ·
(1− ρ2

N+1) is minimized at ρN+1 = −1/
√

3 and equals −4/(3
√

3) at this point.
Since 1−4/(3

√
3) is positive, the coefficient of σ2

i must be nonnegative.
Since ZN and ZN+1 are normally distributed,

Π(ZN) = (r− c)E[ZN ]−
√

Var(ZN)(p+ r)φ(k) and

Π(ZN) = (r− c)E[ZN+1]−
√

Var(ZN+1)(p+ r)φ(k)

where k = Φ−1((p+ r− c)/(p+ r)). Using the formulas we found in parts (a)
and (b), we see that
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Π(ZN+1)−Π(ZN) = (r− c)
dN+1

1−ρN+1
− (p+ r)φ(k)

·
[√

Var(ZN)+Δ(PN+1)−Δ(PN)+Var

(N+1

∑
i=1

Di,0

)
−Var

( N

∑
i=1

Di,0

)
−
√

Var(ZN)

]
.
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Chapter 7
Strategic Customer Behavior and the Benefit
of Decentralization

Xuanming Su and Fuqiang Zhang

Abstract In the operations management literature, decentralization is often associ-
ated with the double marginalization problem. However, in this chapter, we review
several existing papers that demonstrate how decentralization can be beneficial
to supply chain performance. A key premise in this literature is that consumers
are strategic: They rationally anticipate and respond to future market conditions.
We consider two broad classes of products, durable goods and perishable goods.
In both cases, when facing strategic consumers, firms are typically better off if
they can commit to future actions. When operating in a decentralized supply
chain, contractual mechanisms can help firms achieve commitment power and in-
crease profits. In this way, decentralized systems can outperform a centralized
organization.

7.1 Introduction

Conventional wisdom in the operations management literature suggests that decen-
tralized supply chains are inefficient. Under decentralization, individual firms in
the supply chain (such as manufacturers, distributors, wholesalers, and retailers)
make operational decisions with different and possibly conflicting objectives. In
particular, double marginalization is a well-known problem that arises in decentra-
lized supply chains. Much work has been done to rectify the double marginalization
problem and to “coordinate” the supply chain. One major goal of contemporary
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supply chain research has been to design economic mechanisms in order to achieve
the benchmark performance of a centralized system. When all decision rights are
concentrated in the hands of a single party, there is no incentive misalignment, and
economic inefficiencies can be reduced or even eliminated. It is thus no wonder
that centralized systems have served as gold standard for many research studies,
while decentralization has been associated with a myriad of coordination problems.
In this chapter, we wish to present a different perspective. We will show, through
some specific settings, that decentralization can sometimes enhance supply chain
performance.

One fundamental premise in this chapter is that consumers are strategic. In
particular, we will consider dynamic settings (in their simplest form, two-period
models) where consumers are capable of rationally anticipating future market con-
ditions, such as prices. Interestingly, modeling such strategic consumer behavior
often adds a novel twist to existing operations models. These new models generate
new insights – specifically, in this chapter, we will see that decentralization (such as
selling through an intermediary) can be beneficial when facing strategic consumers.

We will focus on two broad classes of products: durable goods and perishable
goods. Durable goods refer to products whose consumption value persists over long
time horizons. Examples include automobiles, furniture, and TV sets. In some cases,
there are well-established secondary markets with used products that compete with
the supply chain’s new products. Such cannibalization is particularly severe when
consumers are strategic and can optimally choose whether to purchase a new product
or to wait for a used product from the secondary market. We shall see in this chapter
that for durable goods, decentralization can be a useful supply chain strategy.

The second class of products that we will consider is perishable goods. They
refer to items that have a short product life cycle and have little to no value after-
ward. Examples include fashion items (which become out of date quickly) as well
as hi-tech products (which become obsolete quickly). In these cases, retailers and
manufacturers have an incentive to offer deep discounts toward the end of the sell-
ing season in order to sell off excess inventory. While perfectly legitimate from an
operational standpoint, price markdowns inevitably train consumers to wait for sales
and have a negative impact on demand. When facing such strategic consumer be-
havior, decentralization again serves a useful purpose that we shall explore in this
chapter.

In today’s markets, durable goods and perishable goods are everywhere. Further,
consumers are becoming increasingly sophisticated as they enjoy access to better
information and decision aids over the Internet. In such settings, strategic decentral-
ization will be a useful concept for operations management.

7.2 Durable Goods

The essence of most durable goods models can be captured using a simple two-
period model. The analysis in this section is based on the papers by Bulow (1982),
Desai et al. (2004) and Arya and Mittendorf (2006), which also contain some
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generalizations and more details. Here we make a number of simplifying assump-
tions to make the key insights more transparent. We begin with a centralized system
before moving on to consider a decentralized system consisting of a manufacturer
and a retailer.

7.2.1 Centralized System

7.2.1.1 Benchmark Model

Consider a centralized seller who operates over two time periods. The seller sells a
durable good over both periods. The durable good lasts for both periods and provides
consumption value in both periods. In each period t = 1,2, the consumption value
(for that period) is given by the following linear demand curve:

Vt = α −βQt , (7.1)

where Qt is the total available quantity in that period. There is a perfect secondary
market. We assume that old products are indistinguishable from and thus compete
perfectly with new products. We use qt to denote the number of new units produced
in period t, so the cumulative available quantities Qt satisfies Q1 = q1 and Q2 =
q1 +q2. In other words, the consumer who buys the product in period 2 earns utility
V2 and is thus willing to pay p2 = V2 as given by

p2 = α −β (q1 +q2), (7.2)

while the consumer who buys in period 1 earns total utility V1 +V2 and is thus
willing to pay p1 = V1 +V2 as given by

p1 = [α −βq1]+ [α −β (q1 +q2)]. (7.3)

Then, normalizing production costs to zero, the seller’s profit function can be written
as

Π(q1,q2) = p1q1 + p2q2 (7.4)

= {[α −βq1]+ [α −β (q1 +q2)]}q1 +[α −β (q1 +q2)]q2, (7.5)

which attains the maximum at

q∗1 =
α
2β

, q∗2 = 0. (7.6)

In this benchmark scenario, the centralized seller’s optimal profit is

Π ∗ =
α2

2β
. (7.7)
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7.2.1.2 Strategic Consumers and the Lack of Commitment

Unfortunately, in the presence of so-called strategic consumers, the benchmark
profit level above cannot be attained. This is because consumers are able to look
ahead and anticipate all occurrences on the equilibrium path. We first explain why
the benchmark solution above is not subgame perfect and then proceed to derive the
subgame perfect outcome.

In the benchmark scenario above, the seller maximizes total profit Π(q1,q2) by
setting q∗1 = α/(2β ) and q∗2 = 0. However, these actions are not subgame perfect.
At the end of period 1, if q∗1 units have indeed been sold, then the seller’s period 2
profit function becomes

Π2(q2) = [α −β (q∗1 +q2)]q2, (7.8)

which is maximized at q2 = (α)/(2β )− (q∗1)/2 = α/(4β ) > 0. In other words,
when period 2 arrives, the seller has the incentive to sell additional units, which de-
creases the consumption value in period 2. Recognizing such behavior, consumers’
willingness to pay in period 1 will be decreased. The benchmark outcome is thus
not attainable.

However, if the seller were able to commit to period 2 production quantity q2 in
advance (i.e., in period 1), then the analysis in the previous subsection holds and the
benchmark profit is attainable. For this reason, we may also refer to the benchmark
scenario as the “commitment scenario”.

Next, we proceed to analyze the subgame perfect equilibrium when the seller is
unable to commit and consumers are strategic. We use backward induction. Suppose
that q1 units were sold in period 1. Then, following the logic leading to the profit
function in (7.8), we know that the seller’s optimal period 2 response is to sell

q2(q1) =
α
2β

− q1

2
. (7.9)

Along the equilibrium path, q1 and q2 cannot be chosen freely; rather, choosing q1

necessarily leads to q2(q1) in period 2. Therefore, the seller’s profit function (7.5)
can be written in terms of q1 only. After some calculations, we obtain the subgame
perfect equilibrium

q∗1 =
2α
5β

, q∗2 =
3α
10β

. (7.10)

In this case, the seller’s total equilibrium profit is

Π ∗ =
9α2

20β
. (7.11)

Notice that this equilibrium profit is lower than the benchmark case where either
the seller can commit or consumers are not strategic. This is precisely the dura-
bility problem first discussed by Coase (1972), who observed that durable goods
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monopolies, through competition with their future selves, lose market power and
may even be forced to price at marginal cost in some extreme cases.

7.2.2 Decentralized System

7.2.2.1 Wholesale Price Contract

Next, we turn attention to a decentralized system consisting of a manufacturer and
a retailer. As in the previous case, we assume that consumers are strategic and firms
are unable to commit to future actions. Our goal is to set up the analytical framework
to study equilibrium actions of all players over the two time periods. Here, we first
focus on the wholesale price contract. That is, the manufacturer sells to the retailer
at a per unit wholesale price, and the retailer then sells to consumers. As before, the
manufacturer’s production cost is normalized to zero.

To use the backward-induction approach, we first suppose that q1 units were
produced in period 1 and the manufacturer sets the period 2 wholesale price to
be w2. Given these inputs, the retailer chooses quantity q2 to maximize his period 2
profits

Π2(q2) = [α −β (q1 +q2)]q2 −w2q2. (7.12)

The optimal choice of q2 is

q2(q1,w2) =
α
2β

− q1

2
− w2

2β
. (7.13)

Anticipating this response, the manufacturer chooses the period 2 wholesale price
w2 to maximize his own period 2 profits w2 · q2(q1,w2). The manufacturer’s opti-
mal wholesale price w2 and the retailer’s corresponding production quantity q2 in
period 2, given q1, turn out to be

w2(q1) =
α
2
− βq1

2
, q2(q1) =

α
4β

− q1

4
. (7.14)

Next, we consider period 1. Suppose the manufacturer sets the wholesale price w1.
Then, the retailer’s total profit function, similar to (7.5), is

Π(q1) = {[α −βq1]+ [α −β (q1 +q2)]}q1

+[α −β (q1 +q2)]q2 −w1q1 −w2q2, (7.15)

where q2 and w2 depend on q1 as given above. The retailer’s optimal period 1
response is

q1(w1) =
13α
27β

− 8w1

27β
. (7.16)
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Anticipating this response, the manufacturer sets the optimal w1 to maximize his
total profits w1q1 +w2q2. It can be shown that the equilibrium wholesale prices and
production quantities are

q∗1 =
11α
52β

, q∗2 =
41α
208β

, (7.17)

w∗
1 =

379α
416

, w∗
2 =

41α
104

. (7.18)

The corresponding total supply chain profit is

Π ∗ =
17,671α2

43,264β
≈ 0.408

α2

β
. (7.19)

Notice that the total system profit here is lower compared to that of the centralized
case, even when the seller is unable to commit. In other words, the double margina-
lization problem is in effect here. For the case of durable goods, under a simple
wholesale price contract, decentralization involves economic inefficiencies.

7.2.2.2 Two-Part Tariffs

It is well known that two-part tariffs can rectify the double marginalization problem.
Now, we consider the same decentralized system as above, but we allow the manu-
facturer to charge the retailer a two-part tariff. In other words, apart from a fixed fee,
the manufacturer also charges the retailer a fixed per unit wholesale price.

We first consider period 2. Suppose that q1 units were already sold in period 1.
Let us denote the wholesale price by w2 and the fixed fee by F2. Since the fixed
fee does not influence the retailer’s actions, the retailer’s optimal choice of q2 =
α/(2β )− q1/2−w2/(2β ) remains unchanged, as given in (7.13). Now, the man-
ufacturer can set the fixed fee high enough to extract the entire channel profit. In
other words, the manufacturer would like to set w2 to maximize

Π2(w2) = [α −β (q1 +q2)]q2. (7.20)

The total channel profits for period 2 is maximized when the retailer is induced to
choose q2 = α/(2β )− q1/2. This corresponds to w2 = 0, which is thus the manu-
facturer’s optimal choice.

Next, we consider period 1. Suppose the manufacturer offers a wholesale price
w1 and fixed fee F1 to the retailer. Since the retailer anticipates zero period 2 surplus,
he will choose q1 to maximize his period 1 profit given by

Π1(q1) = {[α −βq1]+ [α −β (q1 +q2)]}q1 −w1q1. (7.21)

The optimal choice of q1 is q1(w1) = α/(2β )−w1/(3β ). Recognizing this response
and using the fixed fee to extract the total supply chain profit in both periods, the
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manufacturer will then choose the wholesale price w1 to maximize

Π(w1) = {[α −βq1]+ [α −β (q1 +q2)]}q1 +[α −β (q1 +q2)]q2. (7.22)

Since q2 = α/(2β )−q1/2, this becomes

Π(w1) =
3
2
(α −βq1)q1 +

1
4β

(α −βq1)2, (7.23)

where q1(w1) = α/(2β )−w1/(3β ). Consistent with (7.10), this is maximized at
q1 = (2α)/(5β ), which corresponds to an optimal period 1 wholesale price of w1 =
(3α)/10. In summary, with two-part tariffs, the equilibrium wholesale prices and
quantities are

q∗1 =
2α
5β

, q∗2 =
3α
10β

, (7.24)

w∗
1 =

3α
10

, w∗
2 = 0. (7.25)

The total supply chain profit is given by

Π ∗ =
9α2

20β
.

This analysis shows that with two-part tariffs, a decentralized system can attain
the performance of a centralized system, as in (7.11). In familiar terminology,
the system is coordinated. However, since the equilibrium profit is still below the
benchmark profit (7.7), we conclude that two-part tariffs do not solve durability
problem (Coase problem). In other words, when firms face strategic consumers and
are unable to commit to future courses of action, two-part tariffs are inadequate.
More needs to be done to solve the durability problem and achieve the benchmark
profit.

7.2.2.3 Two-Part Tariffs: Long-Term Contracts

We now show that the key to solving both the coordination problem and the durabil-
ity problem is to establish long-term contracts. Specifically, we consider a long-term
two-part tariff between the manufacturer and the retailer. That is, the manufacturer
specifies the wholesale prices w1,w2 for both periods as well as a fixed fee F at the
start of the game.

Under the long-term contract, the retailer’s optimal period 2 choices remain un-
changed since he still wishes to maximize period 2 profit then. This optimal choice,
as given above, is q2 = α/(2β )−q1/2−w2/(2β ). In period 1, however, the retailer
wishes to maximize his total profit given by
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Π(q1) = {[α −βq1]+ [α −β (q1 +q2)]}q1

+[α −β (q1 +q2)]q2 −w1q1 −w2q2, (7.26)

where q2 depends on q1 as above. With some manipulation, the retailer’s optimal
choice is q1 = 2α/(5β )−2w1/(5β )+2w2/(5β ).

Now, we consider the manufacturer’s optimal choice of wholesale prices. Since
he can extract the entire profit share using the fixed fee, the manufacturer will choose
w1,w2 such that the induced actions (by the retailer) will maximize total supply
chain profit given by

Π(q1,q2) = {[α −βq1]+ [α −β (q1 +q2)]}q1

+[α −β (q1 +q2)]q2. (7.27)

Similar to the calculations in the benchmark case, the manufacturer wishes the re-
tailer to choose q1 = α/(2β ) and q2 = 0, as in (7.6). Observe that these actions
can be induced using the wholesale prices w1 = α/4 and w2 = α/2. In summary,
with a long-term contract of two-part tariffs, the equilibrium wholesale prices and
quantities are

q∗1 =
α
2β

, q∗2 = 0, (7.28)

w∗
1 =

α
4

, w∗
2 =

α
2

. (7.29)

The total supply chain profit is then

Π ∗ =
α2

2β
.

Since this matches the optimal centralized benchmark profit (7.7), we conclude that
a long-term two-part tariff can solve both the coordination problem and the durabil-
ity problem.

This analysis highlights the strategic role of decentralization. A centralized seller
that is unable to commit to future actions will be plagued by the Coase problem, as
shown in Section 7.2.1.2. The highest possible benchmark profit cannot be attained.
On the other hand, the situation is different under decentralization. Although the
introduction of an intermediary may generate double marginalization problems as
in Section 7.2.2.1, standard contractual mechanisms (such as a two-part tariff) can
resolve coordination issues easily, as shown in Section 7.2.2.2. Further, when long-
term contracts are feasible, a decentralized system can even attain the benchmark
profit, as shown in Section 7.2.2.3. This is an important message to supply chain
managers. While firms often find it difficult to commit to consumers in the market, it
may be feasible for them to commit to other firms within the supply chain (through
appropriate contractual mechanisms). Bringing into the supply chain an interme-
diary to whom one can commit to is thus a useful strategy to adopt. Such strategic
decentralization effectively solves the Coase problem that is central to many durable
goods markets.
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7.2.3 Longer Time Horizons

Although we have so far focussed on two-period models, similar reasoning also
applies to longer time horizons. With three or even more time periods, the same
backward-induction approach can be used to derive the subgame perfect equilib-
rium. One can then obtain the equilibrium quantities and prices.

For a three-period model, Arya and Mittendorf (2006) analyze the centralized
system as well as a decentralized system operating under the simple wholesale price
contract. In other words, they provide analysis analogous to Sections 7.2.1.2 and
7.2.2.1. They obtain the following results. Details are omitted.

For the centralized seller who is unable to commit to future actions, the equilib-
rium production quantities are

q∗1 =
10α
29β

, q∗2 =
38α
145β

, q∗3 =
57α
290β

, (7.30)

and total equilibrium profit level is

Π ∗ =
361α2

580β
≈ 0.622

α2

β
. (7.31)

For the decentralized system operating under a wholesale price contract, the equi-
librium wholesale prices and quantities are

q∗1 ≈ 0.19
α
β

, q∗2 ≈ 0.17
α
β

, q∗3 ≈ 0.16
α
β

, (7.32)

w∗
1 ≈ 1.27α, w∗

2 ≈ 0.74α, w∗
3 ≈ 0.32α. (7.33)

The total system profit, in equilibrium, is

Π ∗ ≈ 0.631
α2

β
. (7.34)

The key observation here is that, with a longer time horizon, a decentralized chan-
nel may perform better than a centralized channel. Observe that the three-period
decentralized profit (7.34) exceeds the three-period centralized profit (7.31). Recall
that the decentralized system is operating under the simple per unit wholesale price
contract. This suggests that even in the absence of complex contractual arrange-
ments (such as long-term contracts), decentralization can be a useful strategy in its
own right. With longer time horizons, simply introducing an intermediary into the
supply chain can improve system performance.

Before concluding this section, we emphasize two points concerning time hori-
zons.

1. We first clarify the interpretation of longer time horizons. Moving away from
a two-period model, what does three time periods mean? One interpretation is
that, longer time horizons implies higher durability. With two periods, the durable
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good lasts for two periods. With three periods, the durable good lasts for three pe-
riods. In fact, in the classic model of Coase (1972), there are infinitely many pe-
riods, so the good is infinitely durable. In such cases, the durability problem is at
its extreme severity and the monopoly seller makes zero profit. Therefore, longer
time horizons are more applicable to goods that have higher durability. Next, a
second interpretation is that time periods refer to time points during which the
seller can change prices. With two time periods, the seller can change prices once
during the season; with three time periods, the seller can change prices twice.
In our opinion, with improving technology and increasing industry clockspeed,
longer time horizons will become more and more relevant.

2. An implicit assumption in many durable goods models is that all consumers are
present at the start of the time horizon. In the models discussed above, whether
we have two, three, or even more time periods, the consumer pool is exoge-
nously fixed at the outset. This is not an innocuous assumption. In many practical
settings, new consumers may arrive to the market within the selling season, so
longer time horizons may imply higher customer traffic. An influx of strategic
consumers during the selling season creates analytical difficulties that require
different solution approaches. Such problems have recently been addressed in
the revenue management literature; see Shen and Su (2007) for a review. In this
chapter, we focus on a static consumer pool and short time horizons (e.g., two or
three periods), and discuss the benefits of decentralization in such settings. More
generally, with longer time horizons and dynamic consumer arrivals, the effect
of decentralization on supply chain performance remains an open question.

7.3 Perishable Goods

We proceed in this section to study the second class of products: perishable goods.
In contrast to durable goods, perishable goods exhibit characteristics on the other
extreme: the life cycle is relatively short either due to the perishability of the goods
in nature (e.g., food and newspaper) or due to frequent new product introductions
(e.g., fashion and hi-tech goods). Since most perishable goods possess more or less
innovative elements and they are valuable only for a single, short selling season,
market demand for perishable goods is usually highly uncertain. For these reasons,
sellers of perishable goods face a remarkable challenge of matching their supply
to market demand. Although many sellers have adopted various operational strate-
gies (e.g., collaborative forecasting and quick response), completely eliminating the
mismatch between supply and demand is not feasible. Therefore, perishable goods
sellers actively seek remedies to minimize the consequences of demand–supply
imbalances. A commonly used strategy is price markdown in which a seller clears
excess inventory and garner additional revenue by dramatically dropping the prod-
uct price at the end of a selling season. According to recent media reports, such
a practice has been increasingly used both in terms of broadness and depth (see
Merrick, 2001 and Byrnes and Zellner, 2004). However, this strategy trains con-
sumers to wait for the after-season sales, which may affect the seller’s profit in the
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regular season. How should a seller deal with this kind of strategic consumer be-
havior? Does strategic decentralization help as in the case of durable goods? In this
section we present a modeling framework to investigate the role of strategic con-
sumer behavior in supply chain management for perishable goods.

7.3.1 Model Setting

Consider a seller who sells a product in a single selling season. Demand for this
product is uncertain and is denoted by a random variable X . One may interpret X
as the total mass of infinitesimal consumers in the market. Let F and f denote the
distribution and density functions of X . For technical reasons, we assume that f is
continuous, f (0) > 0, and F has an increasing failure rate (i.e., f (x)/(1−F(x)) is
increasing in x). Most of the commonly used distributions satisfy this assumption.
Each unit of the product costs c and has a salvage value of s at the end of the selling
season. All consumers value the product at v, which is equivalent to the maximal
willingness to pay. To avoid trivial solutions, assume s < c < v.

The above setup is exactly the classic newsvendor problem. Given a price p and
a stocking quantity Q, we know the newsvendor profit is given by

Π(Q, p) = (p− s)E(X ∧Q)− (c− s)Q, (7.35)

where ∧ represents the minimum operation. The newsvendor model has been widely
studied in the operations management literature and regarded as a building block for
supply chain management research. The twist we add here is strategic consumer be-
havior. To explain, each consumer may choose to either buy the product during the
regular selling season (i.e., pay a full price) or wait for sales till the end of the season
(i.e., pay a lower price). However, there is a risk associated with waiting because the
product may not be available anymore. Basically, each consumer needs to weigh the
two options and choose the timing of purchase accordingly. In particular, the con-
sumers can observe the price announced by the seller, but not the stocking quantity.

The seller’s decisions include stocking quantity Q and price p for the selling sea-
son, whereas the consumers choose to buy immediately or wait. From the seller’s
standpoint, this setting resembles the newsvendor model with pricing (see Petruzzi
and Dada, 1999). Further, to study the interaction between the seller and the con-
sumers, we need to examine the beliefs formed by the two parties: First, the seller
has to form expectations about the consumers’ reservation prices in the regular sea-
son (i.e., the maximum price at which the consumers are willing to buy immedi-
ately). Second, since the consumers cannot observe the actual stocking quantity at
the seller, they need to form expectations about the likelihood of product availabil-
ity at the end of the season. To maintain tractability and make explicit the delib-
erations of the two parties, we utilize the rational expectations (RE) equilibrium
concept to characterize the outcome of the game between the sellers and the con-
sumers. The rational expectations hypothesis, first proposed by Muth (1961), states
that economic outcomes do not differ systematically from what people expect them
to be.
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This model is identical to the RE game studied in Su and Zhang (2008). For
consistency, we follow their notations as well. We briefly outline the equilibrium
analysis and highlight the major insights in this chapter. More details can be found in
Su and Zhang, where they also check the robustness of results in several extensions
of the basic model.

For ease of exposition, we adopt the following sequence of events. First, the
seller forms a belief ξr of the consumers’ reservation price, and then choose the
optimal price p and quantity Q to maximize the newsvendor profit Π(Q, p). Then,
the consumers privately form a belief ξprob over the availability probability in the
salvage market, and determine a reservation price r for immediate purchase. Next,
the random demand X is realized. Then sales occur at the full price p in the regular
season, provided that p does not exceed r. Finally, unsold units are salvaged at
price s after the selling season ends. Two additional assumptions are made in the
basic model to facilitate analysis. First, we consider equilibrium outcomes where
all consumers share the same belief ξprob and the same reservation price r. Second,
all parties are risk neutral and there is no discounting of money over time. The
following definition introduces the RE equilibrium concept.

Definition 1. A rational-expectations (RE) equilibrium (p,Q,r,ξprob,ξr) must sat-
isfy the following five conditions: (i) r = v − (v − s)ξprob, (ii) p = ξr, (iii) Q =
argmaxQ Π(Q, p), (iv) ξprob = F(Q), (v) ξr = r.

The above equilibrium conditions deserve some explanation. A consumer’s sur-
plus is v− p if she buys immediately, and the expected surplus is (v− s)ξprob if she
waits. Thus the maximal price a consumer is willing to pay in the regular season is
r = p = v− (v− s)ξprob, which is condition (i). Conditions (ii) and (iii) assert that
under expectations ξprob and ξr, the seller will take the profit-maximizing actions.
The last two conditions require that expectations must be consistent with outcomes.
Condition (iv) is about the consistence on the availability probability. We know ξprob

is the belief on availability probability. The actual probability can be calculated
as follows. In equilibrium, the seller prices the product at consumers’ reservation
price, so all consumers will buy the product. Consider an individual consumer who
deviates and waits instead. Since this customer is infinitesimally small, the mass
of remaining consumers is X . Hence, this individual will face a stockout later if
X > Q. On the other hand, if X ≤ Q, this individual consumer will get the product
at the salvage price. Therefore, when an individual consumer waits, she will ob-
tain the product with probability F(Q), which must be consistent with her beliefs
ξprob, as shown in (iv). An implicit assumption here is that consumers who wait
for the sale have the highest priority to receive the product in the salvage market.
This is reasonable because consumers who are interested in a particular product
and eagerly waiting for a sale are also the ones who are more likely to get the
product when the sale actually takes place. Finally, in (v), the seller’s belief over
the reservation price should be consistent with the consumers’ actual reservation
price.
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7.3.2 Centralized System

7.3.2.1 RE Equilibrium Outcome

We first present the outcome of the RE equilibrium. Manipulation of the five condi-
tions shows that the RE equilibrium in Definition 1 can be characterized by a pair
of equations in p and Q only: p = v− (v− s)F(Q) and Q = argmaxQ Π(Q, p). Thus
we have the following result.

Proposition 1. There is a unique RE equilibrium. In the equilibrium, the seller’s
price p and quantity Q are characterized by

pc = s+
√

(v− s)(c− s) and F̄(Qc) =
√

c− s
v− s

,

and all consumers will buy immediately.

We use subscript c for a centralized seller (later, we will consider a decentralized
supply chain with a manufacturer and a retailer). For concision, we use F̄ for 1−F .
The proofs are presented in the appendix at the end of the chapter. Under such an
RE equilibrium, the centralized seller’s profit can be written as

Πc = (pc − s)E(X ∧Qc)− (c− s)Qc, (7.36)

which will serve as a benchmark in future comparisons.

7.3.2.2 Two Types of Commitment

The seller receives a profit Πc in the RE equilibrium. In this subsection we show
that the seller’s profit can be improved with two types of commitments: quantity
commitment (keeping quantities low) and price commitment (keeping prices high).
The rationale under both strategies is to guarantee customers that the product is suf-
ficiently exclusive: it is not available in large quantities and it cannot be purchased
at low prices. Practical examples of quantity commitment include limited editions
of cars, furniture, and collectors’ items, while price commitment may arise in the
form of “one-price” or “no-haggle” policies.

We begin with quantity commitment. Suppose the seller is able to convince the
consumers that exactly Q units of the product will be available for the entire prob-
lem horizon. Or equivalently, the customers can observe the actual stocking quantity.
Knowing the stocking quantity Q, customers no longer need to form rational expec-
tations ξprob because if they wait for the sale (while all other customers buy), their
chances of getting the product on the salvage market is Pr(X ≤ Q) = F(Q). In other
words, when the seller commits to sell Q units, customers are willing to pay (and the
seller also charges) price p(Q) = v− (v− s)F(Q). The seller’s profits, as a function
of price p and quantity Q, is
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Πq(Q) = (p(Q)− s)E(X ∧Q)− (c− s)Q,

= (v− s)F(Q)E(X ∧Q)− (c− s)Q.

We use the subscript q for quantity commitment. Let Q∗
q = argmaxQ Πq(Q) be

the seller’s optimal quantity he will commit to. Then the seller charges price
p∗q = v−(v−s)F(Q∗

q). Denote the corresponding optimal profit level under quantity
commitment by Π ∗

q . Essentially, quantity commitment allows the seller to manipu-
late the selling price p(Q) as a function of the chosen quantity Q; on the other hand,
in the absence of quantity commitment, the price p is determined by the RE equilib-
rium. We next compare the optimal outcome under quantity commitment with the
RE equilibrium outcome.

Proposition 2. Πq(Q) has a unique maximizer Q∗
q. In addition, Q∗

q ≤ Qc and
Π ∗

q ≥ Πc.

Proposition 2 confirms that the seller can obtain a higher profit (Π ∗
q ≥ Πc) by

committing to a lower quantity (Q∗
q ≤ Qc). The practice of artificially creating the

impression of shortages is not uncommon. Zara, one of the largest Spanish fashion
retailers, is well known for limiting production quantities to induce customers to
make quick purchases (Ferdows et al. 2004). Now, why cannot the seller achieve
Q∗

q in the RE equilibrium? It is because an external commitment device is critical
in realizing the quantity Q∗

q. To see this, recall from Definition 1 that in order to
sustain Q∗

q in equilibrium, the required expectations are ξprob = F(Q∗
q) and ξr = r,

and the required selling price is p = r = v− (v− s)F(Q∗
q). It can be verified that

these values satisfy conditions (i), (ii), (iv), and (v) in Definition 1, but the definition
of Q∗

q contradicts condition (iii). Intuitively, under the expectations that only Q∗
q is

available, consumers would be willing to pay p(Q∗
q); but once customers are willing

to pay this much, the seller has an incentive to raise the stocking quantity above Q∗
q

to make higher profit, so the initial expectations of Q∗
q would not have be formed in

the first place. Therefore, Q∗
q cannot be sustained in the RE equilibrium. However,

this problem vanishes if the seller possesses some external commitment device.
Next we discuss price commitment. Suppose the seller can credibly commit to a

high price throughout the entire horizon. It is sufficient to consider the case in which
the seller commits to p = v (any other price would not be optimal for the seller). Note
that committing to maintain prices at v is equivalent to eliminating the markdown
opportunity provided by the salvage market. Given that the price commitment is
credible, consumers will be willing to pay v at the start. It can be shown that under
price commitment, we have a standard newsvendor model with zero salvage value.
The seller sets p∗p = v and his profit function is given by

Πp(Q) = vE(X ∧Q)− cQ. (7.37)

The seller’s optimal stocking quantity is Q∗
p = argmaxQ Πp(Q) with a profit level

Π ∗
p . The subscript p stands for price commitment. The following result compares

the performance of price commitment to the RE equilibrium outcome.
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Proposition 3. (i) Given s and v, there exists a threshold value cl such that Π ∗
p ≥ Πc

for c ≤ cl and a threshold value ch such that Π ∗
p ≤ Πc for c ≥ ch.

(ii) Given c and s, there exists a threshold vl such that Π ∗
p ≤ Πc for v ≤ vl and a

threshold value vh such that Π ∗
p ≥ Πc for v ≥ vh.

Proposition 3 shows that under certain conditions, price commitment may in-
crease the seller’s profits above the RE equilibrium level. In particular, the rela-
tionship Π ∗

p ≥ Πc holds when the production cost c is relatively low and when the
valuation v is relatively high. However, unlike quantity commitment, price commit-
ment is not unambiguously beneficial: We have identified examples in which the
inequality Π ∗

p < Πc holds. Proposition 3 also sheds light on when price commit-
ment is valuable: Price commitment tends to be more valuable when the product
becomes more profitable (either c decreases or v increases).

From the above analysis, we can see that quantity commitment and price commit-
ment are both effective strategies in dealing with strategic consumers. The problem
is, in most situations, the seller lacks an appropriate commitment device and the im-
plementation of the strategies is not feasible. If this is indeed the case, our analysis
suggests that the seller would have to contend with the RE equilibrium outcome.
What can the seller do? Fortunately, this may be true in a centralized system (sin-
gle seller), but not for decentralized systems. In the following sections, we focus
on decentralized supply chains consisting of two independent firms. We examine
different contractual arrangements between supply chain parties. It will be shown
that these contractual arrangements can serve as a surrogate commitment device,
and enable the supply chain to attain the optimal profit benchmarks Π ∗

q and Π ∗
p with

commitment. Therefore, again we can see that a decentralized supply chain may
yield higher profits than a centralized supply chain.

7.3.3 Decentralized System

In the previous analysis, customers purchase the product from a centralized seller.
This section extends the newsvendor model to a supply chain setting. Specifically,
we consider a manufacturer distributing a product through a retailer. The model
setting is the same as before, except that now we interpret c as the manufacturer’s
production cost. The timing of the model is as follows: First, the contractual agree-
ments between the manufacturer and the retailer are exogenously established; then,
the retailer and customers make their pricing, stocking, and purchase decisions ac-
cording to a RE equilibrium; finally, demand is realized during the selling season
and unsold products are salvaged. In this decentralized setting, we assume that the
manufacturer and the retailer are risk neutral, independent firms aiming at maximiz-
ing their own profits.
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7.3.3.1 Wholesale Price Contracts

We first consider contracts with the simplest form: wholesale price contracts. In a
wholesale price contract, the manufacturer specifies a unit price w (w ≥ c) for the
retailer. Under this contract, the retailer’s profit function can be written as

Π r
w(Q, p) = (p− s)E(X ∧Q)− (w− s)Q. (7.38)

Here, the subscript w stands for wholesale price and the superscript r stands for
retailer. Later we will use the superscript m to refer to the manufacturer’s profit
function. The equilibrium analysis under the wholesale price contract can be derived
similarly as before. Following the argument of Proposition 1, the retailer’s order
quantity Qw and retail price pw in RE equilibrium are given by

F(Qw) =
w− s
pw − s

=
√

w− s
v− s

, (7.39)

pw = s+(v− s)F(Qw) = s+
√

(v− s)(w− s). (7.40)

In this RE equilibrium, the profits to the retailer, the manufacturer, and the supply
chain are given by

Π r
w = (pw − s)E(X ∧Qw)− (w− s)Qw

= (v− s)F(Qw)E(X ∧Qw)− (v− s)F2(Qw)Qw, (7.41)

Π m
w = Qw(w− c) = Qw[(v− s)F2(Qw)− (c− s)], (7.42)

Πw ≡ Π r
w +Π m

w = (v− s)F(Qw)E(X ∧Qw)− (c− s)Qw, (7.43)

respectively.
It is worth noting that the wholesale price w can be used as a control lever for

the supply chain to induce a particular equilibrium stocking quantity. The expla-
nation is as follows. First, there is a one-to-one relationship between Qw ∈ [0,Qc]
and w ∈ [c,v], since the equilibrium quantity Qw is monotonically decreasing in w.
(To highlight the dependence of the equilibrium quantities on the wholesale price w,
later we write Qw(w), and similarly for pw(w),Π r

w(w),Π m
w (w), and Πw(w)). Second,

recall that Qc is the RE equilibrium quantity in the centralized system. Then, by
varying w between c and v, the supply chain can realize any equilibrium quantity
within the range [Qw(v),Qw(c)]. Therefore, it is as if the supply chain could choose
a desired quantity at the outset (though this particular quantity has to conform to the
requirements of an RE equilibrium). In this sense, a pure wholesale price contract
provides the supply chain with certain degree of quantity-commitment power. Actu-
ally, it turns out that quantity-commitment power can significantly enhance supply
chain profits. The next proposition formalizes this observation.

Proposition 4. There exists a w∗ ∈ (c,v) such that
(i) Πw(w)≥ Πc for every w ∈ (c,w∗], i.e., the equilibrium profit in the decentralized
system under the wholesale price contract w exceeds the equilibrium profit in the
centralized system.
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(ii) The decentralized system achieves the optimal profit Π ∗
q under quantity

commitment at w = w∗.

Proposition 4(i) states that the profit of a centralized supply chain is dominated
by the profit of a decentralized supply chain, under an array of wholesale price con-
tracts. This is a surprising result. A customary practice in operations management
research is to use the centralized scheme as a benchmark to study supply chain
efficiency. Proposition 4(i) delivers a message that the centralized optimal profit
may not always be the highest possible profit that a supply chain can achieve. In
particular, there have been numerous studies addressing the inefficiency caused by
double marginalization. That is, when w > c, the retailer orders less than the optimal
quantity for the entire supply chain. In contrast, here we show that increasing the
wholesale price beyond c actually improves the supply chain’s profit. The reason is
that a higher wholesale price will enable the retailer to credibly stock a lower quan-
tity (recall Qw(w) is a decreasing function of w), and hence charge a higher retail
price to forward-looking consumers in equilibrium. Meanwhile, varying the whole-
sale price would not affect the supply chain profit since it only alters the transfer
payment between the two parties.

Proposition 4(ii) further states that a decentralized supply chain can achieve Π ∗
q ,

the optimal profit under the quantity commitment, by using a wholesale price con-
tract w = w∗. That is, the wholesale price induces the optimal quantity Q∗

q in equilib-
rium and “coordinates” the supply chain. A similar situation where a wholesale price
contract can coordinate a supply chain is when horizontal competition is present.
For example, Netessine and Zhang (2005) demonstrate that in a distribution channel
with a manufacturer and multiple retailers, the substitution effect among the retailers
can offset the double marginalization effect and thus retain the supply chain optimal
outcome. But here the underlying reason is different: There are strategic consumers
on top of double marginalization, and therefore a wholesale price contract can serve
as a coordination device to balance these two opposite forces.

We proceed by asking the following two questions. First, if given the choice, what
wholesale price would the retailer and the manufacturer select? In other words, how
are the quantities wr ∈ argmaxw Π r

w(w) and wm ∈ argmaxw Π m
w (w) characterized,

and are they unique? Second, how do these unilaterally preferred wholesale prices
wr and wm compare with the system-optimal wholesale price w∗? These questions
are important, since although the wholesale price w∗ allows the supply chain to at-
tain the profit benchmark Π ∗

q , it specifies a particular division of profits between
the retailer and the manufacturer (their shares are Π r

w(w∗) and Π m
w (w∗), respec-

tively). However, each individual party may prefer some wholesale price other than
w∗ and may negotiate for their preferences. The following proposition deals with
these questions.

Proposition 5. The profit maximizers wr (for the retailer) and wm (for the manufac-
turer) are unique. Moreover, they satisfy wr < w∗ < wm.

To further understand each party’s preferences over wholesale prices, it would be
useful to characterize the set of Pareto-optimal wholesale price contracts. A contract
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is Pareto optimal if there exists no alternative such that some firm is strictly better off
and no firm is worse off. Any wholesale price in the Pareto set is a possible choice
both parties agree upon. The next proposition presents the set of Pareto wholesale
price contracts.

Proposition 6. The Pareto-optimal wholesale price set is given by w ∈ [wr,wm]. In
particular, if wr > c, then the wholesale price w = c is Pareto dominated by any
w ∈ [c,wr].

From the above two propositions we can see how the allocation of bargaining
power affects supply chain efficiency (one may view the wholesale price as a proxy
of the bargaining power of the two parties): Since wr < w∗ < wm, the supply chain
achieves its optimum when the wholesale price lies in the middle. This suggests
that an extreme allocation of bargaining power may reduce the supply chain profit.
Now, consider the retailer’s profit. Intuitively, a retailer would prefer to have a lower
wholesale price. But this is not necessarily true in our problem setting. In fact, even
if the retailer has absolute bargaining power, it may not ask for a wholesale price
w = c to squeeze the manufacturer’s profit to zero. The explanation is as follows.
Note that the problem of choosing the wholesale price w faced by the retailer is
equivalent to the problem of choosing the production cost c faced by the single
seller in Section 7.3.2. In other words, one may view the seller’s profit Πc as a
function of c, and then wr is essentially the production cost that maximizes the
seller’s profit. Therefore, if wr > c (i.e., the profit-maximizing production cost is
greater than the actual cost), then according to Proposition 6, the contract with w = c
is Pareto dominated by any w ∈ [c,wr]. That is, under certain conditions, both the
retailer and the manufacturer prefer a wholesale price higher than the production
cost c. This is an interesting result because it implies that the retailer may increase
his own profit by voluntarily inviting a higher wholesale price.

7.3.3.2 Buyback Contracts

So far we have explained that wholesale price contracts can achieve quantity com-
mitment for a decentralized supply chain. Next, we show that decentralized supply
chains can attain the price-commitment benchmark profit Π ∗

p using buyback con-
tracts. In a buyback contract, the manufacturer sells to the retailer at wholesale price
wb and agrees to buy back unsold items at b per unit after demand is realized. There
are two separate cases to consider. When b < s, the retailer would prefer to salvage
the excess inventory rather than selling them back to the manufacturer. The (wb,b)
contract essentially reduces to a pure wholesale price contract, which has already
been studied above. For this reason, we will focus on the case b ≥ s. In this case,
the option of selling excess inventory back to the manufacturer becomes more at-
tractive than marking down the price. More importantly, this buyback arrangement
eliminates the salvage market, thereby inducing all customers to pay the maximum
regular price p = v. We emphasize that the buyback contract requires the retailer to
physically return the unsold products to the manufacturer (or the retailer “destroys”
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the leftover inventory by himself). Mere monetary transfers are insufficient because
the retailer has to “burn his own bridge” in order to convince consumers that he is
unable to activate the salvage market after all intra-supply chain transactions have
occurred.

We start the analysis by assuming that a buyback contract (wb,b) with b ≥ s has
been established at the outset. In this environment, the RE equilibrium (between
the retailer and the strategic customers) dictates that prices (selling price, reserva-
tion price, and anticipated reservation price) are all p = r = ξr = v and the antici-
pated probability of low-price availability is ξprob = 0. Then, the retailer has a profit
function

Π r
b(Q) = (v−b)E(X ∧Q)− (wb −b)Q, (7.44)

and chooses the quantity Qr
b characterized by F(Qr

b) = (wb −b)/(v−b). We use the
subscript b for buyback. We also define Π m

b (Q) and Πb(Q) = Π r
b(Q)+Π m

b (Q) as the
manufacturer’s profits and total supply chain profits (under the buyback contract),
as a function of the retailer’s order quantity Q. These profit functions, respectively,
can be written as

Π m
b (Q) = bE(X ∧Q)+(wb − c−b)Q, (7.45)

and
Πb(Q) = vE(X ∧Q)− cQ. (7.46)

Total supply chain profit Πb(Q) is maximized at Qb satisfying F(Qb) = c/v.
Observe that total supply chain profit under the buyback contract Πb(Q) coincides
with the profit function of the centralized system with price commitment, Πp(Q), so
their maximizers also coincide. Therefore, if the supply chain can be coordinated to
produce and stock the optimal quantity Qb, the price-commitment profit benchmark
Π ∗

p can be attained. The next proposition shows that this can indeed be done, but
only for a certain range of profit allocations.

Proposition 7. Let λ ∈ [0,1− s/v] be the retailer’s profit share in a buyback con-
tract. Then under the parameter values wb = λc +(1−λ )v and b = (1−λ )v, the
RE equilibrium outcome attains the price-commitment profit benchmark Π ∗

p for the
system. The retailer’s and the manufacturer’s profits are, respectively, λΠ ∗

p and
(1−λ )Π ∗

p .

It is well known that buyback contracts can coordinate a decentralized supply
chain and arbitrarily divide the profit between supply chain members (see Cachon,
2003). Our results identify a new role that buyback contracts play when customers
are strategic: They serve as a commitment device. The ability to commit to strategic
customers, combined with the ability to coordinate on mutually beneficial actions,
allows supply chains to attain the profit levels of a centralized system with price
commitment. This may not even be an alternative when a centralized seller operates
in isolation. Industry evidence seems to be consistent with the above analysis. For
example, buyback or return policies are widely used in the book industry. Instead
of marking down prices, major retailers such as Barnes & Noble return the unsold
books to their publishers when the selling season ends. The returned copies are
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then sold to companies specializing in bargain books or books that cannot be sold
are simply pulped for a total loss. There is an ongoing debate in the book industry
over whether returns should be eliminated: while some retailers claim that they are
willing to mark down books and sell them on spot, most publishers are leery of
the change (see Trachtenberg, 2005). In fact, one major concern is that readers may
learn to wait until books are cheaper. We suspect that the book industry, in spite
of losses due to returns, may still be using such a practice as a price-commitment
device in order to extract higher profits.

Another observation from Proposition 7 is that there is an upper bound 1− s/v
on the retailer’s profit share λ . In general, the ability to allocate profits arbitrarily
between parties is a desirable property in evaluating different contractual formats.
This is because with such a property, we can separate the coordination process from
the allocation process: The supply chain can concentrate on maximizing the size of
the pie before negotiating over individual shares. In the current situation, the upper
bound on retailer share may create problems, especially when the retailer is powerful
relative to the manufacturer. This suggests that using buyback contracts as a price-
commitment device may face implementation challenges. Note that λ ≤ 1− s/v
follows directly from the condition b ≥ s. Thus, ironically, it is precisely these profit
caps (due to the upper bound on profit share) that make buybacks effective in provid-
ing price commitment. This is different from the situations without the presence of
strategic consumers, where buyback contracts can achieve arbitrary profit allocation
through the manipulation of the contract parameters, wb and b.

7.4 Conclusion and Future Research

The main theme of this chapter is to demonstrate that decentralized supply chains
may perform better than centralized systems. This claim may appear to challenge
conventional wisdom in operations management since decentralization is often asso-
ciated with double marginalization problems. However, in this chapter, we first show
that decentralization can indeed be a beneficial strategy in durable goods supply
chains. Decentralization can be particularly useful in durable goods supply chains
in the following two scenarios:

1. The first scenario is when firms are able to write long-term contracts. In such
cases, long-term contracts allow firms to commit to one another, and this serves
as a proxy for commitment to consumers (which firms are unable to achieve).
Thus, through long-term contracts, durable goods supply chains are able to miti-
gate the Coase problem and improve profits.

2. The second scenario is when firms are selling over long time horizons. In such
cases, we see that even in the absence of complex contractual arrangements,
simply introducing an intermediary can increase supply chain profits. This is
because double marginalization leads to lower future quantities and higher con-
sumer willingness to pay. In this sense, double marginalization is no longer a
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“problem” but rather, it helps to sustain higher prices over longer time horizons
for durable goods.

We also show that decentralization can be beneficial to perishable goods supply
chains since it can serve as a commitment device to convince consumers of certain
actions taken by firms. Two types of commitment that may help enhance a seller’s
profit have been studied:

1. The first type is quantity commitment. In quantity commitment, the seller promises
that the quantity will be low and thus induces the consumers to buy at a rela-
tively high price in the regular season. While a centralized system may lack such
a commitment power, a decentralized system under the simplest wholesale price
contracts can credibly commit to a desirable quantity due to the double margina-
lization effect.

2. The second type is price commitment. A consumer may choose to wait simply
because she anticipates a lower price in the salvage market. This opportunistic
behavior will not exist anymore if a seller can credibly commit to a high price
throughout the entire horizon. A buyback contract, which removes any leftover
inventory of the product from the market, can clearly achieve the effect of price
commitment.

It can be seen in this chapter that for both durable goods and perishable goods
models, commitment power is the key. Essentially, both models involve the dy-
namic inconsistency (also known as time inconsistency) problem recognized in the
economics literature. That is, a firm competes against his future self when making
managerial decisions at multiple time points. (The only exception is the model of
quantity commitment for perishable goods supply chains, where the seller makes
a single-shot decision at the beginning of the selling season.) Under these circum-
stances, a firm may be better off if he possesses commitment power to convince
other game players that certain actions will be taken.

We emphasize that strategic consumers are also critical for the results. We be-
lieve that modeling individual consumer behavior in various operations problems is
a fruitful topic for future research. The majority of supply chain management lit-
erature study isolated operational systems by treating the demand as an exogenous
random variable or a fixed downward-sloping curve. However, individual consumers
may take strategic actions that in turn affect the performance of the operational sys-
tem. In fact, modeling customer behavior explicitly has been quite common in ser-
vice contexts (e.g., queueing analysis and revenue management), probably because
consumers are more tangible in service than in other settings. Nevertheless, we hope
this chapter can inspire more research in different operational settings.

All the analysis in this chapter requires that consumers act perfectly rational in re-
sponse to firms’ strategies and market conditions. That is, consumers are not myopic
and possess unlimited information processing capability. Although this assumption
is understandable from a research point of view, apparently, it may not hold in re-
ality. Consumers are human beings and they are not necessarily always, perfectly
rational. Thus another direction for future research is to investigate the impact of
bounded rationality in consumer behavior on firms’ operational strategies.
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Finally, the message that strategic decentralization could benefit a firm has been
reported in other studies. In these studies, a firm competes against other independent
competitors rather than his future self. McGuire and Staelin (1983) consider two
manufacturers selling substitutable products. Each manufacturer may sell his prod-
uct through a manufacturer-owned outlet or an independent retailer. They find that
both manufacturers may choose to distribute the products through a decentralized
channel in equilibrium, depending on product substitutability. Cachon and Harker
(2002) study two competitive service providers that have the option to outsource
the service to a third party. It has been shown that both firms outsourcing could be
an equilibrium since adding an upstream stage in the service supply chain can re-
duce the intensity of competition at the downstream stage. A recent paper by Liu
and Tyagi (2007) shows that strategic decentralization could also be useful when
two firms compete on horizontally differentiated products. Since production/service
outsourcing is an important operational strategy that has gained tremendous popu-
larity, it would be interesting to identify new driving forces underlying the industry
trend.

Appendix

Proof of Proposition 1

The RE equilibrium conditions

p = v− (v− s)F(Q), (7.47)

Q = argmax
Q

Π(Q, p), (7.48)

reduce to

p = s+(v− s)F(Q), (7.49)

F(Q) =
c− s
p− s

, (7.50)

respectively. Solving these equations yields the desired results. ��

Proof of Proposition 2

The first-order condition Π ′
q(Q) = 0 yields

c− s

F(Q)
+(v− s)

f (Q)
F(Q)

E(X ∧Q) = (v− s)F(Q). (7.51)

The left-hand side is increasing (because F has an increasing failure rate), and the
right-hand side is decreasing in Q, so the first-order condition has a unique solution.
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Further, we know that Π ′
q(0) = v−c > 0 and limQ→∞ Π ′

q(Q) =−(c−s) < 0. There-
fore, Πq(Q) is quasi-concave and has a unique maximizer.

The derivative of Πq(Q) at Q = Qc is

Π ′
q(Qc) = (v− s)F2(Qc)− (c− s)− (v− s)E(X ∧Qc) f (Qc)

= −(v− s)E(X ∧Qc) f (Qc)
< 0,

where the second equality follows from (v− s)F2(Q)− (c− s) = 0. From the pre-
vious proposition we know that Πq(Q) is increasing first and then decreasing in Q.
Hence there must be Q∗

q < Qc and Π ∗
q ≥ Πc. ��

Proof of Proposition 3

The proof is similar to that of Proposition 2 and omitted. ��

Proof of Proposition 4

The proof follows directly from Proposition 2. ��

Proof of Proposition 5

Consider the equilibrium profits Π r
w(Q) and Π m

w (Q) as a function of equilibrium
quantities Q. Denote the maximizers of these functions Qr

w ∈ argmaxQ Π r
w(Q) and

Qm
w ∈ argmaxQ Π m

w (Q). It suffices to show that (i) Qr
w and Qm

w are unique and (ii)
Qm

w < Q∗
q < Qr

w.
(i) Taking derivative of Π r

w(Q) gives

d
dQ

Π r
w(Q) = (v− s) f (Q)[−E(X ∧Q)+2QF(Q)]. (7.52)

Let

g(Q) = −E(X ∧Q)+2QF(Q) = −
∫ Q

0
x f (x)dx+QF(Q), (7.53)

then
g′(Q) = F(Q)−2Q f (Q). (7.54)

Since F has an increasing failure rate, we know g′(Q) starts at g′(0) = 1 and then
decreases to the negative domain. Thus, g(Q) starts at g(0) = 0, increases first, and
then decreases to the negative domain. Let Qr

w be the unique solution to g(Q) = 0,
then Π r

w(Q) is increasing for Q < Qr
w and decreasing for Q > Qr

w. That is, Π r
w(Q) is

quasi-concave and has a unique maximizer.
The proof for Π m

w (Q) is similar and omitted.
(ii) Consider the first-order conditions for Qr

w, Qm
w , and Q∗

q:
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Qr
w :

d
dQ

Π r
w(Q) = (v− s) f (Q)[E(X ∧Q)−2QF(Q)] = 0, (7.55)

Qm
w :

d
dQ

Π m
w (Q) = (v− s)F2(Q)− (c− s)− (v− s)2QF(Q) f (Q) = 0, (7.56)

Q∗
q :

d
dQ

Πq(Q) = (v− s)F2(Q)− (c− s)− (v− s)E(X ∧Q) f (Q) = 0. (7.57)

Since E(X ∧Qr
w) = 2Qr

wF(Qr
w) and Π r

w(Q) is quasi-concave, we have

d
dQ

Π m
w (Q) ≤ d

dQ
Πq(Q),

for Q < Qr
w and the opposite holds for Q > Qr

w. Therefore, the only possible order-
ings for Qr

w, Qm
w , Q∗

q are Qr
w < Q∗

q < Qm
w and Qm

w < Q∗
q < Qr

w.
Next we show Q∗

q < Qr
w. The retailer’s optimal quantity Qr

w is given by E(X ∧Qr
w)

= 2Qr
wF(Qr

w) and is determined only by the distribution function. Define β ≡
(c− s)/(v− s) (0 < β < 1). Then, the first-order condition for Q∗

q can be written
as

β + f (Q)E(X ∧Q) = F
2(Q). (7.58)

If β + f (Qr
w)E(X ∧Qr

w) > F
2(Qr

w), then we know Q∗
q < Qr

w. Since β > 0, it suffices

to show f (Qr
w)E(X ∧Qr

w) > F
2(Qr

w). Plugging E(X ∧Qr
w) = 2Qr

wF(Qr
w) into the

inequality, we only need to show

F(Qr
w)−2Qr

w f (Qr
w) < 0. (7.59)

Recall from (i) that g′(Q) = F(Q)− 2Q f (Q) = 0 has a unique solution. Let Q̂ be
this solution. In addition, Qr

w is the unique solution to g(Q) = 0. This implies that
Q̂ < Qr

w, so we have

g′(Qr
w) = F(Qr

w)−2Qr
w f (Qr

w) < g′(Q̂) = 0. (7.60)

The desired result follows. ��

Proof of Proposition 6

The proof follows directly from Proposition 2 and Proposition 5. ��

Proof of Proposition 7

Recall that the retailer faces the profit function

Π r
b(Q) = (v−b)E(X ∧Q)− (wb −b)Q, (7.61)

so the optimal stocking quantity is
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F(Qr
b) = (wb −b)/(v−b). (7.62)

Recall also that the supply chain profit function is

Πb(Q) = vE(X ∧Q)− cQ, (7.63)

which is maximized at Qb, as characterized by

F(Qb) = c/v. (7.64)

The proof follows the standard approach in the supply chain contracting literature,
so we shall keep it brief. The appropriate buyback contract has two objectives: (i) to
induce Qr

b = Qb (coordination) and (ii) to yield a (λ ,1 − λ ) division of profits
(allocation). The two conditions v − b = λv and wb − b = λc together achieve
both objectives because (i) (wb −b)/(v−b) = (λc)/(λv) = c/v, so from (7.62)
and (7.64), we have Qr

b = Qb, and (ii) from (7.61) and (7.63), we have Π r
b(Q) =

(v−b)E(X ∧Q)− (wb −b)Q = λvE(X ∧Q)−λcQ = λΠb(Q). Solving these two
equations yields the desired contract parameters. Finally, since b = (1− λ )v, the
condition b ≥ s yields the upper bound of 1− s/v on the retailer’s share λ . ��
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Chapter 8
Is Assortment Selection a Popularity Contest?
A Study of Assortment, Return Policy, and Pricing
Decisions of a Retailer

Aydın Alptekinoğlu, Alex Grasas, and Elif Akçalı

Abstract Should retailers take product returns into account when choosing their
assortments? And, when doing so, should they consider assortment selection as a
popularity contest – by carrying products that they think will be popular among con-
sumers? Or, is there ever a case for carrying eccentric products – those that are least
likely to be purchased by a typical consumer? In search of answers to these ques-
tions, we explore in this chapter the interactions between product assortment, return
policy, and pricing decisions of a retailer. We consider a category of horizontally
differentiated products delivered in two alternative supply modes: make-to-order
(MTO) and make-to-stock (MTS). In the MTO mode, products are supplied after
demand materializes, whereas in the MTS mode, the retailer stocks products prior
to the selling season. Underlying our demand model, consumer choice behavior
follows a nested multinomial logit model, with the first stage involving a product
choice, and the second stage involving a keep-or-return decision. We show that the
structure of the optimal assortment strongly depends on both the return policy, which
we parameterize by refund fraction (percentage of price refunded upon return) and
the supply mode (MTO vs. MTS). For relatively strict return policies with a suf-
ficiently low refund fraction, it is optimal for the retailer to offer most eccentric
products in the MTO mode, and a mix of most popular and most eccentric prod-
ucts in the MTS mode. For relatively lenient return policies, on the other hand,
conventional thinking applies: the retailer selects most popular products. We also
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numerically study three extensions of our base model to incorporate: (1) endogenous
price, (2) endogenous refund fraction, and (3) multiple periods. We demonstrate that
interesting aspects of our results regarding strict return policies prevail under all of
these extensions.

8.1 Introduction

Financial impact of return policies can be quite large for a retailer. Overall customer
returns are estimated to be 6% of sales in the United States, and may run as high as
15% for mass merchandisers and up to 35% for catalog and e-commerce retailers
(Rogers and Tibben-Lembke, 1998, pp. 6–8). The annual value of returned goods
in the United States is approximately $100 billion, and companies spend more than
$40 billion annually on their reverse logistics processes for handling and disposition
of returns (Blanchard, 2005, Enright, 2003).

Given their financial importance, should retailers take product returns into ac-
count when merchandising (choosing their product assortments)? Return policies
are usually thought of as micro and more operational, whereas product assortment
is usually thought of as strategic and more marketing related. Therefore, deci-
sions associated with each are often made separately (see Stock et al., 2006, and
Olavson and Fry, 2006). Our theoretical model counters this conventional thinking
by showing that optimal assortment decisions fundamentally change in the presence
of returns.

Is assortment selection a popularity contest? When choosing their product assort-
ments for a particular category, say different colors and styles of a golf shirt, should
retailers always prefer what they think will be popular among consumers? Or, is
there ever a case for carrying eccentric products? In this chapter, we argue that rel-
atively strict return policies (with less than full refunds) can render eccentric prod-
ucts more profitable than popular ones. Our argument is moderated by the retailer’s
basic operational mode: make-to-order (MTO – the retailer does not keep its own
inventory but rather buys and delivers the product after a consumer places an order)
versus make-to-stock (MTS – the retailer keeps the product in stock). When refunds
are sufficiently low, it is optimal for retailers to carry nothing but most eccentric
products in the MTO case, and a mix of most popular and most eccentric products
in the MTS case. We also find that more lenient return policies (higher refunds)
may sometimes require deeper assortments (larger variety of products). In view of
our analytical results and numerical observations, we conclude that retailers should
not only carefully consider their return policy in assortment planning, but also take
their basic operational mode (MTO versus MTS) into account.

The rest of this chapter begins with an abridged version of a model that we de-
veloped and analyzed in a recent working paper (Grasas et al., 2008). We then de-
scribe three specific extensions of this model. The main purpose of the chapter is to
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demonstrate (by numerical experimentation) that the analytical results of our work-
ing paper, which we summarize above and in greater detail in Section 8.4.1, are
robust to these extensions. That is, interesting aspects of our results regarding when
a retailer should carry eccentric products survive these extensions, which – we have
good reasons to believe – are analytically intractable.

8.2 Literature Review

Product assortment planning or product variety management has attracted consid-
erable interest in the literature from various different angles: strategic/competitive
aspects of product variety (e.g., Cachon and Kök, 2007, Alptekinoğlu and Corbett,
2008b); impact of product variety on consumer behavior (e.g., Kim et al., 2002,
Borle et al., 2005); and interactions between product variety and operational consid-
erations such as inventory and leadtime (e.g., van Ryzin and Mahajan, 1999, Smith
and Agrawal, 2000, Aydin and Ryan, 2000, Cachon et al., 2005, Hopp and Xu, 2005,
Gaur and Honhon, 2006, Li, 2007, Maddah and Bish, 2007, and Alptekinoğlu and
Corbett, 2008a). The presence of product returns obviously complicates assortment
planning further, yet it has not been addressed in this literature so far. We demon-
strate a specific setting when returns make a fundamental difference for assortment
decisions – beyond just complicating them.

Although operational, tactical, and strategic decisions associated with used prod-
uct returns have been well studied in the closed-loop supply chain management
literature (for an overview, see Dekker et al., 2004), research on resalable product
returns has been somewhat limited. Arguing that returns need to be taken into ac-
count in inventory management, since they can act as a supplementary source to
satisfy demand, the existing research focuses on characterizing the optimal ordering
policy of a retailer (e.g., Mostard and Teunter, 2006). Guide et al. (2006) note the
value that can be recovered from returns is time sensitive and focus on identifying
the preferred reverse supply chain structure for a manufacturer. This entire line of
work exclusively treats single product systems. Therefore, by considering assort-
ment planning, we tackle a host of issues that have been ignored by the current
literature on operations management of returns.

Another line of research that is closely related to our work pertains to product
return policies. While a stream of research focuses on return policies between a
manufacturer and a retailer (e.g., Pasternack, 1985, Emmons and Gilbert, 1998), an-
other stream concentrates on the influence of a retailer’s return policy on consumers
(e.g., Yalabik et al., 2005, Shulman et al., 2008). Our work is similar to some of the
work in the latter stream in that we have an explicit model of consumer choice, and
limit attention to a single aspect of return policies: refund amount. The difference is
that we explore how return policy interacts with product assortment, an issue none
of these papers address.
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8.3 Models

We first provide a compact description of our base model. For a more complete
discussion of the key features and assumptions, we refer the reader to our working
paper (Grasas et al., 2008).

8.3.1 Base Model: Assortment Decision for Exogenous Price and
Return Policy

Motivated with the question of whether retailers should consider returns when mer-
chandising (as they compose their product assortments), we explore in our working
paper the interactions between product assortment decision and return policy of a
price-taking retailer under both make-to-order (MTO) and make-to-stock (MTS) en-
vironments. These two basic operational modes, MTO and MTS, allow us to draw
a distinction between cases where supply decision is made after and before the de-
mand materializes, respectively. In the MTO case, the retailer procures the product
after consumers make their purchase decisions (e.g., many of the sports gears sold
online at REI.com are drop-shipped directly from a third-party supplier). Whereas
in the MTS case, the reverse happens (e.g., backcountry.com, a retailer specialized
in high-end gear and apparel for outdoors, carries all of its products in inventory at
its central warehouse in Utah).

8.3.1.1 Product Assortment and Return Policy

When choosing its product assortment, we assume that the retailer exclusively con-
siders an exogenous set of potential product designs; this set may represent a sup-
plier’s catalog of different variants in a given product line. Let N = {1,2, ...,n}

subset of products actually offered by the retailer (S ⊆ N), termed assortment.
The assortment decision (S) considered here is for a narrow category of products,

which are horizontally differentiated along a taste attribute such as color or some
other component of fashion. All products in N are assumed to have the same unit
production cost c, the same retail price p, and the same salvage value v. There is only
one difference among the products in question: their attractiveness (a’s introduced
below). Following standard practice, we assume that v < c < p. The latter inequality,
c < p, is necessary for the market to be profitable. The former inequality, v < c, says
that any amount of leftovers can be sold below cost in a secondary market for v per
unit; if v ≥ c were to hold true, the retailer’s quantity decision would be riskless and
thus uninteresting.

We assume exogenous prices. In some product categories, or with particular
brands, many retailers do not dictate prices, but rather sell their products at MSRP,

denote the set of all products that the retailer can potentially offer, and let S be the
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manufacturer suggested retail price (e.g., backcountry.com sells many of its prod-
ucts at MSRP; Crocs Shoes, a manufacturer and online retailer of shoes and other
footwear, exercises a very high degree of control over the retail price of its prod-
ucts available in many online and brick-and-mortar retailers). Allowing prices to be
decision variables would be clearly useful, but also analytically very difficult (see
Maddah and Bish, 2007, for an attempt at endogenizing price in an MNL-choice-
based assortment problem that also considers inventories but omits product returns).
Yet, as pointed out by van Ryzin and Mahajan (1999) in the context of a closely re-
lated model, there are “realistic cases in which a retailer’s pricing flexibility is quite
limited” (p. 1498). We limit our analysis to such a case, as they also do, with the
retailer exercising little or no control over prices, e.g., it sells the product line in
question at MSRP. (We discuss in Sections 8.4.2 and 8.5 potential implications of
endogenizing price.)

The types of returns we consider involve products returned in resalable condi-
tion. We exclusively focus on one aspect of return policies: refund amount, which
we parameterize by refund fraction, the percentage of price refunded in the event
of a return. Like price, we assume refund fraction to be exogenous, possibly driven
by a category- or store-wide analysis (beyond the scope of ours, which focuses on
a single horizontally differentiated product line), or dictated by common industry
practice. (We discuss in Sections 8.4.3 and 8.5 potential implications of endogeniz-
ing refund fraction.) While it is common to offer refunds for the full purchase price
in some settings (e.g., backcountry.com allows customers to send products back for
a full refund with no questions asked) offering partial refunds and retaining some
portion of the price in restocking fees is common in others (e.g., buydig.com, a re-
tailer of consumer electronics, charges a processing fee of 10% of the value of all
merchandise returned for a refund).1 Let α denote the refund fraction (0 ≤ α ≤ 1),
which makes the refund amount per unit return α p. We assume that this single re-
fund fraction applies to all products in S, which is how almost all retailers operate in
practice (especially within a given narrow product category, as in our model). The
retailer incurs a reverse logistics cost l for each unit of returned products. This figure
includes such cost items as sorting, repackaging, and restocking.

Finally, consistent with common practice in retailing, we omit the possibi-
lity of product exchange. Many retailers, including backcountry.com (sports gear),
Lids.com (baseball caps), Steve Madden (shoes), and buydig.com (consumer elec-
tronics), allow returns and ask consumers to place a new order if they want to do an
exchange even for another product in the same product line. Excluding exchanges
from consideration is not without loss of generality, of course, because those new
orders would go to subsequent periods, which we do not model. (We discuss the
implications of extending our model to multiple periods in Sections 8.4.4 and 8.5.)
Allowing exchanges is akin to dynamic substitution, which is known to pose great
difficulties in assortment optimization (more about this in the discussion of MTS
environment).

1 Newegg.com charges 15% for all returned items. Best Buy and Target charge 15% for many
consumer electronics items. Returning a home theater set to Circuit City open box, even if not
used at all, incurs 25% restocking fee. See van Riper and Nolan (2008) for more examples.
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8.3.1.2 Individual Consumer Choice Behavior and Aggregate Demand

Any given consumer’s consideration set comprises all the products in S offered by
the retailer and the possibility of not purchasing any of those products, termed the
outside option, which we denote by 0. We conceptualize the consumers’ choice
among S∪{0} and their subsequent decision to keep or return the purchased product
by a two-stage nested multinomial logit (N-MNL) model. The nests are products,
and they each contain two post-purchase alternatives: keep and return.

Stage 2. Conditional on purchasing product i ∈ S in the first stage, we model the
consumer’s post-purchase decision to keep or return the product by utility maxi-
mization. Let the attractiveness of product i be ai, which may differ across the prod-
ucts but not across consumers. Without loss of generality, we sort products in N in
non-increasing order of attractiveness levels, i.e., a1 ≥ a2 ≥ ·· · ≥ an. Thus, lower
indexed products are more popular, and higher indexed products are more eccentric.

Suppose the utilities associated with purchasing product i and keeping or return-
ing it are given by ui,keep = ai − p + εi,keep, and ui, return = −(1−α) p + εi, return,
where εi,keep and εi, return are independent and identically distributed (iid) Gumbel
random variables with mean zero and scale 1/μ2 (μ2 > 0).2 Note that the determini-
stic portion of ui,keep is the attractiveness minus the price; and the deterministic
portion of ui, return is the negative of the dollar amount not refunded by the retailer.
(If returns involve a fixed cost or disutility for the consumer, we could incorporate
a deterministic parameter in ui, return to account for that; none of our findings would
change as a result.)

By the principle of utility maximization, the probability that a typical consumer
chooses the return option in the second stage is then Preturn|i ≡ Pr

{
ui, return > ui,keep

}
,

which yields the following formula:3

Preturn|i =
1

1+ exp[(ai −α p)/μ2]

And, of course, Pkeep|i = 1−Preturn|i. Should the consumer choose the outside
option in the first stage, there is no further choice to make in the second stage. Note
that Preturn|i is non-zero even if the retailer offers no refund (α = 0). This is largely
a matter of scaling; the model should be calibrated such that Preturn|i is negligibly
small when α = 0, because most consumers would probably not return the product
for no refund.

Stage 1. For a consumer who is grappling with the first stage decision of which
product to purchase (if any), the expected utility of product i ∈ S (or nest i) is Ai ≡

2 The cumulative distribution function (cdf ) of a Gumbel random variable X with mean zero and
scale 1/μ is given by P(X ≤ x) = exp[−exp(−x/μ − γ)], and has a variance of μ2π2/6, where γ
is Euler’s constant (γ ≈ 0.5772) and μ is a positive constant. Gumbel distribution is also known
as double-exponential distribution.
3 We use the fact that the difference of two Gumbel random variables, ε1 and ε2, with scale 1/μ
follows a logistic distribution with cdf given by Pr{ε2 − ε1 ≤ x} = [1+ exp(−x/μ)]−1.
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E
[
max

(
ui,keep,ui, return

)]
, which can be derived as

Ai = μ2 ln

[
exp

(
ai

μ2

)
+ exp

(
α p
μ2

)]
− p.

Furthermore, we assume without loss of generality that the outside option is a nest
with zero expected utility, that is, A0 = 0.

We model the consumer’s purchase decision also by utility maximization. Sup-
pose the utility of choosing nest i ∈ S∪{0} is given by Ui = Ai + εi, where εi are
iid Gumbel random variables with mean zero and scale 1/μ1 (μ1 > 0). (εi are also
independent of ε j,keep and ε j, return for all i, j ∈ N.) Again by the principle of utility
maximization, the probability that nest i ∈ S ∪ {0} is chosen in the first stage is
PS

i ≡ Pr
{

Ui = max j ∈ S ∪ {0}Uj
}

, which yields the following logit formula:4

PS
i =

exp(Ai/μ1)
∑

j∈S∪{0}
exp(A j/μ1)

where PS
0 denotes the probability of choosing the outside option or not buying. Note

that while the conditional probability of return Preturn|i only depends on ai (i.e., it is
independent of the rest of the products in S), the unconditional probability of return
Preturn = ∑ j∈S Preturn| jPS

j does depend on the retailer’s assortment S.
In sum, we represent consumers’ choice process with a two-stage random utility

model. Consumers are a priori homogeneous, but ex post heterogeneous on their
tastes, preferences, and outside factors that may shape their pre- and post-purchase
decisions. The random terms capture this heterogeneity. In particular, εi reflect con-
sumers’ diverse preferences for products and return policies, their diverse circum-
stances in which they need this product, their diverse information states, etc. They
also differ in their post-purchase inclinations, as summed up in εi,keep and εi, return.
Heterogeneity at this stage stems from how different consumers deal with keep and
return options given a purchase decision in the first stage. For instance, among two
consumers who are considering to keep an apparel item, their spouses may give them
different feedback. And, among two consumers who are considering to return a pair
of hiking shoes, their experience with the product may differ due to their different
backgrounds (or lack thereof) in hiking. Larger μ1 and μ2 mean higher variance
for the random terms and thus higher heterogeneity. For the N-MNL model to be
technically consistent, we require μ1 ≥ μ2 (McFadden, 1978), which is plausible in
our context. Consumers’ pre-purchase heterogeneity is generally higher than their
post-purchase heterogeneity, because presumably those who buy the same product
will know more about what they want (or do not want) based on first-hand experi-
ence with a given product, and will differ less from each other due to this common
experience.

4 This is a standard result that comes from the fact that maximum of Gumbel random variables has
a Gumbel distribution (see Anderson et al., 1992, for a proof).
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We will make a semantic distinction between products with high and low values
of attractiveness. The higher the attractiveness of a product, the higher the expected
utility of consuming it (i.e., buying and keeping it), and thus higher the probability of
purchase. In view of utility maximization behavior described above, every consumer
buys what they consider to be the best or most “attractive” product. So, the magni-
tude of ai does not so much reflect the attractiveness of a product in the common
sense of the word, but rather determines the likelihood of purchase for product i. We
will thus refer to products with high attractiveness values as popular products (in
the sense that a typical consumer is more likely to buy them); and, those with low
attractiveness values as eccentric products (in the sense that consumers with rare
tastes will buy them).

We now specify how individual consumer choice behavior described above trans-
lates into aggregate demand for each product in S. Let λ denote the average num-
ber of consumers going through this choice process. Assuming that the consumers’
product choice is purely governed by the set S and not influenced at all by the details
of the retailer’s fulfillment process (e.g., MTO versus MTS, inventory status, etc.),
we model the demand for product i ∈ S by a normal random variable Di with mean
λPS

i and standard deviation σ(λPS
i )β , where σ > 0 and 0 ≤ β < 1. (This model

of aggregate demand, dubbed the Independent Population Model, has been first pro-
posed by van Ryzin and Mahajan (1999), and later used by Maddah and Bish (2007),
Li (2007) and others.) Furthermore, we model the returns of product i by a normal
random variable Ri with mean λPS

i, return and standard deviation σ(λPS
i, return)

β . Note
that the coefficient of variation (defined as standard deviation divided by mean) for
Di and Ri are decreasing in PS

i and PS
i, return, respectively. Also, Poisson demands and

returns constitute a natural special case of our aggregate demand model (i.e., set
σ = 1 and β = 1/2, and use normal approximation of Poisson).

8.3.1.3 Supply Process and the Timing of Events

We consider two alternative modes of supply: MTO and MTS. In either case, we
assume away capacity limitations: the retailer can order as many units as desired of
each item in S.

MTO Environment

Under MTO, ordering takes place after demand is realized. Therefore, demand for a
given product never goes unsatisfied, which reduces the risk of the supply decision.
In fact, in the case of MTO, the supply decision becomes trivial: the order quantity
must be equal to the realized demand, because any inventory in excess of demand
would certainly not be sold but rather salvaged for a unit loss of (c− v). Neverthe-
less, due to the presence of returns, the quantity risk does not completely vanish;
some products may be returned, and will need to be salvaged, which may involve a
net loss (recall that v < c).
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The expected profit in this case can be expressed as follows:

ΠMTO (S) = ∑
j∈S

E [(p− c)D j − (α p+ l − v)R j] (8.1)

The first term within expectation is the revenue, net of procurement costs. The
second term is the net cost of handling returns: for each unit of returned product, the
retailer refunds α p, pays l for reverse logistics activities, and eventually salvages
it for v (e.g., sells it in a secondary market, such as a clearance store). We assume
that returned items can only be salvaged (sold at a secondary market for a reduced
price). A more general model of handling returns would allow resale of returned
products in the store (possibly for full price), requiring a multiple-period planning
horizon. We discuss the implications of this in Sections 8.4.4 and 8.5.

MTS Environment

Under MTS, the retailer takes an ordering decision for each product prior to the
selling season, before demands realize. The supply decision under MTS is therefore
riskier (than that under MTO): there is a chance that the retailer may over- or under-
stock each and every product. Let x j be the quantity of product j ordered and stocked
in advance of the selling season.

In the event of a stock-out, the retailer places an emergency order at a unit cost
of e (v < c < e < p), and we assume that the consumer is willing to wait for the
delivery of her most preferred item and does not substitute for another item that
happens to be in stock. Emergency orders are common in retailing. For instance,
Express (apparel) and Famous Footwear both have written promises in their Web
sites that if they happen not to have the right size or color of a particular product in
their store, they would find and ship it for free. There is no guarantee of course that
every consumer would take up this offer. So, we are clearly making a simplifying
assumption, which helps us focus on the interaction between the retailer’s assort-
ment decision and the return policy in effect. If consumers were allowed to switch
from their most preferred product that is out of stock to a different product that is
in stock, the model would be significantly more complicated, and quite likely, ana-
lytically intractable. Assortment and inventory management under stock-out-based
substitution (also called dynamic substitution in the literature) is by itself a difficult
problem, even if product returns were ignored (see, for instance, Gaur and Honhon
(2006) for a near-optimal heuristic approach).

The expected profit under MTS can be expressed as follows:5

ΠMTS (S) = ∑
j∈S

max
x j≥0

{
E
[

pD j − cx j − e(D j − x j)+

− (α p+ l − v)R j + v(x j −D j)+
]}

(8.2)

5 For any real number y, let (y)+ be equal to y if y > 0, and to 0 otherwise.
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where x j is the regular (non-emergency) order quantity for product j. The first term
within expectation is the revenue; sales equals demand because, by assumption, the
retailer can backlog excess demand and satisfy it with emergency orders. The second
term is the cost of regular supply; and the third term is the cost of emergency supply.
The fourth term is the cost of having to deal with returned items (consistent with the
MTO case, returned items are salvaged). The last term is the salvage revenue from
excess inventory, items that have never been sold.

Timing of Events

To sum up, events in our base model unfold as follows. With a given return policy –
defined by refund fraction α – in effect, the assortment decision (S) is taken at the
beginning of the period to maximize expected profit, ΠMTO (S) or ΠMTS (S). Then,
in the case of MTO, random demands realize and the retailer orders the quantity
demanded of each product. In the case of MTS, order quantity decisions (x j for
all j ∈ S) are taken first, and then demands realize. Consumers’ random choice
behavior in the first stage of the N-MNL model (described above) is what drives
the realization of demands. Next, consumers who purchase their product of choice
decide to keep or return it (following the behavior described in the second stage of
the N-MNL model). Finally, the retailer salvages any returned or excess items at the
end of the period.

8.3.2 Extension 1: Assortment and Price Decisions for Exogenous
Return Policy

In this extension we drop the assumption of exogenous price. So, everything remains
the same as in the base model, except now price is also a decision taken by the
retailer, simultaneous with the assortment decision (with return fraction still fixed).

8.3.3 Extension 2: Assortment and Return Policy Decisions
for Exogenous Price

In this extension we drop the assumption of exogenous refund fraction. So, every-
thing remains the same as in the base model, except now return fraction is also a
decision taken by the retailer, simultaneous with the assortment decision (with price
still fixed).

