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Preface

Flow, mass, and heat transport processes in nature and geosphere are highly (if not
even most) complex. There is an increasing demand in studying and predicting such
kind of problems in an environmental and geohydrodynamic context. This demand
naturally results from the growing human influence on the environmental and
natural resources with their constraints and consequences. Men are also looking for
new technologies of exploiting geothermal energy and storing fluids in reservoirs.
Industries are developing new materials with improved properties for which a
greater understanding of flow and energy transport is required. Among all of these
applications, a very important subclass of processes occurs in structures which
are categorized as porous and fractured media. Those structures exist in many
natural and man-made systems having length scales differing by several orders of
magnitude. Lengths range from pore and fracture scales in the order of micrometers
and millimeters, textile and tissue materials measuring tens of millimeters, the
diameter of wells in the order of tens of centimeters, the thickness of aquifer layers
and geologic strata in the order of meters to tens of meters, the distances between
wells and thicknesses of aquifer systems with tens to hundreds of meters, and the
extent of reservoirs and subsurface fields up to tens or even hundreds of kilometers.
Heterogeneities and parameter contrasts have to be encountered in all these length
scales.

To understand the processes, to make them predictable and controllable, we
need models. Models are abstractions of the real systems. However, abstractions
are not to be considered as our resort and insufficiency in finding a description for
all phenomena and influences. They represent a necessary and appropriate level of
reduction and idealization where the (most) important processes are emphasized
and the subordinate processes are dropped. This is the way (and obviously the only
way) to find causal relationships and to set up predictive tools. We don’t need a
second perfect copy of nature; we have it already in the form of our experiments
and observations made at the real system.

The construction of the model is the first and very important step in a modeling
process. It is termed as model conceptualization which covers the description
of the system’s composition, the physical and physicochemical phenomena, and
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the relevant properties of the medium in which they occur. Obviously, such a
description includes assumptions and simplifications which are subjectively selected
by the modeler and, consequently, it reflects his understanding and faculty of the
matter in a specific scope of interest. Accordingly, a model as a simplified version
of reality is subjective, and nonunique models exist in dependence on the level
of assumptions, contexts of intended applications, and the state of knowledge.
Fortunately, at present model conceptualization can be based on an advanced and
general framework of physics and rational thermodynamics, allowing us to objectify
the modeling approach for a large range of applications. However, this requires that
the modeler is conversant with these conceptual steps and understands the basic
physical/thermodynamic principles of the model in order to, at least, examine the
physical background of the model with its assumptions and limitations. Nowadays
there is a desire to develop models (family of models) which cover a wide range of
applications.

The second step in modeling is the mathematical representation of the conceptual
model in the form of numerical schemes and discrete solution techniques. There are
many ways to do that. However, for satisfying also the requirements of a wide range
of applications as stated above for the conceptual working step, one of the best
choices is the finite element method (FEM). The FEM is very general and useful
for practical applications. Its geometric flexibility and the ability to accurately
apply the appropriate boundary conditions on complex domains make the FEM
superior to other numerical strategies, such as finite difference methods (FDMs)
or finite volume methods (FVMs). The understanding of the actually used spatial
and temporal discretization techniques is necessary for modelers who practically
solve flow and transport problems and interpret the numerical results with respect
to accuracy and reliability of the achieved simulation results.

The third (and final) step of modeling is the computational realization of the
model (family of models) in the form of an appropriately developed simulation
software. The graphical interface of such a simulation code represents the ‘working
shell’ for the modeler dealing with the preparation of the input data and the
execution and the evaluation of the computational results of a model. Since the
software interface is the only visible and operational part of the modeling process,
it can be seductive for a common or novice user to exclusively apply the software
as a black box, widely ignoring the theoretical modeling basis. There is indeed a
potential danger for an uncritical use of modern software. Here, a graphically very
sophisticated computation can create the false impression that the quality of the
numerical solution is comparable to the quality of the graphical presentation. (But
the reverse of this statement is also not true: A crude graphical presentation does not
necessarily indicate proper solutions.)

From the above it becomes obvious that the modeling of flow and transport
processes encountered in porous and fractured media has, at least, three important
faces: the conceptual, the numerical, and the software/application aspect. An “ideal”
modeler should have best knowledge of all of these three subjects. But this book is
not primarily addressed to such a type of a “perfect” modeler (if ever it exists), but I
think, at least, both the basic concepts and the practical aspects should be reasonably
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well known and understood by engineers, applied scientists, and practitioners who
use or intend to use models for simulating flow and transport processes in porous
and fractured media.

This book is written, on the one hand, for expert modelers in this field to make
the theoretical basis more understandable. On the other hand, it is also written for
novices and practitioners who make contact with the matter as a software user for the
first time and (hopefully) intend to improve their understanding and knowledge of
the modeling basis. As the title of the book could indicate, the book is not intended
as a user’s guide, at least in the common sense, which would mainly emphasize
software functionalities and handling. On the other hand, “real” modeling, if going
into practice, should necessarily be concrete and the modeler has to decide for
a specific software package (sometimes more than one). The software, which is
related to this book, is FEFLOW R� [125].

FEFLOW is an acronym of finite element subsurface FLOW simulation system
and solves the governing flow, mass, and heat transport equations in porous
and fractured media by a multidimensional FEM for complex geometric and
parametric situations including variable fluid density, variable saturation, free
surface(s), multispecies reaction kinetics, non-isothermal flow, and multidiffusive
(thermohaline) effects. It is capable of handling a wide spectrum of problems
ranging from theoretical studies to practical real-site applications. To master all of
these supported problem classes and model options, a large degree of experience and
detailed information are needed. FEFLOW comprises theoretical work, modeling
experience, and simulation practice from a period of about 40 years (Table 1). In
this light, the main objective of this book is to share this achieved level of modeling
with all required details of the physical and numerical background with the reader.
The FEFLOW book is a theoretical textbook and a reference guidance for modeling
in one piece – in one hand. The theoretical basis of modeling is thoroughly described
but will not stand alone; it becomes really accessible and applicable with FEFLOW.
That is what I advocate and actually provide with this book: modeling that works.

The book is intended to put advanced theoretical and numerical methods into
the hands of modeling practitioners for porous and fractured media. It starts with a
more general theory for all relevant flow and transport phenomena on the basis of
the continuum approach, systematically develops the basic framework for important
classes of problems (e.g., multiphase/multispecies flow and transport phenomena,
unsaturated-saturated problems, free-surface groundwater flows, aquifer-averaged
equations), introduces finite element techniques for solving the basic 3D and 2D bal-
ance equations, in detail discusses advanced numerical algorithms for the resulting
nonlinear and linear problems (e.g., adaptive techniques, variable switching strategy,
upwinding schemes), and completes with a number of benchmarks, applications,
and exercises to illustrate the different types of problems and ways to tackle
them successfully (e.g., flow and seepage problems, unsaturated-saturated flow,
advective-diffusion transport, saltwater intrusion, geothermal and thermohaline
flow). All examples can be rerun, modified, and extended by using FEFLOW.

The chapters of the book can formally be grouped into two major parts: physical
basis and numerical basis with benchmarks and applications. The book is not meant
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Table 1 Major historical stages of FEFLOW development

Year/period Issue

1979 Birth and first manifestation [128] based on the finite element predecessor
program FINEL developed since 1973 [126, 127, 142]

1979–1986 Version 1. FORTRAN research-oriented batch program; implementations for
mainframes IBM 370, EC 1055, BESM-6 with punch card input and
hardcopy printed output; limited pre- and postprocessing; FEFLOW already
provided an extended finite element library (quadrilaterals and triangles of
linear, quadratic, or cubic type) and was able to compute 2D transient
groundwater flow and transport problems [129]. Effort in modeling
variable-density flow problems was initiated [130, 133]

1987–1990 Version 2. First interactive prototype for SUN workstations and ATARI ST
microcomputer. The code was completely rewritten from FORTRAN into C.
FEFLOW became the first fully interactive and graphics-based finite element
simulator in groundwater [134]

1990–1992 Version 3. Starting commercial development. X Window System and OSF/Motif
GUI implementation, installations on various UNIX graphics workstation
platforms (e.g., SGI, SUN, IBM, HP, Sony, DG, DEC). Extension to 3D
(1992). FEFLOW became a registered trademark (1992)

1992–2001 Version 4. Considerable software extension, among others: thermohaline
transport modeling (1993), 3D visualization tools and GIS interfacing
(1995), adaptive meshing and data store manager (1996), unsaturated flow
modeling (1997), MS Windows 95/NT installation (1997), IFM
programming interface (1998), and integration of parameter estimator PEST
and nonlinear dispersion (2000). In the extensions of the code
object-oriented programming with C++ became increasingly present

2002–2009 Version 5. Further advances: discrete feature elements and extended possibilities
for unsaturated flow (2002); fast TRIANGLE [475] mesh generator,
algebraic multigrid (SAMG) [499] equation solver (2003); multispecies
transport, reaction kinetics editor, transient pathline computations, FEFLOW
Explorer for 3D visualization and animation (2005); 64-bit technology,
variable-density multispecies multidiffusive transport, new mesh generator
GRIDBUILDER [369], scatter plots, expression editor for sink/sources
(2006); and borehole heat exchanger simulation, spline interpolation,
improved parallelization (2008)

2009–2012 Version 6. New Qt-based graphical interface replaced the classic X11 and
OSF/Motif GUI providing a modern and powerful environment for modeling
and simulation available for both MS Windows and LINUX operation
systems. GUI, data management, and part of the computational finite
element kernel were transformed to a rigorous object-oriented architecture
based on C++

2012–: : : Version 6.1. Completion of the new object-oriented software architecture with
Qt-based GUI. 3D sterioscopic graphics available. Improvements in parallel
computing and high performance in large data treatment and simulation

to be read from front to back. The first part can also be of interest for those
readers who wish to learn more about continuum mechanics for flow and transport
phenomena in porous and fractured media. Others could primarily be interested
in the finite element method with the embodied numerical algorithms. However,
I assume most readers will start up with a software play and will hopefully be more
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interested in the basics later on (as the inductive way of learning – “from the surface
into the ground”). To support this approach, I endeavor to present the subject in a
complete and unified manner. At the beginning of the book, the preliminary chapter
will summarize all important notations, definitions, and fundamental algebra used
throughout the text.

I hope the book will be useful for both students and practitioners in engineering
and geosciences as well as in other fields where porous-media flow dynamics and
computational methods are of specific concern. I suppose that the reader already
possesses (or approaches) an advanced degree in engineering or applied sciences
and has an interest in geohydrodynamic flow modeling. I assume that the reader is
somewhat versed in physical/mechanical principles and numerical mathematics.

Berlin, Germany Hans-Jörg G. Diersch
March 2013
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K Integral Functions of the Frolkovič-Knabner Algorithm (FKA) . . . . . . 909
K.1 Transformations in Local Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
K.2 FKA Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910
K.3 The Nodal QuantitiesHe

�J ;H
e
�J ;H

e
�J of the Integral

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
K.3.1 2D Linear Triangular Element . . . . . . . . . . . . . . . . . . . . . . . . . . 911
K.3.2 2D Linear Quadrilateral Element . . . . . . . . . . . . . . . . . . . . . . . 912
K.3.3 3D Linear Pentahedral (Triangular

Prismatic) Element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913
K.3.4 3D Linear Hexahedral (Brick) Element. . . . . . . . . . . . . . . . . 915
K.3.5 3D Linear Pyramidal Element. . . . . . . . . . . . . . . . . . . . . . . . . . . 916

L Formulation of Hydraulic Head BC’s for Variable-Density
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
L.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
L.2 Reference Potential from Measured Heads . . . . . . . . . . . . . . . . . . . . . . . . 919
L.3 Hydrostatic Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921



Contents xxxi

M BHE Modeling: Numerical and Analytical Approaches . . . . . . . . . . . . . . . 925
M.1 Types of BHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925

M.1.1 Double U-Shape Pipe (2U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
M.1.2 Single U-Shape Pipe (1U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926
M.1.3 Coaxial Pipe with Annular (CXA)

and Centered (CXC) Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927
M.2 Thermal Resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928

M.2.1 2U Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
M.2.1.1 Thermal Resistance Due

to the Advective Flow
of Refrigerant in the Pipes. . . . . . . . . . . . . . . . . . 929

M.2.1.2 Thermal Resistances Due
to the Pipes Wall Material
and Grout Transition. . . . . . . . . . . . . . . . . . . . . . . . 930

M.2.1.3 Thermal Resistance Due
to Inter-grout Exchange . . . . . . . . . . . . . . . . . . . . 930

M.2.1.4 Thermal Resistance Due
to Grout-Soil Exchange . . . . . . . . . . . . . . . . . . . . 931

M.2.2 1U Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
M.2.2.1 Thermal Resistance Due

to the Advective Flow
of Refrigerant in the Pipes. . . . . . . . . . . . . . . . . . 931

M.2.2.2 Thermal Resistance Due
to the Pipes Wall Material
and Grout Transition. . . . . . . . . . . . . . . . . . . . . . . . 931

M.2.2.3 Thermal Resistance Due
to Inter-grout Exchange . . . . . . . . . . . . . . . . . . . . 932

M.2.2.4 Thermal Resistance Due
to Grout-Soil Exchange . . . . . . . . . . . . . . . . . . . . 932

M.2.3 CXA Exchanger.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932
M.2.3.1 Thermal Resistance Due

to the Advective Flow
of Refrigerant in the Pipes. . . . . . . . . . . . . . . . . . 933

M.2.3.2 Thermal Resistance Due
to the Pipes Wall Material
and Grout Transition. . . . . . . . . . . . . . . . . . . . . . . . 934

M.2.3.3 Thermal Resistance Due
to Grout-Soil Exchange . . . . . . . . . . . . . . . . . . . . 934

M.2.4 CXC Exchanger .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
M.2.4.1 Thermal Resistance Due

to the Advective Flow
of Refrigerant in the Pipes. . . . . . . . . . . . . . . . . . 935

M.2.4.2 Thermal Resistance Due
to the Pipes Wall Material
and Grout Transition. . . . . . . . . . . . . . . . . . . . . . . . 936



xxxii Contents

M.2.4.3 Thermal Resistance Due
to Grout-Soil Exchange . . . . . . . . . . . . . . . . . . . . 936

M.2.5 Notes to Negative Thermal Resistances
of Grout for 2U and 1U Exchangers . . . . . . . . . . . . . . . . . . . . 937

M.2.6 Direct Use of Borehole Thermal
Resistances Ra and Rb Obtained
from Thermal Response Test (TRT) . . . . . . . . . . . . . . . . . . . . 937
M.2.6.1 Analytical BHE Solution .. . . . . . . . . . . . . . . . . . 938
M.2.6.2 Numerical BHE Solution .. . . . . . . . . . . . . . . . . . 939

M.3 Heat Transfer Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
M.4 Analytical Solution of the Local Problem . . . . . . . . . . . . . . . . . . . . . . . . . 942

M.4.1 Local Steady-State Condition with Given
Temperature at Borehole Wall. . . . . . . . . . . . . . . . . . . . . . . . . . . 942

M.4.2 Eskilson and Claesson’s Analytical BHE Solution.. . . . 943
M.4.3 Solutions for 1U and 2U Configurations . . . . . . . . . . . . . . . 944
M.4.4 Solution for CXA Configuration .. . . . . . . . . . . . . . . . . . . . . . . 947
M.4.5 Solution for CXC Configuration . . . . . . . . . . . . . . . . . . . . . . . . 949
M.4.6 Resulting Exchange Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951

M.5 Numerical Solution of the Local Problem . . . . . . . . . . . . . . . . . . . . . . . . . 952
M.5.1 Basic BHE Equations of Heat Transport

in Pipes and Grout Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
M.5.2 Finite Element Discretization of the BHE

Equations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987



Acronyms

1D one-dimensional
1U single U-shape pipe
2D two-dimensional
2U double U-shape pipe
3D three-dimensional
4D four-dimensional
AB Adams-Bashforth
AB/TR Adams-Bashforth/trapezoid rule
ADE advection-dispersion equation
AFT advancing front technique
AMG algebraic multigrid
AMR adaptive mesh refinement
AREV aquifer REV
BASD best adaptation to stratigraphic data
BC boundary condition
BCC boundary condition constraint
BE backward Euler
BFGS Broyden-Fletcher-Goldfarb-Shannon
BHE borehole heat exchanger
BiCGSTAB bi-conjugate gradient stabilized
BTEX benzene-toluene-xylene mixture
CAD computer-aided design
CBFM consistent boundary flux method
CFD computational fluid dynamics
CFL Courant-Friedrichs-Lewy
CG conjugate gradient
CGS conjugate gradient square
CM consistent mass
CR constitutive relation
CSA cold and salty above
CSB cold and salty below

xxxiii



xxxiv Acronyms

CXA coaxial pipe with annular inlet
CXC coaxial pipe with centered inlet
DBF Darcy-Brinkman-Forchheimer
DDC double-diffusive convection
DDFC double-diffusive finger convection
DF Darcy-Forchheimer
DFE discrete feature element
DOF degrees of freedom
DVM Delaunay-Voronoı̈ method
EFG element free Galerkin
EOB extended Oberbeck-Boussinesq
EOS equations of state
FDM finite difference method
FD3DM fully discretized 3D model
FE forward Euler
FEFLOW finite element flow simulator
FEM finite element method
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Chapter 1
Introduction

1.1 Scope of Modeling

Flow, mass and heat transport through porous and fractured media occurs in many
branches of engineering and science. Of particular concern are those processes in
the subsurface occurring beneath the surface of the earth’s ground, that means flow
and transport in geologic media with their complexity and uncertainty. Within the
pore voids, fractures, channels, cavities and other non-solid spaces of the geologic
formations the movement of fluids, solutes (chemical species) and heat is of central
interest. Fluids represent a general term encompassing liquids, gases and gas-liquid
mixtures. Among the different types of fluids to be encountered in the environmental
and hydrogeologic context, water is the most important fluid. The earth’s water
resources, especially the available freshwater, represent the basis for human, animal
and plant life and its growth of importance results from the continually increasing
demand for drinking water, effects by pollution, danger by over-exploitations and
climate changes.

Water on, under and above the earth’s surface form the hydrologic cycle
consisting of the subdomains atmosphere, sea, surface water and subsurface water.
Only a minor part of the water volume represents freshwater (2.5 % of all water on
earth). Compared with the freshwater volume stored in ice caps, lakes and rivers,
the subsurface water comprises 99 % of the earth’s available freshwater [119, 356].
Subsurface water is often subdivided into soil moisture of the unsaturated zone
and groundwater of the saturated zone of the underground (definitions of terms are
summarized in Sect. 2.2). This division is appropriate to differ between the physical
processes governing the unsaturated and saturated zones. Accordingly, subsurface
modeling has to consider variably saturated conditions for both flow and transport
processes in the underground.

Flow and transport processes in porous and fractured media include diverse
phenomena such as the spreading of toxic waste products (miscible and immiscible
contaminants), movement of natural chemical constituents (e.g., saltwater), deposits
of fluids and hazardous wastes, energy storage and recovery encountered in various
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2 1 Introduction

environmental and industrial applications. The modeling of those flow and transport
processes gives, e.g., the opportunity to:

• Describe the spatial and temporal distribution of contaminants and/or thermal
fields,

• Analyze moisture dynamics and seepage processes,
• Assess irrigation and drainage potentials as well as salinization of soils,
• Study freezing and thawing processes in soils,
• Estimate the duration and travel times of fluids and pollutants,
• Plan and design remediation strategies and containment technologies,
• Assist in designing effective monitoring schemes,
• Predict groundwater-management measures,
• Predict flow and stress formations underneath engineering structures,
• Quantify flow of oil, water and gas in reservoir engineering,
• Plan a nuclear waste repository in geologic formations,
• Design and quantify drainage and flooding processes in mines,
• Design geothermal energy extraction and storage systems,
• Assess saltwater encroachment in coastal regions and saltwater upconing below

pumping wells,
• Predict brine and thermohaline influences in deep locations, and
• Describe drying or absorption processes in deforming porous materials.

In the field of water management, hydrogeology, geophysics and mining industry
the flow and transport processes of groundwater (i.e., in the saturated zone) clearly
dominate. Their modeling is commonly based on a single-phase approach, where
water is the only dynamic phase in which one or more chemical species are entirely
dissolved. The groundwater body is often bounded at the surface by a water table
and free-surface flow is typical. Flow and transport processes in the unsaturated
zone often occur in hydrological and agricultural applications. Here, the voids are
only partially filled with water, the remaining part contains gases mainly in form
of air and water vapor. Basically, unsaturated flow needs two fluid phases, where
dissolved components can additionally occur in both dynamic phases. However, it
can often be assumed that the gas phase remains stagnant at a constant (atmospheric)
pressure level and a reduction to a one-phase model is common. On the other
hand, there are organic substances which possess hydrophobic properties, i.e., they
are immiscible with water and only slightly soluble (e.g., petroleum products and
halogenated hydrocarbons). If those contaminants intrude into an unsaturated zone
three dynamic phases simultaneously occur consisting of water, air and organics.
They represent a highly complex dynamical system which is often difficult to
solve. Additional effort and difficulties naturally occur if the one-, two- or three-
phase system with its chemical constituents is affected by thermal processes.
Non-isothermal multispecies multiphase processes are the most general and indeed
the most difficult problems to be encountered in subsurface flow and transport
modeling.

A further typical feature of all flow and transport processes in porous and
fractured media is that they occur on extremely different spatial scales ranging
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from a regional scale of geologic structures in orders of kilometers to the pore
scale in orders of micrometers. Here, one fundamental question is how much detail
should be included in the conceptualization of the basic models. This matter has
received large attention in recent years. The most promising developments in this
field are based on advanced thermodynamic theories in which a unified and general
framework for constructing flow and transport models in porous and fractured media
has been attained.

1.2 Interdisciplinary Aspects

The construction of flow and transport models with their necessary practical impli-
cation and simplification, their mathematical-numerical representation and coding,
their accompanying data acquirement and parameter estimation, their software
development and simulation, their verification and problem adaptation as well as
their application and evaluation in a practical context is inherently interdisciplinary
in nature which joins, among others, aspects from rational thermodynamics,1 fluid
mechanics, mathematics, chemistry, geology, geophysics, computer science and
engineering. An interdisciplinary team is capable of addressing the multifaceted
aspects occurring in practical modeling.

1.2.1 Continuum-Mechanical View

The continuum approach is the standard and the most successful way to describe
the fundamental processes of flow, mass and heat transport in porous and fractured
media. Fluid mechanics, solid mechanics and thermodynamics are subclasses of
physics in which the world is viewed as a continuum. The assumption of a
continuum means that physical properties (such as velocity, stress, temperature etc.)
distribute through space and are connected with a material point. At the material
point the properties have finite values. The properties may change from one point to
the next, and there may even be surfaces where properties can jump discontinuously.
However, a continuum approach does not allow properties to become infinite or
to jump discontinuously at a single isolated point. As a result, such an approach
introduces an effectively continuous medium which is characterized by a relatively
small number of bulk properties, such as density �, compressibility 	 , viscosity �,
concentration Ck of chemical species k and temperature T . Under such conditions,

1 In thermodynamics, rational thermodynamics is a very general phenomenological and macro-
scopic theory for deriving constitutive equations, basically established by C. Truesdell [520] and
his students W. Noll and B. Coleman in the 1960s, and is distinct from other categories of thermo-
dynamics such as the classical thermodynamics and (extended) irreversible thermodynamics.
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fundamental laws are written for this kind of continuous media in form of continuum
balance statements which take the form of partial differential equations in space
coordinates x and in time t .

A continuum represents a macroscopic view on physical events. This is different
to events occurring in the microscopic world of molecules, nuclei and elementary
particles, which are not governed by continuum laws. Continuum properties may
be interpreted as the average of events involving a great number of microscopic
particles. The transition from the microscopic to the continuum level is the
subject of statistical thermodynamics (statistical mechanics) and kinetic theory. The
microscopic processes can be described, at least, on two levels. At a molecular level
the motion is reversible (called Hamiltonian motion), while at the kinetic level
irreversible motion is formulated by the low-density Boltzmann approximation.
Such Boltzmann models are fundamentally probabilistic, discrete in velocity, how-
ever continuous in space and time. Microscopic models based on such a statistical
framework can be helpful for a deeper understanding of continuum properties
and relations between microdynamics and macrodynamics, but, on the one hand,
usually there is no real need for such models and, on the other hand, essential
constraints exist for their use in a general and more practical context. In fact,
some interesting applications of Boltzmann-type model can be found in modeling
rarefied gas-flow problems by using lattice-gas methods (Doolen et al. [150]) and
cellular automata (e.g., [516,567]), where collision rules for an appropriate number
of particles are discretely simulated without the necessity for standard numerical
techniques for solving partial differential equations. A natural transition from
molecular dynamics to a continuum approach is provided by averaging techniques
applied to a sufficiently large number of molecules (ensemble of particles) [488].

Under the aspect of a continuum approach flow, mass and heat transport
processes in porous and fractured media appear as a subclass of fluid mechanics,
extended by parts of solid mechanics, thermodynamics and chemistry as shown
by the Venn diagram of Fig. 1.1. Typically in classic fluid dynamics there is a
strict subdivision into incompressible and compressible fluids which has some
mathematical consequences. While a fluid is said to be incompressible if the density
of a fluid continuum is not affected by pressure changes, the term ‘incompressible
flow’ means that density variations in the conservation of fluid mass (continuity
equation) are neglected. We shall see later on that flow and transport problems in
porous and fractured media have to consider the compressibility conditions of the
whole multiphase system. Therefore, flow and transport in porous and fractured
media generally describes compressible phenomena.

1.2.2 Mathematical View

From the mathematical point of view the main objective is the solution of the
governing continuum balance equations for given initial and boundary conditions.
The subject of the mathematical analysis is termed as the mathematical model
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in porous media overlaps
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which is described by a set of partial differential (or integro-differential) equations.
However, for the most problems of interest exact or analytical solutions of the
basic mathematical model are neither available nor attainable and, accordingly,
approximate methods are commonly required.

It is to be emphasized that a mathematical model already contains idealizations
and approximations of ‘reality’. This is a consequence of assumptions and simpli-
fications necessarily being made in the derivation of the basic continuum equations
and constitutive relationships (the conceptual model) to make the model ‘tractable’.
Now, the mathematical solution itself requires approximations to be made by the
discretization process. Additionally, the solution of the discretized equations can
introduce further errors, for instance if solving the resulting nonlinear or linear
equation systems by iterative methods. Different sources of errors can arise:

(1) Errors embedded in the conceptual model resulting from assumptions and
simplifications in deriving the basic mathematical model equations. Even if it
is possible to solve these equations exactly, the solution would not be a correct
representation of reality. To estimate the modeling errors a validation of the
model is required, where comparisons with experimental and observation data
have to be performed. The validation process is a topic in itself. We should bear
in mind that detected errors are not necessarily caused by applying improper
model equations. Often, reasons have to be searched in the model parameters
(the constitutive dataset) and/or in inappropriate boundary conditions. Further-
more, we should not forget that measurements can possess their own errors.

(2) Discretization errors result from the use of numerical methods to solve the
basic model equations. We should select techniques which allow to keep the
discretization errors small. Surely, it would be best to reduce the error as
much as possible. But, this is not practical and, in fact, not always necessary.
More accurate approximations can dramatically increase the time and cost of
obtaining the solutions. Compromises are usually needed. This is a question of
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optimality: A refined discretization (and a higher computational effort) is only
necessary in such regions and/or at such times where (in which) mathematically
required. So we look for solutions possessing an optimal accuracy.

(3) The solution of the discretized equations needs further compromises. The
nonlinear equations have to be linearized by iterative techniques. Furthermore,
iterative techniques have to be applied in solving the resulting (often large)
sparse matrix equation systems because exact (direct) solvers are too costly
and only applicable to smaller problems. In all, the iterative procedures must
be carefully controlled and terminated after satisfying prescribed convergence
criteria as a measure of tolerated errors (convergence errors).

It is obvious that a final model realization (called simulation) is affected by all
of those errors. From a mathematical point of view errors stemming from model
conceptualization and parameter input are very complex and normally out of the
mathematical scope. Now, we can argue: If we are capable of measuring (and
controlling) the discretization errors at an optimally small level we can exclude
(better we minimize) the influences of numerical errors in the model simulations.
If we then compare our model results to experiments and observations we can be
sure that occurring differences are no more caused by an improper discretization.
Indeed, this is a high goal in numerical mathematics in developing reliable and
robust schemes. Such numerical schemes should have certain properties, e.g., [162]:

(i) CONSISTENCY. The discretization should become exact as the mesh spacing

x and temporal increment
t tend to zero. In calling the difference between
the discretized equations and the exact solution as the truncation error, a
method is consistent if 
x! 0 and/or
t ! 0.

(ii) STABILITY. A solution method is said to be stable if it does not magnify
errors during a numerical solution process. For transient problems, stability
guarantees that the method produces a bounded solution whenever the solution
of the exact equation is bounded. For iterative methods, a stable method is
one that does not diverge. It is to be remarked that stability does not imply
accuracy – although it is true that instability implies inaccuracy.

(iii) CONVERGENCE. For a scheme which satisfies the consistency condition
we additionally require stability as a necessary and sufficient condition for
convergence.

(iv) CONSERVATIVITY. Since the model equations represent balance equations for
conserving physical quantities, the numerical scheme should accurately satisfy
this statement of balance on both a local and a global basis. Conservativity
is a very important and most fundamental property required for the proposed
numerical schemes.

(v) BOUNDEDNESS. Numerical solutions should lie within proper bounds.
Physically non-negative quantities (e.g., density, concentration, absolute
temperature) must always be positive. Boundedness is difficult to guarantee.
Unbounded solutions can occur on too coarse meshes or too large time steps
in form of wiggles exhibiting overshoots and undershoots of the solution.
Wiggles are usually a signal that the spatial discretization is too coarse and
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some refinements (at least locally) are required. Stability and convergence
problems can result if the solutions are too much wiggled. However, a positive
aspect of wiggles is that they signal improper discretization and, accordingly,
possess a self-diagnosis property [209]. A method with such a self-diagnostic
property is often superior to schemes which give smooth and totally wiggle-
free, but inaccurate and overdamped solutions for each discretization. We find,
boundedness and accuracy are connected in a strong and often contrary
manner.

(vi) ACCURACY. A scheme works accurately if both the discretization and the
convergence errors remain sufficiently small. Unfortunately, in many practical
applications modeling (conceptual) errors are an additional concern. The sepa-
ration of modeling errors from ‘true’ numerical errors appears as an important
task because various errors may cancel each other, so that sometimes a solution
obtained on a coarse mesh may agree much better with the experiment than a
solution on a finer mesh – which, by definition, should be more accurate. It is
obvious that models and algorithms have to be tested under different aspects to
quantify the order of accuracy. Such tests are categorized as follows [20]:

• Verification: A comparison to a problem which is sufficiently elementary
such that the analytical solution is known.

• Benchmark: A comparison to a problem which possesses the intrinsic
physical and mathematical character (e.g., nonlinearity) of the basic model,
but applied in a simplified geometry such that comparative numerical
solutions of accepted (known) quality are available.

• Validation: A comparison to a problem for which quality experimental data
are available.

There are many numerical methods for approaching the basic modeling equations.
The most important strategies are: the finite difference method (FDM), the finite
volume method (FVM) and the finite element method (FEM). Other methods such
as spectral schemes, boundary element methods, global meshless techniques and
cellular automata are limited to special classes of problems. Among the above
methods the FEM and the FVM are the most powerful methods. While the FDM
approximates the differential form of the basic balance equations in a difference
form and is restricted to simple geometries and boundary conditions, both FEM and
FVM are based on the weak, variational formulation of the boundary and initial
value problem, where the solution appears in the integral of a quantity over an
arbitrary domain. This integral approach – in contrast to the difference (differential)
approach of FDM – is the actual power of FEM and FVM, which is a natural
and an adequate approach of a continuum balance statement. Indeed, the balance
laws of continuum mechanics are global in the sense that they are integral laws
applied to a given mass of material, fluid or solid. FEM and FVM subdivide
the continuum in a finite number of elements (FVM says control volumes), for
which the balance statements are discretely applied. There are more similarities
than differences between FEM and FVM, however, the FEM appears to be the
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Fig. 1.2 The FEM/GFEM
and FVM are submethods of
the WRM

most general and powerful method. FEM is superior to the others due to following
features (see, e.g., [84, 209]):

(a) Arbitrary geometries. The FEM is essentially geometry-free. In principle, FEM
can be applied to domains of arbitrary shape and with quite arbitrary boundary
conditions.

(b) Unstructured meshes. FEM by its nature leads to unstructured meshes. This
means, in principle, modelers can place finite elements anywhere they please.
Accordingly, most complex types of geometries can be simply handled.

(c) Robustness. In the FEM the contributions of local approximations over indi-
vidual elements are assembled together in a systematic way to achieve a
global approximation of a solution to a partial differential equation. Generally,
this leads to schemes which are stable in appropriate norms and, moreover,
insensitive to singularities or distortions of the mesh, in sharp contrast to the
classic FDM.

(d) Mathematical foundation. Today, a solid and rich mathematical basis is avail-
able for the FEM. It covers methods to determine a priori and a posteriori error
estimates and helps to advance the FEM for important (and new) application
problems above a traditional level of empiricism.

It has been demonstrated by Gresho and Sani [209], additionally by [83, 284], that
the FVM is inherently a FEM if using low-order elements (basically linear). O.C.
Zienkiewicz (noted in [209]) stated: The FVM is a poor-man’s FEM; it’s a FDM
moved over half-way. To the end, the (Galerkin-based) FEM (GFEM) appears as
a generalized FVM. The FVM is (often if not always) also a weighted residual
method (WRM) [163]; only the weighting functions are different (Fig. 1.2). For
more discussions, see Chap. 8.
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1.2.3 Computer-Scientific View

With the help of continuum mechanics and rational thermodynamics we construct
a conceptual model and end up with a mathematical model possessing balance
statements for physical quantities and a set of constitutive relations (Fig. 1.3).
The mathematical model becomes solvable after transferring it into an appropriate
numerical model, e.g., by employing FEM. To perform a numerical model for
practical needs it has to be run on a computer. For this purpose the numerical
model is appropriately coded by using programming techniques (computerization).
At the end, a simulation program (sometimes said simulation model, simulator or
simulation system) results which allows the solution of the basic balance equations
for different problem types, geometries, time ranges, parameter situations, initial
and boundary conditions. In addition, we should also be able to run it for different
approximation levels in varying spatial and temporal resolutions as well as the types
and alternative strategies of numerical schemes embodied in the simulation code.

At first glance, it seems to be sufficient to code (implement) strictly the numerical
model with its encountered variants of algorithms, procedures and solution strate-
gies. Indeed, this is fundamental but we have to ask ourselves whether this is enough
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for practical requirements. In designing a simulation software we have to answer the
following questions:

• For whom should it be developed? It makes a difference whether the code is
primarily designed for teaching, purely scientific and research-oriented or daily-
life practical needs.

• Which range of problems and applications should be covered? We are realistic
and believe that is not possible to meet all needs in one piece of software.

• Which sources of data and information needed for the model should be inter-
faced? This refers to the question of confidence, efficiency, completeness,
detailedness, reliability and repeatability in the practical simulation work using
real data; in a nutshell simulation fidelity.

• How should the access to and exchange of input data and computational results
be designed? A simulator should feature interactive graphics, sophisticated
visualization, multiprocessing and parallel computation to tackle the simulation
challenges at present and future times.

It becomes clear that a useful simulator for flow and transport processes in porous
and fractured media has to be equipped with a number of additional features beyond
the pure analysis core of the numerical model. Usually, a modeler is continually
faced with the four major working steps as schematized in Fig. 1.4. Data of different
kinds and from different sources have to be collected and analyzed. They can be both
primary and secondary information of a real problem to be studied (point samples,
profiles, maps, databases, 3D geometries, comparative scenario data, etc.). Based
on these data the modeler builds up a schematization of the real conditions, where
appropriate geometric and parametric idealizations are performed in the objective
of the intended modeling. This preprocessing step covers two different aspects of
work. The first one refers to the ingenuity, ability and creativity in abstracting
the real-world conditions: What is important? What can be dropped? Where are
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the right borders for the study domain? and so on. The secondary aspect is fully
technical/technological: Are there tools for an efficient meshing and parameter
assignment (parametrization, regionalization)? May the code handle model data
quite independently of a discretization? Is the editing process interactive and does it
allow an easy manipulation of all important model data? and others.

Next, the modeler performs the simulation under the specified conditions and
parameters. If the simulation finishes successfully, the computational results have
to be evaluated and interpreted in different ways. Graphics and visualization tools
support the modeler in this important phase of modeling to tackle the often volu-
minous modeling output. The achieved computational results are to be compared to
and interfered with the basic and measurement data (juxtaposition process). As a
result, this normally feeds back to a repeated computation by restarting the design
and analysis loop.

The designing, simulation and evaluation/juxtaposition processes require
efficient and powerful tools in data handling, manipulation, computation and
visualization. There are two major reasons for their emphasizing. First, the
pre- and postprocessing work is commonly the most time-consuming and error-
sensitive task. Indeed, besides the errors arising from the conceptual and numerical
approaches as stated above, there is a danger for introducing additional errors
which result from mistakes in data handling and misinterpretations of the results.
Simulation software should incorporate numerical and visual capabilities for
supporting the detection of such errors caused by data mismatching.

Second, in practice the working loop (Fig. 1.4) has to be cycled for subsurface
flow and transport processes very often due to, among others, the following
reasons:

• Uncertainties in the database (e.g., spatial variability of geologic information).
• Scaling effects (macroscopic parameters can be scale-dependent).
• The (customer’s) need for repeatability and cross-checking of a model prediction

(increasing objectivity and transparency).
• The need for scenario analysis in order to, for example

– Detect causal dependencies,
– Perform parameter sensibilities and model calibration,
– Estimate field parameter and probabilistic characteristics,
– Enforce ‘epignosis’ (verification, history matching),
– Enforce prognosis under altered assumptions,
– Assess remedial schemes, technological strategies and alternative design

concepts (design computations, reverse engineering),
– Control and design monitoring schemes, and
– Optimize in-situ measurement programs.

On the one hand, the easier and more effective the cycle can be passed through, the
more completely the problem can be studied and assessed. On the other hand, it is
obvious that the simulation of flow and transport processes in porous and fractured
media is not simply a straight-forward solution of the discretized balance equations
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interfaced to GIS (or/and
CAD) to give access to
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with some parameters, initial and boundary conditions, rather more it is a play
with data, where the simulator introduces predictive capabilities on an advanced
physical basis. This requires an effective framework for visual and quantitative
communication. It is supported by sophisticated Geographic Information Systems
(GIS) or/and Computer-Aided Design (CAD) systems (Fig. 1.5). For managing
environmental and geologic information GIS is more popular and appropriate
[419], while CAD has prevailed in industrial branches and structural engineering.
A simulator for subsurface processes can greatly benefit from the use of GIS (or
CAD). Very important aspects of the quality of final computations are accuracy,
time, scale and completeness of datasets. The effective access to data and the
associated quality of data will affect the accuracy of the modeling and therefore
defines the usefulness of the developed simulation system.

GIS is a tool for storing, manipulating, analyzing and displaying spatial or
geographically referenced data. GIS can primarily be seen as a database. It can store,
maintain, recover and update spatial data and associated descriptive information.
GIS data are stored in either vector or raster forms. Vector data are sets of points,
lines and polygons, while raster data are stored in a matrix of columns and rows (grid
format). These data representations are sufficient for 2D applications. In contrast,
3D GIS uses volumetric data structures which are stored either by 3D boundary
representations for vector data or by volume elements (voxels) for raster data.

In principle, a CAD system provides the same features as GIS. The most
significant difference to CAD and other databases is the spatial nature of data in a
GIS. In addition to the pure database functionality GIS provides analysis functions
which allow manipulation of multiple themes of spatial data to perform overlays,
buffering and arithmetic operations on the data.

Databases of geologic formations are usually affected by uncertainty and ran-
domness. Their lithologic, petrophysical and structural features can exhibit wide
variations on different scales which cannot be described deterministically in all
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relevant details. By using geostatistical tools [79] (such as kriging [357]) the
parameter values typically only known at a small number of sampling (or mon-
itoring) points are interpolated in a random field defined over the entire domain
(data regionalization). Those resulting parameter distributions are probabilistic in
nature and provide useful estimates in subsurface flow and transport modeling. The
randomness in the response of a flow and/or transport process can further be studied
via sensitivity analysis or Monte Carlo simulations or directly by solving stochastic
differential equations, e.g., [38, 109, 191].

From the above, the requirements to a modern simulation system for computing
flow and transport processes in porous and fractured media are rather manifold. The
architecture and the programming of the simulator have to meet, among others, the
following criteria:

• The simulator has a sophisticated and graphical user interface.
• The simulator has an open data interface and modular architecture.
• The code guaranties a high portability and expandability.
• The code fully dynamically manages the physical memory demand.
• The code works efficiently and fast, it allows the parallel computation of large

and complex problems.
• The used programming languages provide a readable, verifiable, extensible and

reusable coding.
• The program supports distributed computing on local- and wide-area networks.

The code development, maintenance and support of a simulation software, such
as FEFLOW [125], is a multidisciplinary teamwork for itself. Object-oriented
programming (like C++) and Computer-Assisted Software Engineering (CASE)
tools facilitate the development and management of an extent of millions of code
statements. Extensive and continuous testing of the simulation program is required
to fix software errors (bugs) and to ensure that it is sufficiently efficient in terms of
speed, required resources and usability.

It is a natural consequence that software products of this kind are developed on a
commercial basis. The proliferation of powerful computers makes the computation
of larger and larger problems by an increased number of users possible. The
commercialization submits a distribution of software to rules of the market: as much
as possible. It can entail unwanted side effects. Some users treat the simulation
code as a black box. Results often appear plausible for nonspecialists, even when
the results are grossly inaccurate. Other users tend to prefer (exclusively) the
most complex solution provided by the simulator (e.g., large 3D), where causal
dependencies and essentials often remain hidden (cannot see the wood in too
many trees). The computational requirements can greatly vary from application to
application (e.g., classic groundwater flow versus reactive and multiphase transport
simulation). There is an allurement for software developers to attempt to satisfy all
demands in one product. As a result, the software tends to become

• Highly complex,
• Difficult to use properly, and
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• Slow in responding to new requirements.

A substantial amount of training is required. In fact, some users lack the required
expertise. It is one of the major objectives of this book to emphasize the trinity of
theory, technology and practice. Success and confidence in modeling of flow, mass
and heat transport processes in porous and fractured media depend on the reliability
of the model formulation, the reliability of the parameters used, the reliability of the
numerical solution and the proper interpretation of the results.

1.3 Taxonomy for Porous/Fractured Media Process
and Numerical Modeling

As stated above the modeling of flow, mass and heat transport processes in porous
and fractured media by using numerical approaches is a multidisciplinary task.
Solutions strategies and methods have been developed over the last 50 years which
form the background and the ‘state of the art’ of today’s modeling. A taxonomy
for modeling approaches and numerical techniques can be developed to classify the
developments and historical basis. The next Tables 1.1–1.4 cite and summarize the
most important works and books in the field of our interest.

1.4 Overview of This Book

Part I of the book covers the fundamentals of modeling flow, mass and heat
transport processes in porous and fractured media. It starts with the preliminaries
in Chap. 2, where all basic definitions, expressions and principles are introduced,
which will be important through the book. It can be considered as a condensed
source of information on basic physical and mathematical concepts and foundations.
Notations and quantities useful in subsurface and porous/fractured-media modeling
are listed and described together with their theoretical and practical context.
Fundamental multiphase and multispecies concepts are introduced in Chap. 3.
It describes the spatial averaging method to transform microscopic quantities to
macroscopic (porous-fractured medium) quantities based on the REV concept.
Their balance equations for mass, thermal energy and entropy are derived in detail.
Useful thermodynamic principles are described. They form the basis for developing
phenomenological laws, equations of state and appropriate constitutive relationships
needed. The closed set of the basic model equations is systematically derived and
summarized in their different levels of reduction. Chapter 4 represents discrete-
feature modeling basics. Fundamental equations are developed for diffusion-type
flow (Darcy, Hagen-Poiseuille, overland), mass and heat transport. Chapter 5 is
devoted to chemical reactions and kinetics. Adsorption relations for Langmuir,
Henry and Freundlich isotherms and kinetic formulations of degradation, Arrhenius,
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Table 1.1 Conceptual model development (fundamental theoretical work)

Author(s) Title (year) [reference] Comments

A.C. Eringen and
J.D. Ingram

A continuum theory of
chemically reacting media – I
(1965) [158] and II (1967)
[285]

Unified theory for derivation of
balance and constitutive equations
of chemically reacting
(non-porous) media

S. Whitaker The method of volume averaging
(1999) [563]

‘State of the art’ of spatial averaging
applied to single and two phase
flow systems in porous media with
emphasis on chemical reaction,
heat transport, dispersion and
heterogeneity

J. Bear Dynamics of fluids in porous
media (1972) [33];

The ‘standard’ book for modeling of
porous media

Modeling flow and contaminant
transport in fractured rocks
(1993) [35]

Derivating conceptual model
equations of fractured rocks
regarding flow and mass transport

J. Bear and
Y. Bachmat

Introduction to modeling of
transport phenomena (1991)
[37]

Theoretical book of porous media
giving a rigorous derivation for the
most important equations of single
and multiphase flow, mass and
heat transport

W.G. Gray A derivation of the equations for
multiphase transport (1975)
[201];

Introducing the modern methodology
of spatial averaging for multiphase
systems

Derivation of vertically averaged
equations describing
multiphase flow in porous
media (1982) [202];

Rigorous derivation of aquifer-type
model equations

Thermodynamics and
constitutive theory for
multiphase porous-media flow
considering internal geometric
constraints (1999) [203]

Providing advanced thermodynamic
approach and constitutive theory
for porous-media flow

S.M. Hassanizadeh
and W.G. Gray

General conservation equations
for multiphase systems (1979,
1980) [226–228];

Founding the general thermodynamic
multiphase approach in porous
media

Mechanics and thermodynamics
of multiphase flow in porous
media including interface
boundaries (1990) [230]

Interfacial transport phenomena

G. Dagan Stochastic modeling of flow and
transport (1997) [109]

Stochastic modeling of subsurface
flow and transport problems

P.C. Lichtner Continuum formulation of
multicomponent-multiphase
reactive transport (1996) [348]

General theory of reactive transport
processes in porous media

R. De Boer Theory of porous media (2000)
[114]

Describes historical progression and
fundamental equations in a
geotechnical context

G.F. Pinder and
W.G. Gray

Essentials of multiphase flow and
transport in porous media
(2008) [422]

Fundamental concepts that underlie
the physics of multiphase flow and
transport in porous media



16 1 Introduction

Table 1.2 Standard textbooks (classic, research and engineering work)

Author(s) Title (year) [reference] Comments

M. Muskat The flow of homogeneous fluids
through porous media (1937)
[381]

Summarizes important analytical
solutions

A.E. Scheidegger The physics of flow through
porous media (1957) [459]

Pioneering work in groundwater
modeling

P. Ya. Polubarinova-
Kochina

Theory of groundwater movement
1962) [426]

The classic analytical approach in
groundwater modeling

A. Verruijt Theory of groundwater flow
(1970) [546]

Fundamentals of groundwater flow

J. Bear Hydraulics of groundwater (1979)
[34]

The groundwater engineering book

R.A. Freeze and
J.A. Cherry

Groundwater (1979) [171] A comprehensive presentation of
groundwater hydrology

G. De Marsily Quantitative hydrogeology –
groundwater hydrology for
engineers (1986) [120]

The modeling standard textbook in
a hydrogeologic context

O.D.L. Strack Groundwater mechanics (1989)
[492]

Advanced analytical solutions for
groundwater problems

G.I. Barenblatt et al. Theory of fluid flows through
natural rocks (1990) [26]

A systematical treatment of the
mathematical theory of fluid
flows in natural reservoirs

D.A. Nield and
A. Bejan

Convection in porous media
(2006) [389]

Focusing on fluid-density driven
convection processes in porous
media

A.T. Corey Mechanics of immiscible fluids in
porous media (1994) [100]

Basic principles of mechanics of
two-phase fluid systems

O. Coussy Mechanics of porous continua
(1995) [106]

A rigorous description of solid
mechanics for porous media

M. Kaviany Principles of heat transfer in
porous media (1995) [305]

Fundamentals of heat transfer in
porous media

J.S. Selker et al. Vadose zone processes (1999)
[473]

An introduction to flow and
transport in the vadose
(unsaturated) zone

J.W. Delleur (ed.) The handbook of groundwater
engineering (1999) [119]

Covering all important aspects of
groundwater modeling in an
engineering context

K. Vafai (ed.) Handbook of porous media (2005)
[534]

Modeling flow, heat and mass
transport in porous media
outside the hydrogeologic and
subsurface water context. It also
includes non-Darcy flow,
convection phenomena,
turbulence, combustion and
molding processing
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Table 1.3 Selected books on finite elements and related numerical techniques (solid and fluid
mechanics in general, no specific emphasis on porous-media simulation)

Author(s) Title (year) [reference] Comments

G. Strang and
G. Fix

An analysis of the finite element
method (1973) [493]

Classic book on the mathematics of the
FEM

V. Girault and
P.A. Raviart

Finite element methods for
Navier-Stokes equations.
Theory and algorithms (1986)
[192]

Mathematical textbook on FEM, a
standard reference for the theory of
FEM with emphasis on
Navier-Stokes equations

C.A.J. Fletcher Computational techniques for fluid
dynamics (1988) [165]

Finite difference, finite elements, finite
volume and spectral methods with
emphasis on CFD problems

O. Pironneau Finite element methods for fluids
(1989) [423]

Addressing FEM for a wide range of
fluid flow problems

O.C. Zienkiewicz
and R.L. Taylor

The finite element method: vol. 1
The basis, vol. 2 Solid and
structural mechanics, vol. 3
Fluid dynamics (2000) (2002)
[590–592]

The ‘standards’ on finite elements:
Giving a broad overview of FEM

P.G. Ciarlet and
J.L. Lions (ed.)

Handbook of numerical analysis –
Finite element methods (1991)
[84]

Advanced mathematical theory on finite
elements including error estimates,
mixed and hybrid methods

A.J. Baker Finite element method (1998) [20] Developing FE algorithms for CFD
problems

F. Brezzi and
M. Fortin

Mixed and hybrid finite element
methods (1991) [56]

Standard reference for mixed and
hybrid methods and their stability

B.A. Finlayson Numerical methods for problems
with moving fronts (1992) [164]

Addressing explicit techniques for
solving convection-dominated
transport equations

S.C. Brenner and
L.R. Scott

The mathematical theory of finite
element methods (1994) [55]

Modern mathematical theory of FEM

J.N. Reddy and
D.K. Gartling

The finite element method in heat
transfer and fluid dynamics
(2001) [437]

Applied FEM for many heat and fluid
flow problems

R. Löhner Applied CFD techniques (2001)
[353]

Numerical methods in CFD covering a
number of interesting topics

J.H. Ferziger and
M. Peric

Computational methods for fluid
dynamics (1996) [162]

An updated textbook on FVM in CFD

P.M. Gresho and
R.L. Sani

Incompressible flow and the finite
element method (1998) [209]

The ‘state of the art’ of finite element
modeling of Navier-Stokes and
advection problems in fluid
mechanics

T.J. Chung Computational fluid dynamics
(2002) [83]

Comprehensive book of CFD
describing FDM, FVM and FEM
techniques in a fluid dynamics
context

I.M. Smith and
D.V. Griffiths

Programming the finite element
method (2004) [484]

Describing a wide variety of problem
solving capabilities for FEM

W.J. Minkowycz,
E.M. Sparrow
and J.Y. Murthy
(ed.)

Handbook of numerical heat
transfer (2006) [374]

Coverage of formulations, numerical
schemes and solution techniques for
solving problems of heat and mass
transfer and related fluid flows
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Table 1.4 Selected books on numerical modeling of subsurface and porous-media problems

Author(s) Title (year) [reference] Comments

P.S. Huyakorn
and G.F. Pinder

Computational methods in
subsurface flow (1983)
[280]

A first comprehensive book on modeling
of subsurface flow, mass and energy
transport with emphasis on FEM

W. Kinzelbach Groundwater modeling
(1986) [310]

An introduction to the major techniques
used in modeling groundwater flow
and pollutant transport in groundwater.
It covers concepts, computational
methods and sample programs

M.P. Anderson
and W.W.
Woessner

Applied groundwater
modeling (1992) [9]

Addressed to practiced modelers in
groundwater flow and subsurface
contaminant transport with emphasis
on classic FDM

C. Zheng and
G.D. Bennett

Applied contaminant
transport modeling (1995)
[587]

Describes basic principles of solute
transport simulation for porous-media
problems. Different numerical
approaches are discussed, including
particle tracking techniques, FDM,
FEM and Lagrangian methods

R. Helmig Multiphase flow and transport
processes in the subsurface
(1997) [238]

Useful introductory text on immiscible
multiphase process modeling. It covers
fundamentals and numerical
approaches with FDM, FEM and FVM

E. Holzbecher Modeling density-driven flow
in porous media (1998)
[255]

Focusing on modeling variable-density
flow. It contains fundamental work and
describes streamfunction-related FDM
restricted, however, to 2D problems

G.-T. Yeh Computational subsurface
hydrology. Part 1. Fluid
flows, Part 2. Reaction,
transport, and fate (1999)
(2000) [579, 580]

Useful and comprehensive text on
numerical subsurface modeling with
emphasis on FEM in 2D and 3D
applications. Part 2 focuses on reactive
geochemical and biochemical transport
in porous media

O. Kolditz Computational methods in
environmental fluid
mechanics (2002) [317]

Giving an overview on development and
application of numerical methods in
porous and fractured media. Topics
cover fundamental principles, software
engineering, flow in fractured media,
heat transport in hot dry rock systems,
density-dependent flows and
deformable porous media

J. Bear and
A.H.-D. Cheng

Modeling groundwater flow
and contaminant transport
(2010) [38]

An updated text on groundwater modeling
covering many aspects of model
development, single and multiple
species transport, FVM, FEM,
seawater intrusion, uncertainty,
optimization and inverse problems
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Monod and arbitrary type are presented. Appropriate initial, boundary and constraint
conditions complete the model formulations in Chap. 6. Chapter 7 deals with
anisotropy for two- and three-dimensional problems.

Part II of the book describes the basic concept of finite element formulations
for solving flow, mass and heat transport in porous and fractured media. It
begins with Chap. 8 in which fundamental aspects of the finite element method
are thoroughly discussed for prototypical advection-dispersion equations. Weak
forms, approaches for spatial and temporal discretization, approximation errors,
stability properties, upwinding schemes, treatment of nonlinearities and derived
quantities, budget evaluation and local conservativity are reviewed. Based on the
general model equations for multispecies, chemically reactive, variable-density,
non-Darcy and non-isothermal flow and transport processes in porous and fractured
media, their finite element solutions for subclasses of problems are discussed in
Chaps. 9–14. They are covered through a number of applications in form of test
cases and benchmark examples to examine the presented finite element approaches
in comparison to analytical or other numerical solutions. The broad coverage of
finite element modeling is provided in Chap. 9 devoting to flow in saturated porous
media (groundwater flow), Chap. 10 focusing on flow in variably saturated porous
media, Chap. 11 for variable-density flow, mass and heat transport in porous media,
Chap. 12 dealing with mass transport in porous media with and without chemical
reactions, Chap. 13 referring to heat transport in porous media and Chap. 14 dealing
with discrete feature modeling of flow, mass and heat transport processes. The final
Chap. 15 discusses specific topics important for the present modeling strategies
such as mesh generation, including adaptive mesh refinement/derefinement meth-
ods, particle tracking techniques, streamline integration and related finite-element
interpolation schemes.

Finally, a number of useful Appendices (A–M) cover tables of used symbols with
their physical dimensions, tables of essential parameter relations used for solving
the governing flow, mass and heat transport equations, explain mathematical details
and summarize important physical relationships.



Part I
Fundamentals

Part I describes the conceptual and physical fundamentals for the modeling of
flow, mass and heat transport in porous and fractured media. The derivation of
the governing balance equations, phenomenological laws and constitutive relations
follows a modern conception based on general principles of continuum mechanics
and rational thermodynamics. While such a theoretical framework like this is not
really new, it is still rather unusual and underestimated in geosciences and related
disciplines, both in education and in modeling practice. However, we believe (and
wish to suggest it as an aspirable methodology) that this theoretical development is
most physically transparent and clearly different from the traditional level of empiri-
cism we refuse. It provides a widely conflict-free and rigorous derivation of all
relevant relationships we need to cover the complete fields of modeling for today’s
and future applications ranging from most complex multiphase-multispecies flow
systems with their convoluted physics and constitutive relations (Darcy-Brinkman-
Forchheimer (DBF) flow, non-Fickian dispersion, total energy conservation, cross
effects, chemical reactions, solid deformation, extended material laws, density
coupling, . . . ) up to the standard porous-medium flow equations governed by the
well-known Darcy law. In this process the inherent assumptions for each level of
model complexity/simplicity are clearly revealed and become assessable.

In doing so, our preferred methodology for deriving the fundamental model
equations is deductive per se, where the theory from the most general to the simplest
level is developed in a systematic and physically consistent way. Thermodynamic
principles are required to constitute the relevant material relationships. We shall
recognize, e.g., why phenomenological laws must have negative signs, learn that the
Darcy law is only a special case of the momentum conservation of fluid in a porous
medium and find that the temperature as the primary variable usually applied to
the energy conservation equation for a porous medium is associated with a number
of important assumptions. The theoretical developments end up with three levels
of model reduction which finally form the actually tractable sets of governing
equations summarized in Tables 3.5, 3.7 and 3.9, respectively: (1) multiphase
variable-density DBF flow, reactive multispecies mass and heat transport, (2) single-
liquid phase variable-density Darcy-type flow, reactive multispecies mass and heat
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transport in variably saturated porous media, and (3) variable-density Darcy-type
flow, reactive multispecies mass and heat transport in groundwater (saturated porous
media). Furthermore, aquifer-related model equations are deduced and listed in
Tables 3.10 and 3.11 for unconfined and confined conditions, respectively.

At a first glance this deductive development seems fairly extensive. However,
the theoretical generalization is required to derive model equations and constitutive
relations for the desired spectrum of applications providing different degrees of
physical detail and scale. In a practical approach, the reader could study the
theoretical developments even in reverse order, where, starting from a standard set
of equations, the next higher level of model generalization is examined and the
employed steps of assumption can be pursued.

Essential flow and transport equations are also derived for discrete features,
which are separated from the porous-medium approach. Discrete features are very
useful to model flow and transport processes in fractures, conduits, channels,
faults, boreholes and many other macroscopic geometric representations. Typi-
cally, diffusion-type flow conditions are assumed in those discrete features. The
developments are summarized in Tables 4.5–4.7 for flow, mass and heat transport,
respectively, in discrete features.

A comprehensive discussion is presented for chemical reactions, both for
reversible and irreversible reaction processes. The developments cover adsorption
relations of Henry, Langmuir and Freundlich type as well as reaction kinet-
ics of degradation, Arrhenius and Monod type, including serial-parallel decay,
Michaelis-Menten mechanism and freely editable kinetic expressions.

Initial, boundary and constraint conditions are thoroughly discussed for flow,
mass and heat transport. Required special formulations of boundary conditions refer
to free-surface, seepage-face, surface ponding, integral, gradient-type, multi-layer
well and outflow conditions. It is shown that a Neumann-type boundary condition of
the divergence form of a transport equation is equivalent to a Cauchy-type boundary
condition of its convective form, which easily allows to impose load conditions for
mass and heat.

Anisotropy is described in full three dimensions and two dimensions. Important
special cases are developed for the shape-derived 3D anisotropy and axis-parallel
anisotropy.



Chapter 2
Preliminaries

2.1 Mathematical Foundation

2.1.1 Notation Rules and Algebra with Vectors and Tensors

In the mathematical formulation of quantities and fields there are two types of
notation which we shall use through the book: symbolic (or Gibbs’) notation as
well as index notation. For the sake of convenience and to provide suitably abstract
formulations we mostly prefer the symbolic notation. Let a and b be vectors in a
(real) space of dimensionD, we write with (all used symbols are summarized in the
Appendix A)

a D

0

B
B
B
@

a1
a2
:::

aD

1

C
C
C
A
D ai ; b D

0

B
B
B
@

b1
b2
:::

bD

1

C
C
C
A
D bi .1 � i � D/ (2.1)

for the scalar (or dot) product

a � b D aibi .1 � i � D/ (2.2)

using Einstein’s summation convention according to aibi D PD
iD1 ai bi in which

repeated indices are summed,
for the vector (or cross) product

a � b D "ijkai bj ek D det

0

@
a1 a2 : : : aD
b1 b2 : : : bD

e1 e2 : : : eD

1

A .1 � i; j; k � D/ (2.3)

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5 2,
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where "ijk is the permutation symbol (also known as the Levi-Civita tensor ")
defined as

"ijk D

8
<̂

:̂

1 if .ijk/ is an even (cyclic) permutation, e.g., "123 D "231 D "312 D 1
�1 if .ijk/ is an odd (noncyclic) permutation, e.g., "213 D "321 D "132 D �1
0 if two or more subscripts of (ijk) are the same, e.g., "111 D "112 D "313 D 0

(2.4)

and e i .1 � i � D/ are base vectors given as

e1 D

0

B
B
B
@

1

0
:::

0

1

C
C
C
A

e2 D

0

B
B
B
@

0

1
:::

0

1

C
C
C
A

: : : eD D

0

B
B
B
@

0

0
:::

1

1

C
C
C
A

(2.5)

where

e i � ej D ı D ıij (2.6)

with the Kronecker symbol (unit or identity matrix)

ı D

0

B
B
B
@

1 0 � � � 0
0 1 � � � 0
:::
:::
: : :

:::

0 0 � � � 1

1

C
C
C
A

ıij D
�
1 when i D j
0 when i ¤ j (2.7)

and for the dyadic (or tensor) product

a˝ b D aibj D

0

B
B
B
@

a1b1 a1b2 � � � a1bD
a2b1 a2b2 � � � a2bD
:::

:::
: : :

:::

aDb1 aDb2 � � � aDbD

1

C
C
C
A

.1 � i; j � D/ (2.8)

which results in a second-order tensor A D a ˝ b. The multiplication symbol ˝
in the dyadic product is often omitted and the tensor product of (2.8) is then simply
denoted by A D ab. We note that the components a1; a2; : : : aD of a in (2.1) are
themselves scalars and the vector a can also be formed via summation

a D aiei .1 � i � D/ (2.9)

We further note that (2.9) is a symbolic vector expression. In such a context ai are
scalars and not seen as a vector symbol used in the index notation. An equivalent
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expression for (2.9) reads ai D ıijaj in the index notation. In generalization, the
following convention for vector multiplication holds in symbolic notation:

aiei results in a vector, where ai represent vector components (scalars),
.ai / � ei results in a scalar, where .ai / represents a vector,
.aij/ � ej results in a vector, where .aij/ represents a second-order tensor.

(2.10)

The norm (or magnitude) a of vector a is given by

a D kak D pa � a D paiai (2.11)

If kak D 1 it is called a unit vector such as ei .
Furthermore, we can find the normalized vector for a according to

Oa D a

kak D
aip
aj aj

ei (2.12)

It becomes clear that Oa is itself a unit vector because kOak D 1. The transpose of
vector a changes a column vector to a row vector and a row vector to a column
vector, respectively,

aT D �a1 a2 : : : aD
� �

a1 a2 : : : aD
�T D

0

B
B
B
B
@

a1
a2
:
:
:

aD

1

C
C
C
C
A

(2.13)

Let A D P
i

P
j Aijei ˝ ej and B D P

i

P
j Bijei ˝ ej be two second-order

tensors of dimensionD .1 � i; j � D/

A D

0

B
@

A11 A12 � � � A1D
A21 A22 � � � A2D
:
:
:

:
:
:

: : :
:
:
:

AD1 AD2 � � � ADD

1

C
A B D

0

B
@

B11 B12 � � � B1D
B21 B22 � � � B2D
:
:
:

:
:
:

: : :
:
:
:

BD1 BD2 � � � BDD

1

C
A (2.14)

then, their scalar product is written as a double dot product (or colon product) in
the form

A W B D
DX

i

DX

j

AijBji (2.15)

which results in a scalar. The norm of such a second-order tensor A is defined as

kAk D
p
A W AT D

sX

i

X

j

.Aij/2 (2.16)
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where the transposeAT of the tensorA is given by .Aij/
T D .Aji/:

AT D

0

B
@

A11 A21 � � � AD1
A12 A22 � � � AD2
:
:
:

:
:
:

: : :
:
:
:

A1D A2D � � � ADD

1

C
A (2.17)

A second-order tensor A D Aij is a symmetric tensor for which the following
is valid

A D AT Aij D Aji (2.18)

Any tensor A can be written as a sum of symmetric and antisymmetric parts

A D 1
2
.A CAT /C 1

2
.A �AT / D 1

2
.Bs CBa/ (2.19)

The scalar product of a tensor A with a vector a is:

A � a D
DX

i

e i

DX

j

Aijaj (2.20)

In contrast, the scalar product of a vector a with a tensor A is:

a �A D
DX

i

e i

DX

j

ajAji (2.21)

A tensor A is diagonal if the components outside the main diagonal are all zero,
i.e., Aij D 0 for i ¤ j . It is written as

A D dA11; A22; : : : ; ADDc D

0

B
@

A11 0 � � � 0

0 A22 � � � 0

:
:
:

:
:
:
: : :

:
:
:

0 0 � � � ADD

1

C
A (2.22)

Any diagonal tensor is also a symmetric tensor.

2.1.2 Relations for Scalar and Vector Products

If Oa and Ob are unit vectors in the directions of a and b, respectively, then

Oa � Ob D cos � (2.23)
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b

c
â

b

a

b

a

n̂

a b

area a b= || ||

Fig. 2.1 (a) Projection of b onto the unit vector Oa and (b) vector product a � b

where � represents the angle between the two directions. Since a D kak Oa and
b D kbk Ob we find for the scalar product (2.2) with (2.23)

a � b D kak kbk cos � (2.24)

This form of the scalar product is useful to formulate the projection of a vector
onto a given direction. Assuming we have a unit vector Oa and another vector b,
we project b perpendicularly onto Oa, as shown in Fig. 2.1, and call the resulting
projected vector c. We find

kck D kbk cos �

D kbk� Oa � bkOak kbk
�

D Oa � b D a � b
kak

(2.25)

The interpretation of (2.25) is that the scalar product of the unit vector in the
direction of vector a and the vector b yields the length of the projection of b onto
Oa (see Fig. 2.1). If the angle � between the two vectors a and b is a right angle,
� D �=2, then cos � D 0. Such vectors are said to be orthogonal and the condition
for orthogonality is

a � b D 0 (2.26)
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The square of a vector a results from the scalar product (2.24) with (2.11)

a � a D kakkak cos 0 D a2 (2.27)

The cross product a�b of vectorsa and b forms a vector of magnitude kak kbk sin �
normal to the plane defined by a and b:

a � b D kak kbk sin � On (2.28)

where the unit vector On is normal to the plane a and b and ka� bk is the area of the
parallelogram that the vectors a and b span.

2.1.3 Coordinate System and Spatial Vector

To position physical objects in space and to define their spatial motion, the
D-dimensional Euclidean space <D .D D 1; 2; 3/ is used as reference system. We
employ an orthogonal Cartesian coordinate system as shown in Fig. 2.2 in which a
position P is defined by the Cartesian coordinate vector x, viz.,

x D
0

@
x1
x2
x3

1

A D
0

@
x

y

z

1

A in <3 (3D) (2.29)

In <2 (2D) and <1 (1D) it is xT D .x1 x2/ D .x y/ and xT D .x1/ D .x/,
respectively. If we want to identify positions of a list of points xl 2 <D .l D
1; 2; : : : ; NP/ labeled by a (nodal) index l , their coordinates are written as

xl D
0

@
x1l
x2l

x3l

1

A D
0

@
xl
yl

zl

1

A in <3 (3D); .l D 1; 2; : : : ; NP/ (2.30)

where NP is the number of the listed points. It follows that the components of the
coordinate vector are themselves vectors consisting of an ordered list of (discrete)
numbers, i.e., xT1 D .x11 x12 : : : x1NP/, and so forth. With the coordinate vector
x D xiei we find that the corresponding base vectors ei are formed from the tangent
vectors Nei to the coordinate lines of the x�coordinates, viz.,

ei D N̂ei D Nei
kNeik

Nei D @x

@xi

(2.31)
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P

x

x3

x2

x1

e2e1

e3

Fig. 2.2 Cartesian coordinate system in <3. The position P is represented by the vector x D xiei

We note that the Cartesian coordinate system is orthogonal with ei �ej D 0 .i ¤ j /,
cf. (2.26).

2.1.4 Eulerian and Lagrangian Coordinates

Following the concepts of continuum mechanics we use the term point to indicate a
location in space <D and the term particle to denote a point in a continuum. While
points are fixed in space and independent of time t , positions of particles may vary
with time t . This provides a distinction between two kinds of coordinates:

(a) Spatial (Eulerian) coordinates x, that define points in space with respect to a
fixed frame of reference.

(b) Material (Lagrangian) coordinates X , that are assigned to particles of a
continuum. Usually, X is selected as the initial position vector of a considered
particle, i.e., X � xjtD0.

As a particle moves, its coordinates x vary in time t , whereas its material
coordinatesX remain unchanged. Such a motion is described by

x D x.X ; t/ (2.32)

which is known as the Lagrangian formulation of motion. Figure 2.3 shows a spatial
domain ˝0 occupied at t D 0 by a continuum with material coordinates X . At a
later time t > 0, the domain occupied by the same continuum is ˝t . The domain
˝t represents the deformed configuration of the continuum initially in ˝0.
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x1

X

x
u

at time
t = 0

at time
t > 0

x3

x2

Ωt

Ω0

Fig. 2.3 Motion of a particle

The Eulerian formulation of motion is obtained if (2.32) is inverted to yield
the initial position (i.e., material coordinates) of a particle which at time t is at
position x:

X D X.x; t/ (2.33)

A necessary and sufficient condition for the existence of (2.33) is given, if the
Jacobian

J D @x

@X
D

0

B
B
B
B
B
@

@x1

@X1

@x2

@X1

@x3

@X1
@x1

@X2

@x2

@X2

@x3

@X2
@x1

@X3

@x2

@X3

@x3

@X3

1

C
C
C
C
C
A

(2.34)

differs from zero. The displacement vector u (Fig. 2.3) is defined as the difference
between the position vector x of a moving particle at a given time t and its initial
position vectorX :

u D x �X (2.35)

The need for a mathematical description based on a fixed domain and spatial
reference renders the Eulerian formulation an ideal candidate to describe flow fields.
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Accordingly, the Eulerian concept is preferred in our analysis. It requires, however,
that the flow and transport quantities be continuous throughout the domain ˝ . Let
us consider a property f D f .x; t/ in the Eulerian description, which is linked to
the considered particle in ˝ . Using (2.32) we obtain the relationship between the
two respective coordinate systems

f .x; t/ D f Œx.X ; t/; t � (2.36)

and the rate of change of f in a Lagrangian description

Df

Dt
D @f

@t

ˇ
ˇ
ˇ
XDconst

(2.37)

defining the derivative with respect to time t keeping X constant. The derivative
D=Dt represents the rate of change as observed when moving with the particle and
is called material derivative. In the Eulerian description we can derive

Df Œx.X ; t/; t �

Dt
D @f

@t

ˇ
ˇ
ˇ
ˇ
xDconst

C @f

@x

ˇ
ˇ
ˇ
ˇ
tDconst

� @x.X ; t/
@t

ˇ
ˇ
ˇ
ˇ
XDconst

D @f

@t
C .v � r/f

(2.38)

where

v D Px D @x

@t

ˇ
ˇ
ˇ
ˇ
XDconst

(2.39)

is the velocity of the particle and

r D @

@x
D ei @

@xi
(2.40)

is the gradient (or Nabla) operator which represents a D�dimensional vector.

2.1.5 Coordinate Transformations

Physical quantities in form of scalars, vectors and tensors have to be coordinate-
invariant properties. In transforming between different coordinate systems the
quantities have to remain unchanged. It is important to determine the relations
between sets of components relative to different coordinate systems. The introduc-
tion of different coordinate systems is often useful to simplify the analysis. In our
applications we need to use orthogonal coordinate systems, i.e., systems where the
coordinate lines are orthogonal, for example cylindrical coordinates or local finite-
element coordinates.
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2.1.5.1 Mapping

Introducing the general coordinates

� D
0

@
�1
�2

�3

1

A

x D �igi
(2.41)

where g i are the base vectors of the ��system (Fig. 2.4), a one-to-one mapping
between the ��space and the Euclidean x�space must exist:

x.�/, �.x/ (2.42)

The corresponding tangent vectors Ng i (2.41) of the ��coordinates provide,
cf. (2.31)

Ng i D
@x

@�i
D @x

@xk
�
�@xk

@�i

�
D
�@xk

@�i

�
� Nek D .Jik/ � Nek (2.43)

where the Jacobian matrix J

J D @x

@�
D Jij D @xj

@�i
D

0

B
B
B
B
B
@

@x1

@�1

@x2

@�1

@x3

@�1
@x1

@�2

@x2

@�2

@x3

@�2
@x1

@�3

@x2

@�3

@x3

@�3

1

C
C
C
C
C
A

D
0

@
J11 J12 J13
J21 J22 J23
J31 J32 J33

1

A (2.44)
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must be non-zero to perform the reverse transformation

Nek D
� @�i

@xk

�
� Ng i D .Jki /�1 � Ngi (2.45)

We note that the base vectors are derived from the tangent vectors, viz.,

g i D
Ng i
k Ng ik

ei D Nei
kNe ik (2.46)

With ax denoting an arbitrary vector in the x�system, the corresponding vector a�

expressed in the transformed ��system can be obtained via projection, cf. (2.25)

a� D
0

@
ax � g1
ax � g2
ax � g3

1

A (2.47)

According to (2.45) a Cartesian vector ax can be expressed by the vector compo-
nents a�i written in the ��coordinate system:

ax D
0

@
ax1
ax2
ax3

1

A D
0

@
.J1i /

�1 a�i
.J2i /

�1 a�i
.J3i /

�1 a�i

1

A a
�
i D

0

@
a
�
1

a
�
2

a
�
3

1

A D a� (2.48)

2.1.5.2 Cylindrical Coordinate System

We apply cylindrical coordinates�T D .r  z/, where the mappingx.�/ is given by

x D
0

@
x1
x2

x3

1

A D
0

@
r cos
r sin 

z

1

A (2.49)

in which .r; ; z/ correspond to the radial, azimuthal and axial coordinates, respec-
tively (see Fig. 2.5). For cylindrical coordinates the Jacobian J yields

J D
0

@
cos sin  0

�r sin  r cos 0
0 0 1

1

A J�1 D 1

jJ j

0

@
r cos � sin 0
r sin  cos 0

0 0 r

1

A jJ j D r

(2.50)
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Fig. 2.5 Cylindrical
coordinates .r; ; z/

where the determinant of matrix J is denoted by jJ j D detJ .According to (2.43)
and (2.50) we obtain the base vectors g i to express cylindrical coordinates via
Cartesian coordinates

gT1 D
.J11 J12 J13/

k.J11 J12 J13/k D .cos sin 0/

gT2 D
.J21 J22 J23/

k.J21 J22 J23/k D .� sin  cos 0/

gT3 D
.J31 J32 J33/

k.J31 J32 J33/k D .0 0 1/

(2.51)

It can easily be shown that the spatial derivatives with respect to the cylindrical
coordinates such as @gi

@r
, @gi
@

and @gi
@z become zero, except for

@gT1
@
D .� sin  cos 0/ D gT2

@gT2
@
D .� cos � sin 0/ D �gT1

(2.52)

Exemplified for the Nabla operator (2.40) we can find the transformation by using
(2.48) and (2.50):

r D

0

B
@

@
@x1
@
@x2
@
@x3

1

C
A D

0

B
@

cos @
@r
� 1

r
sin @

@

sin  @
@r
C 1

r
cos @

@
@
@z

1

C
A (2.53)

Taking into account (2.47), the Nabla operator in the ��system is built from .ri /�gi
and finally results with (2.53) and (2.51) in
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r D

0

B
@

@
@r
1
r
@
@
@
@z

1

C
A (2.54)

Let a be a vector in cylindrical coordinates aT D .ar a az/, then the scalar product
r � a results in cylindrical coordinates using (2.54) and (2.52):

r � a D .g1
@
@r
C g2 1r @

@
C g3 @@z / � .g1ar C g2a C g3az/

D 1

r

@.r ar /

@r
C 1

r

@a

@
C @az

@z

(2.55)

In the same way we find for the vector product r � a in cylindrical coordinates

r � a D

0

B
@

1
r

@az
@
� @a

@z
@ar
@z � @az

@r
1
r
Œ @
@r
.r a/ � @ar

@
�

1

C
A (2.56)

2.1.5.3 Rotated Coordinate System

Another orthogonal coordinate transformation of interest is the rotation of
x�coordinates in the form

� D A � x with the rotation matrix A D
0

@
A11 A12 A13

A21 A22 A23
A31 A32 A33

1

A (2.57)

and, accordingly

x D A�1 � � with A�1 D 1

jAj

 
A22A33 � A32A23 A32A13 � A12A33 A12A23 � A22A13
A31A23 � A21A33 A11A33 � A31A13 A21A13 � A11A23
A21A32 � A31A22 A31A12 � A11A32 A11A22 � A21A12

!

(2.58)

and

jAj D A11.A22A33 � A32A23/C A21.A32A13 � A12A33/C A31.A12A23 � A22A13/

(2.59)
where Aij are directional cosines which are given by

Aij � cos.gi ; ej / (2.60)

For a rotation about the x3�axis we get (Fig. 2.6)
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Fig. 2.6 Rotation of coordinates around x3�axis as a 2D orthogonal coordinate transformation

A D
0

@
cos sin  0
� sin cos 0
0 0 1

1

A (2.61)

and a full rotation about all three axes in the 3D space the rotation matrix A
yields [194]

A D
 

cos cos  � cos � sin sin cos sin C cos � cos  sin sin sin �
� sin cos  � cos � sin cos � sin sin  C cos � cos cos cos sin �

sin � sin � sin � cos  cos �

!

(2.62)

where .; �;  / are the Eulerian angles as defined in Fig. 2.7.

2.1.5.4 Volume, Surface and Line Integral Elements

In Cartesian coordinates the elements of volume d˝ , surface d� and line dS are

d˝ D dx1 dx2 dx3
d� D dxi dxj .i ¤ j; 1 � i; j � 3/
dS D dxi

(2.63)

Since

x D x.�/ xi D xi .�1; �2; �3/ (2.64)

then by partial differentiation we can derive

dx D @x

@�
� d� D J � d� dxi D @xi

@�j
d�j D Jij�j (2.65)
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Fig. 2.7 The rotations defining the Eulerian angles in 3D. Note that .�; �; �/ and .�0; �0; �0/

represent intermediate stages of a sequential rotation of the axes (Modified from [194])

Let dxi be the vectors with components .@xi =@�j /d�j for .j D 1; 2; 3/, then we
obtain for the volume element d˝

d˝ D .dx1 � dx2/ � dx3
D jJ jd�1 d�2 d�3 (2.66)

for the surface element d� for instance

d� D kdx1 � dx2k

D

�
�
�
�
�
�
�

0

@
J12J23 � J22J13
J21J13 � J11J23
J11J22 � J21J12

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
�3

�
�
�
�
�
�
�

d�1 d�2
(2.67)

and for the line element dS for instance

dS D kdx1k

D

�
�
�
�
�
�
�

0

@
J11
J12
J13

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
�2;�3

�
�
�
�
�
�
�
d�1 D

q
J 211 C J 212 C J 213

ˇ
ˇ
ˇ
ˇ
�2;�3

d�1
(2.68)

where jJ j is the determinant of the Jacobian (2.44) and k:k represents the
norm of the vector resulting from transformed coordinates. It is to be noted
that d� and dS can also be expressed by different transformed coordinates,
e.g., d� D k.:/j�1kd�2 d�3 and so on. For example, by using cylindrical
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coordinates .r; ; z/ the following integral elements result according to the
mapping (2.50):

d˝ D r dr d dz in the .r; ; z/ space

d� D
8
<

:

r dr d in the .r; /�space
dr dz in the .r; z/�space
r d dz in the .; z/�space

dS D
8
<

:

dr in the r�space
r d in the �space
dz in the z�space

(2.69)

2.1.6 Spatial Variables and Their Derivative Operations

For both Cartesian <D .D D 1; 2; 3/ and cylindrical coordinate systems

xT D

8
ˆ̂
<

ˆ̂
:

.x1 x2 x3/

.x1 x2/

.x1/

.r  z/

9
>>=

>>;
for

8
ˆ̂
<

ˆ̂
:

3D
2D
1D

9
=

;
Cartesian

cylindrical

(2.70)

a scalar variable  and the velocity v (2.39)

v D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0

@
v1

v2
v3

1

A for Cartesian

0

@
vr

v
vz

1

A for cylindrical

(2.71)

have dependencies in space and time:  D  .x; t/, v D v.x; t/. The following
derivative operations hold, cf. (2.2), (2.3), (2.40), (2.54), (2.55) and (2.56). The
gradient r is

r D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�
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@x1

@ 

@x2

@ 

@x3

	T
3D Cartesian

�
@ 

@x1

@ 

@x2

	T
2D Cartesian

�
@ 

@x1

	

1D Cartesian
�
@ 

@r

1

r

@ 

@

@ 

@z

	T
cylindrical .r; ; z/

(2.72)
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The second-order derivative (Laplacian) operation r2 reads to

r2 D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂
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ˆ̂
ˆ̂
ˆ̂
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C @2 
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r

@

@r

�
r
@ 
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�C 1
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C @2 

@z2
cylindrical .r; ; z/

(2.73)

The scalar product r � v which is called the divergence of the vector v is given by

r � v D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂
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ˆ̂
ˆ̂
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1

r

@.r vr /
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C 1

r
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@
C @vz

@z
cylindrical .r; ; z/

(2.74)

The vector product r � v which is called the curl of the vector v, also known as
vorticity !, provides

! D r � v D
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(2.75)
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which represents the rotation of the vector field v. Gradient, divergence and curl,
respectively, are sometimes written in other notations, such as

r D grad r � D div r� D curl (2.76)

Axisymmetric problems written in cylindrical coordinates represent a specific case.
Axisymmetry assumes that all flow components along the azimuthal direction 
vanish whereby the domain of interest ˝ is reduced to a 2D meridional domain
in .r; z/. Under such conditions the above relationships (2.71)–(2.75) can be
significantly simplified with v D 0; @

@
D 0.

2.1.7 Gauss’s Integral Theorem

The Gauss’s integral (or divergence) theorem represents the most valuable transfor-
mation in tensor analysis. It relates volume integral to surface integral expressions.
Let ˝ be the volume of a domain which is bounded by a piecewise-smooth closed
surface � , let n .� On/ be the outward-directed unit normal to � (Fig. 2.8) and
assuming the (scalar) variable  and the vector field a have continuous first partial
derivatives in ˝ , then

Z

˝

r d˝ D
Z

�

 nd�
Z

˝

r � a d˝ D
Z

�

a � nd�
Z

˝

r � .a / d˝ D
Z

�

 .a � n/ d�
Z

˝

r � a d˝ D
Z

�

a � nd�
Z

˝

r � .a / d˝ D
Z

�

 .a � n/ d�

(2.77)

where
R
˝
.:/d˝ represents a volume integral and

R
�
.:/d� a surface integral. Using

partial integration

r � .a / D a � r C  .r � a/ (2.78)

we obtain with (2.77)

Z

˝

 .r � a/ d˝ D �
Z

˝

.r � a/ d˝ C
Z

�

 .a � n/ d� (2.79)
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Fig. 2.8 Domain of volume
˝ with its closed boundary of
surface � and the outward
unit normal n to the surface

2.1.8 Stokes’ Theorem

The Stokes’ theorem relates a surface integral � over a cap to a line integral S
around a bounding curve. The theorem states that the total circulation a � t of a
vector field a in form of the line integral is equal to the surface integral of the
normal component of r � a:

Z

�

.r � a/ � nd� D
Z

S

a � t dS (2.80)

where t is the unit tangent vector.

2.1.9 Reynolds’ Transport Theorem

The Reynolds’ transport theorem (as a generalization of the Leipniz’s integral rule)
is very useful to compute derivatives of integrated quantities such as

F.t/ D
Z

˝

f .x; t/ d˝ (2.81)

Let v D v.x; t/ be a fluid vector field and let ˝ D ˝.t/ be a volume bounded by a
closed surface � D � .t/ moving with the fluid, then

D

Dt

Z

˝.t/

f .x; t/ d˝ D
Z

˝.t/

@f

@t
d˝ C

Z

� .t/

f .v � n/ d� (2.82)
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or with (2.77)

D

Dt

Z

˝.t/

f .x; t/ d˝ D
Z

˝.t/

h@f

@t
Cr � .v f /

i
d˝ (2.83)

where D
Dt is the material derivative (2.38) and n is the outward pointing normal

vector on the surface � (Fig. 2.8).

2.1.10 Classification of Vector Fields

A vector field v is called solenoidal, or divergenceless, if

r � v D 0 (2.84)

By Gauss’s theorem (2.77) this is equivalent to

Z

�

v � n d� D 0 (2.85)

for any closed surface � .
A vector field v is called irrotational, or cureless, if

! D r � v D 0 (2.86)

By Stokes’ theorem (2.80) this is equivalent to

Z

S

v � t dS D 0 (2.87)

for every closed curve S . A flow satisfying (2.86) is called potential flow.

2.1.11 Potential Function, Streamfunction, Streamline
and Pathline

It is possible to construct scalar functions on which either a solenoidal (2.84) or an
irrotational (2.86) vector field can be implicitly satisfied. Assuming the vector field
v could be the gradient of a (scalar) potential function ˚ in a form such as

v D �r˚; (2.88)
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it is easy to show that (2.88) satisfies irrotationality (2.86), i.e., ! D 0, because
�r � r˚ D 0. This is true for all dimensions, cf. (2.75). Introducing (2.88) the
potential flow holds with r � v:

� r2˚ D 0 (2.89)

We note that an alternate gradient expression such as v D �K.x/rh does not
strictly satisfy ! D 0, where K.x/ is a spatially dependent coefficient and h could
be a (different) scalar function, which can be seen as a pseudopotential function. If
(and only if) K D const, and hence ˚ D K h, the flow is irrotational (see [33] for
more discussions).

On the other hand, we can find a function � , called as streamfunction, written in
2D and axisymmetric flow as

v1 D @�

@x2
; v2 D � @�

@x1
2D Cartesian

vr D 1

r

@�

@z
; vz D �1

r

@�

@r
axisymmetric

(2.90)

which implicitly satisfies the condition of a selenoidal vector field r � v D 0

(2.84) applied to 2D and axisymmetric problems. Inserting (2.90) into the vorticity
equation (2.75) the Laplacian equation holds

�r2� D 0 2D and axisymmetric (2.91)

to determine the streamfunction� for 2D and axisymmetric flows. For 3D problems
it is not possible to find a scalar function capable of satisfying a divergenceless
velocity, r � v D 0 similar to 2D. We emphasize that a streamfunction analog
doesn’t exist for 3D problems.

By definition, a streamline in a flow is defined as a line, which, at any instant,
is tangent to the velocity vector v. If dx is a differential along a streamline, the
tangency condition is expressed by the cross product v � dx D 0. In 3D Eulerian
coordinates it reads to:

dx1
v1.x; ta/

D dx2
v2.x; ta/

D dx3
v3.x; ta/

(2.92)

where ta indicates a certain (fixed) time. The cross product of the two nonzero
vectors v and dx is zero only if they are parallel. Accordingly, a unique direction
for the streamline exists at all points in space x, provided v is not zero. However,
an exception is given at so-called stagnation points, where the velocity v is zero.
At those points streamlines can be split into two or more streamlines. Once the
velocity field v is known the solution of (2.92) yields a family of streamlines,
referred to as the motion pattern. Only in 2D (or axisymmetry) a streamline can
be identified as a graph of constant values of streamfunction � D �.x/ (Fig. 2.9).
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Fig. 2.9 The streamfunction � as a streamline in 2D flow

The streamfunction in 2D must obey the general differential relation:

d� D @�

@x1
dx1 C @�

@x2
dx2 (2.93)

Substituting (2.90) into (2.93) gives

d� D �v2 dx1 C v1 dx2 (2.94)

Accordingly, for a streamline with constant � , i.e. d� D 0, (2.94) becomes

v2

v1
D dx2

dx1

ˇ
ˇ
ˇ
ˇ
�Dconst

(2.95)

showing that the velocity vector is tangent (2.92) to the curve � D const.
A pathline is a curve (or line) along which a fixed massless particle moves

during a sequence of times t . It is thus the trajectory of a particle of fixed identity.
In the Eulerian formulation the differential equation for a pathline directly results
from (2.39):

dx

dt
D v.x; t/ (2.96)

or written in 3D Eulerian coordinates

dx1
v1.x; t/

D dx2
v2.x; t/

D dx3
v3.x; t/

D dt (2.97)

The solution of (2.96), or (2.97), for a particle location at any time t can be
expressed by

x.t/ D x.t0/C
Z t

t0

v
�
x.t/; t

�
dt (2.98)

where x.t0/ is the position at initial time t0.
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Finally, we note that under transient flow conditions, i.e., where the flow field
is time-dependent, streamlines and pathlines are commonly distinct. Here we can
see an instantaneous picture of the streamlines, as the picture varies continuously.
However, for steady-state flow conditions, i.e., where flow characteristics remain
invariant with time, streamlines and pathlines coincide.

2.2 Classifications and Definitions

Flow and transport processes in the context of subsurface modeling are usually
related to terms and descriptions which will be summarized in the following. The
most important definitions are presented which we will need to relate to in the
subsequent chapters. For a more comprehensive discussion of basic definitions for
porous-media and groundwater problems the reader is referred to Bear [34] or Bear
and Cheng [38].

2.2.1 Water and Aquifer

Subsurface water denotes all water below the ground surface (Fig. 2.10). This
water is contained in the void space of geologic formations of different types. The
void space can be fully or partially saturated by water. Subsurface water can be
regarded as part of the hydrologic cycle [356].
Groundwater denotes only this part of the subsurface water that occurs in geologic
formations in which the void space is fully saturated. Groundwater flows in aquifers
and rocks.
Surface water denotes all water collecting on the ground or in streams, rivers, lakes,
wetlands or oceans. Surface water is usually interrelated to subsurface water where
water can be exchanged via infiltration, drainage and seepage.
Freshwater represents surface or subsurface water having only low concentrations
of salts or other dissolved solids. Commonly, a groundwater resource (without
additional specifications) is related to freshwater which is available for drinking
and other purposes. Freshwater specifically excludes saltwater. Measuring water
salinity by concentrations in parts per million (ppm) – equivalent to g/l – freshwater
is usually classified with a concentration smaller than 0.5 ppm.
Saltwater is water which contains dissolved salts (mostly NaCl) of different
concentrations larger than 0.5 ppm. It can be further categorized into brackish water
having a salinity in the range of 0.5–30 ppm, saline water with a salinity between
30 and 50 ppm and brine with a salinity of more than 50 ppm.
Saltwater intrusion (or saltwater encroachment) denotes the movement of salt-
water into freshwater. In the subsurface it virtually occurs in all coastal aquifers,
where the denser saltwater from the sea intrudes into the freshwater aquifer due to
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Fig. 2.10 Illustration of typical flow regimes in a multilayered aquifer system (Modified from
[101, 306])

its higher density. It can also be caused by groundwater pumping above or nearby
saltwater zones.
Aquifer denotes a geologic formation, or a group of formations, of water-bearing
permeable rock or sediment layers from which water can be usefully extracted
(Fig. 2.10). Aquifers can be confined or unconfined (see further below).
Aquitard is a geologic formation which is of a semipervious nature. It transmits
water at a very low rate compared to an aquifer. An aquitard separates an aquifer
layer from an adjacent aquifer (as exemplified in Fig. 2.10). An aquitard, if
completely impermeable, is denoted as aquiclude or aquifuge.
Aquifer system groups a certain number of aquifers separated by aquitards in a
multilayered structure (Fig. 2.10).
Confined aquifer, also known as pressure aquifer, is an aquifer (a) bounded from
above and below by impervious formations and an aquifer (b) in which the water
pressure reaches such values that the water level measured in a piezometer will rise
above the base of the upper confining formation. Water enters a confined aquifer
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in a recharge area, which is commonly linked to an unconfined aquifer. A confined
aquifer is called a leaky confined aquifer if one or both confining formations are
semipervious, through which leakage may take place.
Unconfined aquifer, also called a phreatic aquifer, is bounded from above by the
water table or phreatic surface. Usually, a phreatic aquifer is directly recharged
from the ground surface above it, except where impervious layers (of limited
areal extent) exist between the phreatic surface and the ground surface. Above the
phreatic surface a capillary fringe establishes. The base of an unconfined aquifer is
considered impervious. An unconfined aquifer is called a leaky unconfined aquifer
if the lower bounded formation is semipervious.
Perched groundwater, or perched aquifer, is a special case of a phreatic aquifer. It
represents a limited areal extent of water, formed on an impervious, or semipervious,
layer (see Fig. 2.10). Perched water may exist only for a limited period of time.
Saturated zone forms above impervious or semipervious formations. In this zone
the entire void space is filled with water. The saturated zone can be bounded from
above by a water table, or phreatic surface.
Unsaturated zone, or vadose zone, describes the zone between ground surface and
the underlying phreatic surface, where only part of the void space is occupied by
water, the remainder being occupied by a gaseous phase, usually air.
Infiltration is the unsaturated downward water flow from the ground surface,
percolating through the unsaturated zone and reaching an underlying water table.
It is usually driven by natural replenishment from precipitation and snow melt.
Its quantity in relation to the total precipitation is influenced, among others,
by evaporation, surface runoff, soil characteristics and transpiration through the
vegetation. Infiltration can also include seepage from ponds, lakes, ditches, channels
and other leakages.
Groundwater recharge denotes that amount of infiltrating water which finally
reaches the water table of an underlying aquifer. It determines the replenishment
of aquifers and represents an important parameter in the use and exploitation of
groundwater resources.
Groundwater divide is a surface in 3D or a curve in 2D that separates the flow
domain into subdomains, on either side of which groundwater moves in opposite
directions (see Fig. 2.10).
Water table, or phreatic surface, is actually the boundary between the unsaturated
and saturated zone. It represents the upper surface of the groundwater body. Phreatic
surface is a specific representation of a free surface.
Fracture is part of the void space of a porous-medium domain that has a special
spatial configuration: one of its dimensions – the aperture – is much smaller than
the other two spatial dimensions. Fractures provide pathways for fluid flow and
transport through otherwise impermeable or semipervious formations and produce
planes, surfaces or even lined interconnections where fluid movement increases and
focuses, such as in cracks of rocks, interstices, vugs or tectonic faults.
Fractured porous rock defines a pervious rock formation which is composed of an
interconnected network of fractures. Thus, the total void space results from fractures
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and porous blocks of rock. The flow movement usually dominates in the fracture
network. If the surrounded rock contains no void space the term fractured rock is
used.

2.2.2 Terms and Quantities

Domain and boundary are defined in the D�dimensional Euclidean space <D
.D D 1; 2; 3/ (see Sect. 2.1.2) and are usually denoted by ˝ � <D and � �
<D , respectively. The domain ˝ is completely closed by the boundary � (see
Fig. 2.8). The boundary � can be arbitrarily shaped. It can be composed of different
nonoverlapping segments, e.g., �D; �N ; : : :, bounding the domain ˝ both outside
and inside. By definition, the boundary � is separated from the domain ˝ . On
the other hand, by N̋ we denote the (closure) domain, which completely joins the
boundary

N̋ D ˝ [ � with � D �D [ �N [ : : : (2.99)

On N̋ and � initial conditions and boundary conditions have to be specified,
respectively.
Initial conditions (IC’s) specify the values of a time-dependent variable
 D  .x; t/ in N̋ at initial time t0:

 .x; t0/ D  0.x/ in N̋ D ˝ [ � (2.100)

We note that for steady-state problems no IC’s are needed, unless the steady-state
problem is nonlinear, where IC’s are required to initialize an iterative procedure.
Boundary conditions (BC’s) specify values on the total boundary � closing the
domain˝ . Related to a time-dependent solution variable D  .x; t/ the following
types are common:

1. Dirichlet-type (1st kind) BC, also termed as essential boundary condition,
prescribes the value of  on a boundary section �D:

 .x; t/ D  D.t/ on �D � � (2.101)

A typical application of a Dirichlet BC is the prescription of a potential value,
mass concentration or temperature in dependence on the underlying problem.

2. Neumann-type (2nd kind) BC prescribes the normal derivative of  on a
boundary section �N :

�.˛ � r / � n D qn.t/ on �N � � (2.102)
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where ˛ is an arbitrary coefficient matrix, which must be k˛k ¤ 0. The
prescribed value qn.t/ represents a normal flux (positive outward) across the
boundary portion �N . If qn D 0 the Neumann-type BC reduces to a natural
(no-flux) boundary condition associated with r D 0. A typical application of
a Neumann BC is the description of a diffusive (dispersive/conductive) flux rate
of mass or energy in dependence on the underlying problem.

3. Cauchy-type and Robin-type (3rd kind) BC’s combine Dirichlet-type and
Neumann-type BC’s in different ways. The Cauchy BC represents a weighted
arithmetic mean of Dirichlet and Neumann BC according to

� .˛ � r / � n D �ˇ. C �  / on �C � � (2.103)

where  C D  C .t/ is a prescribed value of  and ˇ D ˇ.t/ denotes an
additional transfer coefficient. We have chosen the signs in (2.103) in such a
way that the flux is directed positive outward if  >  C . If ˇ becomes large
the boundary condition tends to a Dirichlet type with  !  C on �C . On the
other hand, if ˇ becomes small it tends to a natural boundary condition enforcing
r ! 0 on �C . A typical application for Cauchy BC is the leakage of mass
through a given boundary section. In contrast, the Robin-type (also called mixed)
BC is a mixture of Dirichlet and Neumann BC in such a form

�.˛ � r / � n D qn � ˇ. C �  / on �R � � (2.104)

The Robin-type BC is the most general boundary condition and implies all other
types of boundary conditions above. A typical application of Robin BC refers to
the prescription of a total (diffusive plus advective) mass or energy rate through
a given boundary section. If the total (diffusive plus advective) mass or energy
rate qn is specified in such a form

� .˛ � r � v / � n D qn (2.105)

where v � n is the advective velocity normal (outward positive) on �C , (2.105)
can be expressed by a Cauchy-type BC (2.103) if we substitute

ˇ D �v � n and  C D qn

v � n (2.106)

We note that the union of �D , �N , �C and �R forms the complete boundary
� D �D [ �N [ �C [ �R, where the segments do not overlap each other,
�D\�N\�C\�R D Ø. Boundary conditions are always required for both transient
and steady-state problems. Usually, �D ¤ Ø at steady-state. Besides these boundary
conditions of Dirichlet (2.101), Neumann (2.102), Cauchy (2.103) or Robin (2.104)
type, there are more specific boundary conditions, for example free surface, seepage
face, surface ponding, pumping well, borehole heat exchanger or gradient-type BC,
which represent modifications and in parts nonlinear combinations of the above
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conditions and will be described in the context of the problem solutions to be
discussed in Chap. 6.
Transfer or leakage conditions describe the exchange of mass, momentum or
energy on specific boundaries. Transfer is a more general term typically used in
mass and heat transport, while leakage is commonly used in subsurface hydrology
to describe the exchange of flow through external and internal boundaries. Generally
expressed, their mathematical formulation reads to

qn D �ˇ. ex �  / (2.107)

written for the variable  , where ˇ represents a transfer coefficient. Accordingly,
the normal exchange rate qn is controlled by the difference between an external
(known) value  ex and the internal value of the variable  and can be recognized as
a Cauchy-type BC, cf. (2.103), with qn D �.˛ �r / �n. Applied to the heat transfer,
Equation (2.107) is known as Newton’s law of cooling, where heat transfer occurs
at a boundary of a solid with the ambient convecting fluid temperature. Equation
(2.107) also represents a leakage condition, where the transfer coefficient is usually
replaced by

ˇ D K

b
(2.108)

introducing the conductivity K and the thickness b. In practice, the transfer
coefficient ˇ may be chosen to distinguish between inflowing conditions .qn < 0/

and outflowing conditions .qn > 0/ introducing the following dual functions for the
transfer coefficient ˇ:

ˇ D
�
ˇin for  ex >  

ˇout for  ex �  (2.109)

where ˇin and ˇout denote the in-transfer and the out-transfer coefficients, respec-
tively.
Resistance of mass, momentum or heat exchange at a surface is related to the
inverse of the transfer coefficient (2.108)

NR D 1

Aˇ
(2.110)

where A corresponds to an exchange area.
Specific resistance defines the resistance of mass, momentum or heat exchange per
unit length such that

R D NRL D L

Aˇ
D 1

Sˇ
(2.111)
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where L is a length and S D A
L

is a specific exchange surface. The specific
resistance represents a material property.
Interface, or interface boundary or surface, represents a boundary between two
media (materials) where the conditions abruptly change (Fig. 2.11). This can be a
boundary between different fluids or a boundary between a fluid and a solid. If
liquids are immiscible, a distinct sharp interface is maintained between them, even
if small quantities of certain components can cross the interphase boundary driven
by diffusion. Mathematically, an interface F can be described by the function:

F.x; t/ D 0 (2.112)

As the interface moves with a velocity w, its shape changes, however, all material
points associated with the interface must be conserved, i.e., the material derivative
of F is valid

@F

@t
C w � rF D 0 (2.113)

The outward unit vector n normal to F is defined as

n D rF
krF k (2.114)

and accordingly it is

w � n D �@F=@tkrF k (2.115)

Free surface is a specific surface of a connected flow domain that is subjected to
a constant pressure and a given mass flux crossing the surface. Having a zero mass
flux it represents the classic hydrodynamic free-surface condition for an isobaric
and impervious boundary. In subsurface flow a phreatic surface represents a free
surface.
Phase, identified by the index ˛ (or other Greek indices), is defined as a portion˝˛

of space ˝ , whether connected or non-interconnected, that is separated from other
such portions by a well defined surface � ˛ , which represents an interface. A phase
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˛ may be composed of a number of different chemical species k. The phase index
˛ takes on values of s and f D .l; g/ corresponding to the solid phase and the two
fluid phases of liquid and gas, respectively. Throughout this book, ˛ (or other Greek
indices) ranges as ˛ D s; f 2 .l; g/ and the repetition of Greek indices does not
imply a summation.
Energy in physics represents a quantity that is assigned to a particle, an object and a
system of objects. Energy is a scalar physical quantity, which is usually measured in
joules (J). There are different forms of energy, e.g., internal or thermal energy and
kinetic energy, which are named after the related forces. All forms of energy are
equivalent. Energy is subject to a conservation law, the first law of thermodynamics.
Any form of energy can be transformed into another form, however, in the energy
transformation process the total energy remains the same. Energy may neither be
created nor destroyed.
Entropy is a measure of how disorganized a system is. It is taken as a measure
of ‘disorder’: the higher the entropy, the higher the disorder. Disorder means
the tendency of a system to get states which are homogeneous and fully mixed
throughout space. The highest degree of disorder is the chaos, the most unorganized
state. Entropy of a physical system is proportional to the quantity of energy no
longer available to do physical work. It is measured in physical units of energy
per temperature: joules per kelvin (J/K). Entropy is central to the second law of
thermodynamics, which states that in an isolated system any activity increases the
entropy. The second law of thermodynamics introduces irreversibility: an isolated
system cannot pass from a state of higher entropy to a state of lower entropy,
e.g., transmission of heat from a cooler medium to a warmer one is impossible.
Increases in entropy correspond to irreversible changes in a system. Entropy reaches
its maximum at equilibrium state of a physical system.
Chemical species, or a component, identified by subscript k, is a part of a phase
that consists in an identifiable, chemical constituent, or an assembly of constituents,
e.g., ions or molecules. It represents a mixture of a number of independent chemical
species .k D 1; : : : ; N / dissolved in a fluid phase or adsorbed at/absorbed in a
solid phase. Chemical species are miscible continuous quantities, which cannot be
separated by interface (discontinuity) conditions. Note that Einstein’s summation
convention is not applied to the species index k.
Extensive quantity, Fk.t/, specified for chemical species k, such as for mass Mk ,
momentum Vk , internal (thermal) energy Ek, kinetic energy Kk and entropy Sk , is
given for the domain˝ and reads

Fk.t/ D
Z

˝

fk.x; t/ d˝ (2.116)

where fk.x; t/ is the intensive quantity of species k. Extensive quantities are
dependent on the volume˝ and listed in Table 2.1.
Intensive quantity, fk.x; t/ as listed in Table 2.1, is related to the particles
occupied in the domain ˝ . It represents the intensity of an extensive quantity as



2.2 Classifications and Definitions 53

Table 2.1 Extensive Fk and
intensive fk quantities related
to species k (no summation
over k)

Quantity Fk.t / fk.x; t /

Mass Mk �k
Momentum Vk �k vk
Internal energy Ek �k Ek
Kinetic energy Kk �k

1
2
v2k

Entropy Sk �k Sk

defined by (2.116) and is accordingly independent of the volume ˝ . In general an
intensive quantity that is given per unit volume, is characterized as a density. On
the other hand, an intensive quantity as given per unit mass, will be denoted as a
specific density. In Table 2.1 it can be recognized that the velocity vk represents
a specific momentum density, Ek is a specific internal energy density and Sk is a
specific entropy density.
Density and specific density represent intensive quantities per unit volume and unit
mass, respectively. Mass density, �k , is defined as mass per unit volume, specific
momentum density, vk , is momentum per unit mass, specific internal energy density,
Ek , denotes internal energy per unit mass and specific entropy density, Sk , is entropy
per unit mass. Commonly, for short descriptions it is customary to use the word
density also when we actually mean mass density �k .
Concentration measures the quantity of chemical species k in a unit volume ˝ of
fluid. It can be expressed in different ways as follows.
Mass concentration, denoted by Ck, expresses the mass of species k per unit
volume of a fluid and is identical to the mass density �k :

Ck � �k D Mk

dV
(2.117)

where dV corresponds to an averaging volume. This measure is preferably used.
Usual physical units are g/l (= grams of k per liter of fluid), or mg/l (= milligrams
of k per liter of fluid).
Molar concentration, or molarity, denoted by ŒCk�, expresses the number of
k�moles per unit volume of fluid and reads

ŒCk� D Ck

mk

(2.118)

where mk is the molecular mass of the k�species. This measure is common
for thermodynamics. Common units are moles of k per liter of fluid, mol/l or
mol/m3.� mmol/l/.
Activity of a species k, denoted by fCkg, is related to its molar concentration ŒCk� by

fCkg D 	kŒCk� (2.119)



54 2 Preliminaries

where 	k is the activity coefficient of species k, which is given for an ionic aqueous
species for instance by the empirical Davies relationship [500] in the form

log10 	k D � 12 z2k

� p
I

1CpI � 0:3 I
�

(2.120)

where zk is the charge on the kth species and I denotes the ionic strength
defined by

I D 1
2

NX

kD1
z2k ŒCk� (2.121)

For dilute solutions, 	k 	 1 and

fCkg 	 ŒCk� (2.122)

Mass fraction, denoted by !k , is the mass of k�species per unit mass of fluid. It
can be seen as a specific density of mass and is expressed as

!k D Ck

�
� �k

�
� D

X

k

�k
X

k

!k D 1 (2.123)

where � is the bulk mass density of fluid. This dimensionless measure is often
expressed with the physical unit ppm, ‘parts per million’, defining the number of
grams of solute per million grams of solution.
Advection describes the transport mechanism of a conserved quantity (e.g., mass or
heat) due to fluid motion. Advection requires currents in the fluid (or fluid phase). It
does not occur in impervious media or stagnant fluids.
Convection is sometimes synonymously used with advection. However, it usually
refers to more general flow phenomena, in which the fluid motion is additionally
influenced or even caused by changes in the fluid (mass) density. One can differen-
tiate between forced convection in which the fluid motion is generated by external
forces (e.g., pressure/potential gradient, flow source), free (or natural) convection
in which the flow motion exclusively results from inner buoyant forces due to fluid
density changes and mixed convection where forced and free convection occur in
combination. Throughout the book we will use the term ‘convection’ to indicate
transport of quantities within a moving fluid, where variable-density effects are
present, while the term ‘advection’ is used to indicate transport of quantities in fluid
flow without variable-density effects. With this definition we understand that forced
convection is equivalent to advection.
Diffusion usually describes the spread of chemical species from regions of higher
concentration to regions of lower concentration. It occurs both in fluids and solids.
Diffusion in a flowing fluid is independent of the flow direction, i.e., it also acts
in the opposite flow direction. More general, diffusion can be understood as a
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spreading mechanism driven by gradients of one (or even more) quantity(ies). For
instance, thermal diffusion is driven by a temperature gradient, mass diffusion is
driven by a concentration gradient, momentum diffusion is driven by a gradient of
velocity.
Conduction describes a spreading mechanism due to a gradient of a quantity. It is
equivalent to diffusion. A hydraulic conduction is controlled by the gradient of a
hydraulic potential. A thermal conduction is driven by a temperature gradient.
Sorption is a general term which covers both adsorption and absorption. Adsorp-
tion refers to the adherence of chemical species primarily on a solid surface due to
adhesion, while absorption refers to a more or less uniform penetration of chemical
species into a coexisting phase. Additionally, there is desorption which is the reverse
of adsorption, i.e., chemical species are detached from the solid surface and reenter
a dissolved phase.
Steady state describes systems, properties or dependent variables which are
unchanging in time t . A dependent variable  .x; t/ becomes steady if the time t
does not appear as an independent variable anymore, i.e.,  D  .x/. It implies that
its derivative with respect to time is zero:

@ 

@t
D 0 (2.124)



Chapter 3
Porous Medium

3.1 Fundamental Concept

The processes of flow, mass and heat refer to extensive quantities (such as mass,
momentum, energy and entropy), cf. Sect. 2.2.2, which are transported through a
spatial domain of interest. This spatial domain is said to behave as a continuum
which is occupied by matter for which a continuous distribution can be postulated.
The matter may take a number of M aggregate forms or phases ˛, particularly:
solid s, liquid l and gaseous g. It retains their continuity regardless how small
volume elements the matter is subdivided in and interior material interfaces or
surfaces exist. Any mathematical point we select can be assigned to matter as a
physical point of given finite size. In accordance with the assigned size of the
physical point we can find, at least, two levels of a continuum description:

1. Microscopic level, where every point in the domain is occupied by only one phase
(solid or liquid or gaseous).

2. Macroscopic level, where properties are defined at every point in the domain
consisting of all phases (solid and liquid and gaseous).

