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Foreword

Our world has entered the “Big Data” era, in which new data are produced with

unprecedented speed and in large quantities. The new knowledge obtained through

digital analysis and the novel methods of data mining are greatly benefitting the

process of human decision-making. The arrival of this new era is gradually chang-

ing people’s life, work and thinking. In the field of science, “Big Data” has led to

the emergence of “Data Science” which will affect, to some extent, all fields of

science, by performing scientific research by using digital data and by using
scientific methods to study digital data.

Earth Science and geological work are data-intensive. It is no exaggeration to

say that different kinds of geological data have to be obtained and aggregated by

different means, if we want to solve geological problems and use the results. No

geological problem can be solved correctly and effectively without the in-depth

study of a variety of geological inputs. Geological data are characterized by the four

“deeps”: they are deep in the Earth, deep under the sea, deep in outer space and deep

in time. Consequently, it is not easy to obtain useful geological data in practice, and

data collection can be expensive. Much attention has to be paid to costs and

benefits.

Earth Scientists should always do their best to define “populations” and ensure

that truly representative samples are collected from these target populations.

Because they differ from place to place, geological samples can never fully

comprise the entire population of study; there is no “overall data completeness”

or “comprehensive data” in geological science and practice. Because of this, other

methods of approach have to be developed in order to make random sampling

results fit the target populations as closely as possible, so that information loss

because of restricted sampling access is minimized.

Ultimately, the purpose of Earth Science is to promote the progress and devel-

opment of human society: it explores the course, procedures, and products of the

Earth’s evolution, in order to make use of the advantages of and guard against the

disadvantages that the Earth’s evolution brings to us. Geological data have signif-

icant characteristics reflecting time of origin, space and genesis. They can manifest

different outcomes of genetic processes depending on space and time conditions.
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Therefore, when faced with geological data, one should not only know the “what?”

but also the “why?” and “how?” about what the data truly mean and how they

should be used. One should not only establish “correlations” but also “causality”

and “spatiotemporal relations”. In this, geology differs from some other areas in the

Big Data era where the focus is on the “what?” and correlations without the “why?”

and causality.

All of the preceding considerations aim to illustrate the complexity and partic-

ularities of geological data as well as their usefulness and importance. Fully

comprehensive geological data collection, their effective treatment, rational anal-

ysis and translation into “digital” knowledge, all depend on guidance provided by

powerful theory and applications of efficient methods. Mathematical geosciences

precisely provide the powerful tools needed to realize these aims. In the early days,

monographs in mathematical geoscience were published under the name of “sta-

tistical analysis of geological data” or by using similar titles. However, in the

information age and Big Data era, we prefer the word “geomathematical” for

increased emphasis and clarification.

The book in front of us is a new masterpiece by Canadian scholar F. Agterberg:

Geomathematics: Theoretical Foundations, Applications and Future Develop-
ments. It follows Geomathematics: Mathematical Background and Geo-science
Applications, another masterpiece of his published in 1974. There are 12 chapters

in this new book and it contains a large number of case-history studies to illustrate

the application of mathematical methods in researching basic geological problems

in stratigraphy, tectonics, igneous petrology and geochronology, in order to solve

practical problems such as the description and characterization of various types of

ore deposits and the prediction and evaluation of mineral resources.

Honoring the complexity and characteristic features of geological data, this book

illustrates the application of geomathematical methods in detail. Although it also

discusses the processing of traditionally structured data, this book focusses more on

the processing of unstructured data such as that arise in the analysis and processing

of various geological map and image data. Besides introduction of theory and

methods of classical probability calculus and statistics, this book extensively covers

non-linear process theory as applied to the geosciences. The book fully describes

the latest developments and achievements of mathematical geosciences over the

past decade. In his last chapter, the author suggests a number of topics for further

development of the mathematical geosciences showing his deep interest in

nonlinear process simulation and applications in future geological research. The

solution of these new problems will undoubtedly raise the research level in geology

and open up new avenues of approach in the mathematical geosciences.

Professor Agterberg’s ideas, theories, methods and practical applications of

geomathematics have significant impact on the development of mathematical

geosciences worldwide. During his tenure as President of the International Associ-

ation for Mathematical Geosciences (IAMG), he paid much attention to and

promoted the development of mathematical geosciences in all countries. Espe-

cially, as an old friend of the Chinese people, F. Agterberg has offered valuable

concern and help in the development of the mathematical geosciences in China. It is
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my great honour to write the foreword for this book, and I would like to take this

opportunity to extend my warm congratulations to F. Agterberg for the publication

of this book. I also thank him sincerely for his personal contributions to the

development of the mathematical geosciences in China.

China University of Geosciences Pengda Zhao

Academician of the Chinese Academy of Sciences

8th March 2014
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Preface

This book is intended for mathematical geoscientists including graduate students,

professionals and teachers. It differs from my earlier book: Geomathematics:
Mathematical Background and Geoscience Applications (published by Elsevier in

1974) in that mathematical background has been restricted to the bare essentials.

Emphasis is on applications of geomathematical methods in case history studies.

The previous book was translated into the Russian and Chinese and, in total, over

10,000 copies were sold. Daniel Merriam had urged me repeatedly to write another

book with case history studies only. I finally got around to following up on his

suggestion. The underlying mathematics can be found in original publications, on

the internet, or in other geomathematical books of which there now exist many,

especially in the field of geostatistics. Readers of this book should have basic

knowledge of calculus and elementary statistics.

Some techniques described in this book have become more widely accepted than

others. These include probabilistic mineral resource estimation, trend surface

analysis, ranking and scaling of biostratigraphic events, construction of numerical

timescales, Weights-of-Evidence modelling and the logistic model. Other topics

treated in this book are consideration of edge effects in 2-D map studies, time series

analysis of sedimentary data related to ice sheet retreat, Alpine tectonic reactivation

along pre-existing Hercynian schistosity planes in the basement of the Italian

Dolomites, use of the grouped jackknife method for bias reduction, downward

mineral potential extrapolation, and use of permanent, volume-independent, fre-

quency distributions. During the past 20 years, primarily in collaboration with

Qiuming Cheng, his colleagues and students at the China University of Geosciences

in Wuhan and Beijing and at York University, Toronto, I have worked on applica-

tions of multifractals to study the spatial distribution of metals in rocks and

orebodies. This topic also will be discussed in the last three chapters. The aim of

this book is to present the preceding variety of topics within a coherent framework.

Originally, I studied geology and geophysics at Utrecht University in the

Netherlands. This education provided me with a good mathematical and geoscience

background. However, in those days there were no digital computers; neither was

mathematical statistics taught specifically for geoscience applications. As a new
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graduate student in 1957, I happened to read an introductory textbook on probabil-

ity and statistics by Hans Freudenthal, professor in the mathematics department of

Utrecht University. His outline of probability calculus and statistical inference

fascinated me, so later that year I began to apply statistics, initially on attitudes of

schistosity planes and minor fold axes in Paleozoic rocks during my first 3 months

fieldwork in the basement of the Italian Dolomites. These attitudes differ randomly

from outcrop to outcrop, but regional patterns could be established by averaging.

In 1961, I became a postdoctorate fellow at the University of Wisconsin in

Madison where my main assignment was to statistically analyze paleocurrent

measurements from Atokan and Desmoinesian rocks in the Ouachita Mountains

of Oklahoma. My final report was sent out for review to William Krumbein who

provided encouragement, recommended publication and later invited me to visit

him at Northwestern University. This was the time that chemical analysis of rock

samples was becoming more widespread and statistical analysis became more

needed than before. Also, digital computers were becoming available for numerical

analysis. Altogether, there was an exponential increase in geoscientific research.

The great period of quantification in the earth sciences had commenced. Because of

my statistical interests, I became “petrological statistician” in my first job at the

Ministry of Natural Resources Canada, Geological Survey of Canada (NRCan-

GSC) in Ottawa in 1962.

I was asked to create a Geomathematics Section in 1971. Its original staff

included Andrea Fabbri, Chang-Jo Chung and Rao Divi. Later I have enjoyed

much fruitful collaboration with GSC colleagues, especially with Graeme

Bonham-Carter and Felix Gradstein. I have always maintained close links with

universities. In 1968, I commenced teaching a course on statistics in geology at the

University of Ottawa over a 25-year period. As Adjunct Professor, I have super-

vised graduate students during the 1980s and 1990s including Andrea Fabbri, Eric

Grunsky, Mark D’Iorio, Danny Wright and Qiuming Cheng. Additionally, I have

lectured, often jointly with colleagues, in more than 50 short courses worldwide. I

am grateful for the many friendships formed and the invaluable help received

during the past 55 years. In 2008 I felt honoured by the publication of the Springer

Festschrift entitled Progress in Geomathematics edited by Graeme Bonham-Carter

and Qiuming Cheng with 30 papers written by 58 colleagues and friends.

I have had the good fortune to personally know and work with most of the early

mathematical geologists who were the pioneers in our field including William

Krumbein, John Griffiths, Georges Matheron, Andrew Vistelius, Walther

Schwarzacher, Daniel Merriam, Hans de Wijs, Váslav Nĕmec, Timothy Whitten,

Jean Serra, Felix Chayes and Zhao Pengda. Three times I made the pilgrimage to

Fontainebleau, cradle of geostatistics. At the same time I was profoundly influenced

by prominent mathematical statisticians including John Tukey who on three occa-

sions went to the length of publishing helpful further inputs on my statistical

projects in Ottawa. Special mention also should go to Geoffrey Watson, who

became a good friend in 1968 and who stimulated me to improve my mathematical

skills during the 1970s.

I had the privilege of knowing Danie Krige as a friend and esteemed colleague

for more than 50 years. As a graduate student at the University of Utrecht I had read
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Krige’s MSc thesis on microfilm in the library preparing for an economic geology

seminar on the skew frequency distribution of mining assays. Danie wrote me a

letter with comments on the resulting paper. He visited me in Ottawa on his way to

the 3rd APCOM meeting held at Stanford University in 1963. APCOM is the

acronym of Applications of Computers and Operations Research in the Mineral
Industries. Danie persuaded NRCan-GSC management that I should attend the 4th

APCOM hosted by the Colorado School of Mines in 1964. Originally, APCOM

meetings provided an important forum for mathematical geologists. Many of us

attended several APCOMs in the early days.

John Griffiths invited me to give two papers (instead of one) at the APCOM he

was organizing at Penn State University in 1966. Later, like Dan Merriam, he

systematically read through every chapter of my earlier geomathematics book

before it went to the printer. Richard Reyment invited me to serve on the founding

committee of the International Association for Mathematical Geology (IAMG).

After the inaugural IAMG meeting in Prague a year later, Geof Watson, Andrew

Vistelius, Jean Serra and I went to Amsterdam to participate in a meeting of the

International Statistical Institute which, with the International Union of Geological

Sciences, continues to be one of the parents of the IAMG now called International

Association for Mathematical Geosciences.

In 1976 Dan Merriam asked me to become Leader of the International Geological

Correlation Program’s Quantitative Stratigraphy Project. Felix Gradstein and I had

become interested in quantitative stratigraphy and later in the numerical geological

timescale. We organized 1-week short courses in eight different countries under the

auspices of IGCP and IUGS. This resulted in fruitful collaborations with the other

lecturers includingWalther Schwarzacher, Ian Lerche, JimBrower and Jan vanHinte.

During preparation of the script for this book, I have received help from NRCan-

GSC management; especially Cathryn Bjerkelund was most encouraging. Several

diagrams were newly drafted by Kim Nguyen. Graeme Bonham-Carter and Eric

Grunsky are thanked for being my critical readers of the script. I am grateful for

support from my colleagues Eric de Kemp and Ernst Schetselaar in the Geoscience

Integration and Analysis Section in which I am an Emeritus Scientist. I am most

grateful to my wife Codien, who always has supported my scientific endeavours,

which were kept a high priority in our household, often at the expense of other

activities. Thanks are due to our four sons, their spouses and the seven

grandchildren for their tolerance and support. Very special mention goes to son

Marko who has provided invaluable help in keeping our computer lab at home

going for many years and in the painstaking preparation of colour diagrams for this

book. Petra van Steenbergen of Springer SMM NL has been most encouraging and

provided valuable guidance during the preparation of the script. Hermine Vloemans

and Laura van Zon at the Springer Office in Dordrecht have been helpful, and so

have S. Madhuriba and the staff of the Springer Production Department. Thanks are

also due to copyright owners who graciously allowed me to reproduce figures and

material from tables that had been published before.

Ottawa, Canada Frits Agterberg
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Chapter 1

Complexity of the Geological Framework

and Use of Mathematics

Abstract The geosciences continually benefit from the use of mathematics.

Probability calculus and statistical inference have contributed significantly to the

solution of many geological problems. Statistical considerations form part of

almost every application of mathematics in the geosciences. In the Earth sciences,

the object of study usually is an aggregate of many smaller objects, which can be

studied individually, but often only the properties of the aggregate are of interest.

Geomathematics, in its broadest sense, includes all applications of mathematics to

solve problems in studies of the Earth’s crust.

An important objective of geology is to construct three-dimensional maps of the

upper part of the Earth’s crust with hypothetical delineation of various rock units

including ore and hydrocarbon deposits. Earth imaging and three-dimensional map

construction rely heavily on geophysical methods and drilling but use of geological

concepts is essential in this endeavor requiring a good understanding of the

underlying physical and chemical processes. This involves detailed knowledge of

the ages of rock units and processes with use of the fossil record. Classical statistics

is important because it helps to quantify the large uncertainties geoscientists

normally have to cope with. Quantitative geometry and image analysis also provide

essential tools for 3-D map making. In assessing quality of geometrical reconstruc-

tions based on limited data, it should be kept in mind that goodness of fit of models

with respect to the limited information that is available is not the only criterion to be

used; predictive potency is more important and, frequently, this aspect can only be

checked by application of a model developed for one area in other areas that are

geographically distinct. This chapter deals with the nature of facts and concepts in

the geosciences and how these can be quantified. Later the emphasis is shifted to the

use of geometry in 2-D and 3-D for map making and analysis. Various geometrical

operations on maps are possible only because of the widespread availability of

Geographic Information Systems (GIS’s) and newly developed 3-D geoscience

software.

F. Agterberg, Geomathematics: Theoretical Foundations, Applications
and Future Developments, Quantitative Geology and Geostatistics 18,

DOI 10.1007/978-3-319-06874-9_1, © Springer International Publishing Switzerland 2014
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1.1 Use of Mathematics in Geology

As pointed out previously in Agterberg (1974), geomathematics, in its broadest

sense, includes all applications of mathematics in the studies of the Earth’s crust. In

this book, the emphasis is on use of mathematics to solve 3-D prediction problems

with applications to actual examples in selected case history studies. Of course,

mathematics is widely used in geophysics, traditionally by formulating problems

in terms of differential equations for deterministic processes but during the past

20 years also by means of non-linear process modeling. However, geologists also

need a variety of geomathematical techniques, especially in the following fields of

activity:

1. Data acquisition and processing. Systematic recording, ordering and compari-

son of data, and methods for graphical display of results.

2. Data analysis. Identification of trends, clusters and simple or complex correla-

tions for which geological explanations are needed.

3. Sampling. Design of statistical procedures for data acquisition.

4. Hypothesis testing. Verification of concepts or models of processes believed to

explain the origin and provenance of specific phenomena (includes computer

simulation models).

5. Quantitative prediction in applied geology. Provision of solutions to specific

problems such as estimating probabilities of occurrence of specific types of

mineral deposits, volcanic eruptions, earthquakes and landslides.

The advent of digital computers catalyzed a quantitative revolution in geology,

because it became possible to apply mathematical and statistical models to large

volumes of data (Merriam 1981, 2004). When mathematics is used in geology,

parameters must be defined in a manner sufficiently rigorous to permit nontrivial

derivations. The initial hurdle is to choose parameters that are substantially mean-

ingful. During model design it is important to keep in mind Chamberlin’s (1899)

warning: “The fascinating impressiveness of rigorous mathematical analysis, with

its atmosphere of precision and elegance, should not blind us to the defects of the

premises that condition the whole process. There is, perhaps, no beguilement more

insidious and dangerous than an elaborate and elegant mathematical process built

upon unfortified premises.”

The geosciences continually benefit from the use of mathematics. An important

objective of geology is to construct three-dimensional maps of the upper part of the

Earth’s crust with hypothetical delineation of various rock units including ore and

hydrocarbon deposits. Uncertainties in predictive geology are very large but need to

be quantified nevertheless. Use of geological concepts is essential in this endeavor
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involving a good understanding of the underlying physical and chemical processes

with detailed knowledge of the ages of rock units and processes. As discussed in

Agterberg (2013), geologists have had a long history of interaction with mathemat-

ical statisticians. These collaborations continue to be fruitful. During his long and

distinguished career, William Krumbein regularly consulted with John Tukey.

Krumbein also wrote one of the first geomathematical textbooks together with the

mathematical statistician Franklin Graybill (Krumbein and Graybill 1965). These

authors distinguished between three types of models in geology: (1) scale-models;

(2) conceptual models; and (3) mathematical models. Traditionally, geologists have

been concerned mainly with scale-models and conceptual models.

John Griffiths (1967), who was one of the other pioneers of geomathematics,

based much of his work on advanced statistical sampling techniques, especially as

they had been developed by Ronald Fisher. In the Soviet Union, Andrew Vistelius

(1967) worked closely with Andrey Kolmogorov, already when he was preparing

his PhD thesis in the 1940s. Felix Chayes (1956, 1971) developed modal analysis in

petrography and took to heart Karl Pearson’s admonishment regarding spurious

correlations that could result from closed-number systems. This later led John

Aitchison (1986) to develop compositional data analysis, which continues to be

an important research topic (Egozcue et al. 2003).

In turn, geoscientists have inspired statisticians to pursue new research direc-

tions. Georges Matheron (1962, 1965) introduced the idea of regionalized random

variables and this has helped to found the important field of spatial statistics

(Cressie 1991). Ronald Fisher (1953) became interested in statistics of directional

features when a geophysics student at Cambridge University asked him for help

in dealing with greatly dispersed paleomagnetic measurements. It led to the estab-

lishment of the cone of confidence for unit vectors. Geoffrey Watson (1966) was

instrumental in developing statistical significance tests for directional features,

which are similar to those that were in existence for ordinary data analysis. Geo-

scientists often work with very large data sets to be subjected to exploratory data

analysis with use of jackknife and bootstrap techniques for uncertainty estimation.

John Tukey (1962, 1970, 1977) pioneered these approaches and advised mathe-

matical geologists to use them. GIS (Bonham-Carter 1994) and its 3-D extensions,

for which credit is owed to engineers and computer scientists, are widely used

in geological map modeling and image analysis. Promising new developments

include projection pursuit (Friedman and Tukey 1974; Xiao and Chen 2012),

boosting (Freund and Shapire 1997), radial basis function theory (Buhmann

2003) and bi-dimensional empirical mode decomposition (Huang et al. 2010).

1.2 Geological Data, Concepts and Maps

The first geological map was published in 1815. This feat has been well

documented by Winchester (2001) in his book: The Map that Changed the
World – William Smith and the Birth of Modern Geology. According to the concept
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of stratigraphy, strata were deposited successively in the course of geological time

and they are often uniquely characterized by fossils such as ammonites that are

strikingly different from age to age. It is remarkable that this fact remained virtually

unknown until approximately 1,800. There are several other examples of geological

concepts that became only gradually accepted more widely, although they were

proposed much earlier in one form or another by individual scientists. The best-

known example is plate tectonics: Alfred Wegener (1966) had demonstrated the

concept of continental drift fairly convincingly as early as 1912 but this idea only

became acceptable in the early 1960s. One reason that this theory initially was

rejected by most geoscientists was lack of a plausible mechanism for the movement

of continents.

Along similar lines, Staub (1928) had argued that the principal force that

controlled mountain building in the Alps was crustal shortening between Africa

and Eurasia. However, other interpretations including the gravitational concept of

van Bemmelen (1960) continued to provide plausible explanations before the

theory of plate tectonics became well established. Figure 1.1 (from Agterberg

1961, Fig. 107) shows tectonic sketch maps of two areas in the eastern Alps. The

Strigno area in northern Italy shown at the top of Fig. 1.1 is 1600� smaller in area

than the region for the eastern Alps at the bottom. The tectonic structure of these

two regions is similar. Both contain overthrust sheets with older rocks including

crystalline basement overlying much younger rocks. It is now well known that

the main structure of the map at the bottom was created during the Oligocene

(33.9–23.0 Ma) when the African plate moved northward over the Eurasian plate.

On the other hand, the main structure of the relatively small Strigno area was

created much later during the late Miocene (Tortonian, 11.6–7.3 Ma) when the

Eurasian plate moved southward overriding the Adria microplate that originally

was part of the African plate. Incidentally, Fig. 1.1 also provides an example of the

concept of similarity of geological patterns at different scales. As another example

of self-similarity of geological patterns, Fig. 11.1 shows multifractal gold minera-

lization patterns that are strikingly similar in two areas that differ in size by a factor

of 400. Self-similarity or scale-independence will be discussed in later chapters in

the context of fractals and multifractals.

Another geological idea that was conceived early on, but initially rejected as a

figment of the imagination, is what later became known as the Milankovitch

theory. Croll (1875) had suggested that the Pleistocene ice ages were caused by

variations in the distance between the Earth and the Sun. Milankovitch com-

menced working on astronomical control of climate in 1913 (Schwarzacher

1993). His detailed calculations of orbital variations were published nearly

30 years later (Milankovitch 1941) showing quantitatively that amount of solar

radiation drastically changes our climate. This theory was immediately rejected

by climatologists because the changes in solar radiation due to orbital variations

are miniscule, and by geologists as well because, stratigraphically, their correla-

tion with ice ages apparently was not very good. However, in the mid-1950, new

methods helped to establish the Milankovitch theory beyond any doubt. Subse-

quently, it resulted in the establishment of two new disciplines: cyclostratigraphy
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Fig. 1.1 Tectonic sketch maps of Strigno area on in northern Italy and Eastern Alps (After

Agterberg 1961). Although area sizes differ by a factor of 1,600, the patterns showing overthrust

sheets are similar. Originally gravity sliding was assumed to be the major cause of these patterns.

However, after development of the theory of plate tectonics in the 1960s, it has become apparent

that plate collision was the primary driving force of Alpine orogeny. The Strigno overthrust sheets

are due to Late Miocene southward movement of the Eurasian plate over the Adria micro-plate,

and the eastern Alpine nappes were formed during the earlier (primarily Oligocene) northward

movement of the African plate across the Eurasian plate. For more discussion, see Chap. 8

(Source: Agterberg 1961, Fig. 107)

1.2 Geological Data, Concepts and Maps 5

http://dx.doi.org/10.1007/978-3-319-06874-9_8


and astrochronology (Hinnov and Hilgen 2012). The latest time scales of the

Neogene (23.0–2.59 Ma) and Paleogene (66.0–23.0 Ma) periods are entirely

based on astronomical calibrations and “floating” astrochronologies are available

for extended time intervals (multiple millions of years) extending through stages

in the geologic timescale belonging to the Triassic, Jurassic and Cretaceous

periods (Gradstein et al. 2012).

1.2.1 Map-Making

A field geologist is concerned with collecting numerous observations from those

places where rocks are exposed at the surface. Observation is often hampered by

poor exposure. In most areas, 90 % or more of the bedrock surface is covered

by unconsolidated overburden restricting observation to available exposures; for

example, along rivers (cf. Agterberg and Robinson 1972). The existence of these

exposures may be a function of the rock properties. In formerly glaciated areas, for

example, the only rock that can be seen may be hard knobs of pegmatite or granite,

whereas the softer rocks may never be exposed. Of course, drilling can help and

geophysical exploration techniques provide additional information, but bore-holes

are expensive and geophysics provides only partial, indirect information on rock

composition, facies, age and other properties of interest. It can be argued that to-day

most outcrops of bedrock in the world have been visited by competent geologists.

Geological maps at different scales are available for most countries. One of the

major accomplishments of stratigraphy is not only that the compositions but also

the ages of rocks nearly everywhere at the Earth’s surface now are fairly well

known. However, as Harrison (1963) has pointed out, although the outcrops in an

area remain more or less the same during the immediate past, the geological map

constructed from them can change significantly over time when new geological

concepts become available. A striking example is shown in Fig. 1.2. Over a 30-year

period, the outcrops in this study area repeatedly visited by geologists had remained

nearly unchanged. Discrepancies in the map patterns reflect changes in the state of

geological knowledge at different points in time.

Many geologists regard mapping as a creative art. From scattered bits of

evidence, one must piece together a picture at a reduced scale, which covers at

least most of the surface of bedrock in an area. Usually, this cannot be done without

a good understanding of the underlying geological processes that may have been

operative at different geological times. A large amount of interpretation is involved.

Many situations can only be evaluated by experts. Although most geologists agree

that it is desirable to make a rigorous distinction between facts and interpretation,

this is hardly possible in practice, partly because during compilation results for

larger regions must be represented at scales of 1: 25,000 or 1: 250,000, or less.

Numerous observable features cannot be represented adequately in these scale

models. Consequently, there is often significant discrepancy of opinions among
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geologists that can be bewildering to scientists in other disciplines and to others

including decision-makers in government and industry.

Van Bemmelen (1961) has pointed out that the shortcomings of classical

methods of geological observation constrain the quantification of geology. Much

is left to the ‘feeling’ and experience of the individual geologist. The results of this

work, presented in the form of maps, sections and narratives with hypothetical

reconstructions of the geological evolution of a region, do not have the same

exactitude as the records and accounts of geophysical and geochemical surveys

which are more readily computerized even though the results may be equally

accurate in an interpretive sense. Geophysical and geochemical variables are

determined by the characteristics of the bedrock geology which, in any given

area, is likely to be non-uniform because of the presence of different rock types,

Fig. 1.2 Two geological maps for the same area on the Canadian Shield (After Harrison 1963).

Between 1928 and 1958 there was development of conceptual ideas about the nature of metamor-

phic processes. This, in turn, resulted in geologists deriving different maps based on the same

observations
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often with abrupt changes at the contacts between them. The heterogeneous nature

of the geological framework will be reflected or masked in these other variables.

Geologists, geophysicists and geochemists produce different types of maps for

the same region. Geophysical measurements are mainly indirect. They include

gravity and seismic data, variations in the Earth’s magnetic field, and electrical

conductivity. They generally are averages of specific properties of rocks over large

volumes with intensities of penetration decreasing with distance and depth.

Remotely sensed data are very precise and can be subjected to a variety of filtering

methods. However, they are restricted to the Earth’s surface. Geochemists mainly

work with element concentration values determined from chips of rocks in situ, but
also from samples of water, mud, soil or organic material.

1.2.2 Geological Cross-Sections

The facts observed at the surface of the Earth must be correlated with one another; for

example, according to a stratigraphic column. Continually, trends must be established

and projected into the unknown. This is because rocks are 3-D media that can only be

observed in 2-D. The geologist can look at a rock formation but not inside it. Sound

geological concepts are a basic requirement for making 3-D projections.

During the past two centuries, after William Smith, geologists have acquired a

remarkably good capability of imagining 3-D configurations by conceptual

methods. This skill was not obtained easily. In Fig. 1.3, according to Nieuwenkamp

(1968), an example is shown of a typical geological extrapolation problem with

results strongly depending on initially erroneous theoretical considerations. In the

Kinnehulle area in Sweden, the tops of the hills consist of basaltic rocks; sedimen-

tary rocks are exposed on the slopes; granites and gneisses in the valleys. The

first two projections into depth for this area were made by a prominent geologist

(von Buch 1842). It can be assumed that today most geologists would quickly

arrive at the third 3-D reconstruction (Fig. 1.3c) by Westergård et al. (1943). At the

time of von Buch it was not yet common knowledge that basaltic flows can form

extensive flows within sedimentary sequences. The projections in Figs. 1.3a, b

reflect A.G. Werner’s pan-sedimentary theory of “Neptunism” according to

which all rocks on Earth were deposited in a primeval ocean. Nieuwenkamp

(1968) has demonstrated that this theory was related to philosophical concepts of

F.W.J. Schelling and G.W.F. Hegel. When Werner’s view was criticized by other

early geologists who assumed processes of change during geological time, Hegel

publicly supported Werner by comparing the structure of the Earth with that of a

house. One looks at the complete house only and it is trivial that the basement was

constructed first and the roof last. Initially, Werner’s conceptual model provided an

appropriate and temporarily adequate classification system, although von Buch,

who was a follower of Werner, rapidly ran into problems during his attempts to

apply Neptunism to explain occurrences of rock formations in different parts of

Europe. For the Kinnehulle area (Fig. 1.3) von Buch assumed that the primeval
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granite became active later changing sediments into gneisses, while the primeval

basalt became a source for hypothetical volcanoes.

1.2.3 Scientific Method in the Geosciences

According to van Bemmelen (1972, p. 8), the computerization and adoption of

mathematics in geoscience presents a wide-ranging and challenging field of future

developments but is fraught with organizational, educational and technical diffi-

culties. The usage of mathematics has progressed further in geophysics and geo-

chemistry than in geology because of differences in the nature of the data and other

sampling methods. The relative weights to be assigned to data collected from

geological observations at the surface of the Earth are often unknown. A fact can

be important and applicable at other places; frequently at great distances from the

original observation point, or it may be unique and unimportant (cf. Agterberg
1979a). Most geological facts are not unique but greatly influenced by other

observations and by deductions from specific concepts on geological processes.

Basic measurements, such as chemical analysis of a rock sample or determination

of the strike and dip of a structural plane, might represent local exceptions and their

importance can be evaluated only against a background of regional data. Satisfac-

tory statistical averaging may not be possible due to lack of exposure.

Fig. 1.3 Schematic sections originally compiled by Nieuwenkamp (1968) showing that a good

conceptional understanding of time-dependent geological processes is required for downward

extrapolation of geological features observed at the surface of the Earth. Sections a and b are

modified after von Buch (1842) illustrating his genetic interpretation that was based on combining

Abraham Werner’s theory of Neptunism with von Buch’s own firsthand knowledge of volcanoes

including Mount Etna in Sicily with a basaltic magma chamber. Section c is after Westergård

et al. (1943) (Source: Agterberg 1974, Fig. 1)
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Van Bemmelen (1961) pointed out that geologists can be distinguished as two

types: one type considers geology as a creative art; the other regards it as an exact

science. Some Earth scientists aim for classification of their objects of study

wishing to force the rigid disciplines of well-established schemes upon them

(Wright 1958); others are more receptive of new concepts and less rigorous in

schematizing the objects. Ostwald (1910) distinguished between “classicists” and

“romanticists”. Wegmann (1958) called Werner a classicist contrary to the roman-

ticist J. Hutton, who postulated “Plutonism” instead of “Neptunism”. Geology has

known an exceptionally large amount of controversy and polemics closely related

to the personalities and experiences of the opponents. For example, Neptunism

commenced in areas where sedimentary rocks were lying on top of granites and

gneisses, whereas Plutonism originated with Hutton in Scotland where tectonics

with granite intrusions is more apparent.

The question of whether geology should become more quantitative has been

considered continually in the past by geologists as well as other scientists. Fisher

(1954) suggested that geology with Lyell (1833) was evolving as a more quantita-

tive science, but opposition to this development quickly grew to the extent that

Lyell was forced to omit his elaborate tables and statistical arguments to divide the

Tertiary into stages from later editions of his Principles of Geology. Most geolo-

gists agree that Chamberlin’s (1897) scientific method of “multiple working

hypotheses” is ideal for geology. A multiple approach is needed because of the

great complexity of geological processes. The sheer diversity of observations

combined with irregularity of rock exposures entailed by this method make it

difficult to apply. However, it is to be preferred to the practice of synthesizing

from relatively few broadly relevant observations in order to develop a preferred

hypothesis. Griffiths (1962) has stressed the analogy between Chamberlin’s method

and Fisher’s (1960) description of statistical analysis. By using different statistical

models and formal inference, it is possible to test different hypotheses for solving

the same problem provided that the geological facts can be expressed adequately in

numerical form.

The basic principle of producing useful geoinformation from observations is to

capture original data in such a form that they become quantitative and can be used

for a variety of purposes including map-making and 3-D geomodeling. The step

from data recording to production of useful geoinformation has to keep up with the

continuous stream of technological innovations. The term “ontology” sometimes is

used for a domain model that provides a vocabulary about key geological concepts,

their interrelationships and the theoretical processes and principles that are relevant

within the geoscientific subdiscipline under which the basic data are collected.

The arrangement of observations into patterns of relationships is a mental

process of “induction”. It involves postulating hypotheses or theory that is in

agreement with the facts. Working hypotheses initially based on intuition gain in

functional validity if they lead to “deductions” that can be verified. Logical

deductions from a theory provide predictions for facts that have not yet been

observed. The validity of a hypothesis is tested on the basis of new facts that had

not been considered when the hypothesis was postulated. The result is a recurrent

10 1 Complexity of the Geological Framework and Use of Mathematics



cycle of inductions and deductions. Van Bemmelen (1961) referred to this approach

as the prognosis-diagnosis method of research.

The Logic of Scientific Discovery is the title of an influential book by Popper

(2002) of which the German Edition was published in 1934 and the first English

Edition in 1959. Popper (2002, p. 3) explains that a scientist, whether theorist or

experimenter, puts forward statements or systems of statements and tests them step

by step. In the field of the empirical sciences, which would include geology, the

scientist constructs hypotheses, or systems of theories, and tests them against

experience by observation and experiment. Popper opposed the widely held view

(e.g., by F.W.J. Schelling and G.W.F. Hegel; and also by I. Kant and F. Bacon) that

the empirical sciences can be characterized by the fact that they use inductive

methods only. Instead of this Popper advanced the theory of “the deductive method

of testing” in that a hypothesis can only be empirically tested and only after it has

been postulated. Demarcation by falsification is an essential element in Popper’s

approach. However, we have to keep in mind the role played by probability theory

in which falsification does not necessarily result in rejection of a test hypothesis.

Instead of this, the end conclusion may be a relative statement such as “there is

more than a 95 % probability that the hypothesis is true”. Because of the great

uncertainties and possibility of multiple explanations, geoscientists should proceed

in accordance with the axioms of the theory of probability as they were advanced,

for example, by Kolmogorov (1931) as will be discussed in more detail in the next

chapter. It is a remarkable feature of geology that a theory that turns out to be true as

proven by irrefutable evidence often was already assumed to be true much earlier

by some geologists when conclusive evidence did not yet exist. Examples of this

form of anticipation previously discussed in this chapter were the origin of ice ages

(Kroll), plate tectonics (Staub), and continental drift (Wegener).

1.2.4 Quality of Predictions

The question of how good is your prediction is continuously asked in the

geosciences, particularly in economic geology. For example, in the oil industry it

is known from experience that most holes, especially the wildcats, will remain dry.

Nevertheless, the geologist is asked to provide an opinion as to whether it is

worthwhile drilling a hole at a particular site. This problem has been discussed in

detail by Grayson (1960) and de Finetti (1972). The geologist does not have any say

in the final decision of whether or not to drill. This is the responsibility of the

decision-maker who will reach a conclusion after considering all different pieces of

information available of which the geologist’s report is just one piece. The geolo-

gist cannot state categorically that oil is present or absent. Neither can she restrict

herself to a mere listing of reliable facts. A conclusion about the probable outcome

of the drilling is precisely what the geologist is called upon to provide. Grayson

(1960) found that most geologic reports contain probabilistic answers that are

disguised in vague adjectives (“fairly good prospect”, “favorable”, “permissive”,
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“it’s difficult to say”, etc.). He has proposed methods for translating a geologist’s

opinion into subjective probabilities. Grayson’s (1960) book deals primarily with

drilling decisions by oil and gas operators. A sign hanging in the office of one of the

operators interviewed by him states: “Holes that are going to be dry shouldn’t be

drilled”, although some years previously this particular operator had drilled 30 con-

secutive dry holes. De Finetti (1972) used this paradox to urge the geologist to

express his predictions in a probabilistic manner rather than translating them into

the inadequate logic of absolute certainty.

The human mind allows the formulation of hypotheses which are flexible to the

extent that they may immediately incorporate all new facts before the hypotheses

could be properly tested. On the other hand, the advantage of using the logic of

mathematics is that it is indisputable and, when random variables are used, it is

possible to check the deductions against reality. P.A.M. Dirac (in Marlow 1978) has

advocated the use of mathematics in physics as follows: “One should keep the need

for a sound mathematical basis dominating one’s search for a new theory. Any

physical or philosophical ideas that one has must be adjusted to fit the mathematics.

Not the other way around. Too many physicists are inclined to start from

preconceived physical ideas and then try to develop them and find a mathematical

scheme that incorporates them. Such a line of attack is unlikely to lead to success”.

This is good advice for all scientists.

1.3 Use of Curves

1.3.1 Trend-Lines

It can be argued that all geological processes are deterministic. However, it is

usually not possible to use purely deterministic expressions in the mathematical

equations used for representation because of uncertainties or unknown causes. In

many geological situations, the spatial variability of measurable features can be

divided into a regional systematic component (loosely called “trend” or “drift”) and

more local, unpredictable fluctuations (residuals from the trend). The trends may

have been generated by broad-scale deterministic processes. For example, average

grain size of sand particles increases towards a beach. However, larger and smaller

particles may coexist everywhere in the sampled area in different proportions.

Systematic variations called “trends” are, in part determined by the density of

sampling points. If many more measurements are performed locally, a residual

from a more regional trend or drift can become the trend for a more local survey

area. It is appropriate to use deterministic functions for “trends” when it is kept in

mind that they do not necessarily describe the result of deterministic processes. We

have a choice of using empirical functions such as polynomials or functions

corresponding to curves or surfaces that are theoretical predictions for geological

phenomena. For example, Vistelius and Janovskaya (1967) pointed out that the
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partial differential equations for diffusion processes that caused chemical element

concentration variations in some rocks, usually have exponential functions as a

solution. For trend fitting they suggested the use of exponential functions with

polynomials placed in the exponent. In that situation, one may not know the exact

shape of the trends to be fitted to the data but by using a specific class of functions a

satisfactory fit is obtained more readily.

Any continuous function for a geometrical shape can be expanded into an infinite

series (e.g., polynomial or Fourier series) and a restricted number of terms of the

infinite series can provide an adequate approximation for all possible geometrical

configurations. Theoretically, even shapes with discontinuities (e.g., breaks related to

faults or contacts) can be represented by truncated series. In practice, however, this

approachmay not be feasible because of the large number of terms and data points that

would be required. In general, the fitting of trends should be restricted to geological

entities with features that are subject to gradational change without sudden breaks.

Suppose that a curve is fitted to n data points in a diagram. If the curve-fitting is

performed by using the method of least squares, every data point xi (i¼ 1, 2, . . ., n)
deviates from the best-fitting trend-line ti by a residual ri (¼ xi�ti) and the sum of

squared residuals Σ ri
2 is not necessarily as small as possible. This qualification is

illustrated by means of the following example (Fig. 1.4). The original data represent

concentration of the element strontium (in parts per million) determined for equally

spaced rock samples along a drillhole through a dunite-serpentinite layer of theMuskox

ultramafic intrusion, District ofMackenzie (original data fromFindlay and Smith 1965).

The logarithm of Sr was plotted against distance and polynomials of degrees

1 and 20 were fitted to the logarithmically transformed data by the method of least

squares. The “trend” is rather well approximated by a straight line in Fig. 1.4.

The logarithm of Sr content decreases gradationally in the upward direction of the

Fig. 1.4 Plot of 38 strontium determinations along a drill-hole through dunite layer of Muskox

Layered Intrusion, Northwest Territories, Canada. Two continuous polynomial curves were fitted.

Although the polynomial of degree 20 has lesser residual variance, it is not to be preferred because

of autocorrelation of the residuals (Source: Agterberg 1974, Fig. 3)
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borehole. This implies that untransformed Sr content decreases exponentially in

this direction. The data points deviate from the trend line. Their residuals are

irregular but not randomly distributed along the best-fitting straight line. In order

to improve the closeness of fit, a polynomial of a higher degree could be fitted. It

would be shown by statistical inference (cf. variance analysis, Chap. 2) that the fit of
the polynomial of degree 20 is “significantly” better. It is based on solving an

equation with 21 unknown coefficients whereas only two coefficients were needed

to obtain the straight line. It is unlikely that the fluctuations in the second curve are

meaningful. Polynomials of degree 10 or 30 show different patterns and, for lack of

data, one could not say which fit is best.

1.3.2 Elementary Differential Calculus

The purpose of this section and the next one is to show by means of simple examples

how elementary methods of calculus using differentiation and integration can be

applied for the analysis of various contour maps and cross-sections. Of course, these

methods have been implemented in various special-purpose software systems but a

good understanding of what is being done in software applications remains important.

Geophysicists have been interested in studying the surface of the Earth by using

hypsometric curves. A hypsometric curve for an area is a plot of the percentage of

area above a certain height level against height. The diagram on the right side

of Fig. 1.5 is the hypsometric curve for continents. The first derivative of the

hypsometric curve for the Earth’s surface is shown on the left side of Fig. 1.5.

These curves, which were fitted by hand, to observed heights, and their absolute or

relative frequencies can be used to determine quantities such as average height by

Fig. 1.5 First derivative of hypsometric curve for Earth’s surface (After Scheidegger 1963); and

hypsometric curve for continents only (Source: Agterberg 1974, Fig. 11)
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elementary methods of differentiation and integration. For example, average height

satisfies the equation Ave (h)¼ R
h · dA0 where A0 represents relative area that can

be expressed as a percentage. Average height on continents can be estimated

rapidly as follows: Firstly the area under the curve on the left of Fig. 1.5 is

determined graphically as 4.26 times as large as the unit of area (e.g., by counting

squares on graph paper). This value must be divided by 5 to account for the vertical

exaggeration. The result is 0.852 km for average height on continents, which, after

rounding off, duplicates the value of 850 m reported by Heiskanen and Vening

Meinesz (1958). This approximate equality may be fortuitous because the error of

the value estimated graphically from Fig. 1.5 probably exceeds 2 m.

A problem analogous to the one solved in the previous example consists of

calculating the average value over a given area for a variable of which the contour

map is given. For example, in the contour map of Fig. 7.28, which will be discussed

later, the contours are for percent copper. A problem that can be solved in that

application is to determine the average percentage copper or copper bounded by the

0.5 contour on the map. By constructing a hypsometric curve with height replaced

by percentage copper, it was estimated that the average grade for the larger area is

approximately 0.99 % copper.

1.3.3 Graphical Curve-Fitting

The following example illustrates graphical integration in an application to an

isoclinal fold in cross-Section. A number of attitudes of strata suggesting existence

of an anticline were observed along a line across the topographic surface The

observation points are labelled 0, 1, 2, . . ., n (n¼ 4 in Fig. 1.6). The objective is

to reconstruct a complete pattern for this fold in vertical cross-section.

It will be assumed that the isoclines (lines of equal dip) in the profile are parallel

to a line (Y-axis) through the origin (O) that is set at the first observation point

(Fig. 1.6). The projections of points 0. 1, 2, . . ., n on the corresponding X-axis
through O are called xi (i¼ 1, 2, . . ., n). Let αi be the angles of dip with respect to

the X-axis. Then the curve for a function f(x)¼ tan α can be constructed by using the

(n+ 1) known values of αi. The points Pi in Fig. 1.6 have ordinates equal to tan αi.
The function f(x) plots as a smooth curve passing through the points Pi. Suppose

integration of f(x) gives the function y¼ R
f(x) dx¼F(x) +C where C is an arbitrary

constant. In Fig. 1.6 use is made of the method of graphical integration. The curve

f(x) is replaced by a staircase function f*(x) with the property:

Z xiþ1

xi

f xð Þdx ¼
Z xiþ1

xi

f � xð Þdx

where xi and xi+1 are the abscissae of two consecutive points Pi and Pi+1 (i¼ 1,

2, . . ., n-1). The function f*(x) is readily integrated yielding F*(x) +C. The constant
C is specified by letting F*(x) pass through O. Note that F*(x) consists of a succession
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of straight line segments between points Qi and Qi+1 and with dips equal to αi. F(x) is
a smooth curve that coincides with F*(x) at points with abscissae xi.

1.4 Use of Surfaces

As recently pointed out by Hillier et al. (2013), interpreting and modeling geom-

etries of complex geological structures from strike/dip measurements using

manually-drafted structural form lines is labor intensive, irreproducible and

Fig. 1.6 Reconstruction of isoclinal fold by graphical integration according to Trooster (1950).

(a). Five dip angles along topographic surface are given: (XY)-coordinate system is constructed

with Y parallel to isoclines. (b). Curve F(x) has the known dips at intersection points with isoclines
through observation points (Source: Agterberg 1974, Fig. 10)
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inherently limited to two dimensions. These authors have presented the structural

field interpolation (SFI) algorithm to overcome these limitations by constructing

3-D structural form lines from the vector components of strike/dip measurements. It

is beyond the scope of this book to explain SFI in detail but an example of its

application will be given in the next section to illustrate how geological structures

can be modeled in 3-D. A few introductory remarks on representation of lines and

planes in 3-D space are as follows.

Any point P¼ (x, y, z) in a 3-D Cartesian coordinate system with origin O

determines a vector OP. Suppose that α, β, and γ are the angles of this vector

with X-, Y-, and Z- axes. The cosines of these angles λ ¼ cos α, μ ¼ cos β and

ν ¼ cos γ are the direction cosines of OP. They satisfy the relation λ2 + μ2 + ν2¼ 1.

The equation λx+ μy+ νz¼ |OP| represents a plane in 3-D. The line OP is the

normal of this plane. OP is a unit vector if its length |OP|¼ 1. In structural geology,

a plane is characterized by its strike and dip. If the north direction points in the

negative X-direction, the strike δ of the plane satisfies tan δ ¼ μ/λ and its dip angle

is equal to γ.
Statistics of directional features will be discussed in more detail in Chap. 8.

However, for a better understanding of the SFI example in the next section, it is

pointed out here that one method of estimating the mean direction of n unit vectors

in 3-D is to maximize Σ cos2 θi (i¼ 1, 2, . . ., n) where θi represents the angle

between the i-th observed unit vector and the mean to be estimated. This method

was first applied by Scheidegger (1964) in connection with the analysis of fault-

plane solutions of earthquakes and by Loudon (1964) for orientation data in

structural geology. It can be shown that the resulting average unit vector has

direction cosines equal to those of the first (dominant) eigenvector of the following

matrix:

M ¼
Σλ2i Σλiμi Σλivi
Σμi Σμ2i Σμivi
Σviλi Σviμi Σv2i

2
4

3
5

A useful interpolation method in 2-D or 3-D is inverse distance weighting. It

means that the value of an attribute of a rock such as a chemical concentration value

or the strike and dip of a plane at an arbitrary point are estimated from the known

values in their surroundings by weighting every value according to the inverse of a

power of its distance to the arbitrary point. In SFI this method is called IDW

(inverse distance weighted) interpolation. Usually the weights are raised to a

power called IDW exponent before they are applied. This exponent is often set

equal to 2. The SFI algorithm can employ an anisotropic inverse distance weighting

scheme derived from eigen analysis of the poles to strike/dip measurements within

a neighborhood of user defined dimension and shape (ellipsoidal to spherical).

When the matrix M is used, all its nine elements are multiplied by the same weight

that is different for every strike and dip depending on the distance from the arbitrary

point and on direction of the connecting line if an anisotropic weighting scheme

is used.
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The SFI algorithm generates 3-D structural form lines using the anisotropic

inverse weighted (IDW) interpolation approach. These structural form lines follow

the orientation of planar structural elements, such as bedding and foliation. The

structural form lines are iteratively propagated from point to point. At each point

the vector field is interpolated from vector components derived from the structural

measurements while keeping the continuity of the structural form line intact.

Further information on the SFI algorithm can be found in Hillier et al. (2013).

1.4.1 Automated 3-Dimensional Map-Making: Central
Baffin Example

Hillier et al. (2013) have applied the SFI algorithm to a 15,000 km2 study area in the

Central Baffin Region, Nunavut, Canada that contains 1,774 structural measure-

ments taken at the surface from supracrustal rocks (Fig. 1.7). The region is marked

by near-cylindrical, tight to open East-west shallow fold plunges. A vector field

modeling bedding from the region was calculated using all these measurements

simultaneously (Fig. 1.8). Structural data and form lines representing the vector

field within a 1 km buffer zone were projected perpendicularly onto each section.

The resulting vector field demonstrates the capability of SFI to capture the regional

folding trends while at the same time detecting the local variability of the data. At

locations where the data are relatively dense and highly variable the SFI tool makes

it easier to carry out structural interpretation. Structural trends, fold patterns and

various scales of anisotropy are clearly visualized, and if needed more detailed

models could be calculated from local sub-sets of the data. Additionally, SFI can

visualize relationships with crustal features, in this region supporting the compat-

ibility of supracrustal fold patterns within turbiditic units in the West with patterns

of basement culminations in the East. Broad regional scale doubly plunging folds

are similar in both parts of the region, indicative of a dome and basin pattern,

reflected in culminations along section EE0; however, superimposed on this is the

higher frequency tighter folding as expected in layered lower grade supracrustals

that are structurally above these culminations.

1.4.2 Folds and Faults

As pointed out by Mallet (2004), interpolation of properties of rocks in the

subsurface is a recurrent problem in geology. In sedimentary geology, the geometry

of the layers is generally known with a precision which is superior to that of the rock

properties such as composition. The geometry of layers normally is affected by folding

as well as faulting that took place after the time of deposition, whereas the distribution

of the rock properties had largely been determined at the time of deposition.
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Fig. 1.7 Central Baffin region used for 3-D modeling example in Fig. 1.8. (a) Map of the Central

Baffin region contains 1,774 structural measurements (tablets) taken at surface from supracrustal

rocks (St-Onge et al. 2005). The region is approximately 150 km East-west by 100 km North-south

(Note scale for context of 3-D images). (b) Reference map. (c) Structural legend for supracrustal

bedding observations. (d) Stratigraphic legend accompanying map (a). (e) All poles for 1,774

supracrustal dip measurements were used in Structural Field Interpolation (Note shallow near

East-west rotation axis for these bedding poles). Yellow poles are upright, blue poles are

overturned (Source: Hillier et al. 2013, Fig. 8)
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As a strategy it is therefore wise to first model the geometry of the layers and then to

“simplify the geological equation” by removing the influence of that geometry. One

can go about this by defining, mathematically, a new space where all horizons are

horizontal planes and where faults, if any, have been eliminated. If the layers are

folded, one can use a curvilinear coordinate system (u, v, t) with the (u, v) axes
parallel to the layering and the t-axis orthogonal to the layers. In geomodeling, Mallet

(2002) introduced the “geological space” (G-space) with such a curvilinear coordinate

system. Examples in physical geologywhere choosing a curvilinear coordinate system

is appropriate include the following: (1) Equations of flow through porous media in

reservoir engineering become greatly simplified with a curvilinear coordinate system

(u, v, t) with (u, v) defining the iso-pressure surfaces and the t-axis aligned with the

streamlines; and (2) propagation of seismic front waves in the subsurface also is

simplified if one chooses a 3-D curvilinear coordinate system (u, v, t) where (u, v)
matches the seismic front with t corresponding to the ray paths (see, e.g.,Mallet 2002).

Fig. 1.8 3-D Structural Field Interpolation (SFI) modeling example from Hillier et al. (2013).

View of data set and SFI cross sections. Yellow and blue sides of tablets indicate stratigraphic tops
and bottoms. Semi-transparent red domes and yellow fringe surface represent previously

interpreted Archean basement granitic gneiss domes with unconformably overlying Paleopro-

terozoic Dewar Lakes Formation quartzites depicted in yellow around margins of dunes (de Kemp

and St-Onge 2007). (a) Perspective view of dip data (tablets), location of cross-sections, hydrog-

raphy and previously interpreted basement domes. (b) Perspective view of cross-sections with dip

measurements and SFI calculation results on all Sections. (c) Vertical sections shown on regional

map (Fig. 1.7) and 3-D views Figs. 1.8a, c, with data and STI models projected from 1 km normal

to section. Structural form lines of SH are in white. Apparent dip measurements depicted as

oriented lines, input parameters used for the calculation were: IDW exponent¼ 2, type of

neighborhood¼ ellipsoidal oriented north-south, number of nearest neighbors used¼ 25, formline

step length¼ 100 m, total formline length¼ 30 km (Source: Hillier et al. 2013, Fig. 9)
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As illustrated in Fig. 1.9a, the first generation of flow simulators used in reservoir

engineering is based on a decomposition of the subsurface into a set of adjoining

hexahedral cells whose edges nowhere cross the horizons and the faults. These cells

can be aligned to generate a stratigraphic grid whose edges induce a curvilinear

coordinate system (u, v, t) with t oriented in the vertical direction and (u, v) parallel
to the bedding (Mallet 2002). As a result, each point in the subsurface has an image

in the (u, v, t) parametric domain and images of the nodes of the stratigraphic grid in

this parametric space constitute a rectangular grid where bedding is horizontal and

not faulted as illustrated in Fig. 1.9b. The curvilinear coordinates account for the

shapes of the horizons which themselves controlled geological continuity. How-

ever, this original geomodeling approach had two drawbacks: (1) Distortions of

horizontal distances could not be avoided when faults are oblique relative to the

horizons; as shown in Fig. 1.9a: a pair of faults with V shape in the vertical direction

can generate significant distortions of horizontal cell sizes increasing from top to

bottom of a reservoir; and (2) the new generation of flow simulators uses unstruc-

tured grids based on decomposition of the subsurface into polyhedral cells that

cannot be used to compute curvilinear distances.

Mallet (2004) later developed a mathematical “geo-chronological” (GeoChron)

model in which the original G-space is replaced by a G-space with the property that

distortions and difficulties related to the curvilinear coordinate (u, v, t) system

downward from the bedding planes do not occur (Fig. 1.10). Mallet’s (2004)

GeoChron model in the G-space improves upon the earlier G-based approach by

eliminating its inherent drawbacks. In G-space the rectangular (Cartesian) coordi-

nate (x, y, z) system can be used allowing, for example, standard geostatistical

estimation of rock properties. In G-space the (x, y, z) system only applies in the

immediate vicinity of the folded and unfaulted horizons but in G -space any

curvature-related distortions do not exist. Mallet (2004) uses the expression

Fig. 1.9 Example of decomposition of a reservoir into a set of hexagonal adjacent 3-D cells adapted

to the specific needs of the flow simulator. The edges of these cells cross neither the horizons nor the

faults and are aligned to constitute a 3-D curvilinear coordinate system (u, v, t). There are distortions
of the lengths of horizontal edges between the top and bottom cells of the reservoir (a) Geological

space is transformed into (b) Parametric space (Source: Mallet 2004, Fig. 1)
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“Iso-Paleo-Geographic” (IPG) line for a t-line represented in G-space (Fig. 1.10).

The surface Ht in Fig. 1.10 was horizontal in G-space but has become curved in

G-space. The (u, v) coordinates have become curved u-lines and v-lines in G-space

that are tangent to the components xu and xv of the 3-D location vector x, respec-
tively. The xt component is tangent to the IPG-line also called L in Fig. 1.10.

Mallet (2002, 2004) and colleagues (see e.g., Caumon 2010) have developed

powerful methods for the analysis of sedimentary rocks that are both folded and

faulted. Most of these techniques have been incorporated in the Gocad software

package (http://www.gocad.org) that is used worldwide, especially by oil compa-

nies. Other methods for modeling sedimentary systems are discussed in Harff

et al. (1999).

1.5 Image Analysis

The theory of textural analysis which deals with the size, shape, orientation and

spatial distribution of objects was advanced significantly by Matheron (1975). Serra

(1976) implemented these methods on a texture analyzer with hexagonal logic for

the study patterns in the plane. Sagar (2013) has published a book on mathematical

morphology with many practical applications to systematically analyze the great

variety of features observed at the surface of the Earth. This includes use of digital

elevation models (DEMs) and digital bathymetric maps (DBMs). The study of

shapes and sizes of objects and their interrelationships has become paramount

in Geoinformation Science (GISci) that is a new flourishing field of scientific

endeavor (cf. Wu et al. 2005).

Fig. 1.10 Intrinsic constraints are controlled by the geometry of the horizons and IPG-lines in the

G-space (Note that the u-lines and v-lines are contained in Ht and are tangent to xu and xv) (Source:
Mallet 2004, Fig. 7)
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1.5.1 Geometrical Covariance, Intercept and Rose Diagram

Two basic concepts of image analysis illustrated in Fig. 1.11 are the intercept

Dα for direction α and the geometrical autocovariance (or covariance) Kα (x) for
direction α and displacement x. In practice, the intercept of an image which

consists of black and white picture points is measured by counting the number

of times a black picture point is adjacent to a white picture point in a given

direction. The geometrical covariance is obtained by shifting the pattern with

respect to itself and measuring the area of overlap after each displacement. The

area of any original or derived pattern is determined by counting the number of

picture points it contains. For zero displacement, the covariance simply measures

the area A which is independent of direction, or Kα (0)¼A. The change in area

which arises from an infinitely small displacement dx in direction α yield the

intercept because

Dα ¼ dKα xð Þ
dx
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Fig. 1.11 Three types of measurements performed during image analysis of two-dimensional

objects (Source: Agterberg 1980, Fig. 2)
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In practice, the intercept in direction α can be determined by subtracting from

A the covariance for a single picture point in direction α.
A practical example is as follows: Fig. 1.12a was taken from a study by Burnett

and Adams (1977) concerned with the Lloydminster Sparky Pool, Alberta. The

Sparky sand accumulations in this area are northwest-southeast trending bodies

with maximum thickness of 9–16 m. Most commonly the Sparky unit consists of an

upper and lower sand separated by a shale bed 1–3 m thick. The 30 feet (9.14 m)

contour shown in Fig. 1.12a does not include the thickness of this intermediate

shale bed. Comparison of the pattern to present-day features in the North Sea

and elsewhere suggests that the contours delineate tidal-current ridges formed

parallel to the tidal current. Oil production in the Lloydminster area of east-central

Alberta and adjacent Saskatchewan is from sands in the Mannville Group of Early

Cretaceous (Albian) age. The middle Mannville Sparky sandstone is the main oil

producing horizon. Originally, high viscosity coupled with fine-grained unconsol-

idated nature of the sand kept primary production relatively low.

The black and white pattern of Fig. 1.12b was extracted from Fig. 1.12a and used

as input for the Quantimet 720 textural analyzer in order to determine the intercept,

a smoothed version of which is shown in Fig. 1.13a. In Agterberg (1979b) an

algorithm is presented to estimate the frequency values of rose diagrams for

T53

LLOYDMINSTER AREA

a

b

30 foot contours on
Sparky net sand ………T52

T51

T50

T49

T48

T47

T46
57.1 km57.1 km

6 mi

R. 6 R. 5 R. 4 R. 3 R. 2 R. 1

Fig. 1.12 (a). Contour map of Sparky sandstone thickness after Burnett and Adams (1977). (b).

Pattern used as input for Quantimet 720 (After Agterberg 1980, Fig. 3)
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boundaries of map features. The input for this FORTRAN program consists of

intercept measurements which are smoothed for any direction α by replacing them

by values on successive parabolas each fitted by least squares to all intercepts

contained in the sector α + β where β is a search angle set equal to 30� to derive

Fig. 1.13a. From each smoothed value Dα and the corresponding second derivative

of Dα with respect to α (D
0 0
α) which is also obtained from the fitted parabola, it is

possible to compute a frequency value (ΔSα) of the rose diagram by using A-M.

Legendre’s formula ΔSα¼ (Dα+D
0 0
α) ·Δα (cf. Agterberg 1979b) where Δα is a

small angle set equal to 2� for the example shown in Fig. 1.13b.

A result similar to Fig. 1.13b could have been obtained by the more labori-

ous method of approximating the contours by many very short straight-line

segments and representing these straight-line segments in a rose diagram using

the method commonly applied for the treatment of vectorial data and

lineaments.
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Fig. 1.13 Smoothed intercept and corresponding rose diagram for Fig. 1.12b (Source: Agterberg

1980, Fig. 5)
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1.5.2 Minkowski Operations: Bathurst Acidic
Volcanics Example

In mathematical morphology (Serra 1976; Watson 1975; Sagar 2013) various other

operations can be performed on black and white patterns, in addition to those

described in the previous section. An example which involves pattern erosions and

dilatations is as follows: The geology of the Bathurst area in NewBrunswick has been

described by Skinner (1974). This area contains volcanogenic massive sulphide

deposits that are related genetically to the occurrence of acidic volcanics of the

Tetagouche Group of Middle-Late Ordovician age. These acidic volcanics were

coded from 2-mi geological maps (scale approximately 1:125,000) for an experi-

mental data base described in Fabbri et al. (1975). This pattern was also quantified on

a Flying Spot Scanner at the National Research Council of Canada in Ottawa as a set

of 18,843 black pixels on a square grid with in total 324� 320 binary (black or white)

picture points spaced 259 m apart in the north-south and east-west directions

(Agterberg and Fabbri 1978). The resulting binary image is shown in Fig. 1.14d.

According to Skinner (1974), the stratigraphy and structure of the Tetagouche

Group had not been determined and, originally, mapping was based on lithological

units without stratigraphic significance. These units were characterized by

Fig. 1.14 Erosions and dilatations of pattern of acidic volcanics in Bathurst area, New Brunswick.

Original pattern A is shown in Fig. 1.14d. Writing B for the operator set of eight-neighbor square

logic, these patterns are: (a) A Θ B; (b) A Θ 2B; (c) A Θ 3B; (d) A; (e) A
L

B; (f) A
L

2B.
Dimensions of frame are 84 km � 84 km. North direction points upward (Source: Agterberg and

Fabbri 1978, Fig. 1)

26 1 Complexity of the Geological Framework and Use of Mathematics



(1) sedimentary rocks, (2) metabasalt, and (3) rhyolitic rock. Only the rhyolitic rock

is shown in Fig. 1.14d. It comprises rhyolite tuff, augen schist, rhyolite crystal tuff

and quartz-sericite schist, rhyolite, minor phyllite and granophyre. Skinner (1974,

p. 15) said: “A conspicuous feature of the map of the Tetagouche Group in the

Bathurst-Newcastle area is the C-shaped area of rhyolitic rock surrounded by

metabasalt and sedimentary rock. The rhyolitic core has been referred to by some

geologists as a basin structure, and by others, as a dome. The writer believes the

C-shape is the result of two periods of folding. Apparently the Tetagouche Group was

folded into northwesterly trending recumbent folds overturned toward the southwest

during the late Ordovician Taconic Orogeny, then refolded about northeasterly

trending axis during the Devonian Acadian Orogeny. If this is so, the rhyolitic core

(map-unit 3) is the youngest part of the group and the surrounding sedimentary rock

(map-unit 1) is the oldest.” The acidic volcanics underlie an area of about 1,259 km2

but probably covered an area several times larger when originally deposited. Skinner

(1974, p. 28) suggested an ignimbritic (pyroclastic flow) origin formost of these rocks.

Every picture point or pixel on a square grid or raster can be accessed indivi-

dually. The eight pixels around any black pixel belonging to the binary image of

Fig. 1.14d are either white or black. Suppose that they are changed into black pixels

if they are white. This operation is termed dilatation by eight neighbor square logic.

The result is a new pattern with 23,976 pixels (see Fig. 1.14e). The difference

between Fig. 1.14d and e consists of 23,976–18,843¼ 5,133 pixels shown separately

in Fig. 1.15b. A second dilatation gives the pattern of Fig. 1.14f. The reverse process

which consists of replacing black pixels that surround white pixels by white ones is

called “erosion”. Three successive erosions of the original pattern (Fig. 1.14d) result

in Fig. 1.14c, 1.14b and 1.14a, respectively. The black pixels lost during the first

erosion (from Fig. 1.14d to 1.14c) are shown separately in Fig. 1.15a.

In order to continue discussion of these operations it is convenient to further adopt

terminology as developed by Serra (1976) andWatson (1975). Suppose that the original

Fig. 1.15 (a) Black picture points removed from original pattern after first erosion; (b) and those

added to it after first dilatation (Source: Agterberg and Fabbri 1978, Fig. 2)
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pattern of Fig. 1.14d is set A with measure mes A. This measure is the area and can be

expressed either as mes A¼ 18,843 pixels or mes A¼ 1,264.01 km2, because one pixel

represents an area of 259 m� 259 m. Let B be the operator set of the eight-neighbor

square logic.B has an originwhich is located in the center of the square described by the

eight neighboring points. The patterns of Fig. 1.14e, f can be represented as the

Minkowski sums Α�Β and Α�2Β, respectively. A new set nB can be defined by

induction with nB¼ [(n�1)B]�B for n¼ 2,3, . . .. It is seen readily that operating on

A with the set nB is identical to applying the successive operations

Α�nΒ¼ [Α�(n�1)Β]�B for n¼ 2,3, . . .. By using the concept of Minkowski subtrac-

tion, the patterns of Fig. 1.14a–c can bewritten asAΘΒ,ΑΘ2Β; andΑΘ3Β, respectively.
If the superscript c denotes complement of a set with respect to the universal

set T which consists of all pixels in use, then the patterns of Fig. 1.15a, b are

A\(AΘB)c and Α�Β\Ac, respectively. A set C was formed by assigning each of the

40 massive sulphide deposits in the area to the pixel closest to it on the grid with

259 m-spacing used for the binary images of Figs. 1.14 and 1.15. C consists of

40 black pixels which can be subjected to successive dilatations by use of B. The

sets C�4B, C�9B and C�19B are shown in Fig. 1.16a–c, respectively. Because

each pixel is representative for a cell of 259 m on a side, the length of a cell

generated by n dilatations is equal to (2n+ 1)� 259 m. Hence the cells obtained by

4, 9 and 19 dilatations of a single pixel are 2.33, 4.92, and 10.10 km, respectively.

The latter two cell sides can be used to approximate (5 km� 5 km) cells and

(10 km� 10 km) cells, respectively. The patterns of Fig. 1.16a–c can be intersected

with that of Fig. 1.14d. The resulting sets are shown in Fig. 1.16d–f, respectively.

Fig. 1.16 Dilatations of set C for 40 deposit points and intersection of resulting sets with original

pattern: (a) C �4B; (b) C �9B; (c) C �19B; (d) A\(C �4B); (e) A\(C �9B); (f) A\(C �19B)
(Source: Agterberg and Fabbri 1978, Fig. 3)
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The erosion of Fig. 1.14d can be continued onward until not a single black point

remains. Likewise, the dilatations can be continued from Fig. 1.14e, f onward until

most or all of the study area (set T ) consists of black pixels. The relative areas of

these erosions and dilatations are shown in Fig. 1.17. For dilatations each relative

area can be interpreted as the probability P(nB) with

P nbð Þ ¼ mes A� nB

mes T
, n ¼ 1, 2, . . .

that a random cell with side (2n+ 1)� 259 m contains one or more black pixels

belonging to the original pattern (Fig. 1.14d). The probability Q(nB) that a cell with
size mes C�nB contains no acidic volcanics is equal to Q(nB)¼ 1�P(nB). Likewise
it is possible to measure the probability Pd(nB) that a cell with side (2n+ 1)� 259 m

is a deposit cell containing one or more deposits (see Fig. 1.18) because

Pd nbð Þ ¼ mes C� nB

mes T
, n ¼ 1, 2, . . .

Another practical result is as follows. A correlation between sets A and C can be

carried out by determining how many deposit points are contained in the separate

shells added to, or subtracted from the original pattern (Fig. 1.14d) by dilatation

or erosion. The original pattern itself contains 36 deposit points or mes

A\C¼ 36 pixels. The pattern of Fig. 1.15a consists of 5,360 pixels and contains
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14 deposit points. Hence the probability that an arbitrary pixel in this shell is a

deposit point is equal to 14/5,360¼ 0.00261. This probability is one of the pro-

portions for separate shells shown in the histogram of Fig. 1.17. The pattern of

Fig. 1.14b consists of 9,990 pixels and measures mes (ΑΘ2Β)\C¼ 10 pixels. This

indicates that 36–10¼ 26 of the 40 deposits (or 65 %) occur in the zone identified as

acidic volcanic rocks on the geological map and within (2√2� 259 m ¼) 733 m

from a contact between acidic volcanics and other rocks on this map. This zone may

be favorable relatively for the occurrence of volcanogenic massive sulphide

deposits. The probability that a random point in the zone is a deposit point amounts

to 26/(18,843�9,990)¼ 0.00294. This is about eight times greater than the proba-

bility (¼ 0.00039) that a random point in the entire study area is a deposit point. On

the other hand, it is only about 1.5 times greater than the probability (¼ 0.00191)

that an arbitrary black pixel of the original pattern (Fig. 1.14d) is a deposit point.

As mentioned before, 36 of the 40 deposit points (or 90 %) coincide with the

acidic volcanics of Fig. 1.14d. A generalized form of this ratio for a cell with side

(2n+ 1)� 259 m is:

Md1 ¼ mes A \ C� nBð Þ
mes C� nB

For the patterns shown in Fig. 1.16, Md1 amounts to 0.646 (Fig. 1.16d), 0.537

(Fig. 1.16e), and 0.456 (Fig. 1.16f). It represents a weighted average proportion of

acidic volcanics per cell for cells centered about the deposits. The preceding

probabilities and ratios follow directly from Minkowski operations on sets. Other

problems cannot be solved by measurement only but need a combination of

measurement and statistical modeling. An example of such a problem is the

determination of the frequency distribution of the random variable X with
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X ¼ mes A \ R� nBð Þ
mes R� nB

where R is a set consisting of a random point in the study area (T ). Problems of this

type will be solved later in this book (Chap. 14).

The Minkowski operations discussed in this section have been implemented in

various Geographic Information Systems (GIS’s) and are useful in practical appli-

cations. It should, however, be kept in mind that these operations are basically

linear. For example, they cannot be used for nonlinear dilatations or erosions as

might be desirable if the curve representing the contact between two rock types is

the intersection between a curved surface and the topographic surface and one

would wish to account for strike/dip of the contact. In such situations, more flexible

methods are required along the lines of those discussed in Sect. 1.4.

1.5.3 Boundaries and Edge Effects

Geoscience projects generally are conducted in a study area with a shape that is

either rectangular or curved. Various statistical techniques applied to variables

observed at points within the study area are subject to edge effects in the vicinity

of the boundaries of the study area. Such edge effects arise when observations are

used for extrapolations into their immediate neighborhoods. In a simpler situation

this kind of problem occurs in 1D as well; for example, in time series analysis edge

effects can occur at the beginning and end of a series of observations. In 2-D and

3-D applications, edge effects generally present a more serious problem because

‘relatively’ many more data points occur near study area boundaries and a relatively

simple 1D method such as reflection of a series around its end points in order to

obtain extra observations with locations outside the range of observation cannot

be used.

In GIS applications, pixels used for representation of attributes are situated on

a regular grid. Curved lines on maps also can be represented in vector mode

meaning that they are approximated by sequences of densely spaced points on the

curves so that these are approximated precisely by strings of very short straight-

line segments. In 2-D, edge effects are easier to avoid if the study area is

rectangular in shape as it is frequently in remote sensing, geophysical and

regional geochemical applications because the data then are averages in which

abrupt changes such as those related to contacts between different rock types have

been masked out. If map data are averaged in such applications, it is often possible

to keep the unit areas for which values are averaged within the boundaries of the

study area. In geological map applications, however, the boundaries of study

areas often are curvilinear in shape. Examples are the “plays” often used in the

oil industry and delineations of permissive areas for occurrence of different types

of mineral deposits in economic geology.
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Ripley’s (1976) estimator K(r) can be used as an example of how undesirable

edge effects can be avoided in a map-based statistical application. Statistical theory

of spatial point processes is used mainly for the study of patterns of points in the

plane (see, e.g., Diggle 1983). The first-order property of a point process is its

intensity (λ) which is independent of location for stationary processes. It is esti-

mated by dividing the total number (n) of points within the study area (A) by its total
area, or Ave (λ)¼ n/|A|. The second-order property of an isotropic, stationary spatial
point process can be described by the function K(r) which is proportional to the

expected number of points within distance r of an arbitrary point. If the points are

distributed randomly according to a Poisson process, the expected number of

points within distance r of an arbitrary point is equal to πλr2. This model provides

a convenient benchmark for complete randomness tests. Clustering of points

occurs if there are more points in the vicinity than predicted by the Poisson

model; anti-clustering or “regularity” arises if there are fewer points than expected

in the vicinity of an arbitrary point. For graphical representation, the function

L(r)¼ [K(r)/π]0.5 may be used. The Poisson model simply gives L(r)¼ r.
Estimators of K(r) should account for edge effects related to the shape of the

study area. There are two reasons why edge effects are important: (1) probability of

occurrence of a point cannot be measured directly at a point but only indirectly with

respect to neighborhoods that are more strongly affected by boundaries than single

points, and (2) the proportion of study area located within distance r from the

boundary tends to be large even for small r. It may be possible to work with a guard

area inside the boundary of the study area in order to obtain an approximately

unbiased estimator but, in general, too much information is lost by doing this.

Ripley’s estimator K(r) is applicable to regions that have relatively simple

geometrical shapes (e.g., rectangles or circles) or for regions with irregular shapes

bounded by polygons. Digitizing the boundary of an irregularly shaped study region

in vector mode generally results in a polygon with many sides which are so short

that the boundary cannot be distinguished from a smooth curve when it is replotted

on the map. An irregular boundary can be compared with a coastline with fjords and

peninsulas. An algorithm for obtaining Ripley’s estimator originally was developed

by Rowlingson and Diggle (1991, 1993). The algorithm of Agterberg (1994) also

can be used when there are islands, more than a single enclosed study area, or even

lakes within islands. The underlying geometrical rationale is as follows.

Suppose that the second-order properties of an isotropic, stationary point process

are characterized by the function K(r) ¼ λ�1 E [number of further events within

distance r of an arbitrary event] where E denotes mathematical expectation. It

follows that the expected number of ordered pairs of events within distance

r from each other is λ2 |A| K(r) if the first event of each ordered pair falls in area

A. Suppose that rij denotes distance between events i and j in A, and that Ir (rij) is an
indicator function assuming the value 1 if rij< r; 0 otherwise, then the observed

number of these ordered pairs is ΣiΣj Ir (rij), i 6¼ j where the double sum denotes

summation over both i and j. This summation excludes pairs of events for which the

second event is outside of A. Let the weight wij represent the proportion of the

circumference of the circle around event i with radius rij that lies within A. Then, as
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originally pointed out by Ripley (1976), wij represents the conditional probability

that an event is observed when it is distance rij away from the i-th event. In general,
wij is not equal to wji as illustrated in Fig. 1.19. If λ is replaced by the observed

intensity n/|A| where n is total number of events in A, then Ripley’s estimator

for K(r) is obtained with

K̂ rð Þ ¼ n�2 Aj j
X
i6¼j

w�1
ij Ii rij

� �

This expression is only valid if r is sufficiently small because for large r the

weights may become unbounded. The condition that r should not exceed the radius
of the smallest circle about an arbitrary point x that does not intersect the circum-

ference of A. Stoyan et al. (1987, p. 125) discuss the problem of bias for large r and
give a method by which it can be avoided. Diggle (1983) argues that the restriction

on Ripley’s original estimator does not present a serious problem in practice

because the dimensions of the region A are generally larger than the distances for

which K(r) is of interest. For example, when A is the unit square, r should not

exceed 2�0.5. For larger distances between events, the sampling fluctuations will

increase significantly.

As pointed out before, in many types of geological applications, the region

A does not have a simple shape. Events (e.g., oil wells or mineral deposits) may

only occur within an environment type bounded in 2-D by discontinuities such as

intrusive contacts, faults, unconformities or facies changes. An algorithm for

polygonal A was programmed originally in the SPLANCS package of Rowlinson

Fig. 1.19 Ripley’s (1976) estimator illustrated for region A with events at points x and y. Radius
of both circles is equal to kx� yk; wxy¼ (α1+ α2)/2π; wyx¼ β/2π (Source: Agterberg 1994, Fig. 1)
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and Diggle (1991, 1993). In it the study region is approximated by a concave

or self-intersecting polygon with m sides. Each circle through two points

(cf. Fig. 11.19) intersects this polygon in 2 k� 2m sides. Once these points of

intersection have been determined, it is relatively easy to calculate the value of wij

for each of the n · (n–1) circles. This result also can be obtained by successively

determining for each side whether it has 0, 1 or 2 points of intersection with one of

the circles.

An artificial example with relatively few events is given in Fig. 1.20 for

clarification. It is assumed that the n events occur at points labeled Ci (i¼ 1,

2, . . ., n). The distance between two events satisfies rij¼ |CiCj|¼ |CjCi|. The vertices

of the polygon are ordered moving in the clockwise direction. Each point Ci can be

related to each side AkAk+1 by a triangle. The angle opposite the side will be written

as θik¼∠ AkCiAk+1. This angle is defined to be positive if the entire triangle or a

portion of it bounded by the side belongs to the study area; negative otherwise. The

sign of the angle will be written as s(θik)¼ θik/| θik|. Two positive angles (θ11, θ27)
and one negative angle (θ24) are shown in Fig. 1.20 for example. In practice, the

angle θik¼∠ AkCiAk+1 can be determined as the difference between two angles

measured in the clockwise direction from a given direction. Note that θik< π (i¼ 1,

2, . . ., n; k¼ 1, 2, . . .,m) because events occur inside (and not on) the boundary, and
Σk θik¼ 2π (i¼ 1, 2, . . ., n) because negative angles, if they occur, are cancelled out
by a surplus of positive angles.

It is convenient to rewrite Ak+1 as Bk for k¼ 1, 2, . . ., m�1 setting Bm¼A1. Each

triangle then has three sides that can be written as aik¼ |CiBk|, bik¼ |CiAk|, and as

cik¼ |AiBk|. For individual triangles, the double subscripts can be deleted without

creating confusion because each triangle is determined fully by its three corner

A3

A4

A5

A6

A7

C3

C1

C2

θ34

θ27

θ11

A8

A1

A2

Fig. 1.20 Artificial

example of polygon

bounding region with events

at points Ci (i¼ 1,2,3)

(Source: Agterberg 1994,

Fig. 3)
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points (see Fig. 1.21). According to elementary trigonometry, the shortest distance

(hik) between Ci and he line through Ak and Bk satisfies:

hik ¼ 2

aikbik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sik sik � aikð Þ sik � bikð Þ sik � cikð Þ

p
; sik ¼ aik þ bik þ cik

2

The following acute angles can be defined for each triangle:

αik ¼ cos�1 hik
aik

, βik ¼ cos�1 hik
bik

, γik ¼ cos�1 hik
rik

For a given triangle (with Ci, Ak and Bk) only those circles around Ci with radius

rij that intersect the side of the polygon at a point between Ak and Bk are used for the

calculation of the weight wij. Let ωijk represent the portion of θik contributing to the
reduction of wij 1�Σk ωijk/2π (see Fig. 1.22 for examples). A set of rules is given in

Table 1.1. The relative importance of these rules decreases when the sides of the

Fig. 1.21 Illustration of definitions of sides, height and top angles for three triangles taken

from artificial example of Fig. 1.20. Event points at (a) C1, (b) C2 and (c) C3, respectively

(Source: Agterberg 1994, Fig. 5)

Table 1.1 Formulae for ωijk

if hik< rij�max(a,b) with
further conditions as given

in row and column headings

|θik|¼ αik+ βik |θik|< αik + βik

aik< rik� bik ωijk¼ (γijk+ αik)sik ωijk¼ (γijk� αik)sik
bik< rik� aik ωijk¼ (γijk+ βik)sik ωijk¼ (γijk� βik)sik
hij< rij�min(a, b) ωijk¼ 2γijksik ωijk¼ 0

Latter distinguish between triangles with acute angles only

(cf. Fig. 1.20a, c) and triangles with acute angle along their base

(cf. Fig. 1.20b); sik is sign of θik (Source: Agterberg 1994,

Table 1)
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polygon become short. In that situation, the solution is almost entirely determined

by the relation

rij � hik ! ωijk ¼ 0; rij > ωijk ¼ θik

An example of application is given in Figs. 1.23 and 1.24. It is concerned with

the Leduc Reef Complex-Windfall Play in Alberta (cf. Reinson et al. 1993; Kauf-

man and Lee 1992). This play has 249 wildcats including 52 gas discovery wells.

The play boundary was digitized in vector mode yielding a data set with coordinates

for 249 vertices (Agterberg 1994). The area enclosed by the polygon is 12,861 km2

(15,616 km2 if the smaller polygon in the center is included in the play). Figure 1.24

shows the function L2(r) which is for the 52 gas discovery wells only. This function
deviates significantly from a straight line through the origin that dips 45�

representing complete random distribution of the gas wells within the play area.

Obviously they are strongly clustered. This is brought out by the 95� confidence belt
for the Poisson model that would probably contain the entire L2(r) curve if the

spatial random distribution model would be satisfied.

Fig. 1.22 Examples of ωijk: ω121¼ 2γ121, and ω127¼ γ127�α27 (cf. Fig. 1.20 and Table 1.1)

(Source: Agterberg 1994, Fig. 6)
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Fig. 1.23 Wildcat locations in Leduc Reef Complex (cf. Reinson et al. 1993; Kaufman and

Lee 1992). In total, there are 52 gas occurrences among 249 wildcat wells. Boundary of play

area of 12,861 km2 was approximated by polygon with 264 vertices (Source: Agterberg 1994,

Fig. 11)
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Fig. 1.24 Function

L(r)¼ ([K(r)/π]0.5) with
consideration of edge

effects for 52 gas

occurrences of Fig. 1.23

(solid line boundary). The
spatial clustering deviates

significantly from complete

random distribution

(Source: Agterberg 1994,

Fig. 14)
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Chapter 2

Probability and Statistics

Abstract From a historical perspective, the theory of statistics was developed

relatively recently. Calculating the mean from a number of measurements was a

procedure first practiced in 1581 but even this simple method, which is understood

by most people to-day, remained highly controversial until the end of the eighteenth

century. Traditionally, the upper part of the Earth’s crust has been viewed as a

complex three-dimensional mosaic of numerous rock units with different compo-

sitions and ages. However, as emphasized in this chapter, many geological features

display random characteristics that can be modeled by adapting methods of math-

ematical statistics. The idea that random samples can be taken from statistical

populations for the estimation of parameters remains paramount. The main para-

meters of geoscience data to be estimated are their mean and variance. Frequency

distribution analysis is applicable to many different types of geological data.

Discrete distributions include the binomial and Poisson, but also the geometric

and negative binomial distributions. The normal and lognormal distributions are

most important in modeling continuous data although the Pareto distribution is

becoming increasingly important because of its close connection to fractal model-

ing. Many methods of statistical inference including Student’s t-test, analysis of

variance and the chi-squared test for goodness of fit are based on the normal

distribution. These statistical methods remain important in geology if used in

an exploratory manner because the random variables considered often are not

independent and identically distributed (iid), which is a requirement for statistical

problem-solving as practiced in most other fields of science. Especially, numbers of

degrees of freedom commonly used in statistical tests are strongly affected by

spatial autocorrelation due to the continuous nature of most geological variables.

Keywords Mathematical statistics • Probability calculus • Frequency distributions

• Statistical inference • Significance tests • Q-Q plots • Geostatistics • Sampling

• Grenville Province age determinations • Pulacayo zinc values • Witwatersrand

gold assays
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2.1 History of Statistics

Ian Hacking (2006) has pointed out that the concept of “probability”, which is a

cornerstone of classical statistics, emerged in the middle of the seventeenth century,

gradually assuming its dual objective and subjective meanings (cf. Agterberg

2013). In its objective sense, probability is related to stable experimental frequ-

encies. Subjective frequencies aim to quantify degrees of belief. Advocates of these

two types of probabilities have often disagreed in the past. For example, Ronald

Fisher strongly opposed Bayesians who used Thomas Bayes’ rule to update initially

subjective probabilities in an objective manner. His colleague, the geophysicist

Harold Jeffreys, had introduced inductive logic that was later refined by others such

as Bruno de Finetti. To-day, primarily deductive and subjective reasoning both

continue to be practiced. Jef Caers (2011) argues that “any modeling of uncertainty

is only relevant if made dependent on the particular decision question or practical

application for which such modeling is called for.” Possibility theory as developed

by Didier Dubois and colleagues takes a new type of axiomatic approach in

uncertainty theory (Dubois and Prade 2000). In many Bayesian approaches, the

starting point continues to be based on the concept of equipossibility as originally

used by Pierre, Marquis de Laplace.

A simple example of equipossibility followed by deductive reasoning based on

traditional axioms of probability theory is Weights-of-Evidence (WofE) modeling to

estimate probabilities of occurrences of discrete events such as mineral deposits in a

study area. The initial hypothesis of equipossibility is that the probability that a

mineral deposit occurs underneath a small unit area on a map is the same everywhere

within the study area. It gives the prior probability that only depends on size of unit

area. Using Bayes’ rule, this prior probability is updated by using as evidence various

features of the unit area that differ from place to place in the study area. The final

WofE product is a map of posterior probabilities for occurrences of mineral deposits.

The geologist Georgius Agricola (in 1556) developed methods of reading signs

on the surface of the Earth such as occurrences of faults or anticlines as indicators

for the occurrence of mineralization. Agricola assumed that “sentences” on the

Earth’s surface tell us what minerals are down below. Nevertheless, as Hacking

(2006) points out, Agricola had no idea that there could have been a process of

mineralization that took place millions of years ago. Such concepts had not yet been

developed. It can be argued that the signs identified by Agricola and several others

in the sixteenth century including Paracelsus constituted some early form of

what later became known as “probabilities”. Paracelsus was active in the field of

medicine listing medicines for various illnesses. He developed an early similarity

theory that would not meet standards to be developed later. For example, Paracelsus

wrote: “Do not the leaves of the thistle prickle like needles. Thanks to this sign, the

art of magic discovered that there is no better sign against internal prickling”

(Jacobi 1951). The signs of Agricola and Paracelsus were precursors of probabi-

lities. They both knew that the signs they had identified as indicators were not

foolproof either leading to certain discovery of new ore or curing disease with

complete success. In WofE various theories of process-modeling are taken into

account when map layers are selected for improving the posterior probabilities.
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It is well known that Blaise Pascal around 1650 was adept in solving problems

related to the rolling of one or more dice. Hacking (2006) credits Christiaan

Huygens with introducing statistical inference in the first probability textbook

published in 1657 (also see Kendall 1970, p. 29). Statistical reasoning, however,

became only slowly accepted by scientists and much later by the public. This is

evident from the history of the arithmetic mean. Some early astronomical calcula-

tions that show resemblance to the process of estimating the sample mean are

reviewed by Plackett (1970). The first average on record was taken by William

Borough in 1581 for a set of compass readings (Eisenhart 1963). The procedure of

averaging numbers was regarded with suspicion for a long period of time. Thomas

Simpson (1755) advocated the approach in a paper entitled: “On the advantage

of taking the mean of a number of observations in practical astronomy”, stating:

“It is well-known that the method practiced by astronomers to diminish the errors

arising from the imperfections of instrument and of the organs of sense by taking

the mean of several observations has not so generally been received but that some

persons of note have publicly maintained that one single observation, taken with

due care, was as much to be relied on, as the mean of a great number.”

Originally, the normal distribution was derived from the binomial distribution

by Abraham de Moivre in 1718. It became more widely known after its use

by Friedrich Gauss (in 1809) and the subsequent derivation of the central-limit

theorem, which helped to popularize the idea that many different random errors

combine to produce errors that are normally distributed. The normal distribution

became another corner stone of mathematical statistics with the development of

Student’s t-test, analysis of variance and the chi-square test for goodness of fit.

During the first half of the twentieth century, many methods of mathematical

statistics were developed for statistical populations of independent (uncorrelated)

and identically distributed (iid) objects from which random samples can be drawn

to estimate parameters such as the mean, variance and covariance. The theory of

random sampling became well-established together with rules for determining the

exact numbers of degrees of freedom to be used in statistical inference. Generali-

zation to multivariate analysis followed naturally. Krumbein and Graybill (1965)

introduced the “general linear model” as a basic tool of mathematical geology.

2.1.1 Emergence of Mathematical Statistics

Karl Pearson (1857–1936) greatly helped to establish the theory of mathematical

statistics and to make it more widely known. Many people to-day are familiar with

the correlation coefficient and the chi-square test for goodness of fit, which are two

of the tools invented by Pearson. R.A. Fisher (1890–1962) was a better mathema-

tician than Pearson (cf. Stigler 2008). His earliest accomplishments included

finding the mathematical formula for the frequency distribution of the correlation

coefficient, and correct usage of degrees of freedom in statistical significance tests

including the chi-square test (Fisher Box 1978). Fisher (1960) developed statistical

design of experiments using significance tests including the F-tests in analysis
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of variance. Most of this pioneering work was performed while he was at the

Rothamsted Experimental Station in the U.K. (1919–1933).

Fisher’s methods entered most statistical textbooks during his lifetime and

continue to be taught widely. Degrees of freedom were a subject of disagreement

during the 1920s, mainly between Pearson and Fisher. This debate was decidedly

won by Fisher. For example, he established that in a chi-square test for goodness of

fit the number of degrees of freedom should be decreased by one for every statistical

parameter estimated. The mathematical proof of this simple rule is not at all simple.

Fisher illustrated the validity of his new result in a 1926 coup de grace administered

on the basis of 12,000 (2� 2) contingency tables obtained under random sampling

conditions by E.S. Pearson, son of Karl Pearson. Using these data, Fisher calculated

that, on average, the chi-square for a 2� 2 table contingency table has only one

degree of freedom instead of the three previously assumed by the Pearsons

(cf. Fisher Box 1978). These disputes in the 1920s illustrate that the formulae

derived by Fisher are not at all that easy to understand. However, many textbooks

on applications of statistics in science and engineering are easy to read because they

do not contain the formulae underlying the significance tests but only instructions

on how to test hypotheses by means of statistical tables such as those for the t-,
chi-square and F- distributions. The idea of teaching simple rules only is that

practitioners should not be sidetracked by the underlying mathematics. There also

exist easy-to-read geostatistical books such as those written by Isobel Clark (1970)

and Isaaks and Srivastava (1989) but circulation and acceptance of these 3-D based

statistical ideas has been more limited.

It should be kept in mind that most of Fisher’s techniques are applicable only if the

observations are independent. This requirement was well known to Fisher and other

mathematical statisticians including Kolmogorov (1931) who established the axioms

of probability calculus. Another consideration, which is easier to understand, is

that the assumption of normality (Gaussian frequency distribution curve) for the

numbers treated in significance tests has to be approximately satisfied. This is because

the tables for Student’s t-test, the chi-square test for goodness of fit, analysis of

variance and several other well-known significance tests are based on random

variables that have frequency distributions derived from the normal distribution.

Rothhamsted continues to be an important research center for statistical research

and applications. The methods of Georges Matheron are now used in agricultural

research in addition to Fisher’s methods; for example, Richard Webster (2001),

BAB Rothhamsted Research, published a widely read book on “Geostatistics for

Environmental Scientists”. This post-Fisher development can be regarded as an

extension of traditional statistical theory based on random variables satisfying the

axioms set out by Kolmogorov (1931).

2.1.2 Spatial Statistics

Danie Krige (1951) in South Africa first advocated the use of regression analysis

to extrapolate from known gold assays to estimate mining block averages
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(Krige 1951). This technique can be regarded as a first application of “kriging”,

which is a translation of the term “Krigeage” originally coined by Georges

Matheron (1962) who remarked that use of this word was sanctioned by the

[French] Commissariat à l’Energie Atomique to honor work by Krige on the bias

affecting estimation of mining block grades from sampling in their surroundings,

and on the correction coefficients that should be applied to avoid this bias. Later,

Matheron (1967) urged the English-speaking community to adopt the term

“kriging” which now is used worldwide.

Krige’s original paper was translated into the French and republished in 1955 in

a special issue of Annales des Mines on the use of mathematical statistics in

economic geology. It is followed by a paper by Matheron (1955) who emphasized

“permanence” of lognormality in that gold assays from smaller and larger blocks all

have lognormal frequency distributions with variances decreasing with increasing

block size. Matheron discusses “Krige’s formula” for the propagation of variances

of logarithmically transformed mining assays, which states that the variance for

small blocks within a large block is equal to the variance for the small blocks within

intermediate-size blocks plus the variance of the intermediate-size blocks within

the large block. This empirical formula could not be reconciled with early theory of

mathematical statistics but it constitutes a characteristic feature in the spatial model

of orebodies developed in the late 1940s by the Dutch mining engineer Hans de

Wijs (1951) whose approach helped Matheron to formulate the idea of “regio-

nalized random variable”. Rather than using autocorrelation coefficients as were

generally employed in time series analysis under the assumption of existence of a

mean and finite variance, Matheron (1962) introduced the variogram as a basic tool

for structural analysis of spatial continuity of chemical element concentration

values in rocks and orebodies. This is because the variogram allows for the

possibility of infinitely large variance as would result from the de Wijsian

model for indefinitely increasing distances between sampling points. Aspects of

this model were adopted by Krige (1978) in his monograph Lognormal-de
Wijsian Geostatistics for Ore Evaluation summarizing earlier studies including

his successful application to characterize self-similar gold and uranium distribution

patterns in the Klerksdorp goldfield in South Africa (also see Sect. 11.1).

Initially, Georges Matheron performed his geostatistical work in the 1950s with

mining applications. In the late 1960s his approach caught the attention of mathe-

matical statisticians including Geof Watson and John Tukey. Noel Cressie (1991),

a former PhD student of Watson wrote the textbook Statistics for Spatial Data
castingMatheron’s approach into a mathematical statistical context. At the Biennial

Session of the International Statistical Institute held in Seoul, 2001, Georges

Matheron, John Tukey and Lucien Le Cam jointly were honoured posthumously

as great mathematical statisticians from the second half of the twentieth Century.

It illustrates that the idea of “regionalized random variable” has become a corner

stone of mathematical statistics.

What is kriging variance and why do degrees of freedom not play an important

role in spatial statistics? Formulas for kriging variances can be found in all

geostatistical textbooks. In general, they are larger than variances that would be

estimated by making the simple assumption that the values used for kriging are
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stochastically independent. This is because element concentration values and reali-

zations from other spatial variables generally are autocorrelated in that values for

samples that are close together resemble one another more closely than values that are

from farther apart. Random variables with autocorrelation properties have a history of

being studied in time series analysis (Bloomfield 2000) of which the statistical theory

had become well established in the 1920s and 1930s. Filtering in statistical theory of

communication (Lee 1960) can be regarded as a form of kriging. There is also a

close connection between splines (Eubank 1988) and kriging. Kriging differs from

time series analysis in that the observation points are located in three-dimensional

space instead of along a line. Nevertheless, autocorrelation commonly is studied

using variograms or correlograms for sampling points with regular spacing along

lines. Although Matheron (1965) was most prominent in developing spatial statistics

(or “geostatistics” as he preferred to call it), others such as Matérn (1981) in forestry

and Gandin (1965) in meteorology, to some extent independently, had advanced the

idea of “regionalized random variables” in the 1950s and 1960s as well.

Cressie (1991) reasons as follows to explain why spatial autocorrelation must

be considered: Suppose Z(1),. . ., Z(n) are independent and identically distributed

(i.i.d.) observations drawn from a Gaussian distribution with unknown mean μ and

known variance σ2, then the minimum-variance unbiased estimator of μ is equal to

the sum of the Z(i) values (i¼ 1,. . ., n) divided by n, or M¼ {Σ Z(i)}/n. The
estimator M is Gaussian with mean μ and variance σ2/n. It can be used to construct

a two-sided 95 % confidence interval for μ, which is {M� (1.96•σ)/n½}. To-day
many people are familiar with two-sided 95 % confidence intervals on sample

means that have been estimated by means of this method. In practice, σ2 also is

unknown and is estimated by taking the sum of squares of the differences between

the Z(i) and their average, and dividing this sum by (n� 1). However, this standard

statistical approach loses its validity when data are not independent but positively

correlated. Normally, the extent of positive correlation decreases with distance

between locations of points in 2-D or 3-D at which two Z(i) values were measured.

Suppose that this distance between observation points is kept the same and all pairs

of values Z(i) and Z(i� 1) are positively correlated with correlation coefficient

ρ> 0. Then the variance ofM is larger than σ2/n. This estimator must be multiplied

by a factor c that can be estimated although some assumption on the nature of

the theoretical autocorrelation function is required. Consequently, the two-sided

95 % confidence interval for μ, is {M� (c½ · 1.96 · σ)/n½} and this is wider than

{M� (1.96 · σ)/n½}. This topic will be discussed in more detail in Sect. 7.1.

It is useful to define n0 ¼ n/c, which is less than n, as the “equivalent number of

independent observations”. To provide an illustrative example: suppose chemical

element concentration values for n¼ 20 successive drill-core samples (equally

spaced along a straight line) are positively correlated with ρ¼ 0.5 and that the

space series is equivalent to a time series with the first-order Markov property.

Then, c¼ 2.95 and n0 ¼ 6.78. It means that the 20 values are equivalent to about

7 independent observations and that a 95 % confidence interval neglecting the

positive spatial correlation would be 0.58 times too narrow. Obviously, in this

situation it would be misleading to set number of degrees of freedom equal to 19.

The concept of degrees of freedom then has lost its meaning entirely unless one

would base it on the 7 (instead of 20) equivalent “independent” values.
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What happens when statistical techniques that assume independence of

observations are used in situations that there is spatial autocorrelation? In general,

the results will be less precise than those obtained by geostatistical methods,

variances will be significantly underestimated, and 95 % confidence intervals will

be too narrow. Whether or not these shortcomings are serious depends on the

characteristics of the subject of application. It is possible that simple averaging

provides good results especially in situations where there is the possibility of

unforeseen events that cannot be observed immediately. Experienced mining

geologists and engineers will know that results obtained by means of exploratory

boreholes or channel sampling have limited value depending on circumstances.

Geostatistics in mining is most valuable if it is possible and necessary to process

large amounts of data that have similar properties such as the hundreds of thousands

of gold and uranium determinations in the Witwatersrand goldfields in South

Africa. Although the theory of geostatistics primarily was commenced in the field

of mining, it should be appreciated that to-day there are many other applications of

Matheron’s original approach. There now exist numerous applications in environ-

mental sciences, agriculture, meteorology, oceanography, physical geography

and other fields. Geostatistical textbooks include Deutsch (2002), Goovaerts

(1997) and Olea (1999). Recent new developments in the theory of geostatistics

include multiple-point geostatistical simulation based on genetic algorithms

(Peredo and Ortiz 2012), sequential simulation with iterative methods (Arroyo

et al. 2012) and extensions of the parametric inference of spatial covariances by

maximum likelihood (Dowd and Pardo-Igúzquiza 2012).

Box 2.1: Basic Elements of Classical Statistics

The r-th moment of a random variable X isμ
0
r ¼ E Xrð Þ ¼ R1�1 xrf xð Þdxwhere

E denotes mathematical expectation. The mean of X satisfies

μ ¼ μ
0
1 ¼ E Xð Þ¼0 R1

�1 xf xð Þdx. Moments about the mean are defined as:

μr ¼ E
�
X � μ

�
r
�� ¼0 R1

�1 x� μð Þrf xð Þdx. If c is a constant, E(X + c)¼EX + c

and E(cX)¼ cEX. When X and Y are two random variables with

two-dimensional frequency distribution f (x,y), E(X+ Y)¼ R 1
�1

R 1
�1(x+ y)

f(x, y)dxdy¼EX +EY. If X is a sample mean, E X
� � ¼ μ. If X is a binary

variable with probabilities P(X¼ 1)¼ a and P(X¼ 0)¼ 1-a where a is

a constant, then E(X)¼P(X¼ 1)¼ a. Consequently, probabilities can

be treated as expected values. The variance of X is

σ2 Xð Þ ¼ μ2 ¼ E
�
X � μ

�
2
�� ¼ R1�1 x� μð Þ2f xð Þdx ¼ μ

0
2 � μ2. Its properties

include σ2(X + c)¼ σ2(X) and σ2(cX)¼ c2σ2(X). If X and Y are independent, E

(XY)¼ (EX)(EY) and σ2(X+ Y)¼ σ2(X) + σ2(Y). If X is the mean of a sample

of size n, σ2 X
� � ¼ σ2 Xð Þ=n. It also follows that σ2 X � X

� � ¼ n
n�1

σ2 Xð Þ. The
factor n/(n-1) is known as Bessel’s correction. Switching to conventional

sample notation, it follows that, s2 xð Þ ¼
Xn

i¼1
xi�xð Þ2

n�1
.

2.1 History of Statistics 47



2.2 Probability Calculus and Discrete

Frequency Distributions

Kolmogorov (1931) generally is credited with establishing the axioms of

mathematical statistics. His formal definitions that involve Borel sets are beyond

the scope of this book. However, the rules presented in this section are in agreement

with Kolmogorov’s original axioms.

Geoscientists should have a basic understanding of probabilities and how

to calculate them. The following example provides an illustration of rules of

multiplication and addition of probabilities. Suppose that wildcats in a sedimentary

basin have a success ratio of p¼ 0.2. One then can answer questions like: What is

the probability that 0, 1 or 2 wildcats will strike oil if two new wells are drilled?

Writing these probabilities as p(0), p(1) and p(2), the answers are p(0)¼
(1� p)2¼ 0.64, p(1)¼ 2p(1� p)¼ 0.32 and p(2)¼ p2¼ 0.04, respectively. The

sum of these three probabilities is 1. The probability that one or two wildcats will

strike oil is p(1) + p(2)¼ 0.36.

2.2.1 Conditional Probability and Bayes’ Theorem

A slightly more difficult problem and its solution are as follows: Suppose that

p(D|B) represents the conditional probability that event D occurs given event

B (e.g., a mineral deposit D occurs in a small unit cell underlain by rock type

B on a geological map). This conditional probability obeys three basic rules

(cf. Lindley 1987, p. 18):

1. Convexity: 0� p(D|B)� 1; D occurs with certainty if B logically implies D;
then, p(D|B) ¼1, and p(Dc|B)¼ 0 where Dc represents the complement of D;

2. Addition: p(B[C|D)¼ p(B|D) + p(C|D)� p(B\C|D); and
3. Multiplication: p(B\C|D)¼ p(B|D) · p(C|B\D).

These three basic rules lead to many other rules. For example, replacement of

B by B\D in the multiplication rule gives: p(B\C|D)¼ p(B|D) · p(C|B\D). Like-
wise, it is readily derived that: p(B\C\D)¼ p(B|D) · p(C|B\D) · p(D). This leads
to Bayes’ theorem in odds form:

p D
��B \ C

� �
p Dc

��B \ C
� � ¼ p B

��C \ D
� �

p B
��C \ Dc

� � � p D
��C� �

p Dc
��C� �

or

O D
��B \ C

� � ¼ exp WB\Cð Þ � O D
��C� �
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where O¼ p/(1� p) are the odds corresponding to p¼O/(1 +O), and WB\C is the

“weight of evidence” for occurrence of the event D given B and C. Suppose that

the probability p refers to occurrence of a mineral deposit D under a small area on

the map (circular or square unit area). Suppose further that B represents a binary

indicator pattern, and that C is the study area within which D and B have been

determined. Under the assumption of equipossibility (or equiprobability), the prior

probability is equal to total number of deposits in the study area divided by total

number of unit cells in the study area. Theoretically, C is selected from an infinitely

large universe (parent population) with constant probabilities for the relationship

between D and B. In practical applications, only one study area is selected per

problem and C can be deleted from the preceding equation. Then Bayes’ theorem

can be written in the form:

lnO D
��B� � ¼ Wþ

B þ lnO Dð Þ; lnO D
��Bc

� � ¼ W�
B þ lnO Dð Þ

for presence or absence of B, respectively. If the area of the unit cell underlain by

B is small in comparison with the total area underlain by B, the odds O are

approximately equal to the probability p. The weights satisfy:

Wþ
B ¼ ln

p B \ Dð Þ
p B \ Dcð Þ ; W�

B ¼ p Bc \ Dð Þ
p Bc \ Dcð Þ

As an example of this type of application of Bayes’ theorem, suppose that a

study area C, which is a million times as large as the unit cell, contains ten deposits;

20 % of C is underlain by rock type B, which contains eight deposits. The prior

probability p(D) then is equal to 0.000 01; the posterior probability for a unit

cell on B is p(D|B)¼ 0.000 04, and the posterior probability for a unit cell not on

B is p(D|Bc)¼ 2.5� 10�6. The weights of evidence are WB
+¼ 0.982 and

WB
�¼�1.056, respectively. In this example, the two posterior probabilities can

be calculated without use of Bayes’ theorem. However, the weights themselves

provide useful information as will be seen in Chap. 5.

2.2.2 Probability Generating Functions

A random variable X is either discrete or continuous. Some geological frequency

distributions are best modeled as compound frequency distributions that require the

use of more advanced methods of mathematical statistics including use of proba-

bility generating functions. Our treatment of this subject is kept brief for reasons of

space. The reader is referred to textbooks of mathematical statistics (e.g., Feller

1968) for further explanations.
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Box 2.2: Probability Generating Function and Moments

If X is a discrete random variable with probability distribution P(X¼ k)¼ pk
(k¼ 0, 1, 2, . . .), then its probability generating function is:

g sð Þ ¼ p0 þ p1xþ p2x
2 þ . . .with pk ¼ 1

k!
dk

dsk
g sð Þ

h i
¼ 1

k! g
kð Þ 0ð Þ

The r-th moment of X satisfies: μ
0
r ¼∑1

k¼ 0pk¼ g(r)(1). For the mean and

variance (cf. Feller 1968, p. 360): E(X)¼ g0(1); σ2(X)¼ g00(1) + g0(1)� [g0(1)]2.
Suppose that X and Y are two independent discrete random variables with

probability distributions P(X¼ k)¼ pk; P(Y¼ k)¼ qk (k¼ 0, 1, 2, . . .), then
the probability distribution of their sum Z¼X+Y satisfies: gz(s)¼ gx(s) � gy(s).

2.2.3 Binomial and Poisson Distributions

Suppose the outcome of an experiment, like observing presence or absence of

a rock type at a point, is either Yes or No. Presence or absence can be denoted as

1 or 0. The experiment is called a Bernoulli trial. If X is a Bernoulli variable with

P(X¼ 0)¼ 1� p, P(X¼ 1)¼ p, its generating function is: g(s)¼ (1� p) + ps.
The binomial distribution results from n successive Bernoulli trials. Repeated

application of the Bernoulli distribution’s generating function gives the generating

function:

g sð Þ ¼ 1� pð Þ þ ps½ �n

It follows that the mean and variance of a binomial variable are E(X)¼ np
and σ2¼ np(1� p).

For n Bernoulli trials, there are (n+ 1) possible outcomes: n, (n� 1), . . ., 2, 1, 0.
The (n+ 1) probabilities for these outcomes are given by the successive terms of the

series obtained by expanding the expression ( p+ q)n. The probability that the

outcome is exactly k Yesses in n trials satisfies:

P
Xn
i¼1

Xi ¼ k

 !
¼ n

k

� �
pkqn�k where

n
k

� �
¼ n!

k! n� kð Þ!

This is the binomial frequency distribution. Petrographic modal analysis

(Chayes 1956) provides an example of application of the binomial frequency distri-

bution. Suppose that 12 % by volume of a rock consists of a given mineral A.

The method of point-counting applied to a thin section under the microscope consists

of how many times a mineral is observed to occur at points that together form a

regular square grid. Suppose that 100 points are counted. From p¼ 0.12 and n¼ 100

it follows that q¼ 0.88, and for mean and standard deviation: μ¼ np¼ 12 and

σ¼ (npq)0.5¼ 3.25.
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If the experiment of counting 100 points would be repeated many times, the

number of times (K ) that the mineral A is counted would describe a binomial

distribution with mean 12 and standard deviation 3.25. According to the central-

limit theorem to be discussed in Sect. 2.3.1, a binomial distribution approaches

a normal distribution when n increases. Hence it already can be said for a single

experiment that P(μ� 1.96 σ<K< μ+ 1.96 σ)¼ 0.95 or P(5.6<K< 18.4)¼
95 %. The resulting value of K is between 5.6 and 18.4 with a probability

of 95 %. Precision can be increased by counting more points. For example, if

n¼ 1,000, then μ¼ 120 and σ¼ 10.3, and P(99.8<K< 140.2)¼ 95 %. This result

also can be written as k¼ 120� 20.2. In order to compare the experiment of

counting 1,000 points to that for 100 points, the result must be divided by

10, giving k0 ¼ 12� 2.02. This number represents the estimate of volume percent

for the mineral A. It is 3.25/(10.3/10)¼ 3.2 times as precise as the first estimate

that was based on 100 points only. This increase in precision is in agreement

with the basic statistical result that if X is the mean of a sample of size n,

σ2 X
� � ¼ σ2 Xð Þ=n. Since ten times as many points were counted, the result has

become 100.5¼ 3.2 times more precise.

Chayes (1956) discusses petrographic modal analysis in more detail. A second

example of usefulness of the binomial distribution model is taken from quantitative

stratigraphy. In general, most biostratigraphic correlation is based on biozonations

derived from range charts using observed oldest and youngest occurrences of

microfossil taxa. For example, in exploratory drilling for hydrocarbon deposits in

a sedimentary basin, a sequence of borehole samples along a well drilled in the

stratigraphically downward direction is systematically checked for first occurrences

of new species. When the samples are cuttings taken at a regular interval, there is

the possibility that younger material drops down the well so that highest or last

occurrences cannot be observed in that situation. The probability of detecting a

species in a single sample depends primarily on its abundance. As a measure,

relative abundance (to be written as p) of a species in a population of microfossils

is commonly used. Together with sample size (n), p specifies the binomial distri-

bution that k microfossils of the taxon will be observed in a single sample. If p is

very small, the binomial probability can be approximated by the probability of the

Poisson distribution:

P K ¼ kð Þ ¼ e�λλk

k!
k ¼ 0, 1, . . . , nð Þ

which is determined by its single parameter λ with E(K )¼ σ2(K )¼ λ. The Poisson
distribution can be derived from the binomial distribution by keeping λ¼ np
constant and letting n tend to infinity while p tends to zero. Like many other

frequency distribution models, the approach can be extended to more than a single

variable.
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Figure 2.1 shows a hypothetical relationship between relative abundance,

observed highest occurrence and relative time for two taxa in a stratigraphic

section. This example illustrates that the abundance of a taxon may have changed

through time. The range of the frequency curve of the observed highest occurrence

is narrower than the range of the abundance curve although both frequency curves

end at the same value along the relative time axis. If a systematic sampling

procedure is carried out such as obtaining core samples (instead of cuttings) at a

regular interval (e.g., 30 ft or 10 m) along a well in exploratory drilling, the highest

occurrences of two taxa with overlapping frequency curves can be observed to be

coincident. The fact that two taxa have observed last occurrences in the same

sample does not necessarily mean that they disappeared from the sedimentary

basin at the same time. Rare taxa such as taxon B in Fig. 2.1 are likely to have

wider ranges for their highest occurrences. Problems related to well-sampling will

be discussed in more detail in Chap. 9.

Figure 2.2 (after Dennison and Hay 1967) shows probability of failure to detect a

given species for different values of p as a function of sample size (n). For example,

in a sample of n¼ 200 microfossils, a species with p¼ 1 % has a probability of

about 15 % of not being detected. This implies that the chances one or more

individuals belonging to the species will be found are good. Unless its relative

abundance is small, the first or last occurrence of a species in a sequence of samples

then can be established relatively quickly and precisely.

It is noted that the two scales in Fig. 2.2 are logarithmic and that the lines are

approximately straight unless p is relatively large. This is because the equation for

zero probability of the Poisson distribution, which provides a good approximation

to the binomial when p is small, plots as a straight line on double logarithmic graph

paper. If 10 is the base of the logarithms, the equation of each straight line in

Fig. 2.2 is simply log10 n¼ log10 λ� log10 p with p¼ P(K¼ 0)¼ exp (�λ).

TAXON A

TAXON B

RELATIVE TIME SCALE

R
E

LA
T

IV
E

 F
R

E
Q

U
E

N
C

Y

OBSERVED
HIGHEST
OCCURRENCE

Fig. 2.1 Schematic diagram representing frequency distributions for relative abundance (broken
lines) and location of observed highest occurrences (solid lines) for two fossil taxa. Vertical line
illustrates that observed highest occurrences of two taxa can be coincident or “coeval” even when

the frequency distributions of the taxa are different (Source: Agterberg 1990, Fig. 2.12)
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2.2.4 Other Discrete Frequency Distributions

Suppose that a succession of Bernoulli trials is started by randomly selecting black

or white cells from a black-and-white mosaic (e.g., an array based on pixels). One

may ask the question of how many times the trial must be repeated before X¼Σm

Xi¼ r where r is a fixed positive integer number and m represents the number of

trials it takes to obtain r. It is convenient to writem¼ k+ rwhere k is another integer
number. The probability of a one (for a black cell) at the m-th trial is p.
This probability must be multiplied by the probability that there were exactly

k zeros (for white cells) during the preceding m-1 (¼k + r� 1) experiments.
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Fig. 2.2 Size of random sample (n) needed to detect a species occurring with proportional

abundance ( p) with probability of failure to detect its presence fixed at P (After Dennison and

Hay 1967) (Source: Agterberg 1990, Fig. 3.1)
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The latter probability is binomial. Multiplied by p this gives the negative binomial

distribution with:

pk ¼ r þ k � 1

k

� �
pk�1qk

with generating function:

g sð Þ ¼ p

1� qs

� �r

It follows that E(X)¼ μ¼ rq/p and σ2(X)¼ rq/p2. For the negative binomial:

σ2(X)¼ σ2> μ. On the other hand, for the ordinary (positive) binomial: σ2< μ.
Comparison of the sample mean and variance of a set of discrete geological data

often provides a guideline as to which one of these two distribution (positive or

negative binomial) should be fitted (cf. Ondrick and Griffiths 1969).

An example of a situation in which the negative binomial provides a better

approximation than the Poisson distribution is shown in Table 2.1. It is based on a

study by Uhler and Bradley (1970) who divided the Alberta sedimentary basin into

8,811 cells, each measuring 5 miles (8 km) on a side., and counted the number of oil

deposits per cell. The results in Table 2.1 show that the negative binomial provides

the better fit. Obviously, the Poisson distribution that has only one parameter (λ) is
not sufficiently flexible in this application.

If r¼ 1, the negative binomial distribution reduces to the geometric distribution

that can be illustrated as follows by an application to lithological components in the

Oficina Formation, eastern Venezuela. Krumbein and Dacey (1969) found that

the thicknesses of these components can be described by geometric distributions.

Their data consisted of a series of letters A, B, C, and D, originally obtained by

Scherer (1968) who coded the rock types as (A) sandstone, (B) shale, (C) siltstone,

and (D) lignite, in a well core at 2-ft (61 cm) intervals. Although the thicknesses of

these lithologies are continuous random variables, the sampling scheme reduced

them to discrete random variables.

Table 2.1 Fits of Poisson and negative binomial distributions to the spatial distribution of oil

deposits for 5� 5 miles grid areas, Alberta

Deposits Observed frequency Poisson frequency Negative binomial

0 8,586 8,508.5 8,584.3

1 176 303.0 176.8

2 35 5.4 39.1

3 13 0.1 11.3

4 6 0.0 3.6

5 1 0.0 1.2

6 or more 0 0.0 0.7

After Uhler and Bradley (1970, Table 1)

Source: Agterberg (1974, Table XVIII)
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For each rock type, the frequencies for sequences of successive letters can be

determined and plotted in a diagram. For example, one counts how many times the

sequences A, AA, AAA, . . . occur in the total series. The results are shown in

Fig. 2.3. Krumbein and Dacey (1969) fitted geometric distributions to these data

and tested the degree of fit by means of chi-square tests for goodness of fit.

The theoretical distribution for shale is shown on the left-hand side of Fig. 2.3.

The good fit of the geometric distributions indicates that the following stochastic

process was controlling the sedimentation.

Suppose that for a lithology, say sandstone, p(A) denotes the probability that at a
distance of 2 ft., another lithology (not sandstone) will occur. Obviously, q(A)¼
1� p(A) then represents the probability that the same rock type (sandstone) will

occur. If for every lithology p (and q) remained constant during deposition of the

entire series, then the probability that a sequence for any lithology is k letters long,
satisfies the negative binomial form. Consequently, r¼ 1 because each sequence is

terminated at the point where it is replaced by another lithology. The result is a

geometric frequency distribution for each lithology. It is possible to divide the

probability p for each lithology into three parts, one for each other lithology.

All probabilities can be arranged into the following transition matrix:

q Að Þ p ABð Þ
p BAð Þ q Bð Þ

p ACð Þ p ADð Þ
p BCð Þ p BDð Þ

p CAð Þ p CBð Þ
p DAð Þ p DBð Þ

q Cð Þ p CDð Þ
p DCð Þ q Cð Þ

2
64

3
75 ¼

0:787 0:071
0:048 0:788

0:075 0:067
0:061 0:103

0:105 0:316
0:182 0:388

0:430 0:149
0:132 0:298

2
64

3
75

This matrix is the transition matrix of a Markov chain of the first order as

demonstrated by Krumbein and Dacey (1969). It illustrates the close connection

between geometric frequency distributions and first order Markov chains. Doveton

(2008) discusses how Markov mean first-passage time statistics can be obtained for

sedimentary successions.

Fig. 2.3 Theoretical frequency distribution for shale and sandstone distributions for lithological

components in Oficina Formation, eastern Venezuela (After Krumbein and Dacey 1969).

All distributions are geometric by close approximation (Source: Agterberg 1974, Fig. 35)
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Another discrete random variable to be used later in this book (Chap. 9) has the

logarithmic series distribution with:

pk ¼
αϑk

k
k ¼ 1, 2, . . . ; 0 < ϑ < 1ð Þ:

Its moment generation function is: g(s)¼ [loge/(1� ϑek)]/[loge/(1� ϑ)]. The
first two moments about the origin are: E(X)¼ αϑ(1� ϑ)� 1 and μ2¼ αϑ(1� ϑ)� 2.

Therefore, σ2(X) ¼ αϑ(1� αϑ)(1� ϑ)� 2. This model is often used in the

biosciences for spatial distribution of species.

2.3 Continuous Frequency Distributions

and Statistical Inference

Continuous random variables can assume any value on the real line. Traditionally,

an important role is played by the normal or Gaussian distribution. It is frequently

observed in practice. Theoretically, it is the end product of the central-limit

theorem. The normal distribution underlies many methods of statistical inference

such as z-test, Student’s t-test, chi-square test and analysis of variance.

Box 2.3: Moment Generating Function and Characteristic Function

If X is a continuous random variable, its moment generating function satisfies:

m(u)¼E(euX)¼ R 1
�1euxf(x)dx. Consequently, μ

0
r ¼
R 1

�1xrf(x)dx¼mr(0);

and E(X)¼m0(0); σ2(X)¼m00(0)� [m0(0)]2. For continuous random variables,

characteristic functions g(u) have a wider field of application than moment

generating functions. They satisfy the following inverse relationship:

g uð Þ ¼ E eiuXð Þ ¼
Z 1

�1
eiuxf xð Þdx; f xð Þ ¼ 1

2π

Z 1

�1
eiuxg xð Þdx. The moments

satisfy: μ
0
r ¼E(Xr)¼ i� rg(r)(0). The Pareto distribution with frequency density

f xð Þ ¼ aka

xaþ1 k > 0, a > 0; x � kð Þ provides an example. Provided that r is less

than a, the r-th moment about zero is:μ
0
r ¼ akr

a�r. Consequently,E Xð Þ ¼ ak
a�1

and

σ2(X) ¼ a2

a�1ð Þ2 a�2ð Þ . The Pareto will be used in Chaps. 3 and 11.

2.3.1 Central-Limit Theorem

The central-limit theorem evolved from the de Moivre-Laplace theorem which

stated that in the limit (sample size n!1) a positive binomial distribution

becomes a normal (Gaussian) distribution (cf. Bickel and Doksum 2001, p. 470).
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In its later, more general form the theorem states roughly that the sum of many

independent random variables will be approximately normally distributed if

each summand has high probability of being small (Billingsley 1986, p. 399).

An example of how averaging of data with different kinds of frequency distribu-

tions is shown in Fig. 2.1. Because of the central-limit theorem, the averages of

n measurements produce new random variables that become normally distributed

when n increases. Because in Nature and also in the social sciences so many random

variables are approximately normally distributed, and the central-limit theorem

seems to provide a plausible explanation, the normal distribution became a corner

stone of mathematical statistics.

Because of symmetry of the Gaussian density function with respect to z¼ 0:

Φ(z)¼ 1�Φ(�z). The graph of Φ(z) is S-shaped. The fractiles ZP of the standard

normal random variable satisfy Φ(ZP)¼P. Tables of these fractiles are widely

available. P is called the probit of ZP. It is noted that, originally, the term “probit”

was coined by Bliss (1935) for a fractile augmented by 5 in order to avoid the use of

negative numbers. To-day, however, the term “probit transformation” is widely

used for ZP¼Φ�1(P). Later in this book (Chap. 9) it will be used to transform

observed frequencies into their corresponding Z-values.
The sum of a number ( f ) of Z2 values is distributed as χ2( f ) representing the

chi-square distribution for f degrees of freedom, which is a particular form of

the gamma distribution with probability density:

f xð Þ ¼
x� γð Þα�1

exp � x�γ
β

h i
βαΓ αð Þ α > 0, β > 0, x > γð Þ

Later in this book, the gamma distribution will be used to model biostratigraphic

events (Sect. 9.3) and amounts of rock types contained in grid cells superimposed

on geological maps (Sect. 12.8). The main use of the gamma distribution, however,

is that it becomes χ2( f ) if α¼ f/2, β¼ 2 and γ¼ 0.

Box 2.4: The Normal or Gaussian Distribution

If X is a normally distributed random variable with expected value equal

to μ and variance σ2, its frequency density f(x) satisfies:

f xð Þ ¼ 1

σ
ffiffiffiffi
2π

p exp �1
2

x�μ
σ

� �2gn
and its cumulative frequency distribution is:

F xð Þ ¼ 1

σ
ffiffiffiffi
2π

p
Zx
�1

exp �1
2

x�μ
σ

� �2gdxn
. The corresponding equations for the

random variable

Z¼ (X� μ)/σ, which is the normal distribution in standard form, are:

φ zð Þ ¼ 1ffiffiffiffi
2π

p e�
1
2
z2 and Φ zð Þ ¼ 1ffiffiffiffi

2π
p

Z z

�1
e�

1
2
z2dz.
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Box 2.5: Frequency Distributions Derived from the Normal

Frequency distributions derived from the normal distribution include the

χ2-, F- and t-distributions. They are defined for f, f1 and f2 “degrees of

freedom” as:

χ2 fð Þ ¼
Xf
i¼1

Z2
i ; F f 1; f 2ð Þ ¼ χ21 f 1ð Þ=f 1

χ22 f 2ð Þ=f 2
; t fð Þ ¼ Z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 fð Þ=f

p

“Degrees of freedom” is a useful concept of classical statistics. It repre-

sents the number of values in the calculation of a statistic that are free to vary

independently. The following example illustrates this concept. In general, the

sample variance satisfies s2 ¼ σ2χ2 fð Þ
f . If the population mean μ is known,

a sample of n data has f¼ n degrees of freedom. However, if μ is not known

and estimated by the sample mean x ¼
Xn

i¼1
xi, Bessel’s correction

(cf. Box 2.1) must be applied and s2 ¼ σ2χ2 n�1ð Þ
n�1

so that f¼ n� 1 (Fig. 2.4).

2.3.2 Significance Tests and 95 %-Confidence Intervals

Fractiles Φ(ZP) that are widely used in significance tests and to define 95 %-

confidence intervals are Φ(1.645)¼ 0.95 and Φ(1.96)¼ 0.975. They correspond

to setting the level of significance α¼ 0.05 in one-tailed and two-tailed significance

tests, respectively. The so-called z-test of significance provides a prototype for all

other tests of significance. It works as follows: Suppose that n numbers are drawn

from a normal population with mean μ and variance σ2, then the sample mean X is

normally distributed about μ with variance σ2/n. Consequently,

Z ¼ X � μ

σ=
ffiffiffi
n

p

is normally distributed about 0 with standard deviation one. Suppose that there is

outside information suggesting that μ¼ μ0. Then the test- or null-hypothesis H0 that

the sample meanX originates from a normal distribution with mean μ0 and standard
deviation σ=

ffiffiffi
n

p
is rejected if |Z|> 1.96 after μ is replaced by μ0. The value |ZP|¼

1.96 represents the significance limit for the test. If |Z|< 1.96, the hypothesis

μ¼ μ0 is accepted. This test is two-tailed because the absolute value of X � μ is

being considered. If there is additional outside information that would allow taking

either μ> μ0 or μ< μ0 as the test hypothesis, a one-tailed test with significance limit

ZP¼ 1.645 should be used.
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Fig. 2.4 Examples of the effect of averaging illustrate the central limit theorem of mathematical

statistics. No matter what shape the frequency distribution of the original observations (a), taking

the average of two (b), four (c) or 25 (d) observations not only decreases the variance but brings

the curve closer to the normal (or Gaussian) limit (After Lapin 1982; Davis 1986) (Source:

Agterberg 1990, Fig. 2.18)
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2.3.3 Sum of Two Random Variables

Other frequency distribution models include the uniform or rectangular distribution.

It can be defined as:

f xð Þ ¼ 1

b� a
if a < x < b; f xð Þ ¼ 0 otherwise

This distribution is shown graphically in Fig. 2.2 for a ¼0 and b¼ 5. Suppose

that the normal distribution is written in standard form φ(x). It is shown in Fig. 2.2

as well. A more general problem of mathematical statistics that has been discussed

by Wilks (1962) and Gnedenko (1963) and at a more advanced level by Loève

(1963) is: What is the frequency distribution of the sum of two random variables?

For the example of Fig. 2.5, h(x)¼ 0.2 · [Φ(x)�Φ(x� 5)]. Single values of h(x)
were calculated and connected by a smooth curve in this figure. For example,

if x¼ 2, h(x)¼ 0.2 · [Φ(2)�Φ(3)]¼ 0.2 · [0.9773� 0.0014]¼ 0.1952. The three

curves shown in Fig. 2.2 each have total area under the curve equal to one.

The curve for h(x) resembles a Gaussian curve so that it would be difficult to

distinguish it from a Gaussian curve on the basis of a sample of n values unless n is
large. In the example, the base of the uniform distribution f(x) is five times the

standard deviation of the normal curve φ(x). In fact, this standard deviation was

used as unit of distance along the X-axis. The shape of h(x) will change if the ratio
(base of f/standard deviation of φ) is changed. If this ratio is decreased, h(x)
approaches the normal form. On the other hand, if it is increased, h(x) begins to
develop a flat top. Its shape then approaches that of f(x). More mathematical details

Box 2.6: Sum of Uniform and Normal Random Variables

Suppose that X1 and X2 are two random variables and that their sum is written

as Y¼X1 +X2 with frequency distribution function f(y). The joint probability
P(X1¼ x1 and X2¼ x2) can be represented as f(x1, x2) for infinitesimal area

dx1dx2, and: P Y < yð Þ ¼ F yð Þ ¼
ZZ

x1þx2<y

f x1; x2ð Þ dx1dx2. Integrating the

joint probability of X1 and X2 over the area where x1 + x2< y provides the total
probability that Y is less than y¼ x1 + x2. It follows that:

F yð Þ ¼
Z y�x1

�1

Z y�x1

�1
f x1; x2ð Þdx2


 �
dx1. After some manipulation, it can be

derived that f(y)¼ R 1
�1 f2(y� x)f1(x)dx. If h(x) represents the sum of the

uniform distribution with f(x) as defined at the beginning of this section

and the standard normal φ(x), it follows that

h xð Þ ¼ 1
b�a

Z b

a

φ x� yð Þdy ¼ 1

b� a
Φ x� að Þ � Φ x� bð Þ½ �.
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on derivation of the equation for the curve g(x) in Fig. 2.5 are given in Agterberg

(1974, pp. 195–198). In the next chapter the model will be used for maximum

likelihood estimation of the age of stage boundaries in the Geologic Timescale.

It also will be used as a partial explanation of the Vistelius lognormality model

(cf. Sect. 3.2).

2.4 Applications of Statistical Analysis

As shown by Schuenemeyer and Drew (2011), many problems of mathematical

geoscience are best solved by using the methods of classical statistics. The aim of

the next example is to apply statistical inference (F-, t- and χ2- tests) to a set of age
data to be followed by a graphical (Q-Q) test applied to solve the same problem.

2.4.1 Statistical Inference: Grenville
Potassium/Argon Ages Example

The normal distribution can be used as a starting point for various types of

significance tests: notably Student’s t-test, the chi-square test and the F-test in
analysis of variance. Usage of these tests is illustrated on the basis of age data that

were available in 1968 for the Grenville Province on the Canadian Shield

Fig. 2.5 Frequency curve (3) for the sum of a rectangular distribution (1) and a Gaussian

distribution (2). This kind of frequency distribution results from random sampling of a space- or

time-variable subject to a linear trend changing from 0 to 5 in this artificial example. Residuals

from the trend have zero mean and unity variance. The three curves have areas equal to one

(Source: Agterberg 1974, Fig. 23)
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(Table 2.2). They are mainly for micas in granitic rocks. A distinction was made

between biotite and muscovite ages. The measurements were grouped into classes

which are 20 million years wide. Midpoints of these classes are given in the table.

For example, there are six ages of 890 Ma meaning that six measured dates were

between 880 and 900 Ma. This example originally was given in Agterberg (1974).

The average biotite age for 76 single dates is 954 Ma, and that for muscovite is

976 Ma. The null hypothesis that the biotite and muscovite population means are

equal, can be tested by Student’s t-test. Strictly speaking this test is based on the

assumption that the variance of the population for biotite ages is equal to that for

muscovite ages. A sample variance is estimated as s2 ¼ 1= n� 1ð Þ½ �Σ x� xð Þ 2
(cf. Box 2.1). The sum of squared deviations from the sample mean is divided by

n� 1 instead of by n to account for the variance of the deviation between x and its

corresponding population mean (μ). The hypothesis of equality of variance will be

tested first by using an F-test. Both t- and F-test are based on the assumption that

the underlying populations are normal. The normality assumption can be tested

separately by using a chi-square test.

Using the subscript 1 for biotite and 2 for muscovite, the sample variances are

s1
2¼ 8,337 and s2

2¼ 6,861. The F-test for comparing two variances consists of

calculating the ratio F(75, 17)¼ s1
2/s2

2¼ 1.22. It is customary to divide the larger

variance by the smaller one, so that the F-ratio is greater than one. If the two

population variances are equal to one another, the estimated F-ratio would be close

Table 2.2 Potassium/argon

age determinations, Grenville

Province, Canadian Shield

Biotite Muscovite

Age class No. ages Age class No. ages

(m.y) (m.y)

770 2

830 1

850 6

870 5 870 3

890 6

910 7 910 1

930 12 930 3

950 11

970 5 970 2

990 2 990 4

1,010 3 1,010 2

1,030 3

1,050 4 1,050 1

1,070 1 1,070 1

1,090 2

1,110 1

1,130 1

1,170 1

1,190 2

1,210 1 1,210 1

n1¼ 76 n2¼ 18

Source: Agterberg (1974, Table XIII)
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to one. For level of significance α¼ 0.05, we should compare it F0.975¼ 2.36

representing the 97.5 % fractile of the cumulative F-distribution in statistical tables.
The 97.5 % fractile is used because this is a two-tailed significance test. Since F
(75, 17)<F0.975 the null hypothesis for equality of variance can be accepted.

The two sample variances of Table 2.2 can be combined with one another yielding

the overall variance s2¼ 8,064.

Next, the t-test can be used to test the hypothesis that the two population means

are equal. It consists of calculating the quantity:

t̂ f 1 þ f 2ð Þ ¼ x1 � x2j j
s xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q

Because the t-test also is two-tailed, this statistic (¼0.89) for level of signifi-

cance α¼ 0.05 can be compared with t0.975 (92)¼ 1.98. Because it is smaller than

this significance limit, the hypothesis of equality of means can be accepted. The two

means in Table 2.2 can be combined with one another yielding the overall mean age

of 958.5 Ma.

Strictly speaking, the preceding significance tests only can be applied if the age

dates are normally distributed. The chi-square test for goodness of fit can be used to

test for normality. Its usage is illustrated in Table 2.3. First class limits are set and

the number of observations per class is counted. This gives the observed frequen-

cies ( fo) to be compared with theoretical frequencies ( fe) that are computed by

using the normal frequency distribution model. Normal fractiles are determined for

all class limits and successive differences between them are multiplied by total

number of observations (¼76). Next the following statistic is obtained:

χ̂ 2 	
X f 0 � f tð Þ2

f t

Two important points must be considered here: (1) The approximation is only

valid if all theoretical frequencies are at least 5; care must be taken that all classes

are sufficiently wide to allow for this (Cramér 1947); and (2) the sum of the

Table 2.3 Chi-square test for normality, biotite ages, Grenville Province

Class i Limits fo zi Φ(zi) Φ(zi)�Φ Zi�1ð Þ ft Δ¼ |fo� ft| Δ2 Δ2/ft

1 <860 9 �1.04 0.149 0.149 11.3 2.3 5.29 0.47

2 860–900 11 �0.60 0.274 0.125 9.5 1.5 2.25 0.24

3 900–940 19 �0.16 0.436 0.162 12.3 6.7 44.89 3.65

4 940–980 16 0.28 0.610 0.174 13.2 2.8 7.84 0.59

5 980–1020 5 0.72 0.764 0.154 11.7 6.7 44.89 3.84

6 1020–1060 7 1.16 0.877 0.113 8.6 1.6 2.56 0.30

7 >1060 9 1 1.000 0.123 9.3 0.3 0.09 0.01

Sum¼ 9.1

Source: Agterberg (1974, Table XIV)
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observed frequencies is equal to n. It can be shown (Cramér 1947) that for this

reason one degree of freedom must be subtracted from the number of classes m.
More degrees of freedom are lost if, in order to obtain the theoretical frequencies

( fe), use is made of parameters estimated from the observations; in general, the

number of degrees of freedom is to be reduced further by the number of parameters

that were estimated. Consequently, the chi-square test of normality has (m� 3)

degrees of freedom. For the example of Table 2.3 with χ̂ 2 ¼ 9.1, the number of

degrees of freedom is 4. From statistical tables, it can be found for α¼ 0.05 that

χ20:95(4)¼ 9.49. Hence the normality hypothesis can be accepted. However, it

should be kept in mind that χ20:941(4)¼ 9.1. This means that a normal distribution

would yield a χ̂ 2 equal to or larger than 9.1 in only 5.9 % of events if this particular

experiment were to be repeated a large number of times for the same theoretical

distribution.

The preceding chi-square test for goodness of fit is well-known. It was originally

proposed by Karl Pearson and refined by Ronald Fisher who exactly determined the

number of degrees of freedom to be used. A similar test that is at least as good as

the chi-square test is the G2-test (see, e.g., Bishop et al. 1975). Finally, the

Kolmogorov-Smirnov test should be mentioned. It consists of determining the

largest (positive or negative) difference between theoretical and observed frequen-

cies. In the two-tailed Kolmogorov-Smirnov test, the absolute value of the largest

difference should not exceed 1.36/n0.5 with a probability of 95 % provided that the

number of observations exceeds 40. The corresponding confidence for the

one-tailed test is 1.22/n0.5.

2.4.2 Q-Q Plots: Normal Distribution Example

Normality can also be tested graphically by means of a so-called Q-Q plot for

comparing observed quantiles with theoretical quantiles. When the theoretical

frequency distribution is normal, this is the same as using normal probability

paper. In Fig. 2.6, the scale along the vertical axis is linear but the horizontal

scale has been changed in such a manner that the S-shaped curve for any theoretical

cumulative normal distribution plots as a straight line. A normal distribution always

becomes a straight line on normal probability paper. Figure 2.6 shows three types of

plot for the 76 biotite ages listed in Table 2.3: (1) original data (points); (2) theo-

retical normal curve (straight line); (3) a 95 % confidence belt on the theoretical

normal curve. These three plots have been constructed as follows:

Firstly, cumulative frequencies were determined for the classes of ages shown

in Table 2.2. These were converted into cumulative frequency percentage values.

If upper class limits are used, it is not possible to plot the value for the 1,200–

1,220 Ma class because the last class has cumulative frequency of 100 % that is not

part of the probability scale. One may omit plotting this last value but a slight
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refinement consists of plotting the data against so-called plotting percentages by

using the equation:

Plotting percentage ¼ 3� cumulative frequency� 1

3nþ 1ð Þ=100

where n represents number of data (Tukey 1962; Koch and Link 1971). In most

practical applications, the preceding refinement is not used and cumulative

frequencies are used for plotting percentages. This is because the improvement

gained by the refinement generally is very small.

Secondly, a straight line was plotted for the normal biotite distribution. This line

passes through two points with (1) the mean (¼954.5 Ma) with cumulative fre-

quency of 50 %, and (2) the point with abscissa equal to the mean (¼954.5 Ma)

minus one standard deviation (¼91.3 Ma), and value of 15.9 % along the proba-

bility scale.

Thirdly, an approximate 95 % confidence belt was constructed as previously

used by Hald (1952) and Vistelius (1960). If zt represents the standardized value for
a point on the straight line for the theoretical normal distribution and z an observed

Fig. 2.6 Graphical normality test for 76 biotite ages from Grenville Province, Canadian Shield

(After Agterberg 1974). Observed cumulative frequencies (solid dots) are not all contained within
95-% confidence belt on the theoretical normal curve (plotting as straight line on this Q-Q plot),

indicating some departure from normality that is strongest in the upper tail (Source: Agterberg

1974, Fig. 24)
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value that may range at random about the line, then the 95 % confidence interval

satisfies:

zt � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ ztð Þ � Φ �ztð Þ

n � φ2 ztð Þ

s

If the data come from a normal distribution, a 95 % confidence belt, on the

average, contains about 95 % of the plotted observations. The pattern in Fig. 2.2

suggests several departures from normality notably in the upper tail. It also can be

seen that the absolute value of the largest difference between observed and

expected frequencies is 0.14. This is slightly less than 0.16 representing the 95 %

confidence limit according to the two-tailed Kolmogorov-Smirnov test.

2.5 Sampling

Difficulties of sampling rocks at the surface of the Earth and performing measure-

ments on them were discussed in Chap. 1. Geophysical measurements generally are

indirect and apply to large volumes of rocks. The determination of rock composi-

tion data is more direct but often there is a problem on how to decide on what larger

rock unit is represented by the piece of rock subjected to chemical analysis. Also, at

the microscopic scale most rocks are heterogeneous and volume of rock sample

matters. The purpose of the examples given in this section is to illustrate some of

the problems often encountered when rock samples are collected for the purpose of

chemical analysis. Normally rocks are crushed before their chemical composition is

determined on a sample taken from the resulting powder. This aspect of rock

sampling has been studied in detail by geochemists, chemists and mineral engineers

(see, e.g., Gy 2004). Drill-core samples can be used to produce good results. In this

Section, two examples will be given of a technique called “channel sampling” used

in the mining industry for sampling ore in situ in the past and at present.

2.5.1 Pulacayo Mine Example

De Wijs (1951) used a series of 118 zinc concentration values (Table 2.4) from

samples taken at a regular (2 m) interval along a horizontal drift in the Pulacayo

Mine in Bolivia (Fig. 2.7). This series has been used extensively for later study by

many authors including Matheron (1962), Agterberg (1974, 2012), Chen

et al. (2007), Lovejoy and Schertzer (2007) and Cheng (2014). Average zinc

value for Table 2.4 is 15.61 %. This example will again be used later in this

book. Geological background on the Pulacayo orebody is provided here and

consideration paid to the question of how representative this example is of ore
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deposit and rock sampling in general. The geological setting of the Pulacayo Mine

and genesis of the sphalerite-quartz ore deposit are briefly described in a scientific

communication by Pinto-Vásquez (1993).

The zinc values used by de Wijs (1951) are for channel samples cut at 2-m

intervals across the steeply dipping Tajo vein along a horizontal drift on the 446-m

level. This level depth was measured downward from elevation of the San Léon

Tunnel (Fig. 2.7). The 2.7 km long Tajo vein was discovered in 1883 and mined

until 1956. According to Ahlfield (1954), this “silver mine” had the largest annual

zinc and second largest annual silver production in Bolivia. On average, the Tajo

vein was 1.10 m thick with ore containing 14 % zinc and 0.1 % silver. Relative

sphalerite (zinc sulphide) content increased downward in the orebody. According

to Turneaure (1971) the age of the Tajo vein was Neogene, probably as young as

Pliocene. Figure 2.8 shows ore minerals in Pulacayo massive sulphide at

Table 2.4 Classical example of 118 zinc concentration values (in per cent) from Pulacayo Mine,

Bolivia (original data according to de Wijs 1951)

17.7, 17.8, 9.5, 5.2, 4.1, 19.2, 12.4, 15.8, 20.8, 24.1, 14.7, 21.6, 12.8, 11.9, 35.4, 12.3, 14.9, 19.6, 10.6, 
15.1, 15.6, 9.3, 8.1, 13.5, 30.2, 29.1, 7.4, 12.3, 13.6, 9.5, 13.1, 27.4, 8.8, 11.4, 6.4, 27.4, 8.8, 11.4, 6 .4, 
11.0, 11.4, 14.1, 20.9, 10.8, 15.3, 24.0, 12.3, 7.8, 9.9, 20.7, 25.0, 19.1, 13.1, 27.4, 15.2, 12.2, 10.1, 12.3, 
16.7, 18.6, 6.0, 10.6, 11.3, 4.7, 10.9, 6.0, 7.2, 5.6, 8.9, 5.8, 8.9, 6.7, 7.2, 9.7, 10.8, 17.9  10.9, 13.7, 22.3, 
10.2, 5.1, 13.9, 9.0, 10.6, 13.8, 6.5, 6.5, 10.6, 10.6, 23.0, 21.8, 32.8, 30.2, 30.8, 33.7, 26.5, 39.3, 24.5, 
24.9, 23.2, 16.0, 20.9, 10.3, 22.6, 16.2, 22.9, 36.9, 23.5, 18.5, 16.4, 17.9, 18.5, 13.6, 7.9, 31.9, 14.1, 7.1, 
3.9, 3.7, 22.5, 27.6, 17.3

Successive assays are for channel samples that were taken 2 m apart on the 446-m level of this

mine

Fig. 2.7 Simplified cross-section of Pulacayo dome with steeply dipping Tajo vein (After Pinto-

Vásquez 1993). Mining level depths were measured downward from San Léon Tunnel (Source:

Agterberg 2012, Fig. 2)
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microscopic scale. The silver was in the form of fine grains associated with

tetrahedrite. In a conference report by Villaipando and Ueno (1987) it can be

seen that zinc content of sphalerite varied between 65.62 % and 66.03 %.

This implies that maximum possible zinc content would be 66 % and this is

above the largest value of 39.3 % zinc in Table 2.4. However, because the sampled

material consisted not only of massive sulphide but also out of mineralized wall

rock, the largest possible value is probably considerably less than 66 %. This upper

limit must have constrained maximum possible zinc enrichment.

On the 446-m level, average thickness of massive vein filling averaged only

0.50 m in width but wall rocks on both sides contained disseminated sphalerite,

partly occurring in subparallel stringers. The channel samples were cut over a

standard width of 1.30 m corresponding to expected mining width. Consequently,

each assay value represents average weight percentage zinc for a rod-shaped

channel sample of 1.30 m cut perpendicular to the vein (Fig. 2.9). Figure 2.10 is

a smoothed version of the 118 values of Table 2.5. The signal-plus-noise method

used for this smoothing was described in detail in Agterberg (1974). It assumes that

each zinc value is the sum of a “signal” component for continuous change along

the series plus a random white-noise component. Together these two components

were assumed to produce an autocorrelation function of the type ρh¼ c · exp(�ah)
were h represents distance along the drift as will be discussed in more detail in

Chap. 6. Filtering out the noise component produces the signal shown in Fig. 2.10.

Various other statistical methods such as simple moving averaging, kriging

or inverse distance weighting could be used to produce similar smoothed

patterns. The method used to estimate the signal values of Fig. 2.10 will be

explained in Sect. 6.1.1.

The fact that the average zinc content (¼15.61 %) on the 446-m level differs

from the 14 % overall average for the Tajo vein supports Ahlfield’s observation that

average zinc content increases downwards. Obviously, there existed large-scale

zinc-composition “trends” in this ore deposit. In order to capture some of these

trends, Agterberg (1961) fitted a sine function to the first 65 values in Table 2.4 but

his best-fitting amplitude of 2.77 % is not statistically significant.

Fig. 2.8 Micrograph

of massive sulphide ore

in Pulacayo Mine

(After Villaipando and

Ueno 1987). Ore minerals

are sp sphalerite,

tet tetrahedrite, cp
chalcopyrite, py pyrite
(Source: Agterberg 2012,

Fig. 3)
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Fig. 2.9 Schematic representation of channel sampling in Pulacayo Mine. Successive channel

samples along horizontal mining drift on 446-m level were 1.3-m long and 2-m apart. The Tajo

vein, which is 0.5-m wide on average, consists of massive sulphide (hatched pattern) but wall rock

on both sides of the vein contained disseminated sulphide and stringers of sulphide ore. Antici-

pated stoping width was 1.3-m but effective channel width was (L ) was set equal to width of vein

(¼0.5 m). Lag distance (h) is 2 m or multiple of 2 m (Source: Agterberg 2012, Fig. 4)
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Fig. 2.10 Pulacayo Mine zinc concentration values for 118 2-m channel samples along horizontal

drift samples (see Table 2.4 for original data from de Wijs 1951). Sampling interval is 2 m.

“Signal” retained after filtering out “Noise” (Source: Agterberg 2012, Fig. 1)
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2.5.2 Virginia Mine Example

Another set of chemical analyses for channel samples (digitized from Krige and

Ueckermann 1963, Fig. 2) is shown in Table 2.5. These are 61 gold assays taken at

5-ft intervals along a drive in the Virginia Mine, Witwatersrand gold field,

South Africa. Each number is the product of a gold concentration value and

thickness of the vein (or gold “reef”) reported as an inch-pennyweight value

(1 in.-dwt¼ 3.95 cm-g). Because they were digitized from a graph these values

are approximations only. A striking difference between the values in Tables 2.4 and

2.5 is that the gold measures are much more erratic than the zinc values. A measure

often used to express degree of variability in a data set is the coefficient of variation

(CV) which is the standard deviation divided by the mean. For Table 2.4,

CV¼ 0.51; for Table 2.5, it is 1.33. Nevertheless, one can also see in Table 2.5

that neighboring values in the series tend to be similar. Such autocorrelation is

common in chemical element concentration values in rocks, especially for metals.

Witwatersrand gold assays also will be used in other examples later in this book.

The spatial autocorrelation of the series shown in Tables 2.4 and 2.5 is similar to

that shown in many time series. However, it should be kept in mind that geoche-

mical space series are linear samples taken from 3-D rock bodies that usually

display similar or other autocorrelation in other places and directions as well.

This fact led Matheron (1962, 1965) to formalize the concept of “regionalized

random variable” with properties different from the independent and identically

distributed (iid) random variables commonly used in other applications of statistics

such as populations of plants and in socio-economic surveys.
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Chapter 3

Maximum Likelihood, Lognormality

and Compound Distributions

Abstract Estimators obtained by the classical method of moments, although they

are unbiased, can have the undesirable property of being relatively imprecise, and

more precise estimators can be obtained from the same data by using other methods

of estimation. One such method is based on the principle of maximum likelihood

that is particularly useful in applications to relatively small samples from positively

skewed frequency distributions including the lognormal also to be discussed in this

chapter. The maximum likelihood method was invented by Fisher (1922) who

developed it as an alternative to Bayesian statistics to which he was strongly

opposed. The principle of maximum likelihood is as follows. Suppose that the

frequency distribution of a random variable X contains several parameters θ1, θ2, . . .
that are to be estimated. The probability that a value xi will fall within a narrow

interval Δx is approximately f (xi) Δx. The probability that n values will fall where

they do is Δxn ·Πn f (xi). As long as Δx is suf�ciently narrow, the choice of it does

not matter and one can consider the product Πn f (xi) only. This is the likelihood

function. For any given values of the parameters θ1, θ2, . . ., the likelihood function

will assume a speci�c value. If this value is large it can be assumed that choice of

parameters is a good one. The likelihood method consists of maximizingΠn f (xi, θj)
or its logarithm Σ log f (xi, θj) with respect to the θj. The resulting maximum

likelihood estimators always have the minimum variance property. However, they

can be biased contrary to estimators based on the method of moments. The

maximum likelihood method with its rapid convergence to normality for increased

sample size is helpful in various geoscience applications including the analysis of

age determinations in numerical timescale construction. Other illustrative examples

include applications to chemical element concentration values from small sets of

observations taken from surface rocks or drill-cores, compositions of larger channel

samples from orebodies, thickness measurements of layers in sedimentary rocks,

and occurrences of fossils in stratigraphic sections.

F. Agterberg, Geomathematics: Theoretical Foundations, Applications
and Future Developments, Quantitative Geology and Geostatistics 18,
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3.1 Applications of Maximum Likelihood

to the Geologic Timescale

Several methods have been developed to estimate the ages of boundaries between

stratigraphic subdivisions in the Geologic Timescale. Cox and Dalrymple (1967)

originally developed an approach for estimating the age of Cenozoic chron bound-

aries from inconsistent K-Ar age determinations of basaltic rocks. Harland

et al. (1982, 1990) adopted this method in their calculations of stage boundary

ages for the �rst two international geologic timescales (GTS82 and GTS90). The

basic principle of this approach is as follows: assuming a hypothetical trial age for

an observed chronostratigraphic boundary, rock samples stratigraphically above

this boundary should be younger, and those below it should be older.

An inconsistent date is either an older date for a rock known to be younger, or a

younger date for a specimen known to be older. The difference between each

inconsistent date and the trial age can be standardized by dividing it by the standard

deviation of the inconsistent date. Thus, relatively imprecise dates receive less

weight than more precise dates. The underlying assumptions are that: (1) the rock

samples are uniformly distributed along the time axis, and (2) the error of each date

satis�es a “normal” (Gaussian) error distribution with standard deviation equal to

that of the age determination method used. Standardized differences between

inconsistent dates and trial age can be squared and the sum of squares (written

as E2) can be determined for inconsistent dates corresponding to the same trial age.

Chronograms constructed by Harland et al. (1982) were U-shaped plots of E2

against different trial ages spaced at narrow time intervals. The optimum choice

of age was selected at the trial age where E2 is a minimum.

Using the maximum likelihood method, Agterberg (1988) made the following

improvement to this method. In addition to inconsistent dates, there generally are

many more consistent dates for any trial age selected for determination of the age of

a chronostratigraphic boundary. The maximum likelihood method can be used to

combine consistent with inconsistent dates, resulting in an improved estimate of the

age of the chronostratigraphic boundary under consideration. Each standardized

difference with respect to a trial age can be interpreted as the fractile of the

Gaussian distribution in standard form, and transformed into its corresponding

probability. Summation of the logarithmically transformed probabilities then yields

the log-likelihood value of the trial date. In this type of calculation, inconsistent

dates receive more weight than consistent dates. Consequently, the improvement

resulting from using consistent dates, in addition to the inconsistent dates, generally

is relatively minor. Only when there are relatively few dates, possibly combined
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with a total lack of inconsistent dates, does the use of consistent dates yield

signi�cantly better results. The log-likelihood function is beehive-shaped. This

topic will be discussed in more detail in the next sections.

3.1.1 Weighting Function Defined for Inconsistent Dates
Only Model

Cox and Dalrymple (1967) developed their statistical approach for estimating the

age of boundaries between polarity chronozones in the Cenozoic (Brunhes,

Matuayana, Gauss and Gilbert chronozones). A slightly modi�ed version of their

method was used in Harland et al. (1982) for estimating the ages of boundaries

between the stages of the Phanerozoic geologic timescale as follows. Suppose that

te represents an assumed trial or “estimator” age for the boundary between two

stages. Then the n measured ages t in the vicinity of this boundary can be classi�ed
as ty (younger) or to (older than the assumed stage boundary). Each age determina-

tion tyi or toi has its own standard deviation si. If these standard deviations are

relatively large, a number (na) of the age determinations is inconsistent with respect

to the estimator te. Only the na inconsistent ages tai with toi< te and tyi> te were
used for estimation by Cox and Dalrymple (1967) and Harland et al. (1982). These

inconsistent ages may be indicated by letting i go from 1 to na. In Harland

et al. (1982) the quantity E2 with

E2 ¼
Xna

i¼1
tai � teð Þ2=s2t

is plotted against te in the chronogram for a speci�c stage boundary. Such a plot

usually has a parabolic form, and the value of te for which E2 is a minimum can be

used as the estimated age of the stage boundary.

The preceding approach also can be formulated as follows: Suppose that a stage

with upper stage boundary t1 and lower boundary t2 is sampled at random. This

yields a population of ages t1< t< t2 with uniform frequency density function h(t).
Suppose further that every age determination is subject to an error that is normally

distributed with unit variance. In general, the frequency density function f(t) of
measurements with errors that satisfy the density function φ for standard normal

distribution satis�es:

f tð Þ ¼
Z 1

�1
φ t� xð Þh tð Þdx ¼ 1

t2 � t1

Z t2

t1

φ t� xð Þdx ¼ 1

t2 � t1
Φ t� t1ð Þ½ � � Φ t� t1ð Þ½ �

For this derivation, the unit of t can be set equal to the standard deviation of the

errors. Alternatively, the duration of the stage can be kept constant whereas the

standard deviation (σ) of the measurements is changed. Suppose that t2�t1¼ 1, then
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f tð Þ ¼ Φ
t� t1
σ

� �
�Φ

t� t2
σ

� �

Graphical representations of f(t) for different values of σ were given by Cox and

Dalrymple (1967, Fig. 7).

3.1.2 Log-Likelihood and Weighting Functions

Suppose now that the true age τ of a single stage boundary is to be estimated from a

sequence of estimator ages te by using n measurements of variable precision on rock

samples that are known to be either younger or older than the age of this boundary.

This problem can be solved if a weighting function f(x) is de�ned. The boundary is

assumed to occur at the point where x¼ 0. For the lower boundary (base) of a stage,

Φ[(t�t1)/σ] can be set equal to one yielding theweighting function f(x> te)¼ 1�Φ(x).
Alternatively, this weighting function can be derived directly. If all possible ages

stratigraphically above the stage boundary have equal chance of being represented,

then the probability that their measured age assumes a speci�c value is proportional to

the integral of the Gaussian density function for the errors. In terms of the de�nitions

given, any inconsistent age ty greater than te has x> 0 whereas consistent ages with

ty< te have x< 0. It is assumed that standardization of an age tyi or toi can be achieved
by dividing either (tyi�te) or (toi�te) by its standard error si yielding xt¼ (tyi�te)/si or
xt¼ (toi�te)/si.

Suppose that xi is a realization of a random variable X. The weighting function

f(x) then can be used to de�ne the probability Pi¼P(Xi�xi)¼ f(xi) ·Δx that xwill lie
within a narrow interval Δx about xi. The method of maximum likelihood for a

sample of n values xi consists of �nding the value of te for which the product of the

probabilities Pi is a maximum. Because Δx can be set equal to an arbitrarily small

constant, this maximum occurs when the likelihood function

L ¼ L x
��te� � ¼ Yn

i¼1

f xið Þ

is a maximum. Taking the logarithm at both sides of this equation, the model

becomes as graphically illustrated in Fig. 3.1a:

logL x
��te� � ¼ Xn

i¼1

log 1�Φ xið Þ½ �

If the log-likelihood function is written as y and its �rst and second derivatives

with respect to te as y
0 and y00, respectively; then the maximum likelihood estimator

of the true age τ occurs at the point where y0 ¼ 0 and its variance is �1/y00 (cf.
Kendall and Stuart 1961, p. 43). The log-likelihood function becomes parabolic in
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shape when n is increased. If the equation of the parabola is written as y¼ a
+ b · te + c · te

2, the maximum likelihood estimate MLE(τ) becomes –b/2c with

variance �1/2c. It will be shown on the basis of a practical example in the next

section that a chronogram using E2 represents the maximum likelihood solution for

a different kind of �lter with equation:

f a x
��te� � ¼ exp � x� teð Þ2

h i

where x> te because na inconsistent ages are used only. This weighting function is

shown in Fig. 3.1b. If the corresponding likelihood function is written as La, it
follows that E2¼�loge La.

3.1.3 Caerfai-St David’s Boundary Example

For example, the quantity E2 is plotted in the vertical direction of Fig. 3.2 for the

Caerfai-St David’s boundary example taken from Harland et al. (1982, Fig. 3.7i).

The data on which this chronogram is based are shown along the top. Values of E2

were calculated at intervals of 4 Ma and a parabola was �tted to the resulting values

Fig. 3.1 Two different weighting functions on basis of which the likelihood function can be

estimated. (a). The function f(x) follows from the assumption that every age determination is the

sum of random variables for (1) uniform distribution of (unknown) true ages, and (2) Gaussian

distribution for measurements. (b). The function fa(x) is for inconsistent ages only with

log-likelihood function �E2 (Source: Agterberg 1990, Fig. 3.12)
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by using the method of least squares. If the log-likelihood function is parabolic with

E2¼ a + b · te + c · te
2, it follows that the maximum likelihood estimator is normally

distributed with mean m¼ b/2c and variance s2¼ 1/2c. It will be shown in next

paragraph that, graphically, s can be determined by taking one fourth of the width of

the parabola at the point where E2 exceeds its minimum value by 2 (see Fig. 3.2).

This method differs from the procedure followed by Harland et al. (1982) who

de�ned the error of their estimate by taking one-half the age range for which E2

does not exceed its minimum value by more than 1. This yields a standard deviation

that is √2 times larger than the one resulting from La.
According to the theory of mathematical statistics (Kendall and Stuart 1961,

pp. 43–44), the likelihood function is asymptotically normal, or:

ey ¼ 1

σ
ffiffiffiffiffi
2π

p exp � t2

2σ2

� 	

Here ey¼ L(x|te) and t¼ te�τ; σ represents the standard deviation of this asymp-

totically normal curve that is centered about t¼ 0. Taking the logarithm at both

sides gives the parabola y¼max�t2/2σ2 where max represents the maximum value

of the log-likelihood function. Setting y¼max�2 then gives t¼ 2σ. Consequently,
the width of the parabola at two units of y below its maximum value is equal to 4σ.
The parabola shown in Fig. 3.2 (and subsequent illustrations) is assumed to provide

an approximation of the true log-likelihood function. The standard deviation

obtained from the nest-�tting parabola is written as s. In Fig. 3.2 the Y-axis has

Fig. 3.2 Chronogram for Caerfai St. David’s boundary example with parabola �tted by method of

least squares. E2¼�log-likelihood function is plotted in vertical direction creating a basket. Dates

belonging to stages, which are older and younger than boundary, are indicated by o and y,
respectively. Standard deviation follows from d representing width of parabola for E2 equal to

its minimum value augmented by 2 (Source: Agterberg 1990, Fig. 3.13)
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been inverted so that –y¼E2 points upwards in order to facilitate comparison with

chronograms in Harland et al. (1982).

Figure 3.3 shows estimates based on L. The resulting best-�tting parabola is

almost equal to the one in Fig. 3.2 that was based on La instead of L. Consequently,
the estimated ages of the Caerfai-St David’s boundary and their standard deviations

obtained from La and L also are similar. This conclusion will be corroborated by a

more detailed comparison of the weighting functions for L and La at the end of this

section, and by computer simulation experiments to be described in the next

section. However, it will be shown that La does not provide a good approximation

when inconsistent data are missing. When n is small, L also produces better results

than La because a parabolic chronogram is more readily obtained when the consis-

tent ages are used together with the inconsistent ages as will be illustrated by the

following example. An age estimate based on Harland et al.’s (1982, Fig. 3.4h,

p. 54) chronogram for the Norian-Rhaetian boundary is 213 Ma. The corresponding

standard error reported by Harland et al. (1982) is 9 Ma. The L-based maximum

likelihood method using the same data set of only six dates gives an estimated age

of 215.5 Ma with standard error of 4.2 Ma.

3.1.4 The Chronogram Interpreted as an Inverted
Log-Likelihood Function

The approach taken in this section differs slightly from the one originally taken by

Cox and Dalrymple (1967). The basic assumptions that the dates are uniformly

distributed through time and subject to measurement errors are made in both

Fig. 3.3 Caerfai St. David’s boundary example. Age estimated by maximum likelihood method

using L. Standard deviation (s) and width of 95 % con�dence interval are approximated closely by

results shown in Fig. 3.2 (Source: Agterberg 1990, Fig. 3.14)
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methods of approach. Cox and Dalrymple (1967, see their Fig. 4 on p. 2608)

demonstrated that, under these conditions, the inconsistent dates for younger

rocks have probability of occurrence PIy with:

PIy tð Þ ¼ ½erfc
t� τ

σm
ffiffiffi
2

p

 �

where erfc denotes complementary error function and τ is true age of the chronostra-
tigraphic boundary (¼boundary between geomagnetic polarity epochs in Cox and

Dalrymple’s original paper). The standard deviation for measurement errors is

written as σm. Setting τ¼ 0 and using the relationship ½erfc (z/√2)¼ 1�Φ(z) it

follows that:

PIy tð Þ ¼ 1�Φ
t

σm

� 	
¼ f

t

σm

� 	

If t/σm is replaced by x, the weighting function shown in Fig. 3.1 is obtained.

Consequently, this weighting function can be interpreted as the probability that an

inconsistent age ta is measured for the younger rocks. Likewise, PIo(t)¼ f(�t/σm)
can be interpreted as the probability that an inconsistent age ta can be de�ned for

older rocks.

Cox and Dalrymple (1967) next introduced the trial boundary age te and de�ned
a measure of dispersion of all inconsistent dates ta satisfying:

D2 ta � teð Þ ¼
Z 1

�1
t� teð Þ2PI tð Þdt

where PI (t)¼PIy(t) if t� 0; and PI¼PIo(t) if t< 0. For te¼ τ, this quantity is a

minimum (see Cox and Dalrymple 1967, Fig. 5 on p. 2608). A normalized version

of E2 can be directly compared to the theoretical error for D2(ta�te) when the

number of inconsistent dates is large. This normalization consists of dividing E2 by

average number of dates per unit time interval. It is noted that PI (t) does not

represent a probability density function because it can be shown that

Z 1

�1
PI tð Þdt ¼

ffiffiffiffiffiffiffiffi
2=π

p
¼ 0:798 < 1 if te ¼ τ

In this section, E2 is not interpreted as a quantity that is approximately propor-

tional to D2(ta�te). Instead of this, it is regarded as the inverse of a log-likelihood

function with Gaussian weighting function. For very large samples, good estimates

can be obtained using the inconsistent dates only. For small samples, however,

signi�cantly better results are obtained by using the consistent dates together with

the inconsistent dates by replacing the Gaussian weighting function by f(x).
All Gaussian weighting functions provide the same mean age for a chronostra-

tigraphic boundary when the maximum likelihood method is used. However, the
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standard deviation of this mean depends on the choice of the constant p in exp

(�px2). For example, p¼ 1.0 for fa(x) in Fig. 3.1b. Assuming that f(x) of Fig. 3.1a
represents the correct weighting function, one can ask for which value of p the

Gaussian function exp (�px2) provides the best approximation to f(x) with x� 1.

Let u represent the difference between the two curves, so that loge {1�Φ(x)}¼�
px2 + u. Minimizing Σ u2 for xi¼ 0.1 · k (k¼ 1. 2. . . ., 20) by the method of least

squares gives popt¼ 1.13. Because of the large difference between the two curves

near the origin, popt increases when fewer values xi are used. It decreases when more

values are used. Letting k run to 23 and 24, respectively, yields popt values equal to
1.0064 and 0.9740, respectively. These results con�rm the conclusion reached

previously that a Gaussian weighting function with p¼ 1.0 provides an excellent

approximation to f(x).

3.1.5 Computer Simulation Experiments

Computer simulation in geoscience has had a long history of useful applications

(Harbaugh and Bonham-Carter 1970). Computer simulation experiments were

performed by Agterberg (1988) in order to attempt to answer the following ques-

tions: (a) does the theory of the preceding sections remain valid even when the

number of available dates is very small; (b) how do estimates obtained by the

method of �tting a parabola to the log-likelihood function compare to estimates

obtained by the method of scoring which is commonly used by statisticians in

maximum likelihood applications (see, e.g., Rao 1973); and (c) how do results

derived from the chronograms in Harland et al. (1982) compare to those obtained by

the maximum likelihood method.

Figure 3.4 and Table 3.1 illustrate the type of computer simulation experiment

performed. Twenty-�ve random numbers were generated on the interval [0, 10].

Fig. 3.4 Two examples of runs (No. 1 and No. 7) in computer simulation experiment. True dates

(a) were generated �rst, classi�ed and increased (or decreased) by random amount. Younger and

older ages are shown above and below scale (b), respectively (Source: Agterberg 1990, Fig. 3.15)
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These numbers with uniform frequency distribution can be regarded as true dates

(τ) without measurement errors. The stage boundary was set equal to 5 (¼mid-point

of interval). Results of two runs (1 and 7) are taken for example here. Values of τ
less than 5 belong to the younger stage A, and those greater than 5 to the older stage

B (Table 3.1). The measurement error was introduced by adding to τ a normal

random number with zero mean and standard deviation equal to one. As a result of

this, each value of τ was changed into a date t. Some values of t ended up outside the
interval [0, 10], like 11.197 for Run 1 (Fig. 3.4 and Table 3.1), and were not used

later. In Run 1, a single date for the younger stage (A) has t> 5, and a date for B has

t< 5. Suppose now, for example, that the trial age of the stage boundary te is set
equal to 4.6. Then there are three inconsistent ages for run No. 1 and these are

marked by asterisks in Table 3.1. Each normalized date x¼ t�te was converted into

Table 3.1 Run 1 in computer

simulation experiment
τ t (x ¼ t–4.6) z P logeP

4.587 A 4.380 –0.220 0.220 0.5871 –0.5325

7.800 B 8.048 3.448 3.448

2.124 A 2.193 –2.407 2.407 0.9920 –0.0081

0.668 A 2.239 –2.361 2.361 0.9909 –0.0092

6.225 B 5.802 1.202 1.202 0.8853 –0.1218

9.990 B 9.945 5.345 5.345

4.896 A 4.574 –0.026 0.026 0.5102 –0.6730

4.606 A* 6.487 1.887 –1.887 0.0296 –3.5211

0.796 A 0.553 –4.047 4.047

1.855 A 2.526 –2.074 2.074 0.9810 –0.0192

6.292 B 6.923 2.323 2.323 0.9899 –0.0101

3.280 A 1.998 –2.602 2.602 0.9954 –0.0046

2.422 A 1.435 –3.165 3.165

1.397 A 0.912 –3.688 3.688

4.538 A 4.365 –0.235 0.235 0.5928 –0.5230

0.830 A 0.803 –3.797 3.797

6.194 B* 4.033 –0.567 –0.567 0.2854 –1.2540

4.545 A 3.930 –0.670 0.670 0.7490 –0.2890

4.774 A* 4.814 0.214 –0.214 0.4154 –0.8786

0.905 A 0.713 –3.887 3.887

9.763 B 11.197

8.285 B 8.902 4.302 4.302

3.131 A 3.676 –0.924 0.924 0.8224 –0.1955

9.987 B 9.435 4.835 4.835

9.442 B 9.620 5.020 5.020

Total ¼ –8.0397

True dates t were classi�ed as A (younger) or B (older) than

5 representing true age of stage boundary. Dates t with measure-

ment error are compared to trial age (te¼ 4.6). Inconsistent ages

are indicated by asterisks. Z¼�x for younger rocks (A) and z¼ x
for older rocks (B). Standard z-value is fractile of probability

P. Total of logs of P gives value of log-likelihood function for

te¼ 4.6 (Source: Agterberg 1990, Table 3.2)
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a z-value (¼fractile of normal distribution in standard form) by changing its sign if

it belongs to the younger stage A. The value of z was transformed into a probability

P¼Φ(z) for values on the interval [te�3, te+ 3]. The frequency corresponding to

3 is equal to 0.999 of which the natural logarithm is equal to�0.001. Consequently,

values outside the interval [te� 3] yield probabilities which are approximately

1 (or 0 for the log-likelihood function) and these were not used for further analysis.

Thus a natural window is provided screening out dates that are not in the vicinity of

the age of chronostratigraphic boundary that is to be estimated. Most probabilities

are greater than 0.5. Only inconsistent dates (asterisks in Table 3.1) give probabil-

ities less than 0.5. The value of the log-likelihood function for te is the sum of the

logs of the probabilities as illustrated for �te¼ 4.6 in Table 3.1.

Log-likelihood values for Run No. 1 are shown in Table 3.2 with te ranging from
3 to 7 in steps of 0.1. The largest log-likelihood value is reached for te¼ 5.6 and this

value was selected as the �rst approximation of the true age of the stage boundary.

Ten values before and after 5.6 were used to �t a parabola that is shown in Fig. 3.5.

The �tted parabola is more or less independent of the number of values (¼21) used

to �t it and of width of neighborhood (¼2). However, the neighborhood should not

be made too wide because of random �uctuations (local minima and maxima near

te¼ 3 or 7; see e.g. Table 3.2). Such edge effects should be avoided. They are due to

the fact that the initial range of simulated time was arbitrarily set equal to 10 in the

computer simulation experiment. The peak of the best-�tting parabola provides the

second approximation (¼m) of the estimated age. The standard deviation (¼s) of

the corresponding normal distribution can be used to estimate the 95 % con�dence

interval m� 1.96 s also shown in Fig. 3.5.

The sum of squares E2 for La, using inconsistent dates only, also is tabulated in

Table 3.1 as a function of te. The �rst approximation of its minimum value is 5.3.

The corresponding parabola is shown in Fig. 3.5. Te mean value resulting from La is
about 0.3 less than the mean based on L and its standard deviation is nearly the

same. It is fortuitous that the mean based on La is closer to the population mean

(�5) than that based on L. On the average, the L method gives better results (see

results for 50 runs summarized at the end of this section).

Means and standard deviations obtained for the �rst ten runs of the computer

simulation experiment are listed in Table 3.3. If they could be estimated, results

obtained for La are close to those for L. The estimated standard deviations tend to be

slightly smaller or much greater. It can be seen from the results for Run No. 7 shown

in Fig. 3.6 that the large standard deviations are due to a break-down of the La
method if there are no inconsistent dates. Results obtained by means of the method

of scoring (see, e.g., Rao 1973, pp. 366–374) also are shown in Table 3.3. In

application of this method, the following procedure was followed. As before, the

log-likelihood was calculated for 0.1 increments in te and the largest of these values
was used as the initial guess. Suppose that this value is written as y. Then two other
values x and z were calculated representing log-likelihood values close to y at very
small distances �10�4 and 104 along the te-axis. The quantities D1¼ 0.5(z�x) · 104

and D2¼ (x�2y+ z) · 108 were used to obtain a second approximation of the mean

by subtracting D1/D2 from the initial guess. The procedure was repeated until the
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Table 3.2 Values of log-likelihood functions estimated for Run 1 and predicted values for

parabola �tted by method of least squares

Time

Log-likelihood Sum of squares

Predicted LLF Predicted E2(Σ log P) (E2)

3.0 –15.58 10.86

3.1 –14.41 9.37

3.2 –13.30 8.00

3.3 –12.27 6.75

3.4 –11.31 5.63

3.5 –16.98 13.54

3.6 –15.83 12.07

3.7 –14.75 10.73

3.8 –13.75 9.52

3.9 –12.81 8.43

4.0 –11.94 7.46

4.1 –11.13 6.59

4.2 –10.39 5.84

4.3 –9.72 5.21 5.11

4.4 –9.10 4.69 4.69

4.5 –8.54 4.27 4.32

4.6 –8.04 3.93 –7.98 3.99

4.7 –7.59 3.65 –7.57 3.71

4.8 –7.20 3.44 –7.21 3.47

4.9 –6.87 3.27 –6.89 3.28

5.0 –6.58 3.15 –6.61 3.14

5.1 –6.35 3.06 –6.38 3.04

5.2 –6.16 3.02 –6.19 2.99

5.3** –6.02 3.01** –6.05 2.98**

5.4 –5.93 3.05 –5.95 3.01

5.5 –5.88 3.13 –5.89 3.09

5.6* –5.88* 3.24 –5.88* 3.22

5.7 –5.92 3.40 –5.91 3.39

5.8 –6.00 3.59 –5.98 3.61

5.9 –6.13 3.84 –6.10 3.88

6.0 –6.29 4.15 –6.26 4.18

6.1 –6.49 4.51 –6.46 4.54

6.2 –6.73 4.94 –6.71 4.94

6.3 –7.01 5.42 –7.00 5.38

6.4 –7.33 5.97 –7.33

6.5 –7.69 6.57 –7.71

6.6 –8.08 7.23 –8.13

6.7 –8.50 7.91

6.8 –8.97 8.65

6.9 –9.47 9.43

7.0 –10.01 10.24

Initial guesses of extreme values are indicated by asterisks (Source: Agterberg 1990, Table 3.3)
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Fig. 3.5 Maximum

likelihood methods of

Fig. 3.4 used for estimating

mean age of stage boundary

in Run 1. (a) All dates;

(b) Inconsistent dates only

(Source: Agterberg 1990,

Fig. 3.16)

Table 3.3 Summary of results for �rst 10 runs of computer simulation experiment

Maximum likelihood method Gaussian weighting function

Run Parabola Scoring Parabola Scoring

No. Mid-point Mean S.D. Mean S.D. Mid-point Mean S.D. Mean S.D.

1 5.6 5.582 0.479 5.554 0.481 5.3 5.269 0.470 5.260 0.500

2 5.7 5.632 0.481 5.663 0.489 6.3 6.190 0.480 6.264 0.500

3 5.1 5.153 0.420 5.142 0.423 4.8 4.884 0.335 4.828 0.316

4 4.5 4.506 0.447 4.507 0.452 4.2 4.321 0.395 4.216 0.354

5 5.1 5.070 0.461 5.089 0.466 5.3 5.217 0.482 5.293 0.408

6 4.4 4.419 0.502 4.448 0.505 4.6 4.625 0.749*

7 5.7 5.710 0.531 5.728 0.542 5.8 5.767 3.924*

8 5.2 5.205 0.406 5.200 0.411 5.0 5.025 0.364 5.017 0.408

9 5.0 5.022 0.417 5.018 0.419 5.0 4.966 0.614*

10 4.2 4.231 0.609 4.232 0.623 4.3 4.248 1.001*

Comparison of estimates obtained by �tting parabola and scoring method, respectively. Standard

deviations marked by asterisks are too large (Source: Agterberg 1990, Table 3.4)
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difference between successive approximations became negligibly small, Then the

standard deviation of the �nal estimate is given by SD¼ 1/|D2|.

For L, the scoring method generally yields estimates of SD which are slightly

greater than those resulting from the parabola method. However, the difference is

negligible small (Table 3.3). For La the scoring method provides an answer only in

six of the experiments of Table 3.3. Similar results were obtained in a second type

of computer simulation experiment using variable measurement error (see

Agterberg 1988, for details). In total, 50 runs were made for each of the two

types of experiments. For constant variance of measurement errors, the parabola

method for L gave an overall mean of 4.9287 and standard deviation 0.4979 as

calculated from 50 means. The corresponding numbers for the second type of

experiment were 4.9442 and 0.5160. The Gaussian weighting scheme provided

overall means equal to 4.9213 and 4.9414 in the two types of experiments, and

corresponding standard deviations equal to 0.5790 and 0.6541, respectively. If the

parabola did not provide a good �t to the function E2, because of zero values around

its minimum, the mean was approximated by the mid-point of the range of zero

values in these calculations. The results of the 50 runs for the two types of

experiments con�rm the earlier results described in this section. Additionally,

they show that the Gaussian weighting function (using La) provides results that

are almost as good as the method of maximum likelihood, unless there are no

inconsistent dates in the data set.
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Fig. 3.6 Maximum

likelihood methods of

Fig. 3.4 used for estimating

mean age of stage boundary
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function �E2 does not

provide a good result in this

application. (a) All dates;

(b) Inconsistent dates only

(Source: Agterberg 1990,

Fig. 3.18)
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3.1.6 Mesozoic Timescale Example

The maximum likelihood method (Lmethod) was used repeatedly for stage boundary

age estimation during the 1990s (cf. Agterberg 1994).An example is shown in Fig. 3.7.

Estimates obtaining by using the scoringmethodwere re�ned by splining, a method to

be discussed inChap. 9. Details of how theMesozoic timewas computed can be found

in Gradstein et al. (1994, 1995). A general disadvantage of the chronogram and

Fig. 3.7 Ages of Mesozoic stage boundaries estimated by maximum likelihood (Modi�ed from

Gradstein et al. 1995, Fig 6)
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maximum likelihood methods is that the relative stratigraphic position of any rock

sample is generalized with respect to stage boundaries that are relatively far apart in

time. The relative stratigraphic position of one samplewith respect to otherswithin the

same stage is not considered. A better approach for estimating the age of stage

boundaries currently is to incorporate precisely known stratigraphic positions for

which high-precision age determinations are available. More data of this type have

become available during the past 20 years resulting in two international geologic time

scales (GST2004 and GST2012). Moreover, the establishment of GSSP’s

(GSSP¼Global Stratigraphic Section and Point; see Chap. 9) is allowing more

precise estimation of the age from extensive data at or near stage boundaries as in

the following example for the age of Maastrichtian-Paleocene boundary.

Precision of Cenozoic epoch boundaries in GTS2012 (Gradstein et al. eds, 2012)

has become excellent because of use of the astronomical clock. This improvement

applies to Cenozoic stage boundaries as well. Remaining uncertainty of ages of

stage boundaries is illustrated by the following example. Currently, the best age

estimate of the Maastrichtian-Paleocene boundary is 66.0� 0.5 Ma. This 95 %

con�dence interval extends to the GTS2004 (Gradstein et al. eds, 2004) estimate

of 65.5� 0.3 Ma. The GTS2004 estimate was close to Renne et al.’s (1998) estimate

of 65.46� 1.26 Ma, which was based on back-calculation with external errors of

Swisher et al.’s (1993) estimate for an ash layer probably coincident with the

Cretaceous-Paleogene boundary. New estimates for this boundary include two ages

recently proposed by Husson et al. (2011) which are (1) 65.59� 0.07 Ma on the basis

of 405 ka eccentricity variation resulting from astronomical solution La2010a, and

(2) 66� 0.07 Ma in coherence with radio-isotope datings. However, Renne

et al. (2012)’s preferred estimate of 66.043� 0.086 Ma supports the GTS2012

estimate of the Maastrichtian-Paleocene boundary. These authors ascribe earlier

estimates, which are closer to 65.5 Ma as in GTS2004, to previous miscalibration

by two 405 ka eccentricity cycles (Renne et al. 2012, p. 684).

Undoubtedly, there will be further improvements of the numerical geological

time scale in future. These may include the following: it is likely that the astro-

nomical clock will be extended downward from the Cenozoic into the Mesozoic

and older periods; zone boundary age estimation may become possible (in addition

to further improved stage boundary age estimation); future GSSPs will help to

re�ne the Mesozoic and Paleozoic time scales; and the Precambrian time scale will

continue to be further improved. Rapidly increasing numbers of high-precision

dates are bound to signi�cantly improve overall precision in future time scales,

although GTS2012 already is more accurate and precise than its predecessors.

The maximum likelihood method discussed in this chapter may become useful

again in future for �ner chronostratigraphic sub-divisions.

3.2 Lognormality andMixtures of Frequency Distributions

A random variable X has lognormal frequency distribution if the logarithms of its

values are normally distributed. Theory of the lognormal distribution is explained in

detail by Aitchison and Brown (1957). In general, if X represents a random variable
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with cumulative distribution F2(x), and one knows the distribution F1[h(x)] where
h(x) is a function of x, then F2(x)¼F1[h(x)]. Differentiation of both sides with

regard to x gives:

dF2 xð Þ
dx

¼ dF1 h xð Þ½ �
dh xð Þ � dh xð Þ

dx

Box 3.1: Moments of Lognormal Distribution

If h(x)¼ loge x, the lognormal density function becomes:

f 2 xð Þ ¼ 1
xσ

ffiffiffiffi
2π

p exp �½ logex�μ
σ

� �2

 �

.

In this expression the mean μ and standard deviation σ are for logarithmi-

cally (base e) transformed data. If X represents the random variable with

lognormal distribution, its moments can be derived as follows. The moment

generating function of the normal distribution is: m(u)¼ exp[μu+ σ2u2/2].
From the equation for the moment generating function of a continuous

random variable, it can be derived that for the lognormal distribution:

μ
0
r ¼ exp[μr+ σ2r2/2]. Consequently, the moments of the lognormal

distribution constitute the moment generating function of the normal

distribution. The mean and variance written as α and β2, are:

μ Xð Þ ¼ exp μþ σ2

2

h i
; σ2 Xð Þ ¼ exp 2μþ 2σ2½ � � exp 2μþ σ2½ �.

3.2.1 Estimation of Lognormal Parameters

Examples of application of the method of moments to the data of Tables 2.4 and 2.5

are as follows. The 118 zinc values of Table 2.4 produce the estimates m¼ 2.6137

and s2¼ 0.2851 after logarithmic transformation. It follows that m(x)¼ 15.74 and

s2(x)¼ 81.74 for the untransformed zinc values. However, direct estimation of

mean and variance of the 118 zinc values gives mean and variance equal to 15.61

and 64.13, respectively. The slightly larger value of variance (s2(x)¼ 81.74)

obtained by the method of moments suggests a slight departure from lognormality

(large-value tail slightly weaker than lognormal) possibly related to the fact that the

largest possible zinc value is signi�cantly less than 66 % (see Sect. 2.4.1). Similar

estimates based on the 61 gold values of Table 2.5 are as follows. Mean and

standard deviation of original data are 907 and 1,213 in comparison with 897 and

1,088 based on logarithmically transformed values. This is not a large difference

indicating that the sample size in this example is suf�ciently large so that it is not

necessary to apply the following method that is useful for smaller data sets or when

positive skewness is larger.
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Finney (1941) and Sichel (1952, 1966) have used the maximum likelihood

method to estimate the mean α and variance β2 of the lognormal distribution

from the mean variance (s2) of n logarithmically transformed values. Their results

are:

â ¼ eloge xð Þ � Ψ n
s2

2

� 	
; β̂ 2 ¼ e2�loge xð Þ Ψ n 2s2

� �� Ψ n
n� 2

n� 1
s2

� 	� 

where Ψ n tð Þ ¼ 1þ n�1
n tþ n�1ð Þ2

n2 nþ1ð Þ
t2

2! þ n�1ð Þ5
n2 nþ1ð Þ nþ3ð Þ

t3

3! þ � � �
The series de�ning Ψn(t) converges only slowly, but its values for variable n and

t can be calculated quickly by digital computer.

An example of application of the maximum likelihood method was given in

Agterberg (1974). Previously, McCrossan (1969) had shown that probable ultimate

recoverable oil reserves of 52 Leduc reef pools in Alberta satisfy a lognormal

distribution. The arithmetic mean and variance of the natural logs of these numbers

were 15.011 and 6.983. It follows that t¼ s2/2¼ 3.491. The maximum likelihood

estimate of the mean becomes 83.5 · 106 barrels. This unbiased estimate exceeds the

arithmetic mean of 53 · 106 barrels. Although the arithmetic mean also is unbiased,

it underestimates the true mean of values drawn from the lognormal distribution in

this example because it is relatively imprecise.

Approximate lognormality is widespread in the geosciences. Examples include

small-particle statistics, grain size (Krumbein 1936); thickness of sedimentary

layers of different lithologies (Kolmogorov 1951); ore assays; element concentra-

tion values in rocks (Krige 1951); size of oil and gas �elds (Kaufman 1963); and

trace-element concentration values in rocks (Ahrens 1953). Two methods of

explaining positive skewness of frequency curves were recognized by Vistelius

(1960). The �rst, better known, explanation is based on the theory of proportionate

effect (see next paragraph). The second model (Vistelius model) is based on the

theory that one may be sampling a mixture of many separate frequency distribu-

tions, which are interrelated in that they share the same coef�cient of variation.

The theory of proportionate effect was originally formulated by Kapteyn (1903)

and later in a more rigorous manner by Kolmogorov (1941, 1951). It can be

regarded as another type of application of the central-limit theorem. Suppose that

a random variable X was generated stepwise by means of a generating process that

started from a constant X0. At the i-th step of this process (i¼ 1, 2, . . ., n) the
variable was subject to a random change that was a proportion of some function g
(Xi�1), or Xi�Xi�1¼ εi. · g(Xi�1). Two special cases are: g(Xi�1)¼ 1 and g(Xi�1)¼
Xi�1. If g remains constant, X becomes normal because of the central-limit theorem.

In the second case, it follows that:

Xn
i¼1

Xi � Xi�1

Xi�1

¼
Xn
i¼1

εi �
Z Xn

X0

dx

x
¼ logeXn � logeX0
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This generating process has the lognormal distribution as its end product. There

is an obvious similarity between generating processes and the multiplicative cas-

cade processes to be discussed later in this book in the context of fractals and

multifractals. The Vistelius model of lognormality will be applied in the next

section.

3.2.2 Muskox Layered Intrusion Example

Vistelius (1960, p. 11) argued as follows. Suppose that a geological process, at any

time, yields a different population of values. If a given part of the Earth’s crust is

sampled, a set of values is obtained which may re�ect various stages of the same

geological process. In some places, the process may have developed further than in

other places. The sampled population then consists of a mixture of many separate

populations that are, however, interrelated by a single process. Suppose that for

each of these populations, the standard deviation σ is proportional to the mean μ.
This is equivalent to assuming that the coef�cient of variation γ¼ σ/μ is constant. In
that situation, the sampled population can have a positively skew frequency distri-

bution because the subpopulations with relatively large means and standard devi-

ations will generate a long tail of large values. The frequency distribution f(x) then
satis�es f(x)¼Σ wi · fi where each fi(x) is the distribution representing the process at
stage i; wi is a weighting factor for that stage. It represents the proportion by which

the subpopulation fi(x) occurs in the sampled population.

In order to test this theory, Vistelius (1960) compiled averages and standard

deviations for phosphorus (as weight percent P2O5) in granitic rock from various

areas. He found that average and standard deviation are positively correlated with a

correlation coef�cient of 0.56. Individual distributions f(x) are approximately

normal but the joint distribution fi(x) with all values lumped together is

positively skew.

The Vistelius model was tested for the element copper in various layers of the

1,175 my old Muskox layered ultrama�c gabbroic intrusion, District of Mackenzie,

northern Canada. The layers were formed by crystallization differentiation of

basaltic magma (Smith 1962; Smith and Kapp 1963). Individual layers are approx-

imately homogeneous with regard to the major rock-forming minerals. Layers that

are rich in olivine, such as dunite and peridotite, tend to occur near the bottom of the

sequence of layers in the Muskox intrusion, whereas gabbroic layers occur closer to

the top. The sequence is capped by an acidic layer of granophyric composition.

Figure 3.8a shows the frequency distribution of 116 copper values from rock

samples taken at the surface on a series of gabbros with increasing granophyre

content. These gabbros are situated between a clinopyroxenite layer (at the bottom)

and a ma�c granophyre layer (at the top). A logarithmic scale or ratio scale was used

in this �gure for plotting the trace element copper in ppm (parts per million). A

straight line for logarithms of values indicates approximate lognormality in Fig. 3.8a.

However, the 116 copper values are for specimens of three different types of gabbros
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and these subpopulations were plotted separately in Fig. 3.8b. The results prove that

the frequency distribution shown in Fig. 3.8a actually can be regarded as a mixture of

three separate populations with different properties. Average copper content

increases with granophyre content of gabbro in his sequence.

In order to test the stability of the separate frequency curves which are for

relatively small samples, a simple procedure for small samples originally suggested

by Mahalanobis (1960) was used by Agterberg (1965). Each sample of copper values

was randomly divided into two subsamples. For example, if there are 52 values as for

gabbro, two subsamples of 26 values were formed and plotted separately (Fig. 3.8b).

The area between the two frequency curves for the subsamples represents the

so-called “error-area” of the curve for a combined sample. Mahalanobis (1960) had

developed an approximate chi-square test based on the error-areas to test for the

separation between populations. In this application, the copper distribution for

granophyric gabbro differs signi�cantly from those of the other two rock types.

Fig. 3.8 (a). Plot on logarithmic probability paper of histogram for 116 copper determinations

from gabbros in the Muskox intrusion. (b). Separate plots for different types of gabbro show that

curve in a actually represent a mixture of several populations. Precision is indicated by area

between curves for two random subsamples, each consisting of 50 % of the data (Source:

Agterberg 1974, Fig. 28)
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The Muskox intrusion has been sampled in detail both at the surface and by

drilling. Average and standard deviation for copper in 17 different rock types have

been plotted in Fig. 3.9. There is positive correlation between these two statistical

parameters (r¼ 0.9002). A straight line and a parabola were �tted by least squares,

taking the mean as the independent variable. To a �rst approximation, the standard

deviation is proportional to the mean. This implies a constant coef�cient of

variation. The plots of Fig. 3.9 suggest γffi 0.8.

From the basic properties of variance it follows that σ2(a+ bX)¼ b2 σ2(X) where
a and b are two constants. Further, if f(x) is a function of x that is approximately

linear in a range of variation of x, then, according to Taylor’s formula: f(x)ffi f(c)
+ (x� c) · f 0 (c) where c is another constant. Consequently:

σ2 f Xð Þf g2ffi f
0
cð Þ

n o2

:σ2 Xð Þ

Application to f(X)¼ loge X gives:

σ2 loge Xð Þf g2ffi d loge Xð Þð Þ
dx


 �2
x¼x0

:σ2 Xð Þ

where x0 is a constant value for x used in truncated Taylor series approximation.

Setting x0¼ μ(X) it is derived that

Fig. 3.9 Standard deviation plotted against mean for copper in different rock types of the Muskox

intrusion. Two curves (linear and quadratic best �ts) are also shown. The pattern in this diagram

indicates that, to a �rst approximation, standard deviation is proportional to mean. Rock types with

olivine are: DN dunite, PD peridotite, FPI feldspatic peridotite, TRPD troctolitic peridotite, PC
picrite, CPX olivine clinopyroxenite, PCWB picritic websterite, OGB olivine gabbro, BGB
bronzite gabbro, ANGB anorthositic gabbro; and rock types without olivine are: OPX
orthopyroxenite, WB websterite, GB gabbro, GR-GB granophyre-bearing gabbro, GRGB grano-

phyric gabbro, MGR ma�c granophyre, GR granophyre (Source: Agterberg 1974, Fig. 29)
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σ loge Xð Þð Þffi σ Xð Þ
μ Xð Þ ¼ γ

The coef�cient of variation, therefore, is approximately equal to the standard

deviation of the logarithmically transformed data. This approximation is good if

γ< 0.5. From these considerations it follows that γ or its estimate from a sample can

be used as a criterion to distinguish between normality and lognormality. Hald

(1952) has pointed out that if γ< 1/3, a lognormal curve cannot be distinguished

from a normal curve. In general, a sample for which γ> 0.5 is distinctly non-normal

but not necessarily lognormal. Because γffi 0.8 for the rock types in Fig. 3.9,

non-normality is indicated.

In total, 622 copper values were used to estimate the means and standard devia-

tions plotted in Fig. 3.9. Suppose that the copper values xik for rock type i are divided
by their rock type mean. This transformation yields 622 new copper values x0 with
overall average value equal to 1. The frequency distribution of these transformed

copper values was studied by Agterberg (1965). It is neither normal nor lognormal

but can be �tted by a truncated lognormal distribution for y0 ¼ loge (1+ x
0), as shown

graphically in Fig. 3.10. This result can be interpreted as an example of validity of the

maximum entropy criterion.

The concept of entropy is used in thermodynamics for evaluating the amount of

order or disorder in spatial con�gurations of attributes. For example, the molecules of

an ideal gas can occur anywhere within a con�ned space and their spatial con�gu-

ration is completely random at any time. The entropy of the system then is at a

maximum (complete disorder). Shannon (1948) applied the concept of maximum

entropy to ordinary frequency distributions with n classes i). If pi represents relative
frequency of occurrence in the i-th class, then a �rst constraint is Σ pi ¼1. Suppose

that the variance σ2 of the system is predetermined as a second constraint. The

entropy statistic S satis�es:

Fig. 3.10 Composite

histogram of copper values

from Muskox intrusion.

Original values xik from
different rock types i) were
made comparable with one

another by replacing them

by x0ik¼ xik/ave(xi) where
ave(xi) represents rock type

mean; horizontal line is for

loge (1+ x0). Best-�tting
curve is truncated normal

representing maximum-

entropy solution showing

truncated lognormality of

original data (Source:

Agterberg 1974, Fig. 30)
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S ¼ �H
Xn
i¼1

piloge pi

Partial differentiation of S with respect to the pi subject to the two constraints

yields a maximum entropy curve that has the familiar Gaussian shape. Suppose now

that in addition to the two constraints there is also the constraint that the mean μ is

predetermined as well. Tribus (1962) has shown that the relative frequencies then

become in the limit:

p xð Þ ¼ exp � A0 þ A1xþ A2x
2

� �� � ¼ c : exp � xþ A1=2A2x
2

� �� �
with x > 0

where A0, A1 and A2 are Lagrangian multipliers and c¼�A0 +A1/4A2
2. This

represents the equation of a Gaussian curve that is truncated at the origin. The

peak of this curve occurs at the point with x¼�A1/2A2. This maximum falls at

y0 ¼ 0.624 in Fig. 2.18. Working backwards from y0 ¼ 0.624, it follows that

x0 ¼ 0.866. Consequently, all rock types in the Muskox intrusion have maximum

frequencies at values that are approximately equal to their arithmetic means mul-

tiplied by 0.866. The trace element copper primarily occurs in chalcopyrite crystals

which are disseminated through the rocks. The concentration of these crystals (and

to a lesser extent their size) varies according to complex spatial patterns of clusters.

3.2.3 Three-Parameter Lognormal Distribution

Suppose that in the generating process Xi�Xi�1¼ εi · g(Xi�1) it is assumed that g
(Xi�1)¼Xi�1 + α where α is a positive constant. The result of this modi�cation of

the original process that it generates a lognormal distribution with its origin

displaced to the point with abscissa equal to �α. Of course, negative element

concentration values are not possible and this would not be a viable model yielding

realistic results. However, suppose that the process was subject to the following

constraint: because negative concentration values are not possible, there was an

absorbing boundary at zero implying that all concentrations reaching zero remained

at zero. This modi�ed generating process would generate a secondary sharp peak at

zero concentration.

The absorbing boundary model may offer an explanation for the frequency

distribution of gold in the relatively thin conglomerate beds (reefs) of the Witwa-

tersrand gold �elds in South Africa (cf. Table 2.5). Until 1960, the general opinion
was that these gold concentration values satisfy a lognormal model. However,

Krige (1960) has shown that a signi�cant re�nement in Witwatersrand gold

ore-evaluation methods was obtained by assuming that the underlying frequency

distribution is three-parameter lognormal instead of lognormal (see Fig. 3.11).

As mentioned before, the unit of measuring gold in South Africa was inch-dwt or

inch-pennyweight which is equivalent to 0.165 cm-g (centimeter-gram) used in
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South Africa after 1971. The original inch-dwt value represented the amount of

gold present in a column of ore with a base of one square inch and perpendicular to

the reef. The best-�tting normal curve shown in Fig. 3.11 was originally derived by

Sichel (1961). It was �tted to all values except those at zero which form a sharp,

secondary peak.

3.2.4 Graphical Method for Reconstructing the Generating
Process

The starting point of the preceding discussion of the generating process also can be

written as dXi¼ g(Xi) · εi where dXi represents the difference Xi�Xi�1 in in�nites-

imal form. Several systems of curve-�tting are in existence for relating an observed

frequency distribution to a normal form. An example of this is Johnson’s (1949)

system which makes use of dXi¼ g(Xi) · εi. An excellent review of curve-�tting

systems was given by Kendall and Stuart (1949). The so-called Johnson SB-system

results in lognormal distribution of the variable X/(1 +X). Jizba (1959) used this

approach for modeling geochemical systems. It may be possible to obtain informa-

tion on the nature of the function g(Xi) by graphical analysis using the normal Q-Q
plot. This method is illustrated in Fig. 3.12 for a lognormal situation.

In Fig. 3.12a, a lognormal curve was plotted on normal probability paper. An

auxiliary variable z is plotted along the horizontal axis. It has the same arithmetic

scale as x that is plotted in the vertical direction. The variable x is a function of z or

Fig. 3.11 Three-parameter lognormal model for gold values in Merriespruit Mine, Witwatersrand

gold�eld, South Africa (After Sichel 1961, Fig. 2; original data from Krige 1960). Because of the

additional peak at zero, the corresponding cumulative frequency distribution curve is normal for

gold values that are positive only. Note that this situation differs from that in Fig. 3.10, although

the transformation is of the same type (Source: Agterberg 1974, Fig. 32)
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x¼G(z). The slope of G(z) is measured at a number of points giving the angle φ.
For example, if z¼ x¼ 20 in Fig. 3.12a, φ¼φ1, and:

dG zð Þ
dZ

¼ tanφ

If, in a new diagram (Fig. 3.12b), tan φ is plotted against x, we obtain a function

F(x) that represents g(Xi) except for a multiplicative constant that remains

unknown. This procedure is based on the general solution of the generating process

which can be formulated as:

Z ¼
Z 1

0

dX1

g Xið Þ ¼
X1

0
εi

This procedure is based on the assumption that Z is normally distributed.

The function g(Xi) derived in Fig. 3.12b for the lognormal curve of Fig. 3.13a is

simply a straight line through the origin. This result is in accordance with the origin

theory of proportional effect. However, the method can produce interesting results

in situations that the frequency distribution is not lognormal. Two examples are

given in Fig. 3.13. The original curves for these two examples (Fig. 3.13a) are on

logarithmic probability paper. They are for the 1,000 Merriespruit gold values

shown in histogram form in Fig. 3.11, and a set of 84 copper concentration values

for rock samples from sulphide deposits that surround the Muskox intrusion as a

rim. The results obtained by the graphical method are shown in Fig. 3.13b.

Fig. 3.12 Graphical construction of F(x) which is proportional to the tangent of the slope of

x¼G(z) representing the theoretical lognormal distribution plotted on arithmetic probability paper

(Source: Agterberg 1974, Fig. 33)
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The generating function g(Xi) for Merriespruit is according to a straight line

whose prolongation would intersect the X-axis at a point with negative abscissa

αffi 55. The second example (Muskox sulphides) gives a function g(Xi) that resem-

bles a broken line. It would suggest a rather abrupt change in the generating process

for copper concentration after the value Xiffi 0.5 %. The in�uence of Xi on dXi may

have decreased with increasing Xi.

The usefulness of a graphical method of this type is limited, in particular because

random �uctuations in the original frequency histograms cannot be considered

carefully. However, the method is rapid and offers suggestions with respect to the

physico-chemical processes that may underlie a frequency distribution.

3.3 Compound Random Variables

Applications of the theory of compound random variables are helpful in situations

that geological entities occurring at points have properties such as size or volume

that can be modeled as continuous random variables. This topic is useful in mineral

potential evaluation where the targets of interest are ore deposits or oil pools that

are randomly distributed in a study area according to a Poisson or negative binomial

distribution but have sizes that satisfy, for example, a lognormal or Pareto

distribution.

3.3.1 Compound Frequency Distributions and Their
Moments

Suppose that K random variables Xi have the same frequency distribution and

generating function gx(s). Their sum Y is a random variable with K terms. If

K and the Xi are discrete random variables, the probability that Y is equal to the

integer number j is equal to the sum of the probabilities p1 ·P(X1¼ j), p2 ·P(X1¼ j),
where the p1, p2, . . ., represent the probabilities that K is equal to 1, 2, . . ., or:

P Y ¼ jð Þ ¼
X1

i¼0
pi � P X1 þ X2 þ � � � þ Xi ¼ jð Þ

The summation may start at i¼ 0, for which P(X0) and P(Y¼ j) are both equal to
zero. If gy(s) and gk(s) are the generating functions of Y and K, then:

gy sð Þ ¼
X1
i¼0

pi gx sð Þ
n oi

¼ gk gx sð Þf g
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This expression is called a compound generating function. Well-known applica-

tions of this theory are the compound Poisson and negative binomial distributions.

The combination of completely random (Poisson) distribution of mineral

deposits with lognormal value distribution originally was used for exploration

strategy by Allais (1957). Using the negative binomial instead of the Poisson

represents the exploration strategy problem later conceived by Grif�ths (1966)

and formalized by Uhler and Bradley (1970).

3.3.2 Exploration Strategy Example

One of the objectives of economic geology is to design methods for locating places

that are likely to contain hidden mineral deposits. Exploration is expensive mainly

because large deposits are rare events and it is dif�cult to locate them. Most

deposits that outcrop at the surface of the Earth may already have been found.

Deeper deposits are to be discovered by geological process modeling, drilling and

new, mainly geophysical, exploration methods. The drilling of deep boreholes or

wells remains essential. In later chapters, several techniques developed for the

evaluation of regional mineral potential that provide a starting point for exploration

will be discussed. In this section, equations presented in Box 3.2 will be used to

predict total value of mineral deposits on the Canadian Shield using historical data.

This example originally was presented in Agterberg (1974).

Slichter (1960) compiled information on number of valuable mines per unit area,

for 185 units of 1,000 sq. miles each in Ontario. The rocks for the entire area of size

185,000 sq. miles belong to different structural provinces and geological

Box 3.2: Moments of Compound Poisson and Negative Binomial

Distribution

If K is Poisson, gy(s)¼ exp[�λ+ λ · gx(s)]. Then, if X satis�es the so-called

logarithmic series distribution: P X ¼ kð Þ ¼ α � θkk where α ¼ � 1
loge 1�θð Þ ;

k ¼ 1, 2, . . . ; 0 < θ < 1, Y becomes negative binomial (Feller 1968,

p. 291). If X is a continuous random variable, whereas K is discrete, the

characteristic function of Y satis�es: gy(u)¼ gk{gx(u)} with mean E(Y )¼E
(K ) ·E(X) and variance σ2(Y )¼E(K ) · σ2(X) + σ2(K ) ·E2(X). Suppose that

K is Poisson and that X is lognormally distributed, then:

E Yð Þ ¼ λα ¼ λeμþσ2=2 and σ2 Yð Þ ¼ λ α2 þ β2
� � ¼ λe2μþ2σ2 .

If the negative binomial distribution is used for K instead of the Poisson,

whereas X is kept lognormal, the characteristic function of Y becomes: gy uð Þ
¼ p

1�qgx uð Þ

h ir
with: E Yð Þ ¼ rq

p e
μþσ2=2 and σ2 Yð Þ ¼ rq

p e
2μþσ2 eσ

2 þ q
p

� �
.
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environments in the Canadian Shield. In total, his study area constituted approxi-

mately 9 % of the shield. Next he �tted the so-called exponential distribution. Later,

Grif�ths (1966) showed that it is better to apply the negative binomial model to

Slichter’s data.

Suppose that the “control” area in Ontario is representative for the entire shield.

Because there occur 147 mines in Slichter’s area, the total number of mines for the

entire shield would be approximately (100/9)	 147ffi 1,600 mines. Of course, this

estimate will be too low if not all mines in the control area were discovered. On the

other hand, it will be too large, if the control area is richer in mines (and larger

deposits) than the remainder of the Precambrian Shield.

The problem of predicting total value of all orebodies in the Canadian Shield

was discussed by De Geoffroy and Wu (1970) who argued as follows. The Cana-

dian Shield occupies an area of about 2,146, 000 sq. miles. Nearly 90 % of

commercial mineral deposits known in 1968 occur in volcanic belts and Lower

Proterozoic sedimentary belts. These relatively favorable environments, which

alternate with other rock types, occupy approximately 341,220 sq. miles or

15.9 % of the total area. An area of 50,000 sq. miles (Timmins-Kirkland Lake

area, Ontario; Noranda-Val-d’Or area, Québec) for the favorable environments was

treated in detail by De Geoffroy and Wu (1970) with the following results:

Size of area: 50,000 sq. miles

Total number of deposits: 254 orebodies

Average number of deposits per 10	 10 sq. miles: Ave (k)¼ 0.508

Variance: s2(k)¼ 2.016

Average value of deposits: Ave (x)¼ 60.5 · 106 US dollars (based on 1968 prices)

Logarithmic mean (base e): Ave (loge x)¼ 2.858 (unit of value is 106 dollars)

Variance: s2(loge x)¼ 3.103

These statistics can be used for a preliminary prediction of number of deposits

and their value in the 341,220�50,000¼ 291,220 sq. miles of territory that, for the

larger part, has not been explored in the same detail as the 50,000 sq. miles of

favorable environment in the control area. Variances of these estimates can be

computed to express their uncertainties. According to the statistics compiled by De

Geoffroy and Wu (1970), 0.508	 341,220/100¼ 1,733 mines are predicted to exist

on the Canadian Shield. This number is fairly close to that based on Slichter’s data.

However, 129 of 254 orebodies of De Geoffroy and Wu fall in Slichter’s area, and

the control area underlying the two estimated values overlap in part. Also, for the

second estimate, deposits outside the more favorable environments were not

considered.

De Geoffroy and Wu (1970) �tted the negative binomial to number of orebodies

per unit area with satisfactory results. They also �tted a normal distribution to the

logarithms of values in dollars for mines. The chi-square test discussed in Sect.

2.4.1 gave a chi-square value of 12.51 for six degrees of freedom (nine classes),

which may be compared to P{χ2(6)< 12.5}¼ 94.8 %. This result indicates that the

lognormal model provides a degree of �t that is only moderately good. In fact, the

histogram for logarithmically transformed data shows a positive skewness that is
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probably meaningful. This becomes a practical estimation problem in that, if

lognormality is accepted, the risk is taken of the model yielding biased estimates

because of a departure from lognormality. The Uhler-Bradley model discussed in

the preceding section is fairly sensitive to departures from lognormality. Assuming

lognormality, the preceding statistics give an estimated value of 82.18 · 106 dollars.

An unbiased variance estimate can be obtained by using 0.985 · s2¼ 3.096 instead

of s2¼ 3.103. This results in an estimated value of 80.34 · 106 dollars.

Inasmuch as the original estimates of mean (¼60.5 · 106) and logarithmic mean

(¼2.858) are based on 254 data, both are fairly good estimates. The preceding two

estimates of logarithmic variance may be too large because of positive skewness of

the value histogram. For this reason, it may be preferable to base the estimate of

logarithmic variance on the estimates of mean and logarithmic mean. This gives

s2¼ 2.490, which is less than the preceding two estimates (¼3.096 and 3.103).

The number of orebodies in favorable environments outside the control area is

estimated at (219,220/100)	 0.508¼ 1,478. With average expected value of

60.5 · 106, their total value would be 1,478	 60.5 · 106¼ 89.4 · 109 dollars. The

corresponding average value per unit area of 10	miles size is E(Y )ffi
0.508	 60.5 · 106¼ 30.73 · 106. Our estimate of the corresponding variance σ2(Y)
can be based on the negative binomial distribution model for which E(K )¼ rq/
pffi 0.508 and σ2(K )¼ rq/p2ffi 2.016. With p+ q¼ 1, this yields the estimated

values p0 ¼ 0.2520, q0 ¼ 0.7480, r0 ¼ 0.1711. With μffi 2.858 and σ2ffi 2.490, it

follows that σ2(Y)ffi 27,922 · 1012 and σ(Y )ffi 167 · 106 dollars.

It seems that an analytical expression for the random variable Y does not exist.

However, it can be assumed that its frequency distribution is positively skew and

multimodal. Because of the central-limit theorem, the sum of n random variables

Y that can be written as Z¼Σ Yi (i¼ 1, 2, . . ., n) converges to normal form when

n increases. For example, if n¼ 400, we have E(Z )ffi 12.30 · 109 and σ(Z )ffi
3.34 · 109. The coef�cient of variation γ(Z)ffi 0.27 then is quite small. In that

situation it is permissible to determine the 95 % con�dence interval that becomes

6.5 · 109 on the predicted total value of 12.30 · 109 dollars. It should be kept in mind

that the preceding calculations were based on orebodies located in a control area

that had been discovered in 1968, and only the uppermost part of the Earth’s crust

had been scrutinized for mineral occurrences.
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Chapter 4

Correlation, Method of Least Squares,

Linear Regression and the General

Linear Model

Abstract The scatterplot in which two variables are plotted against one another is a

basic tool in all branches of science. The ordinary correlation coefficient quantifies

degree of association between two variables for the same object of study. In some

software packages, the squared correlation coefficient (R2) is used instead of the

correlation coefficient to express degree of fit. A best-fitting straight-line obtained

by the method of least squares can represent underlying functional relationship if one

variable is completely or approximately free of error. When both variables are subject

to error, use of other methods such as reduced major axis construction is more

appropriate. A useful generalization of major axis construction in which individual

observations all have different errors in both variables is Ripley’s Maximum

Likelihood for Functional Relationship a (MLFR) fitting method. Kummell’s equation

(cf. Agterberg 1974) for linear relationship between two variables that are both subject
to error can be regarded as a special case of MLFR.

Multiple regression can be used for curve-fitting if the relationship between two

variables is not linear but other explanatory variables have to be considered as well.

The general linear model is another logical extension of simple regression analysis.

It is useful in mineral resource appraisal studies. Although this approach can be too

simplistic in some applications such as estimation of probabilities of occurrence of

discrete events, it remains useful as an exploratory tool. During the late 1970s and

early 1970s a probabilistic regional mineral potential evaluation was undertaken at

the Geological Survey of Canada (cf. Agterberg et al. 1972) to estimate probabil-

ities of occurrence of large copper and zinc orebodies in the Abitibi area on the

Canadian Shield. These predictions of mineral potential made use of the general

linear model relating known orebodies in the area to rock types quantified from

geological maps and regional geophysical anomaly maps. About 10 and 40 years

later, after more recent discoveries of additional copper ore, two hindsight studies

were performed to evaluate accuracy and precision of the mineral potential pre-

dictions previously obtained by multiple regression. This topic will be discussed in

detail because it illustrates problems encountered in projecting known geological

relations between orebodies and geological framework over long distances both

horizontally and vertically.

F. Agterberg, Geomathematics: Theoretical Foundations, Applications
and Future Developments, Quantitative Geology and Geostatistics 18,

DOI 10.1007/978-3-319-06874-9_4, © Springer International Publishing Switzerland 2014
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4.1 Correlation and Functional Relationship

It is good to keep in mind that the linear relationship resulting from linear regression

only provides an estimate for linear functional relationship between two variables if

one of the variables is not a random variable; i.e., free of measurement error. This is

illustrated in Fig. 4.1 (based on original data from Krige 1962). Along the X-axis, it
shows the average value of amount of gold in inch-dwt values for panel faces in a

Witwatersrand goldmine. Along theY-axis, similar values are plotted for panels which

are located 30 ft. (9 m) ahead of the panels whose values are plotted along the X-axis.
Each value for a panel is the average of ten single values for narrow channel samples

cut across the gold reef. The ten channel samples cover a distance of 150 ft. across the

panel along which mining proceeded. Figure 4.1 can be considered as a scattergram.

Individual values are not shown; their frequency was counted for small blocks in this

diagram. Since panel values are approximately lognormally distributed, a ratio scale is

used for the coordinate axes rather than an arithmetic scale. The correlation coefficient

amounts to 0.59. The elliptical contour shown in the diagram contains most data points

and this suggests that the bivariate frequency distribution is bivariate normal.

Fig. 4.1 Contour ellipse contains most of gold values (from Krige 1962); frequencies shown for

blocks. Krige’s regression line (A) is used for prediction; line B represents solution of Kummell’s

equation for linear functional relationship between two random variables (cf. Deming 1943).

Kummell’s method represents a special case of MLFR. The resulting line coincides approximately

with the axis of the contour ellipse because, on average, y is about equal to x (Source: Agterberg
1974, Fig. 37)
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The practical problem of gold mining in this example consists of predicting the

value of a panel that will be 30 ft. ahead of the panel whose value is known at a

given time. In order to solve this problem, one must estimate, as Krige (1962) has

done: E(Yjx)¼ β0 + β1x using the means, standard deviations and correlation

coefficient (see Box 4.1). This linear regression results in the straight line (A) in

Fig. 4.1. Krige (1962) pointed out that, in this manner, one avoids making the

erroneous assumption that a given amount of gold per panel in a mine is represen-

tative for a larger region surrounding it. For example, if a panel values is x¼ 1,102,

the value predicted from it for a panel that is 30 ft. ahead is not 1,102 but 688 which

is considerably less. On the other hand, if x¼ 92, E(Yjx) is estimated to be

158 which is significantly more. Consequently, relatively high values overestimate

amount of gold per unit volume in their immediate surroundings, but relatively low

values tend to underestimate it. Suppose that each sample value is representative of

a larger volume of ore around it and mining would be restricted to only those blocks

for which the sample value is relatively large, exceeding a cut-off value and that the

remainder of the orebody would be left unmined. In the past, mining engineers

found to their surprise that the average for a volume blocked out in this manner

systematically overestimates the average amount of metal that is actually mined out

later. Problems of this type can be avoided by the use of “kriging”. Figure 4.1

provides a simple example of this: if a cut-off grade it set, it should be based on the

predicted values (curve A) rather than on the actual values (curve B).

In general, the aim of the various methods of kriging that have been developed in

geostatistics is to provide unbiased estimates of values at points with arbitrary

coordinates (Sect. 7.2) or for 3-D block averages. If only a single element concen-

tration value for a small block would be available, it could be used as an estimate of

a larger block surrounding the small block. The variance of the single value for the

larger block then would be a so-called extension variance (Sect. 6.2.5).

Box 4.1: Basic Elements of Covariance and Correlation Coefficient

If X and Y are two random variables, then: E(XY)¼ R R
xy · f(x, y) dxdy where

f (x, y) is the bivariate frequency distribution. Suppose that the double integral
is approximated by a double sum, then: E(XY)¼∑ i∑ jxiyj P(xi, yj). Mutual

independence of two random variables can be defined as: P(xi, yj)¼
P(xi)P(yi). Hence: E(XY)¼∑ i∑ j[xiP(xi)] yiP(yi)]¼ (EX) · (EY) but only for

independent random variables. The covariance of X and Y is: σ(X,Y )¼E
(X� μx)(Y� μy)¼E(XY)� μxμy. The correlation coefficient is the covariance

of two standardized random variables, or ρ ¼ ρ X;Yð Þ ¼ σ X;Yð Þ
σ Xð Þ�σ Yð Þ. Conditional

dependence can be defined as: P(Y¼ yjX¼ x)¼P(X¼ x,Y¼ y) or P(yjx)¼
P(x, y)/P(x). Consequently, P(x, y)¼P(yjx) ·P(x). Suppose X and Y are

normal. Standardization to Z1 and Z2, then results in the bivariate frequency

density: φ z1; z2ð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffi
1�ρ2

p exp � 1
2 1�ρ2ð Þ z21 � 2ρz1z2

� ��h
. After some manip-

ulation, it follows that: φ z2
��z1� � ¼ φ z1;z2ð Þ

φ z1ð Þ ¼ 1ffiffiffiffiffiffiffiffi
1�ρ2

p φ z2�ρz1ffiffiffiffiffiffiffiffi
1�ρ2

p
� �

. This is the

(continued)
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There are many situations in which one wishes to determine the relationship

between two random variables that are both subject to uncertainty. For example,

suppose that a set of rock or ore samples is chemically analyzed in a new

laboratory and it is necessary to determine whether or not the newly produced

results are unbiased by having the same analyses done in a laboratory known to

produce unbiased results. This problem was solved by Ripley and Thompson

(1987) who developed a maximum likelihood fitting method for (linear)

functional relationship (MLFR) that can be applied in other situations as well.

Their method generalizes the original “major axis” method (Agterberg 1974).

The major axis differs from the linear regression line in that it assumes that both

variables (X and Y ) are subject to uncertainty. The two methods have in common

that the best-fitting straight line passes through the point with x and y equal to their
sample means. It is readily shown that the estimator of slope of the major axis (β)

satisfies tan 2β ¼ 2
P

x
0
y
0P

x0 2�y0 2
� �where x0 and y0 represent deviations of x and y from

their sample means. A disadvantage of the major axis is that it is not independent

of scale (unit distances along X- and Y-axes). For this reason, the data for x and

y are often standardized before the major axis is constructed. This result is known

as the reduced major axis that passes though the origin with slope equal to

β� ¼ arctan
s yð Þ
s xð Þ

n o
. If more than two random variables are analyzed simulta-

neously, the correlation coefficients form a correlation matrix that can be

subjected to principal component analysis. This is a multivariate extension of

constructing the reduced major axis of two variables. If principal component

analysis is applied to the variance-covariance matrix instead of to the correlation

matrix of more than two variables the result is equivalent to a multivariate

extension of estimation of the major axis for two variables. Principal component

analysis and a modification of it called factor analysis are well known multivariate

methods with useful geoscience applications (see, e.g., Davis 2003).

Box 4.1 (continued)

frequency distribution of the random variable (Z2jz1) which denotes the

probability of Z2¼ z2 when it is given that Z1 has assumed the value z1. The
method of moments yields: E(Z2jz1)¼ ρz1; σ

2(Z2jz1)¼ 1� ρ2. Transforming

back to X and Y: E Y
��x� � ¼ μy þ ρ σy

σx
x� μxð Þ; and σ2 Y

��x� � ¼ σ2y 1� ρ2ð Þ.
The expected value of Y for a given value X¼ x, is commonly written in

the form E Y
��x� � ¼ β0 þ β1x with β0 ¼ μy þ ρ σy

σx
μx; β1 ¼ ρ σy

σx
. It denotes

the linear regression of the dependent variable Y on the independent or

explanatory variable X. The frequency distribution of the correlation coeffi-

cient (r) was derived by Fisher (1915) who also showed that ½loge
1þr
1�r is

normally distributed with, approximately, mean of ½loge
1þρ
1�ρ þ ρ

2 n�1ð Þ and

variance of 1
n�3

.

108 4 Correlation, Method of Least Squares, Linear Regression and the General. . .



The MLFR method was applied by Agterberg (2004) for the purpose of

estimating the age of Paleozoic stage boundaries in the GTS-2004 geologic time

scale (also see Sect. 9.5).

4.2 Linear Regression

In Box 4.1, bivariate linear regression was written in the form: E Y
��X� � ¼

β0 þ β1X with β0 ¼ μy þ ρ σy
σx

μx; β1 ¼ ρ σy
σx
. In practical applications, the statis-

tical parameters in this expression can be replaced by sample estimates. The Gauss-

Marlov theorem of mathematical statistics (cf. Bickel and Doksum 2001) states

that the least-squares estimate of E(YjX) is unbiased, regardless of the nature of the
frequency distribution of YjX, even if it is not normal. The only condition to be

fulfilled for application is that the residuals for Y are random and uncorrelated.

4.2.1 Degree of Fit and 95 % – Confidence Belts

A useful expression is: TSS¼ SSR+RSS meaning that the total sum of squares for

deviations from the mean (TSS) is sum of squares due to regression (SSR) and

Box 4.2: Maximum Likelihood for Functional Relationship

(MLFR) Method

MLFR (Ripley and Thompson 1987) works as follows: one is interested in the

linear relation vi¼ α+ β · ui where ui and vi are observed as xi (¼ ui+ error)
and yi (¼ vi+ error), respectively. If κi� s2(x) and λi� s2(y) represent the
variances of xi and yi, respectively, the problem reduces to minimizing the

expressionQ ¼
X

xi�uið Þ2
κi

þ yi�α�βuið Þ2
λi

h i
over ui. First minimizing over ui and

introducing the weights wi¼ 1/(λi+ β
2 κi), this minimum is reached when

Qmin(α, β)¼∑ [wi(yi� α� βui)
2]. The weights wi depend on β and so does

the estimate of α that satisfies α ¼
X

wi yi�βuið Þ2½ �X
wi

. The slope a is found by

minimizing Qmin(a, β)¼∑ [wi (yi� a� βui)
2]. This, in turn, yields the

weights wi and intercept a. The covariance s(a,b) can be calculated from

the relation s a; bð Þ ¼ �s2 bð Þ �
X

wixi

wi
. So-called scaled residuals ri can be

computed by means of: ri ¼ yi � α� βuið Þ
ffiffiffiffiffiffiffiffiffiffiffi

1
λiþb2κi

q
. The sum of squares of

these scaled residuals should be approximately equal to number of observa-

tions �2. If estimates of ui are written as Xi with Xi¼wi[λixi + κib(yi� a)],
a plot of ri against Xi should not show any noticeable pattern.
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sum residual sum of squares (RSS). The multiple squared correlation coefficient

(r2 but often written as R2) satisfies r2¼ SSR/TSS.

Linear regression results often are summarized in an analysis-of-variance table

(Table 4.1). The ratio of the two mean squares in the last column of Table 4.1

provides an estimate of F(1, n� 2). If this F-ratio is significantly greater than 1, it

may be assumed that there is a significant linear association between X and Y and

that the slope of the regression line differs significantly from zero.

It can be shown that the variance of the calculated values satisfies:

s2 Ŷ i

� � ¼ s2res � Ri;with Ri ¼ 1
n þ

Xi�Xð Þ2X
Xi�Xð Þ2

. From this result, the following four

types of confidence belt can be derived:

1. Ŷ i � t n� 2ð Þsres
ffiffiffiffiffi
Ri

p
; This belt consists of two hyperbolas that enclose an area

about the best-fitting straight line; t (n� 2) is Student’s t for (n� 2) degrees of

freedom. A 95-% confidence belt has t (n� 2)¼ t0.975 (n� 2). The purpose of

this belt is to set confidence intervals on all single values of Ŷ i that could be

estimated for given values of Xi.

Box 4.3: Degree of Fit and Analysis of Variance

TSS¼ SSR+RSS signifies that the sum of squares of n deviations of a

dependent variable Y from their mean: TSS ¼
X

Yi � Y
� �2

can be decom-

posed as the so-called sum of squares due to regression: SSR ¼X
Ŷ i � Y
� �2 ¼ X

Yi � Y
� �

Ŷ i � Y
� �

plus the residual sum of squares:

RSS ¼
X

Yi � Ŷ i

� �2
, or

X
Yi � Y
� �2 ¼ X

Yi � Y
� �

Ŷ i � Y
� �þX

Yi � Ŷ i

� �2
. If Y has normal distribution, then: SSR ¼X

Ŷ i � Y
� �2 ¼ β2

X
Xi � X
� �2 ¼ σ2χ2 1ð Þ. The so-called residual variance

is: s2res ¼RSS/(n� 2). Analysis of variance as developed primarily by Fisher

(1960) uses the following F-test. Because chi-square statistics can be added:

σ2χ2(n� 1)¼ σ2χ2(1) + σ2χ2(n� 2). Consequently,
SSR

RSS= n�2ð Þ ¼ χ2 1ð Þ
χ2 n�2ð Þ= n�2ð Þ ¼ F 1, n� 2ð Þ.

Table 4.1 Analysis of variance table for linear regression

Source Sum of squares Degrees of freedom Mean square

Linear regression SSR 1 SSR

Residuals RSS n� 2 RSS/(n� 2)

Total TSS n� 1

Source: Agterberg (1974, p. 255)
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2. Ŷ i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F 2, n� 2ð Þp

sres
ffiffiffiffiffi
Ri

p
; The purpose of this belt which is wider than the

preceding one is to define a confidence region for the entire calculated

regression line.

3. Ŷ i � t n� 2ð Þsres
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ri

p
; This represents a confidence belt for the results of data

which have been used to estimate Ŷ i. It allows testing of the residuals for

normality. Like belt (4), belt (3) is considerably wider than belts (1) and (2),

although all belts are hyperbolas.

4. Ŷ i � t n� 2ð Þsres
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ri

p
; This belt is for “new” observations that have not been

used to estimate Ŷ i.

The techniques for linear regression discussed in this section can be extended to

(a) testing additional terms (x2, x3, etc.) in curvilinear regression for statistical

significance, (b) testing other explanatory variables, in addition to x in applications
of the general linear model, and (c) additional terms consisting of powers and cross-

products of powers in 2-D or 3-D trend analysis. Various generalizations of these

types will be discussed later. Use of two of the preceding confidences belts will be

illustrated in the following example.

One method of determining the forsterite (FO) content of olivine consists

of measuring the d174 cell edge. In Agterberg (1964), a linear regression equation

was fitted to 20 measurements with %FO> 30 in an experiment for which the

olivine crystals were chemically analyzed. The XY-plot for this experiment

(Fig. 4.2) showed that these 20 data closely follow a straight line with equation:

Ŷ i ¼ 4, 145� 3, 970 � X. Figure 4.2 shows the 95 % confidence belt for these data.

Only one of the 20 points falls slightly outside this Type (3) belt. This indicates that

Fig. 4.2 Example of practical use of confidence belts for a regression line. Straight line was fitted
to data with more than 30 % forsterite; only one of these falls outside the 95-% belt. All

observation data with %FO< 30 % fall below the 95-% confidence belt for data not used for

estimation (Source: Agterberg 1974, Fig. 38)
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there is a linear relationship between the two variables. However, six olivine

crystals consisting entirely or nearly entirely of forsterite that also were treated

by both methods (chemical analysis and d174 determination) do not seem to fall on

the best-fitting (%FO> 30) straight line. This discrepancy was tested by using the

slightly wider 95 % confidence belt of Type (4). The conclusion of this statistical

analysis was that the best-fitting straight-line relationship could only be used for

olivine crystals with more than 30 % forsterite.

The topic of 95 % confidence belts also will be discussed in Chap. 7 in the

context of trend surface analysis. In that kind of 2-D application the two surfaces

constituting the confidence belt are relatively flat in the area where the observation

points are located but the vertical distance between them increases very rapidly near

the edge of the area with observation points.

4.2.2 Mineral Resource Estimation Example

Geoscientists are using both facts and concepts to determine the probable

occurrence of ore deposits. Examples of basic facts are age and lithological data

on rock units, chemical determinations and geophysical measurements. There is a

gradual transition from basic facts to conceptual projections of structures and

composition of rock formations. Standard conceptual projections normally made

by geoscientists; e.g., extrapolations to bedrock partially overlain by regolith or

debris, can be taken as facts. A few historical remarks are that, originally, ore was

discovered by prospectors but later economic geologists could narrow their search

by using genetic models. Bateman (1919) argued convincingly that the old saying

“where ore is, there it is” was to be replaced by answering the question “why ore is

where it is”. He promoted “intelligently directed search for ore or oil”. To-day

much ore is being found by means of advanced geophysical prospecting techniques.

Moreover, as Zhao et al. (2008) point out, increasingly new deposits are being

discovered at greater depths with the aid of 2-D and 3-D specialized technologies

on the one side (see, e.g., de Kemp 2006) and non-linear modeling on the other

(Cheng 2008).

Both geomathematics and conceptual thinking are needed to extrapolate data

laterally into less explored areas or vertically from the surface downward into

hidden rock formations at greater depths. Such projections remain subject to

significant uncertainty that has to be quantified in order to allow valid decision-

making. The problem to be considered is how the mineral potential of a region can

be assessed systematically by statistical extrapolation from known facts. Because of

the complexity of the geological framework, many authors have employed a variety

of more subjective methods for mineral potential estimation, often with good

results (see, e.g., Harris et al. 2008) but these other, “knowledge-driven” methods

(cf. Bonham-Carter 1994; Bardossy and Fodor 2004; Carranza 2008; Singer and

Menzie 2010) are outside the scope of this book. In this section, some basic
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principles of quantitative treatment of the geological framework of a region will be

considered and demonstrated on the basis of a simple, 2-D mosaic model. Later, in a

recently performed case history study (Agterberg 2011), a multivariate prognosis

made from 1968 data for copper potential of the Abitibi area on the Canadian Shield

will be reviewed and compared with amounts of copper and copper ore discovered

in this area during the past 40 years. It turns out that most newly discovered copper

occurs in the same favorable environments where deposits were already known to

exist closer to the surface of bedrock.

The future of fully automated regional mineral resource estimation is promising

because, increasingly, sophisticated geophysical remote sensing techniques are

becoming available, while rapid progress is being made in the field of 3-D geolo-

gical mapping. It should be kept in mind, however, that the geological framework

generally is highly heterogeneous. (cf. Chap. 1) In addition to continuous spatial

variability observed for geophysical fields, there are numerous discontinuities in

the upper Earth crust, e.g. at contacts between different rock units and where there

are faults. In general, advanced pre-processing techniques are required to produce

realistic 3-D images providing the inputs for mineral potential estimation (de Kemp

et al. 2013).

For the purpose of this discussion, it is useful to make a distinction between

mineral exploration and mineral resource estimation. The objective of mineral

exploration is to delineate high-potential target areas. This can be achieved by

ranking cells or pixels in a region by means of a probability index for relative

prospectivity. In mineral resource estimation, the primary objective is to predict

numbers of deposits and their sizes for larger regions. Any probability index has to

be converted into a probability that is unbiased. Early on, mineral resource estima-

tion problems were considered by relatively few authors including Allais (1957)

who used the Poisson model for completely random spatial distribution of large

mineral deposits of any type (cf. Sect. 3.3.2). Griffiths (1966) advocating use of

“unit regional value” lumping different types of metal and hydrocarbon deposits

together, and Harris (1965) who quantified geological maps for cells relating “total

dollar value” based on all metals to bedrock variables by means of multivariate

statistical analysis. A characteristic feature of these early statistical publications

was that natural resources of different types were analyzed simultaneously. Such

lumping can be advantageous if statistical models have the property of additivity

(e.g., a mixture of two spatial Poisson process models is another Poisson process

model) but often it is better to incorporate different genetic models into the mineral

resource estimation. Agterberg (1971, 1974) used a commodity-based approach

that can be summarized as follows.

Various sources of uncertainty have to be considered in mineral resource

estimation, and to some extent in exploration. These different types of uncertainty

were considered separately and combined with one another when copper and zinc

mineral potential maps were constructed for the Abitibi area on the Canadian Shield

in the late 1960s and early 1970s (Agterberg et al. 1972) to be reviewed in more

detail later in this chapter. To-day, of course, better answers could be obtained than

in the early 1970s, because of both theoretical and computational advances.
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However, the basic problems to be solved remain the same. The five principal

sources of uncertainty are:

1. The first major source of uncertainty is provided by the probability of occurrence

itself. Any point in a study area on a map has probabilities associated with it that

a small unit area surrounding it contains mineral deposits of different types.

(If depth can be considered as a third dimension, unit volumes can be used in

addition to unit areas.)

2. The estimated probabilities have variances to express their uncertainty. Suppose

that one is concerned with a single deposit type or commodity in 2-D. For small

unit areas, the probabilities of occurrence then are very small. For example,

suppose the 10 % largest probabilities are approximately 0.01. This does not

only mean that a unit area with probability 0.01 would contain a deposit but also

that the variance of this probability is 0.01. This intrinsic variance normally

exceeds the estimation variance of the probability itself.

3. Intensity of exploration is a third source of uncertainty. This is a largely

unknown variable that is difficult to quantify. Fortunately, uncertainty associated

with variable intensity of exploration is much less than the uncertainty intrinsic

in the probability itself. However, it should be kept in mind that, from an

economic point of view, intensity of exploration can be regarded as the most

important variable because it principally determines number of undiscovered ore

deposits.

4. A second major source of uncertainty in mineral resource estimation is size

distribution of the deposits for which the probabilities of occurrence are being

estimated. In general, size of mineral deposits as a random variable covers

several orders of magnitude with the largest deposits (supergiants; cf. Agterberg
1995) being exceedingly rare but of utmost economic importance. It also should

be kept in mind that it is possible that deposit size is positively correlated with

probability of occurrence.

5. Metal grades including cut-off grades are to be considered as well although these

can often be incorporated in the definition of deposit type. In general, economic

data on past production, various types of reserves and grades are of highest

quality for the largest deposits with amount of information diminishing and

tending to become unavailable for smaller and lower-grade deposits. Two

factors to be considered are that mineral deposits for the same metal may

occur in different geological settings and that usually more than a single metal

is mined from the same deposit suggesting that total amount of ore also is useful

as a variable for estimating probabilities of occurrence together with size

frequency distribution modeling.

In order to further illustrate uncertainties (1) and (2), let us take a typical

weights-of-evidence (cf. Bonham-Carter 1994; also see Chap. 5) result for example.

The output map with posterior probabilities in weights-of-evidence usually is

accompanied by a t-value map. Suppose that the t-value associated with a posterior

probability of 0.01 is equal to 4. This would mean that the estimation variance of

the probability of 0.01 amounts to (the square of 0.04 ¼) 0.0016, and this is less

than 0.01 representing the intrinsic variance associated with the probability itself.
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Uncertainties (1) and (2) can be combined with one another by adding the

variances associated with them. In the preceding example the combined variance

is 0.0116. Suppose now, in the preceding example, that the probability of a (larger)

unit cell is 0.1. It would imply that the intrinsic variance is 0.1, with estimation

variance of 0.16, and combined variance of 0.26. It illustrates that for larger unit

areas and for larger posterior probabilities, relative uncertainty associated with

estimation increases significantly. It is noted that probabilities for groups of adjoin-

ing pixels can be added. The resulting sums can be interpreted as probabilities if

they are less than 1 but must be considered to be expected values if they are greater

than 1.

4.2.3 Elementary Statistics of the Mosaic Model

A small-scale geological map of bedrock in a region is a mosaic on which mineral

deposits are projected as points. As already discussed in Chap. 2, a simple example

of how one can proceed when information of this type is available is as follows:

Suppose a study area contains one million pixels of which 20 % are underlain by

“favorable” environment A. There are 10 pixels with mineral deposits in this study

area of which 8 are on A. The other 2 are on “unfavorable” A~ where the ~ symbol

denotes “not”. Therefore, the probability that any pixel contains a deposit is P(D)¼
0.000,01. The probability that a pixel on A has a deposit can be written as P(DjA)¼
8/200,000¼ 0.000,4; likewise, P(Dj A~)¼ 2/800,000¼ 2.5•10�6. If a probability

of occurrence map is constructed on the basis of this information, it contains

200,000 pixels with probability 0.000,4, and 800,000 with probability 2.5•10�6.

The second type of uncertainty is related to precision of the statistics. When

weights-of-evidence modeling is applied, the positive weight for the preceding

example is 0.982 representing the natural log of the ratio P(AjD)/P(AjD~)¼ 0.75/

0.281¼ 2.669, and the negative weight is�1.056 representing the natural log of the

ratio P(A ~ jD)/P(A ~ jD~)¼ 0.25/0.719. A useful measure of degree of special

association between a point pattern and a mosaic layer is the contrast C, which is

positive weight minus negative weight (cf. Chap. 5). The contrast for this example

is 2.04 with approximate standard deviation equal to 1.18. The corresponding

t-value of 1.73 is barely significant at the 95 % level if a one-sided test is used

under the normality assumption. It is interesting to apply other resource estimation

techniques to this simple mosaic model as well.

For example, one can fit the linear model Y¼ a+ b•x where Y is a random

variable assuming the value of 1 at pixels on “A” where x¼ 1, and 0 where x¼ 0.

Using the method of least squares, this gives a¼ 2.5•10�6 and b¼ 37.5•10�6.

Obviously, this linear regression model exactly reproduces the two probabilities

estimated in the first paragraph of this section. The linear equation also can be used

in logistic regression with Y representing the logit of occurrence instead of the

probability itself (cf. Sect. 5.2). Application of this technique gave a¼�12.90 and

b¼ 2.773, with variances of 0.50 and 0.624, respectively, and covariance of �0.50.

Conversion of logits into probabilities again reproduces P(DjA)¼ 0.000,4
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and P(Dj A~)¼ 2.5•10�6. The preceding four methods (probability calculus,

weights-of-evidence, linear least squares, and logistic regression) all produce the

same estimates of the probabilities (uncertainty type 1). However, they produce

slightly different answers for the variances of these probabilities (uncertainty type 2).

Some remarks on other applications pertaining to the mosaic model are as

follows. This model was used by Bernknopf et al. (2007) for different rock units

with probabilities of occurrence for mineral deposits of different types. Probabili-

ties and expected values were modified according to relative amount of exposure of

each rock unit by these authors. In the context of weights of evidence modeling,

Carranza (2009) asked the question of what would be the optimum pixel size. For

the mosaic model, the answer to this question is simply that pixels should be

sufficiently small to allow precise estimates of relative areas of rock units on the

map. Further size decrease does not affect estimation results when mineral deposits

are modeled as points, because of the dichotomous nature of every rock unit

represented by a mosaic model.

4.3 General Model of Least Squares

The linear model discussed in Sect. 4.2 can be generalized by including p additional

explanatory variables X1, X2, . . ., Xp, so that: E(YjX)¼ β0 + β1X1 + β2X2 + . . .+ βpXp .

As before Y is a random variable with the same variance as the random variable with

zero mean that distorts the deterministic component β0 + β1X1 + β2X2 + . . .+ βpXp.

It is convenient to use matrix algebra and write:

Y1

Y2

:
:
:
Yn

2
666664

3
777775
¼

1 X11 X21

1 X12 X22

: : :

: : Xp1

: : Xp2

: : :
: : :
: : :
1 X1n X2n

: : :
: : :
: : Xpn

2
666664

3
777775
�

β1
β2
:
:
:
βp

2
666664

3
777775
þ

E1

E2

:
:
:
En

2
666664

3
777775

Box 4.4: Multiple Regression

The preceding matrix equation also can be written as Y¼Xβ+E.
Best estimates of the coefficients satisfy: β̂ ¼ X

0
X

� ��1
X

0
Y. The

estimated values are Ŷ ¼ Xβ̂ ¼ X X
0
X

� ��1
X

0
Y. In regional mineral

resource appraisal, it can be convenient to define a matrix D¼X(X0X)� 1X0

so that Ŷ ¼ DY. The 95-% confidence interval of any individual

estimated value is Ŷ k � t0:975 � s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

0
k X

0
X

� ��1
Xk

q
. If all estimated

values are considered simultaneously, the wider belt

(continued)
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Various techniques of sequential regression analysis are useful. These are forward

selection, stepwise regression and backward elimination (Draper and Smith 1966).

When there are p explanatory variables, forward selection begins by finding the

variable that has the largest squared correlation coefficient with the dependent

variable. It is selected first. At the next and later steps the variable that most increases

R2 is included. The forward selection is stopped when none of the remaining

explanatory variable significantly increases the degree of fit. Stepwise regression

does the same as forward selection except for one refinement. After completing a

single step, one goes back one step whereby the variables already included in the

equation are again checked for statistical significance. Finally, backward elimination

consists of first including all variables in the regression equation and eliminating

them one by one until the F-ratio exceeds a predetermined level.

Box 4.4 (continued)

Ŷ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

0
k X

0
X

� ��1
Xk pþ 1ð Þs2F0:95 pþ 1, n� p� 1ð Þ

q
should be used.

The squared multiple correlation coefficient R2¼ SSR/TSS provides a

measure of the degree of fit. The residual variance becomes: s2res ¼RSS/
(n� p� 1). The analysis of variance table (Table 4.1) becomes as is

shown in Table 4.2 with application of the following F-test:

F̂ p, n� p� 1ð Þ ¼ SSR=p
RSS= n�p�1ð Þ.

However, it is more common to apply analysis of variance by adding

q new explanatory variables to the p explanatory variables already consid-

ered. Then the analysis of variance becomes as is shown in Table 4.3 with:

F̂ p, n� p� q� 1ð Þ ¼ ΔSSR=q
RSS= n�p�q�1ð Þ.

Table 4.2 Analysis of variance table to test p explanatory variables for statistical significance

Source of variation Sum of squares Degrees of freedom Mean square

Regression SSR p SSR/p

Residuals RSS n� p� 1 RSS/(n� p� 1)

Total TSS n� 1

Table 4.3 Analysis of variance table to test q additional explanatory variables for statistical

significance

Source Sum of squares Degrees of freedom Mean square

First regression ( p var.) SSR1 p

Difference between 1 and 2 ΔSSR¼ SSR2� SSR1 q ΔSSR/q
Second regression ( p + q var.) SSR2 p+ q

Residuals RSS n� p� 1 RSS/(n� p� q� 1)

Total TSS n� 1
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4.3.1 Abitibi Copper Deposits Example

Stepwise regression was used in the study (Agterberg et al. 1972) to relate

occurrences of large copper deposits to lithological and geophysical variables in

the Abitibi area on the Canadian Shield (Figs. 4.3 and 4.4). This region was selected

in 1967 for various projects in the former Geomathematics Program of the Geo-

logical Survey of Canada on the systematic quantification of geoscience data for

larger regions and to correlate the points of occurrence of mineral deposits to the

resulting digitized versions of the geological framework. Initially the grid shown in

Fig. 4.4 was used but later a grid of equal-area (10 km� 10 km) cells was projected

on various geological maps for the area at scales 1 in. to 4 miles (approx. 1:

250,000) or larger. This grid (see, e.g., Fig. 4.5) corresponds to the Universal

Transverse Mercator map projection used for Canadian topographic maps at scales

1:250,000 and larger.

Traditionally, the Abitibi area was important for its gold deposits, but in the

1960s gold-mining was becoming uneconomical because the price of gold had been

kept artificially low (at $35.00 US per ounce) and mining shifted from lode gold to

volcanogenic massive sulphide deposits that also occur abundantly in this region.

Most large sulphide bodies are lenticular, massive to disseminated, stratabound

deposits enclosed by volcanic and sedimentary rocks of Archean age. They contain

mixtures, in various proportions, of pyrite, pyrrhotite, sphalerite, chalcopyrite, and,

in some instances, galena. Copper from chalcopyrite is economically most signi-

ficant; zinc from sphalerite is recovered from a number of deposits, in some of

which significant copper is absent. The volcanogenic massive sulphide deposits

also may contain significant (minable) amounts of gold and silver.

The Abitibi area in Fig. 4.4 consists of 814 cells measuring 10 km on a side. For

644 cells, values for the following ten attributes were determined: (1) granitic rocks

(acidic intrusives and gneisses); (2) mafic intrusions; (3) ultramafics; (4) acidic

volcanics; (5) mafic volcanics; (6) Archean sedimentary rocks; (7) metamorphic

rocks of sedimentary origin; (8) combined bedrock surface length of layered iron

formations; (9) average Bouguer anomaly; and (10) aeromagnetic anomaly at cell

center after removal of effect of Earth’s total magnetic field. The geophysical

variables were corrected for their overall regional means so that below-average

values became negative. More explanatory details on these variables are provided

in Agterberg et al. (1972).

A geological environment is not only characterized by individual attributes but,

more importantly, by the different types of coexistences of attributes. Some exam-

ples of pairwise coexistences are: (1) coexistence of Archean sedimentary rocks

and iron formations in a cell may define another sedimentary facies; (2) coexistence

of acidic volcanic rocks and relatively high Bouguer anomaly may indicate an

ancient volcanic centre where rhyolites and tuffs cap a relatively thick pile of

andesites and basalts; and (3) coexistences of different rock types indicate presence

of contacts between these rock types in a cell (various types of mineral deposits tend

to occur at or near contacts between specific rock types). In order to consider

118 4 Correlation, Method of Least Squares, Linear Regression and the General. . .



F
ig
.
4
.3

G
eo
lo
g
ic
al
m
ap

o
f
A
b
it
ib
i
ar
ea
,w

h
ic
h
is
p
ar
t
o
f
th
e
S
u
p
er
io
r
P
ro
v
in
ce
,
C
an
ad
ia
n
S
h
ie
ld

(b
as
ed

o
n
G
.S
.C
.
m
ap

1
2
5
0
A
b
y
R
.J
.V
.
D
o
u
g
la
s)
.A

re
a
u
se
d
in

F
ig
.
4
.4

is
o
u
tl
in
ed

(F
ro
m

A
g
te
rb
er
g
1
9
7
4
,
F
ig
.
7
9
A
)

4.3 General Model of Least Squares 119



combinations of features co-occurring in the same cells, 45 additional explanatory

variables were formed that are cross-products of the preceding 10 attributes. As is

usual in applications of multiple regression, a dummy variable with value equal to 1

in all cells was added to obtain 56 explanatory variables in total.

Fig. 4.4 Distribution of copper deposits in area outlined in Fig. 4.3; deposits with more than

1,000 t of copper are circled. (a) East-central Ontario; (b) Western Quebec. Alternate lines
(8 miles apart) are shown for grid to be used for harmonic analysis in Chap. 7 (Source: Agterberg

1974, Fig. 80)
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Consequently, the data matrix X used for the Abitibi area consists of 644 rows

and 56 columns. The matrix D¼X(X0X)� 1X0 for the relation between estimated

and observed values of the dependent variable ( Ŷ ¼ DY ) has 644 rows and

644 columns. Observed values for the dependent variable were based on logarith-

mically transformed amount of copper in (1968) production and reserves per cell

(Fig. 4.5a). Only 27 cells contained one or more large copper deposits (with more

than 1,000 short tons of copper in past production and estimated reserves; 1 short

ton¼ 0.907 t). The remaining (644–27 ¼) 617 cells had zeros for the dependent

variable. Rock type variables assume values that are either 0 or positive. Suppose

that all explanatory variables are subjected to a Heaviside transformation changing

their values that are greater than 0 into 1. Negative values for variables, that involve

one of the two geophysical variables, were changed into zeros. Transforming all

55 variables in this manner and correlating them individually with the copper

pattern of Fig. 4.5a showed that the single yes-no explanatory variable most

strongly correlated with copper is acid volcanics present in a cell and Bouguer

anomaly above average. This explanatory variable is shown in Fig. 4.5b. Clearly,

there is positive spatial correlation between the patterns of Fig. 4.5a, b. The

explanation of this association is that nearly all large copper deposits in the Abitibi

area are volcanogenic massive sulphide deposits that are genetically associated with

acidic volcanics. Relatively high Bouguer anomaly in this area indicates under-

ground presence of a relatively thick pile of mafic volcanics with above average

specific gravity.

Another simplified illustration of use of the general linear model for correlating

occurrence of large copper deposits with the geological framework can be based

of the D matrix. The Kidd Creek Mine near Timmins, Ontario, is the largest

volcanogenic massive sulphide deposit in the Abitibi area. Suppose that the depen-

dent variable that is related to all 56 explanatory variables by multiple regression

has zero values in all cells except in the cell that contains the Kidd Creek Mine.

This means that the 643 other cells are being compared with this single cell. If a full

regression is carried out using all values of the dependent variable and the explan-

atory variables, the estimated values of the dependent variable are related to the

corresponding observed values through the D matrix that consists of 644 rows of

644 values. The experiment of comparing all cells with the Kidd Creek cell then is

equivalent to restricting the input for the dependent variable to the 644 values of the

56 explanatory variables in this single cell only. Figure 4.6 shows the corresponding

estimated values for the dependent variable. These predicted values were classified

according to three classes: very similar, more similar than average, and less similar

than average. This map graphically represents the row of the D matrix that corre-

sponds to the Kidd Creek Mine. From Fig. 4.6 it can be seen that comparing all

(10 km� 10 km) cells in the Abitibi with the cell that contains the Kidd Creek

deposit produces a pattern that has predictive potency.
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4.3.2 Forward Selection and Stepwise Regression
Applied to Abitibi Copper

Standard methods of multiple regression were used for numerical analysis.

The main computational step consists of inversion of the XX0 matrix. Because the

55 explanatory variables contain several linear and near-linear relationships,

the full matrix cannot be inverted. At a maximum, 51 explanatory variables could

be used. Results of forward selection are partially shown as seven contour maps in

Fig. 4.7. As illustrated in Fig. 4.8, the contours represent sums of estimated values

for overlapping (40 km� 40 km) squares. Each larger unit square contains 16 values

estimated for the smaller (10 km� 10 km) cells it contains. Estimated values for

the smaller cells are less than 1 and can be interpreted as probabilities of occur-

rence of one or more copper deposits. Any of the sums of 16 probabilities for

(40 km� 40 km) unit areas represents the expected value of number of

(10 km� 10 km) cells with one or more copper deposits (also called “control

cells”). Each contour map was scaled with respect to a relatively well explored

“control area” that contains the mining districts of Timmins, Kirkland Lake,

Noranda and Val d’Or. The sum of estimated probabilities in this control area

was set equal to the number of cells with copper deposits in this area. It is shown

that selection of eight variables (Fig. 4.7d) already nearly produces the final pattern

based on 51 variables (Fig. 4.7g).

In another experiment along the same lines, stepwise regression was used to

relate the copper cell values to all explanatory variables with individual stepwise

selection and final regression coefficients shown in Table 4.4. The Q-value in this

table represents level of significance for the F-distribution for every forward or

backward step. Note that there occurred only a single backward step in this

application. It is customary to terminate the regression run when Q, at a forward

1

1 5 10 15 20 25 30 35 40
45

LARGE SULPHIDE DEPOSITS
Zn ONLY Cu ONLY
CONTROL CELL Cu AND Zn

50 55 59

5

10

15

Fig. 4.6 Abitibi area; all cells were compared with a single control cell (C) containing giant

(Cu, Zn, Pb, Ag) sulphide deposit (Kidd Creek Mine); 12 black cells have geological setting

similar to that of C; 123 other cells with black frame have similarity index greater than average.

Systematic comparisons of this type are useful to problem-solving in exploratory strategy (Source:

Agterberg 1974, Fig. 116)
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Fig. 4.7 Abitibi area; the copper weights of Fig. 4.5 were regressed on the ten variables for

(10 km� 10 km) cells and all possible cross-products of these variables (cf. Table 4.4); contour

pattern changes when increasingly more of these variables are included using stepwise multiple

regression. Number of variables is (a) 1; (b) 2; (c) 4; (d) 8; (e) 16; (f) 32; (g) 51 (Source: Agterberg

1974, Fig. 124)

124 4 Correlation, Method of Least Squares, Linear Regression and the General. . .



step, crosses a predetermined level Q. Setting Q	 0.5 for the present example

resulted in the selection of 24 explanatory variables. Q-values are small (<0.05) for

the first nine variables that were selected.

Finally, Fig. 4.9 shows how well smaller sets of known copper deposits in parts

of the study area perform in predicting copper potential in the entire study area.

Nineteen of the 27 (10 km� 10 km) cells with known copper deposits occurred in

western Quebec, mainly in the Noranda and Val d’Or mining districts. The contour

map of Fig. 4.9b is based on these 19 control cells only. There is strong similarity

between Fig. 4.9a, b that was based on all 27 control cells. Using the eight control

cells in Ontario (western part of study area) produced the pattern of Fig. 4.9c, which

underestimates Fig. 4.9a.

Fig. 4.7 (continued)
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4.4 Abitibi Copper Hindsight Study

The Abitibi area copper potential map constructed in 1971 was based on 1968

statistics for production and reserves (Agterberg et al. 1972). During the 1970s a

considerable amount of exploration for additional massive sulphide deposits was

undertaken in this region. Agterberg and David (1979) evaluated the prognostic

copper potential contours constructed from 1968 data on the basis of the locations

and sizes of seven discoveries made between 1966 and 1977 (Millenbach, Louvem,

Conigo, Iso-Copperfield, New Insco, Corbet and Montcalm deposits). The first

three of these deposits already had been discovered when the original statistical

analysis was performed but published figures on production and reserves were not

yet available for them at that time. All seven new discoveries occurred either within

the vicinity of one or more of the original set of 41 deposits, or within the three

relatively high copper potential subareas without known deposits in 1968 men-

tioned before (also see Wellmer 1983). Together the 41 deposits contained 3.12 Mt

of copper at the end of 1968. In 1977, the set of (41 + 7¼) 48 deposits contained

5.23 Mt Cu. This increase was largely due to increased production and reserve

estimates for the Kidd Creek mine (near Timmins, Ontario). The overall change in

geographic distribution of large copper deposits from 1968 to 1977 can be seen by

comparing Fig. 4.10b with Fig. 4.10a. Later discoveries (until 2008) are considered

in Fig. 4.10c.

Fig. 4.8 Illustration of occurrence of deposits with respect to 16 (10 km� 10 km) cells within a

(40 km� 40 km) unit area. Three smaller cells (k¼ 3) contain one or more deposits. This could be

a realization of a random variable with expected value m¼ 4 that is shown on the contour map.

Suppose that this random variable has a binomial distribution, then the probability that k¼ 3

amounts to 21 % (Source: Agterberg and David 1979, Fig. 3)
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4.4.1 Incorporation of Recent Discoveries

Lydon (2007) has published a comprehensive overview of the economic and

geological contexts of Canada’s major mineral deposit types accompanied by a

DVD with production and estimated reserves of Canadian mineral deposits includ-

ing large copper deposits in the Abitibi area. Between 1977 and 2007, there were

five major new discoveries (Ansil, Bouchard-Hebert, Bousquet-Laronde, Amos and

Louvicourt deposits), all within the vicinities of the 48 deposits known to exist in

1977. Revising our original 1968 data set (Agterberg et al. 1972, Appendix 1) using

Lydon’s data set, and including one 2008 estimate for the newly discovered Upper

Beaver ore zone near Kirkland Lake, Ontario (cf. www.queenston.ca/news/pdf/

080922.pdf), yields a combined set of 66 copper deposits containing 9.50 Mt Cu,

Table 4.4 Abitibi area; Variables selected by stepwise regression (Q¼ 0.5) of logarithmically

transformed copper per (10� 10 km) cell on 55 geological and geophysical variables

Rank Name of variable Q̂ � value Regression coefficient

0 Constant term �0.14863

1 Acidic volcanics�mafic volcanics 0.36 · 10�9 0.00045

2 Granitic rocks� acidic volcanics 0.44 · 10�4 0.00147

3 Acidic volcanics� sediments 0.70 · 10�3 0.00182

4 Acidic volcanics� iron formations 0.45 · 10�4 �0.00334

5 Acidic volcanics� aeromagn. anomaly 0.63 · 10�3 �0.01958

6 Mafic intrusions� acidic volcanics 0.14 · 10�3 0.00187

7 Metamorphic rocks� iron formations 0.87 · 10�3 0.00618

8 Mafic intrusions�metamorphic rocks 0.91 · 10�2 0.00129

9 Granitic rocks� sediments 0.32 · 10�1 0.00037

10 Sediments�Bouguer anomaly 0.13 0.00027

11 Mafic volcanics� sediments 0.021 0.00017

12 Acidic volcanics 0.13 0.05068

13 Sediments� aeromagnetic anomaly 0.12 0.00560

14 Sediments 0.14 �0.01726

15 Ultramafics� sediments 0.27 0.00049

16 Granitic rocks� iron formations 0.30

17 Iron formations�Bouguer anomaly 0.10 �0.00490

18 Iron formations 0.19 �0.40777

19 Mafic volcanic� iron formations 0.09 0.00171

– Backward pass, No. 16 deleted 0.65

19 Iron formations� aeromagn. anomaly 0.20 0.02133

20 Ultramafics� iron formations 0.29 �0.00332

21 Sediments�metamorphic rocks 0.36 �0.00025

22 Acidic volcanic�methamorphic rocks 0.29 0.00123

23 Mafic intrusions�mafic volcanics 0.41 0.00026

24 Granitic rocks 0.38 0.00128

25 Granitic rocks�mafic volcanics 0.44 0.00003

26 Mafic intrusions� sediments 0.50 �0.00030

Figure 3.8a was based on this run. The rank of the first 16 variables selected is the same as that

obtained by forward selection used for Fig. 4.10 (Source: Agterberg 1974, Table L)
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about three times as much as was contained in the 41 copper deposits in 1968. The

41 copper deposits in the 1968 dataset occurred in 27 “copper cells” measuring

10 km on a side and belonging to the original set of 644 cells for which copper

potential was estimated in 1971. Figure 4.10 shows most copper cells, with

(A) locations of 1968 copper cells, (B) locations of 1977 copper cells including

two new cells with new discoveries, and (C) locations of copper cells in 2008 each

Fig. 4.9 3-D representation of three copper probability maps for same area as depicted in Fig. 4.7.

The main peaks near Val d’Or, Noranda and Timmins fall approximately on east-west line

pointing upwards to the left in these diagrams. (a) Probability index (based on 27 control cells

shown in Fig. 4.5), scaled with respect to control area of 50 cells shown in Fig. 4.5; result is based

on stepwise regression with Q¼ 0.5; 26 variables were included. (b) Ditto, as computed from

19 control cells east of 600 km E line of Fig. 4.7; control area consisted of the 25 cells near

Noranda only. (c) Ditto, from 8 control cells in western part of area; control area of 25 cells near

Timmins only. Note that b resembles a, but c underestimates a in the eastern part of the region

(Source: Agterberg 1974, Fig. 117)
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containing one or more copper deposits in the combined data set. The 1968 data set

has three deposits not in Lydon’s data base but plotted in Fig. 4.10, whereas the

Lydon data base contains three Ni-Cu deposits with 0.1 % copper grade not in

Agterberg et al. (1972, Appendix 1) and not plotted in Fig. 4.10. On average, a

copper cell shown in Fig. 4.10c contains (63/35)¼ 1.80 large copper deposits

but because of localized strong spatial clustering, the frequency distribution of

number of deposits per copper cell is highly positively skewed with one cell (37,8)

in the Noranda mining district containing as many as 11 large copper deposits.

Comparison with Fig. 4.10b shows that nearly all differences between the patterns

in Fig. 4.10a, c date from before 1977. The ten copper cells with most copper are

listed in Table 4.5.

As mentioned before, new discoveries during the 1970s either were discovered

close to known 1968 deposits or within the areas with relatively high copper

potential outlined in Fig. 4.7. By 1977, geographical distribution of large copper
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Fig. 4.10 Abitibi copper hindsight study; comparison of copper cells in (a) 1968, (b) 1977 and (c)

2008. Pattern (a) is same as pattern of copper weights in Agterberg et al. (1972) but for slightly

smaller area; note minor change in areal copper distribution from 1968 to 1977 and no change at all

in copper cell locations from 1977 to 2008. Single X denotes one or more deposits with production

and reserves (Cu) between 1,000 short tons (st) but less than 50,000 tons (t); XX for cells with

50,000<Cu< 500,000 t; XL for cells with Cu> 500,000 t (1 st¼ 0.907 t). In total, the 2008

copper cells contain about three times as much copper as they did in 1968 (Source: Agterberg

2011, Fig. 2)
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deposits in the Abitibi area had stabilized and further increases in production and

reserves (from 5.23 to 9.50 Mt) were for copper within the known deposits and for

new discoveries close to (and generally at greater depths than) the known deposits.

Average grade of total production and reserves is about 1.6 % copper in the original

1968 data set with 41 copper deposits as well as in the 2008 data set with 66 copper

deposits. Figure 4.11 is a log-log plot of copper grade versus amount of ore for the

corresponding 35 copper cells that also will be analyzed in more detail in the next

section.

Predictions made in Agterberg et al. (1972), such as the one for a “test area” in

the surroundings of Timmins, Ontario, were based on the assumption that the
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106

105

104

103

102

101

100

10−2 10−1 100 101

O
re

 T
on

na
ge

 (
t)

Fig. 4.11 Log-log plot of Ore Tonnage versus Copper grade (2008 data). The three points on the

left are probably outliers. When these three points are deleted, the correlation coefficient

(r¼ 0.079) is nearly zero suggesting lack of functional relationship between grade and ore tonnage

(Source: Agterberg 2011, Fig. 3)

Table 4.5 Abitibi copper

hindsight study; Amounts

of copper for ten cells with

most copper in 2008

Rank Cell #,# Type Copper (kT)

1 20,4 1,0,0 4,516.1

2 37,9 11,0,0 1,710.1

3 37,8 1,0,0 1,436.8

4 48,10 4,0,0 576.1

5 41,9 5,0,0 241.2

6 47,10 1,0,1 166.5

7 36,8 2,0,0 114.9

8 38,7 2,0,0 92.6

9 35,7 2,0,0 90.3

10 34,1 1,0,0 79.9

Largest value (rank 1) for Kidd Creek Mine accounts for 47.5 %

of total Abitibi production and reserves. Cell numbers as in

Fig. 4.10. Three numbers in column for “Type” are for VMS,

Ni-Cu and porphyry copper deposits per cell
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frequency distribution of amount of copper per control cell could be used for this

purpose. A relatively recent development is that increasingly it is realized that ore

deposits, like earthquakes and several other types of natural phenomena, have

fractal characteristics and resulted from non-linear processes. Mandelbrot (1983,

p. 263) posed a challenge to geoscientists by stating that oil and other natural

resources have Pareto distributions and “this finding disagrees with the dominant

opinion, that the quantities in question are lognormally distributed. The difference

is extremely significant, the reserves being much higher under the hyperbolic than

under the lognormal law.” This topic will now be investigated in more detail for

copper in the Abitibi area. Later, it will be discussed again in the context of fractals

(Chap. 10).

4.4.2 Comparison of Weight Frequency Distributions
for Copper Metal and Ore

Size frequency distribution studies usually are carried out on populations of mineral

deposits of the same type. In this study, it is applied to total amount of copper in the

one or more copper deposits per (10 km� 10 km) cell. This procedure has advan-

tages as well as drawbacks. An advantage is that the effect of strong localized

clustering of deposits is curtailed, and total number of observations (27 in 1971

versus 35 in the combined data set) is stabilized. A disadvantage is that copper

deposits of different types are being combined with one other although frequency

distributions for different types of deposits can be different, especially if two or

more metals are considered.

Nearly all (86 % of 66) large copper deposits in the combined data set are volcanic

massive sulphide type (VMS). There are relatively few (six) magmatic Ni-Cu

deposits (and five of these are small), plus three porphyry-type copper deposits.

Preliminary statistical analysis was performed on various subsets such as using

copper deposits instead of copper cells, VMS deposits only, Lydon’s statistics only,

but these exercises produced results similar to those to be presented here. However,

explicit consideration of average copper grade (¼ amount of copper/amount of ore)

generates somewhat different results. For this reason, the following analysis is for two

variables per copper cell: (1) total weight (amount) of copper, and (2) total weight of

ore. A comparison will be made between the 2008 and 1968 data.

Figure 4.12 shows log-log plots of copper and ore weight versus rank. A Pareto

distribution plots approximately as a straight line on this type of plot as also shown

for gold tonnages in lode gold deposits in the Superior Province of the Canadian

Shield (Agterberg 1995; cf. Fig. 10.10). In each plot of Fig. 4.12, a straight line was
fitted by least squares to most data points excluding the smallest copper or copper

ore cells for which information is probably incomplete. Also, it can be expected that

the Pareto distribution does not provide a good fit for low weight cells because it has

the property that frequency of occurrence continues to increase with decreasing
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weight. Figure 4.13 shows the corresponding four lognormal Q-Q plots. In

Fig. 4.13a, c for copper weight, the patterns are not linear but in Fig. 4.13b, d

they are, and straight lines were fitted by least squares using all data points. Degree

of fit is good in these two diagrams as illustrated by the 95 % confidence interval in

Fig. 4.13d.

It may be concluded that six of the eight plots (Figs. 4.12 and 4.13) show straight

line patterns. The patterns in Fig. 4.14a, c are not approximately linear, probably

because in several deposits copper is not the main metal of economic interest but

only mineable as a by-product. For these deposits, total weight of ore fits in with the

population of all copper deposits but total weight of copper does not because of

the lower copper grades. It seems that both the Pareto and the lognormal are good

candidates for modeling total copper and ore weight frequency distributions.

The high-value tail of a Pareto frequency distribution is thicker than that of the

lognormal. As will be discussed in more detail later (Sect. 11.4), the Pareto and

lognormal each can be considered as the end product of a multiplicative cascade

model. Cascade models can be regarded as a generalization of the generating

process models discussed in the previous chapter. Pareto and lognormal frequency

distributions are the end products of a de Wijs cascade and a Turcotte cascade,

respectively. Other cascades (cf. Lovejoy and Schertzer 2007) can result in

frequency distributions that resemble a lognormal except in their high-value

Pareto-type tails (cf. Sect. 10.7). It may not be possible to determine whether a

high-value tail is lognormal or Pareto-type if the frequency distribution it belongs to
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Fig. 4.12 Log-log Weight-Rank plots for 1968 and 2008 data with straight lines fitted by least

squares. (a) 1968 Copper Weight; (b) 1968 Ore Weight; (c) 2008 Copper Weight; (d) 2008

Ore Weight. Base of logarithms¼ 10; Weight measured in (metric) tons. Straight lines approxi-
mate Pareto distributions. For 1968 data, first 18 of 27 data points were used to fit straight lines.

For 2008 data, first 27 of 35 data points were used (Source: Agterberg 2011, Fig. 4)

132 4 Correlation, Method of Least Squares, Linear Regression and the General. . .

http://dx.doi.org/10.1007/978-3-319-06874-9_11
http://dx.doi.org/10.1007/978-3-319-06874-9_10


has strong positive skewness like the distributions of Figs. 4.13 and 4.14, because

then there are too few very large values for application of standard goodness-of-fit

tests (also see Agterberg 1995). Nevertheless, the few largest values contribute

much or most of total weight for all deposits in the data set. This difficulty can be

avoided by using the following method of comparing the Pareto and lognormal

frequency distributions with one another (Agterberg 2011).
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Fig. 4.14 Best- fitting straight lines for 1968 data with slopes set equal to slopes of straight lines
fitted to 2008 data. (a) Log-Log Copper Weight; points same as in Fig. 4.12a; (b) Lognormal Q-Q
plot of Ore Weights; points same as in Fig. 4.13b. Comparison with Figs. 4.12c and 4.13d shows

1968 and 2008 intercept increases (Source: Agterberg 2011, Fig. 6)
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Fig. 4.13 Lognormal Q-Q plots of copper and ore weights for 1968 and 2008 data. (a) 1968

Copper Weights; (b) 1968 Ore Weights; (c) 2008 Copper Weights; (d) 2008 Ore Weights. Straight
lines approximate lognormal frequency distributions with logarithmic standard deviation esti-

mated by inverse of slope. Curves in Fig. 4.13d represent 95 % confidence belts for points

deviating randomly from straight line. All data points were used to fit straight lines (Source:

Agterberg 2011, Fig. 5)
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Comparison of coefficients of the straight lines fitted in Figs. 4.12 and 4.13

shows that 1968 and 2008 data have approximately the same slope but 2008

intercepts are markedly greater than 1968 intercepts. In Fig. 4.12 the straight

lines are based on 18 and 27 data points for 1968 and 2008, respectively. All data

points were used for the lognormals of Fig. 4.13. Because slope differences are

small, it can be assumed that 1968 slopes are unbiased estimates of 2008 slopes.

This is illustrated in Fig. 4.14 for 1968 copper and ore weight data where the best-

fitting lines were forced to have the 2008 slopes. The intercept of the Pareto

distribution for copper weight in Fig. 4.12a is less than its intercept in Fig. 4.12c.

Suppose this difference is written as ΔP¼ 0.4585. Equations of the straight lines in

Figs. 4.12, 4.13, and 4.14 are of the form y¼ bx+ a indicating that the dependent

variable (Y ) was regressed on the explanatory variable (x). All uncertainty is

assumed to be associated with Y that is plotted in the vertical direction. These

equations can be rewritten as x¼ b0y+ a0; for example, x¼ 0.9843y+ 3.3737 for

Fig. 5d and x¼ 0.9843y+ 3.1080 for Fig. 4.13b. It is noted that the least squares

method used in this section results in slightly biased estimates of the coefficients.

If this type of bias cannot be neglected, a different method of fitting the Pareto

distribution can be used (Sect. 10.2.3).

The intercept (a0) of the lognormal distribution in Fig. 4.14b is only ΔL¼ 0.2627

less than the intercept in Fig. 4.13d. Each intercept difference Δ corresponds to a

factor of 10Δ for increase in average weight per cell between 1968 and 2008. These

factors are 2.875 for copper and 1.831 for copper ore, respectively. Incorporating a

6.1 % correction related to the relatively slight increase in total number of cells with

known deposits due to new discoveries (cf. Fig. 4.10), the factors of increase in total
weight become 3.049 for the copper-weight Pareto model, and 1.943 for the

ore-weight lognormal model. Observed factors of increase are 3.026 for total

copper weight and 3.030 for total ore weight, respectively. Consequently, the

copper-weight Pareto agrees better with observed increase in total copper weight

than the ore-weight lognormal, which significantly underestimates observed overall

change in total ore weight. As an additional test, it was determined from the straight

lines in Fig. 4.12b, d, that ΔP¼ 0.4885 for total ore weight, resulting in an increase

factor of 3.266, slightly overestimating the observed value of 3.030.

4.4.3 Final Remarks on Application of the General Linear
Model to Abitibi Copper

The large copper deposits in the Abitibi are almost all of the volcanogenic massive

sulphide type. These deposits are associated with geological and geophysical vari-

ables that can be mapped. Other types of deposits may not so clearly associated with

mappable variables. For example, in the Abitibi area there are many lode gold

deposits that occur in places that are not clearly different from other places in the

region with respect to the geological and geophysical variables used in the appli-

cation of the general linear model to Abitibi copper.
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The geomathematical mineral resource prediction project in the Abitibi area

which was commenced in 1967 (cf. Sect. 4.3.1) on the premise that the large

amounts of data available for many hundreds of gold deposits including a few

hundred gold mines (almost exclusively past producers) could be fruitfully used to

develop methodology that would be applicable to other types of deposits. The Kidd

Creek mine, which is on a very large volcanogenic massive sulphide deposit, had

already been discovered and prospecting for new deposits in the Abitibi area

had shifted almost entirely to large copper and zinc deposits instead of lode gold

deposits that could no longer be profitably mined because the price of gold had been

kept at 35 dollars per troy ounce. It turned out that spatial frequency of occurrence

(number of deposits per unit of area) and sizes of the lode gold deposits are only

partially controlled by mappable geological and geophysical variables. In situations

of this kind it can be assumed that the regional mineralization processes were deep-

seated and not mainly controlled by the depositional environments.

The problem of uneven geographical distribution of amounts of mineable metal

across a region can be partially overcome by including terms in the regression

equations that are functions of geographic location in the Abitibi area as described

in Agterberg (1970, 1971), and Agterberg and Kelly (1971). An example for the

large copper deposits used for example earlier in this chapter is shown in Fig. 4.15.

The stepwise regression resulting in Table 4.4 and Fig. 4.7 was repeated after

adding 44 new variables to the 55 explanatory variables used before. These

additional variables were functions of the geographical coordinates of all cells in

the region. Together these functions form an octic trend surface (cf. Chap. 7). The
contour pattern of Fig. 4.15 is similar to the patterns obtained previously (e.g.,

Fig. 4.7) except in the southern Val d’Or-Noranda area. This would suggest that,

relatively, there occurs more copper in this vicinity than elsewhere in the Abitibi

area. Reddy et al. (1991) used logistic regression to predict base-metal potential in

the Snow Lake area, Manitoba, using explanatory variables that included geo-

graphic locations. A two-stage least-squares model for the relationship between
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Fig. 4.15 Copper potential map for Abitibi area based on combined model with polynomial terms

added to the geological and geophysical explanatory variables. Its contour values near Val d’Or

exceed those in Fig. 4.7e–g (Source: Agterberg 1974, Fig. 126)
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mappable geological variables with variable regional mean was developed by

Agterberg and Cabilio (1969).

In most mineral potential research studies it is assumed that the size and grade

distribution of the deposits is independent of location within areas considered

favorable for their occurrence (see, e.g., Singer and Menzie 2010). However, a

hypothesis worthy of investigation is that frequency of occurrence in more favor-

able environments is positively correlated with amounts of metal contained in the

deposits. Examples of positive correlations of this type will be given later for gold

deposits in Meguma Terrane, Nova Scotia (Sect. 5.2.1) and worldwide occurrence

of porphyry copper deposits (Sect. 10.2.3). The following example taken from

Agterberg (1973, 1977) applies to volcanogenic massive sulphide deposits in the

Abitibi area (Fig. 4.16). This example will be discussed in more detail in an

application of the jackknife method for bias elimination (Sect. 12.1.2). The Abitibi

study area contained 35 (10 km� 10 km) cells with one or more large copper

deposits. Two types of multiple regressions were carried out with the same

explanatory variables. First the dependent variable was set equal to 1 in the

35 control cells, and then it was set equal to a logarithmic measure (base 10) of

short tons of copper per control cell. Suppose that estimated values for the first

regression are written as Pi and those for the second regression as Yi. Both sets of

values were added for overlapping square blocks of cells to obtain estimates of

expected values (30 km� 30 km) unit cells. In Fig. 4.16 the ratio Yi*¼ Yi/Pi is

shown as a pattern that is superimposed on the pattern for the Pi values only in

Fig. 12.22 (see later). The values of Yi* cannot be estimated when Yi and Pi are

both close to zero. Little is known about the precision of Yi* for Pi
 0.5. These

values (Yi*) should be transformed into estimated amounts of copper per cell here

written as Xi. Because of the extreme positive skewness of the size-frequency

distribution for amounts of copper per cell (Xi), antilogs (base 10) of the values

of Yi* as observed in the 55 control cells were multiplied by the constant c ¼
X

Xi=
X

10Y
�
i in order to reduce bias under the assumption of approximate lognor-

mality (cf. Box 3.1). The pattern of Fig. 4.16 is useful as a suggested outline of

subareas where the largest volcanogenic massive sulphide deposits are more likely

to occur.

Fig. 4.16 Expected total amounts of copper for ore-rich cells predicted by Fig. 12.2a. Contour

values are logarithms (base 10) for (30 km� 30 km) unit cells (Source: Agterberg 1973, Fig. 5A)
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Chapter 5

Prediction of Occurrence of Discrete Events

Abstract Many geological bodies or events including various types of mineral

deposits, earthquakes and landslides can be represented as points on small-scale

maps. Various methods exist to express probability of occurrence of such events in

terms of various map patterns based on geological, geophysical and geochemical

data (Agterberg 1989a). The machine-based approach was greatly facilitated by the

development of Geographic Information systems (GIS, cf. Bonham-Carter 1994).

Weights-of-Evidence modeling and weighted logistic regression are two powerful

methods useful for estimating probabilities of occurrence of an event within a small

unit area. Weights-of-Evidence (WofE) consists of first assuming that the event can

occur anywhere within the study area according to a completely random Poisson

distribution model. This equiprobability assumption provides the prior probability

that only depends on size of an arbitrarily small unit area. Various indicator map

patterns commonly reduced to binary (presence-absence) or ternary (presence-

absence-unknown) form are used to update this prior probability by means of

Bayes’ rule in order to create a map of posterior probabilities that is useful for

selecting target areas for further exploration for undiscovered mineral deposits or

for the prediction of occurrence of other discrete events such as earthquakes or

landslides. If probabilities are transformed into logits, Bayes’ rule is simplified: the

posterior logit simply is equal to the sum of the prior logit and the weights of which

there is only one for each map layer at the same point. These weights are either

positive (W+) or negative (W�) depending on presence or absence of the indicator,

or zero for missing data. An important consideration in WofE applications is that

the indicator patterns should be approximately conditionally independent (CI).

WofE will be illustrated by applications to gold deposits in Meguma Terrain,

Nova Scotia, and to flowing wells in the Greater Toronto area. Weighted logistic

regression (WLR) also can be used to estimate probabilities of occurrence of

discrete events. Both WofE and WLR are applied to gold occurrences in the

Gowganda area on the Canadian Shield, northern Ontario, and to occurrences of

hydrothermal vents on the East Pacific Rise. Indicator patterns used include favor-

able rock types, proximity to anticlinal structures or contacts between rock units,

indices representing various geochemical elements, proximity to lineaments and

F. Agterberg, Geomathematics: Theoretical Foundations, Applications
and Future Developments, Quantitative Geology and Geostatistics 18,
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igneous intrusives, aeromagnetic data, relative age, and topographic elevation. The

Kolmogorov-Smirnov test is used for testing goodness of fit.

Keywords Discrete event prediction • Weights-of-evidence method • Contrast

• Missing data • Weighted logistic regression • Meguma terrain gold deposits

• Greater Toronto area flowing wells • Gowganda gold occurrences • Pacific rise

volcanic vents • Conditional independence test

5.1 Weights-of-Evidence Modeling

In the preceding chapter, stepwise multiple regression analysis was used to estimate

a probability index for occurrence of large copper deposits in the Abitibi area on the

Canadian Shield. The input for explanatory variables primarily consisted of infor-

mation on rock types systematically quantified for cells measuring 10 km on a side.

Geophysical field data at cell centers were used for gravity (Bouguer) and regional

aeromagnetic anomaly. Cross-products of variables provided better results than

scores for individual variables. The dependent variable used in the multivariate

linear model was logarithmically transformed total amount of copper in one or

more copper deposits per input cell. Neither of the two geophysical input variables

made a significant contribution to the magnitudes of the probabilities that were

being estimated. However, in a separate computer experiment using binary

(presence-absence) input data only, the variable most strongly correlated with

occurrence of large copper deposits was a combination of presence of felsic

volcanics at the surface of bedrock and higher than average Bouguer anomaly.

This result could be interpreted in terms of a mineral deposit model, because nearly

all large copper deposits in Abitibi are of the volcanogenic massive sulphide (VMS)

type and were formed near volcanic centers in association with acidic (felsic)

volcanics, while a relatively high Bouguer anomaly on the Canadian Shield indi-

cates relatively large amounts of mafic volcanic rocks with above average specific

gravity at greater depths.

The probabilities of occurrence estimated for (10 km� 10 km) cells in the last

chapter were added for larger (40 km� 40 km) unit areas to produce a regionally

based prognostic contour map for expected numbers of known and unknown copper

deposits (Agterberg et al. 1972). Later, Assad and Favini (1980) conducted a

statistical mineral exploration study for the eastern part of the Abitibi region

using localized geophysical (aeromagnetic, gravity and terrain elevation) anoma-

lies. It could be assumed that localized geophysical and geochemical anomalies can

be superimposed on broader regionally based probabilities of mineral occurrence.

This prompted an experiment of using the probabilities previously estimated in the

Abitibi case study as priors in weights-of-evidence (WofE) modeling followed by

later incorporating Favini and Assad’s map layers that had been based on local

geophysical anomalies only, in order to obtain updated posterior probabilities of

occurrence (Agterberg 1989b). A somewhat similar method of updating prognostic
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maps by incorporating new data originally had been used by Dowds (1969) who

updated probabilities of oil well occurrence maps by including later discoveries. The

method of weights of evidence modeling was invented by Good (1950). In its original

application to mineral resource potential mapping (Agterberg 1989a), extensive use

was made of medical applications (Spiegelhalter and Knill-Jones 1984).

5.1.1 Basic Concepts and Artificial Example

Figure 5.1 illustrates the concept of combining two binary patterns for which it can

be assumed that they are related to occurrences of mineral deposits of a given type.

Figure 5.1a shows locations of six hypothetical deposits, the outcrop pattern of a

rock type (B) with which several of the deposits may be associated (Fig. 5.1b), and

two lineaments that have been dilatated in Fig. 5.1c. Within the corridors around the

lineaments, the likelihood of locating deposits may be greater than elsewhere in the

study area. In Fig. 5.1b–d, the deposits are surrounded by a small unit area. This

permits estimation the unconditional “prior” probability P(D) that a unit area with
random location in the study area contains a deposit, as well as the conditional

“posterior” probabilities P(D|B), P(D|C) and P(D|BC) that unit areas located on the
rock type, within a corridor and both on the rock type and within a corridor contain

Fig. 5.1 Artificial example to illustrate concept of combining two binary patterns related to

occurrence of mineral deposits; (a) outcrop pattern of rock type, lineaments, and mineral deposits;

(b) rock type and deposits dilatated to unit cells; (c) lineaments dilatated to corridors;

(d) superposition of three patterns (Source: Agterberg et al. 1990, Fig. 1)
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a deposit. These probabilities are estimated by counting how many deposits occur

within the areas occupied by the polygons of their patterns. The relationships

between the two patterns (B and C), and the deposits (D) can be represented by

Venn diagrams as shown schematically in Fig. 5.2.

Operations such as creating corridors around line segments on maps and

measuring areas can be performed by using Geographic Information Systems

(GIS’s). The Spatial Data Modeller (SDM) (Sawatzky et al. 2009) is an example

of a system that provides tools for weights of evidence, logistic regression, fuzzy

logic and neural networks. The availability of excellent software for WofE and

WLR has been a factor in promoting widespread usage of these methods. Examples

of applications to mapping mineral prospectivity can be found in Carranza (2004),

Cassard et al. (2008), Porwal et al. (2010), Coolbaugh et al. (2007) and Lindsay et al.

(2014). Applications of these techniques in other fields include Cervi et al. (2010),

Cho et al. (2008), Gorney et al. (2011), Neuhäuser and Terhorst (2007), Ozdemir

and Altural (2013), Regmi et al. (2010) Romero-Calcerrada et al. (2010) and

Song et al. (2008).

Fig. 5.2 Venn diagrams corresponding to areas of binary patterns of Fig. 5.1; (a) is for Fig. 5.1b;

(b) is for Fig. 5.1c; (c) is for Fig. 5.1d (Source: Agterberg et al. 1990, Fig. 2)

Box 5.1: Bayes’ Rule for Single Map Layer

When there is a single pattern B, the odds O(D|B) for occurrence of mineral-

ization if B is present is given by the ratio of the following two expressions of

Bayes’ rule (cf. Sect. 2.2.1): P DjBð Þ ¼ P BjDð ÞP Dð Þ
P Bð Þ ; P DjB� � ¼ P BjDð ÞP Dð Þ

P Bð Þ where

the setD represents the complement of D. Consequently, lnO(D|B)¼ lnO(D)

+W+ where the positive weight for presence of B is: Wþ ¼ ln
P BjDð Þ
P BjDð Þ. The

negative weight for absence of B is: W� ¼ ln
P BjDð Þ
P BjDð Þ.
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Relationships between probabilities, odds and logits previously were discussed

in Sect. 2.2. The result of application of Bayes’ rule applied to a single map layer

can be extended by using it as prior probability input for a second map layer. This

process can be repeated by further adding additional map layers provided that there

is approximate conditional independence (CI) of map layers. The order in which

new patterns are added is immaterial.

The posterior logit on the left side of the final result shown in Box 5.2 is the sum

of the prior logit and the weights of the two map layers. The posterior probability

follows from the posterior logit. Similar expressions apply when either one or both

patterns are absent. Cheng (2008) has pointed out that, since it is based on a ratio,

the underlying assumption is somewhat weaker than assuming conditional inde-

pendence of D with respect to B1 and B2. If there are pmap layers, the final result is

based on prior logit plus the p weights for these map layers. A good WofE strategy

is first to achieve approximate conditional independence by pre-processing. A

common problem is that final estimated probabilities usually are biased. If there

are N deposits in a study area and the sum of all estimated probabilities is written as

S, WofE often results in S>N. The difference S-N can be tested for statistical

significance (Agterberg and Cheng 2002). The main advantage of WofE in compar-

ison with other methods such as WLR is transparency in that it is easy to compare

weights with one another. On the other hand, the coefficients resulting from logistic

regression generally are subject to considerable uncertainty (Sect. 5.2).

The contrast C¼W+�W� is the difference between positive and negative weight

for a binary map layer. It is a convenient measure for strength of spatial correlation

between a point pattern and the map layer (Bonham-Carter et al. 1988; Agterberg

1989b). It is somewhat similar to Yule’s (1912) “measure of association”

Q ¼ α�1
αþ1

with α ¼ eC. Both C and Q express strength of correlation between two

binary variables that only can assume the values 1 (for presence) or�1 (for absence)

(cf. Bishop et al. 1975, p. 378). Like the ordinary correlation coefficient,Q is confined

to the interval [�1, 1]. If the binary variables are uncorrelated, then E(Q)¼ 0.

Box 5.2: Bayes’ Rule for Two Map Patterns

When there are two map patterns as in Fig 5.1: P D
��B \ C

� � ¼ P B\C
��D� �

P Dð Þ
P B\Cð Þ ;

P D
��B \ C

� � ¼ P B\C
��D� �

P Dð Þ
P B\Cð Þ . Conditional independence of D with

respect to B and C implies: P(B\C|D)¼P(B|D)P(C|D); P B \ C
��D� � ¼

P B
��D� �

P C
��D� �

. Consequently, P D
��B \ C

� � ¼ P Dð Þ P B
��D� �

P C
��D� �

P B\Cð Þ ;

P D
��B \ C

� � ¼ P D
� � P B

��D� �
P C

��D� �
P B\Cð Þ . From these two equations it follows

that:
P D

��B\C� �
P D

��B\C� � ¼ P Dð ÞP B
��D� �

P C
��D� �

P Dð ÞP B
��D� �

P C
��D� �. This expression is equivalent to lnO

(D|B\C)¼ lnO(D) +Wþ
1 +Wþ

2 .
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If a binary map layer is used as an indicator variable, the probability of

occurrence of a deposit is greater when it is present than when it is absent, and

W+ is positive whereas W� is negative. Consequently, C generally is positive.

However, in a practical application, it may turn out that C is negative. This would

mean that the map layer considered is not an indicator variable. In a situation of this

type, one could switch presence of the map layer with its absence, so that W+ and

C both become positive (and W� negative). An excellent strategy often applied in

practice is to create corridors of variable width x around linear map features that are

either lineaments as in Fig. 5.1 or contacts between different rock types (e.g.,

boundaries of intrusive bodies) and to maximize C(x). From dQ
dα ¼ 2

αþ1ð Þ2 being

positive it follows that Q(x) and C(x) reach their maximum value at the same value

of x (cf. Agterberg et al. 1990).

5.1.2 Meguma Terrane Gold Deposits Example

The first application ofWofE was concerned with Meguma Terrane gold deposits in

Nova Scotia (Wright 1988; Bonham-Carter et al. 1988). The study area of

2,591 km2 is shown in Fig. 5.3. In total, there were 68 gold deposits. Gold

production and reserves figures were available for 32 gold mines. If unit cell area

is made sufficiently small, maps of posterior probabilities become similar in

appearance except that, like the prior probability, all posterior probabilities are

directly proportional to unit cell area selected. In this application, unit cell area

arbitrarily was set at 1 km2.

Three examples of map patterns considered are shown in Figs. 5.4, 5.5, and 5.6.

Figure 5.4 is a ternary pattern for geochemical signature for Au. This pattern has

three states instead of two because it is based on information from lake sediments

that are missing in parts of the area close to rivers or the coastline. Each lake is

surrounded by a catchment basin. In order to avoid strong violations of conditional

independence of map layers, the 16 chemical elements for with measurements were

available were combined into a single index or signature by multiple regression.

If data are missing, the weight is set equal to 0. The positive weight for the

geochemical signature is relatively large but the negative weight is small. Multiple

regression is one way to combine variables with similar map patterns into a single

index; another goodmethod for accomplishing this is to perform principal component

analysis on all variables and then use scores for the first principal component to create

a single new map layer (Agterberg and Bonham-Carter 2005; Wang et al. 2012).

Figure 5.5 shows corridors constructed around Acadian anticlines. Both positive and

negative weights are significant. Figure 5.6 is for a corridor constructed around

contacts of Devonian granite. Some gold deposits could be genetically related

with these granites. This hypothesis can be tested statistically by application of the

following procedure.
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Approximate variances of the weights can be obtained from:

σ2 Wþð Þ ¼ 1

n bdð Þ þ
1

n bd
� � ; σ2 W�ð Þ ¼ 1

n bd
� �þ 1

n b d
� �

where the denominators of the terms on the right sides represent numbers of unit

cells with map layer and deposit present or absent. Spiegelhalter and Knill-Jones

(1984) had used similar asymptotic expressions for variances of weights in their

GLADYS expert system. The following contingency table can be created:

P ¼ p bdð Þ p bd
� �

p bd
� �

p b d
� �

� �
� n bdð Þ=n n bd

� �
=n

n bd
� �

=n n b d
� �

=n

� �

Fig. 5.3 Location of study area with gold deposits in Meguma Terrane, eastern mainland Nova

Scotia (Source: Bonham-Carter et al. 1990, Fig. 1)
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If there is no spatial correlation between deposit points and map pattern:

P ¼ p bð Þp�d� p bð Þp�d�
p b
� �

p
�
d
�

p b
� �

p
�
d
�

� �

where p(b) is proportion of study area occupied by map layer B, p(d ) is total number

of deposits divided by total area, and with similar explanations for the other pro-

portions. A chi-square test for goodness of fit can be applied to test the hypothesis

that there is no spatial correlation between deposit points and map pattern. It is

equivalent to using the z-test to be described in the next paragraph. The variance of
the contrast C¼W+�W� is:

σ2 Cð Þ ¼ 1

n bdð Þ þ
1

n bd
� �þ 1

n bd
� �þ 1

n b d
� � :

The subject of asymptotic estimates of variances will be discussed in more detail

in Sect. 5.1.4.

Table 5.1 shows weights and contacts with their standard deviations for nine

binary or ternary map layers used in a subsequent application of WofE to Meguma

Terrain gold deposits (Bonham-Carter et al. 1990). Halifax Formation and Devo-

nian granite were not used in this WofE application because almost no occurrences

Weight for feature present w+ = 1.0047

Geochemical Signature for Au
mapid : hmn4

less favourable basins
more favourable basins
no data

Legend

20 km

Weight for feature absent  w− = 1.0047

No data for feature w  = 0

Fig. 5.4 Ternary pattern for geochemical signature (binary pattern for presence or absence of

favorable geochemistry plus binary pattern unknown) (Source: Bonham-Carter et al. 1988, Fig. 2a)
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are known on these two formations in the study area. Bonham-Carter et al. (1990)

added a ternary map pattern for biogeochemical measurements of gold in balsam fir

to the six map patterns used in earlier applications. Inspection of the standard

deviations of the contrasts in Table 5.1 shows that spatial correlation of the

68 gold deposits with NW lineaments and granite contact is probably not statisti-

cally significant because the ratio of the contrast C and its standard deviation σ(C) is
less than 1.96 representing the 95 % confidence limit based on a two-sided z-test
(cf. Sect. 2.3.3). Figures 5.7 and 5.9 show posterior probability maps obtained

without and with use of the ternary pattern for gold in balsam fir that is shown in

Fig. 5.8. The effect of adding the Au in balsam fir data is quite pronounced as shown

by comparing the two posterior probability maps (Fig. 5.9 versus Fig. 5.7).

Table 5.2 illustrates how the pattern shown in Fig. 5.8 was selected. Weights,

contrasts and their standard deviations were calculated for a series of different Au

levels. Although the maximum value of W+ occurs by thresholding at the 90th

percentile, the maximum contrast C occurs for the 80th percentile. At this level,

24 out of 68 gold deposits fall within the balsam fir Au anomaly, which occupies

435 km2 out of a total of 2,591 km2.

The Kolmogorov-Smirnov test (Fig. 5.10) can be used to test the hypothesis of

conditional independence of the seven map layers used for Fig. 5.9. This hypothesis

Weight for feature present w+ = 0.5452

Weight for feature absent w− = −0.7735

Legend

Anticline Binary Pattern
Mapid : fbM2

less favourable distance
more favourable (c1.25 km)

20 KM

Fig. 5.5 Binary pattern for proximity to axial traces of Acadian anticlines (Source: Bonham-

Carter et al. 1988, Fig. 3a)
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is approximately satisfied because nowhere does the observed curve break the 95 %

confidence envelope surrounding the predicted curve. An interesting result is that if

the gold occurrences with known production are plotted on a graph of posterior

probability versus cumulative area, there appears to be a positive correlation

Weight for feature present w+ = 0.3150

Weight for feature absent  w− = −0.0562

Legend

Granite Contact Binary Pattern
Mapid : Mgr8

less favourable 
more favourable (1.00 KM)

20 KM

Fig. 5.6 Binary pattern for proximity to Devonian granite contact within Goldenville Formation

(Source: Bonham-Carter et al. 1988, Fig. 3d)

Table 5.1 Weights, contrasts and their standard deviations for predictor maps

W+ σ(W�) W� σ(W�) C σ(C) C/σ(C)
Goldenville Fm 0.3085 0.1280 �1.4689 0.4484 1.7774 0.4663 3.8117

Anticline axes 0.5452 0.1443 �0.7735 0.2370 1.3187 0.2775 4.7521

Au, biogeochem. 0.9045 0.2100 �0.2812 0.1521 1.1856 0.2593 4.5725

Lake sed. signature 1.0047 0.3263 �0.1037 0.1327 1.1084 0.3523 3.1462

Golden-Hal contact 0.3683 0.1744 �0.2685 0.1730 0.6368 0.2457 2.5918

Granite contact 0.3419 0.2932 �0.0562 0.1351 0.3981 0.3228 1.2332

NW lineaments �0.0185 0.2453 0.0062 0.1417 �0.0247 0.2833 0.0872

Halifax Fm. �1.2406 0.5793 0.1204 0.1257 �1.4610 0.5928 2.4646

Devonian granite �1.7360 0.7086 0.1528 0.1248 �1.8888 0.7195 2.6253

Source: Bonham-Carter et al. (1990, Table 1)

The last column is the “studentized” value of C, for testing the hypothesis that C¼ 0. Values

greater than 1.96 indicate that the hypothesis can be rejected at α¼ 0.05. Note that the hypothesis

cannot be rejected for the granite contact and NW lineaments
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between production and posterior probability (Fig. 5.11). In other words, the larger

gold districts are associated with higher predictions of gold potential. Figure 5.12

shows an enlargement of the region roughly centered on the Sherbrooke pluton.

The masked areas are where posterior probability divided by its standard deviation

is less than 1.5, i.e. where the posterior probability is not significantly greater than

0 in a one-tailed significance test. The geological contacts are superimposed in

black, and the masked areas are either granite or Halifax Formation, or where the

biogeochemical Au map is uncertain. The rectangular areas A to E with posterior

Fig. 5.7 Map of posterior

probabilities based on

weights shown in Table 5.1

(without use of balsam fir)

(Source: Bonham-Carter

et al. 1990, Fig. 2a)

Fig. 5.8 Au in balsam fir

map (Source: Bonham-

Carter et al. 1990, Fig. 2b)
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probabilities greater than 0.3 would be of interest, because probability of a gold

occurrence within a 1 km2 area is about 1–3. Two of the areas (B an E) are known

gold districts. A, C and D, on the other hand, have no reported occurrences, yet they

contain essentially the same signatures as B and E.

5.1.3 Flowing Wells in the Greater Toronto Area

Cheng (2004) has given the following application of Weights-of-Evidence model-

ing. Figure 5.13 shows surficial geology of Oak Ridge Moraine (ORM) for a study

on assessment of flowing water wells in the Greater Toronto area, Ontario. The

ORM is a 150 km long east-west trending belt of stratified glaciofluvial-

glaciolacustrine deposits. It is 5–15 km wide and up to 150 m thick. For more

detailed discussion of the geology of ORM, see Sharpe et al. (1997). It is generally

recognized that the ORM is the main source of recharge in the area. Figure 5.14

shows flowing wells together with ORM and distances between wells and ORM.

Cheng (2004) used Weights-of-Evidence to test the influence of the ORM on

locations of flowing wells. A number of binary patterns were constructed by

maximizing the contrast C. For distance from ORM, C reaches its maximum at

2 km (inset on Fig. 5.14). it means that a YES-NO binary pattern with YES on

points belonging to ORM plus all points that occur less than 2 km from ORM and

NO for the remainder of the study area with points that are more than 2 km away

from ORM provides positive and negative weight that would be best to use for a

binary pattern of the type because C¼W+�W�� has been maximized.

Other binary patterns constructed in the same way by Cheng (2004, Table 1) were

distance from buffer zone constructed around ORM (Fig. 5.15), distance from a

relatively steep slope zone (Fig. 5.16), and distance from a relatively thick glacial

Legend

Posterior Probability for Au with Mask
(Including Balsam Fir)

0.200
0.200
0.100

0.100
0.080

0.0800.040
MASK ( <1.5 SD)

20 km

0.300
0.300−

−
−
−

>

Fig. 5.9 Posterior

probability map including

balsam fir data based on

weights shown in Table 5.1

(Source: Bonham-Carter

et al. 1990, Fig. 2c)
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drift layer. The posterior probability map shown in Fig. 5.17 is based on buffer zone

aroundORMand steep slope zone only. It not only quantifies the relationship between

the known artesian aquifers and these two binarymap layers, it also outlines areas with

no or relatively few aquifers that have good potential for additional aquifers.

5.1.4 Variance of the Contrast and Incorporation
of Missing Data

For estimation of the variances of weights and contrasts in Weights-of-Evidence,

use was made of asymptotic likelihood expressions (cf. Bishop et al. 1975,

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.1 0.2 0.3 0.4

Fig. 5.10 Test of overall

conditional independence,

using the Kolmogorov-

Smirnov statistic. Note that

the observed curve (open
circles) stays within the

95 % confidence envelope

surrounding the predicted

curve (solid line) (Source:
Bonham-Carter et al. 1990,

Fig. 3)

0.4

0.3

0.2

0.1

0.0
100 80

SALMON RIVER, 41.6

GOLDENVILLE, 210.2

UPPER SEAL HARBOUR, 57.8

COCHCRANE HILL, 2.1

ISAACS HARBOUR, 39.7

LOWER SEAL HARBOUR, 34.3

HARIGAN COVE, 7.9
WINE HARBOUR, 42.7

FOREST HILL, 25.1
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ECUM SECUM, 1.3
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Fig. 5.11 Posterior

probability plotted against

cumulative area, with

producing gold mines

shown as circles whose
radii reflect magnitudes

of reported production

(Source: Bonham-Carter

et al. 1990, Fig. 4)
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Chap. 14). Such expressions are valid only if a number of conditions are satisfied

including the condition that the probabilities in the P-matrix (Sect. 5.1.2) are neither

large (¼close to one) nor small (¼close to zero). The latter condition has probably

been violated for some of the rock types with few gold deposits in Table 5.1. For

example, there are only two occurrences on Devonian granite contributing 0.5 to the

variance of their positive weight (W+¼�1.7360) so that σ(W+)¼ 0.7086 in

Table 5.1 is probably too large. As mentioned before, presence of Devonian granite

could be switched with its absence, which would be a better indicator than its

presence. If weights of map layers are very small, including them for calculation of

posterior probabilities does not significantly affect final results.

The standard deviation of a posterior probability can be estimated as follows.

The variance σ2( p) of a prior probability p satisfies approximately p/n. For

p¼ 68/2,945¼ 0.0231, this yields the standard deviation σ( p)¼ 0.0028. The

corresponding standard deviation of the prior logit loge [p/(1� p)]¼�3.7450 is

approximately σ( p)/p¼ 0.1213. This follows from the approximate identity for any

variable x with mean x:

σ logexð Þ
σ xð Þ � d logexð Þ

dx

����
����
x¼x

¼ 1

x
:

Suppose, for example, that a unit cell in Fig. 5.7 has the following features. Its

geochemical signature is unknown; it occurs in the Goldenville Formation and not

near a granite contact, but in the proximity of an anticline axis, NW lineament and

Goldenville/Halifax contact. Then its posterior logit is �2.598 as can be seen when

the appropriate weights are used. The variance of the log posterior odds is derived

by adding variances of weights to the variance of the log prior odds. It follows that

Posterior Probability

Areas of Interest

B

A

D

E
C

0.200
0.200
0.100

0.100
0.080

0.0800.040
MASK ( <1.5 SD)

10 km

0.300
0.300−

−
−
−

>

Fig. 5.12 Map of posterior

probabilities (enlarged

subarea of Fig. 5.9) showing

areas for follow-up

exploration. Area A is at the

head of Gegogan Harbour;

B is the Goldenville district

including the Goldenville

mine working; C is north of

the Sherbrooke pluton; D is

an area almost 6 km north of

Holland Harbour, through

which Indian River flows;

and E is the area around

Isaacs Harbour inlet

(Source: Bonham-Carter

et al. 1990, Fig. 5)
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the standard deviation of the posterior logit is 0.401. The posterior probability of the

unit cell containing a deposit becomes 0.069 with approximate standard deviation

equal to 0.069� 0.401¼ 0.028. In this way, a standard deviation can be estimated

for each posterior probability on the final integrated pattern. However, it will be

shown later that if one or more patterns are missing, the standard deviation of the

posterior probability should be increased due to lack of knowledge. Because no

information on geochemical signature is available for the unit cell in the preceding

example, the final standard deviation becomes 0.042 instead of 0.028. It is custom-

ary to produce t� p/σ( p) maps that accompany the p maps with posterior proba-

bilities. Use of Student’s t instead of standard normal z indicates that the 95 %

confidence limit of 1.96 for z is too small. However, the exact number of degrees of

freedom for Student’s t is not known for this application. In practice, the 95 %

confidence limit for t is probably some value between 2.0 and 2.5 for a two-sided

test. For a one-sided test the 95 % confidence interval for z is 1.645 and the

corresponding value for Student’s t would be somewhat greater.

The equation used for estimating the standard deviation of the contrast C is based

on the following asymptotic result for large n (see Bishop et al. 1975, p. 377):

σ21 α̂ð Þ ¼ α̂ 2

n

1

p bdð Þ þ
1

p bd
� �þ 1

p bd
� �þ 1

p b d
� �

" #

Extrapolation of this variance toC¼ loge α is only valid if it is small compared to α.

The expressions for the variances σ1
2 (one pattern missing) and σ2

2 (two patterns

missing) derived in Box 5.3 are independent of any other patterns for which data

were available and used to change the prior probability. In the example that resulted

Box 5.3: Incorporation of Uncertainty Because of One or More

Missing Patterns

This refinement is based on a proposal by Spiegelhalter (1986, p. 37) to regard any

prior probability p(d) as the expectation of the possible final probabilities p(d|x)

thatmay be obtained on observing data x. In general, p(d)¼Ex[p(d|X)]¼
R
p(d|x)

p(x)dx. In the situation that there are three map layers as in Fig. 5.1:

p dð Þ ¼
X

ij
p d

��bicj� �
p bicj
� � ¼ p d

��bc� �
p bcð Þ þ d

��bc� �
p bc
� �þ d

��bc� �
p bcð Þ þ d

��bc� �
p bc
� �

with corresponding variance σ22[p(d)]¼∑ ij [p(d|bicj� p(d))]2p(bicj). If only

B is unknown, the information on C can be added to the prior probability in

order to obtain updated prior probabilities pb(d) with variance:

σ21 p dð Þ½ � ¼ p d
��b� �� p dð Þ� �2

p dð Þ þ p d
��b� �� p dð Þ� �2

p b
� �

as follows from

∑ jp(d|bicj) p(bicj)¼ p(d|bi) p(bi).
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in Fig. 5.7, the ternary pattern for geochemical signature has parts of the area for

which no data were available (Fig. 5.4). Uncertainty due to missing data becomes

zero in places where all patterns including the geochemical signature are available.

The term σ1
2 is only added to the variance in places where presence or absence of

the feature could not be determined.

The weights W+¼ 1.0047 and W��¼�0.1037 for geochemical signature

were calculated from likelihood ratios for the entire area. For example, Wþ ¼ loge

p bjdð Þ
p bjdð Þ ¼ 1:0047 was based on (1) p b

��d� � ¼ p bdð Þ
p dð Þ ¼ n bdð Þ=n dð Þ with n(bd)¼ 10 and

n(d)¼ 68; and (2) p bjd� � ¼ p bdð Þ
p dð Þ ¼ n bd

� �
=n d

� �
with n bd

� � ¼ 164:9� 10 ¼ 154:9

and n d
� � ¼ 2, 945:0� 68 ¼ 2, 877:0. The weight W+ can be regarded as indepen-

dent of the prior probability. For this example, approximately the same value ofW+ is

obtained when (1) the calculation is based on the subarea (¼1,765.8 km2) with known

geochemical signature, and (2) the prior probability within the area with known

geochemical signature is set equal to the prior probability for the total study area

(¼2,945 km2). The second condition would imply that there are 41 deposits within

the area with known geochemical signature. In reality, this subarea contains only

24 known gold occurrences. Revised weight based on the subarea only would amount

to 1.5444 which is greater than W+¼ 1.0047, because the subarea would contain a

larger proportion of the deposits. The lesser weight (W+¼ 1.0047) was used in

Fig. 5.7 and will now be employed for estimating σ1
2.

For this example, the modified prior probability, which is based on all patterns

except geochemical signature, will be set equal to 0.05 and 0.10 within the area

without definable geochemical signature. The logits of these values are �2.9444

and �2.1972, respectively. Addition of W+ and W� provides the required esti-

mates of p(d|b) andp d
��b� �

. For p(d )¼ 0.05, the conditional probabilities are equal

to 0.1257 and 0.0453, respectively. For p(b), which also is necessary to determine

σ1
2, the ratio of favorable area (¼164.9 km2) to known area (¼1,765.8 km2) can

be used. This gives p bð Þ ¼ 1� p b
� � ¼ 0:9066. Consequently, σ1(0.05)¼ 0.024.

By the same method, it follows that σ1(0.10)¼ 0.042. In a previous example, it

was pointed out that a unit cell in the Goldenville Formation with unknown

geochemical signature in the proximity of the linear features except granite

contact has posterior probability of 0.070 with standard deviation equal to

0.028. Addition of the uncertainty due to missing pattern results in the larger

standard deviation of 0.042.

A question that is often asked when WofE is used to define target areas

representing areas with relatively high posterior probabilities but with no or

few known deposits is related to bias arising when undiscovered deposits prob-

ably exist in the study area. All posterior probabilities in a study area systemat-

ically underestimate the “true” posterior probabilities if there are undiscovered

deposits in the study area. Such bias could be eliminated only if it would be
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exactly known how many undiscovered deposits there are in a region and this

quantity remains unknown. Because the estimated weights depend only on

presence or absence of features at the actual sites of the deposits, the weights

estimated for known and unknown deposits in a region can be assumed to be

independent of the prior probability. In order to hypothetically incorporate

unknown events in the study area, one might change the prior probability by

increasing it by a factor based on intensity of exploration (Agterberg 1992). If a

reasonable guess can be made on number of undiscovered deposits, for example

by assuming that all deposits have been discovered in “control” area consisting

of mining districts, then the prior probability can be enlarged accordingly. It

should be kept in mind, however, that most unknown metal resources may well

occur at greater depths within mining districts as was shown for copper in the

Abitibi area in Sect. 4.4.2.

Another question asked with respect toWofE applications is that reduction of map

layers for indicator variables to binary or ternary form seems to be crude approxima-

tion. WofE software generally allows for approximations with more than two or three

states. An example of application without missing data in which more than two states

are needed are aeromagnetic data in relation to occurrences of earthquakes (Goodacre

et al. 1993). Agterberg and Bonham-Carter (1990) have shown that it is possible to

construct variable weight functions in an application to the relationship between

occurrences of gold deposits and proximity to Devonian anticlines in Meguma

Terrain, Nova Scotia. Variable weights also can be calculated when the input layer

is obtained by 2-D kriging in which the kriging variance strongly depends on density

of observation points as shown by Bonham-Carter and Agterberg (1999) in a study of

relating the Meguma Terrain gold deposits to Au in balsam fir trees.

5.2 Weighted Logistic Regression

If it is assumed that there are no undiscovered or new events in a study area, the sum

of the posterior probabilities should be, at least approximately, equal to the number of

known events if the conditional independence (CI) assumption is satisfied. Weighted

logistic regression (WLR) yields unbiased posterior probabilities if undiscovered

events are not considered. This technique is equivalent to ordinary logistic regression

except that the input values for the explanatory variables are weighted according to

their areal extents within the study area. Logistic regression coefficients are equiva-

lent to WofE contrasts (C¼W+�W�) that measure strength of correlation between

point pattern and map layers. Logistic regression will be applied to occurrences of

volcanogenic massive sulphide and magmatic nickel-copper deposits in the Abitibi

area on the Canadian Shield for comparison with results as obtained in the previous

chapter by means of the general linear model of least squares.
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Suppose that X0 is a row vector {1, X1, X2, . . ., Xp} with values of p explanatory

variables while Y is a binary variable that can only assume the values 1 or 0. The

explanatory variables can be binary like the variables used for WofE earlier in this

chapter but they can assume any other value on the real line. The event in a cell or at

a location is given by the following two equations:

P Y ¼ 1
��X� � ¼ π Xð Þ ¼ eβ0þβ1X1þ...þβpXp

1� eβ0þβ1X1þ...þβpXp

P Y ¼ 0
��X� � ¼ 1� π Xð Þ

This represents a non-linear model; the unknown coefficients then can be

estimated using the scoring method of maximum likelihood with Newton-Raphson

iteration (Agterberg 1992). In applications to presence or absence of deposits, after

reaching convergence, the sum of all estimates of the n probabilities πj, which can

be written as S, should be equal to the total number of known mineral deposits, N.
Weighted Logistic Regression (WLR) is a variant of logistic regression. It was

originally developed for maps with mosaic patterns consisting of numerous small

polygons with yes-no data for different map layers. Polygons with the same

characteristic features belong to the same “unique condition”. The unique condi-

tions can be regarded as separate observations to be weighted according to the areas

they occupy on the map of the study area. Because the observations have different

weights according to the areas occupied by the unique conditions, WLR differs

slightly from ordinary logistic regression.

Logistic regression is used in many branches of science. Cox (1966) has pro-

vided a detailed account of the logistic qualitative response model, its multivariate

extension employing several explanatory variables, and its relation to discriminant

analysis. An elementary introduction to the method with illustrative examples is

provided by Hosmer and Lemeshow (1989). There is a close connection between

logistic regression and linear discriminant analysis (cf. Agterberg 1974). Recently,

discriminant analysis was used by Grunsky et al. (2013) in a study of lake sediment

geochemistry of the Melville Peninsula. It provides a basis for distinguishing

between different map units which are assigned probabilities of occurrence on the

basis of the lake sediment geochemistry.

Chung (1978) published LOGIST, a computer program for logistic regression.

Pregibon (1981) used the approach to estimate frequencies, which are independent

binomial responses, thus expanding the method to deal with multiple qualitative

responses. Agterberg (1989c) published LOGDIA, which is a generalization of

LOGIST in that frequencies of more than one discrete event could be estimated and

logistic regression diagnostics were provided. The further extension (LOGPOL

program) to make the method applicable to observations for polygons with different

areas is described in Agterberg (1992).
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5.2.1 Meguma Terrane Gold Deposits Example

Weights of evidence (WofE) modeling and weighted logistic regression (WLR) are

different types of application of the loglinear model (cf. Agterberg 1992). In WLR,

the patterns are not necessarily conditionally independent as in WofE. WLR can

also be used in situations where the explanatory variables have many classes or are

continuous. In the Meguma Terrane gold deposits example, the map patterns that

were selected are approximately conditionally independent. The conditional inde-

pendence (CI) hypothesis can be tested in various ways. It was already shown by

means of the Kolmogorov-Smirnov test (Fig. 5.10) that CI is approximately satis-

fied for the seven map layers used for Fig. 5.9. One simple way for testing CI is to

compare the sum S of all posterior probabilities with the total number of deposits

(N ). For Fig. 5.9, the total number of deposits predicted by the posterior probabil-

ities is S¼ 75.2 exceeding N¼ 68 representing the actual number of gold deposits.

If all patterns would have been conditionally independent, their predicted total

would have been 68 as well. Minor violations of the CI hypothesis account for

WofE overestimating the total number of gold occurrences (¼68) by about 10 %.

Bonham-Carter (1994) introduced the so-called omnibus test stating that CI is

approximately satisfied if over-estimation is less than 15 %. The hypothesis S¼N
can be tested statistically (Agterberg and Cheng 2002). For a systematic compar-

ison of various CI testing methods, see Thiart et al. (2006).

Figure 5.18 (top) shows results of WLR applied to the data set previously used

for the WofE result shown in Fig. 5.9. Figure 5.18 (bottom) is the corresponding

t-value map. The t-values are the posterior probabilities divided by their standard

Box 5.4: Newton-Raphson Iteration

The logistic regression model can be written in the form: Logit

π(X)¼ β0 + β1X1 + . . .+ βpXp. Suppose that Y with elements Yj is a column

vector consisting of n ones and zeros denoting presence or absence in n very

small unit cells (e.g. n¼ 106) in a study area with N unique conditions.

Suppose further that the weights wi with ∑ wi¼ n represent numbers of unit

cells for the i-th unique condition. The (N�N ) diagonal matric V with

non-zero elements Vii ¼ wi :
X

Ŷ j 1� Ŷ j

� �	 

where Ŷ j is an estimated

value of πj(X). If the maximum likelihood method is used for estimation, a

column vector of scores S for differences between observed and estimated

values of Y is made to converge until X0S¼ 0. Newton-Raphson iteration

results in successive estimates: β(t+ 1)¼ β(t) + {XTV(t)X)}� 1XTV(t){Xβ(t)
+V� 1(t)S(t)}, t¼ 1, 2, . . . At the beginning of the process an arbitrary vector
of coefficients (e.g., with all coefficients set equal to 0) is used. After conver-

gence, the estimated logits are converted into probabilities. The LOGPOL

program, which is based on Newton-Raphson iteration with weights wi, was

incorporated in the Spatial Data Modeller (SDM, Sawatzky et al. 2009).

5.2 Weighted Logistic Regression 163



deviations. Table 5.3 shows regression coefficients in comparison with WofE

weights. Estimated standard deviations are shown as well. Finally, Fig. 5.19 is an

evaluation of the goodness of WLR fit. The difference between expected and

observed relative frequencies is plotted against posterior probability. The absolute

value of the largest difference of this type is 0.0775. This is less than the

Kolmogorov-Smirnov statistic (¼0.1426; 95 % two-tailed test) from which it may

be concluded that the fit of the logistic model is good.

It can be seen in Table 5.3 that the seven contrasts show similarity with the seven

regression coefficients. Theoretically in discrete multivariate analysis (cf. Andersen
1990; Christensen 1990), it can be shown that if, asymptotically, explanatory

variables are conditionally independent, then logistic regression and the procedure

used in WofE produce identical results (cf. Agterberg 1992).

5.2.2 Comparison of Logistic Model
with General Linear Model

Applications of the general linear model to study the occurrence of large copper

deposits in the Abitibi Volcanic Belt were discussed in the previous chapter. In a

discussion of a paper by Agterberg and Robinson (1972), Tukey (1972) suggested

Fig. 5.18 Weighted logistic regression applied to gold deposits (circles) in Meguma Terrane,

Nova Scotia. (Top) Posterior probability map with 91 unique conditions for seven binary patterns

without missing data, unit cell size¼ 1 km2; (Bottom) t-value map for Fig. 5.18a (Source:

Agterberg et al. 1994, Plate 5a, b)
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the use of logits in studies of this type because, basically, the objective is to estimate

probabilities of occurrence of discrete events. Berkson (1944) had introduced logits

as an alternative approach to probit analysis in bioassay (see Fig. 12.8 for a

comparison of logits and probits). Probabilities cannot be negative; neither can

they exceed 1, and these conditions can be violated when the linear least squares

method is used for estimating probabilities. In a later study (Agterberg 1974), the

Abitibi area was made part of a larger study area (Fig. 5.20) and a distinction was

Table 5.3 Weights and contrasts (with standard deviations) for seven binary patterns related to

gold deposits in Meguma Terrane

Pattern

No. W+ S(W+) W� S (W�) C S(C) B S(B)

0 �6.172 0.501

1 0.563 0.143 �0.829 0.244 1.392 0.283 1.260 0.301

2 0.836 0.210 �0.293 0.160 1.129 0.264 1.322 0.267

3 0.367 0.174 �0.268 0.173 0.635 0.246 0.288 0.266

4 0.311 0.128 �1.448 0.448 1.787 0.466 1.290 0.505

5 0.223 0.306 �0.038 0.134 0.261 0.334 0.505 0.343

6 1.423 0.343 �0.375 0.259 1.798 0.430 0.652 0.383

7 0.041 0.271 �0.010 0.138 0.051 0.304 0.015 0.309

Source: Agterberg et al. (1994, Table 4)

Regression coefficients for logistic model (B) and their standard deviations are shown in the last

two columns. First row (pattern No. 0) is for constant term in weighted logistic regression

Table 5.4 Summary of WofE results for Experiments 1–5

Experiment number 1 2 3 4 5

Number of cells (Training) 13,964 14,570 14,177 14,012 14,353

Number of cells (Testing) 42,133 41,528 41,920 42,086 41,727

Observed number of deposits (Training) 23 15 19 24 43

W1 (Geology) –1.7756 –2.2753 –1.6337 –0.8486 –2.0326

W2 (Geology) 1.3301 0.9772 0.6636 1.6187 1.1406

W1 (PC3) –1.3151 –1.1538 –0.2909 –1.1480 –0.9356

W1 (PC3) 0.8527 0.4.63 0.3622 1.2633 0.7601

W1 (Magnetics) –0.5031 –1.2549 –0.0891 –0.6888 –1.5514

W2 (Magnetics) 1.2494 0.4874 0.4297 0.5245 0.2001

Sum of PPs 37.38 18.79 20.04 46.72 63.40

CI-test probability 0.903 0.676 0.569 0.941 0.886

Adjustment factor 0.6153 0.7983 0.9482 0.5137 0.677

Observed number of deposits (Testing) 67 75 71 66 47

Estimated number of deposits (Testing) 56 43 20 64 66

Smallest PP 0.0000 0.0000 0.0002 0.0002 0.0000

Largest PP for cell with deposit 0.0054 0.0011 0.0032 0.00078 0.0030

Largest PP for cell without deposit 0.0299 0.0053 0.0054 0.0253 0.0162

Source: Agterberg and Bonham-Carter (2005, Table 1)

Note:W1,W2 negative and positive weight, PP posterior probability, CI conditional independence
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Fig. 5.19 Goodness-of-fit

test applied to weighted

logistic regression model

for gold deposits, Meguma

Terrane (Fig. 5.18a). The

difference between

observed and estimated

relative frequencies is

plotted against the posterior

probability. The absolute

value of the largest

difference (¼0.0775) is less

than the Kolmogorov-

Smirnov statistic (¼0.1426)

indicating a good fit

(Source: Agterberg

et al. 1994, Fig. 3)
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made between volcanogenic massive sulphide deposits and magmatic nickel-

copper deposits associated with mafic and ultramafic intrusions.

Following up on Tukey’s (1972) suggestion to use logits, both the linear and

nonlinear model were applied to these two deposit types in the larger study area

with the results shown in Figs. 5.21, 5.22, 5.23, and 5.24. As before, probabilities

estimated for (10 km� 10 km) UTM cells were combined into overlapping unit

cells measuring 40 km on a side to produce estimates of expected values that were

contoured. Comparison of the logistic model pattern of Fig. 5.23 with the linear

model pattern of Fig. 5.21 shows that the two methods gave approximately the same

results for the relatively abundant volcanogenic massive sulphide deposits. On the

other hand, there are significant differences between Figs. 5.22 and 5.24, which are

for the magmatic nickel-copper deposits that occur rarely in the Precambrian rocks

of the Canadian Shield.

The two types of deposits exhibit different types of geographic distribution

patterns. Ordinary multiple regression could be employed to estimate probability

of occurrence of the massive sulphide deposits but not for the magmatic nickel-

copper deposits because relatively many estimated probabilities were outside the

[0,1] interval. For these relatively rare deposits, logistic regression gave decidedly

better results.
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Fig. 5.21 Automatic contour map for occurrence of copper-zinc deposits; linear model applied to

38 lithological variables; contour value represents expected number of (10 km� 10 km) cells

containing one or more Cu-Zn deposits per (40 km� 40 km) unit area; crosses represent known

Cu-Zn deposits; see Fig. 5.20 for location (Source: Agterberg 1974, Fig. 3)
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5.2.3 Gowganda Area Gold Occurrences Example

The purpose of the following experiments on 90 gold deposits in the Gowganda

Area (1,405.51 km2) located between Timmins and Sudbury in the Abitibi

Subprovince on the Canadian Shield is to compare WofE with the more flexible

weighted logistic regression method. These experiments were originally conducted

by Agterberg and Bonham-Carter (2005). Other GIS applications from this region

in east-central Ontario that have been published include a WofE study by Thiart

et al. (2006). The Gowganda area was divided into small cells (pixels). The gold

occurrences are modeled as single pixels representing discoveries at points. In most

other WofE and WLR applications used for example in this chapter, the study area

was not subdivided into gridded pixels but unique conditions measured by GIS

were used. However, both methods (gridded pixels or unique conditions) work

equally well when resolution is adequate.

The Gowganda study area was subdivided into 560,976 small (100 m� 100 m)

cells. In Experiments 1 and 2, about 25 % of the cells were randomly selected to

provide two training sets. In Experiments 3–5, geographically coherent ‘blocks’

each measuring about 25 % of the study area, were used as training sets. In each

experiment, the remaining 75 % of the study area was used as testing area. Model

parameters (coefficients or weights) estimated on the training set were used to

estimate favorability of all cells. In some experiments, training and testing areas

were kept separate for evaluation purposes.
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Fig. 5.22 Occurrences of nickel-copper deposits as predicted by linear model as in Fig. 5.21

(Source: Agterberg 1974, Fig. 4)
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resemblance with contour map of Fig. 5.21 in Abitibi subarea also shown in Fig. 4.7; (b)

Occurrence of nickel-copper deposits as predicted by logistic regression model (Source: Agterberg

1984, Fig. 3)
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Normally, a sample of geoscientific data compiled for one area is not represen-

tative of another area, especially if some suitable form of discretization is not used.

Because of strong spatial variability, patterns including geophysical and geochem-

ical contour maps differ from place to place not only locally but also at regional

scales. Discretization by reduction of these patterns to binary or ternary form often

helps to prevent adverse effects on mineral potential mapping resulting from

regional variability. This positive aspect of discretization, which is not necessarily

restricted to WofE, will be illustrated in this section by geographically separating

training areas from testing areas in Experiments 3–5.

Location and patterns for gold deposits, geology, geochemistry and aeromag-

netics of the study area are shown in Fig. 5.24. These map patterns were used as

input in the experiments. On the generalized geological map it can be seen that the

80 gold occurrences are spatially associated with felsic and mafic metavolcanics,

which were selected to form the binary map pattern for bedrock geology.

Figure 5.24a is for the third principal component (PC3) derived from

geochemical elements for lake sediments in the area (original data obtained from

the Ontario Geological Survey “Treasure Hunt” database). PC3 is primarily deter-

mined by Cd, Zn, Mo, Br, Cu and Pb concentration values. Its pattern shows

Gold occurences

Geology
Nipissing sills
Basalt
Huronian clastics
Diorite
Ultramafics
Mafic volcanics
Tuffs, breccias
Granite
Felsic volcanics
Tonalite

Wacke

STUDY
AREA

Ontario

84° N

40 km

0 20 40

Kilometers

47°30´

47° 45´

80° 30´

81° 00´

Lake Huron

82° 80°

48°

47°

46°

a

Fig. 5.24 (a) Gowganda area, east-central Ontario. Locations of 80 gold occurrences in relation

to bedrock geology; (b) third principal component (PC3) of lake geochemistry data, and

(c) aeromagnetics (Source: Agterberg and Bonham-Carter 2005, Fig. 1)
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relatively strong spatial association with the Au occurrences. Class values

are relative with limits determined by regional mean and standard deviation.

These PC3 values were transformed to define a WofE binary pattern using a

multiclass WofE analysis to select a threshold. Original classes as shown in

Fig. 5.24a were used for WLR. In a similar way, the pattern of Fig. 5.24b was

derived from aeromagnetic maps. The Au occurrences are mostly associated with

magnetic highs. All classes shown were used for WLR and a binary map layer for

WofE was formed by reclassification, again using multiclass WofE to determine a

threshold.
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As has been explained before, the WofE method consists of updating the prior

probability for a small unit cell or pixel. Posterior probabilities are derived by

applying Bayes’ rule separately to every map layer considered. Results are inde-

pendent of the order of map layers during updating. In Experiments 1–5, unit cell

area was set equal to 0.1 km2. This implies that the prior probability for a unit cell

anywhere in the study area is equal to (90/56,097.6¼) 0.001604. WofE is a

GIS-based statistical method. The study area is divided into polygons (or pixels)

characterized by different strings of code numbers for map layers. The area of a

“unique condition” is equal to the sum of areas (polygons or pixels) with the same

string of code numbers. In the simplest kind of application, map layers are binary

with two code numbers denoting presence and absence, respectively. In the

Gowganda WofE applications, the three binary map layers result in eight unique

conditions only.

In the WLR applications, the input data also are for unique conditions but there

are many more of these, because all patterns delineated by contours in Fig. 5.24b, c

were assigned separate integer code numbers increasing according to value. For

example, the training set for WLR Experiment 1 has 850 unique conditions. Every

unique condition is weighted according to the sum of areas of its polygons (or grid

cells) and according to the number of mineral deposits it contains (nearly always

equal to 1 in Experiments 1–5 because there are relatively few mineral deposits;

e.g., 23 in Experiment 1).

The WofE posterior probability map for the Gowganda area (not shown here),

which is based on the eight unique conditions, shows stronger spatial correlation

with the 80 Au occurrences than the original map patterns of Fig. 5.24a. The

posterior probabilities range from 0.00074 to 0.17880. An accompanying confi-

dence map indicates that the smallest and largest posterior probabilities are either

significantly lower or higher than the prior probability.

Figure 5.25 shows the training set of randomly selected cells for Experiment

1. As mentioned before, the Gowganda study area was subdivided into 560,976

Fig. 5.25 Training set of 139,634 (100 m� 100 m) randomly selected from grid on Gowganda

area (Fig. 5.24a) used in Experiment 1. Enlargement of small part of pattern (right) to show

relations between randomly selected cells and gold occurrences. Different selection of cells, also

randomly selected was used in Experiment 2 (Source: Agterberg and Bonham-Carter 2005, Fig. 2)
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small (100 m� 100 m) cells. Only 139,643 (25 % of total area) of these were used

for training. The inset is an enlargement of part of the complete pattern of Fig. 5.25.

In total, 23 of the 90 Au occurrences belong to the training set for Experiment

1. This experiment was repeated: the training set for Experiment 2 (not shown as a

figure) consists of 145,701 cells (26 % of total area) containing 15 Au occurrences.

Figure 5.26 shows the three geographically coherent subareas or ‘blocks’ used for

training in Experiments 3–5.

Fig. 5.26 Diagrams

showing the training areas

(spatially coherent blocks)

used in (a), Experiment

3, (b) Experiment 4, and

(c) Experiment 5 (Source:

Agterberg and Bonham-

Carter 2005, Fig. 3)
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5.2.4 Results of the Gowganda Experiments

Weights-of-Evidence (WofE) and Weighted Logistic Regression (WLR) results for

the five experiments are summarized in Tables 5.5 and 5.6. For all five experiments,

the sum of WofE posterior probabilities (the product of probability and area in unit

cells summed over all unique conditions) exceeds the number of deposits in the

training area. This suggests that the assumption of conditional independence may

be violated. However, application of the conditional independence (CI) test of

Agterberg and Cheng (2002) yields a test statistic with probabilities ranging from

0.569 (Experiment 3) to 0.941 (Experiment 4). Normally, the CI hypothesis would

be rejected only if the probability for this one-tailed z-test exceeds 95 % or 99 %,

corresponding to level of significance set equal to 0.05 or 0.01, respectively.

However, it is unlikely that in five successive experiments none of the CI proba-

bilities are less than 0.5, and some CI violation probably exists. For this reason, all

WofE posterior probabilities were reduced by a factor set equal to the quotient of

number of deposits and sum of WofE posterior probabilities in the training area.

This factor ranges from 0.514 (Experiment 4) to 0.948 (Experiment 3).

Theoretically, the WLR sum of posterior probabilities is exactly equal to number

of deposits in the testing area. In practice, this sum may differ somewhat from

Table 5.5 Summary of WLR results for Experiments 1–5

Experiment number 1 2 3 4 5

Constant term, B0 �8.8639 �7.3394 �9.8428 �5.7877 �9.0784

SD (B0) 1.3241 0.7746 1.9138 1.2414 1.1576

B (Geology) 1.6059 1.6620 2.2080 1.3413 1.2101

SD (Geology) 0.4468 0.2543 0.7606 0.4537 0.3193

B (PC3) �0.1201 �0.1492 �0.0496 �0.1697 �0.1081

SD (PC3) 0.0490 0.0281 0.0652 0.0444 0.0423

B (Magnetics) 0.1657 0.0504 0.0064 �0.0148 0.3010

SD (Magnetics) 0.0554 0.033 0.0674 0.0523 0.0732

Sum of PPs 23 15 19 24 43

Observed number of deposits (Testing) 67 75 71 66 47

Estimated number of deposits (Testing) 69 43 22 99 198

Smallest PP (Training) 0.0000 0.0002 0.0001 0.0001 0.0001

Largest PP for cell with known deposit

(Training)

0.0303 0.0035 0.0037 0.0296 0.0400

Largest PP for cell without known deposit

(Training)

0.0788 0.0129 0.0047 0.0344 0.0953

Smallest PP (Testing) 0.0000 0.0092 0.0045 0.0303 0.1633

Largest PP for cell with known deposit

(Testing)

0.0312 0.0092 0.0045 0.0303 0.1633

Largest PP for cell without known deposit

(Testing)

0.0788 0.0142 0.0047 0.0349 0.3217

Source: Agterberg and Bonham-Carter (2005, Table 2)

Note: B WLR coefficient, SD standard deviation, PP posterior probability
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number of deposits because of numerical precision restrictions depending on choice

of critical parameters that control the iterative process by which a WLR solution is

obtained. In the experiments, these parameters were set such that WLR sum of

posterior probabilities became equal to number of deposits after rounding off to the

nearest integer. In both WofE andWLR, it can be expected that the sum of posterior

probabilities in the testing area is more or less equal to the number of deposits in the

testing area if the training area is a random sample of the study area as in

Experiments 1 and 2. When training area and testing area are geographically

distinct blocks (as illustrated in Fig. 5.26 for Experiments 3–5), expected number

of deposits can be either greater or less than sum of posterior probabilities.

Estimated numbers of deposits in testing area in Tables 5.5 and 5.6 are nearly

equal to one another for Experiments 2 and 3. One reason for this similarity may be

Table 5.6 Seafloor example.

Number of volcanic vents per

unique condition (unit

area¼ 100 m2)

Age Topo Contact Rocktype Fissures # of vents Area

0 0 0 0 0 0 10,052

0 0 0 0 1 1 3,363

0 0 0 1 0 0 3,268

0 0 0 1 1 0 1,074

0 1 0 0 0 0 5,455

0 1 0 0 1 0 25

0 0 1 0 0 0 3,482

0 1 0 1 0 0 2,518

0 0 1 0 1 0 1,474

0 1 0 1 1 0 1,371

1 0 0 0 0 0 5

1 0 0 0 1 0 705

0 0 1 1 0 0 5

0 0 1 1 1 0 744

1 0 0 1 0 0 422

1 0 0 1 1 0 58

0 1 1 0 0 0 12

0 1 1 0 1 0 179

1 1 0 0 0 2 1,766

1 1 0 0 1 0 119

0 1 1 1 0 1 1,055

0 1 1 1 1 0 33

1 0 1 0 0 0 10

1 1 0 1 0 0 146

1 0 1 0 1 1 623

1 1 0 1 1 0 145

1 0 1 1 0 2 504

1 0 1 1 1 0 1

1 1 1 0 0 2 317

1 1 1 0 1 1 277

1 1 1 1 0 3 348

1 1 1 1 1 0 295

Source: Agterberg (2011, Table 1)
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that the three binary patterns used are probably conditionally independent of

occurrence of Au deposits in the training areas selected for these two experiments

as indicated by relatively low CI-test probabilities (0.676 and 0.569, respectively).

This CI-test result should be considered together with the fact that, with the

exception of the WLR coefficient for PC3 in Experiment 3, WLR coefficients for

non-binary variables in Experiments 2 and 3 are not significantly different

from zero.

In Experiments 4 and 5, the sums of WLR posterior probabilities exceed

numbers of deposits in the testing areas. In these two situations, WLR results are

probably worse than the corresponding WofE results. The main reason is that WLR

was performed on non-binary variables. Because of regional changes in the spatial

PC3 and aeromagnetic variability patterns, the testing areas include cells with

values that are outside the ranges of these variables in the training areas. As a

rule, posterior probabilities should not be used for prediction of mineral occurrence

unless in the special situation satisfied in Experiments 1 and 2 that the testing area is

the complement of a training area consisting of many small randomly selected cells

so that both training and testing area are representative of the entire study area.

The preceding conclusion also is reached when individual posterior probabilities

are considered. Smallest and largest WLR posterior probabilities are shown in the

bottom rows of Table 5.5 keeping training and testing areas separate for all five

experiments. A further separation is made by distinguishing between largest pos-

terior probabilities for cells with and without deposits, respectively. Smallest and

largest posterior probabilities for WofE in Table 5.4 were the same because there

were only eight unique conditions per experiment (and no deposits for the unique

condition with maximum posterior probability but relatively small area in each

experiment). In general, the largest posterior probability clearly exceeds the largest

probability for unique condition with one or more deposits. Worst-case scenario is

for WLR in Experiment 5 where the relatively unconstrained posterior probability

of 0.3217 in the testing area is nearly 20 times greater than its WofE counterpart

(¼0.0162). It is mainly because of discretization that WofE results then are more

realistic than corresponding WLR results.

5.2.5 Training Cells and Control Areas

The best strategy in mineral potential mapping is to base a mineral potential map on

all data available for a study area without geographical separation of training and

testing areas. In general, however, degree of knowledge about existence of mineral

deposits varies from place to place within the same study area according to patterns

that often cannot be quantified explicitly. Under-explored subareas become targets

of new exploration only if their probability index matches that in places where

mineral deposits are known to occur. Discretization, which is not necessarily

restricted to WofE, may help to stabilize extrapolation to relatively poorly explored

subareas by constraining ranges and magnitudes of the values of the variables.
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One of the basic rules of WofE is that the binary patterns selected for further

work should be approximately conditionally independent. A number of conditional

independence tests are in existence (cf. Thiart et al. 2006). An overview of how one

should proceed in the application of WofE is provided in the book by Bonham-

Carter (1994). Basically, there are two CI tests: one for pair-wise comparisons of

map layers, and the other (the omnibus test) for comparing sum of posterior

probabilities to total number of mineral deposits. These two totals are approxi-

mately equal when the assumption of conditional independence is satisfied. The

statistical CI test of Agterberg and Cheng (2002), which was applied earlier in this

section, will be discussed in more detail in the next section. As an artificial example

to illustrate lack of CI, these authors presented duplication of a map layer with

positive weight of 2. This creates posterior probabilities that are more than seven

times too large, because this map layer then receives a weight of 4 instead of 2 (and

e2¼ 7.39). In situations of this type, WLR automatically compensates for lack of

conditional independence.

Suppose that WofE is applied using a 0.01 km2 unit cell and color the resulting

posterior probability map using red for the 2 % largest posterior probabilities. If

resolution does not present a problem, one could equally well select a 100 m2 unit

cell. All posterior probabilities then would become approximately 100 times smaller

but the colored map would stay approximately the same as long as the colors

correspond to percentage values for ranked posterior probabilities. Although there

now are now 100 times as many cells in the maximum 2% probability class, the area

that is colored red remains approximately the same in this artificial example.

In WofE or WLR it is not necessary to randomly select a set of training cells. If

the unit cell is sufficiently small, any large number of randomly selected training

cells would produce a posterior probability map that is approximately the same as

the map of posterior probabilities for the cells not used in training. The three

probability maps for training, testing and total area are approximately the same.

Consequently, it is not necessary to use a grid as is used in these experiments for the

Gowganda area. Map patterns are either spatially continuous (e.g., Fig. 5.24a, b), or

discontinuous (geology in Fig. 5.24). Continuous patterns may be subjected to

minor discretization if their values are to be used for statistical analysis. Significant

differences, between values of cells for the same variable, are likely to adversely

affect statistical analysis results if training and testing area are geographically

distinct as in Experiments 3–5. This is because other values as well as combinations

of values of variables are likely to exist outside the training area.

For example, suppose that a geophysical variable is restricted to 0–10 range in

the training area where it receives a weighting coefficient, but that in part of the

testing area its values exceed 100. Consequently, its contribution to expected value

in this part of the testing area becomes more than 10 times as large when the same

weighting coefficient is used, and predictions probably are meaningless. Regional

trends in other continuous variables may aggravate the situation. Discretization to

ternary or binary form then would improve results because the possibility of
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extremely high values of variables would either be eliminated or severely restricted.

Although discretization implies loss of information within a given study area,

reduction to binary form has the advantage of transportability in that weights

derived for one study area may become applicable in other areas. Coloring the

posterior probability map resulting from WofE (or another method), e.g. by using

red for the largest 2 % class as before. Such a colored map retains validity if there

are undiscovered deposits in the study area that have the same weights as the known

deposits. Consequently, the posterior probability provides target areas for further

exploration where the colors (e.g. red) indicate relatively high probability of

occurrence but where no or few deposits have been discovered.

A suitable method for measuring the performance of mineral potential maps

consists of attempting to predict occurrences of deposits that are deleted from the

data set. A jackknife type approach of successively omitting individual deposits

was proposed by Chung and Agterberg (1980). A different jackknife-based

approach will be discussed in Sect. 14.1. Alternatively, mineral potential maps

can be constructed without use of deposit data in parts of the study area and

evaluation of how well mineral potential is predicted in these parts (cf. Chap. 4).
Ideally, a historical hindsight study can be performed in which a mineral potential

map is evaluated against new discoveries, after a number of years of subsequent

mineral exploration (Sect. 4.4.2).

A difference plot as shown for WLR in Fig. 5.27 can be subjected to an

approximate Kolmogorov-Smirnov test for goodness of fit. This test checks for

the largest difference (in absolute value) between observed and expected
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Fig. 5.27 Kolmogorov-Smirnov plot for WLR Experiment 5 (Source: Agterberg and Bonham-

Carter 2005, Fig. 6)
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frequencies. In this example, there are 43 deposits and 430 unique conditions. The

maximum difference of 0.088 is within the 95 % confidence interval that amounts to

(�1.36/√43¼) �0.207 in the two-tailed Kolmogorov-Smirnov test. Thus the WLR

model provides a good fit for the training area of Experiment 5.

Amineral potential map can be viewed as the contour map of a landscape covered

by disks representing mineral deposits. If the fit is good, the sum of posterior

probabilities for any subarea is equal to observed number of deposits in that subarea.

It is possible to improve the fit; e.g., by using non-linear functions of the variables.

However, the end product then may be equivalent to an empirical contour map of

deposit density derived without use of geoscience information and without predic-

tive potency. In this situation, superimposing a grid with very small cells on the

study area and random sampling (see Fig. 5.25) produces a representative sample of

this empirical contour map. Another way to illustrate this concept is to imagine

maintaining a constant proportion of cells that are sampled at random (e.g., 25 %)

but to steadily decrease grid spacing. In the limit (infinitely small cells), both training

and target area exactly duplicate the study area. A better fit then does not prove that

the method used provides a better predictive tool.

If the concept of random sampling from a study area is applied, one could argue

as in Agterberg (1992) that the known mineral deposits in a region constitute a

random subset of a larger population of discovered plus undiscovered deposits that

are of the same type in that they relate in the same way to the variables from which

the indicator map layers are formed. In WofE, one then simply can increase the

prior probability by a factor equal to total number of deposits divided by number of

known deposits. Of course, in practice the problem is that, generally, it is not

possible to estimate this ratio accurately. However, in a relative sense, the patterns

on a mineral potential map are not affected by such lack of knowledge.

5.3 Modified Weights-of-Evidence

The approach to be discussed in this section was originally introduced by

Spiegelhalter and Knill-Jones (1984) as a refinement of weights of evidence as

used in the GLADYS expert system. Agterberg (1992) had suggested applicability

of this indirect method to GIS-based regional mineral resources estimation but this

modification had not yet been tested until the method was applied in Agterberg

(2011) and Zhang et al. (2013). Suppose that a study area is digitized as a number

(n) of pixels and that Xi (i¼ 1, 2, . . ., p) are a number of binary explanatory

variables used to predict a dichotomous random variable Y representing presence

(Yk¼ 1) or absence (Yk¼ 0) of mineralization at the k -th pixel. Provided that n is

very large, we can redefine the situation in terms of binary sets Bi corresponding to

the Xi and a setD corresponding to Y. In most WofE applications, the Bi’s are binary

with or without missing data, although the method also could be used with multi-

state explanatory variables.
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5.3.1 East Pacific Rise Seafloor Example

If there are N discrete events in a study area and the sum of all estimated probabil-

ities is written as S, WofE generally results in S>N. The difference S-N can be

tested for statistical significance. The main advantage of WofE in comparison with

WLR is transparency in that it is easy to compare weights with one another.

Although WLR yields S¼N, WLR coefficients generally have relatively large

variances. By preprocessing it is usually possible to obtain WofE weights that

approximately result in S¼N. It is also possible to first perform WofE modeling

and to follow this by WLR applied to the weights. This method results in modified

weights with unbiased probabilities satisfying S¼N. An additional advantage of

this approach is that it automatically copes with missing data on some layers

because weights of unit areas with missing data can be set equal to zero as is

generally practiced in WofE applications.

The problem of obtaining unbiased posterior probabilities in Bayesian

approaches to regional mineral resource evaluation has been considered by several

authors including Caumon et al. (2006). These authors proposed a cross-validation

technique to cope with violation of conditional independence of explanatory vari-

ables in weights-of-evidence modeling. Their approach is a modification of a

method originally proposed by Journel (2002), Krishnan (2008) and Krishnan

et al. (2004). Several WofE-based methods to obtain unbiased posterior

Box 5.5: Proof That the WLR Likelihood Function Results in S¼N

Suppose that the probability of occurrence or non-occurrence of an event is written

in the form: P(Y¼ 1| x)¼ π(x)¼ ef(x)/{1+ ef(x)};P(Y¼ 0|x)¼ 1� π(x). The likeli-

hood function then becomes: l βð Þ ¼
Y

π xið Þyi 1� π xið Þ1�yig
n

. When there

would be a single explanatory variable with β¼ [‵β0 β1]: Logit(πi)¼ β0 +β1xi,
and the Log likelihood function is L(β)¼ loge{ l(β)}¼∑ yi · loge{ π(xi)}
+ (1� yi) · loge{ 1� π(xi)}. Differentiation with respect to β0 and β1 gives:

∑ {yi� π(xi)}¼ 0; ∑ xi{yi� π(xi)}¼ 0. Consequently, the total number of

discrete events (N) is equal to the sum the estimated probabilities (S), or

∑ yi¼∑p(xi). The relation S¼N also applies when there are p explanatory

variables. It is noted here that the S¼N also is useful as a final test on posterior

probabilities obtained by the LOGPOL program (Box 5.3). Although various

calculations in this FORTRAN program are carried out in double precision,

it is possible, for very large databases, that the sum of the final posterior proba-

bilities is slightly less than N due to lack of complete convergence for some

posterior probabilities The logistic regression coefficients on which these proba-

bilities are based then can be used as input for a new LOGPOL run to check

for the S¼N requirement.
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probabilities were used by Bonham-Carter et al. (2009). Schaeben (2012) has

provided a comprehensive review of all these methods used for mineral resource

appraisal. Cheng (2011) has developed a boosting version of WofE in which S¼N
is nearly satisfied. Boosting (Freund and Schapire 1997) consists of sequentially a

classification algorithm to reweighted versions of a set of training data followed by

taking the weighted majority of the sequence of classifiers produced (cf. Friedman

et al. 2000). Deng (2009) had introduced a conditional dependence adjusted

weights of evidence method. In an application, it was shown this method does not

eliminate bias because it results in S<N but bias is reduced in comparison with

ordinary WofE (Agterberg 2011). This existence of bias also has been pointed out

by Schaeben and van den Boogaart (2011). Schaeben (2014) has made a detailed

comparison of weights of evidence with logistic regression in terms of Markov

random fields expanding on work by Sutton and McCallum (2007). However, mit

should be kept in mind that “interpreting regression coefficients can be very tricky”

(Christensen 1990, p. 259). Agterberg’s (1989c) LOGDIA computer program

contains logistic regression diagnostics as developed by Pregibon (1981). However,

in practical WLR applications, usually is best to evaluate statistical significance by

using the Student’s t-map that accompanies the posterior probability map

(cf. Fig. 5.18) and the Kolmogorov-Smirnov test (Fig. 5.19).

The example of application to be used for illustrating modified WofE here is the

Seafloor Example consisting of 13 volcanic vents on the East Pacific Rise near 21�

N (Fig. 5.28). It was previously analyzed by means of both WofE and WLR

(Agterberg et al. 1994). The datasets used for the current study are slightly different

from those used previously but the new WofE and WLR results are similar to those

derived before and more detailed explanations of input and output patterns can be

found in the earlier papers.

Fig. 5.28 Seafloor Example. Two of patterns used for to correlate occurrences of 13 hydrothermal

vents on the seafloor (East Pacific Rise, 21�N; based on Fig. 5 of Ballard et al. 1981). Top: litho-age
units and vents (dots); relative age classes were based on measuring relative amounts of sediments

deposited on top of the volcanics with 1.0–1.4 (youngest), 1.4–17 (intermediate), and 1.7–20

(oldest); Bottom: topography (depth below sea level) (Source: Agterberg et al. 1994, Plate 1a, b)
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Table 5.6 shows input data for the Seafloor Example. There are five binary

patterns (relative age of basaltic rocks; depth below sea-level; vicinity to contact

between youngest basaltic rocks; type of basaltic rock; and vicinity of fissures) and

25¼ 32 unique conditions. Unit of area is 10 m� 10 m. OrdinaryWofE weights and

contrasts are shown in the first three columns of Table 5.7. WLR was applied to the

dataset of Table 5.6 after replacing every 1 for a map layer by its positive weight

and every 0 by its negative weight. Because presence of fissures initially resulted in

a negative value of W+, its 0s for absence were replaced by this negative value,

because it is absence (instead of presence) of fissures that is weakly positively

correlated with vent occurrence. The resulting logistic regression coefficients and

their standard deviations are shown in columns 4 and 5 of Table 5.7. Multiplying

them by the weights yields the modified weights shown in the next two columns.

The modified WofE weights in the last columns of Table 5.7 yield S¼ 13 so that

bias due to lack of conditional independence is avoided.

Agterberg and Cheng (2002) proposed their conditional independence test using

original WofE results for the Seafloor Example. Figure 5.29 show estimated and

observed numbers of vents in the 5-layer model. The sum of posterior probabilities

based on all five map layers was S¼ 37.59 and much greater than N¼ 13. Clearly,

there is significant violation of the conditional independence assumption. In a

separate experiment (Table 5.9) for a slightly larger study area of 3,985 km2 a

three-layer model was analyzed. The first column of Table 5.9 shows unique

conditions with “1” for presence and “0” for absence. The area of the unit cell

was set at 0.01 km2 in this experiment. With weights and standard deviations

similar to those listed for WofE in Table 5.7 this resulted in the posterior probabil-

ities Pf with standard deviations s(Pf) shown in columns 3 and 4 of Table 5.9.

Multiplication of each Pf by area (number of unit cells) of its unique condition

results in the eight predicted vent frequencies NIJK Pf. Their sum provides the

estimate T¼ 14.05 which is only slightly larger their n¼ 13. The corresponding

variance s2(T ) (¼41.6511) is the sum of the eight values listed in the last column of

Table 5.9. The square root of this number gives s(T )¼ 6.45. The z-test can be

applied to test the standardized difference (T� n)/s(T )¼ 1.05 for statistical signif-

icance. The 95 % confidence level for a one-tailed test to see if T is significantly

greater than n is 1.645. Consequently, the hypothesis that the three layers in the

model of Table 5.9 are conditionally independent can be accepted. On the contrary,

if the same z-test is applied to the five-layer model (cf. Fig. 5.29), the assumption of

conditional independence is rejected. For more detailed explanations of this test,

see Agterberg and Cheng (2002).

It is interesting to compare the newly derived WLR results with those resulting

from application of WRL directly to the input data shown in Table 5.6. In Table 5.8

it is shown that indirectly estimated coefficients divided by their standard devia-

tions are exactly equal to direct estimates divided by their standard deviations.

Repetition of the preceding experiment using the Meguma Terrain Example yielded

the results shown in Table 5.10. In this application, the seven map layers used were

approximately conditionally independent of the 68 gold deposits, and the results

obtained by either direct or indirect application of WLR are not greatly different as

they were for the first example.
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Table 5.8 Seafloor example. Comparison of WLR results

Variable W+ s(W+) W� s(W�) WR
+ s(WR

+) WR
� s(WR

�)

Age 1.77205 0.30180 �1.71651 0.70713 1.96126 0.37914 �1.89979 0.81868

Topography 0.67433 0.33344 �0.74367 0.50004 �0.36013 0.41223 0.34885 0.60241

Contact 1.18719 0.31640 �1.19888 0.57738 �0.28949 0.35277 0.28041 0.63265

Rock type 0.42831 0.40835 �0.26130 0.37801 0.04663 0.44083 �0.04517 0.41710

No fissures 0.04299 0.57743 �0.13127 0.31628 �0.19919 0.62718 0.19294 0.37332

Source: Agterberg (2011, Table 3)
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Fig. 5.29 Seafloor Example: Hydrothermal vents on East Pacific Rise. Estimated and observed

numbers of vents in 5-layer model (Source: Agterberg and Cheng 2002, Fig. 1)

Table 5.9 Estimation of

T and s2(T ) for 3-layer model
IJK Area (km2) Pf s(Pf) NIJK Pf NIJK

2 s2(Pf)

222 1.344 0.0003 0.0005 0.0403 0.0045

212 0.9007 0.0057 0.0065 0.5134 0.3428

221 0.4351 0.0008 0.0013 0.0348 0.0032

122 0.4187 0.0111 0.0126 0.4648 0.2783

112 0.3415 0.1709 0.0907 5.8362 9.5939

211 0.2223 0.0154 0.0176 0.3423 0.1531

111 0.1771 0.3604 0.153 6.3827 7.3421

121 0.1456 0.0297 0.336 0.4324 23.9332

Sum 3.985 14.0470 41.6511

Source: Agterberg and Cheng (2002, Table 3)

I age, J topography, K rock type; N¼ 100�Area
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The new approach advocated in this section results in unbiased estimates of the

posterior probabilities. An additional advantage of this approach is that it automat-

ically copes with missing data on some layers because weights of unit areas with

missing data can be set equal to zero as is generally practiced in WofE applications.

As usual, the method presented here was applied using known events in the study

area only.

Because logistic regression results in posterior probabilities that are unbiased in

the sense that the condition S¼N (sum of posterior probabilities¼ total number of

events) is satisfied, it is possible to modify the WofE further by assigning other

values to the pixels or unique conditions that contain events as discussed and

applied by Zhang et al. (2013).
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Chapter 6

Autocorrelation and Geostatistics

Abstract Time series analysis has a long history of useful applications in many

branches of science. Estimation of the autocorrelation function and power spectrum

of serial data are important tools that are complementary to one another. In general,

it is assumed that a series is “stationary” with constant mean and variance. Analysis

of glacial varve-thickness data will be presented as an example of establishing

periodicities in temperature related to climate change. The cross-spectrum and

coherence are time series equivalents generalizing the correlation coefficient

between two variables. In geostatistics, the semivariogram is favored as a principal

tool for analysis of space series consisting of mining assays in ore deposits or

chemical element concentration values in rock units. In general, there is a simple

linear relationship between autocorrelation function and semivariogram. The most

frequently used geostatistical semivariograms including the spherical and expon-

ential models allow for a nugget effect at their origin representing non-zero

variance and assume asymptotic convergence to a constant value representing

regional variance at large sampling intervals exceeding a range. However, a

semivariogram model without finite variance for modeling of short-distance auto-

correlation as originally proposed by Matheron (Traité de géostatistique appliquée.

Mém BRGM 14, Paris, 1962, Estimating and choosing, an essay on probability in

practice (trans: Hasover AM). Springer, Heidelberg, 1989) can be more appropriate

in some types of applications. Geometrical considerations related to shapes and

volumes of blocks of rocks are important in geostatistical modeling. Average values

estimated for blocks can be extrapolated into their surroundings with use of their

extension variances. In addition to the time-series applications to glacial varve-

thickness data, practical examples in this chapter are mainly for copper, zinc and

gold concentration values obtained by channel sampling in various ore deposits in

Bolivia, Canada and South Africa, and for copper in chip samples from along the

7-km deep KTB borehole drilled into the Bohemian Massif in southern Germany.

Stationary discrete random variables, for example, those related to successions of

different KTB lithologies also can be modeled geostatistically.
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and Future Developments, Quantitative Geology and Geostatistics 18,
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6.1 Time Series Analysis

Time series analysis is a well-established topic of mathematical statistics. It is

closely related to Fourier analysis. A good review of the history of this topic can be

found in Bloomfield (2000). It is of interest to mathematical geoscientists for

analysis of geoscientific time series and space series. The latter arise when a rock

unit is sampled at regular intervals along a line. Obviously, there is then in a 3-D

situation. Geostatistics was originally developed by Matheron (1962) for 3-D

domains. It was adopted by mathematical statisticians under the name “spatial

statistics” (cf. Sect. 2.1.2)
Suppose that a given series {xk} is part of an infinite series which, in turn, is a

realization of an ordered set of random variables {Xk}, k¼�1, . . .,�1, 0, 1, . . .,1.

The theoretical set can be seen as a population that is doubly infinite, because any

point out of an infinite number of points along the line can assume any one value in an

infinite set of possible values. Suppose the random variables {Xk} all have the same

probability distribution with constant mean and variance. However, they can be

correlated with one another. In the example of Fig. 4.1, the two sets of gold values

from panels that are (h ¼) 30 ft. apart have approximately the same mean and

variance but are autocorrelated with r(h)¼ 0.59. The serial correlation coefficient

would become larger for shorter distance and less when h is increased. A series is

“weakly” stationary if the autocorrelation function for the {Xk} (with mean μ and

variance σ2) is constant and does not depend on location along the series. A property

of stationary series is that r(h) goes to zero when h approaches infinity. Serial

correlation r(h) can be negative even if a series is stationary. Many series are not

stationary in that the mean of the {Xk} changes systematically along the series.

Discussions of the concept of “stationarity” of time or spatial series can be found

in Bloomfield (2000, Sect. 9.3) or Cressie (1991). “Strong” stationarity involves

time- or space-independence of frequency distributions and implies “weak”

stationarity also simply referred to as “stationarity”. Cressie (1991, p. 40) defines

“intrinsic” stationarity through first differences between successive values with the

properties E(Xk+h�Xk)¼ 0 and σ2 (Xk+h�Xk)¼ 2 · γh where γh is the

semivariogram. This assumption is weaker than “weak” stationarity because it

allows for infinitely large variance and non-existence of the mean μ, a topic to be

discussed in more detail in Sect. 6.2.1. A time series is called “ergodic” if the time

average of a quantity is equal to its ensemble average (Brillinger 1981, Sect. 2.11)

where “ensemble” comprises all possible realizations of the series. Ergodicity

implies stationarity. In this chapter, stationarity and ergodicity will be assumed to
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exist if possible. However, intrinsic stationarity with infinitely large variance will

be assumed to hold true as an alternative approach to describe strictly local

variability of element concentration values in rocks (Sect. 6.2.6).

The purpose of hanning is that individual values P( f ) can be considered to

estimate a smoothed version of the underlying true spectrum. For more explana-

tions of why this procedure can be useful, see Blackman and Tukey (1959). The

power spectrum P( f ) can be regarded as a decomposition of all variability in a

series in terms of components of the variance for narrow frequency bands. Smooth-

ing operations such as hanning significantly improve their estimation from the

autocovariances by eliminating distortions. An alternative approach of constructing

the power spectrum (Sect. 6.2.7) consists of averaging adjoining values in the

periodogram over equal intervals.

6.1.1 Spectral Analysis: Glacial Lake
Barlow-Ojibway Example

Glacial varves, because of their presumed annual nature have attracted the attention

of geologists as a geochronological tool. Anderson and Koopmans (1963) were

among the first to apply spectral analysis to varves. Theory of cross-correlation and

cross-spectral analysis was treated by Goodman (1957), Amos and Koopmans

(1963), and Kendall and Stuart (1966), with applications by Hamon and Hannan

(1963), Koopmans (1967), Anderson (1967) and Agterberg and Banerjee (1969).

Lake Barlow-Ojibway is a late-glacial water body that formed approximately

11,000 years ago during the retreat of the Late Wisconsin ice-sheet in northern

Ontario and western Quebec. The lake, in its maximum extent, measured about

960 km in the east-west and 240 km in the north-south direction (Fig. 6.1 inset).

The most extensive deposit formed in it was the sheet-like body of varves which

Box 6.1: Autocovariance and Power Spectrum

The autocovariance of an ordered sequence of random variables is defined as

Γh¼E[(Xk� μ)(Xk+ h� μ)]. The sample autocovariance for n values can be

estimated by: Ch ¼ 1
n�h

Pn�h
k¼1 xh � xð Þ xkþh � xð Þ where x ¼ 1

n

Pn
k¼1 xk.

The autocorrelation function satisfies ρh¼Γh /Γ0¼Γh /σ
2 and the sample auto-

correlation coefficient is rh¼Ch/C0. Together the rh values form a so-called

“correlogram”. Wiener’s (1933) theorem of autocorrelation states that

the power spectrum satisfies: φ(ω)¼ R 1
�1ρhe

� iωhdh. Since ρh is even,

φ(ω)¼ R 1
�1ρh cos ωh dh. In the next section the power spectral density P( f )

will be computed as: P( f )¼C0 + 2∑ m
k¼ 1W(k)Ck cos 2πkf with W(k)¼

½(1 + cos πk/m). The weighting function W(k) defines a cosine-shaped lag

window for the autocovariance function whose use is called “hanning”.
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extends uninterruptedly across the Hudson Bay – St. Lawrence divide (Fig. 6.1).

More detailed geological background with references to earlier work is given in

Agterberg and Banerjee (1969). It is mentioned here that individual varves can be

traced laterally from their proximal (northern) end to distal (southern) end succes-

sively changing from sandy through silty to diamictic facies (Fig. 6.2). In the

Fig. 6.1 Location of study area with outline of Lake Barlow-Ojibway (inset) and surficial geology
(Source: Agterberg and Banerjee 1969, Fig. 1)
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vertical sequence too, individual varves were successively overlain by more distal

facies as the ice-front and with it the proximal end of the varves receded northward

with time. Kuenen (1951) proposed a mechanism of varve deposition by annual

turbidity currents with silt deposition during the summer followed by slow clay

deposition during the winter.

In total, 4,310 thickness measurements from eight sections (locations shown in

Fig. 6.1) were statistically analyzed. In the longest series (No. 4 with 537 silt-clay

couplets), silt layers near the bottom are about ten times as thick as those near the top.

The clay layers near the top are about three times thinner than those near the bottom. A

logarithmic transformation was desirable in order to ensure that variations in thickness

are of the same magnitude in parts of the series that are relatively thick and relatively

thin, respectively. For example, the sum of squared silt thickness data on which

measures of variability such as the variance are based, amounts to 1,037.2 cm2 for

series 4. The first 100 values in this series contribute 91.99 % and the last 100 values

only 0.02 % to this total sum of squares that is based on all 537 data. If no logarithmic

transformation would be applied to the observations, results from a statistical study

would be largely determined by variations in the thicker parts of the series, whereas

variations in the thinner parts of the series would have a negligibly small effect on the

Fig. 6.2 Typical examples of the three facies of varves (from left to right: sandy, silty and

diamictic facies) (Source: Agterberg and Banerjee 1969, Fig. 4)
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end results. The logarithmic transformation stabilizes the variance. For the example,

the ratio of the variances for the first and last sets of 100 silt values for series 4 is 33.6,

but after logarithmic transformation it becomes 1.5.

Correlograms for log-thickness data, silt and clay, for series 4 are shown in

Fig. 6.3. Best-fitting semi-exponential curves with rh¼ c · exp (�ajhj) where

Fig. 6.3 Correlograms of log-thickness data, silt and clay, series 4. Best-fitting negative

exponential curves with m¼ 10 and m¼ 50 are also shown (Source: Agterberg and Banerjee

1969, Fig. 6)

Box 6.2: Signal-Plus Noise Model

Suppose a series of observed values (xk) is the sum of two series: signal (sk)
and white noise (nk) with k¼ 1, 2, . . ., n. The autocovariance functions of

these series written as Γx(h), Γs(h) and Γn(h) satisfy the relations: Γn(h)¼ 0 if

h 6¼ 0 and Γx(h)¼Γs(h) +Γn(h). Suppose Γx(0)¼ 1 and Γn(0)¼ c. Let F(h)
denote a filter to which the record must be subjected in order to obtain the

signal: sk¼
R 1

�1F(h)x(k+ h)dh. Then, Γs(h)¼
R 1

�1F(h + τ)Γs(τ)dτ +
R 1

�1F

(h+ τ)Γn(τ)dτ or Γs(h)¼
R 1

�1F(h+ τ)Γs(τ)dτ + (1� c)F(h). Fourier transfor-

mation of both sides gives: G(ω)¼Φ(ω) ·G(ω) + (1� c)Φ(ω) where

G(ω)¼ R 1
�1Γh cos ωh dh and Φ(ω)¼ R 1

�1Fh cos ωh dh. It follows that:

Φ ωð Þ ¼ G ωð Þ
G ωð Þþ 1�cð Þ. The filter F(h) can be found by taking the inverse Fourier

transform: F(h)¼ R 1
�1Φ(ω)cos ωh dω. When Γx(h)¼ exp(�ajhj), then: G

ωð Þ ¼ 2ac
a2þc2 and F hð Þ ¼ ac

πp2 1�cð Þ

Z 1

�1

1
ω2

p2 þ 1
cos ωh dω where p¼ [a2 + 2ac/

(1� c)]0.5. After some manipulation it follows that: F(h)¼ q � exp
(�pjhj) where q¼ ac/[(1� c) � p] (cf. Yaglom 1962; Agterberg 1967, 1974).
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c and a are constants are shown for m¼ 10 and m¼ 50. Deming’s (1948) method

of least squares for exponentials was used for the curve-fitting. Clearly, the

correlogram curves (original data and lines of best fit) intersect the vertical

axis at points that are less than one. This indicates the presence of random

(uncorrelated) noise with variance of standardized data equal to (1� c). This
white noise can be removed from the data by using the filter of Box 6.2 as

follows.

Application of the semi-exponential filter to series 4, silt, (with m¼ 10) yielded,

a¼ 0.022, c¼ 0.72, p¼ 0.33 and q¼ 0.17 (cf. Agterberg and Banerjee 1969)

indicating that the bilateral filter used to derive the relatively smooth “signal” in

Fig. 6.4 is restricted to a relatively narrow neighborhood. Six of the eight series

shown in Fig. 6.4 were aligned with respect to one another on the basis of the

“datum” which is a relatively abrupt increase in thickness of the varves. This datum
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coincides with the Cochrane readvance of the land-ice about 8,000 years ago

(Antevs 1925; Hughes 1955).

The varve time series are not stationary in that, for example, both mean silt and

clay layer thickness tend to decrease with time. As a rule, such decreases are

stronger in the silt than in the clay. Observed varve series are incomplete because

thicknesses could not be measured in places where slumped layers occur. These

places are shown as “s” in Fig. 6.4. Some gaps where a larger number of varves is

probably missing are identified as “G” in this figure. In total as much as 10 % of

total number of varves may be missing in some series including series 4.

Varve-thickness data, like tree-rings, provide a sensitive tool to measure very

small temperature fluctuations on Earth. Power spectra with m¼ 50 are shown in

Fig. 6.5 for the four longest series (n> 250). All spectra commence with a strong

peak close to the origin for low-frequency waves representing long-term variations

or “trends”. For 20-year and lesser periods, the spectra tend to flatten out. It is likely

that the peaks for shorter periods are not exclusively caused by random variations

but are partly due to weak periodical phenomena. The first peak for silt (S1 in

Fig. 6.5) occurs at a period of about 14 years in all four spectra. Because some

varves are missing, this indicates that a cyclical variation of approximately 15 years

existed in the silt thickness variation over large parts of Lake Barlow-Ojibway.

A periodicity of this type is not known to occur in glacial deposits elsewhere in the

world. Two possible explanations have been offered. Agterberg and Banerjee

(1969) suggested that the phenomenon could be related to the existence of ridges

in the bedrock profile known to occur at about 8 km intervals underneath some

eskers. If the average rate of retreat of the ice-front was about 500 m per year,

occurrence of the annual turbidity currents during the summer months would have

been about 15 years. Later, another explanation was offered by Schove (1972). This

author suggested climatological variations due to soli-lunar cycles as an explana-

tion. Brier (1968) had shown that soli-lunar cycles produce significant tidal effects

in the atmosphere at 13.5 and 27 years. According to Schove (1972), silt compo-

nents of varves are suitable for study of soli-lunar cycles as affect the summer

months of June and July. The 13.5 year (163 calendar months) cyclicity is the beat

period between the calendar month (30.44 days) and the synodic month (29.5 days).

These two cycles are in phase with one another every 163 months, and both then are

approximately in phase with the cycle arising from the anomalistic month

(27.55 days). The synodic cycle is the period from one new moon to the next and

the anomalistic cycle that from one perigee to the next. These two cycles are most

important in determining the magnitude of the soli-lunar gravitational tide, which

has significant effects on monthly weather conditions according to Brier (1968).

There is no consensus among climatologists that the moon significantly affects

climate.

Peaks in power spectra often are followed by secondary peaks that tend to be

equally spaced along the frequency scale. These may represent “harmonics”

reflecting deviations from sinusoidal shape of the periodic phenomenon

(cf. Schwarzacher 1967). This phenomenon is most conspicuous for clay in series

4 where there are nine peaks, all of which are multiples of frequency 0.05 or a value
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slightly larger than 0.05. This probably reflects the 22-year and 11-year sunspot

cycles that have been found in varves elsewhere in the world (Schove 1983; Berry

1987) and in other laminated sediments, e.g. in marl-limestone couplets belonging

to the Late Campanian Radotruncana calcarata Zone (Wagreich et al. 2012).

Sunspot cycles have variable duration but, on average, they last 11 years. The

22-year cycle is due to alternation of stronger and weaker 11-year cycles.

50

SERIES 4

SERIES 7

PERIOD IN YEARS

SERIES 8

SERIES 6

SILT

20

10

5

S1

S1

S1

S2
S3

S1

C2
C3 C4 C5 C6

C7

C8

CLAY

C9

2

1.0

0.5

95%

5%
0.1

50 20 10 5 3.33 2.5 2 50 20 10 5 3.33 2.5 2

5020 10 5 3.33 2.5 2 50 20 10 5 3.33 2.5 2

0.2 0.3 0.4 0.5

0.2

0.1

0.05

0.02

10

5

2

1.0

0.5

0.2

0.1

0.05

0.02

10

5

2

1.0

0.5

0.2

0.1

0.05

0.02

P
O

W
E

R
 D

E
N

S
IT

Y

50

20

10

5

2

1.0

0.5

0.2

0.1

0.05

0.02

Fig. 6.5 Power spectra with m¼ 50 for four longest series (n> 250); Frequency scale is shown

in spectrum for series 4 only. Confidence belts also are shown (Source: Agterberg and Banerjee

1969, Fig. 5)
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6.1.2 Trend Elimination and Cross-Spectral Analysis

A more detailed time series analysis has been performed of series 4 which,

with 537 varves, covers the longest time interval. First polynomial curve-fitting

was performed on the logarithmically (base e) transformed data. Percentages of

explained sums of squares due to linear fits were 43.0 and 38.0 % for silt and clay

thickness data, respectively. These %ESS values were increased to 48.2 and 38.6 %,

after addition of quadratic terms. Further improvements due to cubic fits were small

with %ESS values of 48.5 and 39.5 %, respectively. The linear and cubic exponential

trends are shown in Fig. 6.6. These curves were obtained by elimination of the

effects of the logarithmic transformation on the trend. In the linear case, this procedure

yields the following exponential curve for thickness in cm: H(t)¼ exp {a+ bt+½ s2}
where H(t) represents the exponential thickness decrease with t measured in years,

a and b are constants, and s2 is the residual variance (Agterberg 1968; Heien 1968). It
represents the solution of the deterministic differential equation: dH(t)/dt¼H(t). In
Agterberg and Banerjee (1969), the dimension of time (t) is replaces by that of

distance (x) so that the exponential trend curves represent thickness profiles of

individual varves. The preceding two equations then can be written as: H(x)¼ exp

(�cx) and dH(x)/dx¼�cH(x). It follows that: ΔH(x)¼�cH(x)Δx where ΔH(x)
represents the decrease in varve thickness away from the source over a short distance

Δx. Therefore, this model would mean that thickness away from the source is

everywhere proportional to thickness. It provides a fair approximation for the clay,

but for the silt relatively more material was deposited close to the source (Fig. 6.6).

Refined spectral analysis and cross-spectral analysis can be applied to the residuals

from the linear trends for the log-thickness data (base e) of both silt and clay.

The resulting new correlograms are shown in Figs. 6.7 and 6.8, respectively.

Shifting the series of clay residuals with respect to the series of silt residuals resulted
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Fig. 6.6 Exponential trends, silt and clay, series 4 (Source: Agterberg and Banerjee 1969, Fig. 8)
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in the 201 cross-correlation coefficients shown in Fig. 6.9. The three figures based on

residuals instead of original thickness data confirm results obtained by spectral analysis

in the preceding section but produce additional information as well. The new silt

correlogram (Fig. 6.7) clearly shows the 14-year periodicity that could not be perceived

in the correlogram of original silt data shown in Fig. 6.3. The 10-year (and 20-year)

sunspot cycle that is evident in Fig. 6.5 (series 4) cannot be seen in the clay residual

correlogram of Fig. 6.6. As pointed out before, all periodicities in the power spectrum

for series 4 are underestimated by about 10 % due to missing varves. The 11-year
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sunspot cycle is visible in the cross-correlogram of Fig. 6.9. In this diagram, it can be

seen that the clay leads the silt by about 2 years. Such phase differences are better

studied by using cross-spectral analysis. The fitted curves in Figs. 6.7 and 6.8 satisfy an

equation for a stochastic model to be explained later (Sect. 6.1.3).

As mentioned before, the power spectrum P( f ) represents a decomposition of

total variance of a series in terms of variance components for narrow frequency

bands. Likewise, the coherence is the decomposition of the total correlation coeffi-

cient between two variables. For example, Anderson (1967) has shown that two time

series can be uncorrelated when time is not considered as a variable whereas, in

reality, the long-term fluctuations are negatively correlated and the short-term fluc-

tuations positively correlated (or vice versa). Partial correlation with trend elimina-

tion can give a solution to problems of this type but cross-spectral analysis may

provide a more refined answer. The coherence R( f ) is positive for all frequencies and
should not be interpreted separately from the phase φ( f ) that can be either positive or
negative and falls between �180� and 180�. When the phase is close to 180� or

�180�, the two variables are nearly 180� out of phase implying negative correlation.

Box 6.3: Cross-Spectrum, Coherence and Phase

The cross-spectrum consists of the co-spectrum Csc( f ) and the quadrature

spectrum Qsc( f ) with: Csc( f )¼ rsc(0) +∑ m
k¼ 1[W(k)cos 2πkf{rsc(k) +

rcs(k)}]; and Qsc( f )¼∑ m
k¼ 1[W(k)sin 2πkf{rsc(k)� rcs(k)}]. In these expres-

sions, W(k) is the same weighting function as before. The data were standard-

ized and rsc(k) and rcs(k) together form the cross-correlation function shown in

Fig. 6.9. The coherence R( f ) and phase φ( f ) satisfy:

R fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
sc fð ÞþQ2

sc fð Þ
Ps fð ÞPc fð Þ

q
and φ fð Þ ¼ arctan

Qsc fð Þ
Csc fð Þ. R( f ) is a measure of the

strength of linear relationship between the two series for frequency bands

around f. It is equivalent to the correlation coefficient between two variables

as a function of frequency (Koopmans 1967).
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Fig. 6.9 Cross-correlation function for residuals from linear trend, clay, series 4. Weak oscilla-

tions with period of 10 years indicated by arrows. Note that the correlation coefficient for zero lag
is only slightly larger than its neighboring values, indicating that the noise components for silt and

clay are nearly uncorrelated (Source: Agterberg and Banerjee 1969, Fig. 11)
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From Fig. 6.4 it can be concluded that the lowest frequency waves that form sharp

peaks near the origin of the power spectra in Fig. 6.5 are positively correlated.

Figure 6.10 shows power spectra of the silt and clay residuals. Both have a large

long-period peak that will be discussed later in this section. Clay shows a peak just

below 20 years that was not visible in Fig. 6.5 (series 4). The 14-year peak in the silt

power spectrum also is seen in the silt residual spectrum. The coherence is shown in

Fig. 6.10 as well. It shows local maxima near 20 and 10 years for the sunspot cycle

showing that both clay and silt thicknesses were influenced by this cyclicity. Phase

differences for periods of 9.5 and 10 years were �91� and �72�, respectively, that
both represent a 2-year lag of silt with respect to clay. The 2-year lead of clay could

already be seen in the cross-correlogram of Fig. 6.9. It is interesting that clay did not

participate in the 14-year silt cycle according to the coherence diagram. It would

suggest that, every 15 years, coarser grained material predominated in the annual

turbidity currents that probably took place toward the end of summer. The fine-grained

clay was slowly deposited during the fall and winter. The fact that it led the silt by

about 2 years probably reflects slower response of the coarser grained material. A

greater rate of retreat of the land ice due to an increase in temperature would produce

more melt water and consequently more sediments to be deposited. The clay was

transported across the lake almost immediately, but the silt was delayed. Initially, the

silty material was dumped close to the ice front leaving the thickness profile of varves

in more distal areas relatively unaffected. However, later the steeper profile of

underlying varves, acting as a floor to turbidity currents for later years, helped to

spread the silt farther with the thicker parts moving to more distal areas.

Fig. 6.10 Power spectra

with m¼ 100 for

standardized residuals from

linear trend, silt (solid line)
and clay (broken line),
series 4. The coherence

(COH) is also shown

(Source: Agterberg and

Banerjee 1969, Fig. 12)
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A useful technique for the study of cross-correlation, which had not yet been

developed at the time of the varve analysis project of Agterberg and Banerjee (1969),

is wavelet analysis (seeHubbard 1996).Applications ofwavelet analysis to sedimentary

sequences include Prokoph and Agterberg (1999) and Prokoph and Bilali (2008).

6.1.3 Stochastic Modeling

Agterberg and Banerjee (1969) discuss how the theoretical autocorrelation function

of a second order stochastic process was fitted experimentally to the silt and clay

thickness correlograms shown in Figs. 6.7 and 6.8, respectively. The corresponding

theoretical power spectra are shown in Fig. 6.11. The corresponding theoretical

phase difference is given in Fig. 6.12. For periods greater than 130 years, the clay

leads the silt. This corresponds to the frequency bands where most of the power in

concentrated in Fig. 6.11 for both silt and clay. The zero crossing points in the

cross-correlogram of Fig. 6.9 occur at 56½ and �25½ years indicating that the

major oscillations for the silt are not in phase with those of the clay, but that, on the

average, clay leads silt by about 15½ years. This phase lag of the silt is explained, at

least in a qualitative manner by the second-order stochastic model (Fig. 6.12).

Box 6.4: Time-Dependent Stochastic Processes

The continuous m-th order autoregressive process is represented by the

stochastic differential equation: am
dmx
dtm þ am�1

dm�1x
dtm�1 þ . . .þ a0x tð Þ ¼ E tð Þ

where E(t) is a white-noise function driving the stationary random variable

x(t). Its autocorrelation function is of the type: ρ xð Þ ¼ A1e
�λ1jxj þ A2e

�λ2jxj

þ . . .þ Ame
�λmjxj where A1, A2, . . ., Am are constants, and λ 1, λ 2, . . ., λm

represent the real or complex roots of a polynomial. A pair of conjugate

complex roots can be combined into a single term of the type

ek1jxj cos k2 þ φð Þ where k1, k2 and φ are constants. The first order process

results in ρ(x)¼ exp (�a · jxj). The second order can be written in the form:
d2x
dt2 þ 2α dx

dt þ ω2
0 þ α2

� �
x tð Þ ¼ E tð Þ. If ω2

0 > 0, λ1 and λ2 form a pair of conju-

gate roots, and: ρ xð Þ ¼ e�αjxj cosω0xþ α sinω0jxj
ω0

h i
. The latter result can only

be applied to discrete data if the sampling interval is sufficiently small

(cf. Yaglom 1962; Jenkins and Watts 1968; Kendall and Stuart 1958). Fourier

transformation of the second order autocorrelation function gives: f ωð Þ ¼
2α ω2

0
þα2ð Þ=π

ω2�α2�ω2
0ð Þ2þ4α2ω2

where ω represents angular frequency. The corresponding

phase lag satisfies: φ ωð Þ ¼ �2αω
ω2
0
þα2�ω2 (cf. Parzen 1962, p. 112; Sommerfeld

1949, p. 101).
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Summarizing it can be concluded that the non-random thickness pattern of

varves in Lake Barlow-Ojibway primarily consists of an exponential decrease

away from the retreating ice front. In individual sections this decrease shows as

gradual thickness decreases in both silt and clay. Elimination of this overall trend
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Fig. 6.11 Theoretical power spectra corresponding to theoretical autocorrelation functions of

Figs. 6.7 and 6.8. Crosses denote smoothed theoretical power density values for frequency bands

using the hanning response function. Observed values (o) from Fig. 6.10 are also shown and can be

compared to crosses (Source: Agterberg and Banerjee 1969, Fig. 13)

Fig. 6.12 Theoretical

phase angle for clay and silt

according to which the

response h(t) lags behind
the random process η(t).
Note that the clay leads the

silt for T> 130 years where

most of the power density

occurs according to

Fig. 6.11 (Source:

Agterberg and Banerjee

1969, Fig. 14)
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shows that additional changes in thickness were mainly controlled by a second-

order stochastic process with phase differences between silt and clay. Finally, there

are weak cyclicities for the 22-year and 11-year sunspot cycles involving both silt

and clay and a 15-year cyclicity mainly restricted to the silt. The exponential

thickness decrease in most varve time series suggests a rapid linear retreat of the

land-ice. Superimposed on this trend there occurred two relatively rapid increases

in thickness. One of these falls at the “datum” in Fig. 6.4 coinciding with the

so-called Cochrane readvance; the other one occurred near the end of series 4.

On average, the stochastic model indicated a 126-year cyclicity superimposed on

the linear retreat. Thus, the rate of land ice retreat was accelerated and decelerated

periodically. It is possible that at the end of a deceleration, the ice-sheet not only

came to a stand-still but readvanced relatively rapidly during a short period of time.

This phenomenon is known as “surging”.

Beginning with the theoretical models of Weertman (1969) and Lliboutry

(1969), there has been much progress in the deterministic modeling of land-ice

retreat. A comprehensive review of these theoretical developments can be found in

Fowler (2011). Surges of glaciers and land-ice are modeled by Fowler (2011). They

can indeed be periodic. There may even have existed mega-surges (Heinrich events

including the Hudson Strait mega-surge) with a periodicity of about 7,000 years.

6.2 Spatial Series Analysis

With respect to space series, two geostatistical topics of practical interest are

existence of “sill” and “nugget effect” (see e.g. Journel and Huijbregts 1978; Isaaks

and Srivastava 1989; Cressie 1991; or Goovaerts 1997). Suppose γ(h) represents the
semivariogram, which is half the variance of the difference between values sepa-

rated by lag distance h. Semivariogram values normally increase when h is

increased until a sill value is reached for large distances. If element concentration

values are subject to second-order stationarity, γ(h)¼ σ2 (1� ρh) where σ2 repre-
sents variance and ρh is the autocorrelation function. The sill is reached when there

is no spatial autocorrelation or γ(h)¼ σ2. If regional trends can be separately fitted

to, for example, element concentration values, the residuals from the resulting

regional, systematic variation may become second-order stationary because the

overall mean in the study area then is artificially set equal to zero. Within most rock

types such as granite or sandstone, randomness of chemical concentration is largely

restricted to microscopic scale and sills for compositional data are reached over

very short distances. The nugget effect occurs when extrapolation of γ(h) towards
the origin (h! 0) from observed element concentration values yields estimates

with γ(h)> 0 (or ρh< 1). A pseudo-nugget effect arises when there is strong local

autocorrelation that cannot be detected because locations of samples subjected to

chemical analysis are too far apart to describe it adequately.

If a segment of the Earth’s crust is sampled and element concentration values are

determined on the resulting rock samples, the spatial variability of the chemical
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determinations generally can be subdivided into a number of separate components.

In some applications the original data are stochastic in that they can be described by

random functions. However, often the main component of spatial variability is

deterministic, either because it is related to differences between rock units sepa-

rated by discontinuities (contacts), or because there are regional trends. The latter

can be extracted from the data by a variety of methods; e.g., by trend surface

analysis (Chap. 7), calculation of moving averages with or without weights that are

powers of the inverse of distance, by various methods of kriging, by using splines,

or by means of other methods of signal extraction. After extraction of a determin-

istic component, the residuals generally are stochastic in that they can be described

by means of spatial random functions. In the simplest case, these residuals are

uncorrelated and their correlogram is a Dirac delta function representing white

noise. Measurement errors would create white noise. If extrapolation towards the

origin by means of a function fitted to the correlogram results in a variance that

significantly exceeds variance due to measurement errors, this would create a

pseudo-nugget effect hiding strong autocorrelation over short distances.

6.2.1 Finite or Infinite Variance?

A problem of considerable interest for spatial series (and for time series as well) is

whether or not the random variable used for the modeling is stationary in that it

would have a definite mean and finite variance. Stationarity implies intrinsic

stationarity but intrinsic stationarity does not imply stationarity. Jowett (1955)

was among the first to assume intrinsic stationarity rejecting the commonly made

automatic assumption of existence of a constant or variable mean μ. Matheron

(1962) initially introduced the variogram under the assumption of intrinsic

stationarity. His original approach recently was summarized by Serra (2012).

Box 6.5: Pseudo-Parabolic Behavior at the Origin

Like Matheron, Serra (2012, p. 59) defines the variogram as: 2γ(h)¼
E [f(x)� f(x+ h)]2 where γ(h) is the semivariogram as used in this chapter,

and f(x) denoted the value of a regionalized random variable at location x.
In an example, Serra uses a Poisson process with parameter λ to generate

values along a line. At every next equidistant location a value drawn from the

Poisson population is added to the value at the preceding location. This

artificial series does not have a finite variance but the increments have

variance equal to λ, and values for a finite segment of length L along

the series can be assumed to have finite variance σ2. Suppose now that

a pseudo-covariance is estimated in the usual way as:

(continued)
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Behavior of covariance and semivariogram near the origin and at very great

distances (h!1) generally is difficult to determine in practice, because it must

be based on extrapolation from observations at sampling intervals that, for

practical reasons, cannot be very small nor very large. Additional problems may

arise in practice when the data have frequency distributions that are positively

skewed with relatively few very large values that strongly affect estimations of

covariance and semivariogram. The purpose of the following example is to

consider extrapolations for h! 0 and h!1 before and after logarithmic

transformation.

Suppose that the semivariogram of X and loge X are written as γ*(h) and γ(h)
with γ*(h)¼½E (Xi�Xi+h) and γ(h)¼½E (loge Xi� loge Xi+h), respectively.

If it can be assumed that the mean EX¼ μ exists and the variance (to be written

as var) is finite, the covariance satisfies cov (h)¼E (Xi ·Xi+h)� μ2¼ var� γ*(h).
This covariance is related to the semivariogram for logarithmically transformed

values by means of (cf. Matheron 1974; Agterberg 1974, p. 339) as cov (h)¼
var · exp[�γ(h)] provided that loge X is approximately normal (Gaussian) with

variance σ2>> γ(h). An example is as follows.

Estimated covariances for the 118 Pulacayo zinc values of Table 2.4 are shown

in Fig. 6.13a. The scale used for the covariance is logarithmic. Also shown is the

straight line corresponding to the signal-plus-noise model for cov (h)¼ c · var · exp
(�ch) (a¼ 0.1892; c¼ 0.5157) previously shown in Fig. 2.10. The exponential

covariance model of Fig. 6.13a corresponds to a linear semivariogram for

logarithmically transformed zinc values as follows immediately from substitution

of γ(h)¼ 3A · h into cov (h)¼ var · exp[�γ(h)]. Consequently, the semivariogram of

logarithmically transformed zinc values plotted on log-log paper should be

according to a straight line with slope equal to one. In Fig. 6.13b it is shown that

this model is approximately satisfied. It can be concluded that the logarithmically

transformed zinc values approximately have a linear semivariogram. This conclu-

sion is in accordance with the linear semivariogram originally fitted by Matheron

(1964) to the logarithmically transformed zinc values.

Box 6.5 (continued)

Cov
0
hð Þ ¼ 1

L�h

Z L�h

0

f xþ hð Þ � f L½ � f xð Þ � f L½ �dx where f L ¼ 1
L

Z L

0

f xð Þdx.
It can be shown that the expected value of this pseudo-covariance is

E Cov
0
hð Þ� � ¼ λσ2 L

3
� 4

3
hþ 2h2

3L Þ 0 � h � Lð Þ
�

. Such pseudo-parabolic

behavior completely distorts the real behaviour of the random variable at

the origin.

206 6 Autocorrelation and Geostatistics

http://dx.doi.org/10.1007/978-3-319-06874-9_2
http://dx.doi.org/10.1007/978-3-319-06874-9_2


6.2.2 Correlograms and Variograms:
Pulacayo Mine Example

De Wijs (1951) assumed that, if a block of ore is divided into halves, the ratio of

average element concentration values for the halves is equal to the same constant

regardless of the size of the block that is divided into halves. If greater value is

divided by lesser value, this ratio can be written as η> 1. Matheron (1962)

generalized this original model by introducing the concept of “absolute dispersion”

written as α¼ (loge η)
2/loge 16. This approach is equivalent to what is now better

known as scale invariance. It leads to the more general equation σ2 (loge x)¼
A� loge V/v where σ2 (loge x) represents logarithmic variance of element concen-

tration values x in smaller blocks with volume v contained within a larger block of

ore with volume V. The corresponding semivariogram along a line then satisfies:

γh¼ 3A · loge h. This model does not have a sill but is useful for modeling spatial

correlation over very short distances.

Matheron (1989) pointed out that in rock-sampling there are two possible infinities

if number of samples is increased indefinitely: either the sampling interval is kept

constant so that more rock is covered, or size of study area is kept constant whereas

sampling interval is decreased. These two possible sampling schemes provide addi-

tional information on sample neighbourhood, for sill and nugget effect, respectively.

In practice, the exact form of the nugget effect usually remains unknown because

extensive sampling would be needed at a scale that exceeds microscopic scale but is

less than scale of sampling space commonly used for ore deposits or other geological

bodies. Nevertheless, there are now several methods by means of which the nugget
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Fig. 6.13 Comparison of covariance models fitted to 118 Pulacayo zinc values under finite and

infinite variance assumption. (a) Exponential function (straight line with slope –a¼ 0.1892).

Nearly half of the variance of the zinc values can be attributed to white noise; (b) Semivariogram

for logarithmically transformed zinc signal values (previously shown in Fig. 2.10) with logarith-

mic distance scale. Straight line has unit slope. This is in agreement with exponential covariance

model applied to original zinc values of Table 2.4 (Source: Agterberg 1994, Fig. 2)
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effect can be studied. The de Wijs zinc data set used for example is rather small

(118 values). Because of this, larger data sets also will be analyzed: a series of 2,796

copper concentration values for chip samples taken at 2-m intervals along the Main

KTB borehole shows a persistent nugget effect that will be analyzed separately. As an

example taken from another geoscience field, it will be discussed in Sect. 6.2.6 that

alternating, detrended lithologies over a length of about 7 km in the KTB borehole

(Goff and Hollinger 1999) show a small-scale nugget effect as well.

The following remarks pertain to the effect of logarithmic transformation on

autocorrelation functions and semivariograms. Matheron (1962) applied

geostatistical methods to logarithmically transformed assay values for the Pulacayo

Mine (Table 2.2). This can have advantages with respect to using untransformed

element concentration values. He assumed that “effective length” of each channel

sample could be set equal to L¼ 0.5 m, representing the average width of the Tajo

vein on the 446-m level. Obviously, the 118 zinc values of Fig. 2.1 systematically

underestimate true zinc content of the massive sulphide vein filling because the

original sample length was 1.30 m for the massive vein augmented by lower zinc

grade wall rocks. The effective length can be assumed to be a variable parameter. In

the absence of more complete information, it is not unreasonable to assume, as

Matheron did, that all massive sulphide zinc concentration values were

underestimated by the same factor during the channel sapling. The logarithmic

variance σ2 (loge x) is not affected if this bias factor is constant. For our example,

σ2 (loge x) is estimated to be 0.2851. One relatively simple geostatistical sampling

method can be illustrated as follows. Suppose that the 118 values for channel samples

that are 2 m apart together provide an estimate of average zinc content (¼15.61 %) of

an elongated rod-shaped mining block with a length of 238 m. Dividing this number

by L¼ 0.5 m and raising the quotient to the power 3 then yields V/v¼ 476. Combin-

ing this number with the estimate of logarithmic variance and using Matheron’s

equation σ2 (loge x)¼A• loge{V/v} then yields the absolute dispersion estimate

A¼ 0.015, which would apply to other block sizes as well.

If the logarithmic variance of element concentration values is relatively large, it

may not be easy to obtain reliable estimates of statistics such as mean, variance,

autocorrelation function and power spectrum by using untransformed element con-

centration values. However, lognormality of the frequency distribution often can be

assumed. This is the main reason for using logarithmically transformed values instead

of original values. Suppose that element concentration values can be described by Xi

and Yi¼ loge Xi has normal, Gaussian frequency distribution with mean μ and

variance σ2. Transformations have been studied by Grenander and Rosenblatt

(1957) and Granger and Hatanaka (1964). Representing the autocorrelation functions

for Xi and Yi as ρx (h) and ρy (h), respectively, the following relationship applies:

σ2ρy hð Þ ¼ loge 1þ γ2ρx hð Þ� �

where γ 2¼ σ 2 (X)/μ 2 (X) (cf. Agterberg 1974, Eq. 10.40). If γ 2 is sufficiently

small, ρx (h) and ρy (h) are approximately equal. For our example, this condition is
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satisfied as demonstrated in Fig. 6.14. Approximate equality of results shown in

Fig. 6.14 applies to both the estimated autocorrelation coefficients and negative

exponential functions fitted by non-linear least squares to data points with h> 0.

Consequently, variograms of zinc values and logarithmically transformed zinc

values also are approximately the same. Later the variogram of logarithmically

transformed zinc values will be used. Substituting fitted values from Fig. 6.14 into

γ(h)¼ σ2 (1� ρh) yields a variogram (Table 6.1, see later) that is close to estimates

originally obtained by Matheron (1962).

Fig. 6.14 Estimated autocorrelation coefficients for original data (diamonds) and logarithmically

transformed Pulacayo zinc values (squares), shown together with best-fitting negative exponential
autocorrelation functions. The curves for original and transformed data coincide approximately

illustrating that logarithmic transformation of the original data does not significantly affect

autocorrelation in this application (Source: Agterberg 2012, Fig. 5)

Box 6.6: Whittle’s Space-Time Model

Whittle (1962) considered a variable ξ(x,t) that adopts a value at every point of a
space with Cartesian co-ordinates x¼ (x, y, z) for time t with
∂ξ
∂t þ αξ ¼ ½∇2ξþ E. This is the standard diffusion equation “driven” by

E¼ E(x, t) with ∇2ξ representing the spreading of, for example, a chemical

element through the medium and αξ as a spatial “trend” term. The solution is:

(continued)
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As explained in Box 6.5, Whittle (1962) derived another theoretical equation for

a space series along a line in 3-D. It differs from the semi-exponential correlogram

shown in Fig. 6.14 in that distance (lag) occurs as a linear term of the denominator.

Suppose that both sides of the equation are multiplied by distance. Then the term on

the left-hand side (called xy in Fig. 6.15a) becomes semi-exponential. However,

application of this simple curve-fitting method to the Pulacayo zinc values results in

a line that is approximately horizontal suggesting α¼ 0. Consequently, the resulting

Box 6.6 (continued)

ξ x; tð Þ ¼
Z 1

�1
dy

Z 1

0

G x; y; τð Þ E x, t� τð Þdτ where G x; y; τð Þ ¼ 2πτð Þ�n
2

expf�ατ � x�yj j2
2τ

�
. The spatial covariance function is isotropic and satisfies:

Γ(s)¼ cov[ξ(x, t), ξ(x+ s, t)], and Γ sð Þ ¼
Z 1

�1
dy

Z 1

0

G x; y; τð Þ G xþ s, y, τð Þ

dτ ¼ 1

4πτð Þn=2

Z 1

0

e�2ατ�s2=4τdτ where s is distance along a line in any direction.

This expression can be evaluated as follows:Γ sð Þ ¼ e�s
ffiffiffi
2α

p

2
ffiffiffiffi
2α

p n ¼ 1ð Þ representing
the semi-exponential also generated from the first-order stochastic differential

equation;Γ sð Þ ¼ 1
2πK0 s

ffiffiffiffiffiffi
2α

p� �
n ¼ 2ð Þ representing the well-known 2-D result

first independently derived in 1948 by von Kármán (1948) and Matérn (1981;

English version of book published in Swedish in 1948); Γ sð Þ ¼ e�s
ffiffiffi
2α

p

2πs n ¼ 3ð Þ
representing Whittle’s relatively unknown 3-D solution.

Table 6.1 Pulacayo Mine variogram model

h, m. Experimental Exponential f(L,h) β(h) σh2 Deviation

2 0.303 0.325 2.891 0.105 0.286 0.017

4 0.402 0.367 3.580 0.112 0.354 0.048

6 0.436 0.401 3.985 0.109 0.394 0.042

8 0.465 0.429 4.273 0.109 0.422 0.043

10 0.408 0.452 4.496 0.091 0.444 �0.036

12 0.412 0.471 4.678 0.088 0.462 �0.050

14 0.464 0.486 4.832 0.096 0.477 �0.013

16 0.452 0.499 4.966 0.091 0.491 �0.039

18 0.472 0.510 5.083 0.093 0.502 �0.030

20 0.545 0.518 5.189 0.105 0.513 0.032

Source: Agterberg (2012, Table 1)

Experimental values from Matheron (1962, p. 180); Lag distance (h) in m; Experimental values

from model of Fig. 6.16; f(θ) as in text; β(h)¼Experimental value/f(θ); σ2h¼ β� f(θ) is extension
variance of 50 cm line segments; Deviation is difference between columns 2 and 6. The small

deviations indicate good fit of Matheron’s variogram model
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theoretical correlogram (Fig. 6.15b) is approximately hyperbolic. It primarily

differs from the semi-exponential model of Fig. 6.14 in the vicinity of the origin

where the autocovariance approaches 1. Whittle’s model produces a result that

resembles Matheron’s linear semivariogram model and also two other models to be

discussed in Sects. 6.2.5 and 11.6.3, respectively.
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Fig. 6.15 Whittle’s 3-D correlogram fitted to Pulacayo zinc values. (a) Log XY plotted against

Lag distance (X); (b) Horizontal line of Fig. 6.15a in comparison with serial correlation

coefficients
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6.2.3 Other Applications to Ore Deposits

The question can be asked of how representative the relatively small, historical data set

of 118 Pulacayo zinc values is of ore deposits in general.Matheron (1962) used several

other mineral deposits exemplifying his extension of the model of the Wijs that

resulted in linear variograms. His primary examples were from theMounana uranium

deposit, Gabon, and theMehengui bauxite deposit, Guyana. These two deposits occur

relatively close to the Earth’s surface and were explored by means of subvertical

boreholes drilled on regular grids. His other examples included the Bou-Kiama,

Montbelleux, Laouni, Mpassa, and Brugeaud orebodies. In all these situations, the

model of de Wijs proved to be satisfactory. Some of these examples and others also

were discussed in geostatistical textbooks including David (1977) and Journel and

Huijbregts (1978). Later, however, this type of modeling became de-emphasized,

probably because themodel of deWijs does not allow for sills that occur generally and

problems associated with working with logarithmically transformed concentration

values instead of original data. However, as pointed out by Matheron (1974), lognor-

mality is an issue thatmust be considered generally.Multifractalmodeling (e.g., use of
multiplicative cascades, see Chap. 12) confirms the validity of several aspects of

Matheron’s original approach. Themultifractal autocorrelation function of Cheng and

Agterberg (1996) has a sill as well as a nugget effect with exceptionally strong

autocorrelation over very short distances (cf. Sect. 12.2.3).
Agterberg (1965) estimated autocorrelation coefficients for the original deWijs zinc

data and obtained similar results for titaniumdata from adjoining borehole samples in a

magnetite deposit, Los Angeles County, California, originally described by Benson

et al. (1962). Figure 6.16a (modified from Agterberg 1974, Fig. 56) shows average

autocorrelation coefficients and best-fitting negative exponential function derived from

logarithmically transformed element concentration values for copper from the

Whalesback copper deposit, Newfoundland, and Fig. 6.16b, c are for two relatively

long series of gold assays from the Orange Free State Mine, Witwatersrand goldfields,

South Africa (data from Krige et al. 1969). In these three examples, the negative

exponential function with significant noise component provides a good fit. In each

situation, there is finite variance (existence of sill) and a deWijsian variogram can only

be fitted for the copper and gold examples over relatively short distances (over

approximately the first six values from the origin in the three examples of Fig. 6.16).

A typical sample of 1,090 copper concentration values from the Whalesback

deposit (cf. Agterberg 1974, p. 301) had mean value of 1.57 % Cu and logarithmic

variance of 1.21. Converting these values back into copper concentration values

using the method of Sect. 3.3 yields μ¼ 0.857 and σ 2 (X)¼ 43.84. The positive

skewness of the copper concentration is so large that it is not possible to obtain

reliable statistics from original data without use of a more efficient estimation

method involving logarithmic transformation (Aitchison and Brown 1957; Sichel

1966). The logarithmic variance of the gold values in the other example is approxi-

mately 1.03. Krige et al. (1960) did not report the corresponding mean value but the

following statistics can be derived from the relatively small data set of 61 gold

values in Table 2.6: μ (X)¼ 906.6; σ 2 (X)¼ 1,470,410; μ¼ 6.144; and σ 2¼ 0.929.
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Fig. 6.16 Estimated autocorrelation coefficients and best-fitting negative exponential autocorre-

lation functions (curves) derived from logarithmically transformed element concentration values:

(a) Average correlograms for 24 copper channel sample series from drifts at various levels of

Whalesback copper deposit, Newfoundland (After Agterberg 1974); (b) Series of 462 gold assays

from the Orange Free State Mine, Witwatersrand goldfields, South Africa (Modified from Krige

et al. 1969); (c) Other series with 540 values from same gold mine. In each diagram the fitted

exponential intersects the vertical axis at a point with autocorrelation coefficient less than 1

indicating existence of “nugget” effect (From Agterberg 2012, Fig. 6)
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This yields new estimates of μ (X)¼ 879.1; σ 2 (X)¼ 1,183,972. In this application,

the new estimates are probably better than those obtained from the original gold

values without use of an appropriate transformation.

The comparison of the Pulacayo zinc example with the Whalesback copper and

Witwatersrand gold examples illustrates that there are similarities in that the frequency

distributions of channel samples in all three examples are positively skew and

approximately lognormal. Also, in all three cases, the autocorrelation function can

be approximated by a negative exponential function with value less than unity at the

origin indicating existence of a noise component superimposed on the spatial random

variable representing more continuous variability at larger distances. Negative expo-

nential autocorrelation functions are closely related to Markov chain analysis and to

scaling properties of sequences of mineral grains in igneous rocks. For example, Xu

et al. (2007) demonstrated existence of small-scale scaling in “ideal granite” grain

sequences previously modeled as Markov chains (Vistelius et al. 1983). Wang

et al. (2008) applied multifractal and Markov chain analysis to sphalerite banding at

the microscopic scale in the Jinding lead-zinc deposit, Yunnan Province, China.

In Fig. 2.10 for the Pulacayo zinc example, the noise component was filtered out

to retain a “signal” with approximately unity autocorrelation function value at the

origin (cf. Agterberg 1974). The nugget effect can be modeled as random noise at

lag distances greater than 2 m. Existence of a sill is not obvious in the Pulacayo zinc

example. However, as originally realized by Matheron (1971), a nugget effect of

this type may reflect strong autocorrelation so close to the origin that it cannot be

seen in semivariograms or correlograms because its spatial extent is less than the

sampling interval used in practice. The frequency distribution of the Pulacayo zinc

example has less positive skewness than those of copper and gold in the other

examples.

Fig. 6.16 (continued)
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6.2.4 Geometrical Probability Modeling

In principle, Matheron (1962)’s semivariogram γ(h)¼ 3α · loge h also can be

applied to untransformed data. However, the following applications of geometrical

probability are for logarithmically transformed distance.

Returning to the geometry of channel sampling (Fig. 2.9): suppose that AA0BB0

represents a rectangle with sides AA0 ¼BB0 ¼ h, AB¼A0B0 ¼ L and tan θ¼ L/h.
If the concentration value for a small volume at a point is taken to be the concen-

tration value of another volume of rock that either contains the small volume or is

located elsewhere, this results in uncertainty expressed by means of the “extension

variance”. In Matheron (1962, Sect. 39) or Agterberg (1974, Sect. 10.11) it is

discussed in detail that the variogram value of parallel line segments of length L
that are distance h apart along a straight line can be interpreted as an extension

variance σh2¼ β• f(θ) with β¼ 6A and:

f ϑð Þ ¼ �ln
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ h2
p þ 2h

L
tan �1 L

h
þ h2

L2
ln

hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ h2

p

Table 6.1 shows the first ten Pulacayo Mine variogram values as estimated by

Matheron (1962, p. 180) applying this equation to log-transformed (base e) zinc
values. For comparison, theoretical variogram values for the exponential model

(derived from autocorrelation model graphically shown in Fig. 2.10) are listed as

well, illustrating that this model with a sill also provides a good fit. For other

theoretical autocorrelation functions fitted to the Pulacayo zinc values, see

Sect. 6.2.1 and Chen et al. (2007).

Use of Matheron’s original variogram model resulted in multiple estimates of

β(h) for different lag distances (h) in Table 6.1. A better estimate is obtained by

using constrained least squares estimation as follows. The theoretical variogram

values in the second last column of Table 6.1 are based on a single estimate

(β¼ 0.0988) representing the slope of a line of best fit (Fig. 6.17) forced through

the point where f(θ)¼ 0 and h¼ 0. This additional point receives relatively strong

weight in the linear regression because it is distant from the cluster of the other ten

points used. The constraint can be used because, for decreasing h:

lim
h!0

f ϑð Þ ¼ � lim
h!0

ln
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ h2
p

( )
þ lim

h!0

2h

L
tan �1 L

h

	 

þ lim

h!0

hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ h2

p
( )

¼ 0

The new estimate of absolute dispersion A¼ β/6¼ 0.0165 not only produces

theoretical variogram values, which are nearly equal to the estimates based on the

logarithmically transformed zinc values, it also is nearly equal to α¼ 0.015 previ-

ously derived from the logarithmic variance in the previous section, confirming the

applicability of Matheron’s original method within a neighbourhood extending

from about 2 to 400 m.
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The preceding experiment illustrates (a) different variogram models applied to

the same data sets can produce similar estimates of extension variances; and

(b) extension variance estimates are too large if there is a “nugget effect” incor-

porating strong autocorrelation over very short distances. In the remainder of this

section it will be attempted to model this type of nugget effect by (a) extrapolation

from the original variogram values, (b) multifractal modeling, and (c) spectral

analysis. The Pulacayo zinc example will be re-analyzed. Because this series

is based on 118 values only, the estimated autocorrelation (or semivariogram)

values have limited precision as previously shown by Agterberg (1965, 1967).

For this reason, autocorrelation for a very large data set was studied as well.

It will be shown (Sect. 6.2.7) that there is a nugget effect in copper concentration

values from along the deep KTB borehole with short-distance extent that is similar

in consecutive series of 1,000, 1,000 and 796 values, respectively.

6.2.5 Extension Variance

Matheron’s geometrical approach can be used for several other purposes. Basic

geostatistical theory (Box 6.7) results in equations for the extension variance σ2E for

the uncertainty associated with using the element concentration value of a small

block as the concentration of a larger block that surrounds it. For example, in

Fig. 6.17 Straight line with equation y¼ 0.0988 · x fitted by constrained least squares to

10 variogram values taken from Matheron (1962). Horizontal axis is for f(θ). This line was forced
through the point with f(θ)¼ 0 and h¼ 0. Best-fitting line without this constraint has two

coefficients and is significantly different (Source: Agterberg 2012, Fig. 8)
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applications of multifractal modeling to the Pulacayo Mine (Cheng and Agterberg

1996; Chen et al. 2007; Lovejoy and Schertzer 2007), it is assumed that the

zinc concentration values can be converted into measures of amounts of zinc in

adjoining 2-m wide samples along a line parallel to the drift on the 446-level.

It implies that every zinc concentration value for a channel sample at a point along

this line is taken as representative for a width of 2 m. Associated uncertainty then is

given by the extension variance σ2E. Figure 6.18 shows that normalized extension

variance σ2E/3A depends on h/L. From our estimate A¼ 0.0165, it follows that

σ2E ¼ 0.0622 for h¼ 2 m wide samples that are L¼ 50 cm long. It probably signif-

icantly overestimates true value because absolute dispersion is less than 0.0165 over

very short distances due to the nugget effect (see later). If A< 0.0165, the normal-

ized extension variance is greater than σ2E ¼ 0.0622 as derived for the same value of

h/L from the curve in Fig. 6.18, that is for A¼ 0.0165.

Fig. 6.18 Relationship between normalized extension variance (σE
2) and h/L (Source: Agterberg

2012, Fig. 9)

Box 6.7: Geostatistics of Mean Block Values

Suppose that f(x) represents concentration of a chemical element at a point x,
which may be a 3-D vector (x1, x2, x3). The average m for any volume v is

m ¼ 1
v �

Z
v

f xð Þdx. Suppose M is an assemblage average for a large volume V,

then M ¼ 1
V �

Z
V

f xð Þdx ¼
X

mi where the mi are for smaller volumes vi. On

the basis of V and f(x) the intrinsic functions can be defined for the covariance

(continued)
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Matheron (1964) has shown that the average of n adjoining channel sample

concentration values has variance equal to σ 2
E/n. This is another important result:

In Chap. 11, average values with n equal to 3, 5, 7, and 9 will be used extensively.

The extension variance σ2E ¼ 0.0622 is for logarithmically transformed zinc con-

centration values. As discussed in Sect. 2.2, it can be assumed that the zinc values

(Xi with i¼ 1, . . ., 118) for the original channel samples systematically underes-

timate zinc values for the massive sulphide (Fig. 2.9). By setting σ2¼ σ2E and

μ (X)¼Xi, it is possible to estimate the variances σ2 (Xi) of the original zinc values.

These variances can then be used to calculate approximate 95 % confidence limits

for zinc concentration values of 1.3 m� 2 m plates formed by extending the 1.3 m

long channel samples by 1 m on both sides. Table 6.2 shows �1.96 σ(Xi) error bars

for 11 original zinc values and for averages of adjacent values for wider plates at the

same locations. These sets of overlapping plates, that are 20 m apart, were selected

for example so that both low and high zinc concentrations are represented. The error

bars in Table 6.2 for plates wider than 2 m are relatively narrow. Uncertainty is

greatest for the 1.3 m� 2 m plates but this is probably because α¼ 0.0165 is

underestimated over very short distances resulting in error bars that are too wide.

Box 6.7 (continued)

C( y) and semivariogram γ( y) as C yð Þ ¼ 1
V �

Z
V

f xð Þ �M½ � f xð Þ �M½ �dx

and γ yð Þ ¼ 1
2V �

Z
V

f xþ yð Þ � f xð Þ½ �2dx. The covariance of the averages

m1 and m2 for two volumes v1 and v2 can be determined as: σ m1;m2ð Þ ¼Z
V

m1 �M½ � m2 �M½ �dx ¼ 1

Vv1v2

Z
v1

dx1

Z
v2

dx2

Z
V

f xþ x1ð Þ �M½ � f xþ x2ð Þ �M½ �dx:
When y represents distance between all possible pairs of points, it follows

that : σ m1;m2ð Þ ¼ 1
v1v2

Z
v1

dx1

Z
v2

C yð Þdx2. When v1 and v2 coincide it reduces

to σ2 mð Þ ¼ 1
v2

Z
v

dx1

Z
v

C yð Þdx2 representing the variance of average con-

centration m for a block with volume v. By defining an auxiliary function

F mð Þ ¼ 1
v2

Z
v

dx1

Z
v

γ yð Þdx2 this variance can be rewritten as σ2(m)¼

F(M )�F(m). Definition of G m1;m2ð Þ ¼ 1
v1v2

Z
v1

dx1

Z
v2

γ yð Þdx2 results in

σ(m1,m2)¼F(M )�G(m1,m2). Using m1 of v1 to estimate m2 of v2 results

in the “extension” variance σ2E ¼ σ2(m1�m2) that can also be written as

σ2E ¼ σ2(m1)� 2σ(m1,m2) + σ2(m2) or σ2E ¼ 2G(m1,m2)�F(m1)�F(m2).
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The problem of overestimation of extension variances of average element

concentration values for small plates due to local strong autocorrelation was

previously considered by Matheron (1989, pp. 73–75) as follows. Ten professional

geostatisticians were provided with a set of variogram values with unit of lag

distance equal to 180 m. Independently the participants in this experiment were

asked to (a) fit a variogram, and (b) calculate the corresponding extension variance

for a square plate measuring 180 m on a side. Each variogram fitted by a participant

had a nugget effect, with, in addition, an exponential or (third-order polynomial)

“spherical” variogram curve. The corresponding average of ten estimated extension

variances was 0.4019� 0.0127 indicating excellent agreement between participants.

Next, the same ten people were provided with additional variogram values for shorter

unit lag distance interval of 20 m. Again they were asked (a) fit a variogram, and

(b) calculate the corresponding extension of the 180 m� 180 m square plate.

The variogram models used during the second stage of the experiment were “richer”

becoming either: nugget + spherical + spherical, or nugget + exponential + spherical,

or nugget + exponential + exponential. A few other answers were given as well.

The revised average extension variance became 0.3686� 0.0062. Clearly this revised

estimate of the extension variance is less than the first estimate and outside the 95 %

confidence of the first estimate. Similar results were obtained during a third stage of

this experiment using an even shorter unit lag distance. Although Matheron (1989)

did not report the equation of the model used to generate the variograms for longer lag

distances, this model obviously had no or very small nugget effect that is

overestimated by extrapolation toward the origin by means of the standard models.

It is noted that geostatisticians often use the spherical semivariogram with

γ(h)/σ2¼ 3 h/2a� (h/a)3/2 for 0� h< a where a is a constant called the range;

and γ(h)¼ σ2 for h	 a. This model also arises in the following situation. Suppose

that in 3-D two identical copies of a sphere with radius a and volume equal to

Table 6.2 Zinc concentration values (in %) with 95 % confidence intervals for thin plates in the

direction of the mining drift with channel samples at their centers

Plate size 1.3 m� 2 m 1.3 m� 6 m 1.3 m� 10 m 1.3 m� 14 m 1.3 m� 18 m

#10 24.1� 12.2 19.9� 5.6 19.4� 4.2 17.5� 3.2 17.0� 2.8

#20 15.1� 7.7 13.8� 3.9 14.0� 3.1 13.3� 2.4 13.2� 2.1

#30 9.5� 4.8 12.1� 3.4 15.2� 3.3 13.2� 2.4 14.7� 2.4

#40 10.6� 5.4 15.6� 4.4 17.0� 3.7 15.5� 2.9 14.2� 2.3

#50 27.4� 13.9 18.6� 5.3 17.4� 3.8 17.4� 3.2 17.2� 2.8

#60 4.7� 2.4 9.0� 2.5 8.7� 1.9 8.1� 1.5 9.0� 1.5

#70 9.7� 4.9 9.2� 2.6 10.5� 2.3 10.3� 1.9 10.2� 1.6

#80 10.6� 5.4 11.1� 3.2 10.8� 2.3 9.3� 1.7 9.6� 1.6

#90 30.8� 15.6 31.6� 9.0 30.8� 6.7 30.7� 5.7 29.2� 4.7

#100 22.6� 11.5 16.4� 4.6 18.6� 4.1 20.8� 3.8 21.4� 3.5

#110 7.9� 4.0 17.8� 5.0 17.2� 3.8 15.9� 2.9 14.6� 2.4

From Agterberg (2012, Table 2)

Results are shown for every 10th value in the original series of 118 values. Error bars for

1.3 m� 2 m are too wide because small-scale spatial correlations are not being considered
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1 initially coincide but one of the two spheres is shifted in the h direction. Then the
amount of overlap of overlap of the two spheres then decreases from its maximum

value (¼1) at zero shift to its minimum (¼0) at lag a. The cubic semivariogram

function describes 1 minus the amount of overlap. This spherical model often

provides a good fit and is relatively easy to use in geometrical extrapolations.

In situations of asymmetry as frequently occur in Nature; the sphere can be replaced

by an ellipsoid. The spherical-ellipsoidal model of diminishing autocorrelation

formalizes the idea of a probable influence cell (“prince”; Agterberg 1965)

according to which strong local spatial continuity diminishes with distance until

spatial variability becomes totally dominated by other, mainly deterministic,

genetic processes.

6.2.6 Short-Distance Nugget Effect Modeling

In Sect. 2.5.1, it was pointed out that there is uncertainty associated with the

definition of effective length L¼ 0.5 m of the channel samples in the Pulacayo

Mine. This is because these samples were taken across the entire width (¼1.30 m)

of drift whereas the Tajo vein has (horizontally measured) thickness of 0.50 m on

the 446-m level. This thickness value was used by Matheron and earlier in this

chapter as a best estimate of L. It has been shown that the choice of L¼ 0.5 results in

estimates of A that are satisfactory for lag distances greater than 2 m (up to 400 m).

For shorter lag distances, however, it is useful to generalize Matheron’s concept of

absolute dispersion by defining A(L), which depends on the value of L. Conse-
quently, A¼A(0.5) for the applications described in Sect. 6.2.1. Theoretically, the

method used to estimate β(0.5)¼ 6α(0.5) in Fig. 6.17 can be used to optimize our

choice of L. In Agterberg (2012, Fig. 10) estimates of A(L) are shown that would be
obtained for effective channel sample lengths less than 0.5 m. For L> 3 cm, A(L)
increases slightly from about 0.01 to 0.0165 at L¼ 0.5 m; for L< 0.03 m, there is

rapid decrease to A(L )¼ 0. Sums of squared deviations from lines of best fit for

different values of L. showed that the optimum solution (α(L )¼ 0.021) is obtained

at L¼ 13 cm (Agterberg 2012, Fig. 12). The de Wijsian variogram model that best

fits the 10 observed values of Table 6.1 is for linear samples that are not only

shorter than the channel samples on which zinc concentration was measured

(L¼ 1.3 m) but also shorter than the thickness of the Tajo vein (L¼ 0.5 m).

This result probably reflects small-scale clustering of the chalcopyrite crystals.

In Agterberg (2012) it was tentatively suggested that the very narrow optimum

effective vein width may reflect the fact that the Tajo vein was originally formed

along a fissure.

It should be kept in mind that the preceding conclusions remain subject to

uncertainty because of limited precision of the variogram values of Table 6.1.

Also, anisotropy may have played a role because zinc concentration value varia-

bility perpendicular to the Tajo vein could well differ from variability parallel to the

vein. However, the best explanation is that over short lag distances h (e.g. within the
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domain 0.003 m< h< 2 m) there exists a strong nugget effect that is not readily

detectable at distances of h	 2 m. At the microscopic level α would be expected to

increase rapidly again, because of measurement errors and the fact that the zinc

occurs in sphalerite crystals only (cf. Fig. 2.8). The crystal boundary effect may

have become negligibly small because channel sample length greatly exceeded

crystal dimensions.

The preceding considerations imply that the negative exponential autocor-

relation function previously used (see, e.g., Fig. 2.10) is too simple for short

distances (h< 2 m). The true pattern is probably close to that shown in Fig. 6.19,

which differs from the earlier model in that strong autocorrelation is assumed to

exist over very short distances. It is probably caused by clustering of ore crystals,

although at the microscopic scale there remains rapid decorrelation related to

measurement errors and crystal shapes. The model of Fig. 6.19 is an example of a

nested semi-exponential autocorrelation function as previously used by Matérn

(1981) and Serra (1966). The graph in Fig. 6.19a satisfies the equation:

ρ hð Þ ¼ c1e
�a1h þ c2e

�a2h

The coefficients in the first term are c1¼ 0.5157 and a1¼ 0.1892 as in Fig. 2.10.

The second term represents the strong autocorrelation due to clustering over very

short distances. The decorrelation at microscopic scale is represented by a small

white noise component (probably augmented with a random measurement error)

with variance equal to c0¼ 0.0208 as will be determined in Sect. 11.3.1. The

coefficient c2 in the second term on the right side satisfies c2¼ 1� c0� c1¼ 0.4635.

Because of lack of more detailed information on autocorrelation over very short

distances, it is difficult to choose a good value for the coefficient a2. Choosing
a2¼ 2 provides a good fit over the entire observed correlogram (Fig. 2.10). It affects

extrapolation toward the origin with h< 2 m only. Figure 6.19b shows that

the second term on the right side of the preceding equation cannot be detected

in the correlogram for sampling intervals greater than 2 m. Other types of

evidence for existence of strong autocorrelation over very short distances in the

Pulacayo orebody have already been discussed (e.g., Fig. 6.15) and will be

presented later. In the Sect. 11.6.3, a multifractal autocorrelation function will

be derived on the basis of self-similarity assumptions. It results in a curve that

resembles the curve in Fig. 6.19 (with a2¼ 2). For example, for lag distance equal

to 60 cm, the theoretical value according to Fig. 6.19a is 0.6, while the curve in

Sect. 11.6.3 yields 0.7.

Independent evidence that a model similar to the one shown in Fig. 6.19 also

applies to copper in theWhalesback deposit (see single exponential fit in Fig. 6.16a)

is as follows. Figure 6.16a represents an average correlogram based of 24 series of

channel samples taken at 8 ft. intervals perpendicular to drifts on various levels of

theWhalesback Mine. Agterberg (1966) had obtained separate results for a series of

111 channel samples along a single drift on the 425-ft. level of this mine. These 8-ft.

long channel samples had been divided into 4-ft. long halves that were separately

analyzed. The correlation coefficient for copper in the two halves amounted to 0.80
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and this is significantly larger than 0.56 predicted by the negative exponential curve

shown in Fig. 6.16a. Although this result is based on relatively few data and the two

half-samples were adjoining, it strongly suggests that autocorrelation close to the

origin is not adequately described by the curve shown in Fig. 6.16a.

Fig. 6.19 Hypothetical autocorrelation function consisting of two negative exponentials to

incorporate nugget effect over short lag distances h with h< 2 m. Autocorrelation function for

nugget effect is superimposed on negative exponential curve for distances h	 2 m. (a) Vertical

scale is linear; (b) Vertical scale is logarithmic (Source: Agterberg 2012, Fig. 12)
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6.2.7 Spectral Analysis: Pulacayo Mine Example

The normalized power spectrum corresponding to the nested design of Fig. 6.19 is:

P fð Þ ¼
X2
i¼1

1� ci þ ci=πf ci
1þ f=f cið Þ2

" #

where fci¼ ai/2π. A log-log plot of this spectrum is shown in Fig. 6.20 adopting the

coefficients previously used for the nested design plotted in Fig. 6.19. The curve in

Fig. 6.20 is approximately a straight line for lower frequencies but for high

frequencies there is a marked decrease of slope reflecting the nugget effect.

Fig. 6.20 Relative power spectrum for autocorrelation function of Fig. 6.19. Decrease in slope at

higher frequency side is caused by the superimposed nugget effect (Source: Agterberg 2012,

Fig. 24)

Box 6.8: Periodograms

If n is even and the origin is chosen in the center of a series yk (k¼ 1, 2, . . ., n), it

can bewritten as:yk ¼ a0 þ 2
P½n�1

i¼1 ai cos
2πik

n

� �
þ bi sin

2πik

n

� � �
þ a½n

cosπk; its amplitude and phase representation is: yk ¼ R0 þ 2
P½n�1

i¼1

�
Ri cos

2πik

n
þ φi

� �
þ R½ncosπk where Ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2i ;

q
φi ¼ arctan

bi
ai

� �
. Also:

(continued)
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Figure 6.21 shows the power spectrum E (Pi) estimated by averaging pairs of

consecutive values of the periodogram for the 118 zinc values together with a

quadratic curve fitted by least squares. A best-fitting straight line for the same

values results in β¼ 0.72, but by means of an F-test it can be shown that the

quadratic fit of Fig. 6.21 is significantly better than the linear fit (for level of

significance α¼ 0.01). The slope of the curve at the origin in Fig. 6.21 gives

β¼ 1.18 with gradually decrease to 0.49 at maximum log wave number on the

Box 6.8 (continued)

yk ¼
X½n�1

i¼½n
Si exp

2πIk

n

� �
; Si ¼ 1

n

X½n�1

i¼½n
yiexp � 2πIk

n

� �
where I2 ¼ 1. The

periodogram is a plot of Pi¼R2
i against i. Pi is distributed as χ2 with 2 degrees

of freedom (see e.g. Jenkins 1961). The average of q consecutive periodogram

values provides an estimate of the power spectrum E (Pi) that is distributed as χ
2

with approximately 2q degrees of freedom. This method to construct power

spectra commonly makes use of the Fast Fourier Transform (FFT) method

introduced by Cooley and Tukey (1965). The power spectrum of a continuous

series is: Pf¼ s2(x)
R 1

�1rh cos 2πfh dh where rh is the autocorrelation function.

For example, if rh¼ c � exp(�ajhj), P fð Þ ¼ 1� cð Þs2 xð Þ þ cs2 xð Þ=πf c
1þ f=f cð Þ2.

Fig. 6.21 Periodogram of 118 zinc values with quadratic curve fitted by least squares (Logarithms

base 10). The flattening of the curve toward higher frequencies is believed to be due to the nugget

effect (Source: Agterberg 2012, Fig. 25)
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right. A log-log plot of the two-point moving average of the periodogram of

Fig. 6.21 produces a pattern that is close to Lovejoy and Schertzer’s (2007,

Fig. 3b) spectrum for the de Wijs data. This topic will be discussed in more detail

later (Fig. 12.35). A straight line fit to the first 20 points of this two-point moving

average gives β¼ 1.03, which is close to β¼ 1.18 at the origin of Fig. 6.21 and close

to β
 1.12. A possible explanation is that spectral analysis confirms validity of the

Lovejoy-Schertzer universal multifractal model (Sect. 12.7) but with superimposed

noise that tends to flatten the spectrum at higher frequencies.

For comparison, the preceding method also was applied in Agterberg (2012) to a

sequence of 132 titanium concentration values from the Black Cargo titaniferous

magnetite deposit, Los Angeles County, California (Benson et al. 1962). This

sequence, previously analyzed in Agterberg (1965), is a composite of four

sub-sequences obtained from four different boreholes. All samples were 5 ft. in

length except for three 10 ft. samples at the subsequence meeting points. Mean and

standard deviation of the 132 numbers are 2.73 and 1.65 % TiO2, respectively.

The resulting periodogram (Agterberg 2012, Fig. 26) is similar to Fig. 6.21 in that

the best-fitting quadratic trend line has a slope that decreases toward higher

frequencies. At the origin (x¼ 0) its value is �1.088 and at maximum frequency

(x¼ 1.8195) the slope is �0.6186. Other results for this example also were similar

to those obtained for the 118 Pulacayo zinc values.

The curves in Figs. 6.20 and 6.21 indicate (1) the log-log plots of the three power

spectra are not straight lines but curves with slopes that decrease toward higher

frequencies; and (2) at their maximum frequency or highest position number the

curves are probably not horizontal indicating that the nugget effect is not white

noise with Dirac delta autocorrelation function. The sampling intervals of two data

sets used for example in this section are too wide to allow a better description of the

effect of the nugget effect on the power spectra.

6.2.8 KTB Copper Example

The second example of detection of nugget effect is for a long series consisting of

2,796 copper (XRF) concentration values for cutting samples taken at 2 m intervals

along the Main KTB borehole of the German Continental deep Drilling Program

(abbreviated to KTB). These data are in the public domain (citation: KTB, WG

Geochemistry). Depths of first and last cuttings used for this series are 8 and

5,596 m, respectively. Locally, in the database, results are reported for a 1-m

sampling interval; then, alternate copper values at the standard 2 m interval were

included in the series used for example. Most values are shown in Fig. 6.22 together

with a 101-point average representing consecutive 202-m long segments of drill-

core. The data set was divided into three series (1, 2 and 3) with 1,000, 1,000 and

796 values, respectively. Mean copper values for these three series are 37.8, 33.7

and 39.9 ppm Cu, and corresponding standard deviations are 20.3, 11.0 and

20.6 ppm Cu, respectively. Figure 6.23 shows correlograms of the three series.

Each series shows a nugget effect that, for series 2 and 3, is accompanied by a
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Fig. 6.22 Copper concentration (ppm) values from Main KTB bore-hole together with mean

values for 101 m long segments of drill-core. Locally, the original data deviate strongly from the

moving average (Source: Agterberg 2012, Fig. 15)

Fig. 6.23 Correlograms for three consecutive series of copper concentration values from Main

KTB bore-hole. Series 2 (for depths between 2 and 4 km) and Series 3 (for depths between 4 and

5.54 km) show similar autocorrelations that differ from autocorrelation function for Series 1

(for depths between 0.05 and 2 km) (Source: Agterberg 2012, Fig. 16)
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relatively steeply increasing curve near the origin. Because the autocorrelation

coefficients are logarithmically transformed, random fluctuations for near-zero

autocorrelation values are amplified. It is noted, however, that all three series

only had positive autocorrelations for the first 150 lag distances. Also, the patterns

for series 2 and 3 are strikingly similar.

It can be expected that series of element concentrations over a vertical distance

of about 5.5 km will exhibit deterministic trends reflecting systematic changes in

rock compositions. It is assumed here that these trends are largely captured by the

moving average curve of Fig. 6.22. Figure 6.24 shows autocorrelation coefficients

for the three series after subtracting the trend values from the original data. All

three series of deviations have autocorrelation functions that are approximately

negative exponential in shape over distances less than 10 m. Each can be regarded

as representing a nugget effect with equation ρh¼ c•exp(�ah). The slope

coefficients (a) of the three curves are nearly equal to one another (0.40, 0.38 and

0.41 for series 1, 2 and 3, respectively). The spatial extent of this nugget effect is

much less than the small scale binary lithology variation for the same borehole

discussed in the previous two sections. It is interesting that the parameter (a) that
determines the spatial extent of the nugget effect remains the same over a vertical

distance of nearly 6 km. The corresponding variance components (c) of the copper
nugget effect are 0.46, 0.82 and 0.81, indicating that the white noise component is

relatively strong for series 1.

Fig. 6.24 Correlograms (first five lag distances only) for three consecutive series of differences

between original copper concentration values and mean values shown in Fig. 6.22. Results are for

same series as used for Fig. 6.23. Best-fitting semi-exponentials were obtained by ordinary least

squares (Logarithms base 10). The slopes of the three best-fitting straight lines are nearly equal.

This indicates existence of nugget effect with same spatial extent along entire KTB borehole

(Source: Agterberg 2012, Fig. 17)
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Quantitative modeling of the nugget effect in KTB copper determinations has

yielded better results than could be obtained for our examples frommineral deposits

including the Pulacayo Mine. This is not only because the series of chemical

determinations is much longer but also because the nugget effect remains clearly

visible over lag distances between 2 m (¼ original sampling interval) and 10 m.

6.3 Autocorrelation of Discrete Data

In order to visualize theoretical autocorrelation of discrete data, the example of

random succession of lithologies in Sect. 2.2.5 can be considered again. For a point

in a specific state (e.g., shale), there is a fixed probability that the next point along

the section will be in the same state or that another state will occur. Suppose that

instead of using letters to indicate the states, presence of a given state is coded as +1

and its absence as �1. The result is a series of discrete data that can be plotted as in

Fig. 6.25. The main characteristic of this situation is that a transition from +1 to �1

or from �1 to +1 can occur any time with a probability that is independent of place

of occurrence along the series.

Assume that Fig. 6.25 represents a process that started at T¼�1. For any

discrete point k, the probabilities of being in state +1 or �1, are equal to constants

adding to one. For simplicity, it is assumed that P(Xk¼ 1)¼P(Xk¼�1)¼½.

Consequently, E(Xk)¼ 0. This series is stationary and has expectation equal to

zero. The autocovariance function satisfies: Γh¼E(Xk ·Xk+h). This is the sum of

two terms: (1) the probability that the number of changes in state is even during the

interval [k,k + 1] multiplied by +1; and (2) probability of an odd number of changes

multiplied by �1, or:

Γh ¼
P1

k¼0 P2k � P2kþ1ð Þ ¼ e�2λjhj where Pk ¼ e�λjhj λ hj jð Þk
k! denotes the Poisson-

type probability of having exactly k changes in an interval of length h. The
parameter λ can be interpreted as the number of changes (both from +1 to �1

and �1 to +1) expected per unit of time or distance along the axis when jhj ¼ 1.

The absolute value of lag h indicates that proceeding in the positive or negative

Fig. 6.25 Random

telegraph signal (After

Jenkins and Watts 1968).

Zero crossings between two

states +1 and �1 occur at

random along the line

(Source: Agterberg 1974,

Fig. 57)
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direction produces the same result. The autocorrelation function and the autocor-

relation are the same because Γ0¼ 1.

6.3.1 KTB Geophysical Data Example

The following geophysical example of spatial covariance modeling of velocity and

lithology logs provides another example of application of the model of Fig. 6.25.

An autocovariance function consisting of two superimposed negative exponentials

with different scaling constants originally was obtained by Goff and Holliger

(1999) for binary lithology values derived from velocity and lithology logs for

the main borehole of the German Continental deep Drilling Program (KTB).

In Fig. 6.19, a1¼ 0.1892 for larger scale variability and a2¼ 2 was assumed for

the nugget effect. In Goff and Holliger’s Fig. 7, a1¼ 0.001 for the “large scale” and

a2¼ 0.019 for the “small scale” model. The dimensionless ratio a2/a1 for KTB

binary lithology is 19 and somewhat greater than the ratio of 11 in Fig. 6.19.

Lithology in the main KTB borehole was determined at points that are 1 m apart

over a length of about 7 km. In general, significant pre-processing is required for the

analysis of long series of this type. Goff and Hollinger (1999) commenced this

process by plotting raw compressional velocity (Vp) averaged within more or less

homogeneous lithological sections against depth. A deterministic component

derived from this plot was extracted for the purpose of detrending followed by

conversion of the lithology log into a binary residual Vp profile for which the spatial

covariance in (km/s)2 was estimated. The two rock types retained in the binary plot

are mainly metabasite (Vp¼ +0.2 km/s) and mainly gneiss (Vp¼�0.2 km/s).

The von Kármán autocovariance model has been used extensively by geophys-

icists to characterize crustal heterogeneity properties not only for velocity log

properties (e.g., Wu and Aki 1985; Wu et al. 1994; Goff and Hollinger 1999,

2003) but also for geological maps of crustal exposures (e.g., Goff et al. 1994;

Goff and Levander 1996), seafloor morphology (Goff and Jordan 1988), and in field

simulations (Goff and Jennings 1999). This model was proposed by von Kármán

(1948) (but independently by Matérn, in 1948; cf. Box 6.6) and can be written as:

ρ hð Þ ¼ ahð ÞνKν ahð Þ
2ν�1Γ νð Þ

where ν is the Hurst number (cf., Mandelbrot 1983; Chemingui 2001; Klimeš

2002), and Kν is the modified Bessel function of order ν. Fitting of the

two-parameter von Kármán model to an estimated covariance function can be

performed using the inversion methodology of Goff and Jordan (1988). If ν¼ 0.5,

the preceding equation reduces to ρ(h)¼ exp(�ah). Goff and Hollinger’s (1999)

best von Kármán model fit for the KTB binary residual Vp profile has ν¼ 0.21 and

a¼ 0.00072. However, a better fit for the autocovariance of this series was obtained

by these authors using the nested semi-exponential design model with c0¼ 0,
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c1¼ 0.684, c2¼ 0.316, a1¼ 0.001 and a2¼ 0.019. The Hurst numbers for both

negative exponentials are equal to 0.5, more than twice the Hurst number of best

fit using the von Kármán equation.

Because the series considered in the preceding paragraphs is binary, it is possible

to interpret the scaling constants ai (i¼ 1, 2) along the lines presented at the

beginning of this section. Suppose the two binary states along the borehole

are written as +1 and �1. If the mean can be set equal to zero, the autocorrelation

ρ(h) is equal to the sum of the probability that number of state changes over the

interval h is even minus the sum of the probability that it is odd. If Pk represents

the Poisson-type probability that there exist k state changes over h:

ρ hð Þ ¼
X1
k¼0

P2k � P2k�1ð Þ ρ hð Þ ¼ e�2λh; Pk ¼ e�λh λhð Þk
k!

where λ is number of state changes per unit of distance. A similar result is obtained

when the mean is not equal to zero.

For the Goff-Hollinger KTB example, the fact that there are two separate negative

exponentials illustrates that, over short distances, there are rapid lithology changes or

a “nugget effect” for i¼ 2, but changes at larger scale are controlled by the other

negative exponential (i¼ 1) function. Thus alternation between mostly metabasite

and mostly felsic gneisses in KTB is subject to two separate random processes. The

alternation either has high or low frequency with probabilities controlled by the ci
(i¼ 1, 2) coefficients. This type of modeling only applies to the binary residual Vp

profile for KTB. For example, Marsan and Bean (1999, 2003) have demonstrated that

the KTB sonic log can be modeled using a multifractal approach. Also, Goff and

Hollinger (2003) have developed a generic model for the so-called 1/f nature of

seismic velocity fluctuations. In that paper, these authors modeled the autocovariance

function of KTB depth-detrended sonic log through the superposition of four von

Kármán autocovariances using negative exponentials with Hurst numbers ν¼ 0.5 for

large, medium, and intermediate scales but ν¼ 0.99 for the small scale.
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Heredia J, Moreno-Merino L, Durán JJ, Vargas-Guzmán JA (eds) Mathematics of planet earth.

Springer, Heidelberg, pp 57–60

Sichel HS (1966) The estimation of means and associated confidence limits for small samples from

lognormal populations. In: Proceedings of the symposium on mathematical statistics and

computer applications in ore valuation. South African Institute of Mining and Metallurgy,

Johannesburg, pp 106–122
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Chapter 7

2-D and 3-D Trend Analysis

Abstract One of the early applications of the general linear model is trend surface

analysis (Krumbein and Graybill, An introduction to statistical models in geology.

McGraw-Hill, New York, 1965). In the late 1960s, this technique was competing

with universal kriging originally developed by Huijbregts and Matheron (Can Inst

Min Metall 12:159–169, 1971). To-day, both techniques remain in use for describ-

ing spatial trends or “drifts” in variables with a mean that changes systematically in

two- or three-dimensional space. Simple moving averaging as practiced by Krige

(Two-dimensional weighted moving average trend surfaces for ore valuation. In:

Proceedings of the symposium on mathematical statistics and computer applica-

tions in ore valuation, Johannesburg, pp 13–38, 1966) or inverse distance weighting

methods can be equally effective when there are many observations.

Trend surface analysis was one of the first computer-based methods widely

applied in geophysics, stratigraphy and physical geography in the 1960s. Initially,

it was assumed that the residuals from a best-fitting trend surface should be indepen-

dent and normally distributed but Watson (J Int Assoc Math Geol 3:215–226, 1971)

clarified that polynomial trend surfaces are unbiased if the residuals satisfy a station-

ary random process model. Examples of 2-D trend surface analysis include variations

in mineral composition in the Mount Albert Peridotite Intrusion, eastern Quebec. A

3-D extension of the method applied to specific gravity data shows that, geometri-

cally, serpentinization of this peridotite body occurred along a northward dipping

inverted pyramid. 2-D and 3-D polynomial trends of copper in the Whalesback

Deposit, Newfoundland, illustrate how numbers of degrees of freedom are affected

by autocorrelation of residuals in statistical significance tests. A useful approach to

regional variability of variables subject to both deterministic regional trends and local

variability that can be characterized by stationary variability of residuals is to extract

the trend by polynomial-fitting and to subject the residuals from the trend to ordinary

kriging using 2-D autocorrelation functions. This approach is illustrated by applica-

tion to (1) depths of the top of the Arbuckle Formation in Kansas, (2) the bottom of

the Matinenda Formation in the Elliott Lake area, central Ontario, and (3) variability

of sulphur in coal, Harbour seam, Lingan Mine, Cape Breton, Nova Scotia. Use of

double Fourier series expansions instead of polynomials to describe regional trends is

F. Agterberg, Geomathematics: Theoretical Foundations, Applications
and Future Developments, Quantitative Geology and Geostatistics 18,
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illustrated on copper in exploratory drill-holes originally drilled from the surface into

the Whalesback deposit. Use of 2-D harmonic analysis is also illustrated by applica-

tion to density of gold and copper deposits in the Abitibi area on the Canadian Shield,

east-central Ontario. An advantage of using double Fourier series instead of ordinary

polynomials in trend surface analysis is that many geological features are to some

extent characterized by similarity of patterns along equidistant straight lines. Period-

icities of this type are accentuated by harmonic analysis.

Keywords Trend surface analysis • 2-D and 3-D polynomials • Kriging • Harmonic

trend analysis • Arbuckle formation • Mount Albert peridotite intrusion

• Whalesback copper deposit • Matinenda uranium deposits • Lingan mine sulphur

in coal • Harmonic trend analysis

7.1 2-D and 3-D Polynomial Trend Analysis

Trend analysis is a relatively simple technique that is useful when (1) the trend and the

residuals (observed values – trend values) can be interpreted from a spatial geoscience

point of view, and (2) the number of observations is not very large so that interpolations

and extrapolations must be based on relatively few data. In practical applications, care

should be taken not to rely too heavily on statistical significance tests to decide of

polynomial degree (analysis of variance) or on 95 % confidence belts that can be

calculated for trend surfaces. These statistical tests would produce exact results only if

the residuals are uncorrelated (Krumbein and Graybill 1965). If the residuals them-

selves show systematic patterns of variation, they are clearly not uncorrelated. Then the

test statistics would be severely biased.However, often the residuals can bemodeled as

a zero-mean, weakly stationary random variable. In that situation the trend surface

(or hypersurface in 3-D) is unbiased (Agterberg 1964; Watson 1971). Trend surfaces

are fitted to data by using the method of least squares that is also used in multiple

regression analysis. Consequently, it is also an application of the general linear model.

Suppose that the geographic co-ordinates of a point on a map are written as u and
v for the east-west and north-south directions, respectively (in 3-D applications, w is

added for the vertical direction). An observation at a point k can be written as Yk¼ Y
(uk, vk) to indicate that it represents a specific value assumed by the variable Y(u, v).
One canwrite: Yk¼ Tk+Rkwhere Tk¼ T(uk, vk) represents the trend andRk¼R(uk, vk)
the residual at point k. Tk is a specific value of the variable T(u, v) with: T(u, v)¼
b00 + b10u+ b01v+ b20u

2 + b11uv+ b02v
2 + . . .+ bpqu

pvq. In general, u and v form a

rectangular co-ordinate system. However, latitudes and longitudes also have been

used (Vistelius and Hurst 1964).

In specific applications, p+ q� rwhere r denotes the degree of the trend surface.
Depending on the value of r, a trend surface is called linear (r¼ 1), quadratic

(r¼ 2), cubic (r¼ 3), quartic (r¼ 4), or quintic (r¼ 5). Higher degree trend surfaces

also can be used. For example, Whitten (1970) employed octic (r¼ 8) surfaces.

Coons et al. (1967) fitted polynomial surfaces of the 13th degree. A trend surface of

degree r has m¼½(r + 1)(r + 2) coefficients bpq. These can only be estimated if the
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number of observation points (n) satisfies the condition n�m. If n¼m, a special

type of surface would be fitted with the property Tk¼ Yk and no residuals. In most

applications, n is several times larger than the number of coefficients (m).

7.1.1 Top of Arbuckle Formation Example

A typical example of trend surface analysis is shown in Fig. 7.1 (after Davis 1973).

Figure 7.1a gives the contours (in feet below sea level) of the top of Ordovician rocks

(Arbuckle Formation) in central Kansas. The linear trend surface is shown in Fig. 7.1b

and the corresponding residuals in Fig. 7.1c. The sum of the values Rk contoured in

Fig. 7.1c and the values Tk (Fig. 7.1b) gives the original pattern (Fig. 7.1a).
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Fig. 7.1 Top of Arbuckle Formation in central Kansas. Contours are in feet below sea level (After

Davis 1973). Geographic co-ordinates are in arbitrary units (area shown measures 320 km on a

side.) (a) Contour map of original data; (b) Linear trend surface; (c) Residuals from linear trend

surface (Source: Agterberg 1984, Fig. 1)
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Some problems of trend surface analysis can be illustrated by the fitting of curves

to data collected along a line. An example is shown in Fig. 7.2 (after Davis 1973). The

observations fall on a smooth curve which, however, is not a low-degree polynomial.

The magnitudes of the residuals decrease when the degree of the polynomial is

increased. This artificial example illustrates two important points:

1. A good fit is not necessarily the object of trend analysis. Instead of this, the aim

usually is to divide the data into a regional trend component and local residuals

which can be linked to separate spatial processes of regional and local signifi-

cance, respectively. Examples of interpretation of trends and residuals will be

given later in this chapter.

2. Each curve-fitting of Fig. 7.2 yields residuals that form a continuous curve.

Adjoining residuals along a line therefore are not statistically independent.

Instead of this, the residuals are spatially correlated.

Fig. 7.2 Concept of trend illustrated by means of two-dimensional graphs (After Davis 1973).

Value (vertical scale) is plotted against distance (horizontal scale). (a) Collection of original data

points and smooth curve on which they lie; (b) Straight-line trend fitted to the observations; (c)

Quadratic trend; (d) Cubic trend. Shadings represent positive and negative residuals from the

trends (Source: Agterberg 1984, Fig. 2)
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7.1.2 Mount Albert Peridotite Example

The Mount Albert intrusion is the largest ultramafic mass (approx. 44 km2) in the

Gaspé (Quebec) portion of the so-called Appalachian ultramafic belt. It is probably

530 my old. The intrusion was mapped and sampled in 1959 by C.H. Smith and

I.D. MacGregor, who made their data available to the author for performing trend

surface analysis (Agterberg 1964). The petrography of the body is relatively simple.

Prior to serpentinization, it consisted of from 80 to 90 % olivine, the remainder

being primarily orthopyroxene with some chrome spinel (up to 1 %) and diopsidic

clinopyroxene. It was attempted to collect rock specimens from the nodes of a

rectangular grid with 1,000 ft. spacing. The actual number of specimens that could

be collected was less because of overburden. The number of mineralogical deter-

minations was further reduced by serpentine alteration. The following four vari-

ables were determined for as many collected specimens as possible: (1) cell edge

d174 of olivine; (2) refraction index Nz of orthopyroxene; (3) unit cell dimension of

chrome spinel; and (4) specific gravity of the whole rock. The first two variables

were converted into percentage magnesium in olivine and orthopyroxene, respec-

tively, and the results reported as mol. percent forsterite (Mg-olivine, cf. Fig. 4.2)
and enstatite (Mg-orthopyroxene). Mineralogical and thermodynamic implications

of variations in the chrome spinel unit cell dimension were reviewed in MacGregor

and Smith (1963) and Agterberg (1974). The relationship between percent serpen-

tine and rock density in samples from the Mount Albert intrusion is approximately

linear. Serpentinization was a process that continued afterwards, when the ultra-

mafic body was already in place.

Trend surfaces for percentage forsterite in olivine, percentage enstatite in

orthopyroxene, and the chrome spinel cell edge are shown in Fig. 7.3. The trends

for these three variables are similar in that they show an elongated minimum at

approximately the same location. This phenomenon was called cryptic zoning by

MacGregor and Smith (1963). The trend pattern is most pronounced for percentage

enstatite in orthopyroxene. The percentage explained sum of squares satisfies

ESS¼ 39.2 % for the quadratic enstatite trend surface versus 6.3 and 16.0 % for

the quadratic olivine and chrome spinel trend surfaces, respectively. The origin of the

coordinate system with U pointing westward and V southward was set at a point

outside the study area. Unit of distance was 10,000 ft. Then, for example, the

quadratic equation of the surface shown in Fig. 7.3b is: %Mg¼ 79.116

+ 5.806u� 1.245v� 0.0496u2� 2.2289uv+ 1.9661v2. Geometrically, this surface is

a hyperbolic paraboloid. By using elementary methods of matrix algebra, it can be

shown that this is equivalent to %Mg¼ 88.46 + 2.4608u 0 2� 0.5443v 0 2 with the V0

pointing WSW and U0 NWN from the geometrical center of this quadratic surface.

The cubic trend surface for percentage enstatite in orthopyroxene suggests that

there occurs a %Mgmaximum in the southeastern corner of the intrusion. Whether or

not this peak is real can be evaluated experimentally in several ways: Fig. 7.4 shows

the 95% confidence belt on the entire cubic surface. The shape of this belt mirrors the

boundary of the intrusion because all observation points are contained within this
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boundary. It confirms the existence of the elongated ENE-WSW trending %Mg

minimum but not necessarily the maximum in the southeastern corner of the intru-

sion. As a further experiment, the original data set that consisted of 174 orthopyroxene

determinations was randomly divided into two interpenetrating subsets. The results of

trend surface analysis applied separately to these two subsets are shown in Fig. 7.5.

The difference between the two cubic trend surfaces in Fig. 7.5 is less than 1 %Mg in

most of the Mount Albert peridotite intrusion.

There were 359 observation points for specific gravity. The quadratic surface is

not adequate for representing the trend of this variable. Cubic (ESS¼ 39.9 %) and

quintic (ESS¼ 56.0 %) trend surfaces are shown in Fig. 7.6. The difference in

pattern between these two surfaces is caused mainly by the occurrence of a pocket

of practically unaltered peridotite in the eastern part of the body. The transition

from high-density to lower density material is relatively rapid and is poorly

approximated by the cubic.

A schematic contour map for elevation is given in Fig. 7.7a. A cross-section CD

was constructed and in Fig. 7.7b all observations within 2,500 ft. from the section

line were projected onto it. Then, average values for blocks measuring 5,000 ft. on a

side were calculated (Fig. 7.7e). These block averages almost exactly coincide with

the intersection of the quintic trend surface with the cross-section CD. This shows

that: (1) the quintic trend surface provides a good fit to the specific gravity trend;

and (2) a trend surface also can be obtained by the relatively simple method of

moving averages. The method of moving or running averages consists of calculat-

ing arithmetic averages for a large number of overlapping blocks and contouring the

results. Obviously, this method can only be applied when there are many observa-

tions. If few observations are available, trend-surface analysis is to be preferred.

Because as many as 359 data points were available for specific gravity, 3-D trend

analysis also can be attempted by incorporating the elevation of each observation

point. The 3-D cubic trend equation contains 19 explanatory variables (u, v, w, u2, uv,
uw, v2, uw, w2, u3, u2v, u2w, uv2, uvw, uw2, v3, v2w, vw2, and w3) and 20 coefficients.

Its ESS-value amount to 55.1 % which is close to the previously mentioned
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COMPLETE CUBIC SURFACE
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Fig. 7.4 Cubic trend surface for percent enstatite in orthopyroxene shown together with locations

of specimens and 95 % half-confidence interval (Source: Agterberg 1974, Fig. 43)
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ESS¼ 56.0 % for the quintic trend surface. Calculated values for the 3-D cubic along

the topographic surface are shown for the CD profile in Fig. 7.7e. Because all

observation points lie in the topographic surface, the elevation w could be approxi-

mated by a 2-D polynomial in u and v. Consequently, a 3-D trend f(u, v, w) becomes a

2-D trend g(u,v) if w, as contained in f(u, v, w), is replaced by its polynomial in u and
v. The reliability of the 3-D trend f(u, v, w) decreases rapidly outside the topographic
surface. Figure 7.7c, d show extrapolations of the 3-D cubic trend in the vertical

direction obtained by setting w equal to 2,000 and 3,000 ft., respectively. This, of

course, results in two ordinary cubic trend surfaces for specific gravity.

The results shown in Fig. 7.7c, d can be compared with the contour map for the

topographic surface (Fig. 7.7a). The following interpretation is suggested. In Mount

Albert, specific gravity is, by approximation, linearly related to volume percentage

serpentine. Thus, a low value indicates a soft rock relatively sensitive to erosion. Two

of the three rivers originating onMount Albert follow zones of weakness at the 3,000-

ft. level rather than at the 2,000-ft. level (Fig. 7.7). Further comparison with the

contour map for elevation suggests present-day topography was controlled by the

distribution of less weathering resistant rocks at higher levels. It can be concluded

that the pipe of maximum serpentinization moved northward as well as upward.

7.1.3 Whalesback Copper Mine Example

The Whalesback copper deposit near Springdale, Newfoundland, provides an

example of 2-D and 3-D trend analysis in a situation that the values are

autocorrelated (Fig. 6.15a) and have a frequency distribution that is positively

skewed with a long tail of large values. The orebody which has largely been

mined out consists of chloritic altered volcanics containing pyrite and chalcopyrite

mainly in disseminated form. However, these minerals also tend to cluster and form
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Fig. 7.6 Cubic and quintic trend surfaces for specific gravity data, Mount Albert Peridotite

intrusion. Dots denote locations of specimens (Source: Agterberg 1974, Fig. 45)
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Fig. 7.7 (a) Schematic contour map of Mount Albert Peridotite; elevations are in feet above

sealevel. (b) Variations in specific gravity along section CD (see a for location); all values within

2,500 ft. Source: section line were perpendicularly projected to it. (c) and (d). Cubic trend surfaces

for 300-ft. and 2,000-ft. levels obtained by contouring three-dimensional cubic hypersurface in

two horizontal planes. In most of the area, to-day’s topography resembles the 3,000-ft. pattern

more closely than the 2,000-ft. pattern. (e) Crosses represent averages fort values within blocks

measuring 5,000 ft. on a side (see b). Curve 1 is intersection of quintic trend surface (Fig. 7.6) with
CD; curve 2 represents variation along topographic surface (see a) according to three-dimensional

cubic hypersurface (Source: Agterberg 1974, Fig. 46)
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stringers, and occur in well-defined narrow veins with maximum width of 1.2 m.

The deposit coincides with a shear zone. It is about 400 m long at the surface.

Average width of the central copper zone which averages more than 1 % copper is

approximately 20 m, and vertical depth is 270 m. The copper zone is enveloped by a

rather strongly altered chlorite zone with 0.35 % Cu on the average. The plate-

shaped mineralized zone dips about 70� south-southwest. Before mining (by the

British Newfoundland Exploration Company) commenced in 1965, ore reserves

were estimated at four million short tons averaging 1.48 % copper.

Trend surface analysis (Agterberg 1974) was applied to copper concentration

values from the 425 ft. level that occurs 425 ft. below the surface. The core for

underground drill-holes, which were 50 ft. apart, was divided into pieces of 5 ft. length

and assay values (percentages copper) were determined from these. About 15 vol.% of

the rocks in the deposit consist of dikes that do not contain copper. This yields zero

assay values which were omitted from the data to be used for statistical analysis and

trends will be projected across the dikes. Therefore, if average grade values are to be

determined for larger blocks of ore, these values, after calculation, should be reduced

by 15 % for dilution caused by barren dikes. Of course, more precise corrections can

be made in places where the precise location of dikes is known.

Because trend surfaces are imprecise at the edges of clusters of observation

points, overlapping sets of six drill-holes, or cross-cuts which has been sampled in

the same manner, were used and quadratic and cubic trend surfaces S(u,v) were
fitted to logarithmically transformed copper values. The fitted values were

converted back to ordinary copper values by using the transformation T(u, v)¼
exp[S(u, v) + s2/2] where s2 is the residual variance for the S(u,v) surfaces. The

central part for each converted surface T(u,v) for a 150 ft. wide zone situated

between the second and fifth hole in each situation, is shown in the mosaics of

Figs. 7.8 and 7.9. This transformation is equivalent to the one applied to lognor-

mally distributed data (Sect. 3.3) and assumes that at any location the copper values

are lognormally distributed with mean T(u,v) and logarithmic variance s2.
Autocorrelation of residuals affects the results of trend surface analysis. This

topic will be discussed in more detail in the next section. Here it can be assumed

that the autocorrelation function of the residuals is approximately as shown in

Fig. 6.15a which is an average correlogram based on 24 separate correlograms

for series of logarithmically transformed copper values (8 ft. apart) along drifts at

various levels of the mine that were approximately within the mineralized zone.

Watson (1971) has shown that if the residuals satisfy a weakly stationary process

with an autocorrelation function that is independent of geographic location, then the

best fitting trend surfaces are unbiased (cf. Cressie 1991, p. 164). However, analysis
of variance to help decide on the optimum degree of a trend surface then are not

applicable because a set of n autocorrelated data does not contain the same amount

of information as n uncorrelated (iid) data. Some authors including Matalas (1963)

have developed methods to determine n0 representing a hypothetical sample of

uncorrelated (iid) values containing the same amount of information as

n autocorrelated data (see Box 7.1). It is usually assumed that the underlying

autocorrelation function is exponential. The topic is fraught with difficulties and,
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in general, scientists active in spatial statistics do not make use of “degrees of

freedom” as are required in statistical analysis based on iid data.

However, Agterberg (1966) argued as follows: Any F-ratio is the ration of two

variances for independent random variables. The sum of squares of n0 independent
data would be distributed according to σ2χ2(n0) with n0 degrees of freedom. In the

situation of redundancy due to autocorrelation, one would obtain n/n0 σ2χ2(n0).
Suppose that the sum of squares due to regression is not seriously affected by the

redundancy. This suggests that the F-ratios should be multiplied by n/n0 in order to

compensate for the redundancy. The number of degrees of freedom for the denom-

inator also should be corrected by this factor. Application of this correction to

comparison of the cubic surfaces (Fig. 7.9) with the quadratic surfaces shown in

Fig. 7.8 resulted in the modified analysis of variance shown in Table 7.1. Contrary

to what would be suggested if independence of residuals would be assumed, the

results in Table 7.1 suggest that the step from quadratic to cubic fit should not be

made except perhaps for holes 7–12 where the corrected F-ratio is significant at the
99-% level. The area of Figs. 7.8 (quadratics) and 7.9 (cubics) is situated between

Table 7.1 Comparison of quadratic and cubic trend surfaces for four sets of six bore-holes at

425-ft. level; logarithmically transformed data

Source of

variation

Sum of

squares

Degrees of

freedom F̂ � ratio
Corrected

df

Corrected

F̂

Confidence

limits

95 % 99 %

Holes 1–6 Complete

quadratic

100.68 6 16.4 6 5.5 2.3 3.2

Residuals 175.01 170 57

Total 275.69 176

Cubic minus

quadratic

21.39 4 5.8 4 1.9 2.6 3.7

Holes

7–12

Complete

quadratic

100.46 6 14.5 6 4.8 2.3 3.2

Residuals 163.76 148 49

Total 264.21 154

Cubic minus

quadratic

41.82 4 11.8 4 3.9 2.6 3.8

Holes

13–18

Complete

quadratic

119.89 6 20.0 6 6.7 2.2 3.1

Residuals 206.71 198 66

Total 326.60 204

Cubic minus

quadratic

16.88 4 4.3 4 1.4 2.5 3.6

Holes

19–24

Complete

quadratic

74.88 6 10.2 6 3.4 2.3 3.2

Residuals 196.52 159 53

Total 271.40 165

Cubic minus

quadratic

14.29 4 3.1 4 1.0 2.6 3.7

Source: Agterberg (1974, Table XXV)
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hole 2 to the west and hole 17 to the east. The difference between these two mosaics

is greatest in the central part (between 14,250E and 14,400E) computed from holes

7–12 (between 14,200E and 14, 450E).

It is noted that the analysis of variance results shown in Table 7.1 differ from

those shown in the original table of Agterberg (1966, Table 4) that was based on the

same data with one exception. The original table shows separate estimates of the

first serial correlation coefficient (r1) for each set of holes. These estimates vary

from 0.24 to 0.70 and F-ratios corrected using n0 based on these original estimates

of r1. Later (in Agterberg 1974), it was decided to use the same estimate (r1¼ 0.50)

based on the correlogram of Fig. 6.15a for each set of holes. This single estimate is

probably more precise than the single smaller- sample estimates, because it is an

average for 24 drifts on different levels of the Whalesback Mine including those on

the 425-ft. level. This revision does not significantly change the original conclu-

sions drawn in Agterberg (1966).

Much information on the spatial distribution of copper in the Whalesback

deposit is for points outside subhorizontal levels such as the 425-ft. level used for

example earlier in this section. As an experiment, a 3-D analysis was performed on

all copper values for samples taken within a relatively small block extending from

the surface to the 425-ft. level and situated between the 14,000E and 14,500E

sections. In total, 516 values from both core samples and channel samples along

drifts were used. Figure 7.10a shows a histogram of the 516 logarithmically

transformed copper values. It is clearly bi-modal. 3-D trend analysis gave the

following ESS-values: linear 18.0 %, quadratic 32.8 % and cubic 43.3 %. The

logarithmic variance of original data is 1.865. 3-D trend analysis reduced this

variance as follows: linear residuals 1.531, quadratic residuals 1.2070, and cubic

residuals 1.093. In Agterberg (1968) it is discussed in more detail that the cubic fit is

better than the quadratic fit in this example. A chi-square test for goodness of fit was

applied to test the cubic residuals (Fig. 7.10b) for normality. It gave an estimated

chi-square of 17.3 for 17 degrees of freedom, well below the 27.6 representing the

Box 7.1: Degrees of Freedom for Autocorrelated Data

The variance of the mean of n autocorrelated data from a series with the first

order Markov property satisfies: var X
� � ¼ n�2

Pn
i¼1

Pn
j¼1 cov Xi;Xj

� � ¼ σ2

1þ 2 ρ
1�ρ 1� n�1ð Þ � ρ

1�ρ 1� ρn�1ð Þ=n
n oh i

=nwhere ρ is the autocorrelation

coefficient for adjoining values (cf. Cressie 1991, p. 14). Suppose an equiv-

alent number of independent data (n0) is defined as var X
� � ¼ σ2=n

0
. For

n> 10, the preceding equation then gives approximately n/n0 ¼ 1 + 2r1[n/
(1� r1)� 1/(1� r1)

2]/n (cf. Agterberg 1974, p. 302). For large n this gives

approximately n0 ¼ n(1� r1)/(1 + r1) illustrating that autocorrelation strongly

affects statistical inference even in large samples (also see Sect. 2.1).
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95-% confidence level. Consequently, it can be assumed that the cubic residuals of

the log-transformed copper values are indeed normally distributed.

A final example of 3-D trend analysis is for 335 Whalesback copper values from

20 holes drilled from the surface during an early stage of development of the

orebody. They are for an 800 ft. wide zone between 14,100 E and 14,900 E

which is 625 ft. deep. Figure 7.11 shows contours from the exponential cubic

hypersurface for copper on two levels together with an outline of the orebody

based on later information. Residuals for this hypersurface were shown in

Fig. 7.10b. Although the position of the central plane of maximum mineralization

in Fig. 7.11 is in close agreement with the outline of the orebody better results could

be obtained from the development holes drilled from the surface by using harmonic

trend analysis of the copper data as will be discussed in Sect. 7.4.2.

7.2 Kriging and Polynomial Trend Surfaces

During the late 1960s, there was a considerable amount of discussion among earth

scientists and geostatisticians regarding the question of which technique is better:

trend surface analysis or kriging (see, e.g., Matheron 1967)? The technique of

kriging (named after the South African geostatistician Danie G. Krige who first

applied regression-type techniques for gold occurrence prediction) is based on the

assumption of a homogeneous spatial autocorrelation function. If such a function

can be established independently, it can be used to solve the type of problem

exemplified in Fig. 7.12. Within a neighborhood, values of a variable are known
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Fig. 7.10 (a) Histogram of natural logs of 516 copper values; (b) ditto for residuals from cubic

hypersurface; this curve is approximately Gaussian (Source: Agterberg 1974, Fig. 51)
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at n¼ 5 points (P1–P5). These five values are to be used to estimate values at any

other point in the neighborhood; e.g., at P0 in Fig. 7.12. Suppose, firstly, that the five

known values are corrected for a hypothetical mean value, which may be a constant

estimated as the average of all values in a larger neighborhood. Then application of

the general linear model provides estimates of the coefficients (usually called

“weights”) to be assigned to the n (¼5 in Fig. 7.12) known values. The weights

can written as a column vectorWwith solutionW¼R1
�1R0whereR1 is an (n� n)

matrix consisting of the autocorrelation coefficients for all possible pairs of the

n known points in the neighborhood, and R0 is a column vector of the autocorre-

lation coefficients for distances between the locations of the n known values and the
point at which the kriging value is to be estimated. In a slightly different version of

this simple kriging technique, it is required that the sum of the weights to be

assigned to the known values is unity. This constraint can be incorporated by

using a Lagrangian multiplier (Sect. 7.2.3). A useful generalization of simple

kriging is to correct all values for a trend value instead of for a constant regional

mean. The final estimated value at a point P0 with arbitrary coordinates then is the

sum of the trend value at P0 and the positive or negative value resulting from the

simple kriging.

Fig. 7.11 Contours from exponential cubic hypersurface based on copper data from 20 explor-

atory holes drilled downward from the topographic surface. Outline of orebody is approximately

1 % copper contour based on later underground information (Source: Agterberg 1968, Fig. 6)
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7.2.1 Top of Arbuckle Formation Example

As a contribution to the discussion of which technique is better: trend surface

analysis or kriging, Agterberg (1970) performed the following experiment. A set

of 200 elevation data for the top of the Arbuckle Formation in Kansas (Fig. 7.13)

was randomly divided into three samples: two “control” samples (No. 1 and No. 2)

each consisting of 75 data and a test sample (No. 3) of 50 data. Three different

techniques were applied to samples No. 1 and No. 2 and the results used to make

predictions of the elevations at the top of the Arbuckle Formation at the 50 points of

sample No. 3. These three techniques were: (1) Trend surface analysis; (2) Kriging,

and (3) Trend surface analysis plus kriging of residuals. Linear, quadratic, cubic

and quartic trend surfaces were fitted to the entire data set and the two smaller

control samples. Details of how 2-D autocorrelation functions were constructed for

kriging applied to residuals from these surfaces are given in Agterberg (1970).

Estimates of 2-D autocorrelation functions based on residuals from the linear,

quadratic, and cubic surfaces fitted to the entire data set are shown in Fig. 7.14.

Results of the experiments involving the subsamples are given in Tables 7.2 and

7.3. Analysis of variance to decide on the best trend surface cannot be used because the

residuals from the surfaces are autocorrelated. From the results shown in Table 7.2 it

can be concluded that the quadratic, cubic and quartic fits perform equally well. Note

the drop in percentage explained sum of squares fromquadratic (74%) to cubic (60%)

for predictions made by control sample 1. Table 7.3 contains results for sample 3 on

the basis of the control samples after subjecting the deviations from the fitted surfaces

to kriging. Kriging on its own, without trend surface analysis, is about as good as the

fitting of a quadratic trend surface. Because there are strong trends in the data,

universal kriging (of. Huijbregts and Matheron 1971) is preferable to simple or

ordinary kriging. Kriging of residuals improves the overall degree of fit in all

experiments.

P4

P3

P2
P0

P1

P5

Fig. 7.12 Typical kriging

interpolation problem;

values are known at five

points. Problem is to

estimate value at point P0
from values at points P1–P5
(Source: Agterberg 1974,

Fig. 64)
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The preceding experiments have been discussed in publications by statisticians

including those by Tukey (1970), Haining (1987) and Cressie (1991). In the 1950s

and 1960s, most earth scientists took a trend surface approach to their mapping

problems but later the extra advantages in taking a random-field approach (i.e.,

universal kriging) became clearly established. As pointed out by Cressie (1991,

p. 164) it can be said that comparison of results with or without the random-field

approach is easy because the trend-surface model is a special case of a random field

model. Consequently, when the spatial-covariance structure is known, universal

kriging generally gives more precise predictions than trend-surface analysis,

because universal kriging chooses optimal weights to be applied to the data.

However, as Watson (1971) has shown it is possible for trend-surface prediction

to be just as precise as universal kriging even when the residuals do not satisfy a

pure white noise model as would be required for analysis-of-variance applications

to decide on optimal degree. Cressie also points out that, in practice, there is a price

to pay for using universal kriging because: “One must obtain (efficient) estimators

of variogram parameters, whose effects on mean-squared prediction errors should

be assessed.” The following two sections contain further examples of universal

kriging. The objective of the modeling will be to separate the spatial variability into

three components: (1) regional trend; (2) localized “signals” based on the assump-

tion that the residuals from the regional trends are weakly stationary and possess the

same regional autocorrelation fun; and (3) strictly local white noise.

Fig. 7.13 Location of 200 wells in Kansas. Good (1964) fitted trend surfaces to elevation on top of

Arbuckle Group for points. (Linear trend surface was shown in Fig. 7.1.) Observations have been

randomly divided into three samples. Solid circles are for control sample 1; open circles for control
sample 2; triangles for sample 3. Smaller circle represents area for estimating autocorrelation

function used for kriging (Source: Agterberg 1970, Fig. 2)
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Fig. 7.14 Autocorrelation functions for Arbuckle elevations at locations shown in Fig. 7.13.

(a) Original data; (b) residuals from quadratic trend surface; (c) residuals from cubic trend surface.

About half of the estimated autocorrelation coefficients are based on samples of more and less than

100 pairs of values, respectively (Source: Agterberg 1970, Fig. 4)
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Fig. 7.14 (continued)

Table 7.3 Values of sample 3 predicted by kriging on deviations from mean and residuals

No. kriging Mean Linear Quadratic Cubic Quartic

Sum of squares 1 0.46 0.11 0.21 0.09 0.14 0.09

2 0.40 0.19 0.16 0.08 0.07 0.09

Percentage ESS 1 0.0 76.7 53.5 80.9 68.9 81.3

2 0.0 53.6 61.4 79.5 82.6 78.3

Ditto for residuals (Table 3) 1 33.3 27.0 21.4 20.4

2 41.4 34.6 31.1 20.0

Source: Agterberg (1970, Table 5)

Table 7.2 Values of sample 3 as predicted by trend surfaces for the two control sample results

Mean Linear Quadratic Cubic Quartic

Sum of squares 1 0.46 0.32 0.12 0.18 0.11

2 0.40 0.27 0.13 0.10 0.11

Percentage ESS 1 0.0 30.2 73.8 60.3 76.5

2 0.0 34.2 68.5 74.6 72.6

Source: Agterberg (1970, Tables 1 and 3)

Unit for sum of squares is 108
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7.2.2 Matinenda Formation Example

In the Elliot Lake area (Fig. 7.15), the Archean rocks of the Canadian Shield are

unconformably overlain by Proterozoic rocks which have been subjected to folding.

This yielded the Quirke Syncline (trough-shaped fold) of which the axial plane is

shown as the trace in Fig. 7.15. The bottom of the Matinenda Formation which

contains uraniferous conglomerates coincides with the top of the Archean basement

except in some places where it is separated from it by a sequence of earlier

Proterozoic volcanic rocks of variable thickness. Locations of boreholes are given

in Fig. 7.15 where the squares indicate boreholes in which significant uranium

mineralization was encountered and the triangles represent other boreholes. The

bottom of the Matinenda Formation in feet above or below sealevel was available

for all boreholes of Fig. 7.15. Quadratic trend surfaces were fitted to these data from

overlapping clusters of observation points (Fig. 7.16). Figure 7.17 shows the sum of

this trend and the signal that was already shown in Fig. 7.15.

Robertson (1966) had attempted to reconstruct the topography of the top of the

Archean basement as it was before the later structural deformation. He assumed that

the Matinenda Formation was deposited in topographical depressions in the top of

the basement. This geological model provides a good reason for application of the

trend + signal + noise model introduced in the previous section. Ideally, the trend in

this model would represent the structural deformation and the signal would repre-

sent the original topographical surface on which the Matinenda Formation was

deposited. Thus, it would be meaningful to extract the signal from the data by

elimination of (1) the trend, and (2) the noise representing irregular local variability

which is unpredictable on the scale at which the sampling (by drilling) was carried

out. Although the concepts of “trend” (captured by a deterministic polynomial

Fig. 7.15 “Signal” for bottom of Matinenda Formation, Elliott Lake area, Ontario, obtained by

contouring kriging values (in feet) computed at points with 1 km-spacing. Archaean basement

rocks are shown by pattern. Trace of axial plane of Quirke Syncline is shown also. Squares and
triangles represent locations of drill-holes with and without significant mineralization, respec-

tively. Universal Transverse Mercator grid locations of corner points of map area are shown in km

(Source: Agterberg 1984, Fig. 7)
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equation), “signal” (characterized by a homogeneous autocorrelation function), and

stochastically independent “noise” have different statistical connotations, the dif-

ferences between the features they represent usually are less distinct. It will be seen

that some of the signal in the present example represents structural deformation. It

also is known that these concepts depend on the sampling density. In general, if

more measurements are performed, some of the signal becomes trend and some of

the noise becomes signal.

Although it can be assumed that the major uranium-producing conglomerates in

the Elliot Lake area were deposited in channels, the geometrical pattern of the

channels remains a subject of speculation, at least in places removed from the

mining areas. Bain (1960) assumed a single “uraniferous river channel” (see also

Stanton 1972, Figs. 12–16) winding its way through the basin so that it fits the

approximately NW trending channels at the Quirke, Nordic and Pronto mineralized

Fig. 7.16 Contours (in feet above sealevel) of parts of eight quadratic trend surfaces fitted to

bottom of Matinenda Formation, Elliot Lake area (Source: Agterberg 1984, Fig. 8)

Fig. 7.17 Sum of trend (see Fig. 7.16) and signal (see Fig. 7.15) for bottom of Matinenda

Formation. Note strong resemblance between patterns of Figs. 7.16 and 7.17 illustrating that the

fluctuations (signal) contoured in Fig. 7.15 have relatively small magnitudes (Source: Agterberg

1984, Fig. 9)
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zones. On the other hand, Derry (1960) assumed separate, subparallel channels. It

will be seen that the results obtained by our trend + signal + noise model fit in with

Derry’s hypothesis and not with Bain’s hypothesis.

The following procedure was followed to obtain a 2-D autocorrelation function for

residuals from the trend shown in Fig. 7.17. By using polar coordinates, distances

between pairs of boreholes were grouped according to (1) distance (1-km spacing) and

(2) direction of connecting line (45� wide segments). This gave domains of different

sizes. The autocorrelation coefficients for pairs of values grouped according to this

method are shown in Fig. 7.18. These values were assigned to the centers of gravity of

their domains. A 2-D quadratic exponential (Gaussian) function with superimposed

noise component (nugget effect) was fitted by trend surface analysis of logarithmically

positive autocorrelation coefficients obtained from the grouped data. Both the input

pattern of autocorrelation coefficients and the fitted function are symmetrical with

respect to the origin where the observed autocorrelation coefficient is equal to

1 because it includes the noise component. A profile through the origin across the

quadratic trend surface fitted to logarithmically transformed autocorrelation function

is a parabola with its maximum at the origin. Each parabola becomes a Gaussian curve

when the antilog is taken. Four profiles across the fitted function are shown in

Fig. 7.18. The maximum of the fitted function fell at 0.325 indicating that only

32½% of the variance of the residuals is explained by the signal versus 67½% by

Fig. 7.18 Autocorrelation coefficients computed for residuals. Source: quadratic trend surfaces

(see text for method used) computed with profiles (broken lines) across theoretical

two-dimensional model used for kriging (Source: Agterberg 1984, Fig. 10)
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the noise. The function has elliptical contours which are elongated in approximately

the NW-SE direction. This directional anisotropy would indicate that the actual

topography features (channels?) which constitute the signal are elongated in the

NW-SE direction.

The signal was extracted from the residuals by using the theoretical autocorrelation

function. The kriging method was used to estimate the values of the signal at the

intersection points of a grid (UTM grid) with 1-km spacing. Every kriging value was

estimated from all observations falling within the ellipse described by the 0.01 contour

of the theoreticalGaussian autocorrelation function. This ellipse is approximately 13 km

long and about 7 km wide. The estimated kriging values on the 1-km grid defined a

relatively smooth pattern which was contoured yielding the pattern of Fig. 7.15.

The pattern of Fig. 7.15 shows a number of minima and maxima. The amplitudes

of these fluctuations are very small in comparison with the variations described by the

trend (Fig. 7.16) as can be seen in Fig. 7.17 representing the sum of trend and signal.

Ideally, the signal would correspond to small depressions and uplifts in the Archean

basement, as it seems to do in most of the southern part of the area. However, other

features of the estimated signal can be interpreted as belonging to the later structural

deformation pattern. The lack of a clearly developed negative at Quirke Lake in the

northern part of the area where significant uranium mineralization occurs may be

caused by the fact that the channel direction is approximately parallel to the structural

trend in this part of the area. This would make it hard and perhaps impossible to

discriminate between the two patterns by means of the present statistical model.

7.2.3 Sulphur in Coal: Lingan Mine Example

The Lingan Mine was located in the Sydney coalfield on Cape Breton Island in Nova

Scotia. All seams in this coalfield belong to theMorien Group that is about 2 km thick

and Pennsylvanian in age. The strata of the Morien Group dip eastward, usually

between 4� and 20�. When production of coal from the Lingan Mine commenced in

1972, there was great interest in prediction of the sulphur content of the 1.5–2 m thick

Harbour and Phalen seams from which about two million tons of coal was to be

extracted annually. From mined-out areas close to the shoreline, these two seams

were known to contain less sulphur than other seams. Figure 7.19 shows the study

area. Lingan Mine reserves consisted of (1) a 4-km wide zone between two worked

areas (No. 12 and No. 26 Collieries on the Harbour seam); and (2) an east-west zone,

more than 16 km wide, extending from the initial area and adjacent worked areas

toward the 4,000 ft. depth (below sea level) of the seams. The area that was to be

mined could not be sampled beforehand because it was too far offshore.

In general, Caper Breton seams have relatively high sulphur content with pyrite

as the main sulphide-bearer. However, a large part of the Harbour seam in the

No. 26 Colliery averages about 1 % sulphur, yielding a high-grade metallurgical

coal. It was planned that much of the future output of the Lingan Mine would be

sold by the Cape Breton Development Corporation (DEVCO) as a metallurgical

coal. Coal with a sulphur content of up to 2 % could be desulphurized at the Lingan
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Mine site by using the compound water cyclone (Walsh et al. 1969). By the end of

the last century, nearly all coal mining had been discontinued on Cape Breton

Island. This included closure of the Lingan Mine.

Two statistical methods were used for offshore prediction (Agterberg and Chung

1973). Results for (2,000 ft.� 2,000 ft.) blocks in the Harbour Seam are shown in

Figs. 7.20 and 7.21. Model 1 is based on kriging and Model 2 on universal kriging.

Details of the underlying mathematics and the computer algorithms used are given

in Agterberg and Chung (1973). Kriging (Model 1) was not based on the arithmetic

mean but on the Best Linear Unbiased Estimator (BLUE) which is efficient and,

theoretically, gives slightly better results than the arithmetic mean that is unbiased

only. It involves using a Lagrangian multiplier. The autocorrelation function used

for Fig. 7.20 is shown in Fig. 7.22. The BLUE for the universal kriging (Model 2)

application could not be estimated but was approximated by an asymptotically

efficient estimator. Use was made of exponential trends similar to those used in

Fig. 7.20 Predicted sulphur variation (in percent) for (2,000 ft.� 2,000 ft.) cells (Model 1),

Harbour seam, Lingan Mine area. Top diagram: average values in worked areas and predicted

values in target areas. Bottom diagram: standard deviations on predicted values in target areas.

Contours at regular 0.25 % intervals in A are used for pattern enhancement (Source: Agterberg and

Chung 1973, Fig. 2)
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Sect. 7.1.3. The quadratic exponential trend surface for the Harbour Seam is shown

in Fig. 7.23. Next the kriging method of Model 1 was applied to the residuals to

complete the computations required for Model 2. For the autocorrelation function

for residuals from the surface of Fig. 7.23, see Agterberg and Chung (1973).

The basic concepts behind the two models are illustrated by a hypothetical

example in Fig. 7.24. Extrapolations by Model 1 are based on known data at points

in the immediate vicinity. Every predicted value (crosses) in Fig. 7.20 is based on

all known values (dots) within a circle of 9,000 ft. radius, unless there occur ten or

more values within a smaller circle of 7,000 ft. radius; then, the smaller circle was

used. The mean of the known data is used for prediction in the unknown area. This

is called the (kriging) mean in Fig. 7.24. Separate values for blocks anywhere in the

unknown area are estimated next. Uncertainty increases with distance from the

worked area, and the predicted values converge to the kriging mean which provides

the best estimate when the distance is great. In the more immediate area, close to the

shoreline, the estimates are more precise than this mean value.

A basic assumption for Model 1 is that the mean value remains constant. It is

known, however, that average sulphur content of Cape Breton coal, even for a

Fig. 7.21 Same as Fig. 7.20 using Model 2. It is assumed that the trend is according to pattern

shown in Fig. 7.23 and that residuals from this trend are autocorrelated according to pattern shown

in Fig. 7.22 (Source: Agterberg and Chung 1973, Fig. 3)
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Fig. 7.22 Two-dimensional autocorrelation function estimated from residuals from quadratic

exponential trend surface shown in Fig. 7.23 (Source: Agterberg and Chung 1973, Fig. 8)
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2 (Source: Agterberg and Chung 1973, Fig. 7)
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single seam, changes from colliery to colliery and within the same colliery. Model

2 first attempts to capture this gradual change by means of trend surface analysis.

The trend replaces the constant mean (Fig. 7.24, top). Next kriging was applied to

the residuals. Again, uncertainty increases with distance into the unknown area but

the predicted values converge toward the trend instead of to a constant mean. To

some extent, predictions by the two models can be tested against reality. A simple

test is illustrated in Fig. 7.24 (bottom). The five westernmost values in the rows of

numbers for known sulphur content printed in Figs. 7.20 and 7.21 were averaged to

give mean values for rectangular (2,000 ft.� 10,000 ft.) blocks of coal located

between the W2,000 ft. and W12,000 ft. grid-lines. They represent averages of

known data in the area south of the N18,000 ft. line and predictions to the north of

this line. Models 1 and 2 yield different results: the known data in this part of the

Harbour seam show a rather abrupt decrease in sulphur content near the northern

edge of the worked area (between N15,000 and N17,000 ft.). This relatively

low sulphur content area influences the results of Model 1 more strongly than

those of Model 2. As an experiment, all known data north of N14,000 ft. were

omitted and statistical analysis by Model 1 was applied to the reduced data set.

The new (Model 1A) results also are shown in Fig. 7.24 (bottom). The decrease in

sulphur content at the northern edge of the No. 12 Colliery could not be predicted

in advance.
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It was concluded that during coal mining, prospects for predicting sulphur

content in coal were excellent over shorter distances (up to 2,000 ft.). This recom-

mendation was accepted by DEVCO for routine planning of actual mining opera-

tions. On the other hand, prediction over longer distances from sulphur content of

mined-out areas remained speculative. No detailed hindsight studies have been

undertaken to evaluate the validity of the patterns based on Models 1 and

2 (Figs. 7.19 and 7.20). However, from generalized production records and rela-

tively few later offshore bore-holes (Hacquebard 2002), it can be concluded that

Model 2 worked better than Model 1, because there turned out to exist general

decline in sulphur content of the Harbour seam in the northeastern direction.

7.3 Logistic Trend Surface Analysis of Discrete Data

Previous applications of trend analysis can be regarded as applications of the general

linear model of least squares. The term “linear” in this context applies to the

coefficients bpq which only occur in linear form in the polynomial equation. In

several applications (Whalesback and Lingan Mine case history studies), the general

linear model was applied to logarithmically transformed element concentration

values. Corrections had to be applied to eliminate bias arising when the fitted surfaces

were recomputed to apply to original concentration values. Further modifications of

the general linear model were used in the universal kriging applications to top of

Arbuckle Formation, base ofMatinenda Formation, and sulphur in LinganMine coal.

One advantage of the general linear model is its simplicity in that a final solution is

obtained by matrix inversion. It is more cumbersome to obtain solutions for nonlinear

functions of the coefficients because then an iterative process with many inversions

may have to be used. An example is provided by logistic trend surface analysis.

The logistic model (cf. Chap. 5) is commonly used for the estimation of proba-

bilities of the occurrence of a discrete event. For trend surface analysis, the logistic

model can be written in the form S u; vð Þ ¼ 1
1þe�T u;vð Þ where T(u,v) is as in our previous

applications of trend surface analysis. Although T(u,v) can assume any real value

depending on location and the values of the coefficients, S(u,v) only can assume

values in the interval between 0 and 1. It cannot be negative or greater than 1 and, for

this reason, can be used to represent the probability of occurrence of a discrete event.

Figure 7.25 shows the Island of Newfoundland subdivided into square cells

measuring 10 km on a side. Cells known to contain one or more massive sulphide

deposits are shown in black. Occurrence of massive sulphide deposits in a cell is an

event for which the probability of occurrence can be estimated. In Fig. 7.25, the

results of two methods of trend surface analysis are shown. In both situations, the

column vector Y of observed values consisted of elements equal to 1 for the 21 cells

with deposits and elements equal to 0 for the 1,388 cells with deposits. First, T(u,v)
was fitted directly to the data for the second degree (r¼ 2). The result is shown in

Fig. 7.25 (left side). Next S(u,v) was fitted with T(u,v) for the second degree

(Fig. 7.25, right side). In some situations, the general linear model of least squares
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can be used to estimate probabilities. However, in the example of Fig. 7.25, the

pattern for the logistic model is obviously more meaningful than the pattern for the

corresponding linear model, if the contours are to be interpreted as indicative of the

chances that a cell contains one or more massive sulphide deposits.

The main reason that that S(u,v) is more suitable than T(u,v) in this type of

application is related to the fact that T(u,v) in Fig. 7.25 (left side) is an elliptic

paraboloid. It means that any vertical intersection of it is a parabola without inflection

points at either side of its maximum value. The many 0 values for empty cells then

result in small positive values for area where there are known deposits and small

negative values for areas without known deposits. The pattern on the right side of

Fig. 7.25, on the other hand, is positive everywhere, with small positive values in the

areas without known deposits. This is because the logistic trend surface is more

flexible than the corresponding ordinary polynomial trend surface.

7.4 Harmonic Trend Surface Analysis

Many features in the Earth’s crust tend to be periodic in that they repeat themselves

at more or less the same intervals. Examples are anticlines and synclines and fault

systems. In these situations harmonic trend analysis may produce better results than

Fig. 7.25 Trend surface analysis of occurrence of massive sulphide deposits in cells measuring

10 km on a side, Island of Newfoundland. Calculated values for cells were subjected to the

transformations 9*(Value�MIN)/(MAX�MIN) where MIN and MAX represent smallest and

largest calculated value. Transformed values were contoured (M¼ 8.5); (a) Contours of quadratic

trend surface; MIN¼�0.0733, MAX¼ 0.0741; (b) Contours of logistic quadratic trend surface.

Solution obtained after 13 iterations for level of convergence equal to 0.001 (cf. Chung 1978);

MIN¼ 0.000; MAX¼ 0.2188 (Source: Agterberg 1984, Fig. 11)
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ordinary polynomial trend surface analysis. The 2-D power spectrum and autocor-

relation function are important tools even when there are no spatial periodicities.

Box 7.2: 2-D Harmonic Analysis

The inverseFourier transformA(p,q) of a 2-Darrayof gridded (m� n) data,XA(i, j)

satisfies: A p; qð Þ ¼ 1
mn

Pm�1
i¼0

Pn�1
j¼0 XA i; jð Þ � exp �2πI ip

m þ jq
n

� �� �
where I ¼ ffiffiffiffiffiffiffi�1

p
.

Also, XA i; jð Þ ¼ 1
mn

Pm�1
i¼0

Pn�1
j¼0 A p; qð Þ � exp �2πI ip

m þ jq
n

� �� �
. Without loss of

generality, it can be assumed that XA is zero. Any value A(p,q) consists of a real
part Re (Ap,q) and an imaginary part Im (Ap,q). Any wave can be represented by the

continuous function: X p; q; u; vð Þ ¼ Re Ap,q

� �
cos 2π ip

m þ jq
n

� �� �� Im Ap,q

� �
sin

2π ip
m þ jq

n

� �� �
where u and v are geographical coordinates as before. The square of

amplitude is given by: P(p,q)¼Re2(Ap,q) + Im
2(Ap,q). The 2-D autocovariance

satisfies:C r; sð Þ¼Pm�1
p¼0

Pn�1
q¼0 P p; qð Þ � exp 2πI ip

m þ jq
n

� �� �
.X (p, q; u, v) functions

for a block of values (p, q) form a so-called harmonic trend surface with: Y(u, v)¼P
p

P
pX(p,q;u, v).

7.4.1 Virginia Gold Mine Example

A map of average gold values for the southwestern portion of the Virginia Mine is

shown in Fig. 7.26. Every contoured value is the average of all individual values in

the surrounding 100 ft.� 100 ft. area. Moving average values for a 50-ft. grid were

subjected to various types of statistical analysis (Krige 1966; Krige and

Ueckermann 1963; Whitten 1966). Agterberg (1974) took (18� 18) values for a

900� 900 ft. area in the southeast corner of Fig. 7.26. Some gaps in the array in the

array were filled in by using interpolation values. In order to make use of the Fast

Fourier Transform method (Cooley and Tukey 1965), the array was enlarged to size

(32� 32). The 2-D spectrum P( p,q) and autocorrelation function are shown in

Fig. 7.27. Both maps are symmetrical with respect to the central point (origin) and

only part of the lower half is shown.

In the 2-D power spectrum of Fig. 7.27 the relatively large values of P( p,q) are
located within a block around the origin. This indicates that the second degree

harmonic trend surface provides a reasonable approximation in this application.

Values of the autocorrelation function for points less than 100 ft. from the origin are

biased because original values for the 50-ft. grid are averages for overlapping cells

measuring 100 ft. on a side.
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7.4.2 Whalesback Copper Deposit Exploration Example

Figure 7.28 shows a longitudinal cross-section of the Whalesback deposit, New-

foundland. It contains the intersection points of 188 underground drill-holes with

the central part of the ore zone. The average copper value was calculated for each

hole over the width of the orebody. This value was multiplied by horizontal width

yielding so-called percent-foot values contoured by mining staff. The central part of

this diagram shows a relatively rich copper zone that dips about 45� downward to

the west. The mining grid was previously used for location in Figs. 7.8 and 7.9.

The array of Table 7.4, which was based on Fig. 7.28, was enlarged to size

(32� 32). 2-D autocorrelation function and power spectrum are shown in

Figs. 7.29 and 7.30. Both diagrams illustrate the strong zoning in the deposit. The

central copper zone is flanked by two elongated minima and at about 460 ft. from it

there occur two other relatively copper-rich zones, although their maxima are not as

high as that for the central zone. The following experiment indicates that harmonic

analysis can be an excellent exploration tool in a situation of this type.

Development of the Whalesback copper deposit was performed in two different

stages. Copper percent-foot values from the first surface boreholes are shown in

Fig. 7.31b. There are only 20 exploration values, which are irregularly distributed.

The question can be asked of how the pattern of Fig. 7.28, which is based on 188more

Fig. 7.26 Manually contoured map of moving-average data for gold in inch-dwt (After

unpublished map by Prof. D.G. Krige; also Fig. 1 in Whitten 1966). Each value of 50-ft. grid is

average for enclosing 100� 100 ft. cell; outline for subarea selected for harmonic analysis

(Source: Agterberg 1974, Fig. 75)
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precise underground drill-holes that are more evenly spaced and sampled in more

detail as well, can be predicted from these 20 values. This problem is analogous to that

of constructing a topographical contour map of a mountain chain when only a few

elevations would be provided for interpolation. Polynomial trend surface analysis

applied to the 20 development values produces patterns that show no resemblance to

Fig. 7.27 Part of two-dimensional power spectrum (a) and autocorrelation (b) functions for array

depicted in Fig. 7.26. Note that largest values in a are concentrated in block around the origin,

suggesting a trend which may be described by harmonic trend surface of second degree. Autocor-

relation surface is elongated in the direction of the trend (Source: Agterberg 1974, Fig. 76)
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the pattern of Fig. 7.28. In fact, conventional analysis of variance indicated that the

linear (R2¼ 0.16) and quadratic (R2¼ 0.32) fits were not statistically significant.

Agterberg (1969) fitted the function X ( p, q; u, v) (see Box 7.2) by least squares

to estimate the coefficients b1¼Re (Ap,q) and b2¼ Im (Ap,q) for many possible

directions of axes and periods for the waves. Ideally, a least-squares model should

have been used by which the four parameters (direction of axis, period, amplitude
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Fig. 7.28 Manually contoured map of percent-foot values for copper in longitudinal section

across Whalesback deposit, Newfoundland. Each dot represents the approximate intersection

point of an underground borehole with the center of the mineralized zone (Source: Agterberg

1974, Fig. 47)

Table 7.4 Matrix of underground drill-hole data for area depicted in Fig. 7.28

29 146 116 76 22 6 (23) 11 18 48 60 94 9 32 137 128

51 47 91 (60) 12 21 43 32 40 52 158 139 94 77 118 77

43 60 94 34 19 67 31 22 65 112 126 78 258 80 (86) 110

91 (70) 60 34 66 29 (41) 32 164 286 160 (126) (97) (97) 74 70

91 73 68 21 75 44 35 73 297 89 140 52 66 49 52 43

105 43 36 42 40 77 83 272 209 107 177 40 29 42 52 199

66 32 (47) 58 128 114 354 (194) 284 169 (91) 25 (34) 9 (61) 27

47 (38) 31 86 76 (159) (150) 113 43 78 (69) 40 21 64 (51) 35

41 8 41 125 196 128 118 74 76 33 70 65 29 64 100 57

19 19 62 260 135 174 135 163 23 18 33 24 36 95 (67) (78)

20 35 59 168 199 (146) 91 (85) 16 13 58 30 (40) 23 (59) (68)

Source: Agterberg (1974, Table XXVIII)

Values represent products of horizontal width of orebody (in feet) and average concentration value

of copper (in percent)
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and phase) are estimated simultaneously but then a nonlinear model should have

been developed and applied. The linear model can only be used when p/m and q/n
are assumed to be known. For each separate sine wave, R2 was plotted as a

percentage value in Fig. 7.31a. The result can be regarded as a 2-D power spectrum

for irregularly spaced data. Since three coefficients were fitted for each sine wave

(including the constant term that is related to the mean value), each R2 value could

be converted into an F-value at the upper tail of a theoretical F-distribution with

3 and 17 degrees of freedom. The F0.95- and F0.99-values correspond to 27-% and

37-% values for R2 and these were contoured. There are two contoured peaks in

Fig. 7.31a and one of these corresponds to the peak in Fig. 7.30. The contour map of

the sine-wave whose amplitude falls on the well-developed peak of Fig. 7.31a is

shown in Fig. 7.31b, and its profile for a line along the surface (V¼ 10,600) in

Fig. 7.31c. The 20 original observations were projected onto Fig. 7.31c.along lines

parallel to the contours. Obviously, the contours in Fig. 7.31b are an
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Fig. 7.29 Two-dimensional autocorrelation function for data from Table 7.4, Whalesback copper

deposit (Source: Agterberg 1974, Fig. 61)
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Fig. 7.30 Part of two-dimensional power spectrum for data in Table 7.4; sharply defined peak

reflects zoning of copper percent-foot values shown in Fig. 7.28 (Source: Agterberg 1974, Fig. 77)
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oversimplification of those shown in Fig. 7.28 but existence of zones with alter-

nately high and low copper was correctly predicted.

7.4.3 East-Central Ontario Copper and Gold
Occurrence Example

The final example of harmonic trend analysis is concerned with the distribution of

copper and gold occurrences in the western Abitibi volcanic belt (Fig. 4.12). The

pattern of copper deposits in Fig. 4.13 was coded as an array with 28 columns and

20 rows with numbers of copper deposits per cell. All data were corrected for their

mean and the array was augmented to size (32� 32) by zeros. The inverse Fourier

transform was computed with the resulting 2-D power spectrum shown in Fig. 7.32.

Individual P-values are distributed as chi-square with a single degree of freedom.

A. moving average for four P-values was contoured of the 95-% and 99-% fractiles

Fig. 7.32 Two-dimensional power spectra (a and b) and phase maps (c and d) for distribution of

copper (N-S set only) and gold occurrences in east-central Ontario (gridded area in Fig. 3.4).Dots in
a and b denote P-values selected for constructing phase maps (Source: Agterberg 1974, Fig. 81)
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of the chi-square distribution with four degrees of freedom (cf. Agterberg and

Fabbri 1973). A similar procedure was followed for gold deposits in the same

area. Relatively large P-values (with period �20 miles) at some distance from the

origin were selected and marked as dots in Fig. 7.32a, b. Most of these are

accompanied by a contoured maximum. Directionally, these dots form small

clusters of which there are three for copper and two for gold. The crest-lines of

the three (N-S, E-W and SE-NW) copper clusters and the large (SW-NE) gold

cluster are shown in Fig. 7.33b. These sets of lines tend to intersect at the same

points. Agterberg and Fabbri (1973) speculated that patterns of lines indicating

larger concentrations of copper and gold deposits may be useful for extrapolation

into parts of the Abitibi area where bedrock is hidden because of relatively thick

glacial cover.
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Chapter 8

Statistical Analysis of Directional Features

Abstract Many geological features are directed in 2-D or 3-D space, either as

undirected or directed lines. Unit vectors are used for their spatial representation.

Vectors with magnitudes can be used in some applications. Axes of pebbles in

glacial drift provide an example of undirected lines; strengths of magnetization in

rock samples exemplify the situation of directed lines to be represented as unit

vectors or as vectors with magnitudes. Methods of unit vector field construction can

be used to extract regional variation patterns. If there is no significant change of

direction within the domain of study, various statistical frequency distribution

models can be used for estimating the mean direction or pole and measures of

dispersion. Well-known examples are the Fisher distribution for directed lines and

the Scheidegger-Watson distribution for undirected lines. In this chapter, unit

vector fields are fitted to regional data with variable mean directions using exten-

sions of polynomial trend surface analysis. A relatively simple example consists of

determining the preferred paleocurrent directions in sandstones of the Triassic

Bjorne Formation on Melville Island, Canadian Arctic Archipelago. Later exam-

ples are from structural geology of the Eastern Alps. Directions of the axes of

Hercynian minor folds in the crystalline basement of the Dolomites in northern Italy

show relatively strong spatial variability, both locally and regionally. Averaging

measurements from different outcrops within relatively small sampling domains

shows patterns of systematic regional variations that represent Alpine reactivation

of Hercynian schistosity planes (s-planes) causing rotations of the original minor

fold axis directions to the south of the Periadriatic Lineament. Interpretation of

seismic data from along the north-south TRANSALP profile that intersects the

Periadriatic Lineament near Bruneck (Brunico) in the Pustertal (Pusteria) indicates

rotation of Hercynian basement rocks into subvertical positions with subvertical to

steeply east-dipping Hercynian minor fold axes. Subsequently, Late Miocene

northward and north northeastward movements of the Adria microplate underneath

the Eurasian plate resulted in sinistral motion of the crystalline basement rocks in

the Bruneck area and strong neo-Alpine compression of basement rocks in the

Pustertal to the east. At the same time there was overthrust sheet formation in the

Strigno area along the Sugana Fault located to the south of the Italian Dolomites.
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8.1 Directed and Undirected Lines

Various geological attributes may be approximated by lines or planes. Measuring

them results in “angular data” consisting of azimuths for lines in the horizontal

plane or azimuths and dips for lines in 3-D space. Although a plane usually is

represented by its strike and dip, it is fully determined by the line perpendicular to

it, and statistical analyses of data sets for lines and planes are analogous. Examples

of angular data are strike and dip of bedding, banding and planes of schistosity,

cleavage, fractures or faults. Azimuth readings with or without dip are widely used

for sedimentary features such as axes of elongated pebbles, ripple marks, foresets of

cross-bedding and indicators of turbidity flow directions (sole markings). Then

there are the B-lineations in tectonites; problems at the microscopic level include

that of finding the preferred orientation of crystals in a matrix (e.g., quartz axes in

petrofabrics). Another example is the direction of magnetization in rocks. Statistical

theory for the treatment of unit vectors in 2-D (Fisher 1993) and 3-D (Fisher

et al. 1987) is well developed.

8.1.1 Doubling the Angle

It is useful to plot angular data sets under study in a diagram before statistical

analysis is attempted. Azimuth readings may be plotted on various types of rose

diagrams (Potter and Pettijohn 1963). If the lines are directed, the azimuths can be

plotted from the center of a circle and data within the same class intervals may be

aggregated. If the lines are undirected, a rose diagram with axial symmetry may be

used such as the one shown in Fig. 8.1. The method of doubling the angle then is

used to estimate the mean azimuth (Krumbein 1939). The average is taken after

doubling the angles and dividing the resulting mean angle by two. In Agterberg

(1974) problems of this type and their solutions are discussed in more detail.

Krumbein’s solution is identical to fitting a major axis to the points of intersection

of the original measurements with a circle. Axial symmetry if preserved when

the major axis is constructed. This method can be extended to the situation of

undirected lines in 3-D space. Then the first principal component or dominant

eigenvector is computed using the coordinates of the intersection points of

the lines, which pass through the center of a sphere, and the surface of the sphere

(cf. Sect. 1.4.1).
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8.1.2 Bjorne Formation Paleodelta Example

The Bjorne Formation is a predominantly sandy unit of Early Triassic age. It was

developed at the margin of the Sverdrup Islands of the Canadian Arctic Archipel-

ago. On northwestern Melville Island, the Bjorne Formation consists of three

separate members which can be distinguished, mainly on the basis of clay content

which is the lowest in the upper member, C. The total thickness of the Bjorne

Formation does not exceed 165 m on Melville Island. The formation forms a

prograding fan-shaped delta. The paleocurrent directions are indicated by such

features as the dip azimuths of planar foresets and axes of spoon-shaped troughs

(Agterberg et al. 1967). The average current direction for 43 localities of Member

C is shown in Fig. 8.3a. These localities occur in a narrow belt where the sandstone

member is exposed at the surface. The azimuth of the paleocurrents changes along

the belt (Fig. 8.2).

The variation pattern shows many local irregularities but is characterized by a

linear trend. In the (U,V ) plane for the coordinates (see Fig. 8.3), the linear trend

surface is: x ¼ F(u,v)¼ 292.133 + 27.859u+ 19.932v (degrees). At each point on

the map, x represents the tangent of a curve for the paleocurrent trend that passes

through that point, or dv
du ¼ � tan x. It readily is shown that: du ¼ dx

a1�a2 tan x
where

a1¼ 27.859 and a2¼ 19.932. Integration of both sides gives:

u ¼ Cþ 1

a21 þ a22
a1x� a2loge a1 cos xþ y sin xð Þ½ �

with y ¼ a2 if tan x >
a1
a2

and y ¼ �a2 if tan x <
a1
a2
. The result is applicable when

x is expressed in degrees. When x� 360�, the quantity 360� may be subtracted from

Fig. 8.1 Axial symmetric rose diagram of the direction of pebbles in glacial drift in Sweden

according to Köster (1964). Step from (a) to (b) is accomplished by doubling the angles (After

Koch and Link 1971, and Batschelet 1965) (Source: Agterberg 1974, Fig. 99)
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x, because azimuths are periodic with period 360�. The constant C is arbitrary. A

value can be assigned to it by inserting specific values for u and v into the equation.
For example, if u¼ 0 and x¼ 0, C¼�0.7018. It can be used to calculate a set of

values for u forming a sequence of values for x; the corresponding values for

v follow from the original equation for the linear trend surface. The resulting curves

(1) and (2) are shown in Fig. 8.3b. If the value of C is changed, the curves (1) and

(2) become displaced in the x¼ 54�.4 direction. In this way, a set of curves is

created that represents the paleocurrent direction for all points in the area.

Suppose that the paleocurrents were flowing in directions perpendicular to the

average topographic contours at the time of sedimentation of the sand. If curve

(1) of Fig. 8.3b is moved in the 144�4 direction over a distance that corresponds to

90� in x, the result represents a set of directions which are perpendicular to the

paleocurrent trends. Four of these curves which may represent the shape of the

paleodelta are shown in Fig. 8.4c. These contours, which are labeled a, b,c, and
d satisfy the preceding equation for different values of C and with x replaced by

(x+ 90�) or (x� 90�). Definite values cannot be assigned to these contours because

x represents a direction and not a vector with both direction and magnitude.

In trend surface analysis, the linear trend surface (also see Fig. 8.4a) had explained

sum of squares ESS¼ 78 %. The complete quadratic and cubic surfaces has ESS of

80% and 84%, respectively. Analysis of variance for the step from linear to quadratic

surface resulted in F̂ 3; 37ð Þ ¼ 80�78ð Þ=3
100�80ð Þ=37 ¼ 1:04. This would correspond to F0.60

(3,37) showing that the improvement in fit is not statistically significant. It is tacitly

assumed that the residuals are not autocorrelated as suggested by their scatter around

the line of Fig. 8.1. Consequently, the linear trend surface as shown in Fig. 8.4a is

acceptable in this situation. The 95 % confidence interval for this linear surface is

shown in Fig. 8.4b. This is a so-called half-confidence interval with values equal to

pþ 1ð Þ � F � s2 Ŷ
� �� �

with F¼F0.95(3,40)¼ 2.84 and s2 Ŷ
� � ¼ s2X

0
k X

0
X

� ��1
Xk with

residual variance s2¼ 380 square degrees.

Fig. 8.2 Variation of preferred paleocurrent direction along straight line coinciding with surface

outcrop of Member C, Bjorne Formation (Triassic, Melville Island, Northwest Territories, Canada);

systematic change in azimuth is represented by trend line (Source: Agterberg 1974, Fig. 12)
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All flow lines in Fig. 8.4a converge to a single line-shaped source. They have the

same asymptote in common which suggests the location of a river. An independent

method for locating the source of the sand consists of mapping the grade of the

largest clasts contained in the sandstone at a given place. Four grades of larges

clasts could be mapped in the area of study. They are: (1) pebbles, granule, coarse

sand; (2) cobbles, pebbles; (3) boulders, cobbles; and (4) boulders (max. 60 cm).

The size of the clasts is larger where the velocity of the currents was higher.

Approximate grade contours for classes 1–4 are shown in Fig. 8.4c for comparison.

This pattern corresponds to the contours constructed for the delta.

Fig. 8.3 Reconstruction of approximate preferred paleocurrent direction and shape of paleodelta

from preferred current directions, Member C, Bjorne Formation, Melville Island (After Agterberg

et al. 1967). (a) Preferred directions of paleocurrent indicators at measurement stations; 0-isopach

applies to lower part of Member C only. (b) Graphical representation of solution of differential

equation for paleocurrent trends. Inferred approximate direction of paleoriver near its mouth is

N54.4�E (Source: Agterberg 1974, Fig. 13)
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Fig. 8.4 A. Linear trend for data of Fig. 8.3a. (a) Computed azimuths are shown by line segments

for points on regular grid, both inside and outside exposed parts of Member C; flow lines are based

on curves 1 and 2 of Fig. 8.3b. (b) Contour map of 95 % half-confidence interval for A; confidence

is greater for area supported by observation points. (c) Estimated topographic contours for delta

obtained by shifting curve 1 of Fig. 8.3b, 90� in the southeastern direction (¼perpendicular to

isoazimuth lines), and then moving it into four arbitrary positions by changing the constant C.
Contoured grades of largest clasts provide independent information on shape of delta (Source:

Agterberg 1974, Fig. 41)
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8.1.3 Directed and Undirected Unit Vectors

Directional features play an important role in structural geology. Basic principles

were originally reviewed and developed by Sander (1948) who associated a

3-dimensional (A, B, C) Cartesian coordinate system with folds and other struc-

tures. A-axis and C-axis were defined to be parallel to the directions of compression

and expansion, respectively, with the B-axis perpendicular to the AC-plane

representing the main plane of motion of the rock particles. Two examples of

Hercynian minor folds with clearly developed B-axes are shown in Fig. 8.5 (from

Agterberg 1961) for quartzphyllites belonging to the crystalline basement of the

Dolomites in northern Italy. Measurements on B-axes from these quartzphyllites

were analyzed previously (Agterberg 1959, 1961, 1974, 1985, 2004, 2012) and will

again be used here with re-interpretations as needed.

Stereographic projection using either theWulff net or the equal-area Schmidt net

continue to be useful tools for representing sets of directional features from

different outcrops within the same neighbourhood or for directions derived from

crystals in thin sections of rocks. Contouring on the net is often applied to find

maxima representing preferred orientations, which also can be estimated using

methods developed by mathematical statisticians, especially for relatively small

sample sizes (see, e.g., Fisher et al. 1987).

Reiche (1938) used the vector mean to find the preferred orientation of direc-

tional features. Using a paleomagnetic data set, Fisher (1953) further developed this

method for estimating the mean orientation from a sample of directed unit vectors.

The frequency distribution of unit vectors may satisfy a Fisher distribution, which is

the spherical equivalent of a normal distribution. The mean unit vector is estimated

as follows. For a sample of measurements, the average direction cosine is deter-

mined along each of the three axes of a Cartesian coordinate system. The strength

|R| of the vector R described by the three average direction cosines is less than one

Fig. 8.5 Two examples of minor folds in the Pustertal quartzphyllite belt. Left side: East-dipping
minor folds near Welsberg (Monguelfo; location near midpoint of western boundary of subarea

delineated in Fig. 8.16); Right side: ditto along TRANSALP profile near subvertical contact with

Permotriassic (grid coordinates 206-767; part of MS112, see Fig. 8.16) (Source: Agterberg 2012,

Fig. 1)
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unless all measured vectors are parallel to one another. The vector R points in the

same direction as the vector sum of all observed unit vectors, and the quantity 1�|R|
provides a measure of the scatter of the measurements around their mean vector.

8.2 Unit Vector Fields

Methods of unit vector field analysis include 2-dimensional polynomial trend-

surface fitting applied separately to the three direction cosines of the measurements

followed by combining the estimated values to construct the unit vector field. A

new mathematical derivation of the underlying theory was presented in Agterberg

(2012). Examples of application are to B-axes for Hercynian minor folds and

schistosity planes in quartzphyllites belonging to the crystalline basement of the

Italian Dolomites. During Alpine orogeny, these s-planes were not only refolded

but there were large-scale sliding movements along the Hercynian schistosity

resulting in various kinds of rotations of the B-axes. The unit vector fields help to

outline these deformation patterns. The unit vector field for the B-axes in

quartzphyllites in the San Stefano area east of the Dolomites shows existence of

an SW vergent Alpine anticlinal structure. Two examples for quartzphyllites in the

Pustertal adjacent to the Periadriatic Lineament can be explained as part of the

south vergent upper-crustal response to the north and north-eastward directed

subduction of the Adria microplate below the Eastern Alps from the late Miocene

onward. Because of this motion the crystalline basement north of the Dolomites

was subjected to significant N-S shortening with probably a sinistral component in

the vicinity of the TRANSALP profile near Bruneck. Box 8.1 contains a brief

review of the mathematics of polynomial unit vector field fitting. It will be followed

by applications to B-axes in quartzphyllites south of the Periadriatic Lineament.

Box 8.1: Mathematics of Polynomial Unit Vector Field Fitting

Let Uoi represent an observed unit vector with strength |Uoi|¼ 1 at the i-th
observation point (i¼ 1, 2, . . ., n), and Uei with |Uei|¼ 1 the corresponding

estimated unit vector. Uei has the same direction as a vector Ri for which the

quantity Σ |Uoi�Ri|
2 will be minimized over the n observations. Suppose that

the three direction cosines of observed unit vectors Uoi, the estimated vectors

Ri, and the estimated unit vectorsUei are written as ‘hi, λhi and λ�hi (h¼ 1, 2, 3),

respectively. Then ∑ 3
h¼ 1‘

2
hi ¼ 1;∑ 3

h¼ 1λ
2
hi ¼ |Ri |

2; and ∑ 3
h¼ 1λ

� 2
hi ¼ 1. In the

Cartesian coordinate system to be used, the x-axis (h¼ 1) points northwards,

the y-axis (h¼ 2) eastwards, and the z-axis (h¼ 3) upwards, respectively.

Suppose that trend surface analysis is applied to each direction cosine ‘h
yielding three polynomial equations of degree p in terms of the geographical

coordinates x and ywith λhi¼ λh(xi, yi)¼∑ j+ k� pbhjkx
j
iy
k
i where j¼ 0, 1, . . ., p;

(continued)
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Box 8.1 (continued)

k¼ 0, 1, . . ., p; and j+ k� p. Because Ri andUei point in the same direction, the

angle θi between Uoi and Uei satisfies: cos ϑi ¼
X3

h¼1
λ�hi ‘hi ¼

X3

h¼1
λhi‘hi

Rij j ;

Rij j ¼
X3

h¼1
λ2hi

h i½
. The difference vector between Uoi and Ri, which can be

written as di¼Uoi�Ri, has strength |di| with |di|
2¼ 1+ |Ri|

2� 2|Ri|

cos ϑi¼∑ 3
h¼ 1 ‘2hi +∑

3
h¼ 1 λ2hi� 2∑ 3

h¼ 1 λhi‘hi¼∑ 3
h¼ 1(‘hi� λhi)

2. The

sum of squares T¼Σ|di|2 is a minimum when ∂T
∂bmjk

¼ 2
Xn

i¼1

X3

h¼1
‘hi � λhið Þ

∂λhi
∂bmjk

¼ 0 for all coefficients bmjk (m¼ 1, 2, 3; j¼ 1, . . ., p; k¼ 0, 1, . . ., p; j

+ k� p). Because the three polynomial functions λh (xi, yi) are linear in bmjk,

their partial derivatives satisfy ∂λhi
∂bmjk

¼ xki y
k
i if m¼ h and ∂λhi

∂bmjk
¼ 0 if m 6¼ h. This

allows us to split the n Gaussian normal equations into 3 groups (for m ¼ 1, 2

and 3, respectively) with ∑ n
i¼ 1[‘mi�∑ j+ k� pbhjkx

j
iy
k
i ]x

s
i y

s
i ¼ 0 where s¼ 0,

1, . . ., p; t¼ 0, 1, . . ., p; s+ t� p. The simultaneous linear equations for each

group can be solved yielding estimates of the coefficients required to estimate

λh (xi, yi). Finally, normalization gives estimates of λ�h(xi, yi) (h¼ 1, 2, 3). For

representation of the results as continuous functions on a map, it is convenient

to use the azimuth α (xi, yi) and dip φ (xi, yi) of the unit vectors with tanα(x,
y)¼� λ�2(x, y)/λ

�
1(x, y) and sinφ(x, y)¼� λ�3(x, y).

8.2.1 San Stefano Quartzphyllites Example

The following example illustrates usefulness of the mean unit vector. Fig. 8.6 (after

Agterberg 1961) shows locations and average values of B-axes and schistosity-

planes in the San Stefano area east of the Dolomites. Trace of axial plane of

neo-Alpine anticline in Fig. 8.6 approximately coincides with the line between E

and SE dipping average minor folds, and those dipping W to N. Plots on the

Schmidt net for measurements from subareas A and B (outlined on Fig 8.6) are

shown in Fig. 8.7. Mean values plotted in Figs. 8.6 and 8.7 were calculated by

means of a simple, approximate method of averaging azimuths, strikes and dips.

Note that the preferred orientation of the B-axes in subarea A is markedly different

from that in Subarea B. Fig. 8.8 (after Agterberg 1985) shows original measure-

ments or average B-axes for (100 m	 100 m) squares in comparison with unit

vector means based on larger samples, combining all measurements from within

(1 km	 1 km) or (2 km	 2 km) circular neighborhoods. A clear regional pattern

confirming the global pattern of Fig. 8.6 emerges in Fig. 8.8b from the mean unit

vectors that are based on the larger samples. Structural interpretation of the change

in average dip of the B-axes is as follows. The ESE-striking schistosity-planes and

the B-axes are Hercynian in age because they occur in large boulders within the
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Permian Verrucano conglomerate, at the base of the Permotriassic sedimentary

succession of the Italian Dolomites. During Alpine orogeny, the San Stefano

crystalline formed the core of an anticline in which the Hercynian schistosity planes

were re-activated. The trace of its Alpine NW-SE trending axial plane intersects the

approximately WNW-ESE striking Hercynian schistosity-planes (Fig. 8.6). Qua-

dratic and cubic unit vector field solutions based on 379 original measurements for

the subarea delineated by heavy line in Fig. 8.6 are shown in Fig. 8.9.

A difference between the B-axes of Fig. 8.5 and the paleomagnetic measure-

ments analyzed by Fisher (1953) is that the latter are directed whereas the B-axes of

Fig. 8.5 are undirected. Unless the scatter of lines representing individual measure-

ments is very large, the vector mean for undirected lines can be estimated in the

same way as that for directed lines. Suppose that θi represents the angle of the i-th
measurement and the unit vector mean, then the mean vector method is equivalent

to maximizing Σ cos θi representing the sum of cos θi for all measurements. If the

scatter is so large that one or more of values of cos θi for the undirected lines could

be negative, Σ cos2 θi can be maximized instead of Σ cos θi . The latter method was

first used by Scheidegger (1965) for fault-plane solutions of earthquakes and by

Loudon (1964) for orientation data in structural geology. The underlying frequency

Fig. 8.6 Preferred attitudes of schistosity planes and B-lineations with extrapolated regional

pattern for crystalline basement of eastern Dolomites near San Stefano (After Agterberg 1961).

Cells of 100 m on a side, where one or more B-lineations were measured, are shown by dots.
Domains for Fig. 8.7 are indicated by circles (a and b); outline of boundary of Fig. 8.9 is also

shown (Source: Agterberg 1974, Fig. 110)
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distribution of the measurements, for which maximizing Σ cos2 θi is optimal, is not

the Fisher distribution but the so-called Scheidegger-Watson distribution (Watson

1985). In Sect. 1.4 it was discussed that this method involves extracting the

dominant eigenvector from a (3	 3) matrix with elements determined by the

direction cosines of the observed unit vectors. With respect to shapes of frequency

distributions for unit vectors, it should be kept in mind that they may not be

isotropic. This is illustrated in Fig. 8.7 where it can be seen that the B-axes,

Fig. 8.7 Lineations (dots) and s-poles (circles) plotted on equal-area Schmidt net, lower hemi-

sphere, for domains A and B in central part of Fig. 8.6. Averages plotted in Fig. 8.6 are indicated

by triangles and open circles, respectively (Source: Agterberg 1974, Fig. 111)

Fig. 8.8 San Stefano area. Unit of distance for coordinates of the grid is 10 km. Length of arrow is

proportional to cosine of angle of dip (Maximum arrow length is 1 km). Left side: B-axes and unit
vector means in (100 m	 100 m) cells also shown in Fig. 8.6. Right side: Unit vector means of

B-axes located within circles with 1 km radius (solid arrow heads) and 2 km radius (open arrow

heads) (Source: Agterberg 2012, Fig. 4)
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Fig. 8.9 Azimuth (thin lines) and dip (solid lines marked with amount of dip) of best-fitting unit

vector fields on (top) quadratic and (bottom) cubic solution, for area outlined on Fig. 8.7. Zero-dip
line in cubic solution is close to similar line previously drawn by hand in Fig. 8.7 (Note that axes of

synclines on limbs of superimposed anticline tend to coincide with isolated segments of Permo-

Triassic (dotted pattern) enclosed by crystalline rocks in B) (Source: Agterberg 1974, Fig. 112)
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which on average are contained within the s-planes, tend to scatter more within the

average s-plane than in the direction perpendicular it.

Agterberg (1974) proposed to subject each of the three direction cosines of B-axes

in quartzphyllites belonging to the basement of the Dolomites separately to polyno-

mial trend surface analysis followed by normalization at any point on the map of the

study area in order to obtain the unit vector field. Trend surface analysis is based on the

assumption that 2-D polynomials can be used for describing trends while the residuals

(differences between original and trend values) are randomly distributed. This method

does not account for possible spatial autocorrelation of the residuals but the estimated

trends would be unbiased if the residuals satisfy a second-order stationary process (cf.
Watson 1971). The method of separately fitting polynomial functions to direction

cosines of unit vectors also was used by Parker and Denham (1979). These authors

used cubic smoothing splines instead of ordinary polynomial functions.

An important paper on interpolation and smoothing of directed and undirected

linear data was published byWatson (1985). Several new algorithms were proposed

by this author using functions according to which the influence of measurements

decreases with distance from the points at which interpolation with or without

smoothing is to be applied along a line or within a map area. This type of approach

also is useful for 3-D applications using drill-hole data to extend the geological map

downwards from the topographic surface (Michael Hillier, Geological Survey of

Canada, personal information).

8.2.2 Arnisdale Gneiss Example

In the previous section it was shown that Hercynian schistosity in the San Stefano

area was reactivated to form the core of an Alpine anticline that can also be seen in

the Permotriassic rocks overlying the crystalline basement. This style of folding is

analogous to that described by Ramsay (1960, 1967) for gneisses of the Moine

Series at Arnisdale, western Highlands of Scotland. An example is shown in

Fig. 8.10 where the pattern is for the azimuth of deformed B-lineations. Axial

traces (intersections of axial planes with the topographic surface) for the late folds

are indicated. A schematic explanation for this style of folding is given in Fig. 8.11.

During the late folding, the foliation, which is according to parallel original

surfaces r, s, t and u, did not change in attitude. The axial plane of the late folding

(ab) makes a small angle with the original surface. The a-direction is subvertical

and is contained in the original surfaces.

Patterns such the one shown in Fig. 8.10 can become almost completely

obscured when the surfaces, on which the lineation was developed were themselves

variably oriented or when the amount of compressive strain accompanying the

original folding was variable in space. In such situations, one may never be able to

reconstruct a pattern of deformation in an accurate manner. However, by develop-

ing the vector mean for lineation from observations in different outcrops, trends can

be established providing a broad outline of the geometry of the folds and the

underlying genetic process.
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8.2.3 TRANSALP Profile Example

Figure 8.12 (based on map by Agterberg 1961) shows mean B-axes and schistosity

planes in quartzphyllites belonging to the crystalline basement of the Dolomites in

an area around the Gaderbach, which was part of the seismic Vibroseis and

explosive transects of the TRANSALP Transect. The TRANSALP profile was

oriented approximately along a north-south line across the Eastern Alps from

1 Mile

Lineation trend

Arnisdale

Loch  Hourn

Axial trace

Fault

N

Fig. 8.10 Traces of deformed lineations in gneisses at Arnisdale, western Highlands of Scotland

(After Ramsay 1967) (Source: Agterberg 1974, Fig. 108)

Fig. 8.11 Variation in

pattern of deformed

lineations on surfaces r, s,
t and u resulting from the

oblique intersection of the

shear plane ab with these

surfaces (From Ramsay

1967) (Source: Agterberg

1974, Fig. 109)
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Munich to Belluno with locally its position determined by irregular shapes of the

topography. This international co-operative effort has led to important new inter-

pretations (see, e.g., Gebrande et al. 2006) to be discussed later in this section.

Structurally, the quartzphyllites are of two types: in some outcrops the Hercynian

schistosity planes are not strongly folded and their average orientation can be

measured. However, elsewhere, like in the vicinity of Bruneck, and in most of the

Pustertal to the east of Bruneck, there are relatively many minor folds (as illustrated

in Fig. 8.5) of which the orientation can be measured. However, then it may not be

possible to measure representative strike and dip of schistosity at outcrop scale. In

the parts of the area where the strike and dip of schistosity planes can be measured,

there usually are B-lineations for microfolds on the schistosity planes that also can

be measured. Consequently, the number of possible measurements on B-axes

usually exceeds the number of representative measurements on schistosity planes.

Figure 8.12 shows that the average strike of schistosity is fairly constant in this

area but the average azimuth and dip of the B-axes is more variable. There is a trend

from intermediate eastward dip of B-axes in the southern parts of the region to

subvertical attitude in the north. This systematic change can also be seen on

Schmidt net plots for the six measurement samples along the Gaderbach (Agterberg

Fig. 8.12 Schematic

structure map of

surroundings of

TRANSALP profile (TAP)

in tectonites of crystalline

basement of the Dolomites

near Bruneck. Arrows
represent average azimuths

of B-axes for measurement

samples. Average dips of

B-axes are also shown.

Average s-plane attitudes
are shown if they could be

determined with sufficient

precision. MS:

Measurement Sample as in

Agterberg (1961, Appendix

II). PI permian intrusion, PL
periadriatic lineament.

Coordinates of grid are as

on 1:25,000 Italian

topographic maps (Source:

Agterberg 2012, Fig. 5)
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1961, Appendix III). In Fig. 8.13, the B-axes measured along the Gaderbach are

projected on a North-South line approximately parallel to the average orientation of

the TRANSALP profile. The method of fitting unit vector fields becomes simplified

when the measurements are along a straight line (North-South directed x-axis in
Fig. 8.13). Figure 8.14 shows the corresponding direction cosines together with

cubic polynomial trend lines fitted by the method of least squares. In Fig. 8.15 the

trend lines of Fig. 8.14 are re-plotted as average azimuth and dip curves.

In a general way, the results of the preceding linear unit vector field analysis

confirm the earlier conclusions on North-South regional change in average

B-lineation attitude. Table 8.1 shows results from another test. Original estimates

of mean B-axis orientations for the six measurement samples (Method 1) are

compared with ordinary unit vector means (Method 2), and with values on the

trend lines of Fig. 8.16 at mean distances south of the (Periadriatic) Pusteria

Lineament near Bruneck (Method 3). Differences between the three sets of mean

azimuth and dip values are at most a few degrees indicating that regionally, on the

average, there is a dip rotation from about 45� dip to the east in the south to about

80� dip in the north accompanied by an azimuth rotation of about 120� from

eastward to WNW-ward. It is noted that higher-order polynomials fitted by least

squares rapidly become unreliable near the edges of the study area, where there is

less data control. Thus, the local maximum at the northern edge (in Fig. 8.15) is not

clearly established. Widespread occurrence of steeply dipping B-axes near the

Periadriatic Lineament and along the southern border of the Permian (Brixen

granodiorite) intrusion, however, is confirmed by results derived from other
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Fig. 8.13 Azimuths (diamonds) and dips (triangles) of B-axes from six measurement samples

along Gaderbach shown in Fig. 8.12 (Note that along most of this section, the B-axes dip nearly

50� East). Closest to the Periadriatic Lineament, their dip becomes nearly 90� SSW (Also see

Table 7.1) (Source: Agterberg 2012, Fig. 6)
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Fig. 8.14 Cubic polynomial curves (shown as lines) were fitted to the three direction cosines of

the measurements shown in Fig. 8.13. The Cartesian coordinate system used was: x¼North;

y¼East; z¼ upward. The direction cosines for x, y and z are shown as solid squares, diamonds
and triangles, respectively (Source: Agterberg 2012, Fig. 7)

0

50

100

150

200

250

0 2 4 6 8 10 12 14

A
n

g
le

 (
d

eg
re

es
)

Distance (km) South of Periadriatic Lineament near Bruneck

Fig. 8.15 The three cubic polynomials of Fig. 8.14 were combined to show azimuth (solid line)

ranging from about 90� to 230� and dip (broken line) ranging from about 45� to 80� of best-fitting
unit vector field along the N-S profile (Source: Agterberg 2012, Fig. 8)
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measurement samples (Fig. 8.12). The rapid change in average azimuth that

accompanies the B-axis steepening is probably real but it should be kept in mind

that the azimuth of vertical B-axes becomes indeterminate. As will be discussed in

more detail in Sect. 8.3.4, the northward steepening of attitudes of s-planes in the

northern quartzphyllite belt to the West of Bruneck from gentle southward dip near

Brixen is probably due to neo-Alpine shortening. The northward steepening of the

B-axes near Bruneck, which on average are contained within the s-planes, could be
due to Neo-Alpine sinistral movements along the Periadriatic Lineament and south

of the Permian (Brixen granodiorite) intrusion.

Several authors including Ring and Richter (19dextral94) and Benciolini

et al. (2006) have studied the Hercynian (or “Variscan”) structural evolution of

the quartzphyllites in the Brixen area of which the map in our Fig. 8.12 only covers

the easternmost portion. These authors were able to distinguish between successive

generations of Hercynian microstructures. Ring and Richter (1994) established that

an earlier schistosity (S1) was strongly overprinted by S2 during their

D2-deformation stage. A mineral stretching lineation (L2) occurs on S2 with

attitudes similar to larger F2-folds (as those shown in our Fig. 8.5). These authors

also identified younger F3-folds subparallel to the predominant F2-folds. Benciolini

et al. (2006) later identified another earlier generation of minor folds. Their

B3-folds are equivalent to Ring and Richter’s F2-folds. Maps of L2 lineaments

(Ring and Richter 1994, Fig. 4a, 4 L2-lineaments) and B3-folds (Benciolini

et al. 2006, Fig. 2, 6 B3 fold axes) show strikingly different patterns because

these authors plotted original measurements and not average orientations as are

shown in our Fig. 5. As illustrated in our Fig. 8.13, azimuths of minor fold can

change by more than 90� over distances less than 100 m. Ring and Richter (1994,

Fig. 4b) also constructed regional stereograms of 346 L2-lineations and

826 F2-folds within the larger Brixen area for which Agterberg (1961, Appendix

II) had listed 4,018 B-axes subdivided into 52 measurement samples similar to the

13 measurement samples shown in Fig. 5 of this paper. These B-axes are mainly

Ring and Richter’s L2-lineaments and F2-folds. On the whole, the regional stereo-

grams of Ring and Richter (1994) for the Brixen area, and for the Cima d’Asta and

Gosaldo areas to the south of the Italian Dolomites, are in agreement with unit

vector field constructions for these areas except that the latter better capture

Table 8.1 Comparison of average azimuth and dip of B-axes for six measurement samples as

obtained by three methods (Source: Agterberg 2012, Table 1)

Distance Method 1 Method 2 Method 3

MS # Easting South of PL Az./Dip Az./Dip Az./Dip

92 85.1 2.38 217/77 220/78 218/77

95 83.1 4.38 104/58 103/58 103/62

112 80.4 7.08 101/52 100/52 94/49

96 78.8 8.68 86/39 85/41 93/46

111 76.9 10.58 113/52 113/53 98/46

110 75.6 11.88 104/43 103/44 107/47
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regional average orientation change. The major D2-deformation occurred in the late

Carboniferous and was connected to mainly subhorizontal Hercynian tectonic

movements associated with greenschist facies metamorphism (cf. Ring and Richter
1994, p. 765). During Alpine orogeny, S2 assumed its current predominantly

southward dip In the Brixen area.

8.2.4 Pustertal Tectonites Example

Figure 8.16 (after Agterberg 1961, 1974; also see Whitten 1966) shows mean

azimuth lines and average dips of B-axes for measurement samples similar to

those shown in Fig. 8.12 in the Pustertal East of Bruneck. As in the immediate

vicinity of Bruneck, the quartzphyllites (cf. Fig. 8.5) are rather strongly folded in

many places. Although B-axis orientations could be measured in about 1,700

outcrops, representative schistosity-plane readings were obtained in 257 outcrops

only. In nearly half of these outcrops, s-plane attitude is subvertical (dips between
75� northwards and 75� southwards; Agterberg 1961, Fig. 58) although lesser

northern dips (<75�) are slightly more prevalent than southern dips (<75�). Thus,
the mean azimuth lines in Fig. 8.16 approximately represent mean schistosity-plane

strikes. On the whole, the mean azimuth lines converge eastward. Relatively strong

local convergence occurs on the Eggerberg East of Welsberg (Fig. 8.16). Measure-

ments taken along the south slope of the East-West elongated Eggerberg show

SW-NE strikes and mean azimuths on the average but on its less exposed north

slope NW-SE strikes prevail. Figure 8.17 (after Agterberg 1974) shows best-fitting

two-dimensional quadratic and cubic polynomial unit vector fields for the

Eggerberg and its immediate surroundings. Strong eastward convergence of azi-

muth lines (Eggerberg structure) in Fig. 8.17 indicates existence of neo-Alpine

anticlinal lineament or zone along which material moved upwards with consider-

able mobility but with preservation of mean attitudes of subvertical s-planes and
B-axes (after Agterberg 1974, Fig. 115). The cubic solution is probably more

Fig. 8.16 Complex structures of superimposed folding in Pusteria tectonites, northern Italy (After

Agterberg 1961). Pattern of mean azimuth and dip of minor fold axes were constructed by

averaging for domains and manual contouring. Frame of Fig.8.17 is outlined (Source: Agterberg

1974, Fig. 113)
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realistic provided that the mean azimuth pattern within the relatively low-dip

southwestern part of the area, where there was no data control because of Quater-

nary cover, as well as the low-dip northeastern pattern north of the Periadriatic

Lineament (Western Drauzug), are ignored.

It may be concluded that, in the Pustertal area, the quartzphyllites, which show

subvertical s-plane strike on the average, contain Alpine anticlinal structures

characterized by areas of lower-dipping B-axes that may be accompanied by

eastward convergent mean azimuth lines. The most likely explanation (Agterberg

1961) is that these quartzphyllites were squeezed out upwards during the latest

phase of Alpine orogeny between the Austroalpine units north of the Periadriatic

Lineament and the northern edge of the Permotriassic of the Dolomites (Fig. 8.18).

This interpretation would be in accordance with a model advocated by Castellarin

et al. (2006, Fig. 9) who assume that the Vibroseis depth-migrated data from the

TRANSALP profile show a steeply north-dipping thrust fault that reaches the

surface at the Periadriatic Lineament (also see next section).

Fig. 8.17 Azimuth (lines) and dip (in symbols) for (Top) quadratic and (Bottom) cubic unit vector
field fitted to data within rectangle outlined in Fig. 8.16; printed symbol for dip 1 (10–20� E),

3 (30–40� E), 5 (50–60� E), A (0–10� W). Strong eastward convergence of azimuth lines suggests

existence of Alpine lineament or zone trough which material was moved upward with considerable

mobility but with preservation of pre-Alpine s-planes and B-lineations (Source: Agterberg 1974,

Fig. 115)
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8.2.5 Tectonic Interpretation of Unit Vector Fields
Fitted to Quartzphyllites in the Basement
of the Italian Dolomites

For the Mediterranean region as a whole, GPS data indicate a roughly NNW-SSE

oriented convergence between Africa and Europe of up to 8 mm/year (Picardi

et al. 2011). According to Lippitsch et al. (2003) average crustal shortening in the

Alps amounted to 5 mm/year during the past 40 million years. Deep seismic lines

crossing the Eastern Alps including TRANSALP all show a South-directed

European slab below the northward-indenting Adria Microplate lithosphere

(Gebrande et al. 2006). As pointed out by Luth et al. (2010), the TRANSALP

profile approximately coincides with a major subduction polarity change zone. To

the west of this zone, there is southward-directed European subduction below the

Western and Central Alps; and to the east of it, there is north-eastward directed

subduction of Adria below the Eastern Alps and the Dinarides. This interpretation

of neo-Alpine orogeny is primarily based on tele-seismic tomographic data

(Lippitsch et al. 2003; Kissling et al. 2006). Luth et al. (2010) and Luth (2011)

have developed litho-scale analogue models to investigate the effect of subduction

polarity change on the overlying crustal architecture.

Results of seismic Vibroseis and explosive TRANSALP transects across the

Alps from Munich to Belluno were described by the TRANSALP Working Group

(2002). In this section the unit vector field fitting results for measurements on

B-axes and schistosity planes near Bruneck and in the Pustertal east of the

TRANSALP Profile are reviewed on the basis of the TRANSALP findings and

Fig. 8.18 Uniformly

compressed plastic zone

narrowing eastward. The

replaced Austrian

Crystalline (¼O) equals the

squeezed out material in all

places, and

O¼O0¼O1¼O2 (Source:

Agterberg 1961, Fig. 70)
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other newly obtained results on tectonics of the Alpine realm involving movements

of the Adria microplate (Picardi et al. 2011) of which the current northern boundary

at the surface approximately coincides with the Periadriatic Lineament.

As mentioned in the Introduction, the quartzphyllites of the Dolomites basement

were folded during the Hercynian Orogeny. Most B-axes in the Brixen crystalline

basement West of the TRANSALP profile and in the Cima d’Asta and Agordo areas

south of the Dolomites are relatively low-dipping and have N-S to NNW-SSE

orientations. These parts of the Dolomites basement underwent less Alpine defor-

mation than the quartzphyllites in the San Stefano and Pustertal areas (Figs. 8.6 and

8.16). During the early Neogene, the Dolomites and their basement had been

subjected to anti-clockwise rotation of about 50� (Channell and Doglioni 1994)

indicating that, originally, the Hercynian folds had NE-SW to E-W orientation.

According to Vai (2002) the Italian region contains three different segments of

Hercynian mountain chain: (1) Carnian-Dinaric, (2) central-western Southalpine

and (3) Apenninic, surrounding a Baikalian or Panafrican consolidated

microcraton, roughly corresponding to the core of to-day’s Adria microplate.

North to northeast directed Hercynian structural axes are almost coaxial with

those of Alpine age in the Apennines (3) but cross at high angles in the Southern

Alps (2). From the patterns of Fig. 8.6 (San Stefano area) and Fig. 8.16 (Pustertal) it

can be inferred that the angle between Hercynian and Alpine structural axes

decreases eastward toward the Carnian Alps and southeastward toward the

Dinarides (1) where they become subparallel with E-W to SSE-NNW orientations,

respectively.

Picardi et al. (2011) provide a recent outline of the Adria microplate, which is a

nearly closed basin comprising a Meso-Cenozoic continental block that represents

the foreland of the Apennines and Dinarides-Hellenides mountains, two

sub-parallel orogenic belts with opposing vergences. Its core is the region currently

occupied by the Adrian Sea. The northern boundary of Adria coincides with the

Periadriatic Lineament. To the north and south of the Dolomites, the Alpine

vergence is southward. The southern boundary of the crystalline basement of the

Dolomites consists of the Valsugana Lineament, which is a major thrust fault, in the

Strigno area (Fig. 1.1) accompanied by a south vergent overthrust sheet (Agterberg

1961; Castellarin and Vai 1982; Castellarin et al. 2006). The Alpine anticlinal

structure in the San Stefano area (Fig. 8.6) has vergence intermediate between the

S vergence of the Dolomites and the WSW vergence of the Dinarides. Current

deformation in the Adriatic region does not simply reflect the N-S shortening

between Africa and Eurasia. Adria’s recent motion controls the distribution of

earthquakes and tectonic deformation across a broad area of South-central Europe.

As in the past, Adria moves in response to the combined motions of the African

Plate, Eurasian Plate, Anatolian block, and Hellenic Arc (Picardi et al. 2011). At

present it moves north-eastward (Lippitsch et al. 2003).

Stampfli and Hochard (2009) describe the wander path of Adria during the past

180 million years. Initially Adria moved ESE-ward. After about 60 million years, it

commenced an anticlockwise rotation moving eastward, northward and

NNW-ward. During this motion, the Italian Dolomites and their basement were
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rotated by about 50� (Channell and Doglioni 1994) and there were very significant

Oligocene-Miocene dextral shear movements along the Periadriatic Lineament

(Ratschbacher et al. 1991). South vergent faulting and folding within and around

the Dolomites commenced in the late Miocene. For example, the overthrust sheet

near Strigno associated with the Valsugana Lineament rests partly on Upper

Miocene sediments. Its origin may have involved neo-Alpine sliding motion

along slightly S dipping quartzphyllites south of the Permian Cima d’Asta intrusion

(cf. Agterberg 1961, Fig. 83). Laubscher (2010) discusses late Miocene sinistral

strike-slip movement totalling about 70 km along the Giudicaria Line, which forms

the western boundary of the Dolomites Synclinorium.

Castellarin et al. (2006) have reviewed structure of the lithosphere beneath the

Eastern Alps (southern sector of the TRANSALP profile). Participants in the

TRANSALP Working Group (2002) originally proposed two different interpreta-

tive models of the Vibroseis depth-migrated data called “Crocodile Model” and

“Ductile Extrusion Model”, respectively. The two interpretations are similar except

in the segment of crust below the Periadriatic Lineament. In the second model, a

N-dipping break transparent zone in the Vibroseis depth-migrated data was

interpreted as the downward extension of the Periadriatic Lineament. In the first

model such a thrust fault was not recognized. The deformation patterns of the

quartzphyllites indicated by the unit vector field fittings described in the previous

two sections support the “Ductile Extrusion Model” in its interpretation that the

Periadriatic Lineament in its final stage was a thrust fault that reactivated Hercynian

s-planes to the south of it by strong neo-Alpine compression between the

Austroalpine units to the north and the Permotriassic of the Dolomites to the

south. The eastward convergence of the boundaries of these more rigid rocks

resulted in upward squeezing out of the more ductile Pustertal quartzphyllites.

The Vibroseis depth-migrated data from the TRANSALP profile across the

Periadriatic Lineament also show a number of non-reflective volumes indicating

presence of intrusions similar to the Permian Brixen batholith and, to the north of

the Periadriatic Lineament, the Oligocene Rieserferner tonalite intrusion. Between

these intrusions and the downward extension of the Periadriatic Lineament there are

many clearly developed south-dipping high-amplitude reflecting intervals, which

are probably equivalent to the south-dipping quartzphyllites of the basement of the

Dolomites in most of the Brixen area (to the SW of Fig. 8.12). In accordance with

the “Ductile Extrusion Model”, these rocks would constitute the northern edge of

the Adriatic indenter (Castellarin et al. 2006). Immediately below the TRANSALP

profile south of Bruneck, there are no well-developed high-amplitude reflecting

intervals. This is probably because of the subvertical attitudes of most s-planes in
this area. Similar interpretations can be based on the CMP stack section and post-

stack depth-migrated section shown and discussed by Lüschen et al. (2006, Figs. 6

and 8).

Castellarin et al. (2006) estimated that upper crustal total shortening in the belt of

quartzphyllites between the “Dolomite Synclinorium” and the Periadriatic Linea-

ment amounts to about 15 km and that most of this shortening is due to rotation of

the quartzphyllites from low-dipping to high-dipping attitudes. According to the
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results presented in this section (Figs. 8.12, 8.13, 8.14 and 8.15), this movement

probably had a horizontal component as well, as indicated by the subvertical to

steeply SSW dipping B-axes In the vicinity of Bruneck and immediately south of

the Permian granodiorite intrusion. The shortening probably also involved north

vergent thrust faults including the Villnösz Fault south of Brixen. Although it is

difficult to estimate the amount of shortening precisely, Castellarin et al.’s estimate

is in agreement with the pattern shown in Fig. 8.12, and also with the model of

pronounced neo-Alpine shortening in the Pustertal area further eastward. (Fig. 8.18)

The main reason that significant extra eastward shortening took place in the

Pustertal is probably related to the decrease in width of the quartzphyllite belt in

this direction. Agterberg (1961) estimated that the later Pustertal shortening was

about 5 km. In his original model, amount of shortening was assumed to decrease

with depth. This assumption was probably not correct because extra neo-Alpine

shortening in Pustertal was probably between 10 and 15 km. The Hercynian s-
planes were reactivated during these strong upward movements. Although there is

some evidence of existence of neo-Alpine micro-structures in the area (Agterberg

1961, Appendix I, Figs. 48–51a), the topic of distinguishing between Hercynian and

Alpine micro-structures would benefit from further study using methods similar to

those applied to microstructures in the Austroalpine units and within the Tauern

Window north of the Periadriatic Lineament (Mancktelow et al. 2001).

8.2.6 Summary of Late Alpine Tectonics South
of Periadriatic Lineament

The purpose of this section was to revisit the topic of unit vector field fitting in

applications to B-axes in the quartzphyllites of the crystalline basement of the

Italian Dolomites. A slightly improved mathematical derivation of the use of

polynomial trend functions fitted to the three direction cosines of directional

features and combining the results was presented. Illustration by practical applica-

tions consisted of three parts. First it was shown that in the San Stefano area, to the

east of the Dolomites, the relatively simple method of computing vector means for

relatively large, overlapping circular areas produces good results. This would imply

that neighbourhood-based methods as proposed by Watson (1971) can give good

results. During Alpine orogeny the San Stefano quartzphyllites formed the core of a

SSW vergent anticline with re-activation of steeply dipping Hercynian schistosity

causing opposite rotations of the originally sub-horizontal Hercynian B-axes at the

two sides of its axial plane.

Secondly, the polynomial unit vector fitting method was illustrated by means of

a relatively simple, linear example. Data from six measurement samples along the

Gaderbach south of Bruneck in the Pustertal were projected on a north-south line

approximately coinciding with the TRANSALP profile. The quartzphyllite belt is

about 12 km wide at this location. Immediately north of the Permotriassic of the
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Dolomites, the B-axes, on average, dip about 50� East over a distance of about

8 km. Average dip of the approximately East-West striking s-planes is about 90�.
Over the 2 km to the north along the Gaderbach, and probably over the remaining

2 km immediately south of the Periadriatic Lineament, the attitude of B-axes

becomes subvertical. The 40� dip steepening is accompanied by an average azimuth

rotation from approximately eastward to steeply SSW. This pattern of B-axis and s-
plane orientations along the TRANSALP profile south of the Periadriatic Linea-

ment is confirmed by average orientations estimated from other measurement

samples to the east and to the west.

The third example was for the Pustertal quartzphyllite belt that becomes

narrower to the east reaching its minimum width of about 3 km at a distance of

approximately 25 km east of Bruneck. The subvertical Hercynian s-planes contain a
number of anticlinal structures characterized by decreases in average dip of minor

folds and eastward convergence of strike-lines. The Eggerberg structure is well

exposed and the most striking example of these neo-Alpine structures.

Unit vector field results for all three examples can be interpreted in term of the

latest (Late Miocene – Pliocene) movements of the Adria microplate. In direction

and vergence the San Stefano anticlinal structure fits in with the structures of the

Dinarides-Hellenides mountains. As pointed out by Castellarin et al. (2006), the

deep seismic TRANSALP data below the Periadriatic Lineament near Bruneck

indicate that this major fault dips northwards and was associated with significant

neo-Alpine north-south shortening. In the quartzphyllite belt immediately south of

the Periadriatic lineament, perhaps 15 km of shortening was mainly achieved by

upward rotation of the low-dipping s-planes with attitudes similar to those at greater

depths below the Periadriatic lineament, further south in the Brixen area and to the

south of the Dolomites in the Cima d’Asta and Agordo areas. In the Pustertal

quartzphyllites extra shortening resulted in upward squeezing out along the

subvertical Hercynian s-planes because of the significant eastward width decrease

of the belt of more ductile quartzphyllites between the Austroalpine units to the

north and the Dolomites Synclinorium to the South. The northward rotation of

B-axes to subvertical positions immediately south of the Periadriatic Lineament

near Bruneck and the Permian Brixen granodiorite intrusion suggests upward

sinistral neo-Alpine movements in this vicinity. This displacement would fit in

with the late Miocene sinistral strike-slip motion along the Giudicaria Fault to the

west (Laubscher 2010). The north-south orientation of the subhorizontal fold axes

in the Hercynian basement of the Brixen and Cima d’Asta regions to the north and

south of the eastern Dolomites indicates that, originally, the dominant Hercynian

strike direction was SE-NW because of the earlier Alpine rotation of the Adria

microplate as is well documented by paleomagnetic investigations and evidence of

large-scale dextral strike-slip movements along the Periadriatic lineament. The fold

patterns in Figs. 8.16 and 8.17 are more complex than those in other parts of the

crystalline basement of the Dolomites. It remains possible that parts of the Pustertal

quartzphyllites originally were not part of Adria but a westward continuation of the

predominantly east-west striking Hercynian crystalline rocks in the Carnian Alps to

the east.
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8.2.7 Defereggen Schlinge Example

Significant Alpine compression of the crystalline basement of the Dolomites in

northern Italy was shown to have taken place, probably during the Miocene. On a

larger scale this involved a 70 km northward displacement of the Dolomites along

the Giudicaria Line. It is likely that crystalline rocks north of the Periadriatic

Lineament in this area were involved in this late Alpine displacement as well.

Crystalline rocks in the Defereggen and Örtler regions of the Eastern Alps in

Austria show “Schlinge”-like structures. Schmidegg (1933, 1936) introduced the

term “Schlinge” (¼sinuosity) for folds with subvertical axes occurring in the

infrastructure of katazonal gneisses. They would have formed by bending of

subvertical S-planes in consequence of subhorizontal compression. It is generally

assumed that the Schlingen are Variscan (Hercynian) in age (see, e.g., Schulz

et al. 2008). However, Agterberg (1961) argued that they originated near the end

of the Alpine orogeny (Fig. 8.19) in conjunction with the sinistral movement along

the Giudicaria Fault.
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Chapter 9

Quantitative Stratigraphy, Splining

and Geologic Time Scales

Abstract Quantitative stratigraphy uses logical and mathematical tools to help

define the stratigraphic framework of the Earth’s crust. Biostratigraphy uses obser-

vations on fossil taxa. Biostratigraphic events commonly used for this purpose are

the observed first and last occurrence (abbreviated to FO and LO) of each fossil

taxon considered. Co-occurrences of fossil taxa in the biostratigraphic record can be

used as well. Methods for the integration and long-distance correlation of observed

biostratigraphic events include the RASC method for RAnking and SCaling. The

main difference between RASC and other methods of regional biostratigraphic

correlation is that RASC estimates the relative positions of average fossil events

instead of maximal time-stratigraphic ranges, although maximal ranges also can be

obtained by using RASC. Different methods of quantitative stratigraphy are briefly

reviewed in this chapter. Initially, ranking is illustrated by application to a simple,

artificial dataset. Scaling is explained as a refinement of ranking. Implications of

techniques of sampling stratigraphic sections are discussed. RASC probable posi-

tions with error bars can be determined in different sections for CASC correlation

over long distances. This process makes use of spline-curve fitting (splining). For

method comparison, several datasets published by others are re-analyzed, not only

to establish regional biostratigraphic standards but also to perform correlations

between stratigraphic sections. These datasets include FOs and LOs of Eocene

nannofossils in wells drilled in California and trilobites from the Cambrian Riley

Formation in central Texas. Large-scale RASC/CASC applications involving many

thousands of observations include results for well data from the Cenozoic North Sea

basin, northwestern Atlantic margin and the Cretaceous seaway between Norway

and Greenland. Paleoceanographic interpretations of RASC biozonations

supplemented by analysis of variance to study diachronism and correlations

between wells are exemplified as well.

The international numerical geologic time scales have been and continue to be

partially based on spline-curves fitted to relate age determinations on rock samples

to their positions in the relative geologic time scale that is based on classifications

of rock units that can be correlated worldwide. Methods of time scale construction

are discussed at the end of this chapter.
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and Future Developments, Quantitative Geology and Geostatistics 18,
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9.1 Ranking and Scaling

RASC is an acronym for RAnking and SCaling of biostratigraphic events. Code of

the RASC computer program was originally published in Computers & Geosciences.
During the past 30 years this program has been continuously maintained and updated.

Its purpose is to combine biostratigraphic data from land-based sections or explo-

ratory wells drilled in sedimentary basins to construct a regional biozonation that can

be used for correlation between sections within a study area. The companion program

CASC (Correlation And Scaling) makes use of splining which is a powerful method

of curve-fitting. It is applied to correlate between stratigraphic sections on the basis of

ranking and scaling results for samples taken at irregular sampling intervals. Impli-

cations of sampling of stratigraphic sections are discussed in detail. Several examples

of past successful large-scale RASC/CASC applications will be given. The original

RASC method has been discussed in detail in Gradstein et al. (1985), Agterberg

(1990), Agterberg and Gradstein (1999) and Agterberg et al. (2013). CASC was

introduced in Agterberg et al. (1985). In this section, calculation of the “optimum”

sequence resulting from ranking will be explained using a simple, artificial example.

Subsequent scaling of the ranked optimum sequence can be useful for the construc-

tion of regional biostratigraphic event zonations.

Regional standard zonations resulting from either ranking or scaling can be used

for correlation between stratigraphic sections. Initially, the RASC/CASC programs

were written in FORTRAN for mainframe computers. Original code has remained

part of all later versions although it was modified and extended repeatedly. An

executable file for RASC & CASC Version 20 with manual and documentation can

be downloaded from a website maintained by the University of Oslo (http://www.

nhm2.uio.no/norlex/rasc). Complete code for Version 20 was made available

together with Agterberg et al. (2013). This latest software aims to provide easy

access to the RASC outputs in a user-friendly, interactive fashion and incorporates

CASC code for correlation between sections. Additionally, it contains code for less-

known techniques such as RASC analysis of variance and depth scaling. ActiveX

(OCX) Development Environment was chosen to implement all graphic modules

on a Windows platform (Liu et al. 2007).

9.1.1 Methods of Quantitative Stratigraphy

Quantitative stratigraphy uses logical and mathematical tools to help define the

stratigraphic framework of the Earth’s crust. Biostratigraphy uses observations on
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fossil taxa. Biostratigraphic events commonly used for this purpose are the

observed first and last occurrence (abbreviated to FO and LO) of each fossil

taxon considered. Co-occurrences of fossil taxa in the biostratigraphic record can

be used as well. The RASC method for ranking and scaling of the FOs and LOs

(also known as “rascing”) was first published 30 years ago (Agterberg and Nel

1982a, b). This method has become well-established. In paleontological textbooks

by Benton and Harper (2009), Foote and Miller (2007) and Hammer and Harper

(2005) it is listed as one of several methods described to construct regional

biostratigraphic zonations. The main difference between RASC and the other

methods is that it estimates the relative positions of average fossil events instead

of maximal time-stratigraphic ranges, although maximal ranges also can be

obtained by RASC, as will be seen in the next two sections. Zhou (2008) has

reviewed RASC/CASC in the context of quantitative stratigraphy and presents

interesting novel applications.

Quantitative biostratigraphy methods are statistical because of the large uncer-

tainties commonly associated with the positioning of biostratigraphic events.

Land-based biostratigraphic sections are more continuous and normally more

complete than km-deep exploratory wells drilled in sedimentary basins that usually

are sampled by collecting pieces of drill-core at discrete, regular intervals. RASC

can be applied to both kinds of data. It is based on a statistical model in which

averages are computed from samples of biostratigraphic events supposedly drawn

at random from an infinitely large population. Here the term “sample” is used for a

set of observations such as biostratigraphic events. Computationally, RASC is very

fast and can deal with up to 1,000 biostratigraphic events observed in dozens of

wells or land-based sections.

An early statistical method in quantitative stratigraphy was developed by Shaw

(1964) for use in hydrocarbon exploration. In this book, Shaw illustrates his

technique of “graphic correlation” on first and last occurrences of trilobites in the

Cambrian Riley Formation of Texas for which range charts had been published by

Palmer (1954). RASC/CASC results for this dataset will be briefly discussed in this

section for method comparison. Shaw’s method consists of constructing a “line of

correlation” on a scatter plot showing the locations of LOs and FOs of taxa in two

sections. If quality of information is better in one section, its distance scale is made

horizontal. LOs stratigraphically below and FOs above the line of correlation are

moved horizontally or vertically toward the line of correlation in such a way that

the ranges of the taxa become longer. The reason for this procedure is that it can be

assumed that observed highest occurrences of fossil taxa generally occur below

truly highest occurrences and the opposite rule applies to lowest occurrences.

Consequently, if the range of a taxon is observed to be longer in one section than

in the other, the longer observed range is accepted as the better approximation.

The objective is to find approximate locations of what are truly the First Appear-

ance Datum (or FAD) and Last Appearance Datum (LAD) for each of the taxa

considered. True FADs and LADs probably remain unknown but, by combining

FOs and LOs from many stratigraphic sections, approximate FADs and LADs

are obtained and the intervals between them can be plotted on a range chart.
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Two sections usually produce a crude approximation but a third section can be

plotted against the combination of the first two, and new inconsistencies can be

eliminated as before. The process is repeated until all sections have been used.

The final result or “composite standard” contains extended ranges for all taxa.

Software packages in which graphic correlation has been implemented include

GraphCor (Hood 1995) and STRATCOR (Gradstein 1996). The method can be

adapted for constructing lines of correlation between sections (Shaw 1964). Various

modifications of Shaw’s graphic correlation technique with applications in hydro-

carbon exploration and to land-based sections can be found in Mann and Lane

(eds., 1995).

Instead of attempting to statistically maximize the ranges of taxa in relative time

by successively adding sections, RASC estimates average positions of biostrati-

graphic events by simultaneously combining events from all sections that contain

them. Often, such average values are more precise than estimates of FADs and

LADs that are based on single event occurrences, because these can be anomalous

for various reasons including possible local reworking. Because average or “prob-

able” event positions are used, RASC-ranges generally are much shorter than

ranges obtained by graphic correlation. In later versions of RASC, approximate

LADs (and FADs) are estimated by outward projection from every estimated

average event position by adding (or subtracting) the single largest deviation for

each event. Consequently, RASC can be used for FAD and LAD estimation as well.

CASC correlations, however, remain based on average event occurrences and not

on estimates of FADs and LADs. A simple example of construction of RASC lines

of correlation followed by FAD/LAD estimation will be provided in the next

section.

In their chapter on quantitative biostratigraphy, Hammer and Harper (2005)

present separate sections on fivemethods of quantitative biostratigraphy: (1) graphic

correlation, (2) constrained optimization, (3) ranking and scaling, (4) unitary asso-

ciations and (5) biostratigraphy by ordination. Theory underlying each method is

summarized by these authors and worked-out examples are provided. Their book on

paleontological data analysis is accompanied by the free software package PAST

(available through www.blackwellpublishing.com/hammer) that has been under

continuous development since 1998. It contains simplified versions of CONOP

for CONstrained OPtimization (Sadler 2004) and RASC, as well as a comprehen-

sive version for Unitary Associations (Guex 1991), a method that puts much weight

on observed co-occurrences of fossil taxa in time. For comparison of RASC and

Unitary Associations output for a practical example, see Agterberg (1990). Multi-

variate statistical methods also can make useful contributions to the spatial and

temporal analysis of biostratigraphic events. These include principal component

analysis (Hohn 1993), correspondence analysis (Agterberg and Gradstein 1999) and

archeological seriation (Brower 1985).

CONOP was originally developed as a biostratigraphic adaptation of simulated

annealing by Kemple et al. (1989). Like RASC, it works on all sections simulta-

neously. A single line of correlation is constructed in N-dimensional space where

N is the number of sections. Biostratigraphic positions of all events are ranked

308 9 Quantitative Stratigraphy, Splining and Geologic Time Scales

http://www.blackwellpublishing.com/hammer


subject to constraints including preservation of known superpositional relations and

co-occurrences of taxa and events. Hammer and Harper (2005, p. 296) conclude

that constrained optimization is “an excellent, flexible method for biostratigraphy,

based on simple but sound theoretical concepts and potentially providing high-

resolution results”. For a recent summary of this method with an application, see

Cody et al. (2008).

CONOP also has been used for constructing numerical geologic time scales for

Paleozoic periods (Gradstein et al. 2004, 2012). In this approach, known age

determinations of rock samples for a period are plotted against the positions of

these samples along a relative geologic time-scale provided by the constrained

optimum sequence for a suitable group of fossils. When the ranges are plotted along

the vertical scale, their ordinates can be used as the abscissae in this new applica-

tion. A smoothing spline (Sect. 9.2) then is fitted with consideration of uncertainties

in both the age determinations and the stratigraphic positions of the rock samples.

This spline curve is used to estimate the ages of stage boundaries with 95 %

confidence intervals (Agterberg 2004; Agterberg et al. 2012).

Other methods of quantitative stratigraphy include Appearance Event Ordina-

tion (Alroy 2000) abbreviated to AEO, and graphic biostratigraphic correlation

using genetic algorithms (Zhang and Plotnick 2006). Alroy uses super-positional

information on taxa as follows: If it can be established that the FO of taxon A occurs

below the LO of taxon B in a section, this can be interpreted as a definitive F/L

(First/Last) statement because the FO of A can only be extended downwards toward

its FAD and the LO of B upwards towards B’s LAD. AEO attempts to honor all

F/Ls while minimizing the number of F/Ls that would be implied but are not

observed. This method is more sensitive to the possible occurrence of local

reworking than RASC. For a recent AEO application, see Crampton et al. (2012).

Zhang and Plotnick (2006) proposed to use genetic algorithms, a branch of

artificial intelligence that solves complex optimizations problems by imitating

neo-Darwinian evolution to solve the “traveling salesman” (TSM) problem. In

TSM there are N cities to be visited. In total, there would be 0.5 x N! possible
alternative trajectories. This number quickly becomes too large for the trajectories

to be investigated separately. A close-to-optimum trajectory is found by imposing

constraints so that sets of unsuitable solutions are successively eliminated. In

biostratigraphic applications the cities are replaced by biostratigraphic events and

the constraints include the super-positional (and co-existential) relations between

events. Zhang and Plotnick’s method resembles CONOP.

Especially during the first 20 years of its existence, RASC has been widely

applied to last occurrences of microfossils observed in cuttings obtained at discrete,

regular intervals (e.g., every 10 m) from exploratory wells drilled by oil companies

in sedimentary basins. To some extent, this sampling procedure affects the output as

will be discussed later (Sect. 9.3.2). Often in a sedimentary basin that is being

studied, there occur other types of stratigraphic events such as ash layers, seismic

events and gamma ray peaks, which are not subject to biostratigraphic uncertainty.

Some of these, especially ash layers, can be used for correlation without uncertainty

between stratigraphic sections that may be tens of kilometers apart. Seismic events
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and gamma ray peaks can be diachronous. In RASC “marker horizons” without

biostratigraphic uncertainty receive more weight in the calculations. Basic princi-

ples of RASC are introduced in the next section. A simple artificial example will be

used to illustrate ranking followed by determination of probable positions of

stratigraphic events in a RASC biozonation that can be used for CASC correlation

between sections. Scaling, equi-distant sampling effects and RASC analysis of

variance will be illustrated in Sect. 9.3 on the basis of large exploratory well

data sets.

9.1.2 Artificial Example of Ranking

Figure 9.1 shows three artificial stratigraphic sections in which three fossil taxa

(A, B and C) were observed to occur. Each taxon has first and last occurrence

(FO and LO) labelled 1 and 2, respectively. Consequently, there are six strati-

graphic events in total. The equidistant horizontal lines represent five regularly-

spaced sampling levels. The discrete sampling procedure changes the positions of

the FOs and LOs. As discussed in the previous section, any observed range for a

taxon generally is much shorter than its true range of occurrence. In our example,

the observed ranges become even shorter because of the discrete sampling. FOs and

LOs coincide in three places. In reality, the FO of a taxon always must occur

stratigraphically below its LO. It is because of the sampling scheme that these

two events can occur at the same level in our example (see circles in Fig. 9.1).

Fig. 9.1 Simple artificial example to illustrate construction of a RASC optimum sequence. Three

fossil taxa (a, b and c) have been observed at five equally spaced levels in three sections. Circles
indicate observed lowest (1) and highest (2) occurrences of the taxa. Distance between levels could
represent a 10-m sampling interval between cuttings taken from three exploratory wells drilled in a

sedimentary basin. The vertical heavy black lines represent ranges of the three taxa in the

hypothetical situation that the sampling interval would be very narrow. Even if the sampling

interval is not narrow, it can be assumed that any observed range of a fossil taxon is too short

because it is unlikely that the lowest (1) and highest (2) occurrence would coincide exactly with

the truly first and last occurrence of the taxon elsewhere in the sedimentary basin (Source:

Agterberg et al. 2013, Fig. 1)
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For comparison, coincident FO and LO would occur in land-based studies when

only a single fossil for a taxon would be observed in a stratigraphic section. In the

artificial example of Fig. 9.1 it is assumed that all three taxa occur in each section.

In practical applications, many taxa generally are missing from many sections. This

aspect of missing data will be discussed later on the basis of large exploratory well

data sets.

Table 9.1 shows the superpositional relationships of the six events defined by the

end points of solid lines for the three taxa in Fig. 9.1. Suppose that elements of this

matrix (F) are written as fij (i 6¼ j), where i¼ 1, 2 or 3 represent columns and j¼ 1,

2 or 3 are rows. Elements with i> j in the upper triangle of F have corresponding

elements in the lower triangle of F that are equal to fji¼ 3� fij. Suppose further that,
on the average, the six events succeed one another according to a true sequence that

is the same for all sections, which belong to an infinitely large (statistical) popula-

tion of sections. Any inconsistency such as the LO of taxon C occurring above the

LO of taxon B in Section 1 but below it in the other two sections is assumed to be

due to lack of information on the true ranges between FADs and LADs of the taxa in

any section. The “optimum sequence” is assumed to provide an approximation of

the true sequence of events. It is obtained by re-ordering the events along the rows

and columns of the matrix F in such a way that every event occurs more frequently

above any other event that occurs stratigraphically below it. In an optimum

sequence of biostratigraphic events, the frequencies fij (i 6¼ j) should satisfy the

relationship fij> fji.
Table 9.2 shows the slightly different superpositional relationships resulting

from the sampling at discrete, regular intervals. Because the FO and LO of an

event can coincide when rock samples are taken at discrete intervals, any observed

co-occurrence is scored as 0.5. If the events would form an optimum sequence,

fij� fji is required instead of fij> fji. Table 9.3 shows the optimum sequence

occurrence matrix for this example. It was obtained simply by moving the event

C1 in the stratigraphically downward direction to its new position between events

Table 9.1 This matrix shows

superpositional frequencies fij
(i 6¼ j) for pairs of events
defined for each fossil taxon

in the artificial example of

Fig. 9.1

C2 C1 B2 B1 A2 A1

1 C2 x 3 2 3 3 3

2 C1 0 x 0 1 2 3

3 B2 1 3 x 3 3 3

4 B1 0 2 0 x 2 3

5 A2 0 1 0 1 x 3

6 A1 0 0 0 0 0 x

Source: Agterberg et al. (2013, Table 1)

For example, in Sections 1 and 3, the heavy line segment range of

occurrence for taxon C has its highest point (C2) above the

highest point (B2) for taxon B but the reverse hold true in

Section 2. Consequently, the superpositional frequency of C2

(column i¼ 2) occurring above B1 (row j¼ 1) is f13¼ 2. The

corresponding lower triangle frequency fji of the i-th event occur-
ring below the j-th event satisfies fji ¼3� fij; e.g., f31¼ 1
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A2 and B1. The first step in the RASC computer program consists of finding the

ranked optimum sequence of events by systematically interchanging events until

the relation fij� fji is satisfied for all pairs of events in the new matrix. In practical

applications, it may not be possible to find such an order of events that is optimal

because cyclical inconsistencies involving three or more events can occur. For

example, if there are three events called E1, E2 and E3 with E1 occurring more

frequently above E2, E2 above E3, and E3 above E1, an optimum sequence cannot

be found by event position interchange. In RASC, various methods are used to cope

with inconsistencies of this type; for example, more weight is assigned to frequen-

cies fij based on larger samples.

In Fig. 9.2, the observed event level locations for the three taxa in the three

sections are plotted against their optimum sequence positions. The lines of corre-

lation were fitted by linear least squares. Each “probable” position line (PPL)

provides every event with a most likely position along the depth scale for the

section in which it occurs. The three PPL plots (Fig. 9.2a–c) are only slightly

different. In practical applications, sampling levels normally are defined along a

Table 9.2 Suppose that the

fossil taxa of Fig. 9.1 are only

sampled at the equally spaced

levels

C2 C1 B2 B1 A2 A1

1 C2 x 3 2 2.5 3 3

2 C1 0 x 0 0.5 2.5 3

3 B2 1 3 x 3 3 3

4 B1 0.5 2.5 0 x 2.5 3

5 A2 0 0.5 0 0.5 x 3

6 A1 0 0 0 0 0 x

Source: Agterberg et al. (2013, Table 2)

Points for pairs of events, which are observed to be coincident,

are circled in Fig. 9.1. For example, event A2 coincides with

event A1 in Sections 1 and 2. In RASC, coincident events in a

section both receive a score of 0.5. Consequently, f56¼ 2 (instead

of ¼ 3 in Table 8.1), and f65¼ 1

Table 9.3 The so-called

“optimum” sequence is

obtained by interchanging

rows and columns in

Table 9.2 so that in the new

matrix fij� fji (i, j¼ 1, 2, 3)

C2 B2 B1 C1 A2 A1

1 C2 x 2 2.5 3 3 3

2 B2 1 x 2.5 3 3 3

3 B1 0.5 0.5 x 2.5 3 3

4 C1 0 0 0.5 x 2.5 3

5 A2 0 0 0 0.5 x 3

6 A1 0 0 0 0 0 x

Source: Agterberg et al. (2013, Table 3)

In the RASC ranked optimum sequence for the artificial example,

C1 was moved downward between A2 and B1. Optimum

sequence based on Table 9.1 would be the same. RASC also

can be used when sampling is more continuous as in land-based

sections
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Fig. 9.2 Probable position lines (PPLs) for Sections 1–3 of Fig. 9.1 indicate most likely locations

of the six stratigraphic events in the three sections. In the CASC program such “probable”

locations, along with their error bars, are connected by straight lines between sections. a, b and

c are for Sections 1, 2 and 3, respectively (Source: Agterberg et al. 2013, Fig. 2)
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depth scale that is different for each section. PPL values are later used in CASC for

correlation of average event occurrences between sections.

The residuals, which are the differences between observed event locations and

corresponding PPL values in Fig. 9.2a–c, can provide useful information as illus-

trated in Table 9.4 for the artificial example. The rows in this table are for the three

taxa; s(1) and s(2) are standard deviations for FOs and LOs estimated from the three

residuals for each taxon. The next two columns in Table 9.4 represent lowest FO

and highest LO of each taxon. The “range” in the last column is the difference

between maximum LO and minimum FO. It has its largest value for Taxon B,

mainly because, according to the optimum sequence, B is out of place with respect

to A and C in Section 2. Table 9.4 illustrates how RASC, like other methods of

quantitative biostratigraphy, can be used for FAD/LAD approximation.

9.1.3 Scaling

The optimum sequence obtained by ranking (or “ranked optimum sequence”) often

can be refined by “scaling”, which consists of estimating intervals between succes-

sive optimum sequence events along a relative time scale. The ranked optimum

sequence serves as input for scaling. As the first step in scaling, each frequency fij is
converted into a relative frequency pij¼ fij/nij where nij is sample size. Next, the

values of pij are converted into intervals (interevent distances) along a relative time

scale. Unlike ranking, scaling is not subject to problems of cyclical inconsistencies

involving three or more events. The final order of events after scaling usually differs

slightly from the order of events in the ranked optimum sequence.

Basically, scaling was introduced to circumvent the following problem associ-

ated with ranking. Events in a ranked optimum sequence can be regarded as

equidistant along a linear scale such as the horizontal scales in Fig. 9.2a–c.

However, along a relative time scale, the events generally should not be equidistant.

For example, if two events are coeval on the average, their interevent distance along

a relative time scale should be zero. Events that occurred at approximately the same

Table 9.4 Statistics derived

from vertical deviations

between the six events and the

section PPLs in Fig. 9.2a–c

Taxon s(1) s(2) Min Max Range

A 0.61 1.19 �0.05 0.56 0.61

B 2.18 1.71 �0.59 0.80 1.39

C 1.82 1.66 �0.08 0.38 0.46

Source: Agterberg et al. (2013, Table 4)

Each standard deviation is computed from three observations

only; s(1) and s(2) are for FOs and LOs, respectively. Standard

deviations of this type are used in RASC variance analysis and for

estimation of error bars in CASC. Max andMin are for largest LO

and lowest FO. The RASC “range” (¼Max�Min) is comparable

to ranges for taxa derived by graphic correlation methods
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time should be clustering along this scale. In scaling every relative frequency pij is
changed into a “distance” Dij by means of the following transformation:

Dij ¼ Φ�1 pij
� �

where Ф�1 is the probit function representing the inverse of the standard normal

distribution. Figure 9.3 illustrates how observed relative frequencies of

superpositional relationships between two biostratigraphic events (labeled i and j)
are transformed into interevent distances along the RASC scale when the probit

transformation is used. This transformation is not very different from a simple

linear transformation. In practice, sample sizes nij generally are rather small.

Consequently, the individual relative frequencies pij are rather imprecise. Their

standard deviations can be estimated by means of the binomial frequency distribu-

tion model. Re-phrasing the problem in terms of probabilities, it can be said that it is

attempted to estimate Δij representing the expected value ofDij in an infinitely large

population. The concept of direct distance estimation is graphically illustrated in

Fig. 9.4. The problem of lack of precision of individual distance estimates Dij can

be circumvented by incorporating for estimation all other biostratigraphic events

(labeled k) in the vicinity of the pair for which the “true” interevent distance Δij is

being estimated, by using the theorem
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Fig. 9.3 Graphical representation of probit transformation. Every observed relative frequency is

transformed into an interevent distance along the relative time scale used in scaling. Because all

sample sizes are small, relative frequencies outside the range shown in this figure generally do not

occur (Source: Agterberg et al. 2013, Fig. 3)
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P Dij > 0
� � ¼ P Dij�k > 0

� � ¼ Ф Δij

� �

where P denotes probability, and both Dij and Dij∙k¼Dik�Djk are normally dis-

tributed with expected values equal to Δij (cf. Agterberg 1990, Equation 6.4).

In principle, this means that all other events (k) can be used to estimate the

interevent distance between any pair of events (i and j). In practice, other events

labeled k that are relatively far removed from the events labeled i and j cannot be
used because this would result in values of�1 or +1. RASC uses a variety of end

corrections to prevent this particular problem from significantly affecting the

interevent distance estimation.

The statistical model of scaling also can be clarified as follows. Suppose that,

along the RASC scale, all biostratigraphic events are normally distributed with

different mathematical expectations but with the same variance (σ2). Interevent
distancesDij then also are normally distributed with mean Δij but variance 2·σ

2, and

differences between interevent distances Dij∙k are normally distributed with mean

Δij and variance 3·σ2. Even if the original events do not have the same variance,

different Dij∙k variances are not as different as original event variances because

these are being averaged. These considerations apply to an infinite statistical

population from which small samples are being drawn. For equations of small-

sample variances, see Agterberg (1990). Finally, it is noted that setting

Dij¼Ф� 1( pij) implies σ2¼ 2. This arbitrary choice of variance controls the unit

for plotting events along the RASC interevent distance scale, which is relative.

Fig. 9.4 Estimation of distance ΔAB between A and B from two-event inconsistencies frequency

p(DAB< 0)¼ 1�P(DAB> 0). If XA and XB are random variables for location of events A and B

along the horizontal distance scale (x-axis), the random variable DAB¼ xA� xB is negative only

when order of A and B in section is reverse of order of the expected average locations EXA and

EXB. The variance of DAB is twice as large as the variance σ2 of the individual events A and B

(Source: Agterberg 1990, Fig. 6.5)
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9.1.4 Californian Eocene Nannofossils Example

Hay (1972) used stratigraphic information on calcareous nannofossils from sections

in the California Coast Ranges for example of application of his original ranking

method (see Fig. 9.5 for locations). These sections originally had been studied by

Sullivan (1964, 1965) and Bramlette and Sullivan (1961). The distribution of Lower

Tertiary nannoplankton described in the latter three papers also was used for

example by Davaud and Guex (1978) and Guex (1987) for testing various types

of stratigraphic correlation techniques. The original paper by Hay (1972) resulted in

extensive discussions (e.g., Edwards 1978; Harper 1981) and applications of other

techniques to the Hay example (e.g., Hudson and Agterberg 1982).

Hay (1972) restricted his example to Lower Tertiary nannofossils for samples

shown on Sullivan’s (1965) correlation chart augmented by stratigraphic informa-

tion on the Lodo Gulch section from Bramlette and Sullivan (1961). Several of the

nannofossil taxa used are known to occur in older Paleocene strata in the Media

Ague Creek and Upper Canada de Santa Anita sections (see Sullivan 1964).

Incorporation of this other information in the example slightly improves results of

the quantitative stratigraphic analysis with respect to lowest occurrences of

nannofossils in these two sections (see Agterberg 1990). Tables 9.5 and 9.6 are

examples of dictionary input files used this example. Hay (1972) selected lowest

occurrences of nine taxa and the highest occurrence of one taxon (Discoaster
tribrachiatus) shown by symbols in Fig. 9.6 (Table 9.7). Original sample location

information is shown in Fig. 9.7 for three sections. Table 9.8 contains original data

Fig. 9.5 Locations of

sections in the Sullivan

(1965, Table 6) database

for the Eocene used by

Hay (1972) for example

(see Fig. 9.4) (Source:

Agterberg 1990, Fig. 4.1)
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for the Media Agua Creek section that contains nine of the ten stratigraphic events

used for example. Guex (1987) used graph theory to construct “unitary associa-

tions”, which have essentially the same properties as Oppel zones in biostratigra-

phy. Emphasis in this approach is on coexistences of taxa. Adjoining samples are

combined into levels representing “maximal horizons” (cf. Guex 1987, p. 20) as

illustrated for the Media Agua Creek example in the bottom row of Table 9.8.

The two columns on the right of Fig. 9.6 represent a subjective ranking and

Hay’s original optimum sequence, respectively. This optimum sequence has the

property that every event in it is observed more frequently above all events below it

than it is observed below these other events. Every frequency for superpositional

relationship of a pair of events can be tested for statistical significance by means of

Table 9.5 RASC dictionary

(DIC file) for Hay example

Source: Agterberg (1990, Table 4.1)

LO and HI represent lowest and

highest occurrences of nannofossils,

respectively

Table 9.6 Nannofossil name file (preliminary DIC file) for Sullivan database as originally

coded by Davaud and Guex (1978) and used by Agterberg et al. (1985)

Source: Agterberg (1990, Table 4.2)

RASC DIC file of Table 9.5 was obtained automatically from this file
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Fig. 9.6 Hay’s (1972) example. One last occurrence and nine “first” occurrences of Eocene

nannofossils selected by Hay (1972) from the Sullivan Eocene database. Explanation of symbols:

δ¼LO, Coccolithus gammation; Φ¼LO Coccolithus cribellum; Θ¼LO, Coccolithus solitus;
V¼LO, Discoaster cruciformis; <¼ LO, Discoaster distinctus; Π¼LO, discoaster germanicus;
U¼LO, discoaster minimus; W¼HI, Discoaster tribrachiatus; Δ¼LO, Discolithus distinctus;
□¼LO, Rhabdosphaera scabrosa. See Fig. 8.3 for locations of the nine sections (A–I). Some LOs

are for nannofossils also found in Paleocene (Sullivan 1964, Table 3). The columns on the right
represent subjective ordering of the events and Hay’s original optimum sequence (Source:

Agterberg 1990, Fig. 4.2)

Table 9.7 Two possible RASC sequence (SEQ) files for Hay example

Source: Agterberg (1990, Table 4.3)

Minus signs (or hyphens) denote coeval events (cf. Fig. 9.2). The last entry is followed by �999 to

indicate end of sequence. Left side: SEQ file for stratigraphically downward direction; right side:

SEQ file for stratigraphically upward direction
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the binomial frequency distribution model. Figure 9.8 shows the difference between

1 and the cumulative probability P(k,n) that an event occurs k times above another

one in a sample of size n. If 1�P(k,n) exceeds 0.95, the fraction k/n is non-random
in that it is greater than 0.5 with a probability of at least 95 %. Only six of nine pairs

Fig. 9.7 Original stratigraphic information for three sections (F–H) of Sullivan database with

stratigraphic correlation based on nannoplankton faunizones according to Sullivan (1965).

Table 9.4 contains information on distribution of nine taxa in core samples (Source: Media

Agua Creek section (Source: Agterberg 1990, Fig. 4.3)
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involving the event W, which occurs at or near the top of all (nine) sections (labeled

A to I in Fig. 9.6) are statistically significant for this level of significance. This

binomial test has the drawback that it can consider pairs of events only. A multi-

variate approach as followed in RASC is more appropriate. This is illustrated in

Fig. 9.9 for some of the events in the Hay example.

Table 9.8 Stratigraphic distribution of nine taxa of fossil nannoplankton for individual core

samples in the Media Agua Creek area, Kern County, California (according to Sullivan 1964,

Table 3, and Sullivan 1965, Table 6)

Source: Agterberg (1990, Table 4.4)

Stratigraphic distance (D) in feet was measured upward and downward from the “Tejon” Forma-

tion; Paleocene-Eocene boundary occurs between 103 and 118 ft. Fossil (F) numbers in first

column are as in Table 9.6. A-abundant, C-common, 0-few, x-rare. Single bar indicates strati-

graphic events E1 to E10 used in Table 9.5 and Fig. 9.3 (as defined for core samples extending up

to 88 ft below the “Tejon” Formation); relative superpositional relations (as shown in Fig. 9.2)

would be changed if lowest occurrences of four taxa in Paleocene shown in lower part of this table

were used. Level (L) as in Guex (1987, p. 228)
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As mentioned in Sect. 9.1.3, it usually is not possible to obtain a unique optimum

sequence in practice because of cycling events. This problem is illustrated for a

three-event cycle in Fig. 9.10. More than three events can be involved in cycling

(Agterberg 1990) In the RASC computer program, a ranking solution is obtained by

first identifying all subgroups of events involved in cycling and then followed by

“breaking” the cycles using sample size considerations. Scaling is not subject to

cycling problems and has the additional advantage that it quantifies the strengths of

all superpositional relationships. Ranked and scaled optimum sequences for the Hay

example are shown in Fig. 9.11. Intermediate steps before the final scaling solution

of Fig. 9.11b was obtained are illustrated in Tables 9.9, 9.10, 9.11, and 9.12.
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Fig. 9.8 Values of (1�P) where P represents the probability that the sequential relation between

two events is non-random according to Hay (1972) (Source: Agterberg 1990, Fig. 5.2)

Fig. 9.9 Diagrams to illustrate superpositional relations between (a) three events and (b) four

events in the Hay example. Although Δ and Φ both occur only in four sections, their

superpositional relation is probably non-random because of their relations with other events

(Source: Agterberg 1990, Fig. 5.3)
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9.2 Spline-Fitting

Spline-curve fitting or splining is a powerful different approach to finding the

functional relationship between two variables. The smoothing spline combines

spline interpolation with curve-fitting by least squares if one of the variables is

free of uncertainty. It can be made applicable to the situation that both variables are

subject to uncertainty. Together with the jackknife method, spline-fitting is helpful

in numerical timescale construction and other applications in quantitative stratig-

raphy. Spline functions have a long history of use for interpolation; e.g. in numer-

ical integration. Their use for smoothing is a later development which commenced

with the discovery of smoothing splines by Schoenberg (1964) and Reinsch (1967).

Whittaker (1923) already had proposed an early variant. There is a close relation-

ship between smoothing splines and kriging (Watson 1984; Dubrule 1984).

Figure 9.1 illustrates the concepts of interpolation and smoothing spline func-

tions. An excellent introduction to smoothing splines is provided in Eubank (1988).

Although splines of higher and lower orders can be constructed, the third-order or

cubic smoothing spline seems to be optimum for the treatment of observations at

irregularly spaced intervals. During the past 20 years splining has been used to aid

in creating the Mesozoic timescale (Agterberg 1988) and the international geologic

Fig. 9.10 Example of cycling events (based on initial matrix of Worsley and Jorgens 1977). In

each matrix, the order of the rows is the same as the order of the columns. Unlike the examples of

Figs. 9.1 and 9.3, the algorithm for ordering does not yield an optimum sequence because the

initial matrix (a) returns after six iterations as the matrix (g). The directed graph at the bottom has

the four events at its corner points with arrows denoting directions of the super-positional

relationships. The three-event cycle is characterized by the closed loop with arrows on edges

connecting A, B, and C pointed in the same, clockwise direction. The other closed loop (ADC) is

subsidiary to ABC because the event D does not participate in the cycling (Source: Agterberg

1990, Table 5.13 and Fig. 5.7)
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timescale (Agterberg et al. 2013). Accuracy and precision are both important when

geologic timescales are constructed. The use of significance tests and confidence

intervals can be illustrated by comparing different geologic time scales with one

another. As pointed out by Gradstein et al. (2012), the time scale is the tool “par

excellence” of the geological trade. Insight into its construction, strengths and

limitations greatly enhances its function and its utility. The calibration to linear

time of the succession of events recorded in the rocks of the Earth has three

components: (1) the international stratigraphic divisions and their correlation in

the global rock record; (2) methods of measuring linear time or elapsed durations

from the rock record; and (3) methods of joining the stratigraphic scale and the

linear scale to assign numerical ages (measured in millions of years ago, or Ma) to

the boundaries between the stratigraphic divisions (cf. Gradstein et al. 2012, p. 1).

9.2.1 Smoothing Splines

The interpolation spline curve passes through all (n) observed values. Along the

curve there are a number of knots where various derivatives of the spline function

are forced to be continuous. In the example of Fig. 9.12, the knots coincide with the

Fig. 9.11 RASC results for Hay example of Fig. 9.6 (After Agterberg and Gradstein 1988);

(a) ranked optimum sequence; (b) scaled optimum sequence. Clustering of events 1 to 7 in the

dendrogram (b) reflects the relatively large number of two-event inconsistencies and many

coincident events near the base of most sections used (Source: Agterberg 1990, Fig. 6.3)
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Table 9.9 Unweighted distance estimation to obtain intervals between successive events along

RASC distance scale for Hay example

A 9 10 8 6 4 7 5 1 3 2

9 x 3.0/6 5.0/5 4.0/4 6.0/7 7.0/7 9.0/9 8.0/8 6.0/6 80/8

10 3.0/6 x 2.5/3 000 35/5 4.5/5 5.0/6 4.5/5 3.5/4 4.5/5

8 00/5 05/3 x 000 3.0/4 4.5/5 5.0/5 5.0/5 4.0/4 5.0/5

6 0.0/4 000 000 x 30/4 1.5/3 3.0/4 2.5/3 3.0/4 3.0/4

4 1.0/7 1.5/5 1.0/4 1.0/4 x 3.5/6 4.5/7 4.5/6 4.5/6 3.0/6

7 0.0/7 05/5 0.5/5 15/3 2.5/6 x 3.5/7 4.0/6 3.5/5 4.5/6

5 0.0/9 10/6 0.0/5 10/4 2.5/7 3.5/7 x 4.5/8 4.0/6 5.0/8

1 0.0/8 05/5 0.0/5 0.5/3 15/6 2.0/6 3.5/8 x 2.5/5 5.0/7

3 0.0/6 05/4 0.0/4 1.0/4 1.5/6 1.5/5 2.0/6 2.5/5 x 3.0/6

2 0.0/8 0.5/5 00/5 1.0/4 3.0/6 1.5/6 3.0/8 2.0/7 3.0/6 x

B 9 10 8 6 4 7 5 1 3 2

9 x 0.000 1.645 1.645 1.068 1.645 1.645 1.645 1.645 1.645

10 0.000 x 0.967 000 0.524 1.282 0.967 1.282 1.150 1.282

8 1.645 0.967 x 000 0.674 1.282 1.645 1.645 1.645 1.645

6 �1.645 000 0.00 x 0.674 0.000 0.674 0.967 0.674 0.674

4 �1.068 �0.524 �0.674 �0.674 x 0.210 0.366 0.674 0.674 0.000

7 �1.645 �1.282 1.282 0.000 �0.210 x 0.000 0.430 0.524 0.674

5 1.645 �0.967 1.645 �0.674 �0.366 0.000 x 0.157 0.430 0.318

1 �1.645 �1.282 1.645 �0.967 �0.674 �0.430 �0.157 x 0.000 0.566

3 �1.645 1.150 1.645 0.674 �0.674 �0.524 �0.430 0.000 x 0.000

2 �1.645 �1.282 �1.645 �0.674 0.000 0.674 �0.318 �0.566 0.000 �
C 10 8 6 4 7 5 1 3 2

9 0.000 1.645 000 �0.577 0.577 000 000 000 000

10 x 0.967 000 000 0.758 0.315 0.315 0.132 0.132

8 0.678 x 000 000 0.608 0.363 0.000 0.000 0.000

6 000 0.000 x 0.674 �0.674 0.674 0.293 0.293 0.000

4 0.544 �0.150 0.000 x 0.210 0.156 0.308 0.000 0.674

7 0.363 0.000 1.282 0.210 x 0.000 0.430 0.094 0.150

5 0.678 �0.678 0.971 0.308 0.366 x 0.157 0.273 0.112

1 0.363 �0.363 0.678 0.293 0.244 0.273 x 0.000 0.566

3 0.495 �0.495 0.971 0.000 0.150 0.094 0.430 x 0.000

2 0.363 0.363 0.971 0.674 �0.674 0.356 �0.248 0.566 x

Sum/N* 3.98/8 0.56/8 4.87,6 1.16/7 1.56/9 1.60/8 1.69/8 0.51/8 0.06/8

Source: Agterberg (1990, Table 6.2)

A. P-matrix of relative frequencies for the ten events in order of optimum sequence, Values

excluded because of threshold m2c¼ 3 are shown as 000. B. Z-values corresponding to P-values.

Note that threshold qc is equal to 1.645. C. Values are differences between values in successive

columns of Table 9.2. Zero differences for pairs of qc –values are shown as 000 and were not used.
Bottom row shows sums for columns with number of values (N*) used for obtaining sum
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Table 9.10 Unweighted

distance analysis of values

shown in Table 9.9 continued

to obtain cumulative RASC

distances of events

Events N* Sum Interval Distance

1 9-10 8 3.98 0.935 0.435

2 10-8 8 0.56 0.070 0.506

3 8-6 6 4.87 0.812 1.318

4 6-4 7 1.16 0.166 1.484

5 4-7 9 1.56 0.174 1.658

6 7-5 8 1.60 0.200 1.858

7 5-1 8 1.69 0.211 2.069

8 1-3 8 0.51 0.064 2.132

9 3-2 8 0.06 0.008 2.140

Source: Agterberg (1990, Table 6.3)

The origin of the scale is set at the first event. Consequently, the

distance for event 9 is equal to zero. Event 10 has distance of

0.435; Event 2 has largest cumulative RASC distance (¼2.140)

Table 9.11 Weighted

distance analysis of values

shown in Table 9.10

Events W Sum Interval s X
� �

Distance

1 9-10 10.3 3.27 0.317 0.100 0.317

2 10-8 7.0 1.24 0.176 0.289 0.493

3 8-6 4.7 3.62 0.770 0.203 1.262

4 6-4 9.2 2.44 0.266 0.163 1.529

5 4-7 15.0 2.34 0.157 0.153 1.686

6 7-5 14.8 2.32 0.157 0.085 1.893

7 5-1 15.2 2.96 0.195 0.082 2.038

8 1-3 12.6 1.47 0.117 0.090 2.155

9 3-2 13.3 �0.08 �0.006 0.124 2.149

Source: Agterberg (1990, Table 6.4)

The Z-values were weighted according to sample size and stan-

dard deviations were computed as well. Note that the interval

between events 3 and 2 (on bottom row) is negative. As a result,
event 9 has RASC distance (¼2.149) which is less than that of

event 8 (¼2.155)

Table 9.12 Example of

weighted distance analysis

after reordering

Events Interval s X
� �

Distance

1 9-10 0.317 0.100 0.317

2 10-8 0.176 0.289 0.493

3 8-6 0.770 0.203 1.263

4 6-4 0.266 0.163 1.530

5 4-7 0.157 0.153 1.686

6 7-5 0.157 0.085 1.843

7 5-1 0.195 0.082 2.038

8 1-2 0.118 0.147 2.156

9 2-3 0.006 0.124 2.162

Source: Agterberg (1990, Table 6.5)

The optimum sequence used as input for scaling was not the

ranking result used as input for Tables 9.9, 9.10, and 9.11 but

the ranking of events in the scaled optimum sequence in the last

column of Table 9.11. Differences between Tables 9.11 and 9.12

are restricted to values in two bottom rows only
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data points. A separate cubic polynomial curve with four coefficients is computed

for each interval between two successive data points. These cubics must have

continuous first and second derivatives. After setting the second derivative equal

to zero at the first and last data points, the continuity constraints yield so many

conditions that all (4n� 4) coefficients can be computed. Smoothing splines have

the same properties as interpolation splines except that they do not pass through the

data points. Instead of this, they deviate from the observed values by an amount that

can be regulated by means of the smoothing factor (SF) based on the average mean

squared deviation. For each specific value of SF, which can be set in advance, or

estimated by cross-validation, a single smoothing spline is obtained. Various

methods of estimating the smoothing factor were discussed by Wahba (1990).

9.2.2 Irregularly Spaced Data Points

In his book on spline smoothing and non-parametric regression, Eubank (1988,

p. 153) discusses that unequally spaced data points may give poor results for

smoothing splines. De Boor (1978) pointed this out for interpolation splines. In

order to avoid poor results of this type for constructing age-depth curves from

biostratigraphic data, Agterberg et al. (1985) proposed the following simple “indi-

rect” method. The following experiment with interpolation splines illustrates how

the problem of unrealistic oscillations can be avoided, using this indirect method. It

should be kept in mind that the problem of oscillations in data gaps becomes even

more serious if the data are subject to much “noise” as in microfossil applications in

biostratigraphy.

Figure 9.13 is based on an example of De Boor (1978, Fig. 8.1, p. 224). In total,

49 observations were available for a property of titanium (Y) as a function of

temperature (X). These data have regular spacing along the X-axis. Irregular

spacing was simulated by De Boor by selecting n¼ 12 data points which are closer

y y

a b

yi = a+bxi+cxi
2+dxi

3

yi = Yi

y�i = y�i–1
y��i = y��i–1

Xi ≤ xi < Xi+1
ei

Yi−1 Yi+1

Xi+1Xi x x

n
Σe2

iSF=

Xi–1

At x=Xi:
Yi

Fig. 9.12 Schematic diagrams of cubic interpolation spline and cubic smoothing spline. The cubic

polynomials between successive knots have continuous first and second derivatives at the knots.

The smoothing factor (SF) is zero for interpolation splines. In most applications, the abscissae of

the knots coincide with those of the data points (Source: Agterberg 1990, Fig. 3.8)
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together on the peak than in the valleys. De Boor used this example to illustrate that

poor results may be obtained even if use is made of a method of optimum spline

interpolation in which best locations are computed for (n� k) knots of a k-th order

spline. For the example of Fig. 9.13, k¼ 5 so that seven knots are used. Although

these seven knots have optimum locations along the X-axis, the result is obviously
poor, because the shape of the relatively narrow peak is reflected in non-realistic

oscillations in between the more widely spaced data points in the valleys. De Boor

(1978, p. 225) pointed out that using a lower-order spline would help to obtain a

better approximation. In subsequent applications, use is made of cubic splines only

(k¼ 3). Figure 9.14a shows the cubic interpolation spline for the 12 regularly

spaced points of Fig. 9.2 using knots coinciding with data points. Contrary to the

fifth order spline with seven knots, the new result provides a good approximation.

However, deletion of three more points from the valleys (Fig. 9.14b) begins to give

the relatively poor cubic interpolation spline of Fig. 9.14c which has unrealistic

oscillations in the valleys because all intermediate data points were deleted.

The bottom half of Fig. 9.14 shows results obtained by applying the indirect

method to the situation that led to the worst cubic-spline result for the previous

example (seven data points in Fig. 9.14c). Figure 9.14d is the cubic interpolation

spline for seven regularly spaced “levels”. Figure 9.14e is a monotonically increas-

ing cubic smoothing spline with a small positive value for SF for the relation

between X and level. Figure 9.14f represents the combination of the curves of

Fig. 9.14d, e. Its approximation to the original pattern for the 49 values of Fig. 9.13

is only relatively poor in the valleys where no data were used for control. Unreal-

istic oscillations could be avoided by the use of the three-step indirect method of

Fig. 9.14d–f.

Fig. 9.13 De Boor (1978,

Fig. 8.1, p. 224) simulated

irregular spacing along x-
axis by selecting 12 points

(solid circles) from set of

49 regularly spaced

measurements of a variable

( y) as a function of another

variable (x). The optimum

fifth order interpolation

spline (with seven knots)

provides a poor fit except

around the peak (Source:

Agterberg 1990, Fig. 3.9)
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9.2.3 Tojeira Sections Correlation Example

A great variety of methods are available for eliminating noise from geoscience data.

Several of these methods including (1) curve-fitting and 2-D or 3-D trend analysis

using polynomial or Fourier series, (2) geostatistical kriging, (3) signal-extraction

(from statistical theory of engineering), (4) inverse distance weighting, and (5) sim-

ple moving averaging, are applied in various case histories in this book. Smoothing

splines used later in this chapter for estimation of the ages of stage boundaries in the

geologic time scale and in long-distance correlation between biostratigraphic sec-

tions in wells drilled in sedimentary basins. The following example is a case history

study of using smoothing splines between two land-based sections using microfos-

sil abundance data.

Fig. 9.14 Top part. Cubic interpolation splines with knots at data points fitted to irregularly

spaced data. (a) Use of same 12 data points as in Fig. 9.13 gives good result; (b) Deletion of three

points in the valleys still gives a fair interpolation spline although local minima at both sides of the

peak are not supported by original data set of 49 measurements; (c) deletion of two more points in

the valleys results in poor cubic interpolation spline. Bottom part: Indirect method of cubic spline-

fitting. (d) The six intervals along the x-axis between data points were made equal before

calculation of cubic interpolation spline; (e) non-decreasing cubic spline with small positive

value of smoothing factor (SF¼ 0.0038) was fitted to interval as function of “levels”; (f) curves

of (d) and (e) were combined with one another and re-expressed as cubic spline function

which does not show the unrealistic fluctuations of the cubic interpolation spline of Fig. 9.14c

(Source: Agterberg 1990, Fig. 3.10)
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Figure 9.15 shows two sections in the Montejunto area in Portugal originally

sampled by Stam (1987) and later resampled by Agterberg et al. (1990). The

purpose of this project was to perform quantitative analysis of occurrence of Middle

and Late Jurassic Foraminifera in this area and its implications for the Grand Banks

of Newfoundland that can only be sampled by drilling. The Tojeira 1 section with

sample numbers 6.2–6.29 (after Stam 1987) is shown on the left side of Fig. 9.15.

It is continuously exposed and occurs about 2 km southeast of the Tojeira 2 section

Fig. 9.15 Left side. Tojeira 1 section with sample members 6.2–6.29 (After Stam 1987); ammo-

nite zones (Planula and Platynota Zones) of Mouterde et al. (1973) also are shown. This section is

immediately overlain by the poorly exposed sandy Cabrito Formation. Right side: Tojeira 2 section
with sample numbers 12.1–12.11 and 11.1–11.23 of Stam (1987) (Source: Agterberg 1990,

Fig. 3.2)
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(Fig. 9.15, right side) with Stam’s sample numbers 12.1–12.11 and 11.1–11.23. The

Tojeira 2 section is not continuously exposed; two missing parts are estimated to be

equivalent to 35 and 50 m in the stratigraphic direction, respectively.

Tojeira shale contains a rich and diversified (over 45 taxa) planktonic and

benthonic foraminiferal fauna, including Epistomina mosquensis. Stam determined

from 21 to 43 species per sample in Tojeira 1; between 301 and 916 benthos was

counted per sample; proportions were estimated for 14 species. Gradstein and

Agterberg (1982) had worked previously with highest occurrences of Foraminifera

in offshore wells drilled on the Labrador Shelf and Grand Banks. The samples were

small cuttings obtained during exploratory drilling by oil companies. Such samples

are small, taken over long intervals and subject to down-hole contamination so that

only highest occurrences (not lowest occurrences) of Foraminifera can be deter-

mined. Such problems associated with exploratory drilling can be avoided on land

if continuous outcrop sampling is possible. According to paleogeographic recon-

structions, the Lusitanian and Grand Banks Basins were close to one another during

the Jurassic and had comparable sedimentary, tectonic and faunal history (Stam

1987). On land continuous outcrop sampling can be undertaken in the Lusitanian

Basin only.

After preliminary statistical analysis of Stam’s data, new samples from the two

Tojeira sections were collected. Only relatively few samples were taken at exactly

the same places where Stam had sampled before. Scattergrams (Agterberg 1990,

Fig. 3.3) show typically poor correlations between proportions estimated from

counts for species in the same sap-les at the same spots. These scattergrams

essentially reflect random counting errors that satisfy the binomial distribution

model (Fig. 2.2). Figure 9.15 shows sequences of samples (both Stam’s and later

data) for the two sections. Distances in the stratigraphic direction are given in meters

measuring downward from Stam’s stratigraphically highest sample in Tojeira 1 that

was taken just below the base of the overlying Cabrito Formation. The stratigra-

phically highest sample in Tojeira 2 (No. 11.19) occurs about 6 m below this base.

The data for E. mosquensis plotted in Fig. 9.16 were tabulated in Agterberg

et al. (1990, Table 3). As shown by Nazli (1988), Tojeira microfossil abundances

are normalized when the probit transformation is applied. This transformation

(cf. Sect 2.3.1) reduces the influence of both relatively high and low proportions.

Such normalization is desirable because smoothing splines are fitted by using the

method of least squares in which the influence of each deviation from the curve

increases according to the square of its magnitude.

Results for the indirect method of Fig. 9.14 applied to E. mosquensis in Tojeira

1 and 2 are shown in Fig. 9.16. The two spline-curves were slid with respect to one

another until a “best” fit was found (Fig. 9.16, right side). A 10 m downward slid of

the Tojeira 2 sequence, which places the base of the overlying Cabrito Formation in

nearly the same stratigraphic position in both sections, producers the best correla-

tion. It may be concluded from the pattern of Fig. 9.16 (right side) that both Tojeira

1 and 2 share essentially the same changes in relative abundance of E. mosquensis
during deposition of the approximately 70 m of Late Jurassic shale in this part of the

Lusitanian Basin.
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9.3 Large-Scale Applications of Ranking and Scaling

In applications to real datasets, attention has to be paid to the frequency

distributions of single events as well as to the two-dimensional frequency distribu-

tions of pairs of events included in the dataset. This is because of the prevalence

of missing data in practical applications. Biostratigraphic exploratory well data

primarily consist of last occurrences (LOs) of taxa, because the sampling procedure

normally consists of taking cuttings at regular intervals during the drilling. As

mentioned before, lower down a well, material from higher up may contaminate

later cuttings so that observed locations of FOs can become biased and, therefore,

should not be used. The following real-data examples of cumulative event fre-

quency distributions are for Cenozoic microfossils from (A) 30 North Sea wells,

using 1,430 event records of 289 taxa of benthic and planktonic Foraminifera,

miscellaneous shelly microfossils, and dinoflagellates (from Kaminski and

Gradstein 2005), and (B) 27 Labrador and northern Grand Banks wells, using

960 event records of 178 taxa of benthic and planktonic Foraminifera, and miscel-

laneous other microfossils (from Gradstein and Agterberg 1982). Figure 9.17 shows

cumulative frequency distributions for all events in datasets (A) and (B). These

Fig. 9.16 Left side. Indirect method of cubic spline fitting illustrated in Fig. 4.9d–f applied to

probits of Epistomina mosquensis abundance data for Tojeira 1 section. Right side: Same with

observations and spline curve for Tojeira 2 section superimposed. Patterns were slid with respect

to one another until a reasonably good fit was achieved. Zero distance (at sample 6.29 in Tojeira 1)

falls just below base of overlying Cabrito Formation (cf. Fig. 9.15). Correlation between the two

sections is poorest along the 35 m data gap in Tojeira 2 (Source: Agterberg 1990, Fig. 3.11)
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curves are “hollow” because relatively many events are observed in one or a few

exploratory wells only. By means of the chi-square test for goodness of fit,

Agterberg and Liu (2008) have shown that the frequencies for dataset (A) satisfy

the logarithmic series distribution model (see Sect. 2.2.4). The frequencies shown

in Fig. 9.17 are also the marginal frequencies of the two-dimensional frequency

2
0

100

200

300

400

4 6 8 10 12 14 16
Number of Wells

File Name: 30cen

File Name: ceno3

C
um

ul
at

iv
e 

F
re

qu
en

cy
C

um
ul

at
iv

e 
F

re
qu

en
cy

18 20 22 24 26 28 30

2
0

20

40

60

80

100

120

140

160

180

4 6 8 10 12 14 16
Number of Wells

18 20 22 24 26 28

a

b

Fig. 9.17 Cumulative fossil event frequency distributions for Cenozoic Foraminifera and other

microfossil events within North Sea Basin (a) and along northwestern Atlantic margin (b). The

RASC threshold parameter for Minimum Number of Sections (MNS) was set equal to six and

seven for datasets (a) and (b), respectively (Source: Agterberg et al. 2013, Fig. 4)
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distributions for all possible pairs of events, which are subject to many further

occurrences of missing data.

9.3.1 Sample Size Considerations

Because of the prevalence of missing data, an important input parameter in any

RASC run is the Minimum Number of Sections (MNS) in which an event should

occur (in RASCW program documentation, MNS is called kc). From a statistical

point of view, RASC results rapidly improve when MNS is increased because of

greater precision of the relative frequencies (pij). The downside of large MNS is that

low-frequency but biostratigraphically important events could become excluded from

the RASC standard zonation. This problem is circumvented as follows: Commonly,

the user chooses a value of MNS together with up to 20 “unique events” that occur in

fewer than MNS wells. Unique events are biostratigraphically significant (e.g. they

may be for index fossils) although they occur rarely, perhaps in a single well. They

are added to the ranked optimum sequence and also incorporated in the RASC

zonation after scaling. Figure 9.18 shows an output example of scaling for dataset

(A) with MNS¼ 6 and ten unique events. The method by which RASC distances

involving unique events are estimated is shown in Fig. 9.19.

Figure 9.18 is an example of a RASC scaling dendrogram in which the estimated

interevent distances between successive events in the scaled optimum sequence are

plotted to the left in the horizontal direction and connected by lines dropped in the

stratigraphically downward direction. In the original RASC dictionary for any

dataset, all events have a name and an event number (last two columns of

Fig. 9.18). Names of unique events are preceded by double asterisks. The North

Sea (NS) log events with single asterisks in Fig. 9.18 are marker events that

received more weight during the scaling because they are without biostratigraphic

uncertainty. The method by which RASC distances involving marker horizons are

estimated is graphically illustrated in Fig. 9.20. Successive clusters in the dendro-

gram represent RASC zones consisting of events that are relatively close together

along the RASC scale. Further biostratigraphic interpretation of RASC clusters will

be given in the next section for another practical example.

9.3.2 Cenozoic Microfossils Example

Table 9.13 shows ranked biostratigraphic events observed in part of a single

exploratory North Sea well taken from dataset (A). Sequence numbers in columns

1 and 2 are based on depth (column 3) in the well and position of event (columns

4 and 5) in the ranked optimum sequence for MNS¼ 6. Figure 9.21 is a scattergram

showing relative sample position versus ranked optimum sequence number for all

events observed in this well together with a best-fitting quadratic PPL curve. Use of
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relative depth instead of observed depth can have the advantage of reducing effects

of differences in sedimentation rates between wells. However, real depths are to be

used for correlation between wells. The relation between relative and true depth is

determined separately for each well. In RASCW Version 20, interpolation spline

functions are used for this purpose. For our example this changes the pattern of

Fig. 9.21 into that of Fig. 9.22. Every event considered has a “probable” depth in the

well on the curve in Fig. 9.22. Probable locations of events in different wells can be

connected by lines of correlation in CASC. In Agterberg (1990) other methods

are discussed for obtaining the PPL curves to be used in CASC.

Fig. 9.18 Example of a RASC scaling output obtained for dataset (A) with MNS¼ 6. Events with

double stars are unique events occurring in fewer than six wells. Single star events are marker events,

which are not subject to significant biostratigraphic uncertainty and are weighted more strongly than

other events in the scaling algorithm. The order of events is approximately equal to that in the ranked

optimum sequence partially listed in Table 9.13. In this diagram, as well as other diagrams in this

chapter, the axis of relative geologic time points upwards (Source: Agterberg et al. 2013, Fig. 5)
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The ranked optimum sequence for the current example can be used to determine

first-order depth differences measured by subtracting the depth of an observed event

from the depth of the event below it in a well. This option is part of depth-scaling

routines later added to the RASC/CASC program (Agterberg et al. 2007). A first-order

Fig. 9.20 Simple example

to illustrate application of

unique event option. A

unique event was observed

in a single section where it

coincided with the event S,

stratigraphically below A

and above the events B, B0

and B00. Cumulative RASC

distances of the latter five

events are shown along the

scale on the left. First, the
positions of S, A and B were

averaged to obtain first

approximation for position

of the unique event. Second

approximation was based on

the RASC distances of all

events within the range R

(Source: Agterberg 1990,

Fig. 6.12)

Fig. 9.19 Estimation of distance ΔAB between events A and B from relative frequency of

inconsistencies p(DAB< 0)¼ 1� p(DAB> 0) when A is a marker horizon with zero variance.

The variance of the distance between A and B is equal to the variance of B. Consequently, marker

horizons receive more weight than biostratigraphic events when the RASC scaled optimum

sequence is calculated (Source: Agterberg 1990, Fig. 6.11)
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depth difference is positive when depth of the event below it is greater and negative

when it is less. Figure 9.22 can be used to illustrate this procedure. On average, the

cluster of points for observed depths dips to the right on this graph. It reflects the fact

that events stratigraphically lower in the optimum sequence tend to have greater

depths. A negative first order depth arises when the depth of an event is less than

that of its neighbor to the right in Fig. 9.22. Histograms of first-order depth differences

in all wells for a dataset have average value greater than zero. In RASCW Version

20 their frequency distribution can be modeled in various ways. Figure 9.23 (after

Agterberg et al. 2007) shows normal Q-Q plots of square root transformed first-order

differences for datasets (A) and (B). The straight lines in Fig. 9.23 represent bilateral

gamma distributions that were fitted as straight lines by least squares excluding data

points on the commonly occurring anomalous upward bulges near the center of each

plot. These anomalies are due to the discrete sampling method used when the wells

Table 9.13 First 28 fossil events in order of ranked optimum sequence for WELL # 18 of dataset

(A): Esso (N) 16(1-1); these events are Last Occurrences (LOs) except for a single Last Common

Occurrence (LCO) and two log markers

# Sequence# Depth (m) Event# Event name

1 1 381 77 Elphidium spp.

2 2 381 228 Cassidulina teretis

3 4 637 1 Neogloboquadrina pachyderma

4 7 381 270 Cibicidoides grossa

5 9 637 4 Globorotalia inflata

6 13 637 23 Sigmoilopsis schlumbergeri

7 14 707 269 Neogloboquadrina atlantica

8 15 726 266 Globorotalia puncticulata

9 17 643 219 Martinotiella cylindrica

10 19 908 285 Caucasina eiongats

11 20 822 91 Diatoms/radiolarians LCO

12 21 1,036 282 Uvigerina ex.gr. semlornata

13 23 1,128 207 NS Log G

14 24 899 125 Neogloboquadrina continuosa

15 25 734 71 Epistomina elegans

16 26 899 15 Globigerina prebulloides

17 28 899 236 G, ex.gr. praescitula zealandica

18 29 908 17 Asterigerina gurichi

19 34 1,395 24 Tumilina alsatica

20 36 1,219 25 Coarse agglutinated spp.

21 37 1,395 97 Cyclammina placenta

22 38 1,395 182 Splrosigmollinella compressa

23 39 1,584 262 Karrerulina horrlda

24 42 1,395 140 Rotaliatina bulimoides

25 43 1,554 261 Haplophragmoides walteri

26 46 1,554 321 Dorothia seigliei

27 47 1,554 289 Adercotryma agterbergi

28 49 1,531 206 NS Log F

Source: Agterberg et al. (2013, Table 5)
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Fig. 9.21 Ranking scattergram with best-fitting (quadratic) PPL for Well # 18 in dataset

(A) (Source: Agterberg et al. 2013, Fig. 6)

Fig. 9.22 Depth ranking scattergram with depth-transformed PPL for Well # 18 in dataset (A).

Relative sample positions along vertical axis in Fig. 8.16 have been replaced by depths of samples.

Event positions on this line can be used for CASC correlation between wells (Source: Agterberg

et al. 2013, Fig. 7)
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were being drilled. This regular sampling effect was previously explained in

Sect. 9.1.2. In general, events with equal observed depths in a well record are coeval

but their exact superpositional relationship cannot be established. However, it can be

seen from Fig. 9.23 that the regular sampling effect is relatively minor in the large-

scale RASC applications used for example.

RASC & CASC Version 20 allows application of many other statistical tests.

Of special interest are the so-called normality tests by means of which the location

of each event in each well can be checked to see that it is not a statistical outlier.

9.4 Automated Stratigraphic Correlation

The first RASC-CASC studies were carried out for wells on the Labrador Shelf,

Grand Banks (offshore Newfoundland) and the Scotian Shelf (Gradstein and

Agterberg 1982). Some results for these wells were already presented in this chapter

(Fig. 9.17, dataset B). Scaling and correlation results for this same dataset and

Foraminifera from Jurassic to Lower Cretaceous rocks on the Grand Banks will be

reviewed in this section. Shaw’s (1964) book uses first and last occurrences of

trilobites and some other fauna in the Cambrian Riley Formation of Texas for

example (for detailed data, see Shaw’s 129-page appendix). His Riley Composite

Standard (RST) results will be compared with a subjective zonation originally

proposed by Palmer (1954) and RASC-CASC results. Finally, large-scale biostrat-

igraphic zonation and correlations for a Cretaceous Greenland-Norway Seaway

microfossil data base (Kaminski and Gradstein 2005) also will be briefly reviewed.

9.4.1 NW Atlantic Margin and Grand Banks
Foraminifera Examples

Figure 9.24 (afterWilliamson 1987) shows aRASC scaling diagram based on 21wells

drilled into the Upper Jurassic and Lower Cretaceous on the northern Grand Banks,

offshore Newfoundland. Eleven zones from Kimmeridgian to Cenomanian primarily

were based on last occurrences of Foraminifera. Lowest occurrences of events were

not used. Index taxa including several with last occurrences included as unique events

were used to construct the regional stratigraphic zonation. This was a 4/3 RASC run

meaning that events used for statistical calculations were found in at least four wells

and pairs of events in at least three wells. Some of the relatively large interfossil

(or interevent) distances coincide with major sedimentary changes or breaks that

separate the majority of events below from those occurring above it. For example,

the large interfossil distance between zones X (Tithonian) and IX (Valanginian) is

mainly due to intermediate non-marine or very shallow marine facies probably or

Berriasian age, which has a paucity ofmicrofossils. This breakmay be associatedwith

a condensed limestone sequence believed to cause seismic marker 1 and to be related
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Fig. 9.23 Normal Q-Q plots of first order square root transformed depth differences for datasets

(a), and (b). Approximate normality is demonstrated except for anomalous upward bulge in the

center of each plot, which is caused by use of discrete sampling interval (Source: Agterberg

et al. 2013, Fig. 8)
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Fig. 9.24 Another example of a RASC scaled optimum sequence. This is an 11-fold interval

zonation derived by RASC for Upper Jurassic and Lower Cretaceous foraminiferal record,

northern Grand Banks. Asterisks indicate unique events included in the scaled optimum sequence,

after statistical calculations had been carried out using events occurring in at least four sections

(Source: Agterberg 1990, Fig. 9.19)
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to changes in seawater level also observed in Portugal now at the other side of the

Atlantic Ocean, which originated during the Jurassic.

In order to use RASC ranking or scaling results for correlation between strati-

graphic sections in CASC, it is necessary to project their positions in the regional

standard, which is an average based on sections, back onto the lines for individual

lines. This topic already has been discussed before in this chapter. Figure 9.25

illustrates how the indirect method previously explained in Sect. 9.2.2 (Fig. 9.14)

was used in earlier versions of CASC. In post-1998 RASC-CASC computer pro-

grams (e.g., the current Version 20) several simplifications were made including

that the smoothing factor for the step of event levels to depths (Fig. 9.25b) was set to

zero so that the level-depth curve passes through the data points. Because of

differences in rates of sedimentation through time, error bars (e.g., 95 % confidence

intervals), which are assumed to be symmetrical along the scales constructed for

ranking or scaling, can become asymmetrical after projection onto individual wells.

The degree of asymmetry depends of the curvature of the final curve for probable

positions of the events in each individual well. Anther post-1998 simplification is

that lines of correlation in scattergrams, in which observed events in wells are

plotted against optimum sequence, are fitted as downward decreasing quadratic

curves by least squares. The main reason for these simplifications was that the

original method (Fig. 9.25) had to be applied separately to all individual wells. This

procedure turned out to be very time-consuming in practice. The use of quadratic

curves as shown previously in Fig. 9.6 turned out to be a good and fast substitute.

Figure 9.26 is an early example of a CASC multiwell comparison produced by

means of the original CASC program (Agterberg et al. 1985). The underlying scaled

optimum sequence was based on 54 last occurrences of Cenozoic Foraminifera in 7 or

morewells (out of a set of 21NWAtlanticMargin wells). The CASC version used had

an additional step in that cumulative RASC distances were transformed into millions

of years on the basis of a sub-group of 23 Cenozoic foraminiferal events for which

literature-based ages were available. Because of significant uncertainties associated

with this extra step, long-distance correlations in later versions of CASC are based on

the ranked or scaled optimum sequence only. Three types of error bar are shown in

Fig. 9.26. A local error bar is estimated separately for each individual well. It is two

standard deviationswide and has the probable isochron at its center. Use ismade of the

assumption that rate of sedimentation is linear in the vicinity of each isochron

computed. Consideration of variable sedimentation rates results in the asymmetrical

modified local error bar of Fig. 9.26b. Like a local error bar, the global error bars of

Fig. 9.26c are symmetric but they incorporate uncertainty in age derived from

uncertainties in RASC distances for all 54 foraminiferal events in the scaled optimum

sequence based on all (21) wells.

Figure 9.27 shows correlation of ten Cenozoic isochrons between six wells on the

Grand Banks and Labrador Shelf including the three wells used for Fig. 9.26. In this

study performed by Gradstein and Agterberg (1985) CASC-derived positions are

compared with observed depths. Conventional chronostratigraphic correlation only

uses observed depths. The CASC-based depths result in slight up or down adjustments

of the age boundaries. The data used to obtain Figs. 9.26 and 9.27was published as the

Gradstein-Thomas database in the Appendix of Gradstein et al. (1985).
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Ordinary scaling in RASC is based on the assumption that all events have normal

frequency distributions with equal variance along the interval scale. In general,

different events have different frequency distributions. In the analysis of variance

option of RASC, approximate estimates of these frequency distributions can be

Fig. 9.25 Schematic illustration of the event-depth curve from RASC output for a well (After

Agterberg et al. 1985); (a) RASC distance has been replaced by age ( y) and a cubic smoothing spline

is used to express y as a function of x representing relative event level in a well; bar in x denotes use of
regular sampling interval for x; smoothing factor (SF),whichwas selectedbefore thecurve-fitting using

one age per level, is slightly smaller than standard deviation (SD) for all original values; (b) spline curve

g(x) is fitted to express depth as a function of event level; SF¼ SD is some very small value; (c) spline

curveg(x) recoded as set of values for x at regular interval of z; (d) curvepassing through set of values of
y at regular interval of z obtained by combining spline curve of Fig. 9.25a with that of Fig. 9.25c;

(e) spline curve fitted to values of Fig. 9.25d using new smoothing factor SF; (f) standard deviation SD

is computed after curve-fitting using one age per level (Source: Agterberg 1990, Fig. 9.6)
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obtained by collecting deviations between observed and probable positions for all

events from within the subsets of wells in which the events were observed to occur.

The standard deviations of these distributions can be used to distinguish between

good and bad marker events. All deviations between observed and estimated

positions are small for good markers. Lines of correlation connecting two good

markers in different wells generally do not cross each other unless the two events

Fig. 9.26 Example of CASC multi-well comparison with three types of error bars. The probable

positions of the time-lines were obtained from event-depth curves fitted to the biostratigraphic

information of individual wells (Source: Agterberg 1990, Fig. 1.2)
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considered were nearly coeval. Scaling can be modified by assigning different vari-

ances to different events. D’Iorio (1988) and D’Iorio and Agterberg (1989) conducted

the following study. An iterative procedure was developed in which the spline-based

correlation method of Fig. 9.25 was applied alternately with modified scaling with

different variances for different events. The procedure was continued until a stable set

of varianceswas reached upon convergence. Results of thismodifiedRASCmethod as

applied to the Gradstein-Thomas database are shown in Fig. 9.28. Mean deviation and

maximum observed deviation are plotted in addition to RASC position reached after

convergence. During the iterative process there was relatively little change in esti-

mates of the cumulative RASC distances. However, for some events such as highest

occurrence of taxon 50 (Subbotina patagonica) there was a significant decrease in

Fig. 9.27 Tracing of ten Foraminiferal events through six wells using the CASC method

to calculate the most likely depths. Black bars show deviations from the observed depths (Source:

Gradstein and Agterberg 1985, Fig. 15)
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variance of deviations between observed and estimated mean event positions. It was

concluded that taxon 50 is an exceptionally good marker. Maximum deviations

between observed and estimated positions tend to be the same (�1.16) for most

other events. This suggests that, on average, the truly last appearance datum (LAD,

cf. Sect. 9.1.1) occurred at least 10 million year later than average observed last

occurrence (LO) for most Cenozoic Foraminiferal taxa.

9.4.2 Central Texas Cambrian Riley Formation Example

As explained in Sect. 9.1.1, the rationale underlying Shaw’s method of graphic

correlation differs from the one underlying RASC and CASC, which is based on

simultaneously averaging biostratigraphic events in all stratigraphic sections for a

Fig. 9.28 Extended RASC ranges for Cenozoic Foraminifera in Gradstein-Thomas database.

Letters for taxon 59 on the right represent (A) estimated RASC distance, (B) mean deviation

from spline-curve, and (C) highest occurrence of species (i.e., maximum deviation from spline-

curve). B is shown only if it differs from A. Good markers such as highest occurrence of taxon

50 (Subbotina patagonica) have approximately coinciding positions for A, B And C. Note that as a

first approximation it could be assumed that the highest occurrences (C) have RASC distances

which are about 1.16 units less that the average position. Such systematic difference in RASC

distance is equivalent to approximately 10 million years (Source: Agterberg 1990, Fig. 8.9)
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study area. Nevertheless, final results in an application of both approaches to the

same dataset can be similar as illustrated in Fig. 9.31 for three of the seven sections

used for example in Shaw’s (1964) book. These results were obtained as follows.

First RASC distances estimated by scaling were plotted against event levels as

shown for the Morgan Creek section in Fig. 9.29. Next the event level scales were

replaced by distance scales (Fig. 9.30). The spline curves in these diagrams were

not only used for positioning the probable positions of cumulative RASC distances

in Fig. 9.31 but also to obtain modified error bars that are asymmetrical because of

curvatures of the spline curves.

Figure 9.31 shows three different types of correlation. Firstly, there are Palmer’s

(1955) original zones obtained by conventional subjective paleontological reason-

ing. Secondly, there is Shaw’s set of RTS value correlation lines based on his Riley

Composite Standard (RST). Finally, CASC correlation lines are shown for selected

values along the relative geologic time axis based on cumulative interevent dis-

tances as those previously shown for dataset (A) in Fig. 9.4. Some of these values

are shown together with error bars (�one standard deviation transformed to depth

scale). The example shows either that sedimentation rate probably decreased from

high to low during deposition of the Riley Formation or, less likely, that there was a

change in rate of trilobite evolution. More details on this example based on 60 FOs

and LOs in at least MNS¼ 5 of the seven sections can be found in Agterberg

(1990). Earlier applications of quantitative biostratigraphic techniques to Palmer’s

(1954) Riley Formation trilobite data include Edwards and Beaver (1978), Hudson

and Agterberg (1982) and Guex (1987); for a more recent application of CONOP to

the same data set, see Kemple et al. (1995).

Fig. 9.29 RASC distance-event level plot for Morgan Creek section. Spline-curve is for optimum

(cross-validation) smoothing factor SF¼ 0.382 (Source: Agterberg 1990, Fig. 9.23)
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Fig. 9.30 Spline-curves for

positions of RASC distance

values in three sections

obtained by means of

indirect method. (a) Morgan

Creek section. Curve of

Fig. 9.29 was combined

with curve for positions

of event levels according to

method of Fig. 9.25. Second

(cf. Fig. 9.25b) and third

(cf. Fig. 9.25e) smoothing

factors were set equal to

0.02 and 0.2, respectively.

Final standard deviation

of deviations from curve

is SD¼ 0.390; (b) White

Creek section (SD¼ 0.357);

(c) Pontotoc

Section (SD¼ 0.615)

(Source: Agterberg 1990,

Fig. 9.24)
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9.4.3 Cretaceous Greenland-Norway Seaway
Microfossils Example

The final example of large-scale RASC/CASC applications is concerned with the

stratigraphic distribution of 1,755 foraminiferal and dinoflagellates microfossil

events in 31 wells from the Cretaceous seaway between Norway and Greenland

(after Gradstein et al. 1999). The emphasis in this example is on paleoceanographic

interpretation and use of RASC variance analysis, a technique developed in the late

1990s. Setting MNS¼ 7 left 72 events that were augmented by 9 unique events.

Almost all events are last occurrences but several Last Common Occurrences
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Fig. 9.31 Biostratigraphic correlation of three sections for the Riley Formation in central Texas

by means of three methods. Palmer’s (1954) original biozones and Shaw’s (1964) R.T.S. value

correlation lines were superimposed on CASC (Agterberg 1990) results. Error bars are projections

of single standard deviation on either side of probable positions for cumulative RASC distance

values equal to 2.0, 5.0 and 6.0, respectively. A cumulative RASC distance value is the sum of

interevent distances between events at stratigraphically higher levels. Uncertainty in positioning

the correlation lines increases rapidly in the stratigraphically downward direction. The example

shows that the three different methods used produce similar correlations (Source: Agterberg 1990,

Fig. 9.25)
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(LCOs) and a First Common Occurrence (FCO) also could be identified. The

scaling result is shown in Fig. 9.32. This dendrogram served as a template to

build a Cretaceous zonal model with 16 stratigraphically successive interval

zones that are middle Albian through late Maastrichtian in age. Five large breaks

(at events 52, 84, 205, 255 and 137 in Fig. 9.32) indicate transitions between natural

microfossil sequences; such breaks relate to hiatuses or facies changes, some of

which are known from European sequence stratigraphy (see Gradstein et al. 1999

for more details): (1) The una-schoelbachi break reflects a latest Albian lithofacies

change and hiatus, connected to the Octeville hiatus in NW Europe. (2) The

delrioensis (LCO)-brittonensis break reflects the mid-Cenomanian lithofacies

change and hiatus, connected to the mid-Cenomanian non-sequence and Rouen

hardground of NW European sequence stratigraphy. (3) The Marginotruncata-
polonica break, above the level of Heterosphaeridium difficile LCO, which repre-

sents a maximum flooding surface, may be the turn-around in the middle Coniacian

tectono-eustatic phase, near the end of the Lysing sand phase. (4) The belli-dubia
break, is again (near or) at a maximum flooding event, this time correlated to the

LCO of T. suspectum in the early middle Campanian, above the change from marly

sediments to siliciclasts at the base of the Campanian. (5) The dubia-szajnochae
break reflects the abrupt change from siliciclasts to marly sediment at the

Campanian-Maastrichtian boundary, only noted in the southern part of the study

region.

Figure 9.33 is machine output for CASC correlation of nine events in eight wells.

The PPLs for these wells were based on the ranked optimum sequence with

MNS¼ 7. In Gradstein et al. (1999) this sequence, which is almost the same as

the sequence of events in Fig. 9.32, was used for RASC variance analysis. Individ-

ual events deviate from their PPL in each section. These deviations, which are

either positive or negative, have standard deviations that differ from event to event.

Good markers have small standard deviations. Nine such events are connected by

lines in Fig. 9.33, which is CASC output with 95 % confidence limits. The eight

wells in Fig. 9.33 are arranged from north to south. CASC has a flattening option

according to which the line of correlation for a specific event between sections is

made horizontal. Event 16, the last occurrence (LO) ofHedbergella delrioensiswas
used for flattening in Fig. 9.33. These events and other events including several with

relatively large standard deviations also are correlated in Fig. 9.34. The poor

markers with larger standard deviations show cross-over inconsistencies in this

diagram. Large standard deviations can be due to a variety of reasons. For example,

Foraminifera that are benthic tend to show more inconsistencies than planktonic

forms. Separate RASC plots of deviations for an event in all wells may reveal

patterns of diachronism. For example, L. siphoniphorum, observed in 19 wells,

appears to be time transgressive, ranging into younger strata southward. The same

may be true for E. spinosa, observed in 13 wells (Gradstein et al. 1999, p. 69).

In Fig. 9.34 variance data on fossil events are used to create a different, but

effective type of correlation plot. Cretaceous turbiditic sands (with yellow or gray

patterns in Fig. 9.34) occurring offshore mid and southwestern Norway are corre-

lated in five wells. The Lower Cenomanian Hedbergella delrioensis FCO and LCO
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Fig. 9.32 Example of scaling in relative time of RASC applied to 1,755 Cretaceous foraminiferal

and dinoflagellates events in 30 exploration wells from the seaway between Greenland and Norway

(After Gradstein et al. 1999). The dendrogram with event names and numbers is RASC machine

output but cluster and stage names were inserted later (Source: Agterberg et al. 2013, Fig. 10)
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events and Santonian Inoceramus needles LCO event are considered flooding

surfaces (FS). These three events represent reliable regional correlation levels,

with below-average standard deviations. They reflect considerable marine trans-

gression accompanied by slow sedimentation. In Gradstein and Agterberg (1998)

RASC variance analysis was used to demonstrate that the lower Cenomanian Lange

sands (between the two Hedbergella levels in Fig. 9.34) and the middle

Cenomanian to Turonian Lysing sands (above the Hedbergella LCO level) are

not seismic markers or well log ‘sheet sands’ in a correlative sense as had been

assumed before, but show more complex correlation patterns in line with the

sedimentological interpretation that they are debris flow and turbidite sands.

9.5 Construction of Geologic Time Scales

This section contains a review of how geologic timescales were created in the past.

During the last 50 years, successive international timescales have been constructed.

There has been continuous improvement in geochronological dating methods as

well as in chronostratigraphic positioning of the rock samples subjected to age

determination (also see Sect. 3.1.6). These improvements have led to changes in

statistical methods used to estimate the ages of stage boundaries. The last interna-

tional geologic time scale (GTS2012) is shown in Fig. 9.35.
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Fig. 9.33 CASC well correlation output for 9 of the 97 events in Fig. 9.32. Output was flattened

on event 16 (Hedbergella delroensis LO) (Source: Agterberg et al. 2013, Fig. 11)
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9.5.1 Timescale History

The very first numerical time scales were constructed between 1911 and 1960 by

Arthur Holmes who remarked: “To place all the scattered pages of earth history in

their proper chronological order is by no means an easy task” (Holmes 1965,

p. 148). In 1911 Holmes examined the decay of uranium to lead in seventeen

Fig. 9.35 The International Geologic Timescale (GTS2012) (Source: Gradstein et al. 2012, Fig. 1.2)
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radioactive minerals of which he excluded just over half that were considered to be

problematic (cf. Jackson 2006, p. 245). From the remaining eight analyses he

arrived at dates for the bases of the Silurian, Devonian and Carboniferous, setting

them at 430, 370 and 340 Ma, respectively. In 1960, after more age determinations

of rock samples had become available, Holmes published the ages shown in

Table 9.14, where they are compared with ages for the same periods or epochs in

the 2004 and 2012 geologic time scales published by the International Commission

on Stratigraphy and Geologic TimeScale Foundation, respectively. All numerical

time scales involve the conversion of a relative geological time scale into a linear

time scale along which rock samples and chronostratigraphic divisions are mea-

sured in millions of years. Holmes based his relative time scale on age-thickness

interpolations. He was aware of limitations of this method, stating: “I am fully

aware that this method of interpolation has obvious weaknesses, but at least it

provides an objective standard, and so far as I know, no one has suggested a better

one” (Holmes 1960, p. 184). As pointed out by Gradstein et al. (2012, p. 16),

Holmes’s estimate for the base of the Cambrian is curiously close to modern

estimates (see Table 9.14).

Subsequently, Walter Brian Harland spearheaded several broadly based projects

between 1960 and 1990 that resulted in two widely used international geologic time

scales (Harland et al. 1982, 1990) known as GTS82 and GTS90. Geochronologists

commonly report analytical precision of age determinations as a 95 % confidence

interval written as �2σ because Φ(0.975)� 2. Many dates of greatly variable

precision were used for constructing GTS82 and GTS90. After 1990, higher

precision dates with 2σ-values of 0.5 % or better have become available. Radio-

metric (e.g., Uranium-Lead, 40Ar/39Ar and Rhenium-Osmium) methods have

Table 9.14 Comparison of successive numerical age estimates of Periods in the International

Geologic Time Scale and their 95 %-confidence intervals

Base of period or epoch

Holmes

1960 GTS2004 �2σ(2004) GTS2012 �2σ(2012) Difference

Pleistocene 1 1.8 2.59 0.79

Pliocene 1.1 5.3 5.33 0

Miocene 25 23 23.03 0

Oligocene 40 33.9 0.1 33.9 0

Eocene 60 55.8 0.2 56 0.2

Paleocene 70 65.5 0.3 66 0.5 0.5

Cretaceous 135 145.5 4 145 0.8 �0.5

Jurassic 180 199.6 0.6 201.3 0.2 1.7

Triassic 225 251 0.4 252.2 0.5 1.2

Permian 270 299 0.6 298.9 0.2 �0.1

Carboniferous 350 359.2 2.5 358.9 0.4 �0.3

Devonian 400 416 2.8 419.2 3.2 3.2

Silurian 440 443.7 1.5 443.8 1.5 0.1

Ordovician 500 488.3 1.7 485.4 1.9 �2.9

Cambrian 600 542 1 541 1 �1

Source: Agterberg (2013)

9.5 Construction of Geologic Time Scales 355



improved significantly and the new dates are at least an order of magnitude more

precise than the earlier dates. In time scale calculations the weight of individual age

determinations is approximately proportional to the inverse of their measurement

variance (σ2). Consequently, a modern age date, which is ten times more precise

than a pre-1990 age determination as obtained by the Rubidium-Strontium or

Potassium-Argon method, is weighted 100� stronger in the statistical calculations.

This implies that a single modern date roughly receives at least as much weight as

100 earlier dates. New high-precision dates continue to become available regularly.

Since 1990, Felix Gradstein has led several international teams of scientists

engaged in constructing new time scales including GTS2004 (Gradstein

et al. 2004), which became used by geologists worldwide, and GTS2012 (Gradstein

et al. 2012) that has replaced GTS2004. Construction of GTS2012 involved over

65 geoscientists and other experts. Stage boundary age estimates in GTS2004 and

GTS2012 are accompanied by approximate 95 % confidence intervals shown as

�2σ for periods and Cenozoic epochs in Table 9.14. The largest difference between

GTS2012 and GTS2004 in this table is 3.2 Ma and occurs at the base of the

Devonian.

Constructing a numerical time scale consists of converting a relative geological

time scale such as the age thickness scale used by Holmes into a linear time scale

along which samples and events are measured in millions of years. Geologists

realized early on that for clarity and international communication the rock record

was to be subdivided into a chronostratigraphic scale of standardized global

stratigraphic units such as “Cambrian” and “Miocene”. This became possible

because many events in geological history affected the entire surface of the Earth

or very large regions. Numerous examples of methods to define the original

chronostratigraphic boundaries could be cited. One example is Lyell’s early sub-

division of the Cenozoic that was partly based on a quantitative model. The early

editions of Lyell’s (1833) book contain a 60-page appendix with presence-absence

information on 7,810 species of recent and fossil shells. By counting for each Series

(Epoch) the number of fossil shells of species living today and re-computing the

resulting frequencies into percentage values, Lyell established the first subdivision

of the Tertiary Period into Pliocene, Miocene and Eocene. Later, Paleocene,

Oligocene and Pleistocene were added, thus providing the break-down of the

Cenozoic in the geologic time table using names that reflect the magnitudes of

these percentage values. Another example is the Maastrichtian-Paleocene boundary

marked by an iridium anomaly caused by bolide impact now estimated to have

taken place 66.0 million years ago (cf. Table 9.14).
The latest international Geologic Time Scale is shown in Fig. 9.35 (from

Gradstein et al. 2012). An international initiative that has been helpful to establish

GTS2004 and GTS2012 is the definition of GSSPs or “golden spikes”. The first

GSSP (“Global Boundary Stratotype Section and Point”) fixed the lower limit of the

Lochkovian Stage (Silurian-Devonian boundary) at the precise level in an outcrop

with the name Klonk in the Czech Republic (Martinsson 1977). Each GSSP must

meet certain requirements and secondary desirable characteristics (Remane

et al. 1996, Table 2.1). Before a GSSP is formally defined, its correlation potential

in practice is thoroughly tested. GTS 2004 made use of 28, 8 and 7 GSSP’s for the
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Paleozoic, Mesozoic and Cenozoic; the corresponding numbers for GTS2012 were

increased to 36, 12 and 13 GSSP’s, respectively (Gradstein et al. 2012, Table 2.5).

In general, precise age dates are determined for relatively many rock samples taken

at or close to the boundary on which a GSSP is defined. Especially for the

Mesozoic, several stage boundary ages could be based on such local data sets. It

is clearly advantageous for all earth scientists to use a single time scale with a

common set of stratigraphic subdivisions. However, in some parts of the world it

may be difficult to recognize all stages for a period. As a regional companion to

GTS 2004, Cooper et al. (2004) produced the “New Zealand Geologic Time Scale”

with 72 regional stages. Almost half of these have their own boundary definitions

and boundary stratotypes (SSPs), not all of which can be readily correlated to the

GSSPs.

Many different geologic time scales have been published after Holmes’s first

scale of 1911. Twelve different time scale methods and their usage in twenty-eight

selected time scales are reviewed in Gradstein et al. (2012, eds., Fig. 1.7). The two

methods of dating already mentioned are rate of radioactive decay of elements, and

tuning of cyclic sequences to orbital time scale. The other methods listed include

Holmes’s original maximum thickness of sediments per time period method, and

Harland et al.’s equal duration of stages hypothesis (GTS82). Virtually all time

scales use stratigraphic reasoning and biostratigraphic/geomagnetic calibration.

Approximate constancy of spreading in ocean floor segments is helpful in the

Jurassic and Cretaceous. Holmes’s constant sedimentation rate hypothesis was

refined for calculation of some later time scales to the assumption that zone duration

can be proportional to zone thickness. Likewise, Harland et al.’s (1982) equal

duration of stages hypothesis was refined in some later time scales to the equal

duration of (sub-)zones hypothesis. Trends in the 87Sr/86Sr stable isotope scale also

have been used in some time scales.

9.5.2 Differences Between GTS2012 and GTS2004

For several chronostratigraphic boundaries in Table 9.14 there is a statistically

significant discrepancy between the GTS2004 and GTS2008 estimates. Such dif-

ferences are mainly due to improvements in accuracy of radiometric methods over

the past 10 years. Accuracy and precision can be discussed in the context of the

various methods of time scale estimation that were used. Virtual certainty was

achieved in GTS2012 for the estimates of the Cenozoic stage boundaries that are

based on astrochronology. The relatively large discrepancy in age for the base of the

Pleistocene in Table 9.14 is due to redefinition of this boundary.

As pointed out in Sect 1.2, the time scales of the Neogene (23.0� 2.59 Ma) and

Paleogene (66.0� 23.0 Ma) periods now are entirely based on astronomical cali-

brations. Other differences between GTS2012 and GTS2004 also are seen in

Table 9.14. The differences for several age estimates are significant in that they

exceed the widths of the 95 % confidence intervals representing precision. Such

lack of accuracy (systematic differences) is mainly due to significant improvements
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in geochronological practice that took place between 2004 and 2012 (Schmitz

2012). When GTS2004 was constructed, it was already known that there were

two main problems: (1) Lack of accuracy of radiometric decay constants, and

(2) “External” errors that had not been added to “internal” errors to estimate

precision. These two problems that affected GTS2004 have been solved adequately

during the past 10 years because geochronologists have succeeded in improving

methodologies by re-calibrations.

For example, by calibrating with respect to high-precision reference ages

based on the U-Pb system, Kwon et al. (2002) estimated that the decay constant

of 40K was λ¼ 5.476� 0.034� 10�10/year. This estimate fell between

5.543� 0.020� 10�10/year that was used by geochronologists at the time (Steiger

and Jäger 1977) and 5.428� 0.068� 10�10/year of nuclear scientists (Endt

and van der Leun 1973). The decay constant utilized in GTS2012 is

λ¼ 5.463� 0.107� 10�10/year. With respect to problems of estimating precision

when GTS2004 was constructed, Renne et al. (1998) had pointed out that, origi-

nally, errors quoted for 40Ar/39Ar, only included internal inconsistencies related to

the measurement of 40Ar/39ArK and the J-factor (cf. McDougall and Harrison 1999),

whereas external errors associated with measurement of the K-Ar age of the fluence

monitor and errors related to the determination of the decay constants were not

considered. Similar problems, although to a lesser extent, were associated with

other published radiometric dates when GTS2004 was constructed.

Schmitz (2012) discusses in detail how radiometric re-calibration was applied to

GTS2012. Systematic error propagation was taken into account. Both internal and

external errors were incorporated. Legacy data that could not be reproduced from

published literature data were rejected. Before using them for GTS2012, ages and

their errors were recalculated from published primary isotope ratios. U-Pb and

Pb-Pb ages were harmonized using the uranium decay constant ration of Mattinson

(2010), in addition to recalculation of all 40Ar/39Ar on the basis of the total K decay

constant λtotal¼ 0.463� 0.0107� 10�10/year. of Min et al. (2000) that provides

best inter-calibration of 40Ar/39Ar, 206Pb/238U with the astronomical clock for the

FC sanidine monitor standard age of 28.201� 0.046 Ma (cf. Kuiper et al. 2008).
These re-calibrations have resulted in significant improvements in both accuracy

and precision of GTS2012 with respect to GTS2004.

9.5.3 Splining in GTS2012

One of the geomathematical techniques used for the construction of GTS2004 and

GTS2012 is splining (cf. Agterberg et al. 2012). It remains the best method for

Paleozoic stage boundary estimation. The smoothing spline is a smooth curve fitted

to n data points on a graph in such a way that the sum of squares of deviations

between the curve and the points is minimized (Sect. 9.2.1). Suppose that a relative

time scale is plotted along the X-axis and age (in Ma) along the Y-axis. If the values
xi (i¼ 1, . . ., n) along the X-axis are free of error, a cubic smoothing spline f (x) is
fully determined by the n pairs of values (xi, yi), the standard deviations of the dates
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s(yi), and by a smoothing factor (SF) representing the square root of the average

value of the sum of squares of scaled residuals ri¼ {yi� f(xi)/s(yi)}. If all s(yi)
values are unbiased, SF¼ 1, or SF is a value slightly less than 1 (cf. Agterberg 1994,
p. 874). If SF significantly exceeds 1, this suggests that some or all of the s(yi)
values used are too small (under-reported). Thus, if SF can be determined indepen-

dently, the spline-fitting method may provide an independent method of assessing

mutual consistency and average precision of published 2σ error bars. The smooth-

ing factor (SF) can be estimated in practice by cross-validation using the “leave-off-

one” method that produces an optimum smoothing factor (cf. Agterberg 2004).

Figure 9.36 (from Agterberg et al. 2012, Figure 14.1) illustrates splining on a

small data set consisting of six Cambrian and Ordovician data points in the vicinity

of the Cambrian-Ordovician boundary. In this application, the relative geological

0 5 10 15 20 25 30 35

Position in scale

490

485

480

475

470

465

R
ad

io
m

et
ric

 d
at

e

Cambrian Ordovician

Fig. 9.36 Illustration of splining procedure with a small set of data points around the Cambrian-

Ordovician boundary. Black dots: Given data with stratigraphic and radiometric error bars (total

range and 2-sigma). Black curve: Spline of the given data, cross-validated smoothing factor

SF¼ 1.075. Blue dots: Random replicate of the input data generated according the given points

and their error bars, SF¼ 2.125. Blue curve: Spline of the random replicate. Green dots and curve:
Another random replicate and its spline, SF¼ 0.85. The Cambrian-Ordovician boundary age from

the spline of the given data is 485.39 Ma. The ages computed from the random replicates are

485.17 and 487.06 Ma (Source: Gradstein et al. 2012, Fig.14.1)
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scale (X-axis) is part of the Ordovician-Silurian graptolite composite standard

obtained by the CONOP method of constrained optimization (Cooper and

Saddler 2012, Table 20.1). The CONOP method (also see Sect. 9.1.1), originally

developed by Kemple et al. (1995) and Sadler (2001), uses evolutionary program-

ming techniques to find a composite range chart with optimal fit to all the field

observations. Four of the six CONOP values have stratigraphic uncertainty that is

expressed by the horizontal error bars in Fig. 9.36. The six vertical bars are �2σ
error bars for the dates that were obtained by the 207Pb/208Pb method. These dates

and error bars are listed as C11, O1, O2, O3, O4 and O8 in Appendix 2 of GTS2012

(Gradstein et al. 2012). If a point has error bars along one or both (X- and Y-) axes,
this means that its “true” position on the graph could be different with probabilities

controlled by their supposedly rectangular frequency distribution along the X-axis
and Gaussian error distribution along the Y-axis. Monte Carlo simulation can be

used to randomly pick points from within their uncertainty intervals in order to

create replicates of the given data set. The three splines in Fig. 9.36 for original data

set and two random replicates have different SF values obtained by cross-validation

and produce slightly different estimates for the age of the Cambrian-Ordovician

boundary. Suppose that this procedure of randomly selecting points is repeated not

twice but say 10,000 times (bootstrap method). Then the resulting estimates of the

chronostratigraphic boundary form a histogram from which a 95 % confidence

interval can be derived. This is the splining procedure used for estimating 2σ values

on Paleozoic and some other stage boundary ages in GTS2012 (cf. Agterberg
et al. 2012).

9.5.4 Treatment of Outliers

It often happens that one or a few data points end up relatively far away from the

smoothing spline, farther than indicated by their error bars. Such outliers are

handled by assuming that their standard deviations must have been underestimated.

Underestimation of 2σ can occur if not all so-called “external” sources of uncer-

tainty, e.g. imprecision of decay constants, were considered when a date was

published. The procedure used for both GTS2004 and GTS2008 contains a step

where outliers were identified and their standard deviations adjusted. The spline

was then recomputed.

Individual scaled residuals are either positive or negative and should be approx-

imately distributed as Z-values (from the “normal” Gaussian distribution in stan-

dard form). Their squares are chi square distributed with one degree of freedom,

and can be converted into probabilities to test the hypothesis that they are not

greater than can be expected on the basis of the set of all s(y) values used for scaling
the residuals. The sum of squares of several scaled residuals is also approximately

distributed as chi-square but with a larger number of degrees of freedom.

A statistical test can therefore be used to identify the relatively few outliers

exhibiting error bars that are much narrower than expected on the basis of most
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ages in the same data set. The s(y) values of outliers are revised by replacing

probabilities ( p) that are too small (e.g., p< 0.05) by 0.5. Setting the probability

equal to 50 % is equivalent to replacing the chi-square value by 0.4549. This is

equivalent to adopting a new Z value of 0.674, because chi-square with a single

degree of freedom is Z 2. The new s(y) value is then computed by dividing the old

Z value (scaled) residual by 0.674, and multiplying the result by the original s(y).
It is good to keep in mind the following consideration: any potential outlier with

a very small probability p resulting from the preceding chi-square test belongs to a

data set of n dates that are analyzed simultaneously. For example, the Devonian

spline curve in Becker et al. (2012, Figure 22.14) is based on n¼ 19 dates.

Applications of the chi-square test with a single degree of freedom, indicates that

six dates have p< 0.05. However, in terms of probability calculus, the problem can

be rephrased as follows. What is the probability that a date will yield a p0 value in
the chi-square test with one degree of freedom when n¼ 19? The answer to this

question is p0 ¼ 1� (1� p)19. If p0 ¼ 0.05, it follows that p¼ 0.0027< 0.05. If this

revised significance test is used, only one of the six dates (D5) would have

a reported 2σ confidence interval that is too narrow. A full statistical analysis of

2σ values of dates used for time scale construction may involve several successive

spline-fittings and study of all residuals in comparison with one another. Other

statistical procedures to treat outliers are discussed in Agterberg (2004) and

Agterberg et al. (2012).

In general, a data set used for splining contains the dates for a limited time

interval; e.g. an epoch. This can lead to edge effects in that age boundary estimates

and their 95 % confidence intervals, which are based on one data set, may differ

from those based on another data set. This problem can be alleviated by use of

overlapping data sets: some of the oldest dates in one data set can be made the same

as the youngest dates in the other data set. Additionally, differences between

estimates of 2σ values at the edges may be smoothed out by “ramping” (Agterberg

2004, p. 113).

9.5.5 Early Geomathematical Procedures

The stratigraphic record that is to be combined with radiometric dates and their

standard deviations includes litho-, bio-, chrono-, cyclo- and magnetostratigraphy.

For the construction of several previous time scales, ages of stage boundaries were

estimated by applying the chronogram method (Harland et al. 1982, 1990), or

maximum likelihood method (Gradstein et al. 1994, 1995), to a worldwide database

of chronostratigraphically classified dates (cf. Sect. 3.1). These methods, which can

also be applied to more closely spaced zone boundaries (Pálfy et al. 2000), resulted

in age estimates accompanied by approximate 95 % confidence intervals. A final

time scale was obtained by calibration using graphical or curve-fitting methods,

including cubic smoothing splines. As explained before, these earlier time scale

construction methods made use of very large numbers of imprecise age
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determinations. New radiometric dating methods are much more precise, and

GTS2004 and GTS 2012 are based on relatively few high-precision dates. It can

be expected, however, that many more high-precision dates will become available

in future. Earlier geomathematical procedures that were developed for large data

sets then may become relevant again, especially if time scales are to include finer

stratigraphic subdivisions.

Odin (1994) discussed three separate approaches to numerical time scale con-

struction: statistical, geochronological and graphical methods. Gradstein

et al. (1994, 1995) used all three approaches in a stepwise procedure involving

maximum likelihood, use of stratigraphically constrained dates, and recalibration

by curve-fitting. The chronogram method used by Harland et al. (1982, 1990) and

its maximum likelihood extension are suitable for estimation of the age of

chronostratigraphic boundaries from a radiometric database, when most rock sam-

ples used for age determination are subject to significant relative uncertainty.

Inconsistencies in the vicinity of chronostratigraphic boundaries then can be

ascribed to imprecision of the age determination method.

A general disadvantage of the chronogram and maximum likelihood methods is

that the relative stratigraphic position of any rock sample is generalized with

respect to stage boundaries that are relatively far apart in time. The relative

stratigraphic of one sample with respect to others within the same stage is not

considered. A better approach is to incorporate precisely known stratigraphic

positions for which high-precision age determinations are available.

9.5.6 Re-proportioning the Relative Geologic Time Scale

McKerrow et al. (1980) described an iterative method to construct a numerical time

scale for the Ordovician, Silurian and Devonian. A sequence of diagrams was

constructed wherein the isotopic age of the sample was plotted along the X-axis
and its stratigraphic age along the Y-axis. On each diagram, the samples were

plotted as rectangles representing their analytical uncertainty (2σ) as well as their
stratigraphic uncertainty. Successive diagrams had slightly differing vertical scales,

until a scale was obtained that allowed a straight line to pass through almost all the

rectangles. Cooper (1999) adopted a modified version of this method for an

Ordovician time scale based on 14 analytically reliable and stratigraphically con-

trolled high-resolution TIMS U-Pb zircon and a single Sm-Nd date. These Ordo-

vician dates were plotted along a relative time scale that was then re-proportioned

as necessary to achieve a good fit with a straight line obtained by linear regression.

This method of re-proportioning the Ordovician time scale by relative shortening

and lengthening of parts of the relative time scale was based on a comparison of

sediment accumulation rates in widely different regions and, to some extent, on

empirical calibration. Agterberg (2002) subjected Cooper’s (1999) data to splining

and found that the optimum smoothing factor (SF) corresponds to a straight-line fit.

He then used Ripley’s MLFR (Maximum Likelihood fitting method for Functional
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Relationship) to fit a straight line in which stratigraphic uncertainty was considered

in addition to the analytical uncertainty (2σ). The MLFR method (Ripley and

Thompson 1987) generalized the major axis method to the situation that the

variances of X and Y are not equal and different for every data point (cf. Chap. 4).
For GTS2004, the preceding method was further modified because, in most

applications, the optimum spline is not a straight line but significantly curved.

The empirical straightening procedure used by McKerrow et al. (1980) was auto-

mated by splining after replacing the standard deviation for radiometric uncertainty

s(yi) by st(yi)¼ {s2(xi) + s
2(yi)}

0.5 to incorporate stratigraphic uncertainty with s
(xi)¼ 0.2875 · q where q represents length of stratigraphic error bar. This relation

between with s(xi) and q was based on the assumption that stratigraphic uncertainty

is according to a rectangular frequency distribution (Agterberg 2002). If the values

xi are not free of error but have standard deviations s(xi), the ordinary spline-

smoothing technique remains valid provided that s(yi) is replaced by st(yi) and

the best-fitting smoothing spine does not deviate strongly from a straight line

(cf. Lybanon 1984; Agterberg 2004).

Suppose that the observed dates (yi) are plotted against the best-fitting spline-

values Xi¼ f (xi) instead of against xi. Provided that the relative geologic time scale

(X-axis) is approximately linearly related to the age (Y-axis), the plot of the

observed dates yi against xi is approximately according to a straight line that passes

through the origin and dips 45�. Representing this line by the equation Y¼ a+ b ·X,
it follows that, approximately, a¼ 0 and b¼ 1. A plot of this type is equivalent to

the final plot obtained by trial and error by McKerrow et al. (1980). The data points

scatter around this line. The modified data set can be subjected to Ripley’s MLFR

method to fit the straight line. The main purpose of this exercise is not to estimate

the two coefficients (a and b) that are already known approximately although they

can be refined, but their standard deviations s(a) and s(b) and their covariance

s(a,b). A 95 % confidence belt around the best-fitting straight line can be

constructed by using these supplementary statistics. The widths of this belt at the

locations of chronostratigraphic boundaries along the X-axis then provide estimates

of their 2σ-values.
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Chapter 10

Fractals

Abstract As illustrated in previous chapters, many geological features display

random characteristics that can be modeled by adopting methods of mathematical

statistics. A question to which new answers are being sought is: Where does the

randomness in Nature come from? Nonlinear process modeling is providing new clues

to answers. Benoit Mandelbrot discovered about 50 years ago that many objects on

Earth can be modeled as fractals with non-Euclidean dimensions. Spatial distribution

of chemical elements in the Earth’s crust and features such as the Earth’s topography

that traditionally were explained by using deterministic process models, now also are

modeled as fractals or multifractals, which are spatially intertwined fractals. Which

processes have produced phenomena that are random and often characterized by

non-Euclidian dimensions? The physico-chemical processes that have resulted in the

Earth’s present configuration were essentially deterministic and “linear” but globally

as well as locally they may display random features that can only be modeled by

adopting a non-linear approach that is increasingly successful in localized prediction.

The situation is analogous to the relation between climate and weather. Longer term

climate change can be modeled deterministically but short-term weather shows

random characteristics that are best modeled by adopting the non-linear approach in

addition to the use of conventional deterministic equations. This chapter reviews

fractal modeling of solid Earth observations and processes with emphasis on topogra-

phy, thickness measurements, geochemistry and hydrothermal processes. There is

some overlap with multifractals that will be discussed in more detail in the next two

chapters. Special attention is paid to improvements in goodness of fit and prediction

obtained by non-linear modeling. The spatial distribution of ore deposits within large

regions or within worldwide permissive tracts often is fractal. Illustrative examples to

be discussed include lode gold deposits on the Canadian Shield and worldwide

podiform Cr deposits, volcanogenic massive sulphide and porphyry copper

deposits. The Pareto distribution is closely associated with fractal modeling of metal

distribution within rocks or surficial cover in large regions. The Concentration-Area

(C-A) method is a useful new tool for geochemical prospecting to help delineate

subareas with anomalously high element concentration values that can be targets for

further exploration with drilling.
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10.1 Fractal Dimension Estimation

Fractals are objects or features characterized by their fractal dimension that is either

greater than or less than the integer Euclidian dimension of the space in which the

fractal is imbedded. The word “fractal” was coined byMandelbrot (1975). On the one

hand, fractals are often closely associated with the random variables studied in

mathematical statistics; on the other hand, they are connected with the concept of

“chaos” that is an outcome of some types of non-linear processes. Evertsz and

Mandelbrot (1992) explain that fractals are phenomena measured in terms of their

presence or absence in boxes belonging to arrays superimposed on the domain of

study in 1-D, 2-D, or 3-D space, whereas multifractals apply to “measures”

representing of how much of a feature is present within the boxes used for measure-

ment. Multifractals are either spatially intertwined fractals (cf. Stanley and Meakin

1988) or mixtures of fractals in spatially distinct line segments, areas or volumes that

are combined with one another. During the past 40 years, the fractal geometry of

many natural features in Nature has become widely recognized (see, e.g., Mandelbrot

1983; Barnsley 1988; Cheng 1994; Turcotte 1997; Raines 2008; Carranza 2008; Ford

and Blenkinsop 2009; Agterberg 2012; Cheng 2012). Fractals in geology either

represent the end products of numerous, more or less independent processes (e.g.,

coastlines and topography), or they result from nonlinear processes, many of which

took place long ago within the Earth’s crust. Although a great variety of fractals can

be generated by relatively simple algorithms, theory needed to explain fractals of the

second kind generally is not so simple, because previously neglected nonlinear terms

have to be inserted into existing linear, deterministic equations.

Both fractals and multifractals are commonly associated with local self-

similarity or scale-independence, which generally results in power-law relations

that can be represented as straight lines on log-log paper. Frequency distribution

models closely associated with fractals and multifractals include the Pareto, log-

normal and various extreme-value distributions. Computer simulation experiments

can be used to generate artificial fractals. Multiplicative cascade models are a useful

tool for generating artificial multifractals in computer simulation experiments.

Multifractals often result from non-linear process modeling. Lovejoy et al. (2010)

have pointed out that non-linear process modeling has made great strides forward in

the geosciences, especially in geophysics, but is not yet as widely accepted as it

should be. These authors briefly describe a number of recent “success stories” in

which non-linear process modeling led to results that could not have been obtained

otherwise. Multifractals will be discussed in more detail in Chap. 11.
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The concept of self-organized criticality (Bak 1996) has resulted in experimentally

produced fractal phenomena. One of Bak’s physical experiments consisted of

dropping a grain of sand on a pyramid of grains in a “critical” state so that an additional

grain creates a sand avalanche. The number of grains per avalanche then satisfies

a Pareto frequency distribution with a relatively thick high-value tail. Another

application of self-organized criticality is in the study of seismicity: Rundle

et al. (2003) showed that the Gutenberg-Richter earthquake frequency-magnitude

relation is a combined effect of the geometrical (fractal) structure of fault networks

and the non-linear dynamics of seismicity.

Other successful applications of non-linear modeling are the following.

Most weather-related processes taking place in the atmosphere including cloud

formation and rainfall are multifractal (Lovejoy and Schertzer 2013). Other

space-related non-linear processes include “current disruption” and “magnetic

reconnection” scenarios (Sharma 1995; Uritsky et al. 2008). Within the solid

Earth’s crust, processes involving the release of large amounts of energy over

very short intervals of time including earthquakes (Turcotte 1997), landslides,

flooding (Gupta et al. 2007) and forest fires (Malamud et al. 1998) are non-linear

and result in fractals or multifractals.

Increasingly it is realized that various processes that took place millions of

year ago during the geologic past also were non-linear. These include, for example,

the formation of columnar basalt joints (Goehring et al. 2009) and self-

organization in geochemical reaction-diffusion systems resulting in banding within

Mississippi Valley-type lead-zinc deposits (Fowler and L’Heureux 1996). Several

types of ore deposits resulting from hydrothermal processes display geometric

characteristics that have been known to be fractal or multifractal for a long time

(Blenkinsop 1995; Cheng 2008). The same consideration applies to oil and gas

pools (Mandelbrot 1995; Barton and La Pointe 1995). Non-linear process modeling

in these fields has two practical applications. On the one hand it has resulted in new

exploration techniques for the discovery of new mineral deposits; on the other hand,

it allows statistical modeling of the size-frequency distributions of populations

of known deposits.

The relationship between fractal point pattern modeling and statistical methods

of parameter estimation in point-process modeling will be reviewed in Sect. 10.2.

Statistical estimation of the cluster fractal dimension by using Ripley’s (1976)

K-function has advantages in comparison with the more commonly used methods

of box-counting and cluster fractal dimension estimation because it corrects for

edge effects, not only for rectangular study areas but also for study areas with

curved boundaries determined by regional geology. Application of box-counting to

estimate the fractal dimension of point patterns has the other disadvantage that, in

general, it is subject to relatively strong “roll-off” effects for smaller boxes. Point

patterns used for example in this section are mainly for gold deposits in the Abitibi

Volcanic Belt on the Canadian Shield. Additionally, it will be proposed that,

worldwide, the local point patterns of podiform Cr, volcanogenic massive sulphide

and porphyry copper deposits, which are spatially distributed within irregularly

shaped favorable tracts, satisfy a fractal clustering model with similar fractal
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dimensions. The problem of deposit size (metal tonnage) also is considered. Several

examples are provided of cases in which the Pareto distribution, which is closely

connected with fractals, provides good results for the largest deposits in metal

size-frequency distribution modeling (also see Sect. 4.4.2).

The dimension of a fractal is either greater than or less than the integer

Euclidian dimension of the space in which the fractal is imbedded. On the one

hand, fractals are often closely associated with the random variables studied in

mathematical statistics; on the other hand, they are connected with the concept of

“chaos” that is an outcome of some types of non-linear processes. An excellent

introduction to fractals and chaos in the geosciences is provided in Turcotte

(1997). Local singularity analysis (Cheng 2005; Cheng and Agterberg 2009) is

an example of non-linear modeling of geochemical data in mineral exploration

and environmental applications that produce new types of maps, which are

significantly different from conventional contour maps that tend to smooth

out local neighborhoods with significant enrichment of ore-forming and other

minerals (cf. Sect. 11.5).

10.1.1 Earth’s Topography and Rock Unit Thickness Data

Mandelbrot (1977) developed the novel approach for the modeling of irregular natural

phenomena as fractals characterized by their fractal dimension D. His first example

consisted of measuring the length of the coastline of Britain (D� 1.3). Irregular curves

usually have a fractal dimension that exceeds the Euclidian dimension (E¼ 1) of a

straight line or geometric curve such as a circle satisfying an algebraic equation. Feder

(1988) pointed out that different coastlines have different fractal dimensions. For

example, the Australian coastline has D� 1.1 but the Norwegian coastline with its

fjords has D� 1.52. Irregular surfaces have fractal dimensions exceeding E¼ 2 but

their contours have 2>D> 1. An example is shown in Fig. 10.1 that was generated as

follows (Mandelbrot 1977, p. 207). A horizontal plateau was broken along a straight

line chosen at random to introduce a kind of vertical fault with a random difference

between the levels at the two sides of the fault plane. This process was repeated many

times resulting in the “ordinary” Brownian landscape of Fig. 10.1. By “ordinary”

Mandelbrot meant that this landscape is closely related to the well-known process of

Fig. 10.1 Brownian

landscape after Mandelbrot

(1977, Plate 211)

intersected by horizontal

plane showing contours

with fractal dimension

D¼ 1.5. Landscape below

this horizontal plane is not

shown (Source: Agterberg

1980, Fig. 6)
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Brownian motion of a particle in the plane. Any cross-section of the landscape of

Fig. 10.1, such as the jagged line topping the black stripe at the bottom, is an ordinary

Brownian function with the following property: It represents the distance (measured in

the vertical direction) in a given direction between (1) a particle subject to Brownian

motion in the plane, and (2) an arbitrarily selected starting point as a function of time

(plotted in the horizontal direction). Every profile of the ordinary Brownian landscape

of Fig. 10.1, and also any contour created by intersecting the landscape with a

horizontal plane, has D¼ 1.5. More complicated generating mechanisms result in

other types of Brownian landscapes that are either smoother or more regular.

Agterberg (1980) subjected the pattern of Fig. 1.12 to the following measure-

ment procedure. The “perimeter” of the thickness contour was measured by using

the method explained in Fig. 1.11 for seven different unit radii. When the unit

radius was 1.5 miles (2.4 km) of less, the measured perimeter provides a good

approximation of the combined length of the contours in Fig. 1.12. For radius

greater than 1.5 miles (2.4 km), a shorter “perimeter” was measured. These

measurements are shown in Fig. 10.2 (Case 1) with a logarithmic scale along

both axes. Lengths cannot be measured when the radius becomes too large;

e.g., >10 miles (16 km), and measurements then should not be considered. The

pattern of Fig. 1.12 suggests a curve that approximately coincides with the straight

line fitted by least squares to the four points shown as crosses. The fractal dimension

is equal to 1 minus the slope of the straight line (see, e.g., Mandelbrot 1983). Hence,

D� 1.34. This result could be corroborated as follows: Burnett and Adams (1977,

Fig. 5b on p. 347) also published a more detailed map of the 30 ft (9.14 m) contour

thickness contour of the Sparky sandstone for a subarea (not shown here) of study

area shown in Fig. 1.12. The results labeled 1a and 2 in Fig. 10.2 are based on the

part of Fig. 1.12 for this subarea and the other large-scale map, respectively.

Estimates of the fractal dimension based on these other two sets of measurements

of the perimeter were D� 1.38 and D� 1.34, respectively. The pattern labeled 2 on

Fig. 1.12 illustrates that estimated length of the perimeter for unit radius set at

Fig. 10.2 “Perimeter”

measured for Fig. 1.10a by

method illustrated in bottom

diagram of Fig. 1.9

(Case 1). Results for smaller

area have smaller total

perimeters. The subarea of

Fig. 1.9 gave results shown

as Case 1a but more detailed

contour map of Sparky

Sandstone thickness for

same subarea gave results

shown as Case 2. See text

for measurements of fractal

dimensions (Source:

Agterberg 1980, Fig. 7)
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1 mile (1.6 km) fits in with the patterns for larger radii. This illustrates that

the so-called roll-off effect had not yet set in on for the shapes of contours on the

large-scale map. This example illustrates that measuring fractal dimension can have

value in quantitatively assessing degree of smoothing of geological features on

maps at different scales.

Lovejoy and Schertzer (2007) have reviewed early history of fractal geometry

pointing out that, early on, several mathematicians and geophysicists had pointed

out problems of differentiability and integrability in connection with some types of

natural phenomena. For example, Perrin (1913) wrote: “Consider the difficulty in

finding the tangent to a point of the coast of Brittany . . . depending on the resolution
of the map the tangent would change. The point is that a map is simply a

conventional drawing in which each line has a tangent. On the contrary, an essential

feature of the coast is that . . . at each scale we guess the details which prohibit us

from drawing a tangent”. With respect to problems of integrability, Steinhaus

(1954) stated: “The left bank of the Vistula when measured with increased precision

would furnish lengths ten, hundred, or even 1,000 times as great as the length read

off a school map. A statement nearly adequate to reality would be to call most arcs

encountered in nature as not rectifiable.” Among the early pioneers, Lovejoy and

Schertzer (2007) list Vening Meinesz (1951) who argued that the power spectrum

P(k) of the Earth’s topography has the scaling form k�β where k is a wave number

(¼2n� frequency) and β¼ 2, which according to Lovejoy and Schertzer (2007,

p. 466) is “close to the modern value β¼ 2.1”. Vening Meinesz (1951) derived his

scaling model of the Earth’s topography as follows.

Prey (1922) originally had developed the Earth’s topography in terms of spher-

ical harmonics up to the 16th order. For the mathematics of spherical functions; see,

e.g., Freeden and Schreiner 2008. Vening Meinesz (1951) normalized Prey’s

coefficients after making a separation between continents and oceans. He showed

that mean square elevation (y) is approximately related to order x of harmonic

according to the power law relation y¼C · x�β where C and β are constants. This

kind of relationship is in accordance with the concept that the Earth’s topography

can be described as a universal multifractal (cf. Sect. 12.7). Orders of spherical

harmonics are analogous to wave numbers in a periodogram. On the original graph

(Vening Meinesz 1951, Fig. 3), y multiplied by {n · (n� 1)} was related to

n according to a curve that was approximately horizontal for x> 2. Heiskanen

and Vening Meinesz (1958) argued that multiplication by {n · (n� 1)} is to be

preferred to multiplication by n2 but this is a minor refinement only.

In 1957, at the request of Vening Meinesz, the Netherlands Geodetic Commis-

sion completed a new development in spherical harmonics of the Earth’s topogra-

phy using improved data, especially on the topography of water-covered areas,

extending Prey’s calculations from the 16th to the 31st order. Figure 10.3 shows the

resulting refinement of the 1951 analysis subsequently obtained by Vening Meinesz

(1964). The new curve is subhorizontal for n> 5, although there may exist an

increase in y for higher orders suggesting that β is slightly less than 2, especially for
continental topography. Although the precise value of β is not known exactly, it is

clear that the Earth’s topography on the continents as well as on the ocean floor

approximately displays the same type of fractal/multifractal behavior.
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10.1.2 Chemical Element Concentration
Values: Mitchell-Sulphurets Example

Cheng (1994) has studied the spatial distribution of 1,030 concentration values of

gold and associated elements in partially altered volcanic rocks in the Mitchell-

Sulphurets area, northwestern British Columbia (Fig. 10.4a). Plots of Au content in

surface samples (Fig. 10.4b) from altered and unaltered rocks using logarithmic

probability paper (¼lognormal Q-Q plot) suggest that the gold concentration values

satisfy a single, positively skewed frequency distribution that is approximately

lognormal (Fig. 10.4c). On the other hand, when geochemical isopleths are

constructed (isolines or contours for concentration values in ppb Au) and log-log

paper is used to plot the cumulative area of surface rocks with larger concentration

values against the contour value, the altered and unaltered rocks show entirely

different power-law relations (Fig. 10.4d). This indicates that a power-law-based

approach can be useful for the delineation of geo-chemical anomalies in addition to

commonly used approaches directly based on element frequency distributions and

contour maps (see, e.g., Sinclair 1991).

Figure 10.5 shows Au and Cu maps employing single contours to divide the data

set into two parts, above and below the contour’s value. It can be seen that the

shapes of the areas enclosed by successive contours are changing gradually; total

enclosed area decreases as the value of the contour increases. From these contours

an optimum threshold for separating anomalies from background areas can be

selected by means of a log-log plot for the element concentration-area relation.

This threshold coincides with a sudden change in the rate of decrease of the area

enclosed by higher value contours on the log-log plot.

Fig. 10.3 Spherical harmonic development of the Earth’s topography (after Vening Meinesz

1964). T¼ total topography; S¼ ocean floor topography; L¼ continental topography. Horizontal

scale is for order n (¼1 to 31) of spherical harmonics; vertical scale is root mean square of

elevation multiplied by n½ · (n + 1)½. Hatched curve represents inverse values of Rayleigh numbers

for hypothetical mantle currents (not discussed here) distributed according the corresponding

spherical harmonics (Source: Vening Meinesz 1964, Fig. IV.2)
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The Geographic Information System (GIS) used to obtain the contour maps of

Fig. 10.5 (“Spatial Analysis System” or SPANS; cf. Cheng 1994) allowed several

interpolation procedures, including 2-D Kriging and so-called “potential mapping”.

The latter method consisted of the calculation of simple weighted moving averages

with a moving circular window with adjustable parameters to control the weighting

of values at neighboring points (cf. Sect. 1.4.1). The parameters include radius of

the circular window, decay ratio of the weighting function, and maximum number

of samples to be included within each window. For the example (cf. Cheng

et al. 1994) parameters selected were: radius of 0.8 km, decay ratio of 0.5

(corresponding to a linear weighting function with weight 0 for samples located

Fig. 10.4 Mitchell-Sulphurets mineral district, northwestern British Columbia. Four plots origi-

nally constructed by Cheng (1994): (a) Simplified geology after R.V. Kirkham (personal commu-

nication, 1993), including outline of alteration zones; (b) Sampling sites and (smoothed) isopleth

for 200 ppb gold concentration value; (c) Lognormal Q-Q plot (Au determinations below 2 ppb

detection limit are shown as horizontal line); (d) Log-log plot for area enclosed by isopleths

(including circumference of pattern for 200 ppb in Fig. 10.4b). Straight lines are least-squares fits

(log base 10; gold in ppb) (Source: Agterberg 1995a, Fig. 3)
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at the boundary or outside the moving window, and 1 for samples located at the

center) and maximum of ten samples per window. (If more than ten samples occur

within the window for a given location, only the ten nearest points were used to

evaluate the surface at that location.)

Suppose A(ρ) denotes the area with concentration values greater than the

contour value ρ. This implies that A(ρ) is a decreasing function of ρ. If ν represents
the threshold, the following empirical model generally provides a good fit to the

data for different elements in the study area:

A ρ � νð Þ / ρ�α1 ;A ρ > νð Þ / ρ�α2

where / denotes proportionality; α1 and α2 are different exponents.
Figure 10.6 shows log-log plots satisfying the preceding two power-law relations

for Au, Cu, As, Ag, Sb and Pb. All areas were computed from separate contour

maps such as those shown in Fig. 10.5 for Au and Cu. Pairs of estimated exponents

and corresponding optimum thresholds for these 6 elements and 22 other elements

or oxides were presented by Cheng (1994, Table 1). These thresholds delineate

anomalous areas. Comparison of the areas above and below the threshold of

200 ppb Au on the contour map (Fig. 10.5) with the geological map shows

significant spatial correlation between the areas with Au concentration above

200 ppb and Au-associated alteration zones (Cheng et al. 1994, Fig. 2). The same

type of correlation with alteration zones applies to Cu (400 ppm threshold; see

Fig. 10.5). Note, however, that the Au anomalies are more prominent than the Cu

anomalies in the southeastern part of the area. It may be concluded that the log-log

plots for the element concentration-area relation provide an excellent method for

separating anomalies from background in the Mitchell- Sulphurets area. This

empirical result will be explained by fractal modeling in Sect. 10.3.1.

Cheng (1994) also subjected element concentration maps as shown for Au and

Cu in Fig. 10.5 to perimeter-area analysis as follows. Theoretically, for a group

Au>=1 Au>=10 Au>=20 Au>=40

Au>=60 Au>=80 Au>=100 Au>=200

Au>=300 Au>=500 Au>=700 Au>=1000

Cu>=10 Cu>=20 Cu>=30 Cu>=40

Cu>=50 Cu>=60 Cu>=70 Cu>=80

Cu>=400 Cu>=600 Cu>=800 Cu>=1000

Fig. 10.5 Successive binary patterns for separate contours of Au and Cu, Mitchell-Sulphurets

area. (Source: Cheng et al. 1994, Fig. 5)
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Fig. 10.6 Log-log plots representing the relationships between areas bounded by contours

(as shown for Au and Cu in Fig. 10.5), and contour value for four elements, Mitchell-Sulphurets

area. Straight line segments were fitted by least squares (Source: Cheng et al. 1994, Fig. 6)
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of similarly shaped sets, there exist power-law relationships between any two

measures of volume or area and perimeters. For example, two areas Ai and Aj

enclosed by contours i and j are related to their perimeters Li and Lj as follows:

Lj δð Þ
Li δð Þ ¼

Aj δð Þ
Ai δð Þ

� �DAL=2

where δ is the common yardstick used for measuring both areas and perimeters. The

fractal dimension DAL satisfies DAL¼ 2DL/DA, where DL and DA denote fractal

dimensions of perimeter and area, respectively. The contours for Au and Cu in

Fig. 10.5 show similar shapes suggesting that the current perimeter-area modeling

approach may be valid. Experimental results for Au, Cu and As are shown on

log-log plots in Fig. 10.7a, c, and e using perimeters and areas for different contours

with concentration values above the thresholds previously defined using the ele-

ment concentration-area method (Fig. 10.6). Figure 10.7b, d and f show the

relationships between estimated lengths of perimeters of contours of concentration

values for yardsticks of different lengths. There appear to be two different fractal

dimensions in these diagrams on the right side of Fig. 10.7. The first of these (D1)

for yardsticks less than 300 m is equivalent to the so-called “textural” fractal

dimension (Kaye 1989, p. 27). It is close to 1 for the elements considered and can

be explained as the result of smoothing during interpolation. The other estimate of

DL (D2) ranges from 1.14 to 1.33 and is probably representative of the true

geometry of anomalous areas for the elements considered. It is noted that the

least squares estimates of D1 and D2 in Fig. 10.7 are subject to considerable

uncertainty because they are based on relatively few points.

Box 10.1: Fractal Perimeter-Area Relation

The following perimeter-area relationship was introduced by Mandelbrot

(1983) for similarly shaped sets: L δð Þ ¼ C � δ 1�Dð Þ ffiffiffiffiffiffiffiffi
AδD

p
where C is a con-

stant. A modification of this equation was introduced by Cheng (1994) as

follows (cf. Cheng et al. 1994). For yardstick δ, the estimated length and area

of a pattern in 2-D can be expressed as: L(δ)¼ L0δ
(1�D);A(δ)¼A0δ

(2�D).

Similarly shaped patterns at different scales can be derived from one

another by changing the scale. Suppose that ri represent the ratio to

create the i-th geometrical pattern from the k-th one. Estimates of L and A

for these two geometries then can be obtained from: Lk δð Þ ¼ L0δ
1�DLð Þ ;

Li δð Þ ¼ L0 riδð Þ�DLδ;Ak δð Þ ¼ A0δ
2�DAð Þ;Ai δð Þ ¼ A0 riδð Þ�DAδ2. Consequently,

Li δð Þ
Lk δð Þ ¼

Ai δð Þ
Ak δð Þ

� �DAL=2

;Li δð Þ ¼ δ
Ai δð Þ
δ2

� �DAL=2

¼ δ1�DAL Ai δð Þ½ �DAL=2, and DAL ¼
2DL/DA.
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From any two of the three fractal dimensions (DL for perimeter; DAL for

perimeter-area relation; and DA for area), the third one can be obtained by means

of the relation DA¼ 2DL/DAL. Theoretically, DA cannot be greater than 2. In most

applications of the perimeter-area method, it is set equal to 2 so that DL¼DAL. The

latter relation holds approximately true for Cu and As (DAL¼ 1.16 and DA¼ 1.96

Fig. 10.7 Relationships between perimeters and anomalous areas using contours with different

values greater than thresholds for (a) Au, (c) Cu and (e) As. Log-log plots on right side show

relationships between estimated lengths of the perimeters of the anomalous areas for (b) Au,

(d) Cu and (f) As with variable yardstick. D1 and D2 are for textural and structural fractal

dimensions, respectively. All solid lines were obtained by least squares (Source: Cheng

et al. 1994, Fig. 8)
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for Cu and DAL¼ 1.28 and DA¼ 2.07 for As). For Au, the estimated value of DAL

(1.48) is significantly greater than the estimated structural fractal dimension (1.24).

From the relation DA¼ 2DL/DAL, it follows that DA¼ 1.68 for gold which is less

than 2. These results indicate that the distribution of Au in the alteration zones is

more irregular than that of Cu or As.

10.1.3 Total Metal Content of Mineral Deposits:
Abitibi Lode Gold Deposit Example

The problem of whether natural resources are best modeled as Pareto- or

lognormal-type remains important because both approaches continue to be used

extensively for oil and other natural resource size-frequency modeling. As men-

tioned before, Mandelbrot (1983, p. 262; cf. Chap. 4) had challenged geoscientists

by asserting that oil and other natural resources have Pareto distributions and this

“finding disagrees with the dominant opinion, that the quantities in question are

lognormally distributed. The difference is extremely significant, the reserves being

much higher under the hyperbolic than under the lognormal law” (cf. Sect. 4.4.1).
The difference between the two types of frequency distribution is illustrated in

Figs. 10.8 and 10.9 using an artificial example for amount of metal contained in all

ore deposits from a region. The distribution that plots as a straight line on one kind

of diagram plots as a curve on the other diagram. The Pareto not only has a thicker

tail, it deviates more strongly from the lognormal at the other (lower value) end,
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Fig. 10.8 Hypothetical lognormal distribution (blue curve) plotted on log-log paper (log base 10).
Straight line tangent to lognormal curve represents Pareto distribution (pink line) (Source:

Agterberg 2007, Fig. 1a)
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because as frequency for the lognormal approaches 0 for decreasing amount of

metal, the corresponding Pareto frequency approaches 1. The number of oil fields

containing more than a given amount of oil can be modeled by means of the Pareto

distribution, as demonstrated by several authors including Drew et al. (1982) and

Crovelli (1995).

Singer and Menzie (2010) used the lognormal distribution as a benchmark for

the modeling of worldwide metal resources. Agterberg and Divi (1978) developed a

two-dimensional lognormal model for copper, lead and zinc ore deposits in the

Canadian Appalachian region. On the other hand, Turcotte (1997) provides various

examples of successful fitting of the Pareto to various metal resource data sets.

These examples include log-log plots of grade versus cumulative production of

mercury, lode gold and copper in the United States originally established by Cargill

(1981) and Cargill et al. (1980, 1981). Respective merits of lognormal and Pareto

size-modeling already were investigated in Chap. 4 for copper deposits in the

Abitibi area on the Canadian Shield. In the Abitibi copper hindsight study, both

models were applicable although the Pareto had the advantage in predicting prop-

erties of size frequency distributions of amounts of copper ore that was to be

discovered later.

Freiling (1966) made a direct comparison of lognormal and Pareto distributions

showing that the tails of these distributions are very different. However, extensive

testing of the two models on mass-size distributions led him to the conclusion that

available data were not sufficient to distinguish between lognormal and power-law

distributions in practice.

Pareto on Lognormal Q-Q plot
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Fig. 10.9 Two distributions of Fig. 10.8 re-plotted as lognormal Q-Q plot (Source Agterberg

2007, Fig. 1b)
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The simple method of checking whether or not a set of resource estimates

satisfies a Pareto distribution introduced in Chap. 4 consists of constructing a

log-log plot of amount of metal per deposit and size rank (in descending order).

In Fig. 10.10 this method is applied to gold deposits in the Abitibi volcanic belt. If

the Pareto model is satisfied, this type of plot produces a straight line, usually with a

relatively sharp downward bend at the end because of an economic cut-off effect.

Although lognormal and Pareto distributions commonly are fitted to metal from ore

deposits in large regions or on a worldwide basis, it should be kept in mind that

metal from ore deposits in smaller regions can have different frequency distribu-

tions. The Vistelius model that combining lognormal distributions from smaller

regions or different rock units can produce a new lognormal distribution with

different parameters was discussed in detail in Chap. 3. With respect to the example

for the Abitibi volcanic belt, it is shown in Agterberg (1995b) that 53 lode gold

deposits from the Superior Province on the Canadian Shield but from outside the

Abitibi volcanic belt satisfy a different Pareto distribution.

10.2 2-D Distribution Patterns of Mineral Deposits

Point patterns can be fractal (Feder 1988; Stoyan et al. 1987; Korvin 1992). In

general, fractal point patterns are characterized by the fact that average point

density (¼number of points per unit of area) decreases when size of study area is

increased. In this respect, fractal point patterns differ from commonly used statis-

tical point-process models such as the random Poisson and various clustering

models in which the mean point density is assumed to be the same within the entire

study area regardless of its size. Mathematical statisticians (Ripley 1976, 1981,

1987, 1988; Diggle 1983; Rowlingson and Diggle 1991, 1993; Cressie 2001;

Baddeley and Turner 2012; Baddeley et al. 2006; Baddeley et al. 2008) have

developed very precise methods to estimate the parameters of constant-density

point processes. In Chap. 1, Ripley’s method of correcting estimates of point

pattern parameters for edge effects was applied to wildcats and gas discoveries in

Fig. 10.10 Production and reserves of 107 lode gold deposits (in metric tons Au) in Abitibi

volcanic belt, Superior Province, Canadian Shield, ranked according to their sizes (largest deposit

first). Pareto distribution fitted as straight line (Source: Agterberg 1995a, Fig. 2)
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exploration “plays” in Alberta with study area boundaries that were approximated

by multi-edge polygons instead of being rectangular in shape. Not only do these

“plays” have irregular boundaries, they may contain islands of terrain judged to be

unfavorable for drilling but situated within the study area. These edge correction

methods can equally well be applied in fractal point process modeling. This section

advocates the use of such methods, which account for edge effects, allow irregu-

larly shaped study areas and, generally, are much more precise than various

box-counting methods more commonly used for the statistical treatment of fractal

point patterns if the domains of study are not rectangular in shape.

A closely related topic not covered in this chapter is that fractal point patterns

can be multifractal. The spatial distribution of gold mineral occurrences in the Iskut

River map sheet, northwestern British Columbia, is multifractal instead of

monofractal (Cheng 1994; Cheng and Agterberg 1995). Although theory of

multifractal point processes was developed in these latter two publications, there

have been relatively few other applications along these lines, although generaliza-

tions to multifractal point pattern modeling can have advantages similar to those

documented in the relatively many existing multifractal applications to measures or

chemical element concentration methods (Mandelbrot 1999; Cheng 2012). The

topic of multifractal point patterns will be discussed in the next chapter. The points

in a point pattern can have different values. This has led to the modeling of

“marked” point processes (Cressie 2001). This topic also could be of importance

in resource potential modeling where the points represent mineral deposits or oil

pools with positively skewed size-frequency distributions and possess other fea-

tures that differ greatly from point to point.

Carlson (1991) applied a fractal cluster model to hydrothermal precious-metal

mines in the Basin and Range Province, western United States. The underlying

theoretical model is clearly explained in Feder (1988, Chap. 3). For the spatial

distribution of points in the plane this model requires that the number of points

within distance r from an arbitrary point is proportional to rDc where Dc represents

the so-called cluster fractal dimension which is less than the Euclidian dimension of

the embedding space (¼2 for two-dimensional space). It implies that the cluster

density decreases with increasing r. As mentioned before, a basic difference

between this fractal model and commonly used statistical point-process models

such as the Poisson and Neyman-Scott models is that the latter are not fractal

because their dimension remains equal to the Euclidian dimension (¼2) for

increasing r.
Two methods (box-counting, and cluster density determination) are commonly

used for the fractal modeling of point clusters. The first method consists of

superimposing square grids with different spacings (E) on the study region. The

number of boxes (NE) containing one or more points is counted for every square

grid. The number NЄ decreases with increasing value of E, mainly because there are

fewer larger boxes. If the box-counting fractal model is satisfied, this decrease

satisfies a power-law relation and shows as a straight line with slope - Db on a

log-log plot where Db represents the fractal dimension. Cluster density determina-

tion can be performed by centering circles with different radii (r) on all points in
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the study area, counting how many other points occur within these circles, and

averaging the results. The relation between cluster densities then is according to a

power-law that plots as a straight line with slope Dc� 2 on log-log paper if the

fractal model with Dc as its fractal dimension is satisfied.

Carlson (1991) obtained the following results: for distances less than 15 km,

cluster density determination as applied to 4,775 precious metal deposits gave

Dc¼ 0.83 versus Db¼ 0.50 for box-counting. For greater distances between

15 and 1,000 km, the two methods yielded Dc¼ 1.17 versus Db¼ 1.51. Note that

for short distances, Db is less than Dc but for larger distances, it is the other way

around. For both kinds of fractal cluster, the dimension seemed to be bifractal.

Carlson commented that differences between Db and Dc are “troubling but common

in measuring fractal cluster dimensions”. It is mentioned here that fractal dimensions

for short distances generally are too low because of “roll-off” effects that affect Db

more strongly thanDc (cf. Sect. 10.1.1 and next paragraph). Because of possible edge
effects, the Db¼ 1.51 estimate may be most accurate one. Carlson (1991) interpreted

his results in terms of a bifractal model assuming that fractal hydrothermal and

fracture systems are effective over scales from about 15–1,000 km. Various examples

of geological bifractals in other types of applications can be found in Korvin (1992).

Differences in fractal point pattern dimension can be due to different reasons.

One explanation is that Db and Dc are not necessarily the same; e.g., they are

expected to be different for a multifractal cluster. With respect to the differences

betweenDb andDc: due to limited resolution of maps, the measurements on fractals

normally become biased for small distances (E or r) and this can cause measured

fractal dimensions to be biased. Theoretically, a fractal cluster model has the

property of self-similarity in that point patterns for any enlarged subarea would be

similar even if the zooming-in is repeated indefinitely. In practice, graphical

representations become increasingly incomplete with increased enlargement.

This type of bias does not only apply to fractal point patterns but to other types

of fractals as well. This well- known “roll-off” effect has been studied in detail by

structural geologists (e.g., Walsh et al. 1991; Pickering et al. 1995; Blenkinsop

1995). It already was discussed earlier in this chapter for contour maps

(Sect. 10.1.1). When sample size is large, the “roll-off” effect can be modeled

by using a continuous curve that asymptotically approaches the fractal straight

line on log-log paper. However, for smaller samples, the observed “roll-off”

effect may create an artificial sequence resembling two or more separate

straight-line segments. Downward bias in Db toward the origin is stronger than

that in Dc over short distances.

On the other hand, estimates of Dc for large distances may become less precise

and biased downward more strongly than those of Db if edge effects are not taken

into account. Unless Ripley’s K(r) function is used, it is difficult to account for edge
effects in Dc because: (1) much useful information is discarded if all largest circles

around points (along with all smaller circles within the largest circles) are required

to be fully contained within the study area, and (2) the boundary of the study area

may not have a simple (rectangular or circular) shape but can be highly irregular

and then would have to be approximated by a polygon representing a curvilinear
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shape instead of by a rectangle, thus creating additional complications as discussed

in Sect. 1.5.3. These two edge effect problems can be avoided by using Ripley’s

K(r) function. Although estimates of Db based on the largest boxes are relatively

imprecise, because there are relatively few of them, they can have the advantage of

remaining unbiased provided that exactly the same study area is covered by all

box-counting grids.

The results obtained by Carlson (1991) have been criticized by various authors but

Raines (2008) in a comprehensive review concluded (a) in several other applications,

differences between Db and Dc are less than those found by Carlson, and (b) in

general, the bifractal cluster model would be satisfied because dimensions for shorter

distances are indeed less than those for larger distances. Raines (2008) was able to

reduce bias in fractal cluster estimation to some extent by using GIS –based methods.

However, it is possible to improve fractal estimation procedures more significantly by

adopting the methods developed by mathematical statisticians as will be shown in the

next section on the basis of a practical example.

10.2.1 Cluster Density Determination of Gold Deposits
in the Kirkland Lake Area on the Canadian Shield

Figure 10.11 (from Agterberg et al. 1993) shows the locations of 295 gold deposits

(mines and occurrences) in a rectangular area of 4,185 km2 in the vicinity of

Timmins and Kirkland Lake in the Abitibi area on the Precambrian Canadian

Shield. It is part of a much larger study area (¼89,600 km2) containing 1,306

gold deposits with Dc¼ 1.514 to be discussed in more detail in the next section.

Cluster density estimation applied to Fig. 10.11 gives Dc¼ 1.493, which is close to

the estimate based on the larger area. Figure 10.11 shows large subareas without

any gold deposits (lacunarity). This is either because the bedrock containing gold

deposits in these subareas is covered by relatively thick Quaternary deposits or it

consists of barren rock types such as Archean gneiss belts without gold deposits.

The pattern of Fig. 10.11 is anisotropic because of strong east–west structural

trends. By means of additional experiments to be summarized later it can be

shown that neither lacunarity nor anisotropy significantly alters the estimate of

Dc (�1.5).

Most problems of lack of precision and accuracy outlined in the previous section

can be avoided by adopting methods of statistical point-process modeling (Diggle

1983; Ripley 1988; Agterberg 1994). In this type of modeling, the first-order and

second-order properties of a spatial point process for events are described by its

intensity function λ1(x) and second-order intensity function λ2(x, y) where x and

y represent the locations of two event points in the plane. For an isotropic, stationary
point process, λ1(x)¼ λ and λ2(x, y)¼ λ2(r) where r is distance between x and y. A
powerful way to characterize the second-order properties of a point process is

provided by Ripley’s K(r) function, which is proportional to expected number of
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further events within distance r from an arbitrary event point. The relation between

λ2(r) and K(r) is λ2(r)/ K0(r)/rwhere/ denotes proportionality and K0(r) is the first
derivative of K(r) with respect to r. Application of this statistical point process

technique to fractal cluster theory yields λ2(r) / rDc�2 and K(r) / r Dc where /
again denotes proportionality.

For rectangular areas such as that of Fig. 10.11, the K(r) function can be estimated

readily by the method originally developed by Ripley (1976) according to which edge

effects due to the boundaries of the study area are avoided. Diggle (1983, p. 72) has

published explicit formulae for unbiased estimation of K(r) for event points in a

rectangular study area. Application of this method to the pattern of Fig. 10.11 resulted

in the pattern of solid circles in Fig. 10.12a. The slope of the straight line fitted

to these points gives the estimate Dc¼ 1.493 mentioned before.

Results of two experiments to study the effects of lacunarity and anisotropy are

also shown in Fig. 10.12. The largest holes in the point pattern of Fig. 10.11 occur in

the northern half of this study area. For this reason, a new study area consisting only

of the southern half of Fig. 10.11 was defined. It contains most of the gold deposits

in Fig. 10.11 and has three holes (lacunae) that are smaller than the two largest holes

in Fig. 10.11. Application of the previous method to the point pattern for the

southern half of Fig. 10.11 resulted in the pattern of solid circles in Fig. 10.12b

with Dc¼ 1.467 instead of Dc¼ 1.493. The fact that these two estimates are nearly

equal to one another illustrates that lacunarity does not significantly affect the

estimation of Dc.

The effect of anisotropy was studied as follows. A so-called affine transforma-

tion was applied to the pattern of Fig. 10.11 by changing the north–south coordi-

nates of all event points. The north–south coordinate was measured by taking

distance from the southern boundary of the study area and these distances were

80°30' 79°30'W

48
°0

0'
48

°3
0'

NFig. 10.11 Example of

point pattern for 295 gold

deposits in the vicinity of

Timmins and Kirkland

Lake, Abitibi volcanic belt

on Canadian Shield. Circles

are gold mines (mainly past

producers); triangles

represent small, unmined

deposits (Source: Agterberg

2013, Fig. 2)
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multiplied by 2.5 to provide a more isotropic pattern. Results of application of the

previous methods are shown as open circles in Fig. 10.12. The resulting estimates

are Dc¼ 1.498 (Fig. 10.12a) and Dc¼ 1.506 (Fig. 10.12b). Like the two other

estimates these two estimates are approximately equal to 1.5 illustrating that, like

lacunarity, anisotropy does not significantly affect the estimation of Dc.

Results of the box-counting fractal method applied to the point pattern of

Fig. 10.11 were tabulated in Agterberg et al. (1993) and here are graphically

shown in Fig. 10.12. As already mentioned in Sect. 10.1.3, the box-counting fractal

method is less accurate and less precise than cluster density estimation for point

patterns. Because there are only 295 points in Fig. 10.11, Db approaches 0 for

decreasing box size (E! 0). For any very small value of E, the number of boxes

containing points becomes NЄ¼Log10 295¼ 2.47. In Fig. 10.13 the “roll-off”

pattern of measurements asymptotically approaches this value that is almost

reached for boxes measuring 1 km on a side, because very few of these contain

more than a single point. This source of bias can be seen on Fig. 10.13 for values

less than NЄ. Larger boxes are not subject to this type of bias but are relatively

imprecise because their frequency approaches 0 for increasing box size. The lack of

precision is shown on Fig. 10.13 as increased scatter of measurements along the

straight line pattern (broken line in Fig. 10.13). This line with slope equal to �1.53

was fitted to the values with 10Log E� 0.6 only. It would result in the estimate

Db¼ 1.53, which is comparable with the estimates of Dc� 1.5 obtained in the

previous section. Although other interpretations remain possible (cf. Raines 2008,
p. 289), the most reasonable conclusion is that there is no significant difference

between Db and Dc� 1.5 for the spatial distribution of gold deposits in the Kirkland

Lake ar ea.
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Fig. 10.12 Log-Log plots of K(r) function versus distance r (in km) to estimate cluster fractal

dimension Dc (estimated from slopes of best-fitting straight lines). (a) Point pattern for gold

deposits in Fig. 10.11; (b) southern half of point pattern shown in Fig. 10.11. Solid circles show

results for original (anisotropic) point patterns; open circles show results for transformed (approx-

imately isotropic) point pattern. Estimates of Dc for solid circles are (a) 1.493 and (b) 1.498;

estimates of Dc for open circles are (a) 1.506 and (b) 1.524. Solid circles in Fig. 10.12b are based

on fewer points because edge correction formula used requires r< h� 2 where h is height of map

area (measured in north–south direction) in km. (Source: Agterberg 2013, Fig. 3)
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10.2.2 Cluster Density Determination of Gold Deposits
in the Larger Abitibi Area

The Kirkland Lake area (Fig. 10.9) is part of a larger study area (¼89,600 km2) with

1,306 gold deposits (from a compilation by Agterberg et al. 1972). It measures

560 km east–west and 160 km north–south. Subjecting he larger area to fractal

cluster modeling by the method described in the previous section gave Dc¼ 1.514

(Agterberg 1993). This is close to D¼ 1.493 and other estimates mentioned

previously. The larger study area covers most of the Abitibi Volcanic Belt on the

Canadian Shield. It shows many more large holes in the pattern of gold deposits

than can be seen in Fig. 10.9. This lacunarity is mainly due to the occurrences

of terrains underlain by Archean granite intrusions and gneisses, which are devoid

of gold deposits. It was already discussed before that the sizes of the large gold

deposits in the Abitibi Volcanic Belt satisfy a fractal Pareto frequency distribution

(Fig. 10.8)

In Agterberg (1993), the enlarged study area with 1,306 small and large gold

deposits was used to illustrate the calculation of the variance of mean values of

numbers of deposits in blocks for regional resource evaluation studies. The study

area was partitioned into 3,584 (5� 5 km) unit cells forming 32 rows and 112 col-

umns. The corresponding estimate of intensity is λ (¼1,306/3,584)¼ 0.3644. In an

earlier study, Agterberg (1981) had used the following computer algorithm to

estimate the reduced second moment measure λ2(r)/λ (cf. Sect. 10.2.1). A grid

with (5� 5 km cells) was successively centered on each of the 1,306 gold deposits.
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Fig. 10.13 Estimation of box-counting dimension Db for point pattern of gold deposits shown in

Fig. 10.9. Original data were taken from columns 2 and 4 in Table 1 of Agterberg et al. (1993). The

straight line with value of Db¼ 1.528 was fitted to eight largest-box values only, assuming that

there is a roll-off effect in values for the smaller boxes. It is noted that Raines (2008) assumed the

pattern of Fig. 10.13 to be bifractal (Source: Agterberg 2013, Fig. 4)
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Frequencies of other deposits occurring within cells of this grid in the vicinity of

each deposit were determined and added in order to obtain total frequencies. In each

case, only the frequencies for cells falling within the study area were used. This

earlier method to correct for edge effects using squares is less precise than when

Ripley’s K(r) function with circles is used (cf. Sect. 1.5.3). A formal proof that

cluster density estimation results in an unbiased estimate of λ2(r)/λ in the aniso-

tropic case can be found in Stoyan et al. (1987, p. 125; also see Falconer 2003). The

resulting frequency distribution had elliptic contours elongated in the east–west

direction. Reduction of the east–west coordinates by the factor 2.5 resulted in

approximately circular contours on a compressed map. The (5� 5 km) unit cells

on this transformed map correspond to rectangular cells on the original map

measuring 12.5 km in the east–west direction and 5 km in the north–south direction.

Estimated intensity for the compressed map is λc (¼2.5λ)¼ 0.9110. Estimated

second-order intensity values for the compressed map are shown in Fig. 10.14.

For distances less than 20 km, it is seen that approximately, λ2c(r) / r�0.486 in four

different directions. The corresponding cluster dimension is Dc¼ 1.514. Because

cluster density estimation is not affected by affine transformation, Dc¼ 1.514 for

the original map as well.

The function λ2(r) is not centered with respect to a mean value. The so-called

covariance density C(r)¼ λ2(r)� λ2 is the centered form of λ2(r). By means of

standard statistical methods, C(r) can be used to estimate the variance of the

number of points within a rectangle of any shape (Agterberg 1993, p. 319). For
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Fig. 10.14 Second-order intensity functions for 1,306 gold deposits in Abitibi volcanic belt.

Vertical scale is for λ2c (r)/λcwhere subscript c denotes relation to cluster fractal dimension. Affine

transformation of original point pattern by factor 2.5 in the north–south direction resulted in

approximate isotropy as can be seen from observed second-order intensities for four different

directions estimated after the transformation. Both scales are logarithmic; the second-order

intensity is larger than the covariance density because it has not been centered (Source: Agterberg

1993, Fig. 8)
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relatively small cells, the variance can also be estimated directly from the observed

data (Table 10.1). For large areas, this variance cannot be estimated directly but the

power-law model can be used for this purpose. Table 10.1 (from Agterberg 1993)

shows variances computed from observed data in comparison with variances based

on the fractal power-law model. Standard deviations of the power-law variances are

also shown. The model can be used for extrapolation to areas of any size including

very large areas. Modeling of uncertainties of this type is useful in regional mineral

resource potential studies.

10.2.3 Worldwide Permissive Tract Examples

Singer and Menzie (2010) have developed a three-part method for regional quan-

titative mineral resource assessments. The three parts are (1) delineation of per-

missive tracts for selected types of mineral deposits; (2) grade-and-tonnage models

for these deposits; and (3) estimating the number of deposits for each type. They

have compiled a table of worldwide mineral deposit density control areas for

mainly (1) podiform chromite; (2) volcanogenic (Cyprus +Kuroko) massive sul-

phide and (3) porphyry copper deposits (Singer and Menzie 2010, Table 4.1). For

deposit type per permissive area, these authors listed (a) area (km2), (b) number of

deposits, and (c) median and total tons of metal. Figure 10.15 (based on Singer and

Menzie 2010, Table 4.1) shows log-log plots for the relations between deposit

density and permissive area for the three selected deposit types. In a separate study,

Singer and Menzie (2008) have studied the problem of map scale effects on

estimating number of undiscovered deposits within permissive tracts.

If the deposits would be randomly distributed across each permissive tract;

e.g., according to a Poisson model, one would expect that the three best-fitting

straight lines for point density in Fig. 10.15 would be approximately horizontal

because number of deposits per tract then would be proportional to tract area for

each deposit type. Instead of this, the three best-fitting lines in the log density versus

log permissive plots have negative slopes equal to �0.53, �0.62 and �0.61 for

chromite, volcanogenic massive sulphide and porphyry copper, respectively. From

the relatively large R2 values of these least squares fits it can be concluded that these

three slopes are significantly greater than zero.

Although the permissive tract approach differs from cluster density estimation, it

also can be used for fractal cluster estimation. From the slopes of the lines of best fit

Table 10.1 Comparison

of fractal cluster model

(power-law) variance with

sample variances s2(x) for
different (square) cell sizes

(Source: Agterberg 1993,

Table 1)

Cell size (km) S2(x) Power-law estimate

5 1.48 1.450 (0.000 54)

10 13.42 13.257 (0.006 20)

20 128.42 130.903 (0.070 87)

40 111 680 1,296.609 (0.809 56)

Study area 508,777.7 (920.82)
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it follows that all three deposit types satisfy a fractal cluster model with Dc equal to

1.47, 1.38 and 1.39, respectively. These results are not only remarkably similar to

one another but also fairly close to those obtained previously for gold deposits in the

Abitibi Volcanic Belt on the Canadian Shield with Dc� 1.5. Singer and Menzie

(2010) had already established empirically that deposit density for the three types of

deposits significantly decreases with size of permissive tract but they did not offer a

fractal explanation. A factor probably contributing to the fact that deposit density

clearly decreases linearly with tract size in this type of application is that the

boundaries of the permissive areas have curved shapes determined by local geology.

Roll-off effects should be negligibly small because the tracts are fairly large.

Singer and Menzie (2010, pp. 60–64) also have considered the relation between

total tonnage of deposits in their Table 4.1 with area of permissive tract and deposit

density simultaneously. In the Fig. 10.15 a second set of points is shown for deposits

of each type weighted according to their total metal tonnage. For podiform chromite

and volcanogenic sulphide deposits, the slopes of the lines fitted to the second set of

points are not statistically significant but for the porphyry coppers there is an

indication that size-weighted density decreases with tract area. Figure 10.16 shows

that for each of the three deposit types (podiform chromite, volcanogenic massive

sulphide and porphyry copper) the largest deposits approximately satisfy a Pareto size

frequency distribution. Because the three data sets are not large, Quandt’s (1966)

method was used for parameter estimation, because it yields unbiased (consistent)
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Fig. 10.15 Log-Log plots of original density versus permissive tract area for three types of

deposits (original data from Singer and Menzie 2010, Table 4.1). (a) Podiform Cr deposits;

(b) volcanogenic massive sulphide deposits; (c) porphyry copper deposits (Source: Agterberg

2013, Fig. 6)
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estimates. The slopes in the log rank versus log tonnage plots are �10.66, �0.406

and �0.801 for podiform Cr, volcanogenic massive sulphide and porphyry copper

deposits, respectively.

10.3 Geochemical Anomalies Versus Background

The main method to be considered in this section is the Concentration-Area (C-A)

method, which is based on the fact that log-log plots of element concentration value

versus cumulative area often show patterns that can be described by two consecutive

straight-line segments (cf. Fig. 10.6). These may correspond to anomaly and

background, respectively. There are situations, however, that a pattern consists of

more than two straight-line segments, or that a curvilinear pattern provides a better fit.

The C-A method was originally proposed by Cheng (1994) and also is described with

applications in Cheng et al. (1994).

In addition to the C–A method, several other methods for non-linear spatial

information extraction have been developed during the past 10 years to aid in the

analysis of regional geochemical and geophysical map data (Cheng 1999). These

methods, which will not be discussed here, include integrated spatial and spectral

analysis for geochemical anomaly separation (Cheng et al. 2001), eigenvalue–

eigenvector analysis of multifractal fields (Li and Cheng 2004; Cheng 2005), and
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Fig. 10.16 Log-log plots of rank versus metal tonnage for the three types of deposits; the straight

lines were fitted to the largest deposits only and represent Pareto distributions (Source: Agterberg

2013, Fig. 7)
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use of local singularities for spatial interpolation (Cheng 2006). Most of these

techniques were incorporated in the software package GeoDAS (Cheng 2003).

10.3.1 Concentration-Area (C-A) Method

Suppose that a map pattern in 2-D is fractal with dimension D¼ f (α). The reason
for introducing the so-called singularity α at this point is that in multifractal

modeling (Chap. 11) a fractal can be considered as a special case of a multifractal

in which different element concentration values have different values of α. A
multifractal is characterized by its multifractal spectrum which is a plot of f (α)
versus α. If areal distribution of element concentration values in a study region is

fractal, its multifractal spectrum degenerates into a single spike.

For small cell size∈ , the estimated area A(∈ ) and concentration value ρ(E)
can be expressed as A(E)/ E� f(α) + 2; ρ(E)/ E α� 2. Elimination of ∈ gives:

A(ρ)/ ρ[2� f(α)]/(α� 2) where it is assumed that 0� f (α)� 2 and 0� α< 2. For

α¼ 2, ρ becomes a constant that is independent of A(ρ). The power-law relationship

between A(ρ) and ρ would plot as a straight line on log-log paper. However, in

Fig. 10.6, as in many other applications of this type, a good fit only is obtained

when two straight line segments are fitted instead of a single one. In Cheng

et al. (1994) it is assumed that, to a first approximation, these two straight line

segments represent separate populations representing “background” and “anomaly”,

respectively. In Sect. 10.1.2 it was discussed that the cumulative frequency distribu-

tion of gold does not provide an indication that there would be two separate

populations. Thus the C-A method can provide a new tool for geochemists to identify

anomalies of element concentration contour maps. For the Mitchell-Sulphurets area,

the thresholds for Au and Cu fall at 400 ppb and 200 ppm, respectively (Sect. 10.1.2).

In the next section, stream sediment data from the Iskut River area, northwestern

British Columbia, will be analyzed using the C-A method with results that are similar

to those obtained for the bedrock samples from the Mitchell Sulphurets area.

In general, fractal and multifractal modeling can produce useful information on

separating anomalies from geochemical background (fractal C-A method, Cheng

et al. 1994; and S-A method, Cheng 2001). At the end of this chapter (Sect. 10.4), it

will be discussed that patterns such as those shown in Fig. 10.6 probably are not

bifractal but can be explained as a combination of a fractal anomaly pattern that is

superimposed on multifractal background with approximately lognormal element

concentration frequency distribution.

10.3.2 Iskut River Area Stream Sediments Example

The Iskut River area is located in northwestern British Columbia (Fig. 10.17). In

this relatively isolated area, 6 Au deposits and 177 Au mineral occurrences of
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predominantly hydrothermal types have been documented (B.C. Minfile Map

104B, 1989; Anderson 1993). The area is underlain by Paleozoic and Mesozoic

sedimentary, volcanic and plutonic rocks and has been subjected to low-grade

regional metamorphism, heterogeneous penetrative deformation and complex

fault history. Paleozoic sedimentary and volcanic rocks are mainly exposed in

the central and western parts of the NTS 104B map sheet. Major rock types

include greenstones, limestones, shales and clastic sedimentary rocks. Mesozoic

assemblages are divided into three major groups (Anderson 1993): (1) Upper

Triassic Stuhini group (volcanic and clastic sedimentary sequences); (2) Lower

and Middle Jurassic Hazelton Group (volcanic and clastic sedimentary

sequences); (3) Middle and Upper Jurassic Bowser Lake group (clastic sedimen-

tary sequences) which outcrop mainly in the northeastern parts of the map sheet.

Paleozoic and early Mesozoic rocks (up to Middle Jurassic) were intruded during

two episodes of magmatism. Late Triassic plutonic rocks consist of I-type horn-

blende-biotite metadiorite, quartz monzonite and monzodiorite. Early Jurassic

plutonic activity was characterized in the southwestern parts of NTS 104B

by biotite-hornblende granodiorite and quartz monzodiorite intrusions. In the

northeastern area alkali-feldspar-rich, biotite- or hornblende-rich syenite, quartz

monzonite and alkali-feldspar porphyry intrusions predominate. Stockwork

vein-type epithermal precious-metal mineralization and mesothermal base- and

Fig. 10.17 Regional

geology map of the Iskut

River area according to

Anderson (1993) (Source:

Cheng et al. 1996, Fig. 7)
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precious-metal mineralization are commonly spatially related and may be genet-

ically associated with alkali-feldspar porphyry intrusions (Anderson 1993;

Cheng, 1 994). Sedimentary and volcanic clastic rocks of both the Stuhini and

Hazelton groups are favourable for Au mineralization in the area (Alldrick 1987;

Anderson 1989, 1993; Cheng 1994).

In total, 698 stream sediment samples were collected from the area (Geological

Survey of Canada, GSC Open file 1645), providing coverage at a reasonably

uniform density, but irregularly distributed (Fig. 10.18). Samples were analyzed

for a suite of trace elements including Au, Ag, Cu, Mo, As, Sb and Pb. The data

were used to characterize some of the geochemically distinct rock units. Cheng

(1994) showed that stream sediment elements Au, Ag, Cu, As and Sb are spatially

associated with Au mineralization. Gold content of the 698 samples is shown i n a

Q-Q plot (Fig. 10.19). In the present context, the goal is to delineate areas that are

anomalous with respect to stream sediment Au. Results of application of the C-A

method are shown in Fig. 10.20. As in the previous example of gold in the Mitchell-

Sulphurets area, a model of two distinctly different straight-line segments provided

a good fit suggesting that gold anomalies are superimposed on background. The

study area is underlain by different rock types but this heterogeneity is not visible in

the Q-Q plot for gold (Fig. 10.19). Additional results for other elements and

anomaly maps are given in Cheng et al. (1996).

More recent publications in which the C-A method is applied for anomaly

detection include Lima et al. (2008), Carranza (2008), Park and Chi (2008) and

Zuo et al. (2009). The approach also has been extended from 2-D to 3-D (Afzal

et al. 2011; Wang et al. 2013).

Fig. 10.18 Locations of

698 stream sediment

samples in the Iskut map

sheet, northwestern British

Columbia, part of National

Geochemical

Reconnaissance survey

conducted by Geological

Survey of Canada (Source:

Cheng et al. 1996, Fig. 8)
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10.4 Cascade Models

In a paper concerned with multifractal measures for the geoscientist, assuming that

ore tonnage is equivalent to volume, Mandelbrot (1989) uses the model of de Wijs

(1951) as a starting point for spatial distribution of metals in the Earth and

concludes that the zinc ore “curdled” into a multifractal. The model of de Wijs

will be taken as a starting point in this section. In general, it leads to lognormal

distribution of metal concentrations without Pareto tails and modifications of the

approach will be needed to explain separate straight-line segments commonly

resulting from applications of the C-A method.

The model of de Wijs is a simple example of a binomial multiplicative cascade

(cf. Mandelbrot 1989). The theory of cascades has been developed extensively

over the past 25 years by Lovejoy and Schertzer (1991) and Schertzer et al. (1997)

and other geophysicists, particularly in connection with cloud formation and rainfall

(Schertzer and Lovejoy 1987; Over and Gupta 1996; Veneziano and Furcolo 2003;

Veneziano and Langousis 2005). More recently, multifractal modeling of solid-Earth
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Fig. 10.19 Lognormal Q-Q
plot of gold values (in ppb)

of stream sediment samples

at locations shown in

Fig. 10.18. Secondary peak

at zero in (a) is for gold

values below detection limit

(Source: Cheng et al. 1996,

Fig. 9b)

Fig. 10.20 Concentration-

Area (C-A) model for

Au. Areas were measured

on contour map of gold

values generated by Cheng

et al. (1996). Notice that

values fall on two distinct

straight-line segments, and

are interpreted as

background and anomaly

populations (Source: Cheng

et al. 1996, Fig. 11)
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processes has been advanced by Qiuming Cheng and colleagues (Cheng 1994; Cheng

and Agterberg 1996; Cheng 1999; Cheng 2005). In applications concerned with

turbulence, the original binomial model of deWijs has become known as the binomial

p-model (Schertzer et al. 1997). It is noted several advanced cascade models in

meteorology (Schertzer and Lovejoy 1991; Veneziano and Langousis 2005) result

in frequency distributions that resemble the lognormal but have Pareto tails. An

example of a cascade model resulting in a frequency distribution with Pareto tail

will be given in Sect. 12.7.

The Pareto is characterized by a single parameter that can be related to a fractal

dimension. The lognormal has two parameters (cf. Sect. 4.4). A basic difference

between the two models is that Pareto frequency density approaches infinity in its

low-value tail whereas lognormal frequency density at zero-value is zero. During

the last 25 years it became increasingly clear that the Pareto often performs better

than the lognormal in modeling the upper-value tails of frequency distributions in

geochemistry and resource analysis. Turcotte (1997, 2002) has developed a variant

of the model of de Wijs that results in a Pareto distribution, which is truncated in its

lower tail. In practical applications, frequency density at zero-value always is

observed to be zero. Thus the lognormal generally provides a more realistic

model for modeling low-value tails. This is probably one reason why the lognormal

has been preferred to the Pareto in the past. The other reason was that, in practical

applications, the largest values in the upper tails of frequency distributions become

increasingly rare when value goes to infinity. In goodness-of-fit tests the largest

values generally are combined into a single class so that it is not possible to

distinguish between lognormal and Pareto (Agterberg 1995a). In Sect. 4.4 a new

method of intercept analysis was applied according to which the Pareto performs

better than the lognormal for large copper deposits in the Abitibi area on the

Canadian Shield.

This section is concerned with combining data from large regions. The problem of

interest is how to explain and model a regional frequency distribution of element

concentration values that resembles the lognormal but displays a power-law tail. Two

ways to solve this problem are (1) to adopt a single-process model with an end

product that is lognormal except in its upper tail that is Pareto, and (2) to consider the

end product to be a mixture of two or more separate processes resulting in lognormal

and Pareto distributions, respectively. Single-process models include the previously

mentioned meteorological models (e.g., the beta-lognormal cascades of Veneziano

and Langousis 2005). Already in the 1980s, Schertzer and Lovejoy (1985) had

pointed out that the binomial p-model can be regarded as a “micro-canonical” version

of their α-model in which the strict condition of local preservation of mass is replaced

by the more general condition of preservation of mass within larger neighborhoods

(preservation of ensemble averages). Cascades of this type can result in pure lognor-

mals or in lognormals with Pareto tails. The applicability of such single cascade

approaches to geological processes that took place within the Earth’s crust remains to

be investigated. With respect to mixtures of two separate cascades, a promising

approach to be discussed at the end of this section consists of superimposing

Turcotte’s Pareto-type models on a lognormal background.
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One of the basic assumptions in geochemical abundance models (Brinck 1974;

Harris 1984; Garrett 1986) is that trace elements are lognormally distributed.

Originally, Ahrens (1953) postulated lognormality as the first law of geochemistry.

In general, it cannot be assumed that the element concentration values for very

small blocks of rock collected from a very large environment satisfy a single

lognormal frequency distribution model. However, the lognormal model often

provides a valid first approximation especially for trace elements. Reasons why

the lognormal model may not be applicable include the following: Concentration

values for all constituents form a closed number system and this prevents major

constituents from being lognormally distributed. Also, discrete boundaries (con-

tacts) between different rock types commonly exist in regional applications and

mixtures of two or more lognormals would occur if rock types have lognormals

with different parameters. Three types of generating mechanisms or explanations

have been suggested to explain lognormality. The first two were previously

discussed in Chap. 3. Aitchison and Brown (1957) already had reviewed processes

in which random increases of value are proportional to value do result in lognormal

distributions, in the same way that processes subject to conditions underlying the

central limit theorem of mathematical statistics lead to normal distributions. The

second type of explanation was advocated by Vistelius (1960): mixtures of

populations with mean values that are proportional to standard deviations tend to

result in positively skewed distributions that resemble lognormal distributions even

if the original populations are normal. Thirdly, multiplicative cascade models such

as the model of de Wijs can help to explain lognormality (cf. Agterberg 2001, 2007;
Sect. 12.5.2).

Allègre and Lewin (1995) provided an overview of geochemical distributions

that are either lognormal or Pareto. A relatively simple generalization of the

lognormal model is to assume that the concentration values for a chemical element

in a large region or 3-D environment originate from two different populations

representing background and anomalies, respectively. The largest concentration

values then primarily represent anomalies. This type of modeling either uses

lognormal Q-Q plots (Sinclair 1991), or use is made of concentration-area (C-A)

log-log plots (Sect. 10.3.1) to distinguish between two or more separate

populations. Often it can be assumed (Agterberg 2007) that (a) the relatively

small concentration values (background) represent a mixture of different

populations, and (b) the largest values satisfy a Pareto distribution with a tail that

is thicker than lognormal.

10.4.1 The Model of de Wijs

The simplest multiplicative cascade model in 1-D, 2-D or 3-D is the model of

de Wijs (1951) . This model is graphically illustrated in Figs. 10.21 and 10.22.

In the original model of de Wijs, any block of rock is divided into two equal parts

(cf. Sect. 6.2). The concentration value (ξ) of a chemical element in the block then
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can be written as (1 + d )� ξ for one half and (1� d)� ξ for the other half so that

total mass is preserved. The coefficient of dispersion d is assumed to be independent

of block size. This approach can be modified by replacing d by a random variable

(random-cut model; Sect. 12.3.1). Figure 10.21 illustrates the original model of de

Wijs: any cell containing a chemical element in 1-, 2-, or 3- dimensional space is

divided into two halves with element concentration values (1 + d )� ξ and

(1� d )� ξ. For the first cell at the beginning of the process, ξ can be set equal

to unity. This implies that all concentration values are divided by their overall

regional average concentration value (μ). The index of dispersion (d) is indepen-
dent of cell-size. In 2-D space, two successive subdivisions into quarters result in
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(1+d )4

(1–d )2

(1–d )Fig. 10.21 First stages of

two-dimensional cascade

model of de Wijs. Overall

mean concentration value

was set equal to one;

d¼ dispersion index.

Non-Random index matrix

corresponds to (4� 4)

squares distribution of

concentration values

(Source: Agterberg 2007,

Fig. 2a)
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Fig. 10.22 Realization of

model of de Wijs (see

Fig. 10.21 in 2-D for d¼ 0.4

and N¼ 14). Overall

average value is equal to

1. Values greater than

4 were truncated (Source:

Agterberg 2007, Fig. 3)
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4 and 16 cells with concentration values as shown in Fig. 10.21. The maximum

element concentration value after k subdivisions is (1 + d)k and the minimum value

is (1� d)k; k is kept even in 2-D applications in order to preserve mass but the

frequency distribution of all concentration cannot be distinguished from that arising

in 1-D or 3-D applications of this multiplicative cascade model.

In a random cascade, larger and smaller values are assigned to cells using a

discrete random variable. Multifractal patterns generated by a random cascade have

more than a single maximum. The frequency distribution of the element concen-

trations at any stage of this process is called “logbinomial” because logarithmically

transformed concentration values satisfy a binomial distribution. The logbinomial

converges to a lognormal distribution although its upper and lower value tails do

remain weaker than those of the lognormal (Agterberg 2007). Notation can be

simplified by using indices that are powers of (1 + d ) and (1� d), respectively; for
the example of Fig. 10.21, (1 + d)3 (1� d ) is written as 31 in the 16-cell matrix on

the left in the next row. If at each stage of subdivision, the location of higher and

lower concentration cells is determined by a Bernoulli-type random variable, the

arrangement of cells may become as shown in the 16-cell matrix on the right.

Because of its property of self-similarity, the model of deWijs was recognized to be

a multifractal by Mandelbrot (1983, 1989) who adopted this approach for applica-

tions to the Earth’s crust.

Figure 10.22 shows a 2-D logbinomial pattern for d¼ 0.4 and k¼ 14. Increasing

the number of subdivisions for the model of de Wijs (as in Fig. 10.21) to 14 resulted

in the 128� 128 pattern shown in Fig. 10.22 in which values greater than 4 were

truncated to more clearly display most of the spatial variability. The frequency

distribution of all 214 values is logbinomial and approximately lognormal except in

the highest-value and lowest-value tails that are thinner than lognormal (also see

Sect. 12.4). When the number of subdivisions becomes large, the end product cannot

be distinguished from that of multiplicative cascade models in which the dispersion

index D is modeled as a continuous random variable with mathematical expectation

equal to 1 instead of the Bernoulli variable allowing the values + d and –d only

(Sect. 12.5). The lognormal model often provides good first approximations for

regional background distributions of trace elements.

10.4.2 The Model of Turcotte

Figure 10.23 shows Turcotte’s variant of the model of de Wijs: After each subdi-

vision, only the half with larger concentration in further subdivided into halves with

concentration values equal to (1 + d )� ξ and (1� d)� ξ. This simplifies the process

as illustrated for 16 cells in 2-D space. At each stage of this process the concentra-

tion values have a Pareto-type frequency distribution. In analogy with Turcotte’s

(1997) derivation for blocks in 3-D space, it can be shown that a fractal dimension

equal to D¼ 2� log2 (1 + d) can be defined for this process. The final element

concentration map has only one maximum value contrary to patterns generated by
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the model of de Wijs that have many local maxima. Figure 10.23 is a mosaic of four

patterns resulting from Turcotte “fractal” cascades with d¼ 0.4 and k¼ 12; vertical

scale is logarithmic (base 10). Contrary to the multimodal logbinomial patterns, the

Turcotte fractal cascade develops a single peak. However, the same Turcotte

cascade could have been operative in different parts of a study area. If the index

of dispersion (d ) remained the same for all separate cascades, the combined

frequency distribution after many subdivisions for each cascade would satisfy a

single Pareto distribution plotting as a straight- line with slope determined by d.
Turcotte’s cascade model is a modification of the original multifractal-

generating cascade (Sect. 10.4.1). Only cells with largest concentration value

during a previous subdivision are further subdivided into parts with different

element concentration values. It is assumed that the same type of cascade was

operational at n different random locations generating a pattern with nmaxima. The

frequency distribution of the concentration values then would remain the same

except for enlargement of all frequencies by the factor n. Element concentrations

generated by Turcotte’s cascade satisfy a Pareto distribution which is associated

with a fractal instead of a multifractal. The slope β of the straight-line representing

this Pareto distribution on log-log paper satisfies β¼�1/log2 (1 + d ). Figure 10.25
is a C-A diagram for the Turcotte model with d¼ 0.4 and k¼ 14. Consequently,

β¼�2.060.

10.4.3 Computer Simulation Experiments

The following computer simulation experiments (from Agterberg 2007) illustrate

that an unbiased estimate of the Pareto parameter can be obtained in the hypothet-

ical situation of a study area where background satisfies the model of de Wijs with

overall average concentration value set equal to 0.1 and d¼ 0.3. Suppose that one or
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Fig. 10.23 Turcotte’s

variant of model of de Wijs

as shown in Fig. 10.21

(Source: Agterberg 2007,

Fig. 2b)
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more Turcotte cascades with overall average value equal to 1.0 and d¼ 0.4

(cf. Fig. 10.24) are superimposed on this background. Figure 10.26 is a C-A

diagram for this hypothetical situation. The pattern in this diagram is approximately

linear with slope of approximately �2. It was obtained by random sampling of

concentration values resulting from de Wijs and Turcotte cascades combining the

resulting values with one another.

Suppose now that the Turcotte cascades were operational in only 25 % of the area.

Use of Cheng’s (2003) method of piecemeal fitting of successive straight-line

segments in a C-A diagram indicates that the largest concentration values approxi-

mately fall on a straight line with slope equal to �2 as in Figs. 10.25 and 10.26.

Consequently, the estimated value of d is 0.4. These experiments (Figs. 10.27 and

10.28) illustrate that unbiased estimates of this type can be obtained irrespective of how

many Turcotte cascades were operative in the area or how much of the study area

consists of approximately lognormal background without anomalies. Figure 10.28 is a

plot of the frequency density values for the second experiment. The smaller peak on the

right corresponds to the line-segment for largest concentration values in Fig. 10.27.

A practical example of dispersion index (d ) estimation for Turcotte’s model is as

follows. Suppose a measure μ of the amount of a chemical element in a square cell

measuring E km on a side satisfies μ¼ c · Eα where c is a constant, and α is the

singularity also known as Hölder exponent (Mandelbrot 1989; Evertsz and Man-

delbrot 1992); then α can be estimated by measuring the slope of the straight line in

a log-log plot of μ against ∈ . In this 2-D application, μ¼ ξ · E2 where ξ¼ c · Eα�2

represents average element concentration value in the cell. If element concentration

values for samples taken at the surface of a study area are realizations of a stationary

random variable with constant population mean, then α¼ 2 represents

non-singularity. “Singular” locations (where α< 2) may indicate anomalous
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Fig. 10.24 Four 2-D

realizations of Turcotte’s

fractal model (Fig. 10.23)

for d¼ 0.4 and N¼ 12.

Total area was subdivided

into four quadrants. Vertical

scale is for 5 + log10 (Value)

(Source: Agterberg 2007,

Fig. 4)
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enrichment of the chemical element. Examples of local singularity mapping were

given in Cheng (2007) and Cheng and Agterberg (2009) for various elements in

stream sediments from the Gejiu area, Yunnan Province, China. The topic of

singularity analysis will be discussed in more detail in the next chapter.
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Fig. 10.27 C-A plot for lognormal background with superimposed Turcotte anomalies restricted
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Like several other chemical elements in the Gejiu area, arsenic in the surficial

deposits that were sampled shows two types of anomalies. The arsenic local singu-

larity map for arsenic shows many relatively small anomalies (where α< 2) across

the entire Gejiu area (Fig. 11.25, also to be discussed later). A significant fraction of

these anomalies is spatially correlated with occurrences of (mined and unmined)

mineral deposits. The arsenic concentration values are highest in the eastern part of

the area. Together the highest values describe a large irregularly shaped anomaly that

is probably caused by mining activities restricted to this part of the area.

Figure 11.26g, h will show frequencies of As local singularities and As concen-

tration values, respectively. Suppose that parameters describing the two preceding

anomaly types are identified by the subscripts 1 (for local singularity anomalies)

and 2 (for the high-concentration anomaly). From β2¼�3.0178 (estimated slope of

best-fitting line in Fig. 11.26h) it follows immediately that d2(As)¼ 0.258. From

ξ¼ c · Eα�2 with E¼ 2 km in this application, it follows that estimated slope of

straight-line in Fig. 11.26g (¼� 2.6474) provides an estimate of β1¼�8.7945.

Consequently, d1(As)¼ 0.082. Suppose that β is a parameter estimated by the slope

of the best-fitting straight-line on a C-A plot. Then this estimate can be converted

into either the fractal dimension D (¼� 2/β) or into the index of dispersion

d (¼2�D/2� 1) characterizing the non-linear process. In terms of Fig. 10.21: if a

block with high-concentration value (ξ) is divided into two halves, the concentra-

tion values of the halves are, on average, equal to (1 + d)� ξ and (1� d )� ξ,
respectively. Thus a higher index of dispersion means stronger spatial variability.

The small anomalies (where α< 2) with d1(As)¼ 0.082 have lower dispersion

index than the broad regional anomaly restricted to the eastern part of the area

with d2(As)¼ 0.258. Several other elements (tin, copper, silver, gold, cadmium,

cobalt, iron, nickel lead, and zinc) show anomalies similar to those for arsenic

(Cheng and Agterberg 2009). The first type (local singularities) is useful for

exploration because it provides indicators for buried ore-bodies. The second type

helps to describe regional pollution due to mining activities. The shapes of two

kinds of anomalies (1 and 2) are markedly different, and this probably is the main

reason that a clear distinction could be made between the two underlying enrich-

ment processes (proximity to buried mineral deposits and pollution due to mining

activities) in this example of application.
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Chapter 11

Multifractals and Local Singularity Analysis

Abstract Multifractals are spatially intertwined fractals. For example, a chemical

concentration value obtained from rock samples in a study area may be a fractal

with fractal dimension different from those of other concentration values for the

same element, but together the fractal dimensions may form a multifractal spectrum

f (α) that is a continuous function of the singularity α, which depends on the

concentration value. Self-similar patterns produce multifractals of this type. If a

block of rock with chemical concentration value X is divided into equal parts, the

halves have concentration values (1 + d) ·X and (1� d ) ·X where d is a constant.

The model of de Wijs assumes that the dispersion index d is independent of block

size. This cascade process produces a multifractal. The properties of a multifractal

can be estimated by the method of moments or by the histogram method. The four-

step method of moments has the advantage that the assumption of multifractality is

being tested during its first step because this should produce an array of straight

lines on a log-log plot of the spatial mass-partition function χ (E,q) against measure

of block size (E) used. It should be kept in mind, however, that the multifractal

spectrum estimated by the method of moments is primarily determined by the

majority of measurements that are clustered around the mean or median. Very

large or very small observed values are rare; because of this, the low-singularity and

high-singularity tails of a multifractal spectrum generally cannot be estimated with

sufficient precision. Because of strong local autocorrelations effects, singularity

analysis can provide better estimates of singularities associated with the very large

or very small observed values. Practical examples of multifractal modeling include

the distribution of gold in the Mitchell-Sulphurets area, northwestern British

Columbia, uranium resources in the U.S. and worldwide, lengths of surface frac-

tures in the Lac du Bonnet Batholith, eastern Manitoba, geographic distribution of

gold deposits in the Iskut map area, British Columbia. Local singularity mapping is

useful for the detection of geochemical anomalies characterized by local enrich-

ment even if contour maps for representing average variability are not constructed.

Examples include singularity maps based on various element concentration values

from stream sediment samples and their relation to tin deposits in the Gejiu area,

Yunnan Province, as well as Ag and Pb-Zn deposits in northwestern Zhejiang
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Province, China. The iterative Chen algorithm for space series of element concen-

tration values offers a new way to separate local singularities from regional trends.

This technique is applied to the Pulacayo zinc and KTB copper values.

Keywords Multifractals • Self-similarity • Method of moments • Multifractal

spatial correlation • Line segments • Point patterns • Local singularity analysis •

Chen algorithm • Worldwide uranium deposits • Mitchell-Sulphurets mineral

district • Lac du Bonnet Batholith • Iskut River gold deposits • Gejiu mineral

district • Zhejiang Pg-Zn deposits • KTB copper variability

11.1 Self-Similarity

Both fractals and multifractals often can be explained as a consequence of self-

similarity. This simply means that the physical or chemical laws that controlled

patterns and spatial variability in rocks at one scale also controlled patterns and

spatial variability at other scales. Thus self-similarity implies scale-independence.

Of course, the spatial extent of self-similarity generally is limited at both longer and

shorter sampling intervals because other processes with different laws become

pre-dominant at different scales.

In Sect. 10.4.1 it was discussed that, if ξ represents average concentration value
of a chemical element in a very large block of rock (e.g. the upper part of the

Earth’s crust), division of this block into halves results in two smaller blocks with

element concentration values equal to (1 + d ) ξ and (1� d ) ξ, respectively.

The ratio of these two different values is η¼ (1 + d )/(1� d ). After n successive

subdivisions (for large n), there are 2n small blocks with concentration values

ranging from (1� d )nξ to (1 + d )nξ. The difference between logarithmically

(base e) transformed higher and lower values resulting from subdividing any

block into halves is loge η. The frequency distribution of the final set of 2n

concentration values is logbinomial. When d is relatively large, the logbinomial

becomes positively skewed with a thin, long high-value tail. The lower and higher

values generated at successive iterations can have random spatial locations with

respect to one another.

The model of de Wijs provides a simple starting point for parametric spatial

modeling. De Wijs (1951) already derived the following equation for the standard

deviation of logarithmically transformed element concentration values:

σ2 ¼ n

4
ln ηð Þ2

where σ2 is the logarithmic variance (base e) of the concentration values. This

equation (to be referred to later as the variance formula of de Wijs) follows directly

from the well-known equation for the variance of a binomial distribution with

p¼½ that is equal to n/4, taking account of the fact that the spacing between
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ordered values along the logarithmic scale is equal to ln η. It can be rewritten in the
form (cf. Matheron 1962, p. 309):

σ2 ¼ α � lnV
v

where v represents the volume for which the concentration value is determined; V is

a larger volume in which v occupies a random position. In one-dimensional

applications, the volumes v and V are reduced to line segments, and V/v¼ 2n. The

constant α satisfies:

α ¼ 1

4ln2
ln η½ �2:

According to the De Moivre-Laplace theorem (Bickel and Doksum 2001,

p. 470), the frequency distribution of ln η converges to normal form when n
increases. Frequency density values in the upper tail of the logbinomial are less

than those of the lognormal. The logbinomial would become lognormal when n
representing the number of subdivisions of blocks is increased indefinitely.

Paradoxically, its variance then also would become infinitely large. In practical

applications, it is often seen that the upper tail of a frequency density function of

element concentration values is not thinner but thicker and extending further than a

lognormal tail. Several cascade models (see, e.g., Schertzer and Lovejoy 1991;

Veneziano and Furcolo 2003; Veneziano and Langousis 2005) result in frequency

distributions that resemble the lognormal but have Pareto tails.

Box 11.1: Self-Similarity and Power Laws

Korvin (1992) offers a heuristic exposition of the idea that self-similarity

necessarily leads to power-law type relations. A more rigorous approach can

be found in Aczél and Dhombres (1989). Arguing along the same lines as

Korvin, suppose that μ1, μ2, and μ3 are the measures of a fractal set with

“singularity” α in three cells with different sizes labeled E1, E2 and E3,
respectively. Self-similarity would imply that the ratio of the measures for

two cells depends on the ratio of their sizes only, or:
μ1
μ2

¼ f
E1
E2

� �
;
μ2
μ3

¼ f
E2
E3

� �
;

μ1
μ3

¼ f
E1
E3

� �
. Hence: f

E1
E3

� �
¼ f

E1
E2

� �
� f E2

E3

� �
. The function f is such that it

satisfies a relation of the type f (ab)¼ f (a) · f (b) where a and b are constants.

Almost 200 years ago, the French mathematician A.L. Cauchy had shown that

this implies that f must be power-law type with f (x)¼ xp where p is a constant.

Other types of functions cannot be of the type f (ab)¼ f (a) · f (b). It follows that
for the measure on the fractal set: μα¼ c � E α where c and the singularity α are

constants.
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11.1.1 Witwatersrand Goldfields Example

As shown in Fig. 11.1, Krige (1966) illustrated the concept of self-similarity by

means of gold value contour maps for square areas measuring 500 ft and 10,000 ft

on a side. The same moving averaging method was used to construct these two gold

contour maps at different scales, which exhibit similar patterns. Krige’s example of

regional self-similarity is based on a very large number of mining assays. Other

studies commonly are based on much smaller datasets.

Starting from approximately 75,000 gold determinations for very small blocks

(equivalent to channel samples, cf. Fig. 2.9), Krige (1966) found an approximate

straight line relationship between logarithmic variance and logarithmically

transformed size of reef area for gold values in the Klerksdorp goldfield,

South Africa (Fig. 11.2). A linear relationship of this type is to be expected when

the model of de Wijs is valid. Size of reef area ranged from 0.1 to 1,000 million

square feet. Consequently, in Krige’s application, scale-independence applies to

square cells with side lengths extending over five orders of magnitude. The gold

occurs in relatively thin sedimentary layers called “reefs”. Average gold concen-

tration value per sample is multiplied by length of sample cut across the reef

and unit of gold assay values is expressed as inch-pennyweight in Fig. 11.2

(1 in.-pennyweight¼ 3.95 cm-g). Three straight-line relationships for smaller

blocks within larger blocks are indicated. There are two relatively minor departures

from the simple linear model derived at the beginning of this section (variance

formula of de Wijs). The first of these two departures is that a small constant term

(+20 in.-pennyweights) was added to all gold values. This reflects the fact that, in

general, the three-parameter lognormal provides a better fit than the two-parameter

lognormal as discussed in Sect. 3.2.3. The second departure consists of the fact that

Fig. 11.1 Typical gold inch-dwt trend surfaces in the Klerksdorp goldfield on the basis of

two-dimensional moving averages for two areas with similar average grades. (a) Moving averages

of 100� 100 ft. areas within a mined-out section of 500� 500 ft. (b) Moving averages of

2,000� 2,000 ft. areas within mined-out section of 10,000� 10,000 ft (Source: Krige 1966, Fig. 3)
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constant terms are contained in the observed logarithmic variances plotted in Fig. 11.2.

These additive terms are related to differences in the shapes of blocks. For example,

channel samples are approximately linear but gold fields are plate-shaped. This

constant term (called “sampling error” by Krige (1966), which equals 0.10 units

along the vertical scale in Fig. 11.2) is independent of size of area. These two relatively

small refinements were discussed in more detail in Agterberg (2012a).

11.1.2 Worldwide Uranium Resources

The logbinomial model of de Wijs was used in mineral resource evaluation studies

by Brinck (1971, 1974). A comprehensive review of Brinck’s approach can be

found in Harris (1984). The original discrete model of de Wijs is assumed to apply

to a chemical element in a large block consisting of the upper part of the Earth’s

crust with known average concentration value ξ commonly set equal to the ele-

ment’s crustal abundance.

According to Brinck (1974), chemical analysis is applied to blocks of rock that

are very small in comparison to the large block targeted for study. Let n¼N
represent the maximum number of subdivisions of the large block. Suppose that

the element concentration values available for study: (1) constitute a random

sample from the population of 2N very small blocks within the large block, and

(2) show an approximate straight line pattern on their lognormal Q-Q plot. The

slope of this line then provides an estimate of σ from which η (and d ) can be derived
by means of the variance formula of de Wijs. Brinck (1974) set 2N equal to the

average weight of the very small block used for chemical analysis divided by total

weight of the environment targeted for study. This model constitutes one of the

earliest applications of the model of de Wijs. It is likely that Brinck’s approach

remains applicable. Estimation of the parameters of the model of de Wijs including

d could be improved by adopting the multifractal modeling approach to be discussed

in Sect. 11.2.

Fig. 11.2 Logarithmic variance of gold values as a function of reef area sampled. The variance

increases linearly with log-area if the area for gold values is kept constant. The relationship

satisfies the model of de Wijs (Source: Agterberg 2012b, Fig. 1)
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Figure 11.3 (modified from Brinck 1974) is a worldwide synthetic diagram for

uranium with average crustal abundance value set equal to 3 ppm and dispersion

index d¼ 0.2003. This diagram is equivalent to a cumulative frequency distribution

plot with two logarithmic scales. Value (ppm U) is plotted in the vertical direction

and weight (tonnes U) is plotted in the horizontal direction. All weight values are

based on cumulative frequencies calculated for the logbinomial distribution and are

fully determined by the mean and coefficient of dispersion. The diagram shows

curved lines of equal metal content. In 1971 it was, on the whole, profitable to mine

uranium if the cost of exploitation was less than $6.00 US per pound U3O8.

Individual orebodies can be plotted as points in Fig. 11.3. In 1971 such deposits

would be mineable if their point would fall within the elliptical contour labeled

$6.00. The other elliptical contours are for uranium deposits that would have been

more expensive to mine.

Later applications of Brinck’s geochemical crustal abundance approach include

Ruzicka (1976) and Garrett (1986). These authors used other methods for estimating

the maximum number of subdivisions of the environment (N ). In his study of

sedimentary uranium deposits, Ruzicka (1976) based the estimate of N on

sedimentological considerations assuming that the environment had been sorted

naturally into small homogeneous domains. Garrett (1986) estimated N from

maximum “barrier” concentration values chosen for chemical elements in particular

deposit types or regions. Both authors acknowledged that estimating the number of

subdivisions (N) constitutes a major problem in applications of Brinck’s approach

(also see Harris 1984, Chap. 8, pp. 184–222).

Fig. 11.3 Uranium resources and inferred potential reserves as estimated by the program

MIMIC (Brinck 1974). Numbers along diagonal refer to largest possible deposits for given values

of x and d. Dollar values refer to estimated average exploitation costs
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The Brinck approach to modeling metal occurrence in the upper part of the

Earth’s crust has not been adopted widely. Economic geologists know that

orebodies for uranium and other metals are of many different types with character-

istic features that differ from type to type. Also, the genetic processes resulting in

different types of orebodies were very different. These facts and concepts do not

seem to fit in with the simplicity of Brinck’s approach. Nevertheless, comparison of

sizes and grades of ore deposits for uranium and other metals (cf. Brinck 1971) fit in
remarkably well with diagrams such as Fig. 11.3. Approximate multifractal distri-

bution of some metals in the Earth’s crust or within smaller blocks provides an

interesting alternative approach for regional mineral resource evaluation studies.

This different kind of approach is equivalent to what was discussed in the previous

chapter: the Earth’s topography can be modeled as a fractal although, obviously, the

genetic processes that have caused differences in elevation on Earth were very

different. It is also equivalent to the remarkable fact that fractal modeling can be

used to model the geographical distribution of mineral deposits within worldwide

permissive tracts (Sect. 10.2.3).

11.2 The Multifractal Spectrum

Multifractals arose in physics and chemistry as a generalization of (mono-)fractals

(Meneveau and Sreenivasan 1987; Feder 1988; Lovejoy and Schertzer 1991).

Multifractals can be regarded as spatially intertwined monofractals (Stanley and

Meakin 1988). Mandelbrot (see, e.g., Evertsz and Mandelbrot 1992) has empha-

sized that multifractals apply to continuous spatial variability patterns, whereas

monofractals are for binary Yes-No type patterns. The relation between mono-

fractals and multifractals also was considered by Herzfeld et al. (1995) who showed

that the ocean floor could not be modeled as a monofractal. Better results were

obtained by a multifractal model after incorporation of a non-stationary component

(Herzfeld and Overbeck 1999). The multifractal spectrum is the tool par excellence
in the study of multifractals. In this spectrum a monofractal plots as a single spike

because it has only one singularity associated with it. Examples of multifractal

spectra for geoscience data include Gonçalves et al. (2001), Pahani and Cheng

(2004) and Arias et al. (2011, 2012).

A 1-D example of a multifractal is as follows. Suppose that μ¼ x · E represents
total amount of a metal for a line segment of length E and x is the metal’s

concentration value. In the multifractal model it is assumed that (1) μ / Eα where
/ denotes proportionality, and α is the singularity exponent corresponding to

concentration value x; and (2) Nα(E)/ E� f (α) represents total number of line

segments of length E with concentration value x, and f (α) is the fractal dimension

of these line segments.
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There are three different ways in which a multifractal spectrum can be

computed: histogram method, method of moments and direct determination. The

first two methods are described in Evertsz and Mandelbrot (1992). The histogram

method is intuitionally more appealing because it is easy to understand. However,

in practice it is better to use the method of moments with Legendre transform. This

method produces better results faster than the histogram method although the latter

can be useful in the study of frequency distributions of multifractals. The third

method (direct determination) developed by Chhabra and Jensen (1989) is useful

but will not be applied in this chapter.

11.2.1 Method of Moments

In practice, a feature such as element concentration in rock samples is measured in

blocks of different sizes. The mass-partition function χ (E,q) then is the sum of all

measurements raised to the power q for blocks with cell edge E. Terms such as

“mass-partition function” were borrowed from physical chemistry (see, e.g.,

Evertsz and Mandelbrot 1992). The slopes of the lines on a log-log plot of partition

function against size measure are estimates of the mass exponent τ(q). The singu-
larity α(q) is the first derivative of τ(q) with respect to q, and the fractal dimension

satisfies f (α)¼ q � α(q)� τ(q). The model of de Wijs results in a log-binomial

frequency distribution that converges to a lognormal distribution. The model of

de Wijs can be generalized in various ways. It is useful for simulating spatial

multifractal patterns. The tails of the negative binomial are thinner than those of

the lognormal. The high-value tail of the lognormal, in turn, is thinner than the tail

of the Pareto distribution (cf. Figs. 10.8 and 10.9).

Box 11.2: Derivation of the Multifractal Spectrum

Evertsz and Mandelbrot (1992) make a clear distinction between (1) Hölder

exponent or singularity α xð Þ ¼ limE!0

logeμ Bx Eð Þf g
logeE

at a point x, and

(2) “coarse” Hölder exponent α ¼ logeμ Bx Eð Þf g
logeE

measured for a volume

Bx (E) around the point x. The mass-partition function is: χq(E)¼
∑N(E)μqi¼

R
NE(α) (Eα)q dx with NE(α)¼ E� f (α) where f (α) represents fractal

dimension. It follows that lim
E!0

χq Eð Þ ¼
Z

Eqα�f αð Þdα keeping in mind that α

(¼αq) also is a function of q. At the extremum:
∂ qα� f αð Þf g

∂α
¼ 0 and

δf αð Þ
δq

¼ q

for any moment q. Writing τ(q)¼ qα� f (α), it follows that
δτ qð Þ
δα

¼ q. The

multifractal spectrum satisfies: f (α)¼ qα� τ(q). If the multifractal spectrum

f (α) exists, the so-called codimension satisfies C1¼ f (α) – E where E is the

Euclidian dimension (cf. Evertsz and Mandelbrot 1992).
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Figures 11.4 and 11.5 provide a step by step example of a multifractal spectrum

for the previously used 2-D example (Fig. 10.22) that was constructed artificially

and is known to be a multifractal instead of a monofractal or a mixture of

multifractals and monofractals. The multifractal spectrum is constructed in four

steps (cf. Box 11.2):

1. First, a grid of equally shaped cells (squares in 2-D) is superimposed on the

entity to be studied. The mass-partition function χ (E, q) of order q and linear

block size E is plotted on log-log paper against E. Making q a subscript, it satisfies

the equation: χq(E)¼∑ N(E)μ
q
i where μi¼ xi · E

2 is the measure for the i-th cell.

In geochemical applications xi represents element concentration value. Summa-

tion is for measures of all cells after raising these measures to the power q that is
also called the “moment”. Straight lines are fitted for different values of q that

can be any real number with�1< q<1. If the lines are not straight, the object

of study is not a multifractal. The array of straight lines for the example of

Fig. 10.22 is shown in Fig. 11.4.

2. The slopes τ(q) of the lines in Fig. 11.4 depend on q only. They satisfy τ qð Þ
¼ ∂χq Eð Þ

∂E . In Fig. 11.5a the mass exponents τ(q) are plotted against q. This plot

shows a curve. If the object of study would be a monofractal, τ(q) would be

linearly related to q.

3. It can be shown that
∂τ qð Þ
∂q ¼ α qð Þ. This results in the third plot (Fig. 11.5b) with

α(q) as a function of q. The first derivative of the mass exponent was

Box 11.3: The Binomial Measure

The Besicovitch process (Mandelbrot 1983, p. 377) divides the unit interval

S¼ [0, 1] into two intervals of equal length δ¼ 2� 1 that are assigned the

measures μ0¼ p and μ1¼ 1� p. Repeatedly, each part can be subdivided in

the same way. After the n-th iteration there is one interval with length δn¼ 2� n

and measure pn. In general, with ξ ¼ k

n
and k ¼ 0, 1, . . . , n, there are Nn ξð Þ ¼

n
ξn

� �
¼ n!

ξnð Þ! 1� ξð Þnf g!�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πnξ 1� ξð Þp exp �n ξ � logeξþ 1� ξð Þ � loge 1� ξð Þf g½ �

intervals with measure μξ¼Δn(ξ),with Δ(ξ)¼μξ0μ
ð1�ξÞ
1 . The Nn(ξ)

line segments with length δn¼2�n and measure μξ form a fractal set with

dimension f ξð Þ ¼ �ξ � loge ξþ 1� ξð Þ � loge 1� ξð Þ
loge 2

(cf. Feder 1988).

The singularity α is defined as ξð Þ ¼ loge μξ
loge 2

¼� ξ � loge pþ 1� ξð Þ � loge 1� pð Þ
loge 2

.

Because of one-to-one correspondence between the parameters ξ and α, f(ξ) can be
replaced by f(α), which only depends onα. Themultifractal spectrum is a plot of the

fractal dimension f(α) against the singularity α.
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approximated by the second order difference method. The mass exponent was

determined for pairs of closely spaced values q� 0.001 and successive differ-

ences between two of these values divided by 0.002. A monofractal would show

as a horizontal sequence of points on this diagram.

4. Finally, because it can also be shown that f (α)¼ q � α(q)� τ(q), the multifractal

spectrum is obtained with f (α) as a function of α (Fig. 11.5c). The points plotted

in this diagram coincide with a theoretical limiting curve f (α) for n!1. The

maximum value of this curve is equal to 2. A monofractal would show as a spike

in the multifractal spectrum. If the object would show a narrow peak, it would

still be multifractal but close to monofractal.

A multifractal case history study in 2-D was provided by Cheng (1994) for gold in

the Mitchell-Sulphurets area. The example of Fig. 11.6a shows how the multifractal

spectrum was obtained for 100 ppb Au cutoff. Different grids with square cells

measuring on a side were superimposed on the study area. The average gold value

was determined for each grid cell containing one or more samples with Au> 100 ppb.

Each average value was raised to the power q. The sum of the powered values

satisfies a straight-line relationship for any q in a multifractal model. This aspect is

verified in Fig. 11.6a. The slopes of many best-fitting straight lines (including those in

Fig. 11.6a) are shown as the function τ(q) in Fig. 11.6b. The first derivative of τ(q)
with respect to q gives α(q), and the multifractal spectrum f (α) follows from the

relation f (α)¼ q � α(q)� τ(q) (solid line in Fig. 11.6c).

The multifractal nature of the gold deposits in the Mitchell-Sulphurets area is

shown in the spectra for different cutoff values in Fig. 11.6c, d. A fractal model

would have resulted in a spectrum consisting of a single spike characterized by two

constants: the fractal dimension f (α) and the singularity α. The four spectra of

Fig. 11.6c, d are approximately equal on the left side, which is representative of the

largest concentration values. The point where the multifractal spectrum reaches the

α-axis and the slope of the curve at this point together determine the approximate

area-concentration power-law relation on the right side in Fig. 10.4d (Agterberg

et al. 1993; Cheng et al. 1994a). The maximum value of f (α) in Fig. 11.6c, d

decreases with increasing cutoff value. In general, if f (α)< 2 in 2-D space, it can be

assumed that the multifractal measure is defined on fractal support (cf. Feder 1988).
The preceding four-step method also can be applied to 1-D or 3-D objects.

In Fig. 11.7 the method is applied to the 118 channel samples from the Pulacayo

Mine (original example from Cheng 1994). A measure μi(E)¼ E · xi(E) where xi(E),
i¼ 1, . . ., 118, for cell sizes (E) ranging from 2 to 30 m (total length is 234 m). Some

results of estimating the mass-partition function with q ranging from – 34 to

34 are shown in Fig. 11.7a. The straight lines were fitted by ordinary least squares.

The slopes τ(q) of all fitted straight lines with q ranging from �35 to 50 are shown

in Fig. 11.7b. These results include τ(0)¼� 0.976� 0.011 where the uncertainty is

expressed using the standard deviation (�s). τ(0) represents the box-counting

dimension. It is noted that the slope for q¼ 1 is approximately equal to 0. This is

as it should be because τ(0)¼ 0 represents the principle of conservation of total

mass. The second-order mass exponent τ(2)¼ 0.979� 0.019 is important for

geostatistical modeling and will be used extensively in Sect. 11.4.
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Successive estimates of τ(q) were connected by straight-line segments

(Fig. 11.7b) which, together, form an approximately differentiable curve. Values

of the singularity α (Fig. 11.7c) were estimated by applying the central difference

technique to successive sets of three consecutive values τ(q). The multifractal

spectrum f (α) (Fig. 11.7d) was derived from the values shown in Fig. 11.7b, c.

The results of Fig. 11.7 show that the Pulacayo zinc concentration values are

multifractal instead of monofractal because an ordinary fractal would have resulted

in a single straight line in Fig. 11.7b, a horizontal line in Fig. 11.7c, and a vertical

spike in Fig. 11.7d. The straight lines in Fig. 11.7a then would have had interrelated

slopes τ(q)/(q� 1)¼ τ( p)/( p� 1) for any pair of values q 6¼ p in a monofractal

model; for example, τ(12)¼� τ(�10)� 10 when q¼ 12 and p¼ 10. Linear

regression for these values gave the estimates τ(12)¼ 9.8709� 0.2192 and

Fig. 11.6 Construction of multifractal spectrum of gold in Mitchell-Sulphurets mineral district

(see Fig. 10.4). (a) x(f) represent s sum of gold values greater than 100 ppb averaged for cell s and

raised to the power q; cell edge E i n km; log base 10; lowest sets of solid triangles and squares are

for q equal to�7.45 and�9.15, respectively. (b) Slopes τ(q) of best-fitting straight lines including
those shown in Fig. 1.6a as function of q. (c and d) Multifractal spectra are for four different cut-off

values. It is noted that, contrary to a multifractal, a fractal is characterized by a single dimension

that would have a spectrum consisting of a spike (Source: Agterberg 1995, Fig. 4)
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τ(�10)¼� 14.1234� 0.4267. The absolute value of the difference between these

slopes is 4.2534� 0.4797 which is significantly different from 0. This clearly shows

that the underlying model is multifractal instead of monofractal.

11.2.2 Histogram Method

Evertsz and Mandelbrot (1992) discuss that a histogram can be constructed for the

singularities αi associated with measures such as μi¼ xi · E
2 in 2-D applications. The

binomial frequencies of the concentration values xi generated by the model of de

Wijs (Fig. 10.22) depend on number of iterations n and value of the dispersion

index d. Setting n¼ 14 and d¼ 0.4 as for Fig. 10.22 gave the results shown in
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Agterberg 1996, Fig. 2)
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Fig. 11.8a. For infinitely large value n, a limiting multifractal spectrum f (α) (for
n¼1) can be derived in analytical form. It is noted that it is paradoxical that the

corresponding frequency distribution does not exist because it has infinite variance

when the original variance formula of de Wijs is applied. However, values of

the limiting form of f (α) (for n¼1) are shown in Fig. 11.8a for comparison with

the f (α) values for n¼ 14. There are systematic discrepancies between the two

spectra of Fig.11.8a. However, at the extremes, αmin¼ log2{2/(1 + d)}
2¼ 1.03 and

αmax¼ log2{2/(1� d)}2¼ 3.47 with f (α)¼ 0, the two spectra coincide. The other

point of equality occurs at the center where f (α)¼ 2.

Figure 11.8b shows similar results for n¼ 30. The histogram values are closer to

the theoretical limit values in Fig. 11.8b, but it is obvious that convergence is

exceedingly slow. On the other hand, the 4-step method immediately resulted

in f (α) values (Fig. 11.8c) approximately coinciding with the limit values of

Fig. 11.8a, b, illustrating that the method of moments is to be preferred for

derivation of the limiting form of the multifractal spectrum f (α) (for n¼1).

Because the realization of the model of de Wijs for a specific value of n is

discrete, the multifractal spectrum can be readily interpreted. Each f (α) value

represents the fractal dimension of a subset of cells with the same element
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concentration value. Thus box-counting of a monofractal binary pattern for a

narrow neighborhood centered on any specific value x/ Eα�2 created from a

realization such as the one shown in Fig. 10.22 would give a fractal dimension

f (α) provided that the number of cells used for box-counting is sufficiently large.

The theoretical multivariate spectrum f(α) (for n¼1) can be used to compute

theoretical frequencies of the concentration values x for specific values of n and d.
These frequencies are not independent of n, and the frequency distribution curve

continues to change when n is increased. Various scaling and rescaling procedures

have to be applied in order to derive the results shown in Fig. 11.7 and the

frequencies, subsequently, to be derived from the limiting form of f (α). The

required calculations were given in detail in a FORTRAN program in Agterberg

(2001) (Fig. 11.9).

11.3 Multifractal Spatial Correlation

Cheng (1994; also see Cheng and Agterberg 1996) derived general equations for the

semivariogram, spatial covariance and correlogram of any scale-independent

multifractal including the model of de Wijs. Their model is for sequences of

200000

ba

c

180000

160000

120000

100000

80000

60000

Fr
eq

ue
nc

y 
(E

xp
ec

te
d 

>
 “

O
bs

er
ve

d”
)

40000

20000

0
0

0

0

Log2(x)

−2

−4

−5 5 10 15 20

5 10 15 20

−10−15−20−25−30

−5−10−15−20−25−30

−6

2

4

6

0.5

0.5

1

1

2

2

3 41.5

f (
α

)

Lo
d 2

(x
)

Z - Value

1.5

2.5
α

2.5

3.5 4.5

140000

Fig. 11.9 (a) Histogram method illustrated in Fig. 11.7 applied to concentration values with

d¼ 0.6 and n¼ 20; (b) Frequency distribution curves corresponding to two multivariate spectra

shown in a; frequencies of limiting form slightly exceed logbinomial frequencies but difference is

zero at center and endpoints; (c) LognormalQ-Q plot of upper bound frequency distribution shown

in b; near center, frequency distribution resulting from model of de Wijs is lognormal, and in the

tails it is weaker than lognormal (Source: Agterberg 2001, Fig. 9)

11.3 Multifractal Spatial Correlation 427

http://dx.doi.org/10.1007/978-3-319-06874-9_10


adjoining blocks along a line. Experimentally, their semivariogram resembles

Matheron’s semivariogram for infinitesimally small blocks. Extrapolation of their

spatial covariance function to infinitesimally small blocks would yield infinitely

large variance when h approaches zero.

Figure 11.17 shows three experimental semivariograms each based on 128 rows

of 128 numbers in patterns similar to the 2-D multifractal previously shown in

Fig. 10.22. The theoretical semivariogram satisfies:

γk Eð Þ ¼ ξ2 Eð Þ 1� 1

2
k þ 1ð Þτ 2ð Þþ1 � 2kτ 2ð Þþ1 þ k � 1ð Þτ 2ð Þþ1g

n i�

where k¼ 1, 2, . . . represents distance between successive cells measured in

multiples of E, ξ2(E) is the non-centered second-order moment obtained by

dividing the mass-partition function for q¼ 2 by number of cells, and τ(2) is
the second-order mass exponent. The two parameters used for the theoretical

curve in Fig. 11.10 were in accordance with the results for q¼ 2 shown in

Figs. 11.4 and 11.5. The experimental semivariograms are each based on 1282

individual values. They deviate markedly from the theoretical curve although

on the average they are closer to it. Problems associated with lack of precision

of experimental semivariograms are well-known in spatial statistics

(cf. Cressie 1991).

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

G
am

m
a

Distance

Fig. 11.10 Theoretical form of multifractal semivariogram in comparison with three experimen-

tal semivariograms based on 128 rows in patterns similar to the one shown in Fig. 10.22.
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there is probably no significant bias (Source: Agterberg 2001, Fig. 5)
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11.3.1 Pulacayo Mine Example

The Pulacayo orebody provides another example of application of multifractal spatial

correlation. The most important parameter on which this approach is based is the

second-order mass exponent τ(2) (Fig. 11.11). In this application it is estimated by the

slope of the straight line fitted by least squares in Fig. 10.11 with τ(2)¼ 0.979� 0.019

(cf. Sect. 11.2.1). The semi-exponential autocorrelation previously used for smooth-

ing the zinc values of Fig. 2.10 is shown as a broken line in Fig. 10.12 together with

the autocorrelation coefficients (for lag distance h> 0) to which it was fitted. Its

nugget effect would explain about half of total variability of the zinc values. On the

other hand, use of the multifractal correlogram (solid line in Fig. 11.12) shows a

continuous increase of spatial correlation towards the origin. The method used for

fitting the multifractal correlogram will be explained in more detail later in this

section. It does not apply when the lag distance becomes very small (h< 0.07 in

Fig. 10.12) so that the true white noise at the origin cannot be estimated by this

method. By means of local singularity mapping (Sect. 11.6.1), white noise will be

estimated to represent only about 2 % of total variability of the zinc values. It

represents measurement error and strong decorrelation at microscopic scale.

Figures 11.13a, b show the multivariate semivariogram previously shown

for the model of de Wijs (Fig. 11.10). It satisfies: γk Eð Þ ¼ ξ2 Eð Þ
1� 1

2
k þ 1ð Þτ 2ð Þþ1 � 2kτ 2ð Þþ1 þ k � 1ð Þτ 2ð Þþ1

n oh i
with τ(2)¼ 0.979 and

ξ2(E)¼ 391.49 in comparison with experimental semivariogram values estimated

from the 118 Pulacayo zinc values using arithmetic and log-log scales. If τ(2) is
only slightly less than 1, the preceding theoretical equation can be approximated by

γk Eð Þ ¼ �ξ2 Eð Þ � Eτ 2ð Þ�1loge
1
2

τ 2ð Þ þ 1f gτ 2ð Þkτ 2ð Þ�1��
as shown by Cheng and

Agterberg (1996, Eq. 23). Figure 11.13c shows the experimental semivariogram

values on a graph with logarithmic scale in the horizontal direction only.

The straight line in Fig. 11.13c was fitted by least squares. The approximate
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Fig. 11.11 Log-log plot for

relationship between χ2(E)
and E (Source: Cheng and

Agterberg 1996, Fig. 3)
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semivariogram model provides a good fit. It is equivalent to the logarithmic

semivariogram model introduced by Matheron (1962, p. 180; also see Table 6.1)

and also used by Agterberg (1994a, p. 226).

Cheng and Agterberg (1996) derived the following expression for the autocor-

relation function of a multifractal:

ρk ∈ð Þ ¼ Cετ 2ð Þ�2

2σ2 εð Þ k þ 1ð Þτ 2ð Þþ1 � 2kτ 2ð Þþ1 þ k � 1ð Þτ 2ð Þþ1
h i

� ξ2

σ2 εð Þ

where C is a constant, E represents length of line segment for which an average zinc

concentration value is assumed to be representative, τ(2) is the second-order mass

exponent, ξ represents overall mean concentration value, and σ2(E) is the variance
of the zinc concentration values. The unit interval ε is measured in the same

direction as the lag distance h. The index k is an integer value that later in this

section will be transformed into a measure of distance by means of k¼½h.
Estimation for the 118 Pulacayo zinc values using an ordinary least squares

model with τ(2)¼ 0.979 gave:

ρ̂ k ¼ 4:37 k þ 1ð Þ1:979 � 2k1:979 þ k � 1ð Þ1:979
h i

� 8:00
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Fig. 11.12 Estimated autocorrelation coefficients (partly broken line) for 118 zinc concentration

values of Fig. 2.10. Broken line represents best-fitting semi-exponential function used to extract

“signal” in Fig. 2.10. Solid line is based on multifractal model that assumes continuance of self-

similarity over distance less than the sampling interval (Source: Agterberg 2012b, Fig. 3)
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The first 15 values (k� 1) resulting from this equation are nearly the same as the

best-fitting semi-exponential (broken line in Fig. 10.12). It seems reasonable to use

the model for extrapolation toward the origin by replacing the second-order differ-

ence on the right side of this expression by the second derivative (cf. Agterberg
2012a, Eq. 9):

k þ 1ð Þτ 2ð Þþ1 � 2kτ 2ð Þþ1 þ k � 1ð Þτ 2ð Þþ1
h i

ffi τ 2ð Þ þ 1f gτ 2ð Þkτ 2ð Þ�1
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Fig. 11.13 Estimates of

semivariogram γk. (a) Solid
line obtained by linear

regression after setting

τ(2)¼ 0.979. (b) Log-log

plot of A. (c) Logarithmic

approximation (Source:

Cheng and Agterberg 1996,

Fig. 5)
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Linear regression of the second derivative for τ(2)¼ 0.979 on estimated values

resulted in the straight-line approximation shown in Fig. 11.14. Although the

largest estimated autocorrelation coefficient that could be obtained by this method

is only 0.487 (for k¼ 1), it now becomes possible to extrapolate toward much

smaller values of k¼½ h, so that larger autocorrelation coefficients are obtained, by
using the second derivative on the right side of the preceding equation instead of the

second-order difference. The theoretical autocovariance function shown in

Fig. 11.12 was derived by transformation of the straight line of Fig. 11.14 for lag

distances with h� 0.014 m. For integer values (1
 k
 15), the curve of Fig. 11.12

(solid line) reproduces the estimated autocorrelation coefficients obtained by the

original multifractal model using second-order differences. Extrapolating toward

the origin by means of the second-order derivative results in an overall pattern that

closely resembles the hypothetical pattern of Fig. 6.19a consisting of the nested

design of two superimposed negative semi-exponentials with a small white noise

component. Consequently, the multifractal autocorrelation model of Cheng and

Agterberg (1996), which is based on the assumption of scale-independence, con-

firms the existence of strong autocorrelation over short distances (h< 2 m).

11.4 Multifractal Patterns of Line Segments and Points

Multifractal case history studies presented earlier in this chapter were concerned

with chemical element concentration values in rocks and orebodies. In this section

the method will be applied to objects that are spatially distributed through a 2-D

Fig. 11.14 Relation between estimated autocorrelation coefficients (blue diamonds) and second

derivative of corresponding continuous function. Best fitting straight line (red) is used for

extrapolation to the origin in Fig. 11.12 (Source: Agterberg 2012a, Fig. 13)

432 11 Multifractals and Local Singularity Analysis

http://dx.doi.org/10.1007/978-3-319-06874-9_19


space. In the first example, these objects are fractures in granite measured at the

surface. The second example deals with the geographical distribution of orebodies

in a study area. Two different kinds of edge effects will be considered in these

examples. Boundaries of study area have to be considered in both examples. In the

first case, the fractures could only be observed in areas where the granite is exposed

at the surface. The irregularities in pattern of rock exposures will be considered

to reduce bias in the mass-partition function to be estimated for the multifractal

modeling.

11.4.1 Lac du Bonnet Batholith Fractures Example

The Lac du Bonnet Batholith in the Winnipeg River Subprovince of the Archean

Superior Province, Canadian Shield, mainly consists of pink porphyritic and gray,

more equigranular granite; both contain layers of schlieric and xenolithic granite

(Brown et al. 1989). Total area of granite exposed at the surface measures about

1,500 km2. In 1980, Atomic Energy of Canada Limited (AECL) acquired a 21-year

lease on a 3.8 km2 area of the batholith for construction of the Underground

Research Laboratory (URL) as part of geoscience research into the disposal of

nuclear fuel-waste in crystalline rocks. Detailed mapping of both lithology and

fracturing has been performed at surface, and extensive subsurface information was

made available for the URL excavations. About 130 boreholes were drilled, to

depths up to 1 l00 m; these are mainly cored boreholes, logged in detail for

lithological and fracture information. In 1992 a project was commenced to analyze

these surface and borehole data from a fractal/multifractal point of view, as it was of

interest to AECL to estimate three-dimensionally the relative frequencies of large

blocks of sparsely fractured granite. Most faults and mesoscopic fractures are either

subvertical or dip 10�–0�. Many subvertical joints die out about 100 m below the

surface. Low-intermediate-dipping (10�–30�) fractures are associated with rela-

tively few well-defined fault zones in the subsurface extending to at least 800 m

depth (Agterberg et al. 1996a).

Fractal modeling of fractures had been the subject of a number of studies

(Korvin 1992; Turcotte 1997; Ghosh and Daemen 1993). The primary purpose of

the 1992 study was to show that surface fractures can be modeled as multifractals.

Natural fault populations had been shown to possess multifractal scaling properties

by Cowie et al. (1995). Multifractal modeling provides a link between different

types of fractal measurements and the geostatistical approach using spatial covari-

ance functions or semivariograms. A geographic information system (SPANS,

cf. Chap. 5) was used to perform the measurements required for multifractal

modeling (Agterberg et al. 1996a). Because most surface fractures die out with

depth, it is not possible to use the results of this study for downward extrapolation.

Figure 11.15 shows a relatively well-exposed, triangular test area (�0.11 km2) at

the URL site where the surface fractures have been mapped in detail. The effect of

limited exposure at the surface on the statistical measures required special
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consideration. Several shallow and deep holes had been drilled in the immediate

vicinity of this area selected for the pilot study described in this section. A coupled

surface-borehole study to relate the surface results from the approximately hori-

zontal plane (Fig. 11.15) to subvertical, linear borehole results was performed later

in a separate study (Agterberg et al. 1996b; Agterberg 1997).

Tools developed for numerical treatment of the surface and borehole data for the

Lac du Bonnet Batholith and similar crystalline rocks include: (1) determination

and analysis of fracture intensity measures for boxes of different sizes; (2) analysis

of the precision of the resulting statistical moments; (3) estimation of multifractal

spectra; (4) study of spatial covariances and semivariograms; and (5) spatial fre-

quency distribution analysis. This section is concerned with the first four of these

Fig. 11.15 Test area near

AECL Underground

Research Laboratory in the

Lac du Bonnet Batholith

near Pinawa, Manitoba.

(a) Surface fractures;

(b) Outcrop pattern

(in black) (Source:

Agterberg et al. 1996a,

Fig. 1)
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topics with applications to surface fractures. Emphasis is on (a) comparison with

results obtained by the simpler fractal approach, and (b) implications of the

multifractal approach for spatial statistical analysis.

In a paper on fractal measurements, Roach and Fowler (1993) presented com-

puter programs to determine the box-counting dimension and other fractal dimen-

sions from patterns. Another method for dealing with this problem when measuring

the so-called mass fractal dimension had been proposed by Lerche (1993), with an

application to self-similar fault patterns. An important problem considered in these

papers was to avoid bias related to measurements for small cells at one end, and

measurements for large cells (close to total size of study region) at the other. For a

pattern consisting of line-segments in the plane, the small and large cells yield

biased estimates which are approximately equal to 1 and 2, respectively. The latter

are estimates of Euclidian dimensions instead of fractal dimensions. These arise

from the fact that it is not possible to derive meaningful results from measurements

on cells that are nearly as large as the entire study area. Neither is it possible to

estimate fractal dimensions from measurements on small cells for which the

number of cells with nonzero measurements becomes approximately inversely

proportional to cell area.

A fractal dimension must be obtained as the slope of a straight line on a log-log

plot representing a fractal (for examples, see later); it should not be estimated from

a curve that is gradually changing its slope from 1 to 2. The same type of bias arises

in multifractal modeling and should be avoided when the values of χ
2
(E) are

estimated. A second problem of bias in fractal measurements occurs when the

cells or boxes used for counting or measuring the mass exponents τ(q) are not

restricted to the study area. Use of cells that contain parts of the boundary of the

study region results in undesirable edge effects. For patterns of fractures, the

importance of this second type of bias was clearly demonstrated by Walsh and

Watterson (1993) and Gillespie et al. (1993). In the current application, there is the

additional problem that bedrock is not fully exposed (Fig. 11.15). A procedure

which can be used to avoid simultaneous bias because of lack of exposure and edge

effects is as follows. As illustrated in Fig. 11.16, fractures can be measured only in

cells or portions of cells underlain by exposed bedrock within the boundaries of the

study region. Suppose that for a square cell with area (a) equal to E2, the following
two measurements are obtained: area of exposed bedrock per cell (si), and total

length of all fractures per cell (μi). The following weighted form then can be used to

correct for bias in the multifractal situation:

χq Eð Þ ¼
X

n Eð Þwi μi Eð Þ=wi½ �q

where wi¼ si/a for i¼ 1, 2, . . ., n(E). If wi¼ 1 for all cells, this expression reduces

to: χq(E)¼∑ n(E)μ
q
i as was used before. Otherwise, when bedrock is not fully

exposed in the study region, it reduces to the original form only if q¼ 1. The

modified equation implies adherence to the principle of conservation of total mass

within the study region. Note that si 6¼ a for a cell represents either area of covered
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bedrock or part of the cell outside the study region (see Fig. 11.16). The modified

equation also implies that frequency of fractures in the exposed part of a cell is

considered to be representative for the entire cell. This linear extrapolation may

result in the assignation of too much weight to fractures in cells with relatively

small values of wi.

In order to assess this source of uncertainty, it is desirable to carry out the

following type of sensitivity analysis. The entire procedure can be repeated a

number of times, for each E using only those cells with wi greater than a threshold

value denoted as Δ. Estimates then can be regarded as robust if they remain

approximately the same for a range of successive Δ-values. A disadvantage of

introducing a threshold value for wi is that the sample size n(E) is reduced for each E.
The sample size decreases when Δ is increased. This, in turn, would result in loss of

precision, especially for relatively small values of E. Five different cell sizes (E close
to 10, 20, 40, 80, and 160 m) were used for this type of sensitivity analysis. The first

three sets of cells are shown in Fig. 11.17. The measurements obtained for each cell

(i) were cell area (ai), exposed area (si) and total length of all fractures per cell (μi).
The cells were constructed by using the Voronoi tessellation procedure in a GIS for

points on a regular grid with spacing equal to E. Cells near the edges of the study

area are larger or smaller than a¼ E2 representing the standard cell size. The

variable cell area was used only to determine relative exposed cell area (si/ai) for
comparison with successive Δ-values.

Bias correction was applied after setting wi¼ si/a with a¼ E2. Thus, measure-

ments for cells with areas greater than standard cell size were reduced (relatively

few of such cells occur at the contact between granite and other rocks;

cf. Fig. 11.14a), and those for smaller cells were increased, before raising them

to successive powers (q). The analysis was repeated several times, for each E,

Fig. 11.16 Schematic

example of four square cells

near boundary of artificial

study area illustrating bias

prevention method based on

considering for each cell:

area of exposed bedrock,

area of covered bedrock,

area outside study region,

and combined length of

fractures. Measurements of

fracture intensity are

divided by wi¼ ai/a to

correct for bias with ai
representing area of

exposed bedrock per cell,

and a (constant) total cell

area, respectively (Source:

Agterberg et al. 1996a,

Fig. 2)

436 11 Multifractals and Local Singularity Analysis



Fig. 11.17 Cells of three

different sizes for test area

obtained by Voronoi

tessellation. (a) E¼ 37.5 m;

(b) E¼ 18.75 m;

(c) E¼ 9.375 m

(see Fig. 11.15 for scale)

(Source: Agterberg

et al. 1996a, Fig. 3)
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using multiples of 0.1 as threshold values. Results for thresholds Δ0¼ 0.0,

Δ1¼ 0.1,Δ2¼ 0.2, and Δ4¼ 0.4 were Δ2 given in Agterberg et al. (1996a). The

threshold Δ0 referred to use of all cells containing one or more fractures and this

is equivalent to application of χq(E)¼∑ n(E)μ
q
i without corrections. Estimates of

τ(q) for the four different threshold values were compared with one another on the

basis of estimated standard errors of τ(q) with q ranging from �0.8 to 2.2, and

the estimate for cells with more than 20 % exposure (Δ2) was selected as the best

estimate on this basis. Further results for Δ2 are shown in Fig. 11.18.

The results displayed in Fig. 11.18 are for q ranging from�1.8 to 18. The reason

that values of q outside this range were not used is that the uncertainty of these

estimates was considered to be too large. It should be kept in mind that for increased

positive q, the estimates of τ(q) are increasingly determined by the relatively few

largest values for amount of fractures per cell. Even small random fluctuations in

these largest values then begin to significantly influence the results. On the other

hand, the cells with the smallest values primarily determine the estimation of τ(q)
for negative values of q. In general, better estimates are obtained for positive

Fig. 11.18 Derivation of multifractal spectrum for cells with more than 20 % exposed surface

area. (a) Mass-partition function estimated for different values of q; (b) least squares estimates

(LS) of τ(q) (¼slopes of best-fitting straight lines in Fig. 11.18a) vs. q; (c) central difference
method applied to values of Fig. 11.18b yields α(q) as first derivative of τ(q) with respect to q;
(d) final result: f(α)¼ αq� τ(q) (Source: Agterberg et al. 1996a, Fig. 6)
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instead of negative values of q. It is not possible to raise the smallest possible

observed value for a cell (¼0 representing absence of fractures) to a negative

power, and large fluctuations are likely to occur when this limit is approached.

Figure 11.18 shows how the stepwise derivation of the difference method for the

step from Fig. 11.18b, c was used as follows. Suppose that τ(qk�1), τ(qk) and τ(qk+1)
are three successive estimates of τ(q) as shown in Fig. 11.18b. Then αk(q) as it is

shown in Fig. 11.18c satisfies αk qð Þ ¼ τ qkþ1

� �� τ qk�1ð Þ
qkþ1 � qk�1

. The multifractal spec-

trum (Fig. 11.18d) deviates significantly from a marrow spike showing that the 2-D

distribution of the fractures is multifractal instead of fractal. In Agterberg

et al. (1996a), the multifractal semivariogram corresponding to Fig. 11.18 is used

for further statistical analysis of fractures at the surface of the Lac du Bonnet

Batholith. The frequency of fractures per block of granite decreases rapidly in the

downward direction. In Agterberg et al. (1996b) and Agterberg (1997) multifractal

analysis was applied to fractures observed along boreholes drilled in a larger area

including the area shown in Fig. 11.15. The results of this 3-D analysis were used to

estimate probabilities that blocks of granite below the surface are entirely or

relatively free of fractures. The practical significance of this study is to help decide

on possible underground sites for storage of nuclear waste.

11.4.2 Iskut River Map Gold Occurrences

The area used for this example is the Iskut River map sheet (British Columbia

Minfile Map 104B). In this area there are 183 Au mineral deposits and occurrences

(Fig. 11.19). It was previously studied using box-counting and number-size

methods (Cheng et al. 1994c), fractal pattern integration in Au potential mapping

(Cheng et al. 1994b) and geochemical anomaly separation (Cheng et al. 1996;

cf. Sect. 10.3.2). Spatial clustering of the Au occurrences is obvious (Fig. 11.19).

Different cell sizes (E) ranging from 3 to 10 km were used. Number of Au

occurrences per cell was counted on eight grid maps. The multifractal results are

shown in Fig. 11.20 where q ranges from 0 to 4. This relatively narrow range was

used because the mass-partition function does not exhibit clearly defined power-law

relations unless 0
 q
 4. Results for τ(q) include τ(0)¼� 1.335� 0.077, τ(2)¼
1.219� 0.037 and τ(4)¼ 3.070� 0.266. A fractal model would have resulted in

straight lines with slopes interrelated according to τ(q)/(q� 1)¼ τ( p)/( p� 1). For

example, for the fractal model: τ(4)/3¼� τ(0). However, τ(4)/3 + τ(0)¼
0.312� 0.098 and this is significantly greater than zero, indicating that the under-

lying model is multifractal instead of monofractal. The slope of the straight line for

q¼ 1 in Fig. 11.20a satisfies τ(1)¼ 0 representing constant first-order intensity. The

maximum value of: f (α) in Fig. 11.20c occurs at � τ(0)¼ 1.335� 0.077

representing the box-counting dimension of the fractal support.
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For spatial analysis, values of K(r) shown as circles in Fig. 11.21 were estimated

by using Ripley’s edge effect correction that satisfies

K̂ rð Þ ¼ n�2 Aj j
X
i6¼j

w�1
ij Ii rij

� �

as discussed in Sect. 1.5.3 and also used in Sect. 10.2.2. The values shown in

Fig. 11.21 were estimated using the program CLUST (Agterberg 1994b) to correct

for edge effects in a study area bounded by a polygon. Figure 11.21 is a special kind

of diagram with the property that a Poisson model for complete spatial randomness

(CSR) of points would plot as a straight line through the origin that dips 45�.
Ripley’s (1981, p. 316) approximate 95 % confidence interval for the largest

difference between K̂ rð Þ=π� 	0:5
and r (CSR null hypothesis) is shown as well in

Fig. 11.21. Clearly, the CSR model should be rejected.

Cheng (1994) and Cheng and Agterberg (1995) have developed a theoretical

multifractal model for 2-D point processes that is equivalent to the multifractal

130�30

N

0 20 km

56�10
130�00

56�20

Fig. 11.19 Gold mineral occurrences in Iskut River map sheet, northwestern British Columbia

(from B.C. Minfile Map 104B, 1989) (Source: Cheng and Agterberg 1995, Fig. 4)
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autocorrelation model used in Sect. 11.3. When E is not too large, this model

predicts the following approximate relationship:

λ2
�
kE

ffiffiffi
2

p
ffi c

8

τ 2ð Þ
2

þ 1

� 
2
Eτ 2ð Þ�2 k þ 1ð Þτ 2ð Þ � 2kτ 2ð Þ þ k � 1ð Þτ 2ð Þ
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Fig. 11.20 Multifractal

analysis results for Au

mineral occurrences of

Fig. 11.19. (a) Log-log plot

of mass-partition function

for selected values of q, dots
represent estimated values,

solid lines obtained by LS

fitting. (b) τ(q) vs. q.
(c) Multifractal spectrum

showing f(α) vs. α (Source:

Cheng and Agterberg 1995,

Fig. 5)
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where c is a constant and k¼ 1, 2, . . ., n. Replacement of the second-order

difference by the second derivative (cf. Cheng and Agterberg 1995, Eq. 20) results

in the simple approximate equation:

K rð Þ ffi D2r
τ 2ð Þ

where D2 is another constant. Estimates of K(r) obtained by this approximate

equation were obtained by least squares after substituting τ(2)¼ 1.219 and are

shown in Fig. 11.22a. In general, the preceding relationship in which λ2 is related
to the second-order difference provides a better approximation. Application of this

method resulted in the solid line on the log-log plot of Fig. 11.22b. Clearly, both

methods provide satisfactory fits in this application. In a separate study Cheng

(1994) had shown that this multifractal approach also could be applied to the spatial

distribution of trees on a 19.6-acre square plot in Lansing Woods, Clinton, Mich-

igan, used by Diggle (1983) for testing other (non-fractal) statistical models for

point processes.

11.5 Local Singularity Analysis

In several recent studies, 2-dimensional applications of local singularity analysis

including regional studies based on stream sediment data show local minima that

are spatially correlated with known mineral deposits. These minimal singularities,

which may provide targets for further mineral exploration, generally are smoothed

out when traditional geostatistical contouring methods are used. Multifractal anal-

ysis based on the assumption of self-similarity predicts strong local continuity of

element concentration values that cannot be readily determined by conventional

semivariogram or correlogram analysis. This section is primarily concerned with
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Fig. 11.21 Estimated

values of square root of

K(r)/π vs. r using Ripley’s

edge effect correction and

showing departure from

complete spatial

randomness (CSR) model

(Source: Cheng and

Agterberg 1995, Fig. 6)
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multifractal and geostatistical modeling of the largest and smallest geochemical

element concentration values in rocks and orebodies. These extreme values corre-

spond to local singularities with near-zero fractal dimensions that occur close to the

minimum and maximum singularity in the multifractal spectrum. These extremities

normally cannot be estimated by means of the method of moments because of

small-sample size problems that arise when the largest and smallest concentration

values are raised to very high powers q. This problem also will be investigated

by means of a computer simulation experiment and application to thousands of

copper determinations from along the 7-km deep KTB borehole in southeastern

Germany, for which local singularity analysis can be used to determine all singu-

larities including the extreme values. The singularities estimated by this method are

linearly related to logarithmically transformed element concentration values. This

simple relation also can be useful to measure the small-scale nugget effect, which

may be related to measurement error and microscopic randomness associated with

ore grain boundaries.
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Fig. 11.22 Spatial statistics

for Au mineral occurrences.

(a) Log-log plot of

relationship between K(r)
and distance r; solid lines
are LS fits for τ(2)¼
1.219� 0.037. (b) Log-log

plot for relationship

between second-order

intensity λ2 and r with
theoretical line for τ(2)¼
1.219 (Source: Cheng and

Agterberg 1995, Fig. 7)
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Cheng (1999, 2005, 2008) proposed a model for incorporating local spatial

association and singularities for interpolation of exploratory data. Recent 2-D

applications using stream sediment geochemical data, including Cheng and

Agterberg (2009), Zuo et al. (2009) and Xiao et al. (2012), results in relatively

small anomalies consisting of minimal singularities on maps. Some of these

anomalies are spatially correlated with known mineral deposits and others

present new targets for further mineral exploration. On conventional contouring

maps such anomalies are smoothed out. Although local singularity mapping uses

the same data as those on which element concentration contour maps are based,

the new local singularity patterns are strikingly different in appearance. The

reason is that only data from points within very small neighborhoods are used for

estimating the singularities and data are weighted in a manner that differs from

weighting in most contouring methods. Understanding the behaviour of the

semivariogram or spatial autocorrelation function over very short distances is

important for the study of localized maxima and minima in the variability

patterns of element concentration values. Local singularity analysis, which has

become important for helping to predict occurrences of hidden ore deposits, is

based on the equation x¼ c · Eα�E where x, as before, represents element con-

centration value, c is a constant, α is the singularity, E is a normalized distance

measure such as block cell edge, and E is the Euclidian dimension. The singu-

larity is estimated from observed element concentration within small neighbor-

hoods in which the spatial autocorrelation is largely determined by functional

behavior near the origin that is difficult to establish by earlier geostatistical

techniques.

Iterative algorithms proposed by Chen et al. (2007) and Agterberg (2012a, b) for

local singularity mapping when E¼ 1 will be discussed in Sect. 11.6. Local

singularities obtained by application of these algorithms provide new information

on the nature of random nugget effects versus local continuity due to clustering of

ore crystals as occurs in many types of orebodies and rock units. Other applications

of local singularity analysis include Xie et al. (2007).

In Cheng’s (1999, 2005) original approach, geochemical or other data col-

lected at sampling points within a study area are subjected to two treatments. The

first of these is to construct a contour map by any of the methods such as kriging

or inverse distance weighting techniques generally used for this purpose.

Secondly, the same data are subjected to local singularity mapping. The local

singularity α then is used to enhance the contour map by multiplication of the

contour value by the factor Eα�2 where E< 1 represents a length measure. In

Cheng’s (2005) application to predictive mapping, the factor Eα�2 is greater than

2 in places where there had been local element enrichment or by a factor less than

2 where there had been local depletion. Local singularity mapping can be useful

for the detection of geochemical anomalies characterized by local enrichment

even if contour maps for representing average variability are not constructed

(cf. Cheng and Agterberg 2009; Zuo et al. 2009).
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11.5.1 Gejiu Mineral District Example

Where the landscape permits this, stream sediments are the preferred sampling

medium for reconnaissance geochemical surveys concerned with mineral explora-

tion (Plant and Hale 1994). During the1980s and1990s, government-sponsored

reconnaissance surveys covering large parts of Austria, the Canadian Cordillera,

China, Germany, South Africa, UK, and USA were based on stream sediments

(Darnley et al. 1995). These large-scale national projects, which were part of an

international geochemical mapping project (Darnley 1995), generated vast amounts

of data and continue to be a rich source of information. Cheng and Agterberg (2009)

applied singularity analysis to data from about 7,800 stream sediment samples

collected as part of the Chinese regional geochemistry reconnaissance project

(Xie et al. 1997). For illustration, about 1,000 stream sediment tin concentration

values from the Gejiu area in Yunnan Province were used. This area of about

4,000 km2 contains 11 large tin deposits. Several of these, including the Laochang

and Kafang deposits, are tin-producing mines with copper extracted as a by-product.

These hydrothermal mineral deposits also are enriched in other chemical elements

including silver, arsenic, gold, cadmium, cobalt, iron, nickel, lead, and zinc. Appli-

cations to be described here are restricted to tin, arsenic, and copper. Tin and copper

are the ore elements of most interest for mineral prospecting whereas arsenic is a

toxic element. Water pollution due to high arsenic, lead, and cadmium concentration

values is considered to present one of the most serious health problems especially in

underdeveloped areas where mining is the primary industry such as in the Gejiu area.

Knowledge of the characteristics of spatial distribution of ore elements and associated

toxic elements in surface media therefore is helpful for the planning of mineral

exploration as well as environmental protection strategies.

The Gejiu mineral district (Fig. 11.23a) is located along the suture zone of the

Indian Plate and Euro-Asian plates on the southwestern edge of the China

sub-plate, approximately 200 km south of Kunming, capital of Yunnan Province,

China. The Gejiu Batholith with outcrop area of about 450 km2 is believed to have

played an important role in the genesis of the tin deposits (Yu 2002). The ore

deposits are concentrated along intersections of NNE–SSW and E–W trending

faults. Stream sediment sample locations in the Gejiu area are equally spaced at

approximately 2 km in the north–south and east–west directions. Every sample

represents a composite of materials from the drainage basin upstream of the

collection site (Plant and Hale 1994). Regional trends are captured in a moving

average map of tin concentration values from within square cells measuring

26 km on aside (Fig. 11.23c). Several parameters had to be set for this use of

the inverse distance weighted moving average method (Cheng 2003). In this

application, each square represents the moving average for a square window

measuring 26 km on a side with influence of samples decreasing with distance

according to a power-law function with exponent set equal to�2. Original sample
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locations were 2 km apart both in the north–south and east–west directions. It

shows a large anomaly in the eastern part of the Gejiu area surrounding most large

tin deposits including the mines. The three large tin deposits in the central part of

the Gejiu area are recent discoveries. To illustrate in detail how singularities were

estimated 12 different locations were arbitrarily selected on the map as shown on

Fig. 11.23b. In total, 1,056 local tin singularities were estimated (Fig. 11.23d) by

assembling the tin concentration values from within the same 26� 26 km2 cells

used for the moving average map (Fig. 11.23c). For example, Fig. 11.24 illustrates

in detail how singularities were estimated at two of the 12 different locations. The

singularities were estimated by fitting straight lines on log-log plots of either the

concentration value (x) versus E using x¼ c · Eα�2, or amount of metal μ¼ x · E2

versus E using μ¼ c · Eα. In Fig. 11.23d, both methods are used yielding similar

estimates of the singularity α.
The main difference between the patterns of Fig. 11.23c, d is that lower and

higher local tin singularity values are more evenly distributed across the Gejiu area

than the tin concentration values themselves. The preceding analysis was repeated

for arsenic, which is a toxic element. Its moving average and local singularity

patterns (Fig. 11.25) are similar to those obtained for tin (Fig. 11.23).

The histogram of all local tin singularities is unimodal (Fig. 11.26a). Strength of

spatial correlation between a point pattern and a contour map can be estimated by

means of the weights of evidence method (Sect. 5.1.4). The Student’s t-value diagram
(Fig. 11.26b) was used to express statistical significance of strength of spatial

correlation between (a) point pattern of the 11 tin deposits (Fig. 11.23a), and

(b) the local tin singularity map (Fig. 11.23d). Although there are relatively few tin

deposits, t-values near the peak (where t¼ 4.84 at α¼ 1.925) exceed t 0.05¼ 2.0

representing 95 % confidence level for statistical significance indicating positive

correlation between the two patterns. In total, 93 local tin singularities have

α< 1.925. Their combined area measures only 8.8 % of total study area, but

61.3 % of the tin deposits occur within this relatively small low-singularity sub-area.

The logarithm (base e) of number of local tin singularities exceeding α is linearly

related to α (Fig. 11.23c) with slope of approximately 2.3. Likewise, there is an

approximate straight-line relationship (slope¼�3.2) between logarithmically

transformed cumulative area and largest tin concentration values (Fig. 11.23d).

This is an example of a concentration–area (C–A) plot (Sect. 10.3.1). The pattern

on a C–A plot was automatically broken into three successive straight-line segments.

For tin (Fig. 11.26d), loge α of the third segment extends from 7.414 to 8.637 with

best-fitting straight-line: y¼ 26.9230–3.1576x. It represents a Pareto frequency dis-

tribution for the highest concentration values. Other chemical elements enriched in

the hydrothermal tin deposits show patterns similar to those obtained for tin

(Fig. 11.26a–d) as illustrated for arsenic (Fig. 11.26e–h). For arsenic, the second

straight-line segment in the C–A plot (Fig. 11.26h; also see Fig. 10.30) extends from

7.147 to 7.955 with best-fitting straight-line: y¼ 25.6069–3.0178x as previously

discussed in Sect. 10.4.
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Fig. 11.23 Geological setting of tin deposits in Gejiu area and map patterns derived from tin

concentration values in stream sediment samples. (a) Simplified geology after Yu (2002). Solid

lines indicate faults; triangles represent tin deposits; UTM coordinates apply to map corner points.

(b) Locations examples of estimation of local tin singularity in Fig. 11.24. (c) Distribution of tin

concentration values in 1,000 stream sediment samples using inverse distance weighted moving

average. Eight of 11 large tin deposits fall on large anomaly in eastern part of area that is due to

environmental pollution related to mining (d) Distribution of local tin singularities. Tin deposits tend

to occur in places where local singularity is less than 2 (Source: Cheng and Agterberg 2009, Fig. 1)

11.5 Local Singularity Analysis 447



11.5.2 Zhejiang Province Pb-Zn Example

The second example shown in Figs. 11.27 and 11.28 (after Xiao et al. 2012) is for

lead in northwestern Zhejiang Province, China, that in recent years has become

recognized as an important polymetallic mineralization area after discovery of

several moderate to large Ag and Pg-Zn deposits mainly concentrated along the

northwestern edge of the study area (Fig. 11.27), which has been relatively well

explored. The pattern of local singularities based on Pb in stream sediment samples

is spatially correlated with the known mineral deposits. It can be assumed that

similar anomalies in parts of the less explored parts of the area provide new targets

for further mineral exploration. By combining singularities for different chemical

elements with one another, spatial correlation between anomalies and mineral

deposits can be further increased (Xiao et al. 2012).

Fig. 11.24 Examples of estimation of local singularity at locations shown in Fig. 11.23b. Cell size

is length of side of square cells with half-widths set equal to 1, 3, 5, . . ., 13 km. Plots on left and

right show relations between values of μ and ξ versus cell size, respectively. Value of μ is sum of

tin concentration values in all 2� 2 km cells contained within the larger cells centered on a

location and value of ξ¼ μ/E2; base of logarithms is 10. Straight lines were fitted by ordinary least

squares method (log of value regressed on log of cell size); R2¼multiple correlation coefficient

squared. Typically all seven points fall on the best-fitting straight line although small deviations do

occur (e.g., second point at Location 2). Slopes of straight-lines on left provide estimates of local

singularity α and those on the right are for α� 2 (Source: Cheng and Agterberg 2009, Fig. 2)
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11.6 Chen Algorithm

Theory of the model of de Wijs (cf. Sect. 10.4.1) also known as the binomial/p
model is presented in great detail in textbooks including Feder (1988), Evertsz and

Mandelbrot (1992), Mandelbrot (1989) and Falconer (2003). There have been

Fig. 11.25 Map patterns derived from arsenic concentration values in stream sediment samples.

(a) and (b) show patterns similar to those for Sn in Fig. 11.23c, d (Source: Cheng and Agterberg

2009, Fig. 3)

11.6 Chen Algorithm 449

10.4.1


4 5 6
Log (Value)

7 8

5 6 7 8

0

1

2

3

4

5

6

7

2

3

4

5

6

7

8

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

a
b

c d

e f

g h

Fig. 11.26 Frequency distributions of local tin and arsenic singularities and concentration values.

(a) Histogram of tin singularities shown in Fig. 11.23c. (b) Student’s t-value for contrast (C)
expressing degree of spatial correlation between binary pattern and point pattern (consisting of

11 tin deposits shown in Fig. 11.23a). (c) Cumulative frequency plot corresponding to histogram

(Fig. 11.26a);N(>α) is number of units with local singularities exceeding α; base of logarithms is 10.

Straight-line was fitted by ordinary least squares method (Log10 N regressed on α); R2¼multiple

correlation coefficient squared. (d) C-A (concentration-area) plot showing cumulative area versus tin

concentration value; base of logarithms is e. (e) Histogram of As singularities (shown in Fig. 11.23b).

(f) Student’s t-value for arsenic. The peak near α¼ 1.7 indicates positive spatial correlation between

arsenic singularities and tin deposits. (g) Pattern for arsenic corresponding to pattern for tin in

Fig. 11.23c. (h) Arsenic C-A plot (Source: Cheng and Agterberg 2009, Fig. 4)
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numerous successful applications of this relatively simple model including many

to solve solid Earth problems (also see, e.g., Cheng 1994; Cheng and Agterberg

1996; Agterberg 2007a, b; Cheng 2008). Although various departures from the

model have been described in these papers and elsewhere, the binomial/p model

basically is characterized by a single parameter. In the original model of de Wijs

(1951), this parameter is the dispersion index d. In Sect. 6.2 it was discussed that

the absolute dispersion index of Matheron satisfies A¼ (logeη)
2/loge16, and

η¼ (1 + d )/(1� d ). When the parameter p is used as in Evertsz and Mandelbrot

(1992): p¼ 0.5(1� d ). The multifractal spectrum of this model, which shows

the fractal dimensions f (α) as a function of the singularities, has its maximum

f (α)¼ 1 (for E¼ 1) at α¼ 1, and f (α)¼ 0 at two points with:

αmin¼� log2(1� p); αmax¼� log2 p. Another parameter that can be used to

Fig. 11.27 Geological map of northwestern Zhejiang Province, China (Source: Xiao et al. 2012,

Fig. 1)
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characterize the binomial/p model is the second order mass exponent τ(2)¼
� log2{p

2 + (1� p)2}. If the binomial/p model is satisfied, anyone of the param-

eters p, d, α, τ(2), αmin, αmax, or σ
2(logex) can be used for characterization. Using

different parameters can be helpful in finding significant departures from model

validity if these exist.

According to Chen et al. (2007) local scaling behaviour follows the following

power-law relationship:

ρ Bx Eð Þf g ¼ μ Bx Eð Þf g
E E

¼ c xð Þεα xð Þ�E

Fig. 11.28 Raster map for Fig. 11.27 showing target areas for prospecting for Ag and Pb-Zn

deposits delineated by comprehensive singularity anomaly method (cell size is 2� 2 km). Known

Ag and Pb-Zn deposits are indicated by stars (Source: Xiao et al. 2012, Fig. 13)
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where ρ{Bx(E)} represents element concentration value determined on a

neighbourhood size measure Bx at point x, μ{Bx(E)} represents amount of metal,

and E is the Euclidean dimension of the sampling space. In general, ρ{Bx(E)} is an
average value of element concentration values for smaller B’s at points near x with
different local singularities. Consequently, use of the power-law relationship as it

stands would produce biased estimates of c(x) and α(x). How could we obtain

estimates of c(x) that are non-singular in that they are not affected by the differences
between local singularities within Bx? Chen et al. (2007) proposed to replace the

original model by:

ρ xð Þ ¼ c� xð ÞEα� xð Þ�E

where α* (x) and c* (x) are the optimum singularity index and local coefficient,

respectively. In the Chen algorithm the initial crude estimate c(x) is considered to
be obtained at step k¼ 1 of an iterative procedure. It is refined repeatedly by

using:

ck�1 ¼ ck xð Þ Eαk xð Þ�E

This procedure will be explained by application to the 118 zinc concentration

values of the Pulacayo Mine example.

11.6.1 Pulacayo Mine Example

In the 1-dimensional Pulacayo example, E¼ 1; and, for E¼ 1, Bx extends E/2¼ 1 m in

two directions from each of the 118 points along the line parallel to the mining drift.

Suppose that average concentration values ρ{Bx(E)} also are obtained for E¼ 3, 5, 7

and 9, by enlarging Bx on both sides. The yardsticks can be normalized by dividing

the average concentration values by their largest length (¼9). Reflection of the series

of 118 points around its first and last points can be performed to acquire approximate

average values of ρ{Bx(E)} at the first and last 4 points of the series. A straight line can

be fitted by least squares to the five values of loge μ{Bx(E)} against α(x)•loge E then
provides estimates of both ln c(x) and α(x) at each of the 118 points. Estimates of

c(x) and α(x) are shown in Figs. 12.29 (red line) and Fig. 12.31 (Series 1), respec-

tively. These results of ordinary local singularity mapping duplicate estimates previ-

ously obtained by Chen et al. (2007) who proposed an iterative algorithm to obtain

improved estimates.

Employing the previous least squares fitting procedure at each step resulted in

the values of ck(x) shown in Fig. 12.29 for the first and fourth step of the iterative

process, and for k¼ 1,000 after convergence has been reached. Values for the first
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four steps of the iterative process exactly duplicated values plotted in Chen et al.

(2007)’s Fig. 1 and partially listed in their Table 11.1 except for the first and last

4 values in all successive series because a slightly different end correction was

employed (see before). For k¼ 1, the pattern of ck(x) resembles the signal previ-

ously obtained in Fig. 2.10 by eliminating the noise component from the 118 zinc

values. Chen et al. (2007) selected α * (x)¼ α4(x) because at this point rate of

convergence has slowed down considerably (Figs. 11.29 and 11.30).

In Agterberg (2012a) the iterative process was continued until full convergence

was reached in order to obtain more complete information on the nugget effect. In

the limit, after about 1,000 iterations, the final pattern is as shown in Fig. 12.29 with

an average zinc concentration value that is slightly less than 15.61 % Zn

representing the average of the 118 input values. This bias is due to the fact that,

at each step of the iterative process, straight-line fitting is being applied to loga-

rithmically transformed variables followed by the results being converted back to

original data scale. The small bias in this application can be avoided by forcing the

mean to remain equal to 15.61 % during all steps of the iterative process. In other

applications, this type of bias can be much larger and preservation of the mean then

is more important. End product and some intermediate steps this new run are shown

in Fig. 12.30. In comparison with Fig. 12.29, the outputs obtained after the first and
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Fig. 11.29 Results of applying iterative method of Chen et al. (2007) continuing the iterations

until full convergence is reached. Original zinc values are being smoothed during successive

iterations. Second series (solid line) obtained after first iteration resembles “signal” in Fig. 2.10.

Values after four iterations are shown as diamonds. At the end of the process, after 1,000 iterations,
when convergence has been reached, the result is approximately a straight line with average value

slightly below average zinc content (¼15.6 % Zn) (Source: Agterberg 2012a, Fig. 18)
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fourth step of the iterative process remain unchanged. There is only a small

difference in results for k¼ 1,000. This confirms that in local singularity analysis

it usually is permitted to neglect bias introduced by logarithmic transformation of

variables. In Sect. 6.2.5 it was mentioned that the variance of values used in least

squares straight line fitting ranges from σ2E¼ 0.0622 to σ2E/9¼ 0.0069 at the

beginning of the iterative process, and these variances remain very small at later

steps. Estimated singularities for k¼ 1, 54 and 1,000 are shown in Fig. 11.31. The

results for k¼ 1 and k¼ 5 duplicate the results previously obtained by Chen

et al. (2007).

Full convergence singularities (k¼ 1,000) are significantly different from local

singularities and results for k¼ 5 differ in two neighbourhoods along the Tajo vein

(approximately from sampling point positions 60 to 75, and 90 to 100, respectively).

These two systematic discrepancies merely indicate that full convergence had not

yet been reached at k¼ 5. In Fig. 11.32, final singularities are plotted against

original zinc concentration values showing a logarithmic curve pattern. In

Fig. 11.33 a straight line of least squares was fitted for final singularity versus

log10 (%Zn) with the residuals (deviations from this best fitting line) shown

separately in Fig. 11.34. The residuals exhibit a white noise pattern with variance

equal to 0.001178. Using original zinc values, the variance of residuals is estimated

to be 1.3837. Because %Zn variance is 64.13, it follows that the white noise
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Fig. 11.30 Same as Fig. 11.29 but iterative process was constrained to preserve average zinc

value of 15.6 % Zn. Results after 4 iterations (k¼ 5) is same as in Fig. 11.29 but result after 1,000

iterations is slightly different. Intermediate steps for k¼ 10 and 100 are also shown (Source:

Agterberg 2012a, Fig. 19)
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component is 0.02079. This is only about 4 % of the variance of the noise

component previously used to construct the signal of Fig. 2.10. The new sampling

error is probably a measurement error associated with the original chemical deter-

minations for zinc and incorporates the crystal boundary effect (Sect. 2.5.1).

Incorporation of the nugget effect to estimate zinc content (e.g., by using the

theoretical values on the curve previously fitted in Fig. 2.10), approximately

reproduces the observed values. This in itself is a trivial result. However, the

importance of this application is that it illustrates that the Chen algorithm provides

a new method to estimate the nugget effect.

For the Pulacayo Mine example, the ck(x) values in the Chen algorithm converge

to a straight line with very small dip. After 1,000 steps they are all approximately

equal to the average Zn value of 15.61 % (Fig. 12.30). This explains why there is an

approximate logarithmic relationship between the singularities and the original zinc

concentration values (Fig. 11.32).

As explained in Chap. 6, local singularity and this new type of nugget effect are

associated with variability over very short distances. Singularities less than 1 signify

local Zn enrichment whereas singularities greater than 1 indicate depletion.Minimum

and maximum singularities are αmin¼ 0.547 and αmax¼ 1.719, respectively. These

values are only slightly different from αmin¼ 0.591 and αmax¼ 1.693 obtained by

means of the original local singularity approach, without application of the Chen
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Fig. 11.31 Estimated singularities for iterative process with k¼ 1 and k¼ 1,000. Full conver-

gence singularities (k¼ 1,000) differ significantly from results for k¼ 1 (and k¼ 5) in two

neighborhoods along the Tajo vein (approximately from sampling point locations 60–75 and

90–100) (Source: Agterberg 2012a, Fig. 20)
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Fig. 11.32 Relationship between final singularity and zinc concentration value is logarithmic.

Plotted values (diamonds) are same as those shown for k¼ 1,000 in Fig. 11.31. Logarithmic curve

was fitted by least squares (Source: Agterberg 2012a, Fig. 21)

y = -0.8793x + 2.0732

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Lo
g 

(%
 Z

in
c)

Local Singularity

Fig. 11.33 Final Pulacayo singularity in relation to log10 (%Zn) is according to straight line fitted

by least squares. Residuals from this line are also shown in Fig. 11.34 (Source: Agterberg 2012a,

Fig. 22)
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algorithm (also see Chen et al. 2007, Table 1). However, the minimum and maximum

singularity estimates obtained by singularity analysis differ significantly from esti-

mates based on the multifractal spectrum previously obtained by the methods of

moments (see Figs. 11.7 and 11.11) as will be explained in the next paragraph.

Evertsz and Mandelbrot (1992, p. 941) show that the mass exponents satisfy:

τ(q)¼� log2[p
q+ (1� p)q]. Cheng and Agterberg (1996) illustrated that, for

q ranging from �35 to 50, the method of moments provides the multifractal

spectrum of Fig. 11.7. For small values of q, mass exponent estimates are excellent;

e.g., τ(2)¼ 0.979� 0.038 (Fig. 11.11). From τ(2)¼ 0.979 it would follow that

d¼ 0.121, αmin¼ 0.835, and αmax¼ 1.186. The latter estimate differs not only

from αmax¼ 1.719 derived in this section, it also is less than the estimate

αmax¼ 1.402 on the right side of the multifractal spectrum shown in Fig. 11.7.

The estimate d¼ 0.121 obviously is much too small. Use of the relations

p¼ 0.5(1� d), αmin¼� log2 (1� p)¼ 0.369 and αmax¼� log2 p¼ 1.719, produces

the much larger estimates d¼ 0.369 and d¼ 0.392, respectively. Clearly, the

binomial/p model has limited range of applicability although αmax¼ 1.402 on the

right side of the multifractal spectrum would yield d¼ 0.243, which is closer to 0.392

than 0.121. The preceding inconsistencies suggest that a more flexible model with

additional parameters should be used. Two possible explanations are as follows.

A “universal multifractal model” with three parameters was initially developed

during the late 1990s by Schertzer and Lovejoy (1991). Lovejoy and Schertzer

(2007) have successfully applied this model to the 118 Pulacayo zinc values as will

be discussed Sect. 12.6. The other possible explanation is that, in general, αmin and
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Fig. 11.34 Residuals from straight line in Fig. 11.33 display white noise pattern with variance

equal to 0.00118 (Source: Agterberg 2012a, Fig. 23)
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αmax cannot be determined by the method of moments because they are would be

almost exclusively determined by the largest and smallest observed values. If this

second explanation is valid, mass exponents and multifractal spectrum derived by

the method of moments such as those shown in Fig. 11.7 (and Fig. 11.11) are valid

only for the smaller values of q. For very large values (q!1) the multifractal

spectrum develops long narrow tails with f (α) intersection the α-axis at αmin and αmax

as estimated by singularity analysis.

11.6.2 KTB Copper Example

The second example is for the long series consisting of 2,796 copper (X-Ray

Fluorescence Spectroscopy) concentration values for cutting samples taken at 2 m

intervals along the Main KTB borehole, on the Bohemian Massif in southeastern

Germany. These data (Fig. 6.12) were previously analysed in Chap. 6. It was

assumed that 101-point average copper values representing consecutive 202-m

long segments of drill-core captured deterministic trends in this series reflecting

systematic changes in rock compositions. The data set was divided into three series

(1, 2 and 3) with 1,000, 1,000 and 796 values, respectively. Mean copper values for

these three series are 37.8, 33.7 and 39.9 ppm Cu, and corresponding standard

deviations are 20.3, 11.0 and 20.6 ppm Cu, respectively. Correlograms for the three

series are significantly different (Fig. 6.13), although the patterns for series 2 and 3

resemble one another. Figure 6.14 showed correlograms of the three series using the

differences between the copper values and their moving average. Each correlogram

is approximately semi-exponential with equation ρh¼ c • exp(�ah) . The slope

coefficients (a) of the three curves are nearly equal to one another (0.40, 0.38 and

0.41 for series 1, 2 and 3, respectively). Series 2 and 3 also have similar nugget

effect at the origin and were combined to form a single series to be used here for

local singularity analysis with white noise variance equal to 37.7 %. Series 1 was

not included in this new data set because its nugget effect is markedly different. In

Agterberg (2012a) it was pointed out that quantitative modeling of the nugget effect

in KTB copper determinations yielded better results than could be obtained for

several examples from mineral deposits including the Pulacayo zinc orebody. This

is not only because the series of KTB chemical determinations is much longer but

also because the nugget effect remains clearly visible over lag distances between

2 m (¼original sampling interval) and 10 m.

Mean and variance of the new series are 36 ppm Cu and 268.4, respectively. The

variance of logarithmically (base 10) copper values is 0.024447. The coefficient of

variation of original data amounts to 0.45. Because this is less than 0.5, the white

noise component probably also provides an approximation for the logarithmically

transformed copper values. Approximate white noise variance then would be

(0.377� 0.024447 ¼) 0.0092. This estimate is probably slightly too large because

the logarithmic variance of 0.24447 does not account for the deterministic trends.

However, it provides a crude estimate that can be used for comparison in the

following application of the Chen algorithm.
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Fig. 11.35 Successive patterns of ck obtained after 1 (most scatter), 5, 100 (solid line) and 1,000

(smoothest curve) iterations (Source: Agterberg 2012b, Fig. 12)
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Fig. 11.36 Logarithmically (base 10) transformed KTB copper concentration versus local simi-

larity after single iteration (k¼ 1) with regression line (singularity assumed to be error-free).

Variance of logarithmically transformed copper concentration value is 0.01636 (Source:

Agterberg 2012b, Fig. 13)
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Fig. 11.37 Logarithmically (base 10) transformed KTB copper concentration versus local similarity

after k¼ 100 iterations with regression line (singularity assumed to be error-free). Variance of loga-

rithmically transformed copper concentration value is 0.00823 (Source: Agterberg 2012b, Fig. 14)
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Fig. 11.38 Logarithmically (base 10) transformed KTB copper concentration versus local similarity

after k¼ 1,000 iterations with regression line (singularity assumed to be error-free). Variance of

logarithmically transformed copper concentration value is 0.00451 (Source: Agterberg 2012b, Fig. 15)
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Figure 11.35 shows the coefficients ck for k¼ 1, 5, 100 and 1,000, respectively.

A procedure to be explained in more detail in Sect. 12.6 can be used to help decide

which pattern is best. Figures 11.36, 11.37 and 11.38 are plots of log10 Cu versus

estimated singularities for k¼ 1, 100 and 1,000, respectively. The regression line in

Fig. 11.35 provides a poor fit because estimates of the singularities for k¼ 1 cannot

be considered to be free of error. Residual variance with respect to this line is

0.01636. The regression lines in Figs. 11.37 and 11.38 for k¼ 100 and k¼ 1,000

provide good fits. However, the result in Fig. 11.36 is to be preferred because it’s

residual variance (¼0.00823) is close to the white noise variance (¼0.0092)

estimated in the preceding paragraph. Residual variance for the line in Fig. 11.37

amounts to 0.00451 and is about two times too small.

The pattern of ck for k¼ 100 closely resembles the 101-point moving average

(for sample numbers >1,000) shown in Fig. 6.12. This relationship is illustrated in

Fig. 11.38. The relatively good fit of the y¼ x line in this diagram suggests that both

variables are subject to approximately the same uncertainty. Figure 11.39 shows the

corresponding “final” relation between log10 Cu and singularity (as obtained for

k¼ 100). This result in compared with singularities estimated for k¼ 1 in Fig. 11.39

(for 500 sampling points only). The minimum and maximum singularity for k¼ 100

are only slightly less and greater than the result obtained after a single iteration.
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Fig. 11.39 Moving average shown in Fig. 6.22 (Location value >1,000) plotted against ck
obtained after 100 iterations. Because both variables are nearly continuous, their relation plots

as a nearly continuous line as well. The y¼ x line shown for comparison suggests that both

variables are equal on the average (Source: Agterberg 2012b, Fig. 16)
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However, there are several new relatively low values not detected for k¼ 1

(Fig. 11.40).

The application of the Chen algorithm described in this section differs from the

application to the Pulacayo zinc values described in the previous section. Full

convergence for k!1 generally results in a subhorizontal straight line. For the

KTB copper values it can be assumed that there exist systematic changes in average

copper content along the borehole and convergence was stopped at a point that the

ck closely approximated the deterministic copper trend pattern. The proof that the

singularities after approximately 100 iterations are realistic is provided by the fact

that the residuals from the trend pattern have nearly the same semi-exponential

autocorrelation function that dies out rapidly with distance. This semi-exponential

curve is equivalent to the semi-exponential close to the origin in Fig. 6.19.
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Chapter 12

Selected Topics for Further Research

Abstract The case history studies described in the preceding eleven chapters leave

some questions that could not be answered in full. New theoretical approaches in

mathematical statistics and nonlinear physics provide new perspectives for the

analysis of geoscience data. For example, bias due to incomplete information

continues to be one of the most serious problems in 3-D mapping. How methods

such as the jackknife and bootstrap can help to reduce this type of bias is briefly

investigated and illustrated using volcanogenic massive copper deposits in the

Abitibi area on the Canadian Shield. Compositional data analysis offers new

ways to analyze multivariate data sets. Geochemical data from Fort à la Corne

kimberlites in central Saskatchewan are used to illustrate the isometric logratio

transformation for chemical data that form a closed number system. Three gener-

alizations of the model of de Wijs are: (1) the 3-parameter model with finite number

of iterations; (2) the random cut model in which the dispersion index d is

replaced by a random variable D; and (3) the accelerated dispersion model in

which d depends on concentration value during the cascade process. Universal

multifractals constitute a useful generalization of multifractal modeling. As illus-

trated on the basis of the Pulacayo zinc values, new tools such as use of the first

order structure function and double trace analysis generalize conventional

variogram-autocorrelation fitting. Measurements on compositions of blocks of

rocks generally depend on block size. For example, at microscopic scale chemical

elements depend on frequencies of abundance of different minerals. On a regional

basis, rock type composition depends on spatial distribution of contacts between

different rock types. Frequency distribution modeling of compositional data can be

useful in ore reserve estimation as well as regional mineral potential studies. During

the 1970, Georges Matheron proposed the theory of permanent frequency distribu-

tions with shapes that are independent of block size. The lognormal is a well-known

geostatistical example. The probnormal distribution is useful for the analysis of

relative amounts of different rock types contained in cells of variable size. It arises

when probits of percentage values are normally distributed. Its Q-Q plot has scales

derived from the normal distribution along both axes. Parameters (mean and

variance) of the probnormal distribution are related to the geometrical covariances
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of the objects of study. Practical examples are spatial distribution of acidic and

mafic volcanics in the Bathurst area, New Brunswick, and in the Abitibi volcanic

belt on the Canadian Shield in east-central Ontario and western Quebec.

Keywords Incomplete information • Jackknife method • Compositional data anal-

ysis • Non-linear process modeling • Random cut model • Accelerated dispersion

• Universal multifractals • Cell composition modeling • Permanent frequency

distributions • Probnormal model • Star Kimberlite • South Saskatchewan till

• Bathurst acidic volcanics • Abitibi acidic volcanics

12.1 Bias and Grouped Jackknife

In Sect. 7.2.1 elevations of the top of the Arbuckle Formation in Kansas were

analyzed as in Agterberg (1970) in order to compare various trend surface and

kriging applications with one another. The data set was randomly divided into three

subsets: two of these subsets were used for control and results derived for the two

control sets were applied to the third “blind” subset in order to see how well results

for the control subsets could predict the values in the third subset (cf. Sect. 7.2.1). In
his comments on this approach Tukey (1970) stated that this form of cross-

validation could be used but a better technique would be the Jackknife proposed

by Mosteller and Tukey (1968).

Efron (1982) describes cross-validation in the following terms. In original appli-

cations of cross-validation, a data set was randomly divided into two halves and one

of these halves used for model testing. For example, a regression model fitted to the

first half is used to predict the second half. Normally, the first half predictions do less

well in predicting the second half than they did for the first half. After computers

became widely available, cross-validation could be generalized. It is more common

now to leave one data point out at a time and fit the model to the remaining points to

see howwell it does on the excluded point. The average of the prediction errors, each

point being left out once, then is the cross-validatedmeasure of prediction error. This

“leave-off-one” cross-validation technique was used in Sect. 9.5.3 to find the best

smoothing factor (SF) used for cubic spline-curve fitting of age determinations

plotted along a relative geologic timescale. Cross-validation, the jackknife and

bootstrap are three techniques that are closely related. Efron (1982, Chap. 7) dis-

cusses their relationships in a regression context pointing out that, although the three

methods are close in theory, they can yield different results in practical applications.

In Chap. 2 it was pointed out that for a set of n independent and identically

distributed (iid) data the standard deviation of the sample mean xð Þ satisfies

σ̂ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
xi�xð Þ2

n n�1ð Þ

r
. Although this is a good result it cannot be extended to

other estimators such as the median. However, the jackknife and bootstrap can be

used to make this type of extension. Suppose xi ¼ nx�xi
n�1

represents the sample

average of the same data set but with the data point xi deleted. Let xJK represent

the mean of the n new values xi. The jackknife estimate of the standard deviation is
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σ̂ JK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ

Xn

i¼1
xi�xJKð Þ2

n

r
. It is easy to show that xJK ¼ x and σJK ¼ σ xð Þ.

The advantage of the jackknife estimate for the standard deviation is that it can

be generalized to other types of estimators such as the median.

The bootstrap generalizes the mean and its standard deviation in a different way.

Suppose that n samples Xi, all of size n, are drawn with replacement from an

empirical probability distribution. The average value of the sample means can

be written as XBS. Then the bootstrap estimate of the standard deviation of XBS is

σ̂ BS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Xi�XBSð Þ2

n2

r
(cf. Efron 1982, p. 2).

The rationale of bias reduction by using the jackknife is as follows. The

jackknife was originally invented by Quenouille (1949) under another name and

with the purpose to obtain a nonparametric estimate of bias associated with some

types of estimators. Bias can be formally defined as BIAS � EF ϑ F̂
� �� �� ϑ Fð Þ

where EF denotes expectation under the assumption that n iid quantities were drawn

from an unknown probability distribution F, ϑ̂ ¼ ϑ F̂
� �

is the estimate of a

parameter of interest with F̂ representing the empirical probability distribution.

Quenouille’s bias estimate (cf. Efron 1982, p. 5) is based on sequentially deleting

values xi from a sample of n values to generate different empirical probability

distributions F̂ i based on (n� 1) values and obtaining the estimates ϑ̂ i ¼ ϑ F̂ i

� �
.

Suppose ϑ ¼
Xn

i¼1
ϑ̂ i

n , then Quenouille’s bias estimate becomes n� 1ð Þ � ϑ� ϑ̂
� �

and the bias-corrected “jackknifed estimate” of ϑ becomes eϑ ¼ nϑ̂ � n� 1ð Þϑ.
This estimate is either unbiased or less biased than ϑ̂ .

Box 12.1: Expectation En as a Function of 1/n

Suppose En denotes the expectation of ϑ̂ for a sample of size n. Then, En

¼ ϑþ a1 Fð Þ
n þ a2 Fð Þ

n2 þ a3 Fð Þ
n3 þ . . . for most statistics including all maximum

likelihood estimates. The functions a1(F), a2(F), . . . are independent of n. Also,

En�1 ¼ ϑþ a1 Fð Þ
n�1

þ a2 Fð Þ
n�1ð Þ2 þ

a3 Fð Þ
n�1ð Þ3 þ . . . (Schucany et al. 1971). Consequently,

EF
eϑ� �

¼ nEn � n� 1ð ÞEn�1 ¼ ϑ� a2 Fð Þ
n n�1ð Þ þ a3 Fð Þ 1

n2 þ 1

n n�1ð Þ2
n o

þ . . . .

Contrary to ϑ̂ , which is biased in O(1/n), eϑ is biased in O(1/n2). For

example, if the maximum likelihood estimate ϑ̂ ¼
Xn

i¼1
xi�xð Þ2

n of variance of

the mean x ¼
Xn

i¼1
xi

n is used, eϑ ¼
Xn

i¼1
xi�xð Þ2

n�1
. Suppose that En is plotted

against 1/n (see Fig. 12.1). Then the unbiased estimator ϑ¼E1, and
En�E1
En�1�En

� 1=n
1= n�1ð Þ�1=n, or BIAS¼En�E1¼ (n� 1)(En� 1�En) and

ϑ¼ nEn� (n� 1)En� 1. Consequently, the jackknife, simply replaces En by

En�1 (cf. Efron 1982, p. 8).
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12.1.1 Abitibi Volcanogenic Massive Sulphides Example

Can the bias reducing capability of the jackknife be used in spatial situations in

which there is complete information on a set of explanatory variables but incom-

plete information on the dependent variable or probability of occurrence that is to

be estimated? The following example produced results that are encouraging but

further research would have to be undertaken to establish more widespread appli-

cability. Other publications reporting tentative results along the same lines include

Chung and Agterberg (1980) and Fabbri and Chung (2008).

Agterberg (1973) investigated the possibility of using the jackknife for elimi-

nating bias in mineral potential mapping where bias is introduced by likely exis-

tence of undiscovered mineral deposits in a study area. Large deposits for several

metals in the Abitibi area on the Canadian Shield were taken for example. Appli-

cations of stepwise regression to relate occurrences of large copper deposits to

regional geological and geophysical variables were previously discussed in Sect.

4.3.2. Earlier, contours of expected number of cells with large copper deposits

contained in (40� 40 km) cells had been corrected for bias because of undiscovered

copper deposits by assuming that all large deposits near the surface of bedrock had

been discovered in a control area constructed around the relatively well explored

mining camps in the Abitibi area (cf. Sect. 4.3). The jackknife can be used to

eliminate this type of bias instead of making the assumption involving a

control area.

In the application to copper deposits in the Abitibi area (Agterberg 1973) a

grouped jackknife was used. In general, a set of N data can be randomly divided

it k subgroups each consisting of n data so that k � n¼N. Suppose a statistic Y is

estimated from all data yielding Ŷ all; and also k times from sets of (N-n) data, which

gives k estimates Ŷ j ( j¼ 1, . . ., k). The so-called pseudo-values Ŷ �
j ¼ k � Ŷ all �

k � 1ð Þ � Ŷ j are averaged to obtain the jackknife estimate Ŷ � and its variance

Fig. 12.1 Bias reduction in

grouped jackknife; the

expectation En as a function

of n (Source: Efron 1982,

Fig. 2.1)
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s2 Ŷ �� � ¼ s2 Ŷ �
j

� �
=k. In this example, there wereN¼ 35 control cells each containing

one or more volcanogenic massive sulphide deposits. These were randomly divided

into k¼ 7 groups of n¼ 5 control cells. A stepwise solution similar to the one

previously shown in Table 4.4 was obtained for the entire data set (35 control cells)

after setting observed values of Y equal to 1 in control cells (Fig. 12.2a). The contours

in this diagram are for expected number of (10� 10 km) cells per (30� 30 km) unit

cell. For this experiment, cell composition data for 8 different rock types in 1,086

(10� 10 km) cells were used as explanatory variables augmented by the 28 cross-

product variables for these eight rock types. A control area surrounding the relatively

well explored mining districts was defined to correct for bias due to undiscovered

deposits. Next, similar stepwise solutions were obtained for 7 additional runs, each

based on 30 control cells. A control area surrounding the relatively well explored

mining districts was not defined for these seven new experiments.

An example of results obtained by this jackknife experiment on Abitibi

volcanogenic massive sulphides is as follows (cf. Agterberg 1973, p. 8).

The explanatory variable first selected when all 35 control cells are used is the

Fig. 12.2 Abitibi area, Canadian Shield; study area as outlined in Fig. 4.12. (a) Linear model used

to correlate volcanogenic massive sulphide deposits with same lithological variables as used for

Fig. 4.16. Contours for (40� 40 km) cells are based on sum of estimated posterior probabilities

summed for the 16 (10� 10 km) cells contained within these larger unit cells multiplied by the

constant F assuming zero mineral potential within “control” area consisting of all (10� 10 km)

“control” cells containing one or more deposits plus all cells that have one or more sides in

common with a control cell. (b) Jackknife estimate as obtained without control area (modified

from Agterberg 1973, Fig. 4)
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cross-product of acidic volcanics and mafic intrusives. Its coefficient was B(2,6)¼
0.50954 � 10�4. Dropping the factor 10�4, the seven new estimates were 0.49583,

0.37170, 0.51601, 0.52055, 0.20898, 0.54010 and 0.41653. The average of these

7 new estimates for 30 control cells is 0.43853, which is less than 0.50954 for all

35 control cells. A result of this type is not surprising because bias should increase

when fewer control cells are used. The randomly selected five control cells can be

regarded as containing volcanogenic massive sulphide deposits that had not been

discovered. The seven pseudo-values obtained for B(2,6) are 0.592, 1.337, 0.471,

0.443, 2.313, 0.326 and 1.068, respectively. The jackknife coefficient becomes

0.9356 with variance 0.07198. Similar results were obtained for the other explan-

atory variables.

The eight stepwise regressions resulted in sets of eight estimated values for all

(10� 10 km) cells in the Abitibi area. Jackknife estimates were obtained for all

individual cells and these were combined for overlapping sets of cells to obtain

estimated numbers of (10� 10 km) cells with one or more volcanogenic massive

sulphide deposits per larger (30� 30 km) unit cell (cf. Sect. 4.3.2 in which larger

unit cells measuring 40 km on a side were used). The result is shown in Fig. 12.2b.

There is hardly any difference between the patterns of Fig. 12.2a, b indicating that

both methods of bias reduction (use of control area supposedly without

undiscovered deposits in Fig. 12.2a and the jackknife in Fig. 12.2b) are about

equally good. In Chap. 4, it was discussed in detail that multivariate regression of

occurrences of mineral deposits on rock types and other variables measured for the

surface of bedrock are only valid for undiscovered deposits occurring relatively

close to bedrock surface. Later discovered copper ore was mostly found deeper

down but within the same favorable areas within the Abitibi Volcanic Belt as the

large copper deposits that already were known in the late 1960s.

Table 12.1 shows a comparison of results for ten selected (10� 10 km) cells

obtained by the original application of the general linear model of least squares and

the new jackknife results shown in Fig. 12.2a, b, respectively. These cells constitute

a subsample of the 1,086 cells used for this example. Cell 32/62 contains the

Magusi River deposit that was discovered in 1972 after publication of the original

Table 12.1 Comparison

of probabilities estimated

for ten cells by means of

original copper potential

determination method

and the jackknife

Location p (original) p (jackknife) SD

32/62 0.45 0.44 0.08

16/58 0.33 0.32 0.04

17/58 0.39 0.38 0.05

18/58 0.01 0.00 0.06

16/59 0.35 0.36 0.04

17/59 0.33 0.33 0.14

18/59 0.37 0.40 0.13

16/60 0.43 0.47 0.04

17/60 0.06 0.00 0.06

18/60 0.03 �0.06 0.08

Location is given by UTM grid cell numbers; SD¼ standard

deviation of jackknife estimate (Source: Agterberg 1973, Table 1)
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Abitibi copper potential map (see Sect. 4.4.1) and cell 17/59 contains the Kidd

Creek Mine with the largest volcanogenic massive sulphide deposit in the Abitibi

area. All 1,086 probabilities for (10� 10 km) cells obtained by the original appli-

cation were multiplied by the factor F¼ 1.828 representing the number of control

cells known to contain one or more massive sulphide deposits in the control area

constructed around the mining districts divided by the sum of originally estimated

probabilities in this control area. For the ten cells in Table 12.1 the jackknife

probabilities are all close to the original probabilities multiplied by 1.828. It is

noted that one of the estimated probabilities in Table 12.1 is negative. This is

because the general linear model was used that does not constrain probabilities to

the [0, 1] interval like logistic regression (cf. Sect. 5.2.2). Negative probabilities

could be replaced by zeros but in the applications to Abitibi copper deposits a

correction of this type would not affect final results.

The jackknife method has two significant advantages with respect to the original

solution: (1) it provides estimates of the standard deviations of cell probabilities

(shown for ten cells in Table 12.1) which are larger than estimates based on

ordinary regression (not shown), which are probably significantly biased; and

(2) it does not require the construction of a control area; which in the original

applications was a somewhat arbitrary, subjective undertaking.

12.2 Compositional Data Analysis

Geological variables, especially for rock composition data often are subject to

various constraints that affect the shapes of their frequency distributions and their

relations with other variables. Closed-number systems such as the major oxides

measured on rock samples provide a primary example (Chayes 1971). Some very

simple examples are as follows: (1) in Sect. 2.5.1 it was pointed out that, if a

Pulacayo ore sample would consist of pure sphalerite, its maximum possible zinc

value would be about 66 %. This upper limit constrains possible shapes of zinc

frequency distributions; (2) olivine (cf. Sect. 4.2.1) is a magnesium-iron silicate in

which Mg and Fe can interchange positions in the silicate lattice. It means that if

different olivine crystals are analyzed for Mg and Fe, these two elements would

show perfect negative correlation (r¼�1.00) because increase in content of one

element implies decrease in content of the other.

Chayes (1971) pointed out that silica (SiO2) content generally is negatively

correlated with other major oxides in collections of rock samples, simply because

it usually is the major rock constituent, and increases in other major oxides must be

accompanied by decreases in silica. Pearson (1897) already had pointed out that

spurious correlations between variables can arise if they are functions of random

variables. His reasoning was as follows: “If x1¼ f1(w1, w2) and x2¼ f2(w2, w3) be

two functions of the three variables w1, w2, w3, and these variables be selected at

random so that there exists no correlation between w1, w2 or w1, w3 or w2, w3, there

will still found to exist correlation between x1, and x2.”
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Obviously, application of ordinary statistical methods to data that are subject to

spurious correlations can lead to erroneous results. Methods of multivariate statis-

tical analysis often commence by calculating the variance-covariance matrix or the

correlation matrix if variances are replaced by ones and covariances by correlation

coefficients. The next step of multivariate analysis often consists of calculating the

principal components of the variance-covariance or correlation matrix (see, e.g.,

Agterberg 1974; or Davis 2002). The total variance (sum of all component vari-

ances) is decomposed into a number of principal components, which are linear

combinations of all variables, accounting for increasingly smaller proportions of

total variance. Factor analysis can result in improved results by considering random

variability of the variables (Jöreskog et al. 1976). The higher variance linear

combinations or component scores can be used in various ways; e.g., on maps

where they may provide more information than individual variables. A useful

multivariate technique along these lines is correspondence analysis (Greenacre

2009) which results in bi-plots for pairs of components that are shown as vectors

together with their scores on the original variables for easy comparison.

Aitchison (1986) has developed the powerful new methodology of composi-

tional data analysis for variables in closed-number systems. His methods avoid

misleading results based on spurious correlations. Multivariate analysis is applied

to log-ratios instead of to original data. Standard statistical techniques normally

apply to the log-ratios. If there are p variables in the closed number-system, the

log-ratios approach can be considered to be operational in ( p-1)-dimensional space

allowing unconstrained multivariate analysis. Theory of compositional data analy-

sis is clearly explained in Pawlowsky-Glahn and Buccianti (2011). This book also

contains many recent examples of application. The approach also can be less

sensitive to outliers, particularly if robust estimators are used (Filzmoser and

Hron 2011). The topic of using geostatistics with compositional data is discussed

by Pawlowsky-Glahn and Olea (2004). Reyment et al. (2008) applied composi-

tional data analysis to study seasonal variation in radiolarian abundance.

There are three options for log-ratio transformation: (1) additive log-ratio (alr),
(2) centred log-ratio (clr), and (3) isometric log-ratio (ilr). The first two techniques

(alr and clr) were developed by Aitchison (1986) and the third one (ilr) by Egozcue
et al. (2003). The alr method works with log-ratios in which the ratios are for

original variables divided by one of the variables. This might be problematic

because distances between points in the transformed space differ from divisor to

divisor. The clr method is not subject to this particular drawback because there is a

single divisor set equal to the geometric mean of all variables. However, some

standard multivariate techniques are difficult to apply under clr. The ilrmethod was

developed to overcome these problems but it also can be difficult to use for some

multivariate statistical techniques. On the whole, ilr currently is the preferred

method because it often leads to a better understanding of the situation that is

being studied. The following example (after Aitchison 1986) is an application of the

clr method. The next section will contain an ilr example.

The ternary diagram for three rock components that form a closed system is a

commonly used tool in mathematical petrology and geochemistry. Aitchison’s Data

474 12 Selected Topics for Further Research



6 example (Fig. 12.3) shows an example with AFM compositions of 23 aphyric

Skye lavas (original data from Thompson et al. 1972). Aitchison (1986) first applied

ordinary principal component analysis using the variance-covariance matrix.

This results in three principal components (PCs). The third PC has zero eigenvalue

and zero variance because it simply represents the closure of the system

(A + F +M¼ 1). PC1 and PC2 would plot as a cross in Fig. 12.3 represented by

two straight lines which are perpendicular to each other and pass through the center

of gravity of the cluster of input data. On the other hand, if the data are divided by

their geometric mean before logs are taken, the first two principal components

become as shown in Fig. 12.3. Obviously PC1 (first axis) is meaningful in Fig. 12.3.

It represents the magma composition spectrum. The second axis represents a noise

component that probably does not have any meaning genetically. Potentially this

result is of interest from a petrological point of view: from the curved pattern of

points in Fig. 12.3, Thompson et al. (1972, p. 235) had concluded that there were

two separate trends among the lavas (from relatively sodic, iron-rich hawaiite and

mugearite to benmoreite, and from hyperstene-normative basalt via relatively

potassic, iron-poor intermediate lavas to trachyte), whereas the clrmethod suggests

there is one trend only.

12.2.1 Star Kimberlite Example

Grunsky and Kjarsgaard (2008) have classified discrete eruptive events of the Star

kimberlite, Saskatchewan, into five distinctive clusters using statistical methods

including compositional data analysis applied to whole rock geochemical data

(Fig. 12.4). The data set consisted of 270 kimberlite samples from 38 drill holes

that were analyzed for major oxides and trace –element geochemistry. Multivariate

techniques after a log-ratio transformation included principal component analysis

and discriminant analysis. Five distinct geochemical classes could be distinguished.

These are called the Cantiar, Pense, early Joli Fou (eJF), mid Joli Fou (mJF) and late

Fig. 12.3 Ternary diagram

and log-contrast principal

axes for 23 aphyric Skye

lava compositions.

A: Alkali or Na2O+K2O;

F: Fe2O3; M: MgO (Source:

Aitchison 1986, Fig. 8.5)
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Joli Fou (lJF) equivalent age eruptive phases of the Star kimberlite. Their study area

is shown in Fig. 12.5. The Star kimberlite is located in the extreme SE part of the

main kimberlite cluster of the Fort à la Corne field situated within the Paleopro-

terozoic Glennie Domain that overlies the Archean craton.

Fig. 12.4 Location of Fort à la Corne kimberlite field, central Saskatchewan. The Fort à la Corne

‘main trend’ cluster is the largest cluster in the field. The Star Kimberlite occurs at the southeastern

end of the field (bottom right on main map) (Source: Grunsky and Kjarsgaard 2008, Fig. 1)

476 12 Selected Topics for Further Research



Figure 12.6 shows pair plots of four elements (Yb, P, La and Zr) selected to

represent kimberlite magma composition variability. The distinctive trends of

relative enrichment of these elements indicate progressive fractionation of olivine

plus spinel and decreased lithospheric mantle contamination. The evaluation of

lithogeochemical data requires transformation from the constant-sum composi-

tional data space to real number space through the application of a log-centered

transformation. Principal component analysis was applied to the log-centred data.

Figure 12.7 shows the resulting screeplot of ordered eigenvalues and their

corresponding significance for the Star dataset. The first two eigenvalues contribute

34.6 and 32.0 % of total variance of the data. Scores of observations and variables

eJF mJF IJf Pense Cantuar
Star Kimberlite - Log-centerd Values
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P
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Fig. 12.5 Scatter plot matrix of selected elements that represent lithospheric mantle contamina-

tion from the five eruptive phases of the Star kimberlites. The data have been log-centred

transformed. Early Joli Fou observations are shown as solid circles, mid Joli Fou as triangles,

late Joli Fou as vertical crosses, Pense as diagonal crosses and Cantuar as diamonds (Source:

Grunsky and Kjarsgaard 2008, Fig. 3)
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Fig. 12.6 Screeplot of

ordered eigenvalues derived

from principal component

analysis applied to the

log-centred Star kimberlite

dataset (Source: Grunsky

and Kjarsgaard 2008,

Fig. 6)
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Fig. 12.7 Plot of PC1 versus PC2 scores and loadings of the log-centred Star kimberlite data set.

The loadings of the variables are plotted as the element symbols (Source: Grunsky and Kjarsgaard

2008, Fig. 7)
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are shown in Fig. 12.8. More results including scores for other principal compo-

nents are provided by Grunsky and Kjarsgaard (2008). More than 90 % of the

variation of Si is accounted for by the first principal component, whereas 64.0 % of

the variability of Ti is accounted for in the second component. The actual contri-

butions provide a measure of how much each element contributes to each compo-

nent. In the first component, Si, Fe, Co and Ni contributions all exceed more than

10 %. Approximately 45 % of variability of the first component is accounted for by

these four elements.

Figure 12.8 is a plot of observations and element scores projected onto the first

two principal component axes. The variation of all the data in this diagram

describes 68.6 % of the overall variation in the data set. The ellipse boundaries

were constructed to encompass all observations for each eruptive and the size of an

ellipse is related to the degree of dispersion associated for that phase. Samples that

plot close to an element or group of elements are enriched in those elements relative

to other samples that plot farther away. It is evident that samples from the eJF show

relative enrichment in Si, Cr, Ni, Mg, Fe and Co as would be expected for olivine-

rich rocks such as kimberlite or kimberlite contaminated by lithospheric peridotite

(which is dominated by olivine). Average composition of two Canadian cratonic

mantle peridotite suites have extreme compositions relative to the kimberlite scores

and are not plotted in Fig. 12.8, but the mantle contamination vector in this diagram

is defined by the scores of these two average compositions. Samples tending toward

the negative part of the C1 axis are certainly all mantle peridotite contaminated.

Further interpretations are given by Grunsky and Kjarsgaard (2008). The purpose of

this example was to show how compositional data analysis combined with classical

statistics can result in novel mineralogical and geochemical interpretations.

A final remark on compositional data analysis is as follows. In an interesting

paper, Filzmoser et al. (2009) argue that, for statistical analysis, logits (cf. Sect. 5.2)
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Fig. 12.8 Relationship

between logits and probits is

approximately linear for

logits within the [�3, 3]

interval

12.2 Compositional Data Analysis 479

http://dx.doi.org/10.1007/978-3-319-06874-9_5


of measurements should be used instead original values if the variable of interest is

part of a closed number system. They advocate use of logits even when histograms

for individual variables are constructed or when standard deviations are being

calculated. Suppose such measurements are written as Pi (i¼ 1, 2, . . ., n). For
trace elements the logit transformation loge{Pi/(1- Pi)} is equivalent to a logarith-

mic transformation loge Pi because Pi then is very small. It is well-known that logits

are nearly equal to probits (cf. Sect. 2.3.1) except for the smallest and largest values

in a sample. The relationship between logits and probits is approximately linear for

the range 0.05�Pi� 0.95 as shown in Fig. 12.8. In Sect. 12.8, measurements will

be replaced by their probits (instead of logits) because this transformation is helpful

in 2-D cell composition modeling, especially for extrapolation of statistics from

smaller to larger cells and vice versa.

12.3 Non-linear Process Modeling

A question to which new answers are being sought is: Where does the randomness in

Nature come from? Nonlinear process modeling is providing new clues to answers.

Deterministic models can produce chaotic results. A famous early example was

described in Poincaré’s (1899) study of the three-body problem in mechanics. This

author observed that in some systems it may happen that small differences in the

initial conditions produce very great ones in the final phenomena, and “. . . prediction
becomes impossible.” Nevertheless, the randomness created by non-linear processes

obeys its own specific laws. Many scientists including Turcotte (1997) have pointed

out that, in chaos theory, otherwise deterministic Earth process models can contain

terms that generate purely random responses. Examples include the logistic equation

and the van der Pol equation with solutions that contain unstable fixed points or

bifurcations. Multifractals, which are spatially intertwined fractals and were antic-

ipated by Hans de Wijs (in 1948), provide a novel way of approach to problem-

solving in situations where the attributes display strongly positively skewed fre-

quency distributions. The standard geostatistical model used in ordinary kriging

assumes a semivariogram with both range and nugget effect. The range extends to

distances at which results from other deterministic or random processes begin to

overshadow local variability. The nugget effect often is the result of relatively wide

sampling between points that hides short-distance variability. The multifractal

semivariogram shows sharp decrease toward zero near the origin. Local singularity

mapping uses this short-distance variability to delineate places with relatively strong

enrichment or depletion of element concentration on geochemical maps and in other

applications (Cheng and Agterberg 2009). This method provides a new approach for

mineral exploration and regional environmental assessment (cf. Sect. 11.5). These
nonlinear developments are closely related to statistical theory of extreme events

(Beirlant et al. 2005).
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12.3.1 The Lorentz Attractor

It can be argued that non-linear process modeling originated in 1963 when the

meteorologist Edward Lorenz (1963) published the paper entitled “Deterministic

nonperiodic flow” (cf. Motter and Campbell 2013). Earlier, he had accidentally

discovered how miniscule changes in the initial state of a time series computer

simulation experiment grew exponentially with time to yield results that did not

resemble one another although the equations controlling the process were the same

in all experiments (Lorenz, 1963). It turned out that the notion of absolute predict-

ability, although it had been assumed intuitively to hold true in classical physics, is

in practice false for many systems. In the title of a talk Lorenz gave in 1972, he

aptly referred to this chaotic behaviour as the “butterfly effect” asking if the flap of a

butterfly in Brazil could set off a tornado in Texas (Fig. 12.8).

It is beyond the scope of this book to discuss the theory of chaos in more detail.

However, it is good to point out that chaos is closely connected to fractals and

multifractals. The attractor’s geometry can be related to its fractal properties. For

example, although Lorenz could not resolve this from the numeric he applied, his

attractor has fractal dimension equal to approximately 2.06 (Motter and Campbell

2013, p. 30). An excellent introduction to chaos theory and its relation to fractals

can be found in Turcotte (1997). The simplest nonlinear single differential equation

Box 12.2: Chaos Theory

Lorenz (1963) presented chaos theory by using a three-variable system of

nonlinear ordinary differential equations now known as the Lorenz equations.

The model derives from a truncated Fourier expansion of the partial differential

equations describing a thin, horizontal layer of fluid that is heated from below

and cooled from above. The equations can be written as: dx/dt¼ a(�x+ y),
dy/dt¼ cx� y� xz, and dz/dt¼�bz+ xy, where x represents intensity of con-

vective motion, y is proportional to the temperature difference between the

ascending and descending convective currents, and z indicates the deviation of
the vertical temperature profile from linearity. The parameters b and c represent
particulars of the flow geometry and rheology. Lorenz set them equal to b¼ 8/3

and c¼ 10, respectively; leaving only the Rayleigh number a to vary. For small

c, the system has a stable fixed point at x¼ y¼ z¼ 0, corresponding to no

convection. If 24.74> c	 1, the system has two symmetrical fixed points,

representing two steady convective states. At c¼ 24.74, these two convective

states lose stability; at c¼ 28, the system shows nonperiodic trajectories. Such

trajectories orbit along a bounded region of 3-D space known as a chaotic

attractor, never intersecting themselves (Fig. 12.9). For larger values of c, the
Lorenz equations exhibit different behaviors that have been catalogued by

Sparrow (1982).
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illustrating some aspects of chaotic behavior is the logistic equation that can be

written as dx/dt¼ x(1� x) where x and t are non-dimensional variables for popu-

lation size and time, respectively. There are no parameters in this equation because

characteristic time and representative population size were defined and used.

The solution of this logistic equation has fixed points at x¼ 0 and 1, respectively.

The fixed point at x¼ 0 is unstable in that solutions in its immediate vicinity diverge

away from it. On the other hand, the fixed point at x¼ 1 has solutions in its

immediate vicinity that are stable. Introducing, the new variable, x1¼ x� 1, and

neglecting the quadratic term, the logistic equation has the solution x1¼ x10�e
�t

where x10 is assumed to be small but constant. All such solutions “flow” toward

x¼ 1 in time. They are not chaotic.

Chaotic solutions evolve in time with exponential sensitivity to the initial condi-

tions. The so-called logistic map arises from the recursive relation xk+1¼ a � xk(1� xk)
with iterations for k¼ 0, 1, . . .. May (1976) found that the resulting iterations have a

remarkable range of behavior depending on the value of the constant a that is chosen.
Turcotte (1997, Sect. 10.1) discusses in detail that there now are two fixed points at

x¼ 0 and 1 - a�1, respectively. The fixed point at x¼ 0 is stable for 0< a< 1 and

unstable for a> 1. The other fixed point is unstable for 0< a< 1, stable for 1< a< 3,

and unstable for a> 3. At a¼ 3 a so-called flip bifurcation occurs. Both singular points

are unstable and the iteration converges on an oscillating limit cycle. At a¼ 3.449479,

another flip bifurcation occurs and there suddenly are four limit cycles. Writing a1¼ 3

and a2¼ 3.449459, it turns out that the constants ai (i¼ 1, 2, . . ., 1) define intervals

with 2ai limit cycles that satisfy the iterative relation ai+1 - ai¼F�1 � (ai� ai�1)

Fig. 12.9 The Lorenz attractor as revealed by the never-repeating trajectory of a single chaotic

orbit (from Motter and Campbell 2013, Fig. 2). The spheres represent iterations of the Lorenz

equations, calculated using the parameters originally used by Lorenz (1963). Spheres are colored

according to iteration count. The two lobes of the attractor resemble a butterfly, a coincidence that

helped earn sensitive dependence on initial conditions. Hence, its nickname: “the butterfly effect”
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where F¼ 4.669202 is the so-called Feigenbaum constant. In the limit,

a1¼ (F� 1)�1 � (Fai� ai�1)¼ 3.569946. In the region 3.569946< a< 4, windows

of chaos and multiple cycles occur. Logistic maps for different values of a including

some that show chaotic behavior are shown by Turcotte (1997, Figs. 10.1, 10.2, 10.3,

10.4, 10.5, and 10.6). Sornette et al. (1991) and Dubois and Cheminée (1991) have

treated the return periods for eruptions of the Piton de la Fournaise on Réunion Island

and Mauna Lao and Kilauea in Hawaii as return maps that resemble chaotic maps

resulting from the logistic model.

As pointed out in the chapters on fractals and multifractals, nonlinear process

modeling is providing new clues to answers of where the randomness in nature

comes from. From chaos theory it is known that otherwise deterministic Earth

process models can contain terms that generate purely random responses. The

solutions of such equations may contain unstable fixed points or bifurcations. In

the previous chapter it was shown that multifractals provide a novel way of

approach to problem-solving in situations where the attributes display strongly

positively skewed frequency distributions. The preceding examples of deterministic

processes result in chaotic results. However, one can ask the question of whether

there exist deterministic processes that can fully explain fractals and multifractals?

The power-law models related to fractals and multifractals can be partially

explained on the basis of the concept of self-similarity (Box 11.1). Various chaotic

patterns observed for element concentration values in rocks and orebodies could be

partially explained as the results of multiplicative cascade models such as the model

of de Wijs. These models invoke random elements such as increases of element

concentration that are not deterministic.

As already discussed in Sect. 10.1, successful applications of non-linear model-

ing in geoscience include the following: Rundle et al. (2003) showed that the

Gutenberg-Richter frequency-magnitude relation is a combined effect of the geo-

metrical (fractal) structure of fault networks and the non-linear dynamics of seis-

micity. Most weather-related processes taking place in the atmosphere including

cloud formation and rainfall are multifractal (Lovejoy and Schertzer 2007; Sharma

1995). Other space-related non-linear processes include “current disruption” and

“magnetic reconnection” scenarios (Uritsky et al. 2008). Within the solid Earth’s

crust, processes involving the release of large amounts of energy over very short

intervals of time including earthquakes (Turcotte 1997), landslides (Park and Chi

2008), flooding (Gupta et al. 2007) and forest fires (Malamud et al. 1998) are

non-linear and result in fractals or multifractals.

12.4 Three-Parameter Model of de Wijs

This section is concerned with the lognormal, and its logbinomial approximation,

in connection with a three-parameter version of the model of de Wijs. The three

parameters are: overall average element concentration value (ξ), dispersion index (d),
and apparent number of subdivisions of the environment (N). Multifractal theory
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produces new methods for estimating the parameters of this model. In practical

applications, the frequency distribution of element concentration values for small

rock samples is related to self-similar spatial variability patterns of the element in large

regions or segments of the Earth’s crust. The approach will be illustrated by applica-

tion to spatial variability of gold and arsenic in glacial till samples from southern

Saskatchewan. It will be shown that for these two elements the model of de Wijs is

satisfied on a regional scale but degree of dispersion decreases rapidly toward the

local, sample-size scale. Thus the apparent number of subdivisions (N) is considerably

less than would be expected if degree of dispersion were to extend from regional to

local scale as generally assumed in the past (cf. Agterberg 2007a).

12.4.1 Effective Number of Iterations

Multifractal modeling offers an independent method to verify validity of the model

of de Wijs and to estimate d. In principle, the value of n could be made infinitely

large. However, the logarithmic variance (σ2 in the variance equation of de Wijs)

then also becomes infinitely large and the frequency distribution of the element

concentration values would cease to exist. Application of the method of moments in

multifractal analysis results in a multifractal spectrum that is a limiting form for

infinitely large n. The frequency distribution corresponding to this limiting form

cannot exist in reality because it has infinitely large variance. In practice, any set of

element concentration values for very small blocks of rock collected from a very

large environment has a frequency distribution with finite logarithmic variance.

Suppose that the generating process of subdividing blocks under the same

dispersion index (d) ceases to be operative for blocks that are larger than the very

small blocks used for chemical analysis. In examples of application to be discussed

in this section, d at the regional scale does not apply at the local scale (for small

blocks used for chemical analysis). Locally, d is either zero or much smaller than

d at the regional scale. Under these conditions, an apparent maximum number of

subdivisions N can be estimated. Self-similarity at scales exceeding a critical lower

limit results in a model of de Wijs with three parameters: ξ, d, and N.
The multifractal method used for estimating d is similar to the method for

separation of geochemical anomalies from background introduced by Cheng

(1994) and Cheng et al. (1994). As previously discussed in Agterberg (2001a, b,

2007a), validity of themodel of deWijs for the larger concentration values results in:

lim
q!1

dτ qð Þ
dq

¼ αmin ¼ log2
ηþ 1

η

	 
2

In 2-D applications, chemical element measures are formed by multiplying average

cell concentration values by cell areas. Raising these measures to relatively high

powers q filters out the influence of smaller concentration values. Thus our estimate

of d is based on parameters estimated from the relatively large concentration values

of an element. The lower-value tails of the observed frequency distributions could
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be mixtures of separate populations, and the exact nature of these mixtures can be

left undetermined.

If the model of de Wijs is satisfied, the mass exponents τ(q) become linearly

related to qwhen q is large. The parameter d then can be estimated from the slope of

the resulting straight line. Together with the estimate of logarithmic variance

provided by the original variance equation of de Wijs, this yields an estimate of

apparent maximum number of subdivisions N.

12.4.2 Au and As in South Saskatchewan till Example

The approach is illustrated by application to gold and arsenic content of till samples

obtained during systematic ultra-low density (1 site per 800 km2) geochemical

reconnaissance, Southern Saskatchewan. There are 389 observed gold concentra-

tion values ranging from below detection limit to 77 ppb. All Au values below

detection limit (¼2 ppb) were set equal to 1 ppb. The arithmetic mean gold

concentration value is 2.5 ppb. In total, only about one third of 389 observed values

exceed this average. Overall average gold value of 2.5 ppb slightly overestimates

true mean gold concentration value because most gold values below 2 ppb are

probably less than 1 ppb.

For arsenic, all observed values are above the detection limit with overall mean

of 7.9 ppm and ranging from about 2–44 ppm. The main difference between

frequency distributions of Au and As is that gold has positively skewed distribution

whereas arsenic shows approximately symmetric, normal distribution. Most dia-

grams in this section are for Au only. Similar results (not shown as diagrams) were

obtained for As. Estimates for both Au and As are listed in Table 12.2.

The method used here resembles the one used by Brinck (1974). Lognormal Q-Q
plots for Au and As are shown in Fig. 12.10. The first step in Brinck’s approach

Table 12.2 Gold and arsenic in till samples, Southern Saskatchewan: results of graphical

estimation of parameters for the model of de Wijs

Gold Arsenic

Straightline on Q-Q plot: intercept 0.8006 �5.3035

Ditto, slope 0.4222 2.7611

Mean 2.48 7.29

Logarithmic variance 5.61 0.131

Cell data Q-Q plot: intercept �0.2121 12.399

Ditto, slope 0.8784 6.0591

Logarithmic variance of cell averages 1.296 0.0272

Straightline on Tau vs q plot: intercept �5.3035 �1.4232

Ditto, Slope 2.7611 1.8075

Dispersion index (Eq. 3) 0.433 0.069

Apparent number of subdivisions – till samples 26.12 27.5

Number of subdivisions, cell data 6.03 5.71

Gold concentration values in ppb;As concentration values in ppm (Source:Agterberg 2007a, Table 1)
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consists of fitting a straight line on the Q-Q plot. Figure 12.11 shows such a line of

best fit for Au. Because natural logarithms are used, the standard deviation of

logarithmically transformed concentration values can be set equal to the inverse

of the slope of the best-fitting straight line. It amounts to 2.37 ppb for Au. Difference

in shape of frequency distribution is reflected in the fact that the logarithmic

variance of Au is more than 40 times as large as the logarithmic variance of As

Fig. 12.10 Cumulative frequency distributions (lognormal Q-Q plots) of gold and arsenic in

379 till samples, Southern Saskatchewan. Units of Au and As concentration values are ppb and

ppm, respectively (Source: Agterberg 2007a, Fig. 7)

Fig. 12.11 Straight line fitted to part of lognormal Q-Q plot of gold values shown in Fig. 12.12.

Inverse of slope provides estimate of logarithmic (base e) standard deviation (Source: Agterberg

2007a, Fig. 8)
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(see Table 11.1). Original sampling design for the geochemical reconnaissance

study in Southern Saskatchewan is described by Garrett and Thorleifson (1995). An

80� 80 km grid was selected as the basic sampling cell. It was successively

subdivided into 40� 40 km, 20� 20 km and finally 10� 10 km grid cells for

sampling with randomly selected 1� 1 km target cells. Compositional data for

many other elements and minerals were determined as well. Gold and arsenic were

selected for this study because their frequency distributions seem to be unimodal,

and these elements had been used extensively in other multifractal studies (Cheng

1994; Agterberg 2001a, b).

For the case study described here, a modified grid was used for Southern

Saskatchewan resulting in a square-shaped study area consisting of 64 square

cells measuring slightly less than 80 km on a side (see Fig. 12.12). The purpose

of this re-definition of boundaries of study area was to minimize edge effects in

multifractal analysis. Data from outside the square study area were not used. In

total, 290 of the original 389 (on average, about 4.5/cell) were retained. None of the

cells inside the study area of Fig. 12.12 are empty. Figure 12.13 is a Q-Q plot of

gold cell average concentration values with best-fitting straight line.

Fig. 12.12 Study area of 64 cells with locations of till samples, Southern Saskatchewan. Unit of

distance for east–west and north–south directions is 78.125 km (Source: Agterberg 2007a, Fig. 9)
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The square arrays ofAu andAs cell average concentration valueswere subjected to

multifractal analysis using themethod ofmoments. Figure 12.14 showsmass-partition

function results for gold. For relatively large values of q there is approximate linear

relationship between the mass exponent τ(q) and q for Au (Fig. 12.15). The slopes of
the best-fitting straight lines are 0.962 for Au and 1.808 for As, respectively

(Table 11.1). These slopes were converted into dispersion index estimates of

d¼ 0.433 for Au, and d¼ 0.069 for As. Straight line fitting to lognormal Q-Q
plots for the 64 cell average concentration values gave logarithmic variances of

1.292 for Au, and 0.029 for As, respectively. Using the original variance equation of

de Wijs then yields estimates of n equal to 6.0 for Au, and 5.7 for As, respectively.

Both estimates are nearly equal to 6 representing their expected value for the model

of de Wijs because 26¼ 64. This agreement between results indicates that the

model of de Wijs is approximately satisfied on a regional scale for both gold and

arsenic.

Logarithmic variances estimated from the 379 original till samples were 2.369

for Au and 0.362 for As, respectively. Using the variance equation of de Wijs, this

yields estimates of N equal to 26.1 for Au, and 27.5 for As, respectively. These

apparent maximum numbers of subdivisions of the environment would correspond

to square cells measuring approximately 75 m, and 40 m on a side, respectively.

Clearly, these cells are much larger than the very small areas where the till was

actually sampled for the purpose of chemical analysis. It shows that, for both Au

and As, the regional model of de Wijs does not apply at the local sampling scale.

Fig. 12.13 Straight line

fitted to part of lognormal

Q-Q plot for 64 average

gold concentration values

for cells (Source: Agterberg

2007a, Fig. 10)
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Logbinomial distributions for gold and arsenic are shown in the lognormal Q-Q
plots of Fig. 12.16. Because the negative binomial is discrete, the preceding

estimates of N were rounded off to the nearest integer. The parameters of the

distributions shown are ξ¼ 1.82 ppb, d¼ 0.433, and N¼ 26 for gold (Fig. 12.16a);

and ξ¼ 7.05 ppm, d¼ 0.069, and N¼ 28 for arsenic (Fig. 12.16b). Mean values ξ
were determined by forcing the log-binomials and their lognormal approximations

through the centers of clusters of points on lognormal Q-Q plots for original data.

These results remain approximate but are interesting because they permit shape

comparison of logbinomial and lognormal tails.

The dispersion index of gold (¼0.433) is much larger than that of arsenic

(¼0.069), but the patterns on Q-Q plots in Fig. 12.16 for these two elements are

similar. Both are approximately lognormal over the ranges of observed values.

Outside these ranges the logbinomial upper (and lower) tails become increasingly

thinner than their lognormal approximations. However, the resulting differences

have relatively little practical significance. For example, the logbinomial would

predict that 1.45 % of all possible till samples have gold concentrations greater than

32 ppb, whereas the corresponding lognormal prediction (¼1.56 %) is hardly

different from this.

Fig. 12.14 Method of moments applied to 64 cell average gold concentration values. A property

of self-similarity is that power moment sums of cell masses raised to powers of q are related to cell
side according to power cells with mass exponents τ(q) given by the slopes of the straight lines.

Because of uncertainties related to gold detection limit, results for q	 0 can be used only in this

application (Source: Agterberg 2007a, Fig. 11)
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12.5 Other Modifications of the Model of de Wijs

The following one-dimensional computer simulation experiment for the model of

de Wijs was previously described in Agterberg (1994). Suppose μ(SA) represents
the measure of a set S in a segment of ℜ1. A line segment of length L can be

partitioned into N(ε) cells (intervals) of equal size ε; let μi(ε) denote the measure on

S for the i-th cell of size ε in (0, L ) with i¼ 1, 2, . . ., N(ε). A simple stochastic

version of the multiplicative cascade model in ℜ1 then is as follows. At the first

stage (k¼ 1) in a process of n stages, the interval (0, L ) with measure ξ � L is

subdivided into two equal intervals: (a) (0,L/2) with measure (1 +B) � ξ � L, and
(b) (L/2, L) with (1 – B) � ξ � L, where B is a random variable with probabilities

P(B¼ d )¼P(B¼�d )¼1/2 (d> 0). At stage 2 these two intervals are halved again

with new measures for the halves defined in the same way as at stage 1. The process

is repeated at stages k¼ 3, 4, . . . At stage k the i-th subinterval with concentration

value Xi(ε) has size ε¼ L/2k, and E{Xi(ε)}¼ ξ. The frequency distribution of

Xi(ε) is logbinomial, tending to become lognormal in the center as ε ! 0 and,

depending on the direction of ordering, slightly weaker than lognormal in both tails.

Figure 12.17 shows a realization of this process for n¼ 8, ξ¼ 1, and d¼ 0.4.

An obvious drawback of the original model of de Wijs is that, if the dispersion

index d applies at one stage, it is unlikely to apply at later steps because d generally
must be a random variable itself. In this section d will be replaced by the random

variable D.

Fig. 12.15 Mass exponent τ(q) plotted against relatively large values of q. Slope of best-fitting

straight line is used to estimate the dispersion index d¼ 0.433 for gold (Source: Agterberg 2007a,

Fig. 12)
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12.5.1 Random Cut Model

In the original model of de Wijs illustrated in Fig. 12.16, the dispersion index d is a

constant. The lower and higher values generated at successive iterationswere assigned

random spatial locations with respect to one another by introducing the random

variable B with P(B¼ d)¼P(B¼�d)¼ 1/2 (d> 0). A different way of formulating

this type of randomness is to introduce a new random variable D*¼ 1+D that

assumes either the value d or the value –d with equal probabilities. Consequently, E
(D*)¼ 1 and E(D)¼ 0. In the variant of the model of de Wijs resulting in Figs. 12.17

and 12.18, D* is bimodal. Its two separate peaks, which satisfy normal distributions

with standard deviations equal to 0.1, are centered about 0.4 and 1.4, respectively.

It is more realistic to replace this bimodal model by a unimodal frequency density

model centered about E(D*)¼ 1 (see later).

Fig. 12.16 Lognormal Q-Q plots for discrete binomial frequency distributions of (a) gold and

(b) arsenic concentration values resulting from the model of the Wijs. (a) For Au: overall average

element concentration value ξ¼ 1.82 ppb, dispersion index d¼ 0.433, and apparent number of

subdivisions of the environment N¼ 26; (b) For As: ξ¼ 7.05 ppm, d¼ 0.069, and N¼ 28 (Source:

Agterberg 2007a, Fig. 13)
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Fig. 12.17 Artificial sequence of 256 values generated by model of de Wijs; dispersion index

d¼ 0.4; overall mean μ¼ 1 (Source: Agterberg 2007a, Fig. 1)

Fig. 12.18 Lognormal Q-Q plot of 256 values of Fig. 12.17; Straight line representing lognormal

distribution was fitted to central part of logbinomial. Note that logbinomial tails are thinner than

lognormal tails (Source: Agterberg 2007a, Fig. 2)
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A good question to ask is: would it be possible to estimate the frequency

distribution of D*. The following idea was originally proposed by Matheron

(1962, pp. 310–311). It is based on the concept of relative concentration value

Y12¼X1/X2 where X1 represents concentration value of a small block with volume

V1 that is randomly located within a larger block with concentration value X2 and

volume V2. In the computer simulation experiments of Fig. 12.17 V1 is exactly half

of V2 but V1 can be much smaller than half of V2. If there is self-similarity, Y12, on
average, only depends on the ratio V1/V2 of the block volumes. It is independent of

the volumes themselves. Suppose that smaller blocks are contained within larger

blocks so that V1/V2¼V2/V3¼ . . .¼Vn/Vn�1¼ λ. Consequently, Vn/V1¼ λn�1. For

the examples in ℜ1, Vn/V1¼ 2n. All relative concentration values Yi,i+1 (i¼ 1, . . .,
n�1) are realizations of the same random variable, and Y1n¼X1/

Xn¼ Y12 � Y23 � . . . � Yn�2,n�1. Suppose that the logarithmic variance of Yi,i+1 is

written as h2, then σ2 representing the logarithmic variance of Y1n satisfies:

σ2¼ (n� 1) h2¼ α* ln {Vn/V1}, where α*¼ h2/ln λ. This expression is equivalent

σ2 in the original variance equation of de Wijs. However, the underlying rationale is

different. It now is assumed that D*¼ 1 +D is a unimodal random variable with

expected value equal to 1 and variance σ2(D*). If D* has normal frequency

distribution, its mean deviation is equal to σ
ffiffiffiffiffiffiffiffi
2=π

p
. This statistic would be equiv-

alent to the constant dispersion index d in the original model of de Wijs.

Suppose that the mean deviation is set equal to the dispersion index d¼ 0.4 as

used for constructing Fig. 12.16. Then σ¼ 0.5013. However,D* cannot be negative
nor greater than 2. In the following computer simulation experiment, occurrence of

very small or large values of D* is prevented by setting random normal numbers

less than 0.1 equal to 0.1, and values greater than 1.9 equal to 1.9. The resulting

approximately normal distribution has standard deviation slightly less than 0.5013.

Replacement of this value by 0.51 results in an approximately normal distribution

with mean deviation equal to 0.40. Figures 12.17 and 12.18 show results for this

random-cut model with n¼ 8, E(D*)¼ ξ¼ 1, and σ(D*)¼ 0.51. Arithmetic instead

of logarithmic scale for concentration values is used in Fig. 12.18.

The preceding computer simulation experiments illustrate that the original model

of deWijs (Fig. 12.16) with a single value for the dispersion index d produces results
that are similar to more realistic models in which is D is a random variable resulting

in different values of d for every division of blocks into halves. Most practical

applications continue to use the original model of de Wijs because it provides valid

approximations for large values of n. Moreover, multifractal theory is well

established for the original model of de Wijs and can be used without difficulty.

However, the alternative approach of allowing D*¼ 1 +D to be a random

variable allows empirical estimation of the frequency distribution of relative con-

centration values Y12¼X1/X2 where X1 is the concentration value of a small block

with volume V1 that is randomly located within a larger block with concentration

value X2 and volume V2. If V1/V2¼ 0.5, measurements of Y12 would provide direct

estimates of values that are realizations of the random variable D*. This approach,
with V1 much smaller than V2, now will be applied to relative Au concentration

values of till samples in the next example.
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Relative element concentration values Y1n¼X1/Xn2 were calculated for gold,

where X1 is the concentration value of a till sample with volume V1 that is randomly

located within a cell belonging to the grid of cells shown in Fig. 12.11 with

concentration value Xn cell size Vn. Figure 12.19 is a lognormal Q-Q plot of these

290 relative Au concentration values. The straight line provides a good fit except on

the left side of Fig. 12.19 where there is some bias related to the Au detection limit

and at the ends where frequencies of relative gold concentration values are small.

The logarithmic variance derived from the straight line of Fig. 12.19 is 0.5717.

This illustrates that positive skewness of the relative gold concentration values is

significant. Setting Vn/V1 equal to 220 yields an estimated value of α*¼ 0.04124.

The logarithmic variance of Y12 would amount to h2¼ 0.5717/19¼ 0.03009.

Because it can be assumed that Y12, like Y1n, has lognormal distribution, its variance

is estimated to be σ2(Y12)¼ 0.2326. Because this value is rather small, Y12 is

approximately normally distributed with standard deviation σ(Y12)¼ 0.482. It fol-

lows that mean deviation from E(Y12)¼ 1 amounts to m.d.¼ 0.39. This would be a

crude estimate of average dispersion index in the random-cut model. It is close to

d¼ 0.43 estimated for the original logbinomial model of de Wijs (Table 12.2).

Although m.d. and d are different parameters one would expect them to be

approximately equal to one another because of convergence of logbinomial and

lognormal distributions for increasing number of subdivisions (n). It was attempted

to repeat the preceding analysis for As but the 290 values Y1n¼X1/Xn2 for As do not
show a simple straight line pattern, and m.d. could not be estimated with sufficient

precision (Figs. 12.20, 12.21, 12.22, and 12.23).

Fig. 12.19 Computer simulation experiment of Fig. 12.17 repeated after replacing dispersion

index d¼ 0.4 by normal random variable D with E(D)¼ 0.4 and σ (D)¼ 0.1. Overall pattern

resembles pattern of Fig. 12.19 (Source: Agterberg 2007a, Fig. 3)
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Fig. 12.20 Lognormal Q-Q plot of 256 values of Fig. 12.19; frequency distribution is approxi-

mately lognormal (Source: Agterberg 2007a, Fig. 4)

Fig. 12.21 Computer simulation experiment of Fig. 12.17 repeated after replacing constant

dispersion index d¼ 0.4 by approximately normal random variable D* with E(D*)¼ 1 and E{|

D*�E(D*)|}¼ 0.4, which is equivalent to σ (D*)¼ 0.51 (Source: Agterberg 2007a, Fig. 5)
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Fig. 12.22 Lognormal Q-Q plot of 256 values of Fig. 12.21 (Source: Agterberg 2007a, Fig. 6)

Fig. 12.23 Lognormal Q-Q plot for 290 relative gold concentration values of Fig. 12.12. Best

fitting line indicates approximate lognormality and is used to estimate mean deviation of variable

dispersion index D* in random-cut model (Source: Agterberg 2007a, Fig. 14)
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12.5.2 Accelerated Dispersion Model

A common problem in mineral resource studies is that frequently the high-value tail

of the observed size-frequency distribution is thicker than lognormal which, in turn,

is thicker than logbinomial (cf. Sect. 10.4). Another example of this is shown in

Fig. 12.24 for U.S. uranium resources. The high-value tail in this log-log diagram is

approximately according to a straight line indicating a Pareto distribution. The

following relatively simple modification of the model of de Wijs results in thicker

than lognormal frequency distribution tails (cf. Agterberg 2007b). It could be

assumed that the coefficient of dispersion d increases as a function of element

concentration value ξ. For example, suppose that the first derivative of a chemical

element’s dispersion coefficient is a linear function of ξ so that d¼ d0 exp(p � ξ)
where p is a constant. Setting p¼ 0.01 and re-running the 2-D experiment previ-

ously resulting in Fig. 10.22 (d0¼ 0.4; N¼ 14) yielded the pattern for (ξ+ 4)
shown in Fig. 12.25 where the vertical scale is logarithmic. The logarithmically

transformed concentration values of Fig. 12.25 are normally distributed except for

the largest values. Figure 12.26 is a comparison of the largest log-concentration

values with those arising when there would be no acceleration of dispersion. Values

with log10 (ξ)� 2 are larger than expected in comparison with patterns such as

Fig. 10.22 resulting from the model of de Wijs with p¼ 0. Only relatively few very

large values emerge from the approximately lognormal background if p is small.

Fig. 12.24 United States uranium resources (unit¼ 106 t) versus cut-off grade (in percentage

U3O8) from Harris (1984) on log-log paper (logs base 10). Last eight values satisfy Pareto

distribution model. The decrease in slope toward the origin probably is caused by the fact that

lower grade deposits are underreported because it is not economic to mine them (Source:

Agterberg 1995, Fig. 5)
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Because p is small, most element concentration values after 14 iterations are

nearly equal to values that satisfy the original model of de Wijs. As illustrated in

Fig. 12.26, exceptions are that the largest values, which include (1 + d )14¼ 316,

significantly exceed values that would be generated by the original model, which

include (1 + d0)
14¼ 111. A similar effect would occur in the low-value tail. The

frequencies of very small values that are generated exceed those generated by the

ordinary model of de Wijs. Because the lowest concentration values cannot become

negative, they accumulate within an interval that is close to zero. When a logarith-

mic scale is used for value, the pattern that is expected would be similar to that
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Fig. 12.25 Realization of

accelerated dispersion

model for d0¼ 0.4, N¼ 14,
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is for 4 + log10 (Value)

(Source: Agterberg 2007b,

Fig. 5)
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experiment of Fig. 12.25 (Source: Agterberg 2007b, Fig. 6)
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previously shown in Fig. 3.11 for gold values in Merriespruit Mine, Witwatersrand

goldfield, South Africa. It is noted, however, that values in the lower value tail

cannot be less than a minimum value that is greater than zero.

12.6 Trends, Multifractals and White Noise

Regional geology generally can be explained as the result of deterministic pro-

cesses that took place millions of years ago. How does the well-documented and

explained mosaic constituting the upper part of the Earth’s crust fit in with the

concept of fractals and multifractals?

Brinck’s (1974) model constituted an early application of the model of de Wijs

(cf. Sect. 11.1.2). Estimation of parameters in this model including d could be

improved by adopting the multifractal modeling approach explained in Sect. 12.4.

At first glance, the Brinck approach seems to run counter to the fact that mineral

deposits are of many different types and result from different genetic processes.

However, Mandelbrot (1983) has shown that, for example, mountainous landscapes

can be modeled as fractals (cf. Sect. 10.1). Smoothed contours of elevation on such

maps continue to exhibit similar shapes when the scale is enlarged, as in Krige’s

(1966) example for Klerksdorp gold contours (Sect. 11.1.1). Lovejoy and Schertzer

(2007) argued convincingly that the Earth’s topography can be modeled as a

multifractal, both on continents and ocean floors in accordance with power-law

relations originally established by Vening Meinesz (1964) as explained in Sect.

10.1.1. These broad-scale approaches to the nature of topography also seem to run

counter to the fact that landscapes are of many different types and result from

different genetic processes. Nevertheless, it can be assumed as Brinck did that

chemical elements within the Earth’s crust or within smaller, better defined envi-

ronments like the Witwatersrand goldfields can be modeled as multifractals.

In early applications of mathematical statistics to geoscience, it often was

assumed that regional features can be modeled by using deterministic functions

(e.g., in trend surface analysis, Chap. 4). Residuals from the trends were assumed to

be white noise with the properties of uncorrelated (iid) random variables. It

gradually became clear that residuals often are better modeled as stationary random

functions with a spatial covariance function or semi-variogram. Universal kriging

(cf. Sect. 7.2) is an approach that embodies the three components consisting of

deterministic trends (or drifts), stationary random functions and white noise (nugget

effect). A frequently used geostatistical model is that the semivariogram shows

nugget effect at the origin, a range that can be modeled for use is kriging and a sill

related to regional mean. Nested designs of superimposed models of this type also

are frequently used. Multifractal modeling can help to refine the nugget effect.

Based on the concept of self-similarity (or scale independence), the spatial auto-

correlation function can be extrapolated to very short distances. Use of the Chen

algorithm (Sect. 11.6) resulted in identification of white noise components that are

much smaller than previously suggested by semivariogram or correlogram. It was
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emphasized in Chap. 11 that this approach is close to the original Matheron (1962)

approach to ore reserve calculations.

The applications of Chap. 11 make use of multifractal spectra that are symmet-

rical. It was assumed that the central part of these spectra with shapes estimated by

the method of moments (Sect. 11.2.1) is according to the model of de Wijs

(binomial p/model) or one of its generalizations, although commonly the minimum

and maximum singularities, with fractal dimensions close to zero, are outside the

range predicted by the model of de Wijs. They represent extreme events in the tails

of the frequency distributions of the phenomena that are being modeled. In practice,

multifractal spectra can be asymmetrical, display negative fractal dimensions in the

tails or suggest the existence of infinitely large or small singularities (cf. Mandel-

brot 1999). In Agterberg (2001a) it was shown by means of computer simulations

experiments that 2-D element concentration patterns generated by the model of de

Wijs with superimposed regional trends can result in asymmetrical multifractal

spectra and negative fractal dimensions that are artefacts.

In this section, white noise will be added to a 1-D pattern generated by the model

of deWijs that seems to show some broad systematic variations resembling regional

trends. It will be shown that the white noise component can be extracted from the

data by means of the Chen algorithm but after a limited number of iterations.

12.6.1 Computer Simulation Experiment

Figure 12.27 shows an artificial series of 250 values generated by using a

one-dimensional version of the model of de Wijs with dispersion index d¼ 0.4

(cf. Agterberg 2012b). The pattern of Fig. 12.27 was generated in the same way as

that of Fig. 12.17 using different random numbers. These hypothetical element

concentration values were logarithmically (base 10) transformed and a Gaussian

white noise component with zero mean and standard deviation equal to 0.25 was

added. The result is shown in Fig. 12.28. The antilogs (base 10) of the values shown

in Fig. 12.28 were subjected to local singularity analysis. Patterns of the smoothing

coefficients ck are shown in Fig. 12.29 for k¼ 1, 5, 10, 120, and 1,000, respectively.

Obviously, degree of smoothing increases when k is increased. The purpose of the
iterative algorithm is to optimize local singularity αk rather than ck which in the

limit would become a straight-line pattern with values close to average element

concentration value (cf. Agterberg 2012a, b). The result for k¼ 1 represents ordi-

nary local singularity analysis. The other patterns are for larger values of k obtained
by means of the Chen algorithm. Figures 12.30, 12.31 and 12.32 show logarithmi-

cally transformed input values plotted against singularities for k¼ 1, 120, and

1,000, respectively. In these three diagrams, the best-fitting straight line obtained

by least squares is also shown. It can be assumed that the logarithmically

transformed input value is the sum of a “true” value that in this application satis-

fies the model of de Wijs for d¼ 0.4, plus a random error with zero mean and

standard deviation of 0.25 corresponding to the Gaussian white noise component.
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The estimated singularities should provide approximately error-free estimates of

the logarithmically transformed input values. Standard deviations of differences

between logarithmically transformed simulated element concentration values and

estimated singularities on the regression lines shown in Figs. 12.30, 12.31, and
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Fig. 12.28 Logarithmically transformed values of Fig. 12.27 after addition of random normal

numbers with zero mean and standard deviation equal to 0.25. The purpose of this experiment is to

create an artificial series that has two components of which the only first one (Fig. 12.27) has

autocorrelated values (Source: Agterberg 2012b, Fig. 5)
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Fig. 12.27 Artificial series of 256 values satisfying model of de Wijs with overall mean set equal

to 1 and index of dispersion d¼ 0.4 (Source: Agterberg 2012b, Fig. 4)
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12.32 for k¼ 1, 120 and 1,000 were 0.42, 0.25 and 0.16, respectively. Three other

residual standard deviations estimated after k¼ 10, 100 and 200 iterations were

0.33, 0.26 and 0.22, respectively. It can be concluded that the original white noise
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Fig. 12.29 Successive patterns of ck obtained after 1 (diamonds), 5 (squares), 10 (triangles)
120 (solid line) and 1,000 (smoothest curve) iterations (Source: Agterberg 2012b, Fig. 6)
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Fig. 12.30 Logarithmically (base 10) transformed simulated element concentration versus local

singularity after single iteration (k¼ 1) with regression line (singularity assumed to be error-free).

The standard deviation of residuals from the best-fitting straight line amounts to 0.42, which is

greater than 0.25 (Source: Agterberg 2012b, Fig. 7)
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Fig. 12.31 Logarithmically (base 10) transformed simulated element concentration versus local

singularity after single iteration (k¼ 120) with regression line (singularity assumed to be error-

free). The standard deviation of residuals from the best-fitting straight line amounts to 0.25, which

is equal to standard deviation of Gaussian white noise component added in Fig. 12.28 (Source:

Agterberg 2012b, Fig. 8)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

L
o

g
(C

o
n

ce
n

tr
at

io
n

 V
al

u
e)

Singularity

Fig. 12.32 Logarithmically (base 10) transformed simulated element concentration versus local

singularity after single iteration (k¼ 1,000) with regression line (singularity assumed to be error-

free). The standard deviation of residuals from the best-fitting straight line amounts to 0.16, which

is less than 0.25 (Source: Agterberg 2012b, Fig. 9)
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component with standard deviation of 0.25 was retrieved after about k¼ 120

iterations. It corresponds to the line for k¼ 120 in Fig. 12.29. Other values of

k reproduced standard deviations for the white noise component that are either too

large or too small.

The solid line in Fig. 12.29 can be regarded as a smoothed version of the original

concentration values and ck patterns for k¼ 1, 5 and 10 shown in the same diagram.

The experiment indicates that k¼ 120 represents an approximate optimum upper

limit for the number of iterations to be used in the Chen algorithm. Further increases

of k yield patterns of ck that are smoother, do not seem to provide a good fit with

variances that are smaller than 0.25. Ultimately, with k approaching infinity, the

pattern of ck would become a straight line as in the previous application to the

Pulacayo orebody (Agterberg 2012a, Fig. 19). The computer experiment described

in this section indicates that full convergence is not desirable in all applications.

12.7 Universal Multifractals

Already in the 1980s, Schertzer and Lovejoy (1985) pointed out that the binomial/p
model (model of de Wijs) can be regarded as a “micro-canonical” version of their

α-model in which the strict condition of local preservation of mass is replaced by

the more general condition of preservation of mass within larger neighborhoods

(preservation of ensemble averages). Cascades of this type can result in lognormals

with Pareto tails. In the three-parameter Lovejoy-Schertzer α-model, α (bold alpha)

does not represent the singularity α but represents the Lévy index that, together with
the “codimension” C1 and the “deviation from conservation” H, characterizes a

universal multifractal field. Examples of applicability of universal multifractals to

geological processes that took place in the Earth’s crust have been given by

Lovejoy and Schertzer (2007).

The model originally developed by Schertzer and Lovejoy (1991a, b) is based on

the concept of a multifractal field ρλ with codimension C1(γ) where λ¼ L/E is the
so-called scale ratio with L representing the largest scale that can be set equal to

1 without loss of generality (Cheng and Agterberg 1996). The field ρλ can be a flux

or density in physics. In geochemical applications it is the element concen-

tration value of a chemical element. It is characterized by its probability distribution

P ρλ λ
γð Þ / λ�C1 γð Þ with statistical moments E(ρqλ)/ λK(q). The relations between

K(q), C1(γ) and the field order γ are:

K qð Þ ¼ maxγ q � γ � C1 γð Þf g;C1 γð Þ ¼ maxq q � γ � K qð Þf g

Cheng and Agterberg (1996) have made a systematic comparison of the bino-

mial/p model with the multifractal spectrum discussed in Sect. 11.2.1 and the

universal multifractal model of Schertzer and Lovejoy (1991a, b).
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In Sect. 11.6.1 it was pointed out that estimates of αmin and αmax derived for the

Pulacayo orebody by means of singularity analysis differ greatly from previous

estimates based on the binomial/p model. From application of the method of

moments it would follow that d¼ 0.121, αmin¼ 0.835, and αmax¼ 1.186. The latter

two estimates differ not only from αmin¼ 0.835 and αmax¼ 1.719 derived in Sect.

11.6.1; αmax¼ 1.186 also is less than the estimate αmax¼ 1.402 on the right side of

the multifractal spectrum in Fig. 11.7. Obviously, the estimate d¼ 0.121 is much

too small. Using absolute values of differences between successive values, de Wijs

(1951) had already derived the larger value d¼ 0.205. Use of the estimates of αmin

or αmax based on the full convergence local singularities derived by the Chen

algorithm yielded d¼ 0.369 and d¼ 0.392, respectively (Sect. 11.6.1). Clearly,

the binomial/p model has limited range of applicability and a more flexible model

with additional parameters should be used. The accelerated dispersion model of

Sect. 12.5.1 offers one possible explanation. Another approach consists of using the

Lovejoy-Schertzer α-model. These authors have successfully applied this model to

the 118 Pulacayo zinc values as will be discussed in the next section.

The three-parameter α-model is a generalization of the conservative

two-parameter (0, C1, α) universal canonical multifractal (Schertzer and Lovejoy

1991b, p. 59) model. So-called extremal Lévy variables play an important role in a

two-parameter approach. In their large-value tail these random variables have

probability distributions of the Pareto form P(X x)/ |x|�α (α< 2). They can be

used to generate multiplicative cascades starting from uniform random variables as

outlined in Box 12.3. Frequency distributions of values belonging to multifractal

fields of this type already can have high-value tails that are thicker than logbinomial

and lognormal tails.

The Lévy index α characterizes the degree of multifractality and the codimension

C1 characterizes the sparseness of the mean field (Lovejoy and Schertzer 2010). In

the three-parameter Lovejoy-Schertzer α-model a third parameter H is added that

Box 12.3: Extremal Lévy Variables

Suppose W is a uniform random variable within the interval [0, 1] and

V¼W� 1/α; so that the probability P(V¼ v)¼α · v� 1�α if v	 1, and

P(V¼ v)¼ 0 if v< 1 (cf. Wilson et al. 1991, APPENDIX B). Then, ∑ n
i¼ 1Vi

representing the sum of n such random variables Vi (i¼ 1, 2, . . ., n) has a
Lévy limit distribution with high-value tails. The Lévy index α defines

another index α0 by means of the relation 1/α+ 1/α0 ¼ 1. Suppose that μ and

c are two constants and a new randomvariable is defined asY¼ c · (μ�V). Then,

for large n: Y ¼ 1
n1=α

X n

i¼1
c � α

α�1
� w�1=α

i

� �
with Laplacian characteristic

function E(eY ·q)¼ exp{α ·Γ(�α) · (cq)α}. It follows, after some manipulation,

that c ¼ C1

Γ 2�αð Þ
� �1=α

resulting in the two-parameter universal form

K qð Þ ¼ C1 α
0 Ç

α qα � qð Þ; 0 α 2; 0 < C1 < E.

12.7 Universal Multifractals 505

http://dx.doi.org/10.1007/978-3-319-06874-9_11
http://dx.doi.org/10.1007/978-3-319-06874-9_11
http://dx.doi.org/10.1007/978-3-319-06874-9_11
http://dx.doi.org/10.1007/978-3-319-06874-9_11


characterizes the deviation from conservation. A space-time universal multifractal

field for element concentration can be subject to change of its mean value in the

course of time. Even in static 3-D situations, incorporation of H into the model

provides increased flexibility. Lovejoy and Schertzer (2007) provide examples of

geophysical data for which the universal multifractal approach is applicable. This

includes applications to magnetic susceptibility data studied by Pilkington and

Todoeschuck (1995).

12.7.1 Pulacayo Mine Example

Figure 12.33 taken from Lovejoy and Schertzer (2007) shows a realistic universal

multifractal simulation for the Pulacayo orebody using the following three param-

eters: Lévy index α¼ 1.8, codimension C1¼ 0.03 and deviation from conservation

H¼ 0.090. This approach is explained in detail and illustrated by means of other

applications in a large number of publications including Lovejoy et al.(2008),

Lovejoy et al. (2001), Schertzer and Lovejoy (1991a), Schertzer and Lovejoy

(1997), Schertzer et al. (1997) and Lovejoy and Schertzer (2013). The codimension

C1, which characterizes sparseness of mean field, and deviation from conservation

H can be derived as follows. First a log-log plot of the so-called “first order structure

function” (cf. Monin and Yaglom 1975) is constructed (Fig. 12.34). Successive

moments are obtained for absolute values of differences between concentration

values for points that are distance h apart by raising them to the powers

3

2.5

2

1.5

1

0.5

20 40 60 80 100 120
x

r(x)

Fig. 12.33 Blue: original Pulacayo zinc values, with x representing horizontal distance in units of

2 m. Pink: universal multifractal simulation results for Levy index α¼ 1.8; co-dimension

C1¼ 0.03 characterizing the “sparseness” of the mean field; and deviation from conservation

H¼ 0.090. Both patterns were normalized to unity (mean¼ 15.6 % Zn) (Source: Lovejoy and

Schertzer 2007, Fig. 3a)
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q (¼0.25, 0.5, . . ., 3 for the 118 zinc values). The resulting pattern for q¼ 2

represents the variogram and the first point on the pattern for q¼ 0 is the de Wijs

index of dispersion d. Straight lines are fitted to all patterns and a new diagram is

constructed with the slopes of the lines (ξq) plotted against q. Slope and value of this
new line near q¼ 1 yielded H¼ 0.090 and C1¼ 0.02 for the Pulacayo orebody

because H¼ ξ1 and C1¼H� ξ’1 where ξ’1 is the first derivative of ξq with respect

to q (Fig. 12.35).
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Fig. 12.34 Log-Log plot of first order structure function for Pulacayo zinc values for q¼ 0.25,

0.5, . . ., 3. Fourth line from top (q¼ 2) is variogram; first point on fourth line from bottom (q¼ 1)

represents de Wijs dispersion index d (Source: Lovejoy and Schertzer 2007, Fig. 26a)
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Fig. 12.35 Slopes ξ(q). Slope and value near q¼ 1 yield H¼ 0.090, C1¼ 0.018, because H¼ ξ
(1) and C1¼H� ξ’(1); H represents deviation from conservation of pure multiplicative process

for which H¼ 0 (Source: Lovejoy and Schertzer 2007, Fig. 26b)
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Use of the so-called “double trace moment” method (cf. Lavallée et al. 1992)

yielded estimates of the Lévy index equal to α¼ 1.76 and α¼ 1.78, and

codimension C1¼ 0.023, 0.022, respectively (Fig. 12.36). In general, a relatively

small value of C1 with respect to H indicates that the multifractality is so weak that

deviation from conservation (H ) will be dominant except for quite high moments

(Lovejoy and Schertzer 2007, p. 491). In the Pulacayo application the estimated

value of H is small so that the two-parameter model of Box 12.3 would be

approximately satisfied. It was shown before that the binomial/p model produced

inconsistencies between results for very small and very large moments. Universal

multifractal modeling is more flexible and produces realistic zinc concentration

variability. On the other hand, the estimate for the second order moment obtained

by the method of moments τ(2)¼ 0.979
 0.038 produced a realistic autocorrela-

tion function including the nugget effect, which affects the power spectrum for high

frequencies as will be discussed next.

Another important tool in universal multifractal modeling is spectral analysis.

Theoretically, this approach results in a spectrum consisting of a straight line with

slope –β. This parameter can either be estimated directly or indirectly using

β¼ 1�K2 + 2H where K2 representing the “second characteristic function”.

Lovejoy and Schertzer (2007) estimated K2¼ 0.05 by double trace moment analysis

(Fig. 12.37). With the previously mentioned estimate H¼ 0.090 this yielded

β� 1.12 in good agreement with the experimental spectrum for the 118 zinc values.

Spectral analysis of the 118 logarithmically zinc values was discussed previ-

ously in Sect. 6.2.7. In Agterberg (1974, Fig. 67) the discrete Fourier transform was

taken of autocorrelation correlation coefficients with lag distances <32 m after

applying a cosine transformation in order to largely eliminate distortions according

−1.5 −0.5 0.5 1−1

−1

−2

−3

−4

Log10K
Log10h

Fig. 12.36 Double Trace Moment analysis of the Pulacayo zinc values with q¼ 2 (left), q¼ 0.5

(right). Slopes yield Levy index α¼ 1.76, 1.78; and co-dimension C1¼ 0.023, 0.022, respectively

(Source: Lovejoy and Schertzer 2007, Fig. 27)
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to the “hanning” method (Blackman and Tukey 1958). In a discussion of this result,

Tukey (1970) pointed out that the resulting spectrum “drooped” although it was

within the 90 % confidence interval around the theoretical spectrum for the signal-

plus-noise model with negative exponential autocorrelation function. Re-plotting

the earlier results on a log-log plot shows a linear pattern with straight line of best fit

yielding β¼ 0.79. Although the straight-line model provided a good fit in this

plication, this estimate of β is somewhat less than that obtained by Lovejoy and

Schertzer (2007).

12.8 Cell Composition Modeling

In various geomathematical applications to map data, the study area is subdivided

into square cells belonging to a regular grid. If random variables are defined for

such cells it is of interest to know how the parameters of these variables depend on

cell size. In 3-D applications the theory applies to blocks instead of grid cells. The

relationship between block values and block size has been considered by Matheron

(1976). One of his models (the discrete Gaussian model) is taken as a starting point

for most applications in this section. Some frequency distributions have the prop-

erty of “permanence”. This concept resembles that of limit distributions for sums of

independent random variables. Six types of permanent random variables were

considered in Agterberg (1984) where further discussions can be found. Only

Log10E(k)

0.5

0.25 0.5 0.75 1 1.25 1.5 1.75
Log10k

−0.5

−1

−1.5

−2

−2.5

Fig. 12.37 Pulacayo zinc spectrum according to Lovejoy and Schertzer (2007, Fig. 3b). Red line

is theoretical with slope β¼ 1�K(2) + 2H¼ 1.12; K(q) is “second characteristic function”; K
(2)¼ 0.05 was determined by double trace moment analysis; deviation from conservation

H¼ 0.090 was derived from first order structure functions (Source: Lovejoy and Schertzer 2007,

Fig. 3b)
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three types of permanent frequency distributions (lognormal, probnormal and

asymmetrical bivariate binomial distributions) will be exemplified in this section.

Other types of orthogonal polynomials are required for other types of permanent

frequency distributions. Books covering theory of orthogonal polynomials include

Beckmann (1973) and Szegö (1975).

Theory will be summarized and applied in case history studies dealing with the

areal distribution of acidic volcanics in the vicinity of Bathurst, New Brunswick,

and in the Abitibi area on the Canadian Shield. Both examples have been used

extensively in previous chapters in order to exemplify a variety of statistical

techniques and methods of mathematical morphology. These rocks constitute

favorable environments for the occurrence of volcanogenic massive sulphide

deposits. It should be kept in mind that the information used as input is 2-D only.

In reality these rock formations have 3-D structures that are only known to a limited

extent although during the past 10 years significant progress has been made in 3-D

geological map construction (cf. Chap. 1).

12.8.1 Permanent Frequency Distributions

Suppose that a rock or geological environment is sampled by randomly

superimposing on it a large block with average value X2, and that a small block

with value X1 is sampled at random from within the large block. Then the expected

value of X1 is X2, or E(X1 | X2)¼X2. Let f (x1) and f(x2) represent the frequency

density functions of the random variables X1 and X2, respectively. Suppose that X1

can be transformed into Z1 by X1¼ψ1(Z1), and X2 into Z2 by X2¼ψ2(Z2) so that the
random variables Z1 with marginal density function f (z1), and Z2 with f (z2), satisfy
a bivariate density function of the type

f z1; z2ð Þ ¼ f 1 z1ð Þ � f 2 z2ð Þ 1þ
X1
j¼1

ρjQj z1ð ÞSj z2ð Þ=h1jh2j
" #

In this equation, ρ represents the product–moment correlation coefficient of Z1
and Z2. Qj (z1) and Sj (z2) are orthogonal polynomials with f1 (z1) and f2 (z2) as
weighting functions, and with norms h1j and h2j, respectively. It is implied that

E Qj Z1ð ÞjZ2

� � ¼ ρjSj z2ð Þh1j=h2j

In most applications, f (z1, z2) is symmetric with f1 (zi)¼ f2 (zi) for i¼ 1, 2. For

example, if f1 (z1) and f2 (z2) are standard normal, Qj (z1)¼Hj (z1) and Sj (z2)¼
Hj (z2) are Hermite polynomials with squared norms j! for both Qj (z1) and Sj (z2).
Then the preceding expression for the bivariate density function becomes the well-

known Mehler identity.
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When f (x1) is known, f (x2) can be derived in combination with E(X1 | X2)¼X2.

If f (x1) and f (x2) are of the same type, their frequency distribution is permanent.

Examples include the lognormal and logbinomial distributions. Permanence of

these two distributions was first established by Matheron (1974, 1980). It means

that blocks of different sizes have the same type of frequency distribution; for

example, all can be lognormals with the same mean but different logarithmic

variances.

The regression of X1 on X2, or E(X1 | X2)¼X2, results in the following two

relations between block variances:

σ2 X1ð Þ ¼ σ2 X1 � X2ð Þ þ σ2 X2ð Þ; σ2 X2ð Þ ¼ ρ2xσ
2 X1ð Þ

with ρx> 0 representing the product–moment correlation coefficient of X1 and X2.

The first part of this equation can be rewritten as σ2 (v,V )¼ σ2 (v) + σ2 (V). Suppose
that v is contained within a larger volume v’ that, in turn, is contained within V.
Then, σ2 (v,V )¼ σ2 (v, v0) + σ2 (v0,V ) These results are general in that they do not

only apply to original element concentration values but also to transformed element

concentration values; e.g. E(ln X1 | ln X2)¼ ln X2. The resulting logarithmic

variance relationship for average values in blocks of three different sizes was

originally discovered by Krige (1951) and was called “Krige’s formula for the

propagation of variances” by Matheron (Sect. 2.1.2).

This result also can be derived as follows. Using Hermite polynomials the

lognormal random variable X1 can be written as X1¼ μ � exp
(σ1Z1�½σ21)¼ μ �∑1

j¼ 0σ
j
1Hj(Z1)/j !. From results for correlation between X1 and

X2 described in Box 12.5 it follows that X2 satisfies the same expression when σ1 is
replaced by σ2, and σ22 ¼ σ21 � ρ.

It is possible to use the relation σ2(lnX1)¼ ρ2x � σ2(lnX2) to estimate the correla-

tion coefficient ρx. The following example of application was described in

Agterberg (1977). Probability indices for occurrence of large copper deposits in

Box 12.4: Hermite Polynomials

Hermite polynomials Hj (u) satisfy
ffiffiffi
j!

p � Hj uð Þ ¼ uj � j 2ð Þ
2
uj�2 þ j 4ð Þ

22�2! u
j�4

� j 6ð Þ

23�3! u
j�6 þ . . . , where j(t)¼ j( j� 1)( j� 2) . . . ( j� t+1). For example:

H0(u)¼ 1;H1(u)¼ u;H2(u)¼ u2� 1; H3(u)¼ u3� 3u;H4(u)¼ u4� 6u2 + 3;
H5(u)¼ u5� 10u3 + 15u. If Z1 and Z2 are two standard normal random variables

with zero means, unit variances and correlation coefficient ρ, their bivariate

density function is: φ z1; z2ð Þ ¼ exp � z2
1
�2ρz1z2þz2

2ð Þ=2 1�ρ2ð Þ½ �
2π

ffiffiffiffiffiffiffiffi
1�ρ2

p ¼ exp �½ z2
1
þz2

2ð Þ½ �
2π

1þ
X1

j¼1
ρjHj z1ð ÞHj z1ð Þ

h i
representing the Mehler identity. Other properties

include E{Hj(X)}¼ μj where X is a normal random variable with mean μ.
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(20� 20 km) and (40� 40 km) cells in the Abitibi area on the Canadian Shield,

similar to those discussed in Sect. 4.3.2, are approximately lognormally distributed

with logarithmic variances equal to 2.150 and 0.920, respectively. Consequently,

the correlation coefficient between values for (20� 20 km) and (40� 40 km) cells

is estimated to be equal to 0.654.

12.8.2 The Probnormal Distribution

In an application of the discrete Gaussian model approach, Matheron (1974,

pp. 57–61) considered the following cell-value distribution model for binary patterns:

X ¼ Φ ρZ�βffiffiffiffiffiffiffiffi
1�ρ2

p
 �

. In this equation,X is a randomvariable for cell values generated from

a binary variable X0, Z is a standard normal random variable, while β and ρ are

constants andФ represents the quantile of a normal distribution function.

Cell values are compositional data in that they represent proportions of cell area

underlain by the binary pattern (e.g., for a rock type on a geological map) that is

Box 12.5: Correlation between Original and Standardized Cell

Composition Data

Suppose the mean value of the two random variables X1 and X2 (for smaller

and larger cells) is written as μ¼E(X1)¼E(X2). In general, the transformations

ψ1 and ψ2 can be expanded by using the orthogonal polynomialsQj and Sj with
x1¼ψ1(z1)¼∑1

j¼ 1cjQj(z1); x2¼ψ2(z2)¼∑1
j¼ 1c

�
j Sj(z2) where x1 and x2 are

ordinary continuous variables. The coefficients differ from one another except

for c0¼ c0
*¼ μ. In general,

Z1

�1
f 1 z1ð Þ Qi z1ð ÞQj z1ð Þdz1 ¼ δij � h21j where δij ¼ 0

if i 6¼ j, and δij ¼ 1 if i ¼ j. Also, x2 ¼
Z1

�1
ψ1 z1ð Þ f z1; z2ð Þ=f 2 z2ð Þ½ �dz1

¼
Z1

�1
ψ1 z1ð Þf 1 z1ð Þ

X1
j¼0

ρjQj z2ð ÞSj z2ð Þ
h1jh2j

" #
dz1 ¼ ψ2(z2)¼∑1

j¼ 0ρ
jcjSj(z2)h1j/h2j or c�j

¼ ρjcjh1j/h2j. For the larger cells, E X2
2

� � ¼
Z1

�1
x22 f X2

x2ð Þdx2 ¼
Z1

�1
ψ2
2 z2ð Þf 2 z2ð Þdz2

¼
Z1

�1
f 2 z2ð Þ

X1
j¼0

ρjcjSj z2ð Þh1j=h2j
h i

dz2 ¼
X1

j¼0
ρ2jc2j h

2
1j

so that their variance satisfies σ2(X2)¼E(X2
2)� μ2¼∑1

j¼ 1ρ
2jc2j h

2
1j

or ρ2xσ
2(X2) ¼∑1

j¼ 1ρ
2jc2j h

2
1j.
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being studied. The cell can be square, rectangular or have another shape. One

property of this model is that the complement (1 � X) also is the quantile of a

normal random variable with different mean but the same variance. The fact that

percentage values for a rock type and its complement can both have a frequency

distribution which satisfies the same equation may be of interest in the study of

closed number systems. If the values for a set of random variables sum to one at all

observation points, these variables cannot have the same type of distribution if one

or more of them has a normal, lognormal, or gamma distribution. On the other hand,

each variable in a set of random variables summing to one can have a frequency

distribution function given by X ¼ Φ ρZ�βffiffiffiffiffiffiffiffi
1�ρ2

p
 �

: An example of a complement

(1 � X) will be provided in Fig. 12.53. The close resemblance of probits to logits

was discussed in Sect. 12.2.1 (Fig. 12.8). The logit of (1 � X) is – logit (X).
If this model is valid, observed cell values should have a frequency distribution

that plots as a straight line on “prob-prob” paper with standard normal quantile

scales along both X- and Y-axis. Then the parameters β and ρ can be estimated from

the intercept and slope of this straight line. In this respect the approach seems to

form a natural extension of two Q-Q straight line fitting techniques that are widely

applied: use of log-log paper in fractal-multifractal analysis, and log-prob paper in

fitting a lognormal frequency distribution to data.

In the next section, two previously used data sets (felsic metavolcanics in the

Bathurst and Abitibi areas) will be re-analyzed. The multifractal method of

moments also will be applied to the larger of these two data sets (Abitibi felsic

metavolcanics).

Matheron’s (1974, 1976) discrete Gaussian model can be applied to cell values

(cf. Agterberg 1981, 1984) as follows: Let X1 with density function f(x1) represent a
random variable for average concentration values of small cells with size S1 and X1,

with f(x2), that of large cells with size S2. Suppose that X1 can be transformed into Z1
by X1¼ψ1(Z1) and X2 into Z2 by X2¼ψ2(Z2) so that the random variable Z1, with
marginal density function φ(z1), and Z2 with φ(z2), together satisfy the bivariate

standard normal density function

φ z1; z2ð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p exp � z21 � 2ρz1z2 þ z22
� �

=2 1� ρ2
� �� �

where ρ represents the product–moment correlation coefficient of Z1 and Z2. In
general, if the regression of X1 on X2 satisfies E(X1|X2)¼X2, f(x2) can be derived

from f(x1). The interpretation for a binary pattern is as follows. Suppose that X2

represents the average value for amount of pattern in a large cell superimposed on

the map, while X1 is this value for a small cell sampled at random from within the

large cell. If the small cell is made infinitely small, X1 becomes a binary random

variable that can be written as X0 for presence or absence of the pattern at a point.

Consequently,
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φ z2jz1ð Þ ¼ φ z1; z2ð Þ
φ z1ð Þ ¼ φ

z2 � ρz2ð Þ
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
" #

As discussed in more detail before, the Mehler identity is:

φ z1; z2ð Þ ¼ φ z1ð Þ � φ z2ð Þ 1þ
X1
j¼1

ρjHj z1ð ÞHj z2ð Þ=j!
" #

where Hj (z1) and Hj (z2) are Hermite polynomials with the property:

Zz2
�1

Hj z2ð Þφ z2ð Þdz2 ¼ Hj�1 z2ð Þφ z2ð Þ

Use of this property during integration with respect to z2, replacement of z1 by
the standard normal random variable Z, and replacing z2 by the constant β yields the
random variable

X ¼ Φ
ρZ � βffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
" #

¼ 1�Φ βð Þ � φ βð Þ
X1
j¼1

ρjHj Zð ÞHj�1 βð Þ=j!

This is equivalent to assuming that the “probit” of X has normal distribution

(Fig. 12.38). The binary random variable X1 for points randomly located within

cells with values assumed by X can be defined by letting ρ tend to one. Then ρ can

be interpreted as the correlation coefficient between X1 and X. The mean of

X satisfies μ¼ 1�Φ(β) and its variance is σ2 ¼ φ2 βð Þ
X1
j¼1

ρ2j Hj�1 βð Þ� �2
j!ð Þ�1

. By

means of these two equations it is possible to obtain estimates of β and ρ from

estimates of μ and σ2 as is shown graphically in Fig. 12.39. Of course, it also is

possible to estimate these parameters directly by fitting a straight line to a Q-Q plot

of cell value percentage values and their observed frequencies using prob-prob

paper.

12.8.3 Bathurst Area Acidic Volcanics Example

Occurrences of volcanogenic massive sulphides and their relationship with acidic

volcanics in the Bathurst area, New Brunswick were taken for example in Sect.

1.5.2 to illustrate various Minkowski operations. In this section the same example is

used to model the pattern of acidic volcanics (Fig. 1.14d) by means of the

probnormal model.
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The geometrical covariance Kα(h) satisfies Kα(h)¼mes AΘB0 where A is the

original pattern and B0 an operator set consisting of two points. One point is the

origin of B and the other point occurs at a distance in the direction α. The accent on
B denotes reflection of B with respect to its origin. Kα(h) is shown in Fig. 12.40 for

the east–west direction. These measurements were obtained on the Quantimet

720 with linear correlator module at the Ecole Polytechnique in Montreal

(Agterberg and Fabbri 1978). In order to obtain the corresponding statistical

covariance, the values of Fig. 12.40 were first increased by the factor mes T0/mes

T0 ΘB0 where T0 represents a square study area around A which measures exactly

80 km on a side. The statistical covariances were obtained by subtracting m2 from

the corrected geometrical covariances where m¼mes A/mes T0 is the proportion of
the study area underlain by acidic volcanics. The statistical covariances were

divided by the variance C0¼m�m2 and this gave the autocorrelation coefficients

plotted along the vertical axis with logarithmic scale in Fig. 12.41. The signal-plus-

noise model with rh¼ c � exp (�p � | h |) with c¼ 0.87 and p¼ 0.194 provides a

reasonably good fit.
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Fig. 12.38 Graphical representation of the transformation ψ in X¼ψ (Z ). Distribution functions

Φ(Z ) on the right-hand side are for standard normal random deviates. A value F(X) on the left-

hand side of (a) is equal to Φ(Z ) if X¼ψ (Z ); (b) Shows the distribution function of a binary

random variable which can also be related to a standard normal random variable (Source:

Agterberg 1981, Fig. 6)
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The preceding measurements on the Quantimet 720 were amplified by analysis

of binary images obtained on the Flying Spot Scanner with results shown in

Fig. 12.42. This two-dimensional geometrical covariance function is isotropic by

good approximation. Geometrical covariances for the east–west direction were

converted into autocorrelation coefficients as before and are close to the estimates

based on Quantimet 720 readings and the fitted signal-plus- noise model of

Fig. 12.41. Therefore, the semi-exponential autocorrelation function with c¼ 0.87

and p¼ 0.194 can be used for further computations. However, there was a discrep-

ancy in the estimate of mes A (1,319 km2 on the Quantimet 720 vs 1,264 km2 on the

Flying Spot Scanner). Because the Quantimet reading is less satisfactory in this

instance (cf. Agterberg 1978a), the Flying Spot Scanner reading was adopted. It is

close to an estimate of mes A¼ 1,262.5 km2 originally obtained by point-counting

the original geological maps at points on a grid with 500 m spacing in the north–

south and east–west directions. The study area T0 of 80� 80 km consists of

64 (10� 10 km) cells belonging to Zone 19 of the Universal Transverse Mercator

grid shown on 1:250,000 topographic maps. These 64 cells were point-counted

separately (400 counts per cell) and a histogram of the 64 values for acidic

Fig. 12.39 Relationship between estimates of mean (x), and variance (s2) of proportion of cell

area underlain by the rock type considered, for various values of r (Source: Agterberg 1981, Fig. 3)
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volcanics per (10� 10 km) cell is shown in Fig. 12.43. It is noted that 28 cells in the

study area contain no acidic volcanics. The frequency of empty cells depends

strongly on the choice of the boundaries of the study area T0 which is rather

arbitrary. It will be seen, however, that this choice is not of critical importance in

the statistical model to be used. The mean m (¼mes A/mes T0) and variance s2
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Fig. 12.40 Geometrical

covariances for east–west

direction on pattern of

Fig. 1.14d using method

explained in Fig. 1.11

(Covariance) on Quantimet

720 with linear correlator

module for pattern of acidic

volcanics, Bathurst area

previously shown in Fig. 1.

14d (Source: Agterberg and

Fabbri 1978, Fig. 6)

Fig. 12.41 Autocorrelation coefficients computed from first ten geometrical covariances of

Fig. 12.39 with best-fitting semi-exponential model (Source: Agterberg and Fabbri 1978, Fig. 7)
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Fig. 12.42 Two-dimensional geometrical covariance function. Values are for pp/10,000. Approx-

imate isotropy is indicated (Source: Agterberg and Fabbri 1978, Fig. 8)

Fig. 12.43 Histogram of

64 percentage of acidic

volcanics/cell values for

Bathurst example (Source:

Agterberg and Fabbri 1978,

Fig. 10)
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estimated from the 64 values are m¼ 0.1973 and s2¼ 0.0919, respectively. The

variance of a square cell with side of length a satisfies

C0 að Þ ¼ C0

a4
�
Z

dx

Z
c � e�p

��x�y
��
dy

where x and y denote vectors in the plane and the integrations are carried out over

the cell with side a (cf. Agterberg 1978a). This 2-D equation is in accordance with

basic 3-D geostatistical theory (Box 6.7).

Substitution of the coefficients c¼ 0.87 and p¼ 0.194 obtained previously and

setting C0¼m�m2¼ 0.1584, yields C0(a)¼ 0.0910 which is close to s2¼ 0.0919

estimated from the 64 values for (10� 10 km) cells. A further test of the model

consisted of dividing the (80� 80 km) test area into 16 (20� 20 km) cells. This

gave 16 percentage values for acidic volcanics in (20� 20 km) cells with mean

m¼ 0.1973 and s2¼ 0.0622. The corresponding theoretical variance is C0(a)¼
0.0627 (Fig. 12.44).

The preceding results indicate that it is possible to model the variance of the

random variable X which represents the relative amount of acidic volcanics per

Fig. 12.44 Theoretical frequency distributions for amount of acidic volcanics per cell compared

with 64 10-km cell vales in Fig. 12.43 and 16 20-km cell values (Source: Agterberg and Fabbri

1978, Fig. 11)
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random cell of variable size. In order to model the frequency distribution of X, the
probnormal model can be used. Suppose that the random cell i with value xi¼ h2(zi)
contains a much smaller cell with value h1(ui) which occurs at random within the

larger cell i; h1(ui) is either one or zero. The pair of values (zi, ui) is assumed to be a

realization of a standard bivariate normal distribution with correlation coefficient r.
Thus zi and ui are realizations of random variables Z and U with standard normal

distributions. The transformed random variables h1(U ) and X¼ h2(Z) can be

expanded in terms of Hermite polynomials.

Figure 12.45 shows a sequence of frequency distributions arising from the

random cell with variable side a. For any value of a, the frequency distribution of

X is determined by the parameters m, c, and p because C0(a), b, and r are derived
from these three basic parameters. The five examples in Fig. 12.45 are for a¼ 0,

4, 10, 20, and 40 km, respectively. When a tends to zero (a! 0), r! 1 and in the

limit (a¼ 0) the density function of X consists of separate spikes at x¼ 0 (with

Fig. 12.45 Theoretical frequency distributions of amount of acidic volcanics per cell of variable

size. Includes two frequency distributions of Fig. 12.44 (Source: Agterberg and Fabbri 1978,

Fig. 12)
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frequency 1 - m) and at x¼ 1 (with frequency m). For increasing cell size, for

example when a¼ 4 km, the density function of X is U-shaped with densities

tending to infinity as x! 0 and as x! 1. For larger cells, for example when

a¼ 20 km, the distribution of X resembles a gamma distribution with density

tending to infinity as x! 0. Finally, for very large cells (not shown in

Fig. 12.45), the corresponding density function would become unimodal.

It is noted that this example was re-analyzed by Agterberg (1981, Fig. 5) with

slightly different results as shown in the prob-prob plot of Fig. 12.46. The broken

line in Fig. 12.46 is as in Fig. 12.44 obtained by estimating β and ρ from estimated

values of the mean and variance of the 64 cell values using Fig. 12.39 that gave the

estimates b¼ 0.85 and r¼ 0.91, respectively. Figure 12.46 also shows a best-fitting

straight line obtained by linear regression of the quantile for frequency (Y-axis) on
the quantile for composition (X-axis). The intercept and slope of this best-fitting

line yielded estimates of 0.82 and 0.86 for β and ρ, respectively. The difference

between the two straight lines in Fig. 12.46 is probably due to the fact that on the Q-
Q plot more weight is given to points with larger relative frequencies. The best-

fitting straight line gives estimates that are probably slightly better than the straight

line derived from estimates of the mean and variance. This would be because the

smallest percentage values have greater relative errors than the larger percentage

values.

Fig. 12.46 Content of felsic metavolcanics in 64 square cells (Bathurst area, New Brunswick)

measuring 10 km on a side; Q-Q plot of cell values in Fig. 12.44 compared with line of best fit

(Source: Agterberg 2005, Fig. 1)
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12.8.4 Abitibi Acidic Volcanics Example

The second example is for a larger area measuring 480 km in the east–west

direction and 160 km in the north–south direction located within the Abitibi

Subprovince on the Canadian Shield. This study area was subdivided into

768 square (10� 10 km) cells and amount of acidic volcanics was measured for

each cell. The central third with 256 (10� 10 km) cells is shown in Fig. 12.47 along

with autocorrelation coefficients for four different directions estimated by the same

method used in the previous section for acidic volcanics in the Bathurst area, New

Brunswick. Percentage values for the larger Abitibi array of (40� 40 km) cells are

shown in Fig. 12.48. Best estimates of parameters for the approximately semi-

exponential autocorrelation function rh¼ c � exp (�p � | h |) were c¼ 0.36 and

p¼ 0.45 (Agterberg 1978a, 1984).

The (10� 10 km) cell value frequency distribution is shown in Fig. 12.49.

Only one-third of the 10-km cells contain acidic volcanics. Gamma density

functions were fitted successively, including and excluding the 512 empty

10-km cells with zeros (Agterberg 1977, 1978a). If the zeros are combined with

values of less than 10 %, and a single class is formed of all values greater than

50 %, then the gamma distribution fitted to all values is more satisfactory than the

gamma distribution fitted to nonzero values only. Application of a goodness-of-fit

Fig. 12.47 (a) Areal distribution of acidic volcanics in a 160 km by 160 km area surrounding

Timmins and Kirkland Lake, east –central Ontario. UTM grid with 10-km cells is superimposed.

The geometrical covariance of the black and white pattern was measured on a Quantimet 720 in

four directions. (b) Autocorrelation coefficients (rd) obtained from centered covariances with unit

of distance equal to 4.694 km (Source: Agterberg 1984, Fig. 7)
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Fig. 12.48 Array of (12� 4) percentage values for amount of acidic volcanics per 40-km cell.

Central 160 km by 160 km area is same as area shown in Fig. 12.47. Histogram values of

Fig. 12.49 are for (48� 16) array of 10-km cells from within this (12� 4) array (Source: Agterberg

1984, Fig. 6)

Fig. 12.49 Histogram values (k) contained in (48� 16) array for amount of acidic volcanics per

10-km cell coinciding with array of (12� 4) percentage values shown in Fig. 12.50. Gamma

distributions were fitted to x¼ k + 0.5 with and without n0¼ 512 zeros (Source: Agterberg 1984,

Fig. 5)
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test gave χ̂ 2 (3)¼ 14.7, to be compared with χ20:05(3)¼ 7.8 (95 % fractile of χ2

distribution with three degrees of freedom).This suggests that the fitted curve

has frequencies that may be too low in the 20–50 % range. The shape of the

histogram obviously depends on the boundaries of the area selected for statistical

analysis. It depends even more strongly on cell size as illustrated in Fig. 12.48 in

which the relative frequency of zeros is reduced from 67 to 25 %. Later in this

section the probnormal frequency distribution will be fitted to these data.

A simplified fractal/multifractal analysis was performed on the larger Abitibi

data set using the method of moments. Multifractal analysis is appropriate if the

pattern being studied is self-similar or scale-independent. A (mono-) fractal can

arise as a special case of a self-similar multifractal. Suppose that a grid of cells with

length of cell side є is superimposed on a pattern, and that amount of pattern in a

cell is called the cell’s “measure” μє. A self-similar multifractal can be character-

ized by its multifractal spectrum in which the fractal dimension f (α) is plotted

against the singularity (or Hölder exponent) α. The measure satisfies μє ~ є
α

where ~ denotes proportionality, and the fractal dimension f(α) satisfies Nє ~ є
f(α)

where Nє represents number of cells with singularity approximately equal to α.
The method of moments to determine the multifractal spectrum consists of three

consecutive steps. Initially, power moment sums are calculated for different cell

sizes. In our application, square cells with sizes of 10� 10 km, 20� 20 km and

40� 40 km were used. As unit for the measure (amount of acidic volcanics per

cell), decimal fraction per (10� 10 km) cell was used. The power moment sums are

plotted against length of cell side using log-log paper. Figure 12.50 shows results

for power moments q between�1 and 5. Logarithms (base 10) were used to plot the

power moment sums, and the three cell sizes are labelled 1, 2, and 3 in Fig. 12.51.

The underlying pattern would be multifractal if the power moment sums exhibit

straight line patterns on log-log paper. This condition seems to be satisfied in

Fig. 12.50. The second step in the method of moments consists of assuming that

the straight line slopes represent multifractal mass exponents (τ or “tau”) of the

pattern for the power moments q. The first derivative of τ(q) with respect to q then

yields an estimate of α(q) representing the singularity.

Figure 12.51 is the plot of τ(q) versus q using the slope estimates of Fig. 12.50.

The pattern of Fig. 12.51 is closely approximated by the straight line τ(q)¼
0.4149 � q� 0.4136. This would imply α(q)¼ 0.41 representing a (mono-) fractal

with constant singularity of 0.41 rather than a multifractal with different values of α
and f(α). The final step in the method of moments consists of constructing the

multifractal spectrum that is a plot of f (α) versus α using the relation: f(α)¼ q � α
(q)� τ(q). In the application to Abitibi felsic metavolcanics, the multifractal

spectrum is reduced to a single spike representing a fractal. The intercept of the

straight line, which also is 0.41, can be regarded as the (constant) fractal dimension

f(α) of the pattern.
As in the example of Fig. 12.46, the broken line in Figure 12.52 was derived

previously (Fig. 12.39) by estimating β and ρ from the mean and variance. In this

earlier application, the variance was estimated from the sample of 768 cell values.
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The resulting estimates of β and ρ were 1.62 and 0.74, respectively; versus 1.51 and
0.65 as derived from the lest-fitting line. The difference between the two straight

lines is probably due to differences in weighting of the observed frequencies.

In the two case history studies on 2-D occurrences of acidic volcanics in the

Bathurst and Abitibi areas it was shown that the probnormal model is applicable in

modeling the frequency distribution of amounts of acidic volcanics contained in

cells of variable size. In Fig. 12.53 these probnormals are shown together with

results of a number of other applications. In each case, slope and intercept of the

straight line were computed from mean and variance using Fig. 12.39. It has been

pointed out that the probnormal generally also can be obtained simply by fitting a

straight line to the points in a prob-prob plot. In the last section another example of

cell compositional data will be discussed (asymmetric bivariate binomial distribu-

tion). It also leads to good results for acidic volcanics in the Abitibi area. This

model has potential for modeling the frequencies of empty small empty cells of

variable cells because it has one more parameter than the probnormal.

Fig. 12.50 First step of multifractal analysis (power-moment sums) of acidic volcanics in

768 square cells (Abitibi area, Canadian Shield) measuring 10 km on a side of example of

Figs. 12.47 and 12.48. Logarithms base 10 (Source: Agterberg 2005, Fig. 3)
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12.8.5 Asymmetrical Bivariate Binomial Distribution

Matheron (1980) has suggested the use of discrete orthogonal polynomials of the

binomial distribution for empirical determination of the coefficients cj and cj* in

x1¼ψ1(z1)¼∑ N
j¼ 0cjQj(z1) and x2¼ψ2(z2)¼∑ N

j¼ 0c1
�
j Sj(z2). Krawtchouck poly-

nomials can be used with, for example, N set equal to 10 or 20. An advantage

of this approach is that an arbitrary number of zeros can be accommodated

by choosing q¼ 1� p for the binomial distribution do that n0¼ nqN (n¼ total

number of cells). Relative frequency of zeros decreases when cell size is

increased. With N remaining constant, q must decrease. An asymmetrical

binomial distribution can be used in which z2 is assigned a parameter q2 that

differs from that of z2. Matheron (1980) has shown that setting ρ ¼
ffiffiffiffiffiffiffi
q2p1
p2q1

q
then

results in a suitable model. Using Krawtchouck polynomials kj with squared norm

h2j ¼
N
j

	 

pjqj

� ��1

it follows that x1¼ψ1(z1)¼∑ N
j¼ 0cjkj(z1) and x2 ¼ ψ2 z2ð Þ

¼
XN

j¼0
cj

q2
q1

� �j

kj z2ð Þ.

Fig. 12.51 Second step of multifractal analysis showing slopes of straight lines in Fig. 12.50

plotted against moment q. Result is a fractal with multifractal spectrum (not shown) reduced to

single spike for f(α) at α¼ 0.41 (Source: Agterberg 2005, Fig. 4)
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For example, it will be attempted to determine the Abitibi acidic volcanics

frequency distribution of the 48 values for 40-km cells shown in Fig. 12.48 from

the frequency distribution of the 768 values for 10-km cells shown in Fig. 12.49

plus an estimate of variance s22 ¼ 0.00386 for the 40-km cells. It can be assumed

Fig. 12.52 Content of acidic volcanics in 768 square cells (Abitibi area, Canadian Shield)

measuring 10 km on a side; Q-Q plot of cell values similar to Fig. 12.46 (Source: Agterberg

2005, Fig. 2)

Box 12.6: Algorithm for Computation of Coefficients

In order to perform the required calculations it is convenient to

define an auxiliary function Wj(i,q) with as properties W�1 i; qð Þ ¼ 0;W0 i; qð Þ
¼ Wi qð Þ ¼ N

j

	 

pjqjWi qð Þkj i; qð Þ j ¼ 1, 2, . . .Nð Þ. From the recurrence

formula for Krawtchouck polynomials, it can be derived that ( j+1)Wj+1(i, q)
+ [i�Np+ j(p� q)]Wj(i, q) + (N� j+1)pqWj� 1(i, of q)¼ 0. Consequently,

the coefficients of ψ1i¼∑ N
j¼ 1cjkj(i, q1) satisfy cj¼∑ N

j¼ 1ψ1iWj(i, q1). The

correlation coefficient ρ then can be obtained from the variance

σ22 ¼∑ N
j¼ 1cj

2ρ2jW(q1) and, finally, the values ψ2i corresponding to ψ1i become

ψ2i ¼
XN

j¼0

i
j

	 

p1
p2

� �j

1� p1
p2

� �i�j

ψ1j.
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that, in general, the relationship between variance and cell size can be determined

independently by geostatistical methods of 2-D integration such as the one

explained in Sect. 12.8.3 for acidic volcanics in the Bathurst area. There are

512 empty cells in Fig. 12.49. Therefore, the frequency of zero values satisfies

q1
N¼ 512/786¼ 0.66667. Several values of N	 5 were tried yielding nearly the

same results. Setting N¼ 15 gives q1¼ 0.97333 and p1¼ 1� q1¼ 0.02667. A

sequence of values f i z1ð Þ ¼ N
i

	 

qN�1
1 pi

1 the corresponding values of ψ1i is

shown in Table 12.3.

The cumulative frequency Fi(z1) in Table 12.3 is close to 1.0 for i¼ 3. The

cumulative frequency distribution for 10-km cells was plotted and the

corresponding values of x1(F2) were read from the resulting graph. The ψ1i values

Fig. 12.53 Experimental frequency distributions for nine samples of cell values plotted along

axes with two normal probability scales (from Agterberg 1981). The values of b and r were

obtained from the means and variances of the cell values using Fig. 12.53. They determine the

positions and slopes of the lines for probnormal distributions (Source: Agterberg 1984, Fig. 9)

Table 12.3 Estimation of the

values ψ1i (Source: Agterberg

1984, Table 2)

i 0 1 2 3

NCiq
N� i
1 pi1 q151 15 q141 p1 105 q131 p21 455 q121 p31

fi(z1) 0.66667 0.27400 0.05255 0.00624

Fi(z1) 0.66667 0.94066 0.99322 0.99946

x1(Fi) 0 0.0282 0.0540 0.0765

ψ1i 0 0.0141 0.0411 0.06525
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(i¼ 1, 2, 3) satisfy 2ψ1i¼ x1(Fi) + x1(Fi� 1). These values are slightly too large

because curvature of the frequency density function was neglected. The three

values of ψ1i in Table 12.3, together with N¼ 15 and q1¼ 097333, were used as

input to a computer program in which σ22 ¼∑ N
j¼ 1cj

2ρ2jW(q1) was tabulated as a

function of ρ. By means of this special-purpose table, the variance s2
2¼ 0.00386

was converted into r¼ 0.565. From ρ ¼
ffiffiffiffiffiffiffi
q2p1
p2q1

q
it follows that p2¼ 0.07905 and

q2¼ 0.92095. Now the equation for ψ2i derived in Box 12.6 can be used resulting in

the values shown in the first row of Table 12.4 in relation to f 1 z2ð Þ ¼ N
i

	 

qN�1
2 pi

2.

The resulting theoretical frequencies are compared to the observed frequencies for

Fig. 12.48 in Table 12.5. The degree of correspondence is fairly good. In a

goodness-of-fit test, bχ 2 ¼ 1:02 is less than χ20:05(1)¼ 3.84. More general applica-

bility of the asymmetrical bivariate binomial model remains to be investigated. This

method can be useful for modeling arbitrary frequencies of empty cells as a

function of different cell size. The approach taken in Sect. 12.8 relies strongly on

application of the method of diagonal expansion applied to bivariate distributions.

Kotz (1975, p. 259) considered this method to provide the most powerful unified

attack on the structure of bivariate distributions (cf. Hutchinson and Lai, 1991, p.

222). In Sect. 12.8 this concept was adopted to quantify the spatial distribution of

rock types represented on geological maps.
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Lűschen, E., 291, 297, 299

Luth, S., 297

Lybanon, M., 363

Lydon, J.W., 127

Lyell, C., 10, 356

M

Ma, X.P., 22

MacGregor, I.D., 239

Mahalanobis, P.C., 92

Malamud, B.D., 371, 483

Mallet, J.L., 18, 20–22

Mamuse, A., 142

Mancktelow, N.S., 300

Author Index 537



Mandelbrot, B.B., 131, 229, 370, 372, 373,

379, 381, 384, 397, 401, 403, 419–421,

425, 449, 451, 458, 499, 500

Manenti, F., 142

Mann, K.O., 308

Mao, X., 22

Margolis, S.V., 88

Mark, D.F., 88

Markwitz, V., 142

Marlow, A.R., 12

Marsan, D., 230, 397, 398, 506

Martin-Izard, A., 419

Martinsson, A., 356

Matalas, N.C., 245

Matérn, B., 46, 210, 221

Mateu-Figueras, G., 3, 474

Mateus, A., 419

Matheron, G., 3, 22, 45, 46, 66, 70, 190,

205–210, 212, 214–216, 218, 219, 250,

415, 430, 493, 500, 509, 511–513, 526

Mattinson, J.M., 358

Maurrasse, R., 88

May, R.M., 482

McCallum, A., 181

McCrossan, R.G., 90

McCuaig, T.C., 142

McDougall, I., 358

McKerrow, W.S., 362, 363

McWilliams, M.O., 88

Meakin, P., 370, 419

Mecke, J., 33, 383, 390

Meneveau, C., 419

Menzie, W.D., 112, 382, 391, 392

Merle, O., 299

Merriam, D.F., 2

Michelsen, O., 356

Milankovitch, M., 4

Mildenhall, D.C., 357

Millahn, K., 291, 297, 299

Miller, A.J., 307

Millington, J.D., 142

Min, K., 358

Mitchell, W.S. III., 88

Moarefvand, P., 396

Møller, J., 383

Monecke, T., 113

Monin, A.S., 506

Montanari, A., 88

Moratti, G., 297, 298

Morein, G., 371, 483

Morgan, L.E., 88

Morgans, H.E.G., 357

Morris, S.W., 370, 371

Mortensen, J.K., 361

Mosoyana, I., 474

Mosteller, F., 468

Motter, E., 481, 482

Mouterde, R., 330

Mu, X., 445

Mueller, U.A., 162
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