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Preface

Up until recently, our understanding of the chemistry resulting from the combina-
tion of Lewis acids and bases had not evolved much since Lewis’ time. In large part,
the formation of Lewis acid—base adducts drew little interest as these systems were
with a few notable exceptions perceived as thermodynamic sinks. However in 2006,
we learned that certain combinations of Lewis acids and Lewis bases could coexist
in solution and provide the possibility of new, synergistic reactions in which both
reagents participate in the activation of H,. This “archetypical” reaction was first
demonstrated with Lewis pairs in which adduct formation was sterically frustrated.
Subsequently we learned that such “frustrated Lewis pairs” (FLPs) could also be
derived from weak electronic attractions between the acid and base, and that this
notion was not limited to group 13/15 combinations.

The discovery of this seemingly simple concept led to the unprecedented
application of FLPs in metal-free catalytic hydrogenations. Although the early
developments were summarized in our 2010 review in Angewandte Chemie, the
area has grown rapidly since then. Indeed, a number of creative and insightful
contributions have broadened the range of FLP systems and led to dramatic devel-
opments including the activation of a variety of small molecules such as alkenes,
alkynes, CO,, N,O, and NO, among others. Theoretical studies have provided
insight and understanding of this evolving area and exciting applications of FLPs
in synthetic chemistry and catalysis continue have begun to emerge.

These two volumes are a compilation of the state-of-the-art research concerning
“FLPs” as of mid-2012. Over 20 researchers from around the globe have contrib-
uted chapters, detailing their inventive and astute contributions to this new and
exciting area of the chemistry. These works cover a broad range of studies including
synthetic chemistry, theoretical treatments, spectroscopic examinations, and cata-
lytic applications. This breadth demonstrates the broad impact this work has had but
furthermore speaks to the enormous potential for the future.

It has been our great pleasure to have acted as editors for these volumes. It is our
hope that this collection will not only highlight the amazing growth of this area in
only a few years, but will moreover influence others to take up the task of exploring
or exploiting FLPs in their own chemistry.

Toronto, ON, Canada Douglas W. Stephan
Miinster, Germany Gerhard Erker
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Discovery of Frustrated Lewis Pairs:
Intermolecular FLPs for Activation of Small
Molecules

Douglas W. Stephan

Abstract The discovery of frustrated Lewis pairs is described, as well as the
ability of these intermolecular systems to react with a range of small molecules.

Keywords Alkynes - B-H bond activation - C-F bond activation - CO, activation -
Frustrated Lewis pairs - Heterolytic activation of disulfide - Heterolytic cleavage
of dihydrogen - N,O activation - Olefins - Ring-openings
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Abbreviations

HOMO Highest occupied molecular orbital
Idipp ((CeH3iPr2)N),C3H,

1tBu (1BuN),C3H,

LUMO Lowest unoccupied molecular orbital
Me Methyl = CH;

Mes Mesityl = 2,4,6-trimethylphenyl
NHC N-Heterocyclic carbene

Ph Phenyl = C¢Hs

PMP 1,2,2,6,6-Pentamethylpiperidine
THF tetrahydrofuran

TMP 2,2,6,6-Tetramethylpiperidine

1 Introduction

The classification of molecules as electron donors and electron acceptors was first
put forth by Gilbert Lewis in 1923 in his classic work entitled Valence and the
Structure of Atoms and Molecules [1]. For this reason, such electron acceptors and
donors are commonly referred to as “Lewis acids and bases.” An illustration of this
concept, the combination of ammonia and borane to form the classical Lewis
acid—base adduct H;B(NH3) 1, is often a component of the undergraduate laboratory
experience. Putting the concept of Lewis acidity and basicity in terms of molecular
orbitals, Lewis acids are molecules that have a low lying LUMO while Lewis bases
possess a high energy HOMO. This concept extends well beyond simple main group
chemistry and indeed is now considered a fundamental axiom of our understanding
of many reactions in inorganic, coordination and organic chemistry.

It was in 1942 that Brown and co-workers [2] described one of the first apparent
exceptions to Lewis’ axiom when they reported that the combination of lutidine (2,6-
dimethylpyridine) and BMe; failed to form a Lewis acid—base adduct. The authors
noted that this stood in marked contrast to the analogous reaction of lutidine and BF;
which resulted in the classical adduct (CsH;Me,N)BF; 2 (Scheme 1). The divergent
behavior was attributed to the steric congestion resulting from the methyl groups on
both the Lewis acid and base. This oddity was noted and left unexplored.
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Lewis acid + Lewis base —3® Lewis acid-base adduct
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Hz + NH3 ———3 H,B(NHj)
1
BF3 + CsHaMeoN ——= CgHzMeoN(BF3)
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Scheme 1 Reaction of Lewis acids and bases
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Scheme 2 Non-conventional reactions of Lewis acids and bases

Subsequently other researchers discovered that such steric congestion between
Lewis acids and bases can result in unexpected chemical ramifications. For example,
Wittig and Benz [3] described how the combination of PPh; and BPhj; in the
presence of benzyne showed no evidence of the Lewis acid—base adduct but instead
led to the o-phenylene-linked zwitterionic phosphonium-borate (CgH4)(PPhs)
(BPh3) 3 (Scheme 2). Some years earlier, the corresponding reaction of trityl
anion with (THF)BPh; led not to a facile base displacement reaction but rather to
the attack of trityl on the borane-bound THF effecting ring-opening and formation of
the salt Na[Ph3;C(CH,),;OBPh3] 4 (Scheme 2) [4]. In related work in the 1960s,
Tochtermann [5] described the addition of trityl anion and BPh; to butadiene
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Scheme 3 Synthesis of 7-10

yielding Na[Ph;CCH,(BPh3)CHCH,] § (Scheme 2) despite expectations that the
anion would either initiate anionic polymerization of the butadiene or form a Lewis
acid-base adduct with the borane. The observation of this unusual reactivity
resulting from this combination of a Lewis acid and base prompted Tochtermann
[5] to dub this an “antagonistisches Paar”. In related chemistry, the reactions of
sterically encumbered amines with a trityl cation did not yield an adduct but rather
the trityl cation abstracts hydride from a carbon alpha to nitrogen affording an
iminium cation [6]. Similarly, reactions of trityl cation with pyridine did not yield
quaternization of N as expected on the basis of Lewis acid—base theory, but rather
pyridine was thought to attack the carbon para to the carbocation [7] although this
claim was disputed [8].

Other examples of the non-conventional behavior of Lewis acids and bases have
continued to emerge. One such example emerged in the 1990s when Erker and
co-workers [9] described the reactivity of B(CgF5); [10] and the ylide Ph;PC(H)Ph.
Combination of this Lewis acid and base resulted in a classical Lewis acid—base
adduct at room temperature; however, upon heating a rearrangement proceeds in
which the ylide dissociates from boron and effects nucleophilic attack of the para-
carbon with concurrent fluoride transfer to boron to give the zwitterionic salt
Ph;PCH(Ph)(CgF,4)B(F)(CgFs), 6 (Scheme 2).

In subsequent work [11, 12], we described the reactions of sterically demanding
tertiary phosphines with B(C¢Fs)3. The steric congestion precludes the formation of a
classical P-B dative bond. Instead these reactions afforded a series of zwitterions,
R5P(C¢F4)B(F)(CgFs), 7 (R = Bu, iPr, Cy) (Scheme 3) resulting from the attack at
the para-carbon of one of the fluoro-arene rings with concurrent migration of fluoride
to boron. Related zwitterionic species can also be prepared from phosphine-borane
adducts under thermal duress [13, 14]. In this fashion, tertiary and secondary
phosphine-borane adducts rearrange to give the air and moisture stable zwitterions
[R3P(C6F4)BF(C6F5)2] 7 (R = Ph, Et, Cy, nBu, p-CF3C6H4, 0-(MeO)C6H4) and
[RzPH(C6F4)BF(C6F5)2] 8 (R = C6H2MC3, tBu, Cp, Cy, R2 = tBu(Ph), tBuMeS)
[13, 14].

In related chemistry, sterically unencumbered phosphines such as PMe; react
with trityl cation to give the classical Lewis acid-base phosphonium salt
[Ph;CPMes]X. However, sterically demanding tertiary phosphines cannot form
P—C bonds between the phosphine and the central cationic carbon of the trityl
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Fig. 1 Molecular Structure of 11

cation. Rather, attack at a para-carbon of a phenyl substituent generates the
intermediate [R3P(CgHs)C(CgHs),]" 9, which proceeds via hydride migration to
the formerly cationic carbon, yielding the phosphonium cations of the form
[R3P(CgH4)CH(CeHs),]" 10 (Scheme 3) [15]. In several cases the intermediate 9
has been isolated and spectroscopically characterized.

1.1 Discovering Metal-Free Hydrogen Activation

The above precedents illustrate that steric demands can have a dramatic impact on
the course of the reaction depending on the different combinations of Lewis acids
and bases utilized. In 2006 we became interested in the possibility of using
zwitterionic species 8 as precursors to anionic phosphine ligands. Indeed, while
preliminary work showed that treatment of such species with bases could result in
deprotonation and the formation of anionic phosphine donors, it was some years
later that we explored the utility of these zwitterions as ligand precursors for
transition metal complexes [16]. We were distracted from this course of study by
far more intriguing findings described below.

In the course of examining the reactivity of 8, we discovered that 8 reacts cleanly
with Me,Si(H)Cl to exchange hydride for fluoride yielding the phosphonium-
hydridoborate salts [(C¢HoMes),P(H)(CsF4)B(H)(C6Fs),] (11) [12] (Fig. 1,
Scheme 4). This species was shown to be remarkably robust and air stable despite
containing protic and hydridic fragments. This latter aspect was surprising as we had
anticipated loss of H; and the subsequent oligomerization of the resulting phosphine-
borane. Nonetheless, species 11 was shown to lose H, upon heating up to 150 °C.
Contrary to expectations, the resulting deep orange-red phosphino-borane Mes,P
(CeF4)B(C¢Fs), 12 appeared to be monomeric in solution. It is interesting to note
that related reactions of PH and BH fragments have been employed by Manners and
co-workers to effect the loss of H, from phosphine-borane adducts R,PH(BH3). The
products in these cases are not sterically encumbered and thus oligomerization via
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Scheme 4 Synthesis of 10-14

dative phosphorus—boron bonding affords cyclic and polymeric phosphinoboranes
[17, 18]. Presumably the color of 12 arises from m-donation from phosphorus to the
electron deficient arene and acceptance by boron, similar to that described for
acetylene-based phosphino-borane Ph,PC=CBMes, 13 [19, 20]. In addition, the
monomeric nature of 12 is attributed to the sterically demanding substituents on
phosphorus and boron. While 12 could not be crystallized in a fashion suitable for
single-crystal X-ray diffraction studies, the structure of the corresponding THF adduct
(Mes),P(CgF4)B(CgFs)-(THF) 14 (Scheme 4) was crystallographically confirmed.
Compound 12 was also generated by the reaction of 10 with a Grignard reagent [12].

The evolution of H, from 11 was not surprising since the molecule contains
both protic and hydridic hydrogens. However, given that this had to be driven
thermally, we probed the reverse reaction and discovered that simply placing 12
under an atmosphere of H, at 25 °C resulted in the rapid and facile reformation of
11 [12]. This finding represents the first reversible activation of H, by a non-metal
system. Perhaps most surprising is the remarkably facile nature in which the
hydrogen—hydrogen bond is heterolytically split to generate a hydride and proton.
Moreover and perhaps most strikingly, this finding stands in sharp contrast to the
generally held dogma of the day that the activation of dihydrogen requires the use
of a transition metal species. In addition, it is also important to note that Lewis
acid—base adducts were generally perceived as unreactive or thermodynamic
“dead-ends” and well understood. Thus, combinations of Lewis acids and bases
were not deemed worthy of further study. This discovery provides an important
new dimension both in the chemistry of dihydrogen and main group systems.

In considering this reactivity, it appears that the key feature of 12 that allows for the
activation of hydrogen is the unquenched Lewis acidity and Lewis basicity that
permits the polarization of dihydrogen. It was indeed fortuitous that this study
began with an examination of 11 whereas the analog where the C¢H,Mes groups
are replaced by tBu failed to liberate dihydrogen at 150 °C. This suggests that the
greater basicity of the phosphorus in this derivative inhibits proton release and thus
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Fig. 2 Molecular structure of 15a

H D
[RsPH] <2 RgP + B(CgFg) —»= [MesgPD]
[HB(CgF5)3] [DB(CgFs)3l
15 16

Scheme 5 Synthesis of 15 and 16

precludes protonation of the borohydride. However, the acidity of the phosphonium
center for species 11 is sufficient to allow for dihydrogen release resulting in a bulky
phosphine incapable of forming a classical Lewis acid-base adduct and thus is
available to act in concert with the borane to split dihydrogen heterolytically.