At the microscopic level, the basic principles of fluid and solid mechanics can be
used to solve the processes in the single phase domain, subject to BC’s on the
interfaces of phases (e.g., liquid-solid, liquid-gaseous) that bounds this domain.
However, at this level the complex interface geometry is neither observable nor
describable. Accordingly, the solution of mass and transport processes in porous
and fractured media at the microscopic level is impractical and widely impossible
to obtain.

At the macroscopic level we can circumvent the difficulties associated with the
geometric complexity of coexisting phases, at which measurable and continuous
quantities may be determined and BC’s can be easily formulated. The continuum
approach at such a macroscopic level is obtained via spatial averaging of the phase
behaviors over a certain elementary volume. For each point within this macroscopic
space, average values for variables and material properties result. The advantage
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of the macroscopic continuum approach is that (1) there is no need anymore
for specifying exact configurations of interphase boundaries, (2) continuous and
differentiable quantities result which can be employed by standard mathematical
methods, and (3) the macroscopic quantities are measurable and applicable to
practical problems.

3.2 Representative Elementary Volume (REV)

The transformation of variables and quantities from the microscopic to the macro-
scopic level needs spatial averaging referred to a certain elementary volume. It
represents an appropriate transition, often termed as macroscopization, from a single
phase to a multiphase level of description applied to a volume composed of all
relevant phases .˛ D s; l; g/ (or materials, M D 3) of interest. Formally, a porous
(or fractured) medium can be defined as a multiphase material body characterized
by the following features, e.g., [37]:

1. The averaging volume, denoted by dV , for a porous medium refers to a
representative elementary volume (REV) which is occupied by a persistent solid
phase s (Fig. 3.1). The remaining volumetric part, called void space, is occupied
by one or more fluid phases .f D l; g/. If such a REV cannot be found for a
given domain, that domain cannot qualify as a porous medium.

2. The size of the REV is such that parameters that represent the distribution of the
solid phase and void space within it are statistically meaningful.

The porous medium can be naturally formed (e.g., sand beds, rocks, soils) or
engineered (e.g., tissues, concretes, polymer composites). Each phase (solid s,
liquid l , gaseous g) is regarded as a continuum with smoothly varying prop-
erties, overlooking its molecular structure. The REV dV has to be sufficiently
large for fluctuations of spatially averaged properties to be negligible. Phases
˛ D s; f are regarded as material subdomains dV˛ separated by phase interfaces
(e.g., solid-solid, fluid-solid, fluid-fluid). Each phase ˛ is composed of N˛ miscible
chemical species. It represents a molecular mixture of several identifiable chemical
components k. By definition a chemical species k exists in only one phase ˛.
Species that pass through different phases are regarded as separate, phase-pertinent
constituents, accordingly the total number of chemical species N DP˛ N

˛ holds.
The fundamental assumption of continuum mechanics states that the resulting

average quantities have to be independent of the size of the averaging volume dV
and have to be continuous over time and space. Thus, the REV region dV is required
to possess certain characteristics. Consider, for example, the void space, also termed
as porosity for a porous medium, "f D dVf =dV . As the size of dV varies, the
porosity "f varies as shown in Fig. 3.2. If dV is very small, erratic porosity results
depending on whether the dV happens to cover voids or solids. Then as dV increases,
fluctuations will appear in "f because relatively large portions of the one phase or
other phases may become part of the averaging domain. As dV further increases
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within some interval of domain, there is a region when the porosity "f remains
fairly constant. Within such an interval, in general, all average quantities become
independent of the average domain dV. Further increase of dV may cause gross
inhomogeneities of the medium that affect the stability of the average (macroscopic)
quantities.

In order to maintain meaningful average quantities the characteristic length of
the averaging volume dV , denoted by D 
 dV1=3, must satisfy the inequality
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ı � D � L (3.1)

where ı is the microscopic scale of the medium and L is the scale of the gross
inhomogeneities. If for a particular medium these characteristic lengths cannot
be identified, if inequality (3.1) does not hold, or if the scale of the problem of
interest is of order D, there is no REV and accordingly the averaging technique is
not applicable. With other words, the size of a REV must be much larger than the
scale of microscopic heterogeneity due to the presence of solid and void space, and
much smaller than the scale of the domain of interest (e.g., an aquifer system or a
layered domain of soil) having macroscopic heterogeneity.

The features possessing for a REV of a porous medium can also be applied to
a REV for the fracture media. In some cases we can recognize that an overlapping
REV for the porous media and fractures exists (Fig. 3.3). Then, the problem can be
treated as an equivalent continuum. Unlikely, if such an overlapping REV cannot be
found (Fig. 3.4), fractures and porous media must be solved in a separate scale and
have to be coupled via macroscopic interface conditions by using a discrete fracture
approach. This is typical, for example, when fractures’ apertures are large, while the
voids in the porous blocks are very small, practically all the flow takes place through
the fractures. The discrete fracture approach requires information (e.g., aperture,
length, orientation, spacing etc.) on every individual fracture. For solving large-scale
problems of this type with hundreds or thousands of fractures a huge amount of
detailed input data demands and a high computational effort can result.
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3.3 Average Operators and Average Quantities

The validity of the following averaging procedures is subject to the existence of a
REV, the averaging volume dV. If valid, we can define an average over dV at every
mathematical point, denoted by its position vector x, independent of whether or not
x falls inside the phase. This position vector x serves as the centroid of the REV.
On the other hand, let us identify the position of a particle within the REV by the
vector r and the position with respect to the centroid of the REV by the vector y as
shown in Fig. 3.5:

r D xC y (3.2)

For each phase a phase distribution function 	˛ may be defined as

	˛ D 	˛.r; t/ D
�
1 if r lies in the ˛�phase
0 otherwise

and 8t (3.3)

The volume volume fraction of the ˛�phase, "˛, is the fraction of dV occupied by
the ˛�phase:

"˛.x; t/ D dV˛.x; t/

dV
D 1

dV

Z

dV
	˛.xC y; t/dv.y/ (3.4)
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Fig. 3.5 Hypothetical
averaging volume dV with
three phases present

where dv.y/ is the miscroscopic differential volume and dV is the macroscopic
REV volume. Clearly, "˛ is constrained by

X

˛

"˛ D 1 and 0 � "˛ � 1 (3.5)

For the macroscopization process we need three different averaging operators:
Volume average operator

h i˛ .x; t/ D
1

dV

Z

dV
. / 	˛.xC y; t/dv.y/ (3.6)

Intrinsic volume average operator

h i˛ .x; t/ D 1

dV˛.x; t/

Z

dV
. / 	˛.xC y; t/dv.y/ (3.7)

Intrinsic mass average (Boltzmann) operator

.N/˛.x; t/ D 1

h�i˛ dV

Z

dV
. / �.xC y; t/	˛.xC y; t/dv.y/ (3.8)

From (3.6) and (3.7), it follows that the volume average and the intrinsic volume
average of a scalar quantity  are related to each other by

h i˛ D "˛ h i˛ (3.9)

where "˛ is defined by (3.4). Furthermore, it results from (3.8)

h�i˛  ˛ D h� i˛ (3.10)
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The deviation of a microscopic quantity  at the point r from its mass average of
˛�phase at the point x is denoted by the fluctuation Q ˛:

Q ˛.x;y; t/ D  .xC y; t/ �  ˛
.x; t/ (3.11)

or

 D  ˛ C Q ˛ (3.12)

Since  
˛
.x; t/ is constant in the REV, dV, the following holds:

Q ˛˛ D 0

Q ˛ ˛˛ D Q ˛˛ ˛ D 0
 

˛ D  
˛

˛ C Q ˛ Q˛˛

(3.13)

where  D .r; t/ is another scalar quantity.

3.4 Averaging Theorems

Averaging differential expressions within the REV, we have to consider terms
providing averages of derivations with respect to space and time. The following
theorems relate the average of a gradient and a time derivative to the gradient and
time derivative of an average, respectively. For an extensive quantity F , cf. (2.116),
it is valid:
Averaging theorem

hr � Fi˛ D r � hFi˛ C
1

dV

X

ˇ¤˛

Z

dA˛ˇ

F � n˛ˇda.y/ (3.14)

Transport theorem



@F
@t

�

˛

D @

@t
hFi˛ �

1

dV

X

ˇ¤˛

Z

dA˛ˇ

F � .w � n˛ˇ/ da.y/ (3.15)

where dA˛ˇ is the macroscopic differential interface between ˛�phase and
ˇ�phase within dV , da.y/ is an elemental portion of this area, n˛ˇ D �nˇ˛
is a normal direction vector on this surface pointing from the ˛�phase toward the
ˇ�phase, w is the ˛ˇ�interface velocity and r is regarded as the macroscopic
gradient operator with respect to the macroscopic coordinates x. We note that F
can be either vectorial or scalar quantities.
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Fig. 3.6 Aquifer averaging
volume (AREV) of height H
and diameter D penetrating
an aquifer of thickness B

3.5 Aquifer Averaging

Flow and transport process modeling in aquifers possesses important special cases,
in which the horizontal extent of a regional flow field can be much bigger than
the thickness B of an aquifer. For such conditions vertical variations can often
be neglected to reduce the full 3D equations to two-dimensional (2D) essentially
horizontal relationships. Regarding groundwater hydraulic processes this procedure
is associated with the well-known Dupuit assumption [33].

There are two distinctly different approaches to develop the macroscopic, 2D
relations for aquifers. The standard two-step averaging procedure takes in a first step
the above REV averaging technique to derive the general 3D macroscopic equations.
In a second step, these equations have to be vertically integrated or vertically
averaged. The difficulty with the two-step averaging procedure is that a number
of terms whose physical meaning is not readily apparent arise involving derivations
from averages which must be taken into account. In contrast, a more general and
physically rigorous averaging technique has been proposed by Gray [202], which
represents a one-step averaging procedure. It allows a direct transformation from 3D
microscopic equations to 2D macroscopic aquifer-related equations. The procedure
is termed as aquifer averaging and represents an extension to the REV concept.

Aquifer averaging is based on an aquifer REV, termed as AREV, as shown in
Fig. 3.6. Within the AREV the following constraint must be satisfied in addition

H > B � D (3.16)

where B is the thickness of the aquifer, which may vary in space and time, and
H is the total length of the cylinder, which is constant. In Fig. 3.6, dS denotes the
projected circular planar area of the averaging volume, �D2=4. In the AREV the
position vector r only lies in the horizontal plane. The vertical direction is treated
explicitly and referred to as the x3�direction. Thus, a point in the AREV may be
located by specification of its .r; x3/ coordinates.
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In modification of the REV procedures, the AREV conception uses the following
modified averaging operators, quantities and theorems:
Volume fraction

"˛.x; t/ D dV˛.x; t/

B.x; t/ dS
D 1

B.x; t/ dS

Z

dV
	˛.xC y; x3; t/dv.y; x3/ (3.17)

Volume average operator

h i˛ .x; t/ D
1

B.x; t/ dS

Z

dV
. / 	˛.xC y; x3; t/dv (3.18)

Intrinsic volume average operator

h i˛ .x; t/ D 1

B.x; t/ dS˛.x; t/

Z

dV
. / 	˛.xC y; x3; t/dv (3.19)

Intrinsic mass average (Boltzmann) operator

.N/˛.x; t/ D 1

h�i˛ B.x; t/ dS

Z

dV
. / �.xC y; x3; t/	˛.xC y; x3; t/dv (3.20)

Averaging theorem

hr �Fi˛ D
1

B
r � ŒB hFi˛�C

1

B dS

X

ˇ¤˛

Z

dA˛ˇ

F � n˛ˇda

C 1

B dS

Z

dSTB
˛

F � nTBda (3.21)

Transport theorem



@F
@t

�

˛

D 1

B

@

@t
ŒB hFi˛� �

1

B dS

X

ˇ¤˛

Z

dA˛ˇ

F � .w � n˛ˇ/ da

� 1

B dS

Z

dSTB
˛

F � .w � nTB/ da (3.22)

in which nTB is the outward-directed unit normal at the top and bottom of the
aquifer. We note that the gradient operator r in (3.21) is only 2D, as there is no
vertical gradient of B or hFi˛.
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Table 3.1 Extensive
quantities Fk and intensive
quantities fk and  k related
to species k (no summation
over k)

Quantity Fk.t / fk.x; t /  k.x; t /

Mass Mk �k 1
Momentum Vk �k vk vk
Energy Ek C Kk �k .Ek C 1

2
v2k/ Ek C 1

2
v2k

Entropy Sk �k Sk Sk

3.6 Fundamental Microscopic Balance Laws
and Conservation Principles

The core of the mathematical modeling is formed by the four fundamental physical
principles of

• Mk , mass balance,
• Vk , momentum balance,
• Ek CKk , total energy balance (first law of thermodynamics), and
• Sk , entropy balance

associated with species k. Mass, motion, energy and entropy-related quantities
can be defined in a ‘microscopic’ (single phase) volume element (continuum), for
which balance laws are postulated. Mass, momentum, internal (thermal) energy,
kinetic energy and entropy, respectively, represent extensive quantities Fk 2
.Mk;Vk; Ek;Kk;Sk/ of species k (i.e., those quantities are additive over volumes),
cf. (2.116). Intensive quantities fk concern densities of these extensive properties
being independent of the balance volume in form of mass densities, momentum
densities, energy densities and entropy densities. In this context �k is introduced as
a mass density function and  k as an intensive balance quantity. In accordance with
(2.116) and Table 2.1, for an arbitrary volume˝ it is

Fk.t/ D
Z

˝

fk.x; t/ d˝ D
Z

˝

�k k.x; t/ d˝ (3.23)

where the intensive balance quantities  k are specified in Table 3.1 for the different
extensive quantities. In referring to a spatially fixed Eulerian coordinate system, the
postulate of balance of the extensive quantity Fk is stated as:

DFk

Dt
� D

Dt

Z

˝

�k k d˝ �
Z

˝

�kFk d˝ D
Z

˝

�kGk d˝ (3.24)

where Fk corresponds to an external production (supply) and Gk corresponds to a
net rate of production of Fk . The material derivative (2.38) in (3.24) for the Eulerian
description is given by

D

Dt
D @

@t
C .vF

k � r/ (3.25)
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Table 3.2 Diffusive fluxes
jF
k related to species k

(no summation over k)

Quantity Fk  k jF
k

Mass Mk 1 0
Momentum Vk vk σk
Internal energy Ek Ek jE

k

Entropy Sk Sk jS
k

where vF
k represents the velocity vector of the considered particle associated with

the quantity Fk. The general balance statement (3.24) can be expressed by using the
Reynolds’ transport theorem (2.83) as follows:

D

Dt

Z

˝

�k k d˝ D
Z

˝

�D.�k k/

Dt
C �k k.r � vF

k /
�
d˝ D

Z

˝

h@.�k k/

@t
Cr � .�k k vF

k /
i
d˝ D

Z

˝

�kFk d˝ C
Z

˝

�kGk d˝ (3.26)

Thus, (3.26) can be simply written as

@.�k k/

@t
Cr � .�k k vF

k / D �k.Fk CGk/ (3.27)

because the balance expression becomes independent of the volume ˝ in a
microscopic description.

The particle velocity vF
k can be further expressed via a diffusive law defined as

jF
k D �k k.vF

k � vk/ (3.28)

where jF
k corresponds to a diffusive flux of species k associated with the extensive

quantity Fk . It assumes a linear continuous relation to the particle velocity vk of
species k. By using (3.28) the balance expression (3.27) takes the form

@.�k k/

@t
Cr � .�k k vk/Cr � jF

k D �k.Fk CGk/ (3.29)

The diffusive fluxes jF
k are summarized in Table 3.2 for the different extensive

quantities. Since the particle velocity vk of species k is generally immeasurable, a
diffusive flux

jk D �k.vk � v/ (3.30)
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is introduced, which directly relates vk of species k to the mass-weighted (barycen-
tric) velocity v defined as

v D 1

�

NX

k

�k vk (3.31)

with

� D
NX

k

�k (3.32)

Accordingly, inserting (3.30) into (3.29) we obtain an appropriate balance expres-
sion, viz.,

@.�k k/

@t
Cr � .�k k v/Cr � .jF

k C  kjk/ D �k.Fk CGk/ (3.33)

where the particle velocity vk is eliminated, however, in account of specifying the
diffusive fluxes jF

k and jk .
The balance equation (3.33) is still rather general because it implies expressions

for each species k. Mostly, however, it is sufficient to specify only balance
statements for mass-weighted (barycentric) quantities. In doing so, we sum (3.33)
over all species k and obtain

@.� /

@t
Cr � .� v/Cr � j D �.F CG/ (3.34)

where

 D 1
�

PN
k �k k

F D 1
�

PN
k �kFk

G D 1
�

PN
k �kGk

j DPN
k .j

F
k C  kjk/

(3.35)

with jM
k D 0 .vM

k � vk/ according to the definition (3.28) and finding from (3.30)
the identity

NX

k

jk D 0 (3.36)

The barycentric variables  , j, F and G of the general microscopic balance
equation (3.34) are listed in Table 3.3 for the different extensive quantities F
that need to be considered, where E is the barycentric internal energy, S is the



3.7 Macroscopization of Balance Equations 69

Table 3.3 Microscopic quantities appearing in the general microscopic balance equation (3.34)

Quantity F  j F G

Mass
barycentric M 1 0 Q 0
species Mk !k jk rk=� 0

Momentum V v σ g 0
Energy E C K E C 1

2
v2 jT C σ � v H C g � v 0

Entropy S S jS W �

barycentric entropy, σ is the barycentric stress tensor, jT is the barycentric thermal
flux, jS is the barycentric entropy flux, Q is the barycentric supply of mass, g
is the barycentric supply of momentum, H is the barycentric supply of thermal
energy, W is the barycentric supply of entropy and � is the barycentric entropy
production. As seen from Table 3.3 the balance expression (3.34) can be considered
as a general microscopic balance equation, where even the balance of species mass
(3.33) (at jM

k D 0 and  k D 1) can be recognized if we formally set  ! !k ,
where !k D �k=� is the mass fraction of species k (2.123) and in Table 3.3, jk
accounts for the diffusive flux of species k and rk accounts for the production rate
of species k.

Note that the net rate of production G for mass, momentum and internal energy
is zero because these quantities are conserved, i.e., the balance statements for
mass, momentum and energy represent conservation equations. On the other hand,
however, entropy is a non-conservative quantity. The axiom of the second law of
thermodynamics postulates that the entropy production is always non-negative, i.e.,

��  0 (3.37)

3.7 Macroscopization of Balance Equations

3.7.1 General Balance Equation

The transformation of the microscopic balance equation (3.34) to the macroscopic
level uses the averaging procedures of (3.6)–(3.13) in combination with the averag-
ing theorems (3.14) and (3.15) and finally leads to the following general formulation
of the macroscopic balance equation written for the ˛�phase:

@

@t
.h�i˛  ˛

/Cr � .h�i˛  ˛
v˛/Cr � ."˛j˛/�h�i˛ ŒF ˛Ce˛.� /CJ ˛� D h�i˛ G˛

(3.38)
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where

j˛ D hji˛ C h�i˛ Qv˛ Q ˛˛ (3.39)

represents the macroscopic non-advective (dispersive) flux vector for  
˛

consisting
of the first part of macroscopic diffusion hji˛ and the second part of macroscopic

mechanical dispersion h�i˛ Qv˛ Q ˛
˛

. Furthermore, the term e˛.� / in (3.38) is

e˛.� / D 1

h�i˛
1

dV

X

ˇ¤˛

Z

dA˛ˇ

� .w � v/ � n˛ˇ da (3.40)

which describes the exchange of  
˛

with other phases through phase changes
caused by relative motion of phase boundaries. The term J ˛ in (3.38) reads

J ˛ D 1

h�i˛
1

dV

X

ˇ¤˛

Z

dA˛ˇ

j � n˛ˇ da (3.41)

which describes the diffusion of  
˛

across the phase interfaces.
A constraint upon (3.38) may be obtained by summing over all phases ˛ to obtain

[226]

X

˛

h�i˛ Œe˛.� /C J ˛� D 0 (3.42)

assuming that no properties are stored at a phase interface.
For the sake of simplicity the general balance equation (3.38) will be rewritten by

omitting the averaging symbols in form of angular brackets and overbars indicating
macroscopic quantities. In doing so, we replace the mass density h�i˛ by its intrinsic
average (3.9), i.e., h�i˛ D �˛ D "˛ h�i˛ D "˛�˛. It is important to note that we shall
designate always throughout the book an intrinsic quantity by a phase superscript
and a bulk quantity by a phase subscript, e.g., ˛ D "˛ ˛ ,Q˛ D "˛Q˛ and so forth.
Using this convention, we can rewrite (3.38) in the following divergence form1

@

@t
."˛�

˛ ˛/Cr � ."˛�˛ ˛ v˛/Cr � ."˛j˛/ D "˛�˛.F ˛ C F ˛
ex CG˛/ (3.43)

where

F ˛
ex D e˛.� /C J ˛ (3.44)

1It denotes a balance statement in its basic conservation formulation.
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Table 3.4 Macroscopic quantities appearing in the general macroscopic balance equation (3.43)

Quantity F˛  ˛ j˛ F ˛ F ˛
ex G˛

Mass
barycentric M˛ 1 0 Q˛ Q˛

ex 0

species M˛
k !˛k j˛k r˛k =�

˛ R˛k=�
˛ 0

Momentum V˛ v˛ σ˛ g˛ f˛� 0
Energy E˛ C K˛ E˛ C 1

2
v˛

2
j˛T C σ˛ � v˛ H˛ C g˛ � v˛ H˛

ex C f˛� � v˛ 0

Entropy S˛ S˛ j˛S W ˛ W ˛
ex � ˛

represents a macroscopic exchange term occurring due to phase change and phase
interaction, respectively. The definitions for  ˛ , j˛ , F ˛, F ˛

ex and G˛ in the general
macroscopic balance equation (3.43) are listed in Table 3.4 for mass, momentum,
energy and entropy balance. If we substitute the balance equation of the barycentric
mass M˛ with

@

@t
."˛�

˛/Cr � ."˛�˛ v˛/ D "˛�˛.Q˛ CQ˛
ex/ (3.45)

in (3.43), we find the convective form2 of the balance equation as

"˛�
˛ D

˛ ˛

Dt
Cr � ."˛j˛/ D "˛�˛ŒF ˛ C F ˛

ex CG˛ �  ˛.Q˛ CQ˛
ex/� (3.46)

where

D˛ ˛

Dt
D @ ˛

@t
C v˛ � r ˛ (3.47)

defines the material derivative of  ˛ of the ˛�phase. The divergence form (3.43)
and the convective form (3.46) represent equivalent expressions for the same balance
quantity  ˛ . In the following the specific formulations of the macroscopic balance
laws are described. Macroscopic conservation equations result for mass, momentum
and energy with G˛ D 0.

3.7.2 Conservation of Mass

For conservation of mass, (3.43) becomes

@

@t
."˛�

˛/Cr � ."˛�˛v˛/ D "˛�˛.Q˛ CQ˛
ex/

for ˛ D s; f 2 .l; g/ (3.48)

2It denotes a balance statement in which mass conservation is substituted.
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where v˛ is the (barycentric) velocity of ˛�phase,Q˛ represents the phase-internal
supply of mass and Q˛

ex accounts for phase change of mass (e.g., ice melting). The
conservation of mass requires that the total mass created over all phases must be
identical to zero, i.e.,

X

˛

"˛�
˛Q˛

ex D 0 (3.49)

3.7.3 Conservation of Species Mass

For a chemical species k in the ˛�phase, the mass conservation equation results
from (3.43) as

@

@t
."˛�

˛!˛k /Cr � ."˛�˛!˛k v˛/Cr � ."˛j˛k / D "˛.r˛k CR˛k/
k D 1; : : : ; N ˛ ˛ D s; f 2 .l; g/ for each k (3.50)

written in the divergence form and from (3.46) with Table 3.4 as

"˛�
˛ D

˛!˛k
Dt

Cr � ."˛j˛k / D "˛Œr˛k CR˛k � �˛!˛k .Q˛ CQ˛
ex/�

k D 1; : : : ; N ˛ ˛ D s; f 2 .l; g/ for each k (3.51)

written in the convective form, where !˛k D �˛k=�
˛ is the mass fraction of species

k, j˛k is the dispersive flux of species k, r˛k is the homogeneous reaction rate of
species k and R˛k is the heterogeneous reaction rate of species k. Equations (3.50)
and (3.51) are subject to the restrictions to insure a global conservation of mass:

1. The sum of mass fluxes of all k into phase ˛ must be identical to the total mass
change in the ˛�phase, i.e.,

N˛
X

k

.r˛k CR˛k/ D �˛.Q˛ CQ˛
ex/ (3.52)

2. The sum of dispersive fluxes of all k vanishes in the ˛�phase, i.e.,

N˛
X

k

j˛k D 0 (3.53)

Taking into account (3.52) and (3.53) and noting that
PN˛

k !˛k D 1, the mass
balance equation (3.48) for the phase ˛ is obtained by summing (3.50) over all
species k.
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The balance laws (3.50) and (3.51), respectively, for species k can be alter-
natively expressed if introducing the mass concentration C˛

k D �˛k D !˛k �
˛ ,

cf. (2.117), according to

@

@t
."˛C

˛
k /Cr � ."˛C ˛

k v
˛/Cr � ."˛j˛k / D "˛.r˛k CR˛k/

k D 1; : : : ; N ˛ ˛ D s; f 2 .l; g/ for each k (3.54)

written in the divergence form and

"˛�
˛ D

˛.C ˛
k =�

˛/

Dt
Cr � ."˛j˛k / D "˛Œr˛k CR˛k � C˛

k .Q
˛ CQ˛

ex/�

k D 1; : : : ; N ˛ ˛ D s; f 2 .l; g/ for each k (3.55)

written in the convective form.

3.7.4 Conservation of Momentum

The momentum equation may be obtained from (3.43) and (3.46) with Table 3.4 in
its divergence form

@

@t
."˛�

˛v˛/Cr � ."˛�˛.v˛v˛//Cr � ."˛σ˛/ D "˛�˛.g˛ C f˛� /
for ˛ D s; f 2 .l; g/ (3.56)

and in its convective form

"˛�
˛D

˛v˛

Dt
Cr � ."˛σ˛/ D "˛�˛Œg˛ C f˛� � v˛.Q˛ CQ˛

ex/�

for ˛ D s; f 2 .l; g/ (3.57)

where σ˛ is the stress tensor of the ˛�phase, g˛ is the ˛�phase external supply
of momentum due to gravity (and electric or magnetic force fields) and f˛� is the
interfacial drag term, which accounts for the exchange of momentum between the
˛�phase and all other phases due to mechanical interaction and exchange of mass.
Note that the material derivative for v˛ is

D˛v˛

Dt
D @v˛

@t
C v˛ � .rv˛/ (3.58)
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3.7.5 Conservation of Energy: First Law of Thermodynamics

The conservation of the total energy (the first law of thermodynamics) is obtained
from (3.43) and (3.46) with Table 3.4 after subtraction of v˛ dotted with (3.56)
and (3.57), respectively, in the divergence form

@

@t
."˛�

˛E˛/Cr � ."˛�˛v˛E˛/Cr � ."˛j˛T /C "˛σ˛ Wrv˛ D
"˛�

˛.H˛ CH˛
ex/

for ˛ D s; f 2 .l; g/ (3.59)

and in the convective form

"˛�
˛ D

˛E˛

Dt
Cr � ."˛j˛T /C "˛σ˛ Wrv˛ D "˛�˛

�
H˛ CH˛

ex �

.E˛ � 1
2
v˛

2

/.Q˛ CQ˛
ex/


for ˛ D s; f 2 .l; g/ (3.60)

where j˛T is the ˛�phase heat flux, H˛ is the ˛�phase external supply of energy
and H˛

ex accounts for the exchange of energy between the ˛�phase and all other
phases due to mechanical interaction and exchange of mass. The term "˛σ

˛ Wrv˛ in
(3.59) and (3.60) represents a dissipation term of energy (for fluids it is termed as
viscous dissipation) as an irreversible heat source due to internal forces (friction)

"˛σ
˛ Wrv˛ � 0 (3.61)

which is always negative (at the given definition) and produces thermal energy. For
porous and fractured media, however, the energy dissipation is usually very small
and is often negligible.

3.7.6 Entropy Balance

The entropy balance law is often neglected in derivations of equations for porous
and fractured flow simulation. However, it is an important law when developing and
proving constitutive relations for material properties. From (3.43) and (3.46) with
Table 3.4 the entropy balance is in the divergence form

@

@t
."˛�

˛S˛/Cr � ."˛�˛S˛/Cr � ."˛j˛S /� "˛�˛.W ˛ CW ˛
ex/ D "˛�˛� ˛

for ˛ D s; f 2 .l; g/ (3.62)
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and in the convective form

"˛�
˛ D

˛S˛

Dt
Cr � ."˛j˛S /� "˛�˛ŒW ˛ CW ˛

ex � S˛.Q˛ CQ˛
ex/� D "˛�˛� ˛

for ˛ D s; f 2 .l; g/ (3.63)

where j˛S is the ˛�phase entropy flux, W ˛ is the ˛�phase external supply of
entropy, W ˛

ex accounts for the exchange of entropy between the ˛�phase and
all other phases due to mechanical interaction and exchange of mass and � ˛ is
the ˛�phase net production of entropy. Usually, the entropy flux j˛S is assumed
proportional to the heat flux and the dispersive mass flux of chemical species such
that [116]:

j˛S D
1

T ˛
.j˛T �

N˛
X

k

�˛kj
˛
k / (3.64)

where .0 < T ˛ < 1/ represents the absolute temperature of the ˛�phase and �˛k
is the chemical potential of the kth-species in the ˛�phase. Furthermore, it may be
assumed that the entropy supply term W ˛ is proportional to the heat supply term
according to

W ˛ D H˛

T ˛
(3.65)

3.7.7 Second Law of Thermodynamics

The second law of thermodynamics dictates the sign of net entropy production.
According to this axiom, the rate of net entropy production for the multiphase
system must be always positive, i.e.,

�� D
X

˛

"˛�
˛� ˛  0 (3.66)

Substitution of (3.64) and (3.65) into (3.63) and introduction of the Helmholtz free
energy of the ˛�phase

A˛ D E˛ � T ˛S˛ (3.67)

into (3.60), replacement of the dispersive species flux r � ."˛j˛k / by (3.51), followed
by elimination of H˛ between (3.59) and (3.63) yields:
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"˛�
˛T ˛� ˛ D �"˛�˛

hD˛A˛

Dt
C S˛D

˛T ˛
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�
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X
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.�˛k
D˛!˛k

Dt
/
i

�"˛
h j˛T
T ˛
� rT ˛ � σ˛ Wrv˛ � T ˛

N˛
X

k

j˛k � r.
�˛k
T ˛
/�

N˛
X

k

�˛k.r
˛
k CR˛k /

i

�"˛�˛
h
T ˛W ˛

ex �H˛
ex C

�
A˛ � 1

2
v˛

2 �
N˛
X

k

�˛k!
˛
k

�
.Q˛ CQ˛

ex/
i

(3.68)

Now division by T ˛ and summation over all phases yield the Clausius-Duhem
inequality of the total entropy production for the multiphase system:

�� D �
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˛

"˛
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T ˛

h
�˛
�D˛A˛

Dt
C S˛D

˛T ˛
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�
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D˛!˛k

Dt
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f˛� � v˛ C
�
A˛ � 1

2
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2 �
N˛
X

k

�˛k!
˛
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�
.Q˛ CQ˛
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C j˛T
T ˛
� rT ˛

Cσ˛ Wrv˛ C
N˛
X

k

�˛k.r
˛
k CR˛k /

i
C

N˛
X

k

j˛k � r.
�˛k
T ˛
/

C�˛W ˛
ex

�

 0 (3.69)

expressing the second law of thermodynamics for porous media. Note that in (3.69)
the interface condition (3.42) for the energy,

P
˛ "˛�

˛.H˛
ex C f˛� � v˛/ D 0, with

(3.44) and Table 3.4, has been used to replace the energy exchange term H˛
ex.

3.7.8 Vertically Averaged Aquifer Balance Equations

The aquifer macroscopization of the microscopic balance equation (3.34) uses the
specific averaging procedures and theorems (3.17)–(3.22). The following aquifer-
averaged balance equation results in the general form written for the ˛�phase:

@

@t
.B h�i˛  ˛/Cr � .B h�i˛  ˛

v˛/Cr � .B"˛j˛/� B h�i˛ ŒF ˛ C

e˛.� /C J ˛�C a˛.� / D B h�i˛ G˛

(3.70)
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where

e˛.� / D 1

h�i˛
1

B dS

X

ˇ¤˛

Z

dA˛ˇ

� .w � v/ � n˛ˇ da

J ˛ D 1

h�i˛
1

B dS

X

ˇ¤˛

Z

dA˛ˇ

j � n˛ˇ da

a˛.� / D 1

dS

Z

dSTB
	˛Œ� .v �w/ � j� � nTB da

(3.71)

describing exchange of  
˛

due to phase change and interphase transport, respec-
tively. The new term a˛.� / in (3.70) and (3.71) contains the averages of the
microscopic production plus apparent production in the 2D plane due to the addition
of  at the upper and lower boundaries of the aquifer. The dispersion flux vector j˛

corresponds to expression (3.39) introduced before. We note that the thickness of
the aquifer B can vary in space and time. The gradient operator r in (3.70) is only
2D in the horizontal extent of the aquifer. In summing over all phases a constraint is
obtained similar to (3.42) which indicates that properties must be conserved when
considering interface transport:

X

˛

B h�i˛ Œe˛.� /C J ˛� D 0 (3.72)

Introducing again the simplified notation the aquifer-average balance equa-
tion (3.70) can be written in the general divergence form

@

@t
.B"˛�

˛ ˛/Cr � .B"˛�˛ ˛ v˛/Cr � .B"˛j˛/ D B"˛�˛.F ˛ C F ˛
ex CG˛/

(3.73)

and in the convective form

B"˛�
˛ D

˛ ˛

Dt
Cr �.B"˛j˛/ D B"˛�˛ŒF ˛CF ˛

exCG˛� ˛.Q˛CQ˛
ex/� (3.74)

in which3

3The equivalence of the area- and volume-averaged fluxes is shown for the interface term A˛.� /

of (3.71), cf. [229]. The volume-averaged flux describes the REV average in the form:

Œh�i˛ ˛
.v˛ �W /� j˛� � nTB D 1

dV

�Z

dVTB
	˛Œ� .v �w/� j�dv

�
� nTB

Let us assume that the interface has a thickness D, the volume integral may be written

1

dV

Z D=2

�D=2

�Z

dSTB
	˛Œ� .v �w/� j� �nTBda

�
dl � D

dV

Z

dSTB
	˛Œ� .v �w/� j� � nTBda
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F ˛
ex D e˛.� /C J ˛ �

a˛.� /

B"˛�˛

a˛.� / D Œ"˛�˛ ˛.v˛ �W /� j˛� � nTB

(3.75)

where W is the velocity of the macroscopic interface forming the upper and
lower boundary of the aquifer. The interface condition for a˛.� / appearing in
(3.75) will be subsequently used to specify BC’s at the top and bottom of the
aquifer. The definitions for  ˛ , j˛ , F ˛, F ˛

ex and G˛ in the aquifer-average balance
equations (3.73) and (3.74) are listed in Table 3.4 for mass, momentum, energy and
entropy balance. The following expressions result:
Conservation of mass

@

@t
.B"˛�

˛/Cr � .B"˛�˛v˛/ D B"˛�˛.Q˛ CQ˛
ex/

for ˛ D s; f 2 .l; g/ (3.76)

Conservation of species mass

@

@t
.B"˛�

˛!˛k /Cr � .B"˛�˛!˛k v˛/Cr � .B"˛j˛k / D B"˛.r˛k CR˛k/
k D 1; : : : ; N ˛ ˛ D s; f 2 .l; g/ for each k (3.77)

or

B"˛�
˛D

˛!˛k
Dt

Cr � .B"˛j˛k / D B"˛Œr˛k CR˛k � C˛
k .Q

˛ CQ˛
ex/�

k D 1; : : : ; N ˛ ˛ D s; f 2 .l; g/ for each k (3.78)

Conservation of momentum

@

@t
.B"˛�

˛v˛/Cr � .B"˛�˛.v˛v˛//Cr � .B"˛σ˛/ D
B"˛�

˛.g˛ C f˛� / for ˛ D s; f 2 .l; g/ (3.79)

or

B"˛�
˛D

˛v˛

Dt
Cr � .B"˛σ˛/ D B"˛�˛Œg˛ C f˛� � v˛.Q˛ CQ˛

ex/�

for ˛ D s; f 2 .l; g/ (3.80)

where mean values are used to replace the line integral. With dS D dV=D we find finally

Œh�i˛ ˛
.v˛ �W /� j˛� � nTB D 1

dS

Z

dSTB
	˛Œ� .v �w/� j� � nTBda

which corresponds to a˛.� / in (3.71).
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Conservation of energy

@

@t
.B"˛�

˛E˛/Cr � .B"˛�˛v˛E˛/Cr � .B"˛j˛T /C B"˛σ˛ Wrv˛ D
B"˛�

˛.H˛ CH˛
ex/ for ˛ D s; f 2 .l; g/ (3.81)

or

B"˛�
˛ D

˛E˛

Dt
Cr � .B"˛j˛T /C B"˛σ˛ Wrv˛ D B"˛�˛

�
H˛ CH˛

ex �

.E˛ � 1
2
v˛

2

/.Q˛ CQ˛
ex/


for ˛ D s; f 2 .l; g/ (3.82)

Balance of entropy

@

@t
.B"˛�

˛S˛/Cr � .B"˛�˛S˛/Cr � .B"˛j˛S /� B"˛�˛.W ˛ CW ˛
ex/ D

B"˛�
˛� ˛ for ˛ D s; f 2 .l; g/ (3.83)

or

B"˛�
˛ D

˛S˛

Dt
Cr � .B"˛j˛S /� B"˛�˛ŒW ˛ CW ˛

ex � S˛.Q˛ CQ˛
ex/� D

B"˛�
˛� ˛ for ˛ D s; f 2 .l; g/ (3.84)

Second law of thermodynamics
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k CR˛k/
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N˛
X
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j˛k � r.
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T ˛
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C�˛W ˛
ex
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 0

for ˛ D s; f 2 .l; g/ (3.85)
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3.8 Constitutive Theory

3.8.1 Kinematics

As discussed in Sect. 3.2, a porous medium can be viewed as a body which consists
of a number of coexistent continua (phases), one solid phase s and two (or more)
fluid phases f D l; g. Each phase possesses a reference configuration at time t D 0,
which will be altered by its motion. The motions of the phases are independent. For
a solid phase s in particular, a typical particle which occupies a positionXs at time
t D 0 may be carried to a new position x at time t . Then, the solid phase motion is
given by a displacement function us.Xs; t/ such that (cf. Sect. 2.1.4):

x D us.Xs ; t/ xi D usi .X
s
I ; t/ .i; I D 1; 2; 3/ (3.86)

Note that the lower case latin index i refers to the deformed position (i.e., spatial
coordinates) and the upper case latin index I refers to the reference position
(i.e., material coordinates). It is assumed that the inverse of (3.86) exists such that:

Xs D .us/�1.x; t/ Xs
I D .usI /�1.xi ; t/ .i; I D 1; 2; 3/ (3.87)

To have this mapping continuous and bijective at all times, the Jacobian J s of this
motion must be non-zero and strictly positive (cf. Sect. 2.1.4), i.e.,

J s D detJ s > 0 J s D @x

@Xs
D @xi

@Xs
I

.i; I D 1; 2; 3/ (3.88)

where J s represents the deformation tensor of the solid phase s.
With the deformation of the solid phase there is a differential change of the

volume dVs occupied by the particle of the porous solid. This can be expressed
by the Jacobian of the deformed and the reference (non-deformed) solid volumes:

J s D dVs.x; t/

dVs
0.X

s; 0/
(3.89)

Due to mass conservation the following must be valid

Z

dVs
."s�

s/ dV D
Z

dVs0

."s�
s/0 dV (3.90)

and accordingly

Z

dVs0

�
."s�

s/0 � ."s�s/ J s


dV D 0 (3.91)
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and finally

J s D ."s�
s/0

."s�s/
(3.92)

Because ."s�s/0 does not depend on time or spatial coordinate x, substitution of
(3.92) into (3.48) yields

DsJ s

Dt
D J sŒr � vs � .Qs CQs

ex/�

D J s δ W �ds � δ .QsCQs
ex/

3

 (3.93)

where

ds D 1
2

�rvs C .rvs/T  dsij D 1
2

�
@vsi
@xj
C @vsj

@xi

	

(3.94)

is the symmetric rate of deformation tensor of the solid phase s, Ds=Dt D
@=@t C .vs � r/ is the material derivative for the solid phase and δ is the Kronecker
symbol (2.7). The second-order tensor ds is sometimes called rate of strain tensor
appropriate for small deformations. The velocity of the solid phase is defined as the
material time rate of change of solid phase motion (2.39):

vs D vs.x; t/ D Pus D @us.Xs; t/

@t

ˇ
ˇ
ˇ
Xs

(3.95)

where jXs indicates thatXs is held constant. The strain tensor of the solid phase is
commonly defined as

es D 1
2

�rus C .rus/T  (3.96)

where the relation Dses=Dt D ds holds. Note that the second-order strain tensor
(3.96) is symmetric, i.e., es D es

T
. This symmetry means that there are six

rather than nine independent strains, as might be expected in a 3 � 3 matrix. For
convenience it is conventional to arrange the strain components in a vector form
termed as strain pseudovector εs of the solid phase by using the so-called Voigt
notation. This strain pseudovector εs is related to the displacement us of the solid
phase by the following relationship with denoted matrix operations written in the
Euclidean space <3:

εs„ƒ‚…
.6�1/

D L„ƒ‚…
.6�3/

� us„ƒ‚…
.3�1/

(3.97)
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introducing the symmetric gradient operator

L D

0

B
B
B
B
B
B
B
@

r1 0 0

0 r2 0
0 0 r3
r2 r1 0
0 r3 r2
r3 0 r1

1

C
C
C
C
C
C
C
A

(3.98)

with the strain pseudovector components

εs D

0

B
B
B
B
B
B
B
@

"s1
"s2
"s3
	s12
	s23
	s31

1

C
C
C
C
C
C
C
A

(3.99)

where r1 D @=@x1, r2 D @=@x2, r3 D @=@x3 and "si and 	sij .i; j D 1; 2; 3/ denote
the normal strain components and the shear strain components of the solid phase,
respectively. Accordingly, the divergence of the solid velocity r � vs.D δWds/ can
be expressed by displacements as follows

r � vs DmT � @ε
s

@t
DmT �

�
L � @u

s

@t

�
(3.100)

wherem is a specific unit vector defined as

mT D � 1 1 1 0 0 0 � (3.101)

For the subsequent derivations it will be convenient to use the solid phase velocity
vs as a reference velocity. We define the relative velocity of the ˛�phase as

v˛s D v˛ � vs (3.102)

and the material derivative of the ˛�phase can be written according to

D˛

Dt
D Ds

Dt
C .v˛s � r/ (3.103)
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3.8.2 Constitutive Equations

The balance laws given by Eqs. (3.48), (3.51), (3.56), (3.59), and (3.62) with the
relations (3.64) and (3.67) constitute N C .3 C D/M equations with the N.3 C
D/CM.5C 3D CD2/ unknowns which are enumerated below:

"˛; �˛; v˛; !˛
k
; j˛

k
; .r˛

k
CR˛

k
/; σ˛; f˛� ; A˛; j˛T ; S˛; T ˛; �˛

k

.M/ .M/ .DM/ .N/ .DN/ .N/ .D2M/ .DM/ .M/ .DM/ .M/ .M/ .N/

(3.104)

Quantities which are not listed in (3.104) are considered as known or directly related
to these variables. Therefore, to close the systems of balance equationsN.2CD/C
M.2C2DCD2/ additional constitutive equations are needed, which must account
for the material properties of the system and their interrelation. The development of
these constitutive equations will be done in a more general way, where we choose
a set of independent variables to express the unknowns. The entropy inequality, the
objectivity principle and the material symmetries will be utilized in order to restrict
the general relationships. The remainingN.2CD/CM.2C2DCD2/ unknowns,
chosen as dependent variables are members of the set f�j g given below:

f�j D1 to N.2CD/CM.2C2DCD2/g D
˚
j˛k ; .r

˛
k CR˛k/;σ˛;f˛� ; A˛; j˛T ; S˛; �˛k

�

(3.105)

These variables are not directly measurable and they have to be determined as
functions of directly measurable variables, hereby termed independent variables.
The choice of independent variables is made in accordance with the following
axioms [157, 521]:

1. Principle of equipresence. A variable present as an independent variable in one
constitutive equation should be so present in all.

2. Principle of coordinate invariance – objectivity principle. Constitutive equations
must be stated by a rule which holds equally in all inertial coordinate systems at
any fixed time.

3. Principle of admissibility. The constitutive relations do not violate the balance
laws or the second law of thermodynamics.

The principle of objectivity requires that a constitutive equation must be unchanged
under an orthonormal transformation of the spatial reference frame. As shown in
[132, 228] this requirement implies that velocity v˛ and velocity gradient rv˛
have to be replaced by the relative velocity vf s D vf � vs (3.102) and the rate
of deformation tensor of the fluid phase df D 1

2
Œrvf C .rvf /T �, respectively.

Finally, the constitutive equations for the dependent variables (3.105) are postulated
in terms of the following set f�j g of independent variables:
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f�jD1 to N.1CD/CM.3C2DCD2/�D�1g D˚"f ; �˛;vf s;df ; εs ; !˛k ;r!˛k ; T ˛ � T0;rT ˛�
(3.106)

Note that T0 represents a reference temperature. In (3.106) "s is not chosen
as independent variables because the volume fraction must sum to unity (3.5),
knowledge of "f provides "s .

The constitutive equations (3.106) are subject to the principle of admissibility.
The Coleman and Noll method [94] is used in Appendix B to restrict the functional
form of the constitutive variables. For the sake of simplicity the following assump-
tions are made:

• The phases are considered ideal in so far as constitutive variables which account
for intraphase processes .σ˛; A˛; �˛; S˛ for ˛ D s; f / depend only on the
properties of that phase.

Accordingly, the restrictions obtained via the Coleman and Noll method in
Appendix B yields:

Af D Af .�f ; !fk ; T f /
Sf D Sf .�f ; !fk ; T f /
As D As."f ; �s; εs ; !sk; T s/
Ss D Ss."f ; �s; εs; !sk; T s/
�˛k D �˛k.�˛; !˛k ; T ˛/
@A˛

@!˛k
D �˛k

@A˛

@T ˛
D �S˛

�s
@As

@εs
D �σs C �s2 @A

s

@�s
„ ƒ‚ …

ps

.˛; ˇ D s; f / (3.107)

Note that the dependence of As and Ss on "f must remain explicit because "s is
not adopted as an independent constitutive variable, however, related directly via
the unity "s D 1 � "f , (3.5). Taking into account (3.107) and introducing the
thermodynamic pressure of the fluid phases f and of the solid phase s, respectively,
according to

pf D pf .�f ; !fk ; T f / D �f
2 @Af

@�f

ps D ps."f ; �s; εs ; !sk; T s/ D �s
2 @As

@�s

(3.108)
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the entropy inequality (B.5) takes the form:
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 0
for .˛ D s; f / (3.109)

3.8.3 Equilibrium Restrictions

Thermodynamic equilibrium is the state where the following independent variables
of (3.106) controlling directly the entropy production (3.109)

�j � �j D fvf s ;df ;r!˛k ;rT ˛g (3.110)

are all zero and the constitutive functions satisfy:
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�
�˛k!

˛
k
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e
D 0

P
˛

�
"˛�

˛

T ˛
.Q˛ CQ˛

ex/G
˛
�ˇˇ
ˇ
e
D 0

(3.111)

where
ˇ
ˇ
e

denotes evaluation at the equilibrium and G˛ D A˛ C p˛=�˛ is the Gibbs
free energy of the ˛�phase.

At the thermodynamic equilibrium the entropy production �� goes to zero, i.e.,
it attains its minimum value. The necessary and sufficient conditions to ensure that
�� is a minimum at equilibrium are:
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@��

@�j

ˇ
ˇ
ˇ
e
D 0 and

�
�
�
@��

@�i@�j

�
�
�
e
 0 (3.112)

Application of restriction (3.112) to (3.109) yields:

�"f �f ff�
ˇ
ˇ
e
C pf r"f D 0

�σf ˇˇ
e
C pf δ D 0
�j˛k je D 0

�j˛T je C
PN˛

k j˛k �
˛
k � T ˛

PN˛

k j˛k
@�˛k
@T ˛
D 0

(3.113)

It shows that ff� and σf are composed of an equilibrium part and a non-equilibrium
(deviatoric) part, the latter being zero at equilibrium. Accordingly, it is useful to split
σf and ff� in such a form

σf D pf δ C τ f
"f �

f f
f
� D pf r"f C ff� (3.114)

where τ f and ff� represent the deviatoric fluid stress tensor and the deviatoric fluid
momentum exchange vector, respectively. With (3.113) and (3.114) these flux and
stress variables dependent on (3.106) ensure at equilibrium:

f
f
� ."f ; �

˛; 0; 0; εs; !˛k ; 0; T
˛ � T0; 0/ D 0

τ f ."f ; �
˛; 0; 0; εs; !˛k ; 0; T

˛ � T0; 0/ D 0
j˛k ."f ; �

˛; 0; 0; εs; !˛k ; 0; T
˛ � T0; 0/ D 0

j˛T ."f ; �
˛; 0; 0; εs; !˛k ; 0; T

˛ � T0; 0/ D 0

(3.115)

As a consequence, if ff� , τ f , j˛k and j˛T will be developed subsequently for the
chosen independent variables (3.106) in form of phenomenological equations,4 the
equilibrium condition (3.115) requires that dependency can only be allowed for
the driving thermodynamic ‘forces’ vf s , df , r!˛k and rT ˛, i.e.,

f
f
� D ff� .vf s ;df ;r!˛k ;rT ˛/
τ f D τ f .vf s ;df ;r!˛k ;rT ˛/
j˛k D j˛k .vf s ;df ;r!˛k ;rT ˛/
j˛T D j˛T .vf s ;df ;r!˛k ;rT ˛/

(3.116)

4They represent constitutive relations originally found from the observation that fluxes of extensive
quantities (e.g., mass, heat, momentum) are produced by the nonuniform distribution of their
state variables (e.g., concentration gradient, temperature gradient, velocity difference). Frequently,
a simple proportionality between fluxes and gradients of state variables is postulated using a
parameter taken to be a property of the material (e.g., diffusivity, conductivity, friction).
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3.8.4 Basic Balance Equations and Entropy Inequality

The combination of the above constitutive equations with the general balance
equations (3.48), (3.51), (3.57), and (3.60) as well as with the entropy inequality
(3.109) yields the following relations by using the substitution of bulk source/sink
termsQ˛ D "˛.Q˛ CQ˛

ex/;H˛ D "˛.H˛ CH˛
ex/; ˛ D f; s:

Mass conservation of fluid phases

Df ."f �
f /

Dt
C "f �f .δWdf / � �f Qf D 0

for f D l; g (3.117)

Mass conservation of solid phase

Ds."s�
s/

Dt
C "s�s.mT � @ε

s

@t
/� �sQs D 0 (3.118)

Mass conservation of species k of fluid phases

"f �
f D

f !
f

k

Dt
Cr � ."f jfk / � "f .rfk CRfk /C �f !fk Qf D 0

for f D l; g (3.119)

Mass conservation of species k of solid phase

"s�
s D

s!sk
Dt
� "s.rsk CRsk/C �s!skQs D 0 (3.120)

Momentum conservation of fluid phases

"f �
f D

f vf

Dt
C "f rpf Cr � ."f τ f / � "f �f g � ff� C �f vf Qf D 0

for f D l; g (3.121)

Momentum conservation of solid phase

"s�
s @
2us

@t2
Cr � ."sσs/ � "s�sg C �svsQs D 0 (3.122)

Energy conservation of fluid phases
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"f �
f D

f Ef

Dt
Cr � ."f jfT /C "f .pf δ C τ f /Wdf � �f Hf C

�f .Ef � 1
2
vf

2

/Qf D 0
for f D l; g (3.123)

Energy conservation of solid phase

"s�
s D

sEs

Dt
Cr � ."sjsT /C "sσsWds � �sHs C

�s.Es � 1
2
vs

2

/Qs D 0 (3.124)

Entropy of the fluid-solid phase system

�� D
X

f

vf s � .� 1

T f
ff� /C

X

f

df W.� "f
T f
τ f /

�
X

˛

rT ˛ �
n "˛

T ˛
2
.j˛T �

N˛
X

k

j˛k �
˛
k/C

"˛

T ˛

N˛
X

k

j˛k
@�˛k
@T ˛

o

�
X

f

X

k

r!fk �
� "f

T f
j
f

k

@�
f

k

@!
f

k

�
�
X

˛

n
"˛

N˛
X

k

�˛k.r
˛
k CR˛k/C "˛�˛W ˛

ex

o

�
X

˛

n �˛

T ˛

�
A˛ � 1

2
v˛s

2 �
N˛
X

k

�˛k!
˛
k

�
C 1

T ˛
p˛
o
Q˛  0

for .˛ D s; f / (3.125)

In the above equations, the following useful assumptions are made:

• The stress tensors τ f and σs are symmetric.
• The only external supply of momentum is provided by the gravity, i.e., g D g˛ .
• Diffusive (dispersive) flux of chemical species in the solid phase does not exist,

i.e., jsk D 0.

Furthermore, the entropy balance (3.63) is not included anymore because we
need not to know explicitly the entropy variable S˛ in the subsequent analysis.
Accordingly, the conservation laws (3.117)–(3.124) provide now N CM.2C D/
equations, which are available for solving:
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�f .or pf /

�s .or ps/

from (3.117)
from (3.118)

�

M equations

!
f

k

!sk

from (3.119)
from (3.120)

�

N equations

vf

us
from (3.121)
from (3.122)

�

DM equations

Ef .or T f /

Es .or T s/

from (3.123)
from (3.124)

�

M equations

(3.126)

To close this system of equations the following list of dependent variables remains

f�j D1 to N.1CD/CD.2M�1/CD2M g D
˚
τ f ;ff� ;σ

s; j
f

k ; j
˛
T ; .r

˛
k CR˛k/

�
(3.127)

which must be determined by appropriate constitutive functions depending suitably
on the independent variables (3.106). Furthermore, equations of state (EOS) have
to be supplemented in order to determine the needed explicit information about the
fluid density �f and the internal energyE˛ .˛ D s; f /

�f D �f .pf ; !fk ; T f /
Ef D Ef .�f ; !

f

k ; T
f /

Es D Es."f ; �
s; εs; !sk; T

s/

(3.128)

taking into account (3.67) and the restrictions (3.107).

3.8.5 Development of Phenomenological Equations
and Constitutive Relations

The remaining dependent variables as listed in (3.127) have to be expressed by
phenomenological and constitutive functions in terms of the independent variables
(3.106):

f
f
� D ff� .vf s;df ;r!fk ;rT ˛/
τ f D τ f .vf s ;df ;r!fk ;rT ˛/
σs D σs."f ; �s; εs; !sk; T s/
j
f

k D jfk .vf s ;df ;r!fk ;rT ˛/
j˛T D j˛T .vf s ;df ;r!˛k ;rT ˛/

.r˛k CR˛k / D .r˛k CR˛k/.�f ; !˛k ; T ˛/

(3.129)

where the obtained restrictions (3.107), (3.111), and (3.116) have been taken into
account. Polynomial expansions are usually employed up to the desired degree
of approximation. A truncated Taylor series around the state � D 0 leads to
expressions as exemplified for j˛T :
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j˛T D �
X

	

@j˛T
@v	s

ˇ
ˇ
ˇ
0

� v	s �
X

	

@j˛T
@d	

ˇ
ˇ
ˇ
0

� d	 �
X

ˇ

N˛
X

k

@j˛T

@r!ˇk
ˇ
ˇ
ˇ
0

� r!ˇk �
X

ˇ

@j˛T
@rT ˇ

ˇ
ˇ
ˇ
0

� rT ˇ

� HOT for .	 D f / .ˇ D f; s/

(3.130)

where
ˇ
ˇ
0

denotes evaluation at � D 0 and HOT represents higher-order terms:

HOT D O.v	sv	s/CO.d	d	 /CO.r!ˇkr!ˇk /CO.rT ˇrT ˇ/
CO.v	sd	 /CO.v	sr!ˇk /CO.v	srT ˇ/C : : :CO.v	sv	sv	s/
CO.v	sv	sd	 /CO.v	sv	sr!ˇk /CO.v	sv	srT ˇ/C : : : (3.131)

in which for instance

O.v	srT ˇ/ D
X

	

X

ˇ

1
2

@2j˛T
@v	s@rT ˇ

ˇ
ˇ
ˇ
0
� .v	srT ˇ/

O.v	sv	srT ˇ/ D
X

	

X

ˇ

1
6

@3j˛T
@v	s@v	s@rT ˇ

ˇ
ˇ
ˇ
0
� .v	sv	srT ˇ/

(3.132)

or written in index notation .i; j;m; n D 1; : : : ;D/

O.v	srT ˇ/i D
X

	

X

ˇ

1
2

@2j ˛T i
@v

	s
j @.@T

ˇ=@xm/

ˇ
ˇ
ˇ
0

„ ƒ‚ …

A
˛	ˇ
ijm

�

v
	s
j

@T ˇ

@xm

	

O.v	sv	srT ˇ/i D
X

	

X

ˇ

1
6

@3j ˛T i
@v

	s
j @v

	s
m @.@T ˇ=@xn/

ˇ
ˇ
ˇ
0

„ ƒ‚ …

B
˛	ˇ
ijmn

�

v
	s
j v

	s
m

@T ˇ

@xn

	 (3.133)

In the above Taylor series the derivative terms .:/
ˇ
ˇ
0

represent tensorial quantities,
which account for material properties and have to be known (or to be determined)
as material coefficients. Note that in (3.130) a negative sign is used for the
development. This is required by the entropy inequality (3.125), where j˛T has
to be negative while the material coefficients remain positive. The higher order
terms of the material coefficients lead to tensorial coefficients of higher order so
as indicated in (3.133), where 3rd-order and 4th-order tensors A˛	ˇijm ; B

˛	ˇ
ijmn appear. If

we assume

• Higher order tensors for the ˛�phase are isotropic and symmetric.
• Material coefficients related to the ˛�phase depend only on the properties of that

phase, i.e., for instance
P

	

P
ˇ A

˛	ˇ
ijm .v

	s
j
@T ˇ

@xm
/ D A˛ijm.v˛sj @T ˛

@xm
/.

then any 3rd-order tensor A˛	ˇijm and any 4th-order tensor B˛	ˇ
ijmn simplify, cf. [12,132]
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A
˛	ˇ
ijm ! A˛ijm D 0 (no isotropic odd-order tensors exist)

B
˛	ˇ
ijmn ! B˛

ijmn D b˛0 ıijımn C b˛1 .ıimıjn C ıinıjm/
(3.134)

where b˛0 and b˛1 correspond to material coefficients of the ˛�phases. The following
derivations will take into account these assumptions.

3.8.5.1 Deviatoric Fluid Stress Tensor τf

The Taylor series expansion of τ f D τ f .vf s ;df ;r!fk ;rT ˛/ for the 1st-order
terms yields

τ f D � @τ
f

@vf s

ˇ
ˇ
ˇ
0
�vf s� @τ

f

@df

ˇ
ˇ
ˇ
0
�df �

Nf
X

k

@τ f

@r!fk

ˇ
ˇ
ˇ
0
�r!fk �

@@τ f

@rT f
ˇ
ˇ
ˇ
0
�rT f (3.135)

where HOT are neglected and a negative sign is used due to the entropy restriction
τ f � 0 in (3.125). Considering isotropic conditions we find for the 3rd-order
tensors:

@τ f

@vf s

ˇ
ˇ
ˇ
0
D @τ f

@r!fk

ˇ
ˇ
ˇ
0
D @@τ f

@rT f
ˇ
ˇ
ˇ
0
D 0 (3.136)

and for the 4th-order symmetric tensor:

@τ f

@df

ˇ
ˇ
ˇ
0
D N�fijmn D �f ıijımn C �f .ıimıjn C ıinıjm/ (3.137)

where �f is denoted as dilatational (or bulk) viscosity and�f is denoted as dynamic
(or shear) viscosity of the f �phase. With (3.136) and (3.137) we obtain from
(3.135)

τ f D ���f .δWdf /δ C 2�f df �
�
f
ij D �

�
�f d

f
mmıij C 2�f dfij

� (3.138)

In fluid mechanics the mechanical pressure pfmech is defined as the average of the
normal stress

p
f

mech D 1
3
δWσf D 1

3
�
f
ii (3.139)

The difference between the thermodynamic pressure pf defined by (3.108) and
the mechanical pressure pfmech defined by (3.139) is obtained from (3.114) by
contracting on the index i and dividing by 3. It results

pf � pfmech D .�f C 2
3
�f /δWdf (3.140)
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The assumption that the two pressures are equal is known as Stokes’ assumption,
and it means that

�f D � 2
3
�f (3.141)

Then the deviatoric stress tensor τ f reaches its final form

τ f D 2
3
�f .δWdf /δ � 2�f df (3.142)

which represents the Newton’s viscosity law of fluids. A consequence of Stokes’
assumption is that the average normal viscous stress is always zero, cf. [409], and
the deviatoric stress tensor implies primarily viscous shear stress effects. We note
that for pure fluid flow the momentum equation (3.121) with Newton’s viscosity law
(3.142) is commonly referred to as the Navier-Stokes equation.

For further needs the divergence of the deviatoric stress tensor (3.142) gives

r � ."f τ f / D 2
3
r."f �f r � vf /� 2r � .�f "f df / (3.143)

Since5

r � ."f df / D 1
2
r2."f vf /C 1

2
"f r.r � vf /

� 1
2
vf r2"f � 1

2

�rvf � .rvf /T � � r"f (3.144)

we can simplify (3.143) to

r � ."f τ f / D ��f r2."f vf / (3.145)

under the specific assumptions:

• The spatial variability of the fluid viscosity is negligible, i.e., k"f df �r�f k 	 0.
• Applied to the stress tensor the vector field vf is considered solenoidal (2.84)

having r � vf D δWdf D 0, which corresponds to the assumption of
incompressibility usually made in classic fluid mechanics.

• For the stress tensor the second derivative of volume fraction is negligible
r2"f 	 0 and the antisymmetric rate of deformation tensor associated with
the gradient of volume fraction vanishes:

�rvf � .rvf /T � � r"f 	 0.

5In index notation we derive (dropping phase indices for the sake of simplicity)

@
@xj

�
" 1
2
.
@vi
@xj

C @vj

@xi
/
 D 1

2
@
@xj

�
@."vi /

@xj
C @."vj /

@xi
� vi

@"
@xj

� vj
@"
@xi



D 1
2

@2."vi /

@xj @xj
C 1

2

@2."vj /

@xi @xj
� 1

2
@
@xj

�
vi

@"
@xj

�� 1
2

@
@xj

�
vj

@"
@xi

�

D 1
2

@2."vi /

@xj @xj
C 1

2
"
@2vj

@xi @xj
� 1

2
vi

@2"
@xj @xj

� 1
2

�
@vi
@vj

� @vj

@vi

�
@"
@xj



3.8 Constitutive Theory 93

The following restriction on the dynamic viscosity �f results from the entropy
inequality (3.125):

�f  0 (3.146)

The dynamic viscosity �f can be considered as a thermodynamic function

�f D �f .!fk ; T f / (3.147)

which will be described as EOS further below.

3.8.5.2 Deviatoric Drag of Fluid Momentum Exchange ff�

The truncated Taylor series expansion of ff� D f
f
� .v

f s ;df ;r!fk ;rT ˛/ for 1st
order, however, extended by terms in vf s up to third order gives

ff� D �
@f

f
�
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ˇ
ˇ
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0
� vf s � @f
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ˇ
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0
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X

k
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@r!fk

ˇ
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ˇ
0
� r!fk �
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f
�

@rT f
ˇ
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0
� rT f

� 1
2

@2f
f
�

@vf s@vf s

ˇ
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0
� .vf svf s/� 1

6

@3f
f
�

@vf s@vf s@vf s

ˇ
ˇ
ˇ
0
� .vf svf svf s/

(3.148)

where other HOT are neglected and a negative sign is used due to the entropy
restriction ff� � 0 in (3.125). We define for the second-order tensors:

R
f
1 D

@f
f
�

@vf s

ˇ
ˇ
ˇ
0

A
f

k D
@f

f
�

@r!fk

ˇ
ˇ
ˇ
0

Bf D @f
f
�

@rT f
ˇ
ˇ
ˇ
0

(3.149)

Considering isotropic conditions we find for the 3rd-order tensors:

@f
f
�

@df

ˇ
ˇ
ˇ
0
D 1

2

@2f
f
�

@vf s@vf s

ˇ
ˇ
ˇ
0
D 0 (3.150)

For the 4th-order symmetric tensor we prefer the following approximation:

1
6

@3f
f
�

@vf s@vf s@vf s

ˇ
ˇ
ˇ
0
	 Rf

2 =F kvf skδ (3.151)
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where Rf
2 is a second-order tensor and =F is an inertial coefficient. Using

(3.149), (3.150), and (3.151) the drag of momentum exchange (3.148) reads

ff� D �
�
R
f
1 � vf s CRf

2 =F kvf sk � vf s C
Nf
X

k

A
f

k � r!fk CBf � rT f �

(3.152)

The third and fourth term of the RHS of (3.152) represent actions on the drag of
momentum exchange which are controlled by the mass fraction and temperature
gradients. Commonly, those cross effects on the momentum exchange are very
small. For the sake of simplicity we shall assume:

• Dependency of mass fraction and temperature gradients on the drag of momen-
tum exchange in form of cross effects are negligible, i.e.,Af

k 	 0,Bf 	 0.

Typically in porous-media problems the drag parameter for the fluid momentum
exchange is related to the dynamic viscosity of the fluid �f and the permeability of
the fluid phase, which is defined by

kf D "2f �f .Rf
1 /

�1 D �"2f �f �f .Rf
2 /

�1�2 (3.153)

where kf is the intrinsic permeability tensor of the f �phase. With (3.153) the final
form of the drag of momentum exchange of the fluid phase reads

ff� D �"2f �f .kf /�1„ ƒ‚ …
Darcy

� vf s � "2f �f �f .kf /�1=2=F kvf sk„ ƒ‚ …
Forchheimer

� vf s (3.154)

where the first term of the RHS of (3.154) describes the Darcy flow effect [392] and
the second term is recognized as Forchheimer flow effect on the momentum drag of
porous-media flow in which =F represent the Forchheimer coefficient, where there
are different formulations and derivations in the literature, cf. [296,534,562]. Nield
and Bejan [389] use a dimensionless form-drag constant cF , which is related to the
Forchheimer coefficient =F as

=F D "f

�f
cF (3.155)

The above introduced material parameters for the fluid momentum exchange ff� are
restricted by the entropy inequality (3.125) according to

kkf k > 0 �f  0 =F  0 (3.156)

3.8.5.3 Solid Stress Tensor σs

The relation between the solid stress tensor σs and the solid-phase free energy As

given by



3.8 Constitutive Theory 95

σs D ��s @A
s

@εs
C psδ (3.157)

results from the Coleman and Noll method’s evaluation (3.107), where ps is the
thermodynamic pressure of the solid phase s. Furthermore, the dependence of As

(and accordingly σs and ps) is restricted by

As D As."f ; �s; εs ; !sk; T s/ (3.158)

The term �s@As=@εs in (3.157) can be identified as the non-equilibrium solid stress

τ s D �s @A
s

@εs
(3.159)

At the thermodynamic equilibrium we have to require

τ s
ˇ
ˇ
e
D 0 (3.160)

To satisfy this equilibrium constraint the non-equilibrium stress of the solid phase
τ s must be independent of "f ; �s; !sk and T s , i.e.,

τ s D τ s.εs/ (3.161)

and the truncated Taylor series expansion of τ s yields

τ s D @τ s

@εs

ˇ
ˇ
ˇ
0
� εs (3.162)

In (3.162) a 4th-order deviatoric stress tensor appears

ts D @τ s

@εs

ˇ
ˇ
ˇ
0

(3.163)

which can be simplified if we assume

• The solid phase s is isotropic. The deviatoric stress tensor ts is symmetric. The
solid phase can be considered as an elastic material.

Then

τ s D ts � εs D �s.δWεs/δ C 2�sεs
σs D psδ � τ s (3.164)

where �s and �s are the LamKe constants. The constitutive expression for τ s in
(3.164) represents the Hook’s law for isotropic linear-elastic continua. The elastic
material constants �s and�s are usually expressed by the shear modulusG, Young’s
(or elastic) modulus E and Poisson’s ratio � as follows:
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�s D E�

.1C �/.1� 2�/ D
2G�

1 � 2�
�s D G D E

2.1C �/
(3.165)

Since strain εs and displacement us are related according to (3.97), the deviatoric
stress tensor τ s can be expressed as

τ s D ts � εs D ts � .L � us/ (3.166)

with the elasticity matrix

ts D

0

B
B
B
B
B
@

�s C 2G �s �s 0 0 0

�s �s C 2G �s 0 0 0
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C
C
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D E
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B
B
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@

1� � � � 0 0 0

� 1� � � 0 0 0

� � 1� � 0 0 0

0 0 0 .1� 2�/=2 0 0

0 0 0 0 .1� 2�/=2 0

0 0 0 0 0 .1� 2�/=2

1

C
C
C
C
C
A

(3.167)

For the material coefficients the thermodynamic restrictions require

�s  0 �s D G  0 E  0 0 � � � 1
2

(3.168)

where with � D 1
2

the solid material is incompressible.

3.8.5.4 Heat Flux Vector j˛
T

The Taylor series expansion for the heat flux vector j˛T D j˛T .vf s ;df ;r!˛k ;rT ˛/
of the ˛�phase .˛ D f; s/ up to third order for rT ˛ product terms becomes
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where we again have assumed that the material coefficients of the ˛�phase depend
only on the properties of that phase. In (3.169) a negative sign is used due to the
entropy restriction j˛T � 0 in (3.125). For an isotropic medium the odd-order
tensorial quantities vanish in (3.169). Furthermore, it is assumed that only first-order
approximation with respect to rT ˛ is considered. Using the following definitions
for the remaining second and fourth tensors in (3.169) as

U˛
T D
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ˇ
ˇ
0
D U˛

T δ D U˛
T ıij
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k D
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k ıij
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ˇ
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.1/ijmn

D N̨˛T ıijımn C N̨
˛
L � N̨˛T
2

.ıimıjn C ıinıjm/

(3.170)

the heat flux vector j˛T becomes

j˛T D �Λ˛ � rT ˛ � U˛
T v

f s �
N˛
X

k

N ˛
k r!˛k (3.171)

in which the 2nd-order tensor of hydrodynamic thermodispersion is introduced as

Λ˛ D Λ˛
0 CΛ˛

1 � .vf svf s/ D �˛δ CΛ˛
mech (3.172)

consisting of two parts: (1) the tensor of thermal conductivity Λ˛
0 D �˛δ and (2)

the tensor of mechanical thermodispersionΛ˛
mech given by

Λ˛
mech D N̨˛T .vf s � vf s/δ C . N̨˛L � N̨˛T /vf s ˝ vf s (3.173)

where N̨˛L and N̨˛T represent the specific longitudinal and transverse thermodisper-
sivity, respectively. In contrast to the form (3.173) the classic dispersion models
developed by Scheidegger [460] and Bear [33] postulate only a linear velocity
dependence for the mechanical dispersionΛ˛

mech according to

Λ˛
mech D ˛˛T kvf skδ C .˛˛L � ˛˛T /

vf s ˝ vf s
kvf sk (3.174)

where with ˛˛L D N̨˛Lkvf sk and ˛˛T D N̨˛T kvf sk new longitudinal and transverse
thermodispersivity coefficients appear, respectively. The Scheidegger-Bear disper-
sion model (3.174) is commonly used in practice. However, it is important to note
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that in an isotropic medium the first-order approximation of j˛T explicitly contains
only vf svf s terms and not the vf s terms. The material parameters for the heat flux
j˛T appearing in (3.171), (3.172), and (3.174) are restricted by the entropy inequality
(3.125) according to

�˛  0 ˛˛L  0 ˛˛T  0 U ˛
T  0 N˛

k  0 (3.175)

In (3.171) the heat flux is also affected by cross effects driven by the flow
velocity vf s and the mass fraction gradient r!˛k of species k. The influence of the
concentration (mass) gradient on the heat flux is known as Dufour effect, where N˛

k

corresponds to the Dufour coefficient. It is apparent that if mechanical and Dufour
effects are neglected, we recover the conventional form of the heat flux as

j˛T D �Λ˛ � rT ˛ (3.176)

known as the Fourier heat flux, where the tensor of hydrodynamic thermodispersion
Λ˛ is used in the form

Λ˛ D Λ˛
0 CΛ˛

mech

D .�˛ C ˛˛T kvf sk/δ C .˛˛L � ˛˛T /
vf s ˝ vf s
kvf sk

(3.177)

3.8.5.5 Species Mass Flux Vector jf
k

Similarly to the heat flux, the mass flux vector jfk D j
f

k .v
f s ;df ;r!fk ;rT ˛/ of

the species .k D 1; : : : ; N f / in the fluid phase .f D l; g/ is developed via a Taylor
series expansion up to third order now for r!fk product terms. It yields
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where a negative sign is used due to the entropy restriction jfk � 0 in (3.125). In a
direct analogy to the heat flux we assume that the medium is isotropic and that only
a first-order approximation with respect to r!fk is considered. Finally, we find for

the species mass flux jfk the following expression:

j
f

k D ��fDf

k � r!fk � Uf
C v

f s �MfrT f (3.179)

with the 2nd-order tensor of hydrodynamic dispersionDf

k of species k

D
f

k D Df

k;0 CDf
mech (3.180)

consisting of the tensor of diffusion

D
f

k;0 D Df

k δ (3.181)

where Df

k is the coefficient of molecular diffusion of species k of the fluid phase
f in the porous medium, and the tensor of mechanical dispersion6 of the porous
medium

D
f
mech D ˇfT kvf skδ C .ˇfL � ˇfT /

vf s ˝ vf s
kvf sk (3.182)

written for the Scheidegger-Bear dispersion model, where ˇfL and ˇ
f
T are the

longitudinal and transverse dispersivities, respectively. In (3.179) cross effects for
the mass flux are incorporated due to vf s and rT f . The temperature influence
is known as Soret effect (or thermodiffusion), where Mf describes the Soret
coefficient. Mechanical and Soret effects are commonly negligible and the species
mass flux (3.179) reduces to the well-know linear Fick’s law of macroscopic
hydrodynamic dispersion

j
f

k D ��fDf

k � r!fk (3.183)

6In 3D Cartesian coordinates, with v1, v2 and v3 denoting the velocity components in the x1, x2
and x3 directions, respectively, and v D kvf sk, we obtain from (3.182), dropping phase indices
for convenience
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where the tensor of hydrodynamic dispersionDf

k is used in the form

D
f

k D Df

k;0 CDf
mech

D .Df

k C ˇfT kvf sk/δ C .ˇfL � ˇfT /
vf s ˝ vf s
kvf sk

(3.184)

We find for the hydrodynamic dispersionDf

k that the dependency on the species k

is only associated with the coefficient of molecular diffusion Df

k . It is important to

note that the molecular diffusion coefficientDf

k of the species k in the fluid phase f
of the porous medium is usually smaller than the corresponding diffusion coefficient
MDf

k in an open fluid body due to geometric effects of the porous medium [37, 38].
They are related by

D
f

k D T f� MDf

k .0 � T f� � 1/ (3.185)

with the tortuosity T f� , which ranges between zero and unity and can be approxi-
mated as [38]

T
f
� 	

"
7=3

f

.1 � "s/2 for .0 � "s < 1; 0 � "f � 1/ (3.186)

For the linear Fick’s law (3.183) the dispersive mass flux jfk of a species k is
proportional to the mass fraction gradient. However, it has been shown [232, 464]
that if high concentrations of solutes occur, typically arising in concentrated brine
transport, nonlinear effects become important and jfk should be replaced by an
extended nonlinear non-Fickian dispersion law,

j
f

k ."f =Hkjfk k C 1/ D ��fDf

k � r!fk (3.187)

where =H represents an additional high-concentration (HC) dispersion coefficient
andDf

k is the Scheidegger-Bear dispersion tensor according to (3.184). It has been
found [464] that =H varies inversely with the flow velocity, i.e., =H D =H.vf s/.

The material parameters for the species mass flux j
f

k introduced in
(3.179), (3.181), (3.182), and (3.187) are restricted by the entropy inequality (3.125)
according to

D
f

k  0 ˇ
f
L  0 ˇ

f
T  0 U

f
C  0 Mf  0 =H  0 (3.188)

3.8.5.6 Species Reaction Rate r˛
k

CR˛
k

The reaction rates r˛k and R˛k differ between homogeneous and heterogeneous
reactions of species k in the multiphase system, respectively, where r˛k concerns
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intraphase reactions and R˛k covers interphase reactions. If a species k exists in
different phases the mass conservation has to be related to the overall (summed)
balance of mass, (3.119) plus (3.120), and a bulk reaction rate of species k for
the multiphase system has to be taken into account. This bulk reaction rate can be
defined as

Rk D
X

˛

"˛.r
˛
k CR˛k / D

X

f

"f .r
f

k CRfk /C "s.rsk CRsk/ (3.189)

For the constitutive representations of the rates the following functionals hold

r˛k D r˛k .!˛k ; T ˛/
R˛k D R˛k.!˛k ; T ˛/
Rk D Rk.!˛k ; T ˛/

(3.190)

where the dependency on �f can be discarded from (3.129) since the knowledge
of !fk � !˛k provides the fluid density according to (2.117) and (2.123). Since r˛k ,
R˛k and Rk possess the same functional structure, a polynomial representation of
(3.190), exemplified for Rk , may be written as

Rk D b0k.!˛/nk C
NX

mD1
b1m.!

˛
m/

nm C
NX

m;n

b2m.!
˛
m/

nm.!˛n /
nn C : : :C bNm

NY

mD1
.!˛m/

nm

(3.191)

with

NY

mD1
.!˛m/

nm D .!˛1 /n1.!˛2 /n2 : : : .!˛N /nN (3.192)

where nk  0 corresponds to an exponent of species k and the coefficients
b
p

k .p D 0; 1; : : : ; N / are rate constants of species k depending on the overall
reaction mechanism, which can be dependent on the temperature T ˛

b
p

k D bpk .T ˛/ .p D 0; 1; : : : ; N / (3.193)

applicable to a nonisothermal reaction mechanism. There are many reactive sys-
tems which can be broadly classified into simple and complex kinetic reactions.
According to the mechanism of a reaction, the functional form of r˛k , R˛k or Rk can
be very complicated and may not be representable as a polynomial in a form of
(3.191) for all cases. Reaction mechanisms for irreversible (kinetic) and reversible
(equilibrium) reactions will be discussed in more detail in Chap. 5.
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3.8.6 Equations of State (EOS)

3.8.6.1 Fluid Density �f

The fluid density �f is composed of Nf miscible chemical species k with a partial
fluid density �fk D C

f

k D �f !
f

k (mass of species k per unit volume of fluid),
cf. (2.117) and (2.123), so that

Nf
X

kD1
!
f

k D 1 and �f D
Nf
X

kD1
C
f

k (3.194)

holding for a mixture, where !fk (and Cf

k ) stands for all species present in the fluid

phase f . However, it is important to note that onlyNf �1 of the mass fractions !fk
can be specified independently because the sum of the mass fractions must be unity.
Let us for convenience designate the Nf th species as the one that is dependent, the
constitutive relation is:

!
f

Nf D 1 �
Nf �1X

kD1
!
f

k (3.195)

It simply states that if we know the mass fractions of species 1 through Nf � 1,
we know the mass fraction of species Nf . A typical example refers to a diluted
aqueous phase, where water (species k WD Nf D H2O) is referred to as a solvent
!
f

Nf because it is the predominant species in a liquid phase, while theNf �1 species
as solutes constitute only a small portion of the phase. In this context we define the
special case of a single-species solute, where only one dissolved component exists
and the aqueous phase is composed of two miscible species (one solute and one
solvent), i.e., Nf D 2.

The density �f is regarded as a dependent thermodynamic variable for which the
following constitutive relationship, or EOS, (3.128) holds

�f D �f .pf ; !fk ; T f / .k D 1; : : : ; N f � 1/ (3.196)

It is to be noted that dependence is indicated on only Nf � 1 of the species mass
fractions as shown in (3.195). We can differentiate (3.196) to obtain:
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where 	f is the fluid compressibility, and ˛fk and ˇf are the specific solutal and
thermal expansion coefficients, respectively. A negative sign is introduced for the
thermal expansion coefficientˇf to take into account that the fluid density decreases
when temperature increases. Regarding 	f and ˛fk it implies that the density �f

increases when the pressure pf and/or the mass fractions !fk increase, respectively.

If (and only if) we assume that 	f , ˛fk and ˇf are constant, the integration of
(3.197) immediately leads to the EOS for the fluid density �f in the common form:

�f D �f0 e	
f .pf �pf0 /C

PNf �1
kD1 ˛

f
k .!

f
k �!fk0/�ˇf .T f �T f0 / (3.198)

where suitable reference values appear for the density �f0 D �f .p
f
0 ; !

f

k0; T
f
0 / at

reference pressure pf0 , reference mass fraction !fk0 and reference temperature T f0 .
The EOS for the fluid density (3.198) is often linearly approximated in the form:

�f D �f0
�
1C 	f .pf � pf0 /C

Nf �1X

kD1
˛
f

k .!
f

k � !fk0/� ˇf .T f � T f0 /


(3.199)

and commonly 	f , ˛fk and ˇf are considered constant [389]. While for the most
practical applications this assumption is valid for compressibility 	f and specific
solutal expansion ˛fk , a constant thermal expansion ˇf may become inappropriate
for geothermal applications where a larger temperature range has to be considered
and thermal anomalies in �f (such as the 4 ıC anomaly for water) can also play
a role (Fig. 3.7). For temperatures within the range from 0 to 100 ıC, the thermal
expansion of freshwater .!fk D !

f

k0 D 0; k D 1; : : : ; N f � 1; pf D p
f
0 / actually

varies from �0:68 � 10�4 up to 7:5 � 10�4 K�1, and is zero at 4 ıC [120]. To improve
the relationship (3.199), a more accurate 6th-order polynomial �f D �f .T f / can be
introduced. As shown in Appendix C a Taylor series expansion of the polynomial
up to the 6th-order term results in a nonlinear variable thermal expansion ˇf D
ˇf .T f /, which is applied to the EOS in form of (3.199).

3.8.6.2 Internal Energy E˛

For the internal energy of the fluid phase Ef and the solid phase Es the following
dependencies exist according to (3.128):

Ef D Ef .�f ; !
f

k ; T
f /

Es D Es."f ; �
s; εs; !sk; T

s/
(3.200)

Using the chain rule of differentiation it follows that
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where for (3.202) we have assumed that Es depends only on properties of the solid
phase s. The task here is to find
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Taking into account from (3.67), (3.107), (3.108), (3.164), and (3.166)
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we obtain
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where with c˛ the specific heat capacity of the ˛�phase is introduced which is
usually positive c˛ > 0. Note that c˛ need not be constant. We substitute (3.205)
into (3.201) and (3.202) to find the expression for the material derivatives,7 viz.,
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(3.206)

7Using calculus manipulations the material derivative of Ef with respect to the density �f can be

alternatively developed for the Df �f

Dt term:
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where the thermal expansion coefficient (3.197), ˇf D �.1=�f /.@�f =@T f /, is inserted.
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In general, the chemical potential �˛k D �˛k.�˛; !˛k ; T ˛/, cf. (3.107), is a dependent
variable and further constitutive relations are required. However, in most applica-
tions

• The density, solid strain and chemical effects on the internal energy are negligi-
ble,

so that E˛ becomes only dependent on the temperature T ˛

dE˛ D c˛dT˛ .˛ D f; s/ (3.208)

and the material derivatives (3.206) and (3.207) simplify in

"˛�
˛D

˛E˛

Dt
D "˛�˛c˛ D

˛T ˛

Dt
.˛ D f; s/ (3.209)

If the specific heat capacity c˛ is independent of the temperature T ˛ , the internal
energyE˛.T ˛/ D E˛.T ˛0 /C

R T ˛
T ˛0
c˛dT˛ can be given explicitly

E˛ D E˛
0 C c˛.T ˛ � T ˛0 / .˛ D f; s/ (3.210)

where E˛
0 D E˛.T ˛0 / is a constant reference value of internal energy.

3.8.6.3 Dynamic Viscosity �f

The dynamic viscosity �f of the fluid phase f D l; g is regarded as a thermody-
namic function of mass fraction !fk and temperature T f , cf. (3.147):

�f D �f .!fk ; T f / (3.211)

A truncated Taylor series expansion for �f around reference mass fraction !fk0 and

reference temperature T f0 up to the 3rd order gives
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ˇ
ˇ
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f

k � !fk0/3 (3.212)

where the terms : : :
ˇ
ˇ
T
f
0 ;!

f
k0

are constant coefficients of fluid viscosity at reference

temperature and reference mass fraction, and �f0 is the reference fluid viscosity at
reference temperature and reference mass fraction.

Furthermore, viscosity dependencies have been developed by using empirical
polynomial relationships in the literature. Regarding the mass fraction depen-
dency, particularly for high-concentration saltwater, Lever and Jackson [343] and
Hassanizadeh [224] proposed the following relationship:

�l.!l / D N�l0.1C 1:85! � 4:1!2 C 44:5!3/ (3.213)

with

!l D
Nl�1X

kD1
!lk

! D !l � !l0 with !l0 � 0
N�l0 D �l.!l0 D 0/

(3.214)

where !l is the overall mass fraction of the total dissolved solids (TDS) in the
liquid (Dwater) phase l and N�l0 is a specific reference viscosity valid for !l0 D 0 at,
however, unspecified temperatures. On the other hand, an empirical relation for the
temperature dependence of the dynamic viscosity �l of the liquid (Dwater) phase
l has been proposed by Mercer and Pinder [371] in the form:

1

�l .T l /
D 1C 0:7063& � 0:04832&3

N�l0
(3.215)

with

& D .T l � T l0 /
100

T l0 D 150

9
>=

>;
for T l in ıC (3.216)
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where the specific reference viscosity N�l0 is related to a reference temperature of
150 ıC (or & D 0) at, however, unspecified mass fraction of solutes. A combination
of both influences yields the following expression:

N�l0
�l .!l ; T l /

D 1C 0:7063& � 0:04832&3
1C 1:85! � 4:1!2 C 44:5!3 (3.217)

where N�l0 D �l.0; 150ıC/. Employing an arbitrary reference mass fraction !l0 and
reference temperature T l0 , a viscosity relation function f l

� can be obtained, which is
related to these proper reference conditions:

f l
� D

�l0
�l .!l ; T l /

D N�l0
�l .!l ; T l /

�l.!l0; T
l
0 /

N�l0

D
1C1:85!

.!lD!l0/
�4:1!2

.!lD!l0/
C44:5!3

.!lD!l0/

1C1:85!�4:1!2C44:5!3
1C0:7063&�0:04832&3

1C0:7063&
.T lDT l0 /

�0:04832&3
.T lDT l0 /

(3.218)

where �l0 D �l.!l0; T
l
0 / is the reference viscosity with respect to the reference

mass fraction !l0 and the reference temperature T l0 . For example, typical viscosity
relations of water l are displayed in Figs. 3.8 and 3.9 for the temperature range T l

between 0 and 300 ıC and mass concentrations C l D !l�l between 0 and 200 g/l
for the chosen reference concentration !l0 D C l

0 D 0 (freshwater) and reference
temperature T l0 D 10 ıC.
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3.8.7 Additional Closure Relations

The volume fraction "˛ .˛ D f; s/ (3.4) appears as a geometry-dependent variable
resulting from the volume averaging process over a REV. It is convenient to express
"˛ for fluid phases f D l; g and the solid phase s of a porous medium as

"l D "sl
"g D "sg
"s D 1 � "

(3.219)

with

sl C sg D 1 0 � sl � 1 0 � sg � 1 " D "l C "g D 1 � "s (3.220)

and
P

˛ "˛ D "l C "g C "s � 1 (3.5), where " is the porosity (void space) and
s is the fluid saturation referring to the dynamic liquid l and gas g phases of the
porous medium. For the following considerations we assume that the liquid phase l
represents the wetting phase and the gas phase g represents the nonwetting phase of
the two coexisting fluids filled in the void space " of the porous medium.

3.8.7.1 Capillary Pressure pc

The macroscopic representation of the equilibrium with the pressure difference
between adjacent nonwetting and wetting fluid phases at the interface of the two
fluids in the void space of a porous medium is recorded by the macroscopic capillary
pressure pc , defined as

pc D pg � pl (3.221)
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for which constitutive relationships are required, e.g.,

pc D pc.sl ; T l ; T g; !lk; !gk / (3.222)

We have to note that the dependency of pc on the liquid saturation sl does not
follow consistently from the thermodynamic dependence of the liquid pressure as
stated above in (3.108). The conflict results from the difference between the pressure
variable p˛ of ˛�phase, which is a volume average over the REV, and the capillary
pressure pc , which is basically an interface variable and accordingly should refer to
as a surface average. A comprehensive discussion on this matter and an extended
alternative theoretical approach can be found in Gray and Hassanizadeh [205, 206],
Hassanizadeh and Gray [231], and Hassanizadeh et al. [233]. Temperature effects on
capillary pressure are presented by Grant [200]. Commonly, the capillary pressure
pc is considered to be dependent on the wetted liquid phase l only, viz.,

pg � pl D pc.sl / (3.223)

where numerous empirical relations exist to express pc.sl /. The explicit functional
form for pc.sl / must be considered to be specific to the combination of the pair of
fluids and the porous medium, basically also dependent on the medium temperature
and the chemical composition of the fluids. The function of pc is also known to
exhibit hysteresis in that the equilibrium value of pc as a function of sl is found to
be dependent on the direction of the process (i.e., drainage (drying) or imbibition
(wetting)). A schematic depiction of the pc versus sl curves is given in Fig. 3.10.
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In soil science, the pc.sl /�relationship is called retention curve as it shows how
much water is retained in a soil by the capillary pressure. Numerous empirical
parametric models exist to describe retention curves based on fitted analytical
expressions. The most common empirical relations are summarized in Appendix D.
Alternatively, spline approximations of the retention curve can be useful in cases
where analytical functions do not fit suitably to the experimental data, for more see
also Appendix D.

3.8.7.2 Relative Permeability kfr

The presence of more than one fluid phase .f D l; g/ in a porous medium has
consequences on the interfacial momentum exchange ff� too. For the intrinsic
permeability tensor kf of the fluid phase f appearing in the drag term of fluid
momentum exchange (3.154) a saturation-dependency is postulated in the following
form:

kf D kf .sf / D kfr .sf /k .0 < kfr � 1/ .f D l; g/ (3.224)

where with kfr the saturation-dependent relative permeability, sometimes called
relative conductivity, is introduced via a variable separation and the split k is the
fluid-independent permeability tensor of the porous medium, which is anisotropic
in general. The permeability tensor k is also termed as saturated permeability
equivalent to the intrinsic permeability at full saturation sf D 1. Various empirical
relationships for kfr D k

f
r .s

f / exist, where the most useful parametric models
are summarized in Appendix D. A typical curve of klr .s

l / for the liquid phase
l is exhibited in Fig. 3.11. Note that the relative permeability kfr can also imply
hysteretic effects [34, 38, 422]. In case of need spline approximation for klr .s

l / can
be beneficial to get better fits to experimental data, see Appendix D.

3.9 Complete Equations of Multiphase Flow and Transport
in Deforming Porous Media

3.9.1 General Formulation

The formulation of a complete mathematical model for solving multiphase flow,
mass and heat transport in deforming porous media is based on the balance
laws of Sects. 3.7 and 3.8.4 in combination with the phenomenological equations
of Sect. 3.8.5, the constitutive relations of Sect. 3.8.6 and the additional closure
relations of Sect. 3.8.7 including the assumptions as stated in these sections.
It results in a rather general set of equations as follows:
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Mass conservation Mf of fluid phases f D l; g
@

@t
."f �

f /Cr � ."f �f vf / D �f Qf (3.225)

Mass conservation Ms of solid phase s 8

@

@t
."s�

s/Cr � ."s�svs/ D �sQs (3.226)

Mass conservation Mf

k of species k of fluid phases f D l; g
divergence form

@

@t
."f �

f !
f

k /Cr � ."f �f vf !fk /Cr � jf k D "f .rfk CRfk / (3.227)

convective form

8It can be alternatively expressed by introducing the relationships (3.95) and (3.100) of the solid
displacement us :

@

@t
."s�

s/C "s�
s

�

mT �
�
L � @u

s

@t

�	

C r."s�s/ � @u
s

@t
D �sQs
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"f �
f @!

f

k

@t
C "f �f vf � r!fk Cr � jf k D "f .rfk CRfk /� �f !fk Qf (3.228)

Mass conservation Ms
k of species k of solid phase s

divergence form

@

@t
."s�

s!sk/Cr � ."s�svs!sk/ D "s.rsk CRsk/ (3.229)

convective form

"s�
s @!

s
k

@t
C "s�svs � r!sk D "s.rsk CRsk/� �s!skQs (3.230)

Momentum conservation Vf of fluid phases f D l; g
divergence form

@

@t
."f �

f vf /Cr � ."f �f .vf vf //C "f rpf � �f r2."f vf / D "f �f g

�"2f �f .kfr k/�1 � vf s � "2f �f �f .kfr k/�1=2=F kvf sk � vf s (3.231)

convective form

"f �
f @v

f

@t
C "f �f vf � rvf C "frpf � �f r2."f vf / D "f �f g

�"2f �f .kfr k/�1 � vf s � "2f �f �f .kfr k/�1=2=F kvf sk � vf s � �f vf Qf (3.232)

Momentum conservation V s of solid phase s
convective form

"s�
s @
2us

@t2
Cr."sps/� LT �

�
"st

s � .L � us/� D "s�sg � �svsQs (3.233)

Energy conservation Ef CKf of fluid phases f D l; g
divergence form

@

@t

�
"f �

f cf .T f � T f0 /
�Cr � �"f �f cf vf .T f � T f0 /

�

�r � .Λf � rT f / D �"f pf r � vf � 2
3
"f �

f .r � vf /2 C 2"f �f df Wdf

C�f Hf (3.234)
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convective form

"f �
f cf

@T f

@t
C "f �f cf vf � rT f � r � .Λf � rT f / D

�"f pf r � vf � 2
3
"f �

f .r � vf /2 C 2"f �f df Wdf C �f Hf

��f cf .T f � T f0 /Qf (3.235)

Energy conservation E s CKs of solid phase s
divergence form

@

@t

�
"s�

scs.T s � T s0 /
�Cr � �"s�scsvs.T s � T s0 /

�

�r � .Λs � rT s/ D �"spsr � vs C "s.ts � εs/Wεs C �sHs (3.236)

convective form

"s�
scs
@T s

@t
C "s�scsvs � rT s � r � .Λs � rT s/ D

�"spsr � vs C "s.ts � εs/Wεs C �sHs � �scs.T s � T s0 /Qs (3.237)

Constitutive relations

�f D �f0
�
1C 	f .pf � pf0 /C

PNf �1
kD1 ˛

f

k .!
f

k � !fk0/
�ˇf .T f /.T f � T f0 /



pc D pc.sl / D pg � pl
k
f
r D kfr .sf /

jf k.=Hkjf kk C 1/ D ��fDf k � r!fk
Df k D "f Df

k δCDf mech

Λf D "f �f δ C �f cfDf mech

Λs D "s�sδ

Df mech D "f
h
ˇ
f
T kvf skδ C .ˇfL � ˇfT /v

f s˝vf s
kvf sk

i

ts D ts.�s; �s/
�f D �f .!fk ; T f /

(3.238)

with vf s D vf � vs , df D 1
2
Œrvf C .rvf /T �, "f D "sf , "s D 1 � ",

vs D @us=@t and εs D L � us . We introduced above appropriate bulk quantities
denoted by phase subscripts as follows: jf k D "f j

f

k ;Df k D "fD
f

k ;Df mech D
"fD

f

mech;Λ˛ D "˛Λ
˛ . In (3.238) we made use of the fact that the mechanical

dispersion is a property of the porous medium and independent of the actual
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transport quantity; accordingly, we substituted Λf
mech D �f cfD

f
mech. We use both

divergence and convective forms of the balance statements if necessary due to
mathematical reasons as discussed further below. For the energy conservation it
is obvious that the convective form naturally results from replacing the internal
energy by the temperture variable, cf. (3.206) and (3.207). A divergence form of
energy conservation with the temperature variable results from the basic energy
balance equation (3.59) by inserting (3.210). That means, their expressions (3.234)
and (3.236) in terms of temperatures T f and T s , respectively, are possible if
(and only if) the specific heat capacities cf and cs are assumed independent of
temperatures. Such an assumption is not needed for the convective forms (3.235)
and (3.237) of energy conservation.

The conservation laws (3.225)–(3.237) for the three .l � g � s/ phases form a
closed equation system consisting of 6C N C 3D equations, which can be solved
for the following independent primary variables:

pl

pg

ps

from (3.225)
from (3.225)
from (3.226)

9
=

;
3 equations

!lk
!
g

k

!sk

from (3.227) or (3.228)
from (3.227) or (3.228)
from (3.229) or (3.230)

9
=

;
N equations

vl

vg

us

from (3.231) or (3.232)
from (3.231) or (3.232)
from (3.233)

9
=

;
3D equations

T l

T g

T s

from (3.234) or (3.235)
from (3.234) or (3.235)
from (3.236) or (3.237)

9
=

;
3 equations

(3.239)

The complexity of the governing equations is very high and a further reduction is
useful and really possible in many applications. The reduction will be done in three
levels in a top-down manner:

1. First level reduction: Multiphase variable-density flow, mass and heat transport
in porous media based on the general Darcy-Brinkman-Forchheimer (DBF) flow
equation.

2. Second level reduction: Single liquid phase variable-density flow, mass and heat
transport in variably saturated porous media based on the Darcy flow equation
[59].

3. Third level reduction: Variable-density Darcy-type flow, mass and heat transport
in groundwater (fully saturated porous media), including vertically integrated
formulations for aquifers.
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3.9.2 Proper Reduction of Governing Equations
for Multiphase Variable-Density Flow, Mass and Heat
Transport in Porous Media: First Level Reduction

Introducing the volumetric flux density (Darcy velocity)9 for the fluid phases
f D l; g

qf D "f .vf � vs/ D "f vf s (3.240)

the general model Eqs. (3.225)–(3.238) can be significantly reduced if the following
assumptions are made:

• Due to the generally slow motion of fluid flow in porous media the inertial effects
appearing in the momentum conservation (3.231) or (3.232) in form of local
acceleration @."f �f vf /=@t and of convective acceleration r � ."f �f .vf vf //
are negligible, cf. [389].

• Energy dissipation terms in the energy conservations equations (3.234)–(3.237)
can be neglected: "f pf r � vf 	 0, 2

3
"f �

f .r � vf /2 	 0, 2"f �f df Wdf 	 0,
"sp

sr � vs 	 0, "s.ts � εs/Wεs 	 0.
• It is assumed that the phases of the porous medium are locally in a state of

thermodynamic equilibrium. That means that the REV-averaged temperatures of
all phases l; g; s are assumed to be equal at each point in the multiphase system:

T l D T g D T s D T (3.241)

where T represents the system temperature. As the consequence of (3.241)
the energy conservation equations (3.234)–(3.237) can be summed up over
all phases and only one energy equation for the multiphase systems finally
results. Additionally, for the gas phase g the thermal capacity cg and thermal
hydrodynamic conductivity Λg can be neglected with respect to the solid and
liquid phases. Another direct consequence of (3.241) is that the overall thermal
conductivityΛ D Λf CΛs D Λ0C�f cfDf mech leads to a weighted arithmetic
mean of the thermal conductivities of the fluid and solid phases in the form
of Λ0 D Œ"sf �f C .1 � "/�s�δ as a natural result in which the thermal
conductivities of the fluid and solid phases occur in parallel10.

9Sometimes, the volumetric flux density is simply represented by the so-called Dupuit-
Forchheimer relationship [389], which is a bulk flux in the form vf D "f v

f . This quantity has
been given various names by different authors (e.g., seepage or filtration velocity). We shall prefer
the term Darcy velocity qf emphasizing the correct relationship (3.240) for the flux.
10 While a parallel behavior occurs in most of the natural porous media, there could be a porous-
medium structure and orientation, where the heat conduction takes place in series. In this case, the
heat flux can pass serially though the solid and the fluid, such that the overall thermal conductivity
is a harmonic mean Λ�10 D "sf .�f δ/�1 C .1� "/.�sδ/�1. The arithmetic mean and harmonic
mean represent upper and lower bounds, respectively, for the overall thermal conductivity Λ0.
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• The solid phase s is assumed deformable, but solid grains are incompressible.
Inserting (3.240) into (3.225) and using the definition (3.219) the mass conserva-
tion equation for the fluid phase f reads

"sf
@�f

@t
C�f sf @"

@t
C�f "@s

f

@t
Cr�.�f qf /Cr�."sf �f vs/ D �f Qf (3.242)

Assuming slowly deformable media and slightly compressible fluids the follow-
ing approximation holds [37]

r � ."sf �f vs/ 	 "sf �f .r � vs/ (3.243)

The expression r � vs is obtained from the solid mass balance (3.226)

@Œ.1 � "/�s
@t

Cr � Œ.1 � "/�svs� D 0 (3.244)

where Qs D 0 is assumed. For incompressible solid grains, (3.244) becomes

r � vs 	
�

1

1 � "
	
@"

@t
(3.245)

In changing the porosity " of the porous-medium compression work of the
skeleton is taken into account. Let us consider the porosity as a function of fluid
pressure and let mass fraction and temperature effects be disregarded, we have
the differential

d" D @"

@pf
dpf D

�
1

1 � "
@"

@pf
„ ƒ‚ …

�

	

.1 � "/dpf D �.1� "/dpf (3.246)

where � represents the coefficient of skeleton compressibility. It takes into
account a vertical deformation of the porous medium. The relations (3.245)
and (3.246) decouple the fluid equations from the solid equations and there is no
need anymore to solve explicitly the momentum conservation equation (3.233)
and mass conservation equation (3.226) for the solid s. This approach is a
common practice in subsurface modeling, where the movement of the solid phase
is modeled only implicitly. Rather than trying to obtain detailed information
about movement of the solid phase, only its compression is considered. This
assumption can be inappropriate for problems of land subsidence, slope or
embankment stability in a geotechnical context [344] or for large deformations
in absorbent swelling industrial porous material [144, 147, 375].

Other, more empirical arrangements for Λ0 can be made up for certain porous media as discussed
in [305].
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• For the species mass, momentum and energy conservation equations the velocity
term "f v

f can be replaced by the volumetric flux density qf (3.240), assuming
that the terms associated with the solid movement "f vs are negligible.