8.3.4 Extension 3: Assortment Decision for Multiple Periods

Finally, we take the base model and assume a multiple-period planning horizon.
As in the base model, product assortment is decided at the very beginning – the



8 Is Assortment Selection a Popularity Contest? 215

beginning of the first period. To simplify the inventory management problem, and
to amplify the impact of inventory on assortment over multiple periods, we assume
that returned items are not salvaged until the end of the last period, i.e., they are
always re-stocked and possibly used in succeeding periods.

8.4 Analytical Results and Numerical Observations

8.4.1 Optimal Assortment in the Base Model

In this section we seek to optimize the retailer’s assortment decision for a given
retail price and return policy. This is generally a difficult task as there are 2n different
possibilities. We provide structural results that significantly reduce the search space
for accomplishing this task.

8.4.1.1 MTO Model with Returns

To lay the groundwork for discovering the structure of the optimal assortment, we
first conduct a thought experiment. Suppose the current assortment is some proper
subset S of N. Consider adding a product with a certain attractiveness to the current
assortment. How does the new expected profit behave as a function of the attractive-
ness of the “new” product? Does adding this particular product to the assortment
improve the profit? These two questions are resolved in two lemmas reported in our
working paper, and they provide building blocks for proving the structure of the
optimal assortment.

Theorem 1 (Grasas et al., 2008).
(a) For a sufficiently lenient return policy with return fraction α ≥ (v− l)/p, the
optimal assortment under the MTO environment is composed of some number of
most popular products from N.
(b) For a sufficiently strict return policy with return fraction α < (v− l)/p, the
optimal assortment under the MTO environment is composed of some number of
most eccentric products from N.

The presence of returns clearly changes the structure of the optimal assortment.
If the refund fraction is sufficiently large, reflecting a lenient return policy, carrying
only the most popular products is optimal. This result agrees with common intuition,
previous results in the literature (e.g., van Ryzin and Mahajan, 1999, Aydin and
Ryan, 2000, Hopp and Xu, 2005, Maddah and Bish, 2007, Li, 2007, and Cachon
and Kök, 2007), and some industry practice (e.g., Cargille et al., 2005, and Olavson
and Fry, 2006). Since high refund fractions are costly, they induce the retailer to
be more selective when deciding on variety, and thus to offer products with less
chances of being returned, i.e., the popular products.
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However, if the refund fraction is low, reflecting a strict return policy, then it is
optimal to carry only the most eccentric products. The intuitive reason is that the
retailer makes more money from an item that is sold and returned than an item that
is sold and not returned. In the former case, net unit profit is (p− c−α p− l + v);
whereas in the latter case, it is (p− c). This is akin to the “service escape” model of
Xie and Gerstner (2007), in which a firm profits from service cancellations. Other
factors that favor popular products, such as higher probability of purchase, seem to
be dominated. We note that it can be best to add to an existing assortment the most
popular (remaining) product. Even though this is true for incremental additions to
an assortment, Theorem 1b establishes most eccentric assortments as optimal for
strict return policies.

8.4.1.2 MTS Model with Returns

The analysis proceeds similarly; as in the MTO case, we first consider the question
of which product (if any) should be added to an existing assortment. Based on this
finding (reported in our working paper), we establish the following result regarding
the structure of the optimal assortment.

Theorem 2 (Grasas et al., 2008).
For a sufficiently strict return policy with return fraction α < (v− l)/p, the opti-
mal assortment under the MTS environment is composed of some number of most
popular and some number of most eccentric products from N. There exist problem
instances where the optimal assortment is composed of: (1) most popular products
only, (2) most eccentric products only, or (3) some most popular and some most
eccentric products.

This result paves the way to showing that the structure of the optimal assortment
is fundamentally different under MTS than under MTO. In the MTS case, it is pos-
sible to have – unlike the MTO case – an optimal assortment with a strictly positive
number of most popular products only, or a strictly positive number of most popular
products and a strictly positive number of most eccentric products. Such an example
is illustrated in Table 8.1; details of the example are described in Section 8.4.1.4.

The key reason behind this counterintuitive result is the operational mode itself.
Under the MTS environment, the ordering decision for each and every product in
the assortment carries risks of over- and under-stocking. As usual with newsvendor
costs, the burden of these risks is proportional to the standard deviation of demand.
Normalizing by demand size, coefficient of variation (defined as standard deviation
divided by mean) as a measure of relative demand variability is generally a good
indicator of how risky a product is – operationally speaking. In our model, products
with higher attractiveness enjoy a larger probability of purchase and a smaller co-
efficient of variation. Hence, for strict return policies, the retailer has two opposing
goals: (1) choose eccentric products to benefit from their resale (much like in the
MTO case); and (2) choose popular products to take advantage of their lower rela-
tive demand variability and therefore reduce operational risks. The structure of the
optimal assortment reflects both of these goals.
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Table 8.1 Optimal assortment S∗, composed of products that correspond to shaded cells, for the
problem instance in Table 8.2 with threshold refund fraction, (v− l)/p = 0.825.

i

Clearly, our analytical results in the MTS case are limited to the strict return pol-
icy case only. Although we are unable to prove this, based on extensive numerical
studies (only a subset of which is presented in our working paper), we conjecture
that the lenient return policy case requires the optimal assortment to include some
number of most popular products, just as in the MTO environment. The intuition
given above for Theorem 2 also supports our claim because for lenient return poli-
cies the retailer finds popular products more desirable on both counts. They not only
have less relative demand variability but also a smaller chance of return.

8.4.1.3 MTO and MTS Models without Returns

Both our MTO and MTS models include as a special case the possibility of the
retailer disallowing returns. By a slight abuse of model definition, we can analyze
this case by setting α = −∞, which implies that the consumers will choose the
“keep” option with probability 1 in the second stage of our N-MNL model regardless
of which product they choose in the first stage (i.e., they never return products). In
fact, the N-MNL model reduces to a standard MNL model. The optimal assortment
would then be comprised of some number of most popular products under both
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MTO and MTS environments. (We omit the proof; same result was obtained by van
Ryzin and Mahajan (1999) in an MTS model with lost sales and without returns.)

Therefore, by contrasting this result with Theorems 1 and 2, we conclude that if
retailers were to ignore product returns when merchandising, they might easily run
the risk of composing suboptimal assortments. This is especially true if they have
relatively strict return policies.

8.4.1.4 A Numerical Example

We conclude our analysis of the base model with a numerical example that illus-
trates the different kinds of solutions that arise under MTO/MTS environments with
strict/lenient return policies. Table 8.1 displays the optimal assortment out of a given
set of 10 potential products (sorted in decreasing order of attractiveness levels) for
different values of refund fraction α and for both MTO and MTS models. The op-
timal assortment in each of these instances is computed by complete enumeration.
Note that the threshold refund fraction that separates strict and lenient return poli-
cies in this example is (v− l)/p = 0.825. As expected, optimal variety (number of
products in the optimal assortment) is lower under MTS.

Our working paper (Grasas et al., 2008) contains an extensive numerical study
section that explores the following research questions. We provide a brief summary
of our most interesting findings here, and refer the reader to the paper for a full
exposition.

• If a retailer ignored the presence of product returns when composing its assort-
ment, or it assumed that the best assortment is always composed of most popular
products, what would be the magnitude of its profit loss relative to the optimal
profit?

• How is the depth of the optimal assortment, number of products offered, influ-
enced by changes in refund fraction? Is it necessarily the case that more lenient
return policies imply less variety? We find that the answer is no. More lenient
return policies may sometimes call for deeper assortments with higher variety.
This happens especially when the refund fraction is at neither extreme (0% or
100%), but just below a certain threshold ((v− l)/p).

• How does the degree of differentiation among the potential products considered
by the retailer (spread of a-values for products in N) influence its profit and depth
of assortment? If the retailer had any influence over this degree of differentiation,
would it prefer higher or lower differentiation? From a managerial point of view,
a retailer moving from an MTO to an MTS environment should seek higher prod-
uct differentiation in its consideration set (N), because it will matter more. That
effort is even more worthwhile when the retailer’s return policy is more lenient.

• What is the effect of post-purchase heterogeneity (μ2) on the optimal profit for a
given refund fraction? Can more heterogeneity be ever beneficial for the retailer?
Somewhat surprisingly, yes. The reasonable presumption that higher heterogene-
ity about consumers’ keep/return decisions will lead to lower profits is wrong for
strict return policies.
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• How does the optimal refund fraction depend on the structure of the assortment?
We find that sometimes higher variety requires a higher refund fraction. This
essentially complements our observation earlier that moving toward more lenient
return policies and deeper assortments simultaneously can be optimal.

In the rest of this section, we report results from our numerical study of the three
extensions of the base model. Unless we state otherwise, in all experiments we use
a set of base parameter values displayed in Table 8.2. Also, we report only the MTO
case (the MTS case does not reveal any notably different insight).

Table 8.2 Base parameter values.

Parameter Value Product, i ai

λ 100 1 4.00
p 2 2 3.72
e 1.9 3 3.44
c 1.8 4 3.17
v 1.7 5 2.89
l 0.05 6 2.61

μ1 1 7 2.33
μ2 0.5 8 2.06
σ 1 9 1.78
β 0.5 10 1.50

8.4.2 Optimal Assortment and Price in Extension 1

In this subsection, allowing price to be a decision variable, we explore how pricing
decisions interact with the optimal assortment and the return policy in effect. As in
the base model, return fraction is considered exogenous.

8.4.2.1 Variety Versus Price

Does higher price lead to more or less variety? The answer depends on the refund
fraction. For two values of refund fraction, α = 0.5 and α = 0.8, we compute the op-
timal assortment while varying price from 2 to 3 (see Figure 8.1). For α = 0.5, and
all prices within the range considered (from 2 to 3), we are in the strict return policy
region, i.e., α < (v− l)/p. As price increases, the unit cost of returns (α p+ l − v)
approaches to 0, and that makes all products more similar in terms of their prof-
itability. The retailer then opts to offer full assortment to capture more demand. For
α = 0.8, the effect is opposite and more interesting. Increasing price increases the
probability of return. Since we are in the lenient return policy region (α ≥ (v− l)/p)
for all price points except p = 2, and the unit cost of returns (α p+ l − v) increases in
price, returns become increasingly more costly. The retailer then reduces its assort-
ment by offering less number of most popular products, which effectively reduces
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0

1

2

3

4

5

6

7

8

9

10

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
Price

N
u

m
b

er
 o

f 
p

ro
d

u
ct

s 
in

 o
p

ti
m

al
 a

ss
o

rt
m

en
t

α = 0.5 α = 0.8

Fig. 8.1 Variety versus price: Number of products in the optimal assortment (|S∗|) as price (p)
varies for different values of refund fraction (α).

the likelihood of return. It is interesting that, in a monopoly setting, lower variety
can coincide with higher prices. This is not uncommon in competitive environments
(e.g., Alptekinoğlu and Corbett, 2008b), but in monopoly environments price and
variety are usually positively related (in fact, we do not know of a counterexample
to this rule, besides the one caused by product returns in this work).

8.4.2.2 Behavior of Expected Profit with Respect to Price

We now study the behavior of the expected profit with respect to price. Among
other things, we want to understand if the expected profit is generally unimodal,
which would make numerical optimization of price relatively easy.

For different values of refund fraction, Figure 8.2 plots the expected profit as
price varies from 2 to 6. For every data point shown in the chart, the assortment
is optimized. We observe that the expected profit is unimodal for these problem
instances. In fact, we have not seen any problem instance to the contrary. Note also
from the graph that the optimal price increases as refund fraction decreases. We
examine this in more detail in the next subsection.

8.4.2.3 Optimal Price with Respect to Refund Fraction

Figure 8.3 shows how optimal price changes as refund fraction (α) varies between
0 and 1 by increments of 0.1. A dashed line separates the strict return policy region
(α p < v− l) from the lenient return policy region (α p ≥ v− l).
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Fig. 8.2 Profit versus price: Expected profit as price (p) varies for different refund fractions (α)
under optimal assortment (S∗).
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222 Aydın Alptekinoğlu, Alex Grasas, and Elif Akçalı

Again, the optimal assortment is computed for every data point. The optimiza-
tion over S takes advantage of structural results presented earlier for the base model,
whereas the optimization over p is done numerically by line search. For all prob-
lem instances that we have seen, we observe that the expected profit is generally
unimodal in p, which makes the line search easy.

The optimal price increases very slightly for strict return policies, and then sud-
denly drops for lenient return policies as refund fraction approaches to 1. This is
because the retailer tries to reduce the probability of return by lowering the price.
With a lenient policy, the retailer would rather charge less and obtain a final sale than
salvage a product for a lower revenue. It is surprising that optimal price would drop
for increasingly more lenient return policies (higher α). Even from the perspective
of absolute refund amount, the consumer enjoys a more favorable return policy as
α increases, because α p∗ also keeps increasing, albeit at a diminishing rate.

8.4.3 Optimal Assortment and Refund Policy in Extension 2

In this subsection, we investigate how endogenizing refund fraction (α) influences
our assortment problem. As in the base model, price is considered exogenous.

8.4.3.1 Behavior of Expected Profit with Respect to Refund Fraction

Figure 8.4 plots the expected profit for several α values from 0 to 1 (with 0.05
increments) at three different price points. For every data point we optimize the
assortment, therefore different data points may correspond to different product as-
sortments. At p = 2 the optimal refund fraction is α∗ = 0.55; at p = 2.25, α∗ = 0.5;
and at p = 2.5, α∗ = 0.45. So, for the three price points considered in this experi-
ment, the optimal refund fraction is lower for higher prices. This result, which we
further explore in the next subsection, complements the price versus refund analysis
in Section 8.4.2.3.

8.4.3.2 Optimal Refund with Respect to Price

In this subsection, we study how optimal refund fraction is affected by changes in
price. We vary the price from 2 to 6, and compute the optimal refund fraction and
optimal assortment. The optimization over S takes advantage of structural results
presented earlier for the base model, whereas the optimization over α is done nu-
merically by line search. For all problem instances that we have seen, we observe
that the expected profit is generally unimodal in α , which makes the line search
easy.

Does higher price imply higher refund fraction? The answer is not necessarily.
As seen in Figure 8.5, the optimal refund fraction represented by square dots, first
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decreases and then increases in price. The intuition is the following. Starting from
a low price, an increase in price raises the probability of return, forcing the retailer
to reduce α to discourage returns. For low values of p, the expected profit mar-
gin per unit sales, p− c− (α p + l − v)Preturn|i, is more sensitive to returns since
(p− c) is small relative to the cost of returns term. As we keep increasing price,
(p− c) increases and returns become less relevant for the profit margin. Since the
retailer is extracting enough profit from (p−c), it can afford increasing α to make its
value proposition more attractive. Note that a dashed line separates the strict return
policy region (α p < v− l) from the lenient return policy region (α p ≥ v− l) in the
graph. Also note that refund amount, α∗p, does consistently increase in price; thus
at higher prices the retailer is effectively charging more for a more generous return
policy.

8.4.4 Optimal Assortment for Multiple Periods in Extension 3

In this subsection, we extend the problem to a multiple-period setting. We assume
that all returns are kept in inventory to satisfy future demand. Only returns from
the last period (and any remaining inventory) are salvaged at the very end. Us-
ing the same base parameters shown in Table 8.2, we compute the optimal assort-
ment for different values of α as we did in Table 8.1. We use an inventory cost
of 0.05 per period for the returns kept in stock. In order to compute the expected
profit for multiple periods, we use Monte Carlo simulation methods. The proce-
dure is as follows: for every product in the assortment we generate random de-
mand and return strings of size T , the length of the planning horizon. With known
demands and returns, we easily compute the actual profit. We then estimate the
expected profit by averaging the profits at a sufficiently large sample of realiza-
tions, 1,000 in our case (Robert and Casella, 1999, p. 208). By the Law of Large
Numbers, this estimation converges with probability 1 to the expected profit as the
sample size goes to infinity. For every possible assortment (i.e., 210 − 1 = 1023),
we compute the approximate expected profit and choose the one that yields the
maximum.

We observe that the assortments that yield maximum expected profit have the
same structures found to be optimal in the single-period setting (see Theorems 1
and 2). Tables 8.3 and 8.4 show the optimal assortment for MTO and MTS cases for
the multiple-period problem with T = 3 and T = 10, respectively.

An interesting question that arises in a multiple-period context is whether the
retailer includes more products as the length of the planning horizon T increases.
Tables 8.3 and 8.4 suggest that the longer planning horizon (and multiple re-selling
opportunities it brings) changes neither the structure of the assortment nor the com-
position in any significant fashion.
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Table 8.3 Optimal assortment S∗, composed of products that correspond to shaded cells, for a
multiple-period problem with three-period planning horizon.

i

Table 8.4 Optimal assortment S∗, composed of products that correspond to shaded cells, for a
multiple-period problem with ten-period planning horizon.

i
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8.5 Concluding Remarks

Motivated with the question of whether retailers should consider product returns
when merchandising (as they compose their product assortments), we first explore
in our base model the interactions between product assortment decision and return
policy of a price-taking retailer under two basic operational modes, make-to-order
(MTO) and make-to-stock (MTS). We have a demand model grounded on individual
consumer behavior. Consumers decide which product to buy in the first stage of a
nested multinomial logit model, and then decide to keep or return the item in the
second stage. In their purchase and keep/return decisions, consumers take both the
assortment and refund fraction, the percentage of price refunded upon return, into
account. The retailer, an expected profit maximizer, makes its assortment decision
from an exogenous set of potential products that are horizontally differentiated. We
call products with high (low) attractiveness popular (eccentric), because they are
more (less) likely to be purchased by a typical consumer. In the MTS case, the
retailer also makes an inventory decision for each product offered.

Our main finding from the base model is that the structure of the optimal assort-
ment critically depends on the refund fraction and whether the products are supplied
on an MTO or MTS basis. More specifically, we have two major analytical results:

• For a strict return policy (with a sufficiently low refund fraction), the optimal
assortment has a counterintuitive structure. In the MTO case, it is composed of
some number of most eccentric products; whereas, in the MTS case, some num-
ber of most popular and some number of most eccentric products.

• For a lenient return policy (with a sufficiently high refund fraction), the optimal
assortment is composed of some number of most popular products in the MTO
case. Although we could not analytically prove that the same structure is optimal
for the MTS case as well, our extensive numerical experiments confirm this.
Including only the most popular products in an assortment agrees with common
intuition, previous results in the literature (e.g., van Ryzin and Mahajan, 1999,
Aydin and Ryan, 2000, Hopp and Xu, 2005, Maddah and Bish, 2007, Li, 2007,
and Cachon and Kök, 2007), and some industry practice (e.g., Cargille et al.,
2005, and Olavson and Fry, 2006). As indicated above, we show that the presence
of returns can reverse this intuitive result.

The basic rationale for including an eccentric product in the optimal assortment
is to benefit from the processing and resale of returned items. This benefit is higher
for low refund fractions, and eccentric products have a higher likelihood of being re-
turned. (We argue by numerical examples in this chapter that this logic would likely
survive extensions of our base model to endogenous price, endogenous refund frac-
tion, and multiple resale opportunities.) The case for popular products, on the other
hand, is twofold. If returns are a net loss to the retailer, popular products become de-
sirable because they minimize the likelihood of return. If the retailer is operating in
an MTS mode, popular products also have the advantage of lower relative demand
variability (measured by coefficient of variation) and therefore reduced operational
risks.
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Our analytical and numerical results so far amply illustrate that assortment and
refund fraction can exhibit interactions that are not easily predictable. Therefore,
endogenizing the return policy decision analytically would be a worthwhile exten-
sion of our work. An equally important direction would be to endogenize the pricing
decision. Nevertheless, price and refund fraction simultaneously influence the pur-
chase and return probabilities in a complex way, which proves to be quite challeng-
ing to investigate analytically. Our numerical study in this chapter demonstrates that
the strict return policy region, where most of the interesting interactions occur, is
still prominent after endogenizing either of these variables.

Another extension would be to consider multiple periods, which may allow
richer inventory management issues and more sophisticated return behavior. Even
in the simplest possible case, if assortment decision was to be made for once at the
beginning of a finite planning horizon, the question of optimal assortment becomes
analytically intractable. On a positive note, extending our model to multiple periods
can only strengthen our result about strict return policies. Having multiple resale
opportunities can only increase the resale value of returned products; therefore, the
basic rationale for carrying eccentric products would actually be even more promi-
nent over a multiple-period planning horizon. We indeed demonstrate this in our
numerical studies: the strict return policy region remains to be highly salient.

In light of our analytical results and numerical observations, we conclude that
retailers should not only carefully consider their return policy when merchandising,
but also take their basic operational mode (MTO versus MTS) into account.
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Chapter 9
Product Design, Pricing, and Capacity
Investment in a Congested Production System

Sergio Chayet, Panos Kouvelis, and Dennis Z. Yu

Abstract We investigate a firm’s product positioning and capacity investment prob-
lem for a product that is vertically differentiated according to its design quality
level. Customers arrive according to a Poisson process and are heterogeneous in the
marginal valuation of the product’s quality level, making product choices to maxi-
mize a linear utility function of price and quality level. Resulting product demands
are met through capacity investments in a production process, which is modeled as
a queuing system. Capacity investment and variable production costs are functions
of the processed product’s quality. We develop an integrated marketing-operations
model that provides insights into the factors determining the right positioning of
the product in terms of quality and pricing, the resulting market coverage, and the
effects on production costs and congestion levels of the production process.

9.1 Introduction

For the fast-paced competitive environments of today, a frequent challenge for firms
is to decide product design and prices of their products. Higher design quality
products are more costly to produce and even though they can be priced at a pre-
mium, demand for them is relatively lower because fewer customers have the higher
reservation prices. Production systems are expensive to build, with the required
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investments dependent on the design quality of the products to be produced, and
often exhibit congestion. Such congestion results in long lead times and inventory
stockpiles, not only adding to the variable product costs but also subtracting from the
customer service experience. Even though the above tradeoffs are well understood
at the conceptual level, they are often hard to quantify and be effectively captured
as part of an optimal product design decision. Figuring out the right design quality
and price often remains elusive issues for most firms, frequently decided in ad hoc
and myopic ways.

The clearly cross-functional nature of product design decisions amplifies their
difficulty, as different functional areas bring to the table different interests and man-
agerial measures of success. From a marketing perspective, product design quality
is key to revenue growth. From an operations perspective, increasing the product
design quality level increases production capacity investment and affects produc-
tion system congestion and thereby lead times and the costs for matching supply
with demand. While both functions have sound arguments to make in support of
their views, their answers in terms of an optimal product design are inconsistent
and are not helping the overall business decision. The lack of integrated decision
frameworks to capture and quantify all relevant tradeoffs on determining optimal
product design and the appropriate price is further contributing to the confusion on
the issue. Our research attempts to offer such an integrated decision framework and
within a stylized model outlines the factors that affect product design for a given
market and production environment. It also suggests how to position and price the
product for profit maximization. Furthermore, it explicitly captures implications for
capacity investments and the right utilization of production resources to effectively
match supply and demand.

The study of product design and pricing has been a major research area in indus-
trial organization and marketing science for decades. The main focus of this research
stream has been the revenue optimization through careful pricing and the effective
matching of customer preferences and product design attributes. However, such re-
search models overemphasize the accuracy of depiction of customer choice along
dimensions of price and product quality, at the expense of an oversimplified rep-
resentation of the capacity investment, variable production, and congestion-related
costs of the production and supply system. On the other hand, a rich operations man-
agement literature has been building detailed cost and congestion-level models of
production systems under the assumption of given price and product segmentation.
Recent research efforts have come closer to closing the gap between the front-end
customer choice representation and the back-end operational implications of prod-
uct design but, as we will argue, have so far remained short in effectively capturing
capacity investment and congestion implications of product design for the produc-
tion system.

In this chapter, we investigate a firm’s product design and capacity investment
decisions for a single product. The customer population is heterogeneous in the
marginal valuation of the design quality level. Utility maximizing customers make
choices using a linear utility function of both price and quality level. The customer
heterogeneity of quality preferences is captured via a parameter assumed to have
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a uniform distribution over the range [0,1]. The customer arrival process follows
a Poisson process with a fixed rate. After making utility maximizing choices for a
given product line, arriving customers decide whether or not to purchase the product,
which results in a covered market segment as actual customer demand. This product
demand has to be met through investment in a production facility. We use a simple
queuing process to capture the relevant congestion effects in the production process.
Capacity investment cost of a production technology is defined as a function of the
design quality level that the facility is able to produce.

The firm is a make-to-order producer. An arriving customer order (all of them of
size one) is released to the production facility for processing. The variable produc-
tion cost of the product is a function of its design quality level. A heavily utilized
production system suffers the consequences of its congestion via elongated lead time
and high work-in-process inventory level. Appropriate congestion penalties account
for such costs via holding costs per unit per unit time attributed to all orders waiting
in the system. The offered design quality level and pricing influence the customer ar-
rival rate to the production facility, and an appropriate capacity investment decision
has to be made to fully reflect tradeoffs in capacity investment costs and congestion
penalties. Thus, a profit maximizing firm has to simultaneously optimize its product
design (along a quality dimension) and pricing, in addition to capacity investment,
which indirectly affects congestion levels and together with the variable production
costs determine its profit margins.

9.2 Literature Review

Product design and pricing issues have been extensively studied in economics/
industrial organization, marketing and operations management literatures. Market-
ing and industrial organization research emphasizes product design and associated
pricing decisions to extract value from a heterogeneous population of customers via
effective price discrimination. In their seminal work on vertical differentiation via
product quality, Mussa and Rosen (1978) derive the monopolist’s optimal price–
quality schedule offered to a heterogeneous customer population with continuous
preference parameter along the quality dimension over a bounded range. They as-
sume that the variable cost of quality is a convex increasing function of the quality
level. Moorthy (1984) substantiates the benefits of market segmentation through
product design when customers have discrete types. In this work, the monopolist
offers a menu of products, with higher quality products priced higher. Choudhary
et al. (2005) utilize vertical differentiation models to study the effect of personal-
ized pricing on the firm’s choices over quality. By using personalized pricing, the
firm can charge different prices to different consumers based on their willingness to
pay, assuming the firm can implement a pricing policy based on complete knowl-
edge of the customer’s willingness to pay (first-degree price discrimination). In all
of the above literature there is usually no explicit consideration of relevant opera-
tional costs beyond variable production costs (even those are typically simplified to
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a constant or a quadratic function of quality). Such relevant operational costs will
capture inherent economies of scale in production systems through fixed costs of
production and/or important non-linear congestion phenomena and associated costs
due to the uncertain nature of order arrivals and processing times of the production
system.

In the operations management literature on product design, the design attribute
is commonly predetermined, and customer choice and associated pricing decisions
are usually not considered in these models. With the assumption of given number
of products and customer demands, Benjaafar and Gupta (1998) study the effect of
scheduling and batch sizing policies on the choices of product mix and capacity of
flexible and dedicated production facilities. By considering an un-capacitated multi-
product lot-sizing problem, de Groote (1994) analyzes the monopolist’s problem
of selecting product line breadth and production flexibility. Netessine and Taylor
(2007) study the impact of production technology on the firm’s product line design
strategies with an economic order quantity (EOQ) type economies of scale (fixed
cost vs. linear variable and holding costs) production model. Our model differs from
the Netessine and Taylor (2007) work in that it captures operational (back end)
details via a queuing model of the production system, thus emphasizing non-linear
congestion effects in capacity investments instead of fixed cost-driven economies of
scale.

The main focus of our study is to understand the factors that impact the mono-
polist’s choice of optimal design quality level in the presence of a heterogeneous
customer population of utility maximizers, with utility functions linear in price and
product quality, uncertain demand, and the associated implications for capacity in-
vestments to a production system that is subject to congestion effects as in com-
mon queuing models. Furthermore, we are explicitly asking the question of how
the offered product partitions the market via its quality–price choice and what the
resulting product quality is and what factors affect it. Our model includes reason-
able details in its representation of both market coverage and operational decisions.
Following the rich tradition of marketing science models, we carefully capture the
heterogeneous customer preferences for product quality and the way utility max-
imizing customers are affected by product design. Our model of the operational
structure is a queuing system that captures congestion phenomena and inventory
implications of the product design decisions. Our results contribute to the existing
literature through analytical clarity on factors affecting product design quality for
congested production systems and insightful answers on the profit maximizing mar-
ket coverage and product positioning of a monopolist’s product for uncertain and
heterogeneous consumer markets. Furthermore, we offer insights into the needed
capacity investments to produce the right design quality product.

The rest of the chapter is organized as follows. We first introduce the basic model
and assumptions in Section 9.3. We then consider variable costs as function of the
design quality level that can be either quadratic (in Section 9.4) or more general
power cost functions (in Section 9.5). We conclude with the summary of our results
and managerial insights in Section 9.6.
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9.3 Basic Model and Assumptions

To study the interactions between market positioning decisions in product design
and congestion effects in capacity planning, we formulate an integrated model with
both product design quality and capacity variables as endogenous choices. Such
a model allows us to better understand important interactions previously ignored
as independent choices of these variables. Many of the insights we obtain on the
effects of factors such as variable production costs, market size, and congestion
levels on product design and capacity could not have been predicted via models that
treated either the marketing (product design) or the operational (capacity) variables
as exogenous.

We consider the case in which the firm produces a single product using a single
production facility. The firm’s decisions are the product design quality level, the
selling price, and the capacity of the production facility. Customers arrive according
to a Poisson process with rate λ and have no obligation to purchase the product.
The customers are heterogeneous in their marginal valuation of the product quality
level. Each customer has a utility function u(p,q) = θ̃q− p, where p is the price and
q the quality level. Any customer who has a non-negative utility of consumption is
willing to buy the product. The parameter θ̃ captures the customer’s valuation of
the quality level, and it is uniformly distributed on [0,1]. For a given quality level,
a higher θ̃ represents a higher willingness to pay. Without loss of generality we
assume the quality level is bounded, i.e., q ∈ [0,qmax].

The production system is make-to-order and each customer arrival triggers a size-
one production order. There is a capacity investment cost incurred when the firm
sets up the facility, and production capacity refers to the system’s processing rate.
We assume the marginal capacity investment cost per unit time b(q) is a sufficiently
smooth, strictly increasing, and convex function of the quality level, hence b′(·) > 0,
b′′(·) > 0, and b(0) = 0. There is also a variable production cost c(q) with analogous
properties, i.e., c′(·) > 0, c′′(·) > 0, and c(0) = 0.

For a given product with quality level q there exists a unique θ ∈ (0,1) such
that the selling price p = θq. Hence, the effective customer arrival rate λp =
(1−θ)λ is the arrival rate of customers who buy the product. The firm’s revenue is
thus

πS(p,q) = [p− c(q)]λp = [θq− c(q)](1−θ)λ . (9.1)

Revenue function (9.1) is widely used in the economics and marketing litera-
ture. However, it does not include any relevant production costs, such as capacity
investment or congestion costs. In our model, we represent the production sys-
tem as an M/M/1 queuing system, with both the optimal quality level q and
capacity (processing rate) μ as relevant decision variables, and incorporate the
economic consequences of the production system’s congestion (elongated lead
times and work-in-process inventory) via a constant marginal holding cost per unit
time h.
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The firm’s objective is to maximize the profit

max
p,q,μ

ΠS(p,q,μ) = πS(p,q)−h
λp

μ −λp
−b(q)μ . (9.2)

The second term in the above expression is the average holding cost of work-in-
process orders in the M/M/1 system and the third term is the capacity investment
cost.

We have chosen this stylized model for the production system for consistency
with the operational detail available during the product design stage. Modern plant
management practices (such as just-in-time) recognize the critical roles that con-
gestion and inventory levels play in fostering smoother, more controllable systems
and improved levels of conformance quality. Therefore, beyond holding costs, h is
meant to represent the manager’s level of concern in keeping low work-in-process
levels relative to revenues and capacity costs. Observe that in our model customer
preferences do not include disutilities of expected delays, and including them would
imply customers are willing to pay premiums for speedy delivery and expect price
cuts for delays. However, our modeled customers are not cycle time insensitive,
since we can still assume they use delivery time as an order qualifier in their pur-
chasing decision process. Thus, in setting h, among other considerations the plant
manager also makes certain that cycle times will meet customer expectations.

Notice that only two terms in (9.2) depend on the processing rate μ , and it is
straightforward to show they are strictly concave in μ . The optimal capacity is given
by μ∗(λp) = λp +

√
hλp/b(q) . Substitution of μ∗(λp) into (9.2) yields the follow-

ing maximization problem:

max
p,q

ΠS(p,q) =
{

p− [b(q)+ c(q)]
}

λp −2
√

hλpb(q). (9.3)

We consider two different functional forms for capacity investment cost b(q) and
unit production cost c(q). We assume both are quadratic functions in Section 9.4,
and general power functions in Section 9.5.

9.4 Quadratic Cost Functions

We first assume that both b(q) and c(q) are quadratic functions of the quality level,
i.e., b(q) = βq2 and c(q) = αq2, with α,β > 0. We can then rewrite optimization
problem (9.3) with θ and q as decision variables, i.e.,

max
θ ,q

ΠS(θ ,q) =
[
θq− (α +β )q2](1−θ)λ −2q

√
βh(1−θ)λ . (9.4)

Given θ , ΠS(θ ,q) is concave in q. Using the first-order condition ∂ΠS(θ ,q)/∂q = 0
yields the optimal quality level
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q∗(θ) =
1

α +β

(
θ
2
−
√

βh
(1−θ)λ

)
,

and the optimization problem can be formulated in terms of the single decision
variable θ :

max
θ∈(0,1)

ΠS(θ) =
λ

4(α +β )

(
θ
√

1−θ −M
)2

s.t. θ
√

1−θ > M, where M = 2

√
βh
λ

,

and the constraint is needed to ensure q∗(θ) > 0. We provide the optimal decision
variables in the following theorem.

Theorem 1. When 0 ≤ M < 2/(3
√

3), the optimal product positioning θ ∗, quality
level q∗, production capacity μ∗, and profit Π ∗

S are given by

θ ∗ =
2
3
, q∗ =

1
α +β

(
1
3
−
√

3βh
λ

)
, μ∗ =

λ
3

+
λ (α +β )

√
3h√

βλ −3β
√

3h
,

and Π ∗
S =

1
27(α +β )

(√
λ −3

√
3βh

)2
.

The system’s utilization level is given by ρ∗ = (
√

βλ −3β
√

3h)/(
√

βλ +3α
√

3h).
When M ≥ 2/(3

√
3), the firm’s profit is non-positive and the optimal choice is not

to produce any product.

Recall that the optimal price p∗ = θ ∗q∗, which follows the behavior of q∗ since
θ ∗ is constant. The solution has the following properties.

Proposition 1. (i) The optimal quality level q∗ increases in λ and decreases in β ,
α , and h; (ii) the optimal profit function Π ∗

S increases in λ and decreases in β , α ,
and h.

Observe that because the market coverage 1−θ ∗ is constant, the effective arrival
rate λp = (1− θ ∗)λ is only sensitive to changes in the arrival rate λ . Therefore,
when production costs α or capacity costs β increase, the firm has no other option
but to lower the quality level to control capacity investment costs. We establish the
monotonic effect on the optimal quality level of changes in either congestion cost h
or the arrival rate λ . But even more insightful, and counterintuitive in their nature,
are the effects of such factors on the behavior of the optimal capacity level μ∗, which
we present in the following comparative statics.

Proposition 2. (i) We define Mr(ω) := 2[1−ω +
√

1+ω +ω2]/9
√

3, where ω =
27αh/λ . There exists a unique λ̂S that solves M = Mr(ω), and the optimal pro-
duction capacity μ∗ has the following properties:
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μ∗ :

{
decreases in λ , 0 < λ < λ̂S

increases in λ , λ ≥ λ̂S,

and

μ∗ :

{
is concave in λ , 27βh < λ < 243βh

is convex in λ , λ ≥ 243βh.

(ii) If α = 0 or β ≥ α , μ∗ increases in β . If α > 0 and β < α ,

μ∗ :

{
decreases in β , 0 < β < β̂S

increases in β , β ≥ β̂S,

where β̂S = α
(√

27αh+λ −3
√

3αh
)2/

λ . Furthermore, if α = 0,

μ∗ :

{
is concave increasing in β , 0 < β < λ

243h

is convex increasing in β , λ
243h ≤ β < λ

27h .

If α > 0, we define

β̂C =

[
λ −216αh+

√
(216αh+λ )2 +1323αhλ
27
√

3hλ

]2

and

Δ(β̂C) = 27

[
λβ̂C

(√
hβ̂C

λ
− 1

9
√

3

)
+α

(
λ

3
√

3
−3

√
hλβ̂C +

8hβ̂C

27
√

3

)]
.

When Δ(β̂C) ≥ 0, μ∗ is convex in β . When Δ(β̂C) < 0 there exist η̂1 ∈ (0, β̂C)
and η̂2 > β̂C such that

μ∗ :

⎧⎪⎨⎪⎩
is convex in β , 0 < β < η̂1

is concave in β , η̂1 ≤ β < η̂2

is convex in β , β ≥ η̂2.

(iii) The optimal capacity μ∗ is linearly increasing in α and

μ∗ :

{
is concave increasing in h, 0 < h < λ

243β
is convex increasing in h, λ

243β ≤ h < λ
27β .

The optimal capacity μ∗ increases in h because with no change in the effective
arrival rate λp, the firm can only control costs by reducing congestion through in-
creased capacity. Hence, because production and capacity costs are convex in the
quality level, lowering quality allows the firm to control both the increased capacity
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costs and margins, by reducing variable costs to compensate for the price reduction
from p∗ = θ ∗q∗. Analogously, when α increases, the resulting lower quality level
decreases the cost of capacity, which the firm increases in order to relieve congestion
and its associated costs.

At first glance, one might expect the optimal capacity μ∗ to be decreasing in the
marginal capacity investment cost β . However, as Proposition 2 shows, the response
of μ∗ to changes in β (though λ ∗

p is independent of it) depends on the relative
magnitudes of α and β . If β dominates α (i.e., β > α or α = 0), μ∗ is increasing
in β . To understand this result it is sufficient to consider the effect of β on q∗, and
the convexity in q∗ of capacity costs: For relatively large β , q∗ is low and marginal
capacity investment cost is low and relatively insensitive to changes in β ; therefore,
as β increases, the firm resorts to increasing its capacity investments in order to
reduce congestion costs. The following result shows that for this case (α = 0 or
β ≥ α), the total operations costs (congestion plus capacity investment) decrease in
β , supporting the assertion that μ∗ increasing in β is an effective way to manage the
system.

Proposition 3. If α = 0 or β ≥ α , the sum of congestion and capacity financing
costs decreases in β .

If variable production costs dominate (i.e., α > β ), the above result no longer
holds. For low levels of β (β < β̂S), q∗ is high, and the marginal capacity investment
cost is high and highly sensitive to changes in β ; therefore, as β increases the firm
tightens its capacity. When β increases past a critical value (β ≥ β̂S), q∗ becomes
sufficiently low for the marginal capacity cost to be relatively low and insensitive to
changes in β . Hence capacity investment costs are dominated by congestion costs,
which the firm controls by increasing capacity.

Even though θ ∗ is constant, the effective arrival rate λp is increasing in λ . There-
fore, an increase in λ generates higher congestion, which can be relieved through
capacity investments whose cost can in turn be controlled by reducing the quality
level. However, the directional change in margins cannot be unequivocally deter-
mined at first glance because profits are also affected by the increase in λp. But
from Proposition 1 it follows that as λ increases, optimal profits increase in q∗ and
outweigh the associated increase in marginal capacity costs and costlier congestion
management. The lack of monotonicity of μ∗ in λ can be explained similarly to
that in β . Notice that Mr(ω) is decreasing in ω , which in turn is linearly increasing
in α , and recall that M = 2

√
βh/λ . When β is relatively low, M is small, and the

firm handles an increase in customer arrival rate by raising production capacity to
reduce congestion. In contrast, when capacity investment costs are high, M is large,
and the high quality level makes adding capacity expensive; therefore, the savings
from reducing capacity outweigh the increase in congestion costs and μ∗ becomes
decreasing in λ .

Because θ ∗ is constant, the comparative statics of the utilization level ρ∗ follow
directly from those of μ∗.

Corollary 1. (i) The optimal utilization level ρ∗ is concave increasing in λ and
convex decreasing in both α and h; (ii) if α = 0 or β ≥ α , ρ∗ decreases in β . If
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α > 0 and β < α , there exists a unique β̂S = (α/λ )
(√

27αh+λ −3
√

3αh
)2

such
that

ρ∗ :

{
increases in β , for β ≤ β̂S

decreases in β , for β > β̂S.

Furthermore, ρ∗ is convex decreasing in β when α = 0. If α > 0, there exists a
unique β̂A satisfying

α =
9β̂A

√
h−

√
3β̂Aλ +

√
β̂A

(
81β̂Ah+3λ −14

√
3hβ̂Aλ

)
6
√

h
.

Therefore,

ρ∗ :

{
is convex in β , when 0 ≤ β < β̂A

is concave in β , when β ≥ β̂A.

As we have shown in this section, the correct product positioning is a challeng-
ing decision with unanticipated operational implications. According to our stylized
model, such product positioning targets the top one-third of the market, with prod-
uct quality that is increasing in market size, and decreasing in capacity investment,
variable production, and congestion (holding) costs per unit of met demand. How-
ever, the total capacity and its resulting utilization for meeting the demand of the
optimal product positioning have far from immediately intuitive comparative stat-
ics, especially with respect to market size and capacity investment cost per unit.
The invested optimal capacity is non-monotonic to increased market size, first de-
creasing and then increasing, while the utilization level stays increasing in it. When
the capacity investment costs per unit are dominant relative to the variable produc-
tion costs, the capacity and its utilization are increasing in these costs; however, this
effect becomes non-monotonic when such dominance is not present. These results
emphasize the importance of capturing the queuing-related implications of prod-
uct positioning decisions on the operational processes that will meet the resulting
demand and how such effects lead to counterintuitive insights.

9.5 General Power Cost Functions

We now consider the case in which both capacity investment and variable produc-
tion costs are general power functions of the product quality level, i.e., b(q) = βqγ

and c(q) = αqγ , where γ > 2 and α,β > 0. An increase in γ models a production
technology that becomes more expensive in both capacity investment and produc-
tion costs for a given quality level. The firm’s profit function becomes

max
p,q,μ

ΠG(p,q,μ) = (p−αqγ)λp − hλp

μ −λp
−βqγ μ . (9.5)

We obtain the optimal product positioning θ ∗ and the optimal quality level q∗ using
the same solution approach as for the quadratic cost functions case.
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Theorem 2. Consider a single product offering with q∈ [qmin,qmax] for any qmin > 0
and b(q) = βqγ , c(q) = αqγ where α,β > 0 and γ > 2. For

0 ≤ M < 2

√
γ −1
2γ −1

[
1

(2γ −1)qγ/2−1
min

− (α +β )q
γ
2
min

]
,

the firm’s optimal product positioning decision is given by θ ∗ = γ/(2γ −1). The
optimal quality level q∗ is the solution to

[θ ∗ − γ(α +β )qγ−1](1−θ ∗)λ − γqγ/2−1
√

hβ (1−θ ∗)λ = 0, (9.6)

and the optimal capacity and system’s utilization are given by

μ∗ = (1−θ ∗)λ +
1

(q∗)γ/2

√
h(1−θ ∗)λ

β

and

ρ∗ =

[
1+

1

(q∗)γ/2

√
h

β (1−θ ∗)λ

]−1

,

respectively.
When

M ≥ 2

√
γ −1

2γ −1

[
1

(2γ −1)qγ/2−1
min

− (α +β )q
γ
2
min

]
,

the firm’s profit is non-positive and the optimal choice is not to produce any product.

Notice that Theorem 2 holds for any α,β > 0. Similarly to the quadratic cost
functions case, the optimal product positioning decision θ ∗ is constant and depends
only on γ . It is straightforward to show that θ ∗ > 1/2 for all γ > 2 and θ ∗ → 1/2 as
γ → ∞. Hence, the firm responds to higher capacity costs by expanding the market
coverage.

The comparative statics of the optimal solution are similar to the case of quadratic
cost functions. From the optimal product positioning θ ∗ and the optimal quality
level q∗, we derive the following properties of the optimal solution for the case with
general power cost functions.

Proposition 4. (i) The optimal quality level q∗ is increasing in λ and decreasing in
α , β , and h, (ii) the optimal capacity level μ∗ is increasing in α and h, (iii) μ∗ is
decreasing in β if β < β̂G and increasing in β otherwise, where

β̂G =
(2γ −1)

2λ (γ −1)

{√
h[αγ(2γ −1)]−

γ−2
2(γ−1) +

4αλ (γ −1)2

2γ −1

−
√

h
[
αγ(2γ −1)

] γ
2(γ−1)

}2

.
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(iv) Let

G (λ ;q) = q
γ
2−1

√
hβ +βqγ−1

√
λ

√
γ −1
2γ −1

and

H (q) =
√

λ

√
γ −1
2γ −1

(
1

2γ −1
−αqγ−1

)
.

There exist a unique pair of λ̂G and q̂ which solve both G (λ̂G; q̂) = H (q̂) and

γ −2
2(2γ −1)

q̂
γ
2

√
βλ̂G +(α +β )q̂

3
2 γ−1

√
βλ̂G +(α +β )q̂γ−1

√
h

√
2γ −1
γ −1

=
√

h

γ
√

(γ −1)(2γ −1)
,

such that μ∗ is decreasing in λ if λ < λ̂G and increasing in λ otherwise. (v) The
optimal utilization level ρ∗ is increasing in λ and decreasing in α and h. In addition,
ρ∗ is increasing in λ if λ < λ̂G and decreasing in λ otherwise.

To investigate the role of the degree of the variable costs’ convexity, in the
following result we analyze the effect of γ on the firm’s optimal choices, im-
posing qmin ≥ 1 to ensure variable costs are increasing in γ for any fixed q ∈
[qmin,qmax].

Proposition 5. For general power cost functions, with γ > 2 and qmin ≥ 1, both the
optimal design quality q∗ and optimal utilization ρ∗ are decreasing in γ , while the
optimal capacity μ∗ is increasing in γ .

Therefore, as γ increases, the firm expands market coverage and lowers the
quality level, thus reducing capacity costs, which leads it to increase capacity and
thereby lessen congestion costs.

Our analysis with generalized power cost functions shows that expensive tech-
nologies in both capacity investment and variable production costs favor higher
quality products and the careful targeting of the high-end market segments.

To illustrate the previous results, in Figure 9.1 we include plots for specific exam-
ples of the optimal design quality level q∗ as a function of β and λ for several power
cost functions characterized by different values of γ . In Figure 9.2 we include the
corresponding plots for the optimal capacity level μ∗ (h = 0.05, α = 0.06, λ = 1
in Figures 9.1(a) and 9.2(a), and h = 0.05, α = 0.06, β = 0.03 in Figures 9.1(b)
and 9.2(b)). Observe that for all of these instances q∗ ≥ 1, and as shown in Propo-
sitions 1, 4, and 5, q∗ is decreasing in β and γ and increasing in λ . Moreover, μ∗
is increasing in γ , and as both β and λ increase, μ∗ decreases up to a critical value
and increases thereafter.
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Fig. 9.1 Illustration of properties of optimal quality levels for different power cost functions.
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Fig. 9.2 Illustration of properties of optimal capacity for different power cost functions.

9.6 Conclusions and Current Research

Decisions on how to choose the product positioning in terms of offered quality
and price are important and challenging decisions for all firms. Frequently such
decisions are made with a sales and revenue growth mindset, with increased prod-
uct quality allowing to price in a way that extracts higher rents from consumers.
However, such decisions have serious implications for the operational investments
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and variable production costs in meeting customer demand. Often such consider-
ations become afterthoughts of an already made product design decision, mostly
based on market growth and desirable market coverage issues. The typical out-
come of this traditional sequential nature product development approach is that
the bottom-line implications of product design quality are exaggerated on revenue
growth and underestimated on capacity investments and production expenses. In this
chapter we provide an integrated marketing-operations decision model that depicts
relevant tradeoffs on both the revenue and cost sides of the product design debate
and offers insights into the factors that determine the right level of design quality to
be offered. We provided useful insights into the positioning of the offered product,
the resulting market coverage, and the product design effects on production costs
and the operational investments, especially on congestion measures of the support-
ing processes (utilization, work-in-process inventories, etc.).

As it becomes apparent from our discussions in Sections 9.4 and 9.5, the cor-
rect product positioning is a challenging decision with unanticipated operational
implications. According to our stylized model, such product positioning targets a
constant top segment of the market, with product quality that is increasing in mar-
ket size and decreasing in capacity investment, variable production, and congestion
(holding) costs per unit of met demand. However, the total capacity and its resulting
utilization in meeting the demand of the optimal product positioning have far from
immediately intuitive comparative statics, especially with respect to market size and
capacity investment cost per unit. The invested optimal capacity is non-monotonic
to increased market size, first decreasing and then increasing, while the utilization
level stays increasing in it. When the capacity investment costs per unit are dom-
inant relative to the variable production costs, the capacity and its utilization are
increasing in these costs; however, this effect becomes non-monotonic when such
dominance is not present. These early results emphasize the importance of captur-
ing the queuing-related implications of product positioning decisions on the oper-
ational processes that will meet the resulting demand and how such effects lead to
counterintuitive insights. Our analysis with the use of generalized power cost func-
tions allows us to observe that expensive technologies in both capacity investment
and variable production costs favor higher quality products and the careful targeting
of the high-end market segments.

Our current research builds on this work in several ways. First, we are now able
to analyze the design of product lines with multiple products and understand how
product variety affects the above insights. Second, we offer insights into the opti-
mal variety to offer and explain why limited variety is optimal even in the absence
of fixed costs. We emphasize the system’s congestion effects on optimal variety in
contrast to economies of scale and fixed costs considerations in other work. Finally,
we have also incorporated a more detailed representation of different types of pro-
duction technologies into the model and are able to study how they affect the prod-
uct line design decisions. In particular, we explore how dedicated versus flexible
production technologies affect the optimal product variety offerings. For these and
other enhancements of the work presented in this chapter please see Chayet et al.
(2008).
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The current research is a definite first step in addressing in an integrated way
the optimal product design and capacity investments questions for a monopolist
firm. More research is needed in understanding the impacts of different competi-
tive environments in both number of players and dimensions of competition. Fur-
thermore, more detailed accounting of combined economies of scale (both fixed
costs and congestion phenomena) and economies of scope (non-linear complexity
costs of product variety affecting both capacity investment and variable production
costs) of production facilities can lead to new theories and operational measures
in describing the economics of production systems supporting product line in the
marketplace.

Appendix

Proofs

Proof of Theorem 1

Substituting q∗(θ) into the firm’s profit function, we have

max
θ

ΠS(θ ,q∗(θ)) = [θq∗(θ)− (α +β )q∗2(θ)](1−θ)λ −2q∗(θ)
√

βh(1−θ)λ

=
θ 2

4(α +β )
(1−θ)λ − θ

α +β
√

hβ (1−θ)λ +
βh

α +β

=
λ

4(α +β )

(
θ
√

1−θ −M
)2

s.t. θ
√

1−θ > M, where M = 2

√
βh
λ

.

Therefore, the problem can be recast as that of maximizing θ
√

1−θ such that
θ
√

1−θ > M. Since θ
√

1−θ is strictly concave in θ , the optimal θ ∗ can be ob-
tained by letting

(θ
√

1−θ)′ =
√

1−θ − θ
2
√

1−θ
= 0,

which yields θ ∗ = 2/3. To ensure positive profits, the condition M < 2/(3
√

3) must
be imposed. Finally, the expressions for q∗(θ ∗), μ∗(θ ∗,q∗), and Π ∗

S (θ ∗,q∗) follow
directly from using θ ∗ = 2/3. �

Proof of Proposition 1

By Theorem 1, it is straightforward to show that d q∗/d λ > 0 and d q∗/d β ,
d q∗/d α ,d q∗/d h < 0. The properties of Π ∗

S follow directly once the optimal profit

function is rewritten as Π ∗
S =

(√
λ −3

√
3βh

)2
/[27(α +β )]. �
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Proof of Proposition 2

From Theorem 1,

d μ∗

d λ
=

β
[
λ (2

√
βλ −9β

√
3h)+α(3λ

√
3h−54h

√
βλ )

]
6
√

βλ (
√

βλ −3β
√

3h)2
.

To obtain the derivative’s sign, it suffices to consider the numerator, which can be
written as

λ 2
√

h

{
M

[
1− 9

√
3

4
M

]
+ω[3

√
3−27M]

}
=

λ 2
√

h
ϕ(M;ω),

where M = 2
√

hβ/λ and ω = 27αh/λ . ϕ(M;ω) is a quadratic function of M,
with ϕ(0;ω) = 3

√
3ω and ϕ

(
2/(3

√
3);ω

)
= −3

√
3ω −1/(3

√
3) < 0. The unique

positive root of ϕ(M;ω) = 0 is

Mr(ω) :=
2

9
√

3
[1−ω +

√
1+ω +ω2].

Mr(ω) decreases in ω since M′
r(ω) < 0 and then Mr(ω) ≤ 4/(9

√
3) < 2/(3

√
3).

Therefore, M decreases in λ while Mr(ω) increases in λ . For 0 ≤ M < 2/(3
√

3),
there exists a unique λ̂S such that M = Mr(ω) where λ = λ̂S. But

ϕ(M;ω) :

⎧⎪⎨⎪⎩
> 0, for λ > λ̂S

= 0, for λ = λ̂S

< 0, for λ < λ̂S.

The second-order derivative of μ∗ with respect to λ is

d2 μ∗

d λ 2 =
β (α +β )

√
h(
√

3βλ −27β
√

h)
6
√

βλ (
√

βλ −3β
√

3h)3
,

which vanishes when λ = 243βh. Since M < 2/(3
√

3), we need λ > 27βh.

Similarly,

d μ∗

d β
=

λ 2
√

3h
[
β +α

(
(9/

√
3)M−1

)]
2β

√
βλ (

√
λ −3

√
3βh)2

.

When α = 0, d μ∗/d β > 0. If α > 0, then

M ≥ 1

3
√

3

(
1− β

α

)
,

β
α

+
9√
3

M−1 ≥ 0.

Therefore, if α = 0 or β ≥ α , d μ∗/d β > 0. If α > 0 and β < α , there exists a
unique β̂S such that
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β̂S

α
+

6
√

3hβ̂S√
λ

−1 = 0,

where

β̂S =
α
λ

(√
27αh+λ −3

√
3αh

)2
.

Then, d μ∗/d β > 0 when β > β̂S; for β = β̂S, d μ∗/d β = 0; and, when β < β̂S,

d μ∗/d β < 0.
The second-order derivative of μ∗ with respect to β is

d2 μ∗

d β 2 =
λ 2
√

hβλ
[
λβ

(
27
√

hβ/λ −√
3
)

+3α(
√

3λ −27
√

hβλ +72
√

3hβ )
]

4(βλ )3/2(
√

βλ −3β
√

3h)3
.

When α = 0, d2 μ∗/d β 2 = 0 when β = λ/(243h). If α > 0, let x =
√

β , and

φ(x) = λx2

(
27

√
h
λ

x−
√

3

)
+3α(

√
3λ −27

√
hλx+72

√
3hx2).

When β = 0, φ(x) = 3
√

3αλ > 0:

φ ′(x) = λx

(
81

√
h
λ

x−2
√

3

)
+α(432

√
3hx−81

√
hλ ).

The positive root of φ ′(x) = 0 is

x∗ =
λ −216αh+

√
(216αh+λ )2 +1323αhλ
27
√

3hλ
.

φ ′(x) < 0 as 0 < x < x∗, and φ ′(x) > 0 when x > x∗. Let x∗ =
√

β̂C. Then, the

minimum of d2 μ∗/d β 2 is attained at β̂C. d2 μ∗/d β 2 decreases in β as 0 < β <

β̂C, and d2 μ∗/d β 2 increases when β > β̂C. Denote Δ(β̂C) = φ(x∗). Therefore,
d2 μ∗/d β 2 > 0 for all β if Δ(β̂C) > 0. When Δ(β̂C) < 0, there are two positive
roots of d2 μ∗/d β 2 = 0 denoted by η̂1 and η̂2, in which 0 < η̂1 < β̂C and η̂2 > β̂C.

It is straightforward to show that d μ∗/d α,d μ∗/d h > 0. The result follows from

d2 μ∗

d α2 =
λ
√

3h√
βλ −3β

√
3h

and

d2 μ∗

d h2 =
λβ (α +β )(27

√
hβλ −√

3λ )
4h3/2(

√
βλ −3β

√
3h)3

. �
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Proof of Proposition 3

Let C denote the operations costs, defined as the sum of congestion and capacity
investment costs. Then,

C = 2q∗
√

βhλ/3+β (q∗)2λ/3

=
1

(α +β )2

(
1

27
βλ +

2

3
√

3
α
√

βhλ −β 2h+2αβh

)
.

dC
d β

=
1

(α +β )3

[
λ (α −β )

27
+

α
√

hλ (α −3β )
3
√

3β
+2αh(α −β )

]
.

When α = 0 or β ≥ α , dC/d β < 0. �

Proof of Corollary 1

Since θ ∗ = 2/3, ρ∗ = λ/(3μ∗). It follows from Proposition 2 that ρ∗ is decreasing
in α and h. It is straightforward to show that

d ρ∗

d λ
=

3
√

3hβ (α +β )
2
√

βλ (3
√

3h+
√

βλ )2
> 0,

so ρ∗ increases in λ . The proof of (ii) follows directly from the properties of
d μ∗/d β .

The second-order derivatives of utilization level ρ∗ follow from Theorem 1:

d2 ρ∗

d α2 =
54h

√
βλ

(
1−3

√
3
√

βh/λ
)

(3α
√

3h+
√

βλ )3
> 0,

d2 ρ∗

d h2 =
3(α +β )

√
βλ (

√
3βλ +27α

√
h)

4h3/2(3α
√

3h+
√

βλ )3
> 0,

d2 ρ∗

d λ 2 = −9β 2(α +β )
√

h(3α
√

h+
√

3βλ )
4(βλ )3/2(3α

√
3h+

√
βλ )3

< 0,

d2 ρ∗

d β 2 =
3
√

3λ 2
√

h
[
β
√

βλ −3α(
√

βλ +α
√

3h−3β
√

3h)
]

4(βλ )3/2(3α
√

3h+
√

βλ )3
.

If α = 0, d2 ρ∗/d β 2 > 0. If α > 0, let β
√

βλ −3α(
√

βλ +α
√

3h−3β
√

3h) = 0,
which implies

α =
9β

√
h−√

3βλ ±
√

β (81βh+3λ −14
√

3hβλ )

6
√

h
.

Since

9β
√

h−
√

3βλ −
√

β (81βh+3λ −14
√

3hβλ ) < 0,
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there exists a unique β̂A satisfying

α =
9β̂A

√
h−

√
3β̂Aλ +

√
β̂A(81β̂Ah+3λ −14

√
3hβ̂Aλ )

6
√

h
. �

Proof of Theorem 2

Given θ and q, the optimal capacity is

μ∗(θ ,q) = (1−θ)λ +
1

qγ/2

√
h(1−θ)λ

β
.

We can rewrite the firm’s problem as

max
θ ,q

ΠG(θ ,q) =
[
θq− (α +β )qγ](1−θ)λ −2qγ/2

√
hβ (1−θ)λ .

The profit function ΠG(θ ,q) is strictly concave in q for every θ . Then, the optimal
quality level q∗(θ) in terms of θ is given by the solution of

{θ − γ(α +β )[q∗(θ)]γ−1}(1−θ)λ − γ[q∗(θ)]γ/2−1
√

hβ (1−θ)λ = 0. (9.7)

Since q ≥ qmin, to ensure that (9.7) yields a solution with a positive quality level, we
need

qγ/2−1
min

√
hβ (1−θ ∗)λ +(α +β )(1−θ ∗)λqγ−1

min <
θ ∗(1−θ ∗)λ

γ
.

Therefore, the profitability condition becomes

M < 2

√
γ −1

2γ −1

[
1

(2γ −1)qγ/2−1
min

− (α +β )qγ/2
min

]
.

Applying the implicit function theorem to (9.7) yields

d q∗(θ)
d θ

=
(1−θ)λq/γ − qγ/2

2

√
hβλ
1−θ

θ(1−θ)λ
(

1− 1
γ

)
− γ

2 qγ/2−1
√

hβ (1−θ)λ
.

Substitution of q∗(θ) into the firm’s profit function yields the single variable func-
tion ΠG(θ ,q∗(θ)). Therefore,

d ΠG(θ ,q∗(θ))
d θ

= λq∗(θ)
[

1−θ
(

2− 1
γ

)]
.
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For θ ∈ (0,1), 1 − θ(2 − 1/γ) is linear in θ . Then, there exists a θ ∗ such that
1 − θ ∗(2 − 1/γ) = 0, i.e., θ ∗ = γ/(2γ −1). Since q∗(θ) > 0, ΠG(θ ,q∗(θ)) in-
creases in θ when θ ∈ (0,θ ∗) and ΠG(θ ,q∗(θ)) decreases in θ when θ ∈ (θ ∗,1).
By direct substitution ΠG(θ ,q∗(θ))

∣∣
θ=0 = 0 and ΠG(θ ,q∗(θ))

∣∣
θ=1 = 0. Therefore,

ΠG(θ ,q∗(θ)) is unimodal in θ . The maximum is attained when θ = θ ∗. The optimal
quality level q∗ follows from solving the first-order optimality condition (9.6). �

Proof of Proposition 4

The optimal quality level q∗ is the root of√
γ −1

2γ −1

[
1

2γ −1
− (α +β )(q∗)γ−1

]
= (q∗)γ/2−1

√
hβ
λ

.

Define

G(λ ,α,β ,h;q) =
√

λ

√
γ −1

2γ −1

[
1

2γ −1
− (α +β )qγ−1

]
−qγ/2−1

√
hβ .

Clearly, G(λ ,α,β ,h;0) > 0. For any λ1 > λ2 > 0, let q1 and q2 be roots of
G(λ1,α,β ,h;q) = 0 and G(λ2,α,β ,h;q) = 0, respectively. For any q > 0 such that
1/(2γ −1)− (α + β )qγ−1 > 0, it follows that G(λ1,α,β ,h;q) > G(λ2,α,β ,h;q),
and thus q1 > q2. Therefore, the optimal quality level q∗ is increasing in λ . It
is straightforward to show that q∗ is decreasing in α , β , and h by showing that
d G(α)/d α ,d G(β )/d β ,d G(h)/d h < 0.

The optimal quality level q∗ satisfies

F (λ ,α,β ,h;q∗)=
√

λ

√
γ −1
2γ −1

[
1

2γ −1
− (α +β )(q∗)γ−1

]
−(q∗)γ/2−1

√
hβ = 0,

and by the implicit function theorem

d q∗(h)
d h

= −∂ F

∂ h

/
∂ F

∂ q∗
.

The optimal capacity is

μ∗(λ ,β ,h;q∗) =
λ (γ −1)
2γ −1

+
1

(q∗)γ/2

√
hλ (γ −1)
β (2γ −1)

.

Therefore

d μ∗

d h
=

∂ μ∗(λ ,β ,h;q∗)
∂ h

+
∂ μ∗(λ ,β ,h;q∗)

∂ q∗
d q∗(h)

d h
> 0,
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so μ∗ is increasing in h. Similarly, we show that μ∗ is increasing in α by showing
that d μ∗(α)/d α > 0.

In contrast to the above results, μ∗ does not change monotonically in β . We have

d μ∗

d β
=

λ (γ −1)
√

h
[

1
2γ−1 −αγ(q∗)γ−1

]
2(2γ −1)(q∗)γ−1β

√
β
[
(γ −1)(α +β )(q∗)

γ
2

√
λ (γ−1)
2γ−1 +

( γ
2 −1

)√
hβ

] .

The first-order condition

[θ ∗ − γ(α +β )qγ−1](1−θ ∗)λ − γqγ/2−1
√

hβ (1−θ ∗)λ = 0

can be written as

qγ/2−1
√

hβ +βqγ−1
√

λ

√
γ −1
2γ −1

=
√

λ

√
γ −1
2γ −1

(
1

2γ −1
−αqγ−1

)
.

Let

G (β ;q) = q
γ
2−1

√
hβ +βqγ−1

√
λ

√
γ −1

2γ −1

and

H (q) =
√

λ

√
γ −1

2γ −1

(
1

2γ −1
−αqγ−1

)
.

It is straightforward to show that G (β ;q) is increasing in β , G (β ;0) = 0, H (q)
is decreasing in q, and H (0) =

√
λ
√

(γ −1)/(2γ −1) > 0. Define q0 and q1 such

that H (q0) = 0 and 1/(2γ −1)−αγqγ−1
1 = 0. Then,

q0 =
[

1
α(2γ −1)

]1/(γ−1)

, q1 =
[

1
αγ(2γ −1)

]1/(γ−1)

,

and q0 > q1. Let q∗ be the root of G (β ;q∗) = H (q∗). It follows that q∗(β ) is de-
creasing in β and q∗ ∈ (0,q0). Moreover, q∗ → q0 as β → 0 and q∗ → 0 as β → ∞.
Let β̂G solve G (β̂G;q1) = H (q1), then

β̂G =
2γ −1

2λ (γ −1)

·

⎧⎪⎨⎪⎩
√√√√

h

[
1

αγ(2γ −1)

] γ−2
2(γ−1)

+
4αλ (γ −1)2

2γ −1
−

√
h
[
αγ(2γ −1)

] γ
2(γ−1)

⎫⎪⎬⎪⎭
2

.

Therefore, d μ∗/d β is negative when β < β̂G, zero when β = β̂G, and positive when
β > β̂G. Similarly,
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d μ∗(λ )
d λ

= (γ −1)

[
γ −2

2(2γ −1)

√
βλqγ/2 +(α +β )

√
βλq(3/2)γ−1

+
√

h

√
2γ −1
γ −1

(α +β )qγ−1 −
√

h

γ
√

(γ −1)(2γ −1)

]

·
{

(2γ −1)qγ/2
√

βλ
[

γ −2
2(2γ −1)

+(α +β )qγ−1
]}−1

.

There exist λ̂G and q2 which solve both G (λ̂G;q2) = H (q2) and

γ −2
2(2γ −1)

qγ/2
2

√
βλ̂G +(α +β )q(3/2)γ−1

2

√
βλ̂G +(α +β )qγ−1

2

√
h

√
2γ −1
γ −1

=
√

h

γ
√

(γ −1)(2γ −1)
,

and it follows that d μ∗/d λ is negative, zero, and positive when λ < λ̂G, λ = λ̂G,
and λ > λ̂G, respectively. Notice that

ρ∗ =

[
1+

1

(q∗)γ/2

√
h(2γ −1)
βλ (γ −1)

]−1

.

Since q∗ is increasing in λ and decreasing in α and h, ρ∗ is increasing in λ and
decreasing in α and h. Finally, from

d μ∗

d β
=

d A (β )
d β

[
λ
(

γ −1
2γ −1

)]−1

,

where

A (β ) =
1

(q∗)γ/2

√
h(2γ −1)
βλ (γ −1)

.

The comparative statics for ρ∗ follow from those of μ∗. �

Proof of Proposition 5

Applying the implicit function theorem to (9.7),

d q∗(γ)
d γ

=
− 4γ −5

2(γ −1)(2γ −1)2 − (α +β )qγ−1

2(γ −1)(2γ −1)
− (α +β )qγ−1 logq

2
− logq

2(2γ −1)
(α +β )qγ−2(3γ −2)

4
+

γ −2
4(γ −1)q

,

and since q ≥ qmin ≥ 1, d q∗(γ)/d γ < 0.
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Let C =
√

hλ/β . From

μ∗ = λ

[
γ −1

2γ −1
+

C

(q∗)γ/2

√
γ −1
2γ −1

]

it follows that

d μ∗(γ)
d γ

=
1

(2γ −1)2 +
C

2(q∗)γ/2(2γ −1)2

√
γ −1
2γ −1

− C

2(q∗)γ/2

√
γ −1
2γ −1

(
logq∗ +

γ
q∗

d q∗(γ)
d γ

)
.

It is straightforward to show that d μ∗(γ)/d γ > 0.
Notice that

ρ∗ =

[
1+

1

(q∗)γ/2

√
h(2γ −1)
βλ (γ −1)

]−1

.

Let

B(γ) =
1

(q∗)γ/2

√
h(2γ −1)
βλ (γ −1)

.

It is straightforward to show that d B(γ)/d γ > 0, so B(γ) increases in γ , which
implies ρ∗ is decreasing in γ . �
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Chapter 10
Selling to Strategic Customers: Opaque Selling
Strategies

Kinshuk Jerath, Serguei Netessine, and Senthil K. Veeraraghavan

Abstract Over the past few years, firms in the travel and entertainment industries
have begun using novel sales strategies for revenue management. In this chapter,
we study a selling strategy called opaque selling, in which firms guarantee one of
several fully specified products, but hide the identity of the product that the con-
sumer will actually obtain until after the purchase is completed. Several firms such
as Hotwire, Priceline, and Mystery Flights engage in opaque selling of travel prod-
ucts. The academic literature in this area is recent and evolving. We first survey the
nascent literature on opaque selling strategies. After presenting the current state of
theory and practice, we analyze in-depth a model of competing firms selling hori-
zontally differentiated products through an opaque channel. Consumers strategically
time their purchases by developing rational expectations about future availability in
the opaque market, keeping in mind that demand is uncertain and product supply
could be limited. This model helps illustrate the conditions under which opaque
selling can increase firm profits. We conclude the chapter by discussing ongoing
research and charting out future research directions.

10.1 Introduction

The emergence of electronic commerce has had a massive impact on the travel in-
dustry. In just over a decade after online ticket sales were introduced in the travel
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industry, more than 50% of airline tickets are sold online (SITA 2007), and this
proportion is increasing at a fast rate – from 2001 to 2003, online leisure travel
bookings in the United States more than tripled (Tedeschi 2005). The major players
in the online travel market are Expedia, Travelocity, Orbitz, Hotwire, and Priceline.
The first three companies sell regular or transparent tickets: consumers see a posted
price against each ticket that is available and make their purchase decisions. In addi-
tion, technological advancements brought about by electronic commerce have also
enabled firms to employ other creative selling strategies. For instance, Hotwire and
Priceline offer opaque tickets, whereby consumers are not given the full details of
the ticket (e.g., specific airline, time of departure, number of stops) until after they
have purchased it, but they do often pay a much lower price because of this uncer-
tainty. The consumers are guaranteed that the ticket they receive will meet certain
conditions (e.g., the range of departure and arrival times might be guaranteed), but
they can receive one of several tickets from a host of carriers that meet these condi-
tions. A particular consumer might prefer one of the tickets over the other, and there
is a possibility that she will receive this preferred ticket. However, she also runs the
risk of receiving a ticket she does not prefer.

There are several examples of firms engaging in opaque selling. For instance,
several airlines (e.g., Delta, Northwest Airlines, United Airlines, and US Airways)
supply tickets to an intermediary Hotwire which sells them as opaque tickets at dis-
counted prices. A potential customer at Hotwire keys in the details of the route she
wants to fly and the time frame. In response, Hotwire provides the option to pur-
chase an opaque ticket at a discounted price in which it does not reveal the name of
the airline and the exact itinerary1 along with several options for transparent tickets.
The consumer then makes her purchase or no-purchase decision. Likewise, Price-
line sells opaque tickets but with one major difference – it asks the user to bid the
price that she wants to pay, which is known as Name-Your-Own-Price strategy. Be-
sides airline tickets, Hotwire and Priceline also use opaque selling for hotel rooms
and rental cars, in both cases again partnering with major companies in these busi-
nesses. Beyond Hotwire and Priceline, firms such as Norwegian cruise lines sell
opaque tickets for cruises, whereby a customer pays a discounted price which guar-
antees a minimum class of cabin and is promised an upgrade (if available), but the
details of the upgrade or the exact location of the cabin are revealed later based on
availability. Mystery Flights, a firm in Australia, sells opaque tickets in which the
starting and ending times of the itinerary are specified, but the destination is not
revealed and it can be one of several pre-specified destinations. In this case, the
opacity is with respect to a different aspect of the ticket attribute as compared to
Hotwire, i.e., the destination is opaque, rather than the flight time.

An essential feature of opaque selling is that it requires at least two differenti-
ated products to credibly hide the identity of the final product the consumer will
receive. A monopolist selling several differentiated products can therefore choose
to sell opaque products (e.g., a day ticket or a night ticket on the same route) but
competing firms can also sell opaque products through intermediaries. Under the

1 It is typically possible to determine the name of the airline from the exact itinerary and vice versa,
so that opaque sellers hide both of these details.
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latter arrangement, an intermediary, such as Hotwire, is authorized to sell an opaque
ticket with the final service delivered by one of the participating firms, such as US
Airways or United Airlines. A salient feature of opaque products in the travel in-
dustry is that they are only available late in the selling horizon. In other words,
for a particular route, typically only transparent tickets (with full product informa-
tion) are available several weeks before the date of the flight, but a few days before
the flight one can observe opaque sales as well. This observation indicates that the
opaque selling strategy is often used as a mechanism to sell capacity that could not
be sold at higher prices, which is consistent with opinions of several industry ex-
perts we communicated with. Thus, the opaque selling strategy is an important tool
for clearing unsold inventory of seats/rooms.

The practice of selling opaque products has generated a lot of debate in the in-
dustry. Travel companies are always on the lookout for innovative revenue man-
agement strategies and companies practicing opaque selling strategies argue that
they augment revenues because they “enable airlines to generate incremental rev-
enue by selling distressed inventory cheaply without disrupting existing distribution
channels or retail pricing structures” (Smith et al. 2007). However, other experts
argue that selling cheaper opaque tickets amounts to introducing another chan-
nel that competes with the full-price channel, which is harmful for the industry
since it “starts a cycle of price degradation that will eventually lead to ... destroy-
ing the airlines” (Sviokla 2004). The argument for price degradation is captured in
Figure 10.1.

To explain the picture, traditionally the revenue management literature as well
as many real-life revenue optimization engines make simplistic assumptions regard-
ing customer arrival patterns. Namely, customers are assumed to be passive to the
different pricing strategies used by firms and their propensity to buy tickets is tra-
ditionally described by the exogenously specified stochastic arrival process. How-
ever, there is growing evidence that customers are strategic and, realizing that prices

Consumers expect last-minute
sales and delay purchase

More seat inventory is left
over unsold

Airlines see full-price demand
drop

Airlines drop prices at the
last minute

Fig. 10.1 Last-minute price discounting hurts airline revenues as more leisure customers continue
to anticipate last-minute sales.
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can decrease over time if there is unsold capacity late in the selling horizon, they
learn to wait for these low prices. If a lot of customers wait in this manner, there
will be excess unsold capacity close to flight departure and this can become a self-
fulfilling cycle: more and more capacity will remain unsold at the full price, causing
more discounts, which causes more customers to wait for discounts, etc. This is the
“cycle of price degradation” referred to in the picture above, and an argument can
be made that opaque selling is one way of giving such last-minute discounts. How-
ever, the argument can also be made that opaque selling strategies help break the
cycle of degradation because the consumer has to anticipate which company will be
the ultimate service provider. Thus, opaqueness introduces the additional level of
price discrimination and makes last-minute discounts harder to exploit by strategic
consumers.

The academic study of this novel selling strategy is nascent but growing. This
stream of literature lies at the intersection of the study of revenue management
strategies and the study of strategic consumer behavior. Currently most papers ap-
pear in the marketing domain and all of these papers are very recent. Formal re-
search is needed to understand the impact of opaque selling strategies on strategic
consumer behavior, as well as to compare effectiveness of opaque selling relative
to other selling strategies. In this chapter, we survey the papers in the academic lit-
erature that study this phenomenon and we attempt to answer the question: Under
what conditions, and why, is opaque selling attractive to firms? Broadly speaking,
at least three different explanations emerge: (1) A monopolist using opaque selling
can weakly improve profits by using opaque selling as a price discrimination strat-
egy. (2) Under competition, when opaque selling is introduced simultaneously with
transparent selling, it is profitable only if there is a large-enough class of brand-loyal
consumers for each airline. (3) Under competition, even if the assumption of brand
loyalty is not relied upon, opaque sales can still be profitable when introduced late in
the selling horizon as a mechanism to sell off distressed inventory, and this happens
without disrupting sales in the regular transparent channels. Overall, our chapter
suggests that there are reasons to believe in viability of opaque selling strategies
but it is also evident that this literature is just beginning to emerge and much more
research is needed in this area. We discuss directions of potential future avenues of
research in this chapter.

The rest of the chapter proceeds as follows. In Section 10.2, we place the liter-
ature on opaque selling within the related literature in Economics, Marketing, and
Operations Management. The focus of this section is on discussing five recent pa-
pers on opaque selling (Jiang 2007, Fay and Xie 2008, Fay 2008, Shapiro and Shi
2008, and Jerath et al. 2008). We then provide extensive coverage of the model in
Jerath et al. 2008 with deterministic (Section 10.3) and stochastic (Section 10.4)
demand. With the help of this model, we uncover the mechanism behind the opaque
selling strategy and show how the profitability of opaque sales varies with demand
uncertainty and customer valuation for the product. In Section 10.5, we summa-
rize our conclusions from the current literature and provide directions for future
work.
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10.2 Literature Review

In this section, we survey the recent literature on opaque selling strategies as well
as related work in other areas. We focus on papers that model opaque products as
sold by Hotwire, so that a price for the opaque product is posted and consumers
decide whether to make the purchase or not, rather than as sold by Priceline, which
asks consumers to bid the price they want to pay and their bids can be accepted
or rejected.2 This helps us to narrow our focus down to five papers that we will
discuss: Jiang (2007), Fay and Xie (2008), Fay 2008, Shapiro and Shi (2008), and
Jerath et al. (2008). But first we place the literature on opaque selling strategies
within the larger literature in Economics, Marketing, and Operations Management
and only then review the papers above in greater detail.

The study of opaque selling strategies is closely related to the literature on
price discrimination (e.g., Narasimhan 1984) and market self-segmentation (e.g.,
Moorthy 1984). In these settings, firms offer a menu of products and customers
self-select into classes based on their product preference. Since opaque sales also
have a temporal aspect to them, as in the model in Jerath et al. (2008), they are re-
lated to the literature on inter-temporal pricing. The seminal work on inter-temporal
sales is Coase (1972) which demonstrates that, given a durable product with an
infinite number of selling opportunities over time, a monopolist will eventually
decrease a product’s price to its marginal cost because consumers will anticipate
this decrease and will wait for discounts (the famous Coase conjecture). Numer-
ous papers that followed laid out conditions in which the Coase conjecture may not
hold (Stokey 1979, Besanko and Winston 1990, and DeGraba 1995). In particu-
lar, DeGraba (1995) showed that under uncertain demand and capacity constraints,
there is a threat of unavailability in the future and all consumers will not wait so
higher prices can be charged. Note that both uncertain demand and limited short-
term capacity are features of the travel industry.

The strategy of selling products both directly and through an opaque channel is
related to the “damaged goods” literature (Deneckere and McAfee 1996) in which
a high-quality product is sold with different options by disabling (or “damaging”)
some of its features. This is similar to versioning (Varian 2000) in which the same
product is sold in different versions. While these are related to opaque selling, the
main difference is that here the consumer knows that she is obtaining a lower-quality
product and she knows exactly what is wrong with the product. On the other hand,
with opaque selling the consumer can obtain her preferred product with a positive
probability. In other words, opaque selling introduces “buyer uncertainty” in terms
of product assignment. In that vein, opaque selling is related to the strategy of ad-
vance selling (Xie and Shugan 2001) which utilizes a different kind of buyer un-
certainty by selling to consumers before they learn their valuations. Finally, opaque
selling is related to the literature on revenue management (Talluri and van Ryzin

2 There is a rich literature studying the Name-Your-Own-Price selling format, e.g., Terwiesch et al.
(2005). The reader is referred to this paper for references.



258 Kinshuk Jerath, Serguei Netessine, and Senthil K. Veeraraghavan

2004) and it is also related to the strategic consumer behavior literature in opera-
tions management strategies which is described elsewhere in this book.

We now proceed to review the five papers on opaque selling mentioned earlier.
All of these papers use economic modeling to study opaque sales. We first classify
them according to their modeling framework. The main dimension of differentiation
is monopoly versus competition models: while a majority of opaque sales currently
happen under competition between service providers (e.g., Hotwire sells air tickets
from competing airlines), there are also cases like Norwegian cruise lines such that
a single firm sells several of its own products as opaque. Papers by Jiang (2007)
and Fay and Xie (2008) model a monopolist selling opaque products while Fay
(2008), Shapiro and Shi (2008), and Jerath et al. (2008) model competing firms
selling opaque products through an intermediary. The second dimension is demand
uncertainty. In practice, demand for travel services is highly uncertain and, as a
result, supply may not always match the demand. The uncertainty in demand and
capacity constraints are reflected in models of Fay and Xie (2008) and Jerath et al.
(2008). The third dimension is whether the model is dynamic (multi-period) or static
(single-period). Only work of Jerath et al. (2008) incorporates dynamic consider-
ations: the two competing firms first sell transparent tickets at full prices and then
they may sell leftover capacity through the opaque intermediary. This modeling ap-
proach is meant to reflect an often-observed practice of selling opaque tickets only
close to the date of travel service occurrence. Finally, in cases when there is an inter-
mediary selling opaque tickets (i.e., when firms compete), the intermediary can be
strategic (i.e., it makes pricing decisions) or passive. Works of Fay (2008) and Jerath
et al. (2008) model strategic intermediaries. The classification in the previous dis-
cussion is summarized in Table 10.1. We now proceed to analyze opaque literature
by discussing each paper in detail.

In the monopoly setting, Jiang (2007) uses a single-period model with horizon-
tally differentiated products and deterministic demand. The motivation is that the
firm sells a morning flight (M) and an afternoon or night flight (N) on the same
route. Even though the customer buying the opaque ticket knows the firm that is
selling him the ticket, he does not know the departure time. The customers are uni-
formly distributed along the Hotelling line with each flight (M and N) located at the
end points of the line. The monopolist can sell both transparent and opaque tickets.
The main assumption made in the paper is that, although the flight information is not
revealed for the opaque tickets, consumers expect an equal probability of obtaining

Table 10.1 Taxonomy of papers on opaque selling.

Competition Demand Single Strategic
Uncertainty Period Intermediary

Jiang (2007) No No Yes –
Fay and Xie (2008) No Yes Yes –
Shapiro and Shi (2008) Yes No Yes No
Fay (2008) Yes No Yes Yes
Jerath et al. (2008) Yes Yes No Yes
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M or N ticket independent of the actual allocation made by the firm. In other words,
equal availability is assumed (i.e., there is equal number morning and afternoon
flights sold in the opaque market). This is a common assumption in this stream of
literature that is largely driven by the absence of capacity constraints and the ab-
sence of demand uncertainty which, if present, could lead to different proportions
of M and N tickets sold as opaque.

Jiang shows that, since the seller imposes consumption uncertainty on the buyers,
the buyers trade off consumption values for price savings (i.e., opaque tickets are
priced lower, which is consistent with business reality). Due to buyer heterogeneity,
some buyers believe that the difference between two product groups (opaque and
transparent) is significant while others do not. Opaque selling can therefore help
the monopolist increase profits by discriminating among these groups. Jiang (2007)
also conducts welfare analysis of the effect of selling opaque tickets in the market
and shows that, when buyer heterogeneity is high enough, selling opaque products
can improve social welfare. Both the firm and the customers can benefit from the
dual-market strategy such that the firm sells both opaque and transparent tickets,
so Pareto improvements are achieved. On the other hand, when very few customers
in the market differentiate strongly between opaque tickets and transparent tickets,
the firm might choose to sell only transparent tickets and serve only the high-value
customers in the market.

Fay and Xie (2008) refer to opaque selling as “probabilistic selling.” They begin
by considering a monopolist offering two products with consumers distributed on
a Hotelling line as in Jiang (2007). The products have identical production costs.
The seller considers two selling strategies: traditional selling (TS) and probabilistic
selling (PS). Under traditional selling each good is offered at a certain price. Under
probabilistic selling, the seller offers one probabilistic good, which has a chance to
be one of the two traditional goods. PS is essentially the same strategy as opaque
selling, since the customer does not know the actual product until it is purchased.
The traditional products are located at each end of the Hotelling line of unit length
with the utilities normalized to one and all consumers have the same travel cost t. A
customer located at x receives utility 1− xt from buying product 1, and he receives
utility 1− (1− x)t from buying product 2. Each customer needs only one good and
chooses the good that maximizes his or her expected surplus based on the prices
of those goods. Thus, each customer can buy either of the traditional goods, or the
probabilistic good, or not buy at all. An important feature of their model is that
the consumers are rational and forward looking (see Muth 1961). In other words,
consumers form expectations about each product’s allocation to the opaque channel
by the monopolist, and these expectations are consistent in equilibrium.

Fay and Xie (2008) find that opaque selling strictly improves the monopolist’s
profit if production costs are sufficiently low. However, the advantage from opaque
selling depends strongly on the magnitude of travel costs. When the travel costs
are very small, the products are essentially substitutes and the equilibrium prices
are very similar. Therefore, in this case probabilistic selling does not help improve
profits since the opportunity to price discriminate is very limited. On the other hand,
when there is significant differentiation between two products on the Hotelling line,
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(i.e., when t is high) no customer wants to risk buying the probabilistic good. Thus,
probabilistic or opaque selling does not add much profit when there is high differ-
entiation between the two traditional goods. In summary, Fay and Xie (2008) show
that profit advantage from opaque selling is highest when the horizontal differenti-
ation of the products is at the intermediate level. Interestingly, Fay and Xie (2008)
show that advantages of opaque selling do not depend so much on standard assump-
tions behind the classical Hotelling model. For instance, the demand distribution
need not be uniform, and the preferences of the consumer population as a whole
need not be symmetric. For example, when market demand for one product is more
than for the other, the results continue to hold. They also extend the model to a spe-
cial case of information uncertainty when the firm does not know which product has
more demand than the other and all results still continue to hold. Finally, the authors
confirm their results by considering a Salop circle (i.e., all customers are distributed
along the circumference of a unit radius) while the seller offers N goods located
equidistantly along the circumference. They show that offering probabilistic goods
can reduce the seller’s information disadvantage and lessen the negative effect of
demand uncertainty on profit by significantly reducing the problem of mismatch
between capacity and demand.

Shapiro and Shi (2008) model a circle-shaped city (Salop’s circle) with N firms
located equidistantly (similar to the aforementioned extension considered in Fay and
Xie 2008). The market size is fixed (i.e., the demand is deterministic) so the firms
cannot attract more customers by lowering prices. Furthermore, all the firms are
endowed with ample capacity so that each firm has enough capacity to supply the
entire market. The customers are typified by two parameters: their location and their
travel (transportation) cost. The location of the customer is specified by the standard
Hotelling model. The travel cost is a binary variable. There are some customers of
the high type (with high travel cost, e.g., business travelers), and the rest have the
low type (with low travel cost, e.g., leisure travelers). The number of customers in
each class can be unequal.

The competing firms can sell through their own channels or through an opaque
intermediary. The intermediary is passive, i.e., if a firm decides to participate in the
opaque channel, it dictates the opaque price to the intermediary. The intermediary
posts prices from the different firms but hides the identity of the firm. In their model
with the opaque intermediary, the customers can make reservations either through
the direct channels or they could use the opaque travel agency. In the former case,
customers can choose a specific hotel, and, other things being equal, they would like
to stay at the hotel that is closest to their preferred location. When customers make
their reservations in the opaque market, they do not know the hotel’s location and
they simply prefer the hotel with the lowest price. The authors focus on the equi-
libria in which all N firms participate in the opaque market. Clearly, as N becomes
larger, there is more uncertainty with respect to the ultimate product that the cus-
tomer receives in the opaque channel. In theory, there could be several opaque and
transparent prices but the authors restrict their attention to the symmetric equilibria
in which prices, both transparent and opaque, are equal across all firms. Further-
more, the authors assume that the probability of receiving a product from any one
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firm is the same and equal to 1/N (N is assumed to be an even number). These
assumptions significantly reduce the complexity of the analysis since a customer’s
location becomes immaterial if he makes a reservation with the opaque intermediary.

There are many possible candidates for the equilibria and some further restric-
tions are needed to analyze the problem. The authors assume that it is never the case
that all customers buy only opaque products and the authors also do not consider
the case in which no customer buys opaque products. Thereafter, the authors show
an interesting result regarding the effect of the number of competitors on the opaque
selling. (To our knowledge, this is the only known result regarding dependency of
opaque selling on the number of competing firms). In particular, they show that,
when N ≥ 4, the high-type customers strictly prefer to use the non-opaque product.
Thus, if too many firms sell in the opaque market, the high-type customers are too
uncertain about the good they receive through the opaque channel, and hence they
choose to buy in the regular transparent market instead. Thus, the rest of the analysis
is restricted to equilibria in which the high-type customers only buy in the regular
(transparent) market.

Subject to the aforementioned conditions, Shapiro and Shi (2008) focus on two
possible equilibrium types. In the Full Separation equilibrium all the high-type cus-
tomers use the transparent channel and all the low-type customers use the opaque
channel because intense competition for opaque sales drives prices down. In the
Partial Separation equilibrium some low-type customers might use the transparent
channel to buy tickets. There exists some minimal distance S to the nearest prod-
uct such that all the low-type customers buy from the firm directly, and the rest of
the customers buy in the opaque channel. Shapiro and Shi (2008) conclude that,
although the opaque feature virtually erases product differentiation and intensifies
competition, service providers can differentiate between those customers who are
sensitive to service characteristics and those who are not. As a result, competition
intensifies for low-type customers, and it reduces for high-type customers. Reduced
competition for more valuable customers enables providers to commit to a higher
price for this lucrative segment which leads to higher profits overall.

Fay (2008) constructs a model of an opaque selling in which channel consid-
erations are investigated in richer details by considering a wide variety of contracts
between service providers and an opaque intermediary, including simultaneous con-
tract offers by the participants, sequential offers by the intermediary, sequential of-
fers by the firms, etc. This is the only paper we are aware of that investigates in detail
the contracting decisions made by the product sellers and the opaque intermediary.
There are three firms in the model – two symmetric competing firms at the two ends
of a Hotelling line of unit length and an intermediary that sells opaque tickets. The
consumers in the market are divided into three classes: those loyal to one firm, those
loyal to the other firm, and those who are willing to buy from both firms. The latter
consumers are distributed uniformly on the Hotelling line. The first two consumer
classes are equal in size and may be thought of as being collocated with the firm
and/or having infinite travel costs. Essentially, they buy from their preferred firm or
they do not buy at all. Such customers are called brand loyals and form fraction ρ of
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the population. The rest of the customers (i.e., fraction (1−ρ)) are called searchers.
The total demand in the market is assumed to be fixed and deterministic.

Initially, both firms allocate some tickets to sell through the opaque intermediary
in return for a lumpsum payment. Then, they set prices for their transparent tick-
ets and the intermediary observes these prices and sets its own price in the opaque
channel. From the intermediary’s perspective, the products from both firms are per-
fect substitutes. As a result, equilibrium wholesale prices are equal and they cannot
exceed marginal costs or else the intermediary would only buy from one firm. Ef-
fectively, the intermediary sets its own profit margin through its pricing ability in
the opaque market. The searchers observe the prices charged by the firms and by
the opaque intermediary and make their purchase decisions. An important assump-
tion in the model is that, although the consumers cannot observe the number of
tickets initially allocated by each firm to the opaque channel, when purchasing an
opaque ticket they expect to obtain it from either firm with equal probability. This
assumption, again, is due to absence of the capacity constraints as well as absence
of demand uncertainty. Fay (2008) finds that a monopolist can improve profits by
introducing an opaque good at a small discount and by raising the prices of the tra-
ditional goods. However, if there is competition between the selling firms then the
dynamics are different. In case when there is little brand loyalty, an opaque product
intensifies price competition and thus reduces industry profits. On the other hand, if
there is a significant amount of brand loyalty, an opaque good curtails price compe-
tition and thus increases industry profits. As a result, Fay finds that, with sufficient
brand loyalty, opaque sales help reduce price rivalry in the market and increase in-
dustry profits.

Jerath et al. (2008) analyze opaque selling in a two-period model with demand
uncertainty. They assume that two symmetric firms are located at the ends of a
Hotelling line and offer horizontally differentiated products. Firms have limited ca-
pacities. An intermediary offers an opaque product. The market demand can be high
with a certain probability and low with the remaining probability. The consumers
are distributed uniformly over the Hotelling line. If demand turns out to be high, the
firms run out of capacity, while if demand turns out to be low, the firms are left with
excess capacity. In the first period, the distribution of demand is known to every
player but the realization is not known. Both firms only sell transparent tickets in
this period and declare to sell opaque tickets through the intermediary in the second
period if any tickets are left over. Consumers make their purchase or no-purchase
decisions keeping in mind two factors: (1) they might be able to obtain cheap opaque
tickets in the second period and (2) if demand turns out to be high and enough others
purchase transparent tickets in the first period, a consumer buying in the second pe-
riod might not be able to obtain the ticket. Keeping in mind these factors, consumers
develop rational expectations about future product availability on which they base
their decisions, and these expectations are consistent in equilibrium.

Note that the model of demand uncertainty which is a feature of travel industries
is a significant differentiator in the model of Jerath et al. (2008) compared to the
models in Shapiro and Shi (2008) and Fay (2008). Furthermore, tickets are not as-
sumed to be allocated to the opaque channel a priori, but only if they are leftover
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late in the selling horizon. Of course, the firms can also sell transparent tickets in the
second period through their own channels. Jerath et al. (2008) consider this strategy
as well and compare the profits from both strategies to determine which strategy is
more profitable under different conditions of demand uncertainty and customer valu-
ations. They find that opaque selling does not distort sales in the regular channels but
helps increase profits by inducing consumers who would otherwise not purchase at
all to purchase in the second period. This happens because, by creating uncertainty
regarding which product a consumer will obtain in the opaque channel, the ex ante
utility of purchasing the product is higher than with the transparent sales. Hence, the
opaque channel acts as a distress-selling mechanism without disrupting sales in the
regular channels. In comparison with the last-minute transparent sales strategy, the
authors find that opaque selling is a more profitable strategy when the probability
of high demand is significant, the customer valuation for the product is low, and/or
customers have a high fit/travel cost. In the next section, we delve deeper into the
phenomenon of opaque selling by developing a simple economic model based on
Jerath et al. (2008).

10.3 Firm’s Selling Strategies Under Deterministic Demand

In this section, we explore the strategies of the firms when demand is deterministic.
The firms can sell through their own channels and they have the option of offering
different prices in each period of sale. The firms can also choose to sell opaque
products in the second period, after sales in the first period have ended. We consider
two possible scenarios for each strategy: low-demand scenario (J < K) and high-
demand scenario (J > K). The deterministic-demand model helps us gain insights
into the players’ decisions when demand is lower/higher than capacity and serves
as a logical building block for the more complex model with demand uncertainty
(Section 10.4).

10.3.1 Selling Through Firms’ Direct Channels

The demand is deterministic and equals J. The firms and all consumers know J. As-
sume that firm i (where i∈ {A,B}) charges p1

i in the first period and p2
i in the second

period. Each consumer buys a product, if available, from the firm that provides him
with the highest net utility (conditional on it being positive), either in the first period
or the second period. In this case, we find that each firm charges the same price in
the two periods.3 This is formalized in the following lemma.

3 Prices would not be identical across periods if consumers discounted their second period utility.
However, the discount-adjusted prices would be identical across periods. Introducing discounting
makes the analysis more tedious, while all the insights continue to hold.
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Lemma 1. When customers are rational, the equilibrium prices are such that p1
i =

p2
i = pi, i ∈ {A,B}.

Intuitively, if the firms were to try and charge a higher price in the first period
and a lower price in the second period, the consumers, being strategic and having
full information about demand, would wait to buy products until the prices were
lowered. (In case of the uncertain demand, we will see that this result changes.)
Employing this result (p1

A = p2
A = pA and p1

B = p2
B = pB), we now analyze the cases

of low and high demand.

10.3.1.1 Low Demand (J < K)

Firms A and B set revenue maximizing prices pA and pB and accrue profits πA =
pAxAJ and πB = pB(1−xB)J, where xA and xB represent the locations of the farthest
consumers who bought products from firms A and B, respectively, on the Hotelling
line. The solution to the game is formalized in Proposition 1.

Proposition 1. When demand is deterministic, there is ample capacity (J < K) and
firms sell only through their own channels, the optimal prices, market coverage, and
profits in the equilibrium are as follow:
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When 1/2 ≤V/t < 1, each firm finds it optimal to cover less than 1/2 of the mar-
ket (Hotelling line) and there are some leftover products. When 1≤V/t < 3/2, each
firm finds it optimal to cover exactly 1/2 of the market at the price V − t/2. In both
of these cases, the firms act as local monopolies. In the third case, when V/t > 3/2,
the competitive equilibrium emerges. Hence, as V/t increases, the prices, market
coverage, and firm revenues increase up to the point where the market becomes
competitive.

10.3.1.2 High Demand (J > K)

Since demand is larger than capacity available in this scenario, full market coverage
cannot occur. To maximize revenues, each firm will then cover the K/2 consumers
located closest to it. The location of the farthest consumer covered by firm A (when
valuation is high enough) is, therefore, xA = K/(2J) < 1/2. (Similarly, xB = 1−
K/(2J) > 1/2.) The following proposition lays out the solution to the game.

Market Coverage
xA,1− xB
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Proposition 2. When demand is deterministic, capacity is a constraint (J > K), and
firms sell only through their own channels, the optimal prices, market coverage, and
profits in the equilibrium are as follow:
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When 1/2 ≤V/t < K/J, the optimal price charged by the firm is such that not all
K/2 closest consumers have positive valuation to buy from the firm, and there are
some leftover products. When V/t ≥ K/J, each firm has more than K/2 consumers
who are willing to buy the products. Hence, the firm sells all its inventory at a high
price (V −Kt/(2J)), and the farthest consumer who buys a product is located at
K/(2J).

10.3.2 Opaque Selling

As we described in the introduction, firms often sell products/services through
opaque intermediaries (such as hotwire.com and priceline.com in the travel indus-
try). Further, opaque products typically go on sale only very close to the terminal
time, i.e., after consumers have bought in the transparent channel but the firms still
have some inventory of products leftover. In the model described, after sales have
been resolved in the transparent channel, the firms can accomplish opaque selling
through an intermediary I that obtains products from the firms and sells them to
maximize its own profits. For every product that the intermediary sells at price pI ,
the airline receives δ pI .

Before purchasing an opaque product, a consumer does not know which firm
will eventually provide it. However, every consumer develops expectations about
the probability of obtaining the product from firm A or B. Since the opaque sales
are based on remaining capacity, the expectations are regarding the leftover capac-
ity after transparent sales have concluded. Therefore, the probabilities of obtaining
products from each firm develop endogenously in the game according to the follow-
ing sequence of events.

1. Firms A and B set prices pA and pB in the direct-to-consumers channel and de-
clare that they might sell through an opaque channel later in the selling hori-
zon (e.g., hotwire.com lists all airlines that sell products through its web site).
Firms will engage in opaque selling only if there are products that are left unsold
through their own direct channels.

2. Given prices pA and pB and his expectations about future availability from both
firms, every consumer makes a purchase decision in the transparent channel.
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3. After the transparent channel sales are over, the leftover products are made avail-
able to the opaque intermediary I by both firms. The opaque intermediary sets a
price pI for the opaque product. Consumers who did not buy in the transparent
channel now make their buying decisions in the opaque channel. A consumer
may not obtain an opaque product if the number of leftover products is less than
the number of consumers who are willing to buy at price pI . We denote the prob-
ability that the consumer can obtain an opaque product by β so that each con-
sumer desiring a product is equally likely to obtain it. Consumers considering the
opaque channel form expectations about the probabilities that the product they
will obtain will be from firm A (denoted by γe

A) or firm B (denoted by γe
B). Hence,

any consumer who is considering buying an opaque product has an ex ante
expected utility given by

β (V − pI − γe
Atx− γe

Bt(1− x)) .

Based on the price pI , the probabilities γe
A and γe

B, and position x on the line, each
consumer decides whether to purchase a product from the opaque channel or not.

4. The opaque intermediary keeps a fraction 1−δ of the revenues from the opaque
channel. The remaining fraction δ is distributed between firms A and B in pro-
portion to the products sold for each firm, i.e., firm A obtains a fraction δγA and
firm B obtains a fraction δγB of the total opaque channel revenues.4

We now discuss how consumers purchasing in the opaque channel form their
expectations. Let xe

A and xe
B denote the points on the Hotelling line such that ev-

ery consumer believes that, in the transparent channel, the consumers in the interval
[0,xe

A] bought products from A and the consumers in the interval [xe
B,1] bought prod-

ucts from B. Thus, every consumer believes that the number of products leftover for
firm A to sell in the opaque channel is le

A = max{K/2− xe
AJ,0} and the number

of products leftover for firm B is le
B = max{K/2− (1− xe

B)J,0}. In line with these
expectations, consumers perceive that, if they buy in the opaque channel, they will
obtain a product from firm A with probability γe

A = le
A/(le

A + le
B) and from firm B

with probability γe
B = 1− γe

A = le
B/(le

A + le
B). Consequently, for the consumer at xA

who is indifferent between buying from firm A and buying in the opaque channel,
the following condition holds:

V − pA − txA = β (V − pe
I − γe

AtxA − γe
Bt(1− xA)) .

Note that pe
I is a function of γe

A and γe
B, and the consumers rational beliefs are im-

posed on availabilities. To solve for the rational expectations equilibria under high
and low demand, we first characterize the equilibrium beliefs of the consumers by
the following lemma. Recall that, in equilibrium, the profit maximizing prices set
by the firms are expected rationally by consumers. Further, in equilibrium, expecta-
tions of all consumers regarding the number of consumers that buy in the first (and

4 This revenue sharing contract with opaque intermediaries is consistent with observations and
industry practice (see Phillips 2005).
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second) period, are consistent, i.e., it should match the actual number of consumers
buying in both periods.

Lemma 2. When the capacities of the firms are equal, the equilibrium expectations
of the fraction of opaque products from each firm are γA = γe

A = 1/2 = γB = γe
B =

1/2.

Lemma 2 is a significant result. It shows that, if the firms have equal capacities,
then it is rational for consumers to expect that, in the opaque channel, half of the
products come from one firm and the other half from the other. Furthermore, the
lemma also specifies that any other expectations about product availability are ei-
ther irrational or inconsistent or both. Conditional on the event that a consumer has
received an opaque product, we allow for asymmetric consumer expectations about
its source, but they are not sustained in equilibrium when the firms are identical.
Suppose that the customers have asymmetric expectations about the product avail-
ability. For such asymmetric availability to be an equilibrium (the realization of)
second-period leftover inventory from both the firms must be unequal. This in turn
implies that one of the firms had poorer market coverage in the first period. There-
fore, the prices were asymmetric in the first period. However, in such a case, the
firm charging the higher price would unilaterally deviate to a lower price to increase
its coverage in the market. The equilibrium occurs at symmetric prices.

This result implies that, in the equilibrium, at price pI the expected utility of
each consumer from buying in the opaque channel is V − pI − t/2. Without loss of
generality, we focus on δ = 1; any δ ∈ [0,1] yields same insights.

10.3.2.1 Low Demand (J < K)

Suppose that the prices pA and pB in the transparent channels are such that con-
sumers located in the interval [0,xA] buy from firm A and consumers in [xB,1] buy
from firm B. After the firms have sold through their direct channels, the intermediary
has access to consumers in the range [xA,xB] as shown in Figure 10.2. Note that the
opaque market will exist only if there are some products leftover after sales in the
transparent channel have concluded. Since demand is low, there will be enough units
in the opaque channel to cover the remaining market so that each consumer in the
opaque channel will definitely obtain the product (i.e., β = 1). If the intermediary
charges a price pI , the total revenue from the opaque channel is πI = pI(xB − xA)J,
and each firm obtains a part of it.

Since the firms now have the opaque channel to “clear up” the remaining market
in the second period, they can raise prices in the first period (sell to fewer consumers
at higher prices) which can lead to higher profits.

Note, however, that consumers are strategic. They recognize that the firms could
rely upon the opaque channel and increase prices in the transparent channels. Fur-
ther, consumers know that they can prevent the firms from implementing the opaque
channel if they delay their purchases (in the extreme, delay purchases until right
before the selling horizon ends). Effectively, through this strategic behavior, the
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0 xA xB 1

Firm B’s
customers

Intermediary’s
customers

Fig. 10.2 Consumers to the left of xA buy from firm A and consumers to the right of xB buy from
firm B. xA denotes the location of the consumer indifferent to buying from firm A or from the
opaque channel. xB denotes the location of the consumer indifferent to buying from firm B or the
opaque channel. Consumers between xA and xB are the target consumers for the intermediary.

consumers will make the firms charge a price no higher than the price in the direct
channel equilibrium (Section 10.3.1.1). In this equilibrium, however, the firms can
still use the opaque channel when 1/2 ≤ V/t < 1 since the market is not covered
with transparent prices. In the equilibrium, the firms will charge a price V − t/2
in the opaque channel to all remaining consumers, who will all buy products. The
following proposition characterizes the equilibrium in this case.

Proposition 3. When demand is deterministic, there is ample capacity (J < K) and
firms can utilize the opaque channel, the equilibrium prices charged in the first
period by the firms, the price charged in the opaque channel by the intermediary,
and the opaque market coverage in the equilibrium are as follow:

V
t

First-Period Prices
pA, pB

Opaque Prices
pI

Opaque Coverage
xB − xA

1
2
≤ V

t
< 1

V
2

V − t
2

1− V
t

1 ≤ V
t

<
3
2

V − t
2

— —

3
2
≤ V

t
t — —

Proposition 3 shows that (compared to Proposition 1) using the opaque channel
increases the total market coverage (and profits) given the same valuation V and
strength of brand preferences t when the ratio V/t is small (1/2 ≤ V/t < 1). For
higher V/t, the firms cover the full market through the transparent channel and there
is no leftover capacity for the opaque channel.

10.3.2.2 High Demand (J > K)

When demand is deterministic and higher than available capacity, some consumers
do not obtain products. The right-most consumer that firm A can cover through its
own channel is located at K/(2J) < 1/2. Similarly, the left-most consumer that firm
B can cover is located at 1−K/(2J) > 1/2. Further, the insight that the firms will
not be able to leverage the opaque channel to increase prices in the first period holds
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in the high-demand case also. Hence, as before, the equilibrium in this case will be
similar to that in Section 10.3.1.2, except that when the firms do not cover the full
market in the first period they resort to opaque sales in the second period to clear up
remaining inventory.

Proposition 4. When demand is deterministic, capacity is a constraint (J > K) and
firms can utilize the opaque channel, the equilibrium prices charged in the first
period by the firms, the price charged in the opaque channel by the intermediary,
and the opaque market coverage in the equilibrium are as follow:

V
t

First-Period Prices
pA, pB

Opaque Prices
pI

Opaque Coverage
xB − xA

1
2
≤ V

t
≤ K

J
V
2

V − t
2

K − J
V
t

K
J
≤ V

t
V − t

2
— —

10.3.3 Comparison of Strategies Under Deterministic Demand

We now compare the profits that the firms make with and without the opaque chan-
nel. Note that in both high- and low-demand scenarios, the opaque channel acts as a
“clean up” mechanism to dispose of unsold products, without disturbing the pattern
of sales in the transparent channels. Hence, if the opaque channel exists (when the
market is not fully covered by the transparent channels), it will strictly improve firm
profits (as in Fay 2008). We demonstrate this observation in Figures 10.3a, b.

In the opaque channel, the ex ante expected utility from buying a product is zero
for all consumers. To see this, consider a consumer who is located at x. His net
expected utility from buying in the opaque channel is
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Fig. 10.3 (a) The equilibrium profits of one firm with and without opaque channels when demand
is deterministic and lower than capacity are shown. In this figure δ = 1, t = 1,J = 1,K > J. (b) The
equilibrium profits of a firm with and without opaque channels when demand is deterministic and
higher than capacity are shown. In this figure δ = 1, t = 1,J = 1,K = 0.9.



270 Kinshuk Jerath, Serguei Netessine, and Senthil K. Veeraraghavan

V − pI − γe
Atx− γe

Bt(1− x),

which is zero in equilibrium (in equilibrium, γe
A = γe

B = 1/2 and pI = V − t/2).
Therefore, all consumers who have not yet purchased a product and find one avail-
able do purchase it. In other words, by hiding the identity of the product, the opaque
channel helps sell products at lower prices to the consumers who are not willing to
buy directly from the firms because direct prices are too high.

Ex post, however, under the assumption that products in the opaque channel are
allocated randomly, half the consumers obtain positive valuations from the prod-
ucts they bought (since they obtain a product from the firm they prefer more), and
the other half obtain negative valuations (since they obtain a product from the firm
they prefer less). This is consistent with the practical observation that although con-
sumers pay lower prices when they buy opaque products, sometimes they experience
dissatisfaction because the product does not meet their preferences.

Figure 10.4 depicts the optimal strategies for the firms given different values of
consumer valuations (the ratio V/t) and inventory availability relative to demand
(the ratio K/J). As we discussed earlier, as V/t increases, the market becomes more
competitive because either the consumers’ valuations (V ) for flying are high, or the
strength of brand preference in the market (t) is low, or both.

Under both high and low demand, firms sell products through the opaque channel
only if V/t is small enough because in this case the firms do not cover the full
market in the transparent channels and use opacity as a mechanism to dispose of
unsold products. As the ratio V/t increases above a threshold, the firms have the
option of using an opaque channel, but price in the transparent channels to cover the
market anyway, and do not need to resort to selling cheaper opaque products. Figure
10.4 also shows that if demand is high, opaque sales will be seen less frequently
(for a smaller range of V/t), than if demand is low. This is consistent with the
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Fig. 10.4 Strategy space for different valuations and capacity/demand scenarios.
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notion that the opaque channel is used to dispose off distressed inventory (Harrison
2006). Finally, as we argued in Sections 10.3.2.1 and 10.3.2.2, when demand is
deterministic, strategic consumer behavior prevents the firms from leveraging the
opaque channel to increase prices in the transparent channel by adopting a strategy
of waiting. This is consistent with the Coase conjecture.

10.4 Modeling Uncertain Demand: The Effect of Uncertainty on
Opaque Selling Strategies

Uncertainty in demand volume is a pervasive feature in the travel industry. Firms
usually can estimate the demand distribution for a given airline route or hotel using
historical records but the precision of such estimates is quite limited (see Talluri
and van Ryzin 2004). As the departure date approaches, the firms can improve the
forecast and therefore project with a higher degree of confidence whether the de-
mand for the route is higher or lower than the available capacity. Building on the
analysis in previous sections, this section extends our model to incorporate demand
uncertainty.

Due to the presence of demand uncertainty, consumers cannot always adopt a
strategy of waiting in the early stages of the game because market demand could be
high and tickets could be unavailable later. However, a consumer can form rational
expectations about future availability and buy early if the expected utility from doing
so is higher than the expected utility from waiting. These dynamics capture the
practical consideration that not all consumers wait for last-minute discounts and
allow us to derive several insights beyond the model with deterministic demand. As
mentioned in the introductory sections, the possibility of capacity shortage is one of
the counter arguments to the Coase conjecture.

The specifications of the model remain the same, except that the level of demand
is now variable. We assume that, with probability α the total number of consumers
in the market is H(> K) and, with probability 1−α the total number of consumers
in the market is L(< K). As before, each firm has capacity K/2. The parameters
α,L,H, and K are common knowledge. The selling horizon is divided into two
periods. In the first period, the firms and the consumers know the distribution of
demand, but do not know the state of nature (whether demand is H or L). At the end
of the first period, but before the second period begins, the realization of demand is
observed by the firms and the consumers. This assumption is clearly a simplification
of reality. In practice, some residual uncertainty in demand would remain. There
are also several ways to extend this assumption. We discuss some future research
prospects in our concluding section.

We assume that, in any selling period, if the number of consumers who are will-
ing to buy a seat is higher than the capacity available, tickets are allocated randomly
to the consumers. In other words, if a certain number of consumers desire tickets
at the announced price but the number of tickets available is lower than the number
of tickets demanded (which can be the case if demand is high), it is possible that
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consumers with a lower expected (but positive) surplus obtain tickets at the expense
of consumers with a higher expected surplus. In the following sections, we analyze
the two strategies of selling through the firms’ direct channels (“last-minute sales”
strategy, or LMSS) and opaque selling (“opaque sales” strategy, or OpSS).

We consider the following two selling strategies of the firms:

1. “Last-minute sales” strategy (LMSS): In the first period, firms sell tickets at
prices p1

A and p1
B. In the second period, they sell the leftover tickets at the “last-

minute” prices based on the demand realization. If the demand is high, they sell
the unsold seats at prices p2H

A and p2H
B and at prices p2L

A and p2L
B if the demand is

low.
2. “Opaque sales” strategy (OpSS): In the first period, firms sell tickets using their

own channels at prices pA and pB. In the second period, the firms provide access
to the unsold tickets to an intermediary, I, who sells opaque tickets at price pH

I if
the demand is high and at price pL

I if the demand is low.

Under each strategy, consumers might postpone their purchase based on prices
in the first period and their expectations for availability and prices in the second
period, which in turn are influenced by the fraction of consumers who postpone the
purchase. In equilibrium, the fraction of consumers who postpone should be con-
sistent with the belief that each consumer has about the fraction of consumers who
have postponed purchasing their ticket. We ensure this by solving for the rational
expectations equilibrium.

In the first period, the firms and the consumers know the distribution of demand,
but do not know the state of nature (whether demand is H or L). At the beginning of
the first period, the firms announce their first period prices and their second period
selling strategies.5 The consumers strategically decide whether to buy in the first
period itself or postpone their purchase to the later period. For consumers who post-
pone the purchase, there is a possibility that they may not be able to obtain tickets
in the second period if the demand turns out to be high, or if the firms charge a very
high price. At the end of the first period, but before the second period starts, the re-
alization of demand is observed. During the second period, the demand realization
is known to the firms and the consumers. Depending on their strategies, the left-
over tickets are sold by the firms through their own channels at “last-minute” prices
(which can be high or low) or through an opaque intermediary. The consumers ob-
tain tickets at the prices offered only if available.

10.4.1 Selling Though Firms’ Direct Channels

The following is the order of events in the game when firms adopt a LMSS.

1. In the first period, firm A prices its tickets at p1
A and firm B prices its tickets at p1

B
and both firms declare that there might be last-minute sales.

5 Both firms announce the same strategy. This is imperative if they want to sell through an opaque
intermediary.
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2. All consumers form expectations about the number of consumers purchasing in
the first period (and therefore the corresponding future prices and availability)
and strategically make or postpone their purchase.

3. At the end of period 1 and before period 2 begins, demand uncertainty is fully
resolved. The level of demand is determined as H or L and is observed by both
the firms and the consumers.

4. The firms then set their prices (e.g., firm A sets price p2L
A if demand is low and

p2H
A if demand is high, and similarly for firm B).

5. The consumers who postponed their purchase in the first period decide to pur-
chase or not in the second period at the announced prices.

The rational expectations equilibrium solution for the above game is provided in
the following proposition.

Proposition 5. When the firms sell products through their own channels, the fol-
lowing equilibrium always exists: In the first period both firms set prices to cover
xA = 1− xB = K/(2H) of the market. If demand is high, no products are sold in
the second period since the firms stock out in the first period. If demand is low,
consumers located between xA = K/(2H) and xB = 1−K/(2H) buy in the second
period. The first-period and second-period prices are as follow:

V
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In the equilibrium, all consumers who attempt to buy a ticket in the first period
obtain a ticket, but pay the high price V −Kt/(2H). If demand is high, firm A sells
to K/(2H) ·H(= K/2) consumers in the first period and thus exhausts its capacity
so there are no tickets sold in the second period through last-minute sales. If demand
is low, firm A sells to K/(2H) ·L(< K/2) in the first period and will have some seats
leftover. (The situation is symmetric for firm B.) Moreover, there are more of these
leftover seats than the number of unserved consumers in the market in the second
period. Therefore, the consumers who waited for the “last-minute” tickets obtain
them at lower prices only if demand is lower than capacity.

To summarize, in the first period all consumers with “high brand preference”
(locate in the interval [0,K/(2H)]) buy at a high price from firm A. If there are any
leftover tickets, the consumers with “low brand preference” (located in the interval
[K/(2H) ,1/2]) buy from firm A during the last-minute sales at lower prices. If there
are no leftover tickets, there are no sales in the second period. In effect, the firms
are separating out consumers who are ready to pay a higher price under the threat
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of stockout and making most of their profits from the high prices charged to the
high-preference consumers in the first period.

10.4.2 Opaque Selling

The following is the order of events in the game when the firms adopt an opaque
sales strategy.

1. In the first period, firm A prices its tickets at p1
A and firm B prices its tickets at p1

B
and both firms declare intention of sales through an opaque channel.

2. Consumers develop expectations about availability in the second period and the
firm they will probably obtain a ticket from in the opaque channel and strategi-
cally purchase or postpone purchasing a ticket.

3. At the end of period 1 and before period 2 begins, demand uncertainty is resolved,
the level of demand is determined as H or L and is observed by the firm and the
consumers.

4. The leftover seats, if any, are made available to the opaque intermediary I, who
then sets a price pH

I if the demand realization is H or a price pL
I if the demand

realization is L.
5. Consumers who have not purchased in the transparent channel now make their

buying decision in the opaque channel.
6. For every ticket sold, the opaque intermediary keeps a fraction 1−δ of the rev-

enue accrued from the opaque channel. The intermediary commits to a credible
opaque strategy and sells tickets from both firms at price pI with equal prefer-
ence. It distributes the remaining fraction δ to firm A or B whose ticket it sold.

We now discuss how consumers purchasing in the opaque channel form their ex-
pectations about the probabilities of ticket availability. The consumers do not know
which firm will ultimately provide the service, but they form expectations about the
locations of the right-most and left-most consumers on the Hotelling line who buy
tickets from A and B, respectively, in the transparent channel.

1. If the level of demand is low, then leftover seats for firm A must be lL,e
A =

max{K/2 − xe
AL,0} and leftover seats for firm B must be lL,e

B = max{K/2 −
(1− xe

B)L,0}. In line with these expectations, consumers perceive that if they
buy in the opaque channel then they will obtain a ticket from A with probability
γL,e

A = lL,e
A /(lL,e

A + lL,e
B ) and from B with probability γL,e

B = lL,e
B /(lL,e

A + lL,e
B ).

2. If the level of demand is high, then the expected leftover for firm A must
be lH,e

A = max{K/2 − xe
AH,0} and the expected leftover for firm B must be

lH,e
B = max{K/2− (1− xe

B)H,0}. In line with these expectations, γH,e
A = lH,e

A /

(lH,e
A + lH,e

B ) and from B with probability γH,e
B = lH,e

B /(lH,e
B + lH,e

B ).

Based on the price pI , the expectation probabilities γ ·,eA and γ ·,eB , and his position
x on the line, every consumer decides whether to purchase a ticket or not. In equilib-
rium, for all consumers the outcomes γ ·A and γ ·B must be consistent with their beliefs
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γ ·,eA and γ ·,eB . The equilibrium prices in the rational expectations equilibrium of the
above game are provided in Proposition 6. (To keep results simple, we present the
case with δ = 1. The analysis for any δ ∈ [0,1] yields similar insights.)

Proposition 6. When the firms sell tickets through the opaque intermediary, the fol-
lowing equilibrium always exists:
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Under deterministic demand we saw that the opaque channel was primarily a
clearance mechanism when the entire market could not be covered by the firms us-
ing transparent prices. However, in the deterministic demand case, the consumers
know the state of demand and adopt a strategy of waiting if the firms charge high
prices. In contrast, when demand is uncertain, the consumers do not know the state
of demand in the first period and therefore may not wait because of the imminent
possibility of the firms stocking out if demand is high. In other words, if a con-
sumer has positive utility in the first period at the price offered by a firm, then he
will purchase the ticket, inferring that he might not obtain it at all if the demand
turns out to be high. This consideration allows the firms to charge higher prices in
the first period. Consequently, if demand is low, only a few tickets will be sold in
the first period. However, in this eventuality, the firms can use the opaque chan-
nel to “clean up” the leftover seats if any. Selling to a smaller population at higher
prices in the first period helps the firms to increase the expected profit across two
periods.

The above argument naturally leads to the interesting insight that, as the proba-
bility of high demand increases, the firms will rely more and more on the opaque
channel. The reason is that, if there is a greater chance that demand is high, the
“competition for tickets” among consumers in the first period will be higher, which
means that the firms will be able to raise the first-period prices. If demand turns out
to be high, the firms will exhaust their capacities. On the other hand, even if demand
turns out to be low, there will still be some consumers left in the market because of
high first-period prices. Consequently, there will be some leftover tickets, and the
firms will sell them through the opaque channel.
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10.4.3 A Comparison of Two Selling Strategies

We saw in the previous two sections that both LMSS and OpSS can increase the
firms’ profits. In this section, we seek to answer the question: When should firms
employ LMSS versus OpSS? For expositional simplicity, we provide a graphical
illustration of the profits of the firms for these two strategies for a representative set
of parameter values (α = 1/2,K = 1,L = 1/2,H = 3/2, t = 1) in Figure 10.5. If V
is low, the profits from OpSS are higher than the profits from LMSS. However, as
V increases, the profits from OpSS flatten out, while the profits from LMSS keep
increasing. Above a certain threshold for V , LMSS profits become higher than OpSS
profits.

To see why the above result holds, note that under LMSS the bulk of a firm’s
profits comes from tickets sold in the first period to the consumers that are closer to
the firm on the Hotelling line. If the valuation for flying in the market is high (i.e.,
V is high), this price (V − tK/(2H)) is high. However, if the valuation for flying
is low, the first-period prices are very low, the second-period prices are even lower,
and hence profits from LMSS are low. In OpSS, on the other hand, the first-period
prices are higher than in LMSS for low V because each firm is choosing to cover
only a small portion of the market in the transparent channel and the rest using the
opaque channel. Moreover, note that the second-period prices in the opaque channel
(if opaque sales are present) are higher than the second-period prices for LMSS
because the firms collude via the intermediary to sustain these higher second-period
prices.
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As V increases, the revenue from LMSS increases faster, because the firms are
able to separate out the consumers with a high preference for a particular firm and
charge these consumers higher prices even if demand is low. In OpSS, on the other
hand, prices are such that the firms cover a large portion of the market at lower prices
if demand is low. In fact, if V is high enough, the firms are in a competitive equilib-
rium under OpSS when demand is low, so that prices are very low. (In Figure 10.5,
this is the region where the OpSS profits level off.) Hence, when V is high, LMSS
yields higher profits because it allows the firms to “milk” the high-preference con-
sumers in the first period, even if it has to charge lower prices in the second period
when demand turns out to be low.

We now investigate the effect of increasing probability of high-demand realiza-
tion. As we discussed earlier for OpSS, as the probability of high-demand realization
increases, consumers are under a higher threat of stockout in the first period. Thus,
many more consumers prefer to buy in the first period and therefore the firms in-
crease prices. In other words, not only is there a higher chance that demand is high,
the prices are high also. If demand turns out to be low, the first-period sales suffer,
but the leftover capacity is cleared through the opaque channel. Over the two pe-
riods, expected profits increase. In LMSS, however, the firms charge a first-period
price V −Kt/(2H) irrespective of the probability of high demand. Further, con-
sumers with low firm preferences buy only if demand is low, which now happens
with lower probability. Hence, even though expected profits increase (because there
is a higher chance of high demand) the increase is slower than in OpSS. Figure 10.6
summarizes the comparison between the opaque strategy and the last-minute direct
sales strategy for various probabilities of high demand (α ∈ [0,1) on the y-axis) and
consumer valuations (V on the x-axis). The shaded area denotes the region where
the opaque selling market exists for deterministic low demand (i.e., when V/t ≤ 1).

10.4.4 Concluding Discussion

When product/service demand is uncertain and available capacity cannot be changed
easily in the short term, companies often end up with one of the two extremes – a
shortfall of capacity due to high demand or leftover unused (and expensive) capacity
due to low demand. To deal with the mismatch between demand and supply, firms
have implemented a variety of strategies, and two of the most prominent strategies
are direct last-minute sales at reduced prices and sales through an opaque inter-
mediary. However, consumers are becoming more and more strategic – they have
learned to anticipate this last-minute distress selling and might decide to postpone
their purchase in expectation of future lower prices. The risk the consumers face
while making this decision is of not being able to obtain a product if demand turns
out to be high.

Several papers have tried to model this strategic interaction between competing
firms and consumers to understand different selling mechanisms. The key question
that we posed to address is: when should firms offer last-minute sales through an
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opaque intermediary? In this chapter we presented a model that helps answer this
question and which compares opaque selling with direct-to-consumer selling. We
find that the answer depends on at least three factors: (1) the valuations that con-
sumers have for the service, (2) the strength of brand preference that consumers have
for competing firms (alternatively, the extent of service differentiation between com-
peting firms), and (3) the probability that demand in the market exceeds capacity.
If consumer valuation for product is high and/or the strength of brand preference of
the consumers in the market is low, firms prefer direct last-minute sales over opaque
sales. Furthermore, as the probability of high demand increases, firms start to pre-
fer opaque sales over direct last-minute sales. At the extreme, if market demand is
deterministic, direct last-minute sales are never offered while opaque sales can be
offered if consumer valuations for travel are very low. These findings immediately
translate into empirically testable hypotheses.

The dynamics underlying the functioning of opaque selling strategy are intrigu-
ing. In general, each firm prices in the earlier periods so that only consumers with
high preference for the firm buy the product. Thus, each firm derives the bulk of its
profits primarily by charging high prices to these consumers, while second-period
prices are very low (however, these cheap products are available only if demand
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turns out to be lower than capacity). Quite differently, in the opaque selling strategy,
if the consumer valuations are very low, the firms set first-period prices to extract
maximum profits from consumers and then clear any remaining products through
the opaque channel. When valuations are high, the firms price in the first period
to ensure that the number of consumers who want to buy products exceeds supply,
introducing clamor for the limited number of products and leveraging the risk of
product shortage to charge higher first-period prices. To summarize, the direct last-
minute sales strategy can be construed as extracting profits from high-preference
consumers, while the opaque sales strategy can be thought of as creating a frenzy
for products to raise prices. Clearly, opaque selling is far from a simple “inventory
clearance mechanism” – such strategies are indeed responses by the firms to con-
sumers making strategic purchasing decisions.

10.5 Other Related Considerations and Future Research

Opaque sales and last-minute sales are encountered in a variety of practical situa-
tions, many of which are not fully reflected in the stylized model described above.
Below we outline some of the interesting modeling considerations that are quite
promising to be considered by future research in this area.

Different selling mechanisms: In our model, we assume that the opaque inter-
mediary operates using a posted-price regime. This assumption quite accurately
reflects the way hotwire.com conducts business but it is not reflective of NYOP
price regime of priceline.com. The reason different opaque intermediaries uti-
lize different pricing strategies is probably to avoid direct competition with each
other. Nevertheless, we expect that NYOP selling has a potential to further in-
crease attractiveness of opaque selling because it allows for finer price discrimi-
nation among consumers as compared to last-minute selling.

Heterogeneous values for the core product: In our model, consumers are ho-
mogeneous in their preference for the core product, i.e., value V does not vary
by consumer. In practice, some companies (e.g., airlines) derive significant prof-
its by discriminating between “business” and “leisure” travelers who typically
have drastically different travel requirements, time preferences, attitudes toward
risk of not getting a ticket, or all of them together. This is the subject of volumi-
nous revenue management literature in operations (Talluri and van Ryzin 2004),
which often models consumer preferences as evolving over time. We ignore such
considerations since consumers with high utility for product consumption are
likely to purchase the product at a full price and would not participate in ei-
ther opaque or last-minute sales channels. Thus, our model focuses exclusively
on price-conscious consumers with relatively low value for the product itself. It
is, however, straightforward to incorporate into our model consumers that differ
in their core value for the product. For example, we could introduce a second
Hotelling line with a much higher core value V representing consumers with
high valuation for the product. Since these consumers have high willingness to
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pay, the firms will allocate capacity to satisfy these consumers first, and then sell
to consumers with lower V . Essentially, demand from high-valuation consumers
can be subtracted from firms’ capacities and the remaining problem is solved as
described above with insights unchanged. An even more realistic model would
incorporate a continuous distribution of values of V . In this case our results above
indicate that higher values of V make last-minute sales preferable over opaque
sales. Therefore, depending on the distribution of values of V , we expect that
opaque selling will be preferred when there are more consumers with low valu-
ations and direct last-minute selling will be preferred when there are more con-
sumers with high valuations. In either case, our insights will remain qualitatively
unchanged.

Concentrated versus monopolistic markets: In our model, there is competition
in the transparent market but the opaque intermediary is a monopoly. In practice
this may or may not be true. For example, for several years priceline.com enjoyed
near monopoly in selling opaque products but recently it has experienced com-
petition from other opaque intermediaries such as hotwire.com. It is possible to
have situations in which both transparent and opaque markets are either monop-
olistic or competitive. For example, Norwegian Cruise Lines offer both specific
staterooms on their ships as well as opaque staterooms which guarantee certain
minimal amenities but not specific location on the ship. To analyze the impact of
market competitiveness in the transparent market on our findings, we considered
a situation in which both transparent products A and B are managed by the same
firm which maximizes the total profit. We find that the monopoly firm is able to
derive higher profit from direct last-minute sales due to its ability to charge higher
prices. Thus, without competition, the last-minute direct sales strategy becomes
preferred over opaque selling for a larger range of problem parameters.

Multiple hidden product attributes: In the opaque literature the products are
characterized by a single attribute. In practice, however, products may differ in
multiple dimensions. Hotel rooms purchased on hotwire.com differ in size, loca-
tion, and amenities. Airline tickets differ in the number of stops, departure times,
and trip lengths. All these different attributes can be hidden from or revealed
to consumers in the opaque selling channel. Some opaque intermediaries allow
consumers to select the level of opacity: e.g., priceline.com lets its consumers
specify whether a “red eye” flight is acceptable and also allows to set the upper
bound on the number of stops. The issue of selecting the optimal level of opacity
and the right attributes to hide provides potential for future research but is outside
the scope of this study.

Vertical product differentiation: In the literature we have surveyed, the con-
sumers are certain that the firms are selling products of identical valuations in
both the channels. However, if there is additional uncertainty about exact fea-
tures of the product purchased from the opaque channel, then the consumers will
be more likely to purchase directly from the firms.

Queueing for semi-opaque products: In practice, we often encounter examples
of semi-opaque products. For example, theaters in New York’s Broadway area
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sell leftover tickets on the day of the show through a service run by an intermedi-
ary called TKTS. The decision-making process of theater customers is somewhat
different from the model considered in this chapter, but has strong similarities to
it as well. Local customers who are keen on seeing a particular performance
will buy directly from the theaters. However, leisure customers, say tourists vis-
iting New York for a weekend, might consider buying at TKTS, because they
are fine with watching one of several shows. This is not to say that those cus-
tomers have no preferences between the shows, but as long as they can purchase
one of the shows they would like to see, the customers receive a positive value.
TKTS sells mainly unsold (and some rationed tickets) on the last day of the show.
The customers have to queue up, based on their ex ante expectations of getting
a ticket for one of their preferred shows. The queues are generally quite long,
and therefore represent a significant waiting cost for an unclear final outcome.
However, at the end of the queue, the customers get to choose the show they
would like to see, as long as tickets for the show are available. In this sense, the
products sold by TKTS are only semi-opaque. Clearly, there are some dynamic
issues involved here and the customer may not always get the show they lined up
for. In fact, sometimes none of the shows a customer stood in line for might be
available. In such cases, they might have to just quit at (or close to) the head of
the line.

Dynamic pricing decisions: In all the models that we surveyed, the pricing deci-
sions made by the firms are simplified. There are only two selling opportunities:
one “regular” and one “sales.” In practice, for example, airlines offer many fares,
and prices tend to increase until the very last moment when last-minute sales
are announced. Incorporating such considerations into modern decision support
systems, while simultaneously integrating them with selling strategies such as
opaque selling remains a challenge and is an exciting avenue for dynamic pric-
ing research.

Empirical work: Finally, we note the existence of rich opportunities for empir-
ical modeling in the airline revenue management literature. Although numerous
studies have modeled airline revenue management decisions, there have been
very few attempts to verify these findings empirically. See Koenigsberg et al.
(2008) for an exception which analyzes the pricing strategy employed by Easy-
Jet, which is based on the idea of increasing prices as the selling horizon matures.
They find that the last-minute sales are likely to be offered when the capacity lev-
els are intermediate (i.e., not too high or low relative to demand) and when there
are many flight segments. Cho et al. (2008) is another example, our perception is
that empirical studies in the revenue management area tend to be limited by data
availability. Although airlines share lots of data with regulatory authorities (Fed-
eral Aviation Administration and the Department of Transportation), these data
are not precise enough to rigorously study specific pricing strategies employed
by an airline. Neverthless, this an area where tremendous program can be made.
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10.6 Appendix A: Deterministic Demand

10.6.1 Proof of Lemma 1

Proof. We begin the proof by observing that the two periods are identical in the
information all the players (firms and consumers) have and there is no stochastic
component in demand or utilities. Further, there is no discounting.

Consider the case of firm A. First, consider the case when demand is low (J < K).
Suppose, in equilibrium, the consumer located at xA is indifferent between buying
from firm A in the first period at price p1

A and in the second period at price p2
A.

For this consumer, the following indifference condition holds when he is making
his purchase or postpones his decision in the first period (p2,e

A is his first-period
expectation of the second-period price):

V − p1
A − txA = V − p2,e

A − txA,

which implies that p1
A = p2,e

A in equilibrium, regardless of the location of the indiffer-
ent customer. Further, in any rational expectations equilibrium, the expectations will
be correct, i.e., p2,e

A = p2
A. Therefore, firm A will offer the same price (p1

A = p2
A = pA)

in both periods.
When demand is high (J > K), there are two kinds of consumers based on their

locations – those who will obtain firm A’s product (located in the region [0,K/(2J)])
and those who will not obtain firm A’s product (located to the right of K/(2J)). When
demand is high, firm A maximizes revenues by selling to the consumers located
to the left of K/(2J). The second kind of consumers therefore would be unable
to buy products in the high-demand scenario. For the first set of consumers, the
indifference condition above again holds and we have p1

A = p2
A. Further, firm A sets

these prices so that the consumer at K/(2J) is indifferent between purchasing and
not purchasing a ticket, i.e., V − p1

A − tK/(2J) = V − p2
A − tK/(2J) = 0, which

yields p1
A = p2

A = V −K/(2J).
Similar arguments apply for prices offered by firm B.

10.6.2 Proof of Proposition 1

Proof. We prove the proposition for low demand. Note that the total capacity of the
two firms (K) is more than the total demand (J). Let V/t ≥ 1/2 as described in the
chapter.

First, consider the case in which the firms are acting as local monopolies. We
consider the decision of firm A in detail, and the analysis will be identical for firm B.
If firm A chooses the price pA, the right-most consumer to buy from the firm will
be at xA such that V − txA − pA = 0, i.e., the utility of the consumer at xA is zero.
The price charged by the firm to all consumers will then be pA = V − txA, and the
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demand will be xAJ. Thus, the profit for the firm will be πA = pAxAJ = (V −txA)xAJ.
This profit is maximized at xA = V/(2t), and the maximized profit is given by πA =
JV 2/(4t). However, to ensure that the firms are local monopolies, we need to ensure
that at the optimum xA < 1/2, which yields V/t < 1.

When V/t ≥ 1, the above equilibrium does not hold, since the firms are not local
monopolies (the optimal coverage for each firm will be >1/2). We propose that for
1≤V/t < 3/2 both firms charge prices pA = pB =V −t/2 in equilibrium, cover half
the market and make profits πA = πB = (V − t/2)J/2. We now show that this is the
unique equilibrium. Suppose firm A raises its price and charges p+

A = V − t/2 + εt
where ε > 0, while firm B still charges pB = V − t/2. Then, firm A covers xA =
1/2−ε and makes a profit (1/2− ε)(V − t/2+ εt)J. However, under the condition
V/t ≥ 1, this profit is lower than the equilibrium profit, so that the firm does not
have an incentive to raise its price above the equilibrium price. Now, consider the
case in which the firm lowers its price and charges p−A = V − t/2− εt. The point x̃
at which the indifferent consumer is located is then found by solving the condition
V − p−A − tx̃ = V − pB − t(1− x̃), which yields x̃ = (1+ε)/2, and the profit for firm
A is given by 1

2 (1 + ε)(V − t/2− εt)J. However, under the condition V/t < 3/2,
this profit is always lower than the equilibrium profit, so that the firm does not have
an incentive to lower its price below the equilibrium price. Hence, the equilibrium
proposed above is indeed an equilibrium for the range 1 ≤V/t < 3/2.

Now consider the case in which the two firms are in direct competition. Firm
A charges a price pA and firm B charges a price pB. Assume that the indifferent
consumer is located at x̃. Since this consumer is indifferent to buying from A or B,
the following condition holds for him: V − pA − tx̃ = V − pB − t(1− x̃), which gives
x̃ = 1/2+(pB − pA)/(2t). The profits for firms A and B are given, respectively, by
πA = pAx̃J and πB = pB(1− x̃)J. Maximizing the profits jointly, we obtain pA =
pB = t, x̃ = 1/2,and πA = πB = Jt/2. Under our assumption that the outside utility
of a consumer is zero, we need to ensure that V − pA − tx̃ = V − pB − t(1− x̃) ≥ 0,
which gives the condition V/t ≥ 3/2.

This specifies the equilibrium for all values of V/t ≥ 1/2 and completes the
proof.

10.6.3 Proof of Proposition 2

Proof. Note that V/t ≥ 1/2. In this proposition, we analyze the high-demand case.
The total capacity of the two firms (K) is less than the total demand (J) and firms
will act as local monopolies. Again, we consider firm A and the analysis is identical
for firm B. If firm A chooses the price pA, the right-most consumer to buy from the
firm will be at xA such that V − txA − pA = 0. The price charged by the firm to all
consumers will then be pA = V − txA, and the demand will be xAJ.

Thus, the profit for the firm will be πA = pAxAJ = (V − txA)xAJ. This profit is
maximized at xA = V/(2t), and the maximized profit is given by πA = JV 2/(4t).
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However, to ensure that the firms do not stockout, we need to ensure that at the
optimum xA ≤ K/(2J), which gives V/t ≤ K/J.

For V/t > K/J each firm will charge the price pA = pB = V − tK/(2J), cover
xA = 1−xB = K/(2J), and make profits πA = πB = (V −Kt/(2J))(K/2). Note that
the firm cannot lower its price below this level, since it does not have the capacity to
serve the expanded market. It can be easily shown, using an ε-deviation argument
as in the proof of proposition 1, that the firm does not have an incentive to lower
its price below this level. This specifies equilibria for all values of V/t ≥ 1/2 and
completes the proof.

10.6.4 Proof of Lemma 2

Proof. We first prove that, when demand is deterministic, the rational expectations
equilibrium does not exist for γe

A ∈ [0,1]\{ 1
2

}
, and only γe

A = γe
B = 1/2 are supported

in equilibrium. We first consider the deterministic low-demand case and then the
high-demand case. In both cases, we establish the rational expectations equilibrium
by first analyzing the second period and then the first period. In all cases, V/t ≥ 1/2
as before.

Low demand: We consider the case in which the firms have ample capacity, i.e.,
J < K. Let us consider the second period. Without loss of generality, let xA, xB be
the location of the consumers closest to the firm who did not buy in the first pe-
riod. Hence interval [xA,xB] denotes the location of all the consumers remaining
in the second period. Consider any consumer located at x ∈ [xA,xB]. xA and xB

are the left-most and right-most points on the line available to the intermediary
to sell opaque products.
Since we are in the second period, demand realization has occurred, and opaque
seller has announced price pI . The consumer has expectations over availability.
Upon buying the opaque product at price pI , the surplus a consumer located at x
expects to attain is

V − pI − γe
Atx− γe

Bt(1− x),

which, using γe
B = 1− γe

A, can be written as

V − pI − t(1− γe
A)+(1−2γe

A)tx.

0 < γe
A ≤ 1/2 : It suffices to consider 0 < γe

A ≤ 1/2 because, if γe
A = 0, the market

is not opaque since the consumers believe that all the products in the opaque
channel are coming from firm B. The analysis for 1/2 ≤ γe

A < 1 is identical to the
analysis for 0 < γe

B ≤ 1/2 (which is the same as the analysis below by symmetry).
For a given pI , the surplus for a consumer purchasing in the opaque market is
increasing in his location x, as long as γe

A < 1/2. In other words, the minimum
surplus is obtained by the consumer located at xA. We consider two cases, namely,



10 Selling to Strategic Customers: Opaque Selling Strategies 285

when the intermediary wants to cover the full market from xA to xB and when the
intermediary considers covering this interval partially.
The intermediary may not necessarily cover the full market [xA,xB] available
to him. Suppose that the intermediary only aims to cover the market [x′,xB],
where x′ > xA. Note that the surplus of a consumer is increasing in his lo-
cation x. Therefore, the opaque intermediary will price such that pI = V −
(1− γe

A)t +(1−2γe
A)tx′, xA < x′ < xB. Then the consumers in the interval [xA,x′)

(which is defined to be null if x′ < xA) do not buy because they have nega-
tive utility. The consumers in the interval [x′,xB] buy in the opaque channel
because they have non-negative utility. The profit of the intermediary is then
πI = (V − (1− γe

A)t +(1−2γe
A)tx′)(xB − x′)J. To maximize this profit the inter-

mediary sells to the market [x′∗,xB] where

x′∗ =
(1− γe

A)t −V +(1−2γe
A)txB

2(1−2γe
A)t

.

This implies that pI = 1
2 (V − (1− γe

A)t +(1−2γe
A)txB).

Now consider the analysis for firm A selling in the transparent channel. The per-
son located at xA has negative utility in the opaque channel. Thus, to this con-
sumer, firm A selling in the transparent channel can charge pA = V − xAt and
make him indifferent between buying and not buying. This gives firm A a profit
of πA = (V − txA)xAJ +δγe

A (V − (1− γe
A)t +(1−2γe

A)txB)(xB − x′).
Now consider firm B. The consumer at xB has to be indifferent between pur-
chasing in the first period and in the second period. The consumer at xB solves
V − pB−t(1−xB) =V − pI −γe

AtxB−(1−γe
A)t(1−xB), which, using the value of

pI from above, gives pB = 1
2 (V + t(−1+ xB − γe

A +2xBγe
A)). The profit for firm

B is πB = pB(1−xB)J +δ (1−γAe)pI(xB−x′) J. Maximizing πA and πB w.r.t. xA

and xB simultaneously, we obtain

xA =
V
2t

and xB =
V (1+(−1+ γe

A)δ )+ t(−2+δ +(γe
A)2δ − γe

A(3+2δ ))
t(−2+δ +2(γe

A)2δ − γe
A(4+3δ ))

.

Using these values of xA and xB, we obtain

γ realized
A =

K/2− xAJ
K/2− xAJ +K/2− (1− xB)J

.

In the rational expectations equilibrium, the beliefs have to be consistent with
the outcome. It must be that γ realized

A = γe
A. Imposing this condition we solve

for γ realized
A = γe

A = γe
A(V, t,J,K,δ ). The value of γA(V, t,J,K,δ ) is algebraically

complicated and we do not present it here. However, we check that imposing
the condition 0 < γe

A < 1/2 implies V/t < 1/2, which is a contradiction. (Recall
that we require V/t ≥ 1/2 as a “sanity condition” to ensure that if the firms sell
products for free, then everybody in the market will have positive evaluation to
obtain the product from at least one of the firms. In other words the condition
ensures some market coverage at zero prices.) Thus, when the intermediary sets
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prices such that the intermediary’s market coverage is partial, then the rational
expectations equilibrium does not exist.
Let us now analyze the case when the intermediary prices to cover the entire
market [xA,xB]. If the intermediary wants to cover the full opaque market, he
will price so as to make the surplus of the consumer at xA equal to zero, i.e.,
pI = V − t(1− γe

A)+ xA(1−2γe
A)t.

Since the consumer xA is indifferent between the opaque and first period market,
firm A sets its price pA by solving the following equation:

V − pA − txA = V − pI − γe
AtxA − (1− γe

A)t(1− xA).

To extract maximum revenues in the opaque market, the intermediary sets pI

such that the right-hand side of the above equation is zero. Therefore, the value
that xA receives is zero.
Therefore in the first period, if firm A covers the interval [0,xA], the price is pA =
V − txA. In the first period firm A then maximizes its profit πA = (V − txA)xAJ +
δγe

A pI(xB − xA)J, where pI is as above.
Firm B solves

V − pB − t(1− xB) = V − pI − γe
AtxB − (1− γe

A)t(1− xB).

Restricting to γe
A ∈ (0,1/2] and using pI above, we obtain pB = V + t(−1 +

xA − 2xAγe
A + 2xBγe

A). The profit for firm B is given by πB = pB(1 − xB)J +
δ (1− γe

A)pI(xB − xA)J.
Maximizing πA and πB simultaneously for the firms w.r.t. xA and xB gives

xA =
[
V (4− (1+2γe

A)δ +(1−3γe
A +2(γe

A)2)δ 2)

+ tδ (1−δ +2(γe
A)3δ +4γe

A(1+δ )− (γe
A)2(8+5δ ))

]
· [t(8+(1+4γe

A −12(γe
A)2)δ +(1−2γe

A)2(−1+ γe
A)δ 2)

]−1
,

xB =
[
t(2−2δ +2(γe

A)4δ 2 −5(γe
A)3δ (2+δ )+(γe

A)2δ (1+4δ )

+ γe
A(4+5δ −δ 2))+V (3(−1+δ )+(γe

A)2(4−3δ )δ
+2(γe

A)3δ 2 + γe
A(2−6δ +δ 2))

]
· [tγe

A(8+(1+4γe
A −12(γe

A)2)δ +(1−2γe
A)2(−1+ γe

A)δ 2)]−1.

Using the above values, we obtain

γ realized
A =

K/2− xAJ
(K/2− xAJ)+(K/2− (1− xB)J)

.

In the rational expectations equilibrium, γ realized
A = γe

A. Upon solving this, we
obtain γ realized

A = γe
A = 1/2 as the only real-valued solution. Hence, the equi-

librium does not exist for 0 ≤ γe
A < 1/2 when the intermediary wants to cover

the full market between [xA,xB]. Only γe
A = γe

B = 1/2 can be supported in the
equilibrium.
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1/2 < γe
A ≤ 1 : When 1/2 < γe

A ≤ 1, for a given pI , the surplus decreases with
x. In other words, the minimum surplus is obtained by the consumer located at
xB. The analysis proceeds as above, except the subscripts A and B are suitably
interchanged. Using identical arguments, we show that there is no equilibrium
such that 1/2 < γe

A ≤ 1. Further, the analysis for γe
A > 1/2 is the same as the

analysis for γe
B < 1/2.

In summary, all consumers develop rational expectations γe
A = γe

B = 1/2, which
are realized in equilibrium.
In other words, the rational expectations equilibrium does not exist for γA ∈
[0,1] \{ 1

2

}
and only γe

A = γe
B = 1/2 are supported in the rational expectations

equilibrium.
Since γe

A = γA = 1/2 for every consumer in the market and the probability of get-
ting an opaque product β = 1 (since there is ample capacity), the ex ante expected
surplus for each consumer buying from the opaque channel is simply V − pI −t/2
and is independent of the location of the consumer. Therefore, intermediary
prices at pI = V − t/2 and attains the revenue πI = (1− δ )(V − t/2)(xB − xA)J
by selling to the entire remaining market. Note that the revenue-maximizing ac-
tion in the opaque channel is independent of the fraction of revenues (1−δ ) held
by the intermediary.

Limited capacity/High demand: In the case in which the firms have limited ca-
pacity, i.e., J > K, we need to impose the conditions xA ≤ K/(2J) and 1− xB ≤
K/(2J) while optimizing the profits for firms A and B, respectively, which
does not change the procedure of the preceding proof. We sketch the argument
below.
Let us consider the second period when opaque products are being offered.
WLOG, let xA, xB be the locations of the consumers who were indifferent be-
tween purchasing and not purchasing from the firms A and B in the first period,
respectively. Hence [xA,xB] denotes the interval of all the consumers remaining
in the second period. Now, consider any consumer located at x ∈ [xA,xB].
Since we are in the second period, demand realization has occurred, and opaque
seller has announced price pI . The consumer located at x has beliefs over avail-
ability. Upon buying the opaque product at price pI , the surplus he expects to
attain is

V − pI − γe
Atx− γe

Bt(1− x),

which, using γe
B = 1− γe

A, can be written as

V − pI − t(1− γe
A)+(1−2γe

A)tx.

If capacity is not binding, then the analysis is no different from the previous
analysis of the low-demand case (i.e., in equilibrium, the expectations γA =
γB = 1/2).
Suppose capacity is limited in the second period. In other words, the residual
capacity in the second period is less than the unfulfilled demand in the second
period, i.e., (K − xAJ − (1− xB)J) < (xB − xA)J. Let us assume that the opaque
intermediary covers interval [x′,x′′] where x′ > xA and x′′ < xB.
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Consider 0 < γe
A < 1/2. pI is obtained by solving V − pI − t(1 − γe

A) +
(1−2γe

A) · tx′ = 0. Since the indifferent consumer is located at xA < x′, we
have that the net valuation of the consumer purchasing from firm A is zero. (If
the consumer has positive utility, then a consumer to the right of xA would
also buy with positive utility.) The optimal revenue of firm A is achieved
by maximizing πA = (V − txA)xAJ + δγe

A pI(x′′ − x′)J w.r.t. xA. This implies
x∗A = min{K/(2H),V/(2t)}.
Since capacity is binding, all the seats with the opaque intermediary are sold.
Hence, x′′ < xB is determined by (K−xAJ−(1−xB)J) = (x′′ −x′)J. Then firm B
maximizes πB = (V − t(1− xB))(1− xB)J +δ (1− γe

A)pI(x′′ − x′)J w.r.t. xB. This
implies xB = 1 − min{K/(2H),V/(2t)}. Hence xA = 1 − xB, and the rational
expectations regarding the probabilities of availability of the leftover products
from each firm will be symmetric. Hence only γA = γB = 1/2 is sustained in
equilibrium in the high-demand environment.

10.6.5 Equilibrium Characterization for the Low-Demand Case
(If Consumers Do Not Strategically Wait)

From proof of Lemma 2 in Appendix 10.6.4, we have γe
A = γA = 1/2 and β = 1 for

all consumers in the market. The ex ante expected surplus for each consumer buying
from the opaque channel is simply V − pI − t/2 and is independent of the location
of the consumer. Therefore, the intermediary prices at pI = V − t/2 and attains the
revenue πI = (V − t/2)(xB − xA)J by selling to the entire remaining market.

We now analyze the optimal choices of the firms in their own transparent chan-
nels before the opaque sales. The consumers located between xA and xB prefer to
buy from the opaque channel. As before, for firm A the consumer located at xA must
be indifferent between buying from the firm now or in the opaque channel later. In
a low-demand state, the leftover products are sufficient to cover all the remaining
demand. Hence, we have

V − pA − txA = V − pI − γe
AtxA − γe

Bt(1− xA).

Since γe
A = 1/2 and pI = V − t/2, the right-hand side of the equation above is zero.

Hence, the price charged by firm A is pA =V −txA. Firm A, which covers the market
till xA and charges price pA = V − txA, makes a profit of

πA = (V − txA)xAJ +δγe
A

(
V − t

2

)
(xB − xA)J.

The value of xA that maximizes the profit for firm A is

xA =
V
2t

− δ
4

(
V
t
− 1

2

)
,
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which is decreasing in δ . As the ability to earn more revenues from the opaque
channel increases, the firm chooses to cover less through its own channels. This does
not imply that the firm is generating smaller revenue through its own channel. The
corresponding optimal price pA = V − txA = V/2+(δ/4)(V/t−1/2)t is increasing
in δ . Because of the presence of the opaque channel, firms sell fewer products in
their own channels at higher prices. Proceeding with a similar analysis for firm B,
we obtain

xB = 1−
(

V
2t

− δ
4

(
V
t
− 1

2

))
.

Thus, the coverage by the intermediary is

xB − xA = 1− V
t

+
δ
2

(
V
t
− 1

2

)
.

For the above expression, we need to ensure that

xA ≤ 1
2

⇒ V
t
≤ 4−δ

2(2−δ )
.

For V/t ≥ 3/2, the competitive equilibrium holds, with both firms covering ex-
actly half the market at prices pA = pB = t and obtaining profits πA = πB = tJ/2
while πI = 0. For (4−δ )/[2(2−δ )]≤V/t ≤ 3/2 we construct the non-competitive
equilibrium as both firms charging pA = pB = (V/t −1/2) t, covering exactly half
the market, and therefore making profits πA = πB = (V/t −1/2)(t/2)J with πI = 0
(see table below). Thus, for V/t ≥ (4−δ )/[2(2−δ )] it turns out that nothing is
allocated to the opaque channel in equilibrium.

Profit from the first period Profit from opaque sales

1
2
≤ V

t
≤ 4−δ

2(2−δ )

(
V
2

+
δ
4

(
V
t
− 1

2

)
t

)
δ
(

V
t
− 1

2

)(
1− V

t
+

δ
2

(
V
t
− 1

2

))
t
2

J

·
(

V
2t

− δ
4

(
V
t
− 1

2

))
J

4−δ
2(2−δ )

≤ V
t
≤ 3

2

(
V
t
− 1

2

)
t
2

J 0

3
2
≤ V

t
t
2

J 0

The analysis above shows that (compared to the table in Proposition 1) using the
opaque channel increases the total market coverage (and profits), given the same
valuation V and strength of brand preferences t when the ratio V/t is small. How-
ever, the firms utilize the opaque channel only when the consumers’ willingness to
pay is low. For a higher willingness to pay, i.e., when V/t ≥ (4−δ )/[2(2−δ )],
the firms price in the transparent channel so as to cover the entire market and
there are no sales through the opaque channel. Note that, in the above case, when
V/t ≥ (4−δ )/[2(2−δ )], the profits are identical to what a firm makes when
it does not use an opaque channel and V/t ≥ 1 (Proposition 1). Also, note that
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1 ≤ (4−δ )/[2(2−δ )]≤ 3/2 for all values of δ ∈ [0,1], which means that using the
opaque channel increases profits in the non-competitive regime. Therefore, firms
charge a higher price in the first period, cover less through their own channels after
the introduction of the opaque channel, but “clear up” the remaining market using
the opaque channel (albeit at a lower price), which leads to higher overall profits.

10.6.6 Proof of Proposition 3

Proof. When 1/2 ≤ V/t < 1, the firms find it optimal to charge a price V/2 and
cover V/(2t), which is less than 1/2. The remaining 1−V/t portion of the market
(between V/(2t) and 1−V/(2t)) is covered in the opaque channel by charging a
price V − t/2. The proof is along the lines of the proof in Appendix 10.6.5. When
V/t ≥ 1, the full market is covered in the transparent channel in the first period
itself, and there are no products left to be allocated to the opaque channel.

10.6.7 Equilibrium Characterization for the High-Demand Case
(If Consumers Do Not Strategically Wait)

Consider a consumer at x ∈ [xA,xB] and note that K < J. The probability this con-
sumer obtains a product is

β =
K − xAJ− (1− xB)J

(xB − xA)J
.

If this consumer obtains a product from the opaque seller at price pI , the surplus he
attains is

V − pI − γe
Atx− γe

Bt(1− x).

Again, using Lemma 2, γe
A = 1/2. In this case, the expected surplus in the equilib-

rium is simply V − pI − t/2 and is independent of the location of the consumer.
The opaque intermediary prices the products at pI = V − t/2 and the total rev-
enue accrued in the channel is πI = (V − t/2)(K/J− xA − (1− xB))J. Note that
the intermediary can sell to any consumer located between xA and xB even though
he is unable to cover the full market between these two points due to constrained
capacity.

Now consider firm A in the transparent channel. The consumer at xA (the right-
most consumer that buys from A) solves

V − pA − txA = β (V − pe
I − γe

AtxA − γe
Bt(1− xA)).

Since γe
A = 1/2 and pe

I = pI = V − t/2, the right-hand side of the equation above is
zero.
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The rest of the analysis proceeds exactly as above in the proof for Proposition 3,
except that the firm stocks out if the optimal value of xA is greater than K/(2J).
After imposing xA ≤ K/(2J) in the solution above due to capacity constraints, we
obtain

V
2t

− δ
4

(
V
t
− 1

2

)
<

K
2J

⇒ V
t
≤ 4K/J −δ

2(2−δ )
.

Upon imposing the condition V/t ≥ 1/2, we obtain a lower bound on K/J, i.e.,
K/J > 1/2. Thus, for

1
2
≤ V

t
≤ 4K/J −δ

2(2−δ )

(ensuring the firm does not stockout in the transparent channel) we obtain

πA = πB =
(

V
2

+
δ
4

(
V
t
− 1

2

)
t

)(
V
2t

− δ
4

(
V
t
− 1

2

))
J

+
δ
2

(
V
t
− 1

2

)(
K −

(
V
t
− δ

2

(
V
t
− 1

2

))
J

)
t,

πI = (1−δ )
(

V
t
− 1

2

)(
K −

(
V
t
− δ

2

(
V
t
− 1

2

))
J

)
t.

For the case in which V/t ≥ (4K/J−δ )/[2(2−δ )], we construct the non-competitive
equilibrium as follows: both firms charge a price pA = pB = (V/t −K/(2J)) t and
cover xA = 1− xB = K/(2J). The profits are given by

πA = πB =
(

V
t
− K

2J

)
K
2

t and πI = 0.