Given that the steric congestion and basicity/acidity of the phosphine and borane
were perceived as the critical factors for such reactivity, we were immediately
prompted to examine the reactions of simple sterically encumbered phosphines and
boranes with dihydrogen. Thus, bulky phosphines such as R3zP (R = /Bu,
CeH,oMes3) were combined with B(CgFs); [21] and shown to exhibit no evidence
of adduct formation by multi-nuclear NMR studies. However, on exposure of these
solutions to dihydrogen (1 atm) at room temperature, a spontaneous reaction
afforded the precipitation of the phosphonium-hydridoborate salts [R;PH][HB
(CgFs5)3] 15 (R = ¢Bu 15a, Mes 15b) (Fig. 2, Scheme 5). This heterolytic cleavage
of dihydrogen was remarkably facile [21] and was confirmed with a crystallo-
graphic study of 15a. While the structure of the salt is as anticipated, it does reveal
that the cation and anion are oriented in the solid state with the BH and PH units
towards each other, with a BH-HP separation of 2.75 A (Fig. 2). In a similar
fashion, the combination of Mes;P and B(C¢Fs); reacts with dideuterium to give
[Mess;PD][DB(C¢Fs);] 16 (Scheme 5) [21]. Interestingly, in contrast to 11, heating
the salts 15 or 16 to 150 °C does not liberate dihydrogen or dideuterium,
respectively.
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Fig. 3 Molecular structure of 18

Probing the range of Lewis acidity and basicity was initially investigated via the
reaction of dihydrogen with tBu;P and BPhs. While the species [tBusPH][HBPhs]
17 was obtained, the low yield is attributable to the reduced Lewis acidity of the
borane [21]. In a similar fashion, variation in the Lewis acidity and basicity as in the
combinations of Mes;P and BPh;, (C¢Fs);P and B(C4Fs)s, or tBusP and BMes;
resulted in no apparent reaction with or without H,. These observations further
support the notion that while a critical aspect appears to be a combination of acid
and base that do not form a strong adduct, there also appears to be a threshold of
combined Lewis acidity and basicity that is necessary for dihydrogen activation.

1.2 Frustrated Lewis Pairs

We had come from a background in organometallic chemistry and thus our discovery
of the ability of sterically encumbered phosphines and boranes to activate dihydrogen
made us curious about the reactivity of such combinations with other small molecules.
It was this curiosity that prompted the investigation of the reaction of the combination
of tBusP and B(CgFs); with ethylene. This reaction resulted in the immediate
formation of the zwitterionic addition product [Bus;P(C,H4)B(CgFs);] 18 (Fig. 3,
Scheme 6) [22]. Similarly, the terminal olefins propene or hexene gave the analogous
products [BusP(CH(R)CH,B(C¢Fs)3] 19 (R = CHj3, C4Ho) (Scheme 6). In a related
example, the phosphines incorporating a pendant olefinic fragment CH,=CH
(CH,);PR; (R = 1Bu, Mes) also reacted with B(C¢Fs); to give the cyclic phospho-
nium borate [R,PCH(C5;Hg)CH,B(C¢Fs5)3] 20 (R = Bu, Mes) (Scheme 6) [22]. In all
of these additions, the boron added to the terminal carbon while the phosphorus added
to the secondary carbon center.
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®/ \o CoHy 2c CHR )—\ o
RgP B(CgF5); € RgP +B(CeFy)s B(CeFo)s
18

AN\ PR e
7 B(CeFs)s @P

R = CgHoMeg, tBu
Scheme 6 Reactions of FLPs with olefins

The reactivity of the combination of unquenched Lewis acids and bases above
for dihydrogen and olefins is unprecedented. Moreover the requirement for steric
congestion to frustrate the formation of a classical dative bond prompted us to
describe the combinations of such bulky acids and bases as “frustrated Lewis pairs”
(FLPs) [22]. Now, 6 years later, the term “frustrated Lewis pairs” has been accepted
to describe the general situation where steric demands prevent the quenching of
Lewis acidic and basic centers via adduct formation allowing them to act on a
substrate.

1.3 Scope of Chapter

“Frustrated Lewis pairs” can be used to activate a variety of small molecules
achieved with intermolecular and intramolecular combinations of Lewis acidic
and basic centers. Moreover, the notion of FLPs has developed well beyond the
initially discovered boron/phosphorus pairs, to include a range of main group
elements and transition metals. In addition, while FLP chemistry began with
reactions of dihydrogen and olefins, these substrates continue to be of much
interest. Nonetheless, the range of substrates examined in FLP chemistry has also
expanded dramatically. The contents of this chapter reflect this burgeoning breadth
including intramolecular FLPs, metal-based FLPs, and all carbon based systems.
While several reviews have detailed a broader discussion of the chemistry of FLPs
[23-26], this first chapter of this volume of Topics in Current Chemistry is limited
to a description of the discovery and current state of reactivity of intermolecular
FLP systems specifically.

2 Heterolytic H, Activation by Intermolecular FLPs

The use of FLPs in the activation of dihydrogen has spurred the development
of metal-free hydrogenation catalysts. A number of studies exploring the substrate
scope and the impact of catalyst modification have been reported. In addition,
elegant applications in asymmetric hydrogenations have also advanced the field.



10 D.W. Stephan

©}
B(CeFs)3 [HB(CgFs)a]

PhoP  PPh ©
2 2 +H2,25°C Ph,P”  PPh2

-
O™ O

21

Scheme 7 Reversible H, binding by 21

The discussion of hydrogen activation in the present chapter is limited to intermo-
lecular systems that effect dihydrogen activation. Discussion of work focused on the
development and evaluation of hydrogenation catalysts as well as computational
studies of the mechanism of dihydrogen activation are deferred to other chapters.

2.1 Phosphine/Borane FLPs

Shortly after our initial reports described above, Erker and co-workers [27]
described the FLP derived from 1,8-bis(diphenylphosphino)-naphthalene [28] and
B(Cg¢Fs)3. This diphosphine contains sterically crowded phosphorus donors and is
structurally analogous to a proton sponge. Thus it acts as a base binding proton
between the two phosphorus centers. The combination with the Lewis acid
generates an FLP which reacts with dihydrogen to give the phosphonium
hydridoborate salt [C;oHe(PPh,),H][HB(C¢Fs)s] 21 (Scheme 7) [27]. *'P NMR
spectral data for 21 show rapid proton exchange between the two phosphine sites
which slows on cooling to low temperature. Similar to 15, in the solid state the
phosphonium cation and hydridoborate anion are oriented towards each other with
a P-H.--H-B approach of 2.08 A. This salt liberates dihydrogen under mild
conditions of heating to 60 °C [27], a feature that is attributable to the acidity of
the cation.

In probing the impact of phosphine substituents, the reactions of ferrocenyl
phosphines in FLP chemistry was also examined [29]. To this end the mono-
and bis-ferrocenyl-phosphine derivatives (ns-C5H4PtBu2)Fe(C5Ph5) 22 and
(n5—C5H4PtBu2(C6F4)BH(C6F5)2)Fe(n5 -CsH4PtBu,) 23 were shown to react with
dihydrogen in the presence of B(CgFs); to give the respective phosphonium borate
salts 24-25 (Scheme 8). The related ferrocene-phosphine derivative CpFe
(CsH4,CHMePMes,;) 26 was shown by Erker and colleagues to react with
B(C¢Fs); and H,. The corresponding phosphonium borate salt was generated,
however a further reaction results in the elimination of the borane adduct
(Mes,PH)B(C¢Fs); with hydride delivery to the ferrocenyl species generating
CpFe(CsH4CH,;Me) 27 (Scheme 8) [30, 31]. The closely related [3]ferrocenophane
system 28 [31] reacts with B(CgFs); and D, in a similar fashion to give the
organometallic phosphonium/hydridoborate salt 29 (Scheme 8). In related chemis-
try zirconocene derivative (Mes,PCsH,),ZrCl, 30 reacts in combination with
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B(Cg¢Fs); to split dihydrogen heterolytically under very mild conditions affording
[(Mes,P(H)CsH,4),ZrCl,][HB(CgFs)s], 31 [32, 33].

One unique variant in the phosphorus base that has been demonstrated is the use
of the diphosphine tBu,P, This species in combination with B(C¢Fs); and H, [34]
leads to the generation of the salt [{Bu,P(PH/Bu,)][HB(CgsFs)3] 32 (Scheme 9).

One early variation in the Lewis acids partners involved the seemingly trivial
modification of the borane to B(p-C¢F4H)s 33 [35, 36]. This borane offers the
advantage over B(CgF5); in that it is not susceptible to para-attack by Lewis bases.
This feature permits the use of a broader range of phosphines in the formation of
FLPs. Combination of 33 with PR3 (R = 7Bu, Cy, 0-CcHsMe) under an atmosphere
of H, at 25 °C affords the phosphonium hydridoborates [R;PH][HB(p-CgF,H)3] 34
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(Scheme 10). The salt [(0-CsH4Me)sPH][HB(p-CgF4H)3] was found to release H,
slowly by simple application of vacuum at 25 °C [35, 36]. After 9 days the FLP was
regenerated in 85% yield. On the other hand, loss of H, was complete at 80 °C in
12 h (Scheme 10). This observation stands in sharp contrast to the resistance to
losing H, by 15 and is attributed to the diminished Lewis acidity of B(p-CgF4H)s.

2.2 Carbene/Borane FLPs

In 2007, Bertrand and coworkers [37] demonstrated the activation of H, by
alkylamino-carbenes (e.g., iPr,N7Bu) affording the amine iPr,NCH,7Bu. This was
attributed in part to the strong Lewis basicity and acidity localized at the carbene
carbon. It is noteworthy that the analogous behavior does not proceed with
N-heterocyclic carbenes (NHCs). However, combinations of sterically hindered
NHCs and B(CgFs); were reported to effect the FLP activation of H, simulta-
neously by the research groups of Stephan [38, 39] and Tamm [40]. In this work, it
was shown that the NHC Idipp forms a strong adduct with B(C¢Fs)3, but the
combination of NHC ItBu with B(CgFs); forms an FLP at low temperature. This
pair reacts with H, to give the imidazolium hydridoborate, [I/BuH][HB(C¢Fs)3] 35
(Scheme 11) resulting from heterolytic cleavage of H,. Tamm and co-workers also
showed that at room temperature the combination of IfBu and B(C4Fs); affords the
“abnormal” carbene adduct IrtBu(B(CgFs)3) 36 (Scheme 11).

2.3 Nitrogen Bases/Boranes FLPs

In early 2008 we reported that the stoichiometric reaction of the imine /BuN=CPh(H)
and B(C¢Fs); and H, gives the amine—borane adduct tBu(PhCH,)NH(B(CgFs)3) 37
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(Scheme 12) [41]. Mechanistically this presumably proceeds via an FLP heterolytic
cleavage of dihydrogen to give an iminium hydridoborate. This is followed by hydride
transfer to the iminium carbon affording the amine-borane adduct. Further warming to
80 °C for 1 h under H, (4-5 atm) effects the thermal dissociation of the adduct and a
further heterolytic activation of H, affording [rBuNH,(CH,Ph)][HB(C¢Fs);] 38
(Scheme 12). Interestingly the proposed reaction sequence is supported by the
corresponding reaction of the highly sterically encumbered imine (CgH3iPr,)N=CMe
(tBu) with B(CgFs); under H,. In this case, the activation of dihydrogen gives the
iminium salt [(CsH3iPr,)N(H)=CMe(tBu)|[HB(CgFs);] 39 (Scheme 12). Presumably
the steric congestion precludes hydride transfer to the iminium carbon [41].

Rieger, Repo and co-workers [42] reported that combinations of the amine
iProNEt with B(CgFs); gave 50:50 mixtures of the salts [iPr,NHEt][HB(C4Fs)s]
40 and /Pr,N=CHCH,B(C¢Fs); 41 while the corresponding reaction of iPr,NH gave
[iProNH,][HB(CgFs)3] 42 and iPrNH=C(CH3)(CH,)B(C¢Fs)3 43 (Scheme 13). The
former species 40 and 42 arise from the effective addition of dihydrogen while the
latter species 41 and 43 arise from the dehydrogenation of the amines. On the other
hand, exposure of mixtures of iPr,NH or TMP with B(C¢Fs); and H, gives the salts
[iProNH,][HB(C¢Fs);] 42 and [TMPH][HB(C¢Fs);] 44, respectively (Scheme 13).
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The corresponding mixtures with BPh; resulted in no reaction, inferring the Lewis
acidity is a key factor although Rieger et al. suggested that CF-HN interactions
between the amine and borane were necessary for activation of H, [42].