• Let us consider a species k, which occurs both in the fluid phase f and the solid
phase s. Let us assume that k is sorbed at the solid phase, which can be expressed
by the sorption isotherm (for more details see Chap. 5):

�s!sk D �f 'k !fk (3.247)

where 'k D 'k.!
f

k / is the dimensionless adsorption function, which can be

dependent on !fk . In such an adsorption process a fluid phase f can occupy only
part of the void space " and therefore only part of the total area of the solid can be
exposed to adsorption [39]. Sometimes, it is assumed [38, 422] that the wetting
phase completely coats the solid such that no other (nonwetting) fluid phase is in
contact with the solid. To take into account this solid-fluid contact phenomenon
for the adsorption of chemical species k occurring both in the wetting fluid phase
f and in the absorbing solid phase s, we subdivide the solid volume fraction
"s into chemically active and inactive parts of solid mass "s D "sactive C "sinactive

(cf. Sect. 5.2.2). Accordingly, the mass balances (3.227) and (3.229) (assuming
r � ."s�svs!sk/ 	 0) of species k in both phases f and s can be written as

@
@t
."sf �f !

f

k /Cr � .�f qf !fk /Cr � jfk D "sf .rfk � #k!fk C QRfk /
@
@t
."sactive�s!sk/ D "sactive.rsk � #k!sk C QRsk/

(3.248)

where in the heterogeneous reaction rates Rfk and Rsk the linear reaction parts of

decay are split off according to Rfk D �#k�f !fk C QRfk , Rsk D �#k�s!sk C QRsk ,
introducing a joint linear decay rate constant #k of species k (see Sect. 5.4.2).
The ratio of the area of the adsorbing solid-fluid interface to the total area of
the solid, which can be assumed equal to the ratio of active (adsorbing) solid
mass to the total mass of solid, and accordingly assumed equal to the ratio of the
active (adsorbing) solid mass fraction "sactive to the total solid mass fraction "s , is
apparently a function of the saturation sf of the wetting fluid phase: "sactive="s D
f .sf /, where sf � f .sf / � 1 is a surface contact ratio function, which has to be
specified. In many applications a suited approximation is f .sf / 	 sf and we use

"sactive D f .sf /"s 	 sf .1 � "/ (3.249)

Inserting (3.247) and (3.249) into (3.248), we can add up the mass conservation
equations (3.248) to obtain:

@

@t
."sf �f<k!fk /Cr � .�f qf !fk /Cr � jfk C "sf �f #k<k!fk

D sf
h
".r

f

k C QRfk /C .1 � "/.rsk C QRsk/
i

„ ƒ‚ …
QRk

(3.250)
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written in the divergence form and

"sf �f K<k @!
f

k

@t
C �f qf � r!fk Cr � jfk C "sf �f #k<k!fk

D QRk � �f !fk Qf (3.251)

written in the convective form, where <k is the retardation factor

<k D 1C
�1 � "

"

�
'k (3.252)

and K<k is the derivative term of retardation

K<k D 1C
�1 � "
"�f

� @.�f 'k!
f

k /

@!
f

k

(3.253)

• As stated in Sect. 3.7.3, the summation of the species mass balance equations
over all N D P

˛ N
˛ species must give the total mass balance of the phase(s),

so that only N � D P
˛.N

˛ � 1/ of the species mass fractions are independent,
because if N˛ � 1 are known, the N˛th may be computed directly from !˛N˛ D
1 � PN˛�1

kD1 !˛k . Accordingly, only N � species mass transport equations are
needed to be solved, where N � denotes the essential number of species.

Taking into account the above assumptions we find the governing equations of the
first level reduction as summarized in Table 3.5. In the momentum equations three
terms are emphasized which are of specific concern.

First, the Brinkman term �f

"f
r2qf results from the viscous shear stresses of the

fluid. Brinkman (see [389, 534] for references) has firstly described this term in the
context of porous media, but, had set the term to �f r2qf . However, the correct

factor must be �f

"f
instead of �f resulting directly from by the present volume

averaging procedure, cf. [394]. It was pointed out by Tam [505] that whenever
the length scale of the investigated problem is much greater than .kkk="/1=2 the
Brinkman term becomes negligible in comparison to the Darcy term. Only for thin
boundary layers with a thickness lower than .kkk="/1=2 the Brinkmann term could
have effects for practical applications.

Second, the Darcy term�f .k
f
r k/�1 �qf represents a linear relationship to qf due

to viscous drag by friction at the solid-fluid interfaces of the porous medium. This
holds when qf is sufficiently small, which is valid for most of the porous-medium
applications. The characteristic measure is provided by the pore Reynolds number
Rep of the flow defined by

Rep D kqf k�
f d

�f
(3.254)
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Table 3.5 Summarized balance laws and constitutive relations (CR) of multiphase variable-
density DBF-type flow, mass and heat transport in porous media as first level model reduction.
It forms a system of 3 C N � C 2D equationsa to solve the (3) variables pl , pg , T , the (N �)
variablesb !fk of species k (or !sm of species m) in the fluid phases f and in the solid phase s,
respectively, and the (2D) variables ql and qg . Alternative convective forms are given in angle
brackets.

Type Equations

Mf "sf
@�f

@t
C �f

�
sf �

@pf

@t
C "

@sf

@t

�
C r � .�f qf / D �f Qf
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k C Ms
k

@
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."sf �f <k!
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@!
f

k
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s
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@t
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s
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E
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pc D pc.s
l / D pg � pl

k
f
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f
r .s

f /

jf k.=H kjf kk C 1/ D ��fDf k � r!fk
Df k D "sf D

f

k δCDfmech

Df mech D ˇ
f
T kqf kδC .ˇ

f
L � ˇ

f
T /

qf˝qf
kqf k

<k D 1C �
1�"
"

�
'k

K<k D 1C �
1�"
"�f

� @.�f 'k!
f
k /

@!
f
k

Λ D �
"sl�l C .1� "/�s


δC �l clDlmech

�f D �f .!
f

k ; T /

He D �lHl C �sHs

a f D l; g.
b Species k can occur both in the fluid phase f and the solid phase s, however, species m ¤ k

only occurs in the solid phase s.

where d is the characteristic length dimension representing the elementary channels
of the porous medium. It could be used as a mean grain diameter or estimated via
.kkk="/1=2. The linear drag of the Darcy flow regime is valid as long as Rep does
not exceed some values between 1 and 10
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Table 3.6 Types of momentum equations Vf for the fluid phases f

Type Formulationsa

Darcy-Brinkman-
Forchheimer

qf

�
cF
�f

�f
.k
f
r kkk/1=2kqf k C 1

�
D �k

f
r k

�f
� .rpf � �f g/C k

f
r k

"sf
� r2qf

Darcy-Forchheimer qf

�
cF
�f

�f
.k
f
r kkk/1=2kqf k C 1

�
D �k

f
r k

�f
� .rpf � �f g/

Darcy qf D �k
f
r k

�f
� .rpf � �f g/

a The square root of .kfr k/1=2 is usually approximated by .kfr kkk/1=2δ

Rep < 1 : : : 10 (3.255)

However, as qf (particularly Rep) increases the viscous drag becomes nonlinear.

Third, a quadratic drag term is provided by the Forchheimer term �f .k
f
r k/�1=2

cF kqf k � qf , which takes into account that the transition from linear to nonlinear
drag is smooth and does not mean that there is a sudden transition from laminar
to turbulent flow. Even in laminar flow regimes the linearity is broken due to the
fact that the form drag due to solid obstacles is now comparable with the surface
drag due to friction. An upper limit of Rep at about 100 is suggested [33] for
the nonlinear laminar flow regime. For higher Rep�numbers a turbulent flow regime
occurs, which requires the extension to turbulent transport mechanisms based
on the full momentum equations [118]. In the Forchheimer term we introduced
the more common dimensionless form-drag constant cF (3.155), which is often
approximated by 0.55. In dependence on the meaning of the different terms in the
momentum equation Vf of Table 3.5 we differ between (1) the Darcy-Brinkman-
Forchheimer (DBF) equation, (2) the Darcy-Forchheimer (DF) equation and (3) the
Darcy equation as listed in Table 3.6.

3.10 Final Model Equations for Flow, Mass and Heat
Transport

3.10.1 Single Liquid Phase Variable-Density Flow, Mass
and Heat Transport in Variably Saturated Porous
Media: Second Level Reduction

For the practical modeling of variable-density flow, mass and heat transport in
porous media the above balance laws with their constitutive relations of the first
level reduction as listed in Tables 3.5 and 3.6 are further simplified. The following
assumptions are made as the second level reduction of the governing model
equations:
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• Fluid phase assumption: In the void space two fluid phases f coexist: a liquid
phase l (e.g., water) and a gas phase g (e.g., air). In many applications, however,
the gas phase g can be assumed stagnant, i.e.,

qg D "g.vg � vs/ � 0 (3.256)

Accordingly, there is no need to consider anymore the momentum balance for
the gas phase. As a consequence of (3.256) a hydrostatic gas pressure condition
with rpg D �gg results from the momentum balance equations for the gas phase
(Table 3.6) and pg could be solved explicitly as a simple function of gas density
�g and location x. This assumption reduces the problem to a single-phase flow,
where the only dynamic fluid phase is the liquid phase l , however, under variable
liquid saturation sl of the void space ", for which a further assumption is required
to decouple finally the liquid phase from the gas phase.

• Capillary pressure assumption: The liquid saturation sl is determined from the
capillary pressure (3.223): pc.sl / D pg�pl . Taking into account that the density
of liquid is much higher than of gas (e.g., note that the relation between water
and air is �l=�g 	 800), with the hydrostatic gas phase condition (3.256) we find
that rpl � �gg and conclude that gravitational effects on the gas pressure pg

are negligible in comparison to the liquid pressure pl . This allows us to assume a
constant gas pressure pg 	 const. Practically, we refer to a constant atmospheric
pressure and set pg D 0. It simplifies the capillary pressure relation according to

pc.s
l / D �pl (3.257)

With this assumption the liquid phase is actually decoupled from the gas phase
and the flow and transport process of the liquid phase may be modeled without
need to explicitly model the gas phase. It represents the key assumption of
flow and transport modeling in variably saturated porous media. Based on the
relationships as described in Appendix D it is now easy to relate directly the
liquid pressure to the liquid saturation pl D pl.sl / and, inversely, to express
the liquid saturation as a function of the liquid pressure sl D sl .pl /.

• Momentum equation assumption: It can be usually assumed that the liquid phase
moves slowly in the porous medium and the condition (3.255) is satisfied.
Accordingly, the momentum balance for the fluid phase l can be described by
the Darcy equation (Table 3.6):

ql D �k
l
rk

�l
� .rpl � �lg/ (3.258)

3.10.2 Choice of Suited Variables

In groundwater hydraulics and subsurface hydrology it is common to measure
pressures at a point P above a reference datum in an equivalence to a head of liquid
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hl

pipe with

water table

datum

P

l

z

0
l

g

x3
x2

x1

Fig. 3.12 Pressure head
 l D pl=.�l0g/ and hydraulic
head hl D  l C z measured
in a piezometric pipe

(e.g., water) with given density in a vertical column (e.g., pipe, well) as shown in
Fig. 3.12. We define the pressure head  l of the liquid l

 l D pl

�l0g
(3.259)

and the hydraulic head (piezometric head) hl of the liquid l

hl D pl

�l0g
C xj D  l C xj (3.260)

which are related to the constant reference liquid density �l0, where the subscript
j D 1; 2 or 3 indicates the direction of gravity aligned to a major coordinate
direction of x. Typically, in a vertical direction it is xj D x3 D z and gT D .0 0 g/,
where g D kgk is the gravitational acceleration. Introducing the gravitational unit
vector

e D �g
g

.D rxj / (3.261)
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we can express the Darcy equation (3.258) by the variables of hydraulic head hl and
pressure head  l , respectively11

ql D �klrK lf l
� �
�rhl C �le�

ql D �klrK lf l
� �
�r l C .1C �l /e (3.262)

where

K l D k�l0g

�l0
(3.263)

defines the hydraulic conductivity,

f l
� D

�l0
�l

(3.264)

is the viscosity relation function (3.218) and

�l D �l � �l0
�l0

(3.265)

is the dimensionless buoyancy coefficient of the liquid phase l .
It is important to note that the hydraulic conductivity K l incorporates both

porous-medium and liquid properties, however, the liquid parameters �l0 and �l0
in (3.263) represent constant reference values and accordinglyK l remains de facto
a parameter of the porous medium scaled with constant liquid parameters �l0 and �l0
and the gravitational constant g. Through the Darcy equation (3.262) formulated
with the hydraulic conductivity K l , the actual pressure, species concentration and
temperature effects on the liquid density �l and liquid viscosity �l are implied by
the buoyancy coefficient �l (3.265) with (3.199) and the viscosity relation function
f l
� (3.218), respectively. Clearly, the h= �formulations (3.262) are fully physically

equivalent to the basic p�formulation (3.258) of the Darcy equation.

11From (3.260) it is pl D �l0g.h
l � xj / and with e D rxj we find rpl D �l0g.rhl � e/. Now

expanding

k

�l
D k�l0g

�l0„ƒ‚…
Kl

�l0
�l

„ƒ‚…
f l�

1

�l0g
D K l f l

�

1

�l0g

and inserting into (3.258) with (3.261), we obtain

ql D �klrK lf l
� � �rhl C �l��l0

�l0
e
�
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In the above species mass balance equations of Table 3.5 the dimensionless
mass fraction !˛k appears as the natural variable of mass conservation. In practice,
however, the mass concentration C˛

k (2.117) is often preferred, which is related to
the mass fraction !˛k according to (2.123)

C˛
k D �˛ !˛k (3.266)

The replacement of mass fraction by mass concentration in the species mass
conservation equations requires for some specific terms a further consideration,
which is part of the next subject.

3.10.3 Oberbeck-Boussinesq Approximation and Extension

The system of balance equations listed in Table 3.5 is coupled by the nonlinearity
in the fluid density �l . Its analysis can be substantially simplified by the so-called
Oberbeck-Boussinesq (OB) approximation, sometimes termed only as Boussinesq
approximation. As pointed out in [255,389] the term OB approximation seems more
appropriate because Oberbeck [393] addressed this problem before Boussinesq [49].

The OB approximation consists in neglecting all density dependencies in the
balance terms, except for the crucial buoyancy term �lg (or �le) which is retained
in the momentum equation of Table 3.6 (or (3.262)). For the buoyancy term the
fluid density dependency (3.199) is incorporated as a function of mass fraction !lk
and temperature T , however, no pressure dependency is considered here. Pressure
dependency remains a subject of the derivative term @�l=@t appearing in the LHS of
the liquid mass balance equation as further discussed below. Referring to saturated
and nondeformable porous media and considering liquid incompressibility as well
as no sources/sinks, the liquid mass conservation Ml of Table 3.5 reduces then
to the simple expression r � ql D 0 and the velocity becomes solenoidal, cf.
Sect. 2.1.10. This incompressibility assumption is common in most analytical and
stability analyses of convection phenomena.

The OB approximation is valid if density changes
�l remain small in compari-
son to the reference density �l0. Criteria for the validity of the OB approximation for
liquids and gases were given by Gray and Giorgini [204]. Obviously, the OB approx-
imation becomes invalid for large density variations, e.g., at high-concentration
brines and/or high temperature gradients. However, it is often not clear what
consequences practically result if the full dependencies are incorporated (so-called
non-Boussinesq effects). Usually, extensions to non-Boussinesq formulations can be
introduced by ‘correction’ terms written for the liquid mass conservation equation
Ml of Table 3.5 in the following form

"sl

�l
@�l

@t

ˇ
ˇ
ˇ
T;!lk

C sl� @p
l

@t
C "@s

l

@t
Cr � ql D Ql CQlEOB (3.267)
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with the extended Boussinesq approximation term

QlEOB D �
1

�l

�
ql � r�l C "sl @�

l

@t

ˇ
ˇ
ˇ
pl

�
(3.268)

where jT;!lk and jpl indicate that T , !lk and pl , respectively, are held constant.
Inserting the EOS for the liquid density (3.199) into (3.268) we can approximate

QlEOB D �ql �
�
	lrpl C

X

k

˛lkr!lk � ˇl�rT
�
� "sl

�X

k

˛lk
@!lk
@t
� ˇl� @T

@t

�

(3.269)

introducing a generalized thermal expansion coefficient ˇl�

ˇl� D

8
<̂

:̂

ˇl for constant expansion

ˇl .T /C @ˇl .T /

@T
.T � T0/

1CPk ˛
l
k.!

l
k � !lk0/ � ˇl .T /.T � T0/

for variable expansion

(3.270)

where ˇl is a given constant, while ˇl .T / and @̌ l .T /=@T correspond to (C.8)
and (C.10), respectively, derived in Appendix D.

Kolditz et al. [318] compared OB solutions and some extended forms exemplified
for the Elder cellular convection problem (cf. Sect. 11.11.4). For this case, OB
solutions were rather close to non-Boussinesq model results. Only slight differences
in pressure and concentration distributions in some parts of the model domain
were observed. Evans and Raffensperger [160] studied the limitation of the OB
approximation for a problem which is similar to the Elder problem. They found
differences in the concentration distributions up to 9 % comparing the results of
the different formulations. Gartling and Hickox [186] studied adjustments for the
variation of fluid properties in the heat transport equation, while assuming the
constraint of incompressibility, r � ql D 0. They found that the OB approximation
and their extended solutions can be sufficiently ‘close’ for integrated quantities over
large temperature ranges. However, differences can occur for local quantities. The
accurate prediction of the flow field has been shown to be of major concern, and
they concluded that the ‘goodness’ of the OB solutions depends on what quantities
are of interest in the problem solution.

Furthermore, it is to be noted that under large compression effects when 	l

becomes significant the OB solution can considerably violate mass conservativity
and the extended OB approximation is to be preferred. However, for a realistically
small liquid compressibility 	l , the term�ql �	lrpl in (3.269) is usually negligible.

If we replace the mass fraction !lk by the mass concentration C l
k for species k

in the governing equations of Table 3.5, we have to neglect density variations in the
convective form of the species mass transport equation (3.228) and in the species
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mass flux vector jlk, (3.187) or (3.183). These assumptions are acceptable within
the OB approximation and its extension. This allows to approximate the derivative
terms in the convective form as

�l
@!lk
@t
	 @C l

k

@t
; �lr!lk 	 rC l

k (3.271)

assuming .C l
k=�

l /@�l=@t 	 0, .C l
k=�

l/r�l 	 0, and to write the species mass flux
vector jlk in the form

jlk.=Hkjlkk C 1/ D �Dlk � rC l
k (3.272)

assuming .C l
k=�

l /Dlk � r�l 	 0. Note that an evident advantage results in the
divergence form (3.227) if !lk is replaced by C l

k because assumption (3.271) is not
necessary anymore.

Similarly, within the OB approximation and its extension density variations in
the terms of the governing heat transport equations, both for the divergence and
convective form, are neglected too.

3.10.4 Reformation of Terms

With the replacement of the pressure variable pl (3.108) by the hydraulic head hl

(3.260) (or pressure head  l (3.259)) and the species mass fraction !˛k (2.123) by
the mass concentrationC˛

k (2.117) we have to adjust specific terms in the governing
equations of Table 3.5. First, the differential of the liquid density �l (3.197) is
modified:

d�l D 	l�ldpl CPk ˛
l
k�

ld!lk � ˇl�ldT

D 	l
@pl

@hl
�ldhl CPk ˛

l
k

@!lk
@C lk
�ldC l

k � ˇl�ldT

D 	l�l0g�
ldhl CPk

˛lk
C lks�C lk0

�ldC l
k � ˇl�ldT

(3.273)

to obtain

�l D �l0
�
1C	l�l0g .hl�hl0/C

Nl�1X

kD1

˛lk

C lks�C lk0
.C l

k�C l
k0/�ˇl .T /.T �T0/


(3.274)

where hl0 and C l
k0 are reference values of the hydraulic head and mass concentration

of species k, respectively, and C l
ks represents a given maximum mass concentration

of species k, which may be used to estimate the specific solutal expansion coefficient
by a linear relation
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˛lk D
�l.C l

ks/� �l0
�l0

(3.275)

sometimes called density ratio. A reasonable guess of the liquid density �l at
maximum concentration C l

ks is

�l.C l
ks/ 	 �l0 C a C l

ks (3.276)

where Baxter and Wallace [32] proposed for the factor a D 0:7 and INTRAVAL
project studies [395] used a D 0:6923. It gives an estimation of the specific solutal
expansion coefficient according to

˛lk 	
a C l

ks

�l0
(3.277)

The buoyancy coefficient (3.265) appearing in the Darcy equation (3.262) takes now
with (3.274) the form:

�l D
Nl�1X

kD1
ˇlck .C

l
k � C l

k0/� ˇl.T /.T � T0/ (3.278)

where we introduce with

ˇlck D
˛lk

C l
ks � C l

k0

(3.279)

the solutal expansion coefficient of species k. The mass conservation equation of
the liquid phase in the formulation of (3.267) can now be written as

"sl

�l
@�l

@hl
@hl

@t
C sl� @p

l

@hl
@hl

@t
C "@s

l

@t
Cr � ql D Ql CQlEOB (3.280)

to obtain by using (3.274) and (3.260)

sl �l0g
�
"	l C ��

„ ƒ‚ …
Slo

@hl

@t
C "@s

l

@t
Cr � ql D Ql CQlEOB (3.281)

where Slo D �l0g."	l C �/ is the specific storage coefficient, sometimes called spe-
cific storativity [38], due to liquid and medium compressibility, and the correction
sink term for the EOB approximation (3.268) gives now
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QlEOB D �ql �
�
	l�l0grhl C

Nl�1X

kD1
ˇlckrC l

k � ˇl�rT
�
�

"sl
�Nl�1X

kD1
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@C l
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(3.282)

To enforce conservativity for any magnitude of the specific storativity Slo  0,
in the EOB approximation (3.282) the correcting divergence term of the liquid

compression will be expressed by �ql 	 l�l0g � rhl 	 �ql S
l
o

"
� rhl .

3.10.5 Basic Model Equations of Single Liquid Phase
Variable-Density Darcy-Type Flow, Mass and Heat
Transport in Variably Saturated Porous Media: Second
Level Reduction

Applying the above assumptions and derivations of Sects. 3.10.1–3.10.4 to the
equations of the first level reduction as listed in Table 3.5, we can now summarize
the governing balance laws with their related constitutive relations in Table 3.7 as
the basic model equations of second level reduction, which are formulated in the
D�dimensional Euclidean space <D .D D 1; 2; 3/. Because we assume that only
one dynamic fluid phase, the liquid phase l , is present, we can omit the index l
in the symbols for the sake of simplicity. Only the solid phase needs to be further
identified by the index s. Typical adsorption relations for the adsorption function
'k, the retardation factor <k and the derivative term of retardation K<k are listed in
Table 3.8, which are derived in detail in Chap. 5.

3.10.6 Basic Model Equations of Variable-Density Darcy-Type
Flow, Mass and Heat Transport in Groundwater: Third
Level Reduction

The equations of Table 3.7 can be simplified for flow, mass and heat transport in
groundwater, the fully saturated porous medium. In this case

• The saturation is set to s D 1
and the following system of equations results which is summarized in Table 3.9.
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Table 3.7 Summarized balance laws and constitutive relations (CR) of single liquid phase
variable-density Darcy-type flow, mass and heat transport in variably saturated porous media as
second level model reduction. It forms a system of 2 C N � C D equationsa to solve the (2)
variables h (or  )b and T , the (N �) variables Ck of species k (or Cs

m of species m)c in the fluid
phase l and in the solid phase s, respectively, and the (D) variables q. Alternative convective forms
are given in angle brackets, alternative variable formulation of the Darcy law is given in round
brackets.
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a Liquid phase index l is omitted for the sake of simplicity.
b h D  C xj , the saturation s appears as a secondary variable which can be computed via the

capillary pressure head relations s. / described in Appendix D.
c Species k can occur both in the liquid phase l and the solid phase s, however, species m ¤ k

only occurs in the solid phase s.
d The function ˇ.T / and its derivative @ˇ.T /=@T are formulated in Appendix C: (C.8) and (C.10),

respectively.
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Table 3.8 Typical adsorption function 'k , retardation factor <k and derivative term of retardation
K<k . The parameter �k is the Henry sorptivity coefficienta , b�k and b

�

k are the coefficient and

exponent, respectively, and k�k and k�k are the coefficients. Derivation is given in Chap. 5
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alternative definition of the distribution coefficient can sometimes be found as <k D 1C� �s Kd
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�
,

where �s D .1� "/�s is the bulk density of porous media (mass dry media per total volume).

3.10.7 Basic Model Equations of Vertically Averaged Flow,
Mass and Heat Transport in Unconfined and Confined
Aquifers: Specific Case of Third Level Reduction

Flow, mass and heat transport, which are essentially horizontal in an aquifer, can be
vertically averaged as described in Sect. 3.5. 2D depth-integrated balance equations
result as described in Sect. 3.7.8 for which constitutive relations have to be added
similar to those as developed for the full 3D problems above. In doing this, the
following simplifications for the 2D, vertically averaged, essentially horizontal flow
and transport processes in aquifers hold:

• The aquifer forms a layer of a saturated porous medium of thickness B D
B.x1; x2; t/. While the bottom of the layer is considered stationary, on top the
saturated zone is bounded by a possibly moving phreatic surface, so that as shown
in Fig. 3.13:

B.x1; x2; t/ D h.x1; x2; t/� f B.x1; x2/ for unconfined condition
B.x1; x2/ D f T .x1; x2/� f B.x1; x2/ for confined condition

(3.283)

where h D h.x1; x2; t/ is the hydraulic head (3.260), f T .x1; x2/ and f B.x1; x2/

are the top and bottom bounding surfaces, respectively.
• The coordinate direction of integration xj (commonly xj D x3 D z) coincides

with direction of gravity, i.e., rxj D e. Accordingly, gravitational effects on
liquid density disappear. (Extensions will be treated in Sect. 11.9).

The boundaries of the aquifer on top and bottom, respectively, can be expressed by
their surface functions, cf. (2.112)
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Table 3.9 Summarized balance laws and constitutive relations (CR) of variable-density Darcy-
type flow, mass and heat transport in groundwater as third level model reduction. It forms a system
of 2 C N � C D equationsa to solve the (2) variables h and T , the (N �) variables Ck of species
k (or Cs

m of species m)b in the fluid phase l and in the solid phase s, respectively, and the (D)
variables q. Alternative convective forms are given in angle brackets.

Type Equations

Ml So
@h

@t
C r � q D Q CQEOB

Ml
k C Ms

k

@

@t
."<kCk/C r � .qCk/C r � jk C "#k<kCk D QRk

D
" K<k

@Ck

@t
C q � rCk C r � jk C "#k<kCk D QRk � CkQ

E

Ms
m

@

@t
."sC

s
m/ D "s.r

s
m CRsm/ m ¤ k

D
"s
@C s

m

@t
D "s.r

s
m C Rsm/

E

V l q D �Kf� � �rhC �e
�

E l C E s @

@t

h�
"�c C .1� "/�scs

�
.T � T0/

i
C r � .�cq.T � T0//� r � .Λ � rT / D He

D �
"�c C .1� "/�scs

� @T

@t
C �cq � rT � r � .Λ � rT / D He � �c.T � T0/Q

E

CR � D PNl
�1

kD1 ˇck .Ck � Ck0/� ˇ.T /.T � T0/

QEOB D �q �
�
So
"

rhCPNl
�1

kD1 ˇckrCk � ˇ�rT
�

� "
�PNl

�1
kD1 ˇck

@Ck
@t

� ˇ� @T
@t

�

ˇ� D
8
<̂

:̂

ˇ constant
ˇ.T /C @̌ .T /

@T
.T � T0/

1CPNl
�1

kD1 ˇck .Ck � Ck0/� ˇ.T /.T � T0/
variablec

ˇck D ˛k
Cks�Ck0

So D �0g."	 C �/

jk.=Hkjkk C 1/ D �Dk � rCk
Dk D "DkδCDmech

Dmech D ˇT kqkδC .ˇL � ˇT /
q˝q

kqk

<k D 1C �
1�"
"

�
'k

K<k D 1C �
1�"
"

� @.'kCk /
@Ck

'k D 'k.Ck/

Λ D �
"�C .1� "/�s


δ C �cDmech

f� D �0=�.
Ck
�
; T /

He D �H C �sHs

a Liquid phase index l is omitted for the sake of simplicity.
b Species k can occur both in the liquid phase l and the solid phase s, however, species m ¤ k

only occurs in the solid phase s.
c The function ˇ.T / and its derivative @ˇ.T /=@T are formulated in Appendix C: (C.8) and (C.10),

respectively.

F T D F T .x1; x2; x3; t/ D x3 � h.x1; x2; t/ D 0 unconfined
F T D F T .x1; x2; x3/ D x3 � f T .x1; x2/ D 0 confined
FB D FB.x1; x2; x3/ D x3 � f B.x1; x2/ D 0 unconfined/confined

(3.284)

For unconfined conditions the top boundary moves with the velocity w and in
accordance with (2.113)–(2.115) it is
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Fig. 3.13 Unconfined and confined conditions in an aquifer (vertical cross section xj D x3)

@F T

@t
Cw � rF T D 0 or

@h

@t
�w � r.x3 � h/ D 0

(3.285)

with the outward-pointing unit normal vector to the surface F T D 0

n D rF T

krF T k (3.286)

and the normal component of the moving surface with F T D x3 � h D 0

w � n D �@F
T =@t

krF T k D
@h

@t
(3.287)

where we have assumed that krF T k D kr.x3 � h/k 	 krx3k D 1, i.e., the water
table is approximately horizontal. For the stationary boundaries F T in the case of
confined aquifer and FB we have

w � n D 0 @F T

@t

ˇ
ˇ
ˇ
confined

D @F B

@t
D 0 (3.288)

Now, let us consider the vertically averaged mass balance equation (3.76) written
in the form:

@

@t
.B"�/Cr � .B"�v/ D B"�.QCQex/ (3.289)

We can replace the external mass supply Qex by the interface relation (3.75) of the
upper phreatic surface specified for mass
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h

fully saturated zone at s =1
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at residual saturation sr
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Fig. 3.14 Phreatic surface with accretion

B"�Qex D �"�.v �w/ � n (3.290)

where w designates the macroscopic surface velocity and n is the outward unit
normal vector to the moving surface F T . The phreatic surface separates the fully
saturated zone from the unsaturated zone, where we assume that the interface is
sharp. It forms the water table with h D x3. For the unsaturated zone we assume
that the liquid in the void space is at the residual (irreducible) saturation sr . On the
upper side of the phreatic surface we take into account the possibility of accretion
P , e.g., from precipitation, as depicted in Fig. 3.14.

The mass balance at the phreatic surface requires that the mass flux through the
lower side of the interface at the saturated zone is equal to the mass flux through the
upper side of the interface at the unsaturated zone, viz.,

".v �w/ˇˇsat � n � ".v �w/
ˇ
ˇ
unsat � n D 0 (3.291)

The accretion is P D "vˇˇunsat. For a vertically downward-oriented accretion we use

P D �P rx3 (3.292)

where P corresponds to the rate of infiltration or groundwater recharge. Using
(3.287) with "junsat D "sr andw

ˇ
ˇ
sat D w

ˇ
ˇ
unsat we find

"w
ˇ
ˇ
unsat � n D "sr

@h

@t
(3.293)

Then, with (3.291), (3.292), and (3.293) the interface BC reads

B"Qex D �".v �w/
ˇ
ˇ
sat � n

D �".v �w/ˇˇunsat � n D �P � n„ ƒ‚ …
P

C"sr @h
@t

(3.294)
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and the flux BC of a phreatic (free) surface results

"v„ƒ‚…
q

�n D ".1 � sr /„ ƒ‚ …
"e

@h

@t
� P (3.295)

where

"e D ".1� sr / (3.296)

is referred to as the specific yield (also called storativity or drainable and fillable
porosity) of a phreatic aquifer and q �n is the positive outward normal flux of liquid
leaving the saturated zone through the phreatic surface.

Using (3.294) the mass balance equation (3.289) for the unconfined aquifer can
be written as

B"

�

@�

@t
CB @"

@t
C "@B

@t
Cr � .Bq/ D B"QC P C "sr

@h

@t
(3.297)

Since B D h � f B (3.283) the vertically averaged mass balance equation (3.297)
for an unconfined aquifer finally takes the form:

.SoB C "e/@h
@t
Cr � .Bq/ D B"QC P (3.298)

where the derivations of @�=@t and @"=@t have been developed in the same manner
as described in Sect. 3.10.4. To simplify the notation we shall designate depth-
integrated quantities by an overline and define

Nq D B q
NSo D B So
NQ D B"QC P

(3.299)

so that (3.298) can be written as

. NSo C "e/@h
@t
Cr � Nq D NQ (3.300)

The remaining vertically averaged balance equations (3.77)–(3.82) for species mass,
momentum and energy can now be similarly developed, where the same principles
for the constitutive relations are applied as described in Sect. 3.10.6 for the fully
saturated porous medium (groundwater). The resulting model equations of vertically
averaged flow, mass and heat transport in an unconfined aquifer are summarized in
Table 3.10.

Under confined aquifer conditions the boundary surfaces F T and FB are
assumed stationary, so that @B=@t D 0 and B"Qex D P and the mass balance
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Table 3.10 Summarized balance laws and constitutive relations (CR) of vertically averaged flow,
mass and heat transport in an unconfined aquifer forming a system of 4CN � equationsa to solve
the (2) variables h and T , the (N �) variables Ck of species k (or Cs

m of species m)b in the fluid
phase l and in the solid phase s, respectively, and the (2) variables Nq. Alternative convective forms
are given in angle brackets.
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a The gradient operator r is only 2D.
b Species k can occur both in the liquid phase l and the solid phase s, however, species m ¤ k

only occurs in the solid phase s.

equation (3.300) reduces to the simple form

NSo @h
@t
Cr � Nq D NQ (3.301)

Usually, for confined aquifers the product of hydraulic conductivityK (3.263) and
aquifer thicknessB D f T � f B (3.283) is combined in the tensor of transmissivity
T defined as
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Table 3.11 Summarized balance laws and constitutive relations (CR) of vertically averaged flow,
mass and heat transport in a confined aquifer forming a system of 4CN � equationsa to solve the
(2) variables h and T , the (N �) variables Ck of species k (or Cs

m of species m)b in the fluid phase
l and in the solid phase s, respectively, and the (2) variables Nq. Alternative convective forms are
given in angle brackets.
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only occurs in the solid phase s.

T D BK D kB�0g

�0
(3.302)

which represents an aquifer property measured as the flow rate per unit width
through the entire aquifer thickness. The concept of transmissivity is only applicable
to vertically averaged, essentially horizontal flow in confined aquifers. In Table 3.11
we summarize the governing model equations of vertically averaged flow, mass and
heat transport in confined aquifers.
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3.11 Standard Model Equations for Solving Flow, Mass
and Heat Transport in Porous Media

The equation systems derived in Sect. 3.10 provide the general physical model-
ing basis for solving 3D and 2D (including axisymmetric and vertically aver-
aged) variable-density flow, multispecies (chemically reactive) mass and heat
transport processes in variably saturated porous media. They are summarized in
Tables 3.7, 3.9, 3.10, and 3.11 for the variably saturated porous medium, for
groundwater, for 2D unconfined and confined aquifers, respectively. In general, the
equations are nonlinearly coupled due to density effects, dependencies by variable
saturation (or presence of phreatic surface), chemical reactions, non-Fickian mass
flux and viscosity effects. Four problem classes are distinguished:

1. Flow: Solving the flow equations in a separate manner, there are no density and
viscosity effects.

2. FlowCmass: Solving flow and mass transport, which can be coupled by density,
viscosity, chemical reaction and non-Fickian mass flux.

3. Flow C heat: Solving flow and heat transport, which can be coupled by density
and viscosity.

4. FlowC massC heat: This represents the most complex model for simultaneous
solution of flow, mass and heat transport, which can be coupled by density, vis-
cosity, chemical reaction and non-Fickian mass flux. If the non-isothermal mass
transport is related to salinity, the processes are often termed as thermohaline.
Since, in general, mass and heat have different diffusivities new phenomena can
result for this problem class termed as double-diffusive convection (DDC).

With respect to the temporal dependency of the governing flow and transport
equations we can choose three time classes:

(i) Transient flow/transient transport: Both flow and (mass/heat) transport are
simulated in their fully temporal dependency as formulated in the basic
equations of Tables 3.7, 3.9, 3.10, and 3.11.

(ii) Steady-state flow/transient transport: The flow process is considered station-
ary, i.e., @h=@t D 0, while (mass/heat) transport remains fully transient. This
exceptional case is useful if the temporal, often short-term variations of flow
are negligible in comparison to the temporal, often long-term variations of
mass and/or heat transport.

(iii) Steady-state flow/stationary transport: For both flow and (mass/heat) transport
only steady-state solutions are searched, i.e., @h=@t D 0, @Ck=@t D 0 and
@T=@t D 0. We note, however, under nonlinear conditions in general, a unique
steady-state solution must not exist.

It is obvious that the Darcy law of momentum conservation, written in the general
form

q D �krKf� �
�rhC �e� (3.303)
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Table 3.12 Primary and secondary variables of standard model equations

Type Equations set Primary variablesa Secondary variablesb

Variably saturated media Table 3.7 h; Ck; T s; q; . ; p/

Fully saturated media (groundwater) Table 3.9 h; Ck; T q; .p/

2D unconfined aquiferc Table 3.10 h; Ck; T q

2D confined aquiferc Table 3.11 h; Ck; T q

a Number of variables is 2CN �: 1 for flow, N � for mass and 1 for heat, independent of problem
dimension D

b Other secondary variables could be mass and heat fluxes jk and jT , respectively
c Essentially horizontal, vertically averaged equations

is very well suited for substituting the Darcy velocity q in the mass conservation

s So
@h

@t
C "@s

@t
Cr � q D QCQEOB (3.304)

to obtain the flow equation

s So
@h

@t
C "@s

@t
� r � �krKf� � .rhC �e/

 D QCQEOB (3.305)

which represents a generalized form of the so-called Richards’ equation named after
L.A. Richards [440], who firstly derived and published such a type of flow equation
for unsaturated porous media in 1931. The advantage is that only one primary
variable h (or ) remains to be solved for the flow problem, while the Darcy velocity
q appears now as a secondary variable, which can be easily solved from (3.303)
with known h. Accordingly, the solution is reduced to only 1 flow equation, N �
mass transport equations and 1 heat transport equation of scalar primary variables
h, Ck and T , respectively, as summarized in Table 3.12.



Chapter 4
Discrete Feature

4.1 Discrete-Feature Conceptual Model

In Sect. 3.2 the REV concept was introduced for porous media, where for an
effective continuum a certain scale exists at which the geometric properties of the
void space and individual heterogeneities are smoothed out due to the process of
spatial averaging. Even for fractured media of rock masses the averaging technique
can also be applicable, provided the scale of the void space and heterogeneity of
both pores and fractures forms an equivalent continuum of an overlapping REV. In
a fracture domain the scale of heterogeneity is the distance between fractures. If the
domain is sufficiently large, a REV can be found and the fractured porous media
can be treated as a single continuum for which the modeling equations of Chap. 3
are valid. We note, however, that the scale of REV cannot be too large and must
be significantly smaller than the scale of gross inhomogeneity and scale of problem
domain as required by (3.1).

In some cases, flow, mass and heat transport can tend to be dominated by
a limited number of discrete pathways formed by fractures and other discrete
features clearly represented by different scales for which an equivalent single
(overlapping) REV does not exist anymore and different continua, one for the porous
medium and one for the discrete feature, must be applied. Porous media and
discrete features are then treated separately and have to be coupled through the
macroscopic interfaces. The term discrete features is used here as a generalization of
all those geometric representations of a lower spatial dimension having commonly
a significant fluid conductance in comparison to the porous medium. Accordingly,
discrete features do not mean only fractures, they encompass various natural and
engineered characteristics such as listed in Table 4.1 and illustrated in Fig. 4.1.

The central component in modeling discrete features is that their geometries and
properties are explicitly incorporated. A discrete feature can often be used as a
domain, where one or two spatial dimensions are much smaller than the length
of interest, so that they can be represented by 2D or even only 1D geometries.
For instance, a discrete feature in form of a fracture is characterized by an

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5 4,
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Table 4.1 Typical discrete features

Dimension Application

1D (plane) Channel, mine stope, tunnel, river
1D (tubular) Pumping well, abandoned well, vug,

borehole, shaft, karstic conduit, drift,
tunnel, cavity, drain

2D Fracture, fault, overland flow, runoff

river

overland flow
well field

fault

fractures
shaft

cavity
drift
tunnel

runoff

conduits

Fig. 4.1 Subsurface and surface hydro-geosystem structure containing discrete features

aperture which is very small and the flow in a fracture takes place essentially
parallel to the fracture’s axis. On the other hand, the diameter of a borehole
and its cross-sectional flow variations are usually very small compared to the
length, so that flow and transport through a borehole can be represented by a
1D process dominated along the borehole axis. Apparently, the range of appli-
cations and the dimension of the discrete features require a unified approach
possessing different laws of fluid motion, both pure fluid and porous-medium
flows, problems with and without free surface in plane (1D, 2D) and tubular (1D)
geometries.
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Table 4.2 Balance laws Quantity � j �F

Mass
barycentric � 0 �Q

species Ck jk rk
Momentum �v σ �g

Energy �.E C 1
2
v2/ jT C σ � v �.H C g � v/

4.2 Fundamental Relations

The flow, mass and heat transport equations were derived in Chap. 3 for a porous
medium which is represented by a multiphase system. They consist of both
D�dimensional and depth-integrated 2D equations. From the mathematical point
of view these equations represent generalized formulations from which the basic
equations valid for discrete features can easily be degenerated by a formal reduction
of the number of dimension and number of phases. For instance, the pure fluid
flow in a fracture is nothing more than a single-fluid phase process with a porosity
" D 1 and saturation s D 1. Furthermore, 2D depth-integrated fracture flow and
transport is in a full analogy to the vertically averaged processes in aquifers as
already described in Chap. 3.

4.2.1 General Balance Statement

The conservation of mass, momentum and energy is described by the balance
statement (3.34) written in the form

@.� /

@t
Cr � .� v/Cr � j D �F (4.1)

conserving the (extensive) quantity .� /. Individual balance laws for .� /, j and
�F are summarized in Table 4.2.

4.2.2 Forms of Balance Equations

According to the typical applications for discrete features indicated above, four
forms of the governing balance equation (4.1) can be distinguished:

• Form A: pure fluid balance law
• Form B: vertically integrated pure fluid balance law
• Form C: porous-medium balance law
• Form D: vertically integrated porous-medium balance law
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The form A is already represented by (4.1). A vertical integration of (4.1) over a
depth (thickness, aperture) B can be rigorously performed as described in Sect. 3.5
leading to the form B:

@.B� /

@t
Cr � .B� v/Cr � .Bj/ D B�F C j T � jB (4.2)

with the new exchange terms of the quantity  at the top and bottom boundaries,
respectively

j T D
1

dS

Z

dST
nT � Œj C � .w � v/�da

jB D
1

dS

Z

dSB
nB � Œj C � .w � v/�da

(4.3)

Note that the balance quantities of (4.2) are now averaged over the depth B and the
gradient operator r is only 2D. The transformation of the balance equation (4.1) to
a porous medium is performed by spatial averaging procedures referred to the REV
as described in Sect. 3.3. It finally yields the form C of the basic balance statement
written for a single liquid phase of saturation s

@."s� /

@t
Cr � ."s� v/Cr � ."sj/ D "s�F C j I (4.4)

where " corresponds to the porosity (void space) of the porous medium. In (4.4) an
exchange term at the liquid-solid interface appears

j I D
1

dS

Z

dSI
nI � Œj C � .w � v/�da (4.5)

Note that the balance quantities of the porous-medium conservation equation (4.4)
are averaged over the REV volume. Finally, the porous-medium equation (4.4) can
also be vertically integrated over the depth B , which yields form D of the basic
balance statement as

@.B"s� /

@t
Cr � .B"s� v/Cr � .B"sj/ D B"s�F C Bj I C j T � jB (4.6)

It is obvious, from the mathematical point of view the balance statement (4.6) of
form D represents the most general formulation which comprises all other forms if
we specify the porosity " as

"

� � 1
< 1

for
pure liquid flow
porous-medium flow

(4.7)
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the saturation s as

s

� � 1
� 1 for

pure liquid flow
porous-medium flow

(4.8)

the depth B as

B

� � 1
> 0

for
non-integrated form
vertically integrated form

(4.9)

the interface exchange term j I as

j I 

� � 0
¤ 0 for

pure liquid flow
porous-medium flow

(4.10)

and the top and bottom exchange terms j T , jB as

.j T ; j
B
 /

� � 0
¤ 0 for

non-integrated form
vertically integrated form

(4.11)

4.2.3 Hydraulic Radius

The hydraulic radius is defined as the flow cross-sectional area divided by the wetted
perimeter

rhydr D flow area

wetted perimeter
(4.12)

Table 4.3 lists the hydraulic radii for interesting cases.

4.2.4 Free Surface Condition

A free surface represents a macroscopic moving material interface between two
fluids, e.g., air and water. A material surface F D F.x; t/ D 0 is governed by the
kinematic equation, cf. (2.113)

@F

@t
Cw � rF D 0 (4.13)
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Table 4.3 Hydraulic radii for different applications

Case Type rhydr

(a)
Bb

2.b C B/

B

b

submerged rectangular cross - section

(b)
Bb

2B
D b

2
submerged slit plane

b

B

(c)
Bb

b C 2B
open rectangular cross-section

B

b

(d)
B

1C 2B=b
� Bopen wide channel (b>20 B ),  plane

B

b

(e)
�R2

2�R
D R

2
submerged circular cross - section

R

where w is the velocity of the interface. The outward unit vector normal to F is
defined as

n D rF
krF k (4.14)

and accordingly

w � n D �@F=@tkrF k (4.15)

where krF k denotes the magnitude of the vector rF . For the vertical integration
over the thickness B , similar to Sect. 3.10.7, we can express the geometries of the
top and bottom surfaces in the forms (Fig. 4.2), cf. (3.284)
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x3
x2

x1 datum level

n

h

FT 0=

B x1 x2 t

FB 0=

fB x1 x2 t fT x1 x2 t

Fig. 4.2 Surface conditions

F T D F T .x; t/ D x3 � f T .x1; x2; t/ D 0
F B D F B.x; t/ D x3 � f B.x1; x2; t/ D 0 (4.16)

and

B D B.x; t/ D f T .x1; x2; t/ � f B.x1; x2; t/ (4.17)

For a free surface the top elevation x3 D f T .x1; x2; t/ is identical to the hydraulic
head h D h.x1; x2; t/. Accordingly, the thickness is given by

B D B.x; t/ D h � f B (4.18)

4.2.5 Viscous Stresses on Surfaces

The viscous stresses on top and bottom surfaces result from exchange relationships
(4.3) if replacing the general flux vector j by the viscous stress tensor of liquid σ
(cf. Table 4.2), viz.,

σTB D 1

dS

Z

dSTB
nTB � Œσ C �v.w � v/�da (4.19)

where σTB stands for the viscous stress on the top and bottom surface with normal
nTB. It represents a surface force per unit area depending on the orientation of
the surface [409]. For instance, let us consider the stress components on a planar
top surface as illustrated in Fig. 4.3. Assuming additionally a rigid and impermeable
surface .w D 0; nT �v D 0/ with a constant stress property on the unit area dS, the
surface stress is explicitly given by

σT D nT � σ (4.20)
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x3

x2

x1

n
T

0
1
0

=

σ3
T σ23=

σ2
T σ22=

σ1
T σ21=

Fig. 4.3 Surface forces
related to the components of
the viscous stress tensor σ

With nT D .0 1 0/T the stress components become

�T1 D 0 �11 C 1 �21 C 0 �31 D �21
�T2 D 0 �12 C 1 �22 C 0 �32 D �22
�T3 D 0 �13 C 1 �23 C 0 �33 D �23

(4.21)

4.3 Basic Balance Laws

4.3.1 Liquid Mass Conservation

The liquid mass conservation is described by specifying (4.6) with Table 4.2 as

@

@t
.B"s�/Cr � .B"s�v/ D B"s�QC BQI CQT �QB (4.22)

or by introducing the Darcy velocity q D "s.v � vs/, cf. (3.240),

@

@t
.B"s�/Cr � .B� q/Cr � .B�"svs/ D B"s�QCBQI CQT �QB (4.23)

where QI , QT and QB are the interfacial, top and bottom exchange terms,
respectively. Using the constitutive relations for liquid and medium compressibility,
(3.197), (3.274), (3.246), (3.281), as well as assuming unconfined conditions for
B D h�f B , (3.283), and the approximation for deformable media (3.243), (3.245),
we find for the terms of (4.23)

@

@t
.B"s�/Cr � .B�"svs/ D B"s @�

@t
C �

� Bs

1 � "
@"

@t
C "s @B

@t
C B"@s

@t

�

D �
h�
Bs"�0g	 CBs��0g C "s

�@h

@t
C B"@s

@t

i

D �
h�
BsSo C "s

�@h

@t
CB"@s

@t

i

(4.24)
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with the specific storage coefficient

So D �0g."	 C �/ (4.25)

Taking the surface relationships introduced in Sect. 3.10.7 with (3.290) to (3.296)
we obtain for the top exchange terms of (4.23):

QT D �"s�.v �w/ � n D �"sr�.v �w/junsat � n
D �P C �"sr @h

@t

(4.26)

where P is the recharge. Finally, by using (4.24) and (4.26) the liquid mass
conservation (4.23) obtains the form

�
BsSo C ".s � sr /

@h

@t
CB"@s

@t
Cr � .Bq/ D NQ (4.27)

with a generalized source/sink term NQ D B"sQ C BQI C P �QB . In (4.26) the
OB approximation (cf. Sect. 3.10.3) is applied, where density effects in the mass
balance equation are neglected. We note that the specification of " and s in (4.27)
has to be in accordance with the problem classes to be used. For instance, for a pure
liquid flow it is " D 1 and s D 1 and the mass conservation equation reads

BSo
@h

@t
Cr � .Bq/ D NQ

So D �0g	

q D v
(4.28)

On the other hand, a fully saturated porous medium with s D 1, the mass balance
equation (4.27) simplifies

�
BSo C "e

�@h

@t
Cr � .Bq/ D NQ (4.29)

where "e D ".1 � sr / is the specific yield (3.296). It is important to note that for a
variably saturated porous medium the free surface (phreatic) condition in (4.27) is
not applicable. In this case the contribution ".s � sr / in the storage term of (4.27)
must vanish, cf. Sect. 3.10.7.

4.3.2 Liquid Momentum Conservation

The liquid momentum conservation is specified from (4.6) with Table 4.2 as
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@

@t
.B"s�v/Cr � .B"s�vv/ D �B"srp Cr � .B"sτ /C

B"s�g CBf� C σT � σB (4.30)

where the liquid stress tensor σ is split into the equilibrium part (pressure p) and
non-equilibrium (deviatory) stress τ according to (3.114). In (4.30) f� , σT and σB

represent the deviatoric interfacial, the top and bottom momentum exchange vectors,
respectively. Notice, in (4.30) the momentum exchange term f� vanishes for pure
liquid motion and the terms σT and σB are dropped if the equation is not vertically
integrated.

In the following we assume the Newton’s viscosity law (3.142) (including the
Stokes’ assumption (3.141)) which is written in the form

τ D 2
3
�.δWd/δ � 2�d (4.31)

with the strain-rate tensor

d D 1
2

�rv C .rv/T  (4.32)

where � is the dynamic viscosity of the liquid. For an incompressible liquid with a
divergenceless (solenoidal) velocityr�v D 0, the momentum conservation equation
(4.30) leads to the well-known Navier-Stokes equation written in a generalized
form as

B"s�
h@v

@t
C .v � r/v

i
D �B"s.rp � �g/C B�r2."sv/C

Bf� C σT � σB (4.33)

from where more specific forms will be derived as follows.

4.3.2.1 Darcy Flow in Porous Media

Commonly, in a porous medium the velocity v is sufficiently small so that the
Reynolds number Rep (3.254) based on a typical pore diameter persists in a range
Rep < 1 : : : 10. As a consequence, the inertial terms in the momentum equation
(4.33) can be neglected

@v

@t
	 0 .v � r/v 	 0 (4.34)

and the momentum equation for porous media written in its non-integrated form
with B � 1 and σT D σB D 0 yields

"s.rp � �g/ D f� C �r2."sv/ (4.35)
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Furthermore, the viscous shear stresses of the liquid appearing in the Brinkman term
�r2."sv/ can be usually neglected in comparison to the drag term of momentum
exchange f� as discussed in Sect. 3.9.2. The interfacial drag term of momentum
exchange f� can be derived as a linear relationship of the form, cf. (3.154):

f� D �"s�.kl /�1 � q (4.36)

where the intrinsic permeability kl represents an inverse friction tensor due to the
viscous drag at the liquid-solid interfaces of the porous medium, which is expressed
as kl D krk, cf. (3.224). Finally, the momentum equation (4.35) reduces to the
well-known Darcy equation written in its pressure formulation

q D �krk
�
� .rp � �g/ (4.37)

or in its equivalent hydraulic head formulation1

q D �krKf� � .rhC �e/ (4.38)

where h D p=.�0g/ C xj , K D k�0g=�0, f� D �0=�, � D .� � �0/=�0 and
e D �g=kgk (see also Sect. 3.10.2). Equations (4.37) and (4.38) are valid for flow
in a discrete feature filled by a porous medium.

4.3.2.2 Plane and Axisymmetric Parallel (Hagen-Poiseuille) Flow

A pure liquid flow is called parallel when inertial terms of the Navier-Stokes equa-
tion (4.33) vanish. That means, a liquid particle is subjected to zero acceleration,
accordingly, it moves in pure translation with constant velocity v. It follows that
pathlines must be straight lines and that the velocity of each particle may depend
only on coordinates perpendicular to the direction of flow. Such laminar flow fields
occur between two parallel plates or in a circular tube as depicted in Fig. 4.4. They
are termed as Hagen-Poiseuille flow named after the German engineer G. Hagen
(1839) and the French physician J. Poiseuille (1840) who first studied independently
this type of flow [409].

1With the hydraulic head h D p=.�0g/ C xj D  C xj , (3.260), it is p D �0g.h � xj / and
yields:

rp � �g D rp C �ge D �0g
�
r C rxj C � � �0

�0

�
D �0g.rhC �e/:
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x

y

b

u z

r

vz

R

a b

Fig. 4.4 (a) 2D plane and (b) axisymmetric Hagen-Poiseuille flow

For a 2D parallel laminar flow (Fig. 4.4a) we have

v D
0

@
u
v

w

1

A u D u.y/ v D w D 0 (4.39)

and the momentum equation (4.33) in the x�direction becomes (note that we
consider the pure liquid case "s � 1 without vertical integration B � 1):

dp

dx
� �gx D �d

2u

dy2
(4.40)

Integrating (4.40) with the BC u.0/ D u.b/ D 0, where b is the aperture (Fig. 4.4a),
it yields

u D � 1

2�

�dp

dx
� �gx

�
y.b � y/ (4.41)

and we obtain the average velocity Nu in the aperture b as

Nu D 1

b

Z b

yD0
u dy D � b2

12�

�dp

dx
� �gx

�
(4.42)

and the dischargeQ (per unit width) as

Q D Nu b D � b3

12�

�dp

dx
� �gx

�
(4.43)

which is called the cubic law of the Hagen-Poiseuille flow. The relationship (4.42)
can be expressed by the hydraulic radius rhydr if replacing the dimension b=2 for the
slit flow according to Table 4.3, case (b):

Nu D �r
2
hydr

3�

�dp

dx
� �gx

�
(4.44)
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Similarly, for the axisymmetric flow in a circular tube (Fig. 4.4b) with

v D
0

@
vr

v
vz

1

A vz D vz.r/ vr D v D 0 (4.45)

we solve the momentum equation (4.33) in the z�direction (see (2.73) for the
second-order derivative operation in cylindrical coordinates):

dp

dz
� �gz D �

r

�
@

@r

�
r
@vz

@r

��

(4.46)

With dvz=dr D 0 at r D 0 and vz.R/ D 0 (Fig. 4.4b) the integration of (4.46) gives

vz D � 1

4�

�dp

dz
� �gz

�
.R2 � r2/ (4.47)

Then, the average velocity for the Hagen-Poiseuille flow in a circular tube becomes

Nvz D 1

�R2

Z 2�

D0

Z R

rD0
vz r drd D �R

2

8�

�dp

dz
� �gz

�
(4.48)

and the discharge through the tube is

Q D �R2 Nvz D ��R
4

8�

�dp

dz
� �gz

�
(4.49)

The relationship (4.48) can be expressed by the hydraulic radius rhydr if replacing
the dimension R=2 for the tube flow according to Table 4.3, case (e):

Nvz D �
r2hydr

2�

�dp

dz
� �gz

�
(4.50)

As seen the Hagen-Poiseuille’s laws of laminar liquid motion for plane flow
(4.42) and axisymmetric flow (4.48) represent linear relationships with respect to
the pressure gradient and gravity .rp � �g/. Instead of p we can formulate the
relationships with the hydraulic head h and find the following generalized equation
of ‘diffusive flux-type’ for the Hagen-Poiseuille flow:

v D �Kf�.rhC �e/

K D r2hydr �0g

a �0
δ with

�
rhydr D b=2; a D 3 for plane flow
rhydr D R=2; a D 2 for axisymmetric flow

(4.51)
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Fig. 4.5 Open channel flow

4.3.2.3 Laws of Liquid Motion for Overland and Channel Flow

Basically, the pure liquid motion for overland and channel flow is described by the
vertically integrated Navier-Stokes equation (4.33) according to

B�
�@v

@t
C .v � r/v D �B.rp � �g/C B�r2v C σT � σB (4.52)

which is a formulation of the well-known De Saint-Venant equation [73, 74, 245,
483]. Over a wide range of practical overland and channel flow (Fig. 4.5) at low-
to-moderate velocity/flow regimes the inertial terms in the governing momentum
balance equation (4.52) can be ignored compared to the gravitational terms, friction
and pressure effects. Furthermore, the interior viscous effects can be neglected over
the shear stress effects at the surfaces [73, 74]. Assuming that,

@v

@t
	 0 .v � r/v 	 0 �r2v 	 0 (4.53)

the momentum equation (4.52) reduces to

B.rp � �g/� σT C σB D 0 (4.54)

The shear effect σT on the top (free) surface can be caused by wind stress.
However, for the present applications influences by wind stress will be neglected:

σT 	 0 (4.55)

On the other hand, the shear effects at the bottom surface σB represent the dominant
friction forces and can usually expressed by a friction slope relationship of the form:

σB D �0gBSf
Sf D kvkv

�2 rıhydr

(4.56)
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Table 4.4 Various friction
laws Law � ı Sf

Newton-Taylor 1
r

g

fN

fNkvkv
g rhydr

Darcy-Weisbach 1
s
8g

fD

fDkvkv
8g rhydr

Chezy C 1 kvkv
C2 rhydr

Manning-Strickler M 4=3 kvkv
M2 r

4=3

hydr

where Sf is the vector of friction slopes at channel bottom, kvk D pv � v, � is a
general friction factor and ı  1 is a constant. Specifications of � and ı provide
different friction laws as listed in Table 4.4 for isotropic roughness coefficients.

Inserting (4.56) with (4.55) into (4.54) the following momentum equation results

.rp � �g/C �0gSf D 0 (4.57)

Instead of using the pressure p as primary variable the hydraulic head h or the local
pressure head  are alternative formulations of (4.57), viz.,

rhC Sf C �e D 0 (4.58)

or

r C Sf C .1C �/e D 0 (4.59)

where the buoyancy coefficient � comprises liquid density effects. Equation (4.58)
can be used to derive a diffusion-type flow equation [195]. Since, exemplified for 2D

kvk2 D u2 C v2 D �2 rıhydr

q
S2f x C S2fy (4.60)

and using (4.56)

Sfx D
p

u2 C v2
�2 rıhydr

u Sfy D
p

u2 C v2
�2 rıhydr

v (4.61)

we find with (4.58): Sfx D �.@h=@x C �ex/, Sfy D �.@h=@y C �ey/

u D � � r
ı=2

hydr

4

q
. @h
@x
/2 C . @h

@y
/2

�@h

@x
C �ex

�

v D � � r
ı=2
hydr

4

q
. @h
@x
/2 C . @h

@y
/2

�@h

@y
C �ey

�
(4.62)
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which can be concisely written in a generalized ‘diffusive flux-type’ form:

v D �K � .rhC �e/
K D � r

ı=2
hydr

4
pkrhk2 δ

(4.63)

It can be easily shown that the velocity v in (4.63) tends to zero if the gradient rh
vanishes, provided that � D 0:

limrh!0
v D � limrh!0

� r
ı=2

hydr

4
pkrhk2 δ � rh D 0 (4.64)

4.3.3 Species Mass Conservation

The mass conservation of species k is specified from (4.6) with Table 4.2 as

@.B"sCk/

@t
Cr � .B"sCkv/Cr � .B"sjk/ D B"s Nrk (4.65)

which can be employed for all interesting mass transport problems when specifying
"s and B appropriately. Note that the reaction term Nrk also includes both interfacial
and surfacial mass transfer conditions. In analogy to the developments done in
Sect. 3.9.2 the reaction term Nrk can be split into a first-order reaction rate and a
production term, respectively,

Nrk D �#kCk C QRk (4.66)

The species mass flux jk is expressed by the Fick’s law (3.183) written in the form

jk D �Dk � rCk
Dk D Dkδ CDmech

(4.67)

The hydrodynamic dispersion tensor Dk consists of the molecular diffusion part
Dkδ and the mechanical dispersion part Dmech. In a porous medium Dmech is
usually described by the Scheidegger-Bear dispersion model (3.182) as

Dmech D ˇT kvkδ C .ˇL � ˇT /v ˝ vkvk (4.68)

In a pure liquid flow there is a large variety forDmech in dependence on laminar and
turbulent flow conditions. For instance, in a liquid-filled tube under laminar flow
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conditionsDmech can be estimated by Taylor’s analysis [508]:

D.k/mech D
�R2kvk
48Dk

�v ˝ v
kvk (4.69)

which is in this case even species-dependent.
Using the Fickian law (4.67) and incorporating the liquid mass conservation

(4.22), the species mass balance law (4.65) is written in its convective form

B"s
@Ck

@t
CB"sv �rCk�r�.B"sDk �rCk/C. NQCB"s#k/Ck D B"s QRk (4.70)

Considering additionally sorption effects in the porous medium in accordance with
Sect. 3.9.2 the following species mass transport equation can be derived:

B"s K<k @Ck
@t
CB"sv � rCk �r � .B"sDk � rCk/C . NQCB"s#k<k/Ck D B"s QRk

(4.71)

with the retardation relationships

<k D 1C
�
1�"
"

�
'k

K<k D 1C
�
1�"
"

�
@.'kCk/

@Ck

(4.72)

in which the sorption function 'k can be specified for Henry, Freundlich and
Langmuir isotherms as listed in Table 3.8.

4.3.4 Energy Conservation

The energy balance equation is derived basically from (4.6) with Table 4.2 under
the assumption of a thermal equilibrium between the liquid l and the solid s phase
(see Sect. 3.9.2 for more details). We obtain finally (note that the liquid phase index
is omitted for convenience):

@

@t
fBŒ"s�E C .1 � "/�sEs�g C r � .B"s�Ev/Cr � .BjT / D B He (4.73)

with

He D "s�H C .1 � "/�sHs (4.74)

which can be applied to all interesting heat transport problems when specifying ", s
andB appropriately. Note that the generalized thermal source/sink termHe includes
both interfacial and surfacial heat transfer conditions.

Using the state relation (3.208) for the internal energy
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dE˛ D c˛ dT for .˛ D l; s/ (4.75)

and the Fourier heat flux (3.176) with (3.177)

jT D �Λ � rT
Λ D Λ0 CΛmech D Œ"s�C .1 � "/�s�δ C "s�cDmech

(4.76)

it yields the following balance equation for the thermal energy written in its
convective form:

BŒ"s�c C .1� "/�scs�@T
@t
CB"s�cv � rT � r � .BΛ � rT /C

�c.T � T0/ NQ D B He (4.77)

to be solved for the system temperature T .

4.3.5 Generalized Model Equations

4.3.5.1 Flow

The fundamental flow equation represents a combination of the liquid mass
conservation equation (4.27) and the liquid momentum conservations for porous
media (4.38), Hagen-Poiseuille flow (4.51) and overland/channel flow (4.63). As
the result, Table 4.5 summarizes the governing equation for 1D and 2D discrete
features in dependence on the problem cases under consideration. For the Hagen-
Poiseuille flow and overland/channel flow standard geometric forms of the fractures
are embodied. Different geometries can be input by means of corrections in the
corresponding hydraulic parameters as described in Sect. 4.4. We note that variably
saturated conditions only exist for porous-medium flow while free surface (phreatic)
conditions are only applicable to fully saturated porous media and pure liquid flow.

4.3.5.2 Species Mass

The governing species mass transport equation (4.71) can now be specified for the
different flow conditions and discrete features. Table 4.6 summarizes the different
terms and expressions for both porous media and pure liquid conditions.
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4.3.5.3 Heat

The specified terms for the governing heat transport equation (4.77) are summarized
in Table 4.7 for both porous media and pure liquid conditions.

4.4 Specifying Geometries and Hydraulic Radii for Different
Types of Discrete Features

4.4.1 Standard Settings

Discrete features in 1D and 2D have cross-sectional geometries which are com-
monly input as flow areaA and thickness/flow depthB , respectively (see Table 4.8).
As outlined in Table 4.5 three laws of flow motion are provided for discrete features:
Darcy flow in porous media as well as Hagen-Poiseuille and overland pure liquid
flow. These laws require different input parameters of flow conductancy or friction,
which have been summarized in Table 4.9. Note that for overland flow the Manning-
Strickler law is preferred in the following.

It is obvious, the dataset of flow motion for the Hagen-Poiseuille and the
Manning-Strickler laws needs in addition the prescription of the hydraulic radius
rhydr, which must be in accordance with the cross-sectional geometry of Table 4.8.
To avoid redundancy and conflicts in the input dataset of discrete features it is
preferred to use standard hydraulic radii rhydr which are related to the dimension of
the discrete features and the cross-sectional input geometry. The standard hydraulic
radii rhydr are summarized in Table 4.10. Those hydraulic radii rhydr which are
different from the standard ones can be specified via corrects in the frictional input
parameters as described as follows.

4.4.2 Hydraulic Aperture of Hagen-Poiseuille Law

The standard hydraulic conductivityK of the Hagen-Poiseuille law is according to
(4.51) and Table 4.10:

K D r2hydr �0g

a �0
δ D b2 �0g

12�0
δ (4.78)

where a D 3 for plane geometry. The following standard parameter set is used for
the liquid of water: �0 D 103 kg m�3, �0 D 1:3 � 10�3 Pa s and g D 9:81m s�2. It
results a factor of f0 D �0g=�0 D 7:55 � 106 m�1 s�1. A hydraulic radius, which is
different from the standard geometry, and parameters, which are different from the
standard parameter factor f0, can be derived from the identity
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Table 4.8 Standard input of
cross-sectional geometry for
discrete features

Dimension Fracture type/case Parameter

1D Plane, tubular Flow area, A
(phreatic, non-phreatic)

2D Plane Thickness, B
(phreatic, non-phreatic)

Table 4.9 Frictional input
parameters for discrete
features

Law Parameter

Darcy Hydraulic conductivity, K
Hagen-Poiseuille Hydraulic aperture, b
Manning-Strickler Roughness, M

Table 4.10 Standard
hydraulic radii rhydr used for
discrete features

rhydr

Dimension Hagen-Poiseuille Manning-Strickler

1D b=2
p
A=4

(plane) (submerged slit (submerged qua-
plane, type (b) of dratic cross section)
Table 4.3)

2D B=2

(plane) (submerged slit
plane, type (b) of
Table 4.3)

r2hydr

a
f D b2

12
f0 with f D �g

�
(4.79)

A corrected hydraulic aperture bcorr can be obtained from (4.79) as

bcorr D
s
f

f0

p
3p
a
rhydr a D

�
3 for plane flow
2 for axisymmetric flow

(4.80)

where rhydr is the actual (true) hydraulic radius, which can be taken from Table 4.3,
and f is the true parameter factor, where dynamic viscosity �, gravity g and density
� can be specified different from the standard settings in f0. Table 4.11 summarizes
the corrected apertures bcorr for interesting applications.

4.4.3 Roughness Coefficient of Manning-Strickler Law

The standard hydraulic conductivity K of the Manning-Strickler law is according
to (4.63) with Tables 4.4 and 4.10:
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Table 4.11 Corrected apertures bcorr for different applications in the case of Hagen-Poiseuille law
for 1D and 2D discrete featuresa

Case Type bcorr Remark

(a)
Bb

.b C B/

q
f

f0

B

b

submerged rectangular cross - section

(b) b

q
f

f0
seebsubmerged slit plane

b

B

(c)
2Bb

.b C 2B/

q
f

f0
open rectangular cross-section

B

b

(d) 2B

q
f

f0
open wide channel (b>20 B ),  plane

B

b

(e) 1:224745R

q
f

f0
submerged circular cross - section

R

a f0 D �0g

�0
D 7:55 � 106 m�1 s�1; f D �g

�
b No correction is needed if f D f0

K DM r
2=3

hydr

δ
4
pkrhk2 D

8
<

:

M
�p

A
4

�2=3 δ
4
p

krhk2 for 1D

M
�
B
2

�2=3 δ
4
p

krhk2 for 2D
(4.81)

Accordingly, from (4.81) we can find a corrected Manning coefficient Mcorr in the
following form to specify hydraulic radii rhydr, which are different from the standard
geometry of 1D and 2D discrete features:

Mcorr D M r
2=3

hydr

( �
4p
A

�2=3
for 1D

�
2
B

�2=3
for 2D

(4.82)
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where M is the true (physical) Manning roughness coefficient. Table 4.12 summa-
rizes the corrections Mcorr=M for the Manning coefficients applied to 1D and 2D
discrete features.

Table 4.12 Corrected Manning roughness coefficient Mcorr for different applications in the case
of Manning-Strickler law for 1D and 2D discrete features

Mcorr=M

Case Type 1D 2D Remark

(a)
� 2Bb

.b C B/
p
A

�2=3 � b

b C B

�2=3
seea

B

b

submerged rectangular cross - section

(b)
� 2bp

A

�2=3
1 seebsubmerged slit plane

b

B

(c)
� 4Bb

.b C 2B/
p
A

�2=3 � 2b

b C 2B

�2=3
open rectangular cross-section

B

b

(d)
� 4Bp

A

�2=3
22=3 D 1:5874open wide channel (b>20 B ),  plane

B

b

(e)
� 2Rp

A

�2=3
-submerged circular cross - section

R

a Related to 1D: if b D B and A D B2 then Mcorr D M , i.e., no correction is needed
b Related to 2D: it is Mcorr D M , so no correction is required



Chapter 5
Chemical Reaction

5.1 General

The quantities r˛k , R˛k , Rk , QRk , NRk or NQRk that appear in the species mass transport
equations (3.50), (3.51), (3.248) and (4.71) and those of Tables 3.5, 3.7, 3.9–
3.11 and 4.6 represent rates of production of mass of chemical species k due to
chemical reactions occurring within a phase ˛, termed as homogeneous reactions,
or between two or more phases, termed as heterogeneous reactions. Chemical
reaction rate expressions have to be developed by constitutive relations as indicated
in Sect. 3.8.5.6. Those expressions are most often determined from experimental
studies and introduce rate parameters in form of constants and exponents, which are
related to the concentrations of the chemical constituents involved in the reaction.

Chemical reactions are usually divided into fast and slow reactions. This type
of classification is done in relation to the magnitude of the rate constant used
in the chemical reaction rate expression. Thermodynamically, fast reactions are
reversible and are locally in a thermodynamic equilibrium, while slow reactions
represent irreversible reaction processes for which kinetic rate laws are required.
Reversible and irreversible reactions have different meaning when referring to
reaction kinetics and allow a rather different treatment in their mathematical
description. An irreversible kinetic reaction is one which proceeds in only one
direction, symbolized by!, whereas a reversible kinetic reaction can proceed in the
forward and backward directions, symbolized by•. Following types of reactions
can be exemplified:
Binary ion exchange reaction between liquid (aqueous) and solid phase (adsorption
isotherm)

AC B • C CD (5.1)

First-order reaction (decay)

A! P (5.2)

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5 5,
© Springer-Verlag Berlin Heidelberg 2014
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Consecutive reaction (decay chains, serial reaction)

A! B ! C ! D (5.3)

Michaelis-Menten mechanism (Monod kinetics)

ACE • AE ! P C E (5.4)

Parallel complex reactions

AC B C C ! D C E
B C E C F ! P

D CG • H C I
I CA ! J CK

(5.5)

where A;B; : : : represent chemical species (reactants or products) which may be
associated with different phases.

Whether a specific reaction is fast or slow depends on various physical properties
of the reaction system. In general, a heterogeneous reaction process may consist of
as many as five steps in series [386, 565]:

1. Diffusive transport of solute molecules to the interface.
2. Adsorption at the interface.
3. Reaction at the surface.
4. Desorption of products at the interface.
5. Diffusive transport of products from the interface.

If the steps 2–4 are faster than 1 and 5, the overall reaction is considered to be
transport controlled. If the reverse is true, the overall reaction is said to be surface
controlled.

5.2 Governing Mass Transport Equations

5.2.1 Balance Statements

The mass conservation of chemical species in the ˛�phase can be concisely written
in the following general balance equation encompassing all forms of our interest (cf.
Chaps. 3 and 4):

L˛k C ˛
k D "˛.r˛k CR˛k / (5.6)

with
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L˛k C ˛
k D

8
ˆ̂
<̂

ˆ̂
:̂

@

@t
."˛C

˛
k /Cr � .q˛C ˛

k /Cr � j˛k
�
˛ D liquid l
k D liquid species

@

@t
."˛C

˛
k /

�
˛ D solid s
k D solid species

(5.7)

where each species, labeled by the subscript k, is associated with a particular phase
˛ 2 .l; s/, where l and s indicate the liquid and the solid phase, respectively. By
definition, q˛ D j˛k D 0 for the solid phase s. In (5.6) and (5.7), L˛k is a differential
operator, C˛

k is the concentration of species k of ˛�phase (3.266), "˛ is the volume
fraction of ˛�phase (3.4), r˛k and R˛k are the homogeneous and heterogeneous
reaction rates of species k of ˛�phase, respectively, q˛ is the Darcy velocity of
˛�phase (3.240) and j˛k D "˛j

˛
k is the bulk mass flux (j˛k is the intrinsic mass

flux) of species k of ˛�phase (3.272).
By using (3.219) the volume fraction "˛ can be expressed for the liquid l and

solid s phases, respectively, as

"l D " sl
"s D 1 � " (5.8)

where " is the porosity (void space) and sl is the saturation referring to the liquid
phase l . For unsaturated porous media it is sl < 1, whereas for saturated porous
media we have sl D 1 and "l D ". In case of a pure liquid it is simply "l D 1.
With (5.8) the balance equation (5.6) can be written for the liquid and solid phases,
respectively,

Llk C l
k D

@

@t
."slC l

k/Cr � .qlC l
k/Cr � jlk D "sl .rlk CRlk/

Lsk C s
k D

@

@t
."sC

s
k / D "s.rsk CRsk/

(5.9)

5.2.2 Reaction Rates and Multiphase Aspects

The solution of the balance equation (5.6) requires knowledge of the reaction rates
for kinematically controlled reactions. Different forms of rate laws can be derived
(cf. Sect. 3.8.5.6). These forms depend on the type of reaction and whether the
reaction is homogeneous or heterogeneous. In general, if a species k exists in more
than one phase ˛, for instance the species is exchanged between liquid l and solid s
phases in an adsorption process, the transport equation (5.6) has to be summed over
all contributed phases ˛:

X

˛

.L˛k C ˛
k / D Rk (5.10)
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with the bulk reaction rate (3.189)

Rk D Rhomk
CRhetk D

X

˛

"˛r
˛
k

„ ƒ‚ …
homogeneous

C
X

˛

"˛R
˛
k

„ ƒ‚ …
heterogeneous

(5.11)

where Rhomk
D P

˛ "˛r
˛
k is the homogeneous reaction rate and Rhetk D

P
˛ "˛R

˛
k

is the heterogeneous reaction rate of species k accumulating over all its contributing
phases ˛.

In contrast, if a species k exists only in one phase, say phase ˛, then (5.10) is
reduced to

L˛k C ˛
k D Rk (5.12)

with

Rk D Rhomk
CRhetk D "˛r

˛
k„ƒ‚…

homogeneous

C "˛R
˛
k„ƒ‚…

heterogeneous

(5.13)

Because the sum of the reacting mass must be identical to the sum of the produced
mass in all cases, the reaction rates are governed by the constraint:

X

i

.Rhomk
CRhetk / D 0 (5.14)

The transport processes of interest refer to a liquid phase l (solvent) moving through
a porous medium in which the void space is variably saturated by the l�phase.
Conceptually, a variably saturated medium consists, at least, of three phases: liquid
l , gas g and solid s (see Sect. 3.8.7). Thus, we have for the volume fractions (3.219)
and (3.220)

1 D "l C "g
„ ƒ‚ …

"

C"s (5.15)

Since the l�phase occupies only part of the porosity (void space) ", the saturation
sl of the l�phase (3.219) defines the relative quantity as

sl D "l

"
.0 < sl � 1/ (5.16)

Under unsaturated conditions sl � 1 the liquid l as the wetting phase can occupy
only part of the void space " and therefore only part of the total area of the solid
s can be exposed to exchange reactions in an adsorption process. Accordingly, we
can subdivide the solid volume fraction "s into chemically active and inactive parts
of solid mass, viz.,
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"s D "sactive C "sinactive (5.17)

Obviously, the portion of the total surface of the solid that is in contact with the
l�phase depends on "l . It can be assumed [39] that the ratio of the solid-liquid
interface to the total area of the solid is equal to the ratio of active solid volume (i.e.,
solid participating in the exchange reactions) to the total volume of solid, and that
each of these ratios, in turn, is equal to the ratio of the liquid-occupied portion of
the void space to the total void space volume, i.e., equal to sl . Thus,

Asactive

Asactive C Asinactive
D "sactive

"s
D f ."l / 	 "l

"
D sl (5.18)

and we obtain

"sactive D f ."l /"s 	 sl"s D sl .1 � "/ (5.19)

In contrast to this, it may be argued [38,422] that l as the wetting phase completely
coats the solid such that the nonwetting gas phase g is not in contact with the
solid. Under these conditions it is assumed that the complete surface of the solid is
exposed to exchange reactions, i.e., "s D "sactive . To take into account these different
assumptions regarding the possible liquid-solid contact areas exposed to exchange
reactions, we can write for the solid volume fraction

"s D "sactive D Œsl C !.1 � sl /�.1 � "/ ! 2 .0; 1/ (5.20)

where ! introduces a coating factor, which is unity if a full exchange contact is
assumed, otherwise if ! D 0 the exchange contact relation amounts to the liquid
saturation sl . For the most practical applications we prefer the latter case with! D 0
and use

"s D "sactive D sl .1 � "/ (5.21)

as the chemically active exchange fraction in the summed mass balance (5.10)
written for the liquid and solid phases

Ll
k
C l
k
C Ls

k
C s
k
D sl Œ".rlk CRlk/C .1 � "/.rsk CRsk/„ ƒ‚ …

Rk

�

@

@t
Œ"slC lk C sl .1 � "/C sk �Cr � .qlC lk/Cr � jlk D Rk

(5.22)

For given number of chemical reactions, r D 1; : : : ; Nr , the bulk reaction rateRk for
a species k, (5.11) or (5.13), can be expressed in the following general form [348]
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Rk D
NrX

rD1
�krrr .k D 1; : : : ; N / (5.23)

where �kr is the stoichiometric coefficient of species k and reaction r and rr is the
bulk rate of reaction associated with the type of reaction r .

5.3 Basic Chemical Kinetics

5.3.1 Reaction Stoichiometry

The basis of chemical modeling represents the equations of reactions r , which can
be written in their general stoichiometric form:
Forward reactions

j�1r jA1 C j�2r jA2 C : : :C j�Nor jANo
kC! j�.NoC1/r jB.NoC1/ C

j�.NoC2/r jB.NoC2/ C : : :C j�NrjBN (5.24)

Backward reactions

j�1r jA1 C j�2r jA2 C : : :C j�Nor jANo
k� j�.NoC1/r jB.NoC1/ C

j�.NoC2/r jB.NoC2/ C : : :C j�NrjBN (5.25)

for No < N .No D number of reactants/ and r D 1; : : : ; Nr . They are related
and quantified by the stoichiometric coefficients j�krj. The algebraic stoichiometric
numbers �kr behave:

�kr < 0 for 1 � k � No (reactants)
�kr > 0 for No � k � N (products)

(5.26)

In (5.24) and (5.25)Ak andBk represent chemical species of reactants and products,
respectively, and kC and k� indicate rate constants for the forward and backward
reactions, respectively. We note that the species Ak and Bk are generally associated
with a phase, in particular the liquid phase l or the solid phase s. To emphasize
their phase-relations we shall sometimes denote the species by the phase index in
form of Alk , Ask orAk.aq/, Ak.s/, referring to the liquid (aqueous) and solid phases,
respectively. Furthermore, we denote as monovalence if j�krj D 1 for all species k
in a reaction r , otherwise we denote as heterovalence if j�krj > 1 at least for one
species k in a reaction r .
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5.3.2 Examples

To illustrate the symbolic reaction stoichiometry (5.24) and (5.25) we exemplify the
following irreversible and reversible reactions occurring in different applications of
porous-media mass transport.

(i) Pyrite oxidation
One mechanism involves oxidation of pyrite by O2. Another possible mech-
anism for the oxidation of pyrite is the reaction with Fe(III) as the oxidant.
These irreversible reactions for the pyrite oxidation read [500]:

FeS2 C 7
2
O2 C H2O! Fe2C C 2SO2�

4 C 2HC
FeS2 C 14Fe3C C 8H2O! 15Fe2C C 2SO2�

4 C 16HC (5.27)

(ii) Equilibrium reactions of carbonate system
The chemical system containsN D 7 species:

H2O, OH�, HC, H2CO3, HCO�
3 , CO2�

3 , CO2(aq)

which are subjected to the followingNr D 4 equilibrium reactions [38]:

H2O• HC C OH�
H2CO3 • HCO�

3 C HC
HCO�

3 • CO2�
3 C HC

CO2.aq/C H2O• H2CO3

(5.28)

(iii) Aerobic biodegeneration of BTEX
The overall aerobic reaction stoichiometry for a fuel hydrocarbon (e.g.,
benzene) can be written as [86, 87]

C6H6 C 7:5O2 ! 6CO2 C 3H2O (5.29)

(iv) Degradation of BTEX using multiple electron acceptors
The biodegradation of BTEX can occur via five different degradation pathways
[86, 442]: aerobic respiration, denitrification, iron reduction, sulfate reduction
and methanogenesis. Accordingly, the following instantaneous five irreversible
reactions are given (Nr D 5):

C6H6 C 7:5O2 ! 6CO2 C 3H2O
6NO�

3 C 6HC C C6H6 ! 6CO2 C 6H2OC 3N2

30Fe.OH/3 C 60HC C C6H6 ! 6CO2 C 78H2OC 30Fe2C
3:75SO2�

4 C 7:5HC C C6H6 ! 6CO2 C 3H2OC 3:75H2S
C6H6 C 4:5H2O! 2:25CO2 C 3:75CH4

(5.30)
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(v) Leaching of low-grade uranium ores
Two principal types of low-grade uranium ores are uraninite (UO2) and
pitchblende (U3O8). Typical reaction equations may be written as [386]:

UO2.s/C 1
2
O2 C CO2�

3 C 2HCO�
3 ! UO2.CO3/

4�
3 C H2O

U3O8.s/C 1
2
O2 C 3CO2�

3 C 6HCO�
3 ! 3UO2.CO3/

4�
3 C 3H2O

(5.31)

consisting of four reactants (No D 4) for each reaction.

(vi) Radionuclide decay chain of uranium
The radionuclide decay of 238U occurs in the following decay series of serial
and parallel reactions (note that U – uranium, Th – thorium, Pa – protactinium,
Ra – radium, Rn – radon, Po – polonium, Pb – lead, Bi – bismuth, At – astatine,
Tl – thallium) [183]:

238U
4:47�109y

! 234Th
24:1d

! 234Pam
1:17m

! 234Pa
6:75h

! 234U
2:45�105y

! 230Th
7:7�104y

! 226Ra
1600y

�!

�! 222Rn
3:823d

! 218Po
3:05m

0:02%! 218At
2s

99:98% # #
214Pb
26:8m

! 214Bi
19:7m

! 214Po
164�s

# #
210Tl
1:3m

! 210Pb
21y

! 210Bi
5:01d

! 210Po
138:4d

! 206Pb
stable

(5.32)

5.3.3 Rate Laws and Rate Constants

Based on the stoichiometric forms (5.24) and (5.25) the bulk reaction rates rr in
(5.23) for the forward .r D 1/ and backward .r D 2/ reactions can be expressed by
the rate laws

rC
1 D kC

No
Y

kD1
"˛k fA˛kgj�k1j

r�
2 D k�

NY

kDNoC1
"˛k fB˛

k gj�k2j
˛ 2 .l; s/ (5.33)

where kC and k� represent rate constants. To emphasize which phase ˛ contains
the species k we use the specific phase index ˛k , i.e., ˛ D l if species k is dissolved
in the liquid phase and ˛ D s if species k is sorbed in the solid phase. The curly
bracket symbol f g refers to the (chemical) activity of the kth species at the ˛�phase
defined by (2.119).
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5.3.4 Chemical Equilibrium and Law of Mass Action (LMA)

Chemical equilibrium describes a situation in which forward and backward reac-
tions (5.24) and (5.25), respectively, are equal. It means

Rk D
NrX

rD1
�krrr D 0 8 k (5.34)

Since

�k1 D �j�k1j for reactants
�k2 D Cj�k2j for products

(5.35)

it gives with (5.33)

Keq D j�k1jk
C

j�k2jk� D

NY

kDNoC1
"˛kfB˛

k gj�k2j

No
Y

kD1
"˛k fA˛kgj�k1j

˛ 2 .l; s/ (5.36)

Expression (5.36) is known as the law of mass action (LMA), where Keq is the
equilibrium constant. The equilibrium constant Keq is to be known and measurable
for given equilibrium reactions 1 and 2. For example, considering the simple binary
ion monovalent exchange reaction in the form of (5.1) written as

Al C Bs kC�!
 �

k�
C s CDl (5.37)

the LMA expression (5.36) yields

Keq D kC

k� D
fC sgfDlg
fAlgfBsg (5.38)

5.3.5 Steady-State Approximation (SSA)

The steady-state approximation (SSA) [13] can be used to simplify the reaction
analysis. It is supposed that the reaction rate of an intermediate species (k D int) is
negligibly small, so that

Rint 	 0 (5.39)
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For example, considering the consecutive monovalent reaction (5.3) of the form

Al
kA! Bl kB! C l (5.40)

where kA and kB are (forward) reaction constants, the SSA applied to species Bl

becomes (with (5.23) and (5.33))

RB D "l
�
kAfAlg � kBfBlg�	 0 (5.41)

Then

fBlg D kA

kB
fAlg (5.42)

which can be used to express the reaction rate for species C l

RC D "lkBfBlg D "lkAfAlg (5.43)

5.3.6 Pre-equilibria

Considering the following consecutive reaction

AC B k
C

A�!
 �

k�A

C
kB! P (5.44)

whereC represents an intermediate species. This scheme involves a pre-equilibrium
when the rates of formation of the intermediate C and its decay back into reactants
A and B are much faster than its rate of formation of products P . Applying the
SSA to species C of (5.44) it yields (exemplified for a homogeneous reaction in the
l�phase)

RC D "l
�
kC
A fAgfBg � k�

A fC g � kBfC g
� 	 0 (5.45)

If kC
A � kB and k�

A � kB it can be assumed that A, B and C are in equilibrium.
Thus, the kB�term in (5.45) vanishes and we obtain

Keq D kC
A

k�
A

D fC g
fAgfBg (5.46)

Then, the reaction rate for species C takes the form:

RC D �"lkBfC g D �"lkBKeqfAgfBg (5.47)

which represents a second-order reaction law.
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In extension to (5.44), let us consider the following reaction system

AC B k
C

A�!
 �

k�A

C CD

A
kB! P

(5.48)

It can be simplified with the pre-equilibrium assumption, where for instance the
reaction rate of A results

RA D �"l
�
kC
A fAgfBg � k�

A fC gfDg
�

„ ƒ‚ …

)KeqD k
C

A
k�A

D fCgfDg
fAgfBg

�"lkBfAg 	 �"lkBfAg (5.49)

5.4 Selected Reaction Processes

5.4.1 Binary Exchange Reactions (Adsorption Isotherms)

Consider the heterogeneous reversible binary ion exchange reaction between the
dissolved species Al1 of the liquid phase l and the sorbed species As2 of the solid
phase s in the form

j�1jAl1 C j�2jAs2 • j�1jAs1 C j�2jAl2 (5.50)

where �1 and �2 are stoichiometric coefficients assumed to be independent of the
direction of the reaction. At the equilibrium the LMA (5.36) yields

Keq D fA
s
1gj�1jfAl2gj�2j

fAl1gj�1jfAs2gj�2j
D .	1ŒA

s
1�/

j�1j.	2ŒAl2�/j�2j

.	1ŒA
l
1�/

j�1j.	2ŒAs2�/j�2j
(5.51)

where the activities f g are replaced by the molar concentrations Œ � of the species
by using (2.119). Introducing the ion exchange capacity ŒAsT � for the sorbed species
in the form

ŒAsT � D
X

k

ŒAsk� D ŒAs1�C ŒAs2� (5.52)

and the total solution normality ŒAlT � for the liquid phase l as

ŒAlT � D
X

k

ŒAlk� D ŒAl1�C ŒAl2� (5.53)



178 5 Chemical Reaction

assuming, e.g., [549], that

• Dilute solutions occur so that 	1 D 	2 D 1,
• The ion exchange capacity ŒAsT � is constant, and
• The total solution normality ŒAlT � is also constant,

the following exchange relationships in form of adsorption isotherms can be derived
from the equilibrium (5.51).

5.4.1.1 Langmuir Adsorption Isotherm

For the case of monovalence with j�1j D j�2j D 1, the condition of equilibrium
(5.51) can be used to explicitly express the concentration of the sorbed solid
species ŒAs1� as a function of concentration of the dissolved species ŒAl1�, where
the concentration of species ŒAs2� and ŒAl2� are substituted by inserting the ion
exchange capacity ŒAsT � and total solution normality ŒAlT �, respectively. After some
manipulations we find

ŒAs1� D Keq
ŒAsT �

ŒAlT �

ŒAl1�

1C
�
Keq � 1
ŒAlT �

	

ŒAl1�

(5.54)

Expressing the molar concentrations ŒAs1� and ŒAl1� by mass concentrations C s
1 and

C l
1 , respectively, via (2.118), the following relationship results from (5.54)

C s
1 D

k
�
1C

l
1

1C k�1C l
1

(5.55)

which is termed the Langmuir adsorption isotherm, where k�1 and k�1 are sorption
coefficients defined by

k
�
1 D Keq

ŒAsT �

ŒAlT �
k
�
1 D

Keq � 1
ŒAlT �m1

(5.56)

wherem1 is the molecular mass of species Al1.

5.4.1.2 Henry Adsorption Isotherm

Admitting for low concentration k�l C
l
1 � 1 in the Langmuir isotherm (5.55) the

well-known Henry adsorption isotherm results

C s
1 D �1C l

1 .�1 D k�1/ (5.57)
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which provides a simple linear relation between the sorbed and the dissolved
species for a monovalent binary exchange reaction, where �1 is the Henry sorption
coefficient of species ‘1’. We note, �1 D k

�
1 D Keq when ŒAsT �=ŒA

l
T � 	 1. The

Henry coefficient �1 is often expressed by the distribution coefficientKd
1 (related to

species ‘1’)

Kd
1 D �1=�s (5.58)

where �s is the density of the solid, so that

C s
1 D Kd

1 �s C
l
1 (5.59)

5.4.1.3 Freundlich Adsorption Isotherm

In case of heterovalent equilibrium reaction with j�1j D n  1 and j�2j D m  1
the equilibrium expression (5.51) is

Keq D
�
ŒAs1�

ŒAl1�

	n�
ŒAl2�

ŒAs2�

	m
(5.60)

and gets a polynomial relationship with respect to the sorbed solid species ŒAs1� in
the form

ŒAs1� D K1=n
eq

�
ŒAsT � � ŒAs1�
ŒAlT � � ŒAl1�

	m=n
ŒAl1� (5.61)

However, explicit expressions are only possible for special cases. For example,
having n D 2 and m D 1 we obtain from (5.61)

ŒAs1� D
Keq

2.ŒAlT � � ŒAl1�/

 s

1C 4ŒAsT �.ŒA
l
T � � ŒAl1�/

KeqŒA
l
1�
2

� 1
!

ŒAl1�
2 (5.62)

providing a polynomial character ŒAs1� 
 ŒAl1�
n of the isotherm. Often, however,

simple empirical functions are preferred for this type of heterovalent equilibrium
reaction to prevent the complexity in the direct evaluation of (5.60) for general cases.
Here, most common is the Freundlich adsorption isotherm which simply reads

C s
1 D b�1.C l

1 /
b
�
1 (5.63)

written for mass concentrations, where b�1 is the Freundlich coefficient and b�1  1
is the Freundlich exponent. Note that for b�1 � 1 the Freundlich isotherm becomes
a Henry isotherm (5.57).
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5.4.1.4 Adsorption Function and Retardation

To generalize the formulations of the adsorption isotherms of Sects. 5.4.1.1–5.4.1.3
we introduce the dimensionless adsorption function 'k D 'k.C l

k/ for a species k to
relate the solid species by the dissolved species for the Henry isotherm (5.57), the
Freundlich isotherm (5.63) and the Langmuir isotherm (5.55) in the following form

C s
k D 'k C l

k (5.64)

with

'k D

8
ˆ̂
<̂

ˆ̂
:̂

�k Henry

b
�

k .C
l
k/
b
�
k�1 Freundlich

k
�
k

1Ck�kC lk
Langmuir

(5.65)

Using the mass balance equation (5.22) for species k summed over the liquid l and
solid s phases

@

@t
Œ"slC l

k C sl .1 � "/C s
k �Cr � .qlC l

k/Cr � jlk D Rk (5.66)

written in its divergence form and

"sl
@C l

k

@t
C sl .1 � "/@C

s
k

@t
C ql � rC l

k Cr � jlk D Rk � C l
kQl (5.67)

written in its convective form (see also Sect. 3.9.2), we can replace the solid
concentration C s

k by the liquid concentration C l
k via the adsorption relation (5.64)

to obtain

@

@t

�
"sl<kC l

k

�Cr � .qlC l
k/Cr � jlk D Rk (5.68)

written in the divergence form and

"sl K<k @C
l
k

@t
C ql � rC l

k Cr � jlk D Rk � C l
kQl (5.69)

written in the convective form, where

<k D 1C
�1 � "

"

�
'k (5.70)

is the retardation factor and
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K<k D 1C
�1� "

"

� @.'kC
l
k/

@C l
k

(5.71)

is the derivative term of retardation, which are listed in Table 3.8 for the Henry,
Freundlich and Langmuir isotherms.

5.4.2 First-Order Decay Reactions

Additional to the reversible heterogeneous exchange reaction (5.50), the species k
in the liquid phase l and the solid phase s should be subjected to an irreversible
homogeneous first-order decay reaction into the products P l

k and P s
k according to

j�1jAlk C j�2jAsm • j�1jAsk C j�2jAlm
Alk

kA! P l
k

Ask
kA! P s

k

(5.72)

where m ¤ k is a different species. We assume that the reversible heterogeneous
reaction is much faster than the decay reactions. Under such conditions the pre-
equilibrium assumption (5.49) becomes applicable. Applying (5.23), (5.33), (5.64)
and (5.70), it leads to the following reaction rate

Rk D �"lkAfAlkg � "sactivekAfAskg
D �sl kA	k

mk„ƒ‚…
#k

�
"C l

k C .1 � "/C s
k



D �sl#k
�
"C .1 � "/'k


C l
k

D �"sl#k<kC l
k

(5.73)

where #k defines a first-order decay rate1 of species k. If we further assume that the
species k could be additionally subjected to other reactions, e.g., Bl

m C Alk ! : : :,

1Referring to radioactive decay processes the decay rate #k is frequently expressed in terms of a
reaction half-life t1=2k of species k, which is a specific solution of the reaction equation

dCk

dt
D �#kCk

applied to a simple chemical batch reaction (without diffusion/dispersion and advection). Its
analytical solution yields

Ck D C0ke
�#k t

The time t for the concentration Ck to decrease from the initial concentration C0k to its half value
1
2
C0k corresponds to the half-life t1=2. From above it results
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which remain unspecified firstly, we can generalized the reaction rate Rk (5.73) in
such a form as

Rk D �"lkAfAlkg � "sactivekAfAskg C ‘more reaction terms’

D �"sl#k<kC l
k C QRk

(5.74)

where QRk encompasses the additional, yet unspecified reactions of species k. Hence,
the mass balance equations (5.68) and (5.69) can be written in the divergence form

@

@t

�
"sl<kC l

k

�Cr � .qlC l
k/Cr � jlk C "sl#k<kC l

k D QRk (5.75)

and in the convective form

"sl K<k @C
l
k

@t
C ql � rC l

k Cr � jlk C "sl#k<kC l
k D QRk � C l

kQl (5.76)

which obviously become advantageous in their numerical treatment since the linear
decay term split off the overall reaction rate appears on the LHS of the balance
equations allowing an implicit solution. Thus, formulations in the form of (5.75)
and (5.76) are preferably taken into account in the final model equations listed in
Tables 3.5, 3.7, and 3.9–3.11 for porous media as well as given by (4.71) and in
Table 4.6 for discrete features.

5.4.3 Consecutive Reactions

Considering consecutive reactions (termed also as decay chains or serial reactions,
typical in radioactive decay) in the following form

A
kA! B

kB! C
kC! D (5.77)

the reaction rates for the initial reactantA, the intermediate species B and C as well
as the productD (exemplified for the liquid phase l) can be written as

t1=2k D ln 2

#k

where ln 2 D 0:693 is the natural logarithm of 2. Accordingly, the decay rate #k can be
expressed by

#k D ln 2

t1=2k

where the half-life t1=2k has to be specified for a given (radioactive) species k.
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RA D �"lkAfAg
RB D "l .kAfAg � kBfBg/
RC D "l .kBfBg � kC fC g/
RD D "lkC fC g

(5.78)

Additionally, we again assume that such a type of consecutive reaction is subjected
to both liquid l and solid s species k for a reversible heterogeneous reaction similar
to (5.72), i.e.,

Al
kA! Bl kB! C l kC! Dl

á á á á
As

kA! Bs
kB! C s

kC! Ds

(5.79)

Using the same procedures as described in Sect. 5.4.2 we find the following set of
balance equations for the four species written in the divergence form:

@
@t

�
"sl<AC l

A

�Cr � .qlC l
A/Cr � jlA D �"sl#A<AC l

A C QRA
@
@t

�
"sl<BC l

B

�Cr � .qlC l
B/Cr � jlB D "sl .#A<AC l

A � #B<BC l
B/C QRB

@
@t

�
"sl<CC l

C

�Cr � .qlC l
C /Cr � jlC D "sl .#B<BC l

B � #C<CC l
C /C QRC

@
@t

�
"sl<DC l

D

�Cr � .qlC l
D/Cr � jlD D "sl#C<CC l

C C QRD
(5.80)

In a generalized formulation the equation system (5.80) can concisely be written for
species k D .1 D A/; .2 D B/; : : :, as

@

@t

�
"sl<kC l

k

�Cr � .qlC l
k/Cr � jlk D "sl .#k�1<k�1C l

k�1 � #k<kC l
k/C QRk

(5.81)

where it is by definition in (5.81) that #0 D <0 D C l
0 D 0.

5.4.4 Michaelis-Menten Mechanism

The Michaelis-Menten mechanism describes an enzyme-catalyzed reaction in which
a species A is converted into products P in dependence on the concentration of the
enzyme E . The mechanism is the following

AC E k
C

A�!
 �

k�A

EA
kB! P C E (5.82)

where EA denotes a bound state of the enzyme and its species. We can analyze the
mechanism if assuming a pre-equilibrium for EA. The reaction rate of EA gives as
exemplified for the l�phase:
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REA D "l
�
r
.k
C

A /
� r.k�A / � r.kB/

�

D "l
�
kC
A fAgfEg � k�

A fEAg C kBfEAg� D 0 (5.83)

It follows

fEAg D fAgfEg
km

; km D k�
A C kB
kC
A

(5.84)

Introducing the total concentration of enzyme as

fET g D fEg C fEAg (5.85)

and assuming only a little enzyme is added so that fAg differs only slightly from its
total concentration, then

fEAg D fAg
�fET g � fEAg�

km
(5.86)

which rearranges to

fEAg D fET gfAg
km C fAg (5.87)

On the other hand, the reaction rate for species A in the l�phase is

RA D �"l
�
kC
A fAgfEg � k�

A fEAg� (5.88)

which can be simplified by applying the pre-equilibrium condition (5.83) as

RA D �"lkBfEAg (5.89)

Inserting (5.87) into (5.89) it yields finally

RA D �"l kBfET gfAg
km C fAg D �"l

vmC
l
A

Km C C l
A

(5.90)

where

vm D kBfET g maximum velocity of enzymolysis

Km D mAkm

	A
Michaelis (Monod) constant

(5.91)
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The intrinsic reaction rate ORA D jRAj="l D vmC
l
A=.Km C C l

A/ of (5.90) results in
a saturation curve2 as shown in Fig. 5.1, where vm appears as the maximum growth
rate and Km as the half-saturation constant.

Let us generalize the reaction (5.82) if we assume that the Michaelis-Menten
kinetics is subjected to both the liquid and solid species k of a reversible reaction
similar to (5.72). In doing so, we are interested in a reaction of the type:

j�1jAlk C j�2jAsm • j�1jAsk C j�2jAlm
Alk C El

k
C

A�!
 �

k�A

EAl
kB! P l CEl

Ask C Es
k
C

A�!
 �

k�A

EAs
kB! P s C Es

(5.92)

which leads to the following reaction rate of species k

2Considering the Michaelis-Menten reaction rate in the form ORA D vmC
l
A=.Km C C l

A/:

(i) If C l
A is large compared toKm then C l

A=.Km C C l
A/ � 1 and the reaction rate becomes

ORA � vm

(ii) If C l
A D Km then C l

A=.Km C C l
A/ D 1

2
and the reaction rate gives

ORA D 1
2
vm

(iii) If If C l
A is small compared to Km then C l

A=.Km C C l
A/ � C l

k=Km and it is

ORA D vm

Km

C l
k



186 5 Chemical Reaction

Rk D �"l vmC
l
k

Km C C l
k

� "sactive
vmC

s
k

Km C C s
k

D �sl
�

"
vmC

l
k

Km C C l
k

C .1 � "/ vm'kC
l
k

Km C 'kC l
k

�

D �"sl
�

vm

Km C 'kC l
k„ ƒ‚ …

#mk

	"

1C .1 � "/
"

'k C
�
'k � 1
1C Km

C lk„ ƒ‚ …
�mk

	#

C l
k

D �"sl#mk .<k C �mk /C l
k

(5.93)

where #mk D vm=.Km C 'kC l
k/ defines a specific Michaelis-Menten ‘decay rate’

and �mk D .'k � 1/=.1C Km
C lk
/ is a modifying function. Inserting the reaction rate

(5.93) into (5.68) the following mass transport equation results

@

@t

�
"sl<kC l

k

�Cr � .qlC l
k/Cr � jlk D �"sl#mk .<k C �mk /C l

k (5.94)

where the retardation factor <k is defined by (5.70). We note that #mk and �mk are
functions of C l

k .

5.5 Generalized Kinetic Formulations

In the preceding Sects. 5.3 and 5.4 the bulk reaction rate Rk of species k

Rk D
X

˛

"˛.r
˛
k CR˛k/ .˛ D l; s/; .k D 1; : : : ; N / (5.95)

consisting of the parts of homogeneous and heterogeneous reactions r˛k and R˛k ,
respectively, and the deduced bulk reaction rate QRk

QRk D Rk C
X

˛

"˛#kC
˛
k .˛ D l; s/; .k D 1; : : : ; N / (5.96)

separated by a linear decay reaction controlled via the decay constant #k (we note
that QRk D Rk if we use #k D 0), could be developed by kinetic formulations
in dependence on the reaction type and stoichiometry. Reactive systems can be
broadly classified into simple and complex kinetic systems. The former consists
of elementary unimolecular and bimolecular reactions while the latter encompasses
opposing, concurrent and consecutive reactions. The progress of a reaction can be
limited by the availability of reactants or intermediate species, and may be slowed
not only by the presence of reaction products, but also by other inhibiting species. In
addition, the reaction progress may be catalyzed by species, which are not directly
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involved in the reaction. According to the mechanism of a given reaction, the
functional form of Rk (or QRk) can be very complicated and requires a more general
approach to make the model applicable to a wide range of problems subjected to
kinematically controlled reactions. Laboratory experiments have to be conducted to
determine which species control the reaction and what order the reaction has with
respect to each of these species.

A typical constitutive representation of Rk (or QRk) has a functional

Rk D Rk.C ˛
1 ; C

˛
2 ; : : : ; C

˛
N ; "˛; T / .˛ D l; s/; .k D 1; : : : ; N / (5.97)

which can be developed by a polynomial expression of low order in terms of
concentrations C˛

k for simple kinetic systems or more complex rate expressions
of higher order, cf. Fig. 5.2. We can distinguish the following classes of rate
expressions.

5.5.1 Degradation Type Kinetics

The term ‘degradation’ is loosely used in the literature and refers to some measure
of mass loss or change in species concentration over time. For a degradation
type kinetics the reaction rate Rk of species k can be developed in a polynomial
representation of low order, viz.,

Rk D "˛1�1k1
�
C˛
1

�n1 C "˛2�2k2
�
C˛
2

�n2 C : : :C "˛N �NkN
�
C˛
N

�nN

D
NX

mD1

�

"˛m�mkm
�
C˛
m

�nm
�

.k D 1; : : : ; N / (5.98)

where "˛m indicates the volume fraction of the phase ˛ containing the species m,
�m .m D 1; : : : ; N / are stoichiometric coefficients controlling the signs of the
reaction terms (�m < 0 for reactants and �m > 0 for products) and can additionally
weight the rate constants km .m D 1; : : : ; N /. The rate constants km can be
dependent on the temperature T . In (5.98) nm  0 represents the exponent of
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species m. In the case of nm D 1; 8m a 1st-order degradation type results. We
note that the decay reactions as described in Sects. 5.4.2 and 5.4.3 belong to this
type of degradation kinetics, which can be written as

Rk D
NX

mD1
"˛m�mkmC

˛
m .k D 1; : : : ; N / (5.99)

or

QRk D
NX

mD1
m¤k

"˛m�mkmC
˛
m .k D 1; : : : ; N / (5.100)

A typical example is the radionuclide decay chain of uranium (5.32), where the
reaction rate for the radium species .k D Ra/ of the liquid phase l becomes the
form

RRa D "l .kThC
l
Th � kRaC

l
Ra/ (5.101)

where kTh and kRa are known rate constants (decay rates) of thorium and radium,
respectively.

5.5.2 Arrhenius Type Kinetics

The Arrhenius type kinetics is expressed by a polynomial representation of higher
order for the reaction rate Rk written in the form

Rk D "˛1�1k1

No
Y

nD1

�
C˛
n

�nn C : : :C "˛N �N kN
No
Y

nD1

�
C˛
n

�nn

D
NX

mD1

�

"˛m�mkm

No
Y

nD1

�
C˛
n

�nn
�

.k D 1; : : : ; N /
(5.102)

where the reaction constants km .m D 1; : : : ; N / are given by the Arrhenius
equation as

km D Am exp
�
� E

#

RT

�
.m D 1; : : : ; N / (5.103)

in which Am is the pre-exponential factor, R is the molar gas constant (or universal
thermodynamic constant (
8.314 J/ıK mole)), T is the absolute temperature and
E# is the activation energy to be known [13]. The two quantities Am and E# are
commonly termed as Arrhenius parameters.
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A typical example of an Arrhenius reaction is the uraninite leaching (5.31),
where we can find the following ration rates of the six species [k D 1; : : : ; 6 : 1 D
UO2.s/; 2 D O2; 3 D CO2�

3 ; 4 D HCO�
3 ; 5 D UO2.CO3/

4�
3 and 6 D H2O .N D

6/] subjected to four reactants [UO2.s/;O2;CO2�
3 and HCO�

3 .N
o D 4/] involved

in the process, e.g., [386]:

R1 D �"sA1 exp
�� E#

RT

�
C s
1C

l
2C

l
3C

l
4

R2 D � 12 "lA2 exp
�� E#

RT

�
C s
1C

l
2C

l
3C

l
4

R3 D �"lA3 exp
�� E#

RT

�
C s
1C

l
2C

l
3C

l
4

R4 D �2 "lA4 exp
�� E#

RT
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C s
1C

l
2C

l
3C

l
4

R5 D "lA5 exp
�� E#

RT

�
C s
1C

l
2C

l
3C

l
4

R6 D "lA6 exp
�� E#

RT

�
C s
1C

l
2C

l
3C

l
4

(5.104)

where Ak .k D 1; : : : ; 6/, E# and R have to be known parameters. Note that
the stoichiometric coefficients for the uraninite leaching reaction (5.31) are:
�1 D �1; �2 D �1=2; �3 D �1; �4 D �2; �5 D 1; �6 D 1. Furthermore it is
"˛1 D "s and "˛2 D "˛3 D "˛4 D "˛5 D "˛6 D "l .