When demand is higher than capacity available, the profits accrued by the firms
from the sales through their own channels and opaque channels are as follows:

V/t Profit from the first period Profit from opaque sales

1
2
≤ 4K/J−δ

2(2−δ )

(
V
2

+
δ
4

(
V
t
− 1

2

)
t

)
δ t

(
V
t
− 1

2

)(
K −

(
V
t
− δ

2

(
V
t
− 1

2

))
J

)
·
(

V
2t

− δ
4

(
V
t
− 1

2

))
J

4K/J−δ
2(2−δ )

≤ V
t

(
V
t
− K

2J

)
t
2

J 0

10.6.8 Proof of Proposition 4

Proof. When 1/2 ≤V/t < K/J, the firms find it optimal to charge a price V/2 and
cover V/(2t), which is less than 1/2. The remaining K/2−V J/t portion of the
market

(
(V/(2t),K/(2J)

)
and

(
1−K/(2J),1−V/(2t)

)
is covered in the opaque
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channel by charging a price V − t/2. The proof is along the lines of the proof in
Appendix 10.6.7.

When V/t ≥ K/J, the full market is covered in the transparent channel in the first
period itself (i.e., the firms sell all K/2 products), and there are no products left to
be allocated to the opaque channel.

10.7 Appendix B: Uncertain Demand

10.7.1 Proof of Proposition 5

Proof. Consider any consumer at some position x ≤ 1/2 who has the following
beliefs about the location of the indifferent consumers: The consumer x believes
that the consumer indifferent between buying in the first period from firm A and
buying in the second period from firm A is located at xe

A. Further, x believes the
consumer indifferent between buying and not buying from A in the second period is
located at yH,e

A ≥ xe
A when demand is high and at yL,e

A ≥ xe
A when demand is low.

Second Period: In the second period, if demand is high, the number of products
available is (K/2− xe

AH)+ and the number of products demanded is (xe
AH −K/2)++

(yH,e
A − xe

A)H. Hence, the probability of obtaining a product is

min

⎧⎨⎩1,
min

{
(K/2− xe

AH)+ ,(xe
AH −K/2)+ +(yH,e

A − xe
A)H

}
(
xe

AH −K/2
)+ +(yH,e

A − xe
A)H

⎫⎬⎭ .

If demand is low, the number of products available is (K/2− xe
AL)+ and the num-

ber of products demanded is (xe
AL−K/2)+ +(yL,e

A − xe
A)L so that the probability of

obtaining a product is min
{

1,(K/2− xe
AL)+ /

(
(xe

AL−K/2)+ +(yL,e
A − xe

A)L
)}

.
The expected surplus for the consumer at x for the second period is, therefore,

= α min

⎧⎨⎩1,
min

{(
K
2 − xe

AH
)+

,
(
xe

AH − K
2

)+ +(yH,e
A − xe

A)H
}

(
xe

AH − K
2

)+ +(yH,e
A − xe

A)H

⎫⎬⎭(V − xt − p2H
A )

+(1−α)min

{
1,

(
K
2 − xe

AL
)+(

xe
AL− K

2

)+ +(yL,e
A − xe

A)L

}
(V − xt − p2L

A ).

First Period: In the first period, if demand is high, the probability that a consumer
will obtain a product is

(
min{K

2 ,xe
AH}/(xe

AH)
)

and, if demand is low, the probabil-
ity that this consumer will obtain a product is 1. Hence, the expected surplus for the
consumer at x from buying in the first period is

[α (min{K/2,xe
AH}/(xe

AH))+(1−α)](V − xt − p1
A).
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Let xA be the actual location of the indifferent consumer in the first period. There-
fore, in the equilibrium, let xA = xe

A be the position of the indifferent consumer so
we can write(

α

(
min{K

2 ,xe
AH}

xe
AH

)
+(1−α)

)
(V − xe

At − p1
A)

= α min

⎧⎨⎩1,
min

{(
K
2 − xe

AH
)+

,
(
xe

AH − K
2

)+ +(yH,e
A − xe

A)H
}

(
xe

AH − K
2

)+ +(yH,e
A − xe

A)H

⎫⎬⎭
· (V − xe

At − p2H
A )

+(1−α)min

{
1,

(
K
2 − xe

AL
)+(

xe
AL− K

2

)+ +(yL,e
A − xe

A)L

}
(V − xe

At − p2L
A ). (10.1)

Note that, trivially, we can ensure yL,e
A ≥ xe

A and yH,e
A ≥ xe

A. The condition above
looks quite imposing to solve, but we can simplify it considerably by dividing it
into two cases: (1) when xe

A ≤ K/(2H) and (2) when xe
A > K/(2H).

Assuming xA = xe
A < K/(2H), the above simplifies to

V − xAt − p1
A = α(V − xAt − p2H

A )+(1−α)(V − xAt − p2L
A ).

Assuming xA = xe
A > K/(2H) (and yL,e

A L < K/2, i.e., no stockout in the low-demand
state), the above simplifies to(

α
K/2
xAH

+(1−α)
)

(V − xAt − p1
A) = (1−α)(V − xAt − p2L

A ).

We analyze the above cases separately in the following subsections. We consider
firm A but the analysis for firm B is identical.

• xA = xe
A < K/(2H)

Suppose all consumers correctly believe that xA = xe
A < K/(2H). In the first pe-

riod, denote the price charged by firm A by p1
A. In the second period, the firms

know the state of demand to be high or low. Denote the prices charged by firm
A in high- and low-demand states by p2H

A and p2L
A , respectively. Let the indiffer-

ent consumer be located at xA. For this consumer, in the equilibrium and when
expectations are consistent, we have

V − p1
A − txA = α(V − p2H

A − txA)+(1−α)(V − p2L
A − txA)

⇒ p1
A = α p2H

A +(1−α)p2L
A .

Now consider a consumer at xA +δ where δ > 0 and such that xA +δ < K/(2H).
This consumer has the same belief xe

A, which is consistent. Moreover, for this
consumer the net utility from buying a product in the first period is U1 = V −
p1

A − t(xA + δ ), and the net expected utility from waiting to buy in the second
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period is U2 = α(V − p2H
A − t(xA +δ ))+(1−α)(V − p2L

A − t(xA +δ )). Using the
fact that p1

A = α p2H
A +(1−α)p2L

A , these utilities are equal. Hence, the consumer
at xA + δ is also indifferent between buying in the first period or waiting to buy
in the second period. This argument can be extended to any consumer in the
range [0,K/(2H)), which means that the belief xe

A is incorrect in the equilibrium.
Hence, a rational expectations equilibrium with xA = xe

A < K/(2H) does not exist.
• xA = xe

A > K/(2H)
The goal of this section is to show that this equilibrium does not exist for all
values of the parameters V, t,K,L,H,and α .
Consider the second period. Suppose demand is high. Then the firm stocks out
in the first period, because the number of products is less than the demand in the
first period xAH > HK/(2H) = K/2. Now, suppose demand is low. We consider
firm A and limit ourselves to the case when, even in low demand, it is a local
monopoly and covers the line till yL

A ≤ 1/2. The firm charges a price p2L
A = V −

yL
At where yL

A ≤ 1/2 and sells (yH
A − xA)L products to make a profit of π2L

A =
(V − yL

At)(yL
A − xA)H, which is maximized at yL

A = (V + xAt)/(2t), with p2L
A =

(V − xAt)/2 and π2L
A = (V − xAt)2L/(4t).

Next, consider the equation for the indifferent consumer. Under the assumption
xe

A ≥ K/(2H) and yL,e
A L < K/2, i.e., no stockout in the low-demand state, the

indifference condition is

p1
A =

αK/(xe
AH)+(1−α)

αK
(
xe

AH
)
+2(1−α)

(V − xAt).

Writing the expression for the total expected profit of firm A as

πA = p1
A (αK/2+(1−α)xAL)+(1−α)π2L

A

and differentiating w.r.t. to xA, we obtain

xA =
αK(V L(1−α)−αKt − xe

AH(1−α)t
L(1−α)t(2H(1−α)xe

A +3Kα)
.

In the rational expectations equilibrium, we have xe
A = xA, which yields

xA = xe
A =

√
αK(αK(H2 +9L2 −2HL)+8(V/t)HL2(1−α))−αK(H +3L)

4HL(1−α)
.

Note that we need the following conditions to hold: V/t ≥ 1/2, xA ≥K/(2H) and
yL

A ≤ 1/2 ⇒V/t ≤ 1− xA. This equilibrium does not always exist. For instance,
when L = 1/2, K = 1, H = 3/2, α = 1/2, t = 1, and V = 2/3, the equilibrium
does not hold.

• xA = xe
A = K/(2H)

Suppose all consumers correctly hold the belief that xA = xe
A = K/(2H). Con-

sider the indifferent consumer at xA = K/(2H). In the first period, irrespective
of demand being high or low, this consumer can obtain a product at price p1

A. In
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the second period, if demand is high, no products are being sold. If demand is
low, the consumer can obtain a product at price p2L

A . For this consumer, we can
therefore write

V − txA − p1
A = (1−α)(V − txA − p2L

A )

p1
A = α(V −Kt/(2H))+(1−α)p2L

A .

Next, consider a consumer to the left of this indifferent consumer, at xA − ε ,
ε > 0, who holds the belief xA = xe

A = K/(2H). In the first period, this consumer
can obtain a product irrespective of high or low demand at price p1

A, which gives
him net utility U1 = V − t(xA − ε)− p1

A. If the consumer waits for the second
period, he can obtain a product only in the case of low demand at price p2L

A . His
net expected utility from waiting is U2 = (1−α)(V − t(xA − ε)− p2L

A ). Then,
U1 −U2 = αεt > 0, which means that this consumer prefers to buy in the first
period rather than wait.
Next, consider a consumer to the right of the indifferent consumer, at xA + ε ,
ε > 0 who holds the belief xA = xe

A = K/(2H). In the first period, this consumer
can obtain a product if demand is high. (In the case of high demand, K/2 prod-
ucts are being bought by K/(2H) ·H = K/2 consumers and if this consumer
wants to buy a product, K/2 products will be bought by K/2 + ε ′ consumers,
and he will obtain a product with probability limε ′→0[(K/2)/(K/2+ ε ′)] = 1.)
The consumer can also obtain a product in the low-demand state. In other words,
he can obtain a product in the first period irrespective of high or low demand at
price p1

A, which gives him net utility U1 = V − t(xA + ε)− p1
A. If he waits for the

second period, he can obtain a product only in the case of low demand at price
p2L

A . His net expected utility from waiting is U2 = (1−α)(V − t(xA + ε)− p2L
A ).

Then, U1 −U2 = −αεt < 0, which means that this consumer prefers to wait and
buy in the second period.
Hence, a consumer to the left of the indifferent consumer prefers to buy in the
first period, and a consumer to the right of the indifferent consumer prefers to
wait for the second period, which is consistent with equilibrium beliefs. Hence,
this equilibrium always exists. It now remains to characterize the equilibrium.
We first limit ourselves to the case in which, even in the low-demand state, each
firm is a local monopoly. If demand is low, the firm charges a price p2L

A =V −yL
At

where yL
A < 1/2, and sells (yH

A −K/(2H))L products to make a profit of π2L
A =

(V −yL
At)(yL

A−K/(2H))H. This profit is maximized at yL
A = [V +Kt/(2H)]/(2t),

with p2L
A = (V −Kt/(2H))/2 and gives π2L

A = [(V −Kt/(2H))2/(4t)]L. Using
p1

A = α(V − Kt/(2H)t) + (1 − α)p2L
A , we obtain p1

A = ((1+α)/2)(V − Kt/
(2H)t). The firm’s first-period profit is given by π1

A = p1
A(αH +(1−α)L)K/(2H),

and total profit is given by πA = π1
A +π2L

A . However, we need to impose y2L
A ≤ 1/2,

which gives the restriction V/t < 1−K/(2H).
For 1−K/(2H)≤V/t < 3/2, y2L

A = 1/2, p2L
A =V −t/2, p1

A = α(V −Kt/(2H))+
(1−α)(V − t/2), π2L

A = (1−α)(V − t/2)(1−K/H)L/2, and π1
A = p1

A(αH +
(1−α)L)K/(2H). This is the non-competitive equilibrium with each firm cov-
ering exactly half the line.
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For V/t ≥ 3/2, y2L
A = 1/2, p2L

A = t, p1
A = α(V −Kt/(2H)) + (1−α)t, π2L

A =
(1−α)t (1−K/H)L/2, and π1

A = p1
A(αH +(1−α)L)K/(2H). This is the com-

petitive equilibrium with each firm covering half the line. This completely char-
acterizes the equilibrium for all values of V/t.

10.7.2 Proof of Proposition 6

Proof. We characterize the equilibrium for the case δ = 1; the intuition remains
similar for all δ ∈ [0,1], because changing δ only changes the profits transferred
from the opaque intermediary to the firms.

The analysis below is for γH,e
A = γL,e

A = 1/2, which are rational expectations in
equilibrium. To see why this is the case, assume that γ ·,e· = 1/2. Consider the case
when demand is low and consumers purchase in the opaque channel. Suppose that
the intermediary has the market (xA,xB) available to it (and enough capacity to fulfill
this demand) and offers a price pL

I . For any customer at x ∈ (xA,xB), the ex ante
surplus from purchasing an opaque ticket is V − pL

I − γL,e
A tx− γL,e

B t(1− x) = V −
pL

I − t/2. This is independent of position x, or, stated differently, all consumers have
the same ex ante utility from purchasing an opaque ticket. The intermediary will
then price at pL

I = V − t/2, since at this price all consumers will purchase.
Now, consider the case when demand is high and consumers purchase in the

opaque channel. Suppose that the intermediary has the market (xA,xB) available to
it (but not enough capacity to meet all this demand, so that a consumer who wants to
purchase an opaque ticket will only get it with probability β ) and offers a price pH

I .
For any customer at x ∈ (xA,xB), the ex ante surplus from an opaque ticket is

β
(
V − pL

I − γL,e
A tx− γL,e

B t(1− x)
)

= β
(
V − pL

I − t/2
)
.

Once again, the intermediary will then price at pH
I = V − t/2, since at this price all

consumers will want to purchase (while only a fraction β of them will actually get
tickets).

Now, using these expressions, we solve for firm prices pA and pB in the first
period. Finally, to confirm that γ ·,e· = 1/2 are equilibrium expectations, in each of
the cases below we will confirm that the realized probabilities of availability, γ ·· , are
all equal to 1/2.

• 1/2 ≤V/t ≤ K/H
The firms will not stockout even when demand is high. As in the deterministic
demand case, consumers will not let the firms leverage the opaque channel to
increase first-period prices, so that

πA = pAxA(αH +(1−α)L)

+δγA

(
α pH

I

(
K
2
− xAH +

K
2
− (1− xB)H

)
+(1−α)pL

I (xB − xA)L
)

,
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πB = pB(1− xB)(αH +(1−α)L)

+δγB

(
α pH

I

(
K
2
− xAH +

K
2
− (1− xB)H

)
+(1−α)pL

I (xB − xA)L
)

πI = (1−δ )
(

α pH
I

(
K
2
− xAH +

K
2
− (1− xB)H

)
+(1−α)pL

I (xB − xA)L
)

.

The profit πI is shared by firms A and B in proportion to the products sold by
each. The no-stockout situation implies xA ≤ K/(2H) and xB ≥ 1 − K/(2H).
Firm A sets pA = V − xAt and firm B sets pB = V − (1− xB)t. Optimizing the
above two expressions w.r.t. xA and xB, we obtain xA = 1 − xB = V/(2t) and
pA = pB = V/2. After imposing xA ≤ K/(2H) we obtain V/t ≤ K/H, which
we have already assumed. Moreover, 1/2 ≤V/t ⇒ 1/2 ≤ K/H ⇒ K/H ≥ 1/2,
which is required, but is a mild assumption.6

Using these values of xA and xB, we obtain

γL, realized
A =

K/2− xAL
K/2− xAL+K/2− (1− xB)L

=
1
2

and

γH, realized
A =

K/2− xAH
K/2− xAH +K/2− (1− xB)H

=
1
2
.

This confirms that γ ·,e· = 1/2 are indeed equilibrium expectations.
If demand is high, the capacity sold in the opaque channel is the leftover from
the transparent channel which is K−V H/(2t), and if demand is low, the amount
sold in the opaque channel is L−V L/(2t). The prices in the opaque channel are
pH

I = pL
I = V − t/2 and the profits are πH

I = (V/t −1/2)(K −V H/(2t)) t and
πL

I = (V/t −1/2)(1−V/(2t))Lt. In equilibrium, half of the above profits will
be transferred to each firm. Hence, the profits for firms A and B are

πA = πB =
V 2

4t
(αH +(1−α)L)

+
1
2

(
V
t
− 1

2

)(
α
(

K − V
2t

H

)
+(1−α)

(
1− V

2t

)
L

)
t.

In the cases that follow, we construct the equilibria and it can be shown using an
ε-deviation argument that these are indeed equilibria. Further, we do not explic-
itly show that γ ·, realized· = γ ·,e· in all these cases; the reader can, however, check
that this always holds.

• K
H

<
V
t
≤ K

H
+
(

α
1−α

)
K
2L

Here, we construct the equilibrium as follows: both firms charge pA = pB =

V −Kt/(2H) and cover exactly xA = 1− xB = K/(2H) in both high and low
demand. In high demand there is no leftover for the opaque channel, while in

6 This condition is required because we assume that V/t > 1/2 to ensure that if tickets are free,
consumers located farthest from both firms (at 1/2) have positive utility for them.
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low demand the total leftover is (xB − xA)L = (1−K/H)L. In high demand the
opaque channel profit is zero (since nothing is leftover to be allocated to it). In
low demand the opaque channel price is pL

I = V − t/2 and the profit is πI =
(V/t −1/2)(1−K/H)Lt. The profit for firms A and B is therefore

πA = πB =
(

V − K
2H

t

)(
α

K
2

+(1−α)
K

2H
L

)
+

1
2
(1−α)

(
V
t
− 1

2

)(
1− K

H

)
Lt.

• K
H

+
(

α
1−α

)
K
2L

<
V
t

< 1+
(

α
1−α

)
K
2L

Here, we construct the equilibrium as follows: both firms charge

pA = pB =
V
2

+
(

α
1−α

)
K
4L

t

and cover exactly K/(2H) when demand is high and

V
2t

−
(

α
1−α

)
K
4L

when demand is low. (For V/t < 1 + (α/(1−α))K/(2L) this is ≤1/2.) In the
high-demand state there is no leftover capacity for the opaque channel, while in
the low-demand state the total uncovered market is

1− V
t

+
(

α
1−α

)
K
2L

.

Thus, in the high-demand state the profit from opaque channel is zero. In the
low-demand state the opaque channel price is pL

I = V − t/2 and the profit is

πI =
(

V
t
− 1

2

)(
1− V

t
+
(

α
1−α

)
K
2L

)
Lt.

The profit for firms A and B is therefore

πA = πB =
(

V
2

+
(

α
1−α

)
K
4L

t

)(
α

K
2

+(1−α)
(

V
2t

−
(

α
1−α

)
K
4L

))
+

1
2
(1−α)

(
V
t
− 1

2

)(
1− V

t
+
(

α
1−α

)
K
2L

)
Lt.

• 1+
(

α
1−α

)
K
2L

≤ V
t

<
3
2

+
(

α
1−α

)
K
L

We construct the equilibrium as follows: both firms charge pA = pB = V − t/2
and cover exactly K/(2H) in the high-demand state and 1/2 in the low-demand
state. In both high- and low-demand cases, there is no leftover for the opaque
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channel and the opaque channel profit is zero. The profit for firms A and B is
therefore

πA = πB =
(

V
t
− 1

2

)(
α

K
2

+(1−α)
L
2

)
t.

• V
t
≥ 3

2
+
(

α
1−α

)
K
L

We begin by assuming that the firms cover K/(2H) each in the high-demand
state but are in the “competitive equilibrium” in the low-demand state. Thus, for
prices pA and pB, xA = 1/2 +(pB − pA)/(2t) in the low-demand state. In either
demand state, nothing is leftover for the opaque channel. Thus, the firms’ profits
are

πA = pA

(
α

K
2

+(1−α)
(

1
2

+
pB − pA

2t

))
and

πB = pB

(
α

K
2

+(1−α)
(

1
2

+
pA − pB

2t

))
.

Optimizing the above expressions simultaneously w.r.t. pA and pB, we obtain
pA = pB = (1+(α/(1−α))(K/L))t, xA = xB = 1/2, and the optimal profits are

πA = πB =
(

1+
(

α
1−α

)
K
L

)(
α

K
2

+(1−α)
L
2

)
t.

For the equilibrium to exist, the consumer located at 1/2 should have a non-
negative utility. Mathematically,

V − pA − t
2
≥ 0 ⇒ V

t
≥ 3

2
+
(

α
1−α

)
K
L

,

which we have already assumed.
The above analysis characterizes the equilibria for the full range of V/t ≥ 1/2.
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Chapter 11
Competing Through Mass Customization

Ali K. Parlaktürk

Abstract We consider a market with heterogeneous customer tastes served by a
duopoly. In our base model the firms first decide whether to adopt MC, which en-
ables a firm to provide each customer her ideal product configuration. A firm that
chooses not to invest in MC serves a standard product. Following investment deci-
sions, the firms competitively price their products. A customer evaluates a product
alternative considering its price and misfit relative to her ideal point (and delay in
our extended model). We solve for the resulting equilibrium and study its charac-
teristics. We then study the competition between a firm that adopted MC and a firm
that continues to sell standard products in more detail extending our base model to
account for some key operational differences between these two firms: While the
firm selling standard products usually carries product inventories, the firm selling
custom products does not carry inventory, it makes-to-order and its customers incur
waiting costs until they receive their orders. Our results are useful for characteriz-
ing conditions that favor custom and standard products under competition. We find
that the value of mass customization critically depends on the firm’s competitive
position, determined by its cost efficiency and perceived quality vis-à-vis its com-
petitor: It may not be desirable even at zero cost due to its negative effect on price
competition. A firm with an overall cost and quality disadvantage never adopts mass
customization. We show that allowing firms to set custom prices for each product
configuration leads to a broader adoption of mass customization compared to when
they are restricted to uniform prices. Furthermore, we find that a customizing firm’s
profit is not monotone in the market size and its ease of customization when compet-
ing against a firm selling standard products. We show that its competitive position
crucially affects its ideal market size and its returns from improving the ease of
customization.
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11.1 Introduction

Following the shift of power to consumers, they are increasingly demanding prod-
ucts that closely match their individual preferences (Frazier 2001). We are far from
one color only Ford Model T; the number of vehicle models increased from 140
to 260 between the early 1970s and late 1990s where each model was offered in
numerous styles and colors (Cox and Alm 1998). Indeed, selection has increased
significantly over time for a variety of products. For example, the number of distinct
breakfast cereals increased from 160 to 340, the number of soft drink brands from
20 to 87, and the number of running shoe styles increased from 5 to 285 during the
same time period. With the advances in manufacturing and information technolo-
gies, rather than keep increasing their number of product variants, many firms are
adopting an alternative approach based on mass customization (MC) (Pine 1993;
Feitzinger and Lee 1997; Zipkin 2001), whereby they attempt to give each customer
exactly what she asked for by offering individually customized products. Lands’
End (Piccoli et al. 2003), mi adidas (Seifert 2002), Dell (Dell and Fredman 2000),
and NikeID are some well known working examples.1

Anecdotal examples show that MC enables a firm to increase its unit selling
price about 50% (Mirapaul 2001; Keenan and Crockett 2002), and empirical studies
show that customers may be willing to pay as much as 150% more for a product
that fits better to their needs than the second best solution available (Piller 2004).
It is suggested that MC can help a variety of domestic industries fight the outsourc-
ing of production to low-cost overseas manufacturers (Keenan et al. 2004; Schuler
and Buehlmann 2003; Karnes and Karnes 2000). The US furniture industry is one
example: US manufacturers are more successful against imports in market sectors
where they offer more customization (Lihra et al. 2005). Keenan et al. (2004) argue
that MC can give competitive advantage to the domestic EU apparel industry against
mass production alternatives in developing countries. Indeed, MC is not conducive
to outsourcing as standard mass production since it requires promptness, higher
skilled labor, specialized business processes, and machinery. Anderson (2004) ar-
gues that “outsourcing is at odds with the inventory-less aspect of build-to-order &
MC, since outsourcing is usually a batch operation.”

The literature recognizes that MC is no panacea on the other hand (Zipkin 2001;
Agrawal et al. 2001; Ahlström and Westbrook 1999). Zipkin (2001) points out that
many product markets are not attractive for MC. Pine (1993) identifies conditions
under which MC is attractive vis-à-vis mass production. Indeed, there are many
recent examples of firms that abandoned MC initiatives or had gone out of business
selling customized products (e.g., Levi Strauss, Reflect.com, Mattel, CMax.com),
and in many markets firms following MC are competing against firms that continue
to offer standard products. Thus, it is important to identify the conditions that make
MC an attractive strategy vis-à-vis selling standard products.

1 Other examples can be found in Moser and Piller (2006), which are a collection of MC case
studies.
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It has been suggested that the most advanced forms of MC will combine prod-
uct customization with price customization (cf. Piller and Stotko 2002) and perhaps
other dimensions of the marketing mix (Wind 2001). Riemer and Totz (2003) dis-
cuss how MC can be used to combat uniform pricing through the individualization
of both products and prices. Indeed, firms selling customized information goods of-
ten resort to price differentiation (Shapiro and Varian 1998). Whether more firms
will adopt such practices depends on the value of customized prices for firms that
offer customized products.

We consider a market with heterogeneous customer tastes served by a duopoly.
In our base model, each firm decides whether to adopt MC, which enables the firm
providing each customer her ideal product configuration. A firm may also choose
not to invest in MC and sell a standard product. Following investment decisions, the
firms competitively price their products. A customer takes into account price and
misfit relative to her ideal point (and delay in our extended model) to evaluate a
product offer. We consider two scenarios with regard to customizing firms’ pricing
policies: They may be restricted to a uniform price, or they may set a different price
for each customized product configuration.

We extend our base model in Sections 11.5 and 11.6. Here, we assume that the
production technology investments are already made and we study the competition
between a customizing firm that adopted MC and a traditional firm that continues to
sell standard products. We explicitly model some important differences between the
operations of customizing and traditional firms: A traditional firm usually carries
inventory and fulfills customer demand from stock. In contrast, a customizing firm
does not carry finished goods inventory as it customizes to order. There is a trade-
off, however, as customers need to wait for custom orders, whereas a traditional
seller can make the product immediately available from inventory.2

Our analysis enables us to study the attractiveness of MC in a competitive con-
text. We address questions like: When should (not) a firm adopt MC? What will be
the structure of markets where competing firm can adopt MC? How do the answers
to these questions depend on MC firm’s ability to customize prices? What market
conditions make the MC or the traditional approach more profitable? How do these
depend on the firms’ competitive positions?

We find that firms considering MC should carefully assess their competitive posi-
tions before jumping on the MC bandwagon. MC may not be desirable in a compet-
itive market even at zero cost due to its adverse effect on price competition; this is in
contrast to a monopoly who always benefits from zero cost MC. Specifically, MC is
beneficial only for a firm with a sufficiently strong competitive position, determined
by its perceived quality and cost efficiency vis-à-vis its competitor. We show that in
equilibrium, a firm with an overall cost/quality disadvantage never adopts MC. In
addition, comparing equilibrium outcomes when firms set uniform prices and price
menus, we show that allowing price menus leads to a wider adoption of MC.

We characterize the conditions in terms of market size, ease of customization,
cost efficiency, and quality, which make MC more attractive for competing against

2 This delay is, for example, one of the main reasons for few US consumers (7% in 2000) to order
custom cars (Agrawal et al. 2001).
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standard products. For example, we find that the relationship between the profitabil-
ity of MC and market size is not monotone: A larger market can make MC less prof-
itable due to the traditional competitor’s scale economies. This relationship again
critically depends on the customizing firm’s perceived quality and cost efficiency
vis-à-vis its competitor. When a customizing firm has a large cost/quality disadvan-
tage, it may be better off in a smaller market where a traditional opponent cannot
compete effectively due to its high inventory costs. Furthermore, contrary to one’s
basic intuition, we show that shorter customization times can make the customizing
firm worse off due to its competitor’s response. This is because customization de-
lays create a degree of separation between customized and standard products, which
softens price competition. When the customizing firm has a weak cost/quality posi-
tion, speeding customization up reduces this separation, and this in turn reduces its
profit.

MC is a growing area of research. This chapter is based on the research pre-
sented in Mendelson and Parlaktürk (2008a,b).3 Here, we briefly point to the other
work in this area that also considers MC in competitive contexts.4 Alptekinoḡlu
and Corbett (2008) study duopoly competition between a traditional firm and a cus-
tomizing firm, finding that the traditional firm can attain positive profit even with a
cost disadvantage. Alptekinoḡlu and Corbett (2008) assume production technology
choices as given whereas in this chapter we study when competing firms choose to
adopt MC. Dewan et al. (2003) consider two symmetric firms offering a standard
product and a range of customized products. They show that a firm can deter en-
try by over-customizing its product in a sequential entry game. Syam et al. (2005)
also consider two symmetric firms that can customize two attributes and they study
which attributes are customized in equilibrium, finding that both firms either choose
not to customize any attribute or they both customize one (the same) attribute. The
assumption of equal (zero) unit costs in Dewan et al. (2003) and Syam et al. (2005)
is critical, as the firms always choose symmetric strategies (when they move simul-
taneously). In contrast, the margin differences between the firms are key drivers of
our results and we identify equilibria where only one firm chooses to sell customized
products. Similarly, Syam and Kumar (2006) consider two symmetric firms and two
consumer segments with different “transportation” cost parameters, i.e., sensitivities
to product misfit, and they study the firms’ choice of customization level. They find
that the firms choose the same customization level unless the gap between the two
consumer segments is sufficiently large. In our model, all consumers have the same
transportation cost parameter, but the firms make asymmetric choices (i.e., only one
firm choosing to offer customized products). Clearly, when the drivers of MC are
differences between the firms, these drivers cannot be identified when the firms are
completely symmetric.

3 Specifically, we consider a special case of Mendelson and Parlaktürk (2008a) in this chapter.
An MC firm chooses its desired customization level in Mendelson and Parlaktürk (2008a) that
determines its ability to reduce product misfit for each customer while we restrict the firm to one
of the two extremes, none vs. perfect customization, in this chapter.
4 A related paper that considers MC in a monopoly context is Jiang et al. (2006).
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The above literature focuses on the firm’s product variety and pricing decisions
and – with the exception of Mendelson and Parlaktürk (2008b) – it does not con-
sider the roles of inventory fulfillment and queuing delays, which are important
operational characteristics of the problem. In this chapter, we also explicitly model
these operational features, incorporating the stocking of standard products and the
make-to-order nature of customized products (with its associated queuing delay), in
addition to product variety and pricing. For a monopoly, Alptekinoglu and Corbett
(2007) also incorporate these operational elements, and they study which customer
segments are served with standard and custom products under more general demand
functions. Xia and Rajagopalan (2006) study duopoly competition where each firm
can choose to sell either standard or custom products and they also incorporate cus-
tomization delay in their model. However, the customization delay in Xia and Ra-
jagopalan (2006) is deterministic (there is no capacity constraint), so it does not
depend on the congestion or utilization of the customizing firm. Furthermore, they
do not model fulfillment of standard products, e.g., the standard products do not
incur holding costs.

In the remainder of the chapter, we describe our base model in Section 11.2.
We characterize the pricing equilibrium in Section 11.3. We discuss the competitive
value of MC and characterize when firms adopt it in Section 11.4. Then we focus on
the competition between a firm selling mass-customized products and a firm selling
standard products and we extend our base model to account for some key opera-
tional differences between these two approaches in Section 11.5. We then discuss
how some market and operating characteristics affect the profitability of MC un-
der competition in Section 11.6. Our concluding remarks are in Section 11.7. The
proofs of all results can be found in Mendelson and Parlaktürk (2008a,b).

11.2 Model

We consider a market with two firms and customers who have heterogenous prefer-
ences for product attributes. Similar to Chen et al. (1998), we model these prefer-
ences along the Hotelling Line (Hotelling 1929): Each customer’s ideal product θ is
represented by the customer’s location on the unit interval [0,1]. This can represent,
for example, preferences for the size or color of a piece of apparel. Each firm has
a single product ζ and the firms’ products are located at the opposite ends of the
unit interval, ζ1 = 0,ζ2 = 1, a standard assumption in Hotelling-based competition
models (see e.g., Tirole (1988), Chapter 7).5 Later on, we study what happens when
a firm can offer multiple standard products in Section 11.5. The distance between a
customer and the firm’s product position results in customer sacrifice relative to her

5 Indeed, locating its product maximally differentiated from the competitor is optimal for each
firm in most cases (d’Aspremont et al. 1979) as it avoids unbridled price competition. However,
this may not be true when the firms are sufficiently asymmetric. Dewan et al. (2003), Syam et al.
(2005) and Syam and Kumar (2006) also assume duopoly firms with single standard products and
maximal differentiation for studying MC.
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ideal product. However, a firm can eliminate the customer sacrifice by customizing
its product to the customer’s liking. In the remainder of this section, we specify our
demand model and describe the firms’ decisions and operations.

Customer Choice:

Customers trade off price and disutility of sacrifice from their ideal product in their
decision making. When a type-θ customer buys Firm i’s standard product, her utility
is equal to

U(θ ,ζi,wi, pi) = wi − pi − r|θ −ζi|, (11.1)

where the reservation value wi is the customer’s willingness to pay for her ideal
product, and each firm can have a different reservation value due to difference in the
perceived product quality. The customer utility decreases by r|θ −ζi|, the disutility
of misfit, where r shows the intensity of customer preferences and |θ − ζi| is the
distance from customer’s ideal product. The customer can avoid this disutility by
buying a product customized exactly for her ideal configuration, i.e., ζ = θ , if it is
offered.6

Customers arrive to the market at rate, or demand intensity λ , and they differ only
in their ideal product types θ which are uniformly distributed over [0,1]. Each cus-
tomer buys one unit of the product that gives her the highest utility. We assume that
the reservation values wi are sufficiently high so all customers derive nonnegative
utility from buying a product.7

Firm’s Decisions:

Each firm first decides whether to adopt MC. Adopting MC entails a fixed invest-
ment cost K. A firm that does not adopt MC is called a traditional firm (T ). A tradi-
tional firm does not customize its product, it sells only a single product type and sets
a uniform price. On the other hand, a firm that adopts MC is called a customizing
firm (CM or CU). We consider two alternative scenarios with regard to customizing
firm’s pricing policy. In the uniform price scenario, a customizing firm (CU) is re-
stricted to a uniform price whereas in the menu price scenario, a customizing firm
(CM) can set a different price for each customized product configuration.

Each firm incurs a unit production cost c, which can be different across two firms
due to differences in the efficiency of their processes. We assume that adopting MC
entails only a fixed cost and it does not affect the firm’s marginal cost. This is in line
with the MC’s premise of achieving mass-production efficiency (Tseng and Jiao

6 Here, we assume that MC enables a firm to completely eliminate customers’ sacrifice, however
in practice this depends on the degree the firm chooses to customize its product, a higher degree of
customization leading to a smaller customer sacrifice. This is explored in depth in Mendelson and
Parlaktürk (2008a).
7 This is standard in the literature (e.g., Syam et al. 2005; Dewan et al. 2003; Thisse and Vives
1988) and a sufficient condition in our context is to assume w1 + w2 − (c1 + c2) > 3r, where ci is
the unit cost of Firm i as described in the following.
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2001; Pine 1993).8 We define Firm i’s maximum margin mi = wi − ci by the differ-
ence between its reservation value and its unit cost, and mi−m j determines its com-
petitive position vis-à-vis Firm j. We say that Firm i has a margin advantage (disad-
vantage) when mi > m j (mi < m j). By definition, mi −m j = (wi −w j)− (ci − c j),
where the first term shows the quality differential and the second term shows the
cost differential between the firms.

Following the firm’s investment decisions (whether to adopt MC), the firms com-
petitively price their products. We consider two alternative scenarios. Under uniform
prices, the firms simultaneously set uniform prices for all of their product types,
whereas under menu prices the firms first set the price of their standard products
and then the customizing firms (if any) set the price premiums for their customized
products. After the prices are set, customers make their purchasing decisions. So, a
firm chooses either between T and CU or between T and CM. It is straightforward
to show that CM always dominates CU if a firm is to choose between CU and CM.

We study the subgame perfect Nash equilibrium (SPNE) using backward in-
duction. We consider two consecutive games: In the adoption game, firms decide
whether to adopt MC; then in the pricing game, firms competitively set their prices.
We begin by solving the pricing game for each outcome of the adoption game.

11.3 Pricing Game

After observing the firms’ product prices, customers make their purchasing deci-
sions. Specifically, a type-θ customer buys from Firm i if

U(θ , pi,ζi) > max(0,U(θ , p j,ζ j)).

We assume that customers break all ties in favor of the socially efficient outcome,
choosing the firm with a larger profit margin. When every customer buys a product,
the marginal customer θ m is given by U(θ m, p1,ζ1) = U(θ m, p2,ζ2), such that cus-
tomers θ < θ m buy from Firm 1 and customers θ > θ m buy from Firm 2, leading to
market shares θ m and 1−θ m.

A firm sets its price policy to maximize its total profit. In particular, T - and CU-
firms set their prices to maximize the product of their profit margin and market
share. On the other hand, a CM-firm sets the maximum price for each configuration
that leaves its customers indifferent to their next best alternative (either buying from
the other firm or not buying at all), as long as this price is above its unit cost. When
this price is below its unit cost, the price for that configuration is set equal to the
unit cost.

8 In some cases MC can lead to cost savings due to eliminating inventory risks and holding costs,
while in some cases it can lead to additional costs due to the need for more sophisticated labor and
machinery. Overall, if MC increases the firm’s unit cost, this will only strengthen our key message
while making the analysis cumbersome.
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The following Lemma summarizes the firms’ equilibrium prices and profits (i.e.,
their profits before subtracting investment costs) in the pricing games.

Lemma 1. The firms’ equilibrium prices and profits are as follows in each pricing
game.

Pricing Region Equilibrium prices and profits
Game in the pricing game

(T,T )

m1 −m2 ≤−3r
p1 = c1, p2 = −m1 +m2 − r + c2,

Π1 = 0, Π2 = λ (−m1 +m2 − r)

−3r < m1 −m2 < 3r
p1 =

m1 −m2 +3r
3

+ c1, p2 =
m2 −m1 +3r

3
+ c2,

Π1 =
λ (m1 −m2 +3r)2

18r
, Π2 =

λ (m2 −m1 +3r)2

18r

m1 −m2 ≥ 3r
p1 = m1 −m2 − r + c1, p2 = c2,

Π1 = λ (m1 −m2 − r), Π2 = 0

(CU,T )

m1 −m2 ≤−2r
p1 = c1, p2 = −m1 +m2 − r + c2,

Π1 = 0, Π2 = λ (−m1 +m2 − r)

−2r < m1 −m2 < r
p1 =

m1 −m2 +2r
3

+ c1, p2 =
m2 −m1 + r

3
+ c2,

Π1 =
λ (m1 −m2 +2r)2

9r
, Π2 =

λ (m2 −m1 + r)2

9r

m1 −m2 ≥ r
p1 = m1 −m2 + c1, p2 = c2,

Π1 = λ (m1 −m2), Π2 = 0

(CM,T )

m1 −m2 ≤−2r
p1(θ) = c1, p2 = −m1 +m2 − r + c2,

Π1 = 0, Π2 = λ (−m1 +m2 − r)

−2r < m1 −m2 < 0
p1(θ) = [m1 −m2 + r−θr]+ + c1, p2 =

m2 −m1

2
+ c2,

Π1 =
λ (m1 −m2 +2r)2

8r
, Π2 =

λ (m2 −m1)2

4r

m1 −m2 ≥ 0
p1(θ) = m1 −m2 + r−θr + c1, p2 = c2,

Π1 = λ (m1 −m2 + r/2), Π2 = 0

(CU,CU)

m1 −m2 ≤ 0
p1 = c1, p2 = −m1 +m2 + c2,

Π1 = 0, Π2 = λ (−m1 +m2)

m1 −m2 > 0
p1 = m1 −m2 + c1, p2 = c2,

Π1 = λ (m1 −m2), Π2 = 0

(CM,CM)

m1 −m2 ≤ 0
p1(θ) = c1, p2(θ) = −m1 +m2 + c2,

Π1 = 0, Π2 = λ (−m1 +m2)

m1 −m2 > 0
p1(θ)1 = m1 −m2 + c1, p2(θ) = c2,

Π1 = λ (m1 −m2), Π2 = 0

Notice that when a firm has a sufficiently large margin advantage it dominates
the market, leaving zero market share for its competitor. Furthermore, when both
firms adopt MC either in uniform or menu price scenario ((CU,CU) or (CM,CM)),
horizontal differentiation between the firms disappears as each firm provides the
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same product type – her ideal product configuration – to each customer. This results
in head-to-head Bertrand competition always leaving one of the firms with zero
market share.

Lemma 1 shows that the competitor’s price decreases, that is, the intensity of
price competition increases as a firm moves from T , to CU and on to CM. Further-
more, the lemma shows that the region in which both firms have positive profits
shrinks, that is, survival becomes harder as firms move from T , to CU and on to
CM.

We next study the firms’ investments in MC given the resulting payoffs in the
pricing game.

11.4 The Adoption Game

In this section, we first discuss the competitive value of MC which helps forming
the best responses in the adoption game. We then characterize and discuss the equi-
librium of the adoption game.

Mass customization helps a firm create value for its customers, and it always
helps a monopoly extract more surplus from its customers. However, when a firm
adopts MC in duopoly competition, its competitor sets a more aggressive price in
response, which limits the firm’s gain from customizing its product.

We study the value of MC in two different settings, depending on the type of
competitor, i.e., against a traditional or a customizing firm. Let Π v,u

i denote Firm i’s
payoff in the pricing game (profit before investment cost) when Firms i and j follow
strategies v and u, respectively, where v,u : T,CU,CM.

The following propositions characterize when MC can yield positive returns
showing the change in the firm’s profit in the pricing game after it adopts MC.

Proposition 1. (i) ΠCU,T
1 ≥ Π T,T

1 if and only if m1 −m2 ≥ (
√

2−1)r.

(ii) ΠCM,T
1 ≥ Π T,T

1 if and only if m1 −m2 ≥ 0.

Proposition 1 shows that the adoption of MC does not necessarily yield higher
profits; it can make the firm worse off because it intensifies price competition. In
particular, Firm i cannot benefit from adopting MC even at zero cost unless the
margin differential mi −m j is sufficiently favorable which in turn depends on the
quality and cost differential between the two firms as mi = wi − ci. In other words,
there is a quality/cost prerequisite (relative to the competitor) below which a firm
never benefits from customizing its product. Furthermore, this threshold is lower
when the firm is able to customize prices in addition to customizing the product.

The intuition behind this result is as follows. When a firm adopts MC, its tra-
ditional competitor drops its price to defend its turf. When the margin differential
mi −m j is sufficiently favorable for Firm i, it can make money while dropping its
price in response to its traditional competitor. Therefore in this case, MC is prof-
itable in spite of the competitor’s price drop. On the other hand, when the margin
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differential mi −m j is not sufficiently favorable for Firm i, its competitor’s price
response makes adopting MC a losing proposition.

The next proposition describes the value of adopting MC against a customizing
competitor.

Proposition 2. (i) ΠCU,CU
1 ≥ Π T,CU

1 if and only if m1 −m2 ≥ 0.

(ii) ΠCM,CM
1 ≥ Π T,CM

1 .

Proposition 2(i) shows that when the firms are restricted to a uniform price, a firm
with a margin disadvantage (either due to low quality or high cost) does not ben-
efit from adopting MC against a customizing competitor. On the other hand, when
the firms set different prices for each product type, adopting MC always weakly in-
creases a firm’s payoff in the pricing game against a customizing competitor. How-
ever, a firm with a margin disadvantage does not get a positive market share in either
case and it is better off staying as a traditional firm considering the cost of adopting
MC technology.

It is interesting to consider the value of price customization in addition to product
customization, which is given by ΠCM,T

1 −ΠCU,T
1 . For a monopoly, this is zero, as

MC eliminates the differences in customers’ willingness to pay by providing each
customer her ideal product, the firm charges the same price, the reservation price
which is the maximum price each customer is willing to pay. In contrast to the
monopoly case, there is value to customizing prices in competition. This is because
price flexibility enables the firm to set competitive prices for product configurations
that are closer to the competitor’s standard product while keeping higher prices for
more remote products.

We are ready to characterize the equilibrium of the adoption game.

Proposition 3. Let m1 ≥ m2. The SPNE of the adoption game is as follows

(i) For uniform prices:

a. When K < λ r/9, equilibrium is (T,T ) if λ (m1 −m2 − r)2/(18r)−λ r/9 < K,
(CU,T ) otherwise.

b. When K ≥ λ r/9, equilibrium is (T,T ) if λ (m1 −m2)(12r− (m1 −m2))/(18r)
−λ r/2 < K, (CU,T ) otherwise.

(ii) For menu prices: equilibrium is (T,T ) if λ (m1 −m2)(12r− (m1 −m2))/(18r) <
K, (CU,T ) otherwise.

Proposition 3 shows that a firm with a margin disadvantage never unilaterally
adopts MC in equilibrium even when the cost of technology is zero. The intuition
for this result follows from Proposition 1: Contemplating that its competitor will
drop its price to protect its turf, the firm needs to consider the value of MC in the
face of such a price drop. When the firm has a sufficiently large margin advantage,
it can make money while reducing its price in response to its traditional competitor.
However, when the firm has a margin disadvantage, its competitor’s price response
always makes adopting MC unprofitable. As a special case, when the firms have
symmetric margins, no firm adopts MC in equilibrium.
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It is straightforward to show that the left-hand side in the condition in part (ii) of
Proposition 3 is larger than those of part (i). Thus, the proposition shows that allow-
ing firms to set price menus for different configurations leads to a wider adoption of
MC as the firms can better take advantage of their customized product lines.

In our model, both firms never adopt MC at the same time. This is because MC
enables a firm provide each customer her ideal product configuration exactly and
when both firms adopt MC, this eliminates the distance between them leading to
Bertrand competition where one of the firms cannot get a positive market share.
However, when MC does not eliminate customer sacrifice completely, both firms
may adopt MC in equilibrium.9 This is studied in Mendelson and Parlaktürk (2008a)
where a customizing firm chooses its degree of customization which determines
its ability to decrease a customer’s sacrifice. With this extension, the firms with
symmetric margins also adopt MC when the adoption cost is sufficiently small.

11.5 MC vs. Traditional Approach

So far we have discussed the firms’ choice of production technology, that is the
choice between MC vs. traditional approach of offering standard products, and we
have characterized when firms adopt MC in duopoly. In this section, we assume that
production technology decisions are already made and we study in more detail the
duopoly competition between a customizing and a traditional firm. To this end, we
extend our base model in various directions.

A traditional firm usually carries inventory and fulfills customer demand from
stock. In contrast, a customizing firm does not carry finished good inventory as it
customizes to order. However, customers need to wait for custom orders whereas
a traditional firm can provide instant availability from inventory. We extend our
base model to account for these key operational differences and we study their sub-
sequent effects on the profitability of MC and traditional approach. Furthermore,
we allow the traditional firm to offer more than one standard product configuration
and determine the number of product variants it will carry considering its inventory
holding and procurement costs. Here, we only consider the uniform price scenario,
that is, each firm has to set a uniform price for all product configurations. The re-
sulting insights also carry over to the menu price scenario as shown in Mendelson
and Parlaktürk (2008b).

In the following, we first describe the model extensions then we state and discuss
the resulting equilibrium. We extend the customer’s utility function to account for
disutility of delay. Thus, customers trade off price, disutility of product misfit, and
delay in their decision making. Specifically, when a type-θ customer buys product
ζ from Firm i, her utility is equal to

U(θ ,ζ ,wi, pi,Wi) = wi − pi − r|θ −ζ |− vWi. (11.2)

9 A firm with a margin disadvantage still never unilaterally adopts MC.
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Note that the only difference between (11.1) and (11.2) is the last term in (11.2),
where Wi is the average delay for getting a product from Firm i and v is the cus-
tomers’ sensitivity to delay. Customers incur delay due to waiting either for a cus-
tom product or for a backordered standard product. We assume that customers do
not observe the queue length of the customizing firm and inventory position of the
traditional firm. Thus, they make their decisions based on the average delay to max-
imize their expected utility. We derive the average delays in the following.

We use index c to denote the customizing firm. The customizing firm does not
carry inventory. It customizes to order fulfilling customer orders on a first-come-
first-served basis. The customization times are exponentially distributed with rate
μ which reflects the ease of customization and firm’s customization capacity. We
assume that customers arrive to the market according to a Poisson process, thus cus-
tomers who buy custom products form a Poisson process and the customizing firm
is characterized by an M/M/1 queue. Therefore, the average delay for a customized
product is

Wc = 1/(μ −λc). (11.3)

We assume λ < μ , so that Wc(λc) < ∞ for all λc < λ . The customization capac-
ity μ is exogenous, i.e., it cannot be changed within the timescale of our model.
Mendelson and Parlaktürk (2008b) study what happens when the customizing firm
can choose its capacity endogenously.

We use index t to denote the traditional firm. In addition to its unit price pt , now
the traditional firm decides how many products to offer n and their configurations
ζ j ∈ Θ for j : 1, ...,n. Once the firm determines its product offers, it outsources
the production to a supplier with replenishment lead time l, and it replenishes its
stocks at a fixed cost S per order at unit cost ct . For each unit in stock, the firm
also incurs inventory holding cost h per unit time. The traditional firm is considered
to have unlimited supply. The firm follows a (Q,R) continuous review policy. The
firm orders Q j units whenever its inventory position of product variant j falls below
d j + kσ j, where d j and σ j are the mean and the standard deviation of the lead time
demand for that product variant and k is the safety stock factor (cf. Axsäter 1995).
Our results are independent of the specific value of k. Mendelson and Parlaktürk
(2008b) allow k to be chosen endogenously. The firm backorders any unmet demand
which is fulfilled once the stocks for that variant become available. The delay due
to backorders inflicts a cost on the firm’s customers (see (11.2)) and affects their
product choice.

It is straightforward to show that the demand for product variant j follows a Pois-
son process with mean λ j, thus d j = λ jl and σ j =

√
λ jl. We adopt the standard Nor-

mal approximation for Poisson demand (cf. Hadley and Whitin, 1963, Section 4.9)
The firm’s average number of backorders at any time for product variant j is

B(Q j) = σ2
j

[
(1+ k2)(1−Φ(k))− kφ(k)

]
/(2Q j), (11.4)

and its annual total inventory holding and fixed order cost are given by

C(λ j,Q j) = Sλ j/Q j +h(Q j/2+σ jk +B(Q j)) , (11.5)
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where Φ(·) is the cumulative distribution and φ(·) is the probability density func-
tion of a unit normal random variable. Thus, following Little’s Law and (11.4), the
average delay for standard product variant j due to backorders is

Wj =
[
(1+ k2)(1−Φ(k))− kφ(k)

]
σ2

j /(2Q jλ j), (11.6)

and following (11.5), the optimal order quantity for a standard product with demand
rate λ j is

Q∗(λ j) =

√
λ j

(
2S
h

+[(1+ k2)(1−Φ(k))− kφ(k)]l
)

. (11.7)

We make a few parametric assumptions in order to focus on more interesting
scenarios. We continue to assume that the customers’ reservation values wi are high
enough so the market is covered in equilibrium. In addition, we assume that the
unit margin differential between standard and customized products |mt −mc| is suf-
ficiently small so both standard and customized products are offered in equilibrium,
that is, customized products always have a positive market share and there is at least
one standard product variant. This is determined by unit costs and reservation values
since mi = wi − ci. Specifically, we consider the case of m < mt −mc < m, where

m =
(

2γ − 1
2

)
r− v(μ − γλ )

(μ −λ (1− γ))2 and m =
3γr
2

− v(μ −λ )
μ2 , (11.8)

where

γ = 3

√√√√ h
λ r2

(
2S + l(v/2+h)[(1+ k2)(1−Φ(k))− kφ(k)]√

2S + lh[(1+ k2)(1−Φ(k))− kφ(k)]
+ k

√
lh

)2

, (11.9)

which happens to be optimal market share for a standard product variant as shown
in Proposition 4 in the following.

The firms simultaneously determine their competitive product offerings to max-
imize their expected profits. They set prices pt and pc and the traditional firm also
determines the number of its product variants n and their configurations ζ j ∈ [0,1]
for j : 1, ...,n.10 As they arrive, customers choose from the product offerings to max-
imize their utility. The following proposition characterizes the equilibrium.

Proposition 4. When traditional Firm t competes with customizing Firm c, the firms
set prices

pc = cc +
vλc

(μ −λc)2 +
λcγr

2(λ −λc)
and

pt = pc − (wc −wt)+
v

μ −λc
− γr

2
− lv[(1+ k2)(1−Φ(k))− kφ(k)]

2Q∗(γλ )
,

10 In addition, the traditional firm also determines the optimal replenishment batch size Q j for each
product variant j, where its optimal batch size is specified in (11.7).
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where Q∗(·) is given by (11.7) and λc is given by the solution of

v(μ +λc −λ )
(μ −λc)2 +

λcγr
2(λ −λc)

=
3γr
2

− (mt −mc). (11.10)

The traditional firm offers
n = (1−λc/λ )/γ (11.11)

product variants, and chooses their positions (ζ1,ζ2, ...,ζn) so each has an equal
market share. These result in profit rates

Πt =
v(λ −λc)2

(μ −λc)2 and Πc =
vλ 2

c

(μ −λc)2 +
λ 2

c γr
2(λ −λc)

. (11.12)

An explicit solution for λc in (11.10) is provided in Mendelson and Parlaktürk
(2008b).

In the following section we discuss the effect of some operational and market pa-
rameters on the profitability of MC and traditional approach studying their impacts
on the equilibrium profits stated in Proposition 4.

11.6 Comparative Statics: Conditions Favoring MC

Table 11.1 shows comparative statics for the effects of various market and operating
characteristics in monopoly and duopoly. These help us understand how competitive
considerations affect the attractiveness of MC. The table shows that in some cases
competition can entirely reverse the monopoly results. For example, the changes in
customization rate and market size can affect the customizing firm in diametrically
opposite directions in monopoly and under competition. Similarly, improving the
unit holding cost is always beneficial for a monopoly, whereas it may be harmful for
a traditional firm under competition. Likewise, the changes in customers’ preference
intensity r and replenishment lead time of standard products l can have opposite
effects in monopoly and duopoly. These are derived and discussed in Mendelson
and Parlaktürk (2008b). Overall, it was shown that the margin differential mc −mt

Table 11.1 Comparative statics in monopoly and duopoly of traditional vs. customizing firms.

Traditional Traditional firm MC MC firm
monopoly in duopoly monopoly in duopoly

dΠ/dλ + + + or 0 + or −
dΠ/dr − + or − 0 +
dΠ/dμ N/A − + + or −
dΠ/dh − + or − N/A +
dΠ/dl − + or − N/A +
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plays a critical role in determining the outcome of these changes.
In this section, we focus on the effects of market size λ and customization rate μ .

11.6.1 Market Size λ

An increase in market size has two effects. It increases the size of the “pie,” so each
firms worries less about its market share and more about its profit margin, potentially
softening the competition. But it also helps the traditional competitor decrease its
unit fulfillment cost as a result of scale economies that characterize its operations.
Both effects favor the traditional firm, therefore its profit always increases in market
size. On the other hand, they affect the customizing firm in opposite directions, and
the following proposition shows that either effect can dominate and an increase in
market size may increase or decrease the customizing firm’s profit.

Proposition 5. (i) dΠt/dλ > 0.
(ii.a) If γr ≤ 2vλ/μ2 then dΠc/dλ > 0.
(ii.b) If γr > 2vλ/μ2, there exists m∗ ∈ (m,m) such that dΠc/dλ < 0 for mt −
mc > m∗.

One can show that the traditional firm’s unit fulfillment cost (holding + ordering)
is equal to γr and the Proposition shows that when this is small, there is not much to
be gained from economies of scale, hence the larger pie effect dominates. However,
when γr is large, the customizing firm’s profit decreases in market size if its margin
disadvantage mt −mc is above a threshold (e.g., due to high cost or low quality). Fig-
ure 11.1(a) shows the regions in which the profit of the customizing firm increases
or decreases due to a larger market size, and Figure 11.1(b) shows the firm’s profit
rate for various margin differentials. The figure shows that the customizing firm has
an ideal market size when its margin disadvantage is large either due to high cost or
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Fig. 11.1 Effect of market size (S = 3, h = 0.15, k = 0.75, l = 6, v = 20, r = 80, μ = 100).
(a) The regions in which the customizing firm’s profit increases or decreases in market size. (b) The
customizing firm’s profit rate as a function of market size at various margin differentials.
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low quality (recall that mt −mc = wt −wc − (ct − cc)). Furthermore, Figure 11.1(a)
shows that this ideal market size decreases in the firm’s margin disadvantage. This
is because the traditional opponent cannot compete effectively in a small market due
to its high unit holding and ordering cost. On the other hand, when the customizing
firm’s margin disadvantage is small, it can compete with the traditional firm head
to head and it always prefers a larger market. Finally, when the customizing firm’s
margin disadvantage is in the middle in Figure 11.1(a), its profit decreases in mar-
ket size unless the market is either sufficiently small or sufficiently large. This is
because the traditional opponent cannot effectively compete in a small market, and
the competition is mild in a large market.

11.6.2 Customization Rate μ

We now discuss the effect of improving the expected time needed to customize each
unit, 1/μ , which reflects the capacity of the customizing firm as well as the diffi-
culty or complexity of customization. Intuition suggests that customization should
be more attractive when it takes less time. While this always holds for a monopoly,
increasing μ may actually adversely affect the customizing firm in duopoly. The
following proposition shows that the outcome critically depends on the firm’s com-
petitive position which is determined by the margin differential.

Proposition 6. (i) dΠt/dμ < 0.
(ii.a) If μ ≥ 2λ then dΠc/dμ > 0.
(ii.b) If λ < μ < 2λ then there exist m∗ ∈ (m,m) such that dΠc/dμ < 0 for mt −
mc > m∗.

As might be expected, a shorter customization time always hurts the traditional
firm. However, this can also be detrimental to the customizing firm itself. Specifi-
cally, when customization is not very fast and the customizing firm’s margin advan-
tage is below a threshold, improving its customization time hurts the customizing
firm. Intuitively, longer customization delays create a degree of separation between
customized and standard products, which softens the competition. When the cus-
tomizing firm has a weak competitive position, it is not in its best interest to under-
mine this differentiation by speeding customization up through capacity expansion
or design improvements even when these are free. Overall, the firm is more likely
to benefit from a capacity expansion when it has a stronger competitive position.

11.7 Concluding Remarks

With this chapter we aim to contribute to the growing literature on the value and
adoption of MC (Ahlström and Westbrook 1999; Agrawal et al. 2001; Zipkin 2001;
Piller et al. 2004), studying how it relates to the firm’s competitive position. We
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consider a market with heterogeneous customer tastes modeled by a location-based
customer choice model. The market is served by two firms that differ in their cost
efficiency and perceived quality, which determine their competitive positions. In our
base model, the firms compete in a two-stage game: Firms first make their produc-
tion technology decisions (i.e., whether to adopt MC) and then compete in prices.
We consider two alternatives with regard to the customizing firms’ price policies:
When they can set a price menu for each configuration and when they have to set a
uniform price. We solve for the resulting equilibrium and characterize when firms
invest in MC under competition.

We find that the value of MC critically depends on the firm’s competitive posi-
tion. Ignoring competitive forces can lead to critically incorrect decisions for firms
considering MC. While adopting MC always helps a monopolist extract more sur-
plus from its customers, it may lead to a negative return (even before paying back
the investment cost) in duopoly when the firm does not have a sufficiently strong
competitive position. This is due to the adverse effect of MC on price competition.
We show that a firm with an overall quality/cost disadvantage never adopts MC in
equilibrium. Our results suggest that MC would be more suitable only for firms with
sufficiently large quality or efficiency advantage. Furthermore, we find that ability to
customize prices in conjunction with product customization would lead to a broader
adoption of MC in the marketplace.

We then extend our base model to capture some key differences in the operations
of a firm that follow MC: A customizing firm does not carry finished good invento-
ries and it customizes to order resulting in customer waits. In contrast, a traditional
firm usually fulfills customer demand using its inventories and it can provide in-
stant availability from inventory. When the traditional firm backorders demand, this
also results in customer waits. In our extended model, we assume that production
technology decisions are already made and we study the competition between a
customizing firm and a traditional firm.

Our results are useful for identifying how some market and operating character-
istics affect profitability of MC when competing against a traditional firm. We find
that a larger customization capacity does not always translate into higher profits un-
der competition while it is always beneficial for a monopoly. Specifically, a larger
capacity decreases the customizing firm’s profit when the firm has a large margin
disadvantage (either due to high cost or low quality). Intuitively, customization de-
lays create a degree of separation between customized and standard products, which
softens the price competition. When the firm has a weak competitive position, it is
better off maintaining this separation. In addition, we show that a larger market does
not necessarily increase the customizing firm’s profit: When the customizing firm
has a sufficiently large margin disadvantage, a larger market can hurt its profit. We
find that in this case the customizing firm will be better off in a smaller market where
the traditional competitor cannot compete effectively due to its scale economies.
Overall, we find that the effects of both market size and customization rate on the
profitability of the customizing firm are non-monotonic and their desirable levels
depend on the firm’s competitive position.
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Our results may be extended in a number of ways. As is common in the lit-
erature that study MC (e.g., Mendelson and Parlaktürk 2008a; Alptekinoḡlu and
Corbett 2008; Syam and Kumar 2006; Jiang et al. 2006; Dewan et al. 2003), our
product space is restricted to a single attribute. So adopting MC enables a firm
offer product types same as or similar to that of its competitor which in turn in-
tensifies the price competition. In contrast to our model, in a model with multi-
ple product attributes a firm may benefit from adopting MC even with a margin
disadvantage by customizing those attributes that will help distance itself from its
competitor.

In practice, the firms not only decide whether to customize their products, but
they also decide the degree of customization they will provide. For example, NikeID
provides only style customization for its sneakers letting customers choose col-
ors and imprint their names on the shoe, however it does not offer customized
fit, whereas mi adidas offers customized fit in addition to customized colors and
imprinted names. In Mendelson and Parlaktürk (2008b), the firms competitively
choose their customization levels where a higher customization level requires a
larger investment.

Allowing customers customize the product to their liking may have additional
benefits beyond what is captured in our model, which would be fruitful to incorpo-
rate in further studies of MC. For example, MC may help a firm gain a better under-
standing of customer preferences and trends in the marketplace. The firm can then
also improve configuration of its standard product offerings. For P&G, Reflect.com
was reported to be one of its most efficient market research tools. Shoppers could
create custom cosmetic products through Reflect.com. Data gathered provided valu-
able insights on customer needs and it also helped P&G improve its standard prod-
uct line. Furthermore, offering a custom product allows a firm establish stronger ties
with its customers. The customer invests in the customization process to communi-
cate her preferences and that leads to higher switching cost. For example, in the case
of Lands’End, the customer needs to provide numerous measurements for custom
fit in addition to choosing her favorite style options. Lands’End stores this informa-
tion making the repeat purchase more convenient for the customer compared to the
hassle of describing her preferences again to another firm.
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Chapter 12
Counteracting Strategic Consumer Behavior
in Dynamic Pricing Systems

Yossi Aviv, Yuri Levin, and Mikhail Nediak

Abstract Dynamic pricing and revenue management practices are gaining increasing
popularity in the retail industry, and have engendered a large body of academic re-
search in recent decades. When applying dynamic pricing systems, retailers must
account for the fact that, often, strategic customers may time their purchases in an-
ticipation of future discounts. Such strategic consumer behavior might lead to severe
consequences on the retailers’ revenues and profitability. Researchers have explored
several approaches for mitigating the adverse impact of this phenomenon, such as
rationing capacity, making price and capacity commitments, using internal price-
matching policies, and limiting inventory information. In this chapter, we present
and discuss some relevant theoretical contributions in the management science liter-
ature that help us understand the potential value of the above mitigating strategies.

12.1 Introduction

In the 30 years since the successes of revenue management systems in airlines were
first reported, applications have spread steadily into other business areas. Revenue
management is now common in such service businesses as passenger railways,
cruise lines, hotel and motel accommodation, and car rentals. Other applications
have been proposed in such diverse areas as broadcast advertising, sports and en-
tertainment event management, medical services, real estate, freight transportation,
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and manufacturing. Dynamic pricing and revenue management practices are also
gaining increasing popularity in the retail industry, and have engendered a grow-
ing body of academic research in recent years. When applying dynamic pricing
schemes, sellers need to account for key characteristics of the sales environment,
including the scarcity of goods, demand uncertainty, and consumer behavior. In par-
ticular, sellers must account for the fact that, often, strategic customers may time
their purchases in anticipation of future discounts. When supply is limited, strategic
customers need to consider not only future prices, but also the likelihood of stock-
outs. And since the level of remaining inventory depends on the individual purchase
decisions, each customer has to take into account the behavioral pattern of other
customers. In recent years, a significant body of research on the topic of strategic
consumer behavior has emerged in the management science literature.

Previous chapters in this book explain the notion of strategic waiting, and clearly
articulate that it is present in many dynamic pricing environments, and that it has
severe consequences on revenues and profitability. The purpose of this chapter, then,
is to provide a framework for addressing the adverse impact of this phenomenon;
namely, How could designers of dynamic pricing systems counteract strategic con-
sumer behavior? To achieve this goal, we chose to focus on scientific models and
emerging theoretical contributions in the management science literature. In fact,
rather than providing a complete list of all relevant research, we chose to focus on
a few papers with greater details. This allows us to present to the reader a meaning-
ful description of modeling structures, different assumptions on system parameters,
and ways in which equilibria settle in the dynamic pricing settings. Our research
community has explored several approaches for dealing with strategic consumer be-
havior: (i) making credible price commitments (also known as “announced pricing
schemes”); (ii) rationing capacity; (iii) making credible capacity commitments; (iv)
using internal price-matching policies; and (v) limiting inventory information. All
of these strategies can potentially be used to reduce the incentives of high-valuation
customers to wait, and consequently mitigate the adverse impact of strategic wait-
ing. Below, we provide a section-by-section description of some recent research pa-
pers that explore each of these strategies, and summarize and explain their findings.

12.2 The Effectiveness of Price Segmentation in Face
of Strategic Customers

Research on price commitment goes back to the famous paper of Coase (1972),
which considers a monopolist that sells a durable good to a large set of consumers
with different valuations. Coase begins his paper with a qualitative discussion of
how, ideally, the seller would want to price the product in a way that results in
perfect segmentation. Namely, charge (initially) a high price from customers with
high valuation, and then sequentially reduce the prices to capture customers with
smaller valuations. Such strategy is called a price-skimming strategy, and if it works
as planned, it results in extracting most or all of the consumer surplus. However,
Coase argues that if high-valuation customers anticipate that prices will decline (in
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our terms – if customers behave strategically), they would wait for a price reduction
rather than buy at premium costs. This, in equilibrium, will effectively lead the seller
to offer the product at marginal cost.

Coase suggests a number of ways for the seller to avoid this result. For example,
the seller can make a special contractual arrangement with the purchasers not to sell
more than a given quantity of the product. In fact, this idea is close in spirit to the
subject of capacity rationing we discuss in the next section. Alternatively, the seller
could offer customers to buy back the product if it was offered in the future at a lower
price. This idea is very similiar to the subject of internal price guarantees that we
explore in a later section. The seller could also lease the product for relatively short
periods of time and, e.g., announce that he would not change the rental price during
the lease period.

Besanko and Winston (1990) introduce a game-theoretic model of a monopo-
listic seller facing a market of strategic consumers with heterogeneous valuations.
The distribution of these valuations is uniform over the interval [0,v+]. Customers
know their individual valuations, but the monopolist is only privy to the statistical
distribution characteristics. The population size is known and equal to N; in fact, all
customers are present in the “store” from the beginning of the game. The monopo-
list has T periods of time to set the price, with pt denoting the price in period t. It is
assumed that the seller cannot make any price commitment (see extended discussion
of this aspect later in this section), and thus the authors look for a subgame perfect
equilibrium, in which the seller makes the optimal pricing decision in each given
period. The seller’s production capacity is unlimited, so any desired qauntity can be
produced at any period, at a cost c per unit (where c < v+). The monopolist and the
seller are assumed to have the same discount factor δ .

The first observation made in the paper has to do with consumer behavior and
the dynamics of information in the game. It is argued that if in period t − 1 it was
optimal for a customer with valuation v to buy the product, then it means that all
customers with valuations of v and above have also purchased the product by that
time. As a consequence, it suffices to consider a threshold value at the end of each
period: For instance, vt−1 means that all customers with valuations larger or equal
to v t−1 have purchased the product, whereas all other customers (with valuations
below vt−1) are still in the market. Therefore, let p∗t (vt−1) be the seller’s equilibrium
pricing strategy at time t, when faced with the state vt−1. Taking the customers’
perspective now, let v∗t (pt ,vt−1) be the threshold value that sets their buying policy
in period t. Besanko and Winston derive the following dynamic program that is
based initially on a “guess” that prices and thresholds in subsequent periods are
set in a way that makes a customer with valuation vt indifferent about immediately
purchasing the product (and gaining a surplus of vt − pt ) and waiting for the next
period, and gaining a discounted surplus (of δ · (vt − p∗t+1(vt))). With this structural
restriction in mind, they show that the seller’s equilibrium discounted profit over
periods t through T is given by the recursive scheme:

H∗
t (vt−1) = max

pt ,vt

{
(pt − c) · vt − vt

v+ ·N +δH∗
t+1 (vt)

}



326 Yossi Aviv, Yuri Levin, and Mikhail Nediak

s.t. vt ≤ vt−1,

vt − pt = δ · (vt − p∗t+1 (vt)
)

with v0 = v+. Indeed, they prove that this dynamic program formulation can serve
as a basis for calculating a subgame perfect Nash equilibrium for the game.

Proposition 1 of Besanko and Winston (1990). A subgame perfect Nash equilib-
rium exists and can be described as follows.

H∗
t (vt−1) = At · (max{vt−1 − c,0})2 · N

v+ , t = 1, . . . ,T

p∗t (vt−1) = min{2Atvt−1 +(1−2At)c,vt−1} , t = 1, . . . ,T

v∗t (vt−1) = min{λt vt−1 +(1−λt)c,vt−1} t = 1, . . . ,T

v∗t (pt ,vt−1) = min

{
pt −δ (1−2At+1)c

1−δ +2At+1
,c

}
t = 1, . . . ,T

where {At} and {λt} are sequences defined by the recursions specified in (8) and
(9) in the paper.

The authors show that in the above type of equilibrium, prices monotonically
decline over time; in other words, price skimming arises in equilibrium. Addition-
ally, they develop a benchmark model in which all customers are myopic. Here, it is
easy to see that the seller’s optimal policy is provided by a solution to the dynamic
program

Ht (vt−1) = max
pt :pt≤vt−1

{
(pt − c) · vt−1 − pt

v+ ·N +δHt+1 (pt)
}

Comparing the two models, Besanko and Winston show that with myopic con-
sumers, the price is always higher in any given state than it is with strategic con-
sumers. In other words, the first-period price with myopic consumers is higher than
the first-period price with strategic consumers. It is noteworthy, however, that be-
cause the time paths of sales in the two cases differ, it is possible that the price with
myopic consumers will fall below the price with strategic consumers in later peri-
ods. Two other interesting observations were made in the paper. First, the authors
illustrate a situation in which a seller that commits to a price path that is based on
the “myopic case,” and use it when customers are actually strategic, might signif-
icantly hurt his expected profit. Second, the authors argue that for any v, H∗

t (v)
is increasing in t. In contrast, Ĥt (v) (the optimal expected profit in the myopic
case) is decreasing in t. Consequently, starting in any state v, a monopolist prefers
a shorter time horizon if faced with strategic consumers, but a longer time hori-
zon if faced with myopic consumers. The intuition behind this is that the shorter
is the time horizon, the smaller is the power of strategic consumers. In contrast,
with myopic consumers, the monopolist prefers a longer time horizon because it
gives him more flexibility in setting prices over time and hence extracting more
revenues.



12 Counteracting Strategic Consumer Behavior in Dynamic Pricing Systems 327

12.2.1 Models with Limited Inventories

Elmaghraby et al. (2007) consider a setting in which a seller uses a pre-announced
markdown pricing mechanism, to sell a finite inventory of a product. Specifically,
the seller’s objective is to maximize expected revenues by optimally choosing the
number of price steps over the season, and the price at each step. All potential buyers
are present at the start of the selling period and remain until all the units have been
sold or their demand has been satisfied. The buyers, who demand multiple units,
may choose to wait and purchase at a lower price, but they must also consider a
scarcity in supply. The authors study the potential benefits of segmentation; namely,
the difference between the seller’s profit under the optimal markdown mechanism
and that under the optimal single price. They also provide a detailed discussion on
the design of profitable markdown mechanisms.

Su (2007) presents a pricing control model in which consumers are infinitesi-
mally small and arrive continuously according to a deterministic flow of constant
rate. The customer population is heterogeneous along two dimensions: valuations
and degree of patience (vis-à-vis waiting). The seller has to decide on pricing and
a rationing policy which specifies the fraction of current market demand that is
fulfilled. Given these retailer’s choices, customers decide whether or not to pur-
chase the product and whether to stay or leave the market. The paper shows how the
seller can determine a revenue-maximizing selling policy in this game. Su demon-
strates that the heterogeneity in valuation and degree of patience jointly influence
the structure of optimal pricing policies. In particular, when high-valuation cus-
tomers are proportionately less patient, markdown pricing policies are effective.
On the other hand, when the high-valuation customers are more patient than the
low-valuation customers, prices should increase over time in order to discourage
waiting.

Aviv and Pazgal (2008) consider a seller that has Q units of an item available
for sale during a sales horizon of length H. The sales season [0,H] is split into two
parts, [0,T ] and [T,H], for a given fixed value T . During the first part of the season, a
“premium” price p1 applies, and during the second phase of the season a “discount”
price p2 is offered (where p2 ≤ p1). The seller’s objective is to set the premium and
discount prices in order to maximize the expected total revenues collected during
the sales horizon. An important feature of their model is that it includes two types
of demand uncertainty: the total market size and the time of arrivals. Specifically, it
is assumed that customers arrive to the store following a Poisson process with a rate
of λ . Customers’ valuations of the product vary across the population, and decline
over the course of the season according to

Vj (t) = Vj · e−αt

for every customer j. Specifically, customer j’s base valuation Vj is drawn from a
given continuous distribution form F . Then, depending on the particular time of pur-
chase (t), the realized valuation is discounted appropriately by a known exponential
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decline factor α ≥ 0, fixed across the population. Customers that arrive prior to time
T behave according to the following strategy: A given customer j, arriving at time
t, will purchase immediately upon arrival (if there is inventory) if two conditions
are satisfied about his current surplus Vje−αt − p1: (i) it is non-negative; and (ii)
it is larger or equal to the expected surplus he can gain from a purchase at time T
(when the price is changed to p2). Of course, the latter expected surplus depends on
the customer’s belief about p2 as well as the likelihood that a unit will be available
to the customer. If the customer purchases a unit, he leaves the store immediately.
Otherwise, the customer stays until time T . At time T , all existing customers take a
look at the new price p2 and if they can gain a non-negative surplus, they request a
unit of the remaining items (if any). In case there are fewer units than the number of
customers who wish to buy, the allocation is made randomly. After time T , new cus-
tomers buy according to whether or not they can immediately gain a non-negative
surplus. Clearly, it does not make sense for a customer to wait in the store after time
T , since prices will not drop. The seller observes the purchases, or equivalently, his
level of inventory. Hence, the discounted price p2 depends on the remaining inven-
tory at time T .

Aviv and Pazgal identify a subgame perfect Nash equilibrium for the game be-
tween the customers and the seller. Note that the seller’s strategy is characterized by
the initial premium price p1 and the discounted price menu {p2 (q)}Q

q=1. The cus-
tomers’ strategy is one that prescribes purchasing decisions for every possible pair
of individual arrival time t and base valuation V .

They first study the best response of the customers to a given seller’s pure strategy
of the form p1, p2 (1) , . . . , p2 (Q). The response strategy is based on a competitive
situation that exists among consumers, which arises due to the fact that an individual
consumer’s decision impacts the product availability for others. It is shown that a
time-dependent threshold emerges, as follows.

Theorem 1 of Aviv and Pazgal (2008). For any given pricing scheme {p1,
p2(1), . . . , p2(Q)}, it is optimal for the customers to base their purchasing decisions
on a threshold function θ (t). Specifically, a customer arriving at time t ∈ [0,H]
will purchase an available unit immediately upon arrival if V (t) ≥ θ (t). Oth-
erwise, if V (t) < θ (t) and t < T , the customer will revisit the store at time T ,
and purchase an available unit if V (T ) ≥ θ (T ). The threshold function θ (t)
is given by

θ (t) =

⎧⎨⎩
ψ (t) 0 ≤ t < T

p2 T ≤ t ≤ H
(12.1)

where ψ (t) is the unique solution to the implicit equation

ψ − p1 = EQT

[
max{ψe−α(T−t) − p2(QT ),0} ·1{A |QT

}]
(12.2)

The random variable QT represents the remaining inventory at time T , and the event
A represents the allocation of a unit to the customer upon request.
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The function ψ hence defines the customers’ purchasing strategy. The left-hand
side of (12.2) represents the current surplus the customer can gain by purchasing
a unit, whereas the right-hand side of the equation represents the expected surplus
that will be gained by the customer if he postpones his purchase to time T . The
latter expected value takes into account two conditions. The first condition is that
the discounted price needs to leave the customer with a non-negative surplus. This
is simply given by the condition ψe−α(T−t) − p2 (QT ) ≥ 0, where QT is a random
variable. The second condition is that in order to provide a surplus, a unit needs to
be available and be allocated to the customer. Given a specific realization of QT , the
allocation probability depends on the statistical distribution of the number of other
customers that postpone their purchases to time T . This is taken into account by the
indicator expression 1{A |QT}. The strength of this theorem is that it demonstrates
the optimality of a threshold-type policy for each individual customer, under any ar-
bitrary purchasing strategies of the others. Using this result, Aviv and Pazgal argue
that for any given pricing scheme {p1, p2 (1) , . . . , p2 (Q)}, the equilibrium in the
game between the customers is unique, and consists of symmetric strategies; i.e.,
ψ is the same for all customers. Additionally, they show that the threshold function
ψ (t) : [0,T ) → [p1,∞) is increasing in t.

Next, the seller’s strategy is studied; namely, the best contingent pricing {p2(1),
. . . , p2(Q)} in response to a given purchasing strategy ψ and a given initial premium
price p1. As a basis for the analysis, it is useful to distinguish between five types of
customers, as illustrated in Figure 12.1.

Fig. 12.1 For a given realized price path (p1, p2) and a customer threshold purchasing policy ψ(t),
the customer’s space (arrival times and valuations) is split into five areas: (i) “I” = immediate buy at
premium price; (ii) “S” = strategic wait and buy at discounted price; (iii) “W” = non-strategic wait
and buy at discounted price; (iv) “L” = immediate purchasers at discounted price; and (v) ‘N’ = no
buyers. In this context “buy” means a desire to buy.
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The first group is of customers that arrive during [0,T ] and purchase1 imme-
diately at price p1 (denoted by ‘I’). It is easy to see that the expected number of
customers of this type is

ΛI (ψ) .= λ
∫ T

t=0
F̄
(
ψ (t)eαt)dt

We define the remaining four types of customers with respect to a realized value
of p2 at time T . The second group of customers (denoted by “S”) consists of those
who could get a non-negative surplus upon their arrival during [0,T ] but decided to
wait “strategically” (i.e., in anticipation of a better expected surplus at time T ), and
indeed want to purchase a unit at the realized price p2 (note that it may happen that
the actual surplus realized is lower than the original surplus a customer could gain
if purchased a unit immediately upon arrival). The number of customers that falls in
this category has a Poisson distribution with a mean

ΛS (ψ, p1, p2)

.= λ
∫ T

t=0

[
F̄
(
min

{
max

{
p1eαt , p2eαT} ,ψ (t)eαt})− F̄

(
ψ (t)eαt)]dt

The third group (denoted by “W”) includes those customers who waited for time T
because their valuations upon arrival were below the premium price p1, and want to
purchase a unit at the realized discount price p2. The number of such customers is
Poisson distributed with a mean

ΛW (p1, p2)
.= λ

∫ T

t=0

[
F̄
(
min

{
p1eαt , p2eαT})− F̄

(
p1eαt)]dt

The fourth group of customers (denoted by “L” for “late”) includes those who ar-
rive at or after time T with a valuation higher than the posted discounted price p2.
Clearly, the number of customers in this group is Poisson with a mean of

ΛL (p2)
.= λ

∫ H

t=T
F̄
(

p2eαt)dt

Finally, a fifth group (denoted by “N” in Figure 12.1) includes those customers who
do not wish to purchase a unit of the product at any point of time. Note that in
this group, we include customers who decided (strategically) to wait for time T in
anticipation of a better surplus, but then find out that the realized discounted price
p2 is higher than their individual valuations.

It is instructive to note that the values of ΛS, ΛW , and ΛL depend on the value
of p2, which is generally unknown prior to time T . Therefore, such uncertainty
needs to be taken into account by customers who contemplate between an immediate
purchase and a strategic wait. For the seller, the above values play a key role in

1 We use the term “purchase” to reflect a desire to purchase a unit. Clearly, when inventory is
depleted, we assume that the store closes and no further purchases are feasible.
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setting the contingent pricing menu. Let QT ∈ {0, . . . ,Q} be the current inventory
at time T . Clearly, if QT = 0, then pricing is irrelevant. When QT is positive, the
optimal discounted price p2 (QT ) is chosen so as to maximize the revenues collected
from customers of types “S”, “W”, and “L”. Specifically, for QT ∈ {1, . . . ,Q}, let

p2 (QT ) ∈ argmax
z≤p1

{z ·N (QT ,ΛS (ψ, p1,z)+ΛW (p1,z)+ΛL (z))} (12.3)

where N (q,Λ) .= ∑∞
x=0 min(x,q) ·P(x|Λ) is the expected value of a Poisson random

variable (with mean Λ ) truncated at q.
Now, consider the subgame that begins after the premium price p1 is set. A con-

tingent pricing scheme {p2 (q)} for the seller and a purchase strategy ψ for the
consumers form a Nash equilibrium in the subgame, if the following conditions are
satisfied. First, each price p2 (q) needs to satisfy (12.3); i.e., it is a best response of
the seller if all customers follow the equilibrium strategy ψ . Second, the strategy
ψ needs to satisfy the conditions of theorem 1 stated above; i.e., it needs to be an
optimal response to the contingent pricing scheme {p2 (q)}. For brevity of exposi-
tion, we refer the reader to Section 4.3 of the paper for a discussion of an iterative
algorithm developed and employed by Aviv and Pazgal to find an equilibrium to
the subgame. Finally, in search of maximizing the expected total revenue over the
sales horizon, the seller needs to pick the best premium price p1. This is done with
the anticipation that a choice of p1 will be followed by the subgame we described
above. Given a Nash equilibrium ψ∗ (p1) and {p∗2 (q|p1)}Q

q=1, the seller is faced
with an optimization problem of the following type. Let J (q|p1) be the expected
revenues collected during the second part of the season ([T,H]) given the subgame
Nash equilibrium strategies:

J (q|p1) = p∗2 (q|p1)

·N (q,ΛS (ψ∗ (p1) , p1, p∗2 (q|p1))+ΛW (p1, p∗2 (q|p1))+ΛL (p∗2 (q|p1)))

Then, the seller’s task is to maximize the expression

π∗
C/S

.= max
p1

{
p1 ·Q ·

(
1−

Q−1

∑
x=0

P(x | ΛI (ψ∗ (p1)))
)

(12.4)

+
Q−1

∑
x=0

(p1 · x+ J (Q− x|p1)) ·P(x|ΛI (ψ∗ (p1)))
}

The subscript “C/S” denotes the case of contingent pricing policies with strategic
customers.

In order to measure the effectiveness of price segmentation, Aviv and Pazgal
consider the expected increase in revenues obtained by moving from an optimal
static-pricing strategy (π∗

F ) to a two-price strategy. In other words, they propose the
metric

(
π∗

C/S −π∗
F

)
/π∗

F , where
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π∗
F

.= max
p

{
p ·N

(
Q,λ

∫ H

0
F̄
(

p · eαt)dt

)}
Like Besanko and Winston (1990), they also consider benchmark models in which
all customers are myopic. Their findings are summarized below.

In general, the benefits of using contingent pricing schemes appear to be very sig-
nificant under the case of myopic customers. Unlike the case of myopic customers,
they show that strategic customer behavior clearly interferes with the benefits of
price segmentation to the retailer. Strategic consumer behavior suppresses the ben-
efits of segmentation, under medium-to-high values of heterogeneity and modest
rates of decline in valuations. An underlying reason for this is that when the rate of
decline in valuation is small, customers are patient in waiting for the discount time.
Not only that, but unlike the case of fixed-price strategies, customers rationally ex-
pect discounts to take place. However, when the level of consumer heterogeneity is
small, the rate of decline is medium to high, and the time of discount can be opti-
mally chosen (in advance) by the seller, segmentation can be used quite effectively
even with strategic consumers. The rationale for the result is that under these condi-
tions, there is typically a little difference in price valuations at the time of discount.
Hence, the discount price is generally set in a way that does not offer a substantial
surplus to consumers.

The seller cannot effectively avoid the adverse impact of strategic behavior even
under low levels of initial inventory. When the initial inventory level is low, the seller
expects customers to be more concerned about product availability at discount time,
and thus act in a similar way to myopic customers. However, for myopic consumers
the seller should benefit from high-price experimentation. In other words, the seller
would set a high price for the initial period of time in order to bet on collecting large
revenues, speculating that small number of unsold units can be easily sold at the end
of the season. But high-price experimentations in the case of strategic consumers
could drive customers to wait even if the availability probability is relatively low.
Thus, high-price betting cannot be sustained in equilibrium and for more moderate
prices customers are more inclined to purchase immediately than wait and take the
risk of a stockout.

When the seller incorrectly assumes that strategic customers are myopic in their
purchasing decisions, it can be quite costly, reaching up to 20% loss of potential rev-
enues. When the level of heterogeneity is large, misclassification results in offering
high discounts. Now, if valuations do not decline significantly during the horizon,
strategic customers would most likely wait. The dependency of the sub-optimality
gap on rate of decline in valuations works in two different ways. On one hand, when
it is small, customers are typically more inclined to wait, but their valuations do not
decline significantly. When the rate of decline is high, fewer customers will decide
to wait, but the rapid decline in these customers’ valuations would hurt the seller’s
ability to extract high revenues at the time of discount. Finally, when customers’
valuations are homogeneous and the decline rate is large, strategic customers do not
have a substantial incentive to wait, and so misclassification is not expected to lead
to significant loss.
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12.3 Price Commitments

In addition to the models described above, Aviv and Pazgal (2008) also consider a
two-period pricing problem in which the seller commits upfront to a fixed-price path
(p1, p2). Specifically, under this policy class, named “announced discount strate-
gies,” the discounted price p2 is not contingent upon the remaining inventory at
time T . Interestingly, sellers such as Filene’s Basement (Bell and Starr 1994), Land’s
End, and Syms use this method for pricing some of their products. Consider for a
moment the case of myopic customers. Clearly, in such settings, a fixed discount
is generally not optimal. The seller could obviously increase his expected revenues
by waiting until time T and then determine the best-price discount according to the
remaining amount of inventory on hand. The same logic does not straightforwardly
apply in face of strategic customers. In fact, under strategic consumer behavior there
could be cases in which announced pricing schemes (denoted by “A/S”) may per-
form better than contingent pricing policies (denoted by “C/S”). For the sake of
illustration, let us consider the case of unlimited inventory (Q = ∞). In this case,
it is easy to show that “A/S” is at least as good as “C/S”. This is because the dis-
counted price under “C/S” can be determined accurately in advance. Thus, that same
discounted price could be used under “A/S”, yielding the same expected revenues
as in the best strategy under “C/S”. But, of course, the seller could perhaps do even
better by announcing (and committing to) a smaller discount in order to discour-
age strategic waiting. Indeed, game theory provides us with variety of examples in
which limiting one’s choices of future actions (burning the bridges) may put one in
a better position at equilibrium. The following result is proven.

Theorem 2 of Aviv and Pazgal (2008). Consider any given (and credible) an-
nounced pricing path {p1, p2}. Then, the threshold-type policy defined by the func-
tion θ below constitutes a Nash equilibrium in the customers’ purchasing strategies.
Let

θ (t) .=

⎧⎨⎩ψA (t) .= max

{
p1,

p1 −wp2

1−we−α(T−t)

}
0 ≤ t < T

p2 T ≤ t ≤ H
(12.5)

where w is a solution to the equation:

w
.=

Q−1

∑
x=0

P(x|ΛI (ψA)) ·A(Q− x|ΛS (ψA, p1, p2)+ΛW (p1, p2)) (12.6)

(Note that ψA is dependent on w, as given in (12.5).) Specifically, a customer ar-
riving at time t ∈ [0,H] will purchase an available unit immediately upon arrival
if V (t) ≥ θ (t). Otherwise, if V (t) < θ (t) and t < T , the customer will revisit the
store at time T , and purchase an available unit if V (T ) > θ (T ) = p2.

As in the case of contingent pricing policies, in equilibrium, every customer
needs to take into account the behavior of the other customers. This is reflected
by the parameter w which represents the likelihood of receiving a unit of the prod-
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uct at time T . Clearly, if Q is relatively large, the interaction between customers is
negligible, and their optimal purchasing policy is given in (12.5), with w ≈ 1.

It is easily seen that the game between the seller and the customers has a Stack-
elberg form, with the seller being the leader in his announcement of the strategy
(p1, p2) and the customers following by selecting their strategy w. Given the seller’s
knowledge of the customers’ response to any particular pair of prices, his task is to
maximize the expected revenue2:

πA/S (p1, p2)
.= p1 ·Q ·

(
1−

Q−1

∑
x=0

P(x|ΛI)
)

+
Q−1

∑
x=0

P(x|ΛI) · [p1 · x+ p2 ·N (Q− x,ΛS +ΛW +ΛL)]

In other words, find the solution to π∗
A/S = maxp1,p2:p2≤p1

{
πA/S (p1, p2)

}
. Aviv and

Pazgal find that announced fixed-discount strategies perform essentially the same as
contingent pricing policies in the case of myopic consumers. However, they suggest
caution in interpreting this result. First, they consider the optimal announced dis-
count. If a seller picks an arbitrary discount level, the sub-performance with respect
to contingent pricing can be very high. Second, announced discounts prevent the
seller from acting upon learning about demand; see, e.g., Aviv and Pazgal (2005)
and Mantrala and Rao (2001). Under strategic consumer behavior, they found that
announced pricing policies can bring an advantage to the seller (up to 8.32% in-
crease in expected revenues), compared to contingent pricing schemes. Particularly,
they observed that announced pricing schemes are advantageous compared to con-
tingent pricing schemes under the following conditions: (i) the number of units are
sufficiently high; (ii) the level of heterogeneity in base valuations is high; (iii) the
discounts are offered at a late part of the season; and (iv) the rate of decline in val-
uations is at a medium level. The underlying reason for the better performance of
announced discount strategies is that a credible pre-commitment to a fixed-discount
level removes the rational expectation of customers that at discount time the seller
will optimally offer large discounts. Interestingly, they found that in those cases that
announced discount strategies offer a significant advantage compared to contingent
pricing policies, they appear to offer only a minimal advantage in comparison to
fixed pricing policies.

12.4 Capacity Rationing

In order to mitigate the adverse impact of strategic consumer behavior, firms may
consider the use of capacity rationing strategies. Under such strategies, a seller
deliberately understocks a product, hence creating a shortage risk for customers.

2 The functions ΛI , ΛS, ΛW , and ΛL stand for ΛI (ψA), ΛS (ψA, p1, p2), ΛW (p1, p2), and ΛL (p2),
respectively.
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As a consequence, this motivates high-valuation customers to purchase early in the
season at premium prices.

Liu and van Ryzin (2008) propose a model for examining the potential value of
rationing strategies. In their model, a (monopoly) firm pre-announces a single mark-
down pricing policy over two periods: A premium price p1 for the first period, and
a discounted price, p2, for the second period. Similarly to some of the models sur-
veyed in the previous section, this situation represents a setting in which the seller is
able to make a price commitment. The market size, denoted by N, is deterministic,
and consists of strategic consumers that are present at the “store” from the begin-
ning of the horizon. Consumers have heterogeneous valuations that are indepen-
dently drawn from a known distribution F (v), and they enjoy a utility of u(v− p)
when they have valuation v and purchase a unit at price p. The model assumes that
the market size is large enough so that strategic interaction between customers can
be ignored. The firm seeks to maximize profits by choosing its stocking quantity
(capacity) at the beginning of the sales season.

When making their purchasing decisions, customers weigh the immediate utility
u(v− p1) (reflecting a “buy now” choice) against the expected utility that they can
gain in the second period. But to calculate the latter value, the customers need to
multiply the utility u(v− p2) by the likelihood that a unit will be available. This
probability, denoted by q, is assumed to be estimated exactly at the same value by
all customers. It follows that, for any given q, the customers optimally follow a
threshold policy with a parameter v(q). This threshold value is implicitly defined by
the equation:

u(v− p1) = q ·u(v− p2)

Consequently, customers with valuations larger than v(q) buy in period 1; the other
customers wait for period 2.

The firm needs to determine its optimal capacity C, by taking into account the
per-unit procurement cost of α (assumed to be lower than p2). But before we get into
showing the formulation of the firm’s decision problem, it is important to consider
the connection between the capacity choice and the customers’ behavior. Liu and
van Ryzin show that under rational expectations3:

q =
C−N · F̄ (v(q))

N · (F (v(q)−F (p2)))

the probability q is referred to as the fill rate. Note that N · F̄ (v(q)) represents the
number of customers that purchases the product (or more precisely, attempt to) in
period 1. The term N · (F (v(q)−F (p2))) is equal to the number of customers that

3 In fact, they use the equation

q = min

{
max

(
C−N · F̄ (v(q))

N · (F (v(q)−F (p2)))
,0

)
,1

}
but argue that under all reasonable policies, the condition F̄ (p1) ≤ C/N ≤ F̄ (p2) needs to be
satisfied, and so the “min” and “max” operands are redundant.
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is still in the market at the beginning of period 2, and has valuations that are at least
as high as the discounted price p2. The firm’s profit maximization is given by

max {N · (p1 − p2) · F̄ (v)+(p2 −α) ·C}
s.t. u(v− p1) =

C−N · F̄ (v(q))
N · (F (v(q)−F (p2)))

·u(v− p2)

p1 ≤ v ≤ Ū

where Ū is an upper bound on the customers’ valuations. Let us now follow the
special case studied in that paper, where F is uniform over [0,Ū ], and the utility
function takes the form u(x) = xγ (0 < γ < 1). The parameter γ corresponds with
the degree of risk aversion (lower values of γ correspond to more risk aversion).
Under these assumptions, the authors show that the potential value of rationing de-
pends on the number of high-valuation customers in the market (reflected by the
parameter Ū). Specifically, with a sufficiently large number of high-valuation cus-
tomers in the market, it makes sense to adopt a rationing policy; otherwise, the firm
should serve the entire market at the low price. The intuition behind this observa-
tion is simple. Note that by increasing the degree of rationing (i.e., less capacity
brought to market), the firm induces higher demand in period 1 at the expense of
missing the opportunity to serve some demand in period 2. Therefore, if the number
of high-valuation customers in the market is small, the benefits gained in period 1
cannot justify the loss incurred in period 2. The authors find that when the firm can
optimally select the prices, rationing is always an optimal strategy, for any value
of Ū . Liu and van Ryzin also explore the way in which the level of risk aversion
(γ) influences the value of capacity rationing. They argue that when γ approaches 1
(i.e., customers becoming risk-neutral), the rationing risk that is needed in order to
induce segmentation is very high. In other words, the planned leftover capacity level
for period 2 should practically be set to 0 as γ approaches 1. Consequently, when
the market consists of a sufficiently large number of high-valuation customers, it is
optimal for the firm to serve the market only at the high price in period 1; otherwise,
the firm serves the entire market at the low price only.

Liu and van Ryzin also study a model of oligopolistic competition. In sake of
brevity, we refer the interested reader to their paper for technical details
(see Section 4.4 there). They show that competition makes it more difficult to sup-
port segmentation using rationing, and explain this as follows. When competing
against a large number of other firms, a focal firm is very limited in his ability to
create a sense shortage risk. Thus, by reducing its capacity, a focal firm severely in-
fluences his own ability to serve demand, rather than drive high-valuation customers
to buy at high prices. Particularly, the authors prove that there exists a critical num-
ber of firms beyond which creating rationing risk is never a sustainable equilibrium.
Thus, rationing is more likely to be used in cases where a firm has some reasonable
degree of market power.

Cachon and Swinney (2008) explore a two-period model that allows for dynamic
planning of pricing and inventory. Recall, from our discussion in the previous sec-
tion, that whether or not a retailer commits to a price path can significantly influence
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consumer behavior and retailer’s performance. The key features of the model setup
are as follows. A retailer sells a product over two periods. The price for the first
period, p, is exogenously given. In the second period, the product is sold at a given
markdown price s. The retailer’s objective is to maximize his expected profit by se-
lecting the optimal sale price and the initial level of inventory. The unit cost to the
retailer is c.

The total number of customers that may purchase during the first period is ran-
dom and denoted by D, having a distribution F . Customers are heterogeneous in
terms of their behavior. A portion of the customers (α ·D) are strategic, and the re-
mainder ((1−α) ·D) are myopic consumers that exist in the market in the first pe-
riod only. All customers have the same (known) valuation in the first period, equal
to vM (vM ≥ p). The valuations of strategic customers in the second period change in
a random manner, assumed to be uniformly distributed between [v

¯
, v̄] (where v̄ ≤ p).

It is assumed that strategic consumers know their individual second-period valua-
tions in advance, from the beginning of period 1. In addition to the above mix of
customers, the model introduces a third group of bargain hunters. These customers
arrive only in period 2, and in large numbers; they are all assumed to share the same
common valuation, vB. The value of vB is assumed to be lower than the cost c, mean-
ing that targeting this set of customers could be used as a mechanism for salvaging
unsold inventory.

The retailer’s and customers’ actions are driven by a rational expectation equilib-
rium in the game we will describe below. But let us dwell for a moment on the types
of beliefs that drive actions. In contemplating a “buy now versus buy later” decision,
a customer needs to assess the likelihood of getting a unit in period 2. Of course,
this is influenced by the retailer’s level of inventory, which is not directly observed.
Hence, q̂ is defined as the customers’ (common) belief about the initial stocking
level of the retailer. Similarly, in order for the retailer to set the optimal inventory
quantity, he needs to be able to anticipate the way in which customers make their
purchasing decisions. Let v̂ represent this belief.4 The authors identify a subgame
perfect Nash equilibrium with rational expectations to the game. Such equilibrium
is denoted by (q∗,v∗) and needs to satisfy a set of three conditions. First, the retailer
is assumed to act optimally under his belief about the consumer behavior. In other
words,

q∗ ∈ argmax
q≥0

π (q, v̂)

where π (q, v̂) is equal to the retailer’s expected profit under a given choice of initial
inventory q, and if all customers behaved according to the purchasing threshold
policy v̂. Second, the consumers’ purchasing policy should be optimal if the seller
indeed sets the initial quantity to q̂. Let v∗ (q) denote an optimal threshold policy for
a known inventory q. Then this condition is reflected by

v∗ ∈ v∗ (q̂)

4 The authors show that in equilibrium, there exists some v∗ ∈ [v
¯
, v̄] such that all strategic con-

sumers with second-period valuation less than v∗ purchase in period 1, and all consumers with
valuation greater than v∗ wait for period 2.
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Third, the beliefs need to be consistent. In other words,

q̂ = q∗, v̂ = v∗

Note that the retailer’s expected profit under a belief v̂ can be presented in a
stochastic dynamic programming format, where the first action (at the beginning of
period 1) is the initial level of inventory q, and the second action (at the beginning of
period 2) is the markdown price s. The retailer knows that if indeed the customers’
policy is v̂, then the portion of strategic consumers that will purchase in period 1 is
given by (v̂−v

¯
)/(v̄−v

¯
). Together with the myopic customers who purchase in the

first period, the demand in the first period sums up to

D1 (v̂,D) .= α
v̂−v

¯
v̄−v

¯

·D+(1−α) ·D =
(

1−α · v̄− v̂
v̄−v

¯

)
·D

The sales in period 1 are hence given by S1 (v̂,D) .= min(q,D1 (v̂,D)), and the re-
maining level of inventory by the end of period 1 is

I (v̂,D) .= max(q−D1 (v̂,D) ,0)

With this, we get

π (q, v̂) = −c ·q+ED

[
p ·S1 (v̂,D)+max

s
{R(s, I (v̂,D))}

]
(12.7)

where the function R(s, I) represents the expected revenues collected during the
second period if the retailer has a residual capacity of I units, and sets the price to s;
see paper for details.

Note that at the beginning of period 2, the retailer knows the actual value of D.
Specifically, for a given I > 0, the retailers infer that D1 = q− I, and so

D = (q− I) ·
(

1−α · v̄− v̂
v̄−v

¯

)−1

Cachon and Swinney now show that if demand D is sufficiently large (which also
means that the residual inventory level I is relatively small), the retailer should set
the highest price that clears the Inventory I. If the demand is in some medium level,
the retailer needs to optimally pick a price that maximizes the revenues collected
from the remaining strategic customers. Typically, this will result in partial sales of
the inventory I. Finally, if the demand is at a relatively low level, the retailer then
prices at an inventory clearance price of vB (making the product attractive to the
large set of bargain hunters). To find the optimal level of inventory (namely, the
solution to maxq≥0 π (q, v̂)), the optimal sales price in period 2 is substituted into
(12.7). The authors prove that the function π (q, v̂) is quasi-concave in q, and that
the optimal order quantity is determined by the unique solution to the first-order
condition dπ (q, v̂)/dq = 0.
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Let us now examine how Cachon and Swinney analyze the customers’ purchas-
ing policy. As in most papers we previously discussed, strategic customers need
to compare the current surplus (namely, vM − p1) with the expected surplus to be
gained if they wait for period 2. Let us then consider a focal strategic customer with
valuation equal to v∗ (i.e., a valuation at the indifference point). A key technical
observation in the analysis is that for such focal customer, the only scenario under
which he can gain a positive surplus in period 2 is if the retailer sets the clearance
price vB. Recall, this event will happen if the demand D turns to be sufficiently small
(say, below a given value Dl). Thus, the expected surplus for the focal consumer is

(v∗ (q̂)− vB) ·Pr{D < Dl and the consumer receives a unit}

In sake of brevity, we refer the reader to Section 5 in the paper, which presents a
rationing mechanism for allocating the inventory in case the demand in period 2
exceeds the residual quantity I.

Cachon and Swinney prove the following theorem.

Theorem 1 of Cachon and Swinney (2008). There exists a subgame perfect Nash
equilibrium with rational expectations (q∗,v∗) to the game between the retailer and
strategic consumers, and any equilibrium satisfies q∗ ≤ qm and π∗ ≤ πm.

The superscript “m” refers to the benchmark case of myopic customers, reflected
by the exact same model above, with α reset to 0. For example, we can learn from
this theorem that the retailer orders less with strategic consumers compared to the
case where he faces myopic customers only. In other words, this behavior can be
viewed as an act of capacity rationing. It is noteworthy to consider the authors’
statement vis-à-vis this result: Other [researchers] have also found that the pres-
ence of strategic consumers causes a firm to lower its order quantity (e.g., Su and
Zhang [2008a] and Liu and van Ryzin [2008]). However, the mechanism by which
this result is obtained is different: they depend on rationing risk, whereas in our
model the result is due to price risk – strategic consumers expect they will receive a
unit in the markdown. This observation is quite important in appreciating the value
of the second model of Cachon and Swinney that we next present.

Consider now a situation in which the retailer can replenish his inventory at the
beginning of period 2, after observing the demand D. Such type of replenishment
option is generally feasible when the supply side (in terms of procurement, produc-
tion, and delivery) is sufficiently responsive. Thus, the authors use the title Quick
Response to reflect this situation. The analysis of the quick response setting appears
to be very similar to that of the previous model. But, more importantly, the authors
show that for a given value of q̂, the customers’ behavior does not change in com-
parison to the situation with no replenishment opportunity. The driver of this result
is that in both cases (with or without quick response), strategic customers can gain
positive surplus in period 2 only if the demand happens to be sufficiently low. If that
happens, then the retailer will not exercise the quick response option anyway. But
the reader should not be confused! As can be expected, the retailer will not order the
same number of units (q) under both cases; we anticipate the initial order quantity
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to be lower with quick response, since the retailer can always order more later. In
other words, the customers’ behavior in equilibrium will be different (in general),
depending on the feasibility of a quick response delivery. It is shown that

Theorem 2 of Cachon and Swinney (2008). There exists a subgame perfect Nash
equilibrium with rational expectations (q∗r ,v∗r ) to the game between the retailer with
quick response and strategic consumers. It yields equilibrium expected profit π∗

r and
satisfies q∗r ≤ q∗ and π∗

r ≥ π∗. Furthermore, if

vM − p
v̄− vB

≥ c2 − c1

c2 − vB
,

then in equilibrium all strategic consumers purchase in the first period (c2 is the
per-unit procurement cost in period 2).

The result q∗r ≤ q∗, together with the discussion above, means that quick re-
sponse enables the retailer to increase the sense of rationing risk among strategic
consumers, by ordering less. By driving strategic customers to purchase at the pre-
mium price p, the retailer gains an increased profit. Not only that, but with quick
response, the retailer has an option to better match the supply with demand after ob-
serving D. Based on a numerical analysis, Cachon and Swinney note that the profit
increase due to quick response can be dramatically higher when a retailer faces
strategic consumers, than under settings with myopic customers only. This observa-
tion is key to the understanding of the potential benefits of quick response systems,
and the ways in which it depends on consumer behavior.

Su and Zhang (2008a) propose an extension of the traditional “newsvendor” in-
ventory model to incorporate the impact of strategic consumer behavior. In their
setting, a single seller makes a choice of the capacity Q to bring to the market, as
well as the price (p) to charge during the main season. Per-unit cost to the seller is c,
and at the end of the season the seller must set the price to s (not a decision variable).
Demand, denoted by X , is a random variable and is interpreted as the total mass of
infinitesimal consumers in the market. The random variable X follows a distribution
F . Consumers’ valuations for the product are fixed at v. It is assumed that s < c < v.
Customers’ purchasing behavior is assumed to be governed by a threshold policy
with a reservation price r. Specifically, if r ≥ p, they all attempt to buy immediately
at price p; otherwise, they all wait for the salvage price.

It is noteworthy that the level of inventory, picked by the seller, is not observable
to the customers. Similarly, the reservation price r is known to the customers, but
not directly observed by the seller. Thus, Su and Zhang propose to study a ratio-
nal expectation equilibrium in which estimates of these values are formed by the
seller and customers. Specifically, the seller forms a belief ξr about the customers’
reservation price, while the customers form a belief ξprob about the probability of
availability on the salvage market (which obviously depends on the seller’s choice
of Q). Based on these expectations, customers need to compare between the surplus
gained by a “buy now” decision (i.e., v− p) and the expected surplus to be gained
by waiting (i.e., (v− s)ξprob). Since r has an interpretation of an indifference point
(between a “buy now” and “wait”), it is easy to see that
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r
(
ξprob

)
= v− (v− s)ξprob

(where r is stated as a function of the customers’ belief ξprob). From the seller’s
perspective, it is obviously optimal to set the price to be equal to the customers’
reservation price. However, since this value is not observed, we can write, for the
moment, p = ξr. The optimal quantity (for any given price p) is given by

Q(p) = argmax
Q

{Π (Q, p) = (p− s) ·E [min{X ,Q}]− (c− s)Q}

The authors show that a rational expectation equilibrium is given by the solution to
the equation p = v− (v− s)F (Q(p)). They further show that

Proposition 1 of Su and Zhang (2008a). In the rational expectation equilibrium,
all customers buy immediately, and the seller’s price and quantity are characterized
by pc = s+

√
(v− s)(c− s) and F (Qc) = 1−√

(c− s)/(v− s).

(The subscript “c” is used to refer to a centralized setting with a single seller.)
One of the lessons taken of this proposition is that the seller lowers his stocking
quantity under strategic consumer behavior. We will get back to this paper in the
next section, in which we discuss the topic of capacity commitment.

Su and Zhang (2008b) propose a similar “newsvendor”-type model as in the pre-
vious setting, but with a slightly different feature. Here, instead of strategic cus-
tomers contemplating between a “buy now” versus a “wait” decision, they are con-
templating whether to “go to the store,” or not. A “go to the store” action involves a
search cost of h, which could be justified if the surplus from a purchase exceeds this
value. However, customers face uncertainty about product availability, and so they
risk losing the search cost if they came to the store and did not find an item avail-
able. The authors explore the outcome of the rational expectation game. The setting
of the game is very similar to the aforementioned framework: The seller announces
a price and selects a capacity (not directly observed by customers), and customers
form a belief about the likelihood of finding a product available (this likelihood is
not directly observed by the seller).

Ovchinnikov and Milner (2005) consider a firm that offers last-minute discounts
over a series of periods. Their model incorporates both stochastic demand and
stochastic customer waiting behavior. Two waiting behaviors are considered in their
paper. In the first, called “the smoothing case,” customers interpolate between their
previous waiting likelihood and their observation of the firm’s policy. In the second,
named “the self-regulating case,” customers anticipate other customers’ behavior
and the likelihood that they will receive a unit on sale. They show that, under the
self-regulating case, it is generally optimal for the firm to set some units on sale
in each period and allow the customer behavior to limit the number of customers
that enjoy the benefit of the reduced price. In contrast, in the smoothing case, the
firm can increase its revenues by following a sales policy that regulates the number
of customers waiting. The authors conduct numerical simulations to illustrate the
value of making decisions optimally, as compared to a set of reasonable benchmark
heuristics. They find that the revenues can increase by about 5–15%. The paper also
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discusses how these benefits are affected if overbooking is allowed, and show that
the impact of overbooking is greatly dependent on the proportion of high-valuation
customers in the market.

12.4.1 Capacity Commitments

In the last part of their paper, Cachon and Swinney (2008) report on some results
related to the question of whether or not a price commitment can perform better
than subgame perfect dynamic pricing. It is noteworthy that unlike the model of
Aviv and Pazgal (2008) (who studied a similar type of question), the current model
assumes that the initial price is set exogenously, and so commitment here is on the
markdown price s only. Another important difference is that in the first period, all
strategic and myopic customers share the same valuation, vM . It is for these reasons
that Cachon and Swinney could argue that if the retailer had to commit for a dis-
count, it would be optimal to not markdown at all; in other words, the retailer should
use a static-pricing policy, equal to the exogenously set price p. In settings with no
quick response, making a “no markdown” commitment is beneficial only when the
ratio between the margins in the first period (p− c) and the cost of leftover inven-
tory (p− vB) is sufficiently high. This is because the gain from inducing purchase
during period 1 outweighs the loss due to the inability of the retailer to salvage in-
ventory in case of a low-demand realization. When the retailer has quick response
capability, static pricing tends to be more beneficial. The reason behind this is that
quick response reduces the likelihood of having significant leftovers, and thus the
loss due to price commitment (or, alternatively viewed – the likelihood of a need for
inventory clearance) is not high.

We now get back to Su and Zhang (2008a). This paper considers two types of
commitments that can be made by the seller: a capacity commitment and a price
commitment. The first commitment represents a situation in which the seller can
order Q units and convince customers that this is indeed the quantity level. In this
case, there is no need for the customers to form a rational expectation about ξprob, as
they can simply calculate the availability probability via F (Q). The seller will then
price

pq (Q) = v− (v− s)F (Q)

Consequently, the seller’s optimal quantity decision is given by Q∗
q, the maximizer

of the expected profit

Πq (Q) = (p(Q)− s)E [min{X ,Q}]− (c− s)Q

= (v− s) F̄ (Q)E [min{X ,Q}]− (c− s)Q

Let us now look at their model of price commitment. Here, it is easy to verify that
the seller should commit not to reduce the price; i.e., use a static price of v. Given
this commitment, all customers attempt to buy the product at price v, and hence
the expected profit is given by Πp (Q) = vE [min{X ,Q}]− cQ. Su and Zhang show
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that price commitment may increase the seller’s profit when the production cost c is
relatively low and when the valuation v is relatively high. However, there exist situa-
tions in which price commitments is not desirable. This happens when the valuation
v is relatively small. The intuition behind this is similar in spirit to that argued by
Cachon and Swinney (2008); see above.

Su and Zhang (2008b) also discuss two commitment strategies that the seller can
use to improve expected profits. When capacity commitment can be made, it can
be very valuable in that it encourages customers to spend the search cost and visit
the store. This effect increases expected profit margins and leads the seller to set a
higher capacity. As a consequence, with higher inventory, the customers indeed ex-
perience a higher level of product availability. A second type of mechanism studied
in this paper is an availability guarantee. Here, the seller promises to compensate
consumers, ex post, if the product is out of stock. They find that the seller has an in-
centive to over-compensate consumers during stockouts, relative to the benchmark
case under which social welfare is maximized. Finally, the authors argue that first-
best outcomes (i.e., those achieved under the benchmark case) do not arise in equi-
librium, but can be achieved when the seller uses some combination of commitment
and availability guarantees.

12.5 Internal Price-Matching Policies

In the retail industry, many companies offer some form of price guarantee to encour-
age customers not to delay their purchases; see Arbatskaya et al. (2004). One such
offering, called an internal5 price-matching guarantee, reflects a situation in which
a retailer ensures that a customer will be reimbursed the difference between the cur-
rent purchase price and any lower price the retailer might offer within a fixed future
time period. The practice of internal price matching is very common in the retail
industry and has been adopted (either formally or informally) by companies such
as Amazon.com, Circuit City, and Gap. For example, if a product you purchased at
Amazon.com within the last 30 days has dropped in price, they will typically credit
you back the difference. In fact, a price-matching policy is effectively practiced by
retailers who offer “free-return” policies. This is because customers who witness a
price drop can simply return their purchased item for a full refund, and then imme-
diately repurchase the same item at a lower price.

Obviously, in order to extract the maximum benefit from price matching, cus-
tomers need to monitor the price constantly. From a retailer’s perspective, a worst
case refund scenario is one in which all customers are willing and able to moni-
tor prices, and then exercise their right for a refund when applicable. In fact, with
the evolution of technology and web-based services, this concern is becoming in-
creasingly realistic. For example, Refundplease.com is a company that offers a web

5 An alternative offering, called an external price-matching guarantee, is also popular in practice.
Here, the retailer offers to match the price advertised by any other retailer at the time of purchase.
Nonetheless, our focus in this section is on internal price-matching mechanism only.
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service that simplifies the process for customers. Customers no longer need to keep
track of the latest prices in order to get a credit. After a customer makes a purchase,
he visits their web site and enters the purchase information. Refundplease.com will
then check the prices everyday and send the customer a message if the price has
dropped, and provide a link right to the place where the customer can claim a credit.

There are many possible variations of internal price-matching guarantees. One
way is to offer a refund equal to the difference between what the customer paid and
the marked down price (if such action took place within a specified time window);
see, e.g., Debo et al. (2008). Another way is to compute a compensation (to cus-
tomers) by taking the difference between the price of the product at some future
point in time and the strike price offered at the time of purchase. There are several
possibilities for the selection of the time when the price is compared to the strike
price. One of them is to allow a customer to select it. Another is to let it be the time
when the price is the lowest. Another set of the instrument’s details is related to the
notion of “similar product.” In the case of airlines, for example, this could be “a
ticket for the exact same flight,” “a ticket for the same route by the same airline on
the same date,” or “a ticket on the same date by any airline with flights to this desti-
nation.” Each definition of similarity will result in its own price for the service. For
example, Levin et al. (2007) analyze the case of the same items and the comparison
of the price with the strike price made at the time when the price is the lowest.

A limited amount of research on price matching has been done by economists and
marketing scientists; see Hess and Gerstner (1991), Moorthy and Winter (2005), and
Srivastava and Lurie (2001). These studies focus on the economics of price matching
and do not involve revenue management practices. For example, Butz (1990) studies
the impact of posterior price-matching policies in a setting with a durable goods
sold over an infinite horizon. The seller is also a producer and can meet any demand
quantity; i.e., unlike the situation in typical revenue management systems, there is
no constraint on capacity (inventory). In his model, the seller offers a price-matching
guarantee to buyers with a prespecified time window. Finally, this model assumes
that demand is exogenous and free of strategic consumer behavior.

Levin et al. (2007) present a dynamic pricing model that includes an internal
price guarantee instrument. Their paper considers a situation with limited capacity,
reflective of revenue management settings. The internal price guarantee they con-
sider provides a customer with compensation if the price of the product drops below
a specified level (called the strike price). Customers have the choice of either buying
or declining the guarantee; if they buy, then need to pay a fee. A price guarantee can
increase the probability that customers will purchase at or near the time they first
inquire about a product because it reduces their risk of future opportunity loss. For
the company, an increased number of early purchases can reduce the uncertainty of
late-purchasing “rushes” and last-minute price reductions, facilitate forecasting and
capacity planning, and improve customer satisfaction and retention. Furthermore,
the price guarantee itself constitutes a service provided for a fee in addition to the
regular product price. Because this fee can be set by the seller so that it exceeds
potential average losses from paying compensations, the collected fees provide an
additional revenue stream. We elaborate below on some of the model details.
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Assume that customers arrive according to a discrete-time counting process N (t)
with at most one arrival per time period and the probability of arrival is λ in each
period. (The actual sales process is non-homogeneous in time in a manner described
below.) The company has a total of Y items in inventory available for sale during T
time periods. The company’s policy is specified by a triple of values, representing
the price, strike price (for the guarantee option), and the option purchase fee, given
by the “quote”: Π (t) = (p(t) ,k (t) , f (t)), respectively. Thus, the quote is a three
dimensional (stochastic) process. The guarantee is assumed to have a duration equal
to D time periods, and the price guarantee payments are always made at the end of
the planning period (i.e., at time T ) regardless of the value of D. Specifically, if a
customer bought an item with the price guarantee at time t, then the price guarantee
payment to this customer will be equal to

max{max(k (t)− p(τ) ,0) : t ≤ τ ≤ min{t +D,T}}

Customers, who are assumed to be myopic, choose between not making a purchase,
making a purchase without the price guarantee at price p(t), or paying p(t)+ f (t)
for the purchase with the guarantee. The consumer choice model is described by two
probability functions. First, it is assumed that the probability that a customer makes
either type of purchase upon arrival at time t is given by a function u(p,k, f , t) .Thus,
the effective probability of sale at time t is λ (Π (t) , t) = u(Π (t) , t) ·λ . Second, the
conditional probability that a customer also purchases the price guarantee (given that
a purchase is made) is given by υ (Π (t) , t). The sales process is a two-dimensional
counting process (N1 (t) ,N2 (t)), where N1 (t) specifies the number of sales without
price guarantees and N2 (t) specifies the number of sales with price guarantees.

The problem of identifying an optimal policy for the retailer is not simple! At
any point in time, the state of information consists of the values (N1 (t) ,N2 (t)) and
the history of the process Π . It is easy to verify that the retailer’s dynamic planning
problem does not possess a Markovian property with respect to (N1 (t) ,N2 (t)), and
hence an optimal policy will need to get involved with a solution of a dynamic
program with a prohibitively large state space. To tackle this technical problem,
Levin et al. confine themselves to a policy class that prescribes the values Π (t) on
the basis of the values (N1 (t) ,N2 (t) , t). They propose a nonlinear programming
(NLP) approach to identify the best policy within this class. This approach can be
implemented in relatively small problems. For large-scale problems, the paper offers
a computationally tractable heuristic.

12.5.1 Internal Price Guarantees Under Strategic
Consumer Behavior

Png (1991) considers a monopolist that sells a limited capacity (of size k) to cus-
tomers whose valuations are either low (vl) or high (vh;vh > vl). A random portion of
the customers x∈ [0,1] belongs to the high-valuation set; x follows a given statistical
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distribution Φ . There are two periods in the interaction between the seller and cus-
tomers. If at any time there is excess demand, the available units are allocated at
random. All customers are present at the “store” from the beginning of period 1.
To study the equilibrium in the game, it is useful to begin from the second period,
where it is clear that the price p2 = vl should be set. Going back to the first period,
we now consider the customers’ choice. Suppose that a high-valuation customer de-
cides to purchase in period 1. Then, the likelihood of getting a “unit” of the product
is given by

σ1 (k) = Φ (k)+
∫ 1

k

k
x

dΦ (x)

and therefore, the expected utility for buying in advance is (vh − p1) ·σ1 (k). The lat-
ter value is based on an implicit assumption that all other high-valuation customers
will act the same way as that of the “focal” customer. Now, let us consider the sit-
uation in which just the “focal” customer deviates from the buy now action, and
decides to wait for period 2. In this case, he will receive the product in the second
period with the probability

σ2 (k) =
∫ k

0

k− x
1− x

dΦ (x)

and hence his expected utility will be (vh − vl) ·σ2 (k). Png argues that in order to
maximize profit, the seller should set the first-period price p1 so that each high-
valuation customers will be indifferent between buying immediately and waiting. In
other words,

p1 (k) = vh − (vh − vl)
σ2 (k)
σ1 (k)

The seller’s expected revenues are given by

R(k) = vl ·E [max(k− x,0)]+ p1 (k) ·E [min(x,k)]

In his second model, Png (1991) considers a most favorable customer (MFC)
protection plan. Under this policy, the seller promises customers who buy early
that they will receive a refund to cover for any subsequent price cut. Let p̂1 and
p̂2 denote the prices in the first and second periods, respectively. It is clear that
for high-valuation customers, the best strategy is to purchase in the first period.
This is because when customers buy early, they increase their likelihood of product
availability and they have nothing to lose on price. Therefore, it is optimal for the
seller to set p̂1 = vh. Given this choice, the low-valuation customers will wait to
period 2. Consequently, there are two cases that need to be analyzed: x ≥ k and
x < k. The first case is simple, since all units are purchased by the high-valuation
customers, and the seller’s profit is given by vh · x. In the second case, the seller
faces the following trade-off in setting p̂2. If p̂2 is set to vl , the seller can extract a
revenue of vl ·(k− x), but will need to refund the high-valuation customers. Or, more
simply, the seller will effectively charge all customer the price vl , and gain a revenue
of vl · k. If p̂2 is set to vh, then the seller’s revenue is vh ·min(k,x) = vh · x (in view
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of x < k). The seller’s revenue under the second case is therefore max(vl · k,vh · x),
and therefore the total expected revenue with an MFC provision is equal to

R̂(k) = E [max(vl · k,vh ·min(x,k))]

A key result in Png’s paper is that the seller always (weakly) prefers to guarantee
MFC treatment to first-period buyers and sell over two periods than to sell in one
period only (see Proposition 1 in his paper). He explains the intuition behind this
finding by arguing that selling over two periods enables the seller to collect and
use information about the customer demand. Formally, this type of advantage is
described in the following inequality:

R̂(k) = E [max(vl · k,vh ·min(x,k))] ≥ max(vl · k,E [vh ·min(x,k)])

with the right-hand side representing the maximal expected revenues that can be
gained under a fixed-price policy. Another important observation made by Png has to
do with the comparison of MFC to no-MFC policies. He finds that MFC protection
is the favorable choice for the seller when the capacity is large. The logic behind this
result is that when capacity is high, customers have a large confidence that waiting
will not significantly harm their likelihood of receiving the product at vl (under the
no-MFC policy). Therefore, customers will wait for the second period, resulting in
minimal expected revenues. Png also finds that when customers are more uncertain
about the degree of excess demand in the first period, they tend to buy early at the
high price. As a consequence, such customer base is a good candidate for price
discrimination, and no-MFC is the right choice for the seller.

Xu (2008) studies the optimal choice of internal price-matching policies, to
which she refer by the term best-price policies (BP). Unlike the previous paper,
Xu characterizes the best choice of policy parameters; namely, the time window
during which the BP applies and the portion of the price difference that is refunded
(refund scale). The models of this paper are set on the basis of the following set of
assumptions. A seller and customers interact over an infinite horizon, with the seller
essentially able to continuously change prices.6 Customers are either high valuation
or low valuation, and they all have the same discount rate (the seller, too, share the
same discount factor). At some point (and only one point) of time the valuations of
all customers jump simultaneously into a lower state, according to some probabilis-
tic mechanism. This random-shock phenomenon is embedded in the model in order
to represent situations in practice where a product is going out of fashion, or become
obsolete. The main model in the paper considers the case where the seller offers a
BP policy, and cannot commit to prices. Two benchmark models are also analyzed:
A case in which no BP is offered, but the seller can commit to prices (prices are
contingent on the information history), and a case in which no BP is offered and
the seller cannot make a price commitment. Xu finds that a finite and positive BP
policy can be optimal for the seller, when the likelihood for a sharp drop in evalua-

6 The paper assumes that the price-change points are confined to the time epochs t = 0,Δ ,2Δ , . . .,
but it then focuses on the limiting case Δ → 0.
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tion can take place. In other words, BP policies can be effective for retailers whose
products may go out of fashion or become obsolete. The seller’s equilibrium profit
under the optimal BP policy falls between the profits of the two benchmark models.
In general, the optimal BP policy cannot achieve the profit that can be gained with
full commitment because of the uncertainty in the time of demand drop, and the fact
that a BP policy cannot be contingent on the event of demand drop (since such event
is unverifiable and non-contractible).

Debo et al. (2008) consider a posterior price-matching policy, a marketing pol-
icy offered by a seller to match the lower prices if the seller marks down within
a specified time. In their model, the market consists of high-end (valuation = VH )
and low-end (valuation = VL; VL < VH ) consumers. They assume that the number of
low-end consumers in the market is infinite, and that there is a large volume of po-
tential high-end consumers, such that an individual consumer has a negligible effect
on demand. The total volume of high-end consumers, denoted by λ , is unknown in
advance, but can be characterized by a known distribution F , with a mean μ and
a standard deviation σ . Information about the actual value of λ is gained via sales
observations during the first period. In the second period, the high-end customer’s
valuations decline from VH to Vh (where VL ≤Vh ≤VH ). In contrast, the low-end con-
sumer’s valuations remain constant over the two periods. Among the high-end con-
sumers, a fraction φ is strategic, whereas the rest are myopic. Strategic customers
always request a refund, whereas only a fraction (γ) of the myopic customers do so.
The seller determines whether or not to offer a posterior price matching (denoted
by a binary variable υ), sets the first-period price (p1), and invests in inventory (Q).
These decisions are made before the market volume is realized. The unit acquisition
cost, c, satisfies the condition VL < c < VH .

Debo et al. use the following dynamic procedure to evaluate the outcome of the
two-period interaction between the seller and customers. Considering the second pe-
riod, the seller is equipped with the information (υ , p1,Q,qs,s); the first three values
are the seller’s actions in the first period, whereas the latter values are observed dur-
ing period 1. Specifically, qs is the seller’s belief about the customers’ purchasing
probabilities q, and s is the realized amount of sales during the first period. The
seller’s best choice for the second period’s price is given by

po
2 ∈ argmax

p2
R2 (p2;υ , p1,Q,qs,s) (12.8)

where R2 is the seller’s second-period profit. Going back to the first period, in which
customers need to determine their purchasing parameter q, they do so by weighing
the expected utilities gained from a purchase in each period (the functions u1 and
u2), as follows:

qo ∈ argmax
q

{(1−q) ·u1 (υ , p1,Qc,qc, po
2)+q ·u1 (υ , p1,Qc,qc, po

2)}

where Qc is the seller’s level of inventory that the customers rationally expect.
Getting one step back to the seller’s initial decision, the authors consider a
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two-level optimization process. First, for any given choice of p1, the seller deter-
mines the optimal quantity of inventory through

Qo (υ , p1) ∈ argmax
Q

{π (Q;υ , p1,qs, po
2)}

Note that the qs represents the seller’s belief about the customers’ purchasing pol-
icy parameter q. The function π represents the seller’s two-period profit with po

2
satisfying (12.8). Finally, the seller’s first-period price is determined via

po
1 (υ) ∈ argmax

p1
{π (Qo (υ , p1) ;υ , p1,q

o, po
2)}

Obviously, to establish a rational expectation equilibrium, we need to find a solution
to the above system, in which qs = qc = qo and Qc = Qo.

We present below a part of the solution to the models, focusing on the second-
period pricing and the customers’ choices. This will be sufficient for the reader to
develop a sense of the fundamental difference between the cases with and without
posterior price matching. Of course, the interested reader is referred to the paper for
complete details.

Consider first the model without posterior price matching. Here, it can be shown
that the price p2 can be restricted to the two values Vh and VL (either sell exclusively
to strategic customers, or mark down further and clear the inventory). To compute
the function R2, consider two cases: (i) if p2 = VL, all remaining Q− s units will be
purchased; (ii) if p2 = Vh, then only strategic customers will purchase. In this case,
the seller needs to infer the size of the market from the sales volume s (note that
only the case s < Q is of interest, since if there is no inventory left, the second price
has no meaning). In this case, the authors argue that the size of the high-end market
is given by s/(1−φqs), and hence the number of high-end strategic customers that
will purchase in period 2 is estimated by qsφs/(1−φqs). To summarize, we get

R2 =

{
(Q− s) ·VL if p2 = VL

min{Q− s,qsφs/(1−φqs)} ·Vh if p2 = Vh

As a consequence (see Proposition 1 in the paper), the seller’s second-period price
can be shown to satisfy

po
2 =

⎧⎪⎨⎪⎩
VL if s/(1−φqs) < α (qs)Q

Vh if α (qs)Q ≤ s/(1−φqs) ≤ Q/(1−φqs)
n/a if s = Q

where α (q) .=VL/(VL +qφ (Vh −VL)). Let us now consider the strategic customers’
decisions. If the customer purchases immediately (i.e., in period 1), he gains a sur-
plus of (VH − p1). However, a unit needs to be available. Clearly, if the total demand
is given by a quantity λ ≤ Qc/(1−φqc), a focal customer will be allocated a unit
upon purchase. If, however, the latter inequality is reversed, the Qc units will need to
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be allocated among the (1−φqc)λ customers who decide to purchase immediately.
Thus,

u1 =
[

F

(
Qc

1−φqc

)
+
∫ ∞

Qc/(1−φqc)

Qc

(1−φqc)λ
f (λ )dλ

]
(VH − p1)

If a focal customer decides to postpone the purchase to the second period, then he
expects the price p2 to be either Vh (with probability 1−F (α (qc)Qc)), or VL with
the complementary probability. Thus, we get

u2 = F (α (qc)Qc) · (Vh −VL)

Let us consider now the case in which a posterior price-matching policy is of-
fered. Here, it is also useful to consider the values VL or Vh for p2. However, the
seller may want to consider charging p2 > max{p1,Vh}. The rational behind the
last price possibility is as follows: if a price p2 > Vh is expected, then the no strate-
gic customer is expected to wait for period 2. Then, setting the price below p1

is ineffective since it will result in myopic high-end customers asking for refund.
When the seller perception about the delay probability (i.e., qs) is sufficiently small,
the best pricing in period 2 is to either clear leftover inventory (p2 = VL) or price
above max{p1,VL}. It is only when qs passes a certain threshold that it is worth-
while to consider the price p2 = Vh; see Proposition 5 in the paper. Interestingly,
when it comes to purchasing behavior of customers, the authors state (Lemma 4):
The unique purchasing equilibrium is to buy immediately; i.e., qo = 0. It is easy
to see the reasoning behind this result. For a focal strategic customer, the posterior
price-matching policy enables to obtain refund if prices decline. Furthermore, the
likelihood of obtaining a unit can only decline from period 1 to period 2. As a con-
sequence of this observation, it is easy to verify that the optimal first-period price is
po

1 = VH . As can be seen, the seller’s first-period price and the customers’ waiting
strategy are both independent of φ – the fraction of strategic customers. The frac-
tion φ influences the salvage value of the leftover inventory in a monotonic way.
The largest is φ , the larger are the refunds in case of inventory clearance. Conse-
quently, the authors show that the seller’s equilibrium inventory level Qo and his
optimal expected profit are both monotonically decreasing in φ ; see Proposition 8
in the paper.

Based on the above analytical findings and further numerical analyses, the au-
thors conclude that price-matching policies eliminate strategic consumers’ waiting
incentive and thus allows the seller to increase the price in the regular selling season.
When the market consists of a sufficiently large fraction of strategic consumers with
declining valuations (over time), the matching policy can be very effective. In con-
trast, price-matching policies can be detrimental when there are only a few strategic
consumers in the market, or if the strategic consumers’ valuations do not decline
much during the sales horizon. Finally, they find that the ability to credibly com-
mit to a fixed-price path is not very valuable when the seller can implement price
matching.
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12.6 Limiting Inventory Information

Recently, Yin et al. (2008) have proposed a game-theoretic model of a retailer who
sells a limited inventory of a product over a finite selling season, using one of the
two inventory display formats: Display All (DA) and Display One (DO). Under the
DA format, the retailer displays all available units so that each arriving customer
has perfect information about the actual inventory level. Under the DO format, the
retailer displays only one unit at a time so that each customer knows about product
availability but not the actual inventory level. Clearly, display formats can be used
as a tool to influence customers’ perceptions about the risk of stockouts if they de-
cide to wait. Therefore, by optimally selecting the display format, a retailer could
discourage high-valuation customers from waiting to the clearance sales. Focusing
on price-commitment strategies, Yin et al. address the following questions: When
considering the influence of the display formats on the level of inventory informa-
tion conveyed to customers, which one of the two formats is better for the retailer?
Furthermore, can a move from one display format to another be effective in mit-
igating the adverse impact of strategic consumer behavior? They find support to
the hypothesis that the DO format could potentially create an increased perception
of scarcity among customers, and hence it is better than the DA format. However,
while potentially beneficial, the move from a DA to a DO format is very far from
eliminating the adverse impact of strategic consumer behavior. Since this paper is
surveyed in great detail on a separate chapter in this book, we omit the technical
details.
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Chapter 13
Mitigating the Adverse Impact of Strategic
Waiting in Dynamic Pricing Settings: A Study
of Two Sales Mechanisms

Yossi Aviv, Christopher S. Tang, and Rui Yin

Abstract As post-season clearance sales become more prevalent, more customers
postpone their purchases and wait for the clearance price. This form of strategic
waiting can reduce retailers’ revenue. As a way to mitigate the negative effect of
strategic waiting, we analyze two sales mechanisms in this chapter. The first sales
mechanism deals with the way inventory information is conveyed to customers.
Specifically, we consider two types of inventory display formats under which the
retailer can either display all (DA) available units to the customers or display one
(DO) unit at a time so that customers have perfect (imperfect) information about the
actual inventory level under the DA (DO) display format. The second sales mech-
anism involves an additional purchasing option that allows each customer to make
a “non-withdrawable reservation.” Specifically, if a customer reserves an item dur-
ing the season and the reserved item remains unsold at the end of the season, then
this customer is obligated to purchase the reserved item at the clearance price. In
this chapter, we analyze the implications of these two sales mechanisms on the cus-
tomers’ strategic purchasing behavior, the retailer’s optimal pricing and ordering
decisions, and the retailer’s expected profit.

13.1 Introduction

Many retailers use post-season clearance sales as a reactive response to dispose of
unsold items at the end of a selling season. However, some retailers proactively pre-
announce their price-markdown schedules at the beginning of the selling season.
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A well-known example of pre-announced markdown pricing strategy has been
adopted by Filene’s Basement since 1908. At the Filene’s Basement Boston store,
most unsold items after 2, 4, and 6 weeks will be sold at 25%, 50%, and 75% off
the regular price, respectively. After 2 months, Filene’s Basement donates all unsold
items to charity; see Bell and Starr (1994) for more details. Lands’ End Overstocks
uses a similar pre-announced markdown pricing strategy to sell their leftover in-
ventory via its “On the Counter” Web site. Other retailers such as Dress4less and
Tuesday Morning adopt similar pre-announced markdown pricing strategies.

Pre-announced markdown pricing strategy is intended to segment customers with
different valuations so that high (low) valuation customers will purchase the product
at the regular (clearance) price; see Pashigian and Bowen (1991) and Smith and
Achabal (1998) for comprehensive discussions. However, one of the drawbacks of
pre-announced pricing schemes is that they cannot segment customers completely
because they often lead to strategic waiting: a phenomenon in which some high-
valuation customers postpone their purchases by waiting for the clearance price,
even when there is a risk of not getting the product due to stockout at the end of
the selling season (c.f., Phillips, 2005 and Fisher, 2006). Fisher (2006) commented
that 26% of fashion goods are sold at markdown prices, and McWilliams (2004)
lamented that approximately 20% of Best Buy’s customers wait for markdowns.

In recent years, academic research on strategic customer purchasing behavior
has gained considerable attention; e.g., Aviv and Pazgal (2008), Cachon and Swin-
ney (2007), Elmaghraby et al. (2008), Jerath et al. (2007), Levin et al. (2006), Liu
and van Ryzin (2008), Ovchinnikov and Milner (2005), Su (2007), and Yin and
Tang (2006). Evidently, the existing literature varies substantially in terms of un-
derlying assumptions, modeling approaches, and research objectives. Therefore, in-
stead of providing a long and tedious description of these papers, we refer the reader
to these papers for details. Nevertheless, when useful, we shall refer to some of these
papers when we introduce certain features of our model throughout this chapter.

As strategic waiting reduces retailer’s revenue, some researchers have analyzed
ways to reduce this strategic waiting behavior. Besides corporate level strategy that
calls for no markdown pricing (c.f., Aviv and Pazgal, 2008, Cachon and Swin-
ney, 2007, and Su and Zhang, 2009), Liu and van Ryzin (2008) examine the use
of limited supply as an operational strategy to entice high-valuation customers to
purchase the product at the regular price instead of waiting for the clearance price.

In this chapter, we analyze two types of sales mechanisms that are intended
to reduce the strategic waiting behavior. In the first mechanism, the retailer uses
the inventory display format as a tool to influence customers’ perceptions about
the risk of stockouts if they decide to wait. Specifically, we consider two types of
inventory display formats that are commonly seen in retailing. The first is called
the Display All (DA) format under which the retailer displays all available units so
that customers have perfect information about the actual inventory level. For ex-
ample, since 2005, Expedia.com provides their customers with perfect information
about the exact number of plane tickets available at a particular price for a particu-
lar flight. Similarly, Filene’s Basement, Benetton, and Seven-Eleven adopt the DA
format. The second display format is called the Display One (DO) format. Here, the
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retailer displays only one item at a time so that customers have imperfect informa-
tion about the actual inventory level. For example, Lands’ End Overstocks Web site
provides each arriving customer information about the availability but not the actual
inventory level of each product.

In the second mechanism, the retailer uses the number of purchasing options as
a tool to increase competition among customers. We consider two regimes. The first
regime is essentially the traditional sales format under which each customer has
two purchasing options upon arrival: either “buy now” at the regular price or “wait”
and attempt to purchase at the discount price at the end of the season. We call this
regime the “No Reservation” (NR) regime. Our second regime is called the “With
Reservation” (WR) regime under which each customer has an additional option to
place a (non-withdrawable) reservation during the season. If he reserves an item,
then he is obligated to purchase the item at the reduced price when the reserved
item remains unsold at the end of the season.1 As some customers may reserve
some items, the likelihood for other customers to obtain the product at the clearance
price if they decide to wait is reduced. As such, the WR regime could pressure more
customers to purchase the product at the regular price.

In this chapter, we analyze the implications of these two sales mechanisms on
the customers’ strategic purchasing behavior, the retailer’s optimal pricing and or-
dering decisions, and the retailer’s expected profit. Hence, the primary contribution
of this chapter is the comparison of the two display formats (DA vs. DO) and two
operating regimes (NR vs. WR) in the presence of strategic consumers. The remain-
der of the chapter is organized as follows. In Section 13.2, we describe some model
preliminaries. The two display formats and the two operating regimes are analyzed
in Sections 13.3 and 13.4, respectively. We conclude the chapter in Section 13.5.

13.2 Model Preliminaries

Consider a retailer who orders Q units at a unit cost c, to be sold over a selling
season [0,T ]. Assume that the retailer can only place a single order prior to the start
of the season, and that the order will be received and become available for sale at
time 0. We consider the situation in which the retailer pre-announces two prices at

1 The WR regime has been examined in two different settings. First, Biyalogorsky and
Gerstner (2004) introduced the concept of “contingent pricing” in which a buyer has an option
to “reserve” a product at a low price that will obligate him to buy the product if the seller is un-
able to sell the product at a high price during a specified period. They showed that the contingent
pricing policy enables the seller to reduce the expected loss from price risks, and the contingent
pricing policy benefits the buyers and the seller. Second, Gallego et al. (2008) and Phillips (2005)
described the concept of “callable products” in the context of airline tickets. Essentially, a callable
product is an item sold to a self-selected buyer who willingly grants the seller the option to ‘call’
the item (demand its return) at a pre-specified recall price. They developed conditions under which
the seller can obtain a higher expected profit by offering callable airline tickets. The “callable”
concept is akin to the reservation option under the WR regime in the sense that the seller reserves
the right to ‘call’ a product and sell it to a different buyer at a higher price after the product has
been reserved or sold under the “callable” agreement.
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time 0: the premium price ph (i.e., the selling price throughout the entire season),
and the post-season clearance price pl . Clearly, ph ≥ pl . All units not sold at either
prices can be salvaged at s per unit. For each sales mechanism, the objective of the
retailer is to determine the optimal price path (p∗h, p∗l ) and the optimal order quantity
Q∗ so as to maximize his expected profit.

Customers arrive at the store according to a Poisson process with rate λ . Upon
arrival, each customer must take her own valuation as well as the announced price
path into consideration when making her purchase decision. To capture market het-
erogeneity, customers are classified into two classes according to their valuations.
Specifically, all customers that belong to class-0 have valuation of v0 and all cus-
tomers that belong to class-1 have valuation of v1, where v0 < v1. We assume that
the arrival process can be described as a combination of two independent Poisson
processes associated with class-0 and class-1 customers. Specifically, we let α0 be
the portion of class-0 customers in the market, and α1 = 1−α0 be the comple-
mentary portion of class-1 customers. Throughout the chapter, we assume the set
of parameters {α0,α1,v0,v1,λ ,T,c,s} is a common knowledge. Furthermore, for
i = 0,1 and t ∈ [0,T ], let Bi(t) and Ai(t) be the number of class-i customers to arrive
“before” and “after” time t so that Bi(t) and Ai(t) are independent Poisson random
variables with parameters αiλ t and αiλ (T − t), respectively.

To ensure some potential sales at the premium price and to enable the retailer
to facilitate effective price discrimination, it suffices to consider the case when the
premium price ph satisfies the inequality: v0 ≤ ph ≤ v1. Because pl ≤ ph, we need
to consider two settings: (i) v0 < pl ≤ ph ≤ v1 and (ii) pl ≤ v0 ≤ ph ≤ v1. The
first case corresponds to a setting in which the retailer posts prices that exclude
class-0 customers. Such strategy can be desirable especially when the market con-
sists primarily of high-valuation customers or when v1 is significantly larger than v0.
Obviously, if such exclusive-sales strategy is adopted, it is optimal for the retailer to
set pl = ph = v1 (i.e., no markdown). This way, class-1 customers will purchase the
product at v1, since they have no incentive to wait for the clearance price. Hence, re-
gardless of the inventory display format or operating regime, the retailer’s expected
profit can be expressed similar to that in the “newsvendor” problem. We denote the
retailer’s expected profit associated with the first case as π1 throughout this chapter.
The second case (i.e., when pl ≤ v0 ≤ ph ≤ v1) reflects a setting in which the retailer
chooses to target both customer classes. This case, which is considerably harder to
analyze, is treated extensively in the remainder of this chapter.

13.3 Two Inventory Display Formats

13.3.1 The “Display All” (DA) Format

In this section, we consider the case in which the retailer adopts the “Display All”
(DA) format, so that each arriving customer has perfect information about the actual
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inventory level. We begin by studying the customers’ subgame for any given price
path (ph, pl), and then proceed to analyzing the retailer’s problem.

13.3.1.1 Strategic Purchasing Under the Display All Format

Consider a given order quantity Q and a pre-announced price path (ph, pl) that satis-
fies pl ≤ v0 ≤ ph ≤ v1. Because v0 ≤ ph, all class-0 customers will wait for the clear-
ance price pl . For class-1, consider a customer who arrives at time t and observes k
units available for sale. Associated with the state (k, t), let H(k, t) be the perceived
fill rate that represents the likelihood of getting the product at the post-season clear-
ance price pl if he decides to wait and returns to the store at the end of the season.2

Hence, this customer will buy immediately at ph if H(k, t) ≤ (v1 − ph)/(v1 − pl);
otherwise, he will wait for the clearance price pl .3

As customers may follow any arbitrary purchasing policy in general, the assess-
ment of the fill rate by an individual customer is complex because it depends on
many factors: the inventory level, the customer’s arrival time, and the purchasing
behavior of all other customers. To determine the customer’s rational purchasing
behavior, we first propose a purchasing rule and then we show that all customers
will follow this purchasing rule in equilibrium. Let us begin by considering the fol-
lowing DA threshold purchasing rule that is based on a set of thresholds {t∗(k)}
such that for any class-1 customer who arrives at time t and observes k units avail-
able, he should (a) “buy now” at ph if t ≤ t∗(k); and (b) “wait” if t > t∗(k), where
the threshold t∗(k) = t(k) if 0 ≤ t(k) ≤ T , t∗(k) = 0 if t(k) < 0 and t∗(k) = T if
t(k) > T , and t(k) satisfies

H(k, t(k)) =
v1 − ph

v1 − pl
, (13.1)

and t(Q) < t(Q−1) < · · · < t(1).
In general, the probability H(k, t) associated with the DA threshold purchasing

rule is a complex function. However, the probability H(k, t) can be established for
the case when t = t(k). When t = t(k), the DA threshold purchasing rule implies
that, in order for a class-1 customer to observe k items available at time t(k), no
class-1 customers who arrived before t(k) would observe k and wait, and all class-1
customers who arrive after t(k) and observe k will wait. Therefore, all k units avail-
able at time t(k) will still be available for sale at the reduced price pl at time T .
This observation enables us to determine the probability H(k, t(k)). In preparation,
consider the case when there are k unsold units at time T . In this case, a class-1 cus-
tomer who arrives at time t(k), observes the actual inventory level k and decides to
return to the store at time T , will compete with two groups of returning customers:

2 The term H(k, t) also captures the possibility of stockout so that no items will be available at the
end of the season.
3 For ease of exposition, we assume that all customers who decide to wait will return at the end of
the season. Yin et al. (2008) analyze the case when the return rate is random.
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A0(0) (i.e., the total number of class-0 customers who will return to the store at time
T ) and A1(t(k)) (i.e., the number of class-1 customers who will return to the store
at time T ). Recall from above that A0(0) is a Poisson random variable with parame-
ter α0λT = (1−α1)λT , and A1(t(k)) is a Poisson random variable with parameter
α1λ (T − t(k)). Hence, we can conclude that A1(t(k))+ A0(0) is a Poisson random
variable with parameter α1λ (T − t(k))+α0λT .

Given A1(t(k)) + A0(0), a class-1 customer who arrives at time t(k), observes
k units are available and decides to return to the store at time T , will get the item
at the reduced price pl with probability 1 when A1(t(k))+ A0(0) ≤ k− 1 and with
probability k/[A1(t(k))+A0(0)+1] when A1(t(k))+A0 ≥ k. Combine this observa-
tion with the fact that A1(t(k))+A0(0) is a Poisson random variable with parameter
α1λ (T − t(k))+α0λT , we can express the probability H(k, t(k)) as

H(k, t(k)) =
k−1

∑
n=0

Prob(A1(t(k))+A0(0) = n) ·1

+
∞

∑
n=k

Prob(A1(t(k))+A0(0) = n) · k
n+1

. (13.2)

By using the above expression for the probability H(k, t(k)) and by showing that no
customers can obtain a higher expected surplus when deviating from the threshold
purchasing rule, Yin et al. (2009) show that

Theorem 1. Under the DA format, an “always-wait” strategy for class-0 customers
and a threshold-type policy (based on threshold values {t∗ (k)}) for class-1 cus-
tomers form the unique Nash equilibrium in the subgame among customers.

Proposition 1. The sequence {t∗ (k)} is unique and non-increasing in k. Also, the
values t∗ (k) are increasing in λ , v1, and pl, and decreasing in ph.

13.3.1.2 The Retailer’s Problem Under the Display All Format

Anticipating customers’ purchasing behavior in equilibrium as prescribed in The-
orem 1, the retailer needs to identify an order quantity Q and a pair of optimal
prices (ph, pl) that maximize his expected profit. We first consider the case when
pl ≤ v0 ≤ ph ≤ v1. As it turns out, the computation of the retailer’s expected payoff
for any given values of ph, pl , and Q is not straightforward. However, it can be com-
puted in a recursive manner as follows. The reader is referred to Yin and Tang (2006)
for details.

Under the DA threshold policy, the retailer’s revenue depends on the purchasing
decisions made by the class-1 customers who arrive during different time intervals
(t∗( j), t∗(i)] for 1 ≤ i < j ≤ Q+1, where t∗(Q+1) ≡ 0. To determine the retailer’s
revenue obtained within this time interval (t∗( j), t∗(i)] for 1 ≤ i < j ≤ Q+1, let

f ( j, i) = the retailer’s expected revenue to be obtained from t∗( j) to T

when i units are available for sale at time t∗( j).
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For 1 ≤ i ≤ Q, let f (i, i) be the retailer’s expected revenue to be obtained from t∗(i)
to T when i units are available for sale at time t∗(i). Since Q units are available
for sale at time t∗(Q+1) ≡ 0, the function f (Q+1,Q) corresponds to the retailer’s
expected revenue over the entire season. Hence, for any given values of ph, p�, and
Q, the retailer’s expected profit under the Display All format can be expressed as

πDA(Q, ph, p�) = f (Q+1,Q)− cQ. (13.3)

To determine the retailer’s expected profit πDA(Q, ph, p�) for any given Q, ph, and
pl , it suffices to focus on the function f ( j, i) for 1 ≤ i ≤ j ≤ Q+1.

In preparation, let N1( j, i) be the number of class-1 customers who arrives within
the time window (t∗( j), t∗(i)], where i < j. Consider the following three mutually
exclusive and exhaustive events associated with N1( j, i). First, when N1( j, i) = 0,
all i units available at time t∗( j) will still be available at time t∗(i). In this case,
f ( j, i) = f (i, i). Second, when N1( j, i) ≥ i, all i units available at time t∗( j) will be
sold out by time t∗(i). Hence, f ( j, i) = iph. Third, when 0 < N1( j, i) = k < i, out of
those i units available at time t∗( j), k of them will be sold at ph and (i−k) units will
be remained by time t∗(i). Therefore, f ( j, i) = kph + f (i, i− k). By considering the
probability associated with each of these three events, it is easy to show that

Proposition 2. For 1 ≤ i ≤ j ≤ Q+1, the recursive function f ( j, i) satisfy4:

1. When i < j, f ( j, i) = f (i, i)Prob(N1( j, i) = 0) + iph ∑∞
k=i Prob(N1( j, i) = k) +

∑i−1
k=1(kph + f (i, i− k))Prob(N1( j, i) = k).

2. When i = j, f (i, i) = ipl − (pl − s)∑i−1
k=0(i− k)Prob(A1(t∗(i))+A0(0) = k).

Since N1( j, i) is a Poisson random variable with parameter α1λ (t∗(i)− t∗( j)), we
can determine the function f ( j, i) and then utilize the recursive function f ( j, i) to
compute the retailer’s expected profit πDA(Q, ph, p�) given in (13.3) accordingly.

In order to identify the optimal strategy for the retailer under the regime pl ≤
v0 ≤ ph ≤ v1, we conduct a hierarchical search procedure that can be described as
follows. To reduce the search effort for determining the optimal premium price p∗h
and the optimal order quantity Q∗, we show that it is sufficient to limit the search
over certain pre-specified ranges. We sequentially examine a plausible set of values
of the initial inventory level Q. Given each level of Q, Yin et al. (2009) show that it
is optimal to prescribe the clearance price p∗l = v0.

Finally, in order to identify the overall optimal expected profit associated with
the DA format denoted hereafter by Π DA, we need to compare the retailer’s
optimal expected profit associated with the second setting (denoted by πDA =
max(Q,ph,pl){πDA(Q, ph, pl)}) with the retailer’s optimal expected profit associated
with the first setting (denoted by π1) when ph = pl = v1. Thus,

Π DA .= max
{

πDA,π1} .

4 We define ∑0
k=1 ≡ 0.
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13.3.2 The “Display One” (DO) Format

Under the “Display One” (DO) format, the retailer displays only a single unit on the
sales floor and keeps the rest in a “storeroom.” Upon a sale, the retailer immediately
retrieves a new unit from the storeroom and places it on display.5 For any given
price path (ph, pl) and order quantity Q, we first analyze the customer’s optimal
purchasing behavior and then we study the retailer’s problem.

13.3.2.1 Strategic Purchasing Under the Display One Format

For any given price path (ph, pl) that satisfies pl ≤ v0 ≤ ph ≤ v1, it is optimal for
all class-0 customers to wait for the clearance price pl . Similar to the DA format,
the purchasing decision of class-1 customers would depend on the perceived fill
rates. However, it is difficult to determine the perceived fill rate because, under the
DO format, each customer knows his arrival time t and product availability, but not
the actual inventory level k. From the customer’s perspective, the perceived fill rate
for any customer who arrives at time t is H̃ (t). When the actual inventory level is
not observable, we use the following approach to determine the perceived fill rate.6

Specifically, we assume that the initial order quantity Q is a common knowledge,7

and we define H̃Q (t) as the fill rate assessed by a customer who arrives at time
t when the initial inventory level is Q. Clearly, the fill rate H̃Q (t) depends on the
customers’ purchasing behavior in equilibrium. Yin et al. (2009) show that all the
class-1 customers will follow a single-threshold purchasing rule in equilibrium.

Theorem 2. For any purchasing policy to be sustained in equilibrium, it must pos-
sess the following properties: all class-0 customers must wait for the clearance price
pl; and all class-1 customers must follow a threshold policy. Specifically, all class-1
customers arriving prior to a threshold τ should purchase the product at ph and
all class-1 customers arriving after the threshold τ should wait for the clearance
price pl .

By considering the single-threshold purchasing policy τ as stated in Theorem 2,
we can use the same approach as in the DA case to determine the fill rate function
at the threshold point (i.e., H̃Q(τ)) as follows:

5 A situation like this is common in an e-tailing environment. For example, Lands’ End Overstocks’
Web site provides each arriving customer about product availability but not the actual inventory
level. In our analysis, we do not include the additional handling costs associated with the DO
format. These cost may include the labor cost for a staff member to retrieve and display a new item
every time a display item is sold. However, certain cost factors can be incorporated in the model.
See Yin et al. (2009) for details.
6 The reader is referred to Yin et al. (2009) for a detailed discussion of other approaches.
7 Several online retailers (especially liquidator such as PacificGeek.com) provide consumers with
their initial level of inventory for a particular item but do not update it during the selling season.
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H̃Q(τ) =
∑Q−1

m=0 Prob(B1(τ) = n) ·K(Q−m,τ)

∑Q−1
m=0 Prob(B1(τ) = n)

, (13.4)

where

K(Q−m,τ) =
Q−m−1

∑
n=0

Prob(A1(τ)+A0(0) = n)

+
∞

∑
n=Q−m

Prob(A1(τ)+A0(0) = n)
Q−m
n+1

.

Yin et al. (2009) show that the function H̃Q(τ) is continuous in τ; hence, there
always exists an equilibrium (say τQ) in the customers’ subgame. Specifically, there
are three potential equilibria: (i) τQ = T , if H̃Q(T ) < (v1− ph)/(v1− pl); (ii) τQ = 0,
if H̃Q(0) > (v1 − ph)/(v1 − pl); and (iii) any solution τQ (if exists) that satisfies the
equation:

H̃Q(τQ) = (v1 − ph)/(v1 − pl). (13.5)

The existence of multiple equilibria can be established via the following theorem.

Theorem 3. The function H̃Q (τ) satisfies the following properties:

(i) H̃1 (τ) is strictly increasing in τ .
(ii) For all Q ≥ 2, the function H̃Q (τ) is unimodal (quasi-convex) in τ . More-

over, the function H̃Q (τ) attains its unique minimum in the range (0,T ], and it is
strictly decreasing (increasing) for all values of τ below (above) that minimum
point.

(iii) For every Q ≥ 1 and τ ∈ [0,T ], H̃Q (τ) is decreasing in λ .

From the perspective of game theory, Theorem 3 is key to the characterization
of the equilibrium in the customers’ subgame. It implies that, when Q = 1, there is
always a unique equilibrium in the game, and that the threshold in equilibrium is
increasing in the ratio (v1 − ph)/(v1 − pl). However, when Q > 1, the unimodal-
ity implies that there could be as many as three equilibrium points in the game.
Specifically, this happens if

min
τ∈[0,T ]

H̃Q (τ) < (v1 − ph)/(v1 − pl) < min
{

H̃Q (0) , H̃Q (T )
}

,

in which case the three equilibrium points are τ = 0 as well as the only two so-
lutions to the equation H̃Q (τ) = (v1 − ph)/(v1 − pl). The theorem also implies
that if (v1 − ph)/(v1 − pl) > H̃Q (0), the game has a unique equilibrium strategy
that has a positive threshold (i.e., 0 < τ ≤ T ). Clearly, for (v1 − ph)/(v1 − pl) <
minτ∈[0,T ] H̃Q (τ), the unique equilibrium is τQ = 0 (i.e., everyone waits).

Given any game, a prediction of players’ behavior which is not a Nash equilib-
rium cannot be commonly believed. Hence, when we study a game that has only one
equilibrium, it must be the only rational prediction of players’ behavior. However,
when a game possesses multiple Nash equilibria, Schelling (1960) suggests that one
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should focus on an equilibrium that offers the highest possible payoffs to all play-
ers (i.e., a Pareto-dominant equilibrium that one can assume that all players will
focus on).8 Our next Proposition shows that the customers’ subgame has a unique
equilibrium, that is, Pareto dominant.

Proposition 3. Suppose that Q ≥ 2 and that (v1 − ph)/(v1 − pl) < H̃Q (0). Then,
among all possible existing equilibrium strategies, τQ = 0 strictly dominates the
others (if any) in terms of the expected surplus gained by class-1 customers.

Proposition 3 enables us to determine the single threshold τ∗Q as follows.

τ∗Q
.=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if

v1 − ph

v1 − pl
≤ H̃Q (0)

The unique positive
solution to Eq. (13.5)

if H̃Q (0) <
v1 − ph

v1 − pl
≤ max

{
H̃Q (0) , H̃Q (T )

}
T if

v1 − ph

v1 − pl
> max

{
H̃Q (0) , H̃Q (T )

} .

Proposition 4. Under the DO format, the threshold τ∗Q as defined above is increas-
ing in λ , v1 and pl, and decreasing in ph.

Notice that the single threshold τ∗Q possesses the same properties as those thresholds
{t∗(k)} for the DA case as in Proposition 1. By comparing τ∗Q for the DO case with
those thresholds {t∗(k)}, k = 1, . . . ,Q for the DA case, we have

Proposition 5. For any given inventory Q ≥ 1 and for any price path (ph, pl) that
satisfies pl ≤ v0 ≤ ph ≤ v1,

t∗ (Q) ≤ τ∗Q ≤ t∗ (1) .

Proposition 5 can be interpreted as follows. Consider a situation in which the
retailer is currently using a DA format that yields τ∗ (Q) > 0. Now, suppose that the
retailer contemplates moving to a DO format without changing the price path. One
of the concerns the retailer may have is that the DO format might lead all class-1
customers to wait. In other words, is it conceivable that τ∗Q will settle at the value 0?
Proposition 5 implies that this cannot happen because τ∗Q ≥ t∗ (Q) > 0.

Proposition 5 also suggests that by moving from a DA to DO while keeping the
price path unchanged, the volatility of the retailer’s profit under the DO model will
be lower than that of the DA model. This is because the DO model appears to be less
sensitive to the arrival time of the first class-1 customer than the DA model. To see
this, note that if no arrival occurs prior to t∗ (Q), then no purchase at premium price
will be made during the entire horizon under the DA model. However, purchases
could still occur under the DO model until τ∗Q ≥ t∗ (Q). Nonetheless, if sales are
made early enough, and so the inventory declines, purchases under the DA model
may still continue after τ∗Q: the time at which class-1 customers begin to wait under
the DO model.

8 For further discussion, see Section 1.2.4 in Fudenberg and Tirole (1991).
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13.3.2.2 The Retailer’s Problem Under the Display One Format

Anticipating the threshold policy τ∗Q adopted by all class-1 customers in equilibrium,
the retailer’s expected profit can be expressed as

πDO (Q, ph, pl) = −(c− s)Q+(pl − s) · (B0(T )+B1(T ))+(ph − pl) ·B1(τ∗Q).

The retailer’s expected profit πDO (Q, ph, pl) can be interpreted as follows. The first
term represents the loss incurred if no unit was sold during the season. By noting
that the minimum price for all customers who arrives before T is pl , the second
term represents the “minimum profit” level generated from these customers (each
of which has a margin of (pl − s)). Next, by observing that all customers who ar-
rive before τ∗Q will purchase the product at ph, the third term corresponds to the
“additional profit” generated from these customers (each of which has an additional
margin of (ph − pl)). Given πDO (Q, ph, pl), we use the same approach as in the DA
case to determine Π DO; i.e., the optimal expected profit associated with the DO. To
do so, we compare the retailer’s optimal expected profit associated with the second
setting (denoted by πDO = max(Q,ph,pl){πDO (Q, ph, pl)}) with the retailer’s optimal
expected profit associated with the first setting (denoted by π1) when ph = pl = v1.
Thus,

Π DO .= max
{

πDO,π1} .

13.3.3 Summary of Numerical Results

Given (ph, pl) and Q, we have shown that, under both DA and DO display formats,
all customers will follow a threshold-type purchasing rule in equilibrium. Antici-
pating this purchasing behavior, we have determined the retailer’s profit function so
that we can search for the optimal price path and the optimal order quantity for the
retailer. We now summarize our findings based on extensive numerical experiments
reported in Yin et al. (2009).

Our first set of numerical experiments is based on the case when the level of
inventory Q is exogenously given so that it is sufficient to focus on the retailer’s
expected revenue. We found that, by changing from the DA format to the DO for-
mat even without changing the price path, the retailer is always better off under the
DO format! This observation confirms our intuition that the DO format reduces the
strategic waiting behavior by increasing the perceived level of product scarcity. In-
terestingly, we observed that while the DO format could be beneficial, it is far away
from totally eliminating the strategic waiting behavior. Although the DO format in-
creases a retailer’s revenue slightly, it could generate a high impact on the retailer’s
profit.

Despite the DO display format yields a slightly higher profit, we have identified
the following conditions under which the DO format can yield a significantly higher
profit than the DA format. First, when the market is dominated by the high-valuation
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customers or when the store traffic is sufficiently high, the retailer should focus on
the high-valuation customers only by setting the discount price pl > v0. In this case,
the retailer can obtain a much higher revenue under the DO format than that of the
DA format. Second, when the store traffic is in the medium range, the DO format can
also yield a significant higher profit than the DA format when there is a significant
spread in valuations (v1 − v0).

In our second set of numerical experiments, we consider the case when the re-
tailer selects both inventory (or order quantity) and pricing so as to optimize his
expected profit. As articulated by Liu and van Ryzin (2008), the inventory level can
be used as a lever to influence the customers’ perception of product scarcity as well.
Based on our extensive numerical analysis, we have observed a complementarity
property between the optimal inventory and the optimal premium price: the optimal
premium price decreases (increases) as the optimal inventory increases (decreases)
when the retailer changes from the DA display format to the DO display format.
However, the optimal inventory and pricing choices can settle in equilibrium in a
couple of ways. In some cases, the retailer’s optimal action is to increase the order
quantity, but maintain the same premium price or decrease it. In other cases, the
retailer’s optimal action is to increase the premium price, along with a decrease or
no change in the order quantity.

13.4 Two Operating Regimes

This section deals with a different mechanism that involves an additional purchasing
option. Besides the two traditional options (buy now or wait), the retailer allows a
customer to place a (non-withdrawable) reservation during the season so that he is
obligated to purchase at the item at the reduced price when the reserved item remains
unsold at the end of the season. For ease of exposition, we focus on the case when
the inventory Q = 1 so that the DA and DO display formats are essentially the same.

13.4.1 No Reservation Regime

Consider the base case that we call the No Reservation (NR) regime. Under the NR
regime, each arriving customer can either purchase the product at ph or wait (i.e.,
join a lottery at the end of the season). Hence, the NR regime is equivalent to the
case when Q = 1 under the DA display format. As such, Theorem 1 continues to
hold. Specifically, this theorem stipulates that all class-0 customers will wait and
all class-1 customers will follow a single-threshold policy t∗(1) in equilibrium. For
notational convenience, we denote this threshold under the NR regime as tNR, where
tNR = t∗(1).

Anticipating the customer’s purchasing behavior in equilibrium, we can compute
the retailer’s expected profit and the customers’ expected surplus for any given ph
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and pl as follows. By noting that all class-1 customers follow the tNR threshold rule
in equilibrium, the retailer’s payoff depends on the number of customers arriving
before and after the threshold tNR (i.e., B1(tNR) and A1(tNR)). Consider the retailer’s
payoff associated with the following three mutually exclusive and exhaustive events.
Specifically, the retailer’s payoff is the salvage value s when B1(tNR)+ A1(tNR)+
B0(0)+ A0(0) = 0 (i.e., no customers arrive during the season), the reduced price
pl when B1(tNR) = 0 and A1(tNR)+ B0(0)+ A0(0) > 0 (i.e., no class-1 customers
arrive before tNR and at least one customer arrives during the season), and the regular
price ph when B1(tNR) > 0 (i.e., at least one class-1 customer arrives before tNR).
Coupling these observations with the facts that B1(t), A1(t),B0(t), and A0(t) are
independent Poisson random variables with parameters α1λ t, α1λ (T − t), α0λ t,
and α0λ (T − t), respectively, we can compute πNR

r , the retailer’s expected payoff
under the NR regime in equilibrium, where

πNR
r (ph, pl) = ph − e−α1λ tNR

(ph − pl)− e−λT (pl − s).

Also, in equilibrium, the customers earn a surplus of (v1 − ph) when B1(tNR) > 0,
and earn a surplus of (v1 − pl) when B1(tNR) = 0 and A1(tNR)+B0(0)+A0(0) > 0.
Hence, the customers’ expected surplus can be expressed as

πNR
c (ph, pl) = (v1 − ph)(1− e−λα1tNR

)+
[

v1
α1λ (T − tNR)
λ (T −αtNR)

+ v0

(
1− α1λ (T − tNR)

λ (T −α1tNR)

)
− pl

]
(e−λα1tNR − e−λT ).

13.4.2 With Reservation Regime

Under the With Reservation (WR) regime, each arriving customer has three options:
purchase the item (if available) at ph, wait, or reserve the product for purchase at
the clearance price pl . If the buyer reserves the product and if it remains unsold at
the end of the selling season, then he is obligated to purchase it at price pl (because
v1 − pl > 0, the customer willingly fulfills his obligation). If the buyer waits and
the product has not been sold or reserved by the end of the selling season, then
all interested buyers enter a lottery in which the winner purchases at the reduced
price pl .

To analyze the customer’s optimal purchasing behavior in equilibrium, we first
show that the reservation option dominates the option of waiting when the customers
are rational. First, as class-0 customers will never purchase at ph (because v0 < ph),
it is optimal for class-0 customers to reserve the product (if available) instead of
waiting. Next, consider a class-1 customer who arrives at time t and the item is
available and has not been reserved. If he chooses not to purchase the item at ph, he
either waits (joins the lottery) or reserves the item. Consider two scenarios: A1(t) = 0
and A1(t) > 0. In scenario 1, when no class-1 customers arrive after t, he purchases
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the item at pl for sure if he reserves the item and purchases the item with probability
less than or equal to 1 if he joins the lottery.9 In scenario 2, he will not get the item
if he reserves the item at time t because any rational class-1 customer arriving after
t will purchase the item at ph. However, if he joins the lottery at time t, he will not
get the item either because at least one of the rational class-1 customers arriving
after t, say, the last class-1 customer who arrives before T , will reserve the item. By
using this argument, one can prove that the reservation option dominates the option
of waiting . Hence, it is sufficient to conduct our analysis of the WR regime based
on two options: purchase the item at ph or reserve the item at pl .

Because all class-0 customers will reserve the product in equilibrium, we now
define a purchasing rule for class-1 customers based on a single threshold and then
show that this threshold policy is a unique Nash equilibrium for the customers’ sub-
game. Specifically, a class-1 customer arriving at time t is said to follow the “WR-
threshold” policy if he (a) purchases the product at ph whenever it has already been
reserved; (b) purchases the product at ph if t < tWR; and (c) reserves the product
if t ≥ tWR, where the threshold tWR is defined as the instant at which a customer
arriving at tWR is indifferent between purchasing the item at ph and reserving the
item at pl . To understand the underlying logic of the WR-threshold policy, consider
a class-1 customer arriving at time t. First, if the product was reserved earlier by
another customer, then this focal customer arriving at time t should purchase the
product at price ph and earn a surplus of (v1 − ph); otherwise, he will earn a surplus
of 0. Second, if the product is available for purchase or reservation at time t, then he
earns a surplus of (v1 − ph) if he immediately purchases the product at price ph. If
instead he reserves the product, then he obtains a surplus of (v1 − pl) if no class-1
customer arrives after time t and he obtains a surplus of 0 if one or more class-1
customers arrive after time t (because the next arriving class-1 customer will in
fact purchase the reserved product). Combining these observations with the fact that
e−α1λ (T−t) is the probability that no class-1 customer arrives after t, the threshold
tWR that equalizes these two surpluses satisfies

v1 − ph = e−α1λ (T−tWR )(v1 − p�). (13.6)

By considering (13.6), the WR threshold tWR satisfies the following:

tWR =

⎧⎨⎩T − 1
α1λ

ln
v1 − pl

v1 − ph
if α1 ≥ ĉ

0 if α1 < ĉ,
(13.7)

where

ĉ =
1

λT
ln

v1 − pl

v1 − ph
.

Notice that 0 ≤ ĉ ≤ 1 when (1− e−λT )/(λT ) ≤ (v1 − ph)/(v1 − pl), which holds
when T is reasonably large.

9 The winning probability is less than or equal to 1 because there could be other customers who
arrived before t and joined the lottery.
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By showing that no customer can obtain a higher surplus by deviating from the
threshold purchasing policy, Elmaghraby et al. (2009) establish the following result:

Proposition 6. Given ph and pl, all class-0 customers reserve the product and all
class-1 customers follow the WR-threshold policy in equilibrium. The threshold tWR

has the following properties: (a) tWR is increasing in λ ,v1, pl , and α1 and is de-
creasing in ph; and (b) there exists a critical value c with ĉ < c < 1 such that
tWR < tNR when α1 < c and tWR ≥ tNR when α1 ≥ c.

Proposition 6 indicates that as α1 increases, the purchasing window for class-1
will be longer. In addition, when α1 ≥ c, the purchasing window under the WR
regime is longer than of the NR regime. Therefore, the WR regime reduces the
strategic waiting behavior under the NR regime.

Computing the retailer’s expected payoff under the WR regime, denoted by
πWR

r , is slightly more difficult than that of the NR regime described in Section
13.4.1 due to one additional mutually exclusive and exhaustive event E, where
E ≡ {B1(tWR) = 0, A1(tWR) = 1, and A0(0) ≥ 0}. When the customers follow the
WR threshold and event E occurs, the retailer will earn ph if at least one customer
of class-0 arrives before the one arriving customer of class-1. This is because, under
the WR-threshold policy, the first arriving customer of class-0 will reserve and the
one arriving customer of class-1 will purchase the item at ph. Also, the retailer will
earn pl if no customers of class-0 arrive before the one arriving customer of class-1
because under the WR-threshold policy, the one arriving customer of class-1 will
reserve the item and all customers of class-0 who arrive after the one arriving cus-
tomer of class-1 will get nothing. Define u to be the conditional probability that no
customers of class-0 arrive before the class-1 customer arrives given that E occurs.
Because there is exactly one class-1 customer arriving between tWR and T , the distri-
bution of the arrival time t for this class-1 customer is uniformly distributed between
tWR and T . Combining this observation with the fact that the number of class-0 cus-
tomers arriving before t is a Poisson random variable with parameter (1−α1)λ t,
it follows that the retailer’s expected payoff for this event equals ph(1− u)+ plu,
where

u ≡
∫ T

tWR

e−α0λ t

T − tWR dt =
∫ T

tWR

e−(1−α1)λ t

T − tWR dt =
e−(1−α1)λ tWR − e−(1−α1)λT

(1−α1)λ (T − tWR)
.

Combining the retailer’s expected payoff for this event E along with the other three
events presented in Section 13.4.1, we can use the same approach as before to show
that the retailer’s expected payoff πWR

r and the customers’ expected surplus πWR
c

satisfy

πWR
r = ph − (pl − s)e−λT − (ph − pl)e−α1λT (1+u ·α1λ (T − tWR)),

πWR
c = (1− e−α1λT −uα1λ (T − tWR)e−α1λT )(v1 − ph)

+ uα1λ (T − tWR)e−α1λT (v1 − pl)+(e−α1λT − e−λT )(v0 − pl).
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13.4.3 Comparison of Payoffs

When α0 = 0 (i.e., when the market consists of only class-1 customers), Elmaghraby
et al. (2009) show that, for any given values of ph and p�, the retailer’s expected pay-
off is higher under the WR regime, whereas the customers expected payoff is larger
under the NR regime. With two classes of customers, they obtain the following
result:

Proposition 7. Suppose α0 > 0 and α1 > 0. Then there exists a critical value c′ such
that the retailer’s expected payoff under the WR regime is greater than the expected
payoff under the NR regime when α1 ≥ c′: πWR

r ≥ πNR
r when α1 ≥ c′. Conversely,

there is a critical number c′′ such that the customers’ expected payoff is greater
under the NR regime when α1 ≥ c′′: πWR

c ≤ πNR
c when α1 ≥ c′′.

Proposition 7 asserts that the retailer obtains a higher expected payoff and the
customers obtain a lower expected surplus under the WR regime when α1 is suf-
ficiently large. We speculate the opposite is true when α1 is sufficiently small. For
example, if most Filene’s Basement’s shoppers are bargain hunters with the low
valuation (i.e., α1 is sufficiently small), then Proposition 7 suggests that the NR
regime is more profitable for the retailer, which is consistent with the actual practice
at the Filene’s Basement. Hence, when choosing between the NR regime and the
WR regime, it is important for the retailer to gain a clear understanding about the
distribution of customer valuation.

13.4.4 Summary of Numerical Results

Anticipating the customers’ purchasing behavior in equilibrium under the two op-
erating regimes, the retailer needs to determine the optimal prices ph and pl to
maximize his expected profits πNR

r (ph, pl) and πWR
r (ph, pl). Because there are no

closed-form expressions for the optimal prices, Elmaghraby et al. (2009) conduct
a numerical study to compare the retailer’s optimal expected profits and the cus-
tomers’ optimal expected surpluses under both regimes. Specifically, they consider
the case when the arrival rate is price dependent: λ (ph, pl) = α0−aph +b(ph− pl).
Essentially, this functional form captures the increase in store traffic as a result of
the pre-announced pricing strategy because one can interpret the term b(ph − pl) as
representing the increase in arrival rate due to the pre-announced markdown price
pl , where b represents customers’ sensitivity toward the markdown price. Their nu-
merical result indicates that, when there is a single class of customers with valu-
ation v1 ≥ ph, the WR regime can lead to a win–win situation for the retailer and
the customers when b is sufficiently small. Also, their result suggests that, when
there are two classes of customers, both the market composition, i.e., (α0,α1), and
the customer’s price sensitivity, i.e., b, have major impacts on the retailer’s opti-
mal expected profit and the customers’ optimal expected surplus. (See Elmaghraby
et al. (2009) for details.)
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13.5 Conclusions

In this chapter, we have considered two add-on sales mechanisms that are intended
to reduce the strategic waiting behavior. The first sales mechanism deals with the
way inventory information is conveyed to customers. Specifically, we have pre-
sented two types of inventory display formats under which the retailer can either
display all (DA) available units to the customers or display one (DO) unit at a time.
As such, customers have perfect (imperfect) information about the actual inventory
level under the DA (DO) display format. We have analyzed customers’ strategic
purchasing behavior in equilibrium. Then, in anticipation of such behavior, we have
determined the optimal ordering and pricing decisions for maximizing the retailer’s
expected profit. Based on an extensive numerical study, we have shown that, for
any initial order quantity, the retailer’s optimal regular price and expected profit are
higher under the DO format. When the retailer can optimally set the initial order
quantity, we have found that a change from DA to DO would never lead to a si-
multaneous decline in inventory and pricing and consequentially never lowers the
retailer’s expected profits. We have also characterized the conditions under which
the DO format performs best relative to the DA format. The second mechanism deals
with the case when a retailer allows customers to “reserve” an item at the clearance
price during the selling season. If a customer reserves an item and the reserved item
remains unsold at the end of the season, then this customer has the right to pur-
chase the reserved item at the clearance price. When customers are strategic, we
have shown that the customers will be worse off when the retailer offers the option
to reserve an item. While not without its limitations, we hope the models presented
in this chapter can serve as a building block for examining other issues arising from
the strategic purchasing behavior.

References

Aviv Y, Pazgal A (2008) Optimal pricing of seasonal products in the presence of forward-looking
consumers. Manufacturing & Service Operations Management 10(3):339–359

Bell DE, Starr D (1994) Filene’s basement. Harvard Business School Case 9-594-018
Biyalogorsky E, Gerstner E (2004) Note: Contingent pricing to reduce price risks. Marketing

Science 23(1):146–155
Cachon GP, Swinney R (2007) Purchasing, pricing, and quick response in the presence of strategic

consumers. University of Pennsylvania, working paper
Elmaghraby W, Gulcu A, Keskinocak P (2008) Designing optimal pre-announced markdowns in

the presence of rational customers with multi-unit demands. Manufacturing & Service Opera-
tions Management 10(4):126–148

Elmaghraby W, Lippman SA, Tang CS, Yin R (2009) Will more purchasing options benefit cus-
tomers? Production and Operations Management. Forthcoming

Fisher ML (2006) Rocket science retailing. INFORMS Annual Meeting, Pittsburgh, Nov 5–8
Fudenberg D, Tirole J (1991) Game theory. MIT Press, Cambridge, MA
Gallego G, Kou SG, Phillips R (2008) Revenue management of callable products. Management

Science 54(3):550–564



370 Yossi Aviv, Christopher S. Tang, and Rui Yin

Jerath K, Netessine S, Veeraraghavan SK (2007) Last-minute selling and opaque selling. University
of Pennsylvania, working paper

Levin Y, McGill J, Nediak M (2006) Optimal dynamic pricing of perishable items by a monopolist
facing strategic consumers. Queen’s University, Kingston, Ontario, Canada, working paper

Liu Q, van Ryzin G (2008) Strategic capacity rationing to induce early purchases. Management
Science 54(6):1115–1131

McWilliams G (2004) Minding the store: Analyzing customers, Best Buy decides not all are
welcome. Wall Street Journal. Nov 8, A1

Ovchinnikov A, Milner JM (2005) Strategic response to wait-or-buy: Revenue management
through last minute deals in the presence of customer leaning. University of Toronto,
working paper

Pashigian BP, Bowen B (1991) Why are products sold on sale? explanations of pricing regularities.
Quarterly Journal of Economics, 106:1015–1038

Phillips RL (2005) Pricing and revenue optimization. Stanford University Press, Palo Alto, USA
Schelling TC (1960) The strategy of conflict. Harvard University Press, Cambridge, MA
Smith SA, Achabal DD (1998) Clearance Pricing and Inventory Policies for Retail Chains. Man-

agement Science 44(3): 285–300
Su X (2007) Inter-temporal pricing with strategic customer behavior. Management Science

53(5):726–741
Su X, Zhang F (2009) Strategic customer behavior, commitment and supply chain performance.

Management Science. Forthcoming
Yin R, Tang CS (2006) The implications of customer purchasing behavior and in-store display

formats. UCLA Anderson School of Management, unpublished manuscript
Yin R, Aviv Y, Pazgal A, Tang CS (2009) Optimal markdown pricing: implications of inventory

display formats in the presence of strategic customers. Management Science. Forthcoming.



Chapter 14
The Impact of Strategic Consumer Behavior
on the Value of Operational Flexibility

Gérard P. Cachon and Robert Swinney

Abstract Increasingly sophisticated consumers have learned to anticipate future
price reductions and forego purchasing products until such markdowns occur. Such
forward-looking or strategic behavior on the part of consumers can have a signifi-
cant impact on retail margins by shifting a large number of sales from higher, “full”
prices to lower, “clearance” prices. Some firms, however, have become adept at
dealing with the strategic consumer problem by implementing various forms of
operational flexibility (for example, investing in faster supply chains capable of
rapidly responding to changing demand conditions). A firm famous for this strat-
egy is the Spanish fashion retailer Zara. In this chapter, we explore the strategic
consumer purchasing phenomenon, and in particular address how the Zara model of
operational flexibility impacts consumer behavior (and, conversely, how consumer
behavior impacts the value of operational flexibility). We examine in detail the con-
sequences of volume flexibility – the ability of a firm to adjust production or procure-
ment levels to meet stochastic demand – and demonstrate that this type of flexibility
can be highly effective at reducing the extent of strategic behavior. Indeed, we show
that in many cases, the value of volume flexibility is greater when consumers are
strategic than when they are not. We also show that volume flexibility is always
socially optimal (i.e., it increases the total welfare of the firm and consumers) and
may also improve consumer welfare (i.e., it can be a Pareto improving strategy). We
also discuss the impact of other types of operational flexibility – design flexibility,
in which a product’s design can be modified to suit changing consumer tastes, and
mix flexibility, in which production capacity can be dynamically allocated among
several similar product variants – and argue that these types of flexibility are also
effective at mitigating strategic customer purchasing behavior.
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14.1 Introduction

Accustomed to rigid seasonality and trained by years of predictable sale patterns,
consumers have come to expect frequent and significant price reductions in the
retail sector. As a result, many retailers suffer from eroded margins generated by
customers intentionally waiting for markdowns before purchasing (Hurlbut 2004).
Consumers expect deep end-of-season clearance sales, and firms, anxious to clear
space for newer products, often oblige them. There is, however, at least one firm
that has achieved success at managing and even preventing strategic customer pur-
chasing behavior: the Spanish fashion retailer Zara. There are two key components
to their strategy. First, they produce in small batches with fast replenishment lead
times to their stores. Second, their initial price for an item at the start of a selling
season is not outrageously high. Consequently, they rarely need to markdown mer-
chandise (because they do not stock too much inventory) and when they do offer a
discount, it is not particularly deep (because their initial price is reasonable). These
factors combine to train Zara’s customers to avoid the “wait for the discount” strat-
egy – if a customer sees an item that she likes, she should purchase it now either
because it will be sold at the same price later on or it will not even be available.
As a result, compared to its chief competitors, consumers are much more likely to
purchase an item at the full price at Zara (Ghemawat and Nueno 2003).

To achieve its operational flexibility, Zara produces locally (e.g., Spain, East-
ern Europe or North Africa). As a result, Zara’s leadtimes are typically less than
5 weeks for new designs and 2 weeks for the replenishment of existing designs
(Ghemawat and Nueno 2003). This contrasts with their competitors who can incur
average design and production leadtimes of 9 months. But Zara’s operational flexi-
bility comes with a cost (from, for example, higher labor costs and expedited ship-
ping). Combined with Zara’s lower initial prices, one might naturally be concerned
that the company enjoys smaller gross margins per unit. However, as illustrated by
Figure 14.1, Zara makes up for this deficit with volume: it typically sells a much
higher percentage of its inventory at its full price than other retailers, which can
result in superior overall financial performance.

The goal of this chapter is to study the Zara model to better understand its suc-
cess. We begin with a model of consumer behavior first developed by Su and Zhang
(2008). As in their model, we consider a single retailer who sets an initial price and
makes a production decision before the realization of stochastic consumer demand.
Each consumer decides whether to purchase at the initial (i.e., full) price or to wait
for the discount period. The discount period offers a better deal (i.e., a lower price),
but there may not be any inventory left to purchase. Hence, the scarcity of product
at the discount price may make a consumer purchase at the full price.

We depart from Su and Zhang (2008) by introducing operational flexibility. With
operational flexibility the firm can make a second production decision after observ-
ing demand, a system that is often called quick response (see, e.g., Fisher and Ra-
man 1996). Of course, this second production opportunity is more expensive. How-
ever, in the absence of strategic consumer behavior, this operational flexibility is
well known to benefit firms by allowing them to better match their supply to their
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Fig. 14.1 Pricing patterns at Zara versus competing specialty retailers. Adapted from Grichnik
et al. 2008.

demand. We want to assess the value of operational flexibility in the presence of
strategic consumer behavior. In particular, relative to the value of matching supply
with demand, does operational flexibility provide more or less value when con-
sumers are strategic?

We find that operational flexibility is generally more valuable (but not always)
when the retailer must sell to strategic consumers. Put another way, even though
operational flexibility is known to increase profits considerably with non-strategic
consumers (i.e., consumers that never wait for the discount no matter what prices
are chosen) we show that it can be even more valuable when the firm must sell to
strategic consumers, often substantially more valuable. Cachon and Swinney (2009)
arrive at a similar conclusion, but with a significantly different model. Thus, here we
provide further support for the conclusion that the presence of strategic consumers
enhances the value of operational flexibility.

The remainder of this chapter is organized as follows. In Section 14.2 we describe
our approach to modeling production flexibility, while in Section 14.3 we discuss
modeling details of strategic customer purchasing. We then solve models of non-
flexible and flexible supply chains with strategic customers in Section 14.4, and
discuss the incremental value of flexibility in Section 14.5. Section 14.6 presents
a discussion of complications and extensions to the basic setup, and Section 14.7
concludes the chapter with a discussion of the results.

14.2 Modeling Traditional and Flexible Production

We refer to our base model with non-flexible production as the traditional replen-
ishment model. It is also known as a newsvendor model – a canonical model in
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operations management that is well suited to capture the supply – demand mismatch
issues inherent in fashion retailing. This model consists of a single firm selling a sin-
gle product with the following key features:

1. Constant Selling Price During the Season: The firm sells the product at a con-
stant (full) price p throughout a short selling season.

2. Demand Uncertainty: The size of the market D (the number of consumers) is
stochastic and initially unknown to the firm. The firm has prior beliefs that the
market size follows distribution F (·).

3. Inventory Production or Procurement: Prior to learning the size of the market,
the firm orders q units that will arrive, ready for sale, by the start of the selling
season. Each unit in this order costs c, where c < p, and so the total purchase
cost is cq.

4. Supply – Demand Mismatches and End-of-Season Salvaging: The firm sells
the minimum of demand D and inventory q at the full price p, and all remaining
inventory is salvaged at the markdown price s < c at the end of the season.

We assume that a large salvage market is available at the end of the season, in
which the firm may sell all remaining units at an exogenous price s < c per unit.
While such a market is commonly assumed in newsvendor models without further
justification, in our model it may be useful to think of this market as representing
a second consumer segment (beyond the initial D consumers), e.g., a large number
of “bargain hunting” customers who possess very low valuations for the product.
Cachon and Swinney (2009) also incorporate a bargain hunting segment into their
model.

This traditional replenishment model mimics the production environment of the
majority of Zara’s competitors: long design and production leadtimes lead to in-
ventory commitment far in advance of the selling season, when precise demand is
still quite uncertain. As typically presented, the newsvendor model consists of an
exogenous selling price p. However, we make this price endogenous – the firm sets
the price p at the start of the selling season (after demand information is revealed
but before any sales occur – see Figure 14.2). The newsvendor model with pricing
is explored by, for example, Dada and Petruzzi (1999). The nature of the pricing
decision in our context is discussed further in the next section.

Selling Season 

The firm makes an
initial procurement
at marginal cost c.

The firm sets
the selling

price p

All remaining
inventory

salvaged for s
per unit. 

Demand uncertainty (D ) is resolved.
If the firm has a flexible supply

system, an additional procurement
at cost cf > c  is allowed.

Production/Procurement Phase 

Customers arrive and make
purchasing decisions.

Fig. 14.2 The sequence of events.
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In contrast to the traditional replenishment system, a flexible replenishment
model represents the system employed by Zara: greatly reduced leadtimes resulting
in some inventory decisions being made very near (or during) the selling season,
when demand information is far more accurate. Typically, the model employed to
analyze this sort of production flexibility is a quick response or reactive capacity
model (see, e.g., Cachon and Terwiesch 2005). This model is identical to the tra-
ditional replenishment model described above, with one exception: an additional
procurement opportunity is available after precise market size (D) is revealed to the
firm. As with the firm’s initial order, units in this second order arrive by the start of
the selling season. Because this second order is placed much closer to the start of
the selling season, each unit in this second order costs the firm c f , where it is natural
to assume that c f > c – it is cheaper to order units in advance of learning demand.1

(The f subscript denotes the “flexible” replenishment model.) Furthermore, like the
first order, there is no capacity constraint imposed on the quantity in this second
order. The sequence of events in the two models is presented in Figure 14.2.

The quick response framework frequently assumes that demand uncertainty is
completely eliminated by the time of the second procurement – a simplification,
to be sure, but one that leads to clean analytical results. In reality, the firm may
receive a series of forecast updates with each reducing (but not entirely eradicating)
error in the forecasting process. For the sake of simplicity, we adopt the traditional
assumption that uncertainty is completely resolved.2

14.3 Modeling Strategic Consumer Purchasing

To address the issue of strategic customer purchasing behavior, we modify the
classic newsvendor and quick response settings by enriching the consumer de-
mand model. Suppose that consumers are risk-neutral surplus maximizers and have
homogeneous valuations for the product equal to v (constant over the entire sea-
son).3 When customers arrive at the firm, they observe the selling price p and
whether the product is currently in-stock. We consider two types of customers:
myopic (or non-strategic) customers and forward-looking (or strategic) customers.

1 We describe this model as if the second order is placed before the season starts but after some
demand information is learned. In some cases, demand information is learned only at the start
of the selling season and so the second order can only arrive at some point during the season.
As long as initial season sales are highly informative, and the lead time to receive the second
order is sufficiently short, our model can approximately represent that situation as well – the first
order covers sales at the start of the season and the second order should arrive before inventory is
depleted.
2 We suspect that our results continue to hold even in a more complex setting with imperfect
demand signals. In particular, even in that setting the optimal second-order quantity does not
depend on the full price – it is a function of c, c f , and s. Thus, our analysis would not require
significant modification.
3 We model risk-neutral consumers for simplicity. Risk-averse consumers behave similarly; see
Liu and van Ryzin (2008).
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Myopic consumers do not consider purchasing the product at the end of the sea-
son at the markdown price, s, possibly because they no longer value the product
at the end of the season or because they do not anticipate the price reduction. My-
opic consumers have zero reservation utility and hence purchase if their surplus is
non-negative; in other words, myopic customers purchase at price p if the product
is in-stock and if

v− p ≥ 0. (14.1)

Strategic customers, on the other hand, are forward-looking in the sense that they
anticipate the opportunity to purchase the product at the sale price s.4 (Implicit in
this statement is the assumption that consumers are capable of obtaining a unit at
the salvage price – i.e., excess inventory is cleared in a way that makes it available to
the general population, as with end-of-season clearances at fashion retailers, rather
than alternative methods of salvaging such as material recycling or industrial dis-
posal.) Thus, these customers compare the surplus of an immediate purchase at the
full price (v− p) with the expected surplus of waiting for the sale. The value of wait-
ing depends on the discount price, s, as well as the chance there will be inventory
remaining to purchase at the discount price. Let φ be a consumer’s expectation for
the probability of being able to procure a unit at the clearance price (more on the na-
ture of this expectation will be discussed momentarily). If consumers do not obtain
the product at the sale price, they receive zero surplus. Expected surplus from wait-
ing for the sale is thus φ(v− s). We assume that strategic customers purchase at the
full price if they are indifferent between the two options; hence, strategic customers
purchase at price p if the product is in-stock and

v− p ≥ φ(v− s). (14.2)

Given these assumptions, with strategic consumers there are only two candidates
for equilibrium purchasing behavior: either all consumers purchase early (at the
higher price) or all purchase late (at the salvage price).5 Because the salvage price
is less than the production cost, it follows that an equilibrium with all consumers
strategically waiting results in market failure – the firm does not produce at all.
For the remainder of the chapter, we focus on the more interesting case in which
positive production occurs, i.e., equilibria in which all strategic consumers attempt
to purchase at the full price. This implies that (14.2) is satisfied in any relevant

4 A wide variety of recent models address operational issues related to such forward-looking
strategic consumers, including: intertemporal pricing with no capacity constraints in Besanko and
Winston (1990), pricing policies with finite inventory in Aviv and Pazgal (2008), pricing policies
for consumable goods with voluntary customer stockpiling in Su (2007), product display formats
in Yin et al. (2007), and restaurant reservations in Alexandrov and Lariviere (2006), in addition to
the previously cited papers.
5 All consumers must have the same expectation, φ , value, v, and opportuntity to purchase early at
the full price, p, or late at the discount price, s. Therefore either they all prefer to purchase early,
v− p ≥ φ(v− s), or they all prefer to wait. Here, we assume that a consumer indifferent between
the two options chooses to purchase early. If the indifferent consumer chooses a mixed strategy,
then the firm could shave its full price by an infinitesimal amount to make consumers strictly prefer
purchasing early while not reducing revenue by a material amount.
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equilibrium, and φ is the consumer belief of the probability of obtaining a unit at
price s conditional on all other consumers purchasing at price p (i.e., φ(v− s) is the
expected surplus resulting from a unilateral deviation from equilibrium by a single
consumer).

Now we turn to the issue of how the φ expectation is set. Assuming arbitrary
beliefs can lead to problems of consistency; consumers could expect φ to be the
probability of obtaining a unit at the sale price but the firm may act in a way that
leads to an entirely different probability of being able to purchase at the markdown
price. While it may not always be desirable to rule out inconsistency on axiomatic
grounds – inconsistent beliefs may be an entirely real phenomenon with important
implications – such irregularities do not appear to be the norm in the sort of pre-
dictable, seasonal industries (such as fashion apparel) that provide our prime moti-
vation.

It is natural, then, to seek models of customer purchasing in which beliefs are
consistent with reality: in other words, to specify that consumer expectations of firm
behavior are rational. The idea of rational expectations – discussed in the context of
financial markets by Muth (1961) – were first formally integrated in a game theoretic
framework by Stokey (1981) and Bulow (1982) to explain the strategic consumer
purchasing problem. In short, rational expectations imply that (a) consumers have
expectations of future firm decisions, and (b) these expectations are rational and
consistent with actual firm decisions. Such correct anticipation of firm actions may
be thought of as the outcome of a series of repeated interactions in which consumers
learn about firm policies, for instance, with regard to inventory availability (my size
is never in-stock at the end of the season) or sale pricing patterns (this store never has
deep discounts). Our analysis in this chapter – and a great deal of the literature on
strategic consumer purchasing – makes use of the rational expectations paradigm.

We note here that while the term rational expectations is used to highlight the fact
that consumers correctly anticipate firm actions and hence behave optimally given
firm actions, this concept is inherent in the definition of a Nash equilibrium with full
information. For example, in a two-player game a Nash equilibrium represents a pair
of actions such that each player expects the other player to choose the equilibrium
actions and in equilibrium it is optimal for each person to choose their equilibrium
actions given their expectations. The same applies in our game – the firm chooses
an optimal q given its belief regarding consumer actions and consumers choose
optimal actions (buy now or later) given their expectations. The subtle difference
has to do with what is assumed regarding what the players know. Suppose we were
to define the game between the firm and consumers such that the firm chooses q
and consumers choose whether to purchase at the full price or to wait for the dis-
count. Let G(q) be the probability that inventory is available for a consumer to
purchase in the discount period, conditional that all other consumers purchase at the
full price. Furthermore, assume consumers know the G(q) function. A consumer’s
surplus from waiting to purchase at the discount price, assuming all other consumers
purchase at the full price, is G(q)(v− s). The consumer purchases at the full price if
v− p ≥ G(q)(v−s). Note, to evaluate an equilibrium the consumer does not need to
observe the actual q choice. Instead, the consumer infers q will be chosen because
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it is optimal for the firm given the consumers’ equilibrium actions. In other words,
consumers and the firm choose their actions simultaneously. In our model we merely
replace G(q) with φ , i.e., we assume consumers have an expectation for the proba-
bility inventory is available in the discount period without necessarily knowing the
mapping between the firm’s action, q, and that probability. To maintain consistency,
we then require that in equilibrium G(q) = φ . Therefore, the equilibrium in these
two games is identical even if they make different assumptions regarding what con-
sumers know. Put another way, the rational expectations terminology is technically
unnecessary but we invoke this terminology for ease of exposition. (In addition, one
may argue that it makes less stringent assumptions regarding consumer knowledge
and analytical capabilities.)

Returning to our model, recall that rational expectations require φ is the actual
probability that a strategic customer successfully obtains a unit if she waits for the
sale. To calculate φ , we must provide some sort of rationing rule that specifies how
inventory is allocated should demand exceed supply at the salvage price. We em-
ploy the same rule as Su and Zhang (2008): strategic consumers are “first in line”
at the salvage price, followed by customers from the infinite pool that makes up
the salvage market. This is an appealing choice for several reasons. First, customers
who arrive early in the season and intentionally choose to delay purchasing until a
price reduction may closely monitor the price of the product and “pounce” once a
sale occurs. Second, if we consider the infinite salvage pool to be a large group of
consumers with lower valuations (i.e., with valuations equal to s), then this alloca-
tion rule maximizes consumer welfare. Third, the rule is particularly amenable to
analysis, yielding closed form equilibrium solutions to the game.6

Given this allocation rule, what is the resulting probability that a strategic con-
sumer obtains a unit at price s if she unilaterally deviates from an equilibrium in
which all consumers purchase at price p? Such a consumer will receive a unit at the
lower price if and only if the firm has enough inventory (q) to satisfy all demands
(D). In other words, the probability is Pr(q ≥ D) = F(q). To connect this result with
our earlier discussion, F(q) = G(q), but as already mentioned, in a rational expec-
tations framework, consumers need not be aware of the actual demand distribution
function, F(q).

Having described our firm and consumer models, we may now proceed to analyze
the game between consumers and the firm in each of the two systems: traditional
replenishment and flexible replenishment.

14.4 Equilibrium Analysis

This section evaluates the equilibrium choices and profits for the four models con-
structed from the two types of replenishment modes (traditional or flexible) and the
two types of consumers (myopic or strategic). (We do not consider models with a

6 Alternative allocation mechanisms do exist and do not appear to substantially alter qualitative
results: see Cachon and Swinney (2009) and Swinney (2008) for random rationing rules.
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mixture of consumer types.) To help keep track of notation, we use a “t” subscript to
denote “traditional replenishment” (i.e., a single order), analogous to c f , an “ f ” sub-
script to denote “flexible replenishment” (i.e., a second-order opportunity), an “m”
subscript to denote “myopic consumers” , and an “s” subscript to denote “strate-
gic consumers”. For example, pm f will be the firm’s optimal full price with myopic
consumer and flexible replenishment.

14.4.1 Traditional Replenishment

With myopic consumers, the traditional model resembles a newsvendor model with
endogenous pricing. With strategic consumers, the traditional model mirrors the
model in Su and Zhang (2008). We replicate some of their results here to ease the
comparison with the flexible replenishment model in the next section.

We first observe that given the sequence of events depicted in Figure 14.2, and
because price is directly observed by consumers, the game is essentially one of two
stages. In the first stage, the firm is a Stackelberg leader in price, and in the second-
stage consumers and the firm play a simultaneous game in inventory and purchasing.
Exploiting its status as a price leader, the firm sets the price that yields the great-
est expected profit; since we focus on equilibria in which all strategic consumers
purchase at the full price, this is clearly the greatest price such that either condition
(14.1) or (14.2) holds, depending on whether consumers are myopic or strategic,
respectively. In other words, the optimal price with myopic consumers is

pmt = v, (14.3)

while the optimal price with strategic customers is

pst = v−φ(v− s). (14.4)

Note that pst ≤ pmt , i.e., the firm must choose a more moderate full price when
selling to strategic consumers because they will purchase early only if they enjoy a
positive surplus with the full price.7

We are concerned only with equilibria in which all strategic customers purchase
at the full price, so the firm’s expected profit as a function of inventory (q) and the
full price (p) is

πt (q) = E
[
pmin(q,D)− cq+ s(q−D)+

]
,

7 Recall, we assume that strategic consumers earn value v no matter when they make a purchase.
Therefore, because the discount price, s, is lower than the full price, p, the strategic consumer
strictly prefers to purchase at the discount price if the item is available. She will purchase at the
full price when she earns some surplus from doing so and there is a sufficiently high risk that the
item will not be available in the discount period.
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where the expectation operator, E[·], is taken over demand D, and (x)+ = max(x,0).
This expression provides the profit of the firm in both the myopic and strategic
customer cases, with the only difference between the two being the optimal sell-
ing prices given by (14.3) and (14.4). For fixed p, this function is concave in q and
possesses a unique optimum. Thus, we may immediately deduce that a firm max-
imizing profit in the inventory–purchasing subgame invests in an inventory level q
that satisfies

1−F (q) =
c− s
p− s

. (14.5)

Combining (14.3) with (14.5) yields the optimal inventory level with myopic con-
sumers, qmt , which satisfies

1−F (qmt) =
c− s
v− s

. (14.6)

In the case of strategic consumers, we note that a Nash equilibrium with rational
expectations to the game between the firm and strategic consumers satisfies:

1. The firm prices optimally, pst = v−φ(v− s);
2. The firm chooses an inventory level that maximizes expected profit, 1−F (qst) =

(c− s)/(p− s);
3. Consumer expectations are rational, φ = F (qst) .

Combining these three conditions, we see that the unique equilibrium inventory
and price satisfy

1−F (qst) =
√

c− s
v− s

and pst = s+
√

(v− s)(c− s). (14.7)

14.4.2 Flexible Replenishment

In this section, we address the case of flexible replenishment. Recall that the flexible
replenishment model is identical to the traditional replenishment model analyzed in
the previous section, with the following exception: after learning perfect demand
information (i.e., market size D), the firm has the opportunity to procure additional
inventory before the season begins at a higher marginal cost c f > c. As in the pre-
vious section, q represents the quantity purchased or produced in the early stocking
opportunity.

It remains true that the optimal prices with myopic and strategic consumers sat-
isfy (14.3) and (14.4), respectively: acting as a Stackelberg leader in the price game,
the firm sets the greatest possible price supported by the equilibrium. The optimal
procurement at the second-order point is clear: if, after learning D, the firm has suf-
ficient inventory to cover all demands (q > D), then the firm orders no additional
inventory. On the other hand, if the firm has insufficient inventory to cover demand
(q < D), then the firm orders precisely enough supply to perfectly match demand
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(D− q) as long as c f ≤ p, otherwise the firm again orders no additional inventory.
Consequently, the firm’s expected profit function – with either myopic or strategic
consumers – is

π f (q) = E
[
pmin(q,D)− cq+ s(q−D)+ +

(
p− c f

)
(D−q)+

]
.

Or, rearranging the terms of this expression,

π f (q) = E
[
pD− cq− c f (D−q)+ + s(q−D)+

]
.

As in the traditional replenishment case, the profit function is concave in q and
possesses a unique optimal inventory quantity, given by the solution q to

1−F (q) =
c− s
c f − s

. (14.8)

Note that this is independent of the full price p – consequently, the initial inventory
procurement is independent of whether consumers are strategic or myopic. This is
our first important result concerning the value of a flexible replenishment system.
Flexibility simplifies the firm’s inventory planning duties by proving to be robust to
the presence of strategic customers: misjudging or ignoring the extent of strategic
customer behavior can be far less costly in a flexible replenishment system.

From (14.8), we immediately deduce that with myopic customers, the optimal
inventory level and price in a flexible replenishment system satisfy

1−F
(
qm f

)
=

c− s
c f − s

,

and pm f = v, respectively. Recall that with strategic consumers, a Nash equilibrium
satisfies:

1. The firm prices optimally, ps f = v−φ(v− s);
2. The firm chooses an inventory level that maximizes expected profit, 1−F

(
qs f

)
=

(c− s)/(c f − s);
3. Consumer expectations are rational, φ = F

(
qs f

)
.

The second condition becomes trivial in the flexible replenishment system, as the
initial inventory procurement is independent of the full price. Thus, combining the
first and third conditions yields an equilibrium full price

ps f = v− c f − c

c f − s
(v− s) . (14.9)

Again, the second term in (14.9) indicates that there is a “strategic consumer
penalty.” If consumers are non-strategic, the firm merely charges v; due to forward-
looking behavior, the firm must reduce the price to induce early purchasing.

Note that ps f is decreasing in c f – as c f increases, the firm purchases more in ad-
vance and so the firm needs to offer a lower full price to induce strategic consumers
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to purchase at the full price. In fact, when c f = s +
√

(c− s)(v− s), it follows that
pst = ps f = c f . For any greater c f , the firm finds itself in a situation in which the
second procurement opportunity is of no value because the full price, ps f , is then
less than the cost of procuring additional units. Therefore, in the strategic consumer
model the firm uses flexible replenishments only when c f < s+

√
(c− s)(v− s) and

does not use flexible replenishments when

s+
√

(c− s)(v− s) ≤ c f ≤ v.

14.5 The Value of Flexibility

Armed with equilibrium results for both the traditional and flexible replenishment
systems, we may now address the value of flexibility – that is, the increase (or de-
crease) in expected profit that a firm experiences when moving from a traditional to
a flexible replenishment system. When discussing the value of flexibility, we have
two choices for the unit of analysis: the absolute or the relative value. The absolute
value refers to the incremental change in firm profit with either myopic consumers,
Δm, or strategic consumers, Δs:

Δm = πm f −πmt ,

Δs = πs f −πst .

The relative value of flexibility, δ , on the other hand, refers to the percentage change
in firm profit:

δm =
πm f −πmt

πmt
,

δs =
πs f −πst

πst
.

Both measures can be important to a firm exploring the value of flexibility. In this
section, we address both quantities, beginning with the relative value. Of primary
interest are the following key questions: (1) How does the value of flexibility change
when consumers are strategic, rather than myopic? and (2) What are the drivers of
this change in value?

14.5.1 The Relative Value of Flexibility

To analyze the relative value of flexibility, we examine the behavior δm and δs as a
function of c f – the cost of a flexible replenishment. Focusing on the marginal cost
of flexibility provides a natural starting point for the analysis; we intuitively expect
that, either with myopic or strategic consumers, if c f is very high, flexibility is not
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very valuable, while if c f is very low, flexibility should hold more value. It is far
less intuitive how the difference in relative value, δs −δm, changes with c f .

From differentiation of δm we obtain

dδm

dc f
=

1
πmt

dπm f

dc f
< 0 and

dδs

dc f
=

1
πst

dπs f

dc f
< 0,

where the inequality follows from

dπm f

dc f
< 0 and

dπs f

dc f
< 0.

As we would expect, the relative value of flexibility decreases as the cost of flexibil-
ity increases – a natural result. Comparing this expression with strategic and myopic
consumers, we have

dδs

dc f
− dδm

dc f
=

1
πst

dπs f

dc f
− 1

πmt

dπm f

dc f
.

Note that πst ≤ πmt implies
1

πst
≥ 1

πmt
> 0.

Furthermore, from the Envelope theorem,

dπm f

dc f
= −c f − c

c f − s
< 0,

dπs f

dc f
= −c f − c

c f − s
−μ (v− s)

c− s(
c f − s

)2 <
dπm f

dc f
.

Therefore, the relative value of flexibility decreases faster with strategic consumers
than with myopic consumers:

dδs

dc f
− dδm

dc f
< 0. (14.10)

The difference in the relative value of flexibility is

δs −δm =
(

πs f

πst
−1

)
−
(

πm f

πmt
−1

)
.

Now consider a particular point, c f = c, in which case πs f = πm f . Hence, for c f = c,
the difference in the relative value of flexibility can be written as

δs −δm =
(

πm f

πst
−1

)
−
(

πm f

πmt
−1

)
= πm f

(
1

πst
− 1

πmt

)
> 0.

Therefore, when c f = c, the relative value of flexibility is greater with strategic
consumers than with myopic consumers (δs > δm), but (14.10) indicates that δs
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decreases faster with c f than δm does. This raises the possibility that for a large
enough c f , δs decreases to the point that it is less than δm. In fact, this occurs.
Recall that flexible replenishment provides no value with strategic consumers when
c f ≥ s +

√
(c− s)(v− s). In that regime δs = 0. On the other hand, δm > 0 for all

c f < v. Consequently, there exists some ĉ f < s+
√

(c− s)(v− s) such that δs > δm

for all c f ∈
[
c, ĉ f

)
and δs ≤ δm for all c f ∈ [ĉ f ,v]. In words, as long as the cost of the

second replenishment is not too high (less than ĉ f ), flexible replenishment provides
greater value with strategic consumers than it does with myopic consumers.

This result is depicted graphically in Figure 14.3. As the figure demonstrates,
the relative value of flexibility with myopic consumers is rather flat, whereas the
value with strategic consumers is strongly dependent on c f . When c f is small (in
the figure, c = 3) then flexibility can offer an enormous advantage with strategic
consumers, resulting in a profit increase of over 250% in the example.

The potentially large increase in the relative value of flexibility under strategic
customer behavior has significant implications for how a firm evaluates a flexible
supply chain. It is well established in the literature that flexible replenishment can
provide significant value when consumers are myopic (see, e.g., Fisher and Raman
1996, Eppen and Iyer 1997, Iyer and Bergen 1997, and Fisher et al. 2001). Here,
we find that flexible replenishment can provide substantially more value when con-
sumers are strategic as long as the marginal cost of the second replenishment is not
too high, c f < ĉ f . However, if the marginal cost is high (ĉ f ≤ c f ), then flexible re-
plenishment provides little value in a market with strategic consumers. This occurs
because strategic consumers require a lower full price than myopic consumers to in-
duce them to purchase at the full price. If the flexible replenishment system cannot
deliver goods at a cost lower than the full price, it provides no value. Referring to
Figure 14.1, if the special retailer sells to myopic consumers at a price of $100, then

0%
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150%

200%

250%

3 3.5 4 4.5 5 5.5 6
Per-Unit Cost of a Flexible Replenishment

Relative Value of Flexibility

Relative Value (Strategic Consumers)

Relative Value (Myopic Consumers)

Fig. 14.3 The relative value of flexibility as a function of the unit cost of a flexible replenishment
(c f ). In this example, demand is normally distributed with mean 50 and standard deviation 10, and
v = 10, c = 3, and s = 1.
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flexible replenishment is valuable to that retailer for any c f < $100. In contrast, Zara
sells to strategic consumers for $85, so its flexible replenishment system provides
value only if c f < $85.

14.5.2 The Absolute Value of Flexibility

Despite the fact that we have shown that flexibility possesses greater relative value
if consumers are strategic and c f is not too high, it need not be the case that the anal-
ogous result holds with absolute values. To see this, suppose πst = 10 and πs f = 20,
yielding a relative value of 100% and an absolute value of 10 under strategic be-
havior. If, for example, πmt = 100 and πm f = 150, then with myopic customers the
relative value is 50% (less than with strategic customers) while the absolute value
is 50 (more than with strategic customers). Hence, in the following subsection we
explicitly address the absolute value of flexibility.

To calculate this value, note that in general, the firm’s expected profit equals
the expected maximum profit (i.e., the profit if the firm produces exactly at the
demand level and incurs no lost sales or excess inventory) minus the expected mis-
match cost, i.e., the opportunity cost of lost sales (p− c per unit) plus the cost of
inventory that must be sold at the discount price (c− s per unit) (see Cachon and
Terwiesch 2005). Let MΩ be the expected mismatch cost in one of our four models,
Ω ∈ {mt,m f ,st,s f} :

MΩ = (c− s)E(qΩ −D)+ +
{

(pΩ − c)E(D−qΩ )+ Ω ∈ {mt,st}(
min{c f , pΩ}− c

)
E(D−qΩ )+ Ω ∈ {m f ,s f} ,

where the first term is the cost of discounted inventory and the second term is the
cost of lost sales with traditional replenishment and the cost of satisfying demand
above the initial order quantity with flexible replenishment. Thus, expected profit in
model Ω may be written as

πΩ = (pΩ − c)E(D)−MΩ .

Using the expression for profit, the absolute value of flexibility with myopic con-
sumers (Δm) is

Δm =
(

pm f − c
)
E(D)−Mm f − (pmt − c)E(D)+Mmt

=
(

pm f − pmt
)
E(D)−Mm f +Mmt

= Mmt −Mm f ,

where the latter follows from pm f = pmt = v. The absolute value of flexible replen-
ishment with strategic consumers is

Δs =
(

ps f − c
)
E(D)−Ms f − (pst − c)E(D)+Mst

=
(

ps f − pst
)
E(D)−Ms f +Mst .
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The difference in the absolute values of flexibility can now be expressed as

Δs −Δm =
(

ps f − pst
)
E(D)−Ms f +Mst −Mmt +Mm f

=
(

ps f − pst
)
E(D)+Mst −Mmt ,

where the latter follows from qs f = qm f , which in turn implies Ms f = Mm f . The
first term reflects the use of flexible replenishment to increase its per-unit revenue:
ps f ≥ pst . This occurs because flexible replenishment lowers the initial-order quan-
tity, thereby lowering the availability of inventory in the discount period, thereby
allowing the firm to charge a higher full price (assuming ps f ≥ c f ). The second
term reflects the differences in mismatch costs with traditional replenishment.

Consider the difference in the absolute value of flexibility when c f = c. In this
case ps f = v = pmt , which implies

Δs −Δm = (pmt − pst)E(D)+Mst −Mmt

= πmt −πst > 0.

Hence, the absolute value of flexibility is greater with strategic consumers when
flexibility is cheap (when c f = c) and therefore highly effective. Furthermore,

d (Δs −Δm)
dc f

=
d ps f

dc f
E(D) < 0,

and so the difference in absolute value of flexibility decreases as c f increases.
Thus, we have established the same pattern as with the relative value of flexi-
bility: Δs is initially greater than Δm (for c f = c) but decreases as flexibility be-
comes costlier. For large enough c f , we have established that Δs = 0 (because
then c f > ps f ) while Δm remains positive. Thus, for some value c̄ f we have
Δs > Δm for all c f < c̄ f and otherwise Δs ≤ Δm. This pattern is illustrated in Figure
14.4. In this example the absolute value of flexibility can be substantially greater
with strategic consumers than with myopic consumers, upward of 10 times more
valuable.

Figures 14.3 and 14.4 also illustrate that relative and absolute values need not
correspond. For example, for the range 5 < c f < 5.25 we see that the relative value
of flexibility is greater with strategic customers but the absolute value of flexibility is
greater with myopic consumers. Nevertheless, in the range c f < 5, both the relative
and absolute values of flexibility are greater with strategic consumers.

To summarize, we find that not only does flexibility often provide greater rela-
tive value when consumers are strategic, it can also provide greater absolute value.
This in an important result for firms considering to implement a flexible sup-
ply system: if their customer base is strategic, then flexibility can provide enor-
mous additional benefits over the myopic customer case, giving greater justifi-
cation to spending the high fixed costs associated with implementing a flexible
system.
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Fig. 14.4 The absolute value of flexibility as a function of the unit cost of a flexible replenishment
(c f ). In this example, demand is normally distributed with mean 50 and standard deviation 10, and
v = 10, c = 3, and s = 1.

14.5.3 Drivers of the Value of Flexibility

What causes the potentially large increase in the value – both relative and
absolute – of flexibility under strategic customer behavior? The key lies in two
distinct consequences of flexibility: matching supply with demand and reducing
strategic behavior.

The value to the firm of better matching supply to demand is present regardless
of the type of customer population it faces. Flexibility in our model eliminates lost
sales (assuming c f ≤ p). Thus, the firm uses flexibility to lower its initial purchase
quantity, which reduces the cost of excess inventory that needs to be marked down
to the salvage price. However, the full price with strategic consumers is lower than
the full price with myopic consumers. Hence, the value of eliminating lost sales
is actually lower with strategic consumers than with myopic consumers. In other
words, the value of better matching supply with demand is higher when the full
price is higher. If only this effect were present, we would conclude that flexibility is
more valuable with myopic consumers than with strategic consumers. But there is a
second effect.

The full price with myopic consumers is independent of whether the firm pos-
sesses flexibility or not, i.e., pmt = pm f = v. However, with strategic consumers,
adding flexibility allows the firm to increase the full price, pst < ps f , because flexi-
bility reduces the initial order quantity, qs f < qst . With less initial inventory, the firm
is less likely to sell any inventory at the salvage price and so strategic consumers are
willing to pay a higher full price. Therefore, adding operational flexibility allows the
firm to earn a higher price on all sales. This effect can dominate the former – while
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flexibility helps to reduce lost sales and excess inventory, it can be more valuable to
use flexibility to increase revenue on all regular season sales. Our numerical studies
indicate that not only can this effect dominate, it tends to dominate by a considerable
amount over a large range of parameters. Therefore, while we cannot conclude that
operational flexibility is always more valuable with strategic consumers, we find
that operational flexibility is generally more valuable.

14.5.4 Consumer and Social Welfare

Flexibility results in higher prices when consumers are strategic, so an immediate
concern is that operational flexibility results in decreased consumer (and possibly
social) welfare. We define consumer welfare to be the total surplus of the customer
population, i.e., the surplus of each individual who successfully obtains a unit times
the expected number of sales. Observe that with myopic consumers, the firm extracts
all surplus in either replenishment system, resulting in zero consumer surplus with
either replenishment system.

With strategic consumers, however, this is not the case. The surplus of an individ-
ual consumer who obtains a unit is v− p, where p is the full price. In the traditional
replenishment model, the resulting total equilibrium consumer surplus is(

v− s−
√

(v− s)(c− s)
)

E(min(qst ,D)) .

In this system, consumers pay a low price (so individual surplus is high) but not
all consumers are served. In the flexible replenishment model (again, assuming
c f ≤ ps f ), total surplus is

c f − c

c f − s
(v− s)E(D) .

With flexibility, consumers pay a higher price (so individual surplus is lower) but
all consumers are ultimately served. Therefore, it is not clear whether flexibility
increases or decreases consumer surplus.

Let η = E(min(qst ,D))/E(D) , which is the fill rate (fraction of demand that is
fulfilled) with traditional replenishment. We can now write an expression for when
consumer surplus is greater with flexible replenishment than with traditional replen-
ishment:

c f − c

c f − s
≥ η

(
1−

√
(c− s)/(v− s)

)
.

The left-hand side is increasing in c f . If we let c f equal its maximum feasible value,
c f = s+

√
(c− s)(v− s), then the above expression can be written as(

v− s−
√

(v− s)(c− s)
)
≥ η

(
v− s−

√
(v− s)(c− s)

)
,
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Fig. 14.5 Expected consumer surplus as a function of c f . In this example, demand is normally
distributed with mean 50 and standard deviation 10, and v = 10, c = 3, and s = 1.

which always holds (given that η < 1). Therefore, as long as c f is sufficiently large,
flexibility increases consumer surplus when selling to strategic consumers. This pat-
tern is illustrated in Figure 14.5.

Also of interest is the impact of flexibility on social welfare, i.e., the sum of firm
and consumer surplus. Combining consumer welfare with expected firm profit, we
see that social welfare in the traditional system is

Wst = E
[
vmin(qst ,D)− cqst + s(qst −D)+

]
,

while social welfare in the flexible system is

Ws f = E

[
vmin

(
qs f ,D

)− cqs f +
(
v− c f

)(
D−qs f

)+ + s
(
qs f −D

)+
]
.

Note that if c f = c,

Ws f = E [(v− c)D] ≥ E
[
vmin(qst ,D)− cqst + s(qst −D)+

]
= Wst .

Alternatively, if c f = v, qst = qs f and

Ws f = E

[
vmin

(
qs f ,D

)− cqs f + s
(
qs f −D

)+
]

= Wst .

Since dWs f /dc f < 0, it follows that Ws f ≥ Wst , i.e., flexible replenishment is so-
cially optimal for all viable c f . Thus, flexibility never decreases social welfare –
see Figure 14.6. We conclude that while flexibility may not always be in the best
interests of the individual consumer, it is socially optimal (and may even be Pareto
optimal).
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Fig. 14.6 The value of flexibility (in terms of social welfare) as a function of c f . In this example,
demand is normally distributed with mean 50 and standard deviation 10, and v = 10, c = 3, and
s = 1.

14.6 Extensions and Complications

In this section, we discuss the impact of a variety of extensions and complications
to the simple model analyzed thus far. In each of the three extensions, just as in the
preceding model, the interaction of operational flexibility with strategic customer
behavior is addressed. The first considers the impact of dynamic markdown pricing
(rather than static pricing as we assume in our model) and consumers with heteroge-
neous valuations. The second explores the consequences of consumers that do not
know (but learn) their valuations over time. The third discusses alternative forms of
operational flexibility and considers their impact on strategic customer behavior.

14.6.1 Dynamic Sale Pricing and Consumer Heterogeneity

There are two key simplifications present in our model: the end-of-season clearance
price is exogenously determined and ex ante fixed, and consumers are homogeneous
both in the degree to which they are strategic (i.e., they are either all myopic or all
strategic) and in their valuation for the good.

Suppose the firm is allowed at the end of the season to choose to keep the full
price, p, or to lower the price to s to clear inventory in the infinite salvage market.
This does not, in the context of homogeneous consumers, alter the analysis because
all strategic consumers purchase early in equilibrium and so the firm always low-
ers the price to s at the end of the season to clear inventory. Hence, a consumer
unilaterally deviating from equilibrium finds the product for sale at price s during
the clearance period, precisely as she would in our static pricing model.
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Imagine, however, that consumers are heterogeneous in their valuation for the
product, possessing, for example, uniform valuations in a fixed interval. Because
consumers are no longer homogeneous, it need not be the case that all consumers
purchase at the full price in a viable equilibrium; indeed, it can be shown that in equi-
librium, consumers with high valuations purchase early while consumers with low
valuations purchase later. If the firm is free to set a clearance price, the equilibrium
division of consumers according to valuations will induce the firm to price skim – set
a high price for higher value customers that purchase earlier, and set a lower price
for lower value customers who purchase later. If a large “bargain hunting” customer
segment exists (e.g., the infinite salvage market) then the firm may still lower the
price to s if inventory during the clearance phase is significant (i.e., if demand during
the full price phase is low). Thus, a dynamic clearance price is a function of stochas-
tic demand and the equilibrium number of consumers who purchase at the full price.
When making their purchasing decision, consumers must consider all possible fu-
ture sale prices to calculate their expected surplus of waiting until the clearance sale.

What is the impact of this richer model on our results concerning supply chain
flexibility? Because flexibility lowers the amount of excess inventory, it decreases
the chances that a firm will have to set a deep discount to clear inventory during
the end-of-season sale. It also ensures that the firm has adequate inventory to cover
demand if the product is a “hit” and prices are high. Flexibility thus has two effects:
it reduces supply – demand mismatch (just as in our simple model) and it increases
the clearance price. By increasing the expected clearance price, the firm is able to
encourage more consumers to buy at the full price; why wait for a sale if the savings
are not very significant? In turn, this allows the firm to set a higher full price and
reap greater demand at the full price. The net result is that flexibility may possess
even greater value when consumers have heterogenous valuations and sale prices
are endogenously determined – in addition to the benefits discussed in our preceding
analysis, the firm gains additional value from higher prices at the end of the season.

We might also imagine other models of consumer heterogeneity, for instance het-
erogeneous rates of consumption (e.g., different discount rates) or heterogeneous
degrees of foresight (some myopic consumers mixed in with strategic consumers).
The intuition in such models is similar: with dynamic pricing, flexibility helps to
raise the average clearance price and thus encourage more consumers to purchase at
the full price – see Cachon and Swinney (2009). This, in turn, enhances the value of
flexibility beyond that which we derived in our simple model. We therefore conjec-
ture that the benefits of flexibility in helping a firm cope with strategic behavior are
robust to complications involving heterogeneous customer populations and various
pricing schemes.

14.6.2 Uncertain Consumer Valuations and Learning

In the model analyzed in Sections 14.2–14.5, consumers are fully informed concern-
ing their valuations at the start of the game. While this may be true for generic goods
or products with relatively simple attributes that are easily analyzed (e.g., clothing),
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consumers may not initially know how much they value some products. Examples
include innovative or complex products, products with long life cycles reliant on
secondary goods of uncertain quality (e.g., video game systems), and even experi-
ence goods. With many of these products, information about value is disseminated
over time to the customer population as, for example, expert product reviews are
published, secondary goods are released, and consumers experience the product’s
features via units purchased by friends or in-store demonstrations. See Swinney
(2008) for an analysis of this problem, the key results of which we summarize here.

With products of this type, consumers have an added benefit to delaying a pur-
chase: to gather more information about the product’s value to them. In such a set-
ting, it is possible for a flexible supply chain to actually decrease a firm’s profit
(even in the absence of fixed costs to implement a flexible system) – by operating
with an agile supply system capable of meeting future demand, the firm increases
the overall availability of the product, thereby minimizing rationing risk and in-
creasing consumer incentives to learn as much information about product value as
possible before purchasing. This effect can be called demand shifting – by increas-
ing availability, the firm causes customers to purchase later.

When this occurs, overall demand to the firm can actually decrease. This is be-
cause in selling to consumers before valuations are learned – also known as advance
selling, see Xie and Shugan (2001) – the firm inevitably induces some consumers
to purchase the product who ultimately will not value it. If customers are encour-
aged to delay their purchase, some of these “false positives” are eliminated from the
firm’s demand, thereby decreasing profit.

There are cases, however, in which shifting demand (and subsequently reducing
advance selling) benefits the firm. If, for instance, prices increase over time (e.g.,
due to promotional discounts during new product introduction) or if unsatisfied cus-
tomers are allowed to return products for full refunds, selling to many customers
early (before value is fully learned) can actually harm the firm; in these cases, sup-
ply chain flexibility – which reduces the extent of advance selling – helps the firm by
increasing the number of sales at a higher, later price or by decreasing the number
of false positive purchases resulting in costly product returns.

These results imply that flexibility can provide both positive and negative values
when a firm sells a product for which consumers have uncertain valuations. Thus,
firms must carefully consider the nature of their product and the ease with which
consumers can judge value when choosing their own supply chain structure. A key
implication of this result is that it is critical for the operations side of the firm to
work closely with marketing, design, and development groups to properly ascertain
the characteristics of the consumer population and their interaction with the product.

14.6.3 Alternative Forms of Flexibility

This discussion has focused on a particular form of supply chain flexibility: the abil-
ity to rapidly procure additional inventory to meet demand, also known as volume
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flexibility or quick response. There are, however, other forms of operational flexi-
bility that may be analyzed, two of which we discuss here: design flexibility and mix
flexibility (also know as postponement).

Design flexibility refers to the ability to modify or create new product designs
close to the start of the selling season in order to capture evolving and uncertain
consumer trends. This type of flexibility is a crucial part of Zara’s philosophy –
by vastly reducing both design and production leadtimes, Zara can create styles that
are more suited to consumer tastes and produce inventory that more closely matches
its demand. Essentially, such practices serve to increase overall consumer value for
a product, thereby increasing consumer willingness to pay. By giving consumers
more valuable products, strategic behavior is lessened; customers are less willing
to wait for a sale and risk a stock-out if they highly value the item. Furthermore,
design flexibility and supply flexibility are complimentary in nature: higher value
products increases the value of matching supply and demand, and less supply –
demand mismatch increases the benefit of raising consumer value for a product.
Thus, the combination of both types of flexibility – often referred to as a fast fashion
system by Zara – results in a superadditive increase in firm profit. See Cachon and
Swinney (2008) for more on the effect of design flexibility on strategic customer
behavior.

Mix flexibility or postponement refers to the ability of a firm to dynamically allo-
cate capacity between two or more different products. Suppose, for example, a firm
sells to a market of fixed size N but with uncertain aggregate preferences between
two product variants: a fraction β prefers variant 1 while a complementary fraction
1−β prefers variant 2, where β is ex ante stochastic to the firm. Consumers know
their private preference between variants, and just as in our previous models, the
product is sold at a high price during the selling season and cleared at a low price at
the end of the season. A firm without mix flexibility must make inventory decisions
prior to the revelation of market preferences (β ), essentially solving two (corre-
lated) newsvendor problems, resulting in similar consumer incentives and strategic
purchasing to the model we analyzed in this chapter.

A firm with mix flexibility, however, may pre-manufacture a common base prod-
uct, while postponing final assembly into specific variants until after β is learned. If
the firm has mix flexibility, then it will clearly be optimal to produce exactly N units
of the base product and, after learning β , allocate final assembly such that the sup-
ply of each variant perfectly matches demand. Consequently, no sales occur at the
salvage price, and there is no chance for consumers to obtain a unit at the clearance
sale.8 Strategic behavior is hence completely eliminated. While this simple model
provides overly sharp results, the basic intuition supports our conclusions that oper-
ational flexibility in general benefits the firm by reducing strategic behavior.

8 To be precise, this depends on whether consumers are atomistic. If consumers are atomistic (i.e.,
they do not consider the impact that their own behavior has on quantities like availability), then
there is zero availability at the clearance price if they delay purchasing and the firm produces
exactly to the level of demand. If consumers do consider their own impact on product availability,
then this may not be true – however, in this case, the firm may react by reducing inventory by some
small amount (e.g., one unit) thereby restoring zero availability at the clearance price.
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14.7 Conclusions

In this chapter, we show how techniques for generating operational flexibility – long
thought to be valuable solely by virtue of matching supply with uncertain demand
– can have an enormous impact on customer purchasing behavior and pricing. This
impact is almost always beneficial to the firm, and indeed can result in the value of
flexibility being substantially greater when consumers are strategic relative to when
they are non-strategic (i.e., myopic).

These results help to refine and strengthen our understanding of how “fast fash-
ion” firms such as Zara have achieved so much success in an industry facing an in-
creasingly savvy and strategic customer base. By producing inventory much closer
to the start of the selling season, Zara is able to generate and utilize more precise
demand forecasts than its competitors. Exploiting the increased precision of these
demand forecasts, Zara is able to reduce the likelihood of drastically overproduc-
ing a given product, which in turn reduces the chance and magnitude of a potential
markdown at the end of the season. In short, Zara exploits its “fashion on demand”
capabilities to limit the extent of season-ending sales, thereby lowering the incentive
for consumers to strategically delay purchases.

The key innovation in this work is to study the interaction between a firm’s op-
erational strategy and consumer behavior. This analysis leads to new insights into
the value of operational flexibility as well as to insights on a firm’s optimal pricing
strategy. We feel there are many other opportunities to further explore and develop
models that refine the dependency between consumer behavior and operations, not
just in procurement and supply chain management but in all aspects of operations.
By addressing such models, our hope is that a more complete picture of the impact
of operating practices emerges, one that addresses not just firms and their suppliers,
but also another crucial member of the supply chain – consumers.
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Chapter 15
Capacity Rationing with Strategic Customers

Qian Liu and Garrett van Ryzin

Abstract Dynamic pricing offers the potential to increase revenues. At the same
time, varying prices creates an incentive for customers to strategize over the timing
of their purchases. How should a firm account for customer strategic behavior and
profitably influence such behavior when making pricing and capacity decisions?
One approach is to create rationing risk by deliberately understocking products.
Then the resulting threat of shortages creates an incentive for customers to purchase
early at higher prices. We develop a stylized capacity rationing model in which
customers have heterogeneous valuations for the firm’s product and face declining
prices over two periods. Customers behave strategically and weigh the payoff of
immediate purchases against the expected payoff of delaying their purchases. Via its
capacity choice, the firm is able to influence the fill rate and hence the rationing risk
faced by customers. We analyze the firm’s optimal capacity choice in two different
scenarios. In one case, customers can perfectly anticipate fill rates; in the other case,
customers do not have fully rational expectations and they learn about availability
through experience. We investigate, for both cases, when the rationing is optimal;
if it is optimal, how it is affected by market characteristics and risk aversion of
customers, etc. We also relate the results for each case together when the firm’s
discount factor approaches 1.
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15.1 Introduction

Dynamic pricing is a common strategy for increasing revenues in response to un-
certain and fluctuating market conditions: manufacturers will maintain full prices
for the best-selling products in their line while discounting slow sellers; retailers
change prices over time for seasonal products like apparel and sporting goods; air-
lines and hotels tactically change prices based on seasonal patterns and the real-
time status of bookings on hand; and so on. Increasingly, such dynamic pricing
is supported by sophisticated revenue management systems that use forecasting
and optimization models to determine the most effective prices to use at each
point in time. Yet faced with dynamic prices, savvy customers accelerate or post-
pone their purchases to game firms’ dynamic pricing policies. Such behavior is
pervasive. To give one example, executives at Macy’s, America’s largest opera-
tor of department stores, have lamented to us that the department store industry’s
habit of running frequent promotional sales has “trained our customers to only buy
on sale.”

What are the implications of such strategic customer behavior? For one, strate-
gic behavior violates the assumptions of most revenue management systems, which
model demand at each point in time as only a function of the price charged at
that time; that is, customers are assumed to be myopic and buy if and only if the
current price is less than their reservation price. This myopic customer assump-
tion is quite reasonable when customers make impulse purchases, as in the case of
small-ticket consumable goods such as food, beverages. However, for high-value
purchases and/or more durable goods, customers are more likely to take the entire
price path into account when making a purchase decision and try to get lower prices
by strategizing over the timing of their purchases. This is after all, prima facie, how
most of us shop for airline tickets, apparel, and large-ticket purchases like vacations,
cars, and computers.

How should firms account for such strategic customer behavior when they make
pricing and capacity decisions? Ideally, they should try to profitably influence such
behavior by using appropriate pricing and capacity strategies. To thwart strategic
purchase behavior, firms may attempt to create rationing risk by deliberately under-
stocking products; the resulting threat of shortages creates an incentive for cus-
tomers to purchase early at higher prices. Such strategies have been adopted by
industrial practitioners. For example, Zara, one of the largest Spanish apparel retail-
ers, is known for deliberately setting low stock levels for its products to encourage
customers to buy when they first see products they like, rather than waiting for
sales (Ferdows et al. 2005). Industry analysts estimate that unsold products at Zara
represent less than 10% of stock, compared with the industry average of almost 20%
as a result of this strategy (Ferdows et al. 2005).

As discussed by Cachon and Swinney earlier in this volume, there are many
ways to profitably influence customer purchase behavior. Our particular focus in
this chapter is on capacity decisions. We consider a model in which customers have
heterogeneous valuations for the firm’s product and face declining prices over a
two-period selling season (the “full price” and “markdown” price seasons). Prices
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for each period are preannounced and the firm is assumed to be able to commit to
the price path. Customers are strategic and weigh the payoff of immediate purchase
against the expected payoff of postponing their purchase in the hope of getting lower
prices. To discourage late purchases at a lower price, the firm can under-stock and
create rationing risk, inducing more customers to buy early at full price. However,
this happens at the cost of lost sales in the second period. Therefore, there is a trade-
off between benefits of rationing and costs of lost sales. The central problem we
analyze is whether it is optimal to create such rationing risk and if so, what level of
rationing risk is optimal. We also analyze how these answers depend on character-
istics of the market, and customers’ risk preferences and incumbent expectations of
availability.

This chapter is mainly based on two of our papers (Liu and van Ryzin 2007,
2008) and it is organized as follows.

In Section 15.2, we consider a single season (stage) model in which customers
can perfectly anticipate fill rates in each period (i.e., they have fully rational ex-
pectations about availability). Via its capacity choice, the firm controls the fill rate
and hence the rationing risk faced by customers. We analyze the capacity choice that
maximizes the firm’s profits. First, we consider a monopoly market and characterize
conditions under which rationing is optimal. We examine how the optimal amount
of rationing is affected by the magnitude of price changes over time and the de-
gree of risk aversion among customers. We then analyze an oligopoly version of the
model and show that competition reduces the firms’ ability to profit from rationing.
Indeed, there exists a critical number of firms beyond which a rationing equilibrium
cannot be supported.

Section 15.3 relaxes the assumption of fully rational expectations. Customers
learn about availability through repeated purchases. Specifically, customers know
the firm’s capacity choices in the past, but do not observe its current capacity.
They use a simple heuristic rule to integrate their beliefs and observed capaci-
ties and thus form capacity expectations. Based on these expectations, customers
decide to buy at either the full price or markdown price in each season. We
imbed this customer learning process into a dynamic program of the firm’s ca-
pacity choices over time. One main result establishes the existence of a mono-
tone optimal path of customers’ expectations, which converges to either a ra-
tioning equilibrium or a low-price-only equilibrium. Further, there exists a criti-
cal value of customer expectation such that the market converges to a rationing
equilibrium if customers’ expectations are less than that critical value; otherwise,
a low-price-only equilibrium is the limiting outcome. These results show why
firms may be stuck with unprofitable selling strategies due to entrenched customer
expectations.

In Section 15.4, we relate the equilibrium capacity under adaptive learning pro-
cess to the optimal stocking quantity when customers have fully rational expecta-
tions. We show that the equilibrium capacity under adaptive learning converges to
that under fully rational expectations as the firm’s discount factor approaches 1.

The final section summarizes the major insights generated from this work and
provides guidance for future research.
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15.2 Capacity Rationing Under Rational Expectations

15.2.1 Model Formulation

We first consider a monopoly firm which commits to a preannounced single mark-
down pricing policy over two periods; the unit price in period 1, denoted p1, is
greater than the unit price in period 2, denoted p2. The assumption of credible com-
mitment to prices can be justified by the folk theorem of infinitely repeated games,
implicit contracts between a firm and repeat customers, or due to advertising con-
straints and the desire to simplify administration of prices (see Liu and van Ryzin
2008 for detailed discussion). For example, Broadway theaters sell discounted tick-
ets on the day of performance through TKTS outlets, where their “half-price tickets”
policy is central to the concept. Filene’s Basement has made a tradition of having
automatic markdowns, in which products are marked down based on a preset sched-
ule that begins with 25% off and drops to 75% off after 4 weeks. Standby airline
fares at fixed discounts off full fares are yet another example of such price commit-
ments.

The firm faces a market with a deterministic mass N consisting of a continuum
of individual customers (e.g. a large market of infinitesimally small customers).
This large-market assumption enables us to ignore strategic interactions among cus-
tomers since one customer’s behavior has a negligible impact on the outcomes ex-
perienced by others. Customers have heterogeneous valuations which we assume
are distributed independently and identically with cumulative distribution function
F(v) and constant over time. Customers have identical utility functions, denoted
u(·), which are time invariant, strictly increasing and concave. All customers are
present when sales begin and remain in the market until their requests are satisfied
or the sales season is over. Customers are strategic and they take both the current
and the future prices and availability into consideration when deciding to buy early
or late.

We assume the firm is risk neutral and customers are risk averse. Allowing cus-
tomers to be risk averse is one distinct feature of our work and the assumption plays
a key in the analysis. The firm seeks to maximize profits by choosing its stocking
quantity at the beginning of the sales season. There is no replenishment opportunity
once sales start.

15.2.1.1 The Customer’s Decision

All purchase requests in period 1 are filled, while customers may face a rationing
risk in period 2 due to insufficient supply. Let q denote the probability of obtaining
a unit in period 2 (the fill rate). Random (parallel) rationing is assumed; that is, each
customer attempting to purchase in period 2 has an equal chance of obtaining a unit.
We assume customers can correctly anticipate the firm’s fill rate; that is, customers
have full information and rational expectations. As noted, we relax this assumption
in Section 15.3.
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In particular, a customer weighs the payoff of an immediate purchase at a high
price against the expected payoff of a later purchase at a low price and buys one
unit in period 1 if and only if: u(v− p1)≥ qu(v− p2) and v− p1 ≥ 0. One can show
that there exists a threshold value such that only customers with valuations greater
than that will purchase early and otherwise wait to buy. Obviously, this threshold
value depends on the firm’s fill rate, and thus its capacity choice. Intuitively, a lower
fill rate induces more customers to make early purchases. But this increase in early
sales comes at the expense of lost sales due to rationing in period 2. This trade-off
between the benefits of inducing early purchases and the costs of lost sales in period
2 is key to understanding the firm’s optimal stocking decisions.

15.2.1.2 The Firm’s Stocking Decision

Let C be the firm’s stocking quantity before sales, and α be the unit procurement
cost, α < p2. We assume the firm’s cost function is linear, hence αC is the cost of
stocking C units.

The fill rate in period 2 is given by the ratio of residual capacity to residual
demand in period 2. Since the firm stocks at least enough to meet potential demand
at the high price, NF̄(p1), and never more than required to satisfy the potential
demand at the low price, NF̄(p2), the fill rate can be determined by

q =
C−NF̄(v(q))

N(F(v(q))−F(p2))
. (15.1)

Equation (15.1) shows how the firm is able to influence the fill rate via its capac-
ity choice. The fill rate in turn influences customer behavior through the threshold
function v(q), defined (implicitly) by the indifference point:

u(v− p1) = qu(v− p2). (15.2)

The firm would like to choose its capacity to induce the most profitable demand
outcome.

We assume that customers’ valuations are bounded above by Ū . Then accord-
ing to (15.2), the market can be segmented only if the fill rate is less than q̄ =
[u(Ū − p1)]/[u(Ū − p2)]. Once the fill rate exceeds q̄, no customer buys at the high
price. In this case, the firm stocks NF̄(p2) exactly serving the entire low-price mar-
ket. Therefore, the firm’s stocking decision problem is divided into two cases – a
segmented market with rationing and a non-segmented market without rationing.

When the market is segmented, the firm’s profit maximization problem can be
expressed in terms of C and v as follows:

max N(p1 − p2)F̄(v)+(p2 −α)C (15.3)

s.t. u(v− p1) =
C−NF̄(v)

N(F(v)−F(p2))
u(v− p2),

p1 ≤ v ≤ Ū .
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Let (v0,C0) denote the optimal solution to (15.3) and Π 0 be the associated optimal
profit for a segmented market.

When the market cannot be segmented, the maximal profit, denoted Π NS, is ob-
tained by serving the entire market at a low price; that is, Π NS = (p2 −α)NF̄(p2).
So, the firm’s optimal stocking quantity corresponds to the one that achieves the
maximum of Π 0 and Π NS. We denote the optimal cutoff value by v∗, the optimal
fill rate by q∗, and the optimal stocking quantity by C∗.

15.2.2 Optimal Stocking Policy

We now answer the key question of whether it is optimal to create rationing risk or
to simply serve the entire market at one price. If rationing is optimal, what level of
rationing risk should be created?

To facilitate the analysis, we assume in the remainder of this chapter that cus-
tomers’ valuations are uniformly distributed over [0,Ū ]; and customers have a power
utility function u(x) = xγ (0 < γ < 1), which is a common form in the economics lit-
erature and corresponds to the case where customers have decreasing absolute risk
aversion. 1 Lower values of γ correspond to more risk aversion. These assumptions
greatly simplify the analysis.

15.2.2.1 The Optimal Stocking Quantity

Under these simplified assumptions, the firm’s stocking decision for a segmented
market given in (15.3) becomes

max
N
Ū

(p1 − p2)(Ū − v)+(p2 −α)C (15.4)

s.t.

(
v− p1

v− p2

)γ
=

(Ū/N)C−Ū + v
v− p2

,

Ū ≥ v ≥ p1.

The profit can be further expressed only in terms of v as follows:

max
Ū≥v≥p1

Π(v) =
N
Ū

(
(p1 −α)(Ū − v)+(p2 −α)(v− p2)

(
v− p1

v− p2

)γ)
. (15.5)

The first-order conditions yield

1 We numerically tested the model under more general forms of distributions for valuations such as
normal and log-normal, and other utility functions including exponential and log utility functions.
The main results still qualitatively hold. See Liu and van Ryzin (2008) for details.
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v− p1

v− p2

)γ(
1+

γ(p1 − p2)
v− p1

)
− p1 −α

p2 −α
= 0. (15.6)

Using the fact that the profit function Π(v) defined in (15.5) is strictly concave in
v ≥ p1 and thus the maximizer of (15.5) is either the solution to (15.6) denoted by v0

if v0 ≤ Ū or Ū otherwise, we can characterize the firm’s optimal stocking quantity
as follows (Liu and van Ryzin 2008):

Proposition 1. Let v0 be defined as the solution to (15.6), and denote

Uc =
(p2 + γ(p1 −α))v0 − p2(p1 + γ(p2 −α))

v0 − p1 + γ(p1 − p2)
. (15.7)

If Ū ≥ Uc, the optimal stocking strategy is to induce segmentation by creating ra-
tioning risk. The optimal solution in this case is

v∗ = v0, q∗ = q0 =
(

v0 − p1

v0 − p2

)γ
, and C∗ = C0 =

N
Ū

(Ū − v0 +(v0 − p2)q0).

Otherwise, it is optimal to serve the entire market at the low price, namely, v∗ = Ū ,
q∗ = 1, and C∗ = (N/Ū)(Ū − p2).

This result shows that whether it is optimal to create rationing risk or not depends
on the number of high-value customers in the market. When there are a large num-
ber of high-value customers (Ū ≥Uc), the incremental demand induced in period 1
more than compensates for the lost-sales cost of rationing in period 2. If there are
relatively few high-value customers (Ū < Uc), the opposite is true; the incremental
demand induced in period 1 by creating rationing risk does not compensate for the
lost sales in period 2. In fact, one direct result from Proposition 1 is the sufficient
condition for creating rationing risk; that is, when Ū ≥ p1 + p2 −α , creating ra-
tioning characterized by (v0,q0,C0) is always optimal; when Ū ≤ p1 + γ(p2 −α),
the optimal strategy is to serve the entire market only at the low price.

15.2.2.2 Comparative Statics

We next examine how the firm’s capacity decision is affected by prices for each
period and the degree of risk aversion.

We can show (Liu and van Ryzin 2008) that the optimal fill rate decreases in
the first period price while increases in the second period price as long as rationing
is optimal. Figure 15.1a, b illustrates these results. Intuitively, as price differences
over time decrease, the opportunity cost of rationing increases. On the other hand,
a smaller price difference reduces customers’ incentive to postpone their purchases.
Both effects reduce the benefits of creating rationing in period 2 and drive fill rates
up. Note that the optimal fill rate is not necessarily continuous in p1 and p2. At some
level of p1 (or p2), the optimal fill rate jumps to one. This implies that inducing
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Fig. 15.1 Optimal fill rates versus prices for each period and degree of risk aversion.

segmentation cannot compensate for the lost-sales cost at that point and thus the
firm would rather serve the entire market at the low price.

We also show that the optimal fill rate decreases in the degree of risk aversion
(denoted γ). See Figure 15.1c for illustration. The formal proof is given in Liu
and van Ryzin (2008). As customers become less risk averse, more rationing risk
is needed to induce segmentation. However, at some point, the opportunity cost
of rationing becomes too great and it is then optimal to serve the entire market
at the low price. In fact, when γ approaches 1, customers become risk neutral.
In this limiting case, the firm must create an extremely high rationing risk to in-
duce early purchases. Again, whether rationing is optimal or not hinges on the
market composition. Specifically, for risk-neutral customers, when the market con-
sists of a sufficiently large number of high-value customers (Ū ≥ p1 + p2 −α), it
is optimal for the firm to serve the market only at the high price in period 1 (fill
rate of 0); otherwise, the firm serves the entire market at the low price only (fill
rate of 1).
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15.2.3 Extensions to the Basic Model

Here we consider several extensions to the basic rationing model. First, suppose the
firm optimizes over both prices and capacity and commits to both upfront. How does
this change the outcome? Second, what if the firm and customers discount profits
and utilities over time? Third, when there are several competitors in the market
that offer the same product and customers assess the aggregate fill rate at the market
level, how does this competition affect the firms’ capacity strategy? Those questions
are to be answered below.

15.2.3.1 Optimizing Over Both Prices and Capacity

When the firm has the ability to choose prices for each period, for an unsegmented
market, one can easily show that the optimal single price is equal to (Ū +α)/2
and the associated profit is [N(Ū −α)2]/(4Ū). For a segmented market, the firm’s
optimal pricing and capacity decisions are determined by

max
Ū≥v≥p1≥p2≥α

N
Ū

(
(p1 −α)(Ū − v)+(p2 −α)(v− p2)

(
v− p1

v− p2

)γ )
. (15.8)

With risk-averse customers, it turns out that rationing is always beneficial if the
firm is able to use an optimal price schedule. This is established in Proposition 2
below (Liu and van Ryzin 2008):

Proposition 2. The optimal value determined by (15.8) is strictly greater than the
optimal revenue under a uniform pricing policy when 0 < γ < 1. This implies with
risk-averse customers, the optimal pricing strategy is a high – low pricing policy
(p1 > p2) and the optimal stocking decision is to create a fill rate of strictly less
than 1.

This result implies that price flexibility and rationing enable the firm to price
discriminate and capture surplus from customers who value the product more and
prefer to pay to avoid the risk of rationing. It shows that prices can be designed
such that the extra revenue from these high-value customers always offsets the cost
of rationing. In this sense, this result shows rationing is a quite general strategy for
extracting surplus and maximizing profits, provided prices can be chosen optimally.

15.2.3.2 Discounted Utility

Even without the risk of rationing, discounting of utilities over time creates an in-
centive for customers to buy early at high prices. Below we examine the case when
both discounted utilities and rationing risk are considered.

We denote the discount factors for the firm and customers by δ1 and δ2. It is
natural to assume that customers discount the value of products faster than the firm
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for seasonal, fashionable, and durable goods; that is, δ1 ≥ δ2. To avoid trivialities,
we assume δ1 > α/p2 to ensure a positive margin at the low price.

When the market cannot be segmented, the firm stocks (N/Ū)(Ū − p2) to serve
the entire market at one price p2. When the market is segmented, the firm maximizes
its total profit, composed of a base profit and an extra profit margin via sales at the
high price:

max
N
Ū

(p1 −δ1 p2)(Ū − v)+(δ1 p2 −α)C (15.9)

s.t. (v− p1)γ = δ2
C− (N/Ū)(Ū − v)

(N/Ū)(v− p2)
(v− p2)γ ,

Ū ≥ v ≥ p1.

This optimization problem can be further written in terms of v as follows:

max
p1≤v≤Ū

Π(v) =
N
Ū

{
(p1 −α)(Ū − v)+

1
δ2

(δ1 p2 −α)(v− p2)
(

v− p1

v− p2

)γ }
.

(15.10)
The first-order conditions yield:(

v− p1

v− p2

)γ(
1+

γ(p1 − p2)
v− p1

)
− δ2(p1 −α)

δ1 p2 −α
= 0. (15.11)

One can show that the profit function Π(v) defined in (15.10) is strictly concave in
v ≥ p1. Therefore, there exists a unique solution, denoted vD, to (15.11).

The precise characterization of the optimal stocking decisions with discounts is
shown in the following (Liu and van Ryzin 2008):

Proposition 3. Let vD be the solution to (15.11), and denote

UD
c =

[
(γ(p1 − p2)(p1 −α)+ p2(p1 −δ1 p2))vD

− p1 p2(p1 −δ1 p2)− γ p2(p1 − p2)(δ1 p2 −α)
]

· [(p1 −δ1 p2)vD − (p1 −δ1 p2)(p1 − γ(p1 − p2))
]
.

1. If Ū ≥ max{vD,UD
c }, inducing segmentation is optimal, namely

v∗ = vD, q∗ =
1
δ2

(
v∗ − p1

v∗ − p2

)γ
, and C∗ =

N
Ū

(Ū − v∗ +(v∗ − p2)q∗);

2. Otherwise, a low-price-only solution is optimal, that is

v∗ = Ū , q∗ = 1 and C∗ =
N
Ū

(Ū − p2).

The results parallel the undiscounted case. For a large high-value segment,
rationing is optimal; for a market with a small number of high-value customers,
no rationing is optimal. We ignore discounting partly as a practical approximation,
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but more importantly to isolate and study the effect that rationing risk alone has on
customer behavior.

15.2.4 Oligopolistic Competition

We now look at the case when multiple retailers carry the same product. Then it
is natural to assume that customers base their strategic behavior on the product’s
availability across the entire market rather than in any one store. We, therefore,
consider the aggregate supply and aggregate demand among all stores in the market
to analyze this problem.

Specifically, an oligopoly market with n firms provides the same product. We
assume customers exhibit no preference over the source of supply and, with equal
probability, a customer buys a product from any firm as long as there is inventory.
Capacity choice in the market is a vector, denoted by C = (C1, · · · ,Ci, · · · ,Cn). We
assume all suppliers set the same prices for both periods and have the same unit
of procurement cost. This obviously helps keep the model tractable, but is not un-
reasonable in a competitive retail market, where retailers frequently stock identical
products and sell them at the same suggested retail prices but at nearly identical
costs from manufacturers. The remaining notation is the same as in a monopoly
case. Moreover, two additional assumptions are made to simplify the analysis of
stocking decisions under competition: (i) sales in period 1 are equally shared by
all firms; and (ii) a buyer will try other firms in period 2 if the firm he initially
selects is out of stock until his request is accepted or the market supply is ex-
hausted. Those assumptions are direct consequences of the assumption that cus-
tomers randomly select suppliers and they have no preference of one specific sup-
plier over another. These assumptions are, again, reasonable in a commodity-like
market.

Under these assumptions, the aggregate equilibrium capacity is always greater
than the potential demand at the high price, that is NF̄(p1), and less than the
potential demand at the low price equal to NF̄(p2). Hence, the aggregate fill rate
is determined by

q = ∑n
i=1 Ci −NF̄(v)

N(F(v)−F(p2))
.

Note that each firm’s capacity choice contributes to aggregate fill rate and thus im-
pacts not only its own market share, but also that of all its competitors. This creates
a strategic interaction between the stocking decisions of the n firms in the mar-
ket. Determining optimal stocking quantities under competition therefore becomes
a problem of finding equilibria in their capacity choices. Given the perfect symmetry
among firms, in what follows we focus only on symmetric equilibria.

When the market can be segmented, given the capacity choices of other firms’,
denoted C−i = (C1, · · · ,Ci−1,Ci+1, · · · ,Cn), firm i maximizes its total profit, which
consists of an extra margin on an equal share (1/n) of first period sales plus a base
margin of p2 −α on each unit, Ci, firm i stocks:



408 Qian Liu and Garrett van Ryzin

max Πi(Ci,C−i) =
N

nŪ
(Ū − v)(p1 − p2)+(p2 −α)Ci (15.12)

s.t. (v− p1)γ = ∑n
i=1 Ci − (N/Ū)(Ū − v)

(N/Ū)(v− p2)
(v− p2)γ ,

Ū ≥ v ≥ p1.

When the market cannot be segmented, the firms provide N
Ū (Ū − p2) to serve the

entire market at the low price.
Given C−i, the optimization problem for a segmented market (15.12) can be ex-

pressed only in terms of v:

max
Ū≥v≥p1

Πi(v) =
{

N
Ū

(
p2 −α +

p1 − p2

n

)
(Ū − v)

+
N
Ū

(p2 −α)(v− p2)
(

v− p1

v− p2

)γ
− (p2 −α)

n

∑
j=1, j =i

Cj

}
.

Again, it is easy to show that firm i′s profit function, Πi(v), is strictly concave in
v ≥ p1. The first-order conditions yield:(

1+
γ(p1 − p2)

v− p1

)(
v− p1

v− p2

)γ
−
(

1+
p1 − p2

n(p2 −α)

)
= 0. (15.13)

There exists a unique solution v̄0 > p1 to (15.13).
As in the monopoly case, the equilibrium involves rationing and segmenta-

tion if the market consists of a sufficiently large high-value population; while the
equilibrium has no rationing or segmentation if the market has a small number of
high-value customers. However, both equilibria may be supportable. The precise
characterization of symmetric Nash equilibria is given as follows (Liu and van Ryzin
2008):

Proposition 4. Let v̄0 be the solution to (15.13) and q̄0 = [(v̄0 − p1)/(v̄0 − p2))]γ .
Denote

U1
c =

n(p2 −α)(v̄0 − p2)(1− q̄0)
p1 − p2

+ v̄0, U2
c =

p1 −α
1− [(n−1)/n]1/γ + p2 .

1. If Ū ≥U1
c , there exists a symmetric segmented Nash equilibrium, namely

v∗ = v̄0, q∗ = q̄0 and C∗
i =

N
nŪ

(Ū − v̄0 +(v̄0 − p2)q0), ∀ i = 1, . . . ,n.

2. If Ū ≤ U1
c , or U1

c ≤ Ū ≤ U2
c and q̄0 < 1− 1/n, there exists a symmetric low-

price-only Nash equilibrium, namely

v∗ = Ū , q∗ = 1 and C∗
i =

N
nŪ

(Ū − p2), ∀ i = 1, . . . ,n.
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One sufficient condition for the symmetric equilibrium to exist uniquely is the
following (Liu and van Ryzin 2008):

Corollary 1. If Ū ≥ p1 +n(p2 −α) and q0 ≥ 1−1/n, the symmetric Nash equilib-
rium exists uniquely at a segmented market. If Ū ≤ p1 +nγ(p2 −α), the symmetric
Nash equilibrium exists uniquely at a low-price-only solution.

Intuitively, competition should make a segmentation strategy more difficult to
sustain. This is because with large numbers of competitors, restricting supply has
only a negligible impact on the overall market availability but the lost-sales cost of
rationing is incurred entirely by firms that are restricting their supply. Indeed, there
exists a critical number of firms (n∗ = (Ū − p1)/[γ(p2 −α)]) beyond which creating
rationing risk is never a sustainable equilibrium. This implies increased competition
eventually eliminates the industry’s ability to support segmentation via rationing.

We compare the outcomes of the oligopoly market with those in the monopoly
market. The first difference is that more competition leads to higher aggregate ca-
pacity and higher fill rates relative to the monopoly case and these differences in-
crease in the level of competition. However, firms generate lower aggregate profits
compared to the monopoly market under more competition, and the difference in-
creases in the level of competition as well. This is shown in Liu and van Ryzin
(2008).

15.3 Capacity Rationing When Customers Learn

A key assumption made in Section 15.2 is that customers have rational expectations
about the firm’s capacity choice; that is, customers perfectly anticipate availability.
It is arguably more realistic to assume that customers do not have perfect infor-
mation on availability and rather learn about a firm’s availability through repeated
experience. In this section, we relax the rational expectation assumption and assume
customers adaptively learn about the firm’s capacity decisions over time. Our focus
is how a firm should profitably influence customer learning behavior by its sequence
of capacity choices.

15.3.1 Adaptive Learning Model

We look at an environment in which a firm sells products over repeated sales seasons
to a fixed population of customers. Each season (also called a stage), indexed by t,
consists of two selling periods – a full-price period and a markdown period – is
the same as in the rational expectation model. The only difference is that customers
do not perfectly know the firm’s capacity (fill rate) in each stage. In other words,
customers’ estimate of capacity in season t, denoted Ĉt , may differ from the actual
capacity chosen by the firm, denoted Ct .
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In each season t, customers decide when to buy as before. They either buy early
at the full price and obtain the product for sure or they wait for the markdown price
at the risk of being rationed out. Specifically, customers assess the fill rate in the
markdown period of season t, denoted q̂t . Note that q̂t is the customer’s estimate of
fill rate; the actual fill rate is denoted by qt . They then weigh the payoff of purchasing
immediately at full price versus the expected payoff of waiting for the markdown.

As argued in Section 15.2, for each fill rate there exists a unique cutoff value,
denoted vt , such that only customers with valuations greater than vt purchase at the
full price, while others wait for the markdown. The difference is that this threshold
value vt is now determined by a customer’s estimate of fill rates rather than the
actual fill rate in that period. The estimated fill rate is the ratio of residual capacity
to residual demand in the markdown period given by

q̂t =
Ĉt −NF̄(vt)

N(F(vt)−F(p2))
, (15.14)

and vt is defined implicitly by

u(vt − p1) = q̂tu(vt − p2). (15.15)

15.3.1.1 The Model of Customer Learning

Customers observe the capacity in each season and form their estimate of fill rates
from this past history. We use adaptive expectation theory to model this learning pro-
cess. Adaptive expectation theory assumes that customers employ simple heuristic
estimates, e.g., an exponentially smoothed averages of current and past information,
to update their estimates. For analytical tractability, we assume that customers learn
about capacity instead of fill rates; that is, customers’ estimate of the capacity at the
start of season t + 1, Ĉt+1, is a weighted average of the firm’s capacity in season t,
Ct , and customers’ prior estimate, Ĉt :

Ĉt+1 = θCt +(1−θ)Ĉt , (15.16)

where θ is the learning speed, 0 ≤ θ ≤ 1. As θ increases, customers place more
weight on new information and adjust their expectations more rapidly.

Although the main reason for using a capacity representation of the learning
process is mathematical tractability, we justify the plausibility of this assumption
as follows: note the update of capacity (15.16) is made ex post after season t is
completed, and hence it would be influenced by a variety of information other than
direct observation, including word of mouth, advertisements, Web sites, reports and
surveys. These sources of information may compensate for the ability to observe
capacity directly. Alternatively, one can view capacity updating as being a change
of variable from fill rate updating since capacity and fill rate are directly related by
the expression:

Ĉt = NF̄(vt(q̂t))+N(F(vt(q̂t))−F(p2))q̂t ,
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so that knowing one variable is equivalent to knowing the other, provided that cus-
tomers know the market size N, though admittedly this may be an equally unpalat-
able assumption. More importantly, we did numerical testing of the model under
fill rate updates and found that the basic structural properties do not depend signif-
icantly on the capacity parameterization of the learning process. Collectively, this
capacity learning model strikes a reasonable balance between model tractability and
behavioral realism.

We also assume all customers have the same estimate of capacity; that is, Ĉt is
a consensus and commonly held estimate among customers. Admittedly, it may be
more realistic to allow customers to have heterogeneous estimates based on their
own purchase histories and stock-out experiences. Still, this too is an extreme as-
sumption, because it in effect posits that customers only obtain information from
their immediate shopping experience, when in reality there is word of mouth, ad-
vertising, Web site, and other common information that contributes to a customer’s
expectation about stock availability at a particular retailer. Moreover, with such id-
iosyncratic information, we would have to track each individual customer’s expec-
tation of availability, which would require a state vector with large dimension, and
this would likely make the problem intractable. The assumption of a common es-
timate for all customers is much simpler and roughly corresponds to a case where
there is a free flow of information among customers and hence the entire market
“learns” about the actual capacity at the end of each season and updates their beliefs
identically.

Lastly, note that by combining (15.15) and (15.14), the cutoff value and the cus-
tomers’ estimate of capacity are related by

Ĉt = N(F(vt)−F(p2))
u(vt − p1)
u(vt − p2)

+NF̄(vt). (15.17)

To facilitate further analysis, we again specialize the model by assuming that F(·)
is uniformly distributed over [0,Ū ] and that customers have a power utility function
u(·) = (·)γ , where 0 < γ < 1. 2 The capacity estimate can then be expressed as

Ĉt =
N
Ū

(
Ū − vt +(vt − p2)

(
vt − p1

vt − p2

)γ )
, p1 ≤ vt ≤ Ū . (15.18)

When customers estimate a large amount of capacity, they are more likely to
postpone their purchases. Specifically, we define

Cs = C̄

(
Ū − p1

Ū − p2

)γ
, (15.19)

and call Cs a segmentation threshold capacity estimate. Such Cs has the property that
if customers’ expectation of capacity, Ĉt , exceeds Cs, then all customers opt to buy

2 We numerically find that the main results derived under those specialized assumptions remain
qualitatively the same for more general distributions of valuation and utility functions. See Liu and
van Ryzin [2007] for details.



412 Qian Liu and Garrett van Ryzin

in the markdown period; if Ĉt < Cs, then the market is segmented and some positive
fraction of customers buy at full price.

One can easily check that Ĉt(vt) defined by (15.18) is strictly increasing and
concave in vt ∈ [p1,Ū ]. This implies the inverse function of Ĉt(vt), denoted ṽ(Ĉt),
exists; further, ṽ(Ĉt) is strictly increasing and convex in Ĉt ∈ [C,Cs]. Therefore, the
cutoff valuation vt is uniquely characterized by ṽ(Ĉt) when C ≤ Ĉt ≤ Cs. Once Ĉt

exceeds Cs, customer purchase behavior changes fundamentally; all customers wait
to buy in the markdown period and segmentation of customers is no longer attain-
able. Hence, we define vt to be constant at Ū when Cs ≤ Ĉt ≤ C̄. Then, for any given
expected capacity Ĉt ∈ [C,C̄], the cutoff value vt is uniquely determined by

v(Ĉt) =

{
ṽ(Ĉt) if C ≤ Ĉt ≤Cs,

Ū if Cs ≤ Ĉt ≤ C̄.

15.3.1.2 The Model of the Firm

The capacity learning model (15.16) links the firm’s capacity decisions from one
season to the next. The firm’s capacity decision problem is then naturally modeled
as a dynamic program. Let V (Ĉt) denote the maximum discounted profit given that
customers’ current estimate is Ĉt . Future value is discounted by a discount factor δ
per season, with 0 < δ < 1. V (Ĉt) satisfies the following Bellman equation:

V (Ĉt) = max
Ct∈[C,C̄]

{
Π(Ĉt ,Ct)+δV (θCt +(1−θ)Ĉt)

}
, (15.20)

where Π(Ĉt ,Ct) is the one-stage profit given that customers’ expected capacity is Ĉt

and the firm’s capacity is Ct :

Π(Ĉt ,Ct) =
N
Ū

(p1 − p2)(Ū − v(Ĉt))+(p2 −α)Ct . (15.21)

As in the rational expectation case, the range of control constraints is defined by
C = (N/Ū)(Ū − p1) and C̄ = (N/Ū)(Ū − p2). These constraints ensure there is no
shortage during the full-price period and no overage during the markdown period.
Note that in some cases (e.g., see Greenleaf 1995, Byers and Huff 2005), it may
be profitable to deliberately under-stock products in the full-price period in order to
change expectations as quickly as possible. While potentially of interest, our control
constraints rule out such extreme actions.

When the firm’s optimal response to the state Ĉt is to choose C∗
t = Ĉt , we call

such capacity an equilibrium of the model (15.20). At the equilibrium, customers’
estimates of capacity and the firm’s decisions are constant over time and equal to
each other; hence customers’ expectations are consistent with the capacity choices
of the firm. More precisely, let C∗(Ĉ) denote the optimal solution to (15.20) given
state Ĉ. Then an equilibrium of (15.20) is a fixed point of the state updating function
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f (Ĉ) = θC∗(Ĉ)+(1−θ)Ĉ.

That is, Ĉ is an equilibrium if f (Ĉ) = Ĉ. At the equilibrium, C∗(Ĉ) = Ĉ. We hence-
forth do not differentiate the firm’s capacity and customer expected capacity at the
equilibrium, both of which we call the equilibrium capacity.

To understand the basic trade-off the firm faces, notice that customers’ decisions
about when to buy depend only on their estimate of capacity in season t, Ĉt , and
not on the firm’s actual capacity choice Ct . Hence, if the firm were only interested
in maximizing profits in season t, they would choose the maximum capacity C̄,
and satisfy all demand during both the full-price and markdown periods. But the
firm’s capacity choice also influences customers’ future expectations; a larger ca-
pacity choice in season t increases customers’ estimate of capacity in future seasons,
which encourages them to wait for markdowns. This reduces future profits. So the
key trade-off is between the short-term benefit of stocking amply to satisfy current
demand versus the negative impact that such high stock levels have on customers’
future expectations of availability. The firm’s goal is to seek a sequence of capacity
choices over time that optimally balances these effects and maximizes its discounted
profit over time.

15.3.2 Optimal Capacity Decisions Over Time

We next derive the structural properties of the firm’s optimal capacity choice over
time. We show that the firm’s optimal capacity choices converge to either a rationing
equilibrium or a low-price-only equilibrium, depending on initial customer expec-
tations. Indeed, we show that there exists a critical state of initial customer expec-
tations that determines which of these equilibria is reached. When initial customer
expectations are less than that of critical value, the rationing equilibrium is a sus-
tainable outcome; otherwise, the low-price-only equilibrium is the optimal long-run
outcome.

Since customers exhibit fundamentally different purchase behavior once their ex-
pectations of capacity exceed the segmentation threshold capacity estimate Cs, the
direct analysis of the learning model (15.20) is quite complex. However, the prob-
lem can be easily solved as long as the state (i.e., customer estimates of capacity)
does not cross the segmentation threshold capacity estimate. Therefore, we use a
“separate-and-paste” approach to analyze the problem; we divide the entire state
space into two subspaces, over which two isolated subproblems, called the region
1 and region 2 problems, are defined. Both the region 1 and region 2 problems are
well behaved and can be completely analyzed using classical optimization tech-
niques. Furthermore, we show that there always exists a monotone optimal state
path for the original problem. Because of this important monotonicity property, the
problem eventually remains in either region 1 or region 2. We can then “paste” the
results of the region 1 and region 2 problems together to solve the original problem.
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15.3.2.1 The Region 1 and Region 2 Problems

As discussed above, all customers wait to buy in the markdown period if their expec-
tation of capacity is greater than the segmentation threshold capacity estimate Cs.
The firm’s best response is then to stock C̄, which is strictly larger than Cs, to meet
all the potential demand at the markdown price. Since the switch from a segmented
market to a non-segmented market induces a jump of capacity, the value function
V (Ĉt), unfortunately, is not well behaved. Nevertheless, the threshold function v(Ĉt)
has special structure: it is convex in the range of [C,Cs] and constant at C̄ afterward.
As mentioned, this motivates us to “separate” the entire region of state space into
two subspaces of [C,Cs] and [Cs,C̄], denoted, respectively, the region 1 and region 2
problems.

The region 1 problem is defined as follows:

V 1(Ĉt) = max
Ct∈S1(Ĉt )

{
N
Ū

(pH − pL)(Ū −v(Ĉt))+(pL−α)Ct +δV 1(θCt +(1−θ)Ĉt)
}

,

(15.22)
where

S1(Ĉ) =
{

C

∣∣∣∣C ≤C ≤ C̄ and C ≤−1−θ
θ

Ĉ +
Cs

θ

}
.

The region 2 problem is the following:

V 2(Ĉt) = max
Ct∈S2(Ĉt )

{(pL −α)Ct +δV 2(θCt +(1−θ)Ĉt)} , (15.23)

where

S2(Ĉ) =
{

C

∣∣∣∣C ≤C ≤ C̄ and C ≥−1−θ
θ

Ĉ +
Cs

θ

}
.

We require Ct ∈ S1(Ĉt) in the region 1 problem to ensure any state falls within
[C,Cs]; and Ct ∈ S2(Ĉt) guarantees the state space of the region 2 problem is [Cs,C̄].
There are no overlapping states between these two subproblems except state Cs.

We first explore the region 2 problem, which is quite simple to analyze. Since all
customers delay purchases in this region, the firm stocks C̄ to satisfy all the demand
at the markdown price. The value function V 2(Ĉt) is then state independent and the
equilibrium is trivially C̄.

We then focus on the analysis of the region 1 problem. Since customers decide
to buy early or late based on their expected capacity, the current profit will increase
in the firm’s capacity for the present. However, a large capacity leads to a high
expectation for the future, thus reducing future profits. Hence, there is a trade-off
between stocking more to increase the current profit and stocking less to reduce
customer expectations and induce more early purchases in the future. We show that
there exists a unique equilibrium capacity and characterize this equilibrium in the
following (Liu and van Ryzin 2007):

Proposition 5. For the region 1 problem, there exists a unique equilibrium capac-
ity which is equal to min{C0

E ,Cs}, where Cs is a segmentation threshold capacity
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defined in (15.19), and C0
E is called rationing equilibrium capacity determined by

C0
E =

N
Ū

(
Ū − v0

E +(v0
E − p2)

(
v0

E − p1

v0
E − p2

)γ)
. (15.24)

In (15.24), v0
E is the solution to(

v− p1

v− p2

)γ(
1+

γ(p1 − p2)
v− p1

)
− (p2 −α)( 1

δ −1)+θ(p1 −α)

(p2 −α)( 1
δ −1+θ)

= 0. (15.25)

In (Liu and van Ryzin 2007), we further show that the rationing equilibrium C0
E

decreases in the firm’s discount factor δ and the learning speed of customers θ ;
and the per-stage profit at C0

E , Π(C0
E ,C0

E), increases in δ and θ . These results are
quite intuitive. The larger the firm’s discount factor, the more important are future
profits. Hence, the long-run benefit of stocking less and inducing more early pur-
chases at higher prices dominates the short-term benefit of stocking more to satisfy
the current demand. We therefore expect a lower rationing equilibrium as the firm’s
discount factor increases. Such a lower rationing capacity induces more customers
to buy early at full price and thus improves the long-run profit per stage. Similarly,
as customers adapt expectations to the firm’s capacity more quickly, it becomes less
costly to change customers’ expectations. That is, to persuade customers to believe
there will not be enough inventory left at low price, the firm can change their beliefs
by stocking less in a shorter period of time. Again, the long-run benefit of intro-
ducing more customers to buy early at full price exceeds the short-run benefit of
stocking more to earn higher revenue for current. Therefore, when customers up-
date capacity expectations faster, the optimal threshold value becomes smaller (i.e.,
more customers buy early at full price), which corresponds to smaller rationing
capacity and higher earning in each stage.

15.3.2.2 Monotone Convergence of Optimal State Paths

We now attempt to “paste” the results for each region problem and derive the equi-
librium outcome for the original problem. The key reason that we are able to “paste”
results of the subproblems is the monotonicity of optimal state paths for the original
problem (Liu and van Ryzin 2007):

Proposition 6. For the problem (15.20), there exists an optimal monotone state
path, namely, given any initial state Ĉ1, there exists an optimal state path, denoted
{Ĉt}t≥1, such that either Ĉ1 ≥ ·· · ≥ Ĉt ≥ ·· · or Ĉ1 ≤ ·· · ≤ Ĉt ≤ ·· · .

Because the optimal states evolve monotonically, the problem will remain in one
region forever once it reaches that region. The equilibrium results for each region-
specific problem can then carry over to the original problem. The following propo-
sition shows that the equilibrium of the original problem must be the one solved
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for either the region 1 or the region 2 problem. This result is summarized in the
following proposition (Liu and van Ryzin 2007):

Proposition 7. For the problem (15.20), given any state Ĉ1 ∈ [C,C̄], there exists a
monotone optimal state path {Ĉt}t≥1 which converges to either a rationing equilib-
rium capacity C0

E or a low-price-only equilibrium capacity C̄.

This proposition shows that repeated interactions between the firm and its cus-
tomers lead to an equilibrium, which is either a rationing equilibrium given by C0

E
or a low-price-only equilibrium without rationing: C̄. This result implies the optimal
decisions do not oscillate among high- and low-capacity choices. In other words, the
firm does not profit from manipulating customers’ expectations by alternating be-
tween providing high and low availability during markdown periods. This contrasts
with the results of Ovchinnikov and Milner (2005), who find that, under their model
of rationing and learning, when customers learn by a “smoothing” process (as in
our case), it is optimal for the firm to follow a “bang – bang” type policy, in which
it alternates between offering high and low availability. Similarly, Gallego et al.
(2008) numerically study the dynamic model of discounting inventory when cus-
tomers learn availability through past experiences. Their examples suggest the firm
use a high – low sales limit in alternate periods when customers update their belief
quickly; otherwise, the sales limit tend to converge to a constant value. Why does
the capacity policy not converge in Ovchinnikov and Milner’s model but converge in
our model? Mathematically, the difference appears due to the convexity/concavity
of the value functions; if the value function is convex (as, for example, in the model
of Ovchinnikov and Milner 2005), then it pays to oscillate between high and low
availability since the average payoff from being in two extreme states dominates
the payoff from being at the average of the two states. When the value function is
concave (as in our case in the region where customers segment), the payoff from
oscillating between states cannot dominate the payoff from staying in one state. Yet
how the particular model primitives in each case induce this convex versus concave
payoff is difficult to determine; this is a subject warranting further investigation.

15.3.2.3 Initial Expectations and Equilibrium Outcomes

Both C0
E (rationing) and C̄ (no rationing) can be equilibria for the adaptive learning

model (15.20). Under what conditions does there exist a unique equilibrium? One
can show that if a low-price-only equilibrium is more profitable than a rationing
equilibrium in the long run, the low-price-only solution becomes the unique equi-
librium. However, if rationing is more profitable in the long run, both equilibria can
be reached, depending on customers’ initial expectations. In fact, there exists a criti-
cal value of initial customer expectation. If customers’ initial expectations are larger
than that value, the long-run equilibrium involves no rationing or segmentation at
all. Only if customers’ initial expectations are smaller than the critical value does the
firm benefit from rationing and the market converges to the rationing equilibrium.
This result is established below (Liu and van Ryzin 2007):
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Proposition 8. There exists a critical value of initial customer expectation, denoted
Ĉc, such that it is optimal to converge to C̄ for all Ĉ ≥ Ĉc; and it is optimal to
converge to C0

E for any Ĉ < Ĉc.

This result suggests one explanation for why retail firms may follow policies of
providing high availability that are not necessarily the most profitable in the long
run. If customers expect high availability based on a long history of always finding
products available during markdown periods and update their beliefs slowly, it can
be quite costly to change their expectations to reach a new equilibrium in which they
anticipate shortages during markdown periods. Stated in practical terms, changing
strategies might require limiting availability for a sequence of seasons during which
customers still refuse to buy at full price because they expect products to be avail-
able at markdown. It could take several years of experience to convince customers
that the firm’s availability policy has really changed, and the profit losses incurred
during this learning process might simply be too severe to justify the change in
strategy. In this way retailers can be saddled by the expectations they have created
historically.

We also find numerically that this critical value increases in customers’ learning
speed, the firm’s discount factor, and the degree of risk aversion of customers.

15.4 Relation to Rational Expectation Equilibrium

We now relate the equilibrium outcome under the adaptive learning model to the
optimal capacity decision in the rational expectation case studied in Section 15.2.
First, note that the following three properties can be easily checked (Liu and van
Ryzin 2007):

(1) The rationing equilibrium under adaptive learning, C0
E , converges to the ra-

tioning outcome under rational expectation, C0, as the discount factor δ
approaches 1.

(2) For the adaptive learning model (15.20), if the profit per stage at a rationing
equilibrium, denoted Π(C0

E ,C0
E), is less than that at a low-price-only equilibrium,

equal to (pL −α)C̄, then the equilibrium is uniquely attained at C̄.
(3) For the adaptive learning model (15.20), if the per-stage profit at a rationing

equilibrium C0
E is strictly larger than that at a low-price-only equilibrium C̄, namely,

Π(C0
E ,C0

E) > (p2 −α)C̄, then as δ approaches 1, C0
E becomes the optimal long-run

outcome regardless of customer expectation.
Recall in Section 15.2, we have shown that when customers can perfectly an-

ticipate availability, the optimal stocking quantity is C0 if Π(C0,C0) > (p2 −α)C̄;
otherwise, the firm stocks C̄ without introducing segmentation. We then have the
following (Liu and van Ryzin 2007):

Proposition 9. As the discount factor δ → 1, the equilibrium capacity under adap-
tive learning converges to the equilibrium capacity when customers have perfectly
rational expectation.



418 Qian Liu and Garrett van Ryzin

This result implies that assuming customers have rational expectation is valid
even though customers learn adaptively provided the discount factor is close to 1.
Our numerical studies (Liu and van Ryzin 2007) show that rational expectation
model is a good approximation for an adaptive learning model as long as the dis-
count factor is high enough.

15.5 Conclusions

Our work shows that rationing can be a profitable strategy to influence the strategic
behavior of customers. It also provides a behavioral explanation for stocking and
inventory service level decisions that are normally explained in terms of holding
and lost-sales cost trade-offs.

When customers have fully rational expectations about availability, the trade-off
is between the benefits of inducing customers to purchase early at high prices and
the cost of lost sales due to rationing. We find whether rationing is profitable or not
depends on several market factors. In general, a large high-value customer segment,
high levels of risk aversion, and large differences in price over time all tend to favor
rationing as an optimal strategy. And when the firm has the ability to choose prices
optimally, rationing is always a profitable strategy. This implies with the ability
to fine tune price schedules, rationing enables the firm to price discriminate and
always emerges as an optimal selling strategy. Our oligopoly analysis shows that
competition makes it more difficult to support segmentation using rationing and
thus rationing is more likely to be used in cases where a firm has some reasonable
degree of market power.

When customers are not able to perfectly anticipate availability, we find that
rationing can be sustained as an equilibrium only if changing customer expectations
is not very costly. When customers adjust their expectations slowly, future profits
are deeply discounted, or customers are not very risk averse, the firm could end
up serving the entire market at the discount price, even though rationing is more
profitable in the long run. This shows how firms can be indeed saddled with an
unprofitable strategy due to their past history. However, when future profits are not
discounted, the equilibrium produced by assuming customers adaptively learn is the
same as the equilibrium when customers have rational expectations.

There are several directions for potential further research. For example, in our
rationing model, we analyze the firm’s capacity decision assuming deterministic ag-
gregate market demand. When aggregate demand is uncertain, the firm needs to also
consider the trade-off between overage and shortage costs when it makes stocking
decision. It would be interesting to see how aggregate demand uncertainty affects
the rationing decision. Also, our learning model assumes that all the customers have
the same estimate about the firm’s strategy. What happens when each customer has
his/her own estimate based on their own shopping experiences and hence there are
heterogeneous expectations about the firm’s capacity decision? Lastly, in the learn-
ing model, understanding what fundamental factors in customer behavior and the
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firm’s economics lead to convergence to a single price versus a oscillating high –
low availability strategy warrants further investigation.
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Chapter 16
Shaping Consumer Demand Through the Use
of Contingent Pricing

Eyal Biyalogorsky

Abstract In this chapter I assert that revenue management techniques like contin-
gent pricing are not merely an optimal response by firms to exogenous conditions
of uncertain demand that is spread over time but that sometimes one of the aims of
those techniques is to shape consumer demand in such a way as to create the con-
ditions necessary for successful employment of intertemporal price discrimination.
In this view, the interaction between a firm’s policies and the strategic response of
consumers to those policies leads to consumer arrival processes that are the basis
of many revenue management techniques. I consider a model with strategic con-
sumers who can decide when to show up in the market and reveal demand. Using
the example of contingent pricing, I investigate how consumers’ awareness of the
use of contingent pricing affects their decisions regarding when to show up in the
market and how, in turn, consumers’ responses should affect the firm’s use of con-
tingent pricing. I identify the conditions under which it is optimal for the firm to use
contingent pricing to induce consumers to arrive at different times in the market.
Implications for the design and use of contingent pricing and for public policy are
explored.

16.1 Introduction

Revenue management methods have been developed to help a firm improve prof-
its when selling a fixed number of units in a market in which consumer demand is
spread over a period of time (i.e., not all consumers appear in the market at the same
time). The firm is assumed to face some exogenously given, uncertain demand-
generating process. A typical example is air travel, for which the typical (simplify-
ing) assumption is that low-fare leisure travelers tend to appear early in the selling
period and high-paying business travelers tend to appear late in the selling period
(Wollmer 1992). Revenue management is concerned with deriving how the firm can
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use capacity allocation, dynamic pricing, and intertemporal price discrimination in
the face of this demand-generating process to improve the firm’s profits.

The assumption that demand is exogenous is, of course, a simplification and re-
searchers have long recognized that consumers are likely to change or adapt their
behavior as a result of revenue management efforts by firms. Researchers have long
been concerned with practices of diversion and buy-up when customers are buy-
ing lower-fare tickets instead of higher-fare ones and vice versa in response to the
availability of open-fare classes determined by the revenue management system
(Brumelle et al. 1990, Pfeifer 1989). More recently, there has been much interest
in the effects of strategic delay by consumers. Su (2007) considered the case in
which some consumers may be patient: if prices at the time they show up in the
market are too high, they may be willing to wait until prices drop before making
a purchase. He shows that the optimal time path for price depends on whether the
high-willingness-to-pay or low-willingness-to-pay customers are more patient. Aviv
and Pazgal (2007) assumed that the price path exhibits discounting at some point
in time and investigated how strategic delay by consumers should affect the way
the seller sets his discount. Koenigsberg et al. (2008) allowed low-willingness-to-
pay consumers to strategically delay their purchases and wait for last-minute deals.
They showed that EasyJet’s “commitment” to increasing prices over time can be an
optimal reaction to such behavior and explored when last-minute sales should still
be offered. Strategic consumers are likely to learn or anticipate that sellers will offer
last-minute deals. Elmaghraby et al. (2009) show that if the amount of bargain hunt-
ing consumers is not too high the seller may be better off if consumers were allowed
to make an advance reservation to purchase the product if it is still available at the
time of the last-minute sale. The volume you are holding in your hand is evidence
of the continuing interest in the effects of strategic consumer behavior on revenue
management systems.

This chapter extends and complements the work on strategic consumer behavior
and revenue management systems by looking at a setting in which consumers can
decide when to show up in the market during the selling period,1 whereas consumers
in the previously mentioned papers could delay only the purchase, not decide when
to show up. Assuming that consumers can decide when to show up without any
restrictions makes the consumer arrival process endogenous and enables exploration
of when and how revenue management can be used by firms to shape that process.
The underlying motivation is the realization that arrival processes observed in actual
situations do not result simply from exogenous factors but also can reflect long-term
changes in behavior in response to implementation of various policies by the firm.
This raises the possibility that some revenue management techniques are used not
only in response to existing patterns of behavior but may represent an attempt to
create or influence strategic consumers.

Consider the pattern in which early consumers in a market typically have a low
willingness-to-pay and later consumers a high willingness-to-pay, a pattern that is

1 I use the term “show up” to indicate that consumers are not active in the market all the time
and choose when to become active. One can compare this to price skimming models in which
consumers are active in the market all the time.
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typical for air travel. This pattern is usually thought to result from leisure travel-
ers’ tendency to plan their trips well in advance while business travelers often need
to change their plans on short notice. However, there is some anecdotal evidence
that during the recession of the early 1990s the wide availability of “standby” book-
ings led many leisure passengers to delay purchase until the last moment and even
show up at the airport without a reservation. This suggests that the common pat-
tern of arrival may be only partially exogenous and may also depend on airline
pricing. In addition, from a consumer behavior perspective, humans’ well-known
tendency to procrastinate and delay decisions until the last moment (Ariely and
Wertenbroch 2002, Anderson 2003) suggests that leisure travelers would naturally
wait unless there is a compelling reason to do otherwise. The nonrefundable na-
ture of lower-price early bookings would exacerbate the tendency to procrastinate
by creating financial risk if travel plans change. This is not meant to suggest that
exogenous factors are not sometimes at work in the arrival pattern we observe in
the airline industry, but the pricing patterns the airlines use appear to be a necessary
condition for maintaining that pattern. In other words, it is possible that the rev-
enue management systems the airlines use may have, over time, led to consumers
adopting the behavior we see today.

This raises the question of whether revenue management can be used profitably
to induce certain arrival patterns by consumers and what the implications of doing so
are. In this work I take a stab at answering these questions by looking at one specific
method—contingent pricing (see Biyalogorsky and Gerstner (2004))—and consid-
ering whether, in the face of strategic behavior by consumers, it can be profitable for
sellers to use such a price mechanism to induce the low–high arrival pattern typical
in the airline industry.

16.2 Contingent Pricing

Contingent pricing mechanisms are arrangements in which a seller agrees to sell a
product to a buyer at a somewhat lower price while keeping an option to cancel the
sale and instead sell the product to another buyer (Biyalogorsky and Gerstner 2004).
Examples of such arrangements include the use of some cancellation clauses
in house sales, airlines deliberately overselling a plane’s capacity (Biyalogorsky
et al. 1999), and underwriting of standby equity rights offerings (Bohern et al. 1997).
Contingent pricing can help a seller mitigate price risks such as losing the opportu-
nity to sell at a low price while waiting in vain for a high-willingness-to-pay con-
sumer to show up or committing to sell to a low-willingness-to-pay buyer and losing
potential sales to high-willingness-to-pay buyers. Biyalogorsky and Gerstner (2004)
showed that contingent pricing can reduce such risks and increase the seller’s ex-
pected profit, consumer surplus, and economic efficiency. The applicability and
usefulness of such arrangements have been greatly extended in follow-up work on
callable products (Gallego et al. 2008) and probabilistic selling (Fay and Xie 2008).
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The idea behind contingent pricing is to find ways to avoid potentially inefficient
use of available capacity. Because demand is spread over time and the seller is uncer-
tain how many consumers will show up, ex ante pricing and allocation decisions are
inefficient. Contingent pricing allows the seller, at a certain cost, to make decisions
that are efficient ex post. In the original model by Biyalogorsky and Gerstner (2004),
the seller knows the willingness-to-pay of each consumer because the arrival pattern
is known and exogenous. However, since the seller is uncertain about whether the
high-willingness-to-pay consumer will show up, his optimal decisions may be inef-
ficient ex post and contingent pricing provides a solution to this problem.

If consumers are strategic, however, the arrival pattern is no longer exogenous
and depends on the seller’s price path. As a result, the seller faces the additional
problem of identifying which consumers have a high willingness-to-pay and which
consumers have a low willingness-to-pay (in addition to the price risks the seller
faces in the original model). In the next section I present a model of contingent
pricing with strategic consumers to explore how their strategic behavior affects the
use of contingent pricing and when it is optimal for a seller to use contingent pricing,
not just to avoid inefficient use of capacity but also to induce an arrival pattern that
reveals consumers’ willingness-to-pay.

16.3 Contingent Pricing with Strategic Consumers

In this section I describe a model of the use of contingent pricing with consumers
who behave strategically.

A seller has one unit of a product for sale. As is common in the revenue man-
agement literature, there is a selling period of some length of time. Consumers can
appear in the market at any point during this period and contract with the seller to
purchase the unit. At the end of the period, the unit is delivered to the buyer who
arranged to purchase it. The unit has no residual value (zero salvage value).

The major departure of this model from traditional revenue management models
is that consumers who are active in the market are strategic and decide when to ap-
pear during the selling period. Further, I assume that consumers show up only once
and disappear from the market and do not return if they do not contract to purchase
the unit. This last assumption keeps in the model the risk of losing customers if the
seller does not lock them up once they show up. Implicitly, it assumes that there is
competition or other substitutes available to consumers in the market.2

Accordingly, the sequence of moves in the game has the seller announcing the
price path over the selling period. Based on that, consumers decide when to show
up and contract with the seller to purchase the unit. At the end of the period, the unit
is delivered to the buyer who purchased it.

2 One can also introduce a cost of showing up into the model. To keep things simple, however, I
assume that buyers can show up only once, which, in effect, means that the cost of showing up a
second time is infinite.
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These assumptions on the strategic behavior of consumers in the market differ
from traditional revenue management models, which usually assume that the pat-
tern of consumers showing up in the market is exogenous. Even recent models that
allowed for strategic behavior usually assumed that the appearance of a consumer in
the market is exogenous and that the consumer can only decide whether to purchase
immediately or to wait for a better price later (Koenigsberg et al. 2008, Su 2007).
The setup here also differs from models of price skimming (Besanko and Whin-
ston 1990, Jerath et al. 2007). In those models, strategic consumers are constantly
active in the market so the seller does not face the risk that consumers who show up
and are not served will leave the market.

There are two potential customers in the market: A high-valuation customer
(vh) and a low-valuation customer (vl). The probability of each type of customer
being active in the market is given by qh and ql , respectively. The customers’ valua-
tions and probabilities of being active in the market are common knowledge. How-
ever, the seller cannot identify which customer is which and does not observe the
number of consumers active in the market. Both the seller and the consumers are
risk-neutral.

In this chapter I explore whether, under this set of conditions, consumers’ re-
sponses to a contingent pricing mechanism can lead them naturally to choose dif-
ferent times during the selling period to appear and whether it therefore benefits the
seller to implement such contingent pricing arrangements.

Since there are only two consumers in the market, the contingent pricing ar-
rangement need only have two price points. The specific arrangement I consider
has the seller setting a price of pl in the first part of the selling period and a higher
price, ph, in the second part of the selling period. In addition, the seller reserves
the right to cancel the sale at any point prior to the end of the selling period. Thus,
the seller can agree to sell the unit at a price of pl and then later cancel the ini-
tial sale if a high-valuation customer appears and sell the unit at the higher price
of ph. A buyer who agrees to purchase the unit for a price of pl is not guaran-
teed to receive it. I assume that compensation, h, is needed to convince a buyer to
participate in a contingent contract in which receiving the unit is not guaranteed.3

The compensation provided to the buyer is discounting of the price to pl . Thus the
price pattern considered has the characteristics of a “deep discount” contingent pric-
ing arrangement (see Biyalogorsky and Gerstner (2004)) with an increasing price
path over time. The reason I concentrate on this particular price pattern is that it
provides the stiffest test to the use of contingent pricing in the face of strategic
consumers. Other possible price patterns make the seller’s problem in using contin-
gent pricing easier. For example, a “consolation reward” contingent arrangement,
which is similar to the way airlines deal with overbooking, leads to less severe
incentive constraint compared to the deep discount case4; a decreasing price path

3 Biyalogorsky and Gerstner (2004) showed how the required compensation can be derived from
the buyer’s utility function.
4 Biyalogorsky and Gerstner (2004) showed that with risk-neutral, nonstrategic behavior the deep
discount and consolation reward arrangements are equivalent, but that equivalence does not hold
in the case of strategic consumers.
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over time avoids some of the commitment problems engendered by an increasing
path.5

What the seller wants to achieve with this contingent pricing arrangement is for
the low-valuation customer to appear early and the high-valuation customer to ap-
pear late, thus providing the seller with, in essence, two selling opportunities and
protecting the seller from the risk of losing customers who are active in the market.

The optimal early price, pl , must be appealing to the low-valuation customer
under the contingent pricing arrangement. It is optimal, therefore, for the seller to
set pl = vl −h (proof of this and all other derivations can be found in the appendix).

If the high-valuation consumer is active in the market and decides to show up
early to take advantage of the early low price, the probability that he will be able
to purchase the unit is 1− 1

2 ql (assuming that, when the low-valuation consumer
shows up, whoever shows up first gets the unit). Therefore, the expected surplus of
the high-valuation consumer from showing up early is

Exp. Surplus from coming early, high-valuation = (vh − vl +h)
(
1− 1

2 ql
)
. (16.1)

The expected surplus from showing up late is

Exp. Surplus from coming late, high-valuation = vh − ph. (16.2)

With the optimal price, ph, chosen by the seller, the high-valuation consumer will be
indifferent about showing up early or late. Therefore, the optimal contingent prices
are

ph = (vl −h)
(
1− 1

2 ql
)
+ 1

2 qlvh,
pl = vl −h.

(16.3)

Given the optimal prices in (16.3), the expected surplus of the low-valuation con-
sumer from showing up early is

Exp. Surplus from coming early, low-valuation = h. (16.4)

The optimal surplus from showing up late (note that ph can potentially be lower
than vl and again assuming that if both the high-valuation and the low-valuation
consumers show up late each have the same chance of getting the unit) is

Exp. Surplus from coming late, low-valuation = (vl − ph)
(
1− 1

2 qh
)

=
[
h
(
1− 1

2 ql
)− 1

2 ql(νh −νl)
][

1− 1
2 qh

]
. (16.5)

For the low-valuation consumer who chooses to show up early, the surplus from
appearing early has to be at least as great as that for showing up late. This leads to
the following condition for the contingent pricing arrangement to induce consumers
to show up at different times:

vh − vl > h
qh −ql

ql
. (16.6)

5 Details of the solutions for alternative contingent pricing cases are available from the author.



16 Shaping Consumer Demand Through the Use of Contingent Pricing 429

Result 1. Contingent pricing arrangements can induce low-valuation consumers to
show up early and high-valuation consumers to show up late in the selling period
even when consumers make decisions strategically.

Result 1 shows that a contingent pricing arrangement can indeed lead to the low-
to-high arrival pattern among consumers that was the basis for the original model
of Biyalogorsky and Gerstner (2004). Specifically, this chapter shows that a deep-
discount contingent pricing arrangement with prices as in (16.3) will cause the low-
valuation consumer to show up early and the high-valuation consumer to show up
late in the selling period if condition (16.6) holds. Contingent pricing will lead to
the low–high arrival pattern if the difference in valuations between the consumers
is sufficiently large and the compensation required by low-valuation consumers to
agree to the contingent pricing arrangement is small enough. The threshold level
of the difference in valuation that starts leading to separation in consumer arrival
increases the higher the probability of the high-valuation consumer being active in
the market and decreases the higher the probability of the low-valuation consumer
being active in the market.

The seller’s expected profit under the contingent pricing arrangement is

Πcontingent = (vl −h)ql(1−qh)+qh ph. (16.7)

Under fixed pricing (no contingent pricing), the seller’s expected profit is6

Π f ixed =

{
qhvh if vh > vl(1+ql(1−qh)/qh)
(qh +ql −qhql)vl if vh < vl(1+ql(1−qh)/qh).

(16.8)

Comparing the expected profits, the conditions under which the seller will imple-
ment a contingent pricing arrangement are

i. vh < vl(1+ql(1−qh)/qh),

ii. vh − vl > 2h
qh +ql − (3/2)qhql

qhql
.

(16.9)

Result 2. Contingent pricing arrangements are more profitable than fixed pricing
for the seller if condition 16.9 holds.

Result 2 shows that it can be profitable for a seller to implement a contingent
pricing arrangement (specifically, a deep discount arrangement) and induce strategic
consumers to show up at different times during the selling season. This shows that
it can be profitable for a seller to use contingent pricing arrangements even if all
consumers in the market are completely strategic in their behavior.7 Second, this

6 Without contingent pricing, the seller does not know whether a customer who shows up has a
high or low valuation apart from the base rate of the probability of each being active in the market.
The seller’s optimal strategy is to set the price at either vl or vh.
7 Note that the model precludes some sort of strategic behavior such as collusion. This is not a
problem in the airline industry but can be more problematic in other industries.
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points to the possibility that firms’ pricing arrangements are a factor that, over time,
affected consumer behavior and actually created the familiar demand patterns we
see in various industries. Thus, the airlines’ use of contingent pricing and other
revenue management techniques may have led to the low-valuation travelers who
reserve flights well ahead of time and higher-valuation consumers who wait (or at
least do not make reservations well in advance).

For contingent pricing to be profitable for the seller, the difference in valuations
between the high- and low-valuation consumers must be large enough (16.9, part
ii) to justify the cost of implementing the contingent arrangement (lower prices for
low-valuation consumers). At the same time, the difference in valuations cannot be
so high that the seller finds it optimal to ignore low-valuation consumers and restrict
sales to high-valuation consumers (16.9, part i). If we compare the conditions in 16.9
to the conditions affecting a seller making optimal fixed-pricing decisions (16.8), we
find that

Result 3. It is optimal for the seller to implement contingent pricing only if the
seller’s optimal fixed-pricing approach is to set a low price that appeals to both
high-valuation and low-valuation consumers.

Result 3 shows how strategic behavior by consumers limits the value of contin-
gent pricing, both in terms of the range of conditions under which it is optimal for
the seller to use contingent pricing and in terms of the overall societal benefits from
using it. The range over which it is optimal for the seller to use contingent pricing
with strategic consumers is smaller than the range if consumers are not strategic. In
particular, if consumers are not strategic in their behavior, contingent pricing can be
optimal even when the best fixed-pricing approach is to set the price high enough
to appeal only to the high-valuation consumer (Biyalogorsky and Gerstner 2004).
When the best fixed-pricing approach is to serve only high-valuation consumers,
there is a risk of not selling the available unit at all, a clear waste of resources and
an inefficient outcome. As Biyalogorsky and Gerstner (2004) pointed out, one of the
important effects of contingent pricing is that it avoids this potential waste, leading
to increases in both profits and consumer surplus. Strategic behavior by consumers,
however, leads sellers to limit the use of contingent pricing in a way that negates
much of its potential positive effect.

16.3.1 Contingent Pricing as a Truth-Revealing Mechanism

There are two basic issues that a seller tries to address with contingent pricing.
First, the seller is uncertain about the number of active consumers in the market.
Second, consumers’ valuations are private information that is not observable by the
seller. Thus, the seller does not know if a consumer who shows up has a high or low
valuation for the unit. By inducing consumers to separate their appearances in the
market based on their valuations of the unit, contingent pricing allows the seller to
ascertain what each consumer’s valuation is and price accordingly.
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The field of mechanism design is concerned with understanding how one can de-
sign mechanisms that induce others to reveal private information (Laffont 1989). In
the setting considered in this work, contingent pricing provides one such mechanism
whereby buyers reveal their valuations through choice of arrival time. One way to
assess contingent pricing is to consider how effective it is as a truth-revealing mech-
anism. Assuming that the revelation principle holds in our setting,8 (16.10) gives the
best feasible pricing structure that is consistent with consumers truthfully revealing
their valuations.{

vl if a buyer identifies as a low-valuation buyer,
vl + 1

2 (vh − vl)ql if a buyer identifies as a high-valuation buyer.
(16.10)

Equation 16.10 thus gives the “best” pricing mechanism that can still lead to con-
sumers revealing their valuations and therefore provides an upper-bound benchmark
for the potential profits that the seller can achieve. Comparing (16.10) to the contin-
gent pricing mechanism (16.3), we see that

Result 4. As h goes to zero, contingent pricing converges to the “best” feasible
truth-revealing mechanism.

Per result 4, as long as the compensation (or cost), h, that is required to con-
vince the low-valuation consumer to agree to a contingent pricing arrangement is
relatively small, the contingent pricing arrangement basically implements the best
possible truth-revealing mechanism and no alternative mechanism that the seller can
implement will do better.9

The preceding discussion suggests that in many cases contingent pricing could
be a viable approach for a seller to implement a truth-revealing mechanism. I will
go one step further and claim that it is not easy to come up with other practical
approaches that implement the truth-revealing pricing of (16.10). The basic issue
with trying to implement the pricing structure of (16.10) is that in order for that
pricing structure to induce truth telling by buyers they have to reveal their valuations
simultaneously. However, the primary problem facing the seller is that buyers can
appear at any time during the selling period. Once the buyers do not reveal their
valuation simultaneously, the pricing structure of (16.10) no longer induces truth
telling. Consider a high-valuation consumer who decides to lie and pretend to be
a low-valuation consumer. If the real low-valuation consumer already appeared in

8 The central result of mechanism design theory is that one can restrict attention to mechanisms
under which all players with private information simultaneously and truthfully reveal that informa-
tion. The conditions under which this holds are specified by the revelation principle. Developing
the conditions under which the revelation principle holds in this setting is beyond the scope of this
work, though I later discuss issues associated with implementing truth-revealing mechanisms other
than contingent pricing.
9 While we do not know enough to determine what compensation consumers will require to agree to
a contingent pricing arrangement, it appears that in many cases the compensation is small relative
to the potential benefits to the seller. For example, airline travelers who voluntarily agree to be
bumped from a flight usually do so in return for in-kind rewards such as a lower price on a future
flight. The real cost of such in-kind rewards for the airlines is much smaller than the stated value.
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the market and the seller did not sell the unit to that first low-valuation customer,
the seller can do no better than to sell the unit to the second consumer (despite the
low price of vl) because there are no other potential consumers in the market. On
the other hand, if the low-valuation consumer has not shown up yet, there is no
point in waiting to see if another consumer is active in the market—because if the
high-valuation consumer pretends to be a low-valuation consumer, the best the seller
can achieve, again, is vl . Therefore, in order to induce truth telling, the seller must
get both buyers to appear at the same time. The most common method to achieve
this is to use an auction. Typical auction structures, however, only achieve second
best, which in this case, again, is a price of vl . To implement the price structure of
(16.10) through an auction, one would have to use a special form in which bid steps
correspond to the price in (16.10). This, for obvious reasons, is probably impossible
in practice.

The point of this discussion is not to prove definitively that there is no other
mechanism that implements (16.10) but to demonstrate that it is not easy to do
so. Therefore, if contingent pricing achieves results that approach those possible
using (16.10), it seems reasonable that sellers will use contingent pricing to induce
separation and order in the arrival of consumers so they can ascertain the consumers’
valuations.

16.4 Conclusion

This chapter shows that when consumers are completely strategic in their decisions
regarding when to show up during a selling period the use of a contingent pricing
arrangement can cause consumers to arrive in a desired order—specifically, low-
valuation consumers first, followed by consumers with a high willingness-to-pay.
It also demonstrates that inducing such an ordered arrival pattern can be profitable
for the seller and that the profit from a contingent price arrangement can approxi-
mate the potential profit from the “best” possible truth-revealing mechanism if the
consumer compensation required for implementing contingent pricing is small.

These results demonstrate that sellers can use contingent pricing to influence
customer arrival patterns in profitable ways. They point to the intriguing possibil-
ity that some of the arrival patterns we actually observe were created over the long
term by firms using such revenue management approaches. While this chapter only
looked at contingent pricing, it is quite possible that other revenue management
techniques can have similar effects. Cho et al. (2009) consider a seller that imple-
ments a dynamic pricing approach based on the remaining inventory and time till
the end of the selling season. They show that the seller benefits if some consumers
are patient and once in the market strategically wait in anticipation of lower prices.

One issue with the optimal contingent arrangement derived is that it requires
commitment from the seller to a certain price path over time. Without that commit-
ment, the seller has an incentive to deviate and change ph (16.3) to vh. While this is
formally true in the static one-shot model presented, I do not consider this a major
issue. In real-life situations, contingent pricing is used through repeated interactions
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with consumers, making deviation unprofitable for the seller. In addition, extending
the model to capture other common factors may alleviate the commitment prob-
lem. For example, the possibility of having last-minute sales (as in Koenigsberg
et al. (2008)) will prevent the seller from raising ph. Airlines usually set prices in
advance and only adjust capacity allocations during the selling period, which in
effect creates a commitment device in this particular case.

A more fundamental issue is that consumers have to believe or know that the
prices in (16.3) will be in effect. If consumers do not believe that that is the case,
they will not respond to the prices in the desired way and will not arrive at the an-
ticipated time. In other words, it is crucial that consumers learn what the price path
will be. The implication is that a seller who wants strategic consumers to arrive at a
particular time must be consistent and transparent in terms of pricing arrangements.
This suggests that making it hard for consumers to learn about prices over time, as
many airlines appear to do by creating obstacles and obfuscating the pricing struc-
ture, may be counterproductive in the long run because it may lead to an unraveling
of the arrival patterns on which many of these pricing mechanisms rely.

Appendix

Proof of pl = vl −h

First note that the price pl cannot be higher than vl −h because of the participation
constraint of the low-valuation consumer. Now, consider a feasible contingent pric-
ing arrangement with prices p̂land p̂h such that p̂l < vl and p̂h < vh. Increasing both
prices p̂land p̂h by ε does not change the relevant incentive constraints while still
satisfying the participation constraints, therefore leading to the same behavior but
with higher prices. Therefore, it is optimal to increase the price until the participa-
tion constraint is binding at vl −h.

Derivation of Fixed-Pricing Profits

Under a fixed-price policy, the seller keeps the same price throughout the selling
period. If the seller sets the price at vh, he will sell the unit if a high-valuation
customer shows up. The expected profit in this case is qhvh. If the seller sets the
price at vl , he will sell the unit if any customer shows up. The expected profit in this
case is (qh + ql − qhql)vl . The seller will set the price at vh if the expected profit
from doing this is higher or if vh > vl(1+ql(1−qh)/qh).

Derivation of (16.10)

The seller announces that the price will be vl if a buyer identifies as a low-valuation
consumer, and phr if a buyer identifies as a high-valuation consumer, and, in case of
a tie, will use a coin toss to determine which buyer gets the unit.
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If phr > vl , the low-valuation consumer will truthfully identify as having a low
valuation. The expected surplus of the high-valuation consumer from truthfully
identifying is vh− phr while the expected surplus from identifying as a low-valuation
consumer is (vh −vl)(1−ql/2). Thus, if phr ≤ vl + 1

2 (vh −vl)ql , the high-valuation
consumer will truthfully identify himself.
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Chapter 17
Strategic Consumer Response to Dynamic
Pricing of Perishable Products

Minho Cho, Ming Fan, and Yong-Pin Zhou

Abstract Dynamic pricing is a standard practice that sellers use for revenue man-
agement. With the vast availability of pricing and inventory data on the Internet, it
is possible for consumers to become aware of the pricing strategies used by sellers
and to develop strategic responses. In this chapter, we study the strategic response
of consumers to dynamic prices for perishable products. As price fluctuates with
the changes in time and inventory, a strategic consumer may choose to postpone a
purchase in anticipation of lower prices in the future. We analyze a threshold pur-
chasing policy for the strategic consumer, and conduct numerical studies to study its
impact on both the strategic consumer’s benefits and the seller’s revenue. We find
that in most cases the policy can benefit both the strategic consumer and the seller.
In practice, the seller could encourage consumer waiting by adopting a target price
purchasing system.

17.1 Introduction

Pricing has been an age-old management issue, especially for perishable products
facing uncertain demand. Under the common fixed-price scheme, if the price is set
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too low, potential revenue will be lost; but if the price is set too high, demand will
be low and perishable products may be wasted when they expire. Revenue manage-
ment (a.k.a yield management) has become an increasingly popular management
tool in selling perishable products. It is widely used not only in the hospitality indus-
try (e.g., airlines, hotels, and cruise lines), but also in many other industries where
products or capacity are perishable (e.g., golf course reservation, natural gas pipeline
reservation, concert and ball game ticket sales, and fashion products). A detailed re-
view on the subject was provided by McGill and van Ryzin (1999). Essentially, rev-
enue management is a method that aims to sell the right inventory unit to the right
consumer, at the right time, and for the right price (Kimes 1989). This is mainly
achieved through dynamic pricing and inventory allocation. More recently, sellers
begin to take advantage of the Internet to sell perishable products online (Choi and
Kimes 2002, Liddle 2003). To many sellers, the Internet offers a new opportunity to
implement revenue management techniques such as dynamic pricing because price
changes are easy, inexpensive, and potentially more effective.

Most of the research on revenue management focuses on developing optimal
pricing and inventory allocation policies (e.g., Littlewood 1972, Belobaba 1989,
Gallego and van Ryzin 1994, Zhao and Zheng 2000). These models generally as-
sume that consumers are not forward-looking and will purchase the products when
the prices are below their reservation values. In contrast, this chapter examines how,
by looking forward, consumers can strategically respond to the seller’s dynamic
prices over time. The growing use of the Internet provides an opportunity for con-
sumers to gather information on sellers’ pricing policies and respond strategically.
The primary online shopping tools that consumers use today are shopbots that do
price comparisons (Montgomery et al. 2004). Traditional shopbots compare prices
spatially by checking the prices at various Websites at roughly the same time. They
do not anticipate possible future price changes. More recently, researchers have
shown interests in developing tools that can also compare prices temporally. One
example is the “Hamlet” program1 that studies past trends in the variation of air-
line fares and establishes the patterns, which can then be used to decide whether the
consumer should make a purchase immediately or wait for possible future price re-
ductions (Etzioni et al. 2003). Many critics doubt the effectiveness and the accuracy
of Hamlet’s prediction, however, because the underlying factors that determine the
prices are not clearly understood (Knapp 2003).

In this research, we examine the behavior of strategic consumers who responds to
dynamic prices by timing the purchase. The tradeoff is clear: since the price of a per-
ishable product changes continuously over time, there is a chance to get the same
product at a lower price by waiting. On the other hand, there is a chance that the
product, which is available and affordable now, may be sold out or become more
expensive later if the strategic consumer waits. We develop a threshold purchas-
ing policy that balances this tradeoff and examine its impact on both the consumer
and the seller. Focusing on the main factors that influence price, our analytical ap-
proach gives simple and effective solutions, and allows us to derive insights. Using

1 This led to the establishment of the website http://farecast.com.
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simulation we also find that the strategic consumer delay could benefit both the con-
sumer and the seller. This conclusion is closely related to the reservation option used
by the seller in Elmaghraby et al. (2009) which shows the seller can benefit from
allowing a strategic customer who delays his/her purchase to reserve the item (the
consumer must purchase the item if its prices drops to a lower, previously agreed-
upon sales price).

It should be noted that in most existing models, while consumer purchasing pat-
terns can be strategic, their arrivals patterns are usually assumed exogenous. In
Biyalorgorsky (2009), the author presents a model in which the customer can de-
cide strategically to show up or not, depending on the offering price. It is shown
that the seller can use contingent pricing to influence consumers to show up at the
desired time and improve his/her own profit.

The rest of the chapter is organized as follows. In the next section, we provide a
brief review of the related literature. In Section 17.3, we derive a threshold policy
that helps a single strategic consumer to decide when to purchase. In Section 17.4,
we use simulations to evaluate its benefit to both the strategic consumer and the
seller. In Section 17.5, we examine extensions to our base model. We make con-
cluding remarks in Section 17.6.

17.2 Literature Review

There is an extensive body of literature on revenue management, mostly in the con-
text of airline ticket sales. For a comprehensive review, see Talluri and van Ryzin
(2004). Two different approaches complement each other. The first assumes that
consumers can be categorized into different classes (e.g. leisure and business trav-
elers) and focuses the analysis on the allocation of capacity among these classes.
Based on the demand forecast for each consumer class, a “booking limit” of per-
ishable products (e.g. airplane tickets) is computed for each consumer type. These
thresholds can vary over time as demand unfolds (Littlewood 1972, Brumelle and
McGill 1993, Robinson 1995). Literature on capacity allocation usually assumes a
monopoly market structure with the exception that Netessine and Shumsky (2005)
analyze seat allocation under both horizontal and vertical competitions using a game
theoretical model. The second approach in revenue management focuses more on
the dynamic pricing aspect of revenue management. Gallego and van Ryzin (1994)
analyze the dynamic pricing policy for one type of product and homogeneous con-
sumers. The consumers arrive randomly and their valuations for the product are also
random. Important monotonicity properties are derived for the seller’s optimal pric-
ing policy. Zhao and Zheng (2000) extend this model to include non-homogeneous
demand. Consumers are time sensitive so their reservation price distribution may
change over time. None of these models consider consumers’ reaction to the seller’s
pricing strategy, however. In their review of dynamic pricing models, Bitran and
Caldentey (2003) point out “incorporating rationality on the behavior of consumers”
as an interesting field of research.
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Rather than assuming consumers are price takers, some marketing researchers
have studied rational shopper behavior in the face of random price variations. In Ho,
Tang, and Bell’s rational shopper model (1998), the seller chooses one of a finite set
of pricing scenarios and rational shoppers react by purchasing more when the price
is low and purchasing less when the price is high. They find, among other things,
that when price variability is high, the rational shoppers shop more frequently and
buy fewer units every time. The type of product under consideration is the daily
consumer product, which needs to be purchased and consumed repeatedly and con-
tinually over time. Consequently the main trade-off for a rational shopper is between
the purchase costs and the inventory holding costs. This differs from the one-time
purchase of perishable products, which is the focus of this chapter. Moreover, the
price variation in Ho et al. (1998) is random, while the price variation in our chapter
follows certain optimally determined curves that are given in the revenue manage-
ment literature.

Besanko and Winston (1990) study a game between a monopolist, who sets prices
for a new product over time, and strategic consumers, who decide whether to pur-
chase now for the sure utility or postpone the purchase so as to maximize the future
expected utility. In the equilibrium, the monopolist systematically reduces price over
time. Elmaghraby et al. (2008) also study a game where the seller changes price over
time and the buyers submit the desired quantities at any given price. Liu and van
Ryzin (2005) study a similar problem in a discrete time-period setting, and allow
consumers to be risk averse. All three papers are based on the assumption that all
consumers are present at the beginning of the game, which results in certain mono-
tonicity properties. In our chapter, consumers arrive randomly over time. Therefore,
the optimal price trajectory depends on the realization of the consumer arrival pro-
cess, and it may experience gradual decrease over time and sudden increase right
after a purchase is made.

Aviv and Pazgal (2008) also study the strategic consumer reaction to price vari-
ations, and allow consumers to arrive over time. When forward-looking consumers
have information about future price discounts, they may decide to postpone their
purchases to a later time when discounts are offered. In their model, there are only a
pre-fixed number of price changes, and the price-setting seller announces the prices
and the price change times ahead of time. While this may represent a retail-type en-
vironment, it does not apply to the situations where the seller continuously changes
its price in response to the realization of stochastic demands. In addition, in Aviv
and Pazgal (2008), the consumers’ valuations are homogeneous and decrease over
time according to a deterministic function known to the seller. Thus, a consumer
who arrives at a certain time will have a deterministic valuation for the product. In
contrast, our model assumes heterogeneous consumer valuations and random con-
sumer arrivals. Consequently, the prices consumers face are also stochastic.

Anderson and Wilson (2003) study consumer reactions to the dynamic alloca-
tion of airline seats to various fare classes. When all the low-price fares are closed,
consumers may decide to wait before purchasing a ticket in the hope that a low-
price fare class will reopen. The paper does not model consumer behavior explicitly,
however.
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The model in our chapter is most closely related to the dynamic pricing model
in Gallego and van Ryzin (1994). Gallego and van Ryzin (1994) assume that all
consumers are price-takers: those who can afford the price purchase right away and
those who cannot, leave. In our model, strategic consumers are patient and would not
purchase until the desired time or price of the product is reached. We are interested
in the effect of such a strategy on the consumers’ utility and the seller’s total revenue.

17.3 Strategic Consumer Behavior

17.3.1 Dynamic Pricing Model

We assume that the seller’s pricing strategy follows that in Gallego and van Ryzin
(1994), which we call the GVR model. Therefore, we begin with a brief review of
the GVR model. There is a fixed number, n, of one type of perishable product to
be sold during a finite time horizon, T . The product is perishable so all units left at
the end of the sales period are worth nothing.2 Let k denote the number of products
left, 0 ≤ k ≤ n, and t the time units left in the sale horizon, 0 ≤ t ≤ T . As is the
convention, t gets smaller as time goes by. Therefore, the state of the system can be
described by the vector (k, t).

Consumer purchases follow a price-sensitive Poisson process. That is, if price
is p, then the instantaneous Poisson arrival rate is λ (p), where λ (p) is decreasing in
p and lim

p→∞
λ (p) = 0. There is another way to interpret this consumer arrival process:

Let the arrival of all potential consumers follow a Poisson process with a constant
rate λ (0). Moreover, let each consumer’s valuation of the product, v, has the cumu-
lative probability distribution (CDF) F(p) = 1−λ (p)/λ (0). Thus, when the price
is p, an arriving consumer can afford the product with the probability of 1−F(p).
Consequently, the price-sensitive purchase arrival process is Poisson with the in-
stantaneous rate λ (0) [1−F(p)] = λ (p). In this chapter, the second interpretation
will be used.

In any state (k, t), the seller chooses the best price p – or equivalently λ (p) –
to maximize its total expected revenue J(k, t). No inventory holding cost is consid-
ered for the seller, which is standard in the one-period problem setting. Gallego and
van Ryzin (1994) show that J(k, t) is determined by the following equation, with
boundary conditions J(n,0) = 0 and J(0, t) = 0:

∂J(k, t)
∂ t

= sup
λ

[λ p(λ )−λ (J(k, t)− J(k−1, t))] , ∀n ≥ 1, ∀t > 0,

where p(λ ) is the inverse function of λ (p).
The seller’s dynamic pricing strategy thus depends on the state status (k, t) and

can be summarized in a pricing function p(k, t). Clearly, it is reasonable to expect

2 It will be straightforward to include an end-of-horizon salvage value for each unsold unit.
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the price to be higher when fewer units are left or when more time is left. Thus,
p(k, t) is decreasing in k but increasing in t. Those properties are proved in Gallego
and van Ryzin (1994).

In the GVR model, all consumers are price takers, which we call regular con-
sumers. In this chapter, we assume there are two types of consumers: regular con-
sumers (RC) and strategic consumers (SC). To begin with, in this section and next
we will assume that there is only one SC in the system and analyze his/her behavior.
In Section 17.5, we study the extension of having multiple SCs in the system.

We assume that the SC, with the help of software agents, is able to collect in-
formation about the seller’s pricing policy p(k, t) and the demand arrival function
λ (p), and use them to optimize the timing of her purchase.

The SC exhibits two major differences in her behavior from that of a RC. First,
when a RC cannot afford the item, she simply leaves. In contrast, an SC chooses to
wait so that, if the price drops later, she may afford it. Second, when a RC can afford
the item at the current price, she purchases right away. In contrast, an SC may decide
to postpone the purchase so that she may purchase the product at a lower price later.

17.3.2 Threshold Purchasing Policy

When the SC arrives to find the system in state (k, t), the decision for her is whether
to purchase at the current price p(k, t) or to wait. If she decides to wait, then what
is the desired time or price level to make the purchase? We study the following two
policies:

Threshold time policy (TTP). With k products available, purchase if and only if
there are tk time units or less left in the sales time horizon, i.e., purchase if and only
if t ≤ tk.

Threshold price policy (TPP). With k products available, purchase if and only if
the price is below a certain threshold price level pk.

Since the SC knows that the seller changes price dynamically, waiting a little bit
to purchase may result in a lower price. How long she waits will have to depend on
both the number of units left, k, and the time left, t. This results in the TTP. From
another perspective, the SC waits till a target price is reached, which is the TPP.
Below, we show that the two policies are equivalent. All of the proofs in this chapter
are shown in Appendix.

Proposition 1. The threshold price policy (TPP) is equivalent to the threshold time
policy (TTP).

Because the TTP and the TPP are equivalent, in this chapter we will use them
interchangeably.

If the SC arrives with little time but many products left (i.e., small t and big k),
the price may already be lower than her target price pk so the SC will purchase right
away. In other situations, the SC may wait. Clearly, during the wait, it is possible that
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another consumer may arrive and make a purchase. In this case, k becomes k− 1,
and the SC will continue to follow the above policies and wait for tk−1 (or pk−1).

Now we study how the SC determines the thresholds. Let her have a valuation of
v for the product. The objective for her is to maximize her utility, which is defined to
be the difference between v and the price paid for the product. Clearly, the SC will
only purchase the product if the price is no more than v (i.e., no negative utility). If
the SC ends up unable to purchase the product because the price is higher than v,
we say that the consumer receives a utility of 0.

At any time, if the price is below the SC’s valuation, she has two options: pur-
chase now and get the sure utility or wait till later to either get the product at a
lower price or see the price jump due to other consumers’ purchases. The SC must
carefully balance the consequences of the two options. We let the threshold tk be
the point at which the SC is indifferent between purchasing now and waiting a lit-
tle longer. Due to bounded rationality, it is reasonable to assume that the strategic
consumer only considers these two options. A more rigorous approach would also
consider the option of waiting to purchase at a more distant future time. In this case,
although we believe the following Proposition still holds, we can only prove it for
some special cases. Even when one considers (17.1) to be a heuristic, our simula-
tions in Section 17.4 show it is very effective.

Proposition 2. Let tk be the solution to

min{p(k−1, t),v} = p(k, t)+
∂ p(k, t)/∂ t
λ (p(k, t))

. (17.1)

If tk ≥ t, the strategic consumer will purchase right away; and if tk < t, the strategic
consumer will wait and the target purchase time is tk.

17.3.3 Exponential Valuation of the Consumers

Equation (17.1) can be used to derive the thresholds for any given price strategy
p(k, t). To evaluate its efficiency, we will apply it to the case in which v follows
an exponential distribution. This is the same distribution used in Kincaid and Dar-
ling (1963) and Gallego and van Ryzin (1994).

Let the arrival of potential consumers follow a Poisson process with a constant
rate of a. Each consumers’ valuation of the product, v, follows an exponential dis-
tribution with a rate of α . Consequently, when the price is p(k, t), the probability
that an arriving consumer has a valuation v higher than p(k, t) is e−α p(k,t). Hence,
the price-sensitive Poisson arrival rate is λ (p(k, t)) = ae−α p(k,t). For simplicity of
notation, α is set to one.

Under these assumptions, Gallego and van Ryzin (1994) show that the optimal
pricing policy for the seller satisfies:

p(k, t) = J(k, t)− J(k−1, t)+1 (17.2)
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where J(k, t) is the maximum revenue function for the seller and it satisfies

∂J(k, t)
∂ t

= λ (k, t) (17.3)

and

J(k, t) = log

[ k

∑
i=0

(
at
e

)i 1
i!

]
. (17.4)

In what follows, we will further characterize these functions and derive properties
that will simplify the analysis of (17.1). To streamline the exposition, we will use
λ (k, t) instead of λ (p(k, t)), and define

g(k, t) = p(k, t)+
∂ p(k, t)/∂ t

λ (k, t)
.

We obtain the following results:

Lemma 1. p(k, t)+
∂ p(k, t)/∂ t

λ (k, t)
increases in t.

Lemma 2. p(k−1, t) > p(k, t)+
∂ p(k, t)/∂ t

λ (k, t)
.

Based on Lemmas 1 and 2, we can find the optimal purchasing thresholds.

Proposition 3. (i) The tks for the TTP are solutions to v = p(k, t)+
∂ p(k, t)/∂ t

λ (k, t)
.

(ii) A unique finite solution, tk, exists for every k if and only if v ≥ 1.

Proposition 3 reduces the computational effort for the time thresholds and facil-
itates further theoretical analysis. It also has a simple interpretation: When the SC
decides not to purchase right now, two things are possible: the price may go up if
another consumer arrives and the effect of this is λ (k, t) [p(k−1, t)− p(k, t)]; or if
there is no other arrivals then the price will gradually go down over time and the
effect of this is ∂ p(k, t)/∂ t. Lemma 2 shows that the first, price-jump effect always
exceeds the second, time effect. This, together with (17.1), results in Proposition 3.

Therefore, if v is very high, the SC will always purchase immediately. However,
the existence of a finite v limits the first effect and makes the waiting option more
attractive. One can also easily deduce that the lower the v, the more restrictions
it puts on the price-jump effect, and the consumer is more willing to wait. The
properties of the TTP are formally stated in Proposition 4.

Proposition 4. The solution of the TTP has the following properties:
(i) The tks are increasing in v.
(ii) The tks are decreasing in a.

Intuitively speaking, when v is small, the utility for the SC is small if she pur-
chases the product right away; so the SC has little to lose if she waits and other RCs
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make purchases (and the price goes above v), but she has the potential to gain much
if the price keeps dropping. On the other hand, the SC with a higher v will have a
higher loss if the price jumps if she waits; but her gain from waiting for a lower
price remains the same as that with a lower v. As a result, the SC with a higher v
will purchase earlier. Numerically, this holds true especially for k = 1. For k > 1,
the tks are quite insensitive to v.

Proposition 4 also states that the bigger the arrival rate a, the smaller the tk. This
means that if the product is “hot,” then the consumer will want to wait longer. This
seems counterintuitive at first, but it makes sense after a careful examination. When
the demand rate is high, the seller also knows it. As a result, for the same k and t, the
price will be higher for a higher a. Therefore the utility to gain for a consumer with
a fixed v is lower. The SC’s risk of losing this current utility by waiting is smaller
now (since a is larger). So the consumer is willing to wait longer.

When the SC follows the TTP, she needs to estimate the following three param-
eters to determine her time thresholds:

• t, the time left
• k, the number of products left
• a, the arrival rate

In general, while t is usually easy to estimate, k may not be. If it is a physical item
on display in retail stores, the consumers can check the level of inventory. On the
other hand, if the product is not a physical item (e.g., air ticket), it may be diffi-
cult to obtain the seller’s inventory information. However, sellers are increasingly
volunteering such inventory information on their website and making it easier for
consumers to find.3 Hence, here we assume consumers can obtain the inventory
level information. In Section 17.5, we relax this assumption and examine a policy
that does not rely on the sellers’ inventory information.

For the arrival rate a, we prove in the following Proposition that when a consumer
follows the TPP, there is no need to estimate that parameter at all:

Proposition 5. The solution to the TPP, pk, is independent of a.

From the proof we see that the pks are independent of a and the tks depend on
a only through the product atk. This makes sense because what is important for the
SC, for a fixed inventory level k, is not the arrival rate of other consumers, but rather
the expected number of other consumers who will arrive later. This is the product of
the arrival rate and how much time is left, at.

That the threshold prices can be determined with only k and t makes the TPP a lot
easier to use. Also, it is worth noting that the use of the TPP is quite similar to that
of the limit order in stock trading: a consumer arrives to find the current prevailing
market price and decides to transact later when a threshold price is reached. We will
have more discussion on this later.

3 For example, AA.com, expedia.com, and Travelocity.com all show how many seats/tickets are
still left to potential buyers (sometimes on the first screen after a search). Moreover, on websites
such as www.expertflyer.com consumers can get an inside peek into the airline’s inventory.
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Fig. 17.1 Strategic consumer purchasing policy (a =70,n =25,v =1.05).

The example in Figure 17.1 illustrates how the threshold policy works for the SC.
Numerical results show that the threshold policy uses a different threshold time (tk)
for each inventory level (k). As shown in Figure 17.1, the threshold time decreases
in k (this decrease is also observed in all the numerical tests we carried out for the
simulations in the next section), which suggests that when inventory is higher, the
SC should wait shorter. The reason is that, when inventory is high, the seller’s price
will be low, which means the SC does not need to wait long for the price to drop
below the threshold level.

17.4 Simulation Results

17.4.1 Benefits to the Strategic Consumer

We conduct simulation studies to examine the benefit of using the TPP to the strate-
gic consumer. The main purpose is to investigate the magnitude of the SC’s ben-
efit when different sets of parameters are considered. For every sample path of all
consumer arrivals, we run two simulations simultaneously. In Simulation 1, we ran-
domly pick a consumer to be the SC. This SC will follow the TPP. Simulation 2 is
identical to Simulation 1 except that we replace the SC with a RC. If her valuation
is less than the current price, the RC in Simulation 2 will leave the market while the
corresponding SC in Simulation 1 will wait. If her valuation is higher than or equal
to the current price, the RC in Simulation 2 will purchase the item right away, while
the SC in Simulation 1 may still wait.
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We compute two measures of the benefit to the SC. The first is the difference
in utility gain between the SC in Simulation 1 and her corresponding RC in Sim-
ulation 2. The second is the difference in the probability of obtaining the prod-
uct between the two consumers. We report the results in Figures 17.2 and 17.3,
respectively.

It is worth noting that the price formula in (17.2) yields a minimum price of 1.
Therefore, any consumer with valuation of less than 1 will never be able to afford
the product. In the simulation tests, we allow the consumer valuations to follow
the exponential distribution, but will present only results on the consumers with
valuations more than 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Valuation

P
ro

ba
bi

lit
y 

C
ha

ng
e

a = 60

a = 80

a = 100

a = 120

a = 140

Fig. 17.3 Percentage point increase in the probability of obtaining the product for SC.



446 Minho Cho, Ming Fan, and Yong-Pin Zhou

As shown in Figure 17.2, the SC consistently outperforms the corresponding RC.
The highest performance difference occurs when the SC’s valuation of the product
is intermediate. Our explanation is that when the valuation is low, the maximum
utility that can be obtained by the SC is limited; hence is the difference of utility
between the two types of consumers. When the SC’s valuation is high, her target
prices will also be high. Oftentimes she will purchase the product immediately upon
arrival. Thus, the SC does not gain much utility than the corresponding RC. It is also
interesting to note that the utility gain increases with the arrival rate. With a higher
arrival rate, the average product price will also be higher. The SC’s benefit of using
the TPP is higher under those situations.

For the SC with a high valuation of the product, she will not improve her chance
of getting the product over the corresponding RC by waiting, because both are likely
to afford the product. Therefore, it is expected that the improvement in the probabil-
ity of getting the product mostly occurs when valuations are low. This is confirmed
by Figure 17.3.

Figures 17.2 and 17.3 suggest that by following the TPP, the SC may benefit
because (1) she may improve her chance of getting the product if she could not
afford it upon arrival or (2) she may get a lower price later. The question is which
effect is more dominant. To answer this, we perform more detailed analysis. We
categorize all the simulation outcomes into two cases. In Case 1, the SC cannot
afford the product upon arrival (i.e., v < p). In Case 2, the SC can afford the product
upon arrival (i.e., v ≥ p). The corresponding RC, who has the same valuation as the
SC, will get a utility of 0 in Case 1. Thus, the SC will always be better off in Case 1.
In Case 2, there are three scenarios. First, the SC buys the product immediately.
In this scenario, there is no difference on the benefit. Second, the SC manages to
purchase the product later. We believe that on an average she will be able to purchase
at a lower price and, thus, is better off by waiting. Third, the SC waits but does not
get the product. Because the corresponding RC purchases the product, the SC is
worse off in this scenario.

The simulation results show that the expected utility gain of SC is positive in both
Cases 1 and 2, suggesting that on an average the SC is always better off. Further-
more, we find that the expected gain predominantly comes from Case 1 when the
valuation is low and the arrival rate is high. For example, about 99% of the benefit
comes from Case 1 when v = 1.1 and a = 140, while only 12% of the benefit comes
from Case 1 when v = 2.5 and a = 60. When the valuation is low and the arrival rate
is high, the price is less affordable, and the TPP allows the SC to have the chance
to purchase the product at a price lower than his valuation. When the price is more
affordable due to either a lower arrival rate or a higher consumer valuation, a higher
percentage of the expected gain comes from Case 2. Table 17.1 provides a summary.

17.4.2 Impact on the Seller

Since the use of the threshold purchase policy benefits the strategic consumer, one
may expect that the seller will be worse-off if it continues to use the original dy-
namic pricing policy. Revenue could decline because strategic consumers will delay
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Table 17.1 Sources of expected benefits.

Change of benefits for SC (%)

Scenarios Average Max Min

Case 1 (v < p) Wait and get 64.5 99.4 11.9
(v = 1.1, a = 140) (v = 2.5, a = 60)

Wait and not get 0 0 0

Case 2 (v ≥ p) Buy immediately 0 0 0
Wait and get 54.6 236.1 0.6

(v = 2.5, a = 60) (v = 1.1, a = 120)
Wait and not get -19.1 0 -148.0

(v = 1.1, a = 140) (v = 2.5, a = 60)

their purchases and pay lower prices. On the contrary, we find the sellers by and
large do better with a strategic consumer.

Figure 17.4 clearly shows that the impact on seller revenue is non-negative across
all consumer valuations. With an SC delaying her purchase, there are two likely
effects on seller revenue. First, the SC may purchase at a lower price or not purchase
at all if the price increases beyond her valuation. This impact on seller revenue is
negative. Second, when the SC could not afford the item upon arrival, her waiting
essentially keeps the demand, which would have otherwise been lost, in reserve.
Consequently, the seller can both maintain a higher price and reduce the number of
unsold items later on. This impact on seller revenue is positive. Our results suggest
that the positive effect dominates the negative effect. We also see in Figure 17.5
that the pattern of the increase in sales (number of tickets sold) is consistent with
revenue increase, suggesting that sales increase is likely the major cause of revenue
increase.

Note in Figure 17.4 that the positive impact is most significant when consumer
valuation is low. Because consumer valuations are exponentially distributed, which
favors low valuations, the seller’s overall revenue increase should be significant.
To see that, we conduct further simulations by following a random SC, whose
valuation follows the exponential distribution. We find both the average seller
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revenue improvement and average sales improvement increase in the arrival rate
(Figure 17.6). Figures 17.2 and 17.6 together suggest that when the product is “hot”
(higher demand relative to supply), the use of the TPP results in higher benefits for
both the SC and the seller. To explain this, we note first that when the arrival rate is
high, the price is also high. Individual consumers are more likely to be priced out
of the market when they arrive. This may even happen to high-valuation consumers
at the beginning of the sales horizon. With the SC waiting, when price drops below
the SC’s threshold price, the SC will purchase. Thus, the SC provides a valuable
demand cushion for the seller, especially when the arrival rate is high.

Moreover, using standard deviation or CV to measure price volatility in the
original GVR model, we find that price volatility increases in the consumer ar-
rival rate (Figure 17.7). Intuitively, with a higher arrival rate, the seller will price
products higher. However, if expected demand does not materialize, the seller has
to reduce the price more sharply. Therefore, the higher arrival rate leads to higher
pricevolatility.

It seems that the increase in both the SC’s utility and the seller’s revenue can be
explained by the increase in price volatility when the arrival rate is high. This is
consistent with the results in financial literature on the limit order trading discussed
earlier. In general, when the market is more volatile, individual market participants
can benefit by being patient and waiting to a threshold price. Essentially, it is a
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form of transferring demand over time. When demand is stochastic, this practice
will help improve the overall market performance as well. In financial market, limit
orders narrow the bid–ask spread (Chung et al. 1999) and reduce transaction costs.
In the market of perishable products studied in our research, the use of the TPP
reduces wasteful inventory and increases seller revenue.

17.5 Extensions

17.5.1 Multiple SCs and a Simplified Threshold Price Policy

Realizing that the strategic consumer’s waiting could increase sellers’ revenue, sell-
ers may develop a system to encourage consumer waiting. An interesting analogy,
as mentioned earlier, is that allowing limited orders in financial markets helps to
improve the overall market performance (Chung et al. 1999). There are many op-
tions to encourage consumers to stay around rather than leave instantly when prices
are too high. We consider a simple system that allows consumers to indicate an in-
tention of future purchase. For example, the seller can ask the consumer to create a
“wish list” of the product and the target price, as well as the e-mail address where
the consumer can be informed when the price is reached.4

In this section, we numerically investigate the impact of such a system on the
seller’s revenue. In Section 17.4, we already studied the impact of a single SC on
the seller’s revenue; but a target purchase system will be open to all the consumers
and there likely will be more than one SC. In our simulations, we let each consumer
choose to use such a system with a certain probability and systematically vary this
probability. (We will continue to call these consumers SC.) Prior studies have re-
ported that, even after many years in existence, online searching activities are still

4 While this practice is quite common for online retailers such as Amazon.com, it is rare in the air-
line industry. Recently, however, Travelocity.com introduced a “FareWatcher” feature that allows
users to be notified when the ticket price of a particular flight reaches a certain level or drops by a
certain amount.
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Fig. 17.8 Revenue and sales increase under a single target price. Impatience ratio = 10%.

limited (Johnson et al. 2004, Montgomery et al. 2004). Therefore, we expect the use
of such a target purchase system to be limited as well. Consequently, we vary the
proportion of SCs from 2.5 to 15%.

For simplicity, the seller allows a consumer to leave only one target price.5 There-
fore, the SCs need to determine an inventory-independent target price. We simplify
the TPP heuristic to achieve this: When an SC arrives, she first estimates the aver-
age inventory the seller will carry from this time forward, and then use this average
inventory and the TPP to calculate her single target price.

Figure 17.8 shows how the proportion of SC impacts the firm revenue and sales. It
is clear that more SCs help the seller to increase their revenue more, as they provide
a larger demand cushion for the seller so that the price does not drop too low. This
also explains the result that the seller will be able to sell more products when the SC
proportion increases.

It is an interesting research topic to examine how the seller should react when
the portion of SCs is more significant, but we do not pursue this further since it is
beyond the scope of this chapter. Interested readers are referred to Su (2007).

17.5.2 Constraints on Strategic Consumer Waiting

Our model so far has assumed an infinitely patient SC who does not incur cost
while waiting for the target time/price. In this section, we examine two approaches
that incorporate constraints on SC waiting. First, we include waiting cost for the SC.
Second, we consider impatient SCs.

In the first approach, we extend the base model by including a linear waiting
cost. That is, for every unit of time the SC waits, she incurs a cost of c, which can
be a function of the SC’s valuation v. For example, if the SC is waiting for an air

5 It is unlikely that the firm will allow the consumers to leave target prices based on the inventory
level. Theoretically, the consumer can periodically check the inventory level and modify her target
price accordingly. This calls for such a substantial amount of work on the consumer’s part that
they will not use it frequently in practice. Therefore, to simplify the analysis, we focus on the case
where the consumers leave one price and do not change it as time and inventory levels change.
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ticket, then while waiting she has to endure and manage the uncertainty imposed on
her other activities during the trip (booking hotel, rental car, tour, etc.). It turns out
that it is fairly straightforward to extend the base model to include c. The following
Proposition parallels Proposition 3.

Proposition 6. The tks for the TTP are solutions to v = p(k, t)+
∂ p(k, t)/∂ t

λ (k, t)
− c.

It is interesting to note that, in terms of choosing target times, the inclusion of c
effectively makes an SC with valuation v act like an SC with valuation v + c in the
base model. Using Proposition 4, we observe that the higher the waiting cost, the
bigger the tks, and the shorter the SC’s waiting time. Although intuitive, Proposi-
tion 6 provides a way to quantify the effect of c.

Another way to incorporate the constraint on consumer waiting is to explicitly
model those consumers who wait but then leave the system before making a pur-
chase; i.e., some SCs are impatient. The difference between this approach and the
waiting cost approach is akin to that between abandonment and waiting cost in the
queueing literature. We believe that abandonment is a more realistic and robust way
to model consumer waiting because the cost of waiting could be difficult to quantify.
Therefore, we focus on this approach in subsequent simulation studies.

In the simulations we allow a certain portion of SCs to be impatient. We call
this portion the impatience ratio. Those impatient SCs are randomly selected, and
each has her own time-to-abandonment which is uniformly distributed between their
arrival time and the end of the sales horizon. In addition to consumer impatience
level, the impatience ratio can also reflect the level of competition (e.g., how many
airlines fly between the city pair on that date) and the level of consumer loyalty (e.g.,
whether the consumer belongs to a loyalty program). In our simulations we vary the
impatience ratio from 0 to 15%.

Figure 17.9 displays the impact of impatience ratio on seller revenue and sales.
We set the proportion of SCs of all consumers to 10% and let all the SCs follow
a single target price heuristic—the simplified TPP. Not surprisingly, as impatience
ratio increases, both revenue and sales increase decrease, but they remain positive.
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Figures 17.9, together with Figure 17.8, also reveal that the revenue increase with
SCs is higher with a higher customer arrival rate. This again suggests that sellers
with more price volatility should benefit more by providing a target purchase option
to their customers.

17.6 Conclusions and Future Research

In this research, we study the strategic response of customers to dynamic prices of
revenue management. The strategic customers wait to purchase at specific target
prices (TPP) or target times (TTP) that depend on the customer’s valuation of the
product and the current inventory level. We conduct simulations to study the per-
formance of TTP/TPP. We show that customers benefit by following these policies.
In particular we find that when customer valuation is low or the arrival rate is high,
most of the utility gains come from the improved probability of getting the product
by waiting (hence, the utility improves to non-zero from zero). When the valuation
is high, then most of the benefits come from the lower price strategic customers can
expect by waiting. Overall, the benefit is the greatest for low-valuation customers
(low v) and hot products (high a).

We show that the firm also benefits from having SCs who follow the TTP/TPP.
This result first seems to be counterintuitive until one realizes that this is not a zero-
sum game. The firm may benefit because, while RCs will leave the market if they
cannot afford the product upon arrival (especially early in the sales period when the
product price is usually higher), SCs are kept in the waiting pool. This waiting of
SCs provides a cushion to price volatility and prevents the price from falling too
low. It also serves as an additional demand that helps to reduce wasted inventory
at the end. This benefit is somewhat similar to the benefits of limit orders in stock
trading which provide liquidity to the market (Chung et al. 1999, Foucault 1999).

When high-valuation SCs wait and get a lower price, this will negatively affect
the firm’s revenue. But our results show that, in general, the potential revenue loss
from the delay of purchase is limited. High-valuation consumers, as it turns out,
have higher target prices, and are very likely to purchase immediately upon arrival.
Keeping low-valuation consumers in the waiting pool helps to reduce wasted in-
ventory and prevent firms from deep price discounts toward the end. This could
be especially beneficial to industries with a fixed cost for the products, e.g., air-
line tickets and hotel rooms, where the revenue loss of each wasted inventory is
large.

This discovery of benefits to the firm is important as it encourages companies
to develop systems that can allow consumers to place a “limit order” for the prod-
ucts or services. Actual implementation can be flexible. Consumers can choose to
be notified of price changes through e-mails. A promising direction for future re-
search is to model the impact of such practices on firm’s revenue analytically and
quantify the trade-offs between the higher sales and the lower prices paid by some
consumers.
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Appendix

Proof of Proposition 1

Because the pricing curves p(k, t) are strictly increasing in t for the fixed k, it is
easy to show that there exists a one-to-one relationship between tk and pk = p(k, tk)
such that t > tk ⇔ p > pk and t < tk ⇔ p < pk. Thus, there is a one-to-one
correspondence between the TPP and the TTP.

Proof of Proposition 2

Suppose that the SC arrives in the state (k,t) and sees the price p(k, t). We denote
qi(k, t,Δ t) the probability of i consumers arriving during [t, t −Δ t] who can afford
p(k, t). It is easy to see

lim
Δ t→0

q0(k, t,Δ t) = 1, lim
Δ t→0

q1(k, t,Δ t)
Δ t

= λ (p(k, t)) ,

and

∑
i≥2

qi(k, t,Δ t) = o(Δ t).

If the SC purchases the product at t, the realized utility is v− p(k, t). If the SC waits
and purchases after Δ t, the expected utility is

q1(k, t,Δ t)max{0,v− p(k−1, t −Δ t)}
+q0(k, t,Δ t) [v− p(k, t −Δ t)]+o(Δ t). (A.1)

At the threshold tk, the SC is indifferent between purchasing and waiting a little
bit. By equating these two utilities and letting Δ t go to 0, we obtain

lim
Δ t→0

[
1−q1(k, t,Δ t)−q0(k, t,Δ t)

Δ t

]
[v− p(k, t)]

= lim
Δ t→0

{
q1(k, t,Δ t)

Δ t
[p(k, t)−min{p(k−1, t −Δ t),v}]

+q0(k, t,Δ t)
[p(k, t)− p(k, t −Δ t)]

Δ t
+

o(Δ t)
Δ t

}
.

This amounts to

0 = λ (p(k, t)) [p(k, t)−min{p(k−1, t),v}]+ ∂
∂ t

p(k, t).

Therefore, the time threshold tk satisfies

min{p(k−1, t),v} = p(k, t)+
∂ p(k, t)/∂ t
λ (p(k, t))

.
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Proof of Lemma 1

From (2) and (3),

∂ p(k, t)
∂ t

=
∂J(k, t)

∂ t
− ∂J(k−1, t)

∂ t
= λ (k, t)−λ (k−1, t).

We also know that λ (k, t) = ae−p(k,t). Therefore, because

g(k, t) =p(k, t)+
∂ p(k, t)

/
∂ tλ (k, t),

g(k, t) =p(k, t)+1− λ (k−1, t)
λ (k, t)

= p(k, t)+1− e−[p(k−1,t)−p(k,t)].

Therefore,

∂g(k, t)
∂ t

=
∂ p(k, t)

∂ t
+ e−[p(k−1,t)−p(k,t)]

[
∂ p(k−1, t)

∂ t
− ∂ p(k, t)

∂ t

]
=

∂ p(k, t)
∂ t

[
1− e−[p(k−1,t)−p(k,t)]

]
+ e−[p(k−1,t)−p(k,t)] ∂ p(k−1, t)

∂ t
.

Because p(k, t) is increasing in t and decreasing in k, it follows that ∂g(k, t)/∂ t ≥ 0.

Proof of Lemma 2

∂ p(k, t)/∂ t
λ (k, t)

=
λ (k, t)−λ (k−1, t)

λ (k, t)
=

e−p(k,t)− e−p(k−1,t)

e−p(k,t)

=
−e−ξ [p(k, t)− p(k−1, t)]

e−p(k,t) =
e−ξ [p(k−1, t)− p(k, t)]

e−p(k,t)

< [p(k−1, t)− p(k, t)] , for some ζ ∈ (p(k, t), p(k−1, t)).

It is clear then

p(k−1, t) > p(k, t)+
∂ p(k, t)/∂ t

λ (k, t)
.

Proof of Proposition 3

Lemmas 1 and 2 imply that the LHS and the RHS of (17.1) look like the graph
displayed in Figure 17.10.

(i) From Figure 17.10, it is clear that, because p(k−1, t) is always greater than
the RHS, tk is the intersection of v and the RHS. In effect, (17.1) can be simplified to

v = p(k, t)+
∂ p(k, t)/∂ t
λ (p(k, t))

. (A.2)
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Fig. 17.10 Solution to the threshold policy.

(ii) Next, we prove that the two curves will intersect if and only if v ≥ 1. Since
the RHS is increasing in t, its minimum is achieved at t = 0, which is 1. So clearly v
needs to be at least one. On the other hand, when t goes to 0, the RHS goes to 1; and
when t goes to ∞, the value goes to ∞. Because the RHS is continuous, we conclude
that for any v ≥ 1, there exists a tk such that the equality holds. The uniqueness
follows easily from the monotonicity of the RHS (Lemma 1).

Proof of Proposition 4

Property (i) follows immediately from Figure 17.10. For Property (ii), we note that

∂g(k, t)
∂a

=
∂ p(k, t)

∂a
+ e−[p(k−1,t)−p(k,t)]

[
∂ p(k−1, t)

∂a
− ∂ p(k, t)

∂a

]
=

∂ p(k, t)
∂a

[
1− e−[p(k−1,t)−p(k,t)]

]
+ e−[p(k−1,t)−p(k,t)] ∂ p(k−1, t)

∂a
.

Because p(k, t) is increasing in a, it follows that g(k, t) is also increasing in a.
Clearly from Figure 17.10, as the RHS increases and v stays the same, the inter-
section point, tk, decreases.

Proof of Proposition 5

First of all, note the following:

pk = p(k, tk) = v− ∂ p(k, tk)/∂ t
λ (k, tk)

= v− λ (k, tk)−λ (k−1, tk)
λ (k, tk)

= v−1+
λ (k−1, tk)

λ (k, tk)
= v−1+ e−[p(k−1,tk)−p(k,tk)]. (A.3)
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Because J(k, t) = log
[
∑k

i=0((at/e)i/i!)
]

and p(k, t) = J(k, t)− J(k− 1, t)+ 1, both
J(k, t) and p(k, t) depend on a only through the product at. So if we let x = at
then both J(k, t) and p(k, t) become functions of only x (i.e., they are free of a).
Therefore, we can simply solve (A.2) to obtain xk = atk and plug them into (A.3) to
compute pk. The pks thus computed are all free of a.

Proof of Proposition 6

This proof is very similar to that of Proposition 2. If the SC purchases the product
at t, the realized utility is v− p(k, t). If the SC waits and purchases after Δ t, the
expected utility is

q1(k, t,Δ t)max{0,v− p(k−1, t −Δ t)}
+q0(k, t,Δ t) [v− p(k, t −Δ t)]− cΔ t +o(Δ t). (A.4)

At the threshold tk, the SC is indifferent between purchasing and waiting a little bit.
By equating these two utilities and letting Δ t go to 0, we obtain

lim
Δ t→0

[
1−q1(k, t,Δ t)−q0(k, t,Δ t)

Δ t

]
[v− p(k, t)]

= lim
Δ t→0

{
q1(k, t,Δ t)

Δ t
[p(k, t)−min{p(k−1, t −Δ t),v}]

+q0(k, t,Δ t)
[p(k, t)− p(k, t −Δ t)]

Δ t
− c+

o(Δ t)
Δ t

}
.

This amounts to

0 = λ (p(k, t)) [p(k, t)−min{p(k−1, t),v}]+ ∂
∂ t

p(k, t)− c.

Therefore, the time threshold tk satisfies

min{p(k−1, t),v} = p(k, t)+
∂ p(k, t)/∂ t
λ (p(k, t))

− c. (A.5)

If tk ≥ t, the strategic consumer will purchase right away; and if tk < t, the strategic
consumer will wait and the target purchase time is tk. Also, similar to Lemmas 1
and 2 (the proofs are hence omitted), we can show that

1. p(k, t)+
∂ p(k, t)/∂ t

λ (k, t)
− c is increasing in t, and

2. p(k−1, t) > p(k, t)+
∂ p(k, t)/∂ t

λ (k, t)
− c.

The second result above allows us to simplify (A.3) to

v = p(k, t)+
∂ p(k, t)/∂ t

λ (k, t)
− c,
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which completes the proof. We note, from Figure 17.10, that a positive c will in-
crease the target time tks, which means the SC is willing to wait less when there
is a cost. While this is intuitive, Propositions 3 and 6 show a way to quantify the
difference.
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Chapter 18
Strategic Behavior in Supply Chains:
Information Acquisition

Karan Girotra and Wenjie Tang

Abstract Reducing the financial impact of supply–demand mismatches is a
central objective of supply chain management. Modern supply chains have multiple
independent self-interested actors each with different information about the demand
uncertainties facing the supply chain. Strategic behavior by these self-interested
actors often enhances the supply–demand mismatches in the supply chain. In this
chapter, we present the case of a fashion products supply chain with multiple strate-
gic actors each of which has different information. Traditional contracting strate-
gies in this supply chain lead to excessive supply–demand mismatches. We then
propose an alternate contracting strategy. Specifically, we propose that the supply
chain starts offering “Advanced Purchase Discounts” in addition to the traditional
wholesale price based contracts. We demonstrate that strategic responses to these
contracts by agents in the supply chain lead to better information sharing, superior
risk bearing, reduced supply–demand mismatches and can lead to Pareto-improving
outcomes for all actors in the supply chain. In contrast with conventional wisdom
that strategic behavior in the supply chain leads to poorer supply chain performance,
our results illustrate that appropriately designed supply chain practices can actually
exploit the strategic behavior of actors to improve supply chain performance. We
conclude by illustrating the application of the proposed contracts to our motivating
example of the fashion products supply chain.

Karan Girotra
Technology & Operations Management, INSEAD, Fontainebleau, 77300, France,
e-mail: karan.girotra@insead.edu

Wenjie Tang
Technology & Operations Management, INSEAD, Fontainebleau, 77300, France,
e-mail: wenjie.tang@insead.edu

S. Netessine, C.S. Tang (eds.), Consumer-Driven Demand and Operations Management 459
Models, International Series in Operations Research & Management Science 131,
DOI 10.1007/978-0-387-98026-3 18, c© Springer Science+Business Media, LLC 2009



460 Karan Girotra and Wenjie Tang

18.1 Introduction

Supply chains are made up of multiple strategic actors – manufacturers, whole-
salers, retailers, and most importantly customers. Prevalent macroeconomic trends
favoring skill and geographical specialization are making it increasingly common
that each of these tiers is owned and operated by different agents. Each of these
strategic agents acts independently with its best information to maximize its bene-
fits. As a consequence, such supply chains are often plagued by financial losses due
to supply–demand mismatches. Often, different tiers in the supply chain produce,
buy or stock too much and are stuck with excess inventory. In other situations, firms
produce or stock too little and are consequently unable to meet demand from their
customers, thus losing potential profits. Minimizing the financial impact of these
supply–demand mismatches is a central objective of supply chain management. In
this chapter, we present the case of a fashion products supply chain, that is struggling
with extensive losses due to such supply–demand mismatches. We then present a
strategy that exploits the strategic behavior of individual actors in the supply chain
to mitigate these supply–demand mismatches.

One of the primary reasons for supply–demand mismatch is imprecise demand
information – If all agents knew exactly how much demand would be, they would
all produce or stock exactly as much as demand and there would be no leftover
inventory or unmet customer demand. While each tier of the supply chain individu-
ally suffers from the consequences of imprecise demand information, a supply chain
with independent strategic actors also suffers from the additional consequences aris-
ing out of the lack of information sharing between different tiers of a supply chain.
In many instances, the tiers of a supply chain closest to the customer may have the
best demand information, but they do not have the incentives to share information
with other agents in the supply chain. In other instances, the supply chain tier with
the best information may not have the decision rights. Further, at times different
tiers may each have some private information and consolidating that information
may lead to superior decision making than utilizing the information independently.

We propose a strategy to ameliorate the losses due to lack of information shar-
ing by designing contracts that exploit the strategic behavior of independent actors
in the supply chain. Our strategy involves offering “Advance Purchase Discounts”
(APDs). Under such a scheme an upstream tier offers downstream tiers the oppor-
tunity to place orders well in advance of demand. Acting in its own best interest,
the downstream tier uses the best information available to it when making these
early orders. From observing these orders, the upstream tier can infer the informa-
tion available to the downstream tier and can make its decisions on the basis of the
demand information inferred and its own private information. The strategic behav-
ior of agents in this setup leads to improved information sharing and consequently,
higher profits for the supply chain. Further, these profits can be redistributed to make
each agent in the supply chain better off. Finally, such an arrangement also leads to
improved sharing of risks in the supply chain; agents that have private information
also bear some risks.
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The rest of this chapter is organized as follows. In Section 18.2, we present the
case of a fashion products manufacturer that motivates this study. In Section 18.3,
we survey the relevant literature. In Section 18.4, we provide results from our anal-
ysis of a setup where there are multiple independent retailers each selling different
products. In Section 18.6, we present the results from applying our model to the
fashion products manufacturer described in Section 18.2. We conclude in Section
18.7.1

18.2 Motivating Example: Costume Gallery

Costume Gallery is a New Jersey-based manufacturer of dance costumes. In the US
market, it is among the top 3 manufacturers of dance costumes. Annual sales in 2005
amounted to about US $30 million. Costume Gallery has been family run since its
inception in 1957. The third generation of the family took over in 1997 and has been
instrumental in bringing scientific management principles to the enterprise.

Costume Gallery was founded on the premise of excellent customer service. The
strategic focus for Costume Gallery has always been on fully satisfying its cus-
tomers at all costs. This strategic focus translates into a very large assortment of
dance costumes available for purchase. At any time, as many as 500 different styles
are available for purchase. Further, Costume Gallery meets all costumer demand. If
any style is not available in stock, Costume Gallery often produces the style on-order
for its customers.

Costume Gallery’s supply chain is illustrated in Figure 18.1.
Costume gallery sells most of its merchandise through dance schools. Typically,

the end consumer is a student enrolled in dance classes at dance schools. The in-
structor at a dance school plans a dance production and then decides on the ap-
propriate dance costume. The recommended dance costume is then ordered by the
school/instructor from Costume Gallery. Typically, the price of an average costume
to students is about $40. The dance instructors/schools typically have a 10% margin
on the merchandise. The dance schools do not hold any inventory or bear any of the
supply chain risks. All inventory costs and risks are traditionally borne by Costume
Gallery. Costume gallery can produce the dance costumes in a couple of different
ways. Either the dance costumes can be produced in house or can be sourced over-
seas. Costumes produced in house cost about US $15 and can be produced with a
lead time of 1–2 days. Even very small lots can be produced at Costume Gallery.
Alternately, costumes can be sourced from Asia. Typically fashion products can be

1 The authors would like to thank Ellen and Rick Ferreira from Costume Gallery for numerous use-
ful discussions. Comments from Serguei Netessine, Marcelo Olivares, Yu-Sheng Zheng, Krishnan
S. Anand, Karl T. Ulrich, Christian Terwiesch, Terry Taylor, Senthil Veeraraghavan, Xuanming Su,
and Nils Rudi have all helped in improving this chapter.
Data presented in this chapter are indicative of the situation at Costume Gallery, a fashion prod-
uct retailer; but has been completely disguised for business confidentiality reasons. Further, the
opinions in this document are not endorsed by or, are an endorsement of Costume Gallery or its
business practices.
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Fig. 18.1 The dance costume business.

sourced at 30–40% of the in-house production cost however; the production and
shipping lead time is as long as 2–3 months. Since there is a substantial cost sav-
ing in sourcing from Asia, Costume Gallery would prefer to source as much of its
production from Asia as it can.

The dance costume business is highly seasonal with 90% of the annual demand
occurring in the second half of April, coinciding with the end of school-year dance
performances. The timeline of the dance costume business is illustrated in Figure
18.2.

To meet demand, Costume Gallery typically starts designing costumes in July of
the previous year. These costumes are profiled in a catalog that is sent out to dance
schools in early August. An illustration of the catalog is shown in Figure 18.3.

Dance schools finalize their enrollment in November and have a good idea of the
theme behind the dance performance in December. At this point dance schools have
a fair idea of demand for different dance costumes, since they know the size of their
classes and the theme of the dance. However, there is still some residual uncertainty
due to changing sizes of students in classes and additions or dropouts from classes.
Given this residual uncertainty, schools behave strategically and do not place any
demand orders with Costume Gallery.

To meet April demand, Costume Gallery must place its overseas orders by the
month of January (given the 2–3-month lead time). Typically, these orders must be
placed before the Chinese New Year holiday that occurs in late January or early

Fig. 18.2 Timeline of the dance costume business.
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Fig. 18.3 The costume gallery catalog.

February. These orders are placed on the basis of the best information that Costume
Gallery has about the top selling styles. While dance schools have a far better idea
of the demand, they do not have any incentives to place any orders early in the sea-
son and bear the risk due to their residual uncertainty in demand. Thus, Costume
Gallery’s overseas orders are placed without utilizing the demand relevant informa-
tion available to dance schools. From January to April, Costume Gallery gets more
and more accurate demand information and utilizes its in-house production and lo-
cal contractors to meet demand over and above the quantities sourced from Asia.

In any given year, Costume Gallery is unable to sell as much as 35% of its stocked
inventory and often has to produce as much as 20% of its sales at the last minute
using the more expensive in-house production resources.

In recent years, Costume Gallery offered a novel discount scheme – orders com-
mitted to and paid in full by January 15, received a 15% discount. This “Advance
Purchase Discount Scheme” provided dance schools with an incentive to place
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orders on the basis of their early demand information. While this meant that dance
schools had to bear some risk and could potentially have unsold inventory, the
discount could significantly increase the margins for the dance schools. Costume
Gallery loses some revenues by offering the discount; however, the early demand or-
ders provide valuable information which can be used by it to source more efficiently
from the cheapest suppliers. In particular, this information drastically reduced the
amount of merchandise that was left unsold by Costume Gallery and also reduced
the expensive in-house production utilized by Costume Gallery. Further, by getting
dance schools to commit to orders, some of the risk of supply–demand mismatches
is transferred to the dance schools.

The two-tier production costs, seasonality in demand, and information asym-
metry characterizing Costume Gallery’s business are characteristics of the supply
chains of many manufactured goods. Advance purchase discounts of the kind of-
fered by Costume Gallery can significantly help such businesses improve their prof-
its. In the subsequent sections, we will develop an economic model that demon-
strates the benefits of offering APDs and highlights the drivers of the benefits. We
will then employ our developed model to a representative subset of products from
the Costume Gallery catalog. In the analysis that follows, we will model Costume
Gallery as the wholesaler and various dance schools as retailers.

18.3 Literature Review

There are multiple streams of existing literature that are relevant to this study. Fisher
and collaborators (Fisher and Raman (1996), Fisher et al. (1994, 2001), Hammond
(1990)) in their celebrated work on skiwear manufacturing at Sport Obermeyer
examine a setting where the firm has two production opportunities. The firm uses
information from customers that order early to optimize the orders in the second
production opportunity. Fisher and Raman (1996) characterize the benefits of such
multiple production opportunities. Fisher et al. (2001) provide a heuristic for com-
puting the optimal orders at the first and second ordering opportunity. In all of the
above-mentioned papers, while early demand information is utilized by the manu-
facturer, there are no mechanisms for proactively obtaining this demand information
as in the setup we analyze in this chapter. In particular, no advance purchase discount
scheme is offered.

Tang et al. (2004) provide the motivating example of Moon-cake sellers. They
model a setup where advance booking discounts are offered directly to customers.
Customers can order well in advance of demand and deliveries, and obtain a dis-
count; or customers can order closer to demand and pay full price. The customers
fully know their demand and respond to the discount as a function of their time
sensitivity. McCardle et al. (2004) extend this analysis to a competitive setting with
retail competition. Dana (1998) also considers Advance Purchase Discounts offered
directly to customers. Again, the customers are aware of their demand and the ad-
vanced purchase discount scheme serves as a price discrimination mechanism to
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separate between heterogeneous customers. Finally, Gundepudi et al. (2001) exam-
ine the case of selling information goods directly to customers. In contrast with
above detailed body of work, in the setup proposed in this chapter, the discount is
offered to a retailer who in turn sells to customers. The retailer does not fully know
her demand. Further, in our case, she decides to hold inventory and ends up sharing
supply–demand mismatch risks due to these discounts. The models presented in this
chapter can be viewed as a multitier extension of the models presented in Tang et al.
(2004).

Cachon (2004), like our setup, considers a setting where Advance Purchase Dis-
counts are offered by an upstream supply chain agent (wholesalers) to a downstream
agent (retailers). The allocation of inventory risk is the central focus of this paper.
However, both retailers and wholesalers have the same information in this setup. In
contrast to this, we assume that retailers by virtue of their being closer to customers
have some private information. Thus, in our chapter Advance Purchase Discounts
serve an additional purpose – they influence the transmission of information and
the allocation of inventory risks in the supply chain. Not surprisingly, as a conse-
quence of this information asymmetry the economics of offering these discounts are
modified in our setup.

Li and Zhang (2008) analyze the transmission and sharing of information in a
supply chain. They impose exogenous informational conditions, such as agreements
on confidentiality or information sharing. They then examine and compare the per-
formance of supply chains under the different informational conditions. In contrast
with this work, our research endogenizes the informational conditions, or in other
words, strategic agents in our models decide whether to share information or not.
We examine specific incentive mechanisms such as Advance Purchase Discounts,
which influence these choices.

18.4 Independent Retailers and Products

We consider a setup where one wholesaler can sell products through multiple retail-
ers. We assume that each retailer sells the product in an independent market. Further,
we assume that each product is sold by only one retailer. Under these assumptions,
each retailer is effectively independent of the other retailers, and the economics of
the relationship between each retailer and the wholesaler can be examined individ-
ually.

18.4.1 Model Setup

Consider the supply chain illustrated in Figure 18.4.
Customer demand is given as D̃, and is assumed to be distributed normally with

mean μ and variance σ2 = 1/S. The parameter, S, can be interpreted as the precision
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Fig. 18.4 The independent retailer model.

or the quality of the demand estimate available. The retailer sells this product at price
R. The retailer can purchase the product from the wholesaler at the full wholesale
price w. Alternately, the retailer can participate in the advanced purchase discount
scheme. Under the advanced purchase discount scheme, orders placed and paid for
in full by a particular cut off date, can be bought at a discounted wholesale price, δw.
The wholesaler has two potential production sources: the wholesaler can source the
product from a local production facility or he can source the product from an over-
seas supplier. Sourcing from the overseas suppliers involves longer lead times and
thus, overseas orders must be placed well in advance of deliveries. The local pro-
duction, on the other hand, has shorter lead times and orders for local production are
placed much closer to the required delivery date. The in-house production costs are
denoted by CL. The overseas production costs are γCL, where γ < 1. We assume that
γ < δ , or in other words, the difference between local and overseas sourcing costs
is larger than the discount offered under the advanced purchase discount scheme.
Fashion garments, which are the primary application of this model tend to be highly
labor intensive and for such products, the difference between local and overseas
sourcing costs is very high. For the organization described in Section 18.2, the costs
for overseas production are typically around 80% lower than local production costs
(γ = 0.2). On the other hand, retailers are typically offered around 15% discount on
orders that are committed early (δ = 0.85).

The timeline of actions is illustrated in Figure 18.5.
First, the retailer receives a demand signal Y . Next, the wholesaler announces the

terms of the advance purchase discount scheme, and the wholesale prices, δw and
w. The retailer then decides if she would participate in the discount scheme or not. If
the retailer decides to participate in the scheme, she incurs a participation cost, K,2

and she orders a quantity QE > 0 at a price δw, otherwise QE = 0. The wholesaler
observes these orders and places an order PE at a price γCL. Then, demand D is

Fig. 18.5 Timeline of actions.

2 This captures the administrative burden of participating in the advance purchase discount scheme:
collecting early demand information, blocking capital, and placing orders.
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realized. Based on observation of demand, the retailer orders QL at a price w. The
wholesaler then orders a quantity PL at a price CL. Finally, the wholesaler delivers
the products to the retailer and the retailer in turn, delivers them to the customers. In
our model, the wholesaler proposes the discount parameter δ , as a take-it-or-leave-it
offer that the retailer can only accept or reject. This allows the wholesaler to choose
whatever value of δ that works best for him as long as it ensures that the retailer will
participate in the scheme. The retailer decides to participate in the scheme as long
as her gains from participating in the scheme are more than the profits if she stays
out.

As mentioned before, demand is distributed normally with mean μ and variance
1/S. The signal of demand, Ỹ , conditional on demand taking a value D, is also
distributed normally with a conditional mean D, and variance 1/T . Applying Bayes
theorem, we obtain the distribution of demand conditional on observation of the
signal Y , which is also normal, with the following mean, μD|Y , and variance, σ2

D|Y .

D̃|Y ∼ N

(
Sμ +Y T

S +T
,

1
S +T

)
(18.1)

where Y is the observed value of the signal. Note that the posterior distribution has
lower variance or is more precise than the prior distribution. This is a consequence
of incorporating the information contained in the demand signal.

Next, we examine the retailer and wholesaler’s profits under two conditions:
(1) when Advance Purchase Discounts are either not offered or the retailer decides
not to participate in them and (2) when Advance Purchase Discounts are offered and
the retailer participates in them.

18.4.2 Case 1: No Advance Purchase Discounts

We first consider the setup where no Advance Purchase Discounts are offered, or
δ = 1.

Retailer’s choices: The retailer faces demand D̃ and obtains the signal of demand
Y before the demand is realized. Since there are no Advance Purchase Discounts,
the retailer has no incentive to place any early orders, QE = 0. The late orders QL

are made after demand is observed, and are thus equal to demand D. It follows that
the retailer’s expected profit is

E
[
Π NOAPD

R

]
= (R−w)μ (18.2)

Wholesaler’s choices: The wholesaler has two decision variables, PE , the quan-
tity procured from overseas suppliers, and PL, the quantity produced in-house. The
decision PL is made after observation of demand, whereas PE is made before obser-
vation of demand. The wholesaler faces demand, D̃, that is passed on by the retailer.
The wholesaler’s choice of PE is like a traditional newsvendor choice.
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Demand is distributed normally with mean μ and variance 1/S. We denote Φ(·)
and φ(·) as the cumulative distribution function (CDF) and probability distribution
function (PDF), respectively, of the standard normal distribution. If the wholesaler
orders too many units of the good from the overseas supplier, he suffers an over-
age cost that is equivalent to the price of the good, γCL. If the retailer orders too
few units of the product, he has to produce the excess demand using the in-house
production and this entails an additional cost of CL − γCL. The optimal choice of PE

and PL is thus given as

PE = μ +
1√
S

zγ , where zγ = Φ−1(1− γ)

PL = (D−PE)+

Consequently the profits earned by the wholesaler are given as

E
[
Π NOAPD

W

]
= μw− γCLμ − 1√

S
CLφγ (18.3)

where φγ is the PDF of the standard normal distribution function computed at
Φ−1 (1− γ).

18.4.3 Case 2: Advance Purchase Discounts are Offered

Now, consider the case where the wholesaler offers a scheme where early orders,
QE , can be bought at a price δw. Orders placed late, QL, can be bought at a price w.

Retailer’s Choices: In such a setup, the retailer faces demand D̃, and can choose
QE and QL. QL is chosen after observation of demand, whereas QE is chosen after
observation of the signal but before demand. Theorem 1 provides the optimal retailer
choices and her maximized profits.

Lemma 1. 1. The retailer’s optimal choices are given as

QE = μD|Y +σD|Y zδ

QL = (D−QE)+

E[QL] = σD|Y L(zδ )

where L(·) is the unit normal loss function and zδ = Φ−1(1−δ ).
2. The retailer’s optimal expected profit is

E
[
Π APD

R

]
= (R−δw)μ −wσD|Y φδ , (18.4)

where φδ is the PDF of standard normal distribution function computed at
Φ−1(1−δ ).
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Proof. The retailer chooses QE to maximize

EY
{

ED|Y
[
RD−δwQE −w(D−QE)+

]}
= (R−δw)μ −EY

{
ED|Y

[
(w−δw)(D−QE)+ +δw(QE −D)+

]}
which has a standard newsvendor solution with demand normally distributed, mean
μD|Y , and variance σ2

D|Y . When demand is realized, retailer makes late order QL =
(D−QE)+. The result is as follows.

Theorem 1. If the retailer participates in the advance purchase discount scheme,
the retailer’s signal, Y , can be inferred by the wholesaler.

Proof. Observe that all quantities in QE are known besides Y . Y can thus be inferred
from observation of QE .

Wholesaler’s Choices: As a consequence of Theorem 1, the wholesaler infers all the
information that is available to the retailer. Further, his demand can never be lower
than QE , the order quantity already committed for purchase by the retailer. Thus,
the demand facing the wholesaler is given as max

(
D̃|Y,QE

)
. The choices available

to the wholesaler are the overseas production quantity, which can now be made with
the inferred knowledge from the demand signal, but still before observing actual
demand. After demand is observed, the wholesaler may utilize in-house production,
if there is more demand than the production available at hand. The wholesaler’s
optimal choices are given in Lemma 2.

Lemma 2. 1. The wholesaler’s optimal choices are given as

PE = μD|Y +σD|Y zγ

PL = (max(D,QE)−PE)+

2. The wholesaler’s expected profit under optimal order quantity is

E
[
Π APD

W

]
= (δw− γCL)μ −CLσD|Y φγ +wσD|Y φδ , (18.5)

Proof. The wholesaler faces a demand of max
(
D̃|Y,QE

)
. She chooses PE ≥ QE to

maximize

EY

{
ED̃|Y

[
δwQE +

(
D̃−QE

)+
w− γCLPE −CL

(
max

(
D̃,QE

)−PE
)+
]}

= EY

{
ED̃|Y

[
γCLD̃+δwQE +

(
D̃−QE

)+
w
]}

−EY

{
ED̃|Y

[
(CL − γCL)(D̃−PE)+ + γCL

(
PE − D̃

)+
]}

,

which is a standard newsvendor problem with demand normally distributed, mean
μD|Y , and variance σ2

D|Y . The result then follows from our earlier assumption that
γ < δ .
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Taking the retailer’s optimal order quantity into account, the wholesaler chooses
a δ to maximize his expected profit while ensuring that the retailer participates
in the discount scheme. The following theorem presents the equilibrium discount
parameter:

Theorem 2. If Advance Purchase Discounts are offered by the wholesaler and are
used by the retailer,

1. the expected profit of wholesaler is monotonically increasing in discount param-
eter δ ;

2. the wholesaler’s equilibrium choice of δ , δ ∗ is

δ ∗ =
{

δ
∣∣w(1−δ )μ −wσD|Y φδ = K, 0 < δ < 1

}
.

Proof. Rewrite the first-order condition for the retailer’s optimal order quantity as
Φ (z) = 1−δ , where z = (QE −μD|Y )/σD|Y , then (18.4) becomes

Rμ −wμ (1−Φ(z))−wσD|Y φ(z) = (R−w)μ +wμΦ(z)
(

1− σD|Y φ(z)
μΦ(z)

)
.

Since the inverse hazard rate φ(z)/Φ(z) is decreasing for normal distribution,
the expression is increasing in z which is decreasing in δ as long as 1 − σD|Y ·
φ(z)/(μΦ(z)) is positive, which is true if QE > 0. Applying the same logic to the
wholesaler’s profits, we can show that the wholesaler’s expected profit is increasing
in δ . Thus, in equilibrium, wholesaler sets δ ∗ as provided earlier.

The above results provide the profits for the retailer and the wholesaler, under Ad-
vance Purchase Discounts and when Advance Purchase Discounts are not offered.
In the next section, we examine the implications of employing advanced purchase
discounts in the supply chain. We will examine risk sharing in the supply chain and
the benefits of participating in the proposed scheme for both the retailer and the
wholesaler.

18.5 Advance Purchase Discounts: Risk Sharing and Supply
Chain Performance

The first metric that we examine is mismatch cost, which includes the losses from
leftover inventory and the opportunity cost of lost sales. Mismatch costs are directly
related to the risk arising out of demand uncertainty. Consequently, a comparative
examination of the mismatch costs that each tier of supply chain incurs, helps us
understand how Advance Purchase Discounts influence risk sharing in the supply
chain.
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Theorem 3. If Advance Purchase Discounts are offered and the retailer participates
in them,

1. The mismatch costs for the supply chain are shared between the retailer and the
wholesaler. They are given as

MCS = CLσD|Y φγ

MCR = wσD|Y φδ

MCW = CLσD|Y φγ −wσD|Y φδ

where the subscripts S, R, and W refer to the supply chain, retailer, and whole-
saler, respectively.

2. Both the total supply chain mismatch cost and the retailer’s mismatch costs are
decreasing in the retailer’s information precision, T .

3. For given parameters γ and δ , the wholesaler’s share of mismatch cost is con-
stant.

Proof. Rewrite retailer, wholesaler, and supply chain’s objective function and apply
optimal order quantity. Note that σD|Y is decreasing in T . The results are as follows.

Theorem 3 shows that with increasing quality of the retailer’s information, T ,
the supply chain has lower mismatch costs; however, the retailer bears less and
less of this mismatch cost. As a result, with better information from the retailer,
the wholesaler benefits from diminishing total mismatch costs in the supply chain,
but transfers a smaller fraction of these mismatch costs or risks to the retailer. As
a proportion, the share of the mismatch costs borne by the retailer and wholesaler
remains the same.

Next, we compare the profits of the supply chain, the retailer, and the wholesaler
in a setup where Advance Purchase Discounts are offered, with a setup where no
Advance Purchase Discounts are offered. This helps us understand the incentives
for the retailer to participate in the advance purchase discount scheme and for the
wholesaler to offer the scheme. We denote the difference between the profits under
APDs and without APDs as the “benefit” from participating in Advance Purchase
Discounts.

Theorem 4. The benefits from participating in advanced purchase discounts in a
supply chain are given as:

BW =
(
σ −σD|Y

)
CLφγ −w(1−δ )μ +wσD|Y φδ

BR = w(1−δ )μ −wσD|Y φδ −K

BS =
(
σ −σD|Y

)
CLφγ

where the subscripts W, R, and S denote the wholesaler, retailer, and the supply
chain.

The benefits, as written above, have an interesting interpretation. For the whole-
saler, the first term denotes the benefit from making his ordering decisions under



472 Karan Girotra and Wenjie Tang

better information. This benefit depends on (a) the difference between the standard
deviation of the prior of the demand distribution and the standard deviation of the
posterior of the demand distribution, or the quality of the signal; and (b) the costs
savings from early sourcing or the degree of informational advantage that the early
information can provide. The second term captures the loss due to the discount and
is a direct function of the market size and the amount of the discount offered. Fi-
nally, the third term captures the benefits from transferring the risks to the retailer.
As discussed above, this depends on the discount offered and the quality of retailer’s
signal. For the same quality of the retailer’s information, if a higher discount is of-
fered, more risk (mismatch cost) can be transferred to the retailer.

For the retailer, her benefits have three terms: (a) the advantages of sourcing at
the lower price, (b) the losses from bearing some of the mismatch costs, and (c) the
administrative costs of placing early orders. Finally, as for the supply chain, it is
always better off due to better sharing and utilization of information, the benefit
being a function of the quality of the information and the financial advantage from
early sourcing.

These two results bring some clarity into the mechanisms by which Advance
Purchase Discounts operate. A critical decision for the supply chain is the quantity
to be sourced from the long lead-time supplier. Advance purchase discounts lead
to the sharing of the retailer’s private information with the wholesaler and he can
consequently make this decision with all the information available in the supply
chain. However, to obtain this information he has to pay a price to the retailer in
form of the discount. The retailer while availing the benefits from the discount,
must also pay a price, by bearing some of the supply–demand mismatch risk. Put
simply, the benefits of APDs arise out incentive compatible strategic behavior by
different tiers of the supply chain which leads to sharing of information, which leads
to making critical supply chain decisions under superior information.

18.6 Application at Costume Gallery

In this section, we illustrate the gains from deploying an advance purchase discount
scheme. Further, we try to build an understanding of the on how characteristics of
different products and retailers influence these benefits. Understanding the drivers
of these benefits can provide guidance on a strategy for implementation of these
policies. We present our results for a wide representative range of products, and
retailers that Costume Gallery deals with.3 In the following examples, unless stated
otherwise, we set μ = 50000, R = 50, w = 35, CL = 30 and δ = 0.85, T = 0.001,
S = 10−9, K = 0, and γ = 0.5.

Different products in the Costume Gallery catalog have intrinsically different
demand characteristics. In addition to obvious difference in demand characteristics

3 The numbers used in this section are representative of the setup at Costume Gallery, but for
business confidentiality reasons, they have been disguised. The disguising of these numbers does
not drive or influence any of the arguments made in this section.
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(a) Predictable Demand:
Style “Feminine”

(b) Unpredictable Demand:
Style “Low Red Moon”

Fig. 18.6 Costume styles with different uncertainty in demand.

due to price, demand characteristics may also be different depending on the use of
the product. The following illustration demonstrates this.

Consider products in a similar price range. Some of these products are “basics”
used in a wide variety of dance performances such as a black shirt, a pair of black
pants, and tutus. On the other hand, certain products are used only in very specific
costume ensembles. These products are expected to have high sales if fashion trends
support the particular style or costume, but may have very low sales otherwise. Not
surprisingly, one can use the sales data from previous years, and reasonable expec-
tations of demand growth to predict the sales of basics. On the other hand, there are
limited forecasting models that can predict the trends for the latter category of prod-
ucts. As an example consider the two costumes illustrated in Figure 18.6. The first
costume in Figure 18.6a is a timeless ballet costume used in dance performances.
On the other hand, the costume in Figure 18.6b is based on a specific fashion trend
and concept. Consequently, one would expect that the quality of prior demand es-
timates, S, is higher for the first costume than that for the second costume. More
importantly, it is useful to understand how these differences in demand character-
istics influence the benefits from offering Advance Purchase Discounts. Table 18.1
illustrates this for a representative sample of costumes, along with the estimated
uncertainty in prior demand estimates.

Offering advanced purchase discounts on costumes with low quality of prior de-
mand estimates leads to the highest performance gains for the wholesaler. On the
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Table 18.1 Percentage gains in profits: Quality of demand estimates.

Product name Quality, S
(
10−8

)
Wholesaler (%) Retailer (%) Supply chain (%)

Low Red Moon 0.05 58.70 34.97 44.05
Rich Girl 0.10 18.66 34.97 27.58
Beloved 0.15 6.73 34.97 21.43
Feminine 0.20 0.69 34.97 18.03
Euro tutu 0.25 −3.05 34.97 15.82
Black shirt and pants 0.30 −5.64 34.97 14.25

other hand, basic costumes for which accurate estimates are already available do not
benefit much by additional information, and the losses due to the discount outweigh
these benefits.

Costumes sold by Costume Gallery vary greatly in the manufacturing processes
employed. Certain product types such as basic shirts and pants, can be cut and to an
extent can even be stitched by machines. On the other hand, costumes with sequin,
rhinestone, foil, fringe, feather, etc. cannot be manufactured by automated processes
and must be worked on by skilled labor. Consequently, the labor content of the
former category of costumes is low and the labor content of the latter category is
high. Further, since the main advantage of sourcing from overseas suppliers tends
to be driven by different labor costs, the benefit of overseas sourcing is higher for
costumes that have higher labor content or γ is lower. As an example, consider the
two costumes shown in Figure 18.7.

(a) Low labor costs:
style “Play it Again”

(b) High labor costs:
style “All Eyes on Me”

Fig. 18.7 Costume styles with different labor costs.
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Table 18.2 Percentage gains in profits: Labor content.

Product name γ Wholesaler (%) Retailer (%) Supply Chain (%)

All Eyes on Me 0.1 −41.07 34.97 16.92
Nouveau Riche 0.2 1.11 34.97 25.66
I am an Illusion 0.3 18.20 34.97 29.43
Dancing Queen 0.4 21.51 34.97 29.69
Hit It 0.5 18.66 34.97 27.58
Lady 0.6 13.28 34.97 23.88
In the Money 0.7 6.94 34.97 19.16
Play it Again 0.8 0.27 34.97 13.72
Black shirts and pants 0.9 −6.69 34.97 7.62

The first costume (Figure 18.7a) has a low labor content, whereas the second
costume (Figure 18.7b) is highly labor intensive. To examine the economics of Ad-
vance Purchase Discounts for costumes that differ in the above-described respect,
we compute the profit gains from deploying Advance Purchase Discounts for a rep-
resentative sample of costumes with different labor content (Table 18.2).

For costumes that have very low labor content, the benefits of early sourcing are
small, γ is high, consequently the acquisition of information does not have signif-
icant value and the costs of offering the discount outweigh the benefits of superior
information. Further, it is interesting to note that when the same percentage ad-
vanced purchase discount is offered on costumes with the same sales price but very
different labor content, the wholesaler could be worse off for costumes where the
benefits of overseas sourcing are the largest. Essentially, for these costumes, the
costs of ordering too much are not significant for the wholesaler and therefore the
benefits from obtaining early information are outweighed by the relatively large dis-
count given (since the discount is offered as a constant percentage of a constant high
sales price).

Costume Gallery partners with a wide variety of dance schools. These dance
schools vary greatly in their structure. Some dance schools have been in operation
for a longer period of time, have more experienced teachers, start classes earlier,
etc. Such schools are better at predicting students’ demand for a certain costume
and thus have more precise demand information or signals. On the other hand, some
dance schools employ more liberal cancellation policies for students’ enrollment,
have not been in operation for long, and have relatively under-developed information
processing systems. Their information tends to be less precise. In Table 18.3, we
illustrate the economics of offering Advance Purchase Discounts to schools which
differ on the dimension discussed earlier. Again, we use a representative sample of
partners from Costume Gallery to demonstrate our results.4

While the dance schools discussed in Table 18.3 vary greatly in the quality of
information, the profit gains are not significantly different.

The results described above provide guidance for maximizing the benefits from
implementation of Advance Purchase Discounts for a portfolio of products and

4 Names of Dance Schools are disguised.



476 Karan Girotra and Wenjie Tang

Table 18.3 Percentage gains in profits: Different retailer characteristics.

Dance school T
(
10−4

)
Wholesaler (%) Retailer (%) Supply chain (%)

A 0.5 18.59 34.85 27.48
B 1.0 18.62 34.89 27.52
C 1.5 18.63 34.91 27.53
D 2.0 18.63 34.92 27.54
E 2.5 18.64 34.93 27.55
F 3.0 18.64 34.94 27.55

retailers. Wholesalers can increase their profits by more selective and targeted of-
fering of Advance Purchase Discounts. If Advance Purchase Discounts were to be
offered selectively, perhaps the most gains can be realized from focusing on a sub-
sample of products. More specifically, products with poor quality of prior demand
estimates and intermediate labor content benefit the most from an offer of Advance
Purchase Discounts.

18.7 Conclusions and Future Work

In this study, we analyzed the economics of offering Advance Purchase Discounts
in a supply chain. We found that there exist schemes under which all agents in the
supply chain are better off. We then analyzed the economics of offering Advance
Purchase Discounts and provided suggestions for efficient implementation of Ad-
vance Purchase Discounts. These results focus on the analysis of a firm offering
products to independent retailers. While demand for single products demonstrates
substantial uncertainty often the demand for products offered in an assortment is
even more uncertain. This is especially true in catalogs of fashion products. This
setup is not captured in the models presented above and is an interesting avenue for
future work.

Optimally utilizing the information obtained from early orders also remains an
interesting question. While inferring the signal from the newsvendor model and the
above modeled Bayesian update scheme provides guidance, it assumes prior knowl-
edge of the properties of the information structure such as information precision.
A scheme for empirically estimating both the parameters of the information struc-
ture and then utilizing the signal to obtain forecasts of future sales is an interesting
extension.
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comparison of strategies under, 269–271
through firms’ direct channels, 263–265

effect of number of competitors on, 261
features of, 254
monopoly vs. competition models for, 258
strategies of, 255, 259

comparison of, 276–277
different consumer valuations, for, 278
effect of uncertainty on, 271–272
order of events in game influencing,

274–275
though firms’ direct channels, 272–274
welfare analysis on effect of, 259

Operational systems information, 7
Operations management

canonical model in, 374
and categories of information provided to

customers, 4
herding behavior in, 86
learning behavior and externalities in, 86

Outsourcing, service processes, 9

Pareto-optimal wholesale price contracts, 193
Partial separation equilibrium, for opaque

selling, 261
Payoff, comparison of, 368
Perishable goods

centralized system for
RE equilibrium, 189
types of commitment, 189–191

characteristics of, 186
decentralized system for, 191

buyback contracts, 194–196
wholesale price contracts, 192–194

demand–supply imbalances for, 186
model setting for, 187–188
supply chain management for, 187
supply to market demand for, 186

Poisson process, 8, 20, 87
Poisson processes, associated with class-0 and

class-1 customers, 356
Population distribution, 72
Posterior price-matching policy, 348
Price commitment, model of, 342
Price degradation, cycle of, 256
Price guarantee, 344
Price-matching policies, internal, 343–345
Price segmentation, effectiveness of, 324
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Price-skimming strategy, 324
Pricing policies

capacity rationing under rational expecta-
tions in

extensions to basic model for, 405–406
model formulation, 400–402
oligopolistic competition for, 407–409
optimal stocking policy, 402–404

with strategic customers, 331
See also Dynamic pricing

Pricing strategies, for retailer, 33
Pricing system, dynamic, see Dynamic pricing
Primary market

order quantity, 124–125, 129–131
sales level and increase stockout level in,

139
unit price in, 134

Probabilistic selling (PS), 259
See also Opaque selling

Probability distribution function (PDF), 468
Product assortment

behavior of expected profit with respect to
price, 220

multiple periods, for, 224–225
and price with respect to refund fraction,

220–222
and pricing decisions, 219, 227
and refund policy, 222–224
and return policy, 208–209

Product design problem
analysis of general model for

computation and, 49
model assumptions, 47
structural results for, 47–49

applications and variations to basic model of
capacity constraint, 46
capacity differentiation, 44
costly quality differentiation, 46–47
delay differentiation, 44
rationing risk differentiation, 45–46

extension of
capacity differentiation, 51–52
duopoly, 53–55
multiple quality attributes, 52–53

formulation of, 50
monopolist firm, of, 43
seller facing market of satisficing customers,

for, 55
under vertical differentiation, 43

Product design quality
and affect on production system congestion,

230
back-end operational implications of, 230
benefits of market segmentation on, 231

congested production systems, for, 232
congestion and capacity financing costs,

effect on, 237
effect of scheduling and batch sizing policies

on, 232
general power functions of, 238–241
and impact on pricing, 229
market positioning decisions in, 233
profit maximizing, influence on, 231
quadratic functions of, 234–238
and revenue growth, 230

Product differentiation, duopoly models of, 43
Production systems, congestion-level models

of, 230
Product life cycles, 117, 121, 178
Product menu design, 51
Product supply

modes of, 212
process and timing of events

in MTO environment, 212–213
in MTS environment, 213–214

Product variety management, 68

Quality of service, in choosing product, 37
Queueing dynamics, 5
Queueing models, with strategic customers, 33
Queueing system, 16

“contrarian” behavior of, 32
Queue selection, herding and, 91
Quick response (QR)

benefits in inventory competition, 66
impact on strategic consumers, 66
operational characteristics and advantages

of, 65

Rational expectations (RE) equilibrium,
concept of, 187

Rayleigh distributions, 47
Real-time information

categories of, 4
firms to their customers, by, 4
forecasting of, 7
interpretation of, 5
and strategic interaction between customer

and firm, 5
utility of, 5

Refund fraction, 209
Regular consumers (RC), 440
Requests for quotes (RFQs), 117
Retailer-only secondary market, 123–124, 138
Retail operations games, 32
Retail system, information sharing in, 32
Return policy, with return fraction, 215
Revenue function, 233
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Revenue management, 40, 158
and dynamic pricing, 398
economics of price matching and, 344
for improving profits, 423
and strategic consumer choice behavior, 43
strategies for, 255

Revenue maximization
influence of types of customers on, 39
number of product variants and, 40

Sale pricing, and consumer heterogeneity,
390–391

Sales mechanisms, on customers’ strategic
purchasing behavior, 355

Satisficers vs. utility maximizers, 55–60
SC, see Strategic consumers (SC)
Secondary markets

impact on
characteristics, 126–127
expected profits, 125–126
optimal order quantity, 125
supply chain performance, 126

Internet-based, 118
manufacturer’s intervention in, 122–123,

127–128
impact of, 131–141

with no manufacturer’s intervention, 143
production level of, 129
retailer only, 123–124
for sale of older models of consumer

electronic goods, 118
unit price, 128–129

Semi-opaque products, queueing for, 281
“Service escape” model, for high profitability,

216
Service processes outsourcing, 9
Service provider (SP), 38
Service system, information sharing in, 32
“Simple payoff” function, and customer choice

behavior, 41
Single-queue system

herding in
information externality, 89–91
model for, 86–89

Social-welfare-maximizing service provider,
33

Social welfare optimization, 39
SP, see Service provider (SP)
SPNE, see Subgame perfect Nash equilibrium

(SPNE)
Static-pricing policy, 342
Steady-state expenditure, definition of, 72

Stochastic model
custom production environment with

pricing, of, 35
equilibrium steady-state delay in, 34

Strategic consumers (SC), 439
behavior of, 436

dynamic pricing model for, 438–439
threshold purchasing policy, 440–441

benefits to, 444–446
impact to seller, 446–449
sources of expected, 447

constraints on, 450–452
contingent pricing with, 426–430
exponential valuation of, 441–444
and impact of impatience ratio on seller

revenue and sales, 451
penalty, 381
purchasing policy of, 444
and simplified threshold price policy,

449–450
types of, 440
valuations of, 337

Strategic purchasing
under display all format, 357–358
under display one format, 360–362

Subgame perfect Nash equilibrium (SPNE),
307, 326

adoption game, of, 310
with rational expectations, 340

Supply chain, 33
bullwhip effect in, 162
centralized, 191
decentralization of, 177
impact of secondary market on performance

of, 126
reducing design and production lead times,

for, 63
structure of, 157
types of, 64

Supply chain management
costume industry, in, 461–464
financial impact of supply–demand

mismatches on, 460
perishable goods, for, 187

Third party endorsement, 31
Three-tier supply chain model, 157
Threshold function, for inducing BNE, 30
Threshold price policy (TPP), 440
Threshold time policy (TTP), 440
Traditional selling (TS), 259
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Traditional vs. customizing firms, 314
Travel industry, salient feature of opaque

products in, 255
Two-queue system

equilibrium strategies for, 100–103
heterogeneous customer bases and large

buffers in, 98–100
homogeneous customer bases and small

buffers in, 95–98
with and without waiting costs, 91

Two-signal equilibria, and babbling
equilibrium, 17

Two-tier supply chain model
bullwhip effect in, 157
development of, 156

Value-added services, 117
Vendor-Managed-Inventory (VMI), 165
Vertical product differentiation, 280
Virtual Chip Exchange, 117, 118

Weierstrass theorem, 49
Work-in-process inventory, 231

Zara model, of operational flexibility, 371
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