Similar to the metallocene-phosphine derivatives described above, Erker et al.
described the reaction of the group 4 metallocene-amine derivative [(CsH,CH,NH
(CgH3iPr5,)),ZrCl,] with B(CgFs5); and H, under ambient conditions (2 bar, 25 °C) to
give the salts [(C5H4CH2NH(C6H';IPTQ))(C5H4CH2NH2(C6H3lPI'z))ZI'CIQ] [HB
(C¢Fs5)3] 45 and [(CsH4CH,NH,(CH;iPr»)),ZrCl, | [HB(CgFs)3], 46 (Scheme 14) [32].

Pyridines form classical Lewis acid—base adducts with B(CgFs); [43, 44],
although the early work of Brown [2] demonstrated that steric congestion can
prevent adduct formation of lutidine and BMes. Building on this observation, we
described reactions of the combination of 2,6-lutidine and B(CgFs)3. The initial
mixture presents as an equilibrium between the free Lewis acid and base and the
corresponding adduct (2,6-Me,CsH3;N)B(CgFs); 47 (Scheme 15) [45, 46]. Cooling
the solution favors the adduct as evidenced by 'F NMR spectroscopy and indeed
the adduct can be isolated and structurally characterized. The variable temperature
data infer that AH and AS for this equilibrium are —42(1) kJ/mol and —131
(5) J/mol K, respectively. The access to the free Lewis acid and base is also
evidenced by the reaction of this mixture with H, (1 atm, 2 h) which provides the
pyridinium salt [2,6-Me,CsH;NH][HB(C¢Fs);] 48 (Scheme 15) [45, 46]. This work
emphasizes the relationship between a classical Lewis acid—base adduct and the
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corresponding FLP. Rather than the previously held perception that classical and
FLP reactivity are mutually exclusive reaction pathways, this work demonstrates
that these reactivities are extremes of a continuum. This finding begs questions
about the possible untapped reactivity of the vast number of known classical Lewis
acid—base adducts. This exciting possibility as classical Lewis acid—base adducts
stands in contrast to the previous perception of Lewis acid—base adducts as “ther-
modynamic dead-ends.”

2.4 Mechanistic Considerations and Literature Precedent

The activation of dihydrogen by the FLP systems described above is challenging to
explore experimentally due to the rapidity of the reaction. Indeed, efforts to monitor
the activation in solution even at temperatures as low as —80 °C were unsuccessful.
Computational studies examining the mechanism of the activation of H, have
revealed the formation of an “encounter complex” intermediate and such studies
are described by Rokob and Papai [128] and Schirmer and Grimme [129].

In the context of experimental evidence regarding mechanistic questions, it is
important to point out the insight provided by literature precedent. Indeed, it was in
the late 1990s, almost 10 years prior to work on FLPs, that Piers and coworkers
described the B(C¢Fs); catalyzed hydrosilylation of ketones and imines [47-50]. In
the case of ketone hydrosilylation, Piers er al. showed conclusively that this
reaction proceeds by activation of the silane by the strong Lewis acid B(CgFs)3
[51-55] rather than by Lewis acid activation of the carbonyl species [56, 57]. The
“activated hydride” is then transferred from silicon to boron with concomitant
addition of the carbonyl transient silicenium ion affording the hydrosilylation
product [49, 50, 58—64]. Piers and coworkers also proposed similar mechanisms
for the conversion of imines to amines and for hydrosilylation of silyl enol ethers
[65], while Gevorgyan et al. [66—71] suggested that the hydrosilylation of olefins
proceeds via a transient [-silyl-stabilized carbocation, to which hydride is deliv-
ered by [HB(C¢Fs);] . In subsequent work, Oestreich et al. [72-75] studied the
B(C¢Fs);-mediated hydrosilylation of acetophenone with “Oestreich-silane,” an
optically highly enriched chiral silane. In this fashion it was unambiguously
demonstrated that the reaction proceeds with inversion of the configuration at
silicon, thus ruling out involvement of a free silicenium ion. Thus, this observation
is a consistent S2-type process (Scheme 16).

While these mechanistic aspects of hydrosilylation are particularly relevant to
the mechanism of FLP-based hydrogenations described in the subsequent chapters
in this volume (see below), the activation of silane by B(CgF5); clearly parallels the
dihydrogen activation described herein. In this regard, it is also important to point
out that Piers exploited the reaction of B(C¢Fs); with Et3SiH to prepare HB(C¢Fs),
[54, 55], suggesting the possibility of a related pathway for B(CgF5)3/H, activation.
That being said, our efforts to directly detect a borane-dihydrogen interaction by
NMR methods were unsuccessful.
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3 FLP Activation of Olefins and Alkynes

The initial report of the reactions of phosphines and boranes with simple olefins was
the first to use the term “frustrated Lewis pairs.”[22] The reactions of related
intermolecular FLPs with olefinic substrates have been expanded with a view to
probing both mechanistic information and to broadening the synthetic utility.
Similarly the extension of such additions to alkynes was also probed.

3.1 Boranes with Pendent Olefins

The interactions of olefinic substrates and boranes have been probed employing the
borane with a pendent olefinic fragment CH,=CH(CH,),B(C¢Fs), 49. 2D 'H-F
NOESY experiments were consistent with a weak “van der Waals complex” [76].
This species reacts with phosphines to effect phosphine-borane addition to the olefin
affording cyclic phosphonium borates R;3PCH,CH(CH,),,B(CgFs), 50 (Scheme 17).
The inference of a van der Waals interaction suggests a sequential reaction with
phosphines. This stands in contrast to the theoretical studies by Papai et al. [77]
which conclude that the reaction of tBus;P/B(C¢Fs); and ethylene occurs via an
antarafacial asynchronous concerted 1,2-addition process [78]. It is noteworthy that
older matrix isolation studies [79] as well as computational studies [80, 81] have
supported the notion of van der Waals interactions.

The generality of this reactivity is demonstrated with the electrophilic
alkoxyborane, B(CgF5),(OC(CF;),CH,CHCH,) 51 [82]. This species reacts in a simi-
lar fashion with phosphines including rBusP or Me;P to give the phosphonium cyclic
borate species B(CgF5),(OC(CF5),CH,CHCH,)(PR3) 52 (R = tBu, Me). Moreover,
addition of other nucleophiles such as 2,6-lutidine or 2,2,6,6-tetramethylpyperidine
gave B(C6F5)2(0C(CF3)2CH2CHCH2)(NR2) 53 (NR2 = C5H3M62N, NHC5H6MC4).
In contrast to 52, the formation of 53 proceeds via addition of the nucleophile to the
terminal carbon of the olefinic unit. The carbon-based nucleophiles, pyrroles, carbenes,
and benzylidene triphenylphosphorane also give zwitterions B(CgF5),(OC
(CF3),CH,CHCH,)(R”) 54-56 (Scheme 18) providing new C-C bonds. Hydride
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addition to the olefin is effected by reaction of 51 with PMP with a catalytic amount
of B(C(,F5)3 and Hz, affording [HPMP][B(C6F5)2(0C(CF3)2CH2CH2CH2)] (PMP =
1,2,2,6,6-pentamethylpiperidine) 57 (Scheme 18) [82].

3.2 Activation of Dienes

The reactions of FLPs with olefins also prompted us to probe the corresponding
reactions with dienes. Combination of fBusP and B(CgFs); with butadiene,
2,3-diphenylbutadiene, 2,3-dimethylbutadiene, and 1,3-cyclohexadiene gave the
corresponding 1,4-phosphonium borates 58 and 59 (Scheme 19) [35]. The isolated
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yields in these cases were 50—60%, which suggested the possibility of byproducts
that could arise from 1,2 addition. These minor species could not be isolated nor
spectroscopically confirmed.

3.3 Activation of Alkynes

The reactions of FLPs with alkynes seemed like a logical extension given the
reactivity with olefins. Thus, this aspect was also probed [83—85]. Our initial efforts
described the reaction of B(CgFs); or (PhMe)Al(C¢Fs)3; and tBusP with PhC=CH.
These reactions resulted in deprotonation of the alkyne and isolation of the phos-
phonium alkynylborate salts [rBusPH][PhC=CE(C4Fs);] 60 (E =B, Al)
(Scheme 20). Interestingly reduction of the basicity of the phosphine prompted an
alternative reaction pathway. For example, the corresponding reactions using the
less basic phosphine (0-C¢HsMe)sP gave rise to the 1,2-addition products E-(o-
CsHsMe);PC(Ph)=C(H)E(C¢Fs); (E = B, Al) 61 (Scheme 20).

In a follow-up full paper [85] the generality of the scope of the reactions of FLPs
with alkynes was broadened to include a variety of alkynes affording the salts
[(BusPH][RC=CB(CgFs)3] 62 (R = Ph, rBu, Me;Si, CpFe(CsH,)) (Scheme 21).
The analogous reaction of 1,4-diethynylbenzene with excess tBu;P/B(C¢Fs); gave
[tBusPH],[(C¢F5)3;BC=C(CgH,4)C=CB(C¢Fs)3] 63 (Scheme 21), while the weaker
Lewis acids PhB(C¢Fs), and BPh; were shown to give the analogous deprotonation
products [Bus;PH][PhC=CBAr;] 64. Interestingly, the corresponding reaction of
Me;SiC=CSiMe; with BusP/B(C¢Fs); afforded [rBusPSiMe;][Me;SiC=CB
(CgFs)3] 65 (Scheme 21).
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The alternative reaction pathway of addition to the alkyne was also observed for
less basic phosphines for a variety of alkynes affording the species trans-RsP(R")
C=C(H)EAr; 66 (R = Ph, o-tol R' = Ph, CpFe(CsH,), EAr; = B(C¢Fs)3;, PhB
(CgFs5),, Al(CgFs)3) (Scheme 22) [85]. It was perhaps surprising that even though
Ph3P forms the strong Lewis acid—base adduct Ph3P-B(C¢Fs)3, the addition reactions
with alkyne proceeds. In a similar fashion, variations in the alkyne, phosphine or
borane afforded the species trans-Ph;P(Ph)C=C(Me)B(C¢Fs)3 67, trans-R,PH(Ph)
C=C(H)B(Cg¢Fs5); 68 (R = Ph, Mes), and trans-(CsHztBu,)PH,(Ph)C=C(H)B
(CgFs5); 69 (Scheme 22) [85]. Most recently, related addition reactions of
phenylacetylene and B(CgFs); have been further extended to include the
phosphinites and chlorophosphines, Bu(C,oH;,0,)P, tBuPCl,, and (C¢H5(2,4-
tBu,)0O);P [86].

More elaborate structures are accessible using these FLP addition reactions. For
example, employing our original phosphine-borane, Mes,PC¢F4B(C¢Fs),, the addi-
tion of phenylacetylene afforded the 2 + 2 macrocyclic species [(H)C=C(Ph)
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Mes,PCgF4B(CgFs5)2]» 70 (Scheme 23). A chain-like structure results from the
reaction of Ph,PCH,CH,PPh, with alkyne and borane. In this fashion, the mono-
and bis-addition products trans-Ph,PCH,CH,PPh,(Ph)C=C(H)B(C¢Fs); 71 and
trans-(CH,PPh,(Ph)C=C(H)B(CgFs)3), 72 were prepared (Scheme 23) [85]. On
the other hand, employing differing phosphine-borane combinations allows the
control of the reaction sequence. Thus initial reaction of 1,4-diethynylbenzene
with Ph;P-B(C¢Fs); gave trans-HC=CCsH,C(PPh3;)=C(H)B(C¢Fs); 73 via FLP
addition. Subsequent reaction with tBusP and B(C¢Fs); effected deprotonation of
the remaining alkyne fragment affording the salt [fBusPH][(C¢Fs);sBC=CCqH,C
(PPh;)=C(H)B(CgxFs)s] 74 [85] demonstrating both avenues of FLP reactivity with
alkynes in a single molecule.

In a related and more recent study, we have also reacted the alkynyl-linked phos-
phine borane Bu,PC=CB(C¢Fs), with 1-hexene affording the species (fBu,PC=CB
(CeFs)2)-(BuCH,CH,) 75 [87]. In the presence of excess 1-hexene the dimeric species
[(1Bu,PC=CB(C¢Fs),)(BuCH,CH,)], 76 was obtained (Scheme 24). Thermolysis of 75
at 80 °C for 10 h was shown to give a rather unusual molecular rearrangement affording
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two diastereomers of (rBu,P)CgF4BF(CcF5)C4B(CgFs).(BuCH,CH)(PrBu,) 77
(Scheme 24) [88], a di-zwitterion incorporating discrete phosphonium-borate
fragments and a cumulene linkage.

These FLP reactions with alkynes are not limited to phosphines as the bases.
Indeed, nitrogen, carbon, and sulfur donors can be used. For example, reaction of
PhCH,NMe, with PhAC=CH and B(C¢Fs)3 gave an 84:16 mixture of [PhCH,NMe,H]
[PhC=CB(C¢Fs);] 78 and PhCH,NMe,(Ph)C=C(H)B(C¢Fs5); 79, while the
corresponding reaction of the imine (fBu)N=CRPh gave the salt [(fBu)HN=CRPh]
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[PhC=CB(C¢Fs);] 80 (R = H, Ph) (Scheme 25) [85]. Similarly, the N-heterocyclic
carbene [fBu reacts with B(C¢Fs); and PhnC=CH to effect deprotonation of the alkyne
generating [[rBuH][PhC=CB(C«Fs);] 81. In contrast, the softer sulfur donor R,S
reacts with borane and alkyne to give trans-R,S(Ph)C=C(H)B(C¢Fs); 82 (R = Me,
PhCH,) (Scheme 25). The formation of these latter species was shown to be reversible,
effecting exchange upon addition of a stronger donor.

Berke and coworkers [89] have also exploited these FLP reactions with alkynes
to expand the breadth of systems. For example, reactions of B(C¢Fs); with TMP,
tBu;P or lutidine and the alkynes HC=CH, PhC=CH or SC,H;C=CH gave either
deprotonation or addition products [89]. In the case of the reactions involving
HC=CH and TMP the salt [TMPH][(C¢F5),BC(CcFs5)=C(H)B(C¢Fs)3] 83 was
formed (Scheme 26). This finding pointed the way to the further elaboration of
1,1-carboborations by the Erker research group [90-92].

Lutidine and fBusP gave principally the addition products (CsHszMe,N)
CH=CHB(C¢Fs); 84 and Bu;PCH=CHB(C¢Fs); 85 (Scheme 26), although
minor amount of the corresponding salt of the anion [(CgF5),BC(CgF5)=C(H)B
(CgFs5)3], analogous to 83, was also seen in the latter case. The corresponding
reactions of the alkynes PhC=CH and SC4H;C=CH afforded the deprotonation
products [(Base)H][RC=CB(C4Fs);] 86 (Base = CsHsMey4NH, rBusP, R = Ph,
SC4H3) (Scheme 26). The reaction of lutidine, B(C¢Fs)3;, and PhC=CH gave the
analogous product, whereas the corresponding combination including thiophene-
alkyne afforded the olefinic addition product [(SC4H3)(CsH3Me,N)C=C(H)B
(CgFs5)s] 87 (Scheme 26) [89].
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Since this work we have further applied these reactions employing a carbon
based nucleophile derived from an enamine to effect C—C bond formation [84]. In
this fashion, reaction of 1-morpholinocyclohexene, B(C¢Fs); and phenylacetylene
gave a mixture of the two products derived from deprotonation and addition
pathways, [CcHoN(CH,CH,),O][RC=CB(CgxFs)3] 88 (R = Ph, CpFe(CsH,)) and
CeHo(2-PhC=C(H)B(C¢Fs)3)(N(CH,CH,),0) 89 (Scheme 27). The corresponding
reactions of ethynylferrocene gave only the analog of the deprotonation product 88.

Pyrrole derivatives also provide carbon-based nucleophiles. Thus, reaction of
pyrrole or methylpyrrole with phenylacetylene and B(C¢Fs); gave the corresponding
addition products, RNC4H4(2-PhC=CH)B(C¢Fs5);) 90 (R =H, Me). The
corresponding reaction of N-methylpyrrole gave a 3:2 mixture of the addition products
in which substitution occurred at the 2- and 3- positions of the pyrroles 90 and 91a [84].
Interestingly, substitution at the 2-position was avoided by the use of the bulky N-tert-
butylpyrrole, as reaction with PhC=CH and B(Cg¢Fs); gave exclusively tBuNC H,(3-
PhC=C(H)B(C¢Fs);) 91b (Scheme 28). This reaction was also tolerant of variations in
the aryl alkynes as well as modification of the Lewis acid to BPh(C¢Fs), and the base to
1,2,5-trimethylpyrrole. In the latter case, the products MeNC4H,(2, 5-Me,)(3-RC=C
(H)B(C6F5)3) 92 (R = Ph, p-C6H4BI', m-C6H4Cl, p-C6H4CF3, CPFC(C5H4))
(Scheme 28) were readily deprotonated with fBusP to give the salts [fBusPH]
[(BuNC4H3(PhC=C(H)B(CgFs)3)] 93 (Scheme 28).

Interestingly, the addition products above rearrange affording fBuNC4H,(3-RC=C
(H)(CgF5)B(CgFs),) 94 (R = Ph, CpFe(CsHy4)) (Scheme 29) [84]. These species also
react with Etz;PO, which mediates proton transfer liberating the adduct Et;PO-B
(CgFs)s and giving the corresponding vinyl pyrroles tBuNC4H;3(3-RC=CH,) 95a
(R = Ph, p-C¢HyBr, m-C¢gH4Cl, p-CcH4CF5) and MeNC4H,(2,5-Me,)(3-RC=CH,)
95b (R = Ph, p-C¢H,Br, m-C¢H4Cl, p-C¢H4CF3) (Scheme 29) [84].

4 FLPs in Ring-Opening Reactions

FLPs can also be employed to effect the ring-opening of ethers, lactides, and
cyclopropanes. Such reactions have appeared in the older literature, although of
course these reactions were not described as FLP chemistry at that time. For
example, in 1950 Wittig reported that the reaction of PhsCNa with THF(BPhjs)
[4] effects ring-opening to give the borate anion [Ph3;C(CH,),OBPh;]™ 96
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(Scheme 30). This could be regarded as the action of a Lewis acid and a Lewis base,
an FLP, effecting the ring-opening of THF. In a similar sense, we described the
action of ZrCl4(THF), with PCy; on THF affording the di-zwitterionic dimer
[CL4Zr(u-O(CH,)4PCy3)]> 97 (Scheme 30) [93]. Again, this ring-opening can be
described as resulting from the action of sterically congested combinations of a
Lewis acidic metal center and a bulky phosphine on THF. Indeed, similar ring-
opening reactions are documented for a number of Lewis acids including U [94,
951, Sm [96], Ti [97], Zr [93, 98, 99], carborane [100], Te- [101, 102], and alane
species [103], in combination with either N or P-based Lewis donors (Scheme 30).

4.1 FLP Ring-Opening of THF

More closely related to the FLP systems described above are the reactions of the
FLP combinations of boranes, phosphines, and THF [104]. For example, the
reactions of (THF)B(Cg¢Fs); with sterically encumbered phosphines proceed to
give the zwitterions R,PH(CH,)4,OB(C¢Fs); 98 (R = Bu, C¢H,Me). In a similar
fashion we also observed the reaction of lutidine/borane with THF yielded the
zwitterionic species 2,6-Me,CsH;3;N(CH,),OB(CgFs); 99 (Scheme 31) [46] while
Tamm and coworkers observed the reactions of carbene/borane FLPs with THF
affording [I/Bu(CH,)4OB(C¢Fs)3] 100 (Scheme 31) [40]. These reactions have
been generalized to some extent with the use of variations in the Lewis acids and
bases. For example, reaction of tBu,PH and B(p-C¢F,H); in THF gives tBu,(H)P
(CH,)4OB(p-C¢F4H); 101 [105], while a series of amine bases react with a THF
solution of B(CgFs); to give the THF-ring-opened species (base)(CH,),OB(C¢Fs);
102 (base = C6H5CH2NM62, MezNC6H4NM62, Me3N, Et3N, MCzN(CHz)zNMeZ
tBuHN(CH,),NH7Bu) (Scheme 31). The analogous reaction of (tBu,PC=CB
(CgFs5)2)2(BuCHCH,) 75 with THF yields the macrocyclic zwitterionic alkynyl-
phosphonium borate (Bu,PC=CB(CgFs),)(BuCHCH,)(1Bu,PC=CB(Cg4Fs),)(O
(CH,)4) 103 (Scheme 31) [87], while reaction of the parent tBu,PC=CB(CgF5s),,
with  THF gives the macrocycle [(tBu,PC=CB(Cg¢Fs),)(O(CH,)4)], 104
(Scheme 31).
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Most recently we have reported the reactions of the bis-borane 1,2-CcHy(BCly),
[106, 107] with PfBus. This results in the 1:1 adduct 1,2-CgH4(BCl,),*(PtBus) 105.
Despite the formation of this adduct, this species reacts with THF to effect ring-
opening yielding 1,2-C¢H4(BCl,),(O(CH,)4PrBus) 106 (Scheme 32). This species
was confirmed to exhibit a unique bridging alkoxide between the boron centers [108].
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4.2 FLP Ring-Opening of Dioxane and Thioxane

Other examples of ring-opening reactions are exhibited with the reactions of B(CgFs)s,
1,4-dioxane, and an appropriate base. In this fashion the species (base)(CH,),0
(CH,),OB(CgFs); 107 (base = BusP, C¢HsCH,NMe,, (IrBu), Me,NCgH4NMe,,
CsH;Me,N) were obtained (Scheme 33) [105]. Similarly ring-opening of thioxane
gave ring-opened products (base)(CH,),S(CH,),OB(C¢Fs); 108 (base = rBusP,
CsHsCH,NMe,, Me,NCgH4NMe,, CsH;Me,N) (Scheme 33) [105].

4.3 FLP Ring-Opening and Contraction of Lactone and Lactide

The B(CgFs); adducts with 8-valerolactone and rac-lactide react with phosphine or
N-bases [109]. In the case of the lactone, ring-opening yields the zwitterionic
species L(CH2)4C02B(C6F5)3 109 (L = tBll3P, Cy::,P, C5H3M63N, PhNMez,
CsHgMeyNH) (Scheme 34). The corresponding reaction of rac-lactide leads to a
ring-contraction giving the salts [LH][OCCHMeCO,(CMe)OB(CgFs);] 110
(L = BusP, Cy;P, CsH3;Me,N, CsHgMeyNH) (Scheme 34). This latter reaction
results from deprotonation of lactide adduct, prompting ring contraction [109].
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4.4 FLP Ring-Opening of Cyclopropanes

Cyclopropanes also react with FLPs. For example the cyclopropanes PhC;Hs and
Ph,C=CCHC3H;5 are ring-opened in the presence of the FLP Bu;P/B(C¢Fs);
affording the phosphonium borates tBusPCH(R)CH,CH,B(C¢Fs); 111 (R = Ph,
CH=CPh,) (Scheme 35) [110]. In contrast the corresponding reaction of the species
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PhHC=CHCHC;Hj gives rise to a 1:1.3 mixture of two ring-opened products 112
and 113 derived from 1,3 and 1,5 additions, respectively (Scheme 35) while
analogous treatment of H,C=CHCHC;H;Ph, with B(C¢Fs); and rBusP gave the
salt [fBusPH][Ph,C=CHCH=CHCH,B(C¢Fs);] 114. These results suggest that
sterically demanding substitution on the cyclopropanes inhibits attack by the
base, resulting instead in deprotonation followed by rearrangement to the
butadiene-borate anion [110].

5 FLP Activation of Greenhouse Gases

The ability of FLPs to react with small molecules prompted questions about the
interactions of these combinations with CO,, N,O, and SO,. Each of these is a gas
of some concern from an environmental standpoint and these new approaches to
sequestration or to new reactivity patterns are of general interest.

5.1 FLP Capture of CO,

CO, is renowned as a greenhouse gas and thus strategies to capture it are of much
interest. Therefore it was topical when it was found that the FLP rBu;P/B(C¢Fs);
reacts with CO, to give the species tBu;PCO,B(CgFs); 115 (Scheme 36) [111].
This species evolves CO, above 70 °C. Subsequent treatment with either THF
prompts loss of CO, and complexation of THF while exposure to H, also results in
loss of CO, and activation of H,. While these observations suggest the binding of
CO; by this FLP is weak, it is noteworthy that this species is significantly more
stable than the corresponding system derived from the intramolecular FLP
Mes,PCH,CH,B(Cg4Fs),, (see below) [111]. Analogous reactions of other intermo-
lecular FLPs have been extended to obtain the species R;P(CO,)B(CgF4H); 116
(R = iPr, tBu) and BusP(CO,)BR(CgFs), 117 (R = hexyl, Cy, (norbornyl), Cl,
Ph) [112].

In a similar fashion the species tBusP(CO,)B(CgFs5),Cl 118 was prepared and it
proved sufficiently stable to react with Me3;SiOSO,CF;5 to generate tBusP(CO,)B
(C6F5)2(0SO,CF3) 119 [113]. Similarly, Lewis acid exchange reactions between
118 and Al(C¢Fs); and [Cp,TiMe][B(CgFs)4] affording the products, tBuzP(CO,)
Al(CgFs)3 120 and [tBus;P(CO,)TiCp,Cl][B(CgFs)4] 121 (Scheme 37) [113].

In an effort to effect stronger binding to CO,, the utility of bis-boranes in FLP
activation of CO, was explored. To this end, O(B(C¢Fs),), was reacted with CO,
and PrBus. The product was formulated as O(B(CgFs),),(0O,CPfBus) 122
(Scheme 38) [114] as the spectroscopic data were consistent with a symmetric
structure. Nonetheless, an X-ray study revealed dissymmetric binding, consistent
with rapid exchange of the B—O bonds in solution. In a similar fashion the bis-
boranes Me,C=C(BR»), (R = Cl, C¢F5s) also reacted with CO, and PrBu; although
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in these cases the symmetric cyclic products Me,C=C(BR;),(O,CPBu;) 123
(Scheme 38) were obtained [114]. Despite this chelation, all of these bis-borane
derivatives lose CO, above 15 °C.

5.2 FLPs in Stoichiometric Reduction of CO,

In a communication Ashley and O’Hare [115] described the use of the FLP derived
from TMP and B(C¢Fs); in reaction with CO,/H,. Mass spectral data reveal that
upon heating for 6 days at 160 °C, this mixture effects the conversion of CO, to
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methanol in 24% yield. This extremely important result of metal-free reduction of
CO; has prompted a further examination of related systems.

In the case of phosphine-borane FLPs the salts [rBusPH][RBH(C¢Fs),]
(R = hexyl, Cy, norbornyl) were shown to react with CO, affording the formyl
derivatives [tBusPH][((C¢F5),BR),(1-HCO,)] 124. This observation infers a path-
way for the commencement of the reduction. The related formate derivative
[tBusPH][(C4F5),BR(O,CH)] 125 was also obtained via the reaction of the
corresponding phosphine/borane FLPs with formic acid (Scheme 39) [112]. Similar
results have been reported using N-bases [116].

The bis-borane 1,2-CcH4(BCl,), in combination with tBusP acts as an FLP to
bind CO,. This product formulated as 1,2-CsH4(BCl,),(O,CPtBus) 126 is remark-
ably stable [108]. It does not undergo loss of CO, even upon heating to 80 °C for
24 h. The stability prompted efforts to reduce the bound CO,. Treatment with the
amine-borane Me,NHBHj; for 15 min followed by quenching with D,0 led to the
generation of methanol-d; in 34% yield (Scheme 40). In a similar fashion, reaction
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with [CsH¢Me4NH,][HB(CgFs);] gave methanol in 15% yield after stirring for 24 h
and subsequent treatment with D,0O. Interestingly, modification of the ammonium
borate salt to [CsHsMe,NH,][HB(CgFs),(C;H; )] resulted in an increased yield of
methanol to 57% after 1 h (Scheme 40) [108].

An alternative strategy to CO, reduction was uncovered by the study of the
phosphine/alane FLPs derived from PMes; and AlX; (X = Cl, Br, I). Reaction with
CO, afforded the facile formation of Mes;P(CO,)(AlX3), 127 (Scheme 41) [117].
Subsequent treatment with H;3NBHj; effected the generation of Al-methoxide spe-
cies which upon hydrolysis gave methanol in an overall yield of 50%.

An alternative reduction pathway was observed upon prolonged (18 h) exposure
of 127 to CO,. In this case the reaction products were identified as Mes;P(CO,)
(AIX5),(OAIX3) 128, [Mes;PX][AIX,] 129, and CO (Scheme 41) [118]. The



Discovery of Frustrated Lewis Pairs: Intermolecular FLPs for Activation of. . . 33

liberation of CO was confirmed spectroscopically and by stoichiometric capture as
a Ru complex.

5.3 FLP Capture of N,O

N,O is another greenhouse gas that is 300 times more potent than CO,, albeit much
less abundant. Thus it was of interest to find that the FLP derived from tBusP and B
(CgFs); reacts with N,O to give tBusP(NNO)B(CgFs); 130 (Scheme 42) [119]. The
P-N=N-O-B is oriented such that the /BusP and OB(C¢Fs); fragment occupy
transoid positions on the N=N double bond. The compound 130 evolves N, on
heating to 135 °C for 44 h resulting in the formation of (tfBu;P=0)B(C¢Fs); 131
(Scheme 42). In the same vein 131 is obtained from photolysis of 130 [119].

Efforts to modify the FLP system using less basic phosphines were unsuccessful.
Indeed, one of the few alternative systems that was viable employed Cy;P and B
(CgF4-p-H); to capture N,O affording Cy;P(N,O)B(CgF4-p-H); 132 (Scheme 42)
[120]. This species was less stable than 130 as it lost N, in a facile manner avoiding
the phosphine oxide-borane adduct.

While the phosphine could not be varied dramatically, N,O binding proved to be
more tolerant of lesser Lewis acidic boranes including B(CgFs),R (R = Ph, Mes,
OC¢Fs) and BR;3 (R = Ph, CgF4-p-H, C¢Hy-p-F). Similarly, use of the bisborane
(CgF5)-B(CF4)B(CgFs), with tBusP afforded the product CgF4[(CgF5),B(ON,)
PrBus], 133 (Scheme 42) [120]. The tolerance for weaker Lewis acids allows the
use of tBusP(NNO)B(CgHy-p-F); 134 in exchange reactions. Thus treatment of 134
with B(C¢Fs); affords an alternative route to 130. In the same vein reaction of 134
with [Ph3C][B(CgFs)4] afforded [fBusP(N>O)CPhs][B(CgFs)4] 135 (Scheme 42).
A mechanistic study of these exchange reactions provided the activation parameters
AH* = 71.2(9) kJ mol ™' and AS* = 32(3) J mol~' K" [120]. These data are
consistent with a B-O linkage that is weakened prior to the binding of the incoming
Lewis acid. Similar exchange reactions allow the transfer to transition metal
species. For example, reaction with [Cp,ZrOMe][MeB(C¢Fs);] gave [tBu;P(N,0)
ZrCp,OMe] [MeB(CgFs)3] 136 (Scheme 42) [120]. Similarly, the Ti analog was
prepared [120], while reaction of 134 with Zn(CgFs), [121] afforded the isolation of
tBu3PN202n(C6F5)2]2 137, (IBU3PNzoZH(CGFs)z)QZH(CﬁFs)z 138, and tBUg,PNzO
(Zn(CgFs),), 139.

5.4 FLP Capture of SO,

Another gas that is of environmental concern is SO,. In probing ability of FLPs to
capture such gases, the intermolecular FLP tBuzP and B(C¢Fs); was shown to react
with SO, at room temperature to give the zwitterion rBuzP(S(O)O)B(C¢Fs); 140
[122]. This compound structurally resembles the CO, compound 115 in a general
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Scheme 42 Reactions of N,O with FLPs
sense; however in contrast to the planar carbon atom in 115, the sulfur center of 140

is pseudo-pyramidal (Scheme 43). Closely related intramolecular FLP derivatives
have also been characterized (see below).
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6 Additional Miscellaneous Reactions of FLPs

The study of FLPs has also revealed a variety of other reactions that result in the
heterolytic activation of other bonds. In these cases the reactions have not been
extensively studied but perhaps foreshadow other potential useful chemistry. Such
reactions are described below.

6.1 Heterolytic Cleavage of Disulfides

The analogy between the heterolytic cleavage of H, and that of disulfides prompted
investigation of the reactions of FLPs with disulfides. To this end, diphenyl disulfide
was reacted with 12 to afford the zwitterion phosphonium borate [Bu,P(SPh)(CgF,)
B(SPh)(CgFs),] 141 (Scheme 44).[123] In the same vein, the FLP tBu;P/B(C¢Fs);
reacts with RSSR to give [fBusP(SR)][(RS)B(CgFs);] 142 (R = Ph, p-tolyl, iPr)
(Scheme 44). In an interesting contrast, the reaction of BnSSBn yields a 1:1:1 mixture
of BusP=S, Bn,S, and B(C¢Fs)3, presumably a result of a further reaction of the
corresponding salt [tBusP(SBn)][(BnS)B(C¢Fs)3] [123].

6.2 FLP Activation of Catechol Borane

Reaction of phosphine/borane FLPs with catecholborane were shown to prompt the
formation of the salts [(fBu,RPBO,C¢H,)][HB(CgF5)5] 143 (Scheme 45) [124].
These reactions are thought to proceed via initial coordination of phosphine to
catecholborane. Subsequent hydride abstraction results in the heterolytic cleavage.
In this case, DFT computational studies infer that the three coordinate B cation
ligated by O-donors [125] has a localized positive charge that resides on phospho-
rus atom, prompting the preferred description as a borylphosphonium cation rather
than a phosphine stabilized borenium cation.
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6.3 Heterolytic NH Activation

D.W. Stephan

The combination of I/Bu with (NH3)B(C4Fs); or (RR’NH)B(C4Fs); (R = H,

R’ = Ph, R” = R = Ph) results in the heterolytic cleavage of the

N-H bond

affording the imidazolium amidoborates [(fBuN),C3H3][RR’NB(CgFs);] 144
(Scheme 46) [38, 39]. The related reactions of alkylamine adducts (RR’NH)B
(C¢Fs5); (R = H, R’ = Et, tBu, R’ = R = Et) proceed in an analogous fashion,
although the imidazolium cation protonates a fluoroarene ring liberating C¢FsH and
an amidoborane RR’NB(C¢Fs), 145 (Scheme 46). This reaction allows for the



Discovery of Frustrated Lewis Pairs: Intermolecular FLPs for Activation of. . . 37

catalytic formation of the alkylamidoborane from the alkylamine adducts using
5 mol% of the NHC as catalyst [41]. It should be noted that NHCs do not react with
amines on their own, in contrast to the reactivity of mono-amino carbenes described
by Bertrand [37].

6.4 Heterolytic CH Activation

The FLP derived from 7rBusP and AI(C¢Fs); reacts with isobutene to give the
phosphonium salt [tBusPH][((CgFs);Al),((CH,),CMe)] 146, in which the planar
allyl fragment links two Al centers via sigma interactions [126]. This is a very rare
example of C-H activation by non-metal reagents under mild conditions. The
species 146 reacts further with ethylene to give ethylene insertion in the Al-C
bond, thus forming CH,=C(Me)(CH,);Al(C¢Fs), 147 together with the byproduct
[(BusPH][AI(C¢F5)4] 148 (Scheme 47) [126].

tBugP + 2 Al(CgFs)3

J j [tBugPH][AI(CgF5) 4l

148
@ +
C,H
[tBugPH] 24/’ \
60 °C \ ooF
(CGFS)SAI\/R Al/ 675
© 147

N
CeFs
Al(CqFs)3

146

Scheme 47 C-H activation by an FLP

6.5 Heterolytic CF Activation

The FLP derived from B(CgFs); and sterically demanding phosphines have been
shown to activate alkylfluorides to give phosphonium fluoroborate salts
(Scheme 48) [127]. In the same vein, treatment of B(C¢Fs)s/alkylfluorides with
the salts [rBusPH][HB(C¢Fs)s] or [fBusPSPh][PhSB(C¢Fs);] gives the alkane and
the salt byproducts [fBusPH][FB(C¢Fs);] 149 or [tBusPSPh][FB(C¢Fs);] 150,
respectively [127]. B(CgFs); also catalyzes the conversion of fluoroalkanes to the
analogous alkanes in the presence of Et;SiH [127].
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7 Conclusion

This chapter has reviewed the initial discovery of FLPs. Herein we have focused on
intermolecular FLP systems that allow for three component reactions. These
systems provide new strategies for the activation of a variety of small molecules,
including H,, olefins, alkynes, and greenhouse gases among others. Such activations
have spurred much interest in the potential utility of metal-free systems. While
commercial applications are perhaps for the future, the intriguing discovery
challenges the commonly held chemistry dogma regarding the requirement of
transition metals for small molecule activation. These findings have helped to stir
interest in main group reactivity.
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Intramolecular Frustrated Lewis Pairs:
Formation and Chemical Features

Gerald Kehr, Sina Schwendemann, and Gerhard Erker

Abstract Intramolecular vicinal and geminal frustrated Lewis pairs (FLPs) featuring
bulky substituents at phosphorus or nitrogen and strongly electron-withdrawing bulky
pentafluorophenyl substituents at boron undergo a variety of addition and/or activation
reactions with small molecules. A number of examples of such reactions are presented
and discussed, among them the FLP activation of dihydrogen to give zwitterionic
phosphonium (or ammonium)/hydridoborate zwitterions. Intramolecular FLPs
also add to organic carbonyl compounds (including carbon dioxide), to alkenes
and alkynes (including conjugated dienes, diynes or enynes), to heterocumulenes, to
azides, and to nitric oxide.

Keywords FLP addition reactions - Small molecule activation - Synergistic
reactions - Vicinal and geminal frustrated Lewis pairs
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Abbreviations
Bu Butyl
CP Cross polarization

DABCO 1,4-Diazabicyclo[2.2.2]octane
DEAD Diethyl azodicarboxylate

DFT Density functional theory
equiv. Equivalent(s)

Et Ethyl

FLP Frustrated Lewis pair

gem. Geminal

h Hour(s)

HAA Hydrogen atom abstraction
i-Pr iso-Propyl

LA Lewis acid

LB Lewis base

MAS Magic angle spinning

Me Methyl

Mes Mesityl, 2,4,6-trimethylphenyl
min Minute(s)

NMR Nuclear magnetic resonance
Ph Phenyl

Pr Propyl

r.t. Room temperature

s-Bu sec-Butyl

THF Tetrahydrofuran

t-Bu tert-Butyl

vic. Vicinal

1 Introduction

Lewis acids (LA) and Lewis bases (LB) usually undergo strong adduct formation
when brought together in solution. The ubiquitous Lewis acid/base adduct forma-
tion [1] is analogous to the neutralization reaction in Brgnsted acid/base chemistry
[2]. The resulting LA/LB adducts may have very interesting properties in them-
selves, e.g., as is found in the chemistry of ammonia borane (H;NBH3) [3, 4], but
they have lost the typical chemical features of their original components. Lewis
acid/Lewis base adduct formation can effectively be hindered or even completely
suppressed by steric and/or electronic means. Placing very bulky aryl or alkyl
substituents at, e.g., phosphorus or nitrogen or even carbon based Lewis bases
and combining them with, e.g., strongly electrophilic R-B(C¢Fs), type Lewis acids
has often resulted in situations of co-existent pairs of active Lewis acids and Lewis
bases in solution. Sometimes they appeared to be independent of each other,
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sometimes they were found to be in equilibrium with their respective LA/LB
adducts, sometimes they were weakly interacting. Such frustrated Lewis pairs
(FLPs) [5-16] can, of course, show reactions of their separate LA and LB
components, but they are special in that they have the potential to have the Lewis
acid/Lewis base components reacting synergistically with added substrates. There
are indications that weak interactions between the Lewis acid/Lewis base
components of a frustrated Lewis pair might favor synergistic reaction behavior,
maybe it is even mandatory in some cases. Intramolecular FLPs, where active
Lewis acid and Lewis base components are closely connected by sufficiently
flexible bridges, may be advantageous to introduce and control typical frustrated
Lewis pair behavior. Here we report about a selection of intramolecular FLPs,
mostly, but not exclusively, originating from our research group in Miinster and our
collaborating partners, which may serve to illustrate some of the remarkable and
extraordinary features that such reactive bifunctional main group element
compounds may exhibit.

2 Vicinal Phosphorus/Boron FLPs and Their Reaction
with Dihydrogen

We first reacted the bulky starting material dimesitylvinylphosphane (1a) with
Piers’ borane [HB(CgFs),] [17-21]. The system forms a Lewis acid/Lewis base
adduct (2a, Scheme 1) at low temperature. However, this has only a fleeting
existence, since the 1a/HB(CgFs), reaction mixture undergoes a rapid
hydroboration reaction of the vinyl substituent at room temperature with the
usual anti-Markovnikov orientation to yield the intramolecular FLP 3a [22].

The spectroscopic data indicate that 3a is a weakly interacting intramolecular
FLP system. In solution it features NMR shifts of the heteronuclei [*'P: § 20.6, ''B:
5 8.5, "F: 5 —128.8 (0), —157.0 (p), —163.6 (m)] that are intermediate between a
phosphane/phosphonium, and borane/borate character. A detailed solid state MAS
NMR analysis confirmed this [23]. Among other parameters the ''B° NMR
quadrupolar coupling constant of 3a pointed to a P---B interacting system with a
boron center deviating only slightly from a trigonal planar BC; coordination sphere
and a tentative P---B distance of ca. 2.2 A. The DFT analysis of 3a gave a similar
result. According to this computational analysis the weak internal adduct 3a
equilibrated with a pair of open isomers 3a’ which were of slightly higher energy.
One had the two functional groups oriented gauche to each other, whereas the other
showed them in an anti-periplanar conformational arrangement [22].

Compound 3a reacts rapidly with dihydrogen under mild conditions. It was one
of the most active metal-free dihydrogen activations at the time when it was first
studied. It splits dihydrogen at close to normal conditions (r.t., 1.5 bar H, pressure,
pentane solution) within minutes. The pale yellow solution of 3a turns colorless
and the zwitterionic phosphonium/hydridoborate product 4a precipitates from
the solution. It was characterized by X-ray diffraction (Fig. 1) and by spectroscopy
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Fig. 1 Molecular structure of the zwitterionic phosphonium/hydridoborate product 4a

["HNMR: 8 7.87 (Jpyy ~ 490 Hz), *'P: § —6.5 [P-H], "'B: § —20.1 (‘g ~ 90 Hz)
[B-H]]. The reaction was also carried out with dideuterium which confirmed the
heterolytic dihydrogen splitting by observing the corresponding [B]-D and [P]-D
signals in 4a-D, (Scheme 1 and Fig. 1) [22].

Compound 4a is able to catalyze the hydrogenation of a variety of enamines 5 or
imines 6 to the corresponding amine products 7 (Scheme 2) [24, 25] (Axenov, 2009,
unpublished results).

Many FLPs have been shown to be quite reasonable catalysts for the metal-free
catalytic hydrogenation of electron-rich unsaturated substrates such as enamines
and dienamines (Scheme 2) [22, 24, 25] (Axenov, 2009, unpublished results), in
addition to silyl enolethers [26], of a variety of imines and some aziridines [27-32].
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D. W. Stephan recently showed that even the arene rings in some aniline derivates
can be hydrogenated by FLP systems to yield cyclohexylamines [33]. We showed
that FLP catalyzed reactions can provide sufficiently mild conditions for reactions
with rather sensitive organometallic substrates [14, 25, 34-38] (Axenov, 2009,
unpublished results). All these developments posed the question of whether FLP
induced hydrogenation of carbon—carbon double or triple bonds bearing strongly
electron-withdrawing substituents could be achieved. For that purpose we treated
the conjugated ynone 8a with the zwitterionic Hj-activation product 4a. We
observed a rapid transfer of the H/H™ pair at room temperature with formation
of the cis-enone cis-9. Unfortunately, in this case the liberated FLP 3a reacted faster
with the ynone substrate 8a to give 10a (Scheme 3). As a result, this FLP induced
hydrogenation of the electron-poor carbon—carbon triple bond in 8a remained
stoichiometric [39].

We prepared a variety of analogs of the ethylene-bridged P/B FLP 3a by
hydroboration of a series of substituted dimesitylalkenylphosphanes with [HB
(CeFs)2]. The cyclohexenylphosphane derived FLP 3b is a typical example [40].
Hydroboration of 1b with Piers’ borane gave the P/B FLP 3b in good yield. Compound
3b is chiral; it contains two chiral centers. Due to the fixed cis-[B]-H addition, the
stereochemistry of the underlying hydroboration reaction, these chiral centers are
dependent on each other. Only the rac-trans-diastereoisomer was formed. It is
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Fig. 2 Molecular structure of the P/B FLP 3b

characterized by having the bulky phosphanyl- and boryl-substituents trans-1,2-
attached at the cyclohexane framework. Compound 3b was characterized by X-ray
diffraction (Fig. 2). In the crystal the cyclohexane ring of compound 3b adopts a chair
conformation with the C1-P and C2-B vectors oriented trans-bis-equatorially. There
are two crystallographically independent molecules in the unit cell. Both show P---B
interactions, although the P---B distance at 2.188(5) A (molecule A) and 2.206(5) A
(molecule B) is at the long end of phosphane/borane interactions [41-47].

In solution we observed the '"F NMR signals corresponding to a pair of
diastereotopic Cg¢F5 groups at boron at low temperatures, due to the tetracoordination
at boron. Opening of the P-B linkage would result in the formation of a planar-
tricoordinate boron center in the reactive intermediate 3b’; its pair of C¢F5 substituents
would, consequently, be homotopic. This feature allowed us to determine the activation
energy of the reversible P-B bond cleavage in 3b by temperature dependent dynamic
"F NMR spectroscopy. From the coalescence of the respective pairs of ortho-F
resonances of the diastereotopic C¢Fs groups at boron we obtained the Gibbs activation
energy of phosphane-borane dissociation in 3b at AGg (298 K) = 12.1 £ 0.3
kcal mol ™', Thus, the FLP 3b is a weak internal phosphane—borane adduct. It opens
rapidly with a P-B bond dissociation energy of <12 kcal mol ',

Consequently, the FLP 3b reacts very rapidly with dihydrogen. H, is
heterolytically cleaved by 3b at —20 °C with formation of the zwitterionic
[P]*-H/[B]~-H product 4b (Scheme 4 and Fig. 3) [40].

We prepared a variety of related bridge-substituted vicinal P/B FLPs analo-
gously by hydroboration of the respective alkenyldimesitylphosphanes with Piers’
borane [HB(C¢Fs),], the compounds 3c—e being typical examples (Scheme 5) [48].
Their NMR spectra indicated internal P-B coordination. Due to the presence of a
chiral carbon center in the bridge, each of these compounds features pairs of
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diastereotopic C¢F5 substituents at boron. From the coalescence of their respective
“F NMR features we have determined the activation barrier of P-B bond dissocia-
tion (AGdif) for each of these compounds (Scheme 5). They are similar in
magnitude as found for 3b (see above). Compound 3¢ splits dihydrogen under
our typical mild reaction conditions (2.5 bar H,, r.t.), whereas the more bulky
compounds 3d,e were unreactive even at 60 bar H, pressure at r.t. [48].

Hydroboration of di-tert-butylphosphinopropyne (11a) with [HB(CgFs),] gave the
unsaturated FLP 12a. It slowly splits dihydrogen under more forcing conditions
(60 bar) to give the zwitterion 13a (Scheme 6) [24]. The dimesitylphosphino-
substituted FLPs 12b,c were prepared analogously by hydroboration of the respective
Mes,P-substituted alkynes 11b,c. These systems were themselves inert toward H,
under our typical conditions, but they rapidly accepted the H*/H™ pair from the
saturated FLP hydrogen activation product 4a. This hydrogen transfer reaction was
developed into a protocol for the formation of the products 13b,c with dihydrogen
catalyzed by the 3a/4a FLP/FLP-H, pairs [24]. Both the products 13b,c were
characterized by X-ray diffraction (Fig. 4 for 13b). The FLP 13b was used as
a selective catalyst for the hydrogenation of an enamine using ammonia borane
(H3;NBH;3) as a hydrogen source [49, 50].

The related unsaturated vicinal cis-FLPs 14 were prepared in different ways.
Originally, such compounds were obtained by treatment of alkynylborates (e.g., 15)
with R,PCl reagents [51-55]. The reaction proceeds with aryl migration from boron
to the adjacent carbon atom and might be regarded as an early precursor of the
1,1-carboboration reaction [56, 57]. Grobe, Wiirthwein et al. [58] recently reported
a remarkable related formation of an example of this by means of the intermediate
formation of 16. These cis-14 systems do not seem reactive towards H, but some of
these bifunctional FLP-like compounds undergo interesting reactions with a variety
of metal complexes (as do D. Bourissou’s related phenylene-bridged FLP
derivatives 17) [59-62] (Scheme 7).

We have developed a convenient new synthetic pathway to the unsaturated P/B
systems 14 by making use of the recently discovered advanced variants of the
1,1-carboboration reaction ([63]; see also [64—68]). For this purpose we treated,
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Fig. 4 Molecular structure of compound 13b
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e.g., the dimesitylphosphinoacetylene derivative 11d (Scheme 8) with B(C¢Fs)3
[69, 70] at room temperature in pentane. Under these conditions B(C¢Fs); adds to
the alkyne and initiates migration of the Mes,P moiety along the acetylenic carbon
framework. After 30 min reaction time we isolated the product 18 [71]. The X-ray
crystal structure analysis of 18 revealed the presence of the unsaturated cationic
three-membered heterocycle to which the borate counter anion is bonded (Fig. 5).
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Fig. 5 A view of the molecular structure of the zwitterionic phosphirenium-borate betaine 18

This class of compounds exhibits very characteristic NMR features [71, 72];
compound 18 shows, e.g., a 3P NMR resonance at & —137.8 and a ''B NMR
signal at 0 —16.5. In the phosphirenium-borate 18 the dimesitylphosphino group
had migrated about half way across the acetylenic C=C bond. Heating to 105 °C
was necessary to complete the 1,1-carboboration reaction to eventually give the
product 14¢. Compound 14¢ shows heteronucleic NMR resonances at & 14.6 (*'P)
and & 0 (''B), respectively. The X-ray crystal structure analysis revealed a
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Fig. 6 Molecular structure of 14c

pronounced B-P interaction between the (Cg¢F5),B- and Mes,P-substituents which
are cis-oriented at the bridging unsaturated C,-framework (Fig. 6).

We prepared a variety of differently substituted P/B systems 14 by this advanced
1,1-carboboration method [73] and used them for an in depth analysis of the
bonding between phosphorus and boron in such systems by solid state NMR
techniques [23]. Both the ''B NMR isotropic chemical shifts and the nuclear
electric quadrupolar coupling parameters were found to serve as sensitive experi-
mental measures. In addition the large *'P-''B scalar spin—spin coupling of 'J > 50
Hz, obtained from the *'P{'H}-CPMAS NMR experiments, gave further evidence
for the covalent P-B bonding component in such compounds.

3 Intramolecular N/B FLPs

Repo, Rieger et al. prepared the C3-bridged N/B FLP 19 by a conventional route
involving metalation. The N/B system 19 is an active frustrated Lewis pair that
heterolytically cleaves dihydrogen to yield 20 ([74, 75]; see also [76]). The [N]*-H/
[B]™-H zwitterion 20 was thoroughly characterized, including a neutron diffraction
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study [77]. The system is special since it is one of the rare examples of reversible
H,-addition (and activation) by a frustrated Lewis pair [5, 26] (Scheme 9).

We prepared a series of vicinal N/B FLPs by enamine hydroboration [78]. A
typical example is the reaction of the acetophenone derived enamine Sa with [HB
(CgFs)2] which gave the phenyl substituted vicinal N/B FLP 21a in good yield.
Compound 21a features a heterocyclic four-membered ring structure. The phenyl
substituted bridge-carbon atom C1 is a chiral center. Therefore, we observed
"H/'3C NMR signals of the diastereotopic methylene groups of the piperidino
substituent. The CgFs groups at boron are also diastereotopic in 21a (at 298 K),
which indicated N-B coordination. The related compound 21b was obtained by
[HB(C¢Fs),] hydroboration of the enamine piperidino cyclohexene (Scheme 10).
The X-ray crystal structure analysis showed N-B coordination. Compound 21b
contains a heterocyclic four-membered ring structure (Fig. 7).

The N-B bond in compound 21a is weak. This becomes evident from the
dynamic '"F NMR spectra. The system shows signals of pairs of diastereotopic
CgF5 groups below ca. 320 K (Fig. 8). Warming leads to coalescence of both pairs
of p-CgFs and m-C¢F5 signals, indicating rapid reversible N-B bond rupture and
equilibration with the (invisible) reactive intermediate 21a’ on the 9F NMR time
scale. From the dynamic '’F NMR spectra we estimate a barrier for the N-B
opening in 21a of AGdif (318 K) = 13.8 + 0.2 kcal mol ! (Fig. 8). A similar
value was found for the ring opening process of the N/B FLP 21b (Scheme 10).

It appears that the intramolecular boron Lewis acid interaction with the
tert-amine Lewis base in the FLPs 21 is slightly stronger than with the
tert-phosphanes in 3. However, the B-N bonds in the systems 21 must still be
regarded as being weak (bond dissociation energies <13 kcal mol '). These
LA-LB bonds open and close rapidly. Both the N/B FLPs 21a and 21b react readily
with dihydrogen to yield the ammonium/hydridoborate zwitterions 22a and 22b,
respectively. Both were characterized by X-ray diffraction (22a, Fig. 9) and by
spectroscopy [22a: ''B NMR: & —22.8 (d, 'Jgy ~80 Hz), '"H NMR: & 3.08
(br, 1:1:1:1 q, [B]-H), & 7.46 ([N]-H)] (Scheme 11).
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Scheme 10 Formation and ring opening of the FLPs 21a and 21b

Fig. 7 Molecular structure of the N/B FLP 21b (N-B = 1.824(6) A)
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Fig. 9 A view of the molecular structure of the ammonium/hydridoborate Hy-activation product 22a

We prepared a variety of such vicinal N/B FLPs by means of the enamine
hydroboration reaction (Scheme 12). The compounds 21¢,d did not react with
dihydrogen under our typical conditions.

The nitrogen containing FLP 21b shows a chemical peculiarity that appears
upon its treatment with aldehydes or ketones. It is well known that B(C4Fs); is able
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Scheme 13 Reactions of the FLP 21b with organic carbonyl compounds

to abstract hydride anion from the o-position of tertiary amines [37, 79-84]. In
the case of the N/B FLP 21b this could lead, e.g., to the formation of the
iminium/hydridoborate zwitterion 23a (Scheme 13). Without added reagents we
did not observe its formation. However, added benzaldehyde or benzophenone
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resulted in the formation of the respective trapping products, namely the zwitter-
ionic systems 23b and 23c, respectively [78].

Previously, Piers reported the synthesis of a phenylene-bridged N/B system 285.
The separate addition of hydride followed by protonation may have generated the
ammonium/hydridoborate system 27, which was labile with regard to rapid H,
elimination (Scheme 14) ([85]; see also [86]).



Intramolecular Frustrated Lewis Pairs: Formation and Chemical Features 61

t-Bu
(0] N
R Ao co ranc 5 Ho
“N” "B(CeFy)2 <—”—> N\_ B(CeFs)2
\=n® =N®
35 R B 36 R
31 @/N\ o
B(C¢F:)
R=i-Pr, tBu \ = -
|
i-Pr'Ny_ jl Pr O>_
i-Pr-N CGF5 <—”—> PN _ pY B(CFs)s
\_N@ I Pr N\@
i-Pr N=C=N i-Pr
i-Pr 38
Scheme 17 Reactions of the boron-amidinates 31
CeFs)2
@/—\@ ( 6r5)2
Mes,R  BCeFsl 2 O > (ce
\\—/ € Mes,P---- B(CeF5)2 — > MesR
/—O H ®
39 3a 40

Scheme 18 Olefin addition reactions to the FLP 3a

The monomeric phosphido-boranes R,P-B(C¢Fs), 28 (R = cyclohexyl or terz-
butyl) show a related FLP behavior. They react slowly at 60 °C with dihydrogen to
give the phosphane—borane adducts R,HP-BH(Cg«Fs), 29. In contrast, the dimeric
phosphido—boranes [R,P-B(C¢Fs),], 30 did not react with H, under these
conditions (Scheme 15) [87, 88].

Stephan and coworkers have recently shown that boron-amidinates HC(RN),B
(CgFs)2 31 (R = i-Pr, #-Bu) react with benzaldehyde to give 32 (R = i-Pr, #-Bu). In
addition, these species were also found to react with MeCN to give 33. These reactions
are thought to proceed via the ring opening of the boron-amidinate, although this could
not be confirmed spectroscopically. However, this proposition was supported by
thermolysis of the boron-amidinate which gave 34 (Scheme 16) [89].

The systems 31 were also shown to insert CO and isonitriles into the B-N bond
to yield the respective five-membered heterocycles 35 and 36. Typically, 31 also
reacts with a carbodiimide to give 37 and with carbon dioxide to yield the product
38 [89] (Scheme 17).
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Fig. 11 A view of the framework of the molecular structure of 40
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Fig. 12 A projection of the framework structure of compound 43

4 FLP Reactions with w-Systems and More

FLPs often add to olefinic carbon—carbon w-systems [7, 36, 38, 90-92]. A typical
example is the reaction of the intramolecular FLP 3a with ethylvinylether. The
frustrated Lewis pair adds to the electron-rich carbon—carbon double bond
regioselectively to yield the six-membered heterocyclic product 39 (Scheme 18)
[90]. The product was characterized by X-ray diffraction (Fig. 10) and was shown
to exhibit a typical chair-like conformation of the central framework [93].

The FLP 3a adds cleanly to the norbornene C=C double bond to give selectively
the exo-2,3-P/B addition product 40. Although only this product was observed,
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Scheme 21 Reaction of FLP 3a with activated alkenes

another possible rearranged product was calculated to be thermodynamically slightly
favored. The selective formation of 40 without any of the typical norbornyl cation
rearrangement products is in accord with the result of a computational study that
indicated an asynchronous concerted 1,2-P/B FLP addition pathway of 3a to
norbornene from the exo-face (Fig. 11 for the structure of compound 40) [90, 93].

A similar reaction was observed upon treatment of the FLP 3a with 6,6-
dimethylpentafulvene (41) in a 1:2 molar ratio. In this case the frustrated Lewis
pair trapped the (otherwise unobserved) [6+4] fulvene dimer 42 by 1,2-P/B addition
to one of its C=C double bonds (Scheme 19 and Fig. 12) to yield 43 [94].
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Fig. 13 A view of the molecular structure of compound 47
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Scheme 22 Reaction of FLP 3a with aldehydes

6-Dimethylamino-6-methylpentafulvene (44) undergoes a curious reaction with
the FLP 3a [95]. It readily forms the product 46 by a sequence that involves B—C
bond cleavage. We had to assume that a retro-hydroboration reaction took place
along the favored pathway (Scheme 20) that eventually was completed by addition
of the in situ generated [HB(C¢Fs),] reagent to the substituted fulvene derivate 45.

The FLP 3a reacts with dimethylfumarate by 1,2-P/B addition to the activated
carbon—carbon double bond to give the six-membered heterocycle 47 that features
the pair of —CO,Me substituents in trans-1,2-positions. The same product is
obtained from the reaction of 3a with dimethylmaleate, which indicates a conven-
tional step-wise reaction mechanism (Scheme 21 and Fig. 13). A closely related
reaction takes place upon treatment of 3a with diphenylbutendione (48), only in this
case O—B bond formation is favored over C—B bond formation in the second step to
yield the product 49 (Scheme 21) [96].

In the formation of the product 49 we see the involvement of the carbonyl
functionality. This is often observed in FLP reactions. Typical examples are the
1,2-carbonyl addition reactions of 3a to reactive aldehydes, such as benzaldehyde
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(to give 50) [97]. In a direct competition the addition of 3a to the -CH=O0 group in
trans-cinnamaldehyde forming compound 51 is strongly favored over any addition
to the conjugated carbon—carbon double bond (Scheme 22) [90].

The situation which arises upon reacting the intramolecular P/B FLP 3a with
acetylenic esters 52 or conjugated ynones 8 is more subtle. The acetylenic ester 52a
itself was not reactive enough to allow for a clean product formation upon treatment
with the intramolecular FLP 3a. However, by preactivating 52a with B(C¢Fs); the
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Fig. 14 A view of the molecular structure of the product 10a (R = #-Bu)
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Scheme 26 Cyclic cumulene formation form FLP 3a

reaction proceeded to give the 1,2-addition product (53) of 3a to the C=C triple
bond of the substrate 52a [96]. The more reactive conjugated ynone 8b did not
require any extra activation to react with 3a. It formed the six-membered addition
product 54 when heated under reflux (Scheme 23) [39].

However, the formation of the six-membered products is an exception in the
addition reaction of an intramolecular vicinal FLP to conjugated ynone substrates.
Usually the formation of eight-membered heterocyclic compounds involving
participation of the carbonyl oxygen atom is thermodynamically favored [39].
A typical example arose when the FLP 3a was reacted at room temperature with
the ynone 8c to give the eight-membered addition product 55. Apparently, 55 is



68 G. Kehr et al.

Fig. 15 A view of the molecular structure of the eight-membered heterocyclic allene 57

formed in a two step reaction sequence involving a tautomerization step before
finally closing the medium sized ring by B—O bond formation (Scheme 24).

We also reacted a series of non-enolizable conjugated ynones 8a,d,e with the
intramolecular P/B FLP 3a. They all directly gave the respective eight-membered
heterocyclic allenic boron enolate products 10 (Scheme 25 and Fig. 14) [39].

The chemistry of these compounds turned out to be important for our ongoing
development of FLP-derived catalysts for the metal-free hydrogenation of electron-
poor alkynes and alkenes [39].

Conjugated enynes seem to react similarly with FLPs [98, 99]. Treatment of
2-methyl-1,3-butenyne with Mes,PCH,CH,B(C¢Fs), (3a) at room temperature
gave a ca. 1:2 mixture of the products 56 and 57 (Scheme 26). Compound 56 is a
very typical reaction product of FLPs with terminal acetylenes (for further
examples see below). The medium ring-sized heterocyclic allene 57 is a remarkable
compound, formed by a 1,4-FLP addition reaction to the conjugated n-system of the
enyne reagent [98]. The X-ray crystal structure analysis of 57 (Fig. 15) revealed that
this compound contains an almost regular allene unit — the angle between its
substituents planes at the allene termini amounts to ca. 75°, i.e., not too far away
from the 90° angle of an ideal allene structure. The central carbon atom of the
cumulated C=C=C unit shows a typical allene '>*C NMR resonance (8 204.5 ppm).

A similar reaction took place when the intramolecular FLP 3a was reacted with
conjugated diynes 58a,b (Scheme 26). We isolated the corresponding 1,4-FLP
addition products 59a,b. The X-ray crystal structure analysis of 59b (Fig. 16)
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Fig. 16 Molecular structure of the heterocyclic cumulene 59b
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Scheme 27 Reactions of FLPs with 1-alkynes

confirmed the formation of the substituted 1,2,3-butatriene substructure inside the
strained eight-membered heterocyclic ring system. It exhibits some deviation of the
C=C=C=C moiety from linearity featuring a pair of C—C—C angles of 161.1(2)°
and 165.0(2)°. The P-CH,—CH,-B unit shows a dihedral angle of —129.8(2)°. This
unit does not conformationally equilibrate at r.t. on the NMR time scale. Conse-
quently, we observed pairs of diastereotopic CgF5 substituents at boron and mesityl
groups at phosphorus [98].

FLPs very often react with terminal acetylenes by means of deprotonation
followed by boron—acetylide bond formation. The formation of compound 60 is a
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typical example [90]. The N/B FLPs often undergo analogous H* abstraction
reactions with 1-alkynes, e.g., 21a—61 (Scheme 27) [78].

The FLP 3a reacts with a variety of heteroatom containing substrates. Typical
examples are the reactions with strong donor reagents such as nitriles (e.g., 62),
isonitriles, or pyridine. In all these cases the intramolecular P---B interaction is lost
with formation of the respective donor adducts to the borane functional group
(Scheme 28) [97]. The N/B FLPs react similarly to form, e.g., 63 [78].

The heterocumulene phenylisocyanate adds to the intramolecular FLP 3a via its
reactive C=0 functionality (64) [40, 97], as does the phenylene-bridged P/B system
17a described by Bourissou et al. (65) (Scheme 29). The latter also adds to the
—N=N- bond of DEAD ([59, 100]; see also [101]).
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In a related study it was shown that Mes,PCH,CH,B(C¢Fs), (3a) adds to the
—N=O0 function of nitrosobenzene to yield the six-membered heterocyclic product
67 (Scheme 29 and Fig. 17) [97].

Some FLPs react cleanly with organic azides. The formation of the five-
membered heterocyclic product 68 obtained by N,N-addition of 3a to phenylazide
is a typical example. In the crystal compound 68 features an alternating N-N=N
bond sequence (1.374(2) A/1.254(2) A) (Scheme 30 and Fig. 18) [97].

The intramolecular FLP 3a reacts readily with nitric oxide (NO) by N,N-
addition to give the five-membered FLPNO- radical 69 in high yield. Compound
69 is the parent of a novel type of persistent aminoxyl radicals. It undergoes H-atom
abstraction (HAA) reactions with a variety of hydrocarbon substrates to form the
diamagnetic FLPNOH product 70 (Scheme 30). The FLPNOe radical 69 was
characterized by X-ray diffraction (Fig. 19) [102, 103]. A detailed description of
the chemistry of these new FLP derived nitroxide radicals is provided within
this Topics Curr. Chem. volume by a separate contribution by T. W. Warren and
G. Erker on “Radical Frustrated Lewis Pairs”.

There is great interest in the binding and chemical conversion of carbon dioxide.
Frustrated Lewis pair chemistry has made some contributions to this field [104, 105].
We have observed that the intramolecular FLP 3a is able to bind carbon dioxide rapidly
under suitable conditions to form the 1,2-P/B addition product 71 (Scheme 31) [106].
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Fig. 20 Molecular structure of the FLP-CO, addition product 71
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Scheme 32 Formation and reactions of the geminal P/B FLP 73

The compound precipitated in high yield as a white solid upon exposure of a pentane
solution of 3a to carbon dioxide at ambient temperature. When brought back into
solution the adduct 71 rapidly lost CO, at temperatures above ca. —20 °C. Low
temperature spectroscopy characterized the new compound (e.g., “C(C=0):8
160.5 ppm). Crystallization at —36 °C gave single crystals of 71 suited for the X-ray
crystal structure determination (Fig. 20). A detailed DFT analysis indicated that the
addition reaction of the P/B FLP 3a to a C=0 bond of carbon dioxide is probably a
concerted reaction. According to this analysis both the newly formed P—C and the B-O
interactions have become almost equally established in the (rather symmetrical) transi-

tion state of this reaction [106].
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Fig. 21 A view of the molecular structure of compound 77

5 Geminal FLPs

In the literature one can find a variety of geminal P/B systems. Some of these were
used as ligands in coordination chemistry (see for example [107-109]) whereas
others were employed as Lewis acid catalysts [110, 111].

We have used weakly Lewis basic pentafluorophenyl substituted phosphane
building blocks to construct electronically modified intramolecular FLPs. For that
purpose we prepared the (C¢F5),P-vinyl reagent and treated it with the HB(C¢Fs),
hydroboration reagent. The ensuing hydroboration reaction proved to be regio-
unselective, yielding a 2:1 mixture of the vicinal and geminal P/B-FLPs [112].
Introduction of a directing substituent resulted in regioselective geminal FLP
formation. The (CgFs),P-propenyl (72) system added the HB(CgFs), reagent
regioselectively to give the geminal FLP 73 in good yield (Scheme 32). NMR
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Fig. 22 Molecular structure of compound 82

spectroscopy indicated an open P/B FLP with no appreciable direct P---B interac-
tion. This was evident from the ''B NMR resonance of 73 (8 71) and its '°F NMR
features (Admp = 15.1). Compound 73 did not activate dihydrogen under our
typical conditions but reacted readily with a variety of unsaturated substrates by
1,2-addition, e.g., ethene, p-tolyl isocyanate, or 1-pentyne to yield 74, 75, and 76,
respectively [100-112].

The geminal P/B FLP 73 reacted with mesitylazide by 1,3-addition to give the
six-membered heterocyclic product 77 (Scheme 33 and Fig. 21) [112]. The X-ray



76 G. Kehr et al.

H ® 9

t-Bu,P” > BPh, — 2> t-Bu,P” “BPh,
|
83 H H

84
t-Bu YBZ
O=C=N

©)
f—Bu(fP/\BPh2
/

o
+BOoP~ ™ BPh, %
o 85
N
\ 86
t-Bu

Scheme 35 Reactions of the FLP 83

Ph . Ph
e G-
THF Mes,P~ MAlt-Bu, THF Mes,R” Alt-Bu,
87 Li-H
M: Na (n:1) Vd
M: K (n:4 m:1) (THF),

Scheme 36 Metal hydride addition to compound 87

crystal structure analysis revealed almost identical N1-N2 (1.304(3) A) and N2-N3
(1.306(3) A) bond lengths [113, 114].

Hydroboration of the electron deficient alkynyl phosphane 11d with HB(CgFs),
gave a 7:1 mixture of the products 78 and 79 [115]. The typical FLP reactivity of the
non-internally coordinating major (sp>)C;-bridged compound 78 was probed from
this mixture. It added cleanly to alkynes to give 80 and to aryl isocyanates affording
81 (Scheme 34). The addition product of, e.g., benzaldehyde 82 featured dynamic
NMR spectra indicating reversible ring opening by P—C bond rupture (Scheme 34
and Fig. 22).

Lammertsma et al. prepared the CH,-bridged P/B FLP 83 which contains phenyl
substituents at boron [116]. This less Lewis acidic but markedly more Lewis basic
FLP was able to activate dihydrogen affording 84. It reacted with CO, and added to
the C=0 bond of an isocyanate to give 85 and 86, respectively (Scheme 35).

The FLP 87 even added alkali metal hydrides synergistically (Scheme 36) [117].

6 Conclusions

We started this work by studying P-B coordination and conformational behavior of
intramolecular oligomethylene-linked phosphane/borane systems [42, 48] followed
by the synthesis of the vicinal FLP Mes,PCH,CH,B(C¢Fs), (3a). This system
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turned out to be a very reactive frustrated Lewis pair that was able to react with a
great variety of small molecules, often in a unique manner. The phosphane and the
borane in this “archetypical” intramolecular FLP do interact but (as we have shown
with the aid of its chiral derivatives) their interaction is weak. In addition a current
DFT analysis by S. Grimme et al. has shown that the four-membered heterocyclic
global minimum structure of 3a rapidly opened to populate open local minimum
structures of slightly higher energy content that have the C-P and C-B vectors either
anti-periplanarly oriented or arranged in a gauche conformation. According to this
calculation it is the reactive gauche type structure that undergoes the cooperative
H-H activation reaction to yield the hydridoborate/phosphonium product
[118-125]. This reaction has enabled us to develop protocols for metal-free FLP
catalyzed hydrogenation reactions.

What is remarkable about FLP chemistry is that many such pairs of Lewis acids
and Lewis bases, that have been prevented from neutralizing adduct formation by
steric bulk or electronically, exhibit reactions where they act jointly with added
substrates. A number of these reactions (e.g., hydrogen activation) are thermody-
namically cooperative, some showing great kinetic preference by favoring con-
certed pathways (e.g., CO, addition and potentially FLP addition to some alkenes
and to nitric oxide). This behavior, especially prone for the intramolecular FLPs,
indicates that the typical FLP situation, characterized by the simultaneous presence
of reactive free Lewis base and Lewis acid components in solution, bears the
potential to find novel reactions in a rather simple way. From the exciting results
FLP chemistry has furnished in the early stages of its development we are hopeful
that this specific situation of having active non-quenched Lewis acids and bases co-
existent in solution will result in discovering more such new reaction modes. We
feel that intramolecular FLPs may play an important role in this forthcoming
development.
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Frustrated Lewis Pair Mediated Hydrogenations
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Abstract The development and use of frustrated Lewis pairs (FLPs) as both
stoichiometric and catalytic reductants for the hydrogenation of a variety of organic
substrate is described.
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Abbreviations

DABCO 1,4-Diazabicyclo[2.2.2]octane

dipp 2,6-Diisopropylphenyl = C¢H;iPr,
Me Methyl = CH;

Mes Mesityl = 2.,4,6-trimethylphenyl
i-Pr Iso-propyl

Ph Phenyl = C¢Hjs

Et Ethyl = C2H5

t-Bu tert-butyl = C(CHs3)3

Pr Propyl = C;H,

Cp Cyclopentadienyl = (CsHs)-

Cy Cyclohexyl = C¢Hy;

TIBAL Triisobutylaluminum = Al(CH(CH3),);

1 Introduction

Hydrogen activation and consequently catalytic hydrogenation of unsaturated
organic substrates had been a domain of d- (and sometimes f-) block metal
chemistry. Typically, catalytic hydrogenation of alkenes and alkynes or other
more polar organic m-substrates is carried out heterogeneously using active noble
metal surfaces often applied on inert supporting materials (such as Pd on charcoal)
[1]. Alternatively, well defined molecular metal complexes, mostly but not exclu-
sively fro