5.5.3 Monod Type Kinetics

Monod type kinetics describe more complex biochemical reaction systems. Monod
was the first to recognize that the growth rate of a microbial population is restricted
by the concentration of the growth-limiting substrate. Monod established that the
form of the relationship was analogous to the Michaelis-Menten enzyme kinetics
equation, see Sect. 5.4.4. The Monod kinetics can be extended by inhibition
parameters. Its mathematical representation can be written in a generalized form as

Rk D "˛k �k
� vkC

˛
k

Kk C C˛
k

�
"
�
C˛
m¤k

�nm
No
Y

n¤k
n¤m

�
k�
n

�
C˛
n

�pn

K�
n C

�
C˛
n

�nn

	#

(5.105)

where vk is the maximum growth rate, Kk is the half-saturation constant of
species k, k�

n and K�
n are inhibition coefficients related to species n. The exponents

pn and nn can be independently chosen so that the concentration dependency can
be reduced in case of need if setting for instance pn D 0 or nn D 0 and so forth.

In (5.105) C˛
k represents the concentration of the growth-limiting substrate. The

half-saturation constantKk in a biochemical context may be viewed as a measure of
the affinity the microorganisms have for the growth-limiting substrate: (1) the lower
the value ofKk, the greater the capacity to grow rapidly in an environment with low
concentrations of growth-limiting substrate, and (2) the lower the value of Kk, the
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lower the growth-limiting substrate concentration at which the maximum specific
growth rate vk is attained (see also footnote of Sect. 5.4.4).

A typical example of a Monod kinetics is the biodegradation of BTEX (5.30),
where six species (k D 1; : : : ; 6) are involved: (oxygen – 1 = O2, nitrate – 2 = NO3,
iron – 3 = Fe2C, sulfate – 4 = SO4, methane – 5 = CH4 and hydrocarbon – 6 = HC).
The following reaction rates can be given [86]:

R1 D "l�1 r1

R2 D "l�2 r2
R3 D "l�3 r3
R4 D "l�4 r4
R5 D "l�5 r5

R6 D �"lP5
mD1 rm

(5.106)

with

�1 D �3:14; �2 D �4:9; �3 D 21:8; �4 D �4:7; �5 D 0:78 (5.107)

and the specific rates
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(5.108)

in which LC l
m D C lmax

m � C l
m, where C lmax

m are known (measurable) maximum
concentrations of a species m.

5.5.4 Freely Editable Kinetic Expressions of Rk

While the reaction mechanisms categorized above as reactions of degradation
(5.98), Arrhenius (5.102) and Monod (5.105) cover a wide spectrum for practical
applications, a number of chemical reactions, however, need more degrees of
freedom to specify their kinetic relationships in a higher complexity and structure.
For these purposes FEFLOW provides a reaction kinetics editor, where the reaction
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Fig. 5.3 FEFLOW’s reaction kinetics editor

rates Rk can be freely edited in a graphical and interactive manner without any
limitations on the algebraic structure of the rate expressions. The rate expressions
of FEFLOW’s reaction kinetics editor do not require any programming and code
compiling. A fast code interpreter provides efficient computations of reaction
expressions during the numerical simulations. The advantages of this reaction
kinetics editor are in particular:

• Freely editable algebraic expressions of Rk in an arbitrary structure and com-
plexity,

• Combination with conditional if-else statements, and
• Including of depending variables (i.e., access to all concentrations C˛

k .k D
1; : : : ; N /; .˛ D l; s/ participating in the reaction system, moreover, to saturation
sl and temperature T in case of need) and spatially and/or temporarily variable
material parameters (e.g., porosity " and solid fraction "s) in the rate expressions
of Rk .

The dialog of FEFLOW’s reaction kinetics editor is shown in Fig. 5.3, where
solution variables (e.g., all concentrations C˛

k .k D 1; : : : ; N /; .˛ D l; s/, liquid
saturation sl or temperature T ) appear as blue entities and variable parameters (e.g.,
reaction rates kk; : : :, porosity " or solid fraction "s) appear as green entities to
compose the reaction rate expressions. Arithmetic and logical operations can be
included in the formulations.



Chapter 6
Initial, Boundary and Constraint Conditions

6.1 Introduction

The governing model equations derived in Chaps. 3 and 4, which are summarized
in Table 3.7 for general variably saturated porous media, in Table 3.9 for fully
saturated porous media (groundwater), in Table 3.10 for 2D unconfined aquifers
and in Table 3.11 for 2D confined aquifers as well as in Tables 4.5–4.7 for variable-
density flow, mass and heat transport of discrete features, have to be supplemented
by initial, boundary and constraint conditions. The solutions for the flow, mass and
heat transport equations are generally sought within a domain ˝ � <D closed by
its boundary � � <D .D D 1; 2; 3/ in the D�dimensional Euclidean space (cf.
Sect. 2.2.2). By definition, the boundary � is separated from the domain ˝ . On
the other hand, by N̋ we denote the (closure) domain, which completely joins the
boundary

N̋ D ˝ [ � (6.1)

On N̋ and � initial conditions (IC’s) and boundary conditions (BC’s) have to be
specified, respectively. The boundary� consists of disjoint nonoverlapping portions
�i (i D 1; 2; : : :) bounding the domain ˝ both outside and inside, which can be
suitably subdivided according to the types of BC’s. BC’s are always required for
both transient and steady-state problems, while IC’s are always needed for transient
problems. An exception possesses nonlinear steady-state problems, where an IC of
the solution initializes an iterative procedure.

In addition, singular point conditions (SPC’s) are of interest for specifying
pumping (discharging) or injection (recharging) wells, which are assigned to
separate points of the domain˝ . Due to the nature of singularities well-type SPC’s
must be treated in a singular (discrete) manner which is different to the treatment
of BC’s, where fluxes are continuous and integrable over a boundary section. It is
interesting to note that the effect by a flux-type BC can be similar or even identical
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to a SPC specification applied to a numerical model for cases, where all connected
points forming the discretized boundary are imposed by a respective SPC.

6.2 Initial Conditions (IC’s)

In the domain N̋ the following IC’s are valid for the flow, species mass and heat
transport processes, respectively:
Flow

h.x; t0/ D h0.x/ in N̋ (6.2)

Mass transport of species k

Ck.x; t0/ D Ck0.x/ in N̋ (6.3)

Heat transport

T .x; t0/ D T0.x/ in N̋ (6.4)

where h0, Ck0 and T0 are known spatially varying functions of initial distribution at
initial time t0.

6.3 Standard Boundary Conditions (BC’s) and Well-Type
Singular Point Conditions (SPC’s)

On the boundary� closing the domain˝ disjoint portions are appropriately defined
as �i (i D 1; 2; : : :) for which different types of BC can be separately specified.
Dirichlet-type (1st kind or essential) BC’s on �1, �4 and �7, Neumann-type (2nd
kind) BC’s on �2, �5 and �8 as well as Cauchy (Robin)-type (3rd kind) BC’s on �3,
�6 and �9 will represent standard formulations (cf. Sect. 2.2.2) for flow, mass and
heat, respectively, so that for standard BC’s: � D �1[�2[�3 D �4[�5[�6 D �7[
�8 [ �9. Additionally, well-type SPC’s are included providing specific sink/source
conditions which have to be assigned to separate points of the domain ˝ idealized
as wells. Furthermore, integrated formulations of Neumann-type and Cauchy-type
BC’s are desired. BC’s of 1st, 2nd and 3rd will be symbolized by �, ⨉ and

N
,

respectively. A well-type SPC will be symbolized by �. Special formulations of
BC’s are necessary in various applications which will be introduced in Sect. 6.5
further below.
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Fig. 6.1 Normal Neumann-type fluxes for 2D and 3D boundary geometries

6.3.1 Flow BC

6.3.1.1 � Dirichlet-Type (1st Kind) BC

h.x; t/ D hD.t/ on �1 � t Œt0;1/ (6.5)

where hD are prescribed values of hydraulic head on �1 � � . Note that for steady-
state flow problems Dirichlet-type BC’s (6.5) are usually required, i.e., �1 ¤ Ø,
unless Cauchy-type BC’s occur.

6.3.1.2 ⨉ Neumann-Type (2nd Kind) BC

qnh.x; t/ D �
�
krKf� � .rhC �e/

 � n D qh.t/
for 3D and 2D vertical & unconfined

Nqnh.x; t/ D �.Tf� � rh/ � n D Nqh.t/
for 2D horizontal, confined

9
>>=

>>;

on �2�t Œt0;1/ (6.6)

where n is the positive outward-directed unit normal to �2, qnh D q � n and Nqnh D
Nq �n represent normal fluxes (positive outward-directed) across the boundary�2 and
qh and Nqh are the prescribed Neumann fluxes on �2 � � as illustrated in Fig. 6.1.
If qh D 0 and Nqh D 0 the Neumann-type BC reduces to a natural (no-flux) BC
associated with rh C �e D 0 and rh D 0, respectively. Note that for saturated
porous media kr D 1, for density-uncoupled problems� D 0 and for constant liquid
viscosity, equal to the reference viscosity, f� D 1. For 2D horizontal unconfined
aquifer problems with kr D 1 and � D 0, the prescribed Neumann flux qh has to be
vertically integrated in accordance with the unknown water table h.
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6.3.1.3
N

Cauchy-Type (3rd Kind) BC

qnh.x; t/ D �
�
krKf� � .rhC �e/

 � n D �˚h.hC � h/
for 3D and 2D vertical & unconfined

Nqnh.x; t/ D �.Tf� � rh/ � n D � N̊h.hC � h/
for 2D horizontal, confined

9
>>=

>>;

on �3 � t Œt0;1/

(6.7)

where hC are prescribed values of hydraulic head on �3�� . The signs of qnh D q�n
and Nqnh D Nq � n are chosen that the boundary fluxes are positive outward-directed
if h > hC . In (6.7) the transfer coefficients ˚h and N̊h represent dual directional
functions in form of:

˚h D
�
˚ in
h .x; t/ for hC > h

˚out
h .x; t/ for hC � h (6.8)

N̊
h D

� N̊ in
h .x; t/ for hC > h
N̊ out
h .x; t/ for hC � h (6.9)

which are in general functions of space x and time t . Accordingly, in specifying two
alternate (if necessary temporal) transfer coefficients different transfer conditions
can be input to distinguish between inflow conditions (qnh < 0, e.g., infiltration
from a surface water into the aquifer) and outflow conditions (qnh > 0, e.g.,
exfiltrating the aquifer into the surface water). Their usefulness for river-aquifer
interactions is discussed further below. The special case ˚h D ˚ in

h D ˚out
h or

N̊
h D N̊ in

h D N̊ out
h does not differ between inward and outward boundary flux,

so it becomes directionally independent.
The formulation of 3rd kind BC’s is based on a general transfer relation between

the reference value hC on the boundary portion �3 and the hydraulic head h to be
computed at the same place. The reference hydraulic head hC can also be time-
dependent hC D hC .t/. The dual transfer coefficient ˚h possesses the property of
a resistance coefficient which constrains the discharge through the boundary and,
additionally, differs between inflow and outflow conditions by means of ˚ in

h and
˚out
h , respectively, according to (6.8) and (6.9). If ˚h � 0 the boundary becomes

impervious. On the other hand, using a very large value ˚h ! 1 the BC of 3rd
kind is reduced to a Dirichlet-type (1st kind) BC approaching to h D hC on �3.

For flow problems the transfer coefficient ˚h can be identified as a specific
colmation (or leakage) coefficient as outlined in Fig. 6.2 for inflow (infiltration)
conditions (˚h ! ˚ in

h .hC > h/). An adjacent river bed is clogged (‘colmated’)
by a layer of thickness d and a hydraulic conductivity of K in

o . Commonly, the
layer conductivity K in

o is much smaller than the conductivity K1 of the aquifer to
be modeled. Thereby the model boundary � represents the inner boundary of the
‘colmation’ layer �3, where the model domain˝ ends.
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Fig. 6.2 Transfer coefficient
˚h.D ˚ in

h / as ‘colmation’
parameter of a clogged river
bed

The flux through such a ‘colmation’ layer can be estimated from the Darcy
equation (see Fig. 6.2), viz.,

qnh 	 �K in
o


h


s
D �K in

o

hC � h
d

(6.10)

where s and 
s identify the arc length and line distance in direction of flow,
respectively. Setting (6.7) equal to (6.10) a simple relationship results for the transfer
coefficient ˚ in

h in 3D and 2D (vertical, horizontal unconfined) cases:

˚ in
h D

K in
o

d
(6.11)

For horizontal confined flow problems an inherent vertical averaging becomes
necessary (in the aquifer all fluxes are integrated over the depth) resulting in a depth-
integrated transfer coefficient N̊ in

h as:

N̊ in
h D B˚ in

h D B
K in
o

d
(6.12)

For outward directed (exfiltrating) boundary fluxes according to Fig. 6.3 the
following relationships for ˚out

h and N̊ out
h can be derived, analogously to the

above, viz.,

˚out
h D

Kout
o

d
(6.13)

N̊ out
h D B˚out

h D B
Kout
o

d
(6.14)

The coefficients ˚ in
h and ˚out

h (also N̊ in
h and N̊ out

h ) differ if in case of infiltration
the conductivities of the ‘colmation’ layer become depart from that of the exfiltra-
tion K in

o ¤ Kout
o .
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6.3.1.4 � Well-Type SPC

A number of pumping (or injecting) wells are idealized as singular point sinks (or
sources) at locations xw 2 ˝ (Fig. 6.4):

Qhw.x; t/ D �
NWX

wD1
Qw.t/ı.x � xw/ on xw 2 ˝ � t Œt0;1/ (6.15)

whereQhw is the specific sink/source function of wells, NW is the number of wells,
Qw.t/ is the prescribed volume per unit time discharge (pumping rate) of single
well w at location xw and ı.x�xw/ D QD

iD1 ı.xi �xiw/ is the Dirac delta function
associated with location xw. The Dirac delta ı.x � xw/ is zero at all points except
x D xw and satisfies

Z

˝

ı.x� xw/d˝ D 1 (6.16)

and accordingly

Z

˝

NWX

wD1
Qw.t/ı.x � xw/d˝ D

NWX

wD1
Qw.t/ (6.17)
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6.3.2 Mass Transport BC

6.3.2.1 � Dirichlet-Type (1st Kind) BC

Ck.x; t/ D CkD.t/ on �4 � t Œt0;1/ (6.18)

where CkD are prescribed values of concentration of species k on �4 � � . Note
that for steady-state mass transport problems Dirichlet-type BC’s (6.18) are usually
required, i.e., �4 ¤ Ø, unless Cauchy-type BC’s occur.

6.3.2.2 ⨉ Neumann-Type (2nd Kind) BC

For 3D and 2D (vertical and axisymmetric):

convective form

qnkC .x; t/ D �.Dk � rCk/ � n„ ƒ‚ …
dispersive flux

D qkC.t/

divergence form

qnkC .x; t/ D Ck qnh � .Dk � rCk/ � n
„ ƒ‚ …

total flux

D q�kC.t/

9
>>>>>>>=

>>>>>>>;

on �5 � t Œt0;1/

(6.19)

and for 2D horizontal (confined and unconfined):

convective form

NqnkC .x; t/ D �. NDk � rCk/ � n„ ƒ‚ …
dispersive flux

D NqkC.t/

divergence form

NqnkC .x; t/ D Ck Nqnh � . NDk � rCk/ � n
„ ƒ‚ …

total flux

D Nq�kC.t/

9
>>>>>>>=

>>>>>>>;

on �5 � t Œt0;1/

(6.20)

where qnkC and NqnkC represent normal mass fluxes of species k (positive outward-
directed) across the boundary �5 and qkC, q�kC, NqkC and Nq�kC are the prescribed
Neumann mass fluxes of species k on �5 � � . If qkC D 0 and NqkC D 0 the
Neumann-type BC reduces to a natural (no-mass flux) BC associated with a zero
concentration gradient rCk D 0 for the convective form of the mass transport
equation, sometimes called as Danckwerts condition [111]. Alternatively, however,
for the divergence form of the mass transport equation, if q�kC D 0 and Nq�kC D 0

the Neumann-type BC reduces to a natural (no-mass flux) BC which forces the
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total (advective plus dispersive) mass flux to zero on �5. Both variants of BC have
their advantages. While the Neumann-type BC for the convective form is easier to
implement and more flexible, their counterparts for the divergence form provide a
stronger formulation in terms of mass convervation, however, possess difficulties at
outflow boundaries on which the total mass flux is unknown (see Sect. 6.5.7).

The divergence form is capable of prescribing the total mass flux along a
boundary portion resulting from the advective (convective) partCk qnh (load of con-
centration Ck in the liquid flow qnh D q �n) and the dispersive part�.Dk �rCk/ �n.
However, regarding this formulation all boundaries have to be specified with such
type of BC, which can cause a specific handling of such formulations in the case
of unknown mass concentration Ck on outflow boundaries (rather, Ck is here to be
solved). Such boundaries require a specific treatment. This is done by evaluating the
liquid flux via a budget analysis in a postprocessing step of computation which is
then involved in modifying the BC of the mass flux at such portions of boundaries,
for more see discussion in Sect. 6.5.7.

On the other hand, the default convective form does not require a specific han-
dling associated with formulations on outflow boundaries and is usually preferred.
Assigning qkC D �.Dk � rCk/ � n 	 0 as a natural BC, the mass flux freely
passes through an advectively open boundary section and the concentration on the
boundary automatically results. Note here, a boundary source of mass, as far as it
should not be modeled via a 1st kind BC, in form of a mass boundary flux qkC ¤ 0
includes only the dispersive part, i.e., the magnitude of the flux will result from the
gradient of concentration at the boundary. Thus in general, the convective form will
necessarily produce a higher concentration gradient to realize the same mass load
through a boundary.

However, there is a way to formulate mass flux BC providing an advective load
of mass in form of Cauchy-type BC even for the convective form of mass transport.
Indeed, we need not to resort to the divergence form in order to achieve suited mass
load conditions on boundaries. It is easy to see that the Neumann-type BC for the
divergence form, e.g., (6.19), is equivalent to Cauchy-type BC written as

�.Dk � rCk/ � n D q�kC � Ck qnh
D qnh.CkC � Ck/ (6.21)

with known qnh and q�kC 	 qnhCkC approximated as an input advective mass flux
with prescribed boundary concentration CkC for the convective form as further
discussed in Sect. 6.3.2.3.

6.3.2.3
N

Cauchy-Type and Robin-Type (3rd Kind) BC

For 3D and 2D (vertical and axisymmetric):
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convective form

qnkC .x; t/ D �.Dk � rCk/ �n D �˚kC.CkC � Ck/
divergence form

qnkC .x; t/ D Ck qnh � .Dk � rCk/ �n D �˚�kC.CkC � Ck/

9
>>>=

>>>;

on �6 � t Œt0;1/

(6.22)

and for 2D horizontal (confined and unconfined):

convective form

NqnkC .x; t/ D �. NDk � rCk/ �n D � N̊kC.CkC � Ck/
divergence form

NqnkC .x; t/ D Ck Nqnh � . NDk � rCk/ � n D � N̊ �kC.CkC � Ck/

9
>>>=

>>>;

on �6 � t Œt0;1/

(6.23)

whereCkC are prescribed values of species k concentration on �6 � � . The signs of
qnkC and NqnkC are chosen that the boundary mass fluxes are positive outward-directed
if Ck > CkC. In (6.22) and (6.23) the mass transfer coefficients ˚kC, N̊kC, ˚�

kC and
N̊ �

kC represent dual directional functions in form of:

˚kC D
�
˚ in

kC.x; t/ for CkC > Ck

˚out
kC .x; t/ for CkC � Ck (6.24)

N̊kC D
� N̊ in

kC.x; t/ for CkC > Ck
N̊ out

kC .x; t/ for CkC � Ck (6.25)

and similar for ˚�
kC and N̊ �kC, which are in general functions of space x and time t .

Accordingly, in specifying two alternate (if necessary temporal) transfer coefficients
different transfer conditions can be input to distinguish between inflow conditions
(qnkC < 0) and outflow conditions (qnkC > 0). The special case, e.g., ˚kC D ˚ in

kC D
˚out

kC (and similar for N̊kC,˚�
kC and N̊ �kC) does not differ between inward and outward

mass boundary flux.
As already discussed in Sect. 2.2.2 the 3rd kind BC of the convective forms of

(6.22) and (6.23) can be identified as Cauchy-type BC, while the 3rd kind BC of the
divergence form represents a Robin-type (mixed) BC, which is most general. It has
been shown by (6.21) that Neumann-type BC of the divergence form is equivalent
to Cauchy-type BC of the convective form if we simply set

˚kC D �qnh (6.26)

where qnh D q � n is a known (positive outward directed) flux of liquid on �6. A
typical application of such type of BC is a leaky deposit, from where a mass flux
intrudes into an aquifer with a given (advective) rate as schematized in Fig. 6.5. It is
assumed that the deposit having a known concentration CkC leaks by a given load
and intrudes into the domain˝ through �6 via

qload
kC D qout

h CkC (6.27)
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Fig. 6.5 Leak of a deposit:
BC formulation of species
mass load qload

kC on �6 � �

where qload
kC is the load of species k on �6 and qout

h is the inward-directed flux of
liquid leaving the deposit with concentration CkC. Since qout

h D �qnh (negative due
to the inward direction on �6) we obtain with (6.26), i.e., ˚kC D qout

h , the following
Cauchy-type BC for the load of mass

qnkC.x; t/ D �.Dk � rCk/ � n D �qout
h .CkC � Ck/ on �6 � t Œt0;1/ (6.28)

applied to the convective form of mass transport.
The transfer coefficients, e.g., ˚kC, associated with BC’s of 3rd kind (6.22)

can be regarded as leaching parameters which constrain the mass flux through the
boundary. If ˚kC D 0 the boundary becomes impervious. On the other hand, using
a very large value ˚kC !1 the BC of 3rd kind is reduced to a Dirichlet-type (1st
kind) BC with Ck D CkC on �6. Such a leaching process is displayed in Fig. 6.6
for the example of a flow over a salt dome modeled with a diffusive input condition
(CkC > Ck). Considering a thickness d for the leaching body and applying the
Fick’s law (4.67) written in 1D in form of

qnkC 	 �Din
ko


Ck


s
D �Din

ko

CkC � Ck
d

(6.29)

the mass transfer coefficient ˚ in
kC can be assessed as

˚ in
kC D

Din
ko

d
(6.30)

and analogously to a horizontal problem as

N̊ in
kC D B˚ in

kC D B
Din
ko

d
(6.31)

Analogous assessments for ˚out
kC and N̊ out

kC result if the transition resistance differs
between inflow (leaching) and outflow (releasing) conditions: ˚ in

kC ¤ ˚out
kC ( N̊ in

kC ¤N̊ out
kC ).
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6.3.2.4 � Well-Type SPC

Qkw.x; t/ D �
NWX

wD1
CkwQw.t/ı.x � xw/ on xw 2 ˝ � t Œt0;1/ (6.32)

and

Z

˝

Qkwd˝ D �
NWX

wD1
CkwQw.t/ (6.33)

where Qkw is the specific kth-species mass sink/source function of wells, Qw.t/

is the prescribed volume per unit time discharge (pumping rate) of single well
w pumped with a known concentration of Ckw at location xw and ı.x � xw/ DQD
iD1 ı.xi � xiw/ is the Dirac delta function associated with location xw. The well

function Qkw is assigned to a point sink of mass for the divergence form of mass
transport equation.

In contrast, the convective form of mass transport has to be related to a well-point
sink function in the following form (cf. mass transport equations of Table 3.7):

Qkw.x; t/ D �PNW
wD1 Ckw.xw/Qw.t/ı.x� xw/C Ck PNW

wD1 Qw.t/ı.x � xw/

D �PNW
wD1 Qw.t/ı.x � xw/

�
Ckw � Ck.xw/

�

(6.34)
and

Z

˝

Qkwd˝ D �
NWX

wD1
Qw.t/

�
Ckw � Ck.xw/

�
(6.35)
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which reveals a similarity to a Cauchy-like, however, point-related mass transfer
relation as described above. Note that the pumping rate Qw is positive for a sink
(pump) and negative for a source (recharge/injection) at well point xw. These types
of SPC in form of (6.32) and (6.34) are usually applied to cases, where a mass flux
given by a flow rate of Qw < 0 and known concentration Ckw is injected through
wells w.

6.3.3 Heat Transport BC

6.3.3.1 � Dirichlet-Type (1st Kind) BC

T .x; t/ D TD.t/ on �7 � t Œt0;1/ (6.36)

where TD are prescribed values of temperature on �7 � � . For steady-state heat
transport problems Dirichlet-type BC’s (6.36) are usually required, i.e., �7 ¤ Ø,
unless Cauchy-type BC’s occur.

6.3.3.2 ⨉ Neumann-Type (2nd Kind) BC

For 3D and 2D (vertical and axisymmetric):

convective form

qnT .x; t/ D �.Λ � rT / � n„ ƒ‚ …
conductive flux

D qT .t/

divergence form

qnT .x; t/ D �c.T � T0/ qnh � .Λ � rT / � n„ ƒ‚ …
total flux

D q
�
T .t/

9
>>>>>>>=

>>>>>>>;

on �8 � t Œt0;1/

(6.37)

and for 2D horizontal (confined and unconfined):

convective form

NqnT .x; t/ D �. NΛ � rT / � n„ ƒ‚ …
conductive flux

D NqT .t/

divergence form

NqnT .x; t/ D �c.T � T0/ Nqnh � . NΛ � rT / � n„ ƒ‚ …
total flux

D Nq�T .t/

9
>>>>>>>=

>>>>>>>;

on �8 � t Œt0;1/

(6.38)

where qnT and NqnT represent normal heat fluxes (positive outward-directed) across
the boundary �8, T0 is a reference temperature and qT , q�T , NqT and Nq�T are the
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prescribed Neumann heat fluxes on �8 � � . If qT D 0 and NqT D 0 the Neumann-
type BC reduces to a natural (no-heat flux) adiabatic BC associated with a zero
temperature gradientrT D 0 for the convective form of the heat transport equation.
Alternatively, however, for the divergence form of the heat transport equation, if
q
�
T D 0 and Nq�T D 0 the Neumann-type BC reduces to a natural (no-heat flux)

BC which forces the total (advective plus conductive) heat flux to zero on �8.
The advantages of both variants of Neumann-type BC are already discussed in
Sect. 6.3.2.2 in the context of mass transport. Similarly, the equivalence of the
Neumann-type BC for the divergence form to the Cauchy-type BC for the convective
form of the heat transport equation leads to the formulation of a heat load condition

�.Λ � rT / � n D q�T � �c.T � T0/ qnh
D �cqnh.TC � T /

(6.39)

with known qnh D q � n and q�T 	 �cqnh .TC � T0/ approximated as an input
advective heat flux with prescribed boundary temperature difference TC �T0 for the
convective form as further discussed in Sect. 6.3.3.3.

6.3.3.3
N

Cauchy-Type and Robin-Type (3rd Kind) BC

For 3D and 2D (vertical and axisymmetric):

convective form

qnT .x; t/ D �.Λ � rT / �n D �˚T .TC � T /
divergence form

qnT .x; t/ D �c.T � T0/ qnh � .Λ � rT / �n D �˚�T .TC � T /

9
>>>=

>>>;

on �9 � t Œt0;1/

(6.40)

and for 2D horizontal (confined and unconfined):

convective form

NqnT .x; t/ D �. NΛ � rT / �n D � N̊T .TC � T /
divergence form

NqnT .x; t/ D �c.T � T0/ Nqnh � . NΛ � rT / �n D � N̊ �T .TC � T /

9
>>>=

>>>;

on �9 � t Œt0;1/

(6.41)

where TC are prescribed values of temperature on �9 � � . The signs of qnT and NqnT
are chosen that the boundary heat fluxes are positive outward-directed if T > TC . In
(6.40) and (6.41) the heat transfer coefficients ˚T , N̊T , ˚�

T and N̊ �T represent dual
directional functions in form of:
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˚T D
�
˚ in
T .x; t/ for TC > T

˚out
T .x; t/ for TC � T (6.42)

N̊
T D

� N̊ in
T .x; t/ for TC > T
N̊ out
T .x; t/ for TC � T (6.43)

and similar for ˚�
T and N̊ �T , which are in general functions of space x and time t .

Accordingly, in specifying two alternate (if necessary temporal) transfer coefficients
different transfer conditions can be input to distinguish between inflow conditions
(qnT < 0) and outflow conditions (qnT > 0). The special case, e.g., ˚T D ˚ in

T D
˚out
T (and similar for N̊T , ˚�

T and N̊ �T ) does not differ between inward and outward
heat boundary flux.

The 3rd kind BC of the convective forms of (6.40) and (6.41) can be identified as
Cauchy-type BC, while the 3rd kind BC of the divergence form represents a Robin-
type (mixed) BC, which is most general (cf. Sect. 2.2.2). It has been shown by (6.39)
that Neumann-type BC of the divergence form is equivalent to Cauchy-type BC of
the convective form if we simply set ˚T D ��cqnh , where qnh D q � n is a known
(positive outward directed) flux of liquid on �9. This allows to prescribe (similar to
the mass transport in Sect. 6.3.2.3) a heat load BC, viz.,

qnT .x; t/ D �.Λ � rT / � n D ��cqout
h .TC � T / on �9 � t Œt0;1/ (6.44)

applied to the convective form of heat transport, where the heat load qload
T D

qout
h �c.TC � T0/ on �9 is forced by the inward-directed flux of liquid qout

h D �qnh
entering with a boundary temperature TC .

The heat transfer coefficients, e.g., ˚T , associated with BC’s of 3rd kind (6.40)
represent heat transition parameters. If ˚T D 0 the boundary becomes adiabatic
(insulated). On the other hand, using a very large value ˚T ! 1 the BC of 3rd
kind is reduced to a Dirichlet-type (1st kind) BC with T D TC on �9. The heat
transfer coefficients can be estimated analogously to the above transfer coefficients
for mass flux of Sect. 6.3.2.3. Considering a thickness d for a heat transition layer
and applying Fourier’s law (4.76) for input condition (TC > T ) in form of:

qnT 	 ��in
o


T


s
D ��in

o

TC � T
d

(6.45)

the heat transfer coefficient ˚ in
T can be obtained as

˚ in
T D

�in
o

d
(6.46)

and similarly to a horizontal problem as

N̊ in
T D B˚ in

T D B
�in
o

d
(6.47)
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where �in
o represents the heat conduction coefficient of the transition layer. Anal-

ogous assessments for ˚out
T and N̊ out

T result if the heat transition resistance differs
between inflow (leaching) and outflow (releasing) conditions: ˚ in

T ¤ ˚out
T ( N̊ in

T ¤N̊ out
T ).
More general heat transfer coefficients and related thermal resistances of tran-

sition layers are described in Appendix E for single and composite plane wall and
circular pipe wall configurations. It results in heat transfer coefficients exemplified
in the form

˚T D 1

S
P

i Ri
(6.48)

with the specific thermal resistance Ri of solid material i given as

Ri D

8
ˆ̂
<

ˆ̂
:

di

S �s
i

plane wall

ln.riC1=ri /
2� �s

i

circular pipe wall

(6.49)

where S is the specific exchange area and �s
i is the thermal conductivity of solid

material i . Note that for pipe wall geometry S D 2�r , where r is the radius of the
boundary surface at �9.

6.3.3.4 � Well-Type SPC

QTw.x; t/ D �
NWX

wD1
.Tw � T0/ �cQw.t/ı.x � xw/ on xw 2 ˝ � t Œt0;1/

(6.50)
and

Z

˝

QTwd˝ D �
NWX

wD1
.Tw � T0/ �cQw.t/ (6.51)

whereQTw is the specific heat sink/source function of wells,Qw.t/ is the prescribed
volume per unit time discharge (pumping rate) of single well w pumped with a
known temperature of Tw at location xw, ı.x�xw/ DQD

iD1 ı.xi �xiw/ is the Dirac
delta function associated with location xw and T0 is the reference temperature. The
well functionQTw is assigned to a point sink of heat for the divergence form of heat
transport equation.

In contrast, the convective form of heat transport has to be related to a well-point
sink function in the following form (cf. heat transport equations of Table 3.7):
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QTw.x; t/ D �PNW
wD1

�
Tw.xw/� T0

�
�cQw.t/ı.x � xw/C

�c.T � T0/ PNW
wD1 Qw.t/ı.x � xw/

D �PNW
wD1 �cQw.t/ı.x� xw/

�
Tw � T .xw/

�
(6.52)

and

Z

˝

QTwd˝ D �
NWX

wD1
�cQw.t/

�
Tw � T .xw/

�
(6.53)

which reveals a similarity to a Cauchy-like, however, point-related heat transfer
relation as described above. Note that the pumping rate Qw is positive for a sink
(pump) and negative for a source (recharge/injection) at well point xw. These types
of SPC in form of (6.50) and (6.52) are usually applied to cases, where a heat flux
given by a flow rate of Qw < 0 and known temperature Tw is injected through
wells w.

6.4 BC Constraints (BCC’s) and SPC Constraints (SPCC’s)

Constraints are limitations for all types of BC’s and SPC’s. They can be written for
BC’s in the following form:

value of BC is valid if

8
<

:

< Max bound(s) else replace BC by Max bound
and

> Min bound(s) else replace BC by Min bound
(6.54)

They result from the requirement that BC should only be valid as long as minimum
and maximum bounds are satisfied. If during a simulation run the conditions are
violated, the constraints are to be assigned as new intermediate BC. The same
procedure is applied to SPC’s.

The formulation of constraints is commonly based on the formalism of com-
plementary conditions for a type of BC and SPC. Accordingly, value-type (1st
kind and 3rd kind) BC’s (hydraulic head, species concentration or temperature)
are constrained by maximum and minimum flux relations (liquid, mass and heat
fluxes, respectively). On the other hand, flux-type (2nd kind) BC’s and well-
type SPC’s are constrained by complementary limits of boundary values, i.e., the
liquid flux is constrained by maximum-minimum hydraulic heads, the mass flux
by minimum-maximum species concentrations and the heat flux by minimum-
maximum temperatures. Following formulations are available for flow, mass and
heat conditions.
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6.4.1 Flow BCC and SPCC

� 1st kind hD.t/ if

(
Max: Qnh < Qmax1

nh
.t/ else Qnh D Qmax1

nh
.t/

Min: Qnh > Qmin1
nh

.t/ else Qnh D Qmin1
nh

.t/

⨉ 2nd kind qh.t/ if

�
Max: h < hmax2 .t/ else h D hmax2 .t/

Min: h > hmin2 .t/ else h D hmin2 .t/

N
3rd kind hC .t/ if

(
Max: Qnh < Qmax3

nh
.t/ else Qnh D Qmax3

nh
.t/

Min: Qnh > Qmin3
nh

.t/ else Qnh D Qmin3
nh

.t/

� well type Qhw.t/ if

�
Max: h < hmax4 .t/ else h D hmax4 .t/

Min: h > hmin4 .t/ else h D hmin4 .t/
(6.55)

where

Qnh D �
Z

qnhd� (6.56)

represents the integral boundary balance flux of liquid summed-up at discrete
(nodal) points to which the corresponding boundary values are related. Note, due to
compatibility reasons with SPC’s the pointwise balance quantity is defined negative
outward (because a positive SPC acts as a sink). The fluxQnh has to be computed in
a balance analysis during the simulation (cf. Sect. 8.19.2). The minimum-maximum
boundsQmin1

nh
, Qmax1

nh
, hmin2 , hmax2 , Qmin3

nh
, Qmax3

nh
, hmin4 and hmax4 are optional input

parameters and can be even time-dependent functions. Accordingly, it is possible to
consider time-dependent variations in the existence and influence of boundary and
constraint conditions. For instance, these temporary capabilities of constraints are
very useful in modeling the temporarily varying occurrence of sealing or drainage
activities over a restricted time period, or in simulating time-constrained BC’s (e.g.,
1st kind) which are associated with certain construction or remedial actions arising
only at given times. Typical applications of constraint conditions formulated by
(6.55) are shown in sketches of Fig. 6.7.

In the first example (Fig. 6.7a) a single well operation is constrained by minimum
and maximum head conditions. A well-type SPC with a given recharging or
extracting discharge Qhw is applied. The computation results a hydraulic head h
at the borehole. Only if the resulting head is between the bounds hmin4 and hmax4

the computation is accepted, otherwise if the head h is smaller than hmin4 the SPC
is replaced by h D hmin4 at the point, which represents a (pointwise) Dirichlet-type
BC, and the computation has to be repeated for the changed BC. Similarly, if the
resulting head h is larger than hmax4 the SPC is replaced by the h D hmax4 Dirichlet-
type BC at the point and the solution has to be restarted again.

The second example (Fig. 6.7b) is regarded to a flux-limited infiltration through
a river bed. A 3rd kind BC with a hydraulic head hC of the river is applied and
constrained by a maximum fluxQmax3

nh
. If the groundwater table decreases below the



210 6 Initial, Boundary and Constraint Conditions

a b

Qhw
+ tQhw
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min 4 t

exfiltratinginfiltrating

surface

water table

Q tnh

Qnh

max3 t

hhC

Qnh

max 3
∆h t h hC–=

Fig. 6.7 Examples of using constraints for flow problems: (a) constraining a single well by an
allowable drawdown in form of a minimum well head and by an allowable injection water level
in form of a maximum well head, (b) flow separation in infiltration from surface water due to
constraining the maximum seepage through the river bed

location of the river bed a specific situation in form of a ‘flow separation’ occurs.
Physically, the zone between the river bed and the water table becomes unsaturated
and the linear relationship of a flow transfer in form of (6.7) for the infiltrating
water as a function of the difference 
h D h � hC between the groundwater
head h and the reference (river) head hC cannot be maintained anymore. It requires
the prescription of the maximum bound Qmax3

nh
. The formulation is termed as flux-

constrained transfer BC. In this case the computation is started with the given 3rd
kind BC. After the computation balance fluxes Qnh at the boundary are evaluated.
If Qnh violates the maximum bound Qmax3

nh
(or the minimum bound Qmin3

nh
) the

computation has to be repeated with changed BC in form of Qhw D Qnh D Qmax3
nh

(orQhw D Qnh D Qmin3
nh

), which represent a well-type SPC.
Although flux-constrained transfer BC’s are quite general formulations, their

specification is sometimes cumbersome because the determination of the constraint
fluxes requires geometric information of the boundaries (e.g., transfer areas). A
more convenient and alternative formulation of constraints for 3rd kind BC’s is in
the form of the so-called head-constrained transfer BC as exemplified in Fig. 6.8 for
a flux-limiting infiltration through a river bed. Instead of a direct input of constraint
fluxes according to (6.55), maximum and minimum head values hmax

C and hmin
C ,

respectively, are prescribed, which are used to derive the constrained min-max fluxes
for Cauchy-type BC’s. It reads as follows:

N
3rd kind hC .t/ if

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

Max: h < hmax
C .t/ else

qnh D qmin
h D �˚h.hC � hmax

C / if hC � hmax
C

Min: h > hmin
C .t/ else

qnh D qmax
h D �˚h.hC � hmin

C / if hC  hmin
C

(6.57)
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qh
max

h

d
saturated colmation zone

unsaturated zone

saturated zone (groundwater)

hC
min

hC

Fig. 6.8 Head-constrained
transfer BC for a flux-limiting
infiltration through a river bed

Note that the effects of the constraints in (6.55) and (6.57) are different. It is apparent
that the minimum head bound hmin

C determines the maximum flux rate qmax
h and the

maximum head bound hmax
C yields the minimum flux rate qmin

h .
The advantage of head-based constraint formulation is that the limiting (con-

straint) fluxes are rates and no more integral balance fluxes, which makes the
computation more efficient. The transfer coefficient ˚h in (6.57) can be determined
from the layer parameters of the clogged river bed as discussed in Sect. 6.3.1.2.
Time-dependent head-constraints are appropriate to prescribe intermediate flux
conditions along a boundary (e.g., at certain times no flux conditions should occur
as applied to temporarily moving BC’s). Since hC D hC .t/ a temporal no flux
condition is automatically satisfied if the reference head hC becomes identical to the
constrained head hmin

C (or hmax
C ) in time. It means written for the minimum constraint

qnh D qmax
h � 0 for

hC .t/ D hmin
C .t/ and h.t/ < hmin

C

(6.58)

To force a temporal no flux condition independent of the groundwater head h D
h.t/, the maximum head constraint has to be set additionally to the reference head.
It requires

qnh D qmax
h � 0 for

hC .t/ D hmin
C .t/ D hmax

C .t/ and arbitrary h.t/
(6.59)
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6.4.2 Mass Transport BCC and SPCC

� 1st kind CkD.t/ if

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Max:
�
QnkC<Q

max1
nkC .t/

and
hmin1	h	hmax1

�

else

(
QnkC DQmax1

nkC .t/

as long as hmin1	h	hmax1 I
QnkC D0 if h<hmin1 or h>hmax1

)

Min:
�
QnkC>Q

min1
nkC .t/

and
hmin1	h	hmax1

�

else

(
QnkC DQmin1

nkC .t/

as long as hmin1	h	hmax1 I
QnkC D0 if h<hmin1 or h>hmax1

)

⨉ 2nd kind qkC.t/ if

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Max:
�

Ck<C
max2
k .t/

and
hmin2	h	hmax2

�

else

(
CkDCmax2

k .t/

as long as hmin2	h	hmax2 I
QnkC D0 if h<hmin2 or h>hmax2

)

Min:
�

Ck>C
min2
k .t/

and
hmin2	h	hmax2

�

else

(
CkDCmin2

k .t/

as long as hmin2	h	hmax2 I
QnkC D0 if h<hmin2 or h>hmax2

)

N
3rd kind CkC.t/ if

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Max:
�
QnkC<Q

max3
nkC .t/

and
hmin3	h	hmax3

�

else

(
QnkC DQmax3

nkC .t/

as long as hmin3	h	hmax3 I
QnkC D0 if h<hmin3 or h>hmax3

)

Min:
�
QnkC>Q

min3
nkC .t/

and
hmin3	h	hmax3

�

else

(
QnkC DQmin3

nkC .t/

as long as hmin3	h	hmax3 I
QnkC D0 if h<hmin3 or h>hmax3

)

� well type Qkw.t/ if

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Max:
�

Ck<C
max4
k .t/

and
hmin4	h	hmax4

�

else

(
CkDCmax4

k .t/

as long as hmin4	h	hmax4 I
QnkC D0 if h<hmin4 or h>hmax4

)

Min:
�

Ck>C
min4
k .t/

and
hmin4	h	hmax4

�

else

(
CkDCmin4

k .t/

as long as hmin4	h	hmax4 I
QnkC D0 if h<hmin4 or h>hmax4

)

(6.60)

where

QnkC D �
Z

qnkCd� (6.61)

represents the integral boundary balance mass flux of species k summed-up at
discrete (nodal) points to which the corresponding boundary values are related (cf.
Sect. 8.19.2), .: : :/maxi and .: : :/mini denote the prescribed maximum and minimum
bounds, respectively, for the corresponding type of BC and SPC, and Ck and h
in (6.60) are the concentration of species k and the hydraulic head, respectively,
computed on the boundary or the singular point. The min-max bounds for the flux
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QnkC , the concentration Ck and the hydraulic head h can be again time-dependent
functions allowing very comfortable rules for constraints.

Naturally, the specific balance mass flux qnkC used in (6.61) is composed of the
advective and dispersive parts according to

qnkC D Ck qnh„ƒ‚…
advective

� .Dk � rCk/ � n„ ƒ‚ …
dispersive

(6.62)

In practice, it has shown to be inappropriate to include the total (advective plus
dispersive) flux into the procedure of controlling the constraint conditions (6.60)
because the direction of the dispersive fluxes is ambiguous (e.g., the dispersive
spreading also occurs against the advective flow direction). Accordingly, the
balance-based evaluation of fluxes has to be exclusively related to the advective
mass fluxes, viz.,

QnkC D �
Z

qnkCd� 	 �
Z

.Ck qnh/d� (6.63)

presenting unambiguously directional balance quantities.
The transport constraints (6.60) essentially consist of two parts for the individual

types of BC’s and SPC’s:

1. A min-max bound complementary for the type of BC and SPC is imposed, i.e., a
concentration boundary (1st or 3rd kind) is controlled by an allowable min-max
boundary mass flux, and a mass flux boundary magnitude (2nd kind or well type)
is controlled by an allowable min-max boundary concentration.

2. Optionally, a permitted range for BC and SPC within tolerable limits of hydraulic
head h (ranging between hmini and hmaxi ) is imposed. If the simulated water table
h lies outside this range, the BC’s (all types, 1st to 3th kind) and SPC’s are
suppressed. This can easily be realized by assigning intermediately a zero flux
QnkC D 0, i.e., no mass flux then occurs and the BC’s and SPC’s are switched
off.

Typical applications of mass transport constraints are outlined in Fig. 6.9. Fig-
ure 6.9a describes the case of a density-coupled saltwater intrusion problem (flow
over a salt dome) having a boundary on which alternate boundary concentrations
appear in dependence on the dynamic process: As long as water enters the domain
it should have a prescribed concentration of freshwater. However, if the water
releases the domain (along the same boundary) the concentration on the boundary
is unknown and should be automatically computed. Such a description can be easily
realized if the entire boundary section is assigned by a freshwater BC of 1st kind
Ck D CkD, and at the same time, the boundary will be imposed by a constraint
condition in form of a null minimum mass flux Qmin1

nkC
D 0 (more constraints are

not necessarily to be specified). Such an arrangement provides that the freshwater
condition remains valid as long as the advective (convective) flux points into the
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groundwater rise, flooding
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max1 0=

Ck ?=
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h
min1

C Ck kD=

Fig. 6.9 Application of mass transport constraints: (a) Saltwater intrusion by flowing groundwater
over a salt dome and (b) wetting and activating a contaminant deposit during a groundwater rise
(flooding)

domain1:

QnkC D �
R
.Ck qnh/d� > Qmin1

nkC
D 0

since qnh < 0 for inflow
(6.64)

The second example shown in Fig. 6.9b describes an application in modeling a
contaminant spreading process from a deposit associated with rising groundwater
in a phreatic aquifer (referred to as flooding problem). The contaminant BC (e.g.,
modeled as a 1st kind type) should be active only when the water table reaches the
contaminant deposit (wetting case), i.e., a constraint in form of hmin1 is prescribed
representing the bottom of the contaminant deposit. More constraints are not
necessarily required in such a case.

1Note that a freshwater condition identical to zero (CkD D 0) is inappropriate in the present
balance-based computation to differ between inward and outward directed advective (convective)
fluxes. It can fail because the directional magnitude of QnkC according to (6.64) is no more
identifiable since QnkC D 0 
 Qmin1

nkC
D 0! Accordingly, instead of zero it is recommended to

use a numerically very small value for CkD .
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6.4.3 Heat Transport BCC and SPCC

� 1st kind TD.t/ if

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Max:
�
QnT <Q

max1
nT .t/

and
hmin1	h	hmax1

�

else

(
QnT DQmax1

nT .t/

as long as hmin1	h	hmax1 I
QnT D0 if h<hmin1 or h>hmax1

)

Min:
�
QnT >Q

min1
nT .t/

and
hmin1	h	hmax1

�

else

(
QnT DQmin1

nT .t/

as long as hmin1	h	hmax1 I
QnT D0 if h<hmin1 or h>hmax1

)

⨉ 2nd kind qT .t/ if

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Max:
�

T<Tmax2 .t/

and
hmin2	h	hmax2

�

else

(
TDTmax2 .t/

as long as hmin2	h	hmax2 I
QnT D0 if h<hmin2 or h>hmax2

)

Min:
�

T>Tmin2 .t/

and
hmin2	h	hmax2

�

else

(
TDTmin2 .t/

as long as hmin2	h	hmax2 I
QnT D0 if h<hmin2 or h>hmax2

)

N
3rd kind TC .t/ if

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Max:
�
QnT <Q

max3
nT .t/

and
hmin3	h	hmax3

�

else

(
QnT DQmax3

nT .t/

as long as hmin3	h	hmax3 I
QnT D0 if h<hmin3 or h>hmax3

)

Min:
�
QnT >Q

min3
nT .t/

and
hmin3	h	hmax3

�

else

(
QnT DQmin3

nT .t/

as long as hmin3	h	hmax3 I
QnT D0 if h<hmin3 or h>hmax3

)

� well type QTw.t/ if

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Max:
�

T<Tmax4 .t/

and
hmin4	h	hmax4

�

else

(
TDTmax4 .t/

as long as hmin4	h	hmax4 I
QnT D0 if h<hmin4 or h>hmax4

)

Min:
�

T>Tmin4 .t/

and
hmin4	h	hmax4

�

else

(
TDTmin4 .t/

as long as hmin4	h	hmax4 I
QnT D0 if h<hmin4 or h>hmax4

)

(6.65)

where

QnT D �
Z

qnT d� (6.66)

represents the integral boundary balance heat flux summed-up at discrete (nodal)
points to which the corresponding boundary values are related (cf. Sect. 8.19.2),
.: : :/maxi and .: : :/mini denote the prescribed maximum and minimum bounds,
respectively, for the corresponding type of BC and SPC, and T and h in (6.65)
are the temperature and the hydraulic head, respectively, computed on the boundary
or the singular point. The min-max bounds for the heat fluxQnT , the temperature T
and the hydraulic head h can be again time-dependent functions.
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Fig. 6.10 Intermittent
pumping regime of a well
doublet system for heat
extraction and re-injection
(horizontal view)

Similar to the mass flux constraints in Sect. 6.4.2 the balance-based evaluation of
heat fluxes must be exclusively related to the advective (convective) part

QnT 	 �
Z

.T qnh/d� (6.67)

to assure unambiguously directional balance quantities. An example of using BCC’s
and SPCC’s for heat transport is schematized in Fig. 6.10 for a well doublet system
under an intermittent pumping regime. The wells extract water from a heated aquifer
in a time-given pumping operation Qw > 0 for which the temperature at the wells
has to be determined and re-inject cooled water with given temperature T D TD.t/
as long as a recharging pumpage occursQw < 0. Both wells comprise a temperature
BC of 1st kind with T D TD.t/ and a minimum heat flux constraint of zero
Qmin1
nT
D 0.

6.5 Special BC’s

6.5.1 Free (Phreatic) Surface BC

Free surface and phreatic surface are used as a synonym for porous-media problems
describing the upper bound of a saturated zone (see Fig. 6.11 and definitions
introduced in Sects. 2.2.1 and 2.2.2). A free (phreatic) surface is a moving boundary
and subjected to two conditions: (1) a constant liquid pressure, usually taken to be
p D 0 as the atmospheric pressure, and (2) a given mass conservation of flux across
the macroscopic surface of discontinuity. The first pressure condition p D  D 0

is equivalent to h D xj expressed by the hydraulic head h, cf. (3.260), where xj
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Fig. 6.11 Free (phreatic)
surface and seepage face, ̂AB

is the coordinate aligned to the gravity direction (e.g., vertical coordinate x3 D z).
The second condition is derived in Sect. 3.10.7 in form of (3.295). Both conditions
finally lead to the following formulation of a free (phreatic) surface:

qnh D "e
@h

@t
� P

h D xj

9
=

;
(6.68)

where "e is the specific yield (3.296) and P is the rate of infiltration (groundwater
recharge). Note that for a pure (non-porous) liquid flow "e D 1. According
to (6.68) the two BC’s imposed on a free (phreatic) surface are to be satisfied
simultaneously, viz.,

• A prescribed flux rate (as an infiltration or, if equal to zero, then impervious) as
Neumann-type BC and

• The location corresponds to the hydraulic head, the water table (constant pressure
level) as Dirichlet-type BC

which leads to a nonlinear boundary-value problem because the location (shape) of
a free surface is initially unknown.

6.5.2 Seepage Face BC

It is possible that a free surface approaches a rigid boundary of known geometry
on which the flow can freely drain out the saturated porous-medium domain. Such a
boundary is called a seepage face as illustrated in Fig. 6.11 for the boundary segment
ÂB . The shape of the seepage face is known, except for the location of its end
point A, which represents the point, where the a priori unknown free surface is
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terminated. Accordingly, the extent of a seepage face is initially unknown and its
solution also leads to a nonlinear task.

Since a seepage face is exposed to the atmosphere, the condition p D 0 or
equivalently h D xj must be imposed. Additionally, a seepage face only allows
drainage, i.e., through it the liquid seeps out. This can be enforced by applying a
constraint condition, where it is required that the balanced flux Qnh (6.56) on the
boundary is only directed outward, i.e., Qnh < 0 (note that a negative Qnh means
outflow). Thus, a seepage face is formulated by the following two conditions:

h D xj
Qnh < Qmax1

nh
D 0

�

(6.69)

Mathematically, a seepage face corresponds to a Dirichlet-type BC with h D
hD D xj which is combined with a maximum flux constraint Qmax1

nh
equal to zero

according to (6.55).
Alternatively, instead of a Dirichlet-type BC allowing a free drainage through

the boundary, the pressure condition of the seepage face can be prescribed by a
Cauchy-type BC, which provides a limited drainage. It reads

qnh D �˚.xj � h/
Qnh < Qmax1

nh
D 0

�

(6.70)

where the transfer coefficient ˚ mimics a flow ‘resistance’ to limit the outflow
through the seepage face (e.g., at a dam covering).

6.5.3 Surface Ponding BC

Surface ponding denotes a ‘surface reservoir’ BC to describe the storage of liquid
(water) at the ground surface as illustrated in Fig. 6.12. This occurs when the liquid’s
pressure at ground surface satisfies the condition p > 0 (or h > xj D hmin2).
Usually, ponding is only allowed up to a maximum head, i.e., h < hmax2 , where
hmax2 .t/ is a given maximum limit. Furthermore, mass conservation at the ponding
boundary has to be imposed. Thus, the following formulation at a surface ponding
boundary is required:

qnh D
@h

@t
� P

hmin2 D xj < h < hmax2

9
=

;
(6.71)

which is easily performed by a Neumann-type BC combined with min-max head
constraints according to (6.55). Note that the first condition of (6.71) represents the
interfacial mass conservation (3.295) for which the specific yield "e becomes unity
(assuming that ponding on the ground surface occurs in an ‘air layer’). Condition
(6.71) can be recognized a specific free surface condition (6.68) which permits
liquid to store on top of the ground.
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boundary

6.5.4 Integral BC

With respect to BC’s of 2nd and 3rd kind special BC’s are available for problems
with free (phreatic) surface(s). They are referred to as integral BC’s and are defined
as follows:R
⨉ 2nd kind integral BC (integral Neumann type):

Flow:

qnh.x; t/ D
�
qh.t/ for 3D related to the initial stratigraphic structure

Nqh.t/ for 2D horizontal-unconfined as depth-integrated flux

Mass:

qnkC .x; t/ D
�
qkC.t/ for 3D related to the initial stratigraphic structure

NqkC.t/ for 2D horizontal-unconfined as depth-integrated flux

Heat:

qnT .x; t/ D
�
qT .t/ for 3D related to the initial stratigraphic structure

NqT .t/ for 2D horizontal-unconfined as depth-integrated flux

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

(6.72)

R N
3rd kind integral BC (integral Cauchy type):

Flow:

qnh.x; t/ D
� �˚h.hC � h/ for 3D related to the initial stratigraphic structure

� N̊h.hC � h/ for 2D horizontal-unconfined as depth-integrated flux

Mass:

qnkC.x; t/ D
� �˚kC.CkC � Ck/ for 3D related to the initial stratigraphic structure

� N̊kC.CkC � Ck/ for 2D horizontal-unconfined as depth-integrated flux

Heat:

qnT .x; t/ D
� �˚T .TC � T / for 3D related to the initial stratigraphic structure

� N̊T .TC � T / for 2D horizontal-unconfined as depth-integrated flux

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

(6.73)

Using these integral formulations of flux BC’s it is ensured that a given flux rate on
their boundary portions becomes independent of the actually discharging aquifer
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thickness and the location of free surface. This is unlike a default nonintegral
BC where a flux rate is integrated along the effective aquifer thickness, which
depends on the actual (computed) free-surface position, and accordingly, varying
(gross-) discharges may occur through such boundaries. As a result, it may happen
that the total discharge through such varying boundaries constantly decreases at a
descending water table. Consequently, such a flow region can inevitably fall dry
and possibly the problem can ‘collapse’ with a zero inflow. Integral BC’s prevent
such situations since the gross discharges are not influenced by the location of free
surface. The relation of fluxes, however, is distinguished in 2D and 3D applications
due to reasons of implementation:

1. For 2D problems the fluxes have to be assigned as already depth-integrated.
The dimension of these fluxes is then L2T �1, similar to a horizontal confined
condition.

2. For 3D problems the aquifer system is compiled as an initial stratigraphic
layer structure. BC’s of the integral type are related to this initial structure
and accordingly, the integrated gross discharges remain independent of the
free-surface location during the computation with the BASD technique (see
Sect. 9.5.3). Notice, the dimension of these boundary fluxes is LT �1 (not
L2T �1).

Integral boundary flux conditions have only a distinct meaning for problems with
free (movable) surface(s). If no free surfaces exist, they are totally equivalent to
the nonintegral BC’s of 2nd and 3rd kind, in accordance with (6.6), (6.19), (6.20),
(6.37), (6.38) and (6.7), (6.22), (6.23), (6.40), (6.41), respectively.

6.5.5 Gradient-Type BC

Applied to unsaturated problems a Neumann flux-type BC (6.6) in the form

� �kr.s/Kf� � .rhC �e/
 � n D qh (6.74)

can be sometimes inappropriate, for instance if modeling a drainage boundary in the
vadose zone with a bottom outflow BC for situations where the water table is located
far below the domain of interest (Fig. 6.13). Here, a gradient-type BC is often to be
preferred [362] written as

� ˚Kf� � Œr C .1C �/e�
� � n D qrh (6.75)

On such a boundary it can be assumed that the pressure gradient diminishesr 	 0
and (6.75) can be practically applied in the following form:

� ˚Kf� � Œ.1C �/e�
� � n D qrh (6.76)
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Once .1 C �/e � n ¤ 0 the boundary freely drains the flow domain due to the
influence of gravity.

6.5.6 Multilayer Well BC

The prescription of well-type BC in 3D heterogeneous aquifers under confined or
unconfined conditions requires a more general formulation to model the effects of
well bore storage and the vertical gradients of variables (hydraulic head, concentra-
tions, temperature) along the well bore and well screens in a more realistic way. The
standard well-type SPC’s in form of (6.15), (6.32) and (6.50) are only applicable
to singular points in the domain. Those points are per se not linked among each
other and could not suitably present a well bore and well screen, where a relatively
uniform distribution of a priori unknown head (or concentration and temperature)
results from the high conductivity of the conduit that transmits flow, species mass
and energy between different locations. Conventionally, iterative procedures (e.g.,
[384]) are used to adapt a uniform distribution of variables (e.g., hydraulic head
h) at a series of points forming a well or well screen when mimicked via standard
well-type SPC’s. But, this technique is cumbersome and rather inefficient.

In contrast, the present multilayer well BC is a noniterative, straightforward,
efficient and accurate method for handling well bore conditions in 3D aquifer
systems which can consist of different layers or heterogeneous formations. Even
in a 3D homogeneous aquifer, where a partially penetrating pumping well has to be
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imposed, the multilayer well BC is superior because the depth-variable inflow to the
well is naturally accommodated.

The multilayer well BC involves a method, which superimposes high-
conductivity 1D tubular discrete features (see Chap. 4) representing the well bore
and well screens (Fig. 6.14). It was firstly introduced by Sudicky et al. [502] for
aquifer flow problems and extended to contaminant transport by Lacombe et al.
[328]. The use of high-conductivity 1D discrete features to represent a well ensures
a uniform head (or concentration and temperature) along the well bore and well
screens, with slight vertical gradients in the well toward the point where the
well discharges. Storage in the well casing can also be accommodated by the
superposition of the 1D discreate features. This effect can be significant at early
times due to a rapid withdrawal of liquid from these features.

Assuming that the flow in the well along its axis is laminar and that the effect of
storage in the well casing can be uniformly distributed along the length of the well
bore, the 1D discrete feature equation describing transient liquid flow along the axis
of the well bore is given according to Table 4.5, case TP, pure liquid:

�R2
� 1

Lw
C �0g	

�@h

@t
� �R2Kw

@

@s

h
f�

�@h

@s
C �e

�i
D �Qwı.s � sw/ (6.77)

in which

Kw D R2�0g

8�0
(6.78)

by using the Hagen-Poiseuille law (4.51), where Qw is the total pumping rate of
the well, s is the arc length along the well bore (for vertical boreholes s is identical
to vertical coordinate x3 D z), sw is the location of the point that is assigned to
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discharge (or recharge) the well bore, h is the hydraulic head in the well, Lw is
the total length of the liquid-filled well bore, R is the radius of the well casing
and screen(s), assuming to be equal, ı./ is the Dirac delta function in 1D, 	 is
the compressibility of liquid, f� is the viscosity relation function of liquid (3.264),
� is the buoyancy coefficient (3.265), e is gravitational unit vector (3.261), g is
the gravitational acceleration, �0 is the reference density of liquid and �0 is the
reference viscosity of liquid. Equation (6.77) is written for a well in which the casing
is open (unconfined) to the atmosphere so that the storage in the well occurs due to
a change in the water table and effects by compressibility of liquid.

Analogously, based on the derivations done in Chap. 4 and summarized in
Tables 4.6 and 4.7, 1D discrete feature equations of the well bore can be formulated
for species mass transport (Table 4.6, case TP, pure liquid)

�R2
@Ck

@t
C �R2v @Ck

@s
� �R2 @

@s

h�
Dk CD.k/mech

�@Ck

@s

i

C�R2#k Ck D �.Ckw � Ck/Qwı.s � sw/ (6.79)

using Taylor’s relation (4.69) of mechanical dispersion in a liquid-filled tube under
laminar conditions as

D.k/mech D R2v2

48Dk

(6.80)

where Ck is the concentration of species k in the well, v is the velocity of liquid
in the well bore, Dk is the free-solution diffusion coefficient of species k, #k is the
decay rate of species k and Ckw is the prescribed concentration of species k at well
point sw,
and for heat transport (Table 4.7, case TP, pure liquid)

�R2�c
@T

@t
C �R2�cv @T

@s
� �R2 @

@s

h�
�C �cDmech

�@T

@s

i

D �.Tw � T /�cQwı.s � sw/ (6.81)

using solute-analogous Taylor’s relation (4.69) for thermal mechanical dispersion in
a liquid-filled tube under laminar conditions according to

Dmech D R2v2�c

48�
(6.82)

where T is the temperature in the well, � is the density of liquid, c is the specific
heat capacity of liquid,� is the coefficient of thermal conductivity of liquid and Tw

is the prescribed temperature at well point sw.
The governing equations (6.77), (6.79) and (6.81) for flow, species mass transport

and heat transport, respectively, are formulated for a liquid-filled well bore tube.
However, in cases, where the borehole is filled (or partially filled) with aquifer
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sediments (e.g., abandoned borehole), the well bore equations could be applied to
porous-medium flow and transport conditions, which can be taken from Tables 4.5–
4.7. Then, the Kw of (6.78) has to be replaced by Darcy’s hydraulic conductivity
and Dmech of (6.80) and (6.82) by the Scheidegger-Bear dispersion relation (4.68).
More complex situations occur in heat transport for borehole heat exchanger (BHE),
where different individual pipes and grout components are placed into a cylindrical
borehole. The concept of multilayer BC must then be extended as further described
in Sect. 13.5.

6.5.7 Outflow BC (OBC)

Often in mass and heat transport the liquid flows through (i.e., both into and out
of) the computational domain ˝ and advects transport quantities (concentration
Ck, temperature T ). This situation is necessitated by the fact that the true physical
domain of interest is much too large to even be considered in a numerical simulation.
Particularly, we have to consider outflow conditions in which the computational
domain is truncated and suited BC’s have to be necessarily applied at these ‘artifical
boundaries’ of the truncated domain.

An outflow boundary of a truncated domain is often delicate to handle because
the advective (convective) and dispersive quantities cannot be specified a priori. The
goal of an outflow BC (OBC) is then to allow the transport quantities to leave freely
with a minimal influence on the upstream solution. In practice, outflow boundaries
are often subject to the assumption that the gradient of the transport quantity is zero
(i.e., a common natural BC of Neumann type with rCk D 0 and/or rT D 0), viz.,

�.Dk � rCk/ � n D 0
�.Λ � rT / � n D 0 (6.83)

with the consequence that the boundary is impermeable to the normal diffusive
(dispersive/conductive) fluxes. The question arises how such a common natural BC
does influence the solution upstream on the effluent boundary. To enlighten the
situation let us consider a domain, which becomes truncated by a transition zone
of infinitesimal thickness ı ! 0 representing an outflow boundary �C as shown in
Fig. 6.15 for heat transport. Providing the OBC in form of the transition zone has no
conserved property, heat balance requires that the temperatureT varies continuously
and should not be changed by the presence of the boundary compared to the
untruncated domain. Apparently, the boundary permeable to both the advective
(convective) part �cT q and the conductive (dispersive) part �Λ � rT of the total
heat flux j�T permits upgradient heat movement by conduction. However, if the
temperature gradient at the boundary is forced to zero, the conductive component
of the heat flux is dropped at the boundary and the temperature profile differs
over a certain distance upstream from the boundary as evidenced in Fig. 6.15. The
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Fig. 6.15 Finite transition zone representation of outflow boundary �C of domain˝: (a) continu-
ity of total heat flux j�T D �cT q �Λ � rT within the transition zone of infinitesimal thickness ı,
where inside the temperature T D T .x; t /may vary continuously, (b) profile showing the behavior
of temperature T when it varies continuously (1) and when temperature gradient is forced to zero
(2) (Modified from [103])

measure of this upstreaming alteration in the temperature profile is controlled by
the ratio between advection (convection) and conduction (dispersion). If advection
dominates this alteration effect is usually small. On the other hand, if heat transport
is dominated by thermal conduction, which possesses upstream conduction at the
outflow boundary to a greater extent, a zero-gradient condition could not be a
good choice. The situation can be mitigated if we can choose a more appropriate
location of the outflow boundary far enough, where the gradients are small or
negligible during the simulation. Moreover, there are applications, where the zero-
gradient condition is useful. For instance, the outlet into a big reservoir, where the
temperature is perfectly mixed out.

We have to ask what is a better OBC than the common natural BC of Neumann
type in form of (6.83). Alternative formulations have been analyzed by Gresho and
Sani [209] in a numerical context. A promising OBC treatment is proposed by
Frind [175] and Cornaton et al. [103] termed as free exit BC and implicit Neumann
condition, respectively. It consists in the following: Instead of explicitly prescribing
the Neumann-type BC’s for mass and heat transport written in the convective form

qnkC D �.Dk � rCk/ � n
qnT D �.Λ � rT / � n (6.84)

and in the divergence form

qnkC D Ckqnh � .Dk � rCk/ � n
qnT D �c.T � T0/qnh � .Λ � rT / � n (6.85)

the boundary terms of (6.84) and (6.85) are treated as unknown quantities and
put back onto the LHS for the numerical solution. In this way, no assumptions
must be made anymore for the gradients of the concentration or temperature. This
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form of OBC ensures that mass and heat fluxes become freely permeable at the
boundary both to the advective (convective) and dispersive (conductive) components
of transport. For the divergence forms of transport the OBC needs the knowledge
of the advective flux qnh D q � n at the outflow boundary. In general, qnh is a
prior unknown and must be determined from the flow equation via a postprocessing
balance analysis. The numerical treatment of OBC’s is described in Sects. 8.5.3
and 8.9.



Chapter 7
Anisotropy

7.1 Principal Directions and Rotation

For the tensors of hydraulic conductivity K (3.263), transmissivity T (3.302) and
thermal conductivity of solid Λs

0 (3.172) anisotropy is to be taken into account. It is
assumed they have orthotropic properties, i.e., the conductivities are given along
their principal directions xmi .i D 1; 2; 3/, which are turned against the global
Cartesian coordinate system xi .i D 1; 2; 3/ by a rigid-body rotation (Fig. 7.1), see
Sect. 2.1.5.3. Hence, the conductivity along the principal directions xmi represents a
diagonal matrix

Km
ij D

0

@
Km
1 0 0

0 Km
2 0

0 0 Km
3

1

A (7.1)

which can be mapped by using the transformation in form of the rotation matrix
Aij (2.57)

Aij D
0

@
A11 A12 A13

A21 A22 A23
A31 A32 A33

1

A (7.2)

onto the global Cartesian coordinate system xi , viz.,

Kij D Ali K
m
lk Akj (7.3)

or

Kij D
0

@
K11 K12 K13

K21 K22 K23

K31 K32 K33

1

A D
0

@
A11 A21 A31
A12 A22 A32
A13 A23 A33

1

A

0

@
Km
1 0 0

0 Km
2 0

0 0 Km
3

1

A

0

@
A11 A12 A13
A21 A22 A23
A31 A32 A33

1

A

(7.4)
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Fig. 7.1 Definition of a 3D
anisotropic conductivity

After rotation, the tensor K in the global Cartesian coordinates x results, which
describes an anisotropic conductivity in the form:

Kij D
0

@
A211K

m
1 C A221Km

2 C A231Km
3 A11A12K

m
1 C A21A22Km

2 C A31A32Km
3

A212K
m
1 CA222Km

2 C A232Km
3

symm.

A11A13K
m
1 C A21A23Km

2 C A31A33Km
3

A12A13K
m
1 C A22A23Km

2 C A32A33Km
3

A213K
m
1 C A223Km

2 C A233Km
3

1

A (7.5)

The elements of the rotation matrix (7.2), Aij, represent the directional cosines of
the rotation angles (2.60) appearing in transforming from the Cartesian coordinate
system xi to the principal direction system xmi . They are referred to as Eulerian
angles [194] as defined in Fig. 2.7. In 3D three angles .; �;  / result, while in 2D
only one Eulerian angle  has to be specified to perform a unique principal axis
rotation. As the result, anisotropy for 3D applications needs formally six parameters
.Km

1 ;K
m
2 ;K

m
3 ; ; �;  /, while three parameters .Km

1 ;K
m
2 ; / are required to handle

a 2D anisotropy. Considering the effort and the appropriateness in computing the
anisotropic conductivity (7.5), different strategies are employed for 3D and 2D
cases as described subsequently.

7.2 Two-Dimensional Anisotropy

Two-dimensional anisotropy represents a special case of the principal direction
transformation as introduced above. It rotates the principal axes of the conductivity
tensor Km

ij into the axes of the global Cartesian coordinate system .x1; x2/ by a
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given angle  between the first principal axis of Km
ij and the x1�axis (Fig. 7.2). An

anisotropic conductivity is then uniquely defined by their maximum and minimum
conductivities,Kmax � Km

1 andKmin � Km
2 , respectively, acting along the principal

axes, and by the rotation angle , as depicted in Fig. 7.2.
The components of the conductivity tensor Kij in the global coordinate system

.x1; x2/ are determined by using the rotation formula (7.4) for the 2D case.
Expressing the directional cosines Aij

Aij D
�

cos sin 
� sin cos

	

(7.6)

by the rotation angle  it yields:

Kij D
�
K11 K12

K21 K22

	

D
�

cos � sin 
sin  cos

	 �
Kmax 0

0 Kmin

	 �
cos sin 
� sin  cos

	

(7.7)

The components of the 2D anisotropic conductivityKij lead finally to:

K11 D Kmax cos2  CKmin sin2 
K22 D Kmax sin2  CKmin cos2 
K12 D K21 D .Kmax �Kmin/ sin  cos

(7.8)

In FEFLOW for each discretized (finite) element following quantities are input:

1. The maximum conductivityKmax.
2. A ratio of anisotropy defined as:

�aniso D Kmin=Kmax with Kmax > 0 (7.9)
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being unity for isotropic relations.
3. The rotation angle .

Analogous relationships exist for the tensor of transmissivity T (3.302) applied to
2D problems of confined aquifers. On the other hand, thermal conductivities of solid
in 2D are assumed isotropic Λs

0 D �sδ, (3.172), see Sect. 7.4.2.

7.3 Three-Dimensional Anisotropy

7.3.1 General 3D Anisotropy Formulation

The 3D rotation of the principal axes needs the knowledge of the three Eulerian
angles .; �;  /, which are defined in Fig. 2.7. If the Eulerian angles are explicitly
given, the directional cosines Aij of the rotation matrix (7.2) can be immediately
expressed as [194]:

Aij D
 

cos cos  � cos � sin sin cos sin C cos � cos  sin sin sin �
� sin cos  � cos � sin cos � sin sin C cos � cos  cos cos sin �

sin � sin � sin � cos  cos �

!

(7.10)

This represents the most general formulation of anisotropy in 3D. This case
is optionally available in FEFLOW, where the user can directly input the six
parameters .Km

1 ;K
m
2 ;K

m
3 ; ; �;  /.

The general rotation matrix (7.10) contains the following three important special
cases of axis rotation:

(i) Rotation about the x3�axis only:

Aij D
0

@
cos sin  0
� sin  cos 0
0 0 1

1

A at � D  D 0o (7.11)

(ii) Rotation about the x2�axis only:

Aij D
0

@
cos � 0 sin �
0 1 0

� sin � 0 cos �

1

A at  D �90o

 D 90o (7.12)

(iii) Rotation about the x1�axis only:

Aij D
0

@
1 0 0

0 cos � sin �
0 � sin � cos �

1

A at  D  D 0o (7.13)
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Fig. 7.3 Layer-oriented principal directions of anisotropy for a prismatic finite element

7.3.2 Shape-Derived 3D Anisotropy by Springer’s Method

Applying the rotation matrix (7.10) to the transformation (7.5) it leads to relatively
expensive formulae for the resulting conductivity matrix Kij in the 3D anisotropic
case. Unlike the 2D case, where the additional effort in prescribing only one
Eulerian angle  for the definition of an anisotropic property of conductivity is
still justifiable, in 3D the Eulerian angles .; �;  / are often not utilized as a
direct input because, in practice, they are generally not explicitly known and not
given.

On the other hand, one can make use of the fact that the principal axes generally
correlate with the geologic layer structure and, accordingly, provided that the 3D
shape of the layers is known, the spatial rotation of the principal directions is
automatically accomplished via computation. The conductivity in a geologically
layered structure is often orthotropic inasmuch the higher conductivity Km

1 D Km
2

is parallel to the layering and a lower value Km
3 is normal to the stratigraphy. It

leads to a computational approach in the FEM (cf. Sect. 8.11) for transforming the
principal axes of each finite element if 3D prismatic finite elements are used, which
are capable of fitting their top and bottom faces to the actual stratigraphic layering
(Fig. 7.3a).

For 3D prismatic finite elements a method of shape-derived principal directions
has been proposed by Springer [489]. Using quadrilateral or triangular prismatic
elements the two opposite top and bottom faces of each element represent layer
boundaries. A finite element is usually characterized by its local distorted coordinate
system .�; �; �/ as shown in Fig. 7.3b. The coordinate transformation from the local
system .�; �; �/ to the global Cartesian system .x1; x2; x3/ is achieved by the
Jacobian matrix J (2.44):
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(7.14)

The idea behind Springer’s method of shape-derived principal directions is in
relating appropriately the three principal axes of the conductivity anisotropy to
the local finite-element coordinate system .�; �; �/. Basically, the directions of the
mutually orthogonal principal axes are identified by the following normalized three
vectors ui .i D 1; 2; 3/ (Fig. 7.3b):

u1 D
0

@
x1;�
x2;�

x3;�

1

A (parallel to ��direction) (7.15)
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@
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(7.16)
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(7.17)

where

mij DJ � JT D
0

B
@

x21;� C x22;� C x23;� x1;�x1;� C x2;�x2;� C x3;�x3;� x1;�x1;� C x2;�x2;� C x3;�x3;�

x21;� C x22;� C x23;� x1;�x1;� C x2;�x2;� C x3;�x3;�

symm. x21;� C x22;� C x23;�

1

C
A

(7.18)

As the result, the directional cosines can be simply expressed by

Aij D cos.ui ;ej / D ui � ej
kuikkej k .i; j D 1; 2; 3/ (7.19)

with the base vectors (2.5) in 3D:
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to compute the rotation matrix Aij. Finally, it yields:

Aij D
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(7.21)

In the practical simulation, the rotation matrix is computed by using (7.21) at each
Gaussian integration point of a finite element according to the 3D stratigraphic layer
structure. In this way, the anisotropic 3D tensor of conductivityKij is automatically
determined by applying (7.5).

The key advantages of this method concern that only the conductivities of
the three principal directions along the layer structure need to be input for each
discretized element, viz.,

1. The conductivityKm
1 parallel to layering,

2. The conductivityKm
2 parallel to layering, and

3. The conductivityKm
3 normal to layering,

and the 3D shape of the layer geometry is embodied in the anisotropy relations with
a relatively high accuracy.

7.4 Special Cases

In specifying the hydraulic conductivity matrixK and the thermal conductivityΛs
0

of solid two special cases are important:

7.4.1 Axis-Parallel Anisotropy

The system of principal axes xmi is parallel to the Cartesian coordinate system xi .
Hence, the Eulerian angles become zero:  D � D  D 0o and the hydraulic
conductivity matrixKij reduces to the diagonal matrix Kij (7.1), viz.,
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1
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or

Kii D Km
i and Kij D 0 for i ¤ j at i D 1; 2; 3 (7.23)

This case is to be referred to as axis-parallel anisotropy. Here, different conductivi-
ties can be prescribed in each direction of the xi�axes:

For 3D: K11 D Km
1 ; K22 D Km

2 ; K33 D Km
3

For 2D: Kmax D K11 and �aniso D K22=K11 with  D 0o (7.24)

For the thermal conductivityΛs
0 of solid a special form of axis-parallel anisotropy

is applied to 3D problems

Λs
0 D

0

@
�s 0 0

0 �s 0

0 0 �s
3

1

A (7.25)

where only the thermal conductivity �s
3 of solid in the x3�direction differs.

Introducing the thermal anisotropy factor as

��
aniso D

�s
3

�s
(7.26)

the 3D thermal conductivityΛs
0 of solid becomes

Λs
0 D �s

0

@
1 0 0

0 1 0

0 0 ��
aniso

1

A (7.27)

7.4.2 Isotropy

The directional independency of the conductivity leads to an isotropic conductivity
matrixKij in the form

Kij D
0

@
K11 K12 K13

K21 K22 K23

K31 K32 K33

1

A D
0

@
K 0 0

0 K 0

0 0 K

1

A (7.28)
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or

K D K δ (7.29)

where K corresponds to an isotropic hydraulic conductivity coefficient. Here, the
following is to be input:

For 3D: K11 D K22 D K33 D K
For 2D: Kmax D K �aniso D 1 with  D 0o (7.30)

Similarly, for the thermal conductivityΛs
0 of solid the isotropic relation holds

Λs
0 D �s δ (7.31)

and only a scalar thermal conductivity �s of solid is input both in 2D and 3D
problems with ��

aniso � 1.



Part II
Finite Element Method

Part II is organized into eight chapters, which covers the finite element solution
of the underlying flow, mass and heat transport equations in porous and fractured
media derived in Part I. We start with a comprehensive introduction into the finite
element method (FEM) applied to multiple dimensions. Its relationship to other
numerical methods, such as finite difference method, finite volume method, spectral
method and others, is discussed. At first, in Chap. 8 the basic principles of FEM
are systematically developed and reviewed for prototypical advection-dispersion
equations (ADE’s). This chapter is clearly most important because the following
chapters, in which the specific finite element solutions are elaborated for selected
classes of problems, will adjunct to this one. The different spatial and temporal
discretization techniques are addressed. The important approximate solutions for the
divergence and convective forms of ADE are carefully developed. Emphasis is given
on adaptive solution strategies. Implicit and explicit time integration methods are
reviewed and compared. It clearly shows the superiority of implicit strategies for the
present problem classes, in particular automatic error-controlled predictor-corrector
schemes are favorited. Upwind methods are thoroughly discussed and examined in
comparison to the standard Galerkin-based FEM (GFEM). The optimality of GFEM
is explicitly shown in Appendix F. Stability and error analyses for the favorite
schemes are presented in some detail. Their most practical outcome is summarized
in Table 8.9 containing quantitative estimates of spurious numerical dispersion
and stability bounds in space and time. Techniques for solving the resulting
matrix equations are discussed. They cover direct Gaussian-based methods and
various preconditioned iterative methods, such as conjugate gradient, ORTHOMIN,
GMRES, bi-conjugate gradient stabilized and multigrid techniques. Of important
interest is the solution of the nonlinear equations by using Picard and Newton
iteration techniques, which are embedded in adaptive time stepping strategies for
solving transient problems. A particular focus is given on derived quantities, i.e.,
the evaluation of fluxes and balance quantities. It is shown that the FEM is locally
conservative.

The following chapters deal with the finite element solutions for saturated porous
media (groundwater), variably saturated porous media (unsaturated-saturated flow),
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variable-density flow and transport in porous media, multispecies and single-species
mass transport in reacting and non-reacting porous media, heat transport processes
in porous media and discrete feature modeling for flow, mass and heat transport.
Each class of problems also comprises typical examples and benchmark tests
to illustrate the usefulness, efficiency and accuracy of the proposed numerical
techniques in comparison to analytical solutions (if exist), physical measurements
(if available) and other numerical findings (if precious). It provides a comprehensive
overview of appropriate approaches for the different problems having their specific
aspects and numerical requirements which should be very valuable for users who
want to verify solutions or expand their modeling skills. To allow repeatability
and individual rerun (either by using FEFLOW or with other programs), each
example is fully documented and contains a complete description of the dataset
summarized in tables. The examples are prototypical for more complex solutions.
In the present book, it is not intended to present field applications which would
restrict the comparability and the emphasis on essential features we like to highlight.

There are a number of topics which are reviewed in the individual chapters. Of
particular concern are the treatment of free-surface problems, fully anisotropic flow
situations, the incorporation of multi-layer well condition, the different formulations
of Richards’ equations with the favorite solution strategies suited for variably
saturated flow, including the computation of hysterestic effects and time-varying
porosity, the simulation of variable-density flow with analysis of important con-
vection phenomena, including free convection and double-diffusive (thermohaline)
convection, required schemes to tackle successfully buoyant flow and multispecies
reactive mass transport, heat transport modeling including borehole heat exchanger,
discrete feature modeling for flow, mass and heat transport with and without
buoyancy effects as well as accurate budget analyses for flow, mass and heat. In a
final chapter meshing strategies for finite elements, particle tracking techniques,
useful methods of streamline computation and finite element interpolation are
addressed.



Chapter 8
Fundamental Concepts of Finite Element
Method (FEM)

8.1 Introduction

In the previous Chaps. 3–5 the governing continuum balance equations in form of
partial differential equations (PDE’s) have been derived for a wide range of flow,
mass and heat transport processes in porous and fractured media. Their solution
under given IC’s and BC’s, such as described in Chap. 6, requires appropriate
and efficient mathematical methods, which can be firstly grouped into analytical
and numerical methods. There is a family of powerful analytical methods (e.g.,
Fourier and Laplace transformation, complex variable techniques, Green’s func-
tions, perturbation methods, power series), which are capable of solving a certain
number of problems in an exact way. However, exact analytical solutions are often
only attainable for elementary linear (or quasi-linear) problems on simple (regular)
geometries. Very few analytical solutions exist for nonlinear problems with regions
of regular geometry, however, these are usually approximate solutions in terms
of an infinite series or some transcendental functions that can be evaluated only
approximately. If exact analytical solutions are available on idealized problems
they are often advantageous in comparison to numerical results for purposes of
verification and estimation of errors arising in the alternative numerical methods.

Problems involving irregular geometry, materials with variation in properties,
nonlinear relationships and/or complex BC’s are intractable by analytical methods
and numerical methods must be used in general. They allow the solution for a broad
range of problems. The key feature of any numerical method is in the approximate
solution of the basic PDE’s via spatial and temporal discretizations, in which the
solution variables, which are basically continuous functions of space and time, are
obtained by discrete values, defined at specific points in space and time (Fig. 8.1). In
doing this approximation, the governing PDE’s are replaced by a number (often, a
very large number) of linear (or linearized) algebraic equations, which can be easily
solved via computers. As a consequence of the numerical approximation, errors are
naturally inherent in the solution and the big challenge of numerical methods is
to minimize these numerical errors and find best accurate, convergent and stable
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Fig. 8.1 Example of 2D domain discretized by finite differences and finite elements

solutions by using efficient, general and robust strategies of approximation. It is
important to ensure that the approximation satisfies certain important properties of
the exact solution, e.g., conservativity, boundedness and consistency (see Sect. 1.2.2
for further discussion).

We can classify the numerical methods as follows:

• Finite difference method (FDM)
• Method of characteristics (MOC)
• Finite element method (FEM)
• Finite volume method (FVM)
• Boundary element method (BEM)
• Meshless method (MLM)
• Spectral element method (SEM)

These methods are closely related. The FDM is the classic numerical approach,
e.g., [168]. It is conceptually straightforward and had a high popularity in past.
FDM approximates the differential form of the basic PDE in a difference form
and is usually restricted to simple (rectangular) geometries and BC’s. The specific
advantage of FDM lies in the use of regular grids on which the approximation can
be most efficiently performed. The development of finite-difference approximations
is commonly done by either Taylor series expansion or curve-fitting technique.

The MOC as a traditional solution method [165,184] is only applicable to PDE of
hyperbolic type, i.e., for advection-dominated transport processes. It is based on the
concept of trajectories (or characteristics) on which a large number mathematical
particles are tracked. While mainly 1D and partly 2D unsteady flow processes
could be successfully modeled, the method is rather cumbersome when extended
to multidimensional problems, dealing with complex BC’s and nonlinearities.

The basic ideas underlying the FEM have a long history. Ritz [445] and
Galerkin [181] presented variational integral formulations of a PDE and
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approximate solutions based on their minimization. Pioneering work of FEM in
the modern form that we know today dates back to the early 1940s given by
Hrenikoff [264] and Courant [104]. First applications were done for aero structures
in the late 1950s [525]. Clough [88] coined the term finite element method at that
time. The power of FEM was quickly recognized and the first textbook on FEM
appeared in the mid-1960s by Zienkiewicz and Cheung [589], which boosted the
development of FEM in many fields of sciences and engineering lasting up to now.
First applications of FEM for porous-media problems were given by Zienkiewicz
and Cheung [589], Pinder and Gray [421] and Huyakorn and Pinder [280]. Since
then, the FEM has become one of the basic tools for numerical analysis in structural
mechanics, fluid dynamics, heat transfer and numerical mathematics (for literature
review see Sect. 1.3 with Table 1.3).

Today, the FEM represents a collection of theory-rich techniques and is based
on the weak (or variational) formulation of the governing initial-boundary-value
problem. This theoretical foundation on weak formulation is quite distinct from
FDM. The weak formulation is an integral approach, which is a natural and
an adequate approach of a continuum balance statement. FEM subdivides the
continuum in a finite number of elements, for which the balance statements are
discretely applied. The resultant algorithm of the FEM can be universally expressed
as a matrix statement with all formation processes on a generic master element. The
generic master element statement is then assembled into a global matrix statement.
BC’s can be brought directly into the generic master element providing accurate
expressions of surface integrals for the PDE global domain boundary on which
any flux-type BC is applicable. The FEM is essentially geometry-free. In principle,
FEM can be applied to domains of arbitrary shape and with quite arbitrary BC’s.
FEM by its nature leads to unstructured meshes (Fig. 8.1). Most complex types
of geometries can be simply handled. These features make the FEM a general,
systematic, very powerful and highly flexible numerical method, which is superior
to the other numerical methods.

There is a wide variety of methods called finite volume methods (FVM’s), e.g.,
[83, 162]. Sometimes they are termed as control volume methods or previously,
integrated FDM. FVM is usually also based on weak formulations of the basic
problem similar to FEM, however, the approximation of the balance terms relies
on evaluation of surface integrals, where boundary fluxes are developed via finite
differences. In this process, the conservation is enforced across the surfaces of
the adjoining control volume. It allows the construction of cost-effective schemes
for both structured and unstructured grids. It has been demonstrated [209] that the
FVM is inherently a FEM if using low-order elements (basically linear). It can be
shown [83, 165] that FVM can be formulated from either FDM or FEM. Identical
discrete schemes result for FVM and FEM [284] if using low-order approximations
and equivalent meshing via control volumes and elements, respectively. However,
serious problems with FVM can arise when cross-derivatives (such as anisotropic
problems, e.g., associated with the hydrodynamic dispersion tensor Dk , (3.184))
appear in the governing PDE. Commonly, diffusive/conductive gradient terms are
approximated in FVM by using a two-point flux approximation (TPFA) scheme



242 8 Fundamental Concepts of Finite Element Method (FEM)

applied to two adjacent cell values. But, TPFA is insufficient to express diffusive
fluxes, where off-diagonal values in an anisotropic diffusion/conduction tensor
exist (cf. Chap. 7). To circumvent this drawback multi-point flux approximation
(MPFA) can be used [412], which, however, requires a nonlinear evaluation making
FVM rather cumbersome and potentially less accurate. Moreover, higher-order
approximations and complex geometries on arbitrarily unstructured meshing can
lead to further difficulties in FVM.

The BEM is based on boundary integral equations in which only the boundaries
of a domain are used to obtain approximate solutions, e.g., [54, 350]. It reduces the
solution of the problem to one dimension less than the original problem (e.g., a 3D
problem is solved by a 2D approximation), however, the resulting matrix systems are
full, whereas the other numerical methods generally result in sparse matrices. The
most serious aspect with BEM is that a fundamental solution (free space Green’s
function) of the PDE must be available, which commonly requires linear equations
with constant coefficients (i.e., homogeneous materials). Thus, the application of
BEM is limited to special problems.

For all numerical methods mentioned so far mesh configurations are required
consisting of elements, cells or control volumes formed by connecting nodal
points in a predefined manner. Unlikely, various methods have been developed
which depend on finite number of points rather than meshes. They are called
meshless methods (MLM’s), finite point methods (FPM’s) or element free Galerkin
(EFG) methods, e.g., [44, 352]. Although most of the meshless methods have high
computational cost as compared to FEM, they provide advantages for a certain class
of problems such as moving boundaries, phase transformation, crack propagation
and large deformation in solids as well as modeling of multiscale phenomena. The
major advantage of MLM is the elimination of the need for mesh generation, which
can be itself a difficult task. However, MLM’s are not (yet) sophisticated enough
for application in a general context. They often require background cells to improve
numerical stability and accuracy so that in current practice, MLM’s have shown not
to be truly mesh-free.

The idea of MLM’s has been adopted and modified in the so-called eXtended
FEM (XFEM), e.g., [172]. It tries to combine the advantages of FEM and MLM,
while alleviating existing drawbacks of MLM. In the XFEM singularities, material
discontinuities, high gradients and other non-smooth properties can be described by
an extended set of discontinuous basis functions without the need of local remeshing
or alignment of the discontinuity (e.g., fractures) to edges or faces of a finite element
mesh as usually necessary in standard FEM. However, XFEM is commonly prone
to ill-conditioning of the resulting matrix systems, often in a drastic extent, so that
standard solution techniques (e.g., preconditioned iterative solvers) are most likely
to fail. It is an active field of research to improve the XFEM (e.g., using stable
XFEM [17]) for finding more tractable approaches in practical applications.

The SEM represents a combination of the classic spectral method and FEM, e.g.,
[151, 196, 334]. It can generate solutions of very high accuracy with relatively few
terms in the approximate solution, provided that the exact solution is sufficiently
smooth (but possibly steep). In contrast to the standard FEM, the unknown
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coefficients in the approximate solution must not be identified with nodal unknowns.
Instead, in SEM formulations the approximate functions are built by Fourier series,
Legendre polynomials or Chebyshev polynomials. The main advantage of SEM
relies on the exponential convergence property as soon as smooth solutions are
involved. For instance, doubling the mesh resolution reduces the numerical error
by two orders of magnitude, not by a mere factor of 4 as in standard numerical
methods (FEM, FDM, FVM) with second-order algebraic convergence. But, the
main drawback of SEM is its inability to handle complex geometries and material
discontinuities (even though effort is current to overcome these difficulties, e.g.,
[413]). It significantly limits the applicability of SEM. Furthermore, SEM has shown
insufficently effective for solving linear problems [83].

8.2 Basic Model Equations and Prototypical PDE’s

The basic continuum equations of the variable-density flow, mass and heat transport
in porous and fractured media have been developed and fully expressed in Chaps. 3
and 4. They have been summarized in Table 3.7 for general variably saturated porous
media, in Table 3.9 for fully saturated porous media (groundwater), in Table 3.10
for 2D unconfined aquifers and in Table 3.11 for 2D confined aquifers. Additionally,
Tables 4.5–4.7 list the equations for variable-density flow, mass and heat transport of
discrete features. A typical set of these coupled governing PDE’s can be expressed
in the following compact form:

L.φ/ D
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m � @.c � φ/
@t

Cr � .fa � fd / � b D 0 divergence form
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in ˝ � <D; t  t0

(8.1)

where L.φ/ denotes the PDE system written in terms of the state variable φ D
φ.x; t/. It is expressed on the (physical) domain ˝ , with the bounding closure
� , lying on D�dimensional Euclidean space <D , and for time t starting at, and
proceeding from some initial time t0. For the solution, appropriate BC’s are required
on the entirety of � and IC’s on ˝ [ � are necessary as described in Chap. 6. In
(8.1) the following vector and matrix definitions are used:
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n D
l
s So C " @s@h ; "s K<k; "s�c C .1 � "/�scs

k
;

c D d1; "s<k; "s�c C .1 � "/�scsc (8.2)

where fa and fd are the advective and dispersive (diffusive) flux tensors, respec-
tively, which are expressed in terms of functions derived from the state variable φ.
Note that in (8.2) d: : :c symbolizes diagonal matrices, cf. (2.22).

The coupled system of PDE’s (8.1) has to be solved for  via FEM. Due to
its nonlinearity and complexity specific treatments are necessary in dependence
on the underlying problem class, e.g., variable-density flow, unsaturated porous
media, chemical reaction systems, fracture modeling, heat exchange. It is useful to
discuss the FEM solutions for each problem class in a separate manner. However, for
introducing the FEM and explaining the principal solution steps it is convenient to
start with a simpler PDE written for a scalar state variable , which is representative
for all of the flow and transport processes under consideration. An appropriate
prototypical PDE is the following advection (convection)-dispersion equation
(ADE), incorporating effects of advection, dispersion (diffusion), retardation and
decay (as illustrated in Fig. 8.2), written in its divergence form as

L./ D @.R/
@t

Cr � .q/ � r � .D � r/C # �H �Qw D 0

in ˝ � <D; t  t0
(8.3)

to be solved for  subject to a set of BC’s of Dirichlet, Neumann and Cauchy type
as well as well-type SPC (see Chap. 6), which typically are

 D D on �D � t Œt0;1/
.q �D � r/ � n D q�N on �N � t Œt0;1/
.q �D � r/ � n D �˚�.C � / on �C � t Œt0;1/

Qw D �Pw wQw.t/ı.x � xw/ on xw 2 ˝ � t Œt0;1/
(8.4)

and written in its convective form as
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C q � r � r � .D � r/C .# CQ/ �H �Qw D 0
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(8.5)

subject to the Dirichlet, Neumann and Cauchy BC’s as well as well-type SPC as

 D D on �D � t Œt0;1/
�.D � r/ � n D qN on �N � t Œt0;1/
�.D � r/ � n D �˚.C � / on �C � t Œt0;1/
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�
Qw.t/ı.x � xw/ on xw 2 ˝ � t Œt0;1/

(8.6)
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Fig. 8.2 Effects of advection, dispersion, retardation and decay on a scalar transport quantity
: Advection simply translates the quantity by the advective velocity q, dispersion spreads the
quantity both downstream and upstream and smoothes the fronts, retardation delays the advective
transport and reduces effects of dispersion, and decay accounts for disappearance of an amount of
the quantity

where the boundary � D �D [ �N [ �C is composed of the three segments, �D ,
�N and �C , which do not overlap each other: �D \ �N \ �C D Ø. Usually,
�D ¤ Ø is required for steady-state problems .@=@t D 0/, unless �C ¤ Ø.
It is assumed that each of the boundary segments can be further subdivided into
different portions of the same BC type, e.g., �N D �NI [ �NO [ : : :, however,
which must not be necessarily connected (Fig. 8.3). The scalar state variable  can
stand for the hydraulic head h (or pressure head  ), for a species concentration
Ck or the temperature T in accordance with the corresponding problem class to
be solved. In the above Eqs. (8.3)–(8.6), n is the positive outward-directed unit
normal to � , q is the (at first assuming known) advective flux, R and KR are storage
(retardation) coefficients, which are prototypical for the coefficients appearing in
(8.2) (note that for an ADE applied to a porous medium they include porosity and
saturation), D is a dispersion (diffusion/conduction) tensor, # is a (linear) decay
parameter,H is a general source/sink term, Q is a flow supply term (without well-
type SPC), Qw is the singular well sink/source function with given well pumping
rate Qw.t/ and known w at well w of location xw, D is the prescribed value of 
on the Dirichlet boundary segment �D , q�N and qN are the prescribed fluxes on the
Neumann boundary segment �N for the divergence and the convective form of the
ADE, respectively, and C is a known value of  on the Cauchy boundary segment
�C associated with the transfer coefficients ˚� and ˚ related to the divergence and
convective form of the governing ADE, respectively. Note that q�N and qN as well as
C associated with ˚� or˚ have different meaning in the divergence form (8.3) and
the convective form (8.6) since in the divergence form the boundary flux consists of
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Fig. 8.3 Domain ˝ � <3 and boundary sections of Dirichlet type �D � � , Neumann type
�N � � and Cauchy type �C � � as well as SPC’s Qw for wells at xw 2 ˝

the total (advective plus dispersive) flux while in the convective form the boundary
flux implies only a dispersive flux. However, as has been shown in Sect. 6.3.2 the
Neumann-type BC of the divergence form is equivalent to the Cauchy-type BC of
(8.6) if using for the convective form, cf. (6.21) and (6.28),

� .D � r/ � n D q � n.C � / on �C � t Œt0;1/ (8.7)

Finally, the statement of the PDE problem (8.3) or (8.5) has to be completed by
specifying an IC in the form:

.x; t0/ D 0.x/ in N̋ (8.8)

where 0 is a given function of  at position x and initial time t0 with N̋ D ˝ [� .

8.3 Mathematical Classification of PDE’s

The governing partial differential equations (PDE’s), such as summarized in
Sect. 8.2, can be mathematically classified into three categories: (1) elliptic,
(2) parabolic and (3) hyperbolic. Most of the equations are 2nd-order PDE’s.
To classify the PDE’s several procedures are available, where most common is the
discriminant evaluation [486]: Let us consider the PDE of the form in a 2D domain
xT D .x y/ 2 <2

L.φ/ D A@
2

@x2
C B @2

@x@y
C C @

2

@y2
CD@

@x
C E@

@y
C F CG D 0 (8.9)

where the coefficients A, B , C , D, E , F and G are constants or may be functions
of both independent and/or dependent variables. Then, the three categories of PDE
can be distinguished according to:
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elliptic PDE: B2 � 4AC < 0;

parabolic PDE: B2 � 4AC D 0;
hyperbolic PDE: B2 � 4AC > 0

(8.10)

It is apparent that the classification depends only on the highest-order derivatives in
each independent variable. We note that the coefficients A to G of (8.9) can also
vary as functions of x, y, , @=@x or @=@y and (8.10) can still be used if A, B
and C are given a local interpretation. This implies that an equation can belong to
one classification in one part of the domain and another classification in another part
of the domain. Typical examples of PDE classifications are given as follows:

(a) Elliptic equation

�Kx

@2

@x2
�Ky

@2

@y2
D 0 .Kx > 0; Ky > 0/

A D �Kx; B D 0; C D �Ky

B2 � 4AC D �4KxKy < 0

(8.11)

(b) Parabolic equation

@

@t
C v @

@x
�Kx

@2

@x2
D 0 .v > 0; Kx > 0/

A D �Kx; B D 0; C D 0
B2 � 4AC D 0

(8.12)

(c) Hyperbolic equation

@

@t
C v @

@x
D 0 .v > 0/

differentiating with respect to x and t :
@2

@t@x
C v @

2

@x2
D 0; @2

@t2
C v @

2

@t@x
D 0

and combining:
@2

@t2
� v2 @

2

@x2
D 0

A D 1; B D 0; C D �v2
B2 � 4AC D 4v2 > 0

(8.13)

To generalize the PDE classification to more variables, a common way is to classify
the PDE’s via the 2nd-order differential operator defined as

D./ D r � .D � r/ (8.14)
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whereD is a symmetric, positive-definite tensor. Then, the three categories of PDE
in the D�dimensional space <D .D D 1; 2; 3/ are distinguished as follows:

elliptic PDE: �D./� F CG D 0;
parabolic PDE: a

@

@t
C v � r �D./ � F CG D 0;

hyperbolic PDE: a
@

@t
C v � r C F �G D 0

(8.15)

where a, F and G are coefficients and v represents a flux vector.
The classification of PDE’s can be associated with the smoothness of the

solution . Elliptic PDE’s produce solutions that are smooth (up to the smoothness
of coefficients) even if BC’s are not smooth. On the other hand, parabolic PDE’s
will cause the smoothness of solutions to increase with growing time and reducing
influences by first-order derivatives, while hyperbolic PDE’s preserve lack of
smoothness.

8.4 Methods of Approximation

8.4.1 Approximate Solution

The sought approximation of the basic PDE’s (8.3) and (8.5) with their BC’s (8.4)
and (8.6), respectively, starts with expressing a suitable approximate functional form
for the solution . The usual form is

.x; t/ 	 O.x; t/ D
X

j

Nj .x/ j .t/ (8.16)

where O is the approximate solution, Nj represent a set of given basis functions (or
trial or interpolation functions) and j are a set of unknown coefficients (at the nodes
of interpolation) to be determined. In the functional expression (8.16) the spatial
and temporal variables are separated. This variable separation procedure is termed
as Kantorovich (semidiscrete) method [149, 300, 377] and allows the discretization
first in space followed by a time marching procedure for the temporal discretization,
which is the usual practice in numerical analysis leading to efficient computational
schemes, although alternative of (8.16) exists.1

1A continuous space-time approximation can be expressed in the form

.x; t / � O.x; t / D X

j

Nj .x; t / j
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ˆ

f x

1 2 63 74

Fig. 8.4 Approximating O.x/ (dashed line) of state function  (solid line) creating an error e D
 � O (shaded area)

It is to be noted that the sought approximate solution O is a function distributed
over the entire domain ˝ of L./ and its boundary � ; hence, it is a global
function. Examples of the corresponding basis functions include polynomials (e.g.,
Lagrangian, Hermite or Chebyshev polynomials) or trigonometric functions (e.g.,
Fourier series). Approximating the solution to (8.3)–(8.6) with the series expression
(8.16), an error will generally occur defined as the difference between the exact
solution  and the approximate solution O:

e D  � O (8.17)

The situation is sketched in Fig. 8.4, where the exact solution  shown as solid line
is approximated by a piecewise continuous linear interpolation O between selected
locations at nodes j D 1; 2; : : : depicted as dashed line. The difference between 
and O represents the error e of the solution illustrated by the shaded area in Fig. 8.4.
It indicates that the error is in general a function of space (and time). The error can
also be measured only at the discrete locations of nodes j D 1; 2; : : :, providing a
vector e of pointwise errors:

e D ej D j � Oj .j D 1; 2; : : :/ (8.18)

The goal is now to make the error e as small as possible, and hence minimize the
difference between  and O. Since the exact solution  is generally unknown and
e is variable in space and time, the minimization of the error e requires a general
approach to be described in the following.

where the basis functions x; t have to be prescribed both in space x and time t . It requires a finite
element in space-time and increases the computational dimension, e.g., a transient 3D problem
needs a 4D trial space.
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8.4.2 Definition of Errors and Related Functional Spaces

Defining in the D�dimensional Euclidean<D space with

Dse D @jsje.x/
@x

s1
1 @x

s2
2 : : : @x

sD
D

D
�
@s1

@x
s1
1

	�
@s2

@x
s2
2

	

: : :

�
@sD

@x
sD
D

	

e.x/ (8.19)

the generalized partial derivatives up to and including of the 2mth order appearing
in the governing PDE’s .m D 0; 1; : : :/, where s is a multi-index s D .s1; s2; : : :/

with jsj D PD
iD1 si and si D 0; 1; : : :, the following error norms are meaningful in

the further analysis.

8.4.2.1 Sobolev Space W m
p .˝/ Norm Error

The Sobolev space norm error is defined as

kekW m
p .˝/

D
�Z

˝

h
jejp C

mX

sD1
jDsejp

i
d˝

� 1
p

(8.20)

where m denotes the highest order of the derivatives of the 2mth governing PDE
and p represents the power to which the derivatives are raised. Note that for a
2nd order PDE m D 1. The Sobolev space W m

p .˝/ is defined as the functional
space which includes all p integrable functions .1 � p � C1/ with p integrable
derivatives of mth order. Hence, W m

p .˝/ is a collection of functions on ˝ which
are endowed with the associated norm (8.20), where any function  2 W m

p .˝/ ism
times differentiable and pth-order integrable on ˝ .

8.4.2.2 Hilbert SpaceHm.˝/ Norm Error

The Hilbert space Hm.˝/ corresponds to the Sobolev space W m
p .˝/ with p equal

to 2, i.e., Hm.˝/ D W m
2 .˝/. Thus,

kekHm.˝/ D kekW m
2 .˝/

D
�Z

˝

h
e2 C

mX

sD1
.Dse/2

i
d˝

� 1
2

(8.21)

As seen the Hilbert space Hm.˝/ is a functional space with square integrable
functions and square integrable derivatives ofmth order. Any function  2 Hm.˝/

is m times differentiable and square integrable on ˝ .
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8.4.2.3 Energy Norm Error

The energy norm error kekE is a special case of the Hilbert space norm Hm.˝/ in
the 2mthe PDE. For a 2nd-order PDE .m D 1/ it reads

kekE D kekH1.˝/ D kekW 1
2 .˝/
D
�Z

˝

h
e2 C

� @e

@x1

�2 C
� @e

@x2

�2 C : : :
i
d˝

� 1
2

(8.22)

The Hilbert space H1.˝/ is a functional space with square integrable functions
and square integrable derivatives of 1st order. Any function  2 H1.˝/ is once
differentiable and square integrable on˝ . A (smaller) Hilbert subspaceH1

0 .˝/ can
be defined for functions  which are zero on the boundary � of the domain ˝ at
the same time, i.e., j� D 0. Then, the Hilbert subspace H1

0 .˝/ reads

H1
0 .˝/ �

˚
 2 H1.˝/ W  D 0 on �

�
(8.23)

so that any function  2 H1
0 .˝/ is once differentiable, square integrable on ˝ and

zero on � .

8.4.2.4 Lp.˝/�Norm (Banach Space Norm) Error

The Banach space Lp.˝/ is defined as the complete normed linear space such that

kekLp.˝/ D
�Z

˝

jejpd˝
	 1
p

(8.24)

Using p D 2 we obtain the L2.˝/ space, which is equivalent to the Hilbert space
H0.˝/ with m D 0:

kekL2.˝/ D kekH0.˝/ D kekW 0
2 .˝/
D
�Z

˝

e2d˝

	 1
2

(8.25)

The L2.˝/ space is a functional space with square integrable functions so that any
function  2 L2.˝/ must be square integrable on ˝ . The L2 norm is one of the
most widely used error norm. Another useful error norm is the maximum error norm
L1.˝/ given for p D 1:

kekL1.˝/ D max
j
jej j (8.26)

where ej is the discrete error at location j . More seldom used in practice is the
L1.˝/ error norm:

kekL1.˝/ D
Z

˝

jej d˝ (8.27)
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8.4.2.5 Root Mean Square (RMS) and Other Pointwise Error Norms

The RMS error norm represents a pointwise L2.˝/ space norm, which can be
expressed in different forms. Most useful is the normalized RMS error norm
defined as

kekRMS D
�
1

NP

�
1

O2max

NPX

jD1
e2j

	� 1
2

(8.28)

where NP is the number of components of the error vector e and Omax is the
maximum value of the approximate solution O to normalize the ej components.

If focusing on the maximum error occurring in the approximate discrete solution,
the normalized maximum error norm can be useful and is defined as

kekL1 D
1

Omax

max
j
jej j (8.29)

It yields the strongest error measure and should be preferred if the local error is
important in the numerical approximation (‘scheme listens to each sound’).

As an alternative to the L2 RMS norm, the normalized L1 error norm can be
applied:

kekL1 D
1

NP Omax

NPX

jD1
jej j (8.30)

However, it should not be the first choice and the RMS norm is commonly more
appropriate.

8.4.3 Method of Weighted Residuals (MWR)

There are two fundamental theories of constructing approximate solutions to the
governing PDE’s:

1. The classic Rayleigh-Ritz method [377,590], which is based on finding solutions
via an equivalent variational problem. By extremization of the related varia-
tional functional (condition of stationarity) useful approximate solutions can be
obtained. However, natural variational functionals only exist for self-adjoint2

2Let L be a differential operator of a PDE defined in˝ and let  and  be two functions in the field
of definition of L. The operator L is said to be self-adjoint if identical to its own adjoint operator
L�, i.e., L D L�, which must result from the integral statement
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differential operator L of the governing PDF. A self-adjoint PDE is given for a
symmetric equation (containing no advective terms). However, ADE in the form
of (8.3) or (8.5) possesses an unsymmetric non-self-adjoint differential operator
for which a natural variational functionals cannot be found.3

2. The method of weighted residuals (MWR) [163] provides the most generality in
applications and will be preferred usually. It can be applied to all type of PDE
and systems of PDE’s, even to those which cannot be cast in variational form.
The following finite element approach will be exclusively based on MWR.

It is obvious that the approximate solution O of (8.16) is not likely to satisfy exactly
the governing PDE

L./ D 0 (8.31)

in form of (8.3) or (8.5). Substituting O in (8.31) yields a PDE for the error e D
 � O, (8.17), written as

L.e/ D L./� L. O/ D �L. O/ ¤ 0 (8.32)

or

L. O/ D R; R D �L.e/ ¤ 0 (8.33)

where R D R.x; t/ is the residual, which is a measure of the induced error arising
from the used approximation. It is commonly impossible and not reasonable to try
to force R to be zero everywhere in ˝ and on � (it would meet the exact solution).

Z

˝

L./ d˝ D
Z

˝

L�. /d˝ C boundary integral terms

3For instance, the non-self-adjoint ADE in form of (8.5) can be transformed to a self-adjoint
problem by introducing the new operator [129, 132, 218, 427]

NL D ' L

where the function ' D '.x/ is chosen by

' D exp.ˇ/; ˇ D � q � x
kDk

assuming a dispersion tensor D with Dij D 0 for i ¤ j . It yields the following variational
functional

I D
Z

˝

h
1
2r �.D �r/C

� KR@

@t
C # CQ

2
�H�Qw

�

i

exp.ˇ/d˝�
Z

�
.D �r/�n exp.ˇ/d�

to be extremized. However, its application is clearly restricted because values of exp.ˇ/ can
become very large (small) for advection-dominated processes and the variational functional terms
overflow (underflow) in practical computations [129, 485].
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Instead, the pragmatic approach is to require the residual R to vanish in an overall
integrated sense. The corresponding mathematical statement is that R must be
orthogonal4 to an arbitrary weighting (or test) function w.x; t/, i.e.,

Z

˝

w.x; t/ R d˝ D 0; for all w.x; t/ (8.34)

The expression (8.34) is the core of MWR [163], which minimizes the residual
R as a weighted average over the domain ˝ . This form is quite general and
the arbitrariness in w.x; t/ provides theoretical generality for various numerical
approaches. For specifying appropriate weighting functions w.x; t/ it is assumed
that its interpolation, using any suitable polynomial basis, can be made sufficiently
precise:

w.x; t/ 	 Ow.x; t/ D
X

i

wi .x/Wi.t/ (8.35)

where wi .x/ is the set of interpolation polynomials and Wi.t/ is the corresponding
set of known coefficients at the nodes of interpolation. The coefficients Wi.t/,

4We know from (2.26) when two vectors in space are at right angles, their dot product is zero and
the vectors are orthogonal. While vectors have only a limited number of entries, any real-valued
function f .x/ is characterized by infinite number of points within its domain of definition ˝. It
is obvious to consider two functions f .x/ and g.x/ to be orthogonal, if the product f .x/g.x/
‘summed’ over all x within the domain ˝ results zero. Since the amount of x covers infinite real
numbers, the product f .x/g.x/ has to be integrated. Hence, the analogy for the dot product is the
inner product given by

.f; g/ D
Z

˝

f .x/g.x/d˝

Then, the two functions are orthogonal if .f; g/ D 0. It is evident that functions if defined in the
L2.˝/ space, cf. (8.25), e.g.,

kf k D
�Z

˝

f .x/2d˝
� 1
2
< 1; kgk D

�Z

˝

g.x/2d˝
� 1
2
< 1

can be treated if they were vectors, where the Schwarz’s inequality holds

.f; g/ 	 kf kkgk
or

j.f; g/j2 	 .f; f /.g; g/

The L2.˝/�norm corresponds to a measure of the size of a function, which is in direct analogy
with the vector norm (2.11). The Schwarz’s inequality ensures that the expression

cos � D .f; g/

kf kkgk
yields well-defined angles � in space similar to the scalar product of vectors (2.24).
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Table 8.1 Suitable choices of weighting functions wi .x/; .i D 1; 2; : : : ; NEQ/ and their resulting
numerical methods

wi .x/ WS (8.36)a Method Remark

ı.x� xi / R
˝ ı.x� xi /L. O/d˝ D 0 Point collocation FDM

8
<

:

1 for xi 2 ˝e

0 for xi … ˝e

R
˝ L. O/d˝ D 0 Subdomain collocation FVM

Ni
R
˝ Ni .x/L. O/d˝ D 0 Galerkin GFEM

(Bubnov-Galerkin) (standard FEM)

Ni C QFi .x/
R
˝

�
Ni.x/C QFi .x/

�
L. O/d˝ D 0 Petrov-Galerkin PGFEM (upwind)

@R=@i
R
˝ L

�
Ni.x/

�
L. O/d˝ D 0 Least square Galerkin LSGFEM (PGLS)

a L. O/ D R D L
�PNP

jD1 Nj .x/j .t/
�

however, quantify the specific weighting function w. To remove this dependence on
a specific w, the weak statement (8.35) is extremized with respect to the parametric
set Wi.t/. Thus, the following weak statement (WS) for minimizing the residual
error R D L. O/ in any selected approximate solution O (8.16) results

WS D @

@Wi

Z

˝

Ow.x; t/L. O/d˝ D 0

D
Z

˝

wi .x/L
� NPX

jD1
Nj .x/j .t/

�
d˝ D 0 for .1 � i � NEQ/

(8.36)

where .i D 1; 2; : : : ; NEQ/ is chosen to produce exactly the correct number of
equations required to determine the NEQ unknown coefficients j .t/ at any time t .
We note that

NEQ D NPNDOF (8.37)

where NP is the number of chosen nodes and NDOF is the number of degrees of
freedom. For example, NDOF D 1 for scalar equations of  in the form of (8.3)
or (8.5) and NDOF D N C 2 for the vectorial variable φ D .h Ck T /

T .k D
1; 2; : : : ; N / appearing in (8.2). Having the weak statement expressed in the form
of (8.36) it remains to identify the two sets of known functions wi .x/ and Nj .x/
spanning the domain ˝ � <D . Usually, both the basis function set Nj .x/ and the
weighting function set wi .x/ are defined as interpolation polynomials, with a typical
selection as Lagrange polynomials. Depending on the choice of the weighting
functions wi .x/ various alternative (and familiar) methods can be generated. The
most important methods are summarized in Table 8.1.

Viewing Table 8.1, we can recognize classic numerical techniques as special
cases of MWR. In the point collocation approach a set of points xi is specified in
the solution domain˝ and Dirac delta functions are chosen as weighting functions.
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It produces a discrete approximation referred to as a stencil, common in finite-
difference schemes. The choices of polynomials Nj .x/ determine finally the
accuracy of the finite-difference approximation. In the subdomain collocation
approach the solution domain is subdivided into a number of subdomains˝ D [˝e

and weighting functions are unity for all i if xi 2 ˝e and zero otherwise. It
leads to finite volume approximations. As wi are constant in each of the respective
subdomains, any integration by part reduces to boundary integrals. First-order
operations are obvious and give normal fluxes through the discretized subdomain
boundaries. However, with derivatives higher than first-order, FVM approaches
require specific treatment such as TPFA or MPFA schemes [412].

A suitable option for the set of weighting functions wi .x/ is to require it be
identical to the set of basis functionsNi.x/ by each term i : wi D Ni . It means, the
test functions are represented by a linear combination of the same basis functions
as used to approximate the solution. This is known as the Galerkin criterion
named after B.G. Galerkin [181] who originally introduced it for (non-discrete)
structural formulations. This Galerkin method leads to the standard finite-element
approximation, called as Galerkin-FEM or GFEM (sometimes termed as Bubnov-
Galerkin method [590] to differ from the modified Petrov-Galerkin method). It is
important to note that the Galerkin-based WS enforces the residual error R be
orthogonal to every member of the basis functions, which provides an optimal
approximation expressed by Céa’s lemma [84, 193, 555] written in the form:

kekE; G � kekE; O (8.38)

where kekE; G and kekE; O are the energy (Hilbert space) norm errors (8.22) pro-
duced by the Galerkin method and by any other approximation method, respectively.
For elliptic boundary value problems the optimality (8.38) is explicitly shown
in Appendix F. Extensions to GFEM are given in the so-called Petrov-Galerkin
method, where the weighting functions differ from the basis functions. It allows
the foundation of stabilized numerical techniques which are appropriate for solving
advection-dominated transport problems.

In least squares (LS) the set of weighting functions is constructed via the
PDE operation. The resulting schemes can provide better convergence properties.
Furthermore, it can be exploited to derive stabilized methods for ADE with
dominant advection. An advantageous and attractive feature of the LS method is that
a non-self-adjoint (1st-order differential) operator of PDE is converted into a self-
adjoint 2nd-order problem, which provides symmetry in the approximate equation
system. The Galerkin choice wi .x/ D Ni.x/ is also optimal for LS approximations.

In the following Galerkin WS will be taken as the base finite-element weak
statement. Extensions will be given for the Petrov-Galerkin and least square FEM
to derive artificial diffusion stabilization mechanisms of upwind schemes applied
to ADE.
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8.5 Weak Forms

For the following finite element analysis any governing PDE L./ D 0 (with its
BC’s and IC’s) has to be recast into its weak form (or weak statement) according
to (8.34)

Z

˝

w.x; t/L./ d˝ D 0; 8w.x; t/ (8.39)

where w.x; t/ is an arbitrary weighting function. It is important to note the
difference between the original PDE formulation and the weak form from the
mathematical point of view. While the classic statement of the initial boundary
value problem is in general unique and unambiguous, there is usually no unique
weak statement of the same problem because there are alternative choices for w
and optional formulations for BC’s. Each weak form, however, has usually a unique
solution. Some weak statements are more useful than others and it is important
to find the most appropriate weak form. In this sense, a weak form represents a
formulation equivalent to the governing PDE. The weak form incorporates the BC’s.

8.5.1 Divergence Form of ADE

The weak form (8.39) in application to the ADE (8.3) yields

Z

˝

w
@.R/
@t

d˝ C
Z

˝

wr � .q/d˝ �
Z

˝

wr � .D � r/d˝ C
Z

˝

w.# �H �Qw/d˝ D 0 (8.40)

which is satisfied for any weighting function w D w.x; t/. In the formulation of
(8.40) w need not to be differentiable and it is sufficient to require that w is only
square integrable: 8w 2 L2.˝/.

However, let us restrict the class of weighting functions to those, which are at
least once-differentiable, i.e., 8w 2 H1.˝/. The restriction on w permits to invoke
the following identity via partial integration applied to the 1st-order advective term

Z

˝

r � .wq/d˝ D
Z

˝

wr � .q/d˝ C
Z

˝

q � rwd˝ (8.41)

and to the 2nd-order dispersion term

Z

˝

r � Œw.D � r/�d˝ D
Z

˝

wr � .D � r/d˝C
Z

˝

rw � .D � r/d˝ (8.42)
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Now, let us apply the Gauss’s integral theorem (2.77) to the LHS’s of (8.41) and
(8.42) to obtain

Z

˝

r � .wq/d˝ D R
�

wq � n d�
Z

˝

r � Œw.D � r/�d˝ D R
�

w.D � r/ � n d�
(8.43)

and to find for (8.41)

Z

˝

wr � .q/d˝ D
Z

�

wq � n d� �
Z

˝

q � rwd˝ (8.44)

and for (8.42)

Z

˝

wr � .D � r/d˝ D
Z

�

w.D � r/ �n d� �
Z

˝

rw � .D � r/d˝ (8.45)

Inserting (8.44) and (8.45) into (8.40), the weak form becomes

Z

˝

w
@.R/
@t

d˝ �
Z

˝

q � rwd˝ C
Z

˝

rw � .D � r/d˝ C
Z

˝

w.# �H �Qw/d˝ C
Z

�

w.q �D � r/ � n d� D 0; 8w 2 H1.˝/

(8.46)

Recalling that the boundary is composed of three segments � D �D [ �N [ �C
imposed by the Dirichlet, Neumann and Cauchy-type BC’s, we can separate the
boundary integral of (8.46) into these three parts and invoke the BC’s of (8.4) to
obtain

Z

˝

w
@.R/
@t

d˝ �
Z

˝

q � rwd˝ C
Z

˝

rw � .D � r/d˝ C
Z

˝

w.# �H �Qw/d˝ C
Z

�D

w.q �D � r/ � n d� C
Z

�N

wq�Nd� �
Z

�C

w˚�.C � /d� D 0; 8w 2 H1.˝/ (8.47)

Now, we have to further restrict the class of test functions w to those that vanish
on the Dirichlet boundary segment �D , i.e., we require w D 0 on �D . This class
of functions belongs to the H1

0 functional space (8.23). Using this restriction of
8w 2 H1

0 , the final weak form for the divergence form of ADE (8.3) with its BC’s
(8.4) results
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Z

˝

w
@.R/
@t

d˝ �
Z

˝

q � rwd˝ C
Z

˝

rw � .D � r/d˝ C
Z

˝

w.# �H/d˝ C
X

w

w.xw/wQw.t/C
Z

�N

wq�Nd� �
Z

�C

w˚�.C � /d� D 0; 8w 2 H1
0 .˝/ (8.48)

which has to be solved for  	 O. We recognize from (8.48) that the sought solution
must also only be once differentiable, i.e.,  	 O 2 H1.˝/. Note that in (8.48) the
well-type SPC (8.4) has been inserted, where we made use of the integral over the
SPC singularity, which simplifies

Z

˝

wQwd˝ D �
Z

˝

w
�X

w

wQw.t/ı.x � xw/
�
d˝ D �

X

w

w.xw/wQw.t/

(8.49)

This SPC realization in the weak form implies that the entire amount of the
sink/source Qw of a well w fully pertains to the equation at the given point xw.
In a finite element approximation it will be attained by enforcing that each well
coincides with a node of the spatial discretization.

8.5.2 Convective Form of ADE

The weak form for the ADE (8.5) with its BC’s (8.6) can be derived in a similar way
as done in Sect. 8.5.1 for the divergence form. The weak statement (8.39) applied to
(8.5) yields

Z

˝

w KR@

@t
d˝ C

Z

˝

wq � rd˝ �
Z

˝

wr � .D � r/d˝ C
Z

˝

wŒ.# CQ/ �H �Qw�d˝ D 0; 8w 2 L2.˝/ (8.50)

In contrast to the weak form for the divergence form of ADE we restrict the partial
integration only to the 2nd-order dispersion term in the convective form of ADE, i.e.,

Z

˝

r � Œw.D � r/�d˝ D
Z

˝

wr � .D � r/d˝C
Z

˝

rw � .D � r/d˝ (8.51)

By employing the Gauss’s integral theorem (2.77) on the LHS term of (8.51) we
find
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Z

˝

wr � .D � r/d˝ D
Z

�

w.D � r/ �n d� �
Z

˝

rw � .D � r/d˝ (8.52)

Inserting (8.52) into (8.50) the weak form of the convective form of ADE results

Z

˝

w KR@

@t
d˝ C

Z

˝

wq � rd˝ C
Z

˝

rw � .D � r/d˝ C
Z

˝

wŒ.# CQ/ �H �Qw�d˝ �
Z

�

w.D � r/ � n d� D 0; 8w 2 H1.˝/

(8.53)

Separating the boundary integral of (8.53) into the three segments � D �D [�N [
�C imposed by the Dirichlet, Neumann and Cauchy-type BC’s, respectively, we
invoke the BC’s of (8.6) to obtain

Z

˝

w KR@

@t
d˝ C

Z

˝

wq � rd˝ C
Z

˝

rw � .D � r/d˝ C
Z

˝

wŒ.# CQ/ �H �Qw�d˝ �
Z

�D

w.D � r/ � n d� C
Z

�N

wqN d� �
Z

�C

w˚.C � /d� D 0; 8w 2 H1.˝/ (8.54)

Using this restriction8w 2 H1
0 , the final weak form for the convective form of ADE

(8.5) with its BC’s (8.6) results

Z

˝

w KR@

@t
d˝ C

Z

˝

wq � rd˝ C
Z

˝

rw � .D � r/d˝ C
Z

˝

wŒ.# CQ/ �H�d˝ C
X

w

w.xw/
�
w � .xw/

�
Qw.t/C

Z

�N

wqNd� �
Z

�C

w˚.C � /d� D 0; 8w 2 H1
0 .˝/ (8.55)

for solving  	 O 2 H1.˝/, where the well-type SPC has been incorporated
according to (8.6) (see related discussion in Sect. 8.5.1).

8.5.3 Discussion of Both Weak Forms

We emphasize again that the BC’s used in the weak form (8.55) for the convective
form of ADE have different meaning in comparison with BC’s embodied in the
weak form (8.48) for the divergence form of ADE because in general qN ¤ q

�
N
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and ˚ ¤ ˚�. Only in absence of the normal advective flux q � n D 0, it becomes
qN D q

�
N and accordingly ˚ D ˚�. The consequences on boundary fluxes in both

weak forms are obvious. For instance, a natural Neumann BC for the divergence
form of ADE q�N D 0 implies that the boundary segment �N is impervious for the
total (both advective and dispersive) flux independent of the actual value of q � n,
which represents a stronger BC formulation in comparison with the convective form
of ADE. On the other hand, a natural Neumann BC for the convective form of ADE
qN D 0 ensures at first that the boundary segment �N is only impervious for the
dispersive flux, unless q�n D 0 can be additionally satisfied. In practical application,
the differences between these two weak forms are often not relevant. In solving the
convective form of ADE a preceding solution of a flow problem delivers a flow
field which satisfies q � n conditions on the boundary in a weak sense and implies
appropriate formulations of BC’s for both advective and dispersive fluxes in the
convective form of ADE, which are equivalent to the divergence form of ADE. In
cases, where a total load of a quantity  (consisting of advective plus dispersive
fluxes) has to be imposed on a boundary section as formulated by (6.21), (6.28) or
(8.7), the Cauchy BC term of (8.55) in the convective form of ADE can be easily
utilized as

Z

�C

w˚.C � /d� D �
Z

�C

wq � n.C � /d� (8.56)

where q �nj�C is a known advective normal flux on �C so that q �nC j�C prescribes
an advective load of quantity , positive outward-directed on �C .

As discussed in Sect. 6.5.7 outflow BC’s (OBC’s) can be imposed in two different
ways. Commonly, for standard situations a zero-gradient condition, i.e., a natural
Neumann BC with r 	 0 is applied. Denoting the boundary portion of the OBC
by �NO � �N � � , it is specified

Z

�NO

wqN d� D 0 on �NO � �N (8.57)

for the convective weak form (8.55) and

Z

�NO

wq�N d� D
Z

�NO

wq � nd� on �NO � �N (8.58)

for the divergence weak form (8.48). It is obvious, this type of OBC can be simply
realized in the convective form, while for the divergence form a surface integral
remains to be treated implicitly because  is unknown and the normal flux q �nmust
be determined (or be known) on �NO . The second and alternative way is to impose
the OBC fully implicitly, even for the gradient-driven dispersive boundary flux.
Using this BC formulation the Neumann-type boundary integrals are replenished
to specify the implicit OBC
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Z

�NO

wqNd� D �
Z

�NO

w.D � r/ � n d� on �NO � �N (8.59)

for the convective weak form (8.55) and

Z

�NO

wq�Nd� D
Z

�NO

w.q �D � r/ � n d� on �NO � �N (8.60)

for the divergence weak form (8.48), which must be treated with unknown .
We conclude that OBC requires in general an implicit treatment of the specific
Neumann-type surface integrals for the divergence weak form, which is more
complex. In contrast, however, the OBC in the convective weak form can be simply
specified, unless the zero-gradient Neumann condition on the outflow boundary is
not appropriate under specific situations (cf. discussion in Sect. 6.5.7).

8.6 Spatial Discretization by Finite Elements

The governing weak forms derived in Sect. 8.5 contains integral expressions which
have to be solved. To accomplish an approximate solution via FEM the continuum
domain with its boundary N̋ D ˝ [ � is subdivided into a set of nonoverlapping
subdomains, called finite elements (see Fig. 8.5), such that

N̋ 	 ON̋ �
NE[

eD1
N̋ e with N̋ e D ˝e [ � e; N̋ e ¤ Ø (8.61)

whereNE is the number of finite elements, ON̋ is the approximate global domain,˝e

and � e are the domain and the boundary of each finite element e, respectively. The
basic idea of the finite element spatial discretization (8.61) is to split any integral
that appears in the weak statements into a sum over the elements

R
˝
f: : :gd˝ D

NEX

eD1

Z

˝e

f: : :gd˝e

R
�
f: : :gd� D

NEX

eD1

Z

� e
f: : :gd� e

(8.62)

This nonoverlapping sum over all elements is called assembly. The actual domain
ON̋ assembled by all these elements

S
e.˝

e [ � e/ is termed finite element mesh
(Fig. 8.5). The goal of the assembly (8.62) is to accomplish an easily tractable,
sufficiently accurate and efficient integration on element level. This can be attained
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x3 x2

x1

e

e

Fig. 8.5 Spatial
discretization of a continuum
domain with its boundaryN̋ D ˝ [ � by finite
elements N̋ e D ˝e [ � e ,
.e D 1; : : : ; NE/ forming a
finite element mesh

by choosing suitable shapes for the finite element N̋ e that have appropriate geo-
metric entities (vertices, mid-sides) to match the interpolation for the approximate
solution O according to (8.16) with a desired accuracy. The finite element N̋ e
can be a line, triangle or quadrilateral in 1D, 2D or 3D, respectively, and the
degree of interpolation over it can be linear, quadratic or even higher. In practice,
the phrase finite element refers to both the geometry of the element and degree
of approximation used for the solution variable(s), e.g., a quadratic quadrilateral
element is a 2D quadrilateral shape with a biquadratic (biparabolic) interpolation, a
linear triangular prismatic element represents a 3D pentahedral shape with trilinear
interpolation, and so forth. Commonly used finite elements in 1D, 2D and 3D are
depicted in Fig. 8.6.

8.7 Elementwise Continuous Approximations

The assembly (8.62) of the finite elements is only valid if the basis (interpolation)
functions (8.16) satisfy requirements on continuity. The basis functions have to
be restricted to avoid any infinite terms in the integrals of the approximate weak
statement. The situation is explained in Fig. 8.7. Let us consider the interfacing
boundary of two adjacent finite elements, where we study the approximate function
O and its derivatives in a very small distance ı ! 0. Within the elementwise

interpolation procedure we can ensure that O is continuous everywhere in ON̋ and
also at the element interface(s). However, this must not be the case for the first
derivative anymore, which can become discontinuous at element interfaces. While
the first derivative is discontinuous, its value remains in a finite value and any
integrand of the weak form containing up to a first-order derivative is finite and
accordingly evaluable. In contrast, however, consider its second derivative, which
tends to an infinite value at the element interface. Such a term is no more square
integrable and the assembly (8.62) fails.

The continuity requirement can be generalized as follows. Suppose the integrand
in the approximate weak statement contains up to .m C 1/th derivatives, then
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Fig. 8.6 Overview of commonly used finite elements. (1) 1D elements: (a) linear, (b) quadratic,
(c) cubic; (2) 2D elements: (a) linear rectangular, (b) quadratic rectangular, (c) linear triangular,
(d) quadratic triangular, (e) linear quadrilateral, (f ) quadratic curved quadrilateral, (g) quadratic
curved triangular; (3) 3D elements: (a) linear quadrilateral prism (hexahedron), (b) linear triangular
prism (pentahedron), (c) linear tetrahedron, (d) linear pyramid, (e) quadratic curved hexahedron,
(f ) axisymmetric linear rectangular ring, (g) axisymmetric linear triangular ring (Modified
from [76])

continuity in the mth derivative of the approximate function must be satisfied.
This is called the Cm�continuity requirement. The validity of the assembly (8.62)
requires the fulfillment of the Cm�continuity in any finite element basis function.
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Fig. 8.7 Inter-element
behavior of C0 continuous
approximate function O and
its derivatives: While O is
continuous at the element
interface, its first derivative
becomes discontinuous
within the inter-element zone
ı ! 0, but is still finite. The
second derivative, however,
may become infinite
(Modified from [590])

Now, having a look to the weak forms as derived in Sect. 8.5, we recognize that the
highest derivatives are only of first order (thanks to the reduction of the 2nd-order
derivatives in the dispersion term due to applying the Gauss’s integral theorem).
Hence, it is sufficient to satisfy only C0�continuity in the interpolation function(s)
of the unknown variable(s), i.e., the element basis functions O have to be chosen in
such a way that the zero derivatives are continuous and their first derivatives, while
discontinuous at the element interfaces (they actually suffer jumps at nodal points),
need only to be square integrable.

The most important class ofC0 basis functions refers to Lagrangian polynomials,
which are standard in FEM. C0 functions are commonly sufficient for all problems
of advection-dispersion type, which are encountered in the present flow and
transport processes. On the other hand, a higher order continuity, e.g., C1 functions
satisfying continuity of both zero and first derivatives, can be provided by Hermitian
polynomials [173, 280]. Although C1 Hermitian polynomials can achieve a higher
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accuracy for the first derivatives, however, at the expense of additional degrees of
freedom associated with computational extra costs, their practical applicability has
shown limited (e.g., to undistorted elements) and rather cumbersome. Indeed, we
need not a continuity higher than C0. In the following we exclusively prefer C0
continuous basis functions for various element types in 1D, 2D and 3D.

8.8 Finite Element Basis Functions

8.8.1 Shape Function, Master Element and Isoparametric
Element Type

In using assembly (8.62) it is advantageous to restrict the interpolation of
the unknown variable(s) within each finite element N̋ e D ˝e [ � e , such that
the approximation O.x; t/ according to (8.16) can then be formed as the union
of the finite element approximations Oe.xe; t/ on N̋ e, viz.,

.x; t/ 	 O.x; t/ D
NE[

eD1
Oe.xe; t/ (8.63)

Note that it is not possible to simply sum Oe over e since a double contribution
would occur on every finite element boundary. Thus, a summation without overlap
of element boundary will be indicated by the union symbol:

NE[

eD1
.: : :/ D

NEX

eD1
.: : :/ without boundary overlap (8.64)

On any finite element domain N̋ e , the generic form for Oe is

Oe.xe; t/ D
NBNX

JD1
N e
J .x

e/ eJ .t/ (8.65)

where eJ are the set of unknown coefficients at the nodes J belonging to the
element e and Ne

J .x
e/ are the set of given C0 continuous basis functions, called

shape functions, associated with the element e and the local node number J
(note that we shall differ between local and global node numbering as further
discussed below). The element shape functions Ne

J .x
e/ represent polynomials of

1st, 2nd or even higher degree. In practice, however, we prefer polynomials of
1st degree and, optionally, 2nd degree. There are as many of these polynomials
as there are nodal points NBN in N̋ e . To achieve a continuous representation of O
(cf. Sect. 8.7) the element shape functions must satisfy C0�continuity, for which
the approximate solution is continuous and have piecewise continuous first-order
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derivatives. Those element shape functions are referred to as C0�class elements,
which will be generally used in the following.

The element shape functions have the following property at the nodal points:

Ne
J .x

e
I / D

�
ıIJ for xeI 2 N̋ e
0 otherwise

(8.66)

where ıIJ is the Kronecker symbol (2.7) and xeI are the Cartesian coordinates of
local node I (cf. (2.30)). From (8.66) it directly follows that

NBNX

JD1
N e
J .x

e/ D 1; 8xe 2 N̋ e (8.67)

The ability of handling nonuniform and distorted geometries is an important
feature of the FEM. A fundamental aspect of FEM is the use of a master element
N̋ e
m D ˝e

m [ � e
m, where all element-related inner products and integrations are

performed in local coordinates η defined as

ηT D
8
<

:

.� � �/ 3D

.� �/ 2D and axisymmetric

.�/ 1D
(8.68)

A one-to-one mapping (coordinate transformation, see Sect. 2.1.5) bridges the
global Euclidean x�space and the local (computational) η�space of the master
element N̋ em:

xe D xe.η/ (8.69)

The element geometry of the master element N̋ em is always Cartesian (rectangular)
so that the integration on such an element level can be efficiently computed. Based
on this mapping the finite elements can be distorted easily to fit most applicable
geometries (Fig. 8.8). For this purpose it is advantageous to define the element shape
functions in their local coordinatesNe

J .η/, such that (8.65) becomes

Oe.xe.η/; t/ D
NBNX

JD1
N e
J .η/ 

e
J .t/ (8.70)

and global coordinates x are related to the local coordinates η by using the
interpolation

xe D
NXX

JD1
N e
J .η/x

e
J (8.71)
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Fig. 8.8 Finite elements with one-to-one mapping onto <D .D D 1; 2; 3/

with

x D
NE[

eD1
xe (8.72)

whereNX is the number of element polynomials used for the geometry interpolation
and xej are the global coordinates of node j on element e. According to the choice
of NX it is distinguished into (1) isoparametric elements with NX D NBN, i.e.,
polynomial approximation is used for both geometry and variables, (2) superpara-
metric elements with NX > NBN, where a higher order approximation is used for
the geometry, and (3) subparametric elements with NX < NBN, where a lower order
approximation is used for the geometry compared to the variable approximation.
Most efficient and ideal for our needs are isoparametric elements, which will be
generally preferred in the present FEM. Appendix G summarizes the isoparametric
finite elements used in FEFLOW for 1D, 2D (incl. axisymmetric) and 3D problems.

8.8.2 Local and Global Shape Functions

To illustrate the construction of finite element basis functions let us consider at first
the simplest case: the use of linear isoparametric shape functions in a 1D geometry
x 2 <1 (see also Table G.1 in Appendix G). Figure 8.9 displays the master element
N̋ e
m with the local node numbering J D 1; 2, the linear shape functions expressed
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Fig. 8.9 Piecewise-linear
shape functions for 1D
element: (a) master elementN̋ e
m with local node

numbering,
(b) shape functions
Ne
J .�/ .J D 1; 2/ in

local coordinate �1 	 � 	 1,
(c) approximate variable
Oe.�/ as linear function over
element e

in the local coordinate .�1 � � � 1/

N e
1 .�/ D 1

2
.1 � �/ N e

2 .�/ D 1
2
.1C �/ (8.73)

and the resulting approximate function Oe over the element e. Using the mapping
relation (8.71) for the linear 2-node element

xe D
NBND2X

JD1
N e
J .�/ x

e
J (8.74)

we find � D .2xe � xe1 � xe2/=.xe2 � xe1/ and the shape functions can also be written
in the global coordinate xe , viz.,

Ne
1 .x

e/ D xe2 � xe
xe2 � xe1

N e
2 .x

e/ D xe � xe1
xe2 � xe1

(8.75)

where xe1 and xe2 are the x�coordinates of local node number 1 and 2, respectively,
of element e. Then, the approximate variable Oe is linear over element e (Fig. 8.9c):

Oe.�/ D 1
2

�
.e2 � e1/� C e1 C e2


or

Oe.xe/ D 1

xe2 � xe1
�
.e2 � e1/xe C xe2e1 � xe1e2

 (8.76)
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Fig. 8.10 Example of 1D finite element mesh consisting of four linear elements. Display of global
basis function Nj .x/; .j D 1; : : : ; 5/ and linear approximation of variable  by O

Now, let us consider a 1D mesh consisting of four linear elements and five global
nodes as shown in Fig. 8.10. The approximate function O is represented using global
shape functions Nj that are equal to one at node j and zero at all other nodes.
Accordingly, the global function O in the mesh shown in Fig. 8.10 can be written as

O.x; t/ D
NPD5X

jD1
Nj .x/j .t/ D

NED4[

eD1
Oe.x; t/ (8.77)
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with

Oe.x; t/ D
NBND2X

JD1
N e
J .�/ 

e
J (8.78)

It can be observed that, as j and J vary, all elements contain shape functions,
which are similar in global coordinates x and identical in the local coordinates �.
This is a key issue for devising efficient operations on the master element level,
which are generic and will be performed widely independent of the global (physical)
coordinates as discussed further below.

Now, we have to emphasize the difference between the global node numbering
used in Nj and the local node numbering used in Ne

J and to consider how we can
relate properties between the global and the local systems: Any uppercase nodal
index J associated with an element-rank quantity represents a local node number,
while a lowercase nodal index j of a quantity without element rank means a global
node number. For the mesh of Fig. 8.10 it is seen that

N1
1 .x

1/ D N1.x/; N 1
2 .x

1/ D N2.x/ over element e D 1
N 2
1 .x

2/ D N2.x/; N 2
2 .x

2/ D N3.x/ over element e D 2
N 3
1 .x

3/ D N3.x/; N 3
2 .x

3/ D N4.x/ over element e D 3
N 4
1 .x

4/ D N4.x/; N 4
2 .x

4/ D N5.x/ over element e D 4
(8.79)

which can be written in a matrix form as follows

�
N1

N2

	e

DΔe �

0

B
B
B
B
B
@

N1
N2

N3
N4
N5

1

C
C
C
C
C
A

; e D 1; 2; : : : ; NE (8.80)

or more generally

Ne
J D

NPX

jD1

e

JjNj ; J D 1; 2; : : : ; NBN (8.81)

whereΔe D 
e
Jj is the Boolean matrix of element e having the property:


e
Jj D

�
1 if the local node J corresponds to the global node j
0 otherwise

(8.82)

The Boolean matrix Δe will prove to be convenient in derivations of finite element
equations, where local quantities have to be related to properties of the global



272 8 Fundamental Concepts of Finite Element Method (FEM)

coordinate system. The Boolean matrices for the present mesh of Fig. 8.10 result
for example:

Δ1 D
�
1 0 0 0 0

0 1 0 0 0

	

; Δ2 D
�
0 1 0 0 0

0 0 1 0 0

	

; Δ3 D
�
0 0 1 0 0

0 0 0 1 0

	

; Δ4 D
�
0 0 0 1 0

0 0 0 0 1

	

(8.83)

Using the Boolean matrix (8.82), the global shape functionsNj .x/ appearing in the
global approximate solution

O.x; t/ D
NPX

jD1
Nj .x/j .t/ (8.84)

can be directly expressed by local shape functionsNe
J according to

Nj .x/ D
NE[

eD1

�NBNX

JD1
N e
J .η/


e
Jj

	

(8.85)

To increase the accuracy of interpolation a quadratic shape function rather than a
linear shape function can be chosen. Quadratic interpolation functions are generated
by adding an additional node at the midside of each element as shown in Fig. 8.11
for 1D geometry. The shape functions for this quadratic 3-node element are (cf. also
Table G.1 in Appendix G)

Ne
1 .�/ D 1

2
�.� � 1/ N e

2 .�/ D 1 � �2 N e
3 .�/ D 1

2
�.� C 1/ (8.86)

Apart from the different polynomials and the number of polynomials (D number
of nodes NBN) per master element appearing for the quadratic element type, the
construction of the basis function is based on the same principles as stated above
for the linear element. The same is also true for isoparametric elements in higher
dimensions (see Tabs. G.2–G.4 in Appendix G for the family of 2D and 3D elements
used in FEFLOW). An example of a 2D triangle mesh for a piecewise bilinear
approximation of O is shown in Fig. 8.12. The shape functions of each triangle for
the three nodes written in the local coordinates .0 � �; � � 1/ are

Ne
1 .�; �/ D 1 � � � � N e

2 .�; �/ D � N e
3 .�; �/ D � (8.87)

Furthermore, using the mapping relation (8.71) as

xe D
NBND3X

JD1
N e
J .�; �/ x

e
J ye D

NBND3X

JD1
N e
J .�; �/ y

e
J (8.88)

written with (8.87) as
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(8.89)

we can express the local coordinates as

�
�

�

	

D 1

jJej
�
J22 �J12
�J21 J11

	e

�
�
x � x1
y � y1

	e

D 1

jJej
�
y3 � y1 x1 � x3
y1 � y2 x2 � x1

	e

�
�
x � x1
y � y1

	e (8.90)

and find finally the shape functions of the linear triangle in global coordinates
according to

Ne
1 .x

e; ye/ D 1

jJe j
�
x2y3 � x3y2 C .y2 � y3/x C .x3 � x2/y

e

N e
2 .x

e; ye/ D 1

jJe j
�
x3y1 � x1y3 C .y3 � y1/x C .x1 � x3/y

e

N e
3 .x

e; ye/ D 1

jJe j
�
x1y2 � x2y1 C .y1 � y2/x C .x2 � x1/y

e

(8.91)
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mapping onto master element N̋ e

m in local coordinates � and �

where the determinant of the Jacobian Je (equal to twice the area of triangle) is
given by

jJe j D ŒJ11J22�J21J12�e D Œx1.y2�y3/Cx2.y3�y1/Cx3.y1�y2/�e (8.92)

Then, the approximate variable O forms a piecewise-bilinear function over the
solution domain as exemplified in Fig. 8.12

O.x; y; t/ D
X

j

Nj .x; y/ j .t/ (8.93)

with Nj .x; y/ D Se.
P

J N
e
J .�; �/


e
Jj/.

In the same way we are able to construct finite element basis functions for
all element types we have in mind for 1D, 2D and 3D applications. The family
of finite elements preferred in FEFLOW are summarized in Appendix G. While
the finite element basis functions Ne

J .η/ are expressed in analytical forms, the
required coordinate transformation (mapping) between N̋ e in the global coordinate
system and N̋ em in the local coordinate system represents a generic task. It can
be performed by very efficient basis operations for each element, which will be
thoroughly described next.
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8.9 Galerkin Finite Element Weak Statement

Using the weak forms derived for the divergence and convective form of ADE
according to (8.48) and (8.55), respectively, their weak statements (8.36) applied
to the approximate variable O result

WS D
Z

˝

wi
@.R O/
@t

d˝ �
Z

˝

Oq � rwi d˝ C
Z

˝

rwi � .D � r O/d˝ C
Z

˝

wi .# O �H/d˝ C wQw.t/
ˇ
ˇ
i
C
Z

�N

wi q
�
N d� �

Z

�C

wi˚
�.C � O/d� D 0 8wi 2 H1

0 .˝/; 1 � i � NEQ (8.94)

for the divergence form of ADE and

WS D
Z

˝

wi KR@ O
@t
d˝ C

Z

˝

wiq � r Od˝ C
Z

˝

rwi � .D � r O/d˝ C
Z

˝

wi Œ.# CQ/ O �H�d˝ C
�
w � .xw/

�
Qw.t/

ˇ
ˇ
i
C
Z

�N

wi qN d� �
Z

�C

wi˚.C � O/d� D 0 8wi 2 H1
0 .˝/; 1 � i � NEQ (8.95)

for the convective form of ADE.
Now, we discretize the domain ˝ and its boundary � by finite elements via

(8.62), introduce the semidiscrete finite element basis function for O D O.x; t/ over
each element e

O.x; t/ D
NPX

jD1
Nj .x/j .t/ D

NE[

eD1
Oe.xe; t/

Oe.xe; t/ D
NPX

jD1

NBNX

JD1
N e
J .η/


e
Jj j .t/

(8.96)

and choose the Galerkin method (Table 8.1), where the weighting function becomes
identical to the basis function5

5The weak statements (8.94) and (8.95) imply that the weighting functions wi belong to the H1
0

functional space (8.23). On the other hand, the basis functions Ni belong to the H1 functional
space, i.e., they do not vanish on Dirichlet boundaries: Ni ¤ 0 on �D . Nevertheless, we may use
WS in form of (8.94) and (8.95) with wi D Ni 2 H1.˝/; 1 	 i 	 NP, where we enforce at first
a zero flux .q �D � r/ �n � 0 or �.D � r/ � n � 0 on �D in the original weak statements
(8.47) and (8.54), respectively, and incorporate the actual Dirichlet (essential) BC’s afterwards via
a direct manipulation of the resulting discrete matrix system as further discussed in Sect. 8.16.
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wi .x/ D Ni.x/ D
NE[

eD1

�NBNX

ID1
N e
I .η/


e
Ii

	

(8.97)

we find the following finite element forms of the Galerkin weak statement (GWS)

GWS D
X

e
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˝e
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@
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�R.
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Njj /

d˝e �
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.
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X

j

Njj /
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X

e

Z

˝e
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�
#.
X

j

Njj /�H

d˝e C
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ˇ
ˇ
i
C
X

e

Z

� eN

Niq
�
N d�

e �
X

e

Z

� eC

Ni˚
�
�
C � .

X

j

Njj /

d� e D 0

1 � i; j � NP

(8.98)

for the divergence form of ADE and

GWS D
X

e

Z

˝e
Ni KR @

@t
.
X

j

Nj j /d˝
e C

X

e

Z

˝e
Niq � r.

X

j

Nj j /d˝
eC

X

e

Z

˝e
rNi �

�
D � r.

X

j

Nj j /

d˝e C

X

e

Z

˝e
Ni
�
.# CQ/.

X

j

Nj j /�H

d˝eC

�
w � i

�
Qw.t/

ˇ
ˇ
i
C
X

e

Z

� eN

NiqN d�
e�

X

e

Z

� eC

Ni˚
�
C � .

X

j

Nj j /

d� e D 0 1 � i; j � NP

(8.99)

for the convective form of ADE. The indicated integrals in (8.98) and (8.99) are
evaluated at the element level e and assembled (summed up) into a global matrix
system of the form

O � PφCK � φ � F D 0 (8.100)

The assembly process in forming the global matrices and vectors from element
contributions will be described more in detail in Sect. 8.10. In (8.100) φ D φ.t/
is a column vector of the state-variable approximation coefficients

φ D j D

0

B
B
B
@

1
2
:::

NP

1

C
C
C
A

(8.101)
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to be solved as unknowns from the resulting equation system (8.100). The super-
posed dot in (8.100) means differentiation with respect to time t

Pφ D d

dt
φ.t/ D d

dt
j .t/ D

0

B
B
B
B
B
B
@

d1
dt

d2
dt

:::

dNP
dt

1

C
C
C
C
C
C
A

(8.102)

The components of the global rank square matrices O and K as well as the global
column vector F are written in indicial notation as6

6We can alternatively write the matrices and vectors in using directly the global shape function
(8.85) with the global node numbers i; j :

Oij D

8
ˆ̂
<

ˆ̂
:

X

e

Z

˝e

Re NiNj d˝
e divergence form

X

e

Z

˝e

KRe NiNj d˝
e convective form
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ˆ̂
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�X

e
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˝e

qe � rNiNj d˝e divergence form7

X

e
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Niq
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NiH
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I N

e
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I q
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Niq
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(8.103)

with the element matrices
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(8.104)

and the element vectors
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Qe
I D

Z

˝e

N e
I H

ed˝e � wQw.t/jI (8.105)

where .i; j D 1; : : : ; NP/, .e D 1; : : : ; NE/ and .I; J D 1; : : : ; NBN/. Note that
in the Be matrix we also include the implicit OBC of (8.59) and (8.60) on the
specific Neumann boundary � e

NO
� � e

N . The local element shape functions Ne
I

in the element-rank matrices and vectors of (8.104) and (8.105) are expressed in
the local η�coordinate system. Hence, the integration will be done on element
level in η�coordinates. We note in (8.103) and (8.104) that the advection matrixA
(and correspondinglyAe) as well as the boundary matrix B (and correspondingly
Be) at the presence of implicit OBC are unsymmetric, while all other matrices are
symmetric.

8.10 Assembly Process

8.10.1 General Procedure

The assembly process is a fundamental feature of finite element computations.
Assembly represents the summation of matrix or vector contributions from element
integrals to global matrices and vectors. It is mathematically expressed as follows

K D Kij D
NEX

eD1

�X

I

X

J

Ke
IJ


e
Ii


e
Jj

�
; F D Fi D

NEX

eD1

�X

I

F e
I 


e
Ii

�
(8.106)

exemplified for a square matrix A and a column vector F . In (8.106) i; j D
1; : : : ; NP are the global row and column indices, I; J D 1; : : : ; NBN represent local
row and column indices, associated with the element matrixKe

IJ and vector F e
I , and


e
Ii and 
e

Jj are Boolean matrices (8.82) consisting of NBN rows and NP columns,
which relate the local indices I; J to the global indices i; j . However, in actual
computational practice the Boolean matrices 
e

Ii, 

e
Jj will never be constructed.

Instead, the relation between global and local node numbers is executed via a
computer program based on a nodal correspondence table called incidence matrix,
N D NeJ .e D 1; : : : ; NE; J D 1; : : : ; NBN/. To demonstrate this procedure,
we consider an example as shown in Fig. 8.13. A 2D domain is discretized by
six linear triangular elements forming a simple eight-noded finite element mesh.
The element-node relations are tabulated in the incidence matrix N . There is no
need to be concerned with the element ordering, however, the assignment of the
global node numbers for each element must be consistent and systematic. It is not
crucial which first local node of a particular element is incident with one of the
global nodes joining the element, however, the remaining global nodes must be
counter-clockwise ordered inN . This counter-clockwise ordering is consistent with
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the order of numbering used for the local nodes associated with the master element.
For instance, considering element 2 in Fig. 8.13: We have chosen that local node 1 is
incident with the global node 2, then local nodes 2 and 3 must be incident with global
nodes 4 and 3, respectively. Alternatively, we also could choose for example that the
global node 3 is incident with the first local node, so that the global nodes 2 and 4
become incident with the local nodes 2 and 3, respectively. The following C-like
pseudo-code explains how the global matrix K and global vector F are assembled
from the element matricesKe and element vectors F e , respectively:

K D 0; F D 0 zeroing global matrix and vector

for .e D 0I e < NEI eCC/ f global element loop

for .I D 0I I < NBNI ICC/ f local element row loop

i D NeI global row index assignment

for .J D 0IJ < NBNIJCC/ f local element column loop

j D NeJ global column index assignment

Kij D Kij CKe
IJ addition of element to the global matrix

g
Fi D Fi C F e

I addition of element to the global vector

g
g

(8.107)

For the example of Fig. 8.13 we obtain finally

Kij D

0
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B
B
B
B
@
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31 K
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1
33 CK2

33 CK3
22 CK4

22

0 K2
21 K2

23 CK4
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22 CK4
33 CK5

33

0 0 K3
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12 K4
13 CK5

23

0 0 0 K5
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0 0 0 0

0 0 0 0

K3
21 K3

23 CK4
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0 K4
31 CK5

32 K5
31 0

K3
11 K3

13 0 0

K3
31 K

3
33 CK4

11 CK5
22 CK6

33 K
5
21 CK6

31 K
6
32

0 K5
12 CK6

13 K5
11 CK6

11 K
6
12

0 K6
23 K6

21 K6
22

1

C
C
C
C
C
C
C
C
C
C
C
A

(8.108)

and
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Fig. 8.13 Schematic diagram to illustrate the assembly of a global matrix from element matrices
(Modified from [76])
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(8.109)

It can be seen that the resulting global matrix K is sparse and banded. The
sparsity structure of K is an advantageous feature of the GFEM. The assembly
of the global matrix requires the computation of NEN

2
BN coefficients. However,

it is not practicable to store the full matrix K . In dependence on the preferred
equations solvers (see Sect. 8.17.1) different storage management techniques have
been developed. For standard iterative equation solvers only the nonzero entries of
the matrix are compactly stored, which allows a very core-space saving strategy.
Bookkeeping is required to localize the nonzero elements within the matrix. On
the other hand, for Gaussian direct equations solvers the profile of the matrix (all
elements of a row up to the most right-sided nonzero entry) must be stored, where
also zero elements within the matrix profile have to be included, which is needed
for the fill-in entries arising at later stages in the Gaussian forward elimination
process. While for iterative solvers the order for the global numbering of the nodes
is not crucial, the matrix profile used for direct solvers is strongly dependent on
the ordering of nodes (and accordingly the demand on storage). As a general rule,
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the numbering should be such as to minimize the nodal difference for each element
(maximum node number minus minimum node number). For large and complex
meshes automatic nodal renumbering schemes have to be utilized to minimize
the matrix profile (cf. Sect. 8.17.1.4). We note that the order of numbering the
elements is neither crucial for iterative nor for direct equation solvers. In cases
where the element matrices are symmetric, the global matrix K also becomes
symmetric Kij D Kji and only the symmetric half of the matrix coefficients needs
to be stored. The assembly of a symmetric global matrix requires the computation
of 1

2
NENBN.NBN C 1/ coefficients, which means a reduction of the computational

effort by a factor of .NBN�1/=.2NBN/ compared to an unsymmetric matrix, i.e., for
instance 1

3
and 5

12
less for 2D triangular and 3D petahedron elements, respectively.

8.10.2 Parallelization via Element Agglomeration

The element-by-element assembly procedure (8.106) and (8.107) in form of K DPNE
e Ke and so forth is ideally suitable for parallelization by agglomeration of

elements for which the element matricesKe can be performed parallel on different
CPU’s or CPU cores to accelerate significantly the computations. The computational
work of assembly is proportional to the number of elements NE. Therefore, an
efficient parallel assembly process can be achieved if the total number of elements
of a mesh is suitably split into a certain number of subdomains called partitions of
agglomerated elements so that the element summation is actually executed via

K D
NPAX

p

NEpX

e

Ke with NE D
NPAX

p

NEp (8.110)

where NPA is the number of partitions and NEp is the number of elements
agglomerated into partition p. Each partition is concurrently executed on different
threads representing logical processors. A symmetric multiprocessing facility
(SMP) of an operating system distributes all threads to the available physical
processors and CPU cores during runtime. However, on computer systems with
shared memory to which the threads simultaneously access the summation
operations for an element e cannot be executed on different threads at the same time,
otherwise the summation becomes erroneous due to occurring race conditions. To
avoid multiple access during the assembly process the concerned element must be
locked while it is summed up. But, locking is a rather inefficient process and slows
down the computations in particular with increasing number of threads.

More useful and generally preferred in FEFLOW is a technique which is called
disjoint domain partitioning. It does not need locking and provides an optimal
speedup in the parallel assembly process based on (8.110). The computational
domain N̋ D ˝ [ � is subdivided into a maximum number of partitions N̋ PAD

of agglomerated elements N̋ e , which do not join each other, with a remaining
(possibly small) border set of partition N̋ 0 (Fig. 8.14), which joins all the disjoint
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Ω 0

Ω
p= 1

Ω
p= 2

Ω
p= 3

Ω
p= 4

ΩFig. 8.14 Partitioning of
computational domain N̋ into
disjoint subdomains
N̋ PAD D SNPAD

p
N̋ p

(exemplified for NPAD D 4)
and border set of partition N̋ 0
joining N̋ PAD

partitions, i.e.,

N̋ D N̋ PAD [ N̋ 0 D
NPAD[

p

N̋ p [ N̋ 0 with N̋ p D
NEp[

e

N̋ e (8.111)

where a partition p and any other partition q are disjoined if

N̋ p \ N̋ q D Ø with xeI 2 N̋ p ^ xeI … N̋ q
.p ¤ q; p; q D 1; : : : ; NPAD/

(8.112)

and

N̋ \ N̋ PAD D N̋ 0 ¤ Ø (8.113)

for a node I at location xeI in element e, where NPAD D NPA � 1 is the number
of disjoint partitions. While all elements belonging to the disjoint partitions
can be concurrently assembled in the fast multithreadening mode, the elements
of the remaining partition N̋ 0 must be summed by single threaded execution.
However, provided that N̋ 0 � N̋ is small compared to the disjoint partitions
N̋ PAD D SNPAD

p
N̋ p , the sequential part of the assembly is insignificant and the

parallelized assembly in total provides superior speedups in practical computation.
In FEFLOW an efficient and fast agglomeration algorithm is incorporated to find the
suitable disjoint partitions of a mesh. To hold N̋ 0 small as possible, the algorithm
runs recursively for cases where N̋ 0 can be further split into disjoint subpartitions.
Practically, no more than three recursions are needed to find the minimum N̋ 0,
which disjoins all N̋ PAD by only one element distance (Fig. 8.15).

8.11 Finite Element Basis Operations

Recalling the basic calculus operations for coordinate transformation described in
Sect. 2.1.5, the mapping (8.71) of isoparametric element geometry

xe D
NBNX

JD1
N e
J .η/x

e
J (8.114)
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Fig. 8.15 Example of a partitioned 2D triangle mesh: Elements drawn in red indicate the border
set partition N̋ 0

between global x and local η coordinates is associated with the nonsingular
Jacobian Je defined in the <3 space
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in the <2 space
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and in the <1 space
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To evaluate the flux vector divergence terms in the element matrices of (8.104) the
inverse Jacobian is required
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where
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with the determinant of Je

jJe j D
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(8.120)

Suppose the local shape functions are continuous and at least once-differentiable
with respect to the local coordinates η, a necessary and sufficient condition for
.Je/�1 to exist is that the determinant of the Jacobian jJej of element e be nonzero
at every point η in N̋ e:

jJej ¤ 0 (8.121)
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The master element matrices and vectors appearing in (8.104) and (8.105), respec-
tively, are to be integrated over element volumes ˝e and surfaces � e . The
integration in local coordinates becomes for a differential ‘volume’ element

d˝e D
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;
Cartesian <D .D D 1; 2; 3/
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(8.122)

and for a differential ‘areal’ element in Cartesian coordinates of <D .D D 1; 2; 3/

space:
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(8.123)

and in cylindrical coordinates of <2 (meridional) space (Fig. 8.16):
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Fig. 8.16 Axisymmetric finite element in global (cylindrical) and local coordinates
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where r DPNBN
J N e

J .�; �/r
e
J .

In using (8.114)–(8.124) all integrals in (8.104) and (8.105) can be expressed
in the η�coordinate system. For example, the element advection matrix Ae of the
convective form (8.104) becomes in 3D
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!

jJejd�d�d� (8.125)

and similarly for all other element integrals appearing in (8.104) and (8.105).
Typically, the integrals always take the form8:

8The local coordinates η commonly range �1 	 η 	 C1, except in triangular or tetrahedral (and
partly pentahedral and pyramidal) geometries, where the lower limit is zero: 0 	 η 	 C1, see
furthermore (8.128).
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where f .:/ and g.:/ are volume and surface integrand functions, respectively. We
observe that the dependency of the element e on the physical (global) geometry only
occurs in the Jacobian Je . Since the coordinate transformation is relatively simple,
the Jacobian matrix should be easily evaluated.

8.12 Numerical and Analytical Integration

The transformation of the geometry and the variable coefficients in the element inte-
grals (8.104) and (8.105) from the global coordinates x to the local coordinates η
results in algebraically complex expressions, which cannot be analytically evaluated
for distorted element geometries in general. However, in fact this is not an intrinsic
disadvantage because very efficient and exact numerical integration techniques are
available which makes the master element integration very cost-effective and highly
flexible for a wide class of finite elements under general geometric (i.e., distorted)
conditions.

For our needs the most efficient and, therefore, preferable numerical integration
is the Gauss-Legendre quadrature, e.g., [590], providing an optimal degree of
precision. Thus, the evaluation of the 3D, 2D and 1D elemental integrals of (8.126)
reduces to expressions with a triple, double and single summation, respectively, in
the following form:
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(8.127)
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Table 8.2 Gauss-Legendre quadrature sampling points and weights for
R
C1

�1 f .�/d� D
Pn

pD1 Hp f .�p/

Order n p �p Hp

Linear 1 1 0 2
Quadratic 2 1 C1=p3 1

2 �1=p3 1
Cubic 3 1 Cp

0:6 5=9

2 0 8=9

3 �p
0:6 5=9

Quintic 4 1 Cp
.3C a/=7 0:5� 1=.3a/ a D p

4:8

2 Cp
.3� a/=7 0:5C 1=.3a/

3 �p
.3� a/=7 0:5C 1=.3a/

4 �p
.3C a/=7 0:5� 1=.3a/

where n  1 is the number of quadrature points in each direction, �p; �q; �r
denote the Gauss point local coordinates in N̋ em and Hp;Hq;Hr are the associated
quadrature rule weights. Note that for 1D elements the integrals are commonly
evaluated analytically. Choosing n Gauss points a polynomial expression f .:/

of degree 2n � 1 can be exactly integrated. The positions and weights for the
Gauss-Legendre quadrature rule up to order n D 4 are listed in Table 8.2. When
the integrand f .:/ is of different degree in �; �; �, the number of Gauss points
should be selected on the basis of the largest-degree polynomial. The minimum
allowable quadrature is one that yields the volume or area of the element exactly
[590]. For undistorted elements (such as rectangular or brick-shaped elements)
the 2- and 3-point Gauss-Legendre rules (i.e., Gauss points in each direction) are
sufficient to evaluate exactly all interesting integrals of linear and quadratic element
types, respectively, because the Jacobian of the mapping Je is constant for these
geometries. However, for distorted elements the Jacobian is no more constant and
integrals involving more than one derivative cannot be exactly integrated since the
integrand is a quotient of two polynomials [341]. In general, f .:/ may not be really
polynomial due to the complex dependency of the integrand on Je and the possible
presence of other variable coefficients such that the required number of Gauss points
can only be estimated. In practice, an optimal order of Gauss-Legendre integration is
used, which is defined as one that guarantees the highest possible accuracy and rate
of convergence while minimizing the computational cost. For linear quadrilateral
elements 2� 2� 2 and 2� 2, and for quadratic quadrilateral elements 3� 3� 3 and
3�3 are of optimal order in 3D and 2D, respectively. For the areal triangular element
(triangle), the 3D linear tetrahedron, the 3D linear triangular prism (petahedron) and
the 3D linear pyramidal element (pyramid) specific integration points and weights
are applied [84, 280, 586, 590] as follows:
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Table 8.3 Quadrature points and weights of formulae (8.128) of quadratic order for linear
triangle, linear tetrahedron, linear pentahedron and linear square pyramid

Type m p �p �p �p Hp

Triangle 3 1 1=2 0 1=6

2 1=2 1=2 1=6

3 0 1=2 1=6

Tetrahedron 4 1 a a a 1=24 a D 0:13819660

2 b a a 1=24 b D 0:58541020

3 a b a 1=24

4 a a b 1=24

Pentahedron 6 1 1=2 0 C1=p3 1=6

2 1=2 1=2 C1=p3 1=6

3 0 1=2 C1=p3 1=6

4 1=2 0 �1=p3 1=6

5 1=2 1=2 �1=p3 1=6

6 0 1=2 �1=p3 1=6

Pyramid 8 1 Cc=p3 Cc=p3 1� c 0:1007858820798250 c D 0:455848155988775

2 �c=p3 Cc=p3 1� c 0:1007858820798250

3 Cc=p3 �c=p3 1� c 0:1007858820798250

4 �c=p3 �c=p3 1� c 0:1007858820798250

5 Cd=p3 Cd=p3 1� d 0:2325474512535080 d D 0:877485177344559

6 �d=p3 Cd=p3 1� d 0:2325474512535080

7 Cd=p3 �d=p3 1� d 0:2325474512535080

8 �d=p3 �d=p3 1� d 0:2325474512535080
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(8.128)

wherem is the total number of integration points. The sampling points and weights
for the linear triangle, linear tetrahedron, linear pentahedron and linear square
pyramid of quadratic order with m D 3, m D 4, m D 6 and m D 8, respectively,
are listed in Table 8.3. Figure 8.17 illustrates the locations of the integration points
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Fig. 8.17 Location of Gauss
points symbolized by � for
linear and quadratic
isoparametric elements used
in FEFLOW in 2D (3-point
rule for linear triangle,
4-point rule for linear
quadrilateral and 9-point rule
for quadratic quadrilateral)
and 3D (4-point rule for
linear tetrahedron, 6-point
rule linear pentahedron,
8-point rule for linear
hexahedron, 8-point rule for
linear pyramid, 27-point rule
for quadratic hexahedron)

in the master element N̋ em for the 2D and 3D finite elements used in FEFLOW. For
axisymmetric elements the same quadrature rules are applied than in 2D.

Table 8.4 gives an estimation of arithmetic operations required for the numerical
integration of one element. The working steps 1–7 in Table 8.4 indicate the
effort from the coordinate transformation, which has to be performed basically,
however, only once for all integrands in consideration. We recognize that the
computation of the Jacobian and the terms related to the global derivatives are
the most expensive steps. Once these terms are available the effort in computing
additional terms and extensions in the integrand functions (e.g., introducing variable
coefficients and anisotropic relations) remains low, which makes the numerical
integration very flexible and efficient. We also see that the required number of total
operations increases significantly with more complex (higher-order) finite elements,
in particular for 3D finite elements, however, in favor of a higher accuracy in the



292 8 Fundamental Concepts of Finite Element Method (FEM)

Table 8.4 Estimation of computational effort for numerical integration of 2D and 3D finite
elements: Number of required arithmetic operations (sum of multiplications, divisions, additions
and subtractions) to build typical matrices of (8.104) for one element e via Gauss-Legendre
quadrature

2D 3D

Element type

3-node 4-node 8-node 4-node 6-node 8-node 20-node

triangle quadrilateral quadrilateral tetrahedron pentahedron hexahedron hexahedron

NBN 3 4 8 4 6 8 20

Gauss points m 3 4 9 4 6 8 27

1 Ne
I 2 17 48 3 22 68 255

2
@N e

I

@�
0 4 22 0 4 16 112

3
@N e

I

@�
0 4 22 0 4 16 112

4
@N e

I

@�
0 0 0 0 5 16 128

5 J e 24 32 64 72 108 144 360

./ 2D2 NBN/

6 jJ ej d˝ 4 4 4 15 15 15 15

7 .J e/�1 5 5 5 28 28 28 28

8 rNe
I 24 32 64 72 108 144 360

./ 2D2 NBN/

9
R
Ne
I 3 4 8 4 6 8 20

./ NBN/

10
R
Ne
I N

e
J 6 10 36 10 21 36 210

./ 1
2
NBN.NBN C 1//

11
R
Ne
I q � rNe

J 36 64 256 96 216 384 2,400

./ 2D N2
BN/

12
R rNe

I � .D � rNe
J / 48 80 288 180 378 648 3,780

./ D2 NBN.NBN C 1//

Operations per Gauss point 152 256 817 480 915 1,523 7,780

(summation of steps 1–12)

Operations per element 456 1,024 7,353 1,920 5,490 12,184 210,060

(multiplied by m)

approximation. Nevertheless, to maintain the generality in the geometric shapes of
the used finite elements the numerical integration is indispensable. All quadrilateral,
pentahedral and hexahedral elements lead to very complicated integral expression
which can only be tackled numerically. Analytical evaluation is available only for
specific element shapes. In Appendix H we evaluate the element matrices of (8.104)
on an analytical basis for the linear 1D element, the linear 2D triangle and the linear
3D tetrahedron assuming constant coefficients. Only for these types of elements the
Jacobians are always constant for every element shape, which make these elements
favorable to analytical integration. In Appendix H we also discuss exceptions for
the quadrilateral, hexahedral, pentahedral and pyramidal element, where a constant
Jacobian is only attainable for an undisturbed element shape, such as the rectangle
or parallelogram for the quadrilateral element, the brick or parallelepiped for the
hexahedral element, the triangular prism with parallel top and bottom surfaces for
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the pentahedral element and the pyramid with a parallelogram or rectangular base
and oblique shape for the pyramidal element.

8.13 Temporal Discretization

8.13.1 General

The semidiscrete Galerkin approximation (8.96) of the governing ADE has led to
system of ordinary differential equations (ODE’s) written in the form (8.100)

O � PφCK � φ D F (8.129)

for solving φ D φ.t/ associated with IC’s at t D t0
φ.t0/ D φ0 (8.130)

where O is called a consistent mass (CM) matrix because it is defined consistent
with the weak formulation in (8.98) and (8.99) assuming the separability of space x
and time t . It remains to solve the resulting semidiscrete equations (8.129) for φ.t/
via appropriate and cost-effective time-integration methods, which integrate (8.129)
in time t to trace the temporal evolution of φ.t/ from the initial solution φ0.

Let us rewrite (8.129) in a normalized form, viz.,

PφC μ � φ D f with μ D O�1 �K and f D O�1 � F (8.131)

provided that O is invertible with jOj ¤ 0, we find the solution of this first-order
system of ODE’s as [10]

φ.t/ D e�μ.t�t0/ � φ0„ ƒ‚ …
decay

C
Z t

t0

e�μ.t��/ � f.�/
„ ƒ‚ …

forcing

d� (8.132)

consisting of two components: (1) the exponential decay of the homogeneous part
and (2) the particular solution of the forcing contribution. However, we recognize
that the exponential matrix e�μt is complex and not an algebraic statement, hence
not directly solvable. We have to conclude that, in general, it is not possible
to integrate (8.132) (and accordingly (8.129)) on an analytical basis and further
approximation methods are required to obtain a set of algebraic equations in terms
of the nodal state-variable φ.

There is an abundance of numerical methods for solving ODE’s, which are
categorized as methods of lines in the classic literature [331, 441, 462]. Among
the wide variety of available methods, however, from the practical point of view,
in particular the computational cost, we have interests only in efficient two-stage
single-step time marching recurrence schemes, where for stability reasons implicit
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tn

n (known)

ttn+1

tn

n + 1(to be determined)

linear approximation

Fig. 8.18 Time marching
recurrence of φ in the finite
time interval .tn; tnC1/, where
tnC1 D tn C
tn

or semi-implicit (so-called A�stable [110]) algorithms will be preferred, which are
stable independent of the used time step. Considering φ.t/ within the finite interval
.tn; tnC1/ with

tnC1 D tn C
tn (8.133)

where the subscript n denotes the time plane and 
tn D tnC1 � tn is a variable time
step length, the state-variable φ.t/ is defined as

φn D φ.tn/ (8.134)

at the previous (old) time plane n and as

φnC1 D φ.tnC1/ (8.135)

at the new time plane n C 1. In each interval, φnC1 is recursively solved from the
preceding values φn at beginning of the time step 
tn as shown in Fig. 8.18, and
(8.132) can be recast into an incremental form, viz.,

φnC1 D e�μ
tn � φn C e�μtnC1 �
Z tnC1

tn

eμ� � f.�/d� (8.136)

While (8.136) is still an exact solution in time t without any approximation, it is
necessary to expand the exponential decay matrix e�μ
tn within the time step 
tn
into a power series. The most typical linear approximations for e�μ
tn are listed in
Table 8.5 and will be discussed in the following. However, before we proceed and
introduce the appropriate time stepping schemes in detail, we have to consider first
the approximation of the mass matrixO called mass lumping.
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Table 8.5 Linear ��approximationsa of the exponential decay matrix e�μ
tn

Algorithm � Approximation

Forward 0 δ �
tnμ

Backward 1 ŒδC
tnμ�
�1

Trapezoid 1
2

ŒδC .
tn=2/μ�
�1 � Œδ � .
tn=2/μ�

Galerkin 2
3

ŒδC .2
tn=3/μ�
�1 � Œδ � .
tn=3/μ�

a Weighting coefficient .0 	 � 	 1/ classifies approximation methods

8.13.2 Mass Lumping

The Galerkin formulation naturally leads to consistent mass matricesO DP
eO

e ,
which typically distribute the mass of an element over all associated nodes. This
can be seen in the discrete element mass matrices Oe of (H.8), (H.23) and (H.41)
in Appendix H for the linear 1D, 2D triangular and 3D tetrahedral element,
respectively. However, there can be different numerical reasons to concentrate
(lump) the mass of an element on the mesh nodes. Mass lumping is a typical feature
of the FDM and can also be useful in the finite element context for certain time
stepping schemes. The principal motivation behind this technique is the generation
of a mass matrix O, which is diagonal and readily invertible to evaluate O�1 of
(8.131) in a trivial way. In contrast, the CM matrix, which is sparse and banded,
has an inverse that is dense, such that the formulation (8.131) becomes inferior to
(8.129) in practical computations.

To permit an equivalent formulation of the mass matrix Oe of an element e we
replace

Oe D Oe
IJ D

Z

˝e

KReN e
I N

e
J d˝

e

„ ƒ‚ …
consistent

! ıIJ

Z

˝e

KReN e
I d˝

e

„ ƒ‚ …
lumping

(8.137)

where ıIJ is the Kronecker symbol (2.7). Since
PNBN

JD1 N e
J D 1, (8.67), the lumping

procedure is equivalent to summing the rows of the CM matrix: Oe
II D

P
J O

e
IJ .

However, this row-summing technique of mass lumping is usually only applicable
to linear elements, where the diagonals are always positive. We note that for higher-
order elements specific rules of mass lumping are required [590], for instance [129]:

Oe
IJ D

( R
˝e
KRed˝e

R
˝e N

e
I N

e
J d˝

e
.PNBN

ID1
R
˝e N

e
I N

e
J d˝

e for I D J;
0 for I ¤ J

(8.138)

In Table 8.6 analytical formulations of the consistent mass (CM) and the lumped
mass (LM) matrix are compared for the linear 1D, 2D triangular and 3D tetrahedral
element (cf. Appendix H). Using numerical integration, the quadrature rules are
directly applied to the ıIJ

R
˝e N

e
I d˝

e term to yield a diagonal matrix forOe .
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Table 8.6 Consistent versus
lumped mass matrix for the
linear 1D, 2D triangular and
3D tetrahedral element
(cf. Appendix H)

Consistent Lumping
Element type

R
˝e N

e
I N

e
J d˝

e ıIJ

R
˝e N

e
I d˝

e


xe

6

�
2 1

1 2

	

xe

2

�
1 0

0 1

	

Ae

12

0

@
2 1 1

1 2 1

1 1 2

1

A Ae

3

0

@
1 0 0

0 1 0

0 0 1

1

A

V e

20

0

B
B
@

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

1

C
C
A

V e

4

0

B
B
@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C
C
A

Mass lumping is generally desired for an explicit time integration scheme to
perform O�1 very easily in use of (8.131) because the application of a CM matrix
for the explicit scheme becomes too expensive. On the other hand, for implicit time
integration methods mass lumping is commonly neither necessary nor preferred.
In general, CM matrix formulations provide higher accuracy, see [209, 210, 590].
Exception is given for unsaturated flow problems, where fully implicit time stepping
schemes in combination with mass lumping have shown superior to CM.

8.13.3 Galerkin Approximation in Time

Similar to the spatial approximation (8.16) we can use the standard finite element
expansion for the time-dependent state variable as

φ.t/ 	 Oφ.t/ D
X

j

Nj .t/φj .j D n; nC 1; : : :/ (8.139)

within the time interval .tn; tn C 
tn/. In the linear case with j D n; n C 1 the
interpolation functions are

Nn D 1� �; NnC1 D � (8.140)

where

� D t � tn

tn

(8.141)

Inserting (8.139) into (8.129) a temporal weighted residual approximation, similar
to a spatial weak statement (8.36), can be written

Z tnC
tn

tn

wi .t/
h
O � . PNnφnC PNnC1φnC1/CK � .NnφnCNnC1φnC1/�F

i
dt D 0
(8.142)
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with

PNn D � 1


tn
; PNnC1 D 1


tn
(8.143)

where wi .t/ represents the weighting function set to be specified below. If we
substitute (8.141) with dt D 
tnd� into (8.142) and divide by 
tn, the following
time marching recurrence formula results

�
O

Z 1

0

wi
1


tn
d� CK

Z 1

0

wi �d�
�
� φnC1�

�
O

Z 1

0

wi
1


tn
d� �K

Z 1

0

wi .1 � �/d�
�
� φn �

Z 1

0

wiFd� D 0
(8.144)

Introducing a weighting coefficient � defined as

� D
R 1
0

wi �d�
R 1
0

wi d �
(8.145)

and assuming a linear variation of F .t/ 	 Nn.t/FnCNnC1.t/FnC1 within the time
interval where

R 1
0

wiFd�
R 1
0

wi d �
D FnC1� C Fn.1 � �/ (8.146)

the final form of the recurrence scheme (8.144) is given by

� O


tn
CK�

�
�φnC1 D

� O


tn
�K.1��/

�
�φnC

�
FnC1�CFn.1��/

�
(8.147)

to solve φnC1 at the new time plane n C 1 from the preceding solution φn at the
previous time plane n. Using a Galerkin weighting with wi D NnC1 the weighting
coefficient (8.145) yields � D 2=3.

8.13.4 The ��Family of Time Integration Methods

Introducing a more general weighting coefficient .0 � � � 1/, we can write

φ.tn C �
tn/ D �φ.tn C
tn/ C .1 � �/φ.tn/
F .tn C �
tn/ D �F .tn C
tn/ C .1 � �/F .tn/
Pφ.tn C �
tn/ D � Pφ.tn C
tn/ C .1 � �/ Pφ.tn/

(8.148)
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Using the Taylor series expansion for φnC1 D φ.tn C 
tn/ about tn and φn D
φ.tnC1 �
tn/ about tnC1, respectively,

φnC1 D φn C
tn Pφn C 
t2n
2
Rφn C 
t3n

6
«φn C : : :

φn D φnC1 �
tn PφnC1 C 
t2n
2
RφnC1 � 
t3n

6
«φnC1 C : : :

(8.149)

we obtain a forward difference approximation, called forward Euler (FE)

Pφn D φnC1 � φn

tn

�O.
tn/ �O.
t2n/ (8.150)

and a backward difference approximation, called backward Euler (BE)

PφnC1 D φnC1 � φn

tn

CO.
tn/�O.
t2n/ (8.151)

which are accurate to a first-order truncation error of O.
tn/. Inserting (8.151) and
(8.150) into (8.148) it results9

Pφ.tn C �
tn/ D φnC1 � φn

tn

CO�.� � 1
2
/
tn;
t

2
n

�
(8.152)

We recognize from (8.152) that the difference approximation is of second-order
accuracy of O.
t2n/ if (and only if) � D 1

2
, for all other values of � within .0 �

� � 1/ the difference approximation is accurate to a first-order truncation error of
O.
tn/.

Common time stepping schemes result if choosing � in an appropriate man-
ner, viz.,

� D 0 explicit scheme; O.
tn/
� D 1

2
trapezoid rule (Crank-Nicolson scheme); O.
t2n/

� D 2
3

Galerkin scheme; O.
tn/
� D 1 implicit scheme; O.
tn/

(8.153)

9The 2nd-order derivatives are obtained by repeated application of 1st-order approximations:

RφnC1 D PφnC1 � Pφn

tn

C O.
tn/; Rφn D PφnC1 � Pφn

tn

� O.
tn/

so that
RφnC1 D Rφn C O.
tn/
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Inserting (8.148) with (8.152) into (8.129) we obtain the following algebraic system
of equations

� O


tn
CK�

�
�φnC1 D

� O


tn
�K.1��/

�
�φnC

�
FnC1�CFn.1��/

�
(8.154)

and accordingly for the normalized form (8.131)

� δ


tn
Cμ�

�
�φnC1 D

� δ


tn
�μ.1� �/

�
�φnC

�
fnC1� C fn.1� �/

�
(8.155)

to recursively solve φnC1 at the new time plane nC 1 from the preceding solution
φn at the previous time plane n, starting from the IC (8.130) at n D 0.

8.13.5 Predictor-Corrector Methods

A powerful alternative to the two-stage ��implicit/explicit recurrence solution
(8.154) is the predictor-corrector method which was originally developed by Gresho
et al. [209, 211, 212], hereafter referred to as GLS. This time integration method
monitors the solution process via a local time truncation error estimation in
which the time step size is cheaply and automatically varied in accordance with
temporal accuracy requirements. It has been proven to be a cost-effective and robust
procedure in that the time step size is increased whenever possible and decreased
only if necessary. The predictor-corrector methods provide a rational mathematical
basis for adaptively selecting the time step via error control. Such an adaptive time
stepping is clearly superior to procedures based exclusively on empirical relations,
e.g., a target-based or heuristic time stepping control as discussed in [124,141,582].
In the present analysis both 1st- and 2nd-order accurate variable step predictor-
corrector schemes are of interest. The 1st-order accurate scheme refers to an explicit
forward Euler (FE) formula as the predictor and the implicit backward Euler (BE)
method as the corrector. It will hereafter be termed as the FE/BE predictor-corrector
scheme. For the 2nd-order accurate method the explicit method is based on the
Adams-Bashforth (AB) predictor, while the trapezoid rule (TR) is used as corrector
with 2nd-order accuracy. It will be hereafter called as the AB/TR predictor-corrector
scheme. The schemes are applied to the system of equations (8.129) or (8.131)
written in a simplified form:

Pφ D r.φ/ with r.φ/ D f � μ � φ (8.156)
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8.13.5.1 GLS 1st-Order Forward Euler (FE)/Backward Euler (BE)
Scheme

Predictor Solution

The FE scheme applied to Pφ D r.φ/ gives, cf. (8.149),

φ
p
nC1 D φn C
tnr.φn/ D φn C
tn Pφn (8.157)

where the superscript p indicates the predictor values at the new time plane nC 1.
The predictor provides a tentative solution at nC 1.

Corrector Solution

The BE corrector scheme applied to (8.156) is

φnC1 D φn C
tnr.φnC1/ D φn C
tn PφnC1 (8.158)

whose inversion yields the ‘acceleration’ vector

PφnC1 D φnC1 � φn

tn

(8.159)

to be used for preparing the next predictor step on the RHS of (8.157). The corrector
(8.158) provides the actual solution at n C 1, which is commonly depart from the
predictor solution (8.157).

Local Truncation Error (LTE) Estimation

The LTE dnC1 is defined as the residual

dnC1 D φnC1 � φ.tnC1/ (8.160)

between the approximate solution φnC1 and the exact solution φ.tnC1/ at the new
time plane n C 1. Practically, we determine the exact solution via Taylor series
analysis and assume that the exact solution is available at the beginning of the time
step. We obtain for the FE formula

d
p
nC1 D φpnC1 � φ.tnC1/
D φn C
tn Pφn �

�
φn C
tn Pφn C 
t2n

2
Rφn C 
t3n

6
«φn C : : :

�

D �
t2n
2
Rφn CO.
t3n/

(8.161)
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and for the BE scheme

dnC1 D φnC1 � φ.tnC1/
D φn C
tn PφnC1 �

�
φn C
tn PφnC1 � 
t2n

2
RφnC1 C 
t3n

6
«φnC1 � : : :

�

D 
t2n
2
RφnC1 CO.
t3n/

D 
t2n
2
Rφn CO.
t3n/

(8.162)

taking into account that the exact solution is available at tn (and not at tnC1) by
definition. From (8.161) and (8.162) it directly follows

dnC1 D 1

2
.φnC1 � φpnC1/CO.
t3n/ (8.163)

by using dnC1 D �dpnC1CO.
t3n /. It provides an estimate of the LTE in a single BE
step, where φnC1 and φpnC1 are available from the corrector and predictor solution,
respectively, at time plane nC 1.

Time Step Selection

On this basis we can determine a useful formula for the acceptable size of the next
time step as follows. From (8.162) we find

kdnC2k
kdnC1k D

�

tnC1

tn

	2 k RφnC1k
k Rφnk

(8.164)

where dnC1 is available from (8.163). The idea is now to keep the expected LTE at
the next time plane nC 2 equal to a pre-set (tolerable, target) error measure �, i.e.,
kdnC2k D �. Since RφnC1 D Rφn C O.
tn/ (see9), (8.164) permits an estimate for
the (potential) next time step size. Neglecting higher-order terms, we finally obtain
from (8.164)


tnC1 D 
tn
�

�

kdnC1k
	1=2

(8.165)

In this manner, the potential size of the next time step can be determined by the error
norm kdnC1k estimated from the difference between the predicted and corrected
solutions in (8.163). It can be used as a RMS error norm kdnC1kRMS, cf. (8.28), or
as a maximum error norm kdnC1kL1 , cf. (8.29).
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8.13.5.2 GLS 2nd-Order Adams-Bashforth (AB)/Trapezoid Rule (TR)
Scheme

Predictor Solution

The 2nd-order AB formula applied to Pφ D r.φ/ is (e.g., see [211])

φ
p
nC1 D φn C


tn

2

��
2C 
tn


tn�1

� Pφn � 
tn


tn�1
Pφn�1

�

(8.166)

where 
tn D tnC1 � tn and 
tn�1 D tn � tn�1. It represents an explicit two-step
method and requires two history vectors of acceleration at the current time plane
Pφn and at the previous time plane Pφn�1. Since Pφn�1 is additionally needed, the

AB formula cannot be applied before the second step .n D 1/. Accordingly, the
prediction has to be started with the FE predictor (8.157) and error estimation
therefore begins at the completion of the second step.

Corrector Solution

The corrector step applied to (8.156) is based on the 2nd-order accurate TR, which
reads

φnC1 D φn C 
tn

2

�
r.φn/C r.φnC1/

 D φn C 
tn

2

� Pφn C PφnC1
�

(8.167)

whose inversion yields the history vector of acceleration

PφnC1 D 2


tn
.φnC1 � φn/ � Pφn (8.168)

to be used for preparing the next predictor step on the RHS of (8.166), where Pφn
could be available from the previous application of the same equation. However,
Bixler [48] has shown that the previous accelaration vector Pφn used in (8.168)
can produce an oscillatory instability in the AB predictor in cases as a steady
state is approached. Under such conditions φnC1 � φn in (8.168) will go to zero,
however, Pφn may not because of the recursive dependence on previous estimates of
the acceleration vector. Bixler [48] proposed an alternative to Pφn in (8.168) by the
following finite difference relation10:

10Truncated Taylor series expansions for φn�1 and φnC1 about tn give:

φn�1 D φn �
tn�1 Pφn C 
t2n�1
2

Rφn; φnC1 D φn C
tn Pφn C 
t2n
2

Rφn
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Pφn D 
tn�1

tn C
tn�1

�
φnC1 � φn


tn

	

C 
tn


tn C
tn�1

�
φn � φn�1

tn�1

	

(8.169)

which is also O.
t2n/. Inserting (8.169) into (8.168) the following formula is used
to compute the acceleration vector for the next AB step (8.166), viz.,

PφnC1 D
�

2 � 
tn�1

tn C
tn�1

	�
φnC1 � φn


tn

	

�
�


tn


tn C
tn�1

	�
φn � φn�1

tn�1

	

(8.170)

Local Truncation Error (LTE) Estimation

In analogy to the FE/BE scheme in Sect. 8.13.5.1 the LTE is obtained for the AB
predictor

d
p
nC1 D φpnC1 � φ.tnC1/
D φn C 
tn

2

��
2C 
tn


tn�1

� Pφn � 
tn

tn�1

Pφn�1
 � φ.tnC1/

D φn C 
tn
2

��
2C 
tn


tn�1

� Pφn � 
tn

tn�1

� Pφn �
tn�1 Rφn C 
t2n�1
2
«φn � : : :

�

�
�
φn C
tn Pφn C 
t2n

2
Rφn C 
t3n

6
«φn CO.
t4n/

�

D � 1
12

�
2C 3
tn�1


tn

�

t3n
«φn CO.
t4n/

(8.171)

where the exact solution is used at tn�1 D tn � 
tn�1 to invoke Taylor series.
Similarly, the LTE for the TR corrector results in

dnC1 D φnC1 � φ.tnC1/
D φn C 
tn

2

� Pφn C PφnC1
� � φ.tnC1/

D φn C 
tn
2

�� PφnC1 �
tn RφnC1 C 
t2n
2
«φnC1 � : : :

�C PφnC1


�
�
φn C
tn PφnC1 � 
t2n

2
RφnC1 C 
t3n

6
«φnC1 �O.
t4n/

�

D 
t3n
12
«φnC1 CO.
t4n/

D 
t3n
12
«φn CO.
t4n/

(8.172)

Using the first expression to write Pφn D φn�φn�1


tn�1
C 
tn�1

2
Rφn and inserting into the second formula

with 
tn
2

Rφn D φnC1�φn


tn
� Pφn, we obtain

Pφn D φn � φn�1

tn�1

C 
tn�1


tn

�
φnC1 � φn


tn
� Pφn

	

After some manipulations we finally find

Pφn D 
tn�1


tn C
tn�1

�
φnC1 � φn


tn

	

C 
tn


tn C
tn�1

�
φn � φn�1

tn�1
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From (8.171) and (8.172) we can directly express the LTE of a single TR step as

dnC1 D φnC1 � φpnC1
3
�
1C 
tn�1


tn

� CO.
t4n/ (8.173)

providing a function of the available predictor solution φpnC1 and corrector solution
φnC1 at the time plane nC 1.

Time Step Selection

In analogy to Sect. 8.13.5.1 we can estimate the next time step size for the AB/TR
scheme based on the requirement that an error norm for the next step should equal
a pre-set tolerance measure � D kdnC2k. From (8.172) we find

kdnC2k
kdnC1k D

�

tnC1

tn

	3 k«φnC1k
k«φnk

(8.174)

where dnC1 is known from (8.173). Neglecting higher-order terms and since
«φnC1 D «φn CO.
tn/, we finally obtain from (8.174) the following relation


tnC1 D 
tn
�

�

kdnC1k
	1=3

(8.175)

which is used to compute the potential next time step size.

8.13.5.3 Major Solution Steps and Tactic of Time Step Control

In Table 8.7 we summarize the major solution steps of the 1st-order accurate
FE/BE and 2nd-order accurate AB/TR predictor-corrector schemes. In step 0 the
time marching procedures are initialized by computing the acceleration vector Pφ0
based on the IC (8.130): φ.t0/ D φ0. Furthermore, an initial time step size 
t0 is
chosen, which should be kept sufficiently small. The error tolerance � is the only
user-specified parameter to control the entire adaptive time marching process. It has
significant effect on cost and accuracy. A too large value of � possesses a poor error
estimate and the AB/TR becomes prone to oscillate when large time steps are used.
Too small an �, however, will make the (albeit accurate) computations unacceptably
expensive. In practice, it has been shown in many applications that a relative error
per time step of � D 10�3–10�4 is quite optimal with respect to accuracy and
performance. Note that a decrease of � by one power will approximately double
the total number of time steps.
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The computations per each time step consist of five major solution steps as listed
in Table 8.7. At first, the predictor solution φpnC1 at the new time plane nC 1 has to
be computed by using the explicit 1st-order accurate FE and 2nd-order accurate AB
schemes. The AB scheme must start at nC1 as the FE scheme because the required
acceleration vector Pφn�1 is only available from the second step onward. Only at the
second step n D 2 the usual AB predictor procedure is started. All the predictors
are cheaply computable and their extra effort is small. While these predictors are
subsequently needed to estimate the truncation error for the time step control, they
are also useful to linearize the governing PDE in the presence of nonlinearities.
Step 2, the correctorφnC1, is the actual solution of the governing PDE,O � PφCK �
φ D F , via the implicit BE and TR schemes. If we additionally admit nonlinear
dependencies in the form

O.φ/ � PφCK.φ/ � φ D F .φ/ (8.176)

we can solve the linear system by using the predictor solution φpnC1 at the new time
plane nC 1

�O.φ
p
nC1/

�
tn
CK.φpnC1/

�
� φnC1 D O.φpnC1/ �

h 1

�
tn
φn C

�
1
�
� 1� Pφn

i

CFnC1.φpnC1/

(8.177)

where � D 1
2

for the TR scheme and � D 1 for the BE scheme.
Once the corrector solution φnC1 is available at the new time plane n C 1, in

step 3 the acceleration vectors PφnC1 can be computed, which will be needed in
the following n C 2 time step in the predictor and AB-corrector. With the known
predictor and corrector solutions, φpnC1 and φnC1, respectively, in step 4 the LTE
dnC1 is determined at the current time plane n C 1. Appropriate error norms are
applied to the vector dnC1. Commonly, the RMS L2 error norm (8.28)

kdnC1kRMS D
�
1

NP

�
1

2max

NPX

jD1
d 2j;nC1

	� 1
2

(8.178)

or the maximum L1 error norm (8.29)

kdnC1kL1 D
1

max
max
j
jdj;nC1j (8.179)

are chosen, where max is the maximum value of the state variable φnC1 detected at
the time plane nC 1 to normalize the error vectors.

In step 5, the potential next time step size 
tnC1 is determined by using
the just estimated error norm kdnC1k 2 .kdnC1kRMS; kdnC1kL1/ with the user-
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supplied error tolerance �. The following criteria are used to monitor the progress
of solution:

1. If


tnC1  
tn (8.180)

the current solution φnC1 is accurate within the error bound defined by � and the
increase of the time step is always accepted. In practice it has shown to be useful
that the increase of the time step should be optionally constrained by further
conditions. Firstly, the time step should not exceed a prescribed maximum size,
i.e., 
tnC1 � 
tmax. Secondly, the rate for changing the time step size � D

tnC1=
tn has also to be limited, where � > 1 can be 2, 3 or even more. Those
constraints are beneficial to prevent inefficient oscillations in the time step size
prediction. Then, the actually increased new time step is determined from


t actual
nC1 D min.
tnC1;
tmax; �
tn/ (8.181)

provided that 
t actual
nC1  
tn.

2. Else if

	
tn � 
tnC1 < 
tn (8.182)

where 	 is typically 0:85, the solution φnC1 is accepted but the time step size is
not changed, i.e., 
tnC1 D 
tn.

3. Else if


tnC1 < 	
tn (8.183)

the solution φnC1 cannot be accepted within the required error tolerance �
and has to be rejected. The current time step must be repeated with a reduced
time step size. The reduced time step is computed from (8.165) and (8.175),
respectively, by replacing kdknC1 and 
tn with the just estimated kdknC2 and

tnC1 to obtain


t red
nC1 D


t2n

tnC1

� �

kdnC1k
�&

(8.184)

where & D 1 for FE/BE and & D 2=3 for AB/TR scheme. The new solution
restarted with this smaller time step is again tested against the error conditions
and further step reduction can follow. However, up to 12 such reduction cycles
are only allowed, then the algorithm signals to restart the overall time stepping
procedure under stronger error bounds and initial time step (e.g., decrease �
and/or
t0).
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After finishing solution step 5 for an acceptable solution φnC1, the time stepping
procedure proceeds to the next time plane n C 2, where it begins again with
step 1 of Table 8.7. With the proposed predictor-corrector technique we can vary
the size of the time step based solely on temporal accuracy requirements. Such
an error-controlled adaptive time step selection strategy can follow the ‘physics’
of the underlying processes more intelligently and efficiently in comparison to
heuristic rules. For example, the physics may require a small time step to follow
a steep concentration or temperature profile over certain times or to adapt a sudden
change in transient BC’s, while at later times it may be sufficient to follow a slow
development of a flow or transport regime in time with reasonably large time steps.
In either case, the predictor-corrector algorithm will usually automatically select the
appropriate time step in a reliable manner, where the time step is increased whenever
possible and decreased only when necessary.

8.13.6 Stability Properties

Any of the time marching recurrence schemes derived above can be written for the
homogeneous solution (i.e., the source/sink of error is unimportant in the context so
that we can assume F D 0) in the form

φnC1 D A � φn (8.185)

where A is the amplification matrix, which is given for the exact solution by the
exponential decay relation (8.136)

A D e�μ
tn ; μ D O�1 �K (8.186)

and for the introduced time stepping schemes by the approximation

A D �
OC �K
tn

�1 � �O � .1 � �/K
tn


D �
δ C �μ
tn

�1 � �δ � .1 � �/μ
tn
 (8.187)

in which � identifies the different recurrence algorithms. Table 8.5 lists the preferred
linear single-step operators for particular � values. It is obvious as A is recursively
applied to each new vector φn, the stability of the time integration method requires
that any occurring approximation error must ultimately decay. Thus, A must be a
bounded operator and the time integration scheme is considered stable for jAj < 1.

The stability of the time integration approximations can be further analyzed
via modal decomposition. The solution φ is expressed in terms of its linearly
independent eigenvectors and eigenvalues by
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φ D
NPX

iD1
ϕi e

�δ�i t (8.188)

where ϕi are the eigenvectors and �i are the eigenvalues. Applying (8.188) to PφC
μ � φ D 0, (8.131), with f D 0, it leads to the eigenproblem in the form

.μ � δ�i / �ϕi D 0; 8i: (8.189)

Since the eigenvectors have the properties of modal orthogonality in the form ϕTj �
.δ �ϕi / D ıij, we find after multiplying (8.189) by ϕTj

ϕTj � .μ �ϕi / D �iıij (8.190)

showing that the eigenvectors are also orthogonal with respect toμ. Now, we assume
that the semidiscrete solution can be approximated in terms of the eigenvectors as

φ D
NPX

iD1
ϕiyi .t/ (8.191)

where yi .t/ represent the mode participation factors to be determined. Substituting
(8.191) into Pφ C μ � φ D 0, premultiplying with ϕTj and applying the modal
orthogonality conditions, leads to the result

Pyi
�
ϕTj � .δ �ϕi /

C yi
�
ϕTj � .μ �ϕi /

 D 0 or
Pyiıij C yi�i ıij D 0 or
Pyi C yi�i D 0 8i:

(8.192)

This modal formulation is very advantageous because it decouples the original
equation into a sequence of scalar evolution equations for each mode i D 1; : : : ; NP.
By applying the above time integration techniques, same as used for the original
problem, now to the modal equations (8.192) we obtain similar to (8.185)

.yi /nC1 D Ai.yi /n (8.193)

where Ai is the scalar amplification factor of the i th mode, which is given for the
exact solution by

Ai D e��i
tn (8.194)

and for the introduced time stepping schemes by

Ai D 1 � .1 � �/�i
tn
1C ��i
tn (8.195)
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Fig. 8.19 Amplification factor Ai (decay function) for various linear ��approximants (8.195) in
comparison to the exact solution e��i
tn of a mode i with eigenvalue �i

providing a scalar analog to (8.186) and (8.187), respectively. Taking into account
that the eigenvalues �i cover the full eigenspectrum ranging between a maximum
eigenvalue �max and a minimum eigenvalue �min

�i D .�max; : : : ; �min/ (8.196)

which can comprise several orders of magnitude, the requirement for stability is that
the amplification factor Ai must be jAi j < 1, i.e.,

� 1 < 1 � .1 � �/�i
tn
1C ��i
tn < 1 (8.197)

holding for all eigenvalues �i of the system.
Figure 8.19 illustrates how the amplification factor Ai of a mode i varies with

�i
tn for various � of the four difference operators in comparison to the exact
exponential decay e�i
tn , where � 2 .0; 1

2
; 2
3
; 1/ represents the explicit FE, the

implicit TR (Crank-Nicolson), the implicit Galerkin and the fully implicit BE
scheme, respectively. We easily recognize that the right-hand inequality of (8.197)
imposes no restrictions on values of �i
tn or � . However, the left-hand inequality
requires for stability that

.1 � 2�/�i
tn < 2 (8.198)
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when � < 1
2
. On the other hand, we see that there are no restrictions for �  1

2
. Such

algorithms satisfying (8.198) independent of the chosen time step size
tn are called
conditionally stable (A�stable). The TR (Crank-Nicolson) .� D 1

2
/, the Galerkin

scheme .� D 2
3
/ and the implicit BE method .� D 1/ belong to this category. In

contrast, the explicit FE scheme .� D 0/ is stable only if �i
tn < 2, otherwise Ai
predicts unbounded (unstable) solutions with Ai ! �1 as evidenced in Fig. 8.19.
Therefore, an explicit scheme is not an A�stable method. As also shown in Fig. 8.19
the 2nd-order accurate TR scheme .� D 1

2
/ fits very well with the exact solution

and furnishes highest accuracy for �i
tn < 1 in comparison to all other linear
single-step schemes. The implicit BE scheme .� D 1/ approaches to the exact
solution Ai ! 0 for very large time steps �i
tn !1, while the Galerkin and the
TR schemes satisfy Ai ! �1. Apparently, the Galerkin method .� D 2

3
/ exhibits

an optimal approximation behavior over the entire �i
tn�range.
The A�stable time stepping algorithms satisfying (8.198) ensure boundedness

and thus unconditional stability independently of the time step 
tn. However,
A�stability is not sufficient to ensure smooth and wiggle-free (nonoscillatory)
solutions. In fact, all algorithms which admit a negative amplification Ai (see
Fig. 8.19) are prone to oscillatory behaviors if
tn becomes too large. The condition
for nonoscillation (called L�stability) requires 0 < Ai < 1. The bound Ai > 0

gives with (8.195) the criterion

.1 � �/�i
tn < 1 (8.199)

to ensure nonoscillatory solutions. It is obvious that only the BE scheme .� D 1/ can
satisfy this condition for arbitrary step sizes 
tn assuring Ai ! 0 for �i
tn !1.
Unlikely, in the TR scheme .� D 1

2
/ the time step has to be restricted by a critical

time step 
t crit
n such as


tn < 
t
crit
n D

2

�max
(8.200)

to ovoid oscillations in the solution (known as Crank-Nicolson noise [568]), which
must be controlled by the maximum eigenvalue �max.

Different methods exist for analyzing stability. One is the matrix method in which
the eigenvalues of the matrix are estimated. To get a first (but simple) assessment of
characteristic eigenvalues �i which are important to determine time step limitations,
such as (8.200), we can use δ�i D μ from (8.189) and estimate μ D O�1 �K on
an element level basis, e.g., [590]. Let us consider for the sake of simplicity the 1D
linear element (cf. Table G.1a of Appendix G), for which the element matrices have
been derived in Appendix H. We find for the diagonal contributions of the (lumped)
mass matrix Oii and diffusion matrix Cii from (H.7) at a (global) mode i , assuming
a uniform meshing with element length 
x and constant parameters (storage – KR,
diffusion – D):
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�i 	 Cii

Oii
D 2D


x

� KR
x
2

ˇ
ˇ
LMD

4D

KR
x2 (8.201)

written without advection, where we also drop the source/sink terms appearing in
(H.7) because stability is independent of the forcing functions. Then, the assessment
of condition (8.200) for the TR scheme yields11


tn < 
t
crit
n 	

KR
x2
2D

(8.202)

which indicates that the critical time step is proportional to 
x2 for a diffusion-
dominant problem D > 0. We see that the smallest element size 
x dictates
the criterion. In practice, however, the TR (or Crank-Nicolson) criterion (8.202)
is commonly insignificant. Possible oscillations produced by the TR scheme are
strictly bounded and small if linear finite elements are used. This is exemplified
in Fig. 8.20 illustrating slight, but quickly damped oscillations in the temporal
development of the solution for the TR (Crank-Nicolson) scheme using a constant
time step larger than the critical step size (8.202). It is shown in [568] that Crank-
Nicolson noise is more significant for finite elements of quadratic or higher-order
type.

For a further analysis let us consider the spatio-temporal discretization of
the system (8.154) for a simplified 1D problem. Again, we use linear elements
thoroughly described in Sect. H.1 of Appendix H for a 1D domain as shown
in Fig. 8.21. As indicated in Fig. 8.21 the assembly of the elements leads to a
tridiagonal global matrix, where the final discrete equations can be expressed for
the row of global interior node i by using the specific matrix entries of (H.8) and
(H.10). For simplicity we drop source/sink and boundary terms and find for (8.154)
the following discrete equations of the 3-node .i C 1; i; i � 1/�stencil:

h
KR
6

�
tn�
�

D

x2

� q

2
x
� #

6

�i
iC1;nC1 C

h
2 KR
3

C
tn�
�
2D

x2

C 2#
3

�i
i;nC1 C

h
KR
6

�
tn�
�

D

x2

C q

2
x
� #

6

�i
i�1;nC1 D

h
KR
6

C
tn.1� �/
�

D

x2

� q

2
x
� #

6

�i
iC1;n C

h
2 KR
3

�
tn.1� �/
�
2D

x2

C 2#
3

�i
i;n C

h
KR
6

C
tn.1� �/
�

D

x2

C q

2
x
� #

6

�i
i�1;n

(8.203)

written for the CM matrix and

11Since Oe
ii D KR
x

3

ˇ
ˇ
CM for a consistent mass (CM) matrix, the critical time step becomes even

smaller:


tn < 
t
crit
n � KR
x2

3D
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Fig. 8.20 Example problem of a transient diffusion in a 1D domain ofL D 1m discretized by five
linear elements with 
x D 0:2m, KR D 1 and D D 10�6 m2 s�1 showing the history of Crank-
Nicolson approximate solution φ.t / at x D 0:3m in time for a constant time step 
tn larger and
smaller than the critical time step 
t crit

n D 0:23 d, (8.202), in comparison to the exact solution

�
tn�
�
D

x2
� q
2
x � #

6

�
iC1;nC1 C

h KRC
tn�
�
2D

x2
C 2#

3

�i
i;nC1 �


tn�
�
D

x2
C q

2
x � #
6

�
i�1;nC1 D 
tn.1 � �/

�
D

x2
� q
2
x � #

6

�
iC1;n C

h KR �
tn.1 � �/
�
2D

x2
C 2#

3

�i
i;n C
tn.1 � �/

�
D

x2
C q

2
x � #
6

�
i�1;n

(8.204)

written for the LM matrix, where the diffusion D, the advective flux q, the
storage KR, the decay rate # and the length of the linear 1D element
x are assumed
constant.

Based on discrete equations such as in form of (8.203) or (8.204) a very common
and most useful method for analyzing stability is the classical Fourier analysis,
called von Neumann stability analysis, e.g., [149, 209, 376]. Von Neumann stability
results necessary conditions at least on a uniform mesh, regardless of BC’s. On this
basis it can be shown that nonoscillatory solutions for the TR (or Crank-Nicolson)
method are bound to the pair of inequalities

Cr < Pg < 1=Cr; or Cr < Pg and Cr < 1=Pg (8.205)
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Fig. 8.21 Node numbering and assembly to a tridiagonal global matrix for a uniform mesh of 1D
linear elements

in which

Cr D q�
tn

x

; with q� D q= KR (8.206)

and

Pg D q�
x
2D� ; with D� D D= KR (8.207)

derived for the LM matrix, where Cr is the Courant number (named after the famous
paper by Courant et al. [105]) and Pg defines the grid (mesh) Péclet number. The
first limit Cr < Pg is the ‘diffusion limit’ 
tn < KR
x2=.2D/ when Pg < 1 as
already stated in (8.202) and the second one PgCr < 1 represents the ‘advection-
diffusion limit’
tn < 2 KRD=q2 when Pg  1. The second Crank-Nicolson criterion
PgCr < 1 was also found by Perrochet and Bérod [415] by using a matrix method.

While the discrete equations (8.203) and (8.204) are A�stable for �  1
2
,

i.e., stability is guaranteed for any time step 
tn, nonoscillatory results require
additional limits which directly follow from (8.203) and (8.204). It can be easily

seen from (8.203) that the term Œ
KR
6
� 
tn�. D


x2
C jqj

2
x
� #

6
/� must be negative to

avoid oscillations in a CM formulation. It leads to a restriction for a minimum time
step size, viz.,
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tn >
KR
x2

�.6D C 3jqj
x � #
x2/ for �  1
2

(8.208)

and additionally it should be required that .6DC3jqj
x�#
x2/ > 0which arises
a further constraint related to the decay rate

# <
3


x2
.2D C jqj
x/ (8.209)

or a limit for the element length determined by the decay rate #


x <
3jqj Cp9q2 C 24D#

2#
if # > 0 (8.210)

The physical interpretation of a minimum time step size (8.208) for a consistent
mass formulation is that the mesh is too coarse to transmit and distribute a quantity
to the nodes of an element in a very short time interval so that bounded oscillations
become unavoidable. However, we observe from (8.204) that such a minimum time
step constraint does not exist for mass lumping, since Œ�
tn�. D


x2
C jqj

2
x
� #

6
/� is

always negative here, provided that (8.209) or (8.210) are satisfied. That means, the
restriction for the decay rate (8.209) or (8.210) are present both for CM and LM
matrix formulations. [Note that it could be possible to lump also the reaction matrix
term similar to the LM matrix as discussed in Sect. 8.13.2, then the restrictions
(8.209) or (8.210) would disappear.] We illustrate in Fig. 8.22 for a 1D example
problem the oscillatory effect of CM if the time step is too small violating (8.208)
and that mass lumping produces nonoscillatory results for the same time step. In
practice, however, the restrictions (8.208), (8.209) or (8.210) are not really crucial
because the mesh coarseness is commonly not achieved and even if oscillations of
this type are caused by too small time step sizes in a coarse mesh they are quickly
damped out in progressing the time steps. Nevertheless, due to the higher accuracy
the CM formulation (cf. Sect. 8.13.2) is generally the first choice in the present finite
element analysis.

The stability criterion (8.198) represents a serious restriction for the explicit FE
scheme .� D 0/. A comprehensive stability analysis is given by Hindmarsh et al.
[250]. The lumped explicit FE scheme becomes unstable, unless

Cr < min.Pg; 1=Pg; 1/ (8.211)

or


tn < min

� KR
x2
2D

;
2 KRD
q2

;
KR
x
q

	

(8.212)
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Fig. 8.22 Resulting distributions in a 1D domain of length L D 1m discretized by five linear
elements with 
x D 0:2m, D D 10�6 m2 s�1, q D 1m d�1, KR D 1 and # D 3 � 10�4 s�1,
satisfying the limit (8.209). Results are obtained for a full implicit scheme .� D 1/ at the first time
step of 
tn D 10�2 d for CM and LM formulations, where only CM implies bounded oscillations

The first ‘diffusion limit’ 
tn < KR
x2=.2D/ governs when Pg < 1, the second
‘advection-diffusion limit’ is restrictive when Pg  1. The third restriction

Cr < 1 (8.213)

is the Courant-Friedrichs-Lewy (CFL) condition [105], which is always a necessary
condition for the stability of explicit schemes. If diffusion dominates the diffusion
limit 
tn < 
x2=.2D�/ possesses a terrible restriction for any explicit method. It
means in practical terms: AssumeL is the characteristic length of the computational
domain, then the simulation time required for the full transient is tend ' L2=D�.
For a typical (thermal) diffusivityD� of 10�6 m2 s�1, a length of L D 10m and the
smallest element length of 
x D L=1;000 D 10�2 m, the diffusion limit (8.212)
requires 
tn < 50 s. Since tend D 108 s, about 2 � 106 time steps are required to
perform the complete simulation with an explicit FE scheme. If we halve 
x the
required times steps increase to 8 �106 s. This shows the serious drawback of explicit
schemes, in particular for diffusion problems, where a very large number of tiny time
steps becomes necessary, albeit each time step is computationally cheap because no
equation systems must be solved. In contrast, A�stable implicit schemes having no
stability limitations can solve a diffusion problem with acceptable accuracy in, let’s
say, less than 100 time steps, however, each time step is more expensive due to the
solution of the equation system. Nevertheless, the implicit time stepping schemes
have shown clearly superior to explicit methods, at least for diffusion-dominant
problems, due to their clearly higher computational performance and robustness.
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On the other hand, for dominant advection .Pg� 1/, the CFL condition (8.213)
becomes important for explicit schemes


tn <

x

q� (8.214)

which implies only a linear dependence on 
x. For example, choosing L D 10m,

x D 10�2 m and q� D 10�4 m s�1, the time step limit (8.214) requires 
tn <
100 s and accordingly 103 time steps are needed to perform a full transient for the
advection problem up to tend ' L=q� D 105 s. It illustrates that the performance
of explicit schemes considerably improves for advection-dominated (hyperbolic)
problems (Sect. 8.3) and could be in fact more affordable compared to implicit
techniques. But, taking into consideration more complex flow situations where
locally (in space or time) the advection can be small compared to the diffusivity or
even zero, the possible benefit of the computational performance of explicit methods
can easily get lost again due to the strong limitation (8.212) in the time step control.

Finally, the advection-diffusion limit (Cr < 1=Pg or 
tn < 2 KRD=q2) can
be too restrictive for advection-dominated simulations via explicit methods [250].
However, it is common practice to incorporate the temporal truncation error and
upwind stabilization techniques (see following Sect. 8.14), where the physical
diffusion D� is artificially increased by q�2
tn=2 and by q�
x=2, respectively
[91,250]. Then, the explicit method becomes tractable for hyperbolic problems with
the changed advection-diffusion limits according to [250]

Cr <

p
1C 4Pg2 � 1

2Pg
and Cr <

Pg

1C Pg
(8.215)

In a resumé, due to the desired generality and robustness of the finite element
strategy we prefer usually implicit time stepping schemes for the present class of
problems. Explicit techniques (such as FE and AB) only occur in the context of
predictor-corrector time marching schemes, for which no time step restrictions exist
because the corrector solutions are generally implicit in form of the A�stable BE
or TR methods.

8.14 Upwinding

8.14.1 Pros and Cons of Upwind Methods

In computing transport-flow processes the FEM must be applied in situations
where the advection dominates over diffusion/dispersion. For the numerical solution
stability and boundedness (definitions given in Sect. 1.2.2) should be guaranteed.
Numerical solutions should lie within proper bounds. Physically, nonnegative
quantities (e.g., density, mass concentration, absolute temperature) should always
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be positive. But, boundedness is difficult to guarantee under all circumstances.
Unbounded solutions can occur on too coarse meshes in form of wiggles, i.e., oscil-
latory results generally occurring in a node-to-node manner which overshoot and
undershoot the solution (Fig. 8.23). GFEM (and the equivalent central difference
approximations) are prone to generate those spurious oscillations in space if the
chosen mesh is inappropriate. In FDM it is popular to approximate the advective
terms of the ADE by first-order onesided (flow direction-biased) differences,
a process often referred to as upwinding. However, upwind methods precluding
unwanted oscillations have disadvantages with regard to accuracy. It is to emphasize
that stability does not imply accuracy – although it is true that instability implies
inaccuracy. The resort to upwinding is usually a reduction of accuracy in favor of
stability, where wiggles are artificially suppressed via damping mechanisms.

To treat advection-dominated transport problems by the FEM various upwind
formulations have been developed in past. Pioneering work was given by Christie
et al. [82], Heinrich et al. [236], Heinrich and Zienkiewicz [235] and Zienkiewicz
et al. [595]. Asymmetric weighting functions were introduced such that the element
upstream of a node is weighted more heavily than the element located downstream
of a node equivalent to an upwind differencing. This type of upwind distortion of
the weighting function represents a generalization of the standard (Galerkin-based)
FEM and is called Petrov-Galerkin finite element method (PGFEM), cf. Table 8.1.
Hughes [266] has shown that the upwind effect can also be achieved by asymmetry
in the numerical quadrature rule for the advection terms. It was recognized that
the PGFEM stabilization is equivalent to adding artificial (numerical) diffusion to
the GFEM, termed as balancing diffusion, e.g., [307]. Unfortunately, many of the
upwind methods reveal over-diffusive properties and there was a demand for alter-
native upwind techniques possessing reduced spurious numerical diffusion. While
a scalar artificial diffusion often suffers from a considerable smearing effects [446,
541], the streamline-upwind (SU) method adds artificial diffusion only in the flow
direction and not transversely [57]. The upwind finite element strategy have been
further developed in a number of works, see e.g., [131,149,267–269,272–276,584,
585, 592]. The Petrov-Galerkin least square (PGLS) FEM [276, 385] appeared as
a promising stabilization technique. This procedure results in an artificial diffusion
concept of a built-in streamline-like upwinding similar to the SU method, however,
leads to symmetric matrix systems. However, it has been found [274] that the
streamline is not always the appropriate upwind direction. A generalization of the
streamline concept in form of adding an additional discontinuity-capturing term was
presented by Hughes and Mallet [269]. The shock capturing (SC) method applied to
finite elements has been developed by Johnson et al. [292] and Codina [90, 92, 93].

It becomes clear that upwinding is a compromise between the requirements of
accuracy and stability. There is (also) ‘no free lunch’ in numerics: stability must be
paid by a reduction of accuracy. The question arises how much reduction in accuracy
is acceptable or to which level wiggling can be tolerated. The most important pros
and cons of upwind methods can be summarized as follows:



8.14 Upwinding 319

0 1 2 3 4 5 6 7 8 9 10

x [m]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

so
lu

tio
n,

[1
] exact

GFEM
upwind

0 0.025 0.050 0.075 0.100

t [d]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

so
lu

tio
n,

[1
] exact

GFEM
upwind

a

b

Fig. 8.23 (a) Profiles and (b) breakthrough curves for 1D advection-dominant transport in a
uniform flow field obtained by GFEM and upwind method simulated with AB/TR predictor-
corrector time stepping on a coarse mesh consisting of 100 linear elements with 
x D 0:1m,
D� D 2:5 � 10�6 m2 s�1 and Pg D 23:15 in comparison to the exact solution.12 Oscillations
are generated for GFEM, while smooth and overdiffusive solution results for upwinding, where
physical diffusion D� is artificially increased to D� C q�
x=2 D 6:04 � 10�5 m2 s�1, which is
more than 24 times higher

12The analytical (exact) solution of a 1D ADE is [71], p. 388, [540], cf. also Sect. 12.5.1
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Pros

• GFEM has serious deficiencies in solving problems with dominant advection,
which are prone to generate spurious (nonphysical) node-to-node oscillations.
Upwinding can stabilizes the solutions and is beneficial to obtain realistic (though
not always accurate) solutions.

• Upwind methods allow efficient solutions without the ultimate need for fine
(sometimes extremely dense) meshes.

• Upwinding makes difficult problems computable under given computational
constraints. Extremely fine meshes and expensive computations could be caused
for tough physical situations (e.g., shock-like front displacements of mass
or energy, very thin boundary layers, high density contrasts in a large-scale
problem) if upwind methods would not be admitted.

• There are certain situations where any wiggles in the solution become absolutely
devastating and would totally preclude the possibility of obtaining a solution,
e.g., strong advection in multispecies mass transport processes with nonlinear
chemical reaction.

Cons

• ‘Don’t suppress the wiggles – they’re telling you something!’ as stated in the
famous paper by Gresho and Sani [208] who oppose, in principle, any artificial
damping measures by upwinding: Wiggles are usually a signal that the spatial
(and temporal) discretization is poor and some mesh refinements (at least locally)
are required to obtain a physically adequate solution.

• A positive aspect of wiggles is that in signaling improper discretization they
present self-diagnosis property. A method with such a self-diagnostic property
is often superior to schemes which give smooth, and totally wiggle-free, but
inaccurate and possibly overdamped solutions for any discretization.

• Upwinding is a method of damping and smoothing. It solves the problem by
changing the physics of the problem. Robustness is obtained at the expense of
accuracy. Diffusion is artificially increased in dependence on the chosen mesh,
i.e., the solution becomes mesh-dependent. With other words: For a coarse
mesh the solution is independent of the physical diffusion and can be depart
from the physics of the original problem. Upwinding could be only acceptable

.x; t/ D 0 C 1
2
.D � 0/

�

erfc

�
x � q�t

2
p
D�t

	

C exp
�xq�

D�

�
erfc

�
x C q�t

2
p
D�t

	�

valid for the IC: .x; 0/ D 0, and BC’s: .0; t/ D D and @

@x
.1; t / D 0, where

erfc.a/ D 2
p

�

Z
1

a

exp.��2/d�

is the complementary error function [71], 0 D 0 is the used initial value and D D 1 is the used
Dirichlet-type BC at x D 0. Note that for evaluating the analytical exp.:/erfc.:/ expression the
more suitable exf.:; :/ function is applied which will be further discussed in Sect. 12.5.1.
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and reasonably accurate if the numerical diffusion is significantly less than the
physical diffusion.

• Upwinding is potentially dangerous because it often leads to a false sense of secu-
rity: ‘Any mesh works for any advection-diffusion relation’. Upwind schemes
can damp more than just wiggles; this is particularly true for more complex
nonlinear problems. J. Ferziger (noted in [209]) stated: The greatest disaster one
can encounter in computation is not instability or lack of convergence, but results
that are good enough to be believable but bad enough to cause trouble.

The decision between the pros and cons is often not easy. There is, unfortunately,
no panacea, but the practitioner should be aware of the necessary compromises
involved, and use a given method with due caution and ‘healthy skepticism’. Finally,
our recommended strategy is to solve a problem without upwinding whenever
possible, and to resort to an upwind method only if necessary and unavoidable. In
the following, appropriate upwind methods available in FEFLOW will be described.

8.14.2 Petrov-Galerkin Finite Element Method (PGFEM)

The most common technique for introducing the upwind concept into the FEM is
the Petrov-Galerkin finite element method (PGFEM), where the element weighting
functions differ from the element basis functions weI ¤ Ne

I (cf. Table 8.1) and are
appropriately designed to incorporate asymmetry with respect to the flow field. The
weighting functions of an element e are constructed in general as

weI .η/ D Ne
I .η/C ˛F e

I .η/ (8.216)

where F e
I are modifying functions with the sign depending on the sign of the

advective flux q and ˛ is a free, so-called upwind parameter .0 � ˛ � 1/, which
has to be determined. We note if ˛ D 0, (8.216) corresponds to the standard GFEM.
The modifying functions F e

I can be appropriately chosen either as continuous and
discontinuous relations. Let us consider for convenience firstly the 1D case: In
the continuous definition F e

I are chosen as a polynomial one degree higher than
Ne
I , e.g., [236]. For a linear 1D element we introduce F e

I .�/ D �f e.�/, where
f e.�/ D a�2 C b� C c, written in the local coordinate .�1 � � � C1/, and
determine its polynomial coefficients a, b and c such that f e.�1/ D f e.1/ D 0

and
R C1

�1 f
e.�/d� D 1. It leads to

f e.�/ D 3
4
.1 � �/.1C �/ (8.217)

Then, the following continuous weighting functions result as shown in Fig. 8.24 for
a linear 1D element at the local nodes 1 and 2:

we1.�/ D Ne
1 .�/ � f̨ e.�/

we2.�/ D Ne
2 .�/C f̨ e.�/

(8.218)
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Fig. 8.24 Continuous Petrov-Galerkin weighting functions .˛ D 1/ for the linear 1D element
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Fig. 8.25 Discontinuous Petrov-Galerkin weighting functions .˛ D 1/ for the linear 1D element

where the basis functions are Ne
1 .�/ D 1

2
.1 � �/; N e

2 .�/ D 1
2
.1C �/, cf. (H.1) of

Appendix H.
Much more convenient are discontinuous weighting functions, e.g., [584]. In 1D

one simply chooses:

˛F e
I .�/ D ˛


xe

2

qe

jqej
dNe

I

dx
(8.219)

where 
xe is the length of the finite element e. By using the derivations (H.6) of
Appendix H we obtain the following asymmetric discontinuous weighting functions
for a linear 1D element at the local nodes 1 and 2 with a positive advective flux
qe > 0

we1.�/ D Ne
1 .�/ � ˛

2

we2.�/ D Ne
2 .�/C ˛

2

(8.220)

which are displayed in Fig. 8.25.
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It is important to note that the discontinuous weighting functions weI must result
finite contributions for first derivatives in the integrand of the approximate weak
statement in order satisfy the requirement on continuity as stated in Sect. 8.7.
The discontinuity of the formulations (8.219) or (8.220) is considered within the
element such that any first-order derivative of weI is finite and valuable due to the
C0�continuity in Ne

I .
Usually, the asymmetric weighting functions weI are only applied to the terms

of the homogeneous solution of the governing PDE, i.e., in particular the advection
and diffusion/dispersion terms. In doing so, for example for the 1D discrete finite
element equations of Sect. H.1 of Appendix H, we find for (H.10) a modified
formulation of the semidiscrete ADE convective form13 (for sake of simplicity we
drop BC and SPC terms):

X

e

�
KRe
xe

6

�
2 1

1 2

	

�
 
de1
dt
de2
dt

!

C
�
qe

2

��1C ˛ 1 � ˛
�1 � ˛ 1C ˛

	

„ ƒ‚ …
Ae

C De


xe

�
1 �1
�1 1

	

„ ƒ‚ …
Ce

C .#eCQe/
xe

6

�
2 1

1 2

	�

�
�
e1
e2

	

� He
xe

2

�
1

1

	�

D 0

(8.221)

We recognize from (8.221) that the upwind parameter ˛ is indeed only effective
in the advection matrix Ae , while it is canceled out in the diffusion matrix Ce .
Furthermore, it is easy to see that the sum of Ae C Ce can be alternatively
written as14

Ae CCe D qe

2

��1 1
�1 1

	

C .De C ˛ qe
xe
2
/ 1

xe

�
1 �1
�1 1

	

(8.222)

where the physical diffusion De is increased by ˛
qe
xe

2
, which represents the

artificial diffusion introduced by the PGFEM upwind method. Similar to (8.203)
the assembly of the linear 1D elements (8.221) and applying the temporal
��integration scheme of (8.154) the following discrete equations of the 3-node
.i C 1; i; i � 1/�stencil can be written assuming constant parameter properties
(and for convenience also dropping source/sink terms):

13For the ADE convective form the continuous weighting functions (8.218) and the discontinuous
weighting functions (8.220) lead to the same result. However, for the ADE divergence form only
the continuous weighting functions (8.218) are applicable, where the element advection matrixAe

(8.104) becomes

Ae D qe

2

�
1C ˛ 1� ˛

�1� ˛ �1C ˛

	

14A similar expression can be obtained for the ADE divergence form.
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(8.223)

where c D 
x2=D�, D� D D= KR and Pg is the grid Réclet number as defined in
(8.207).

To analyze the upwind parameter ˛ let us at first turn to the steady-state ADE
formulation. Then, (8.223) reduces to

Œ1C .˛ � 1/Pg�iC1 � 2.1C ˛Pg/i C Œ1C .˛ C 1/Pg�i�1 D 0 (8.224)

which represents a PGFEM formulation of the simplified 1D ADE:

qr �Dr2 D 0 where in 1D r D @=@x (8.225)

We can solve (8.225) within the interval xi�1 � x � xiC1 for the local boundary
value problem: .xi�1/ D i�1 and .xiC1/ D iC1. The exact solution of this
local 1D problem is

.x/ D i�1 C
�
iC1 � i�1

�expŒ 2Pg

x
.x � xi�1/� � 1

exp.4Pg/ � 1 (8.226)

which can be taken to express the solution for .xi/ D i leading to the ‘locally-
exact’ formula of the 3-node .i C 1; i; i � 1/�stencil

iC1 � .1C a/i C ai�1 D 0 (8.227)

where

a D exp.2Pg/ (8.228)

with

a > 0 for q > 0
1
a
> 0 for q < 0

(8.229)

In comparison of the scheme (8.224) with the exact formula (8.227) it must be
required due to (8.229) for q > 0
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a D 1C Pg.˛ C 1/
1C Pg.˛ � 1/ > 0 (8.230)

which yields

˛  ˛crit D 1 � 1
Pg for Pg  1

˛ D 0 for Pg < 1
(8.231)

Apparently, for the standard GFEM with ˛ D 0 once the grid Péclet number
Pg > 1 node-to-node oscillations will occur since the denominator in (8.230)
becomes negative. To avoid oscillations the upwind parameter ˛ must be greater
than the critical value ˛crit defined in (8.231). It shows that for ˛ D 1 the scheme
is unconditionally stable and corresponds to a full upwind scheme. Furthermore, a
complete accuracy is obtained for a given Péclet number Pg if the parameter a of the
exact solution (8.228) is equated to a of the approximate solution (8.230). It gives
the so-called optimal upwind parameter

˛opt D coth.Pg/� 1

Pg
(8.232)

It is obvious that the ˛opt satisfies the stability criterion (8.231) with

˛opt  ˛crit (8.233)

and so, indeed, it is optimal for this class of problems (Fig. 8.26). Upwind parameter
relations for higher-order finite elements have been derived in [81, 131, 235].

The extension of the PGFEM to multidimensional and transient ADE problems
can be done straightforward, e.g., [278, 279, 592]. However, in 2D and particularly
in 3D the use of continuous weighting functions in form of (8.216) is cumbersome
and ineffective, so that discontinuous weighting functions are often preferred. An
appropriate discontinuous weighting function is [585]

weI .η/ D Ne
I .η/C

he

2kqek
�

˛ C ˇ
tn

2

@

@t

	

qe � rNe
I .η/ (8.234)

where he is a characteristic element length which is defined further below, ˛ is
a first upwind parameter as already introduced above for steady-state problems
and ˇ is a second upwind parameter related to the transient terms of the ADE.
The intent and result of (8.234) is to add artificial diffusion into the discrete finite
element equations. With the upwind parameter ˛ the diffusion is increased by
˛kqekhe=2 and with the upwind parameter ˇ an added diffusion term is in the
order of ˇkqekhe
tn=4. The upwind parameters can be determined by Yu and
Heinrich [584]

˛ D coth.Pg/� 1
Pg

ˇ D Cr
3
� ˛

PgCr

(8.235)
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Fig. 8.26 Critical upwind parameter ˛crit and optimal upwind parameter ˛opt in dependence on
the grid Péclet number Pg based on linear finite elements

where the mesh Péclet number Pg (8.207) and the Courant number Cr (8.206) are
defined in multidimensions

Pg D kq
�ekhe
2D�e ; Cr D kq

�ek
tn
he

with kq�ek D kqek= KR; D�e D De= KR
(8.236)

The resulting PGFEM upwind scheme [584, 585] shows the best accuracy with
˛ ¤ 0 and ˇ ¤ 0 according to (8.235). However, unconditionally stable algorithms
also result for ˛ ¤ 0 and ˇ D 0, albeit more artificial diffusion is produced.

The PGFEM upwind scheme in multidimensions requires the determination of
the characteristic element length he . Figure 8.27 shows typical isoparametric finite
elements in 2D and 3D over which the parametric vectors h� , h� and h� are defined
and computed in 2D as

h� D h�i D 1
2
Œ.xi2 C xi3/ � .xi1 C xi4/�

h� D h�i D 1
2
Œ.xi3 C xi4/ � .xi1 C xi2/�

�

i D 1; 2 (8.237)

and in 3D as

h� D h�i D 1
4
Œ.xi2 C xi3 C xi6 C xi7/� .xi1 C xi4 C xi5 C xi8/�

h� D h�i D 1
4
Œ.xi3 C xi4 C xi7 C xi8/� .xi1 C xi2 C xi5 C xi6/�

h� D h�i D 1
4
Œ.xi1 C xi2 C xi3 C xi4/� .xi5 C xi6 C xi7 C xi8/�

9
=

;
i D 1; 2; 3

(8.238)
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Fig. 8.27 2D quadrilateral and 3D hexahedral element used in definition of element length he

Similar relations can be obtained for the other finite elements listed in Tables G.2–
G.4 of Appendix G. The characteristic element length he then results

he D
� jh1j C jh2j for 2D
jh1j C jh2j C jh3j for 3D

(8.239)

where in 2D

h1 D 1
kqek .q

e � h�/ D 1
kqek.q

e
1h�1 C qe2h�2/

h2 D 1
kqek .q

e � h�/ D 1
kqek.q

e
1h�1 C qe2h�2/

(8.240)

and in 3D

h1 D 1
kqek .q

e � h� / D 1
kqek .q

e
1h�1 C qe2h�2 C qe3h�3/

h2 D 1
kqek .q

e � h�/ D 1
kqek .q

e
1h�1 C qe2h�2 C qe3h�3/

h3 D 1
kqek .q

e � h�/ D 1
kqek .q

e
1h�1 C qe2h�2 C qe3h�3/

(8.241)

are the projections of h� , h� and h� in the direction of the local flow vector qe .
We note that for rectangular geometries the expression (8.239) reduces to he D
.jqe1j
xe1 C jqe2 j
xe2 C jqe3 j
xe3/=kqek in 3D, where 
xei ; .i D 1; 2; 3/ are the
lengths of element edges in the coordinate directions. In 1D geometries it is simply
he D 
xe .

8.14.3 Streamline Upwind (SU) and Full Upwind (FU) Method

We have seen in the preceding Sect. 8.14.2 that PGFEM is designed to add an
appropriate amount of artificial diffusion for stabilization purposes. The use of the
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asymmetric weighting function takes effect only on the advective term and ends up
with a diffusion increased for instance by ˛kqekhe=2 for a linear finite element. It is
obvious that such a type of stabilization should be correlated with the flow direction
only and should not be effective in the transverse direction of advection to avoid an
overly diffusion due to an excess of so-called crosswind diffusion.

The avoidance of crosswind diffusion leads to the concept of the streamline
upwind (SU) method. The basic ideas were given by Kelly et al. [307] and
Brooks and Hughes [57] who constructed the artificial diffusion operator in
tensorial form acting only in the flow direction and not transversely, termed as
anisotropic balancing dissipation. The idea of SU is to extend the tensor of physical
dispersion/diffusionD defined for example in a porous medium of a single-species
solute transport as (cf. (3.180), Tables 3.7 and 3.9)

D D "sDδ CDmech

Dmech D ˇT kqkδ C .ˇL � ˇT /q˝q
kqk

(8.242)

where Dmech is the (physical) tensor of mechanical dispersion and D is the
molecular diffusion, by the tensor of numerical dispersionDnum in the form

Dnum D ˇnum
q˝q
kqk (8.243)

so that

D D "sDδ CDmech CDnum D "sDδ C ˇT kqkδ C .ˇL C ˇnum � ˇT /q˝q
kqk

(8.244)

where ˇnum represents the parameter of numerical longitudinal dispersivity which
must be specified for each element. For example, in case of linear elements one
takes for the element e

ˇenum D ˛
he

2
(8.245)

where 0 � ˛ � 1 is the upwind parameter introduced above (˛ D 0 is the standard
GFEM, ˛ D 1 is the full upwind, ˛ D ˛opt is the optimal parameter defined in
(8.232)) and he is the characteristic element length defined in (8.239). Note that for
quadratic elements ˇenum D ˛he=4 as derived in [131].

Now, if looking to the resulting weak statement we have to modify for the
advective and dispersive terms of the governing ADE written in its convective form
according to (8.55)

WS D
Z

˝

wq � rd˝ C
Z

˝

rw � Œ.D CDnum/ � r�d˝ (8.246)
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Since
Z

˝

rw � .Dnum � r/d˝ D
Z

˝

ˇnum
kqk .q � rw/.q � r/d˝ (8.247)

Eq. (8.246) can be rewritten as

WS D
Z

˝

ŒwC ˇnum
kqk .q � rw/�.q � r/d˝ C

Z

˝

rw � .D � r/d˝ (8.248)

As a result, a modified SU weighting function can be found in the form

Qw D wC ˇnum
kqk .q � rw/ (8.249)

which only affects the advective term and is similar to the discontinuous weighting
function (8.234) (for ˇ D 0) used by the PGFEM. Finally, the SU method is
recognized as the standard GFEM plus an extra term introducing the SU added
numerical dispersion term:

GWS D X

e

Z

˝e

ŒNiq � r C rNi � .D � r/�d˝e

„ ƒ‚ …
standard GFEM

CX

e

Z

˝e

ˇenum
kqk

.q � rNi /.q � r/d˝e

„ ƒ‚ …
added SU stabilization term

(8.250)

where D represents the physical dispersion tensor (8.242), ˇenum D ˛he=2 for
linear elements and ˇenum D ˛he=4 for quadratic elements. In practice, however,
the second SU stabilization term in (8.250) in not directly executed. Instead, the
modified dispersion tensor (8.244) is employed in the standard GFEM term, which
is equivalent to (8.250).

Commonly, the SU method is used with ˛ D 1. In case of need the SU
stabilization can be turned back to a full upwinding (FU), where the stabilization
is performed in all coordinate directions, i.e., independent of the flow field. In the
full upwind case the dispersion tensor (8.244) is then used in the form:

D D "sDδ C .ˇT C ˇnum/kqkδ C .ˇL � ˇT /q˝q
kqk (8.251)

However, it should be aware that a full upwind scheme usually produces a large
amount of crosswind diffusion.

8.14.4 Shock Capturing (SC) Method

SU stabilization is only effective in longitudinal direction of the advective flow and
avoids any crosswind damping. This is motivated by the fact that often the gradient
of a transported quantity  establishes in the direction of flow. However, under
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q

advective profile

shearing profile

f

f

spill

Fig. 8.28 Solution profiles .x; t / in longitudinal and transverse direction to a flow field q
forming an advection-displaced front and shearing transition layers, respectively

more complex flow conditions steep gradients can also occur in directions normal
or skewed to the advective flow forming shearing (or flushing) transition layers such
as illustrated in Fig. 8.28. Then, oscillations cannot be stabilized via the SU method.
Indeed, it has been shown by Hughes et al. [274] that the streamline is not always
the appropriate upwind direction. To increase the robustness of upwind methods it
is obvious that the control of gradients must be required, i.e., the upwind direction
should be aligned to the direction of gradients r of the transported quantity
 rather than exclusively oriented to the trajectory of flow. This was basically
proposed by Hughes and Mallet [269] who generalized the SU concept by adding an
additional diffusion in the gradient direction which is called discontinuity capturing
or shock capturing (SC).

The SC method has been further developed by Johnson et al. [292] and Codina
[90]. The SC technique appears as a nonlinear method because the gradient r is
part of the numerical solution. The main idea behind SC is to increase the amount
of damping in the neighborhood of gradients. Then, the damping to be added must
be proportional to the discrete residual of the governing ADE within each element
and must be vanish in regions where the solution is smooth and also where the
advective term of the residual is small. Hence, SC stabilizes in dependence on the
solution gradient and is accordingly operational both in longitudinal and transverse
direction. It admits an optimal amount of crosswind damping necessary to stabilize
also the shearing profiles (Fig. 8.28).

We have shown in the preceding Sect. 8.14.3 that the SU method is characterized
by introducing an additional term ˇnum

kqk .q � rw/ to the weighting function Qw in form
of (8.249). Now, the basic idea of SC is to use Qw with a further additional term, the
SC term, such that

Qw D w„ƒ‚…
GFEM

C �1.q � rw/
„ ƒ‚ …

SU

C �2.qÎ � rw/
„ ƒ‚ …

SC

(8.252)
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where the first term is the standard Galerkin weighting function, the second term
is the linear SU modification and the third term is the new nonlinear SC extension.
The vector qÎ is the projection of the flux vector q onto the direction of the local
gradient r of the solution , viz.,

qÎ D q � r
krk2r (8.253)

provided that krk ¤ 0. It is easy to see that qÎ � r D q � r. The upwind
parameters �1 and �2 are defined on element level as

�1 D ˛he

2kqk ; �2 D max

�

0;
˛he

2kqÎk � �1
	

(8.254)

written for linear elements, where 0 � ˛ � 1 is the known upwind parameter
defined above, (8.231) or (8.232), and he is the characteristic element length
according to (8.239). In using (8.252), the SC method is recognized as the standard
GFEM plus two extra terms introducing the SU added numerical dispersion term
and the SC added numerical dispersion term applied to the Galerkin weak statement
of the advective and dispersive terms of the governing ADE:

GWS D
X

e

Z

˝e
ŒNiq � r CrNi � .D � r/�d˝e

„ ƒ‚ …
standard GFEM

C
X

e

Z

˝e
�1.q � rNi /.q � r/d˝e

„ ƒ‚ …
added SU stabilization term

C
X

e

Z

˝e
�2.qÎ � rNi /.qÎ � r/d˝e

„ ƒ‚ …
added SC stabilization operator

(8.255)

where the SC method is constructed to keep unaltered the added numerical
dispersion in the streamline direction and to modify only the crosswind (transverse)
dispersion. This crosswind dispersion must satisfy two conditions [90]. First, to
avoid overdamped crosswind effects, it must be small in regions where the advective
transport is not important, that is where q � r is small. Second, the measure of
crosswind damping should be proportional to the element residual, e.g., for the ADE
convective form

R./ D q � r � r � .D � r/C .# CQ/ �H �Qw (8.256)

to be evaluated on element basis. Using R./ we can determine an isotropic SC
dispersion coefficient as [90, 292]
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Dsc D 1
2
˛ch

e jR./j
krk (8.257)

if krk ¤ 0 and zero otherwise. If we use the element residual only for the
advective term of the ADE convective form by R./ 	 q � r, a useful and
simplified estimate of the isotropic SC dispersion coefficient results

Dsc 	 1
2
˛ch

ekqÎk (8.258)

where with (8.253) it is kqÎk D jq�rj=krk. The upwind parameter˛c is given by

˛c D max
�
0; a � 1

PgÎ

�
with PgÎ D

kqÎkhe
2De

(8.259)

where it is proposed, e.g., [90]

a D

8
ˆ̂
<̂

ˆ̂
:̂

0:7 for linear element
0:35 for quadratic element

�

in 2D

1:0 for linear element
0:5 for quadratic element

�

in 3D
(8.260)

The isotropic SC dispersion coefficient Dsc (8.257) or (8.258) is added to the
hydrodynamic dispersion tensorD (8.242). It yields

D D ."sD CDsc/δ CDmech (8.261)

The SC dispersion coefficient Dsc D Dsc./ is nonlinear due to the solution
dependency and an appropriate numerical treatment is required. In the practical
implementation the SC method is not used in combination with the SU stabilization,
i.e., SC stabilizes completely the solution via the isotropic SC dispersion coeffi-
cient Dsc.

8.14.5 Petrov-Galerkin Least Square (PGLS) Finite Element
Method

The Petrov-Galerkin least square (PGLS) FEM represents an alternative stabiliza-
tion technique to solve transient ADE in the convective form [276]. Its special
feature is in introducing a symmetric stabilization term. In contrast to the PGFEM,
SU and SC upwind methods as described in Sects. 8.14.2–8.14.4, PGLS leads to
symmetric matrix systems and possesses built-in streamline-like upwind character-
istics. The PGLS symmetrization is superior to symmetric-matrix time integration
schemes, where the advective term is treated only explicitly so as done by Leismann
and Frind [338]. The effect of PGLS has similarities to the SU upwinding, where
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an anisotropic (streamline-oriented) balancing dissipation (dispersion) is added to
the physical longitudinal dispersion parameter. However, in the PGLS method the
artificial dispersion (diffusion) is directly derived from the least-square (LS) finite
element concept and requires no ‘free’ upwind parameter such as ˛ of the preceding
upwind methods.

As indicated in Table 8.1 the LS minimization by PGLS has to be done with
respect to the nodal values of the state variable(s). Due to the square operations in
the inner products of the governing PDE, higher order derivatives remain, which
usually require higher order basis functions, i.e., a C0 continuity (cf. Sect. 8.7)
in the interpolation functions is no more sufficient, unless the LS operation is
only restricted to first-order terms while the higher order terms are treated in the
standard Galerkin-based manner via an operator splitting approach. Basic work
was given by Nguyen and Reynen [385] and further developments can be found in
[319, 559], among others. König [319] used an operator splitting method in a two-
pass strategy, where the separate equations for the diffusive and the advective parts
are solved successively. On the other hand, Wendland [559] improved the operator
splitting technique by introducing a suited one-pass approach termed as symmetric
streamline stabilization, where the diffusive and advective parts are reassembled in
one symmetric matrix system.

8.14.5.1 Operator Splitting

The basic ADE in the convective form (8.5)

KR P C q � r � r � .D � r/C .# CQ/ �H �Qw D 0 (8.262)

can be written in an operator-split formulation

KR P C .Ld C La/ D H CQw (8.263)

with

Ld D �r � .D � r/C .# CQ/
La D q � r (8.264)

where Ld is a diffusion differential operator and La is an advection differential
operator. We can also split the solution  into the diffusive and the advective part
such that

 D d C a (8.265)

Then, we transform (8.263) into two separate equations: first, the diffusive PDE
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tn tn+1 tt

f

fd

fd

Fig. 8.29 Temporally
discrete interpolation of the
intermediate diffusive
solution d

KR Pd C Ld D H CQw (8.266)

and, second, the purely advective (hyperbolic) PDE

KR. P � Pd /C La D 0 (8.267)

Summing (8.266) and (8.267) we realize the original ADE (8.263).
The idea of the operator splitting technique is in approximating the diffusive PDE

(8.266) and advective PDE (8.267) in a separate manner. After completion the total
discrete ADE is obtained by assembling the diffusive and advective parts. In doing
so, we consider the variables d .t/ and a.t/ in the time interval .tn; tnC1/ and
assume at the beginning of the interval the following IC’s for the diffusive variable
dn D d .tn/ and for the advective variable an D a.tn/:

dn D n; an D 0; Pan D 0 (8.268)

It is to be noted that the diffusive solution d can be considered as an intermediate
solution which represents a temporally discrete interpolation between the previous
and the new time plane as evidenced in Fig. 8.29.

8.14.5.2 Approximation of the Diffusive Part

In the context of FEM, the two variables  and d are replaced by a continuous
approximation (8.16) that assumes the separability of space and time, thus

.x; t/ 	P
i Ni .x/ i .t/

d .x; t/ 	P
i Ni .x/ 

d
i .t/

(8.269)
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where the subscript i D 1; : : : ; NP denotes the global nodal indices. The Galerkin
weak statement of (8.266)

GWS D
Z

˝

Ni

� KR Pd C Ld �H �Qw

�
d˝ D 0 (8.270)

leads after inserting the semidiscrete basis functions (8.269) to the following global
matrix system (cf. Sect. 8.9)

O � Pφd CKd � φ � F D 0 (8.271)

with

Kd D C CRCB (8.272)

where the matrices O, C , R, B and the vector F are given in (8.103)–(8.105)
referred to the convective form. By using the methods of time integration introduced
above in Sect. 8.13 and invoking (8.265) and (8.268) with

φ.tnC �
tn/ D �.φdnC1CφanC1/C .1� �/φn 	 �φdnC1C .1� �/φn (8.273)

the following matrix systems of the intermediate (diffusive) part result

�
O

tn
CKd �

� �φdnC1 D
�
O

tn
�Kd .1��/ �φnC

�
FnC1�CFn.1��/

�
(8.274)

for the ��family of time stepping methods (cf. Sect. 8.13.4) and

�
O
�
tn
CKd

� � φdnC1 D O �
�

1
�
tn

φn C
�
1
�
� 1� Pφn

C FnC1 (8.275)

for the predictor-corrector methods (cf. Sect. 8.13.5), where the weighting coeffi-
cient 1

2
� � � 1 identifies the different time integration methods.

8.14.5.3 Approximation of the Advective Part

The residual of the advective part (8.267) in form of

R D KR. P � Pd /C q � r (8.276)

will be treated by the LS method

@

@i

Z

˝

1
2
R2d˝ D 0 (8.277)
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which is equivalent to

Z

˝

wiRd˝ D 0 (8.278)

with the nodal test function wi given by

wi D @R

@i
.i D 1; : : : ; NP/ (8.279)

or with (8.269) in (8.276)

wi D @Ni

@t
C q � rNi (8.280)

Since Ni D Ni.x/ is not a function of time, the residual (8.276) is to be expressed
in its temporally discrete form, such that

R D KR
hX

i

Ni .i;nC1 � di;nC1/�
X

i

Ni .i;n � di;n/
i
C


tnq � r
h
�
X

i

Nii;nC1 C .1 � �/
X

i

Nii;n

i
(8.281)

which yields

wi D @R

@i;nC1
D KRNi C �
tnq � rNi (8.282)

Then, the LS weak statement (8.278) results

LSWS D
Z

˝

� KRNi C �
tnq � rNi
�� KR. P � Pd /C q � rd˝ D 0 (8.283)

where the residual is weighted by the LS test function (8.282) consisting of two
parts as displayed in Fig. 8.30.

The LS weak statement (8.283) leads to the following semidiscrete matrix system

.O C �
tnV / � PφC .AC �T / � φ D .O C �
tnV / � Pφd (8.284)
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with (cf. (8.103))

O D Oij D
X

e

�X

I

X

J

Oe
IJ


e
Ii


e
Jj

�

A D Aij D
X

e

�X

I

X

J

AeIJ

e
Ii


e
Jj

�

V D Vij D
X

e

�X

I

X

J

V e
IJ


e
Ii


e
Jj

�

T D Tij D
X

e

�X

I

X

J

T eIJ

e
Ii


e
Jj

�

(8.285)

and the element matrices

Oe
IJ D

Z

˝e

KRe N e
I N

e
J d˝

e

AeIJ D
Z

˝e

N e
I .q

e � rNe
J /d˝

e

V e
IJ D

Z

˝e

.qe � rNe
I /N

e
J d˝

e

T eIJ D
Z

˝e


tn
1
KR .q

e � rNe
I /.q

e � rNe
J /d˝

e

(8.286)

whereΔe is the Boolean matrix defined in (8.82). The time discretization of (8.284)
for the ��family of time stepping methods (cf. Sect. 8.13.4) results

.O C �
tnV / �
�φnC1�φn


tn

�C �.AC �T / � φnC1 C .1 � �/.AC �T / � φn

D .OC �
tnV / �
�φdnC1�φn


tn

�

(8.287)

and finally

�
O

tn
C��V CAC�T ��φnC1 D

�
O

tn
C�V ��φdnC1�.1��/

�
AC�T ��φn

(8.288)

Regarding the predictor-corrector strategy based on the BE and TR schemes, if
taking

PφnC1 D 1
�
tn

�
φnC1 � φn

� � . 1
�
� 1/ Pφn

PφdnC1 D 1
�
tn

�
φdnC1 � φn

� � . 1
�
� 1/ Pφn (8.289)

and using (8.284), the following matrix system for the predictor-corrector schemes
is obtained

�
O
�
tn
C V CAC �T � � φnC1 D

�
O
�
tn
C V � � φdnC1 (8.290)
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8.14.5.4 Assembly of the Diffusive and Advective Parts

To obtain the matrix system for the complete ADE (8.262) the diffusive and
advective parts have to be added. For the ��family of time stepping methods the
summation of (8.274) and (8.288) yields
�
O

tn
C ��V CAC �T � � φnC1 C

�
O

tn
C �Kd

� � φdnC1 D
�
O

tn
C �V � � φdnC1

�.1 � �/�AC �T � � φn C
�
O

tn
� .1 � �/Kd

 � φn C
�
FnC1� C Fn.1 � �/

�

(8.291)

The term O

tn
�φdnC1 can be eliminated from (8.291). The remaining terms correlating

with the intermediate solutionφdnC1 will be transformed in the following way [559]:
All terms related to φdnC1 on the LHS of (8.291) are replaced by φnC1, while such
terms on the RHS of (8.291) are substituted byφn. In doing so, the following matrix
system results

�
O

tn
C ��Kd C V CAC �T � � φnC1 D

�
O

tn
� .1 � �/.Kd CAC �T /C �V  � φn C

�
FnC1� C Fn.1 � �/

�

(8.292)

Analogously, for the BE and TR predictor-corrector schemes we add (8.275) and
(8.290)

�
O
�
tn
C V CAC �T � �φnC1 C

�
O
�
tn
CKd

� � φdnC1 D
�
O
�
tn
C V � � φdnC1 CO �

�
1

�
tn
φn C

�
1
�
� 1� Pφn

C FnC1 (8.293)

which gives

�
O
�
tn
CKd CV CAC �T � �φnC1 D V �φnCO �

�
1

�
tn
φnC

�
1
�
� 1� Pφn

CFnC1
(8.294)

The final matrix systems (8.292) and (8.294) for the ��family of time stepping
methods and the BE and TR predictor-corrector schemes, respectively, are sym-
metric and positive definite. It results from the fact that the advective matrices V
and A form a symmetric contribution as the sum .V C A/ because A D V T

is the transpose as easily seen from (8.286). This is only attainable for the ADE
convective form (8.5) or (8.262). Unlikely, the ADE divergence form (8.3) is rather
inappropriate for the PGLS method.15

15The ADE divergence form (8.3) contains a divergence expression of the advection term in form
of r � .q/. For the split advective part (8.267) the advective operator La would be

La D q � r C .r � q/
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The symmetric term T appearing in (8.292) and (8.294) can be interpreted
as an additional term of artificial diffusion. This naturally results from the LS
weighting procedure (8.277). In comparison to the SU method (see Sect. 8.14.3)
where an anisotropic balancing dissipation tensor Dnum D ˇnum

q˝q
kqk (8.243) with

ˇnum (8.245) as a function of the element length he and the upwind parameter ˛ is
added, it is obvious that the LS damping matrix T (8.285), (8.286) is identical to
Dnum except for the parameter ˇnum, which becomes for the PGLS method

ˇnum D 
tnkqek
KR D Cr he (8.295)

where Cr is the Courant number defined in (8.236). It reveals that the PGLS
upwinding is quite similar to a SU method, where the damping is performed in
the longitudinal direction of flow via the added damping parameter ˇnum. While in
the SU method ˇnum is a function on the element length he and the free upwind
parameter 0 � ˛ � 1, in the PGLS the damping parameter ˇnum is dependent
on the time step size 
tn and the quotient kqek= KR. Hence, PGLS is recognized
as a built-in streamline-like upwind strategy, however, without any free upwind
parameter. Comparing ˇnum for the PGLS of (8.295) with the SU method of (8.245)
it is apparent that the Courant number should be Cr � 0:5 for the PGLS (at linear
elements) to avoid an overdamping larger than in the SU method.

8.14.6 An Illustrative Example

To demonstrate the impact of the different finite element schemes introduced above
on stability and accuracy we consider a representative example of an advection-

Then, the LS weak statement of the advective part is

LSWS D
Z

˝

� KRNi C �
tnr � .qNi /
� KR. P � Pd /C r � .q/d˝ D 0

which leads to a matrix system equivalent to (8.284), but having different element matrices

Ae D
Z

˝e

N e
I Œ.q

e � rNe
J /C .r � qe/N e

J �d˝
e

V e D
Z

˝e

Œ.qe � rNe
I /C .r � qe /N e

I �N
e
J d˝

e

T e D
Z

˝e


tn
1
KR Œr � .qeN e

I /�Œr � .qeN e
J /�d˝

e

While the symmetry of the matrix system is still maintained since Ae D V eT , the divergence
expressions .r �qe/ appearing inAe , V e and T e can cause difficulties if the flow is not selenoidal
(i.e., not divergence-free: r � q ¤ 0) at the presence of storage and sources/sinks. This makes the
LS technique rather inappropriate for the ADE divergence form.
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Fig. 8.31 Plane view of Hoopes and Harlemann’s sand-filled semi-cylinder [257]

dominated solute transport on a nonuniform flow field to which analytical and
experimental results are available. It is known as the Hoopes and Harlemann’s
two-well problem [257, 470]. Hoopes and Harlemann [257] performed a lab-scale
experiment in a semi-cylinder filled with sand as shown in Fig. 8.31. They measured
the distribution of a solute between a recharge and a pumping well. For an analytical
solution they set up a conceptual model of a 2D horizontal confined aquifer which
is homogeneous and isotropic. The nonuniform flow between the well doublet at a
distance, 2d D 0:61m, is isothermal and in a steady state. The solute transport is
only affected by advection and dispersion. Comparisons of the analytical result with
experiments and various numerical solution schemes have already been performed
elsewhere [136, 257, 282, 470]. The Hoopes and Harlemann’s problem is now used
to compare the different numerical schemes with the analytical (exact) results.

One obtains the 2D analytical solution in terms of the velocity potential ˚
and the streamline function � (cf. Sect. 2.1.11). They are related to the original
x1; x2�coordinates via the conformal transformation

˚ C i� D Ln.zC d/=.z� d/; with z D x1 C ix2 (8.296)

where Ln is the complex natural logarithm, i corresponds to the imaginary unit and
d is the half well spacing. This transformation maps the area of the half circle with
radius r � d onto a strip of infinite length and width �=2. The governing transport
equation can now be transformed to a 1D equation written in the form

@

@t
C v2

� @

@˚
CD @2

@˚2

�
D 0 (8.297)
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where v is the intrinsic velocity and D D Do C ˇLv is the dispersion coefficient
(D0 D molecular diffusion, ˇL D longitudinal dispersivity). The intrinsic velocity
v at a flux rate Qw of the recharge well is given by

v D Qw

2�B KRd
�
cosh.˚D/C cos.�D/

�
(8.298)

with the dimensionless quantities

˚D D 1
2

ln
�
.x1Cd/2Cx22
.x1�d/2Cx22

�

�D D arctan
� �2x2d
x21Cx22�d2

� (8.299)

where B is the aquifer thickness. The velocity potential ˚.x1; x2/ and the stream-
function �.x1; x2/ are obtained after multiplication with Qw=.2�B/. The IC and
BC are

.˚;�; t0/ D 0; and .˚.�d; 0/; �.�d; 0/; t/ D w (8.300)

The dimensionless solutal quantity at arbitrary time is given by

D D 

w
D 1

2
erfc

�ID � tD
2
p
JD

�
(8.301)

where erfc./ is the complementary error function and tD D Qwt=.2�B KRd2/ is
the dimensionless time. Owing to the properties of the conformal transformation
(8.296), the solution (8.301) can be calculated for given spatial points, where the
integrals are

ID D
Z ˚D

�1
d˚D

v2D
; and JD D

Z ˚D

�1
DD

v4D
d˚D (8.302)

in which vD D 2�B KRdv=Qw andDD D 2�B KRD=Qw are likewise dimensionless.
The complete analytical solution is given in [257, 470], but, its evaluation is
cumbersome.

For the present comparative study the finite element computations are performed
on a triangle mesh of the symmetric half of the circular problem as shown in
Fig. 8.32. The mesh is consciously chosen relatively coarse and only slightly refined
in the vicinity of the recharge and pumping wells, where high velocities are
expected. The used model parameters are listed in Table 8.8. The AB/TR predictor-
corrector method with automatic time stepping is firstly employed. Hoopes and
Harlemann [257] assumed no dispersion across streamlines in their formulation
of (8.297). The longitudinal dispersivity ˇL D 0:0015m is very small and gives
rise to a steep front of solute in space and time. Hence, the transport is dominated
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mesh exact
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x1

x2

recharge well pumping well

Fig. 8.32 Used 2D mesh consisting of 4,890 triangles with 2,544 nodes and resulting isocontours
of solution  at t D 0:2 d computed by GFEM, SU, SC and PGLS using adaptive AB/TR time
stepping in comparison to the exact distribution

by advection as evidenced in Fig. 8.33 for breakthrough curves of two observation
points located at x2 D 0:145m and x2 D 0:305m along the symmetry line with
x1 D 0m between the wells. The breakthrough histories obtained for the different
finite element schemes are compared to the exact curve. As seen the standard GFEM
method provides oscillating numerical solutions, while the SU and SC schemes can
completely dampen out the oscillations but introduce in turn spurious numerical
dispersion. Figure 8.33 reveals that the PGLS scheme is not able to produce wiggle-
free solutions. Since the stabilization in the PGLS is dependent on the actual time
step size, cf. the relationship of (8.295), it is obvious that the time steps generated by
the adaptive predictor-corrector procedure are unsuitably small to achieve sufficient
damping via the LS mechanism.

The simulated solute distributions at t D 0:2 d for the GFEM, SU, SC and PGLS
schemes by using AB/TR time stepping are depicted in Fig. 8.32 for isocontours
of ten solute levels spanning between the maximum and minimum values of the
attained numerical results. The exact solution also shown in Fig. 8.32 reveals a sharp
circular-shaped front, which can be hardly modeled by the numerical methods on
the used coarse mesh. Thus, the GFEM and the PGLS schemes exhibit bounded
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Table 8.8 Simulation parameters of the Hoopes and Harlemann’s two-well problem

Quantity Symbol Value Unit

Flow
Well discharge Qw 2:339 � 10�6 m3 s�1

Flux at recharge well Nqnh D Qw
2�R

6:4327 m2 d�1

Head at pumping well hD 0 m
Isotropic aquifer transmissivity T 10�4 m2 s�1

Solute transport
Initial condition .x; t0/ 0 mg l�1

Solute at recharge well w 1 mg l�1

Aquifer thickness B 0:089 m
Porosity " 0:374

Molecular diffusion Do 0 m2 s�1

Longitudinal dispersivity ˇL 0:0015 m
Transverse dispersivity ˇT 0 m
FEM
Half well spacing d 0:305 m
Wellbore radius R 0:005 m
Outer boundary radius R˝ 1:45 m
Number of triangular elements NE 4;890

Number of mesh nodes NP 2;544

Initial time step size 
t0 10�5 d
RMS error tolerance (AB/TR method) � 10�4 1
Simulation time period tend 0:2 d

oscillations, which also spread in a distance from the front. On the other hand, the
SU scheme results a quite wiggle-free distribution, however, the front is significantly
widened due to the numerical dispersion effect. However, it is interesting that the SC
scheme, while also providing essentially non-oscillatory solutions, can remarkably
reduce the amount of spurious numerical dispersion and gives reasonably better
results than the SU method.

To complete the comparison let us also investigate the 1st-order accurate FE/BE
time stepping method, which promises a higher stability. Indeed, in this case even
the GFEM leads to well-stabilized solutions as displayed in Fig. 8.34, however, we
note a remarkable influence of numerical dispersion if the time steps are chosen
large (we enforce large time steps by relaxing the RMS error criterion in the FE/BE
predictor corrector method according to � D 10�2). To better understand the reason
and measure of this effect, in the next section the quantities of numerical dispersion
will be estimated for the different methods. Further numerical comparisons in 2D
and 3D applications can be found in [136].
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Fig. 8.33 Breakthrough of approximate solutions obtained with the 2nd-order accurate AB/TR
time integration method in comparison to the exact history at two points located at x2 D 0:145m
(left) and 0:305m (right) on the symmetric line x1 D 0 between the wells

8.15 Summarized Quantitative Discussion of Error
and Stability for the Favorite Schemes

A quantitative error estimate of the spatio-temporally discrete equations can be
obtained by evaluating the LTE associated with the temporal and spatial derivatives.
For this purpose let us consider the discrete equations (8.223) resulting from a
PGFEM approximation of the 1D ADE convective form without sources/sinks and
boundary terms for a uniform mesh with linear elements of length h .D 
x/, CM
matrix and constant parameters written as
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(8.303)
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Fig. 8.34 Isocontours of solution at t D 0:2 d and breakthrough curves simulated for GFEM by
using the 1st-order accurate FE/BE predictor-corrector method with a relaxed RMS error criterion
of � D 10�2

A Taylor series expansion in time for iC1;n about the time plane n C 1 and for
iC1;nC1 about the time plane n gives, cf. (8.149)

�
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tn
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6
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.1 � �/
h PiC1 C 
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2
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t2n

6
«iC1 CO.
t3n/

i

n

(8.304)

Similar expressions result for .i;nC1 � i;n/=
tn and .i�1;nC1 � i�1;n/=
tn.
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Now, we can also apply a Taylor series expansion in space for iC1;nC1 and
i�1;nC1, respectively, about i at a given time plane nC 1 to obtain

iC1;nC1 D
h
i C h0

i C
h2

2
00
i C

h3

6
000
i CO.h4/
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i�1;nC1 D
h
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i C
h2

2
00
i �

h3

6
000
i CO.h4/

i

nC1

(8.305)

where 0 denotes differentiation with respect to the 1D space coordinate @=@x. Similar
expressions result for iC1 and i�1 at the other time planes n and n�1, i.e., iC1;n,
i�1;n, iC1;n�1 and i�1;n�1, respectively.

To obtain expressions for higher order time derivatives R and « in terms of spatial
derivatives, the governing 1D ADE PCq0�D00 D 0may be rewritten in the form

P D �q0 CD00 (8.306)

Differentiating (8.306) with respect to time, rearranging the differentials and
successively substituting again (8.306) in the resulting expression, gives

R D @
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�
�q0 CD00� D �q @

@x
P CD @

@x2
P D q200 � 2qD000 CD2.4/

(8.307)

and similarly

« D �q3000 C 3q2D.4/ � 3qD2.5/ CD3.6/ (8.308)

Now, inserting (8.304) and the related expressions into (8.303), replacing all
higher order time derivatives by spatial derivatives via (8.307) and (8.308) as well
as substituting with (8.305) all .i C 1/th and .i � 1/th terms, we find after some
manipulations the following approximate representation of the governing ADE at
node i and time plane nC � (note that tnC� D � tnC1 C .1 � �/tn):
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(8.309)

or simply

KR P C q0 D .D CDnum/
00 CO�h2; .2� � 1/
tn;
t2n

�
(8.310)

where the numerical dispersion coefficientDnum associated with the second spatial
derivatives on the RHS of (8.309) appears
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Dnum D ˛qh
2
C
tnq2.� � 1

2
/ (8.311)

The RHS of (8.309) encompasses the total truncation error of the spatio-temporal
discretization, which has no physical basis. The coefficient Dnum of the spurious
(unphysical) numerical dispersion covers the leading terms of the truncation errors,
which are of 1st order in space and time.

In generalization of (8.310) we can find a semidiscrete representation of the
governing ADE convective form in multidimensions as

KR@

@t
Cq �r�r � Œ.DCDnum/ �r�C.#CQ/�H �Qw D O�he2; .2��1/
tn;
t2n

�

(8.312)

with the tensor of numerical dispersion

Dnum D Dnumδ C ˇnum
q˝q
kqk (8.313)

where ˇnum is the streamline-oriented coefficient of numerical dispersion while the
scalar numerical dispersionDnum consists of the spatial partDspace

num and the temporal
part Dtime

num, viz.,

Dnum D Dspace
num CDtime

num (8.314)

with

D
space
num 
 different for GFEM, SU, FU, SC, PGLS

Dtime
num D 
tnqe2.� � 1

2
/

(8.315)

The coefficients of numerical dispersion, the orders of accuracy and the stability
restrictions for the different favorite schemes discussed above in Sects. 8.13 and 8.14
are summarize in Table 8.9, where the parameters are evaluated at element level. The
standard Galerkin FEM with the TR (Crank-Nicolson) time stepping is recognized
as the most accurate method which is 2nd-order accurate in space and time
O.he2;
t2n/ without numerical dispersion, however, it is only conditionally stable.
Most restrictive and crucial for the GFEM is the Pg < 1 condition, unless
oscillatory solutions can be produced. The diffusion limit Cr < Pg is commonly
not important for the TR (Crank-Nicolson) scheme, while the advection-diffusion
limit PgCr < 1 can be more serious for dominant advection if using the TR
time stepping. In Table 8.9 the accuracy of the schemes decreases from top to
down in favor of increasing stability. However, the higher stability is paid by an
increased amount of spurious numerical dispersion which can significantly exceed
the physical dispersion/diffusionDe if the mesh is coarse and/or the time steps are
large. Here, the FU scheme with fully implicit time stepping of 1st-order accuracy
O.he;
tn/, while unconditionally stable, tends to produce very overdiffusive results
if he and/or
tn are large. Compromises between stability and accuracy are possible
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Table 8.9 Estimated accuracy and stability restrictions of the favorite schemes using linear finite
elements and semi-implicit or implicit (A�stable) time integration in solving the ADE (8.5) or
(8.3) at presence of advection q ¤ 0. Note that for diffusion/conduction problems .q 
 0/ only
the standard GFEM is applied possessing no numerical dispersion and no stability restrictions,
except the diffusion limit Cr < Pg, .
tn < KRhe2=.2De//, for the 2nd-order accurate TR time
integration method

Time Accuracy Stabilitya

integra- Numerical dispersionb Temporal Spatial
Scheme tionc De

num ˇenum Order limitsd limits

GFEMf TR – – O.he2; 
t2n/

lo
w

hi
gh Cr < Pg < 1

Cr Pg < 1 lo
w

hi
gh

BE 
tn
2
qe2 – O.he2; 
tn/ – Pg < 1

PGLSg TR – Cr he O.he2; 
tn/ Cr < Pg < 1
Cr –

BE 
tn
2
qe2 Cr he O.he2; 
tn/ – –

SUh TR – he

2
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Cr –
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2
qe2 he

2
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2
˛ch
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t2n/ Cr < Pg < 1
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BE 1
2
˛ch
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FUj TR he

2
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BE 1

2
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a Necessary but not always sufficient to ensure boundedness and prevent oscillations
b Expressed in the element tensor De

num D De
numδC ˇenum

qe˝qe

kqek
of numerical dispersion (8.313)

c ��family and corrector methods: � D 1
2
, TR (Crank-Nicolson); � D 1, BE (fully implicit)

d Conditionally stable, Cr D kqek
tn
KRhe

, Pg D kqekhe

2kDe
k

(De D physical dispersion, he by (8.239))
f Standard Galerkin without any upwinding, ˛ D 0
g Least square strategy suitable for ADE convective form
h Streamline upwinding used with ˛ D 1, (8.245)
i Shock capturing with projected flux kqe

Î
k D jqe �re j

krek
and upwind parameter ˛c , (8.259)

j Full upwinding equivalent to (8.251) with ˇenum D he

2

by resorting to the PGLS, SU or SC schemes, where always the 1st-order accurate
BE time stepping provides a higher stability in contrast to the 2nd-order accurate
TR time stepping scheme.

In predictor-corrector time stepping only the corrector solutions are important for
the stability analysis, while the explicit predictors provide prolongated solutions,
which are primarily used to estimate the accuracy in comparison to the corrector
solutions needed in the adaptive time stepping control. However, the accuracy of
the predictor and corrector must be consistent, so that FE and BE are both 1st-order
accurate in time as well as the AB and TR are both 2nd-order accurate in time, cf.
Sects. 8.13.5.1 and 8.13.5.2, respectively. No upwinding is used for the explicit FE
and AB predictor schemes, i.e., ˛ D 0. However, we note from (8.311) with � D 0
a negative numerical dispersion coefficient De

num D �
tnqe2=2 arises for the FE
predictor.

It is important to note that the stability bounds and errors of numerical dispersion
listed in Table 8.9 only occur in the presence of advection q ¤ 0. Without
advection q � 0 there is no need to use the PGLS, SU, SC and FU schemes.
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For diffusion/conduction problems the standard GFEM is most optimal and uncon-
ditionally stable, except for the diffusion limit Cr < Pg, .
tn < KRhe2=.2De//,
arising for the 2nd-order accurate TR time integration method, which is, however,
commonly noncrucial.

8.16 Implementation of Dirichlet-Type BC’s in the Resulting
Matrix System

In formulating the weak statements in Sect. 8.9 the specification of Dirichlet
boundaries �D remains of particular concern. So far, the resulting weak statements
do not incorporate any BC’s of Dirichlet type, now we have to make up for it. In
principle, there are two ways for implementing Dirichlet-type (essential) BC’s. First,
they can be mimicked via a Cauchy-type BC if the transfer coefficient ˚e (or ˚�e )
appearing in (8.104) and (8.105), associated with a global node i and the adjacent
elements, is set to an arbitrary large value (theoretically, ˚e !1). It enforces that
the condition i 	 C is satisfied in a reasonable approximation (the larger ˚e ,
the better the approximation of i 	 C ), such that the Dirichlet BC appears as
a special case of the Cauchy BC. While this method is very easy and efficient, it
has a clear disadvantage; namely, the large value required for the transfer coefficient
increases significantly the parameter contrast in the resulting matrix system, which
can deteriorate the properties of the system matrix causing negative impact on the
solution of the sparse equation system.

The second method which is preferred here avoids those circumstances and
satisfies the Dirichlet-type BC’s in an exact manner without deteriorating the matrix
system. The basic idea is that the solution at a Dirichlet boundary �D is known
and accordingly all nodes sharing �D can be eliminated from the computations by
a simple bookkeeping procedure. Let us consider a matrix system resulting from
a spatio-temporal discretization such as given in (8.154) or (8.177), which leads
always to a linear (or linearized) sparse system of equations written in a compact
matrix form (note that the time plane indexing is dropped for convenience)

A � φ D r (8.316)
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which has to be solved at each time stage for the unknown solution vector φ
consisting of NP components, where A is the sparse system matrix of dimension
NP �NP comprising all terms of the LHS and r is the NP�dimensional RHS vector
comprising all RHS terms of the basic discrete system (8.154) or (8.177). Now,
assuming that the solution at the i th node is known, i.e., i D D , where D is a
prescribed Dirichlet value, then (8.317) can be rewritten
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To retrieve a possible symmetry ofA, it is useful to shift the i th column to the RHS.
It yields the equivalent formulation
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This bookkeeping procedure can be done for all Dirichlet nodes. Assuming there
are ND Dirichlet BC’s in total, which are implemented in the matrix the system, the
actual number of equationsNEQ which has to be solved is

NEQ D NP �ND (8.320)

and the final matrix system is compressed to the actual set of equations in the form
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where all rows and columns of A are removed to which Dirichlet-type BC’s are
associated. In the practical solution, a profiling of the matrix system can be easily
performed, where all Dirichlet equations are determined and eliminated from the
matrix system which is actually solved. The procedure is accurate and efficient
because the properties of A remain unchanged and the equation system is reduced
by the ND entries.
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8.17 Solution of Linear Systems of Algebraic Equations

The spatio-temporal finite element approximation such as given by (8.154) or
(8.177) leads to a matrix system in form of (8.316). After elimination the ND

Dirichlet-type BC’s from the NP equations as described in the preceding Sect. 8.16,
we end up with a system of simultaneous linear (or linearized) algebraic equations
written in matrix form (for sake of simplicity we drop the time plane indexing in
case of transient ADE) as

A � φ D b (8.322)

or in index notation

Aijj D bi .1 � i; j � NEQ/ (8.323)

or
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which has to be solved for the NEQ�dimensional solution vector φ, where the
system matrix A has NEQ rows and columns. The RHS-vector b, containing
additionally the Dirichlet BC terms according to (8.321), has NEQ components. It
is to be noted that for transient problems we always prefer implicit or semi-implicit
time integration schemes due to stability and performance reasons, which essentially
require the solution of equation systems (in contrast to temporally explicit schemes,
where in combination with mass lumping, cf. Sect. 8.13.2, there is no need to
solve a system of simultaneous equations, however, at the expense of a commonly
huge number of time steps as discussed in Sect. 8.13.6). Furthermore, steady-state
problems, in which the time step is deemed infinitely large 
tn ! 1, an equation
system in form of (8.322) has inevitably to be solved.

The unique solution of (8.322) at givenA and b in a form

φ D A�1 � b (8.325)

only exists when A is non-singular, i.e., A must have a non-vanishing determinant
jAj ¤ 0. The system matrix A is usually unsymmetric, i.e., A ¤ AT , when
advection terms occur in the discrete formulation (except for the PGLS method
introduced in Sect. 8.14.5). On the other hand, A can also be symmetric, i.e.,
A D AT , for instance when terms of advection are absent. As a consequence of
the used finite element discretization the system matrixA is sparse, i.e., many of its
components are zero, and possesses a definite structure which is determined by its
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Table 8.10 Advantages versus disadvantages of direct and iterative solution techniques

Method Advantage Disadvantage

Direct Solution ofA � φ D b is exact. Sequence
of operations only performed once. No
initial estimates and iterations are
required

May be inefficient for large
problems, in particular in 3D.
Can produce round-off errors

Iterative Efficient with respect to storage demand
and CPU time

Solution of A �φ D b is
approximative. Initial estimates
and iteration parameters are
required. System matrixA
should be well-conditioned

non-zero components. A method of inversion ofA, in particular when the orderNEQ

of the matrix becomes large, depends very much on the structure ofA. Accordingly,
efficient solution methods will utilize the sparsity structure of A under exploitation
of its symmetry if occurring. In general, we can differ into two major solution
strategies: (1) direct and (2) iterative techniques, e.g., [15, 376, 430, 453, 590]. For
large problems, particularly in 3D applications, iterative solution methods are more
efficient than direct solution techniques, however, they may suffer sometimes from
a poor convergence behavior. The relative merits of direct and iterative solution
techniques are listed in Table 8.10. In recent years, due to the increases in computer
memory and the suitability for shared-memory multiprocessing there is a revival of
direct solution methods, e.g., [461].

8.17.1 Direct Solution Methods

8.17.1.1 Gaussian Elimination

The classic direct solution method is the Gaussian elimination. Its objective is
to subtract appropriately scaled rows in the system (8.324) to arrive at an upper
triangular matrix equation in the form

A � φ D b �! U � φ D b0 (8.326)

whereU is an upper triangular matrix. We obtainU by following procedure termed
as forward elimination: We choose the first row as the pivot equation and eliminate
1 from each equation below it. This is achieved by multiplying the first equation
by A21=A11 provided the pivot element A11 ¤ 0, which is then subtracted from the
second equation. It is continued similarly until 1 is eliminated from all equations.
Now, we eliminate 2; 3; : : : in the same manner until the upper triangular form is
attained
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where the components of the first row are U1j D A1j ; .j=1; : : : ; NEQ/ and
b0
1 D b1. The solution φ is then easily be performed by a recursive bottom-up

backsubstitution as follows

NEQ D b0
NEQ
=UNEQNEQ

i D .b0
i � Uijj /=Uii; j > i

(8.328)

We recognize that the Gaussian elimination changes the RHS vector b to b0, which
makes this technique rather inappropriate for systems with multiple RHS’s. This can
be circumvented by the following decomposition solution strategy.

8.17.1.2 LU Matrix Decomposition and Crout Method

The preferred variant of Gaussian elimination is the Crout method, in which the RHS
vector b is not affected by the matrix decomposition. It is very advantageous for
matrix systems whereA does not change in time (when using constant time steps) so
thatA needs to be decomposed only once. In such cases φ can be easily computed
via simple backsubstitution for every time-varying RHS vector b, a considerably
fast computational process termed as resolution. In the Crout method the matrixA is
decomposed into a lower triangular matrixL and an upper triangular matrixU , viz.,

A D L �U (8.329)

where

L D

0

B
B
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@
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:::

:::
: : :

:::
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(8.330)

and
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(8.331)
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Fig. 8.35 LU decomposition of matrix A in the Crout elimination method: (a) reduced, active
and unreduced zones, (b) terms used to construct Uij and Lji

Then, the linear equation system (8.322) expressed with (8.329)

A � φ D .L �U/ � φ D L � .U � φ/
„ ƒ‚ …

y

D b (8.332)

can now be solved via the pair of equations

L � y D b (8.333)

and

U �φ D y (8.334)

The LU decomposition (also called factorization) of A D L � U represents the
crucial and most costly solution step. The Crout method computes L and U by a
continuous accumulation of products and does not need to record the intermediate
reduced matrices. In thisLU decomposition process the matrixA divides into three
zones as outlined in Fig. 8.35. There is a region that is fully reduced, in the second
(called active) zone the matrix is currently being reduced and there is a third zone,
which contains the original unreduced matrix components. Taking

Lii � 1 .i D 1; 2; : : : ; NEQ/ (8.335)

for each active zone j the entries of U and L are given by
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Uij D Aij �
i�1X

mD1
LimUmj .j D i; i C 1; : : : ; NEQ/

Lji D
�
Aji �

i�1X

mD1
LjmUmi

�
=Uii .j D i C 1; i C 2; : : : ; NEQ/

(8.336)

for .i D 1; 2; : : : ; NEQ/. We note that the summation in (8.336) is ignored when the
lower limit of the indexm exceeds the upper limit.

It is obvious from (8.336) that the diagonal entry in the matrix U must be non-
zero. This can be assumed for a matrixA which is diagonally dominant, i.e.,

jAiij 
X

j¤i
jAijj .i D 1; 2; : : : ; NEQ/ (8.337)

In other cases partial pivoting is required in which rows of A are appropriately
interchanged to meet non-zero diagonals. The above decomposition can be used for
both unsymmetric and symmetric matrices A. However, if A is symmetric, A D
AT , the relation exists

Uij D LjiUii (8.338)

and it is no more necessary to store the complete matrix. Only the diagonals and
the components above the diagonals need to be stored, while (8.338) is utilized to
construct the missing part. It reduces the decomposition costs by nearly 50 % [509].

Having completed the decomposition of A, it is now trivial to solve φ by
utilizing (8.333) and (8.334) in a forward elimination and backward substitution
procedure, viz.,

yi D bi �
i�1X

jD1
Lijyj .i D 1; 2; : : : ; NEQ/ (8.339)

and

i D
�
yi �

NEQX

jDiC1
Uijj

�
=Uii .i D NEQ; NEQ � 1; : : : ; 1/ (8.340)

respectively, which are computationally cheap. We see that in (8.339) the RHS
vector b is not destroyed during the forward elimination, which makes the Crout
method very useful for multiple RHS’s in a resolution process avoiding a repeated
LU decomposition.
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8.17.1.3 Other Methods

A symmetric matrixA which is positive definite, i.e.,

φ � .A � φ/ > 0 for all φ ¤ 0 (8.341)

can be decomposed in the form

A D L �U D L � .D �LT / D .L �D1=2/
„ ƒ‚ …

QL

� .D1=2 �LT /
„ ƒ‚ …

QLT
(8.342)

whereD is the diagonal matrix defined as

D D ˙U11; U22; : : : ; UNEQNEQ

˘
(8.343)

The decomposition (8.342) in the form

A D QL � QLT (8.344)

is used in the Cholesky method, e.g., [456,468], in which the lower triangular matrix
QL is related to L appearing in the Gaussian method by

QL D L �D1=2 (8.345)

The Cholesky method introduces a little extra-effort in computing the square root
D1=2 compared to the Crout method for symmetric matrices. However, just this
square root operation accounts for small round-off errors, which is a striking feature
of the Cholesky method.

Further variants of the Gaussian elimination method differ in strategies of sparse
matrix storage and bookkeeping, elimination sequences, pivoting techniques and
round-off error minimizations. Active column profile solvers [509,590] based on the
Crout method reduce the required storage and computational effort for unsymmetric
and symmetric sparse matrices, where their columns and rows are stored only within
the non-zero profile (also termed as envelope or skyline) of A, see Fig. 8.36. It has
a definite advantage over the method of a fixed banded storage. The profile can
be very variable so that long and small columns can be compactly stored. The
column heights are, however, dependent on the node (equation) numbering used
in formingA. An interesting alternative Gaussian elimination is the frontal method
[256, 287, 291], which operates in a wave-front advancing through a finite element
mesh. In contrast to a profile solution strategy, the operation sequences of the
frontal method are determined by the element numbering, rather than by the node
numbering. The advantage is that at no time the complete sparse matrix A must
exist. Only parts of the matrix are assembled as they enter the front. However, it
implies a considerable amount of bookkeeping compared to an active column profile
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Fig. 8.36 The profile
(envelope) and band of a
matrixA. The profile height
hi at a matrix row i is the
number of columns
(respectively rows) included
between the first non-zero
column entry and the
diagonal. The bandwidth
Bwd.A/, (8.347), is formed
by the maximum profile
height occurring inA

solver where the processing overhead remains relatively small. The frontal method
is attractive in treating large matrices out-of-core, where the storage of a complete
matrix would exceed the capacity of computer memory. Today, however, this is often
no more a serious constraint.

8.17.1.4 Fill-in Reduction and Nodal Reordering

A profile of a sparse matrix structure as exemplified in Fig. 8.36 is formed by the
non-zero entries being in a largest distance from the diagonal. This is described by
the profile heights hi .i D 1; : : : ; NEQ/ for each row i defined as

hi D i �min.j jAij ¤ 0; j � i/C 1; .i D 1; 2; : : : ; NEQ/ (8.346)

Note that the bandwidth Bwd.A/ of A is the maximum of all profile heights
occurring in the matrix:

Bwd.A/ D max
1	i	NEQ

hi (8.347)

However, it is the nature of the finite element discretization that not all matrix
entries between the first non-zero column entry and the diagonal are non-zero. Quite
contrarily, a large number of entries in between can be zeros. Now, the consequence
of the elimination process according to formulae (8.336) is that those zero entries
within the profile ofA become replaced by non-zero entries. Such entries are called
fill-in. Since fill-in entries cause further fill-in, the complete matrix profile must
be stored to perform the matrix elimination. The required storage amounts to the
envelope (or total profile) given by the sum of the profile heights, viz.,
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Env.A/ D
( PNEQ

iD1 hi for symmetric A
PNEQ

iD1.2hi � 1/ for unsymmetric A
(8.348)

On the other hand, the solution effort Ecp.A/ of matrix elimination is proportional
to the square of each profile heights

Ecp.A/ 

NEQX

iD1
h2i (8.349)

In order to minimize both the storage size Env.A/ and the computational effort
Ecp.A/ for a matrix A it is obvious that the profile heights hi should be hold
small as possible. Indeed, the profile heights are determined by the global nodal
numbering used in a finite element mesh. In practical terms: the larger the difference
between the highest and lowest node number occurring in a finite element, the
larger the profile heights at the corresponding matrix index. This is evidenced in the
example mesh shown in Fig. 8.37. While an inappropriate nodal numbering used
in the mesh of Fig. 8.37a leads to a wide-spread pattern of non-zero entries in the
matrix with a consequent large storage demand and a significant amount of fill-in,
an intelligent nodal reordering as outlined for the mesh of Fig. 8.37b accomplishes
a significant reduction of the storage demand, fill-in and computational effort.

There are different techniques [189, 418] which are useful to automatically
renumber the mesh nodes with the aim to bring all matrix entries closer to the
diagonal. Most important are:

• The Reverse Cuthill-McKee (RCM) method [108], which reorders the nodes
according to the lowest connectivity with surrounding nodes at each level of the
corresponding graph of spatial discretization.

• The Multilevel Nested Dissection (MLNDS) method [301, 302], in which the
reduction of nodal interconnectivities is employed via a recursive partitioning of
domains.

The RCM usually gives excellent reductions. The MLNDS is to be preferred for
bigger meshes. It accomplishes a reasonable profile reduction (albeit often not so
much as via RCM), however, at lower computational costs. Furthermore, MLNDS
is better suitable for parallel processing. In practice, nodal reordering schemes are
obligatory when direct equation solvers become in use. The nodal reordering is
performed before Dirichlet-type BC’s are implemented according to (8.321). It ends
up with a compressed matrix system which is optimal for direct profile solvers.

8.17.2 Iterative Solution Methods

The solution of the matrix equation (8.322)

A � φ D b (8.350)
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Fig. 8.37 A�matrix occupations for a simple 2D triangle mesh (a) before and (b) after RCM
nodal reordering. Matrix entries drawn in black relate to intrinsic non-zero coefficients, entries
drawn in gray identify fill-in. The nodal reordering reduces the total profile Env.A/ for the present
mesh to about one third

by using direct methods can be rather inefficient for large systems. Their computa-
tional effort Ecp.A/ is proportional to the square sum of all matrix profile heights
(8.349), for a band structure of A it is proportional to NEQ.Bwd.A//2 and for a
full matrix it is even proportional to N3

EQ. However, there are reliable alternatives in
form of iterative solution methods, which solve (8.350) on an efficient approximate
basis possessing a computational effort having only a more or less linear proportion
to the equation number NEQ and, however, a dependence on an iterative cycle. The
faster the convergence of the iterative procedure, the smaller the required number of
iterations and the better and efficient will be the iterative solution.

The principle of all iterative solution procedures is to make a first guess φ0,
then apply a recurrence scheme to generate a sequence of new approximations
φ1;φ2; : : :, that converge to φ. A simple recurrence scheme, known as Richardson
iteration, could have the form φ�C1 D φ� � �.A � φ� � b/, .� D 0; 1; : : :/, where
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� is an iteration counter and � ¤ 0 is an acceleration parameter. The advantages
of such an approach are obvious: (1) the system matrix A must not be inverted
directly anymore and (2) the sparsity of A can be fully exploited, where only
the non-zero entries are stored in a dense manner (need not to consider fill-in).
The disadvantage of iterative methods is that (1) the rate of convergence may be
slow or even divergence may occur and (2) an error criteria has to be chosen at
which the iteration is terminated to consider the approximate solution as sufficiently
accurate. It becomes clear that the crucial point of each iteration method is to find
an acceleration strategy for a fast rate of convergence. Today, there is a wide variety
of iterative methods for solving both symmetric and unsymmetric systems, see e.g.,
[15, 453]. Most important for the present class of problems are the following:

• The Conjugate Gradient (CG) method.
• The Orthogonal Minimum Residual (ORTHOMIN) method.
• The Generalized Minimal Residual (GMRES) method.
• The Lanczos Conjugate Gradient Square (CGS) method.
• The Lanczos Bi-conjugate Gradient Stabilized (BiCGSTAB) method.
• The Multigrid (MG), in particular Algebraic Multigrid (AMG) method.

To improve the convergence behavior of these iterative methods, they are usually
applied in combination with so-called preconditioning techniques which transform
the basic matrix system into a form that is more suitable for the iterative procedure.

8.17.2.1 Preconditioning

An important property of the matrix A is given by the condition number �.A/
defined as [453]

�.A/ D kAkkA�1k (8.351)

which characterizes the ratio between the maximum and minimum eigenvalues
�.A/ D �max.A/=�min.A/. Problems for which � is large are called ill-conditioned
problems, otherwise if � is not too large they are called well � conditioned
problems. Typically, a high parameter contrast in the coefficients of A causes a
high condition number �. Unfortunately, the eigenvalue distribution significantly
influences the convergence behavior of an iterative method. For instance in case of
the CG method, if S.P / is the number of iterative steps required to decrease the
error kφ� � φk by a factor of P , then S.P / � 1

2

p
� ln.2=P /C 1. That means, the

number of iterations needed to reach convergence is O.p�/. It suggests that the rate
of convergence can be significantly improved if we could decrease � ! 1. Indeed,
this is possible by a suited transformation of the basic matrix system in such a way
that an iterative method will converge much faster than without this modification.
Such a type of transformation is termed preconditioning.
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To construct appropriate preconditioners for matrixA, we differ between explicit
and implicit preconditioning methods. To solve A � φ D b, an explicit method
transforms the system into

.C�1 �A/ � φ D C�1 � b (8.352)

where C is the preconditioning matrix to be chosen. Then, (8.352) is solved on an
iterative basis, e.g.,

φ�C1 D .δ� QA/�φ�CQb; where QA D C�1�A and Qb D C�1 �b (8.353)

In implicit preconditioning the original problemA�φ D b is replaced by a sequence
of solutions of the form

C � .φ�C1 � φ� / D �r� (8.354)

with the residual vector

r� D A � φ� � b (8.355)

Both forms (8.352) and (8.354) are equivalent. Their use is only dependent on how
the inverse C�1 is explicitly known. In any cases, the preconditioning matrix C
should require only little computational extra-effort. On the other hand, the chosen
preconditioning matrix must significantly improve the eigenspectrum of C�1 � A
in comparison to A, i.e., �.C�1 � A/ < �.A/. Both requirements are somewhat
contradictory: the better the preconditioning, the higher often the costs. Note that
for the case C D A in (8.354) the scheme corresponds to a direct solution and
the sequence of solutions stops after one iteration. In approximating A with C it
tends to drop low eigenvalues (i.e., long-wavelength eigenmodes), what can be a
deficiency. Hence, a good and optimal choice of C (or explicitly C�1) is desired.
Today, a large family of preconditioners is available, cf. [15,45,453]. Our preferred
conditioning methods are:

• The incomplete LU (ILU) decomposition method:C D L �U for unsymmetric
and C D L � .D �LT / for symmetric systems.

• The modified ILU (MILU) method, where diagonal entries ofU are additionally
modified to tackle ill-conditioned problems.

• The polynomial preconditioning:C�1 D p.A/, where p.A/ is a polynomial of
lower degree, commonly Chebyshev polynomials.

Most useful is the incomplete lower-upper (ILU) preconditioning in the form

C D
�
L �U unsymmetric

L � .D �LT / symmetric
(8.356)
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which is achieved by a matrix decomposition with a Crout method (8.336), however,
the fill-in that occurs for all the off-diagonals within the matrix profile is completely
or partly neglected. The simplest and usually preferred method is the ILU decompo-
sition (factorization) with no fill-in, termed by ILU(0). It works very fast, is robust
and needs only a comparatively small extra-storage. For certain applications an
extended ILU preconditioning can be suitable in which some fill-in is allowed in the
incomplete LU decomposition, e.g., ILU(1) which accomplishes 1st-order fill-ins,
see [453] for more. Commonly, nodal reordering (see Sect. 8.17.1.4) is not needed
for ILU(0), but in using ILU(1) it can improve the accuracy of the preconditioner
due to the fill-in-minimized rearranged structure of the matrix.

Improvements of ILU preconditioning can be attained by so-called modified ILU
(MILU) preconditioners [40]. Basically, these techniques are zero fill-in ILU(0)
strategies, however, the fill-in entries occurring during the matrix decomposition
process are kept (e.g., adding up positive off-diagonal entries) in order to put the
lumped sum to the diagonal entries. In this way one attempts to compensate the
discarded entries, which can be important for the lower eigenvalues if the matrix is
ill-conditioned. A favorite is the Gustaffson MILU preconditioning [217], which
is designed and specialized for symmetric matrices including a high coefficient
contrast. However, the MILU strategy has shown often insuffiently robust and
should not be applied in general.

8.17.2.2 The Preconditioned Conjugate Gradient (PCG) Method

The conjugate gradient (CG) method goes back to Hestenes and Stiefel [247], who
presented a new iterative method with a significantly increased rate of convergence
in solving sparse symmetric positive-definite equation systems. Bizarrely, it took
many years until this powerful method has found acceptance in the numerical
analysis community that were exclusively fixed on direct solution methods over
long time. But, beginning in the 1970s and in particular once computers became
powerful enough to tackle real 3D problems, the CG method has started its triumph
and gained considerable attraction in numerical modeling. Today, the CG method
has become the standard iterative method for sparse symmetric equation systems.
Its major advantages are: (1) the number of operations per iterative step � is only
proportional to the number of equations NEQ and (2) it converges in at most NEQ

iterations in the absence of round-off errors. In practice, however, the method
already converges after a relatively small number of iterations much faster than the
pessimistic estimate of NEQ. The rate of convergence depends on the distribution of
eigenvalues. Accordingly, the use of appropriate preconditioning further increases
the rate of convergence of the CG method. The preconditioned CG (PCG) method
is the preferred iterative solution method for symmetric matrix systems.

The iterative algorithm for solving A � φ D b by the PCG method is given as
follows (see e.g., [15, 453]):



8.17 Solution of Linear Systems of Algebraic Equations 363

Let A and C be symmetric and positive definite. Guess initially φ0

and set: r0 D A � φ0 � b; h0 D C�1 � r0 and d0 D �h0;
with known values: � and ITMAX

For iterations � D 0; 1; 2; : : : compute until convergence:

φ�C1 D φ� C ˛�d� where ˛� D h�
T �r�

d�
T �.A�d� /

r�C1 D r� C ˛� .A � d� /
h�C1 D C�1 � r�C1

d�C1 D �h�C1 C ˇ�d� where ˇ� D h�C1
T �r�C1

h�
T �r�

Stop if r�C1
T �r�C1
bT �b < �2 or � > ITMAX

(8.357)

where r is the residual vector, h is the pseudoresidual vector, d is the search
direction vector, C is the preconditioning matrix, commonly C D L � .D � LT /
by using an ILU(0) preconditioner, � is the termination criterion (default 10�8) and
ITMAX is the allowed maximum number of iterations (e.g., 200) to be chosen in
dependence on NEQ.

8.17.2.3 The Preconditioned Restarted ORTHOMIN Method

The orthogonal minimum residual (ORTHOMIN) method belongs to a family of
generalized conjugate gradient methods. It was firstly presented by Vinsome [547]
and widely used in petroleum reservoir simulation. A biorthogonal vector algorithm,
originally attributed to Lanczos [332], forms the basis for solving sparse unsymmet-
ric matrix systems. Most of the following variants of iterative methods applied to
unsymmetric matrices are based on that biorthogonalization procedure, termed as
Lanczos algorithm.

In iteratively solving A � φ D b by the ORTHOMIN method, the orthogonality
of A � q� is required, that is .A � q� / � .A � qk/ D 0 for � ¤ k, where
q� and qk are the search directions at iterative steps � and k, respectively. The
ORTHOMIN method converges to the exact solution φ within NEQ iterations,
however, it is necessary to store up NEQ search directions q� and NEQ products
A � q� . This implies large summation which makes the procedure sensitive for
accumulating round-off errors in the computation of the search directions. To
overcome this deficiency the orthogonalization is restarted every K iterations, i.e.,
the ORTHOMIN procedure runs for K steps to get an approximation φK , then
setting φ0 D φK and restart the iterations until convergence is reached. This
is referred to as restarted ORTHOMIN or ORTHOMIN.K/, e.g., [342]. Since
the computational cost increases as O.K2NEQ/ and the memory cost increases as
O.KNEQ/, it is required to hold K small relative to NEQ. Usually, K is chosen in
the range between 4 and 10, depending inversely on the condition number of the
matrix. In practice, it has been shown that the restarted ORTHOMIN converges in a
similar number of iterations as the non-restarted version [42].
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The iterative algorithm for solving A � φ D b by the preconditioned restarted
ORTHOMIN.K/method is given as follows (e.g., [346, 547]):

Let A and C be unsymmetric. Guess initially φ0 and set: r0 D b�A � φ0;
i D 0; with the known values: �; ITMAX and K

(1) For iterations � D 1; 2; : : : ; K do:
i D i C 1
u� D C�1 � r��1
v� D A � u�
p� D u�
q� D v�

For 1 � k � �; do

8
<

:

˛k� D .qkT � v� /=.qkT � qk/
p� D p� � ˛k�pk
q� D q� � ˛k�qk

ˇ� D .q�T � r��1/=.q�T � q� /
φ� D φ��1 C ˇ�p�
r� D r��1 � ˇ�q�

Compute e�1 D kr�kL1kbkL1 ; e�2 D ˇ�kp�kL1kφ�kL1
Stop if e�1 < � or e�2 < � or i  ITMAX
(2) End do
r0 D rK
φ0 D φK
Go to (1) for restarting

(8.358)

where r is the residual vector, q is the search direction vector, u, v, p are auxiliary
vectors, C is the preconditioning matrix, preferentially C D L � U by using an
ILU(0) Crout preconditioner, � is the termination criterion (default 10�6), k:kL1 is
the maximum norm defined by (8.26),K is the number of iterations (default 5) after
which the algorithm is periodically restarted and ITMAX is the tolerated maximum
of total iterations (e.g., 200) to be chosen in dependence on NEQ.

The ORTHOMIN.K/ method is only guaranteed to converge for positive real
matrices A, that is if φ � .A � φ/ > 0 for all φ ¤ 0. In other cases, there is no
guarantee anymore for convergence, unless an appropriate preconditioning matrix
C can be found which creates a positive real matrixC�1 �A.

8.17.2.4 The Preconditioned Restarted GMRES Method

The generalized minimal residual (GMRES) method was introduced by Saad
and Schultz [454] for solving unsymmetric matrix systems. It is mathematically
equivalent to a generalized conjugate gradient method, however, the orthogonal
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vector algorithm is based on the Arnoldi method (see e.g., [15, 453]), which
saves computational effort and improves robustness in particular for large equation
systems. Li et al. [346] have shown that GMRES can be one-third faster than
ORTHOMIN in various large-scale petroleum reservoir applications. GMRES is
guaranteed to converge in at mostNEQ steps, provided thatA orC�1 �A is positive
real. However, similar to the ORTHOMIN method the storage demand of GMRES
increases linearly with the iteration � and the number of operations increases as
O.�2NEQ/, which is rather computationally impractical for large matrices. The
alternative is that GMRES is to restart after a fixed number of iterations K , similar
to a restarted ORTHOMIN.K/ procedure. In GMRES.K/, the GMRES method is
periodically restarted after everyK iterations until reaching convergence.

The iterative algorithm for solving A � φ D b by the preconditioned restarted
GMRES.K/ method is given as follows (e.g., [342, 346, 453, 454]):

Let A and C be unsymmetric. Choose a first guess φ0: Set up the
.K C 1/ �K Hessenberg matrix: HK D .Hk� /1	k	KC1;1	�	K D 0; i D 0;
with the known values: �1; �2; ITMAX and K

(1) Arnoldi process:
Compute r0 D C�1 � .b �A � φ0/; ˇ D kr0kL2 and v1 D r0=ˇ
For iterations � D 1; 2; : : : ; K do:
i D i C 1

w� D C�1 � .A � v� /
For 1 � k � �; do if .w�T � vk/ > �1kw�kL2 :

(
Hk� D w�T � vk
w� D w� �Hk�vk

H�C1;� D kw�kL2
v�C1 D w�=kw�kL2

End do
Define V K D .v1; : : : ;vK/T and update φK D φ0 C V KyK;

where yK is the minimizer of kˇe1 �HKykL2 with e1 D .1; 0; 0; : : : ; 0/T
Stop if

krKkL2kbkL2 � �2 or i  ITMAX; where rK D C�1 � .b �A � φK/;
otherwise set φ0 D φK and go to (1) for restarting

(8.359)

where r is the residual vector, H is the Hessenberg matrix [453], v and w are
auxiliary vectors, C is the preconditioning matrix, preferentially C D L � U
by using an ILU(0) Crout preconditioner, �1 is the criterion for checking orthog-
onality (default 10�10), �2 is the convergence criterion to terminate the iteration
(default 10�6), k:kL2 is the L2 error norm defined by (8.25), K is the number
of iterations (default 5) after which the algorithm is periodically restarted and
ITMAX is the tolerated maximum of total iterations (e.g., 200) to be chosen in
dependence on NEQ.
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8.17.2.5 The Preconditioned Lanczos Conjugate Gradient Square (CGS)
Method

The CGS method is a variant of the Lanczos-type biorthogonalization (biconjugate
gradient) method for solving unsymmetric matrix systems in which biorthogonal
sets of vectors are generated. It has been proposed by Sonneveld [487]. CGS is a
highly efficient iterative method for unsymmetric matrices which converges about
twice as fast than standard biconjugate gradient methods. It is based on squaring
the residual polynomials. While CGS works well in many applications, it is prone
to rounding errors due to the squared polynomials and even breakdowns cannot
be fully precluded in cases causing a divide by zero. On the other hand, the
residual error is not strictly decreasing in the progress of iterations. Nevertheless,
its properties regarding the smallest storage demand and accelerated convergence
in the most applications make the CGS method in combination with an appropriate
preconditioning a powerful recurrence scheme for solving unsymmetric equation
systems.

The iterative algorithm for solvingA �φ D b by the preconditioned CGS method
can be written in the following form (e.g., [453, 487]):

Let A and C be unsymmetric. Guess initially φ0

and set: r0 D q0 D C�1 � .b �A � φ0/; g0 D h0 D 0; ˇ0 D q0T � r0 and
	0 D 0 with known values: � and ITMAX

For iterations � D 0; 1; 2; : : : compute until convergence:
y�C1 D r� C 	�h�
g�C1 D y�C1 C 	� .h� C 	�g� /
h�C1 D y�C1 � ˛�C1C�1 � .A � g�C1/ where ˛�C1 D ˇ�

q0
T �ŒC�1 �.A�g�C1/�

φ�C1 D φ� C ˛�C1.y�C1 C h�C1/
r�C1 D r� � ˛�C1C�1 � ŒA � .y�C1 C h�C1/�
ˇ�C1 D q0T � r�C1
	�C1 D ˇ�C1=ˇ�

Stop if
kr�C1kL2

kr0kL2 < � or � > ITMAX

(8.360)

where r is the residual vector, q is the shadow residual vector, y, h, g are auxiliary
vectors, C is the preconditioning matrix, preferentially C D L � U by using
an ILU(0) Crout preconditioner, � is the termination criterion (default 10�8) and
ITMAX is the allowed maximum number of iterations (e.g., 200) to be chosen in
dependence on NEQ. The preconditioned CGS method converges in at most NEQ

iterations for positive real matrices.
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8.17.2.6 The Preconditioned Lanczos Bi-conjugate Gradient Stabilized
(BiCGSTAB) Method

Van der Vorst [535] proposed the BiCGSTAB algorithm as an improved variant of
CGS. The BiCGSTAB method stabilizes and smoothes the convergence behavior. It
leads to a more robust and usually faster converging iterative technique for solving
unsymmetric equations systems with small storage demand and low computational
cost. The BiCGSTAB iteration steps are only slightly more expensive than the CGS
steps. But, similar to CGS the BiCGSTAB method cannot fully exclude the risk
of a computational breakdown if the system matrix A is not positive real. In most
applications, however, BiCGSTAB has shown a superior behavior by what it has
become a preferred iterative method for solving unsymmetric matrix systems.

The iterative algorithm for solvingA �φ D b by the preconditioned BiCGSTAB
method is given as follows (e.g., [453, 535]):

Let A and C be unsymmetric. Guess initially φ0

and set: r0 D b �A � φ0 and p0 D q0 D C�1 � r0
with known values: � and ITMAX

For iterations � D 0; 1; 2; : : : compute until convergence:

s� D r� � ˛�A � p� where ˛� D q0
T �.C�1�r� /

q0
T �ŒC�1 �.A�p� /�

t� D C�1 � s�
φ�C1 D φ� C ˛�p� C !� t� where !� D .A�t� /T �s�

.A�t� /T �.A�t� /
r�C1 D s� � !�A � t�
ˇ� D ˛�

!�
q0�.C�1�r�C1/
q0�.C�1�r� /

p�C1 D C�1 � r�C1 C ˇ� Œp� � !�C�1 � .A � p� /�
Stop if

kr�C1kL2
kr0kL2 < � or � > ITMAX

(8.361)

where r is the residual vector, q is the shadow residual vector, s, t, p are auxiliary
vectors, C is the preconditioning matrix, preferentially C D L � U by using
an ILU(0) Crout preconditioner, � is the termination criterion (default 10�8) and
ITMAX is the allowed maximum number of iterations (e.g., 200) to be chosen in
dependence on NEQ. The preconditioned BiCGSTAB method converges in at most
NEQ iterations for positive real matrices.

8.17.2.7 Multigrid (MG) Methods

The iterative solution methods treated so far suffer from disabling limitations:
(1) Their convergence rates are dependent on the number of equations NEQ to be
solved. This has severe implications in the numerical solution of very large problems
involving millions and billions of mesh nodes. The required number of iterations
inevitably increases and can reach an unacceptable size. (2) Their convergence rate
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Fig. 8.38 Convergence behavior of PCG method showing a typical well-behaved degression of
residual error and the occurrence of stalling in a large problem solution

has a tendency to stall, in particular for large problems, that means the reduction
rate of errors becomes slow or even practically stagnant. In fact, these iterative
methods converge very rapidly for the few iterations and very slowly thereafter, see
Fig. 8.38. The reason for that unfavorable behavior is obvious: The convergence rate
is a function of the error field frequency, i.e., the measure of change of the error from
node to node. All high error frequencies or small wavelength components which
are comparable to the mesh size can be effectively reduced (smoothed out), see
Fig. 8.39, however, low error frequencies or large wavelength components of error
can only badly annihilated such that the convergence rate automatically deteriorates.
As the mesh is refined, the low error frequencies dominate the solution error and
additional iterations become progressively less productive. Indeed, this represents a
serious limitation of those iterative methods. But, the remedy is possible by using
multigrid (MG) methods.

The basic idea of MG methods is likewise simple and intuitive: Since low
frequency errors remain widely hidden for fine grids (meshes), it should be more
efficient to reduce those errors on coarser grids (Fig. 8.40). In using both fine and
coarse grids in an appropriate interplay it must per se lead to a highly powerful
iterative strategy, where both high and low error frequencies are reduced at the
same time with fast convergence. The natural way of transfering between fine and
coarser grids firstly results in the traditional MG method, called geometric multigrid
(GMG).
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Geometric Multigrid (GMG) Method

The concept of the multigrid algorithm dates back to the 1960s when Fedorenko
[161] and Bakhvalov [21] published their first studies. Other multigrid pioneers are
Brandt [51] and Hackbusch [219], who have recognized in the 1970s the actual
efficiency of the MG method and started fundamental developments. Today, for MG
methods an extensive mathematical basis exists and a variety of efficient numerical
strategies for many applications have been worked out. A good overview is given
in the textbook by Trottenberg et al. [519]. The classic and standard MG approach
refers to the geometric MG (GMG) method.

The usual practice in GMG consists of a successive nested structured grid (mesh)
procedure in which the coarse grid has twice the grid spacing 2h of the next finer
grid with the grid size h so that all nodes in the coarse grid also appear in the fine
grid. The use of grid spacings with a ratio of 2 allows very efficient intergrid transfer
operations and lead to hierarchical meshes where typically fine mesh elements
result from coarse mesh elements by a simple subdivision via element halving
[219]. A hierarchical mesh can also be locally refined. An example for a three-
level successive nested multigrid hierarchy consisting of uniform triangle meshes is
exhibited in Fig. 8.41 which features a V-cycle.

To illustrate the GMG procedure for solving the finite element matrix system
A � φ D b, the sequence of only two mesh levels identified by subscripts h for the
fine grid and 2h for the next coarse grid are considered at first. It begins with solving
Ah � φh D bh on the fine mesh for a small number of iterations <10 by using an
appropriate iterative method (e.g., PCG or others) until the residual
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r�h D bh �Ah � φ�h (8.362)

is sufficiently smooth, i.e., high error frequencies are suitably reduced. This solution
step is termed presmoothing. Then, to effectively reduce low error frequencies the
so-called coarse grid correction starts. It transfers the residual r�h to the coarse grid,
a process called restriction, in the following form of a coarse grid defect matrix
equation

A2h �
φ�2h D b�2h with b�2h D I2hh � r�h and 
φ�2h D φ�C1
2h � φ�2h (8.363)

where I2hh is a nonsquare matrix, known as the restriction operator. The solution
increment 
φ�2h results from (8.363) and can now be transferred back to the fine
grid by interpolation, a process called prolongation, to obtain


φ�h D Ih2h �
φ�2h (8.364)

where Ih2h is a nonsquare matrix, known as the prolongation operator. It gives the
new approximation

φ�C1
h D φ�h C
φ�h (8.365)

on the fine mesh. A postsmoothing solution step can now follow in which the
residual r�C1

h D bh �Ah � φ�C1
h is further reduced via a standard iterative solver to

obtain an improved solution φ�C1
h on the fine mesh.

The construction of the restriction operator I2hh and the prolongation operator
Ih2h can be rather simple when using nested grids in which all coarse grid nodes
appear in the fine grid nodes. In the FEM context the natural choice is the use of
interpolations based on the basis functions (8.16) such that

X

j

N2h;j 2h;j 	
X

l

Nh;l h;l (8.366)

where N2h;j and N2h;l denote the basis functions of meshes 2h with nodes j and
h with nodes l , respectively. To minimize the approximation error a Galerkin-
weighting approach for (8.366) becomes useful

R
˝
N2h;iN2h;j d˝ 2h;j D

R
˝
N2h;iNh;ld˝ h;l

O2h � φ2h DM 2h
h � φh

(8.367)

where O2h is a consistent mass matrix for the coarse mesh, which can also be
lumped (see Sect. 8.13.2), and M 2h

h forms a new integral that consists of the
inner product of basis functions from the different meshes. The restriction operator
directly follows from (8.367) as

I2hh D O�1
2h �M 2h

h (8.368)
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which is simply evaluable for the lumped matrix O�1
2h D δ. A similar relation

can be developed for the prolongation operator. We recognize that (8.368) implies
operations in form of averages between adjacent grid points. More difficulties arise
in using unnested and unstructured grids, see e.g., [354], where the operators have to
be carefully derived to avoid additional inacceptable approximation errors appearing
in the intergrid interpolations.

The principle of the two-grid procedure as stated above can be generalized
to sequences of multiple grids. The reason for using more sequences of grids is
obvious: The solution of (8.363) on the coarse grid may not be much different
from the next fine grid. Hence, we can recursively repeat this two-grid procedure on
successively coarser grids, creating coarser and coarser grids, down to some coarsest
grid. Then, on the coarsest grid the remaining defect equation of the type (8.363)
can be usually solved exactly via a direct solver. The solution is then prolongated
successively to the finer grids. The multigrid algorithm takes the form:

smooth r�h D bh �Ah � φ�h n times
restrict b�2h D I2hh � r�h

smooth r�2h D b�2h �A2h �
φ�2h n times
restrict b�4h D I4h2h � r�2h

smooth r�4h D b�4h �A4h �
φ�4h n times
restrict b�8h D I8h4h � r�4h

:::

prolongate 
φ�4h D I4h8h �
φ�8h
smooth r�4h D b�4h �A4h �
φ�4h m times

prolongate 
φ�2h D I2h4h �
φ�4h
smooth r�2h D b�2h �A2h �
φ�2h m times

prolongate 
φ�h D Ih2h �
φ�2h
compute φ�C1

h D φ�h C
φ�h
smooth r�C1

h D bh �Ah � φ�C1
h m times to finalize φ�C1

h

(8.369)

encompassing one iteration step (cycle) � of the multigrid procedure. Such a
consecutive fine-to-coarse and coarse-to-fine multigrid cycle is called V-cycle,
sketched in Fig. 8.42. However, there are much more options of how to cycle the
multiple grids. Another possibility is the W-cycle, where more coarse grids are
visited to drive the residuals down as much as possible before returning to the more
expensive finer grids (Fig. 8.42). In cases where the initial solution on the fine mesh
may be too poor, a full multigrid cycle (Fig. 8.42) is appropriate to obtain better
starting solutions on the coarse grids.

It can be shown for the GMG method [519] that its convergence is independent
of the size of the finest grid. Solving a problem in D dimensions, the reduction
in the number of nodal points NP between subsequent grids is of the order of
N2h

P =Nh
P 
 1=2D. Assuming that n smoothing steps are required on each grid and

the computational work of each smoothing processes is proportional to the effective
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number of equationsNEQ, the total computational work needed for a full V-cycle is
only of the order O.nNh

EQ logD.N
h
EQ// and the associated storage requirement only

of the order O.N h
EQ logD.N

h
EQ//. In fact, these estimates are extremely favorable

and hardly to be beaten by any other iterative strategy. For a W-cycle the amount
of work is only slightly larger. In particular for 3D problems, we observe that the
number of grid points on the coarser grids drops dramatically.

Algebraic Multigrid (AMG) Method

While the GMG method has shown very efficient in particular for large and very
large problems, there are unfortunately a number of serious deficiencies which
hamper its use in the finite element modeling practice. Detrimental is that GMG
often deteriorates for problems with anisotropic and discontinuous coefficients.
More important is that GMG depends fundamentally on the availability of an
underlying grid. The treatment of complex meshes in 3D has shown often rather
cumbersome. The FEM generally uses unstructured, nonhierarchical meshes. For
that mesh complexity it is difficult if not impossible to construct reliable GMG
methods. However, the basic principles of GMG can be exploited in a generalized
strategy without suffering from GMG’s fundamental restrictions. Such a strategy
has become true with the algebraic multigrid (AMG) method [453, 519].
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Brandt [52] and Stüben [497] can be seen as the major protagonists of the AMG
method, who started AMG’s development in the early 1980s. It was motivated by the
observation that straightforward geometric grid transfer operations of restriction and
prologation can be alternatively formulated on the basis of the underlying matrices
without any reference to grids (meshes), i.e., the construction of these operators can
be done purely algebraically. On the other hand, AMG’s algorithmic components of
smoothing and coarse-grid correction remain completely analogous to the classical
GMG method maintaining its computational power and efficiency for solving large
matrix systems. In contrast to GMG where coarse-grid discretizations are used to
reduce low-frequency error components, the AMG method reduces the low error
frequencies on matrix equations of a reduced dimension defining a certain level. As
a consequence, AMG does not require anymore fixed grid hierarchies. Accordingly,
in AMG one should better use the term multilevel rather than multigrid (but for
historical reasons the term multigrid is often further preferred in the AMG context).

AMG is best developed for scalar elliptic PDE, however, recent progress has
also been attained for systems of PDE’s and ADE’s. It has been proven to be a very
robust and efficient solution method applicable to both structured and unstructured
meshes. Stüben [498] gives a comprehensive overview on AMG in different fields
of application. The key feature of AMG is the exploitation of the Galerkin approach
comparable to (8.367) of GMG, however, in the context of AMG the required
coarse-grid operators of restriction and prolongation are based on interpolation that
maps a coarse node into a fine one of a given matrix system. This coarsening process
is fully automatic. Suppose the finite element matrix system A � φ D b is given at
the highest level (finest mesh)

Ah � φh D bh (8.370)

similar to a geometric two-grid description, we can define the matrix system for the
next coarse-level problem identified by subscript H as

AH � φH D bH (8.371)

The coarse-level AMG system (8.371) is constructed by means of the Galerkin
approach. In doing so, the coarse matrixAH results from

AH D .IHh �Ah/ � IhH (8.372)

where IHh and IhH denote the restriction and prolongation operators, respectively.
Their construction forms the major task of AMG’s setup process, see [498] for more
details. Having these operators a two-level process and by its recursive application
any multilevel process can be easily performed in an analogy to GMG’s multigrid
cycle and smoothing algorithms described above.
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8.18 Treatment of Nonlinearities

In the previous Sect. 8.17 we have described techniques for solving the resulting
algebraic equations systems A � φ D b, provided that the system is linear, i.e.,
the solution φ does not occur in any other combination than in a linear one.
However, in a number of applications the parameters in the governing finite element
equations can contain dependencies on the solution φ itself. Typical examples are
variable density and variable saturation problems, where the advective and diffusive
(conductive) terms in A become a function of φ. Furthermore, nonlinear BC’s and
higher order reaction processes imply nonlinear dependencies in the RHS vector b.
In such cases a nonlinear matrix system results in a form

A.φ/ � φ D b.φ/ (8.373)

where the main nonlinear functional dependence is identified by parentheses.
Before we can solve (8.373) for φ the system of equations must be linearized
by using appropriate iterative methods. Most important are the Picard iteration
method, which is a linearly convergent algorithm, and the Newton iteration method,
which normally converges quadratically. A specific concern is suitable for transient
problems.

8.18.1 Fixed Point Form and Picard Iteration Method

The system of nonlinear equations (8.373) written as

R.φ/ D 0 with R.φ/ D A.φ/ � φ � b.φ/ (8.374)

can be given in its fixed point form as

φ D G.φ/ with G.φ/ D A�1.φ/ � b.φ/ (8.375)

Solutions of (8.375) are called fixed points of the mapping function G.φ/, which
represent solutions of (8.374). In graphical terms, fixed points are the intersections
of the graph y D G.φ/ with the line y D φ as illustrated in Fig. 8.43 for a scalar
functional dependence.

The fixed point form (8.375) immediately suggests the following iteration
scheme

φ�C1 D G.φ� / � D 0; 1; 2; : : : (8.376)

where � is the iteration counter. The formulation (8.376) is the method of successive
substitution known as the Picard iteration method. The iteration is started with a first
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guess φ0 so that G.φ0/ can be evaluated to obtain φ1. Repeating this procedure a
sequence of successive solutions for φ�C1 is obtained (see illustration in Fig. 8.43).
In the practical application, however, the matrix G is not directly formed. Instead,
the Picard iteration is executed in the basic matrix system in the form

A.φ� / � φ�C1 D b.φ� / � D 0; 1; 2; : : : (8.377)

to obtain φ�C1. The iteration method linearizes the matrix system so that the
equation system (8.377) can be easily solved by using solution techniques of
Sect. 8.17. An advantage of the Picard method is that the structural matrix properties
remain unchanged, in particular, if A in (8.373) is symmetric the matrix system
(8.377) remains symmetric. During the iterative loop the matrix system A and
the RHS b must be updated (reassembled) with the previous solution and the
equation system (8.377) has to be repeatedly solved until satisfactory convergence
is achieved. A typical convergence criterion is

kφ�C1 � φ�k
kφ�C1k � � (8.378)

where � is an error tolerance to be prescribed and k:k corresponds to a suitable error
norm, e.g., RMS error norm (8.28) or maximum error norm (8.29).

The proof of the convergence for the Picard iteration is given by the Banach fixed
point theorem, e.g., [199]. It is shown that the iteration error of the Picard method
decreases linearly with the error of the previous iteration step, viz.,

kφ�C1 � φ�k < kφ� � φ��1k for � > 0 (8.379)

provided that the initial estimate for the solution φ0 is within a contracting distance
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kφ0 � φk � rc (8.380)

to converge to the unique solution φ, where rc is referred to as the radius of
convergence of the Picard iteration scheme. In general, for the present class of
problems it is not possible to determine rc . For strong nonlinearities the convergence
radius can be very small and a good first guess of the solution is usually needed to
attain a converging solution, otherwise the method diverges and fails. Nevertheless,
the Picard iteration method has shown relatively robust in many applications. Its
robustness is however paid by an only linear (1st-order) convergence rate.

8.18.2 Newton Iteration Method

The Newton iteration method, also known as the Newton-Raphson method, pos-
sesses a more rapid convergence behavior in form of a quadratic convergence rate.
Considering the nonlinear matrix equation (8.374) written as

R.φ/ D A.φ/ �φ � b.φ/ D 0 (8.381)

and assuming that the residualR.φ/ is continuous and differentiable, a Taylor series
expansion for the residual at the new iterationR.φ�C1/ about the previous iterative
solution φ� yields

R.φ�C1/ D R.φ� /C @R.φ� /

@φ�
�
φ� CO.
φ�2/C : : : (8.382)

with


φ� D φ�C1 � φ� (8.383)

AssumingR.φ�C1/ D 0 and neglecting 2nd and higher order terms, we obtain from
(8.382) the Newton iteration scheme in the form

J.φ� / �
φ� D �R.φ� / � D 0; 1; 2; : : : (8.384)

where

R.φ� / D A.φ� / � φ� � b.φ� / (8.385)

and the tangential matrix

J.φ� / D @R.φ� /

@φ�
D @

@φ�
ŒA.φ� / � φ� � b.φ� /� D A.φ� /C OJ.φ� / (8.386)
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OJ.φ� / D @A.φ� /

@φ�
� φ� � @b.φ

� /

@φ�
(8.387)

in which J.φ� / and OJ.φ� / are the Jacobian matrix and the partial Jacobian matrix,
respectively. It is important to note that the Jacobian has to be updated for each
iteration (full Newton method) to realize the quadratic convergence rate as illustrated
in Fig. 8.44 for a scalar functional dependence. On the other hand, the partial
Jacobian OJ causes always an unsymmetric matrix even if the system matrix A is
symmetric. For these reasons the Newton iteration method is relatively expensive.
The partial Jacobian OJ can be computed either analytically or numerically.16

Usually, the analytical evaluation is preferred because it provides a more efficient
implementation. From (8.386) we can recognize that the full Newton method
reduces to the Picard method (8.377) when the partial Jacobian OJ (8.387) is dropped
such that J.φ� / 	 A.φ� /.

For terminating the Newton iteration scheme (8.384) the deviatory convergence
criterion of (8.378) may be applied. However, the convergence of the Newton

16If the Jacobian J.φ� / D @R.φ� /=@φ� is not analytically available or too difficult for an
analytical evaluation, it can be constructed numerically via a secant approximation by using a
possibly very small increment ı in a form such as

J.φ� / � R.φ� C ı/�R.φ� /
ı

The increment ı should not be chosen too small to avoid roundoff errors. On the other hand, a
too large ı leads to a poor approximation of the Jacobian. A reasonable choice is the square root
of the unit roundoff being about �R D 10�12 in double precision arithmetic, accordingly ı Dp
�R D 10�6. The extra effort of the numerical evaluation consists of additional NEQ evaluation

of residual R.



8.18 Treatment of Nonlinearities 379

1

R

0 2

R 0
J 0

J 1

J 2

divergence

rc

Fig. 8.45 Diverging Newton
iteration in solving the
nonlinear function R./ D 0

if initial value 0 is outside
the convergence radius rc

method can easily (and additionally) be controlled by another useful error criterion,
viz., the test of the minimal residual, e.g., written in the form

kR.φ�C1/k
kF .φ�C1/k � �2 (8.388)

normalized for instance by the RHS vector F (appearing in (8.154) or (8.177)),
where �2 represents a second convergence criterion. The advantage of this test is that
the global balance error of the spatio-temporal matrix system is directly controlled.
The acceptable measure of the minimal residual �2 can be chosen suitably small,
possibly in the range of the roundoff error.

It is known that the Newton method requires a good first guess of the solution
φ0, otherwise if the starting solution is too far from the correct solution the method
can ‘blow up’ and quickly diverges (see Fig. 8.45). The convergence radius rc as
defined in (8.380) is generally smaller for the Newton method than for the Picard
iteration method. It is complicated further in the Newton method that rc decreases
as the number of equations NEQ increases so that φ0 must be closer to the correct
solution for bigger meshes. There are various cost-effective modifications in the
Newton iteration method to reduce the increased computational effort in updating
the Jacobian, where a concomitantly slower convergence rate (commonly linear)
has to be accepted. Most important are the modified Newton method and the quasi-
Newton method introduced next.

8.18.3 Modified Newton and Quasi-Newton Iteration Method

A major drawback of the full Newton method is that the Jacobian J.φ� / has to
be updated in each iteration � . Although its quadratic convergence leads usually
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to a small number of iterations, each iteration is accordingly expensive. There are
variants of the Newton method which can result in fewer costly iterations, however,
at the expense of a slower convergence. Nevertheless, since each iterative step is
ostensibly cheaper one can afford more iterations.

To obviate the need of Jacobian updating the modified Newton method can be
used in which the Jacobian is only built once at the initial step, i.e., J.φ0/ is formed
with the initial solutionφ0. Then, all subsequent iterations leave this initial Jacobian
J.φ0/ unchanged (see Fig. 8.46), i.e.,

J.φ0/ �
φ� D �R.φ� / with J.φ0/ D @R.φ0/

@φ0
(8.389)

The convergence rate of the modified Newton iteration method is only linear.
However, in comparison to the Picard method, which is also linearly convergent,
the modified Newton algorithm is usually cheaper because it needs only one matrix
update per iteration cycle.

Another possible cost-effective modification is the quasi-Newton method. In this
case the Jacobian J.φ� / can be thought of as approximations to the system matrix
A.φ� /. The quasi-Newton iteration can be written in the form

φ�C1 D φ� � s�A�1.φ� / �R.φ� /
A�1.φ�C1/ D A�1.φ� /C
A�1.φ� / (8.390)

whereA.φ� / has to satisfy the secant condition

A.φ� / � .φ� � φ��1/ D R.φ� / �R.φ��1/ (8.391)

in which s� is an acceleration factor (usually, s� D 1) and the update of the system
matrix is expressed directly via an incremental correction
A�1.φ� / to its inverse.
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The efficiency of the quasi-Newton method is dependent on finding good choices
of inverse update forms. For a symmetric matrixA the Broyden-Fletcher-Goldfarb-
Shannon (BFGS) update [121] has shown most successful. Broyden’s update is also
available for unsymmetric matrices, for more see, e.g., [156]. The quasi-Newton
method possesses usually a better than linear convergence rate and is accordingly
superior to the modified Newton method.

8.18.4 Transient Nonlinear Problem Solution

For transient problems the nonlinear matrix system has to be solved at the time plane
nC 1:

A.φnC1/ � φnC1 D b.φnC1/ (8.392)

In accordance with the used time integration methods different strategies have found
appropriate. In principle, at each time plane the nonlinear system (8.392) must be
iteratively solved to achieve convergence. The iteration procedure reads for the
Picard method

A.φ�nC1/ � φ�C1
nC1 D b.φ�nC1/ � D 0; 1; 2; : : : (8.393)

and for the full Newton method

J.φ�nC1/ �
φ�nC1 D �R.φ�nC1/ � D 0; 1; 2; : : :

φ�nC1 D φ�C1

nC1 � φ�nC1
J.φ�nC1/ D

@R.φ�
nC1

/

@φ�nC1

R.φ�nC1/ D A.φ�nC1/ � φ�nC1 � b.φ�nC1/

(8.394)

The iteration usually starts at time plane nC 1 with the first guess taking from the
previous time n, i.e., φ0nC1 D φn. The process is repeated within each time plane
until the following convergence criteria are satisfied:

kφ�C1
nC1 � φ�nC1k
kφ�C1

nC1k
� � (8.395)

and/or

kR.φ�C1
nC1/k

kF .φ�C1
nC1/k

� �2 (8.396)

For transient problems a good first guessφ0nC1 is always available since the solution
usually changes little between time steps, provided the time step length 
tn is
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sufficiently small. All the more, if we use the error-controlled predictor-corrector
methods as described in Sect. 8.13.5 an even better first guess can be obtained by
using the predictor solution φpnC1 at the current time plane nC 1, viz.,

φ0nC1 D φpnC1 (8.397)

whereφpnC1 is given by (8.157) and (8.166) for the FE and AB scheme, respectively.
Now, it is argued [211] that (1) the required degree of convergence is reached in just
one iteration per time step when the predictor furnishes a sufficiently accurate first
guess, and (2) the pre-set error measure � used in the predictor-corrector schemes is
recognized as the controlling parameter when keeping the time discretization error
small. It leads to the so-called one-step Newton method (or alternatively, one-step
Picard method), in which the predictor value φpnC1 is generally utilized to linearize
the complete nonlinear system without any need for a repeated iteration within each
time step. The following procedures result

J.φ
p
nC1/ �
φnC1 D �R.φpnC1/


φnC1 D φnC1 � φpnC1
J.φ

p
nC1/ D

@R.φ
p

nC1/

@φ
p

nC1

R.φ
p
nC1/ D A.φpnC1/ � φpnC1 � b.φpnC1/

(8.398)

for the one-step Newton method and

A.φ
p
nC1/ � φnC1 D b.φpnC1/ (8.399)

for the one-step Picard method. The one-step Newton (or Picard) method embedded
in the predictor-corrector scheme with its automatic step-size (time approximation
error) control has shown a cost-effective and favorable approach in many applica-
tions. In comparison to the Picard method the extra work for the one-step Newton
method is small in forming the Jacobian and residual matrices which can be done
simultaneously with assembling the matrix system, however, in favor of achieving a
quadratic convergence behavior. This is particularly true for an unsymmetric system
matrixA, typically appearing in ADE problems. For symmetric systems possessing
strong nonlinearities the use of the Newton procedure can also be advantageous, in
spite of losing symmetry in the final equation system to be solved.

8.19 Derived Quantities

8.19.1 Computing First Derivatives at Nodes

We have discussed in Sect. 3.11 the suitably chosen primary variables in form of
hydraulic head, species concentration or temperature for solving the governing
flow, mass and heat transport equations in porous media. Having known the
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for an element patch of quadrilaterals (Modified from [251])

spatio-temporal solutions of the primary variables, there is a need to obtain the
solution of secondary variables, such as Darcy velocity, mass flux or heat flux, which
represent quantities derived from the primary variables. In terms of the prototypical
ADE equation (8.3) or (8.5), the FEM leads to the solution of the primary variable 
in space and time, which represents an elementwise continuous approximation (cf.
Sect. 8.7). A derived quantity would be the flux

j D �D � r (8.400)

where D is a dispersion tensor. Since the finite element approximation of the
primary variable  is of the form (cf. (8.16))

.x; t/ D
X

j

Nj .x/ j .t/ (8.401)

we obtain the discrete flux

j.x; t/ D �
X

j

D � rNj .x/ j .t/ (8.402)

As result of the basic finite element solution, e.g., (8.322), j is known at each
global node j of the mesh and given time t so that j can be evaluated in a
postprocessing operation. However, we recognize from (8.402) the first derivative in
the flux j is no more continuous since the used element shape function Nj satisfies
onlyC0�continuity (cf. Sect. 8.7). Indeed, by using lower order elements of linear or
quadratic type, the first derivatives do not possess anymore inter-element continuity.
The elemental fluxes become discontinuous between elements and no unique fluxes
at nodal points result as illustrated in Fig. 8.47.

Unfortunately, the discontinuity of the derived fluxes results in a number
of serious drawbacks. Most important are balance errors arising in local flux
evaluations. For example, Yeh [578] showed balance errors up to 30 % on a domain
interior. On the other hand, the evaluation of streamlines according to (2.94)
and pathlines according to (2.98) needs always a basically continuous flow field,
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otherwise coherent trajectories in the global flow field cannot be computed. Hence,
suitable methods are required to produce continuous and precise fluxes over the
finite element mesh, which are referred to as smoothing strategies. Most important
are global and local smoothing as well as superconvergent patch recovery (SPR)
techniques to derive continuous fluxes at internal nodes.

8.19.1.1 Global Smoothing

Global smoothing represents a natural approach of FEM to obtain continuous flux
values at nodes. Most common is the technique basically proposed by Hinton
and Campbell [251], which has proved to be quite widely used [590]. Yeh [578]
firstly introduced such type of global smoothing in groundwater modeling to
compute precise Darcy fluxes. A global finite element approximation of a smoothed
(continuous) flux Qj can be written as

Qj.x; t/ D
X

j

Nj .x/ Qjj .t/ (8.403)

Suppose an unsmoothed (discontinuous) flux is given by j (8.402), then the smooth
function which provides a best fit in the least squares sense over the domain ˝ can
be obtained from a minimization of the functional

I D
Z

˝

.Qj � j/2d˝ ) min (8.404)

The minimization procedure

@I
@Qji
D
Z

˝

2.Qj � j/ @
Qj

@Qji
d˝ D 0

D
Z

˝

Ni.Qj � j/d˝ D 0
for i D 1; 2; : : : ; NP (8.405)

results in a system of linear equations to solve for the nodal vector of smoothed
fluxes Qjd for each vector component d D 1; : : : ;D in <D , viz.,

O � Qjd D Fd .d D 1; : : : ;D/ (8.406)

where O represents a mass (smoothing) matrix and Fd is the RHS d�component
flux vector involving the unsmoothed relations. They are formed in the finite element
assembling procedure as

O D Oij D
X

e

�X

I

X

J

Oe
IJ


e
Ii


e
Jj

�

Fd D Fid D
X

e

�X

I

F e
Id


e
Ii

� (8.407)
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where the element matrix and element vector are formed by

Oe
IJ D

Z

˝e

N e
I N

e
J d˝

e

F e
Id D �

Z

˝e

N e
I

NBNX

J

DX

l

�
De
dl

@N e
J

@xl
eJ
�
d˝e

.d; l D 1; : : : ;D/ (8.408)

It can be easily seen that the least squares global smoothing is equivalent to the
Galerkin weak statement directly applied to (8.400). The smoothing matrix O and
the RHS vector Fd may be evaluated using numerical integration as described in
Sect. 8.12. However, the complete solution of the linear matrix system (8.406) has
been found too costly and furthermore in many cases unnecessary. The following
smoothing procedures will be accordingly the preferred techniques.

A cost-effective alternative to (8.406) appears if the element smoothing matrix
O is lumped by a row-summing technique (see Sect. 8.13.2) for each element e

Oe
IJ D ıIJ

Z

˝e

N e
I d˝

e (8.409)

In doing so, there is no need anymore to solve the linear equation system (8.406).
Instead, the smoothed flux can be explicitly evaluated by

Qjd D O�1 � Fd .d D 1; : : : ;D/ (8.410)

where the inverse of the diagonal matrixO�1 effects for each node a division by the
sum

P
e

R
˝e d˝

e of the surrounding element patch. This lumped form of global
smoothing (8.410) can be recognized as an area/volume-weighted averaging for
nodal flux values. However, this area/volume-weighing strategy has an essential
drawback for irregular meshes: It weights larger elements more than smaller
elements notwithstanding that larger elements imply presumably less accurate
flux computations. To weight the more accurate smaller elements than the less
accurate larger elements, the inverse area/volume-weighted averaging could be
chosen instead [209], however, its foundation lies outside of the Galerkin-FEM
framework. Thus, the following local smoothing and recovery strategies will be
preferred.

8.19.1.2 Superconvergent Flux Evaluation and Local Smoothing

In FEM there is the phenomenon of superconvergence [590], which is referred to
optimal sampling points for which derivatives are more accurate than elsewhere. In
particular, Gauss quadrature sampling points (cf. Sect. 8.12) exhibit superconvergent
behavior and have shown the suited locations x to evaluate derived quantities
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having best accuracy.17 Such a superconvergent flux evaluation means that the
discontinuous flux j.x.η/; t/ of (8.402) has to be sampled at the Gauss points with
the local coordinates ηp .p D 1; : : : ; m/ within each element e, i.e.,

j.x.η/; t/! je.ηp; t/ D �
NBNX

J

De � rNe
J .ηp/ 

e
J .t/ .p D 1; : : : ; m/

(8.411)

where ηp is the vector of local coordinates, e.g., .�p; �p; �p/ for a 3D element, and
m is the total number of Gauss points. Their locations in 2D and 3D elements are
displayed in Fig. 8.17. Conveniently, m is chosen by the same number of element
nodesNBN so that the Gauss sample points can be related to corresponding element
nodes (see Fig. 8.48).

Now, the smoothing of the discontinuous flux is considered over individual
elements, termed local smoothing. It is assumed that the smoothed flux function
Qje.η/ is a least squares fit to the selected values je.ηp/ at the Gauss points
p D 1; : : : ; m for each element e separately. In using the least squares procedure of
Sect. 8.19.1.1 to an individual element the following local equation system results
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e

1

C
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.d D 1; : : : ; D/ (8.412)

17Superconvergence of the derivatives can be shown for the Gauss points, at least for quadrilateral
elements [590]. On the other hand, the location of the superconvergent points for triangular
elements is not fully known. Zienkiewicz and Zhu [594] propose to use optimal points, for instance
the central points for linear triangles.
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Fig. 8.49 Element patch surrounding the particular node � at which a globally smoothed flux is
computed on the basis of extrapolated or shifted superconvergent flux values sampled at Gauss
points�

to solve the smoothed flux d�components Qj eId at the local nodes I D 1; 2; : : : ; NBN

of an element e from the superconvergent flux d�components j ed .ηp/ according
to (8.411) sampled at Gauss points p D 1; : : : ; m D NBN. Simple relations are
obtained from (8.412) for elements having a constant Jacobian in d˝e D jJe jdη,
see derivations in Appendix H. For example, for a rectangular and parallelogram 2D
element by using 2 � 2 Gauss points (listed in Table 8.2) the following expression
can be derived
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(8.413)

to compute directly the smoothed flux components Qj eId at the corner nodes I D
1; 2; 3; 4 from the superconvergent flux components at Gauss points I; II; III; IV
(illustrated in Fig. 8.48), where j edI D j ed .� 1p

3
;� 1p

3
/, j edII D j ed .

1p
3
;� 1p

3
/,

j edIII D j ed .
1p
3
; 1p

3
/ and j edIV D j ed .� 1p

3
; 1p

3
/. It can be easily seen that such

a formula of local smoothing represents nothing more than a local scheme to
interpolate/extrapolate Gauss point values to nodal point values [251].

Unlike global smoothing, the local smoothing strategy does not produce unique
flux values at nodes and therefore an appropriate averaging of the superconvergent
flux values is needed. Consider for example the element patch surrounding the
particular node at which a unique flux has to be computed as shown in Fig. 8.49.
For each element of the patch the superconvergent flux values determined at the
Gauss sampling points can be either (1) interpolated/extrapolated to the particular
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node by using solutions of (8.412), exemplified for 2D rectangular elements in
form of (8.413), or (2) without any interpolation, by a simple assignment (shift)
of Gauss-point fluxes nearest to the particular node. The latter strategy is commonly
acceptable, in particular for linear elements, because the derivatives usually vary
only slightly or are even constant within the element. In doing so, each nodal
contribution of elements sharing the particular node is summed up and finally
averaged in the following ways. The simplest method is the arithmetic mean for
the global node i in the form

Qji D 1

N˙

NẊ

e

jei (8.414)

to determine the smoothed flux Qji at the node i , where N˙ is the number of
patch elements surrounding the node i and jei is the superconvergent flux of
element e assigned or extrapolated to node i . Alternatively, as discussed above,
an inverse area/volume-weighted averaging can be favorable to attain an improved
approximation for more irregularly shaped elements of a patch. It reads

Qji D 1
PN˙

e we

NẊ

e

wejei (8.415)

with the weights

we D

8
<̂

:̂

1

xe

1D
1
Ae

2D
1
V e

3D

(8.416)

The averaging techniques in combination with local smoothing the supercon-
vergent flux values have proved to be accurate comparable to global smoothing
procedures. Instead of nodal averaging, however, an improved method exists in
which a polynomial expansion is used on an element patch fitting locally the
superconvergent points in a least squares manner, known as superconvergent patch
recovery (SPR) to be described next.

8.19.1.3 Superconvergent Patch Recovery (SPR)

Zienkiewicz and Zhu [594] have proposed a powerful and accurate method of
computing derivatives via a direct polynomial smoothing, which leads to super-
convergent flux values at all and not only at certain Gauss sampling points within
the finite element, called superconvergent patch recovery (SPR). In this method a
polynomial expansion of the function Qj.x/ describing the derivatives is used on
an element patch surrounding the interelement node at which the nodal derivatives
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Fig. 8.50 Element patches of linear quadrilateral elements in 1D, 2D and 3D. Polynomial
expansion of linear function Qj .x/ describing the derivatives at superconvergent Gauss points� is

used on the element patch surrounding the node� at which recovery is desired. Its nodal value �
is obtained by evaluating the resulting polynomial

have to be determined (recovered). The polynomial is chosen in the same order as
occurring in the used finite element approximation of the primary variable, which
achieves superconvergent accuracy everywhere if this polynomial is made to fit the
superconvergent Gauss sampling points in a least square manner [209, 590]. Let
us consider for example the linear polynomial expansion of the derivatives applied
to element patches of linear quadrilateral elements in 1D, 2D and 3D as shown in
Fig. 8.50. The following three working steps are needed:

1. The derivatives are evaluated at the superconvergent Gauss points�.
2. A least-squares fit through the Gauss points is made with a linear polynomial.
3. The superconvergent nodal derivatives � are obtained by evaluating the result-

ing polynomial at the patch node �.

Having determined the derivatives j.x/ at the Gauss points according to (8.402)
we introduce the linear polynomials for the superconvergent (smooth) derivatives in
the form

Qj.x/ D

8
<̂

:̂

˛ C ˇ x 1D

˛ C ˇ x C �y C ı xy 2D

˛ C ˇ x C �y C ı zC � xy C  yzC 	 zx C � xyz 3D

(8.417)

where x D .x y z/T are the Cartesian coordinates and ˛; ˇ; �; ı; �; ; 	; � are
unknown coefficients to be determined. Note that the mixed terms in (8.417) does
not exist for 2D triangular and 3D tetrahedral elements. Now, the method of least-
squares is applied to minimize the sum of the squares Qj.xi / � j.xi / over all Gauss
points i D 1; 2; : : : ; n encountered in the element patch, i.e.,

I D 1
2

nX

iD1

�Qj.xi /� j.xi /
2 ) min (8.418)
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where n D mN˙ (m= number of Gauss points per element, N˙ = number of patch
elements). For example, the minimization of I D 1

2

Pn
iD1Œ˛Cˇ xiC�yiCı xiyi�

j.xi ; yi /�
2 for the 2D polynomial with respect to the four unknown coefficients

yields

@I=@˛ D 0 DP
i ˛ C ˇ xi C �yi C ı xiyi � j.xi ; yi /

@I=@̌ D 0 DP
i Œ˛ C ˇ xi C �yi C ı xiyi � j.xi ; yi /�xi

@I=@� D 0 DP
i Œ˛ C ˇ xi C �yi C ı xiyi � j.xi ; yi /�yi

@I=@ı D 0 DP
i Œ˛ C ˇ xi C �yi C ı xiyi � j.xi ; yi /�xiyi

(8.419)

This leads to the local 4 � 4 linear system .
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to solve for the polynomial coefficients ˛; ˇ; � and ı. Then, the recovered derivative
at an interelement node j can be easily computed from

Qj.xj ; yj / D ˛ C ˇ xj C �yj C ı xj yj (8.421)

Similar recovery expressions can be derived for 1D and 3D element patches. The
additional numerical cost in SPR is acceptable because the equation system like
(8.420) remains small. The total effort usually is smaller than global smoothing
and larger than local smoothing, however, in favor of an improved accuracy of the
derivatives at the nodes. A robust implementation of SPR requires that the rank of
the resulting local equation system, e.g., (8.420), must be equivalent to the number
of terms a used in the polynomial expansion [326]:

n  a (8.422)

where a D 2 in 1D, a D 4 for quadrilateral and a D 3 for triangular elements in 2D
and a D 8 for quadrilateral and a D 4 for tetrahedral elements in 3D. Thus, there
is a minimal number of elements N˙ in an element patch to make the resulting
local equation system solvable. Hence, for linear triangles N˙ has to be greater
than or equal to three. To overcome this difficulty in a robust recovery procedure
the number of sampling points m is set at least equal to the number of terms a in
the polynomial expansion regardless of achieving actual superconvergence for the
recovered solution.
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8.19.2 Computing First Derivatives at Exterior or Interior
Boundaries: The Consistent Boundary Flux Method
(CBFM) and Budget Analysis

8.19.2.1 Consistently Derived Boundary Flux Based on Weak Forms

In the previous Sect. 8.19.1 appropriate postprocessing methods for determining
fluxes j D �Pj D �rNj j at nodal points are introduced. Now, we could assume
that those nodal fluxes are also suitable to evaluate boundary fluxes qn in a way
such as

qn D �
X

j

j .D � rNj / �n
ˇ
ˇ
�

(8.423)

where n is the unit normal vector to the boundary � and j is the given solution of
the primary variable at nodal points j . Boundary fluxes are needed for evaluating
balance quantities in a budget analysis, for example balanced boundary fluxes
through exterior Dirichlet-type boundary �D or Cauchy-type boundary section �C
of the model domain ˝ or through interior boundaries �I of subdomains ˝I as
part of ˝ (Fig. 8.51). However, the numerical differentiation in the form (8.423)
is not a sufficiently accurate and reasonable expression of a discrete boundary flux
because it does not guarantee a proper balance condition at the local position of
the boundary. Additionally, (8.423) requires an actual construction of n, which is
cumbersome and often quite ambiguous if the boundary is not smooth. In a sum, the
discrete boundary flux in the form of (8.423) has not the required quality of a locally
balanced flux and is accordingly rather inappropriate for any balance evaluation.

To overcome the difficulties with (8.423) the consistent boundary flux method
(CBFM) satisfies the requirements for local balance accuracy as suggested by
Gresho et al. [213]. It has been shown that CBFM (and related methods) leads to
conservative (consistent) flux quantities, e.g., [47, 69, 148, 355, 403]. To obtain a
consistent approximation to the boundary flux

qn D
(
.q �D � r/ � nˇˇ

�
for the divergence form of ADE

�D � r �nˇˇ
�

for the convective form of ADE
(8.424)

we directly utilize the weak statements (8.46) and (8.53) of the governing balance
equations for divergence form and convective form, respectively. Applying the
Galerkin finite element weighting we find the appropriate weak formulation

Z

�

Ni qn d� D �
Z

˝

Ni
@.R/
@t

d˝ C
Z

˝

q � rNid˝ �
Z

˝

rNi � .D � r/d˝ �
Z

˝

Ni.# �H �Qw/d˝ (8.425)
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Fig. 8.51 Mesh of domain ˝
with discrete exterior
boundary sections �D and �C
as well as interior boundary
�I enclosing subdomain
˝I � ˝

for the divergence form of ADE and

Z
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Ni qn d� D �
Z

˝

Ni KR@

@t
d˝ �

Z

˝

Niq � rd˝ �
Z

˝

rNi � .D � r/d˝ �
Z

˝

Ni Œ.# CQ/ �H �Qw�d˝ (8.426)

for the convective form of ADE, where the primary variable

 D
X

j

Njj (8.427)

is now known from the approximate finite element solution j given at each
nodal point j and current time tnC1. These weak formulations allow a consistent
computation of the boundary flux qn. In doing so, we expand qn in the finite element
context as

qn D
X

j

Nj qnj (8.428)

where qnj is the nodal boundary flux to be determined on � and at evaluation time
tnC1. Inserting (8.427) and (8.428) into (8.425) and (8.426) the following matrix
system results

M � qn D �O � Pφ � .ACC CR/ � φCQ (8.429)
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where

qn D qnj D

0

B
B
B
@

qn1

qn2
:::

qnNP

1

C
C
C
A

(8.430)

is the nodal vector of the boundary flux and

M D Mij D
X

e

�X

I

X

J

M e
IJ


e
Ii


e
Jj

�

Me
IJ D

Z

� e
N e
I N

e
J d�

e
(8.431)

is the boundary mass matrix, which couples qnj to its nearest neighbors of � . The
matrices O, A, C and R as well as the RHS vector Q appearing in (8.429) are
already given by (8.103)–(8.105). The assembly of (8.429) is done in the usual
way at element level, except that only those elements with nodes on � need be
considered, i.e., the linear matrix sytem (8.429) is solved only for a subset of NP

nodes because all contributions to nodes which do not belong to � are irrelevant.
The linear system (8.429) is solved for the nodal boundary flux qn on � , where
the RHS of (8.429) is built up with the known solution φ and its time derivative
Pφ at evaluation time tnC1. We recognize that the CBFM is a strategy in which the

‘forward’ solution system (8.100) is reversely solved on � �nodes with known φ
and Pφ. Babuška and Miller [18] have shown that the consistent boundary fluxes
exhibit superior convergence behavior, i.e., superconvergence.

Remark. The equation (8.429) represents the consistently derived flux having the
following remarkable properties: (1) If this flux is computed on a Dirichlet boundary
�D , it will lead to the same φ when imposed as a Neumann-type BC, i.e., qn and
φ are equivalent and exchangeable as BC’s. This means that with a known φ the
domain ˝ can arbitrarily be subdivided into subdomains ˝I � ˝ (Fig. 8.51)
forming nonoverlapping interior and/or exterior boundaries of Dirichlet type (φ
is prescribed there) formed along mesh edges/faces �I on which the consistent
boundary flux is computable. (2) The boundary flux guarantees the appropriate
approximation to the governing balance equation both globally and locally. The
smallest subdomain can be even each single element˝I ! ˝e so that the boundary
flux on �I ! � e also guarantees conservation according to the local balance with
(8.429), see Sect. 8.19.3 for further discussion.

8.19.2.2 Lumped Solution

To avoid the solution of the linear system (8.429) the cost-effective alternative is to
invoke mass lumping forM , i.e.,
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M D Mij D ıij

Z

�

Nid� (8.432)

With mass lumping (8.432) the nodal boundary fluxes in (8.429) become uncoupled
and can be explicitly computed from

qn D �M�1 � �O � PφC .ACC CR/ � φ �Q (8.433)

8.19.2.3 Integral Boundary Flux

Alternatively to (8.433), we can simply sum up the contributions of the system for
each row i to obtain the integral boundary balance flux at the boundary node i

Qni D �
Z

�

Ni qnd�

D �
X

j

Mij qnj

D
X

j

�
Oij Pj C .Aij C Cij CRij/j �Qi


; .j D 1; : : : ; NP/

(8.434)

or in matrix form

Qn D �M � qn
D O � PφC .ACC CR/ � φ �Q (8.435)

where the sign of Qni D Qn is used in accordance with the definitions of well-
type SPC terms (cf. Sect. 6.3), i.e., a positive Qn corresponds to a point sink. The
integral boundary flux Qn D �M � qn is used in a budget analysis in which the
balance quantities on boundaries � are determined at evaluation time tnC1. It is also
required in constraint formulations for BC’s (see Sect. 6.4).

8.19.2.4 Auxiliary Problem Formulation for Convective Form of ADE

In use of the convective form of ADE the boundary flux is dispersion/diffusion-
controlled qdn D �D �r �n

ˇ
ˇ
�

(8.424) according to the basic weak statement. For a
budget analysis it is also desired to quantify the missing advective part of a boundary
flux qan D q �n

ˇ
ˇ
�

, where q is the advective flux. We recall that the convective form
of ADE results from the substitution of mass conservation, cf. (3.45). To obtain
the total boundary flux qn D qan C qdn we have to retrieve the substituted mass
conservation via an auxiliary weak formulation. Let us consider for example the
mass conservation equation given in Table 3.7 and multiplying all terms by . It
results
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where h, the hydraulic head, and s, the saturation, are another primary variables
which are assumed to be known from a separate finite element solution of the flow
equation. Using the product rule of differentiation

r � .wq/ D q � rwC wr � q C wq � r (8.438)

and employing the Gauss’s integral theorem (2.77) on the LHS term of (8.438) we
obtain from (8.437)

Z

�

wq � nd� D
Z

˝

rw � qd˝ C
Z

˝

wr � qd˝ C
Z

˝

w.QCQEOB/d˝ �
Z

˝

w
�
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@h

@t
C "@s

@t

�
d˝ (8.439)

Now, using the Galerkin weak formulation w ! Ni , invoking the Darcy law to
express the flow vector as q D �krKf� � .rhC �e/ (cf. Table 3.7) and expanding
the known variables  DP

j Njj , h DP
j Njhj and s DPj Nj sj in the finite

element context, we find
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or with expanding qan D
P

j Nj q
a
nj

M � qan D �U.φ/ � h � V .h/ � φCX.φ/ � Y .φ; s; Ph; Ps/ (8.441)

to solve the advective boundary flux vector qan at evaluation time tnC1, where the
matrices U and V are related to the 1st and 2nd RHS-terms and the vectors X
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and Y are related to the 3rd and 4th RHS-terms of (8.440). It is assumed that the
solutions φ, h, s and the time derivatives Ph and Ps are known. Dependence of the
solution vectors φ, h, s, Ph and/or Ps in U , V , X and Y are shown in parentheses.
Finally, we can combine (8.429) and (8.441) to find the expression for solving the
total consistent boundary flux qn D qan C qdn in the form

M � qn D �O � Pφ � ŒACC CRC V .h/� � φ �U.φ/ � hC
X.φ/ � Y .φ; s; Ph; Ps/CQ (8.442)

associated with the convective form of ADE.

8.19.2.5 Illustrative Example

To clarify the consistent flux method let us consider a simple, however, quite
representative and illustrative example [213]: A steady-state diffusion problem with
a varying source in one dimension x. The corresponding basic PDE is

� r2 D H.x/; 0 � x � 3 (8.443)

which has to be solved for  D .x/ subject to the BC’s

 D
�
0 at x D 0 and
0 at x D 3 (8.444)

and with the source function

H.x/ D
�
0 for 0 � x < 2 and
6 for 2 � x � 3 (8.445)

The exact solution is

.x/ D
�
x for 0 � x � 2
�3x2 C 13x � 12 for 2 � x � 3 (8.446)

which is plotted as the lower solid curve in Fig. 8.52. The exact boundary flux
qn D �r �n D �@=@xj� through the outer boundary at x D 3 can be simply
derived from (8.446) as qn D 5.

The problem is approximated by using just three linear elements, each of unit
length 
x D 1 (Fig. 8.52). The finite element discretization leads to the following
matrix system (see Appendix H.1, note that incoming and outgoing gradients are
canceled at interior element boundaries due to their opposite signs):
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The BC’s (8.444) giving 1 D 4 D 0 are incorporated in (8.447), cf. Sect. 8.16.
Then, the following discrete equations result

1

x
.22 � 3/ D 0 (8.448)

and

1

x
.�2 C 23/ D H 
x

2
(8.449)

Hence, with 2 D 1 and 3 D 2 the finite element solution is exact at the nodes (see
the dashed line in the lower curve of Fig. 8.52).

Now, suppose that the flux qn at the boundary x D 3 is desired. If the
conventional nodal flux evaluation according to (8.423) is employed, we find (cf.
Appendix H.1)

qn D � 1

x
.�3 C 4/ D 2 (8.450)
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which is different to the exact solution of 5. In contrast to (8.450), the consistent
boundary flux results from (8.447) (resolving the last row for qn with the given
�solution):

qn D H 
x
2
� 1


x
.�3 C 4/ D 5 (8.451)

which agrees with the exact solution. It is obvious that although (8.450) is in fact
the true slope of the approximate solution, the CBFM solution (8.451) yields the
correct balanced flux, which properly accounts for both the source term in the finite
element and the diffusion at x D 3. We can even proof the local balance for each
element if we solve the consistent boundary flux for a separate element. Consider,
for example, the last element e, .2 � x � 3/:

1


xe

�
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�1 1
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�
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D
�
He 
xe
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xe
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�
��q�

n

qC
n

	

(8.452)

It yields q�
n D �1 and qC

n D 5 as left-sided and right-sided boundary flux of the
element, respectively. Thus, the element balance is exactly satisfied with

He
xe C q�
n � qC

n D 6 � 1� 5 D 0 (8.453)

Finally, to demonstrate consistency in the finite element solutions, let us solve
the problem by using a Neumann-type BC qN at x D 3, where we use the derived
value for qn from (8.450): qN D qn D 2. The corresponding nodal equations are for
this case

1

x
.22 � 3/ D 0

1

x
.�2 C 23 � 4/ D H 
x

2
1

x
.�3 C 4/ D H 
x

2
� qN

(8.454)

The solution to (8.454) for qN D 2 is 2 D 4, 3 D 8 and 4 D 9, which is
displayed as the dashed upper curve in Fig. 8.52 in comparison to the exact solution
for qN D 2 given as  D 4x for 0 � x � 2 and  D �3x2C16x�12 for 2 � x � 3.
On the other hand, using qN D 5 from (8.451) we retrieve the original result as
2 D 2, 3 D 3 and 4 D 0. Thus, it demonstrates that only the consistently derived
flux can be applied as a natural BC to recover the original solution obtained with
Dirichlet-type BC’s. Although we have shown only a 1D problem, the same essential
issues are given in multidimensional and transient problems [209, 213, 277].

8.19.3 Continuous Finite Element Approach Is Locally
Conservative

The basic model equations which are solved via approximate methods represent bal-
ance laws for conserving physical quantities such as mass, momentum and energy.
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Accordingly, the used numerical approach should also respect these conservation
equations both globally and locally. Conservativity (see definition in Sect. 1.2.2)
enforces that incoming and outgoing fluxes through interior and exterior boundaries
of a global domain and its subdivided subdomains have to be conserved and
consistent with the source/sink and storage effects occurring in the balance volumes,
otherwise the method is nonconservative which can produce artificial sources and
sinks, changing the balance both locally and globally. Nonconservative methods are
to be declined to avoid erroneous solutions.

Local conservativity means that conservation is guaranteed for each of the
smallest discrete unit, i.e., for each element (or cell), regardless of mesh (grid) size.
However, local conservativity does not mean local accuracy. The problem solution
may be inaccurate, but will, nevertheless, be conservative. Repeatedly, it is believed
that finite element methods are not locally conservative. But, this is a misbelief
(and in part a strange discrediting of FEM) which has been refuted in a number
of papers, see e.g., [47, 89, 148, 277, 355]. Obviously, there is a misunderstanding
on both the basic conservation law structure of the FEM and the computation of
local fluxes. A major reason is apparently in the misuse of nodal derivatives in
form of (8.402) or (8.423) as balance fluxes. Indeed, those nonconsistent fluxes
obtained from a numerical differentiation are not necessarily conservative and can
cause significant local balance errors [47, 148, 355, 578]. The simple example of
Sect. 8.19.2.5 has evidently shown the importance of a suitable flux computation for
balance evaluations.

The present continuous finite element approach is based on an elementwise
continuous approximation, see Sect. 8.7. It guarantees continuity up to first deriva-
tives (fluxes) even at element interfaces. Having this property for C0 continuous
basis functions, the subdivision of the global integrals into subdomains, elements
and subboundaries can be done via (8.62) without any interelement residual.
As a consequence, fluxes between adjacent elements cancel since the flux is
contained within the element, while fluxes exposed on the external boundary do
not. With other word, the fluxes appears only on external (global) boundaries, while
fluxes interchanging between adjacent elements remain hidden during the usual
computation. However, we can evaluate this type of flux as consistent boundary flux
qn. In Sect. 8.19.2 the CBFM is described which provides precise boundary fluxes at
any exterior or interior boundaries of a meshed domain coinciding with the element
edges or faces. If the external boundary � is used, the consistent boundary fluxes
determine the global conservation of the domain N̋ D ˝ [ � , if the boundary �I
refers to a subdomain ˝I � ˝ , such as illustrated in Fig. 8.51, the boundary flux
measures the exchange between the adjacent subdomain and accordingly determines
the conservation of the subdomain N̋ I D ˝I [ �I , and finally if the boundary is
even chosen as the element boundary � e , the resulting boundary flux measures the
conservation of the single element N̋ e D ˝e [ � e (Fig. 8.53).

Now, we can utilize the weak formulations (8.425) and (8.426) to find the
boundary flux qen of each single element e in form of element conservation laws:
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for the divergence form of ADE and
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(8.456)

for the convective form of ADE, where I D 1; : : : ; NBN. Similar to (8.434) and
(8.435), respectively, we can summarize (8.455) and (8.456) as follows

Qe
nI D �

Z

� e
N e
I q

e
nd�

e

D �
X

J

M e
IJ q

e
nJ

D
X

J

�
OIJ PeJ C .AeIJ C Ce

IJ CReIJ/eJ �QI


; .J D 1; : : : ; NBN/

(8.457)
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Fig. 8.54 Element conservation: The consistent boundary flux qn. N̋ e/ is the conservative redistri-
bution of the integral element fluxQe

nI in terms of the element basis functionsNe
I , I D 1; : : : ; NBN

(Modified from [277])

or in matrix form

Qe
n D �M e � qen
D Oe � Pφe C .Ae CCe CRe/ � φe �Qe (8.458)

with

Me
IJ D

Z

� e
N e
I N

e
J d�

e (8.459)

where qen is the element boundary flux andQe
n D Oe � PφeC.AeCCeCRe/�φe�Qe

is the integral element flux (Fig. 8.54). By summing (8.457) over I D 1; : : : ; NBN,
we see that

Z

� e
qend�

e C
X

I

Qe
nI D 0 (8.460)

which represents the element conservation. Thus, the sum of the integral element
fluxes is a conserved quantity. The corresponding element boundary flux qen of ele-
ment N̋ e is in equilibrium with the boundary fluxes of the adjacent complementary
subdomain N̋ n˝e (see Fig. 8.53), viz.,
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qn. N̋ e/ D �qn. N̋ n˝e/ (8.461)

It becomes clear that the nodal fluxes Qe
nI and their continuous redistribution qen in

terms of the element basis functions are different but equivalent representations of
the same information [277], viz.,

X

J

Z

� e
N e
I N

e
J q

e
nJd�

e D �Qe
nI (8.462)

Qe
nI D �

Z

� e
N e
I q

e
nd�

e (8.463)

Once Qe
nI is known, qen D

P
J N

e
J q

e
nJ is uniquely defined by (8.462). Likewise, if

qen D qn. N̋ e/ is known, the nodal fluxesQe
nI are uniquely defined by (8.463). These

quantities are fundamental to the local conservativity of the continuous FEM.

8.19.4 Note on Mixed Finite Element Formulations

So far we have considered the basic balance equation in a form in which the
governing flux j D �D �r has been suitably substituted so that only one unknown
function , the primary variable, remains in the scalar governing equations (8.3) or
(8.5). This elimination of j leads to a mathematically well-defined problem with
appropriate BC’s expressed in terms of  or its gradients (8.4) or (8.6). In the FEM
context it leads to an approximation of only one unknown variable i per node i
of a mesh, i.e., degrees of freedom are NDOF D 1, and the resulting matrix system
becomes usually easily solvable. However, in this approach the required knowledge
of the secondary variable in form of the flux j must be obtained as a derived quantity,
which naturally implies a loss of accuracy compared to the accuracy attainable for
the primary variable, notwithstanding the precise evaluation techniques for deriving
j such as described in the preceding Sect. 8.19.1.

The FEM does not restrict per se the formulation to governing equations in
which the flux is eliminated. It is also possible to refer to a formulation where
both  and j are chosen as primary variables. This is called as a mixed finite
element formulation, e.g., [56, 84, 436, 590]. Mixed finite element methods are
inevitable in CFD for solving the coupled system of Navier-Stokes equations
[209], where the eliminatation of fluxes (velocities) from the basic equations is not
possible or restricted. This is quite different to Darcy-based flow equations in porous
media, where a mixed formulation appears as a useful but commonly nonessential
alternative [75, 152, 378]. To illustrate the mixed finite element formulation for the
present class of problems, let us write the governing ADE (8.5) in the alternative
form as
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KR@

@t
C q � r Cr � j C .# CQ/ D H CQw

j D �D � r
(8.464)

and introduce the finite element approximation for both primary variables  and j
as (cf. (8.16))

.x; t/ DP
j Nj .x/ j .t/

j.x; t/ DP
l Md .x/ jd .t/

(8.465)

where Nj and Md represent basis functions at global nodes j and d , respectively,
which must not coincide, and j and jd are the corresponding nodal vectors of
the unknowns  and j, respectively. Now, taking (8.465) and applying the GFEM to
(8.464), in which the weighting functions are in accordance with the basis functions,
we can find the following matrix system
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C� 0
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(8.466)

to solve simultaneously φ D j and J D jd , where
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(8.467)

in which the indices i; j and l; d , respectively, run over the same nodal points.
The mixed finite element formulation in the form of (8.467) includes the following
properties:

1. The simultaneous solution of φ and J leads to a higher accuracy of the flux J
compared to the standard formulation (at the same mesh resolution) in which J
has been eliminated and appears as secondary variable. Indeed, J resulting from
the mixed formulation satisfies implicitly local conservativity.
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2. The higher accuracy of J must be paid by a significant increase in the
computational effort because the increased degrees of freedom (e.g., NDOF D 4

in 3D) considerably enlarge the final equation system to be solved.
3. The resulting matrix system (8.466) forms a saddle point problem, where the

total matrix is not positive definite. It can lead to difficulties in the solving the
equations.

4. The formulation of BC’s for the flux is restricted.
5. The mixed interpolation for  and j must satisfy a compatibility condition,

known as LBB (Ladyshenkaya-Babuška-Brezzi) condition, see e.g., [56, 149,
209], otherwise the mixed formulation does not guarantee stability. The basis
functions Nj and Md are differently chosen. Once subjected to 1st-order
derivatives they have to be C0 continuous functions, otherwise no continuity is
needed. A well-known stable element is the Taylor-Hood element [209], in which
the flux j is interpolated quadratically and the scalar variable  is interpolated
by a linear continuous function such as used by Diersch [130] in free convection
flow modeling in porous media. Other useful stable elements are discussed in
[30, 56, 149, 209, 436], where the Raviart-Thomas element [75] appears suitable
for the present class of porous-media problems [31, 46, 359, 476].

The mixed finite element formulation offered the possibility for obtaining a poten-
tially higher accuracy in the flux computations compared to a standard formulation
(simulated at the same mesh resolution), however, at a significant increase in the
computational effort and at the expense of a reduced robustness and flexibility. This
limits the mixed FEM to only specific (often academic, small-size) problems. In
practical modeling of flow and transport processes in porous and fractured media,
mixed finite element formulations are neither feasible nor necessary in general.
Indeed, the accuracy of fluxes achieved from the standard formulations by using the
derived quantity evaluations as discussed in Sect. 8.19.1 are usually able to provide
equivalently precise flux computations. In the following, we need not to resort to
mixed finite element formulations.



Chapter 9
Flow in Saturated Porous Media:
Groundwater Flow

9.1 Introduction

The numerical simulation of the groundwater flow is one of the standard tasks for
modelers in the field of subsurface hydrology. Groundwater refers to subsurface
water, where the porous medium is fully saturated. Typically, groundwater modeling
is concerned with the motion of subsurface water in aquifers and aquifer systems,
which can be unconfined or confined (see definitions in Sect. 2.2.1), i.e., bounded
by free surface(s) or without the presence of those. Solutions are required for
fully 3D, vertical or essentially horizontal 2D and axisymmetric isothermal flow
of homogeneous flow in saturated porous media with and without free surface(s).
Variably saturated porous media and variable-density flow will be subject of
Chaps. 10 and 11, respectively.

9.2 Basic Equations

9.2.1 3D, Vertical 2D and Axisymmetric Problems

The basic equations have been developed in Sect. 3.10.6 and can be taken from
Table 3.9 for isothermal flow of homogeneous fluids (i.e., no density coupling) in
saturated porous media. It yields

So
@h
@t
Cr � q D Q

q D �K � rh (9.1)

to be solved for the hydraulic head h and the Darcy velocity q, where So is the
specific storage coefficient, K is the tensor of hydraulic conductivity and Q is
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a general source/sink function (Table 3.9). Usually, q is substituted by the Darcy
equation to obtain the governing Richards-type equation (cf. Sect. 3.11) in the form:

So
@h

@t
� r � .K � rh/ D Qh CQhw (9.2)

where the source/sink term Q D Qh CQhw is suitably split into a supply term Qh

and a well-type SPC term Qhw. The PDE (9.2) has to be solved for the remaining
primary variable h subject to a set of BC’s of Dirichlet, Neumann and Cauchy type
as well as well-type SPC as introduced in Sect. 6.3.1,

h D hD on �D � t Œt0;1/
�.K � rh/ � n D qh on �N � t Œt0;1/
�.K � rh/ � n D �˚h.hC � h/ on �C � t Œt0;1/

Qhw D �PwQw.t/ı.x � xw/ on xw 2 ˝ � t Œt0;1/
(9.3)

also the nonlinear BC of a free surface as introduced in Sect. 6.5.1,

�.K � rh/ � n D "e @h
@t
� P

h D z

9
=

;
on �S � t Œt0;1/ (9.4)

and in combination with the IC of the form

h.x; t0/ D h0.x/ in N̋ (9.5)

where "e is the specific yield, z corresponds to the vertical coordinate (aligned
to the gravity direction) and the total boundary is � D �D [ �N [ �C [ �S .
Once the hydraulic head has been solved, the secondary variable of Darcy velocity
q D �K � rh can be evaluated as a derived quantity of known h. The essential
parameters required for solving (9.2) with (9.3)–(9.5) are listed in Tables I.1–I.6 of
Appendix I in accordance with the chosen problem type. Steady-state flow situations
occur if So D 0 (and "e D 0 for �S ¤ Ø) or @h=@t approaches to zero.1

9.2.2 Horizontal 2D Flow in Unconfined Aquifers

The basic equations for the essentially horizontal, vertically averaged flow in uncon-
fined aquifers have been developed in Sect. 3.10.7 and summarized in Table 3.10.
We find

1Optionally, FEFLOW suppresses the time derivative term @h=@t for solving steady-state solutions.
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.BSo C "e/ @h@t Cr � Nq D NQ
Nq D �BK � rh (9.6)

with the variably discharging aquifer thickness

B D h� f B (9.7)

to be solved for the hydraulic head h and the depth-integrated Darcy velocity
Nq D Bq, where S D BSo C "e appears as an effective storage coefficient and
f B is the bottom bounding surface of aquifer (Table 3.10). Substituting the Darcy
velocity Nq in the mass conservation equation we obtain the following Richards-type
equation valid for essentially horizontal 2D flow in unconfined aquifers:

.BSo C "e/@h
@t
� r � .BK � rh/ D NQh C NQhw (9.8)

where the source/sink term NQ D NQh C NQhw is suitably split into a depth-integrated
supply term NQh and a depth-integrated well-type SPC term NQhw. The solution of
(9.8) for the primary variable h is associated with the following BC’s of Dirichlet,
Neumann and Cauchy type as well as well-type SPC (cf. Sect. 6.3.1)2

h D hD on �D � t Œt0;1/
�.BK � rh/ � n D Bqh on �N � t Œt0;1/
�.BK � rh/ � n D �B˚h.hC � h/ on �C � t Œt0;1/

NQhw D �PwQw.t/ı.x� xw/ on xw 2 ˝ � t Œt0;1/
(9.9)

imposed on � D �D [ �N [ �C and with the IC of the form

h.x; t0/ D h0.x/ in N̋ (9.10)

The secondary variable of the Darcy velocity Nq D �BK � rh is evaluated in
a postprocessing computation as a derived quantity of known h. The essential
parameters required for solving (9.8) with (9.9) and (9.10) are listed in Table I.8
of Appendix I.

2 Special Neumann-type and Cauchy-type BC-formulations exist for integral BC’s (cf. Sect. 6.5.4):

�.BK � rh/ � n D Nqh on �N � t Œt0;1/

�.BK � rh/ � n D � N̊
h.hC � h/ on �C � t Œt0;1/

which incorporate the depth integration in the BC values Nqh and N̊
h. This can be beneficial to

prevent a h�dependency in the flux BC’s due to the variable aquifer thickness B D h� f B . For
example, a solution with prescribed Neumann influx qh can lead to a consecutively reduced h and
accordingly a reduced B so that the effective influx Bqn at the boundary section unavoidably tends
to zero. In contrast to qh, a prescription of Nqh would not feature such a self-reinforcing dependency.
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9.2.3 Horizontal 2D Flow in Confined Aquifers

The basic equations for the essentially horizontal, vertically averaged flow in
confined aquifers have been developed in Sect. 3.10.7 and summarized in Table 3.11.
It holds

NSo @h@t Cr � Nq D NQ
Nq D �T � rh (9.11)

to be solved for the hydraulic head h and the depth-integrated Darcy velocity Nq,
where NSo D BSo is the depth-integrated specific storage coefficient and T is the
tensor of transmissivity (3.302). Substituting the Darcy velocity Nq in the mass
conservation equation we obtain the following Richards-type equation valid for
essentially horizontal 2D flow in confined aquifers:

NSo @h
@t
� r � .T � rh/ D NQh C NQhw (9.12)

where the source/sink term NQ D NQh C NQhw is suitably split into a depth-integrated
supply term NQh and a depth-integrated well-type SPC term NQhw. The solution of
(9.12) for the primary variable h is associated with the following BC’s of Dirichlet,
Neumann and Cauchy type as well as well-type SPC (cf. Sect. 6.3.1)

h D hD on �D � t Œt0;1/
�.T � rh/ � n D Nqh on �N � t Œt0;1/
�.T � rh/ � n D � N̊h.hC � h/ on �C � t Œt0;1/

NQhw D �PwQw.t/ı.x � xw/ on xw 2 ˝ � t Œt0;1/
(9.13)

imposed on � D �D [ �N [ �C and with the IC of the form

h.x; t0/ D h0.x/ in N̋ (9.14)

The secondary variable of the Darcy velocity Nq D �T � rh is evaluated in
a postprocessing computation as a derived quantity of known h. The essential
parameters required for solving (9.12) with (9.13) and (9.14) are listed in Table I.7
of Appendix I.

9.3 Finite Element Formulation

The fundamental concepts of FEM are thoroughly described in Chap. 8. Based
on the given principles we use now the GFEM to solve the governing flow
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equations (9.2), (9.8) and (9.12) associated with the corresponding BC’s and IC’s
for the different classes of flow problems stated above. For convenience we only
develop in detail the finite element equations for the fully 3D, vertical 2D and
axisymmetric problems of Sect. 9.2.1. The remaining formulations for the horizontal
2D flow equations in unconfined and confined aquifers will appear rather similar and
can be easily deduced from the given developments.

9.3.1 Weak Form

According to Sect. 8.5 the weak form for (9.2) appears as a special case of the ADE
weak statement deduced from the expression (8.53). We find

Z

˝

wSo
@h

@t
d˝ C

Z

˝

rw � .K � rh/d˝ �
Z

˝

w.Qh CQhw/d˝ �
Z

�

w.K � rh/ � n d� D 0; 8w 2 H1.˝/ (9.15)

where w is a suitable weighting function. Separating the boundary integral of (9.15)
into the four segments� D �D[�N[�C[�S imposed by the Dirichlet, Neumann,
Cauchy-type and free-surface BC’s, respectively, we invoke the BC’s and SPC of
(9.3) and BC of (9.4) to obtain

Z

˝
wSo

@h

@t
d˝ C

Z

�S

w"e
@h

@t
d� C

Z

˝
rw � .K � rh/d˝ �

Z

˝
wQhd˝ C

X

w

w.xw/Qw.t/C
Z

�N

wqhd� �
Z

�C

w˚h.hC � h/d� �
Z

�S

wPd� D 0;

8w 2 H1
0 .˝/ (9.16)

9.3.2 GFEM and Resulting Matrix Systems

Choosing the approximate functional form for the solution h

h.x; t/ 	
X

j

Nj .x/ hj .t/; j D 1; : : : ; NP (9.17)

and using the Galerkin method with the weighting function

w! wi D Ni ; i D 1; : : : ; NP (9.18)

we find the following Galerkin-based finite element formulation of (9.16), viz.,
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The assembly process is used to form the global matrix system of the spatial finite
element discretization

O � PhCC � h � F D 0 (9.20)

where

h D

0

B
B
B
@

h1
h2
:::

hNP

1

C
C
C
A
; Ph D

0

B
B
B
B
B
B
@

dh1
dt

dh2
dt

:::

dhNP
dt

1

C
C
C
C
C
C
A

(9.21)

and the matrices and RHS vector

O D Oij D
X

e

�Z

˝e

Seo NiNjd˝
e C

Z

� eS

"ee NiNjd�
e
�

C D Cij D
X

e

�Z

˝e

rNi � .Ke � rNj /d˝e C
Z

� eC

˚e
hNiNjd�

e
�

F D Fi D
X

e

�Z

˝e

NiQ
e
hd˝

e C
Z

� eC

Ni˚
e
hh

e
C d�

e �
Z

� eN

Niq
e
hd�

eC
Z

� eS

NiP
ed� e

�
�Qw.t/

ˇ
ˇ
i

(9.22)

for .i; j D 1; : : : ; NP/ and .e D 1; : : : ; NE/. The integrals appearing in (9.22)
are integrated on element level in the local coordinates (see Sect. 8.12). Analytical
evaluations of partial integral terms of (9.22) can be deduced from developments
done in Appendix H for selected element types. The differential elements d˝e and
d� e differ for 3D, 2D and axisymmetric problems as given by (8.122)–(8.124),
respectively. The tensor of hydraulic conductivity Ke of element e may be fully
anisotropic in formulations introduced in Chap. 7. Is is important to note that the
resulting discrete system of equations (9.20) is symmetric since the matricesO and
C are symmetric.
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Similarly, we obtain the matrices and RHS vector for the horizontal 2D flow in
unconfined aquifers as

O D Oij D
X

e

Z

˝e

.BeSeo C "ee/NiNjd˝e

C D Cij D
X

e

�Z

˝e

rNi � .BeKe � rNj /d˝e C
Z

� eC

Be˚e
hNiNjd�

e
�

F D Fi D
X

e

�Z

˝e

Ni NQe
hd˝

e C
Z

� eC

NiB
e˚e

hh
e
C d�

e�
Z

� eN

NiB
eqehd�

e
�
�Qw.t/

ˇ
ˇ
i

(9.23)

where Be D he � f Be with he D P
J N

e
J h

e
J and for the horizontal 2D flow in

confined aquifers as

O D Oij D
X

e

Z

˝e

NSeo NiNjd˝e

C D Cij D
X

e

�Z

˝e

rNi � .T e � rNj /d˝e C
Z

� eC

N̊ e
hNiNjd�

e
�

F D Fi D
X

e

�Z

˝e

Ni NQe
hd˝

e C
Z

� eC

Ni N̊ ehheC d� e�
Z

� eN

Ni Nqehd� e
�
�Qw.t/

ˇ
ˇ
i

(9.24)

It is important to note the difference between (9.23) and (9.24) with respect to
the used parameters. While for unconfined aquifer conditions (9.23) the input
parameters Seo , Ke , ˚e

h and qeh are explicitly multiplied by the variable aquifer
thickness Be D Be.he/ for each element e (except, however, the integral supply
term NQe

h), for confined aquifer conditions these parameters have to be input as
integral (already thickness-incorporating) values as NSeo , T e , N̊ eh and Nqeh of element e.
An exception exists for unconfined aquifer conditions (9.23) in using integral
Neumann-type and/or Cauchy-type BC’s on �N and �D , respectively (Sect. 6.5.4).
In this case the surface integrals of (9.23) become the same as in (9.24).

9.4 Time Integration

The matrix system (9.20) has to be solved in time t with the associated IC’s
via suitable single-step semi-implicit or fully implicit time marching recurrence
schemes as described in Sect. 8.13. Most important are the GLS predictor-corrector
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time stepping method combined with an automatic error-controlled time step
selection strategy (cf. Sect. 8.13.5 and Table 8.7)

� O

�
tn
CC

�
� hnC1 D O �

h hn

�
tn
C � 1

�
� 1� Phn

i
C FnC1 (9.25)

where � 2 . 1
2
; 1/ for the TR and BE scheme, respectively. On the other hand, for

user-defined (fixed) time step sizes 
tn the ��method (Sect. 8.13.4) is common

� O


tn
CC�

�
� hnC1 D

� O


tn
�C.1 � �/

�
� hn C

�
FnC1� C Fn.1 � �/

�

(9.26)

where � 2 . 1
2
; 2
3
; 1/ for the Crank-Nicolson, the Galerkin-in-time and the fully

implicit scheme, respectively.

9.5 Free Surface Computation

9.5.1 Requirements

The treatment of free surfaces differs significantly between 2D and 3D problems.
While the formulations of the basic equations for essentially horizontal problems
in an unconfined (or phreatic) aquifer are rather simple, 3D problems can imply
complicate conditions, especially due to

• The existence of multiple (more than one) free surfaces,
• Effects of location of free surface(s) on transport processes in the depth,
• Problems arising if parts of the domain of an aquifer system fall dry, and
• BC’s and IC’s become in dependence on the location of free surface(s).

We can formally distinguish between fixed-mesh and movable-mesh free-surface
fully saturated modeling strategies (Fig. 9.1). The former strategy represents the
classic method often previously preferred in groundwater modeling, which involves
the inclusion of the entire flow domain in the analysis to achieve an allegedly robust
computation. However, it requires a specific treatment of elements which are not or
partially saturated. Unfortunately, such an approach can run into difficulties or can
even fail. The main drawbacks concern:

1. The free-surface problem is commonly solved only in a non-rigorous manner,
i.e., the kinematic BC (9.4) are adapted by ad-hoc approaches (e.g., by introduc-
ing an auxiliary ‘well-term’) such as done in the widely used finite-difference
simulator MODFLOW [363]. Criticisms were summarized by Yeh et al. [581]
and Knupp [313]. While Yeh et al. [581] modeled homogeneous 3D domains for
which a moving technique is much simpler, Knupp [313] developed an improved
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Fig. 9.1 (a) Fixed-mesh free-surface modeling strategy using an invariant (immovable) mesh and
(b) fully saturated water-table modeling approach with moving (variable) mesh

moving grid technique for a finite volume code which allows the computation
of regional situations at complex stratigraphy and heterogeneous conditions.
However, its proposed algorithm permits motion of only the upper portion of
the grid.

2. Special handling is needed if parts of the domain intermediately fall dry. There
are different ‘tricks’ to overcome such situations (e.g., frozen cells, convert-
ing procedures, intermediate deletion of elements). Accordingly, more general
techniques are required to attain robust, balance-accurate and non-oscillatory
solutions.

3. Multiple (more than one) free surfaces in an aquifer system are often difficult to
tackle. The storage coefficients in the layered system become strongly dependent
on the dynamically wetted element conditions.

4. The existence of free-surface conditions associated with mass and heat transport
processes, including density effects, forces to a generalization of the solution
strategy.

Alternatively to a fixed-mesh strategy, the fully saturated modeling approach with
3D moving meshes has shown powerful and appropriate, provided a single coherent
free surface in top position of an aquifer system exists. This approach considers
only the domain below the free surface where the water table is treated as a moving
material interface. It allows an accurate and rigorous modeling of both flow and
transport processes.

9.5.2 Horizontal 2D Flow in Unconfined Aquifers

The GFEM approach to the vertically averaged equation (9.8) leads to a nonlinear
matrix system (9.20) in the form

O.h/ � PhCC.h/ � h� F .h/ D 0 (9.27)
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Fig. 9.2 Unconfined
and confined conditions
in an aquifer (vertical cross
section)

and after applying time integration (9.25) or (9.26) in the form

A.hnC1/ � hnC1 D b.hnC1;hn/ (9.28)

with

A.hnC1/ D

8
<̂

:̂

O.hnC1/
�
tn

CC.hnC1/ predictor-corrector

O.hnC1/

tn

CC.hnC1/� � �method
(9.29)

and

b.hnC1;hn/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

O.hnC1/ �
� hn

�
tn
C � 1

�
� 1� Phn

C FnC1.hnC1/

predictor-corrector
�O.hnC1/


tn
�C.hnC1/.1 � �/

� � hnC
FnC1.hnC1/� C Fn.1 � �/ � �method

(9.30)

due to the h�dependency of the aquifer thickness B D B.h/ D h � f B

as recognized from (9.23), where the nonlinearities are shown in parentheses.
The actually discharging aquifer thickness B differs for unconfined and confined
conditions, viz.,

B D
�

h � f B unconfined condition
f T � f B confined confined

(9.31)

where f T and f B are the top and bottom bounding surfaces, respectively, of the
aquifer as sketched in Fig. 9.2.

The transition from the unconfined (phreatic) to the confined aquifer conditions
is automatically realized in dependence on the computed hydraulic head h related
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to the top and bottom geometry of the aquifer, f T and f B , respectively. However,
to prevent oscillatory effects at the transition state between confined and unconfined
conditions, the computation of the effective storage coefficient S D BSo C "e is
performed by using the smoothing Heaviside function

S D BSo C "e.1 � &/
& D 1

�
arctan.�
h

�
/C 1

2

(9.32)

where 
h D f T � h (Fig. 9.2) is the difference between the aquifer top and
the computed head h, and � 	 10�3 represents a given smoothing parameter.
Accordingly, for 
h  0 unconfined and for 
h < 0 confined conditions occur.

The iterative solution (cf. Sect. 8.18) of the nonlinear system (9.28) is performed
either by a common Picard iteration method of linear convergence rate

A.h�nC1/ � h�C1
nC1 D b.h�nC1;hn/ � D 0; 1; 2; : : : (9.33)

or via a full Newton iteration method of quadratic convergence rate

�
A.h�nC1/C OJ.h�nC1/

 � h�C1
nC1 D OJ.h�nC1/ � h�nC1 C b.h�nC1;hn/ � D 0; 1; 2; : : :

(9.34)

with the partial Jacobian

OJ.h�nC1/ D
@A.h�nC1/
@h�nC1

� h�nC1 �
@b.h�nC1;hn/

@h�nC1
OJij D

X

l

@Ail

@h�j
h�l �

@bi

@h�j

(9.35)

where � is an iteration counter and the partial Jacobian is given by

OJij D
(

1
�
tn
OJ aij C OJ bij � 1

�
tn
OJ cij � . 1� � 1/ OJ dij � OJ fij predictor-corrector

1

tn
OJ aij C � OJ bij � 1
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OJ cij C .1 � �/ OJ eij � � OJ fij � �method

(9.36)

with
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(9.37)
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Fig. 9.3 Free-surface flow in
a 3D aquifer system

We note that the Picard method preserves symmetry of the discrete system of
equations, while the Newton method generates an unsymmetric system matrix due
to the unsymmetry of the partial Jacobian OJ , which increases the computational
effort for the Newton method. In using the GLS predictor-corrector time integration
with automatic time step control a one-step Picard or one-step Newton method is
usually preferred (see Sect. 8.18.4), in which no iteration per time step is executed
and the iterate h�nC1 appearing in (9.33)–(9.37) is replaced by the predictor solution
h
p
nC1. On the other hand, for steady-state solutions .
tn ! 1/ and for transient

solutions with fixed (predefined) time step sizes an iterative cycling is always
required until convergence is achieved

kh�C1
nC1 � h�nC1k
kh�C1

nC1k
� � (9.38)

where � is the error tolerance to be defined.

9.5.3 3D Free-Surface Flow Modeling with Moving Meshes
and BASD Technique

In a 3D aquifer system (Fig. 9.3) involving a coherent free surface on top (and
possibly further free surfaces in deeper locations) the governing flow equation (9.2)
becomes nonlinear due to the kinematic free-surface BC (9.4) consisting of two parts
which have to be satisfied simultaneously on �S : (1) a Neumann-type flux condition
�.K � rh/ � n D "e

@h
@t
� P j�S and (2) a constant pressure condition occurring as

a Dirichlet-type condition h D zj�S . While the first condition is already built in the
�S�surface integral appearing in the finite element formulation (9.20) with (9.22),
it is necessary to find suitable solution strategies for adapting the vertical location
of the free surface to the head solution to satisfy z D hj�S . An appropriate iterative
method is based on vertically moving meshes.
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Fig. 9.4 Prismatic element mesh of a layered aquifer structure

Suppose that a 3D finite element mesh is aligned to a stratigraphic structure
formed by a number of layers and slices and discretized by prismatic elements
(Fig. 9.4, Sect. 15.1.4). The adaptation of such a mesh to a changeable a priori
unknown free-surface location has the advantage that the mesh density is maintained
in domains which are actually discharged. For vertically moving meshes in a fully
saturated modeling approach an accurate and powerful technique is required to
adjust not only the top slice to the free surface location, also the slices of the
inner mesh have to be suitably adapted in accordance with the changed free surface
location to ensure a vertical well-spaced mesh density during mesh shrinkage or
expansion and to avoid any layer intersection. As a consequence of the vertical mesh
movement in a stratigraphical aquifer structure a number of data must be adapted
to the new locations of slices. Material parameters (e.g., conductivities and storage
coefficients) are here of specific concern because they can abruptly change from
layer to layer and possess high contrasts. It is obvious that interpolation of those
parameters onto the new mesh coordinates can smooth parameter discontinuities
at stratigraphic interfaces. Accordingly, a technique is needed which effectively
adapts and carefully reassigns the material parameters at a minimum of parameter
interpolation.

This technique termed BASD (Best-Adaptation-to-Stratigraphic-Data) trans-
forms and joins the model data containing the stratigraphic initial structure to a
moving finite element mesh which is appropriately adapted to the free-surface
locations. In this adaptation process the mesh slices are aligned in such a manner
that the adjusted mesh is exactly fitted to parameter discontinuities if they ever exist.
Remaining slices can be shifted and repositioned to achieve a well-spaced nodal
distribution in the depth without unnecessary mesh refinement and coarsening if
ever attainable. Following criteria are employed to position the material layers:
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Fig. 9.5 Moving mesh BASD technique of parameter adaptation applied to a 3D free-surface
problem: schematized example for a groundwater table rise in time t

• Fit layer interfaces (slices) to interfaces of parameter discontinuity once located
within the domain,

• Distribute remaining slices proportional to layer thicknesses to attain as best as
possible well-behaved mesh distances in the depth, and

• Join parameter for such elements according to partial volumes and surfaces,
which cross and intersect more than one stratigraphic material layer.

The principle of the mesh adaptation process is sketched in Fig. 9.5. The initial
stratigraphy consists of three layers with different isotropic conductivities K1;K2

and K3. At the initial time t0 the water table h is on a lower position. The
mesh is accordingly shrunk where the lower two layers completely fit into the K3

stratigraphy. However, the upper layer crosses between the K2 and K3 stratigraphy
and a special treatment is required here. Such type of cross elements should
be admitted only if unavoidable. A proper 3D interpolation technique has been
developed which allows a data joining for elements intersecting an arbitrary number
of stratigraphic layers as described below. If the water table ascends (Fig. 9.5 at time
t1) the moving mesh totally fits the K2 � K3�stratum while the remaining slice is
used to subdivide the widest nodal spacing, here in the K3 layer. At later time t2 a
further rise of the free surface occurs and the moving mesh slices appear to be well
aligned to the data stratification without any need of interpolation.

The working steps of the BASD technique can be summarized as follows:

1. Compute the hydraulic head hnC1 at the new time plane by solving (9.25) or
(9.26) with (9.22).

2. Determine a new free surface location for the upper slice s D top D 1 of the
moving mesh

z
top
nC1 D hnC1.x; t/ (9.39)

satisfying the head condition of (9.4), where ztop
nC1 corresponds to z�coordinates

of the top slice.
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3. Adjust and distribute the inner slices, indexed by s, according to

zsnC1 D zrig C Lrel.zsn � zrig/; s D 2; 3; : : : ; rig � 1I s D 1) top
Lrel D .ztop

nC1 � zrig/=.z
top
n � zrig/

(9.40)

where zrig is the firstly found rigid (i.e., immovable and time-independent) slice
s counting from top (at least, the lowest slice describing the aquifer base is rigid)
and Lrel is a relation length. Special nesting rules have been developed as for the
subdivision of overdue slices within layers enclosed by two rigid slices:

zsnC1 D zsC1nC1 C 1
ndCnh .z

rig
upper � zrig

lower/ (9.41)

where zrig
upper and zrig

lower are the z�coordinates of the upper and lower rigid slice,
respectively, nd is the number of primary subdivisions and nh is the number of
overdue (hanging) slices caused by slice shifting.

4. Assign the parameter arrays according to the new layer positions. Two cases are
distinguished: (a) achievement of full alignment (no interpolation) and (b) data
interpolation and joining for so-called cross elements (Fig. 9.5).

5. Find out cross elements and join their properties. The joining process differs
between volume-specified materials (such as conductivityK , storage coefficient
So) and area-specified data (such as specific yield "e). For volume-specified
material data Gauss-Legendre numerical integration (cf. Sect. 8.12) is used
to determine the partial volumes ˝e

i of a finite element e intersecting the
stratigraphic contours. The material property Ke of such a cross element is
computed by a partial volume-weighted average as

Ke D 1

˝e

NX

iD1
˝e
i K

e
i (9.42)

where N is the number of intersections and Ke
i are the properties of the

intersected layer.
Similarly, a partial area-weighted averaging process is preferred for areal

properties, e.g., specific yield "ee or infiltration rate P e of element e. However, it
has been found a numerical integration is here insufficient. Analytical formulae
have been developed to determine exactly the intersected areas of an element.
It leads to a telescoping sum to average an areal property Ae in the form

Ae D
lX

iD1
.�i12�

i
13 � �i�112 �

i�1
13 /A

e
i C Œ�l31.1 � �l32/�Ael C

NC1X

iDlC1
.�i�131 �

i�1
32 � �i31�i32/Aei (9.43)
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Fig. 9.6 Moving mesh BASD technique applied to a complex 3D stratigraphy: 3D model cut view
(distribution of conductivities) and moving mesh along a cross section (initial stratigraphy versus
adapted slicing)

with the weights

�imn D
1

1 � hn � zin
hm � zim

i D 1; : : : ; N I m D 1; 3I n D 1; 2; 3 (9.44)

and the definitions

�0mn D 0 and �NC1
mn D 1 (9.45)

written for triangular top and bottom areas of a prismatic pentahedral element,
where Ae and Aei are the averaged and partial areal properties, respectively, hn
and zin correspond to the hydraulic head and the i th stratigraphic z�coordinates
at (local) node n, respectively, and the index l represents the l th intersected layer
for which the partial area is not a triangle, generally a pentagonal area. Equivalent
averages are used for hexahedral elements, where each of their quadrilateral top
and bottom areas are subdivided into four triangles.

The use of the BASD technique for a complex multi-aquifer system is illustrated in
Fig. 9.6. It reveals how the mesh fits and moves through the complex stratigraphy
consisting of a number of aquifers and aquitards. To satisfy the condition (9.39) in a
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moving mesh the final matrix system (9.20) with (9.22), (9.25) and (9.26) becomes
nonlinear

A.hnC1/ � hnC1 D b.hnC1;hn/ (9.46)

for solving hnC1 at the new time plane nC 1, where

A.hnC1/ D

8
<̂

:̂

O.hnC1/
�
tn

CC.hnC1/ predictor-corrector

O.hnC1/

tn

CC.hnC1/� � �method
(9.47)

and

b.hnC1;hn/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

O.hnC1/ �
� hn

�
tn
C � 1

�
� 1� Phn

C FnC1.hnC1/

predictor-corrector
�O.hnC1/


tn
�C.hnC1/.1 � �/

� � hnC
FnC1.hnC1/� C Fn.1 � �/ � �method

(9.48)

The solution of (9.46) is commonly performed via a Picard iteration method. In the
case of using predefined time step sizes
tn in transient flow or solving steady-state
flow problems, the iteration � occurs

A.h�nC1/ � h�C1
nC1 D b.h�nC1;hn/ � D 0; 1; 2; : : : (9.49)

until convergence is achieved

kh�C1
nC1 � h�nC1k
kh�C1

nC1k
� � (9.50)

where � is a defined error tolerance. On the other hand, in using the predictor-
corrector time integration with automatic error-controlled time stepping a one-step
Picard method for transient free-surface flow problems is preferred, in which the
predictor solution hpnC1 is used to linearize (9.49) in the form

A.h
p
nC1/ � hnC1 D b.hpnC1;hn/ (9.51)

Due to the Picard iteration method the resulting discrete systems in form of (9.46)
or (9.49) remain symmetric.
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9.5.4 3D Free-Surface Flow Modeling with Fixed Meshes
and Pseudo-unsaturated Conditions

Indeed, moving mesh strategies for adapting the free-surface location complicates
the computational process. Furthermore, if the free surface is not on the top position
of the schematized aquifer system or if there are more than one free surface in the
aquifer system (e.g., an additional free surface in a lower position) the problem
cannot be solved alone on the basis of moving meshes. In these cases fixed mesh
techniques become inevitable. It is a common practice in classic 3D groundwater
flow modeling in unconfined aquifers to use exclusively fixed grids (e.g., [170,363]).
Fixed grid techniques have to mimic, more or less, unsaturated flow conditions to
control the solution process for saturated, partly saturated or completely dry mesh
elements. Since a physically true unsaturated flow approach is avoided, such kind
of unsaturated flow modeling, here termed as pseudo-unsaturated flow, represents
only a physical approximation and quite different forms of implementation can be
found in the literature (see discussion in [313]). Often, there is actually no rigorous
physical basis in modifying the saturated flow conditions to achieve pseudo-
unsaturated flows. Practically, the scaling of conductivity is used as a contrivance
to obtain the solution in the saturated domain. For instance, in [27] the conductivity
K is assigned to a very small constant value as soon the pressure head  (3.259)
becomes negative: K=1;000 for  < 0 and K if   0. Apparently, this is a crude
controlling procedure since it does not differ between the degrees of saturation of
the elements. Desai and Li [123] have improved the technique for finite elements by
introducing linear relationships of conductivity and storage coefficient as function of
the pressure head  . The linear functions operate as multipliers to the conductivity
and storage terms ranging between maximum (saturated) and minimum (residual)
factors.

The here proposed method is similar to Desai and Li [123], however, instead of
prescribing an auxiliary linear pressure relationship the water (pseudo-)saturation
computed for a finite element is used to ‘down-scale’ all balance terms in a natural
way. The pseudo-saturation sep is determined from the actual filling height of fluid
in an element e (Fig. 9.7b):

sep D sep. / D
˝ef . /

˝e
(9.52)

and the integration of element balance terms is only accomplished over the fluid-
filled volume˝ef of element e, viz.,

Z

˝ef
.:/d˝e 	

Z

˝e

.:/sep d˝
e (9.53)
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Fig. 9.7 Three cases of pseudo-saturation sep : (a) saturated, (b) partially saturated and (c) fully
unsaturated (dry) element e

Accordingly, the pseudo-saturation sep becomes related to the actual geometric
condition of the used spatial discretization. It provides a geometry-consistent scaling
of balance terms and has proved superior to a simple parameter-switching as stated
above. Three cases can be distinguished (Fig. 9.7):

• An element e is considered saturated if   0 at all nodes of the element. Then
it becomes ˝ef D ˝e and sep � 1.

• An element e is considered partially saturated (pseudo-unsaturated) if  changes
its sign at the element nodes (e.g.,  < 0 for the upper nodes and  > 0 for the
lower (at least one) node(s)).

• An element e is considered fully unsaturated (or dry) if  < 0 at all related
element nodes. Since ˝ef have to be positive and non-zero the volume must be
constrained by a minimum. Practically, a minimum filling height (e.g., 1 mm)
is employed to limit ˝ef by ˝ef

r . This leads to a measure of a residual pseudo-
saturation sepr D ˝ef

r =˝
e > 0 for such an element:

0 < sepr � sep � 1; 0 < ˝ef
r � ˝ef � ˝e (9.54)

Hence, the pseudo-saturation sep for each element represents a linear relationship
of the pressure head  (Fig. 9.8), viz.,

sep D

8
ˆ̂
<

ˆ̂
:

1C .1 � sepr/ 

he
for �he <  < 0

1 for   0
sepr for  � �he

(9.55)

where he is the height of element e. The expression (9.55) is similar to the
linear relationship (D.19) of Appendix D used for true unsaturated problem
formulations. The difference of (9.55), however, is in using a capillary fringe
thickness of element height he , which makes the pseudo-saturation dependent on
the spatial discretization.
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Using (9.52) and (9.53) in the finite element equations (9.22) it leads to a natural
approach for evaluating the corresponding integral terms in a weak solution:
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(9.56)

By using (9.56) the solution of the resulting matrix system is equivalent to
(9.46)–(9.51) as described in the previous Sect. 9.5.3. Note that the surface integrals
over � ef

S , � ef
N and � ef

C appearing in (9.56) have to be evaluated in accordance with
the actual filling height  occurring in the corresponding element. The free surface
integral over � ef

S only exists in partially saturated elements where the phreatic
surface lies in the interior of an element volume (this integral has to be evaluated
for a surface which is spanned by the  �heights), otherwise it is dropped for all
saturated and dry elements. On the other hand, BC-related surface integrals � ef

N and
�

ef
C are generally not applied to dry elements.

It should be emphasized that a pseudo-unsaturated modeling approach is suited
to compute the location of a free surface, but, it is widely inappropriate to model a
true unsaturated flow regime. The advantage is in its simplicity and robustness, but it
is usually inferior to a moving mesh strategy with respect to the attainable accuracy.
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9.6 Incorporation of Multilayer Well Flow BC

For 3D flow problems there is the need for modeling well-type SPC’s (9.3) at nodal
points of well discharge in form of multilayer well BC’s as introduced in Sect. 6.5.6.
In the context of FEM multilayer well BC’s can be easily modeled as 1D tubular
discrete features. Then, the governing flow equation of pure homogeneous liquid in
a well bore is, cf. (6.77) and Table 4.5,

AwSow
@h

@t
� Awr � .Kwrh/ D �Qwı.s � sw/ ; w D 1; : : : ; NW (9.57)

with the specific storage coefficient of the well

Sow D
(

1
Lw
C �0g	 phreatic

�0g	 non-phreatic
(9.58)

the cross-sectional flow area of the well bore

Aw D �R2 (9.59)

and

Kw D R2�0g

8�0
(9.60)

by using the Hagen-Poiseuille law (4.51), where r D @=@s is defined here for
the 1D line direction s along the well axis, R is the well radius and Lw is the
length of the liquid-filled well bore (other related variables are defined in Sect. 6.5.6
and Chap. 4). Applying the GFEM procedure to (9.57) similar to the derivation of
the 1D ADE as done in Sect. H.1 of Appendix H, discretizing each well w by a
number of 1D tubular finite elements called discrete feature elements (DFE’s), cf.
Chap. 14, as sketched in Fig. 9.9 and superimposing the contributions for sharing
nodes connected to both the 3D porous-medium elements and the 1D well DFE’s,
the formulation of the finite element matrices and RHS vector of (9.22) extends now
to
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Fig. 9.9 Representation of a vertical and horizontal well configuration in a 3D discretization by
using 1D tubular DFE

where the summation of e runs over all elements, including the 1D DFE’s of all
incorporated wells w, and Sew corresponds to a line tubular DFE segment of well w.
We note that the basis functions Ni vary for 3D elements, ˝e, and 1D DFE’s,
Sew.The additional matrix contributions in O and C of (9.61) for the 1D well-type
DFE’s can be analytically determined as demonstrated in Sect. H.1 of Appendix H.
We obtain for each DFE segment e
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where 
se is the line segment length of the 1D DFE e. In practical applications
the storage in the well casing can often be neglected since AewS

e
ow is usually

small. The well conductivityKw (9.60) implies a high parameter contrast, typically
Kw 	 O.106/m s�1, which ensures a relatively uniform hydraulic head h along the
nodes forming the well axis producing only a slight gradient in the well tube toward
the node representing the exit point of well dischargeQw (at the pump position).
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9.7 Computation of Darcy Velocities and Flow Budget
Analysis

The computation of the Darcy velocity q D �K �rh for 3D flow (9.1) and similarly
with (9.6) and (9.11) for horizontal 2D flow problems is performed in the discrete
form (cf. Sect. 8.19.1)

q.x; tnC1/ D �
X

j

K � rNj .x/ hj .tnC1/ (9.63)

based on the known hydraulic head hj .tnC1/ D hnC1 which has been solved at
each nodal point j D 1; : : : ; NP from (9.25) or (9.26) at the new time plane nC 1.
The evaluation of (9.63) is combined with appropriate smoothing techniques such
as described in Sect. 8.19.1 to obtain Darcy velocities at the nodal points. A typical
Darcy velocity field is exhibited in Fig. 9.10a computed by using superconvergent
flux evaluation and local smoothing (see Sect. 8.19.1.2) providing a precise and
continuous representation of the nodal flow vectors.

On the other hand, the flux computation at boundary sections for the purpose of
a precise flow budget analysis is done via the CBFM as introduced and thoroughly
described in Sect. 8.19.2. The corresponding weak formulation for solving the
consistent boundary flux qn at any exterior or interior boundary section � is given
for 3D flow as

Z
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Z

˝

rNi � .K � rh/d˝ C
Z
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where h D P
j Nj hj is known at tnC1. The consistent boundary flux vector qn is

now solved from the resulting matrix system

M � qn D �O� � Ph �C� � hC F � (9.65)
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(9.66)
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Fig. 9.10 (a) Darcy velocity q field with hydraulic head contours h for a corner flow situation
(cut-out of triangle mesh), (b) balanced boundary flux qn and integral balance fluxQn evaluated at
a Dirichlet-type boundary of given hD on the right vertical side of a closed unit-square box steady-
state flow problem (at K D 1 m d�1 and without sources/sinks) with drawn q and (c) balanced
boundary flux qn on the enclosing boundary of a single finite element separated from the upper
entry corner to indicate local conservativity

R
� e qnd� D 0

exemplified for 3D flow. Similar formulations result for the 2D horizontal flow
equations. Alternatively, the integral boundary balance flux Qn can be directly
evaluated at each boundary node, viz.,
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Qn D �M � qn
D O� � PhCC� � h � F � (9.67)

where Ph and h are known at the corresponding evaluation time tnC1. Typical qn
and Qn are illustrated in Fig. 9.10b,c for a simple unit-square box steady-state
flow problem, where a linearly distributed Dirichlet BC is imposed on the right
vertical side of the otherwise closed box. The computed qn satisfies exactly mass
conservation at the global boundary by

R
�
qn D 0, where the magnitude of mass

entering the domain through the boundary� is in equilibrium with the magnitude of
mass leaving the domain through the same boundary � . Due to the relatively coarse
mesh, we observe that the nodal velocity plot q must not be locally consistent with
the balance flux. This is particularly evident in the element at the upper entry corner
of the box as magnified in Fig. 9.10c. While the approximation of q is limited by its
elementwise constant behavior in linear elements, nevertheless, the boundary flux qn
along the enclosing boundary � e of the single element satisfies local conservativity
by
R
� e
qn D 0.

9.8 Examples

9.8.1 Transient Flow to a Well in a Confined and Unconfined
Aquifer

Les us consider a fully penetrating single pumping well which extracts water from
a porous aquifer at a constant rate. As a result, the pumping well induces a transient
lowering of the water table termed drawdown in the vicinity of the well causing
a cone of depression as sketched in Fig. 9.11 for both confined and unconfined
conditions. We assume flow regimes in the confined and unconfined aquifer, which
provide comparable discharging thicknesses.

For the case of a confined aquifer (Fig. 9.11a) there is an exact analytical solution
firstly presented by Theis (1935) [34, 511]. Theis’ solution is associated with the
fundamental assumptions that the confined aquifer has an infinite areal extent and
a uniform thickness of homogeneous and isotropic porous material. Furthermore,
Dupuit assumption (Sect. 3.5) must be valid, the confined aquifer has a constant
thickness and the aquifer bottom is horizontal, the well discharge is constant, the
well penetrates the entire thickness and well storage effects are negligible. Under
these conditions the Theis’ analytical solution is [34]

h.r; t/ D h0 � Qw

4�T
W.u/ (9.68)
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Fig. 9.11 Drawdown by a pumping well in (a) confined and (b) unconfined aquifer at elapsed
times t0; t1; t2; : : :

with the well function
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D �0:5772� ln.u/C
1X

iD1
.�1/i�1 ui

i � i Š
(9.69)

and

u D rs NSo
4T t

(9.70)

where r is the radial distance (coordinate) measured from the central well axis, h0
is the initial piezometric head, NSo is the constant depth-integrated specific storage
coefficient, T is the constant transmissivity, Qw is the constant pumping rate and
Ei./ is the exponential integral.

For the numerical analysis of Theis’ problem we study four different finite
element schematizations as illustrated in Fig. 9.12:

• Mesh A: horizontal 2D structured discretization of a 30ı-angle wedge configu-
ration as symmetric part of the horizontally circular domain consisting of 1,135
linear quadrilateral elements with 1,368 nodes.

• Mesh B: horizontal 2D unstructured discretization of the complete circular
domain consisting of 4,934 linear triangular elements with 2,506 nodes.
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mesh A mesh B

mesh C mesh D

Fig. 9.12 Used finite element discretizations for simulating the Theis’ problem: mesh A – 2D
horizontal wedge configuration, mesh B – 2D horizontal mesh of the complete circular domain,
mesh C – axisymmetric meridional cross-sectional schematization (vertical exaggeration 3:1) and
mesh D – full 3D schematization (vertical exaggeration 10:1)

• Mesh C: vertical axisymmetric cross-sectional structured discretization formed
by 3,200 linear quadrilaterals with 3,381 nodes.

• Mesh D: full 3D horizontally unstructured discretization formed by 20 mesh
layers consisting of 98,680 linear pentahedral elements with 52,626 nodes in
total.

The meshes have been suitably refined near the pumping well. We note that the
problem formulation with meshes C and D does not need the Dupuit assumption.
Table 9.1 summarizes the parameters used for the simulation. A comparison of the
numerical results with the analytical Theis’ solution is shown in Fig. 9.13 for the
drawdown of the water table h in time at the radial distances r D 2m and r D 10m
from the well and in Fig. 9.14 for the drawdown profiles at time t D 10;000 s. Up to
a time of about 25,000 s the agreement of analytical and numerical results is quite
well. Afterwards, the numerical solutions become influenced by the constant head
BC at the outer boundary of the horizontally circular domain. Note that the Theis’
solution assumes a constant head BC at infinite distance from the well. Clearly,
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Table 9.1 Simulation parameters used for the Theis’ problem

Quantity Symbol Value Unit

Pumping well rate Qw 750 m3 d�1

Wellbore radius R 0:335 m
Outer boundary radius R˝ 300 m
Confined aquifer
Aquifer thickness B 20 m
Top of aquifer f T 20 m
Bottom of aquifer f B 0 m
Isotropic aquifer transmissivity T 10�3 m2 s�1

Specific storage coefficient NSo 10�3 1
Specific storage coefficient of well Sow � 0 m�1

Initial hydraulic head h0 30 m
Integral flux at recharge well Nqnh D Qw

2�R
356:316 m2 d�1

Flux rate at recharge well qnh D Qw

2�RB
17:816 m d�1

Dirichlet-BC at outer boundary hD D h.t; R˝/ 30 m
Unconfined aquifer
Bottom of aquifer f B 0 m
Isotropic hydraulic conductivity K 5 � 10�5 m s�1

Specific storage coefficient So 5 � 10�5 m�1

Specific storage coefficient of well Sow � 0 m�1

Specific yield "e 0:2 1
Initial hydraulic head h0 20 m
Integral flux at recharge well Nqnh D Qw

2�R
356:316 m2 d�1

Dirichlet-BC at outer boundary hD D h.t; R˝/ 20 m
FEM
Initial time step size 
t0 10�5 d
Maximum error tolerance (AB/TR method) � 10�4 1

to improve the drawdown curves for later times the computation domain must be
enlarged.

The numerical results for the several meshes A, B, C and D differ only slightly
and cannot be graphically distinguished in Figs. 9.13 and 9.14. Table 9.2 lists the
actually obtained numerical values of the different meshes in comparison to the
Theis’ solution at time t D 10;000 s.

Due to the free surface BC in unconfined aquifer conditions the flow problem
becomes nonlinear and there is no more an exact analytical solution (although
some approximate solutions exist as discussed in [34]). In unconfined aquifers the
temporal behavior of the drawdown is now significantly influenced by the specific
yield, usually "e � NSo, by which the process is much slower compared to confined
aquifer conditions due to dewatering the unsaturated zone above the water table.
On the other hand, the contraction of the water table in the vicinity of a pumping
well is associated with vertical flow components which can be significant so the
Dupuit assumption of horizontal flow is no more applicable, at least in the near-field
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Fig. 9.13 Analytically versus numerically computed drawdown of water table h in time t at radial
distances r D 2m and r D 10m from the well for confined aquifer condition
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Fig. 9.14 Computed profile of water table h at time t D 10;000 s along the radial distance r from
the well for confined aquifer condition

of the well. We perform the computations for the unconfined aquifer with the
data of Table 9.1. Simulation results obtained by the 2D horizontal Dupuit-based
models are compared with 3D model results in Fig. 9.15. For the 3D models both
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Table 9.2 Drawdown h (m) computed for meshes A, B, C and D at time t D 10;000 s in
comparison to the Theis’ solution

Distance r (m) Theis’ solution Mesh A Mesh B Mesh C Mesh D

2 24.0364 24.0468 24.0591 24.0389 24.0583
10 26.2582 26.2655 26.2737 26.1613 26.2730
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Fig. 9.15 Cut view of moving mesh D (vertical exaggeration 10:1) for free-surface modeling and
computed profiles of water table h at time t D 100 d along the radial distance r from the well for
unconfined aquifer condition
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moving mesh with BASD technique (see Fig. 9.15 for mesh D) and fixed mesh with
pseudo-saturation strategies are applied. The comparison in form of the free-surface
profiles in Fig. 9.15 reveals a reasonable agreement in larger distances from the
well, however, near to the well the water table differs. We observe that Dupuit-
based models give a higher drawdown at the well while 3D modeling approaches do
produce an obviously more realistic inflow field to the well. It is to be noted that the
well flux condition is realized in 3D models via a multilayer well BC (Sect. 6.5.6)
and in 2D horizontal meshes via an integral Neumann-type flux BC (Sect. 6.5.4).

9.8.2 3D Anisotropy and Flow Patterns of Groundwater Whirls

3D anisotropy in layered aquifers can lead to somewhat unusual flow patterns, even
in steady-state flow situations. This was firstly discovered and reported by Hemker
et al. [239, 241], who termed this type of flow pattern as groundwater whirls. The
cause and appearance of groundwater whirls have been thoroughly discussed and
studied using both numerical and analytical solution techniques [22, 240, 370].

9.8.2.1 Two-Layer Crosswise Anisotropy

Hemker et al. [241] considered a box-shaped, two-layer, homogeneous aquifer. The
model box is 200 m long, 70 m wide, and 20 m thick, and consists of only two
layers, each 10 m thick. An anisotropic block located at the center of the box is
150 m long, 20 m wide, and 20 m thick. Inside the anisotropic block, the major
principal directions of the horizontal hydraulic conductivity tensor are orthogonal.
The general flow direction is lengthwise (straight north) and makes an angle of 45ı
with either of these directions (see Fig. 9.16).

The hydraulic conductivity of the isotropic outer area is 1 m d�1. Within the
anisotropic block, the major principal value of the horizontal conductivity tensor
is Kmax D 1 m d�1, and the minor principal value is Kmin D 0:1m d�1, so that the
anisotropy ratio is �aniso D Kmin=Kmax D 0:1. The major principal directions of the
horizontal hydraulic conductivity in the two layers are perpendicular to each other –
southeast-northwest in the upper layer, and southwhest-northeast in the lower layer,
which is referred as a crosswise anisotropy. The vertical hydraulic conductivity in
the isotropic and anisotropic parts is 1m d�1.

The flow in the aquifer is fully confined. The western and eastern sides are no-
flow boundaries, while the short southern and northern sides are open boundaries
with fixed hydraulic heads that differ by 1 m. It is to be noted that the specific value
of the gradient has an effect on the values of the head contours and velocity only,
and does not affect the pattern of head contours and flow lines [241].
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Fig. 9.16 The two-layer
anisotropic model problem
(Modified from [241])

We use a 3D mesh consisting of hexahedral brick-shaped elements, where the
vertical cross section of the two-layer aquifer problem coincides with the x1 �
x2�plane, while the x3�coordinate coincides with the horizontal north direction.
For such a coordinate orientation the Eulerian anisotropic angles have to be defined
for the general rotation matrixA of anisotropy according to (7.12), viz.,

A D
0

@
cos � 0 sin �
0 1 0

� sin � 0 cos �

1

A at  D �90ı
 D 90ı (9.71)

where the rotation is performed about the x2�axis by the angle � as the only
anisotropic angle to be input for the present problem at each layer of the inner
area of the model domain. The mesh used in FEFLOW is shown in Fig. 9.17.
It consists in total of 640,000 hexahedral elements with 667,521 nodes. In the cross-
sectional x1 � x2�plane the nodal distances are 1.25 m in the x1�direction and
0.5 m in the x2�direction for the isotropic outer area and 0.5 m in both directions
for the anisotropic inner area. The nodal distance along the horizontal x3�direction
is chosen always 1 m. The parameters used for the simulation are summarized in
Table 9.3.

We compare the FEFLOW results with the outcome from Hemker et al. [241].
Five flow pathlines are shown in Fig. 9.18, all starting in the upper layer at the
center of the southern model boundary, at depths of 1, 3, 5, 7, and 9 m from the
confined top; the pathlines are numbered 1 through 5 from top to bottom. Isochrone
markers on the pathlines indicate a residence time interval of 10 years, based on
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Fig. 9.17 FEFLOW mesh used for simulating the two-layer anisotropy model problem consisting
of 640,000 hexahedral elements with 667,521 nodes: (a) 3D view, (b) cross-sectional view

30% porosity. The computed total travel times for the five pathlines are compared in
Table 9.4 with the results of Hemker et al. [241]. Figure 9.19 displays the pathlines
in a 3D view, which clearly indicate a typical whirl pattern of the flow field.

There is a reasonable quantitative agreement between Hemker et al.’s and
the present FEFLOW results, however, some differences exist in the pathline
characteristics (Fig. 9.18) and the computed travel times (Table 9.4), which are
obviously caused by the different mesh resolutions used (note that the FEFLOW
mesh is more resolved that Hemker et al.’s mesh). Particularly, pathlines 3, 4, and
5 become increasingly depart from Hemker et al.’s results with progressing travel
time. This has to be expected because these pathlines start at decreasing distance
from the interface of the two layers, where the influence of the strong crosswise
anisotropy becomes more dominant and consequently a higher numerical accuracy
should be required there.

Hemker et al. [241] reported a total discharge of 6.3 m3 d�1. The FEFLOW
simulation result a discharge of 6.18 m3 d�1. Water balance computations for each
layer show that vertical flow components between both layers are induced. We find
an exchanging rate of 3.2 m3 d�1 in both directions at the interface of the two layers,
which is identical to Hemker et al.’s result.
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Table 9.3 Simulation parameters used for the two-layer anisotropy model problem

Quantity Symbol Value Unit

Length of outer area 200 m
Length of inner area 150 m
Width of outer area 70 m
Width of inner area 20 m
Thickness of each layer 10 m
Steady-state flow
Potential difference in north

direction

h 1 m

Impervious boundaries, except
for vertical front and back
faces

Isotropic conductivity of outer
area

Km
1 D Km

2 D Km
3 1:15741 � 10�5 m s�1

Major principal conductivity of
inner area

Km
1 D Km

2 D Kmax 1:15741 � 10�5 m s�1

Minor principal conductivity of
inner area

Km
3 D Kmin 1:15741 � 10�6 m s�1

Eulerian angles for outer area
(all two layers)

 D � D  0 ı

Eulerian angle for inner area
(all two layers)

 �90 ı

Eulerian angle for inner area
(all two layers)

 90 ı

Eulerian angle for inner area
(only upper layer)

� 45 ı

Eulerian angle for inner area
(only lower layer)

� �45 ı

9.8.2.2 Model of Nine-Layer Randomly Distributed Anisotropy

Hemker and Bakker [239] studied a 18 m thick confined prototypical aquifer at
steady state, consisting of nine equally thick layers. The horizontal hydraulic
conductivity is heterogeneous in a 100 m wide section of the model; each layer
in this section is divided in 10 strips of equal width. A cross section perpendicular
to these strips shows a regular pattern of 9-by-10 cells, where each cell is 10 m
wide and 2 m high (Fig. 9.20). On each side of this central zone a 100 m wide
homogeneous block serves to reduce boundary effects.

The major and minor principal values of the horizontal hydraulic conductivity
tensor are 10 and 5 m d�1, respectively, in the entire model. The vertical hydraulic
conductivity is 1 m d�1 in all layers. The general flow direction is in the direction
of the strips (straight north). In the presented model the major principal direction of
the horizontal hydraulic conductivity tensor is also chosen straight north in the two
large side blocks, while it varies between �45ı (N45W, northwest) and 45ı (N45E,
northeast) in the 90 cells of the central zone. To obtain a 2D spatial distribution, ten
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Fig. 9.18 Plan, side, and front view of the two-layer model problem with hydraulic head contours
of both layers and five pathlines (1, 2, 3, 4, 5) starting at different levels in the upper layer on the
southern boundary: (a) results by Hemker et al. [241], (b) FEFLOW results

uniformly distributed anisotropy directions (˛�angle, see Fig. 9.20) were chosen
(�45ı;�35ı;�25ı; : : : ; 45ı) and for each layer these ten values were randomly
assigned to the cells. The resulting distribution is given in Table 9.5. The model size
is 300 by 300 m by 18 m. The east and west sides are no-flow boundaries, while the
south and north sides are open boundaries with fixed hydraulic heads that differ by
0.3 m in all layers.

For the present simulations we choose a similar mesh resolution comparable to
Hemker and Bakker [239]. It is convenient to use again the vertical cross section as
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Table 9.4 Comparison of the computed travel times for the five
pathlines of the two-layer model problem

Travel times (years)

Pathline no. Hemker et al. [241] FEFLOW

1 35.2 35.4
2 40.2 40.6
3 46.7 50.4
4 56.6 55.6
5 57.7 53.2

Fig. 9.19 Whirling flow pattern appearing in the 3D view of the computed flow pathlines
(FEFLOW results)

Kz

layer 9

layer 1

K1K2 α

100 m100 m

18 m

100 m

Fig. 9.20 A stratified confined aquifer with a laterally heterogeneous anisotropic central zone
(Taken from [239])

the x1�x2�plane so that the horizontal extent of the aquifer system is oriented to the
x3�coordinate (north) direction. According to Table 9.5 the anisotropic angle is only
defined around the vertical axis. In using such a coordinate alignment it means – in
the same manner as for the preceding example – that the rotation is done explicitly
via the Eulerian angle � for the rotation around the vertical x2�axis, cf. (9.71).
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Table 9.5 Principal directions of horizontal anisotropy in all 9 by 12 cells of the model (angle ˛
in ı as defined in Fig. 9.20)

0 �35 5 15 35 �15 �25 �5 25 �45 45 0
0 25 35 �35 15 �45 �5 �25 5 �15 45 0
0 �35 25 �15 �25 �5 15 5 �45 45 35 0
0 �35 35 5 �25 15 �5 45 25 �15 �45 0
0 15 �5 25 �45 35 45 5 �35 �15 �25 0
0 �45 �35 25 �25 5 �15 15 35 �5 45 0
0 25 �45 �5 35 �25 5 15 �15 45 �35 0
0 35 5 �15 �35 25 �45 �25 15 45 �5 0
0 45 �25 �35 �5 �15 15 5 �45 35 25 0
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Fig. 9.21 FEFLOW mesh used for the nine-layer anisotropy model problem consisting of 259,200
hexahedral elements with 273,097 nodes: (a) 3D view with drawn ��angle pattern of anisotropy,
(b) cross-sectional view (vertical exaggeration 3:1)

The used FEFLOW mesh is shown in Fig. 9.21. It consists of 259,200 hexahedral
elements with 273,097 nodes. In the cross-sectional x1 � x2�plane the nodal
distances are 2.5 m in the x1�direction and 0.5 m in the x2�direction. The nodal
distance along the horizontal x3�direction is constantly 5 m. The parameters used
for the simulation are summarized in Table 9.6.

Due to the anisotropy of the layered aquifer system a complex whirling flow
pattern results. Large and small whirls exist next to each other, rotating in opposite
directions. A comparison of the FEFLOW results with the numerical and analytical
results presented by Hemker and Bakker [239] reveal a rather good agreement.
Figure 9.22 displays the computed whirl pattern at a vertical cross section.
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Table 9.6 Simulation parameters used for the nine-layer anisotropy model problem

Quantity Symbol Value Unit

Domain measure (length; width;
height)

300; 300; 18 m

Width of inner zone 100 m
Width of outer zone (left and right) 100 m
Nine layers with thickness of each

layer
2 m

Steady-state flow
Potential difference in north direction 
h 0:3 m
Impervious boundaries, except for

vertical front and back faces
Conductivity for all elements Km

1 1:15741 � 10�4 m s�1

Conductivity for all elements Km
2 1:15741 � 10�5 m s�1

Conductivity for all elements Km
3 5:78704 � 10�5 m s�1

Eulerian angle for all elements  �90 ı

Eulerian angle for all elements  90 ı

Eulerian angle for all elements of
isotropic outer zone

� 0 ı

Eulerian angle for all elements of
anisotropic inner zone

� ˛�angles of Table 9.5
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Fig. 9.22 Cross section showing the pattern of groundwater whirls: (a) Hemker and Bakker’s
results [239]. Projection of 20 pathlines in each of the 9 layers, pathlines start in the center of
each cell and at equal distances to the left and right in the homogeneous side blocks. All starting
points are located at 100 m north of the southern boundary and all pathlines run for 100 m due
north. Different colors are used for different starting depths. (b) FEFLOW results using the same
starting points at 100 m north of the southern boundary, however, pathlines run for 200 m due north.
(c) Analytical results of the streamfunction contours in the cross section. (d) FEFLOW results for a
refined pathline pattern at the cross section, pathlines run over the full horizontal distance (300 m)
due north
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Fig. 9.24 Hydraulic heads in an east-west cross section of the layered aquifer: (a) analytical
profiles [239], (b) present FEFLOW results
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Evidently, the numerical results agree very well with the analytical predictions.
The same pathlines projected on a side view are depicted in Fig. 9.23 comparing
the FEFLOW results with the Hemker and Bakker’s results [239]. Slight dif-
ferences in the divergent characteristics of the pathlines can be recognized that
are obviously caused by the different meshes, velocity computations and pathline
tracking techniques used in the different codes. Comparing FEFLOW’s hydraulic
head distribution along a cross section with the analytical (exact) results presented
by Hemker and Bakker [239] we found in Fig. 9.24 that while the profiles agree
rather well, the peaks in the zigzag-profiles of the hydraulic head appear generally
somewhat smaller in the numerical predictions. More refined 3D meshes seem to be
needed to improve the agreement with the analytical results.



Chapter 10
Flow in Variably Saturated Porous Media

10.1 General

Flow processes in variably saturated porous media are subject in many disciplines.
Most notably are applications in soil sciences and subsurface hydrology, for instance
the study of infiltration processes for analyzing the movement and spreading of
water from the ground surface to the water table. However, it is also an increasingly
significant interest in other fields such as petroleum and geotechnical engineering,
material research for industrial porous media and many others. From the physical
point of view, flow in variably saturated porous media represents a generalization of
porous-media flow in which fully saturated media are a special case. On the other
hand, there is a clear distinction due to presence of capillarity which introduces
a new physical quality and gives rise to completely different flow situations. Most
remarkable are flows which occur in isolated regions (e.g., perched water or fingered
flow) or flow conditions forming capillary barrier effects where flow will not
cross between zones of differing properties. Free surface conditions in phreatic
aquifers can be revealed in a more general context without the need for assuming
a coherent interface between unsaturated and saturated zones as required in free-
surface groundwater flow modeling of Chap. 9.

Traditionally, it is often distinguished between unsaturated and saturated porous
media. In the context of subsurface hydrology, the unsaturated zone is sometimes
termed as vadose zone defining the range between the ground surface and the water
table. An unsaturated medium is defined as a zone where the liquid phase (usually
water) has a saturation less than 100% and the gas phase (usually air) is assumed
to be stagnant, see definitions and derivations introduced in Sects. 3.8.7 and 3.10 as
well as Appendix D. In physical terms the differences between unsaturated media
and saturated media are listed in Table 10.1. The negative (capillary) pressure head
 and the related saturation s less than unity represent the striking features of an
unsaturated porous medium. An unsaturated medium requires additional relations
in form of retention  D  .s/ and relative permeability kr D kr.s/, which have
to be specified by empirical parametric expressions fitted from experimental data

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5 10,
© Springer-Verlag Berlin Heidelberg 2014
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Table 10.1 Unsaturated versus saturated porous-
media conditions

Unsaturated media Saturated media

 < 0;  D  .s/; sr < s < 1  � 0; s D 1

kr D kr .s/ kr D 1

sr
0.4 0.80 0.2 0.6 1.0

-10-3

-10-2

-10-1

-100

-101

-102

wetting curve

drying curve
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s [1]s [1]

k r
 [1

]

sr

a b

y
 [m

]

Fig. 10.1 Typical plots of (a) retention curve  .s/ with hysteretic behavior and (b) relative
permeability kr.s/ curve

(see Appendix D). Strong dependencies on the saturation s are typical (Fig. 10.1)
which make the unsaturated flow processes heavily nonlinear. It is generally not
useful to differ between unsaturated and saturated flow a priori. The saturation of
a porous medium represents a dynamic state variable which can vary both spatially
and temporarily. Accordingly, solution strategies are required which are capable
of computing simultaneous unsaturated-saturated flow. In this way, we prefer a
general, accurate and efficient modeling approach which handles the full spectrum
of pressure head �1 <  < 1 without any significant restrictions for flow in
variably saturated and heterogeneous porous systems.

10.2 Basic Equations

The basic equations for 3D and 2D (including axisymmetric) flow in variably
saturated porous media have been developed in Sect. 3.10.5 and can be taken from
Table 3.7. They are
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s So
@h

@t
C "@s

@t
Cr � q D QCQEOB

q D �krKf� �
�rhC �e�

(10.1)

written in terms of the hydraulic head variable h D  C z, or alternatively

s So
@ 

@t
C "@s

@t
Cr � q D QCQEOB

q D �krKf� �
�r C .1C �/e

(10.2)

written in terms of the pressure head variable  , where the following dependencies
exist

s D s. /; kr D kr.s/ (10.3)

which have to be specified in form of constitutive relationships as summarized in
Appendix D. Most known are the empirical analytic relationships proposed by van
Genuchten (D.4), (D.26) and Brooks-Corey (D.8), (D.30). Other useful relations are
discussed in Appendix D, including spline approximations for s. / and kr.s/. Their
inherent parameters have to be fitted from measured data. The retention curve s. /
can be used to convert the saturation variable s to the pressure head variable  (or
hydraulic head variable h D  C z). On the other hand, we can also assume that the
retention curve s. / is uniquely invertible so that

s D f . /;  D f �1.s/ (10.4)

which is exemplified by (D.4) and (D.5) for the analytic van Genuchten retention
curve.

Usually, q is substituted by the Darcy equation to obtain the governing Richards’
equation (cf. Sect. 3.11) written in the h� s�form and  � s�form, respectively,

s So
@h

@t
C "@s

@t
� r � �krKf� � .rhC �e/

 D Qh CQhw CQEOB

s So
@ 

@t
C "@s

@t
� r � �krKf� � .r C .1C �/e/

 D Qh CQhw CQEOB

(10.5)

where the source/sink term Q D Qh C Qhw is suitably split into a supply term
Qh and a well-type SPC term Qhw. The PDE’s (10.5) have to be solved for the
remaining variables h,  and/or s subject to a set of BC’s of Dirichlet, Neumann,
gradient and Cauchy type as well as well-type SPC as introduced in Sects. 6.3.1
and 6.5.5, written in the h variable:

h D hD on �D � t Œt0;1/
�ŒkrKf� � .rhC �e/� � n D qh on �N � t Œt0;1/
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�ŒKf� � .1C �/e/� � n D qrh on � rN � t Œt0;1/
�ŒkrKf� � .rhC �e/� � n D �˚h.hC � h/ on �C � t Œt0;1/

Qhw D �
X

w

Qw.t/ı.x � xw/ on xw 2 ˝ � t Œt0;1/

(10.6)

where on � rN the special Neumann BC in form of the gradient-type BC is
specified, cf. (6.76), also the nonlinear BC of a seepage face as introduced in
Sect. 6.5.2,

h D z
Qnh < Qmax1

nh
D 0

�

on �S � t Œt0;1/ (10.7)

and in combination with the IC of the form

h.x; t0/ D h0.x/ in N̋ (10.8)

where the total boundary is � D �D [ �N [ � rN [ �C [ �S . Alternative BC and
IC formulations can be expressed via the  and s variables if using the relations
h D  C z and  D f �1.s/, e.g., for prescribing IC’s of the pressure head  0 and
saturation s0:

h.x; t0/ D
�
 0.x/C z or
f �1�s0.x/

�C z
in N̋ (10.9)

Once (10.5) has been solved, the secondary variable of Darcy velocity q can be
evaluated as a derived quantity of known h or  . The essential parameters required
for solving (10.5) with (10.6)–(10.8) (or (10.9)) are listed in Tables I.1 to I.6 and
I.10 of Appendix I in accordance with the chosen problem type. Steady-state flow
situations can only occur under unsaturated conditions, s < 1 with " > 0, if @s=@t
(and accordingly @h=@t) approaches to zero and under saturated conditions with
s D 1 if So D 0 (incompressibility) or @h=@t approaches to zero.1

10.3 Three Essential Forms of the Richards’ Equation
and Choice of Primary Variables

Obviously, the governing flow equation (10.5) for the flow in variably saturated
porous media involves two essential solution variables in form of h (or synony-
mously  ) and s. Since only one flow equation is available it is to be decided which

1Optionally, FEFLOW suppresses the time derivative terms @s=@t and @h=@t for solving steady-
state solutions.
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variable is primary and which must be secondary. Depending on such a choice,
different modeling approaches result which are mathematically equivalent in the
continuous formulation, but their discrete analogs are different providing their own
advantages and drawbacks:

1. The natural form of the Richards’ equation as derived above with (10.5) is
the mixed  � s�form (or the equivalent h � s�form), where both variables
are employed and, in solving the resulting discrete equation system, the pressure
head  (or hydraulic head h) is usually used as the primary variable. However,
it will be seen further below, there is also a solution strategy based on the mixed
 � s�form of the Richards’ equation in which the primary variable can be
dynamically switched between  and s in accordance with the computational
requirements. Numerical schemes based on the mixed form possess superior
properties with respect to accurate mass conservation solutions, e.g., [72, 141,
361]. The mixed-form Richards’ equation is applicable to both unsaturated and
saturated conditions. The hydraulic head (or pressure head) variable is unique
and continuous, regardless of whether the porous medium is homogeneous or
heterogeneous.

2. The standard Richards’ equation represents a  �based (or the equivalent
h�based) form if the 1st derivative of saturation appearing in (10.5) is
expressed by

@s

@t
D @s

@ 

@ 

@t
D C @ 

@t
;

@s

@t
D @s

@ 

@ 

@h

@h

@t
D C @h

@t
(10.10)

where

C D @s

@ 
(10.11)

is the moisture capacity which can be derived from given retention relation
s D s. / provided s. / is continuously differentiable at any  . Most important
C�relationships are summarized in Appendix D. Typical graphs of C D C. /

are illustrated in Fig. 10.2 for the analytic van Genuchten relationship which
reveals a monotonic behavior. Inserting (10.10) into (10.5) the  �form (or the
equivalent h�form) of the Richards’ equation results

.s So C "C /@ 
@t
� r � �krKf� � .r C .1C �/e/

 D Qh CQhw CQEOB

.s So C "C /@h
@t
� r � �krKf� � .rhC �e/

 D Qh CQhw CQEOB

(10.12)

to solve  or h. The  �form (and the equivalent h�form) of the Richards’
equation is applicable to both unsaturated and saturated conditions. The pressure
head (or hydraulic head) variable is unique and continuous. Models of this type
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sr D 0:17 and ss D 1)

have been extensively used. But, it has been shown, e.g., [72, 141, 373], that
the  �based (and the equivalent h�based) form can produce significant global
mass balance errors under certain saturation conditions unless very small time
steps are used in the numerical approach. The mass balance errors are caused in
approximating the storage term @s=@t by the expansionC. /@ =@t in a discrete
manner. A certain remedy can be attained if the moisture capacity term C. /

is performed by suited chord slope approximations in replacing direct analytic
derivatives as discussed further below.

3. It is possible to express completely the Richards’ equations (10.5) in terms of the
s�variable. This can be done by invoking the derivatives

@ 

@t
D @ 

@s

@s

@t
D C�1 @s

@t
; r D @ 

@s
rs D C�1 rs (10.13)

to obtain a common s�form of the Richards’ equation

�
s So C

�1 C "�@s
@t
� r � �D � rs C krKf�.1C �/e

 D Qh CQhw CQEOB

(10.14)

for solving the saturation s, where

D D krKf�C�1 (10.15)
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is the capillary diffusivity. However, we will see further below that the formula-
tion (10.14) is restricted to homogeneous porous media. With C�1 D @ =@s we
denote the inverse moisture capacity as a function of the saturation s. Analytic
relations for C�1.s/ are given in Appendix D. The porous-medium diffusivityD
is generally a strongly nonlinear function of s (Fig. 10.3) and can vary drastically
over space. Any solution method based on the s�form of the Richards’ equation
is restricted to unsaturated flow conditions because the saturation variable s
is not unique for saturated regions, where the porous-medium diffusivity D
goes to infinity and a retention relation s. / no longer exists. Moreover, it
is important to note that the saturation s is basically a discontinuous variable
because s. / is associated with the property of the porous medium which
can abruptly vary in space, e.g., at material interfaces. Hence, the variable s
is generally nonunique for heterogeneous porous media. That means that the
application of the chain rule for r in the form of (10.13) is mathematically
not correct and the commonly derived s�form of the Richards’ equation (10.14)
is only valid for homogeneous porous media, unless specific material-gradient
terms are added.2 On the other hand, it has been shown, e.g., [249], that a

2The saturation relation s. / depends on the porous-medium properties, such as parameters ˛, n
and m appearing in the van Genuchten relationship (D.4). In heterogeneous media the parameters
can vary in space, i.e., ˛ D ˛.x/, n D n.x/ and m D m.x/. Then, the chain rule applied to rs
yields for a van Genuchten relationship

rs D @s

@ 
r C @s

@˛
r˛ C @s

@n
rnC @s

@m
rm
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Table 10.2 Forms of Richards’ equation written in terms of the variables  and s

Form Equation Primary variable Modeling features

Mixed s So
@ 

@t
C " @s

@t
 (or s)a Most general

 � s�form �r � ŒkrKf� � .r C .1C �/e/� Mass-conservative
D Qh CQhw CQEOB Unsaturated-saturated

Heterogeneous porous
media

 �form .s So C "C/
@ 

@t
 Standard, robust

�r � ŒkrKf� � .r C .1C �/e/� Poorly conservative
D Qh CQhw CQEOB Unsaturated-saturated

Heterogeneous porous
media

s�form .s So C
�1 C "/ @s

@t
s Only unsaturated, s < 1

�r � ŒD � rs C krKf�.1C �/e� Mass-conservative
D Qh CQhw CQEOB Efficient for dry

conditions
Homogeneous porous

media
a In case of primary variable switching

s�based algorithm can result in significantly improved performances compared
to  �based (or h�based) methods. This is due to the fact that the inherent
parametric functions are less nonlinear when expressed in terms of s rather than
 (or h), particularly when applied to relatively dry porous media.

Table 10.2 summarizes the three essential forms of the Richards’ equation with their
most important modeling features. It is obvious that only �s�based and �based
forms are appropriate for computing simultaneous unsaturated-saturated flow in
heterogeneous porous media. Equivalent formulations result when the hydraulic
head h is used instead of the pressure head  .

and contrary to (10.14), the correct s�form of the Richards’ equation reads for heterogeneous
porous media:

�
s So C

�1C"�@s
@t

�r��D�.rs� @s
@˛

r˛� @s
@n

rn� @s
@m

rm/CkrKf�.1C�/e
 D QhCQhwCQEOB

exemplified for a van Genuchten relationship. Similar expressions result for other empirical
s. /�relations, see Appendix D. The terms @s

@˛
r˛, @s

@n
rn and @s

@m
rm additionally appearing in

the s�based form of the Richards’ equation need a specific treatment in the numerical solution,
e.g., [311]. More discussions are given by LaBolle and Clausnitzer [327].



10.4 Use of Transformation Methods 453

10.4 Use of Transformation Methods

The objective of any transformation applied to the basic Richards’ equation in its
 � s�form (or equivalent h � s�form) is to find a formulation that will result
in a more efficient and robust solution to (10.5). While the s�form represents
a possibility of transformation, there are more useful transformation approaches
[566] which can be utilized to significantly enhance the efficiency and accuracy
of the numerical solution of the Richards’ equation. Unfortunately, most of the
transformation approaches necessitate restrictions in the formulation. Nevertheless,
they can represent interesting alternatives to the standard solution strategies which
can be inefficient and unreliable in solving the highly nonlinear flow problems in
unsaturated porous media.

For specific needs an important transformation represents the Kirchhoff integral
transform related to the relative permeability kr written in the form [449]

F. / D
Z  

�1
kr.�/d� (10.16)

By using the exponential relationship (D.39) of Appendix D

kr. / D e˛ (10.17)

assuming an air-entry pressure head of  a D 0, we obtain from (10.16)

F. / D
Z  

�1
e˛�d� D 1

˛
e˛�
ˇ
ˇ �1 D 1

˛
e˛ D 1

˛
kr . / (10.18)

Now, if we assume that the sorptive parameter ˛ is constant, i.e., the approach
is restricted to homogeneous porous media, where the unsaturated parameter ˛ is
spatially invariable, we find

rF D e˛ rF D kr. /rF; @F

@t
D e˛ @ 

@t
;

@F

@t
D e˛ C�1 @s

@t
(10.19)

and

kr. / D ˛F (10.20)

Then, the Richards’ equation (10.5) takes the form

.s So C "C /e�˛ @F
@t
� r � �Kf� � .krr /„ ƒ‚ …

rF
CKf� � kr„ƒ‚…

˛F

.1C �/e/ D

Qh CQhw CQEOB (10.21)
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By using the capacity C D ˛.ss � sr /e˛ for the exponential relationship (D.18)
and additionally assume that the storage effects So are negligible, we can linearize
the Richards’ equation in the form

"˛.ss � sr /@F
@t
� r � .Kf� � rF � vF / D Qh CQhw CQEOB (10.22)

with the capillary advection vector

v D �˛Kf� � .1C �/e (10.23)

for solving the transform function 0 < F < 1
˛

. We note that (10.22) represents
a divergence-form ADE which is linear in F , however, restricted to unsaturated
conditions s < 1 and homogeneous (˛�constant) porous media. Such a type of
ADE can be solved with transformed BC’s and IC3 in a very efficiently and fast
way by using standard techniques. After solving (10.22) for F in ˝ for the given
BC’s and IC, the pressure head  and hydraulic head h can be simply obtained by
backtransformation. Since ˛F D e˛ and ln.˛F / D ˛ , we get

 D 1
˛

ln.˛F /
h D  C z

(10.24)

While s�transformed and Kirchhoff-integral-transformed formulations, (10.14)
and (10.22), respectively, have shown powerful for special applications in unsat-
urated flow modeling, they are unfortunately not general enough for solving
simultaneous unsaturated-saturated flow in heterogeneous porous media. To over-
come these limitations we will introduce the primary variable switching technique
(PVST) in Sect. 10.7 as a specific transformation strategy which can handle both

3BC’s for the transformed ADE (10.22) can be equivalently found for (10.6) when written by the
new F variable:

F D 1
˛
e˛.hD�z/ on �D � t Œt0;1/

�.Kf� � rF � vF / � n D qF on �N � t Œt0;1/

�ŒKf� � .1C �/e/� � n D 1
˛
v � n D qrF on � rN � t Œt0;1/

�.Kf� � rF � vF / � n D �˚hŒhC � z � 1
˛

ln.˛F /� on �C � t Œt0;1/

Qhw D �P
wQw.t /ı.x � xw/ on xw 2 ˝ � t Œt0;1/

additionally, the seepage face BC for (10.7) as

F D 1
˛

at Qnh > 0 on �S � t Œt0;1/

and the IC (10.8) in the form

F.x; t0/ D 1
˛
e˛Œh0.x/�z� in N̋

We note that the Cauchy-type BC on �C introduces a nonlinear expression in F .
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unsaturated and saturated flow conditions very efficiently without restriction to
homogeneous media.

10.5 Finite Element Formulation of the Mixed h� s�Based
Form of Richards’ Equation

Based on the principles of FEM thoroughly described in Chap. 8 we apply now
the GFEM to the basic Richards’ equation in its mixed form stated above in
Sect. 10.2 associated with the corresponding BC’s and IC’s for solving simultaneous
unsaturated-saturated flow in heterogeneous porous media. For convenience we
focus firstly on the finite element formulation of the mixed h � s�form of the
Richards’ equation for multidimensional problems (i.e., 3D, 2D and axisymmetric).
The formulation for the alternative �s�form of the Richards’ equation will appear
rather similar to the h�s�form. The standard h�form (and the equivalent �form)
of the Richards’ equation can be easily deduced from the given developments for the
h � s�form. However, the specific s�form and the Kirchhoff-integral-transformed
formulation of the Richards’ equation are not followed here due to the inherent
restrictions as discussed above in Sects. 10.3 and 10.4, respectively. Instead, the
PVST is preferred which will be thoroughly discussed in Sect. 10.7.

10.5.1 Weak Form

According to Sect. 8.5 the weak form for the h� s�based Richards’ equation (10.5)
appears as a special case of the ADE weak statement deduced from the expression
(8.53). We find

Z

˝

wsSo
@h

@t
d˝ C

Z

˝

w"
@s

@t
d˝ C

Z

˝

rw � ŒkrKf� � .rhC �e/�d˝ �
Z

˝

w.Qh CQhw CQEOB/d˝ �
Z

�

wŒkrKf� � .rhC �e/� � n d� D 0; 8w 2 H1.˝/ (10.25)

where w is a suitable weighting function. Separating the boundary integral of (10.25)
into the five segments � D �D[�N[� rN [�C imposed by the Dirichlet, Neumann,
gradient and Cauchy-type BC’s, respectively, we invoke the BC’s and SPC of (10.6)
and BC of (10.7) to obtain
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Z

˝

wsSo
@h

@t
d˝ C

Z

˝

w"
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@t
d˝ C

Z

˝

rw � ŒkrKf� � .rhC �e/�d˝ �
Z

˝

w.Qh CQEOB/d˝ C
X

w

w.xw/Qw.t/C
Z

�N

wqhd� C
Z

� rN

wkrq
r

h d� �
Z

�C

w˚h.hC � h/d� D 0; 8w 2 H1
0 .˝/ (10.26)

10.5.2 GFEM and Resulting Nonlinear Matrix System

The weak statement of the h � s�based form of the Richards’ equation (10.26)
involves the two unknown variables h and s. In using the FEM these variables are
replaced by a continuous approximation that assumes the separability of space and
time (see Sect. 8.4). Thus

h.x; t/ 	P
j Nj .x/hj .t/

s.x; t/ 	P
j Nj .x/sj .t/

)

j D 1; : : : ; NP (10.27)

where j designates global nodal indices. It is important to emphasize that also the
saturation variable s, although basically discontinuous in heterogeneous media, is
approximated in a continuous manner. Now, using the Galerkin method with the
weighting function

w! wi D Ni ; i D 1; : : : ; NP (10.28)

we find the following Galerkin-based finite element formulation of (10.26), viz.,
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The assembly process leads the nonlinear global matrix system of NP equations

O.s/ � PhCB � PsCD.s/ � h � F .s/ D 0 (10.30)

showing the nonlinearities in parentheses, where
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and the matrices and RHS vector
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for .i; j D 1; : : : ; NP/ and .e D 1; : : : ; NE/, in which the following interpolations
for the saturation and relative permeability over the element e are employed

se D
X

J

N e
J s

e
J ; ker .s

e/ D
X

J

N e
J k

e
r .s

e
J / (10.33)

where J runs over local node numbers. In (10.33) the saturation seJ at local node
J of element e can be evaluated from the retention relations seJ D f . eJ / for
given pressure heads  eJ D heJ � zJ which are determined from the h�solution.
Note that the matrices O and B connected with time derivatives are mass-lumped
(cf. Sect. 8.13.2), where ıij is the Kronecker symbol applied to global indices.
This is virtually mandatory for unsaturated problems to ensure smooth and non-
oscillatory solutions, e.g., [72, 295]. It is important to note that D is symmetric
and accordingly the complete matrix system (10.30) is symmetric. On the other
hand, the system of equations (10.30) is highly nonlinear due to the functional
dependence of the constitutive relationships for the saturation and the relative
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permeability. The integrals appearing in (10.32) are performed on element level
in the local coordinates (see Sect. 8.12). Analytical evaluations of partial integral
terms of (10.32) can be deduced from developments done in Appendix H for
selected element types. The differential elements d˝e and d� e differ for 3D, 2D
and axisymmetric problems as given by (8.122)–(8.124), respectively. The tensor
of the saturated hydraulic conductivity Ke of element e may be anisotropic in
formulations introduced in Chap. 7.

10.5.3 Time Integration and Celia et al.’s Approximation
Method of Picard Iteration

For solving the nonlinear matrix system (10.30) in time t with the associated IC an
appropriate time marching recurrence scheme combined with an iteration strategy
has to be applied such as introduced in Sects. 8.13 and 8.18, respectively. For the
unsaturated-saturated flow problems based on the h � s�form of the Richards’
equation we find the temporally discretized formulation of (10.30) as

O.snC1/ �
�
hnC1 � hn
�
tn

� � 1
�
� 1� Phn

	

CB �
�
snC1 � sn
�
tn

� � 1
�
� 1� Psn

	

C

D.snC1/ � hnC1 � F .snC1/ D 0
(10.34)

where � 2 . 1
2
; 1/ for the TR and BE scheme, respectively. Commonly, fully implicit

time integration with � D 1 is preferred due to its robustness. The Picard iteration
method (Sect. 8.18.1) can be the first choice for the iterative solution of (10.34). It
results in

O.s�nC1/ �
�
h�C1
nC1 � hn
�
tn

� � 1
�
� 1� Phn

	

CB �
�
s�C1
nC1 � sn
�
tn

� � 1
�
� 1� Psn

	

C

D.s�nC1/ � h�C1
nC1 � F .s�nC1/ D 0

(10.35)

where � D 0; 1; : : : is the iteration counter. We note that the Picard method has
the advantage to preserve the symmetry of the resulting discrete system of flow
equations. Since the matrix system still involves the two variables h and s, it is
necessary to replace one variable by the other one. But, this must be done suitably
to avoid mass balance errors in the approximation. A precise mass-conservative
method has been proposed by Celia et al. [72], in which s�C1

nC1 is expanded in a
truncated Taylor series with respect to h about the expansion point h�nC1 in the
following form:

s�C1
nC1 D s�nC1 C

@s�nC1
@h�nC1

� �h�C1
nC1 � h�nC1

�CHOT (10.36)
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After neglecting all terms higher than linear (HOT 	 0), it results

s�C1
nC1 � sn
�
tn

D C�
nC1 �

h�C1
nC1 � h�nC1
�
tn

C s
�
nC1 � sn
�
tn

(10.37)

where

C�
nC1 D

@s�nC1
@h�nC1

D @s�nC1
@ψ�nC1

(10.38)

is the moisture capacity matrix which can be evaluated at each discrete pressure
head ψ D h � z for given time plane n C 1 and iteration � of analytical or
numerical (chord slope) C�relationships as described in Appendix D or in Sect. J.3
of Appendix J, respectively. Substituting (10.37) into (10.35) we obtain the Celia
et al.’s mass-conservative Picard-type iteration method for the mixed h � s�based
form of the Richards’ equation as

�
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C B

�
tn
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1
�
� 1� Psn � s

�
nC1 � sn
�
tn

	

C F .s�nC1/ (10.39)

to solve the unknown vector of hydraulic head h�C1
nC1 as the primary variable at new

iteration �C1 and new time plane nC1. Within the iteration � and at the given time
stage n C 1, the saturation vector s�nC1 is taken from the previous iterate h�nC1 by
evaluating the retention relationship f .ψ�nC1/ of Appendix D withψ�nC1 D h�nC1�z
for each node.

The Picard iteration in Celia et al.’s linearization (10.39) is usually terminated
via a deviatory error criterion, such as

kh�C1
nC1 � h�nC1k
kh�C1

nC1k
� � (10.40)

where � is a defined error tolerance. Under certain conditions the convergence
test (10.40) has shown too rough when changes in h are small and smoothly
behaved while changes in the saturation s and/or pressure headψ remain significant.
A remedy could be the exacerbated convergence criterion

max

 
kh�C1

nC1 � h�nC1k
kh�C1

nC1k
;
kψ�C1

nC1 �ψ�nC1k
kψ�C1

nC1k
;
ks�C1

nC1 � s�nC1k
ks�C1

nC1k

!

� � (10.41)
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where the pressure head ψ D h � z and the saturation s D f .ψ/ are evaluated
from the h�solution.

In using FEFLOW’s predictor-corrector time integration with automatic error-
controlled time stepping a one-step Picard method (cf. Sect. 8.18.4) for transient
unsaturated-saturated flow problems have shown powerful [141], in which the
predictor solutions hpnC1, ψ

p
nC1 and spnC1 are used to linearize (10.39) in the form
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in solving hnC1 at the new time plane nC 1, where
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by using the suited FE and AB predictors (cf. Sect. 8.13.5 and Table 8.7), respec-
tively, in which the acceleration vectors
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(10.44)

have to be recorded during the time stepping procedure for the FE and AB
predictors, respectively. The following deviatory error estimates (cf. Table 8.7)
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are used in the time step control of the FE/BE and AB/TR predictor-corrector
schemes, respectively, according to


tnC1 D
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ˆ̂
<̂
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�
�

kdhnC1k
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tn
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�

max.kdhnC1k; kd nC1k; kdsnC1k/

	1=� (10.46)

where � D 2 for the FE/BE scheme, � D 3 for the AB/TR scheme and � is the
pre-set error tolerance measure.

We note that Celia et al.’s approximation method is only one option in FEFLOW.
A drawback is its restriction to a Picard-type iteration which has only a linear
convergence rate. In the subsequent Sect. 10.7 we will introduce a generalization
in form of PVST established with the full Newton iteration method of quadratic
convergence, where we can show that Celia et al.’s linearization deduces from
PVST as a special case. Furthermore, the deviatory error is often insufficient
for a convergence control and an additional test of the mass balance error via a
direct control of the discrete residuals seems appropriate in many cases. Indeed,
PVST incorporates a family of methods. On PVST’s basis we will develop mass-
conservative modeling options encompassing the full Newton iteration method
and the Picard iteration method with and without additional residual control as
well as both 1st-order accurate fully implicit and 2nd-order accurate semi-implicit
time integration methods for solving the mixed h � s�based (and the equivalent
 � s�based) form of the governing Richards’ equation.

10.6 Finite Element Formulation of the Standard h�Based
Form of Richards’ Equation

The standard formulation of the Richards’ equation in form of (10.12) does not
guarantee mass conservation in its discrete approximation due to the replacement
of the storage term @s=@t by the expansion C@h=@t , e.g., [72, 141]. Nevertheless,
the standard formulation should not be generally rejected. In fact, it provides a
high robustness and achieves reasonably accurate solutions for moderate saturation
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behaviors, in particular to compute seepage problems in phreatic aquifers in which
the location of the free surface (as the zero-pressure interface) is of specific concern.
Furthermore, it is always useful when major interest is in steady-state solution
(whenever exists in unsaturated flow).

10.6.1 Spatial Discretization and Resulting Nonlinear Matrix
System

The weak form for (10.12) with the involved BC’s and SPC is equivalent to (10.26),
except for the storage term. We find for the standard h�based form of the Richards’
equation the following weak statement:
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The only primary variable is h, which is approximated in the context of FEM:
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Applying the Galerkin method with .w ! wi D Ni ; i D 1; : : : ; NP/ the weak
statement (10.47) yields
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It leads to the following global symmetric matrix system of NP equations

O�.s/ � PhCD.s/ � h � F .s/ D 0 (10.50)

where the nonlinearities are shown in parentheses. The unknown vectors h and Ph
are equivalent to (10.31). The matrixD and the RHS vector F are given in (10.32).
The only differences to the h � s�formulation of (10.30) are in the absence of the
B�storage matrix and in the modified form of the storage matrix, which reads now:

O� D O�
ij D

X

e

ıij

Z

˝e

.seSeo C "eC e/Nid˝
e (10.51)

written again in a mass-lumped formulation. In addition to (10.33) the interpolation
of the moisture capacity over the element e is employed as

Ce.se/ D
X

J

N e
JC

e.seJ / (10.52)

where the saturation seJ at local node J of element e is evaluated from the retention
relations seJ D f . eJ / for given pressure heads eJ D heJ � zJ which are determined
from the h�solution. The treatment of the integrals in O�, D and F have been
already discussed in the preceding Sect. 10.5.2.

The moisture capacity C.s/ can be evaluated both analytically and numerically.
Analytic relations are summarized in Appendix D. Numerical evaluation of C.s/
can be performed by suited using chord slope approximations as discussed in
Sect. J.3 of Appendix J. They are often preferred in the present h�form (and the
equivalent  �form) of Richards’ equation to improve global mass conservativity
[435]. However, the numerical differentiation must be prevented if the hydraulic
head difference falls below a specific range and a proper treatment of the derivative
term is then required (for instance, resorting to an analytic evaluation). Accordingly,
chord slope approximation does not appear as a general and sufficiently robust
technique. It shall fail under drastic parameters and IC’s [408]. Note that these
difficulties are avoided when using mixed-form schemes in form of Celia et
al.’s linearization (Sect. 10.5) and PVST (Sect. 10.7) which possess much better
properties with respect to accurate mass conservative solutions.

10.6.2 Time Integration and Iteration Methods

The nonlinear matrix system (10.50) has to be solved in time t with the associated
IC (10.8) via suitable single-step semi-implicit or fully implicit time marching
recurrence schemes as described in Sect. 8.13. The GLS predictor-corrector time
stepping combined with an automatic error-controlled time step selection strategy
(cf. Sect. 8.13.5 and Table 8.7) is the preferred method
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�O�.snC1/
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� 1� Phn

�
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FnC1.snC1/ (10.53)

where � 2 . 1
2
; 1/ for the TR and BE scheme, respectively. Alternatively, for user-

defined (fixed) time step sizes 
tn the ��method (Sect. 8.13.4) is useful
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(10.54)

where � 2 . 1
2
; 2
3
; 1/ for the Crank-Nicolson, the Galerkin-in-time and the fully

implicit scheme, respectively.
Iteration methods are required to solve (10.53) or (10.54) for hnC1. Most

common is the Picard iteration method (cf. Sect. 8.18.4), which is computationally
inexpensive, robust and preserves symmetry of the discrete system of flow equa-
tions, however, at the expense of only a linear convergence rate. For example, the
Picard iteration method reads for the GLS predictor-corrector time integration in the
general form4 as
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�
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where � D 0; 1; : : : is the iteration counter, and in the one-step Picard form as
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�
C
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4It can be shown that the h�based formulation of the Picard method in form of (10.55) deduces
from the more general h � s�based formulation of the Picard method in form of (10.39) if the
saturation terms on the RHS of (10.39) are expressed by their derivatives with respect to the
hydraulic head, viz.,

s
�C1
nC1 � sn � .1� �/
tn Psn D C�

nC1 � �h�nC1 � hn � .1� �/
tn Phn

so that the storage matrix O� of the h�form results in

O�.s�nC1/ D O.s�nC1/CB �C�
nC1

where the matricesO,B andC are given from the h�s�form by (10.32) and (10.38), respectively.
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by using the predictor solution spnC1 according to (10.43). A similar iterative
procedure results for the ��method (10.54). The iterations are terminated and the
step-size error criteria are determined similar to (10.40) or (10.41) and (10.46),
respectively.

In contrast to the Picard method, the full Newton method (cf. Sect. 8.18.2) can
enhance the overall solution performance due to its quadratic convergence behavior.
However, the resulting matrix system becomes unsymmetric. For the case of the
GLS predictor-corrector time integration we find the following one-step Newton
iteration scheme:

�O.s
p
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nC1
�
tn
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� 1� Phn

�
C FnC1.spnC1/ (10.57)

with the partial Jacobian

OJ.spnC1/ D
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p
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h
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tn

� � 1
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� 1� Phn
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p
nC1/

@h
p
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� @F .s
p
nC1/

@h
p
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(10.58)

in which we have taken into account thatO�.s
p
nC1/ D O.spnC1/CB �Cp

nC1, where
the matrices O, B and C are defined in (10.32) and (10.38). The Newton scheme
(10.57) can be recognized as a specific formulation within the more general PVST
by choosing the hydraulic head h (equivalent to the pressure head  ) as primary
variable, which will be thoroughly described next in Sect. 10.7. The elements of
the corresponding Jacobian (10.58) are derived in Appendix J for the equivalent
 �based evaluation of the Jacobian J .

10.7 Primary Variable Switching Technique (PVST)

Forsyth et al. [167] have introduced a powerful method in the context of unsaturated-
saturated flow simulations, which is termed as the primary variable substitution, or
primary variable switching technique (PVST). It originates from multiphase flow
modeling and effectively handles the appearance and disappearance of phases [407].
In this approach, a full Newton method is used where the different primary variables,
namely saturation and pressure, are switched in different regions depending on
the prevailing saturation conditions at each node of a mesh. This technique was
found to yield rapid convergence in both the unsaturated and saturated zones
compared to pressure-based formulations [141]. We will show the generality of
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PVST for the class of unsaturated-saturated flow problems, which covers other
solutions techniques as special cases, such as Celia et al.’s approximation method
(Sect. 10.5.3). On the other hand, PVST is able to solve the Richards’ equation
in its s�form for heterogeneous media and overcomes the restrictions of common
s�based solution methods as discussed in Sects. 10.3 and 10.4.

10.7.1 Basic Matrix System in the ψ � s�Formulation

The development is based on the mixed  � s�form of Richards’ equation (10.5).
Similar to the finite element formulation for the h�s�form of Richards’ equation as
given in Sect. 10.5 we find for the  � s�form of Richards’ equation the following
finite element matrix system

O.s/ � Pψ CB � PsCD.s/ �ψ � F .s/ D 0 (10.59)

where

ψ D
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and
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which has to be solved for the discrete pressure head variable ψ and discrete
saturation variable s. Using implicit methods of time integration, (10.59) reads

O.snC1/ � PψnC1 CB � PsnC1 CD.snC1/ �ψnC1 � F .snC1/ D 0 (10.62)

where the time derivatives are approximated by

PψnC1 D ψnC1 � ψn
�
tn

� � 1
�
� 1� Pψn; PsnC1 D snC1 � sn

�
tn
� � 1

�
� 1� Psn (10.63)

in which the weighting factor � 2 . 1
2
; 1/ is 1

2
the TR scheme and unity for the BE

scheme. Inserting (10.63) into (10.62) results in

RnC1.ψ; s/ D
�
O.snC1/
�
tn

CD.snC1/
	

�ψnC1 C B

�
tn
� snC1�

O.snC1/ �
�
ψn

�
tn
C � 1

�
� 1� Pψn

	

�

B �
�
sn

�
tn
C � 1

�
� 1� Psn

	

� F .snC1/ D 0

(10.64)

where R represents the residual of the spatio-temporarily discretized  � s�form
of Richards’ equation.

10.7.2 Primary Variable Switching Methodology

To solve the basic matrix system (10.64) one has to decide which variable of  
or s should be primary. Commonly, the selection of the primary variable is done
in a static manner and results in a ‘fixed’  �, s� or  � s�modeling strategy,
including the limitations and drawbacks discussed above in Sect. 10.3. In contrast,
primary variable switching is done dynamically depending on the current flow
characteristics.

LetXi be the primary variable associated with the global node i .Xi can be either
 i or si . Accordingly, we can considerX as a nodal vector containing the different
primary variables in the solution space ˝ as

X 2 .ψ; s/ (10.65)

Hence, the matrix system (10.64) can be written in the form

RnC1.X/ D 0 (10.66)

and solved for Xi .i D 1; : : : ; NP/. The solution of the nonlinear equations (10.66),
i.e., the vector of primary variables X , is performed by the Newton method
(cf. Sect. 8.18.2), viz.,
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JX.ψ�nC1; s�nC1/
X�
nC1 D �R�

nC1.ψ; s/ (10.67)

with the increment


X�
nC1 D X�C1

nC1 �X�
nC1 (10.68)

and the Jacobian JX expressed in indicial notation as

JXij .ψ
�
nC1; s�nC1/ D

@Ri;nC1.ψ�nC1; s�nC1/
@X�

j;nC1
(10.69)

where � denotes the iteration number.
The primary variable at any node i is switched for every Newton iteration � by

using the following method [167]:

IF .s�i;nC1  tolf / THEN
Use  �i;nC1 as primary variable at node i and solve the Newton statement (10.67)
as

J
 
ij .ψ

�
nC1; s�nC1/
 �j;nC1 D �R�i;nC1.ψ; s/ (10.70)

ELSE IF .s�i;nC1 < tolb/ THEN
Use s�i;nC1 as primary variable at node i and solve the Newton statement
(10.67) as

J sij .ψ
�
nC1; s�nC1/
s�j;nC1 D �R�i;nC1.ψ; s/ (10.71)

ELSE
Do not change primary variable for the node i and solve (10.70) or (10.71)
according to the hitherto selected primary variable ( �i;nC1 or s�i;nC1).

ENDIF

The switching tolerances tolf and tolb have to be appropriately chosen. The
following requirements are necessary

tolf < 1; tolf ¤ tolb (10.72)

Useful switching tolerances are [141, 167]

tolf D 0:99; tolb D 0:89 (10.73)

The Newton approach requires continuous derivatives of the Jacobians J and
J s with respect to the pressure head  and the saturation s, respectively. In the
present FEM the variables  and s are approximated in a continuous manner
according to (10.27) if occurring as primary variables and the Jacobians are thus
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derivable. The Jacobians JX can be computed either numerically or analytically
(cf. Sect. 8.18.2). The analytical method has shown more efficient [335] and will
be preferred in the following. While a perturbation scheme such as the one used
by Forsyth et al. [167] requires a pass of 2NP evaluations, analytic derivatives
require only a pass of NP evaluations. The elements of the corresponding Jacobians
J
 
ij .ψ

�
nC1; s�nC1/ of (10.70) and J sij .ψ

�
nC1; s�nC1/ of (10.71) are summarized in the

Appendix J. Otherwise, the residual R�i;nC1.ψ; s/ at the iterate � and node i is
independent of the actually used primary variablesXi and is computed according to
(10.64) in the following way

�R�i;nC1.ψ; s/ D �
�
Oij.s

�
nC1/

�
tn
CDij.s

�
nC1/

	

 �j;nC1 �
Bij

�
tn
s�j;nC1C

Oij.s
�
nC1/

�
 j;n

�
tn
C � 1

�
� 1� P j;n

	

C

Bij

�
sj;n

�
tn
C � 1

�
� 1�Psj;n

	

C Fi .s�nC1/

(10.74)

It has to be noted that the variable switching is generally nodewise. This
carries consequences in the finite element assembly technique used to construct the
Jacobian JX . Traditionally, the assembling process is performed by

JXij D
X

e

Z

˝e

�
: : :
�

8i;8j (10.75)

in an elementwise fashion where the nodal contributions are added in the global
matrix. This can no longer be done if the primary variables appear in a mixed manner
in a mesh. If the primary variables are not of the same kind at a current stage, the
following nodewise assembly is required

JXij D
X

i

X

e2�i

Z

˝e

�
: : :
�
i;8j (10.76)

where the contributions from an adjacent element patch �i to a node i are added in
the global matrix.

10.7.3 Deducing Standard Schemes from PVST

PVST can be considered as a general formulation in which standard solution
strategies are comprised as special cases. We choose the pressure head  as primary
variable and start from the Newton statement (10.70) written in the form

J .ψ�nC1; s�nC1/ � .ψ�C1
nC1 �ψ�nC1/ D �R�

nC1.ψ; s/ (10.77)
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for solving the pressure head ψ�C1
nC1 at new iterate � C 1 and new time plane nC 1,

where the Jacobian J is given by (J.1) of Appendix J and the residual is defined
by (10.64).

10.7.3.1 Newton Scheme of Mixed ψ � s�Formulation

Inserting the partial Jacobians of J derived in Appendix J and the residual R of
(10.64) in (10.77) the following Newton scheme of the mixed  � s�form of the
Richards’ equation results:

�O.s�nC1/CB �C�
nC1

�
tn
CD.s�nC1/C OJ.s�nC1/

�
�ψ�C1

nC1 D
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�
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� 1� Pψn

�
C
� B

�
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�C�
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�
�ψ�nC1 C

B �
��

1
�
� 1� Psn � s

�
nC1 � sn
�
tn

�
C FnC1.s�nC1/ (10.78)

with the partial Jacobian

OJ.s�nC1/ D
@O.s�nC1/
@ψ�nC1

�
�
ψ�nC1 � ψn
�
tn

� � 1
�
� 1� Pψn

	

C

ψ�nC1 �
@D.s�nC1/
@ψ�nC1

� @F .s
�
nC1/

@ψ�nC1
D J 3 C J 4 � J 5

(10.79)

which elements are evaluated in Sect. J.1 of Appendix J in form of J 3 (J.4), J 4

(J.5) and J 5 (J.6). Due to the partial Jacobian OJ the resulting matrix system (10.78)
is unsymmetric.

10.7.3.2 Picard Scheme of Mixed ψ � s�Formulation: Celia et al.’s
Approximation Method

If we drop the partial Jacobian OJ in (10.78) the matrix system reduces to
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�
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�
�ψ�C1
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�
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�C�
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�ψ�nC1 C
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��

1
�
� 1� Psn � s

�
nC1 � sn
�
tn

�
C FnC1.s�nC1/ (10.80)
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which can be recognized as Celia et al.’s approximation method of Picard iteration
equivalent to (10.39) derived in Sect. 10.5.3 for the mixed h� s�form of Richards’
equation. The resulting matrix system (10.80) is symmetric.

10.7.3.3 Newton Scheme of Standard ψ�Formulation

If the saturation terms are expressed by derivatives with respect to the pressure head
in the form

s�C1
nC1 � sn � .1� �/
tn Psn D C�

nC1 �
�
ψ�nC1 � ψn � .1 � �/
tn Pψn


(10.81)

we find from (10.78) the Newton scheme of the standard  �formulation, viz.,

�O.s�nC1/CB �C�
nC1

�
tn
CD.s�nC1/C OJ.s�nC1/

�
�ψ�C1

nC1 D
�
O.s�nC1/CB �C�

nC1
�
�
� ψn

�
tn
C � 1

�
� 1� Pψn

�
C OJ.s�nC1/ �ψ�nC1 C

FnC1.s�nC1/ (10.82)

where the partial Jacobian OJ is defined by (10.79). The matrix system is
unsymmetric. We recognize that (10.82) of the  �formulation is equivalent to
(10.57) of a h�formulation derived in Sect. 10.6.2.

10.7.3.4 Picard Scheme of Standard ψ�Formulation

Dropping the partial Jacobian OJ in (10.82) the Picard scheme of the standard
 �formulation results:

�O�.s�nC1/
�
tn

CD.s�nC1/
�
�ψ�C1

nC1 D O�.s�nC1/ �
� ψn

�
tn
C � 1

�
� 1� Pψn

�
C

FnC1.s�nC1/ (10.83)

where

O�.s�nC1/ D O.s�nC1/CB �C�
nC1 (10.84)

which is shown equivalent to (10.55) derived in Sect. 10.6.2 for the h�form of
Richards’ equation. The resulting matrix system is symmetric.
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10.7.4 Convergence Criteria

An important aspect of the iterative solution of the nonlinear system (10.67) is
the choice of appropriate convergence criteria. Commonly, as a standard test, the
deviatory (change) convergence criterion in a form of (8.378) is applied to
terminate the Newton (or Picard) iterations [156]. For the GLS predictor-corrector
time integration method a deviatory error measure kdnC1k as a function of the
difference between corrector and predictor solution .XnC1 � Xp

nC1/ controls the
time step lengths via a user-specified dimensionless tolerance � (cf. Table 8.7). In a
one-step Newton (or one-step Picard) iteration method the deviatory error measure
even implicitly controls the iteration error .X�C1

nC1 �X�
nC1/; � D 0; 1 by the same

tolerance � too.
For the present problem class of unsaturated-saturated flow the control of only

the deviatory error can be insufficient because a small change in the primary variable
can still implicate notable mass defects in the governing discrete balance equations.
For this reason an additional direct control of the residualR�

nC1 ! 0 in (10.67) can
be appropriate. It provides a direct measurement of the global mass balance error
after terminating the Newton iteration. For instance one can enforce the condition

kR�
nC1k � �2kFnC1k (10.85)

where a second dimensionless tolerance �2 is introduced and an appropriate
normalization of the residual (here with respect to the external supply FnC1) is
applied. However, since FnC1 is also nonlinearly dependent on the solution it has
been shown often more robust to control the residual without normalization, viz.,

kR�
nC1k � ��

2 (10.86)

where ��
2 is a dimensional residual error tolerance. In (10.85) and (10.86) k:k

corresponds to a suitable error norm, e.g., RMS error norm (8.28) or maximum error
norm (8.29). While the residual control can also be used as an exclusive convergence
criterion [167], we usually prefer the control of both the deviatory and the residual
errors. It has shown the best iteration strategy to minimize both temporal truncation
and mass balance errors [141]. In doing so, the matrix system has to be solved in
the basic matrix form of (10.67) to directly evaluate the residual R�

nC1 during the
iterations � . This requires little extra work compared to a common non-residual-
written matrix form such as used in (10.78). It is important to note that any residual
control does not allow anymore a one-step Newton (or one-step Picard) iteration
within the GLS predictor-corrector time marching strategy. The different options
available in the overall solution control of the adaptive GLS predictor-corrector
method will be described in Sect. 10.7.5.

To measure the ‘accumulated loss’ of mass over an entire simulation period
.t0; tend/ we can record the total balance error TBE.tend/ defined as
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TBE.tend/ D
Z tend

tDt0
kR� .t/kdt (10.87)

where k:k is a proper (RMS or maximum) error norm.

10.7.5 Solution Control

Generally, the control of the solution of the resulting highly nonlinear matrix
systems is a tricky matter. Both the choice of the time step size
tn and the iteration
control of the iteration scheme significantly influence the success and the efficiency
of the simulation. Given that the overall solution process should be performed with
a minimum of user-specified control parameters, a fully automatic and adaptive time
selection strategy in form of the GLS predictor-corrector time integrator has shown
most useful for the present class of problems [141]. It monitors the solution process
via a local time truncation error estimation in which the time step size is cheaply
and automatically varied in accordance with temporal accuracy requirements. It has
been proven to be a cost-effective and robust procedure in that the time step size is
increased whenever possible and decreased only if necessary.

In PVST the Newton method plays a central role. It is well-known that the
Newton scheme converges (with a quadratic convergence rate) if (and only if) a
good initial guess of the solution is available. In transient situations this is feasible
with a proper adaptation of the time step size to the evolving flow characteristics.
At a given time stage, a good initial guess of the solution can always be obtained
provided the time step is sufficiently small.

For PVST the overall iterative solution method embedded in the GLS predictor-
corrector time marching strategy consists of the following main working steps:

STEP 0: Initialization
Compute the initial acceleration vectors Pψ0 and Ps0 from (10.62) as

�
O.s0/CB �C0

� � Pψ0 D �D.s0/ �ψ0 C F .s0/ (10.88)

and with

Ps0 D C0 � Pψ0 (10.89)

where C0 is the moisture capacity matrix (10.38) evaluated at initial time t0, ψ0
and s0 are the initial distributions of the pressure head  and the saturation s,
respectively. Furthermore, we choose a small initial time step size 
t0.

STEP 1: Predictor solutions
Explicit schemes of 1st-order and 2nd-order accuracy in time provide appropriate
predictor solutions for the primary variable XnC1 (either  nC1 or snC1) at the
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new time plane n C 1. We use either the 1st-order accurate FE and 2nd-order
accurate AB scheme, respectively,

X
p
nC1 D

(
Xn C
tn PXn FE predictor

Xn C 
tn
2

��
2C 
tn


tn�1

� PXn � 
tn

tn�1

PXn�1


AB predictor
(10.90)

Note here that, since PXn�1 is required, the AB formula cannot be applied before
the second step .n D 1/. The prediction has to be started with the FE procedure,
where PX0 is available from (10.88) and (10.89). The superscript p indicates
the predictor values at the new time plane n C 1. To initialize the iteration
procedure for � D 0 we take

ψ0nC1 D ψpnC1; s0nC1 D spnC1 (10.91)

STEP 2: Corrector solutions

(i) PVST with residual control: Depending on the primary variable switching
criteria stated above the following iteration procedure of the matrix systems
(10.70), (10.71) arises to solve the pressure head ψnC1 or the saturation
snC1, respectively,

For iterations � D 0; 1; 2; : : : compute until convergence:
For each node i D 1; : : : ; NP do either:

J
 
ij .ψ

�
nC1; s�nC1/
 �j;nC1 D �R�i;nC1.ψ; s/


 �j;nC1 D  �C1
j;nC1 �  �j;nC1

or
J sij .ψ

�
nC1; s�nC1/
s�j;nC1 D �R�i;nC1.ψ; s/


s�j;nC1 D s�C1
j;nC1 � s�j;nC1

End do
Stop if kR�

nC1.ψ; s/kRMS � ��
2

To obtain the corrector solutions: ψnC1 D ψ�C1
nC1; snC1 D s�C1

nC1

(10.92)

Note that the predictor of the FE (10.90) is used for the BE .� D 1/ and
that the predictor of the AB (10.90) is used for the TR .� D 1

2
/ in (10.92).

Accordingly, the predictor-corrector solutions are called FE/BE and AB/TR
scheme, respectively.

(ii) PVST of one-step Newton method without residual control: Note that the
additional residual test (10.86) can be optionally omitted in (10.92). In this
case the one-step Newton method (i.e., � D 1) is used and the deviatory
error criterion � of the GLS predictor-corrector method also controls the
convergence of the Newton iteration via the adaptive time steps. The
corrector solutions are immediately obtained via
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For each node i D 1; : : : ; NP do either:

J
 
ij .ψ

p
nC1; s

p
nC1/
 j;nC1 D �Rpi;nC1.ψ; s/


 j;nC1 D  j;nC1 �  pj;nC1
or

J sij .ψ
p
nC1; s

p
nC1/
sj;nC1 D �Rpi;nC1.ψ; s/


sj;nC1 D sj;nC1 � spj;nC1
End do

(10.93)

where the predictor solutions ψpnC1 and spnC1 are used to linearize J , J s

andRnC1.
(iii) Newton or Picard iteration with residual control at enforced  �variable

(suppressed PVST): Optionally, it can be useful to suppress variable
switching and solve the matrix system always in the pressure head variable
ψ, viz.,

For iterations � D 0; 1; 2; : : : compute until convergence:

J .ψ�nC1; s�nC1/ �
ψ�nC1 D �R�
nC1.ψ; s/


ψ�nC1 D ψ�C1
nC1 �ψ�nC1

Stop if kR�
nC1.ψ; s/kRMS � ��

2

To obtain the corrector solutions: ψnC1 D ψ�C1
nC1; snC1 D f .ψ�C1

nC1/

(10.94)

The matrix solution (10.94) can be applied to both Newton and Picard
iteration. The Picard method can be sometimes favorable due to its higher
robustness and preserving matrix symmetry, albeit its lower convergence
rate, cf. Sect. 8.18.1. For running the Picard iteration in (10.94) the deriva-
tive terms in the Jacobian J are dropped, so that J D J 1 C J 2
according to (J.1) of Appendix J.

STEP 3: Updated accelerations
In preparing the data for the next time step the new acceleration vectors PXnC1
are computed according to Table 8.7 as

PXnC1 D
(
XnC1�Xn


tn
FE

�
2 � 
tn�1


tnC
tn�1
��XnC1�Xn


tn

� � � 
tn

tnC
tn�1

��
Xn�Xn�1


tn�1

�
AB

(10.95)

STEP 4: Error estimation
The LTE of the approximate equations depends on the predicted Xp

nC1 and
corrected XnC1 solutions. For the FE/BE and the AB/TR the error estimation
yields (cf. Table 8.7)

dnC1 D '.XnC1 �Xp
nC1/ (10.96)
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with

' D
8
<

:

1
2

for FE/BE
1

3
�
1C
tn�1


tn

� for AB/TR (10.97)

Appropriate error norms are applied to the LTE vector dnC1. Commonly, the
weighted RMS L2 error norm

kdnC1kL2 D
�
1
NP

� NPX

iD1

ˇ
ˇ
ˇ
di;nC1
Xmax;nC1

ˇ
ˇ
ˇ
2�
�1=2

(10.98)

and the maximum L1 error norm

kdnC1kL1 D 1
Xmax;nC1

max
i
jdi;nC1j (10.99)

are chosen, whereXmax;nC1 is the maximum value of the current primary variable
detected at the time plane nC 1, and used to normalize the solution vector.

STEP 5: Tactic of time stepping
The new provisional time step size can be computed by means of the error
estimates (10.96), (10.98), (10.99), the current time step size 
tn, and a user-
specified error tolerance � as


tnC1 D

8
ˆ̂
<̂

ˆ̂
:̂


tn

�
�

kdnC1kLp

	1=�
or optionally


tn

�
�

max.kdhnC1kLp ; kd nC1kLp ; kdsnC1kLp /

	1=� (10.100)

where

� D
�
2 for FE/BE

3 for AB/TR

p D
�
2 for RMS error norm

1 for maximum error norm

(10.101)

and dhnC1, d
 
nC1 and dsnC1 are defined by (10.45). To monitor the progress of the

solution we use the criteria as summarized in Table 8.7.

Note that alternative time stepping schemes exist in contrast to the GLS predictor-
corrector method, e.g., the empirical target-based scheme as proposed in [167], in
which the only criterion is the Newton convergence for possibly large time step size.
The step size is determined from a desired change in the variable per time step given
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by user-specified targets.5 Diersch and Perrochet [141] have studied the target-based
solution control and concluded that the GLS predictor-corrector method is usually
superior to a target-based scheme, which can be an error-prone strategy in a potential
lacking of temporal accuracy.

10.8 Overview of FEFLOW’s Solution Strategies
for Unsaturated-Saturated Flow

In the preceding sections a family of schemes has been developed for solving
the Richards’ equation in different formulations. The complexity and numerical
difficulties which can arise in the practical solution of unsaturated-saturated flow
actually require the availability of a spectrum of methods having their advantages
and drawbacks. In Table 10.3 we summarize the solution strategies with their
essential features and options available in FEFLOW.6

5Empirical target-based time step control: If Newton iterations have converged a new provisional
step size 
tnC1 can be computed in the following way [141]:


tnC1 D � 
tn

where � is a time step multiplier, which is determined by the minimum ratio of prescribed target
change parameters DXWISH (DSWISH for the saturations snC1 and DPWISH for the pressure
head ψnC1) to the Newton correction, viz.,

� D min
i

DXWISH

jX�C1
i;nC1 �Xi;nj

Typically used values are DSWISH D 0:4 and DPWISH D 400 m. Additionally, it can be useful
to constrain � by a maximum multiplier � 	 �max, where �max D 1:1; : : : ; 5. If the Newton
scheme does not converge within a maximum number of iterations � 	 ITMAX, where ITMAX
is typically 12, the current time step has to be rejected. A reduced time step size is then computed
by 
t red

n D 
tn=TDIV and the solution process is restarted for the current time plane n C 1, but
with
tn D 
t red

n . The time step divider TDIV is usually 2.
6Of primary interests are the schemes no.1, no.3 and no.4, providing a full residual control and
best mass-conservative properties. Scheme no.1 is very effective for dry porous media, however,
it is not well applicable to hysteretic porous-media problems. The Picard method of scheme no.4
is potentially more robust compared to the Newton scheme no.3, however, to the disadvantage of
only a linear convergence rate. In solving the mixed  � s�form (or the equivalent h� s�form)
of Richards’ equation, the moisture capacity C is usually evaluated analytically. On the other
hand, for the standard h�based forms of the Richards’ equation the chord slope evaluation (see
Sect. J.3 of Appendix J) of the moisture capacity is often preferred due to a potentially better
discrete mass conservation property. The h�form of schemes no.9 and no.7 are suited for classic
seepage simulations (at moderate capillary pressure conditions) involving free surface(s). Scheme
no.9 with � D 1 can be used to approach to steady-state solutions (whenever exist).
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Fig. 10.4 Typical plots of (a) main  .s/ hysteresis loop and (b) primary and secondary scanning
 .s/ loop predicted by Scott et al.’s [469] empirical hysteresis model

10.9 Modeling Hysteresis in the Retention Curve

Hysteresis in variably saturated porous media describes the dependence of the
capillary pressure curve on the flow direction and history of wetting and drying.
It can be caused by a number of mechanisms within the pore scale such as
entrapment of air, shape of pore space (ink-bottle effect) and hysteresis in the contact
angle [38, 473]. As the consequence the hysteretic behavior leads to a nonunique
relationship between the pressure head  and the saturation s in the retention
function  .s/ and s. /, respectively (Fig. 10.4). During gravity drainage when the
saturation and the pressure head are monotonically decreasing, the retention curve is
still a unique function. However, when drying intermediately reverses into a wetting
process and vice versa,  .s/ is no longer unique due to the hysteretic behavior.
Similar effects can be observed during infiltration which exhibits a nonunique, but
different  .s/ relationship, when wetting is reverses into a drying process and vice
versa.

The unsaturated flow follows a main wetting and main drying retention curve
 w.s/ and  d .s/ (or equivalent sw. / and sd . /), respectively, when the porous
medium is wetted from the residual saturation sr or drained from the saturated state
at maximum saturation ss , respectively. Once a wetting or drying process is reversed
while following the main hysteresis curve, the retention curve follows a primary
hysteresis curve. Now, further reversals can occur, which leads to secondary and
higher-order scanning curves (Fig. 10.4).

Various models for describing hysteresis in the retention curves have been
developed [321, 411, 469, 554]. They can be grouped into physically based models
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and empirical models. Among them, empirical analytical models have shown most
relevance in modeling practice due to their robustness and flexibility. In such a
modeling approach it is assumed that the primary, secondary and higher-order
scanning curves can be scaled from the main hysteresis curve. A very useful scaling
approach has been introduced by Scott et al. [469], hereafter referred to as Scott
et al.’s hysteresis model, which is based on analytic retention relations, such as
the van Genuchten parametric model as described in Appendix D. Scott et al.’s
scaling method [321, 469] can be further generalized and even applied to spline
approximation retention curves [147].

We explain the Scott et al.’s hysteresis model along the analytic van Genuchten
(VG) retention relations (D.2) and (D.5) of Appendix D, where its application to
other analytic relationships becomes similar. For the VG curve it is

se D s � sr
ss � sr D

8
<

:

1

.1C j˛ jn/m for  < 0

1 for   0
(10.102)

and

 D � 1
˛

�
s

� 1
m

e � 1
� 1
n for 0 < se < 1 (10.103)

We denote the main drying curve s. / or  .s/ by sd . / and  d .s/, respectively,
and the main wetting curve by sw. / and  w.s/, respectively (Fig. 10.4). The
main hysteresis loop for a VG retention is then described by the parameter vector
.sw
s ; s

w
r ; ˛

w; nw; mw/ for the main wetting curve and .sds ; s
d
r ; ˛

d ; nd ;md / for the
main drying curve, requiring in total ten curve parameters. If we restrict the
approach to a closed hysteresis loop it can be assumed that the residual and
maximum saturations of the main wetting curve are equal to those for the main
drying curve such that

sw
r D sdr D sr
sw
s D sds D ss

(10.104)

We note that an extension to the case where sw
s ¤ sds is possible [321]. The assump-

tion (10.104) reduces the total parameter set to eight parameters for describing the
main hysteresis loop applied to the VG relation.

To compute the scanning curves denoted by sw?. / or  w?.s/ for wetting and
sd?. / or  d?.s/ for drying, we employ Scott et al.’s hysteresis model, in which
sw?. / is scaled from the main wetting curve sw. / and sd?. / is scaled from the
main drying curve sd . /. In doing so, drying scanning curves are obtained by using
the VG parameter vector .s?s ; sr ; ˛

d ; nd ;md / in (10.102), where s?s replaces ss and
has the effect of scaling the drying curve to pass through the reversal point indexed
by 
, giving (cf. Fig. 10.4b)
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s?s D
s
 � sr

�
1 � sde . 
/

�

sde . 
/
(10.105)

where s
 is the saturation at the reversal point and sde . 
/ is the effective saturation
(D.2) on the main drying curve at the reversal pressure head  
, i.e., sde . 
/ is
described by (10.102) with  D  
 and parameters .ss; sr ; ˛d ; nd ;md /.

In a similar manner we can obtain any wetting scanning curve when the VG
parameter vector .ss ; s?r ; ˛

w; nw; mw/ is used, in which s?r is obtained from passing
the main wetting curve through the reversal point, viz. (cf. Fig. 10.4b),

s?r D
s
 � sssw

e . 
/

1� sw
e . 
/

(10.106)

where sw
e . 
/ is evaluated from (10.102) by using D  
 and .ss ; sr ; ˛w; nw; mw/.

A typical scanning hysteresis loop is illustrated in Fig. 10.4b, consisting of a primary
wetting curve and secondary drying curve predicted by (10.106) and (10.105),
respectively. In the VG parametric model all scanning curves have the form of
(10.102) or (10.103). For other analytic retention relations such as described in
Appendix D, Scott et al’s hysteresis model can be analogously applied. To derive
their corresponding scanning curves the specific parameter sets are modified by
(10.105) and (10.106) for drying and wetting, respectively. Having defined the
scanning curves of retention for drying and wetting, their first derivatives in form of
moisture capacity and inverse moisture capacity can be obtained analogously to the
expressions as given in Appendix D for the main curves.

When using spline approximations for the retention curve as introduced in
Sect. D.4 of Appendix D, saturation values s are obtained directly from  �values
and effective saturation se is not involved. Here, a modification to Scott et al.’s
hysteresis model is required as proposed in [147]. Assuming again a maximum
saturation ss common to both main curves and assuming an asymptotic minimum
(residual) saturation sr also common to both main curves, the pressure head  
 at
a reversal point is used to define a linear scaling according to Fig. 10.5. We find for
the reversal from wetting to drying (Fig. 10.5a)

s. 
/� sr D cd
�
sd . 
/� sr

�

cd D A

Ad
D s. 
/ � sr
sd . 
/� sr

(10.107)

and for the reversal from drying to wetting (Fig. 10.5b)

ss � s. 
/ D cw
�
ss � sw. 
/

�

cw D B

Bw
D ss � s. 
/
ss � sw. 
/

(10.108)
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Fig. 10.5 Scanning
spline-approximated s. /
curve in a hysteretic loop for
(a) drying curve sd?. / and
(b) wetting curve sw?. /

where cd and cw represent scaling factors. The required scanning curves are then
defined by

sd?. / D cd sd . /C .1 � cd /sr for  <  
 (10.109)

for drying and

sw?. / D cwsw. /C .1 � cw/ss for  
 <  < 0 (10.110)

for wetting.
For the numerical implementation of the hysteresis models individual scanning

curves are determined and recorded for each mesh node and time step. To each
global node i and time plane n a hysteresis index �i;n is assigned according to
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�i;n D
� C1 if node i is wetting
�1 if node i is drying

(10.111)

At node i and time plane n the flow direction is recorded as

�i;n D sign. i;n �  i;n�1/; n D 1; 2; : : : (10.112)

As long as the flow direction does not change, i.e., �i;n D �i;n�1, the computation
can proceed with the most recent scanning curve. Usually, at initial time t0 the
simulation starts from a corresponding main curve at a pre-set direction �i;0 and
IC  i;0. Once the flow direction changes, i.e., �i;n ¤ �i;n�1, the value of change in
the pressure head is accumulated and stored in the vector ψ˙ for each node i as

 ˙;i WD  ˙;i C  i;n �  i;n�1
�i;n

(10.113)

whereψ˙ has been zeroed at the last reversal (or at initial state). Note that (10.113)
accumulates only consecutive changes in the flow direction. Now, a (new) reversal
occurs when the accumulated change  ˙;i at node i meets the following criterion

 ˙;i > �� (10.114)

where �� is set to a dimensional small positive value (e.g., 10�3 m) to avoid
oscillations in the flow directions. If (10.114) is satisfied the new reversal point
is fixed for the node i with  
;i D  i;n, the new scanning curve is determined
based on the just detected reversal pressure head  
;i and flow direction �i;n. The
accumulated change  ˙;i is again reset to zero and the computation proceeds by
using the new scanning curve.

Finally, it has to be noted that in opposite to the retention curves the relative
permeability relations kr.s/ usually exhibit only little or negligible hysteresis
[321]. In particular, in the van Genuchten-Mualem (VGM) relationship (D.26) of
Appendix D, where m D 1 � 1=n is substituted, a hysteretic kr.s/�dependency
is implicitly given by the retention parameters and any hysteresis in kr.s/ of the
VGM parametric model is only due to differences between the pore size distribution
parameters nw and nd for wetting and drying, respectively [339]. In the case that
nw D nd D n there is no more hysteresis in kr.s/, however, hysteretic VG retention
curves still arise if ˛w ¤ ˛d .

10.10 Treatment of Prescribed Time-Varying Porosity

In many mining and underground construction cases, transient material properties
play a significant role to mimic the effects of an excavation or infilling progress for
porous-medium bodies. For example, an open pit is excavated below the water table
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Fig. 10.6 Open pit excavation and refilling progress mimicked by prescribed time-varying
porosity ".t/ and hydraulic conductivity K.t / for the mined zone

and becomes later refilled or a long-wall coal mining involves backfilling of the
mined zones with the excavation residues, which naturally changes the hydraulic
properties in form of time-varying, a priori known relationships for porosity
" D ".t/ and hydraulic conductivity K D K.t/ in these zones [458], Fig. 10.6.
While a transient behavior of any material property can be easily implemented
via standard time series without further specific physical considerations, there is
the only exception for a prescribed porosity function ".t/, which is subjected to
the time derivation in the general storage term @."s�/=@t , cf. (3.225) with (3.219).
As a consequence, the storage term has to be developed different to the standard
formulations given above by (3.242) and (3.246). Unlikely, we have to use

@."s�/

@t
D "s @�

@t
C �"@s

@t
C �s @"

@t
D "s�20	g

@h

@t
C �"@s

@t
C �s @"

@t
(10.115)

where the liquid compressibility 	 is introduced according to Sect. 3.10.4, while the
porosity term remains untreated and will not be expressed in a term of skeleton
compressibility as usually done by invoking (3.246). As a result, we obtain an
alternative Richards’ equation written in the h � s�form as

s S?o
@h

@t
C "@s

@t
�r � �krKf� � .rhC�e/

 D QhCQhwCQEOB� s P" (10.116)

which is somewhat different to the original formulation (10.5) in respect to (1) the
modified specific storage coefficient S?o D �0g"	 � So encompassing only liquid
compressibility effects and (2) the explicit appearance of the derivative porosity
term s P" in the RHS to be expressed via a prescribed time series, viz.,

" D f .t/; P" D @f .t/

@t
(10.117)
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where f .t/ corresponds to a continuous (once-differentiable) input function to be
specified for excavation or infilling measures. If P" > 0 the excavation progresses
in time as a sink which leads to a decrease of the hydraulic head in the zone. On
the other hand, if an infilling progresses with P" < 0 the derivative porosity term
acts as an additional source associated with an increase of the hydraulic head in the
corresponding zone.

The computation of the alternative Richards’ equation (10.116) can be analo-
gously performed by using the numerical techniques as described in the preceding
sections. The only difference is in the usually reduced specific storage coefficient
S?o � So and in the additional sink term�s P" of a prescribed porosity history. For the
latter an extra vector F ? will appear in the resulting spatio-temporally discretized
equation on the RHS in the form

F WD F C F ?

F ? D F ?
i D �

X

e

Z

˝e

Ni s
e P"ed˝e (10.118)

where F is the usual RHS vector defined in (10.32) or (10.61). In application to
the above time stepping schemes the temporal evaluation of the extra term F ? is
executed at the current time plane nC 1 as

F ?
nC1 D F ?

i;nC1 D �
X

e

Z

˝e

Ni
X

l

.N e
l s

e
l;nC1/

@f .t/

@t

ˇ
ˇ
nC1d˝

e (10.119)

Note that the extension in the RHS vector F by F ? also enters in the Jacobian for
the Newton iteration method, cf. Sect. 10.7.3.

10.11 Computation of Darcy Velocities and Flow Budget
Analysis

The Darcy velocity and boundary flux computation for flow in variably saturated
porous media follow the same principles as described in Sect. 9.7 for saturated
flow. The only difference is in using the specific formulations in dependence on
the chosen equations types. Thus, the discrete evaluation of Darcy velocities is
performed in the h� and  �formulation, respectively, as (cf. Sect. 8.19.1)

q.x; tnC1/ D �
X

j

kr .snC1/Kf� �
�rNj .x/ hj .tnC1/C �e



q.x; tnC1/ D �
X

j

kr .snC1/Kf� �
�rNj .x/  j .tnC1/C .1C �/e

 (10.120)
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where hj .tnC1/ D hnC1 and  j .tnC1/ D ψnC1 are the known nodal hydraulic head
and pressure head, respectively, and kr.snC1/ is evaluated by the known discrete
saturation at nodal points snC1 DPj Nj .x/sj .tnC1/ at time plane nC1. Smoothing
techniques as thoroughly described in Sect. 8.19.1 are used to derive continuous
Darcy velocities at the nodal points.

To obtain a precise flow budget evaluation the CBFM, as introduced in
Sect. 8.19.2, is applied to the specific weak formulations of the Richards’
equation. While the evaluation for the standard h�based form (10.47) can be
done analogously to (9.64), giving now

Z

�

Ni qn d� D �
Z

˝

Ni.sSo C "C /@h
@t
d˝ �

Z

˝

rNi � Œkr .s/Kf� � .rhC �e/�d˝ C
Z

˝

Ni.Qh CQhw CQEOB/d˝ (10.121)

the boundary fluxes for the mixed h � s�form (and the equivalent  � s�form) of
the Richards’ equation must be evaluated from the original weak statement (10.25)
written as

Z

�

Ni qn d� D �
Z

˝

Ni sSo
@h

@t
d˝ �

Z

˝

Ni"
@s

@t
d˝ �

Z

˝

rNi � Œkr .s/Kf� � .rhC �e/�d˝ C
Z

˝

Ni.Qh CQhw CQEOB/d˝ (10.122)

where h DPj Nj hj and s DPj Nj sj are known at tnC1. Finally, matrix systems
result to solve the consistent boundary flux vector qn for the specific forms from

M � qn D
� �O� � Ph�D� � hC F �

h�form

�O � Ph �B � Ps �D� � hC F �
h� s�form

(10.123)

where

M D Mij D
R
�
NiNjd�

O D Oij D ıij
R
˝
sSoNid˝

O� D O�
ij D ıij

R
˝
.sSo C "C /Nid˝

B D Bij D ıij
R
˝
"Nid˝

D� D D�
ij D

R
˝
rNi � .kr .s/Kf� � rNj /d˝

F � D F �
i D

R
˝
Ni.Qh CQEOB/d˝ �

R
˝
rNi � .kr .s/Kf� � �e/d˝�

Qw.t/
ˇ
ˇ
i

(10.124)
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in which Ph, Ps and h are known at the evaluation time tnC1. In a flow budget analysis
the integral boundary balance fluxQn is directly evaluated at each boundary node by

Qn D �M � qn D
�
O� � PhCD� � h � F �

h�form

O � PhCB � PsCD� � h� F �
h� s�form

(10.125)

10.12 Upstream Weighting

Forsyth and Kropinski [166] pointed out the necessity of upstream weighting in
unsaturated-saturated flow problems to avoid spurious local maxima and minima
at coarse mesh sizes. Monotonicity considerations were applied to find appropriate
evaluation points for the relative permeability terms depending on the sign of poten-
tial differences along discrete spans (element edges). While a central (standard)
weighting results from an average of the relative permeability at the centroids
of elements, an upstream weighting is obtained if the evaluation point is shifted
upstream in an element. This technique is different from upwind methods commonly
used for ADE as discussed in Sect. 8.14.

Different approaches exist in unsaturated flow modeling for the representation of
material properties. Forsyth and Kropinski [166], Šimůnek et al. [553] or Oldenburg
and Pruess [397] prefer a nodal representation, where material interfaces do not
coincide with element boundaries and elemental properties have to be averaged. In
such an approach upstream weighting points for evaluating the relative permeability
kr can be directly located between adjacent nodes. Such schemes have proved to be
unconditionally monotone [166].

The present upstream weighting method is based on an elemental representation
of material properties. We use the following procedure to find appropriate upstream
weighting points at an element level. A central weighting is equivalent to the
influence coefficient method using a linear combination of nodal parameters at
element level according to

ker .η; t/ 	
X

J

N e
J .η/k

e
r;J .t/ (10.126)

where ker;J is the relative permeability determined at local node J of element e
and the element basis functions Ne

J .η/ D Ne
J .�; �; �/ are evaluated at the element

centroid .� D � D � D 0/. Instead of using the central position, we select
an upstream position Qη D . Q�; Q�; Q�/ for computing the relative permeability via
(10.126). The evaluation point Qη is used for Gauss integration in the matrix terms
related to kr and is similar to the Gauss-point-based upwind technique proposed
by Hughes [266]. To determine the upstream local coordinates Qη in 2D and 3D
elements the following method is applied.
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Fig. 10.7 Upstream local
coordinates .Q�; Q�/ in a 2D
finite element

Based on the predicted pressure head ψpnC1 a specific flux can be computed at a
central position of an element e, viz.,

venC1 D �
X

J

rNe
J .0; 0; 0/

�
 
p
J;nC1 C .1C �/eJ

�
(10.127)

and, the trajectory of the vector venC1 can be easily found. Along the trajectory,
in the upstream direction, the upstream position Qη is set at the intersection with
the element border (Fig. 10.7). For the element e the relative permeability is now
evaluated at the upstream point as

ker .η; t/ D
X

J

N e
J .
Q�; Q�; Q�/ker;J .t/ (10.128)

With the upstream point . Q�; Q�; Q�/ the relative permeability ker is evaluated only
along element edges. For instance, considering the situation in Fig. 10.7 for a 2D
isoparametric finite element, Q� is �1 and ker , from (10.128), becomes independent
of nodes 3 and 4, viz., ker D 1

2
Œ.1 � Q�/ker;1 C .1C Q�/ker;2�.

10.13 Examples

10.13.1 Variably Saturated Flow in a Homogeneous Soil
Column

10.13.1.1 Gardner’s Problem

An analytical solution for the steady-state pressure head distribution  above the
water table in a 1D soil column (Fig. 10.8) has been presented by Gardner [185] in
a form7:

7Two interesting results can be detected from (10.129):
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 .z/ D � 1
˛

ln
�
1
K
Œ.K C v/e�˛.LCz/ � v�

�
(10.129)

where z is the vertical coordinate (positive upward), v is the evaporation (exfiltration
rate) positively directed along z (note that v corresponds to an infiltration rate if
negative),K is the (scalar) saturated hydraulic conductivity,˛ is the sorptive number
by assuming an exponential relationship for the relative permeability kr D exp.˛ /
[417] according to (D.39) (with  a D 0) of Appendix D, L is the height of the
column, and ln./ represents the natural logarithm.

The analytical solution (10.129) will be compared with numerical results by
using the parameters as summarized in Table 10.4. The numerical simulations
are based on the standard h�form of the Richards’ equation since the problem is
steady-state and no specific requirements for a precise storage term approximation
arise. Linear finite elements are used. The comparisons for the pressure head  .z/
are shown in Table 10.5 for the cases of constant evaporation Cv and constant
infiltration �v. As revealed the agreement is quite perfect.

1. We can ask which flux is concerned to force the pressure head zero everywhere? It can be
easily shown from (10.129) that such a situation occurs if the infiltration has the amount of the
saturated conductivity, i.e., v D �K

2. We also can ask which flux is concerned to make the pressure head  infinity at the soil surface
z D 0, i.e., .0/ D 1? This should occur for a certain rate v which represents the theoretically
maximum evaporative flux vmax. The pressure head  becomes infinity at z D 0 if the argument
of the logarithm of (10.129) goes to zero. It implies that

vmax

K
D e�˛L

�vmax

K
C 1

�

and leads to a solution of the theoretically maximum evaporative flux as

vmax D K

e˛L � 1
:
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Table 10.4 Parameters and conditions used for Gardner’s problem

Quantity Symbol Value Unit

Column length L 1 m
Saturated conductivity K 10�7 m s�1

Exponential parametric modela (D.16), (D.39)
Sorptive number ˛ 1 m�1

BC’s
Neumann-type BC at top qh D v ˙8:64 � 10�4 m d�1

Dirichlet-type BC at bottom  D 0 m
FEM
Space increment 
z 10�2 m
RMS error tolerance � 10�3 1
a Note that  a D 0

Table 10.5 Comparison of pressure head  for the cases of a constant evaporation and infiltration

Evaporation Cv Infiltration �vElevation above water
table .LC z/ (m) Analytical (m) Numerical (m) Analytical (m) Numerical (m)

0.95 �1:122654 �1:122649 �0:802813 �0:802814
0.85 �0:993830 �0:993826 �0:724280 �0:724281
0.75 �0:868446 �0:868443 �0:644110 �0:644111
0.65 �0:746020 �0:746018 �0:562398 �0:562399
0.55 �0:626153 �0:626151 �0:479238 �0:479240
0.45 �0:508510 �0:508509 �0:394725 �0:394726
0.35 �0:392810 �0:392809 �0:308948 �0:308948
0.25 �0:278814 �0:278813 �0:221993 �0:221994
0.15 �0:166316 �0:166316 �0:133946 �0:133946
0.05 �0:055140 �0:055140 �0:044886 �0:044886

10.13.1.2 Celia et al.’s Problem

Celia et al. [72] introduced a transient unsaturated flow problem to benchmark
modeling approaches for a strong infiltration front development in a homogeneous
soil column. Celia et al. [72] used the modified Picard method for the mixed
 � s�based form of the Richards’ equation as described in Sect. 10.5.3. They
discretized the column of 1 m length by using the spatial increments for a dense
and a coarse grid with 
z D 0:5 cm and 
z D 2:5 cm, respectively. In [72]
dense-grid simulations were performed with a constant time increment 
t D 60 s,
which means that their ‘best’ solutions for a simulation time of 1 day were
obtained after 1,440 time steps plus a number of unreported Picard steps. The
used parameters and conditions for the benchmark problem are summarized in
Table 10.6.

We use the same spatial discretization with linear finite elements as applied
by Celia et al. [72], however, prefer the FE/BE or AB/TR predictor-corrector
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Table 10.6 Parameters and conditions used for Celia et al.’s problem [72, 470]

Quantity Symbol Value Unit

Column length L 1 m
Saturated conductivity K 9:22 � 10�5 m s�1

Porosity " 0:368 1
Specific storage coefficient So 0 m�1

Maximum saturation ss 1 1
Residual saturation sr 0:277 1
van Genuchten-Mualem (VGM) parametric modela (D.3), (D.26)
Pore size distribution index n 2 1
Fitting coefficient ˛ 3:35 m�1

IC and BC’s
Initial condition (IC)  0 �10 m
Dirichlet-type BC at top  T

D �0:75 m
Dirichlet-type BC at bottom  B

D �10 m
FEM
Space increment (fine and coarse grid) 
z 0:5 and 2:5 cm
Initial time step size 
t0 10�5 d
RMS error tolerance (FE/BE and AB/TR) � 10�4 1
Residual error tolerance �?2 10�4 m3 d�1

Simulation time period tend 1 d
a Note that it is generally used: m D 1� 1

n
and � D 1

2

time stepping strategies based on either the PVST with Newton method or
the Picard scheme for the mixed  � s�form of the Richards’ equation.
A comparison with Celia et al.’s results is shown in Fig. 10.9a and reveals
very good agreements (note that Celia et al.’s results are picked from a table
presented in [470], where only selected sample points are listed). In Fig. 10.9b the
dense and coarse grid solutions are compared to illustrate spatial discretization
effects. As shown, a significant phase lead and a somewhat smeared  �profile
result.

The time behavior of the residual error kRnC1kRMS and the total balance error
TBE.t/ (10.87) are plotted in Fig. 10.10 for the PVST and FE/BE scheme. At
tend D 1 d the simulation terminates with TBE.tend/ 	 10�6 m3 by using a RMS
error tolerance of � D 10�4 and residual error tolerance of �?2 D 10�4 m3 d�1
(10.86). These PVST simulations with variably switched primary variable for or s
need about 400 time steps and 450 Newton iterations in total. In contrast, the
Picard method applied to the mixed  � s�formulation with the pressure head
 as the general primary variable embedded in the FE/BE and AB/TR predictor-
corrector scheme requires 1,350 and 1,000 time steps, respectively, and about 1,500
Picard iterations in total for both time stepping schemes, which is more than thrice
the computational effort of the PVST computations. This represents the time step
demand also reported by Celia et al. [72] who used 1,440 steps. The same order
of time and iteration steps occurs when the solution is performed with the standard
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h�form of the Richards’ equation. Using the dense grid all formulations give the
results of Fig. 10.9a in a good agreement. In a conclusion, however, it is obvious that
PVST is the most efficient solution strategy. More investigations and comparison to
an empirical target-based time stepping strategy can be found in [141].

10.13.1.3 Williams et al.’s Problem

Williams et al. [566] analyzed various numerical approaches for simulating sharp
front dynamics in 1D soil columns. Their introduced test cases possess high
nonlinearity in the governing unsaturated-saturated flow equations, which makes
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Table 10.7 Parameters and conditions used for Williams et al.’s problem [566]

Quantity Symbol Value Unit

Column length L 10 m
Saturated conductivity K 5:833 � 10�5 m s�1

Porosity " 0:301 1
Specific storage coefficient So 10�6 m�1

Maximum saturation ss 1 1
Residual saturation sr 0:30897 1
van Genuchten-Mualem (VGM) parametric modela (D.3), (D.26)
Pore size distribution index n 4:264 1
Fitting coefficient ˛ 5:47 m�1

IC and BC’s
Initial condition (IC) h0 0 m
Dirichlet-type BC at top hTD 10:1 m
Dirichlet-type BC at bottom hBD 0 m
FEM
Space increment 
z 1:25 cm
Initial time step size 
t0 10�10 d
RMS error tolerance (FE/BE) � 10�4 1
Residual error tolerance �?2 10�4 m3 d�1

Simulation time period tend 0:18 d
a Note that it is generally used: m D 1� 1

n
and � D 1

2

the problems difficult to solve via standard methods. We choose one representative
example from Williams et al.’s benchmarks [566], which exhibits a sharp front
development under both unsaturated and saturated conditions. The height of the
homogeneous soil column is 10 m. The used parameters and conditions for this
benchmark problem are summarized in Table 10.7.

For the present simulations the column is discretized by 800 linear quadrilateral
elements. Time-constant Dirichlet-type BC’s for the hydraulic head h on top and
bottom of the column are imposed. We simulate this problem by PVST, the Celia
et al.’s method for the mixed form of Richards’ equations with Picard iteration
and the standard form of the Richards’ equation with Picard iteration and chord
slope approximation. The present computations use always the automatic FE/BE
predictor-corrector time stepping. A residual error control is applied to PVST
and Celia et al.’s method. The results in form of pressure head profiles in time
obtained via PVST are compared in Fig. 10.11 with the findings by Williams
et al. [566] presenting both dense-grid and coarse-grid solutions. It is evident that
the present PVST results agree almost perfectly with Williams et al.’s dense-grid
solution. The PVST simulation takes 2,693 variable times steps and results a total
balance error TBE.t D 0:18 d/ (10.87) of O.10�6/ m3 by using a RMS error
tolerance of � D 10�4 and residual error tolerance of �?2 D 10�4 m3 d�1 (10.86).
The Celia et al.’s method leads to comparable pressure head profiles, however,
requires a double time step number (actually, 5,129 variable time steps) to achieve
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an equivalent total balance error of O.10�6/m3. Contrarily, the standard form of the
Richards’ equation leads to awfully bad results, revealing a significant mass balance
inaccuracy as evidenced in Fig. 10.12. The extreme lag in the pressure profiles
indicates a considerable loss of mass for this type of formulation, notwithstanding
the taken higher number of time steps (actually, 6,202 variable time steps). We find
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Table 10.8 Parameters and conditions used for Lenard et al.’s problem [85, 340]

Quantity Symbol Value Unit

Column length L 0:72 m
Saturated conductivity K 3:3056 � 10�4 m s�1

Porosity " 0:36 1
Specific storage coefficient So 10�4 m�1

Maximum saturation ss D sds D sw
s 1 1

Residual saturation sr D sdr D sw
r 0:17 1

van Genuchten-Mualem (VGM) parametric modela (D.3), (D.26)
Wetting curve
Pore size distribution index nw 5:25 1
Fitting coefficient ˛w 8:4 m�1

Drying curve
Pore size distribution index nd 5:25 1
Fitting coefficient ˛d 4:2 m�1

IC and BC
Initial condition (IC) of hydraulic head h0 0:695 m

(with z D 0 at bottom)
Dirichlet-type BC at bottom hD.t/ Table 10.9 m

(time-dependent hydraulic head)
FEM
Space increment 
z 3:6 mm
Initial time step size 
t0 10�5 d
RMS error tolerance (FE/BE) � 10�4 1
Residual error tolerance �?2 10�4 m3 d�1

Simulation time period tend 10 h
a Note that it is generally used: m D 1� 1

n
and � D 1

2

that the standard form is unsuitable for simulating such type of sharp fronts with
rapid changes in saturations over short distances and time scales.

10.13.1.4 Lenhard et al.’s Problem: Hysteretic Flow

Lenhard et al. [340] conducted an air-water flow experiment in a 72-cm vertical soil
column, where the water table fluctuates. This column experiment was recomputed
by Clausnitzer [85] in using a 1D FEM. We will compare the present finite element
solutions with Clausnitzer’s results for both hysteretic and nonhysteretic conditions.
For a discussion of the simulation results with the experimental findings we refer to
[85]. The used material parameters and conditions are listed in Table 10.8.

The column is filled by a homogeneous sandy material with a saturated hydraulic
conductivity of 1.19 m h�1 and porosity of 0.36. Initially, most of the column is
fully saturated, with the water table positioned at 0.695 m (25 mm below the top
of the column). At the bottom of the soil column the hydraulic head h is varied in
time. Its boundary curve is listed in Table 10.9. Results will be compared for five
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Table 10.9 Time-dependent
hydraulic head hD.t/ at the
bottom of the soil column

Time t .min/ hD.t/
a (m)

0 0.695
125 0.070
175 0.070
245 0.420
295 0.420
345 0.170
395 0.170
505 0.720
600 0.720
a Changes between the time

stages are linear
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observation points located at (P1) 0.69 m, (P2) 0.59 m, (P3) 0.49 m, (P4) 0.39 m,
and (P5) 0.29 m, measured from the soil bottom. For the present simulations both
the standard and the mixed form of the Richards’ equation with the automatic FE/BE
predictor-corrector scheme and Picard iteration strategy are used. A comparison of
the FEFLOW results with the solutions obtained by Clausnitzer [85] gives a good
agreement as revealed in Fig. 10.13. It is to be noted that Clausnitzer used a coarser
mesh with a width of 
z D 1 cm and a fully implicit scheme with variable time
steps based on the standard form of the Richards’ equation. The hysteresis effect
on the moisture content �.t/ for the present problem can be seen in comparing the
solutions for the hysteretic case (Fig. 10.13) with the solutions for the nonhysteretic
case (Fig. 10.14). The results for nonhysteretic conditions are obtained by using the
parameters of the drying main curve. Note that the moisture content, or soil water
content, is defined as the product of saturation s and porosity ":

� D s" (10.130)

where the maximum moisture content is �s D ss" and the residual moisture content
is �r D sr".

10.13.2 Variably Saturated Flow in an Inhomogeneous Soil
Column

10.13.2.1 Van Genuchten’s Problem

Van Genuchten [470, 537, 538] describes results for moisture movement in a
layered soil. A soil column with a length of 170 cm includes four layers: clay
loam (0–25 cm), loamy sand (25–75 cm), dense material (75–87 cm) and sand
(87–170 cm), where the loamy-sand layer properties change gradually with depth
(Fig. 10.15). Tables 10.10 and 10.11 summarize the parameters and conditions used
in the computations. A time-varying Neumann-type flux BC is imposed on the
surface with constant qh D �0:25m d�1 at t � 1 d (infiltration) and constant
qh D C0:005m d�1 at t > 1 d (exfiltration). On the bottom a gradient-type BC
of qr

h D �1.�1/ � Kbottom D 4m d�1 is imposed to allow a free (gravitationally
driven) drainage of the soil column.

A comparison between the present solutions and the results obtained by van
Genuchten [537] who used a Hermitian-finite element approach is exhibited in
Figs. 10.16 and 10.17. Figure 10.16 displays the simulated moisture-content profiles
during the infiltration period at t � 1 d. The moisture-content histories during the
redistribution phase at t > 1 d in the soil column are compared in Fig. 10.17. As
shown the agreement of the results is nearly perfect.

Since the IC of  0 D �3:5m does not imply a very dry soil, the original
van Genuchten’s problem is not particularly difficult to solve and all formulations
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Table 10.10 Parameters and conditions used for van Genuchten’s problem [470, 537]

Quantity Symbol Value Unit

Column length L 170 cm
Column layered by soils (Fig. 10.15) listed in Table 10.11
Clay loam (0–25 cm) Soil type 1
Dense layer (75–87 cm) Soil type 2
Loamy sand (25–75 cm) Soil gradually changing from type 3 to 9
Sand (87–170 cm) Soil type 9
IC and BC’s
Initial condition (IC)  0 �3:5 m
Neumann-type BC at surface

(infiltration/exfiltration)
qh

8
<

:

�0:25 at t 	 1 d
C0:005 at t > 1 d

m d�1

Gradient-type BC at bottom
(free drainage)

qrh D K 4 m d�1

FEM
Space increment 
z 1 cm
Initial time step size 
t0 10�5 d
RMS error tolerance (FE/BE and AB/TR) � 10�4 1
Residual error tolerance �?2 10�4 m3 d�1

Simulation time period tend 8 d

and schemes are successful. However, to study the merits and solution efforts of
the different numerical schemes for this heterogeneous system, let us focus on
the saturation profile computed at the end of the infiltration period (t D 1 d)
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Table 10.11 Material properties of soils by using the van Genuchten-Mualem (VGM) parametric
modela (D.3), (D.26) applied to van Genuchten’s problem [470, 537]

Soil Depth " sr ˛ n K So
type Quantity (cm) (1) (1) (m�1) (1) (10�4m s�1) (m�1)

1 Clay loam 0–25 0.5400 0.3704 0.800 1.8 0.029 4 � 10�5
2 Dense layer 75–87 0.4000 0.6250 0.900 3.0 0.012 5 � 10�6
3 Loamy sand 25–32 0.4700 0.3617 1.000 2.0 0.087 1 � 10�5
4 32–41 0.4611 0.3494 1.306 2.178 0.154 1 � 10�5
5 41–50.5 0.4500 0.3333 1.080 2.4 0.237 1 � 10�5
6 50.5–59 0.4400 0.3182 1.120 2.6 0.313 1 � 10�5
7 59–66 0.4311 0.3041 1.156 2.778 0.379 1 � 10�5
8 66–71 0.4244 0.2931 1.182 2.911 0.430 1 � 10�5

9 Sand

8
<

:

71� 75

87� 170
0.4200 0.2857 1.200 3.0 0.463 1 � 10�5

a Note that it is generally used: ss D 1, m D 1� 1
n

and � D 1
2
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Fig. 10.16 Simulated moisture-content .� D s"/ profiles during infiltration: (a) present solutions
and (b) van Genuchten’s results [470, 537], time in days

under low and extremely low initial pressure heads  0. Using the PVST with the
FE/BE predictor-corrector scheme the computed saturation profiles at t D 1 d are
shown in Fig. 10.18a for different  0. As expected, at very dry IC’s the saturation
profile remains unchanged, proving thus the good conservative properties of the
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PVST. Practically any arbitrary large value of  0 can be enforced. In contrast
to this, standard formulations using the pressure head  or hydraulic head h as
primary variable can run into difficulties or completely fail. Especially for very dry
conditions there is practically no way to find reasonable convergent solutions in
acceptable times. Figure 10.18b shows the results for both the mixed  � s�form
with Newton iteration and the standard h�form with Picard iteration and chord
slope approximation. As seen at low initial pressure head ( 0 D �3:5m) the
schemes yield the same results. However, already for  0 D �10m the standard
h�form reveals mass-conservative problems (phase lag). The phase lag error
dramatically grows at lower initial pressure heads as evidenced in Fig. 10.18b for
 0 D �103 m. On the other hand, the conservative mixed  � s�form provides
better results, though not without a phase lag error at  0 D �103 m (Fig. 10.18b)
in comparison to the good PVST results (Fig. 10.18a). We were not able to find
convergent solutions for both the mixed  � s�form and the standard h�form at
lower pressure head values ( 0 < �103 m).

Table 10.12 summarizes the solution effort in terms of time steps and required
number of total iterations for different schemes depending on the initial pressure
head  0. The PVST is successful for all  0 considered, while the schemes using
the pressure head  or hydraulic head h as primary variable (mixed Newton  �
s�form and standard Picard h�form) have shown unsuitable for very dry conditions
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measured in (m) by using: (a) PVST with FE/BE predictor scheme and (b) Newton mixed  �
s�form and the standard Picard iteration h�form, both with FE/BE predictor scheme

Table 10.12 Solution effort for different schemes (simulation time 1 day, FE/BE predictor
corrector with RMS error tolerance � D 10�4 and maximum rate of time step change of � D 2)

Primary variable  or h

PVST Mixed  � s�form, Newton Standard h�form, Picard

Total time Total Newton Total time Total Newton Total time Total Picard
 0 .m/ Steps Stepsa Steps Stepsa Steps Stepsa

�3:5 358 360 634 638 643 648
�10 676 684 1,824 2,112 1,760 2,021
�103 1,510 2,187 4,202 4,792 1,128 1,472
�104 1,990 3,254 Failed Failed
�105 2,180 3,858 Failed Failed
�106 2,696 4,988 Failed Failed
a Including rejected steps

 0 < �103 m. The PVST is always superior under very dry conditions [141]. Since
the predictor-corrector method is controlled by the temporal discretization error,
the required number of time steps increases naturally with decreasing  0. At the
same time, the number of rejected steps increases so that the overall effort grows
with decreasing  0. In the simulations the total balance error TBE.t D 1 d/ (10.87)
has found of O.10�6/ m3 by using a RMS error tolerance of � D 10�4 and residual
error tolerance of �?2 D 10�4 m3 d�1 (10.86).
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Table 10.13 Material properties of soils by using the exponential parametric modela (D.15),
(D.38) applied to Brunone et al.’s two-layer problem [61]

Layer Thickness (cm) " (1) sr (1) ˛ (m�1) K (m s�1) So (m�1)

1 20 0.4 0.15 10 2:778 � 10�6 10�4

2 80 0.4 0.15 10 2:778 � 10�5 10�4

a Note that it is generally used: ss D 1 and  a D 0

Table 10.14 Parameters and conditions used for Brunone et al.’s two-layer problem

Quantity Symbol Value Unit

Column length L 100 cm
Column layered by two soils as quantified in Table 10.13
IC and BC’sa

Initial condition (IC)  0 Variableb m
Neumann-type BC at surface qh �0:228 m d�1

Dirichlet-type BC at bottom hD �2 m
FEM
Space increment 
z 2:5 mm
Initial time step size 
t0 10�5 d
RMS error tolerance (FE/BE) � 10�4 1
Residual error tolerance �?2 10�4 m3 d�1

Simulation time period tend 40 h
a Origin of z�coordinate is at the surface directed upward
b Obtained at steady state with infiltration of 4:54 � 10�4 cm h�1

10.13.2.2 Brunone et al.’s Two-Layer Problem with Srivastava and Yeh’s
Analytical Solution

Brunone et al. [61] studied a vertical infiltration into a 1 m-deep soil profile
consisting of two layers with parameters listed in Table 10.13. The IC is a
steady-state pressure head distribution corresponding to a constant infiltration of
4:54 � 10�4 cm h�1, while the surface flux at t D 0 is abruptly changed to an
infiltration rate of 0:95 cm h�1. The lower BC is subjected to a pressure head  of
�100 cm. Imposed boundary flux at the soil surface corresponds to a rain intensity
of 0:95 cm h�1. The nodal spacing of the computational mesh is 
z D 2:5mm. The
used simulation parameters and conditions are summarized in Table 10.14.

The present two-layer problem can be solved analytically by using the method
proposed by Srivastava and Yeh [490]. Profiles of pressure head  and moisture
content � at selected times during the infiltration process as computed by Srivastava
and Yeh’s analytical method are shown in Fig. 10.19a. The analytical results are
compared with the numerical findings shown in Fig. 10.19b. It reveals a very good
agreement with the analytical results. For the numerical simulation we use the PVST
with automatic FE/BE predictor-corrector time integration. It takes only 153 time
steps with 155 Newton steps in total.
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Fig. 10.19 Profiles of pressure head  (left) and moisture content � (right) at selected times t (h):
(a) Srivastava and Yeh’s analytical solution given by Brunone et al. [61] and (b) present numerical
solutions achieved with PVST and automatic FE/BE predictor-corrector time integration. The
horizontal bold line indicates the location of the interface between the two soil layers

10.13.2.3 Matthews et al.’s Problem: Two-Layer Soil Contrast

The effect of soil contrast was considered by Matthews et al. [358] for the vertical
infiltration into a 40-cm-deep soil profile consisting of two 20 cm thick layers of fine
and coarse soils. They used a Newton iteration method for solving the s�form of
Richards’ equation. In their study two test cases are simulated: test case 1 comprises
the fine over coarse soil and test case 2 comprises the coarse over fine soil. The
parameters for these two soils listed in Table 10.15 are highly contrasting.

Imposed boundary flux at the soil surface corresponds to a rain intensity of
2 cm d�1. At the bottom boundary a free drainage BC is imposed. The IC is given
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Table 10.15 Material properties of soils by using the van Genuchten-Mualem (VGM) parametric
modela (D.3), (D.26) applied to Matthews et al.’s two-layer problem [358]

Soil Thickness " sr ˛ n K So
type Quantity (cm) (1) (1) (m�1) (1) (m s�1) (m�1)

Coarse Berino fine sand 20 0.3658 0.0782 2.80 2.2390 6:2616 � 10�5 10�4

Fine Glendale clay 20 0.4686 0.2262 1.04 1.3954 1:5162 � 10�6 10�4

a Note that it is generally used: ss D 1, m D 1� 1
n

and � D 1
2

Table 10.16 Parameters and conditions used for Matthews et al.’s problem: test case 1 and test
case 2

Quantity Symbol Value Unit

Column length L 40 cm
Column layered by two soils as quantified in Table 10.15:
* Test case 1 – fine soil over coarse soil
* Test case 2 – coarse soil over fine soil
IC and BC’s
Initial condition (IC)  0 �10 m
Neumann-type BC at surface qh �0:02 m d�1

Gradient-type BC at bottom
(free drainage)

qrh D K

8
<

:

0:131 (test case 1)
5:410 (test case 2)

m d�1

FEM
Space increment 
z 1 mm
Initial time step size 
t0 10�5 d
RMS error tolerance (FE/BE) � 10�4 1
Residual error tolerance �?2 10�4 m3 d�1

Simulation time period tend 3 d

by a constant pressure head  of �10m. For the present simulation a mesh with
constant
z D 1mm is used. The applied simulation parameters and conditions are
summarized in Table 10.16.

Figure 10.20 compares the present FEFLOW simulations with the numerical
results given by Matthews et al. [358] in form of the moisture content � distribution
over depth for test case 1 (fine soil over coarse soil) and test case 2 (coarse soil
over fine soil). As seen in both cases the agreement is rather well. The FEFLOW
simulations are based on PVST by using automatic FE/BE predictor-corrector time
integration. They required about 440 Newton steps for test case 1 and 340 Newton
steps for test case 2 in total. At final time tend of 3 days the solutions terminate
with a total balance error (10.87) of TBE.tend/ 	 10�7 m3 by using a RMS error
tolerance of � D 10�4 and residual error tolerance of �?2 D 10�4 m3 d�1 (10.86).
The sharpness of the wetting profiles at the soil interface is evident (Fig. 10.20).
Water reached the soil interface at about 1 day in both cases. For the test case 1
(fine soil over coarse soil) we observe that water does not penetrate the underlying
coarse soil layer to a depth of 5 cm until t D 1:5 d, which can be recognized as
a capillary barrier effect, where water is held at the interface by capillary forces
(see Sect. 10.13.5 for a further discussion of capillary barrier modeling).
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Fig. 10.20 Computed profiles of moisture content � at selected times t (d) for test case 1 (left)
and test case 2 (right): (a) Matthews et al.’s results [358] by using a Newton scheme in solving
the s�form of Richards’ equation and (b) present numerical solutions achieved with PVST and
automatic FE/BE predictor-corrector time integration

10.13.3 Forsyth and Kropinski’s Problem: Infiltration in a
Large Caisson

The infiltration process in a large caisson consisting of heterogeneous materials
at dry IC’s has been thoroughly studied by Forsyth et al. [167] and in a modified
version by Forsyth and Kropinski [166]. This model problem was used by Diersch
and Perrochet [141] as a benchmark test example to compare the predictor-
corrector-based PVST approach with Forsyth et al.’s target-based time-stepping
PVST strategy. Figure 10.21 presents a schematic view of the 2D cross-sectional
model problem. All boundaries are impervious except for the infiltration boundary
section on top. Table 10.17 lists the material properties used for the different zones
of the domain and the conditions applied in the simulations for the Forsyth and
Kropinski’s problem [166].

For the present simulations PVST with FE/BE predictor-corrector time step-
ping is preferred. We start at first with the same coarse spatial discretization
of 90 � 21 quadrilateral elements (1,890 nodes) as in Forsyth and Kropinski’s
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Fig. 10.21 Model problem of infiltration in a large caisson (Modified from [167])

Table 10.17 Parameters and conditions used for Forsyth and Kropinski’s problem [166, 167]

Quantity Symbol Value Unit

Caisson measure (length; height) 8; 6:5 m
Specific storage coefficient So 10�4 m�1

Zones of porous materials (Fig. 10.21) listed in Table 10.18
IC and BC
Initial condition (IC)  0 �100 m
Neumann-type BC at surface qh �0:02 m d�1

FEM
2D meshes of quadrilateral elements in various resolutions
Initial time step size 
t0 10�3 d
RMS error tolerance (FE/BE) � 10�4 1
Residual error tolerance �?2 10�4 m3d�1

Simulation time period tend 30 d

simulations [166]. A comparison of the simulated saturation profiles is shown in
Fig. 10.22 indicating mesh effects. Although using the same mesh, differences at
material interfaces and at the bottom of the caisson are detected. These obviously
result from different nodal spacing at these locations [141]. The present PVST
and FE/BE adaptive time stepping procedure required 1,202 time steps with 2,015
Newton steps in total.

Upstream weighting (Sect. 10.12) can be used to damp out the spurious oscil-
lations in the saturation distributions. Figure 10.23 compares the present upstream
solution with Forsyth and Kropinski’s result. The agreement is quite good. Both
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Table 10.18 Material properties by using the van Genuchten-Mualem (VGM) parametric modela

(D.3), (D.26) applied to Forsyth and Kropinski’s problem [166, 167]

Zoneb " (1) sr (1) ˛ (m�1) n (1) K (m s�1)

1 0.368 0.2771 3.34 1.982 9:153 � 10�5
2 0.351 0.2806 3.63 1.632 5:445 � 10�5
3 0.325 0.2643 3.45 5 4:805 � 10�5
4 0.325 0.2643 4.45 5 4:805 � 10�4
a Note that it is generally used: ss D 1, m D 1� 1

n
and � D 1

2

b Displayed in Fig. 10.21
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Fig. 10.22 Saturation contours at t D 30 d simulated with 90 � 21 nodal meshing: (a) present
results and (b) Forsyth and Kropinski’s results [166], lengths in (m)
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Fig. 10.23 Saturation contours at t D 30 d simulated with 90 � 21 nodal meshing for upstream
weighting: (a) present results and (b) Forsyth and Kropinski’s results [166], lengths in (m)
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Fig. 10.24 Saturation contours at t D 30 d for more appropriate mesh resolutions: (a) present
results simulated with 21�90 nodal meshing and (b) Forsyth and Kropinski’s results [166] obtained
with 179� 51 nodal meshing, lengths in (m)
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Fig. 10.25 Saturation contours at t D 30 d for the dense triangular mesh (28,917 nodes), lengths
in (m)

upstream techniques damp out the wiggles appearing in the standard (central)
weighting solutions (Fig. 10.22). Differences in the lag of the saturation profile are
probably due to the different nodal spacing used in the present and Forsyth and
Kropinski’s solutions.

A more appropriate meshing of the problem (i.e., 21 � 90 instead of 90 � 21)
can considerably improve the results as evidenced in Fig. 10.24. The solution can
be compared to the results obtained with a dense triangular mesh (56,960 triangles
with 28,917 nodes) shown in Fig. 10.25. This dense mesh is generated by splitting
each quadrilateral into two triangles followed by a double total refinement into
four triangles .20 � 89 � 2 � 4 � 4/. Sharper saturation contours occur at the
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Fig. 10.26 Typical perched water situations, cross-sectional view of aquifer-aquitard-aquifer
systems: (a) drained underground mine and (b) seepage at a slope

material interfaces. The medium becomes fully saturated at the bottom of the
caisson forming a typical saturation ‘tongue’. Its size is quite sensitive to spatial
and temporal discretizations as revealed by the comparison to Fig. 10.24, more
discussions are given in [141]. Remarkably, Forsyth and Kropinski predict a lead
in the saturation pattern (Fig. 10.24b). The present FEFLOW results have been
confirmed by Aricò et al. [11] in using a different numerical approach. In checking
the total mass balance errors TBE.t/, (10.87), we estimate TBE.t D 30 d/ of
O.10�6/m3 for the present simulations.

10.13.4 Perched Water Table Problems

10.13.4.1 Aquifer-Aquitard-Aquifer Test Case

Perched water situations can occur in many practical cases (Fig. 10.26) which
require the application of unsaturated-saturated modeling approaches. Often in
regional flow modeling the vertical spatial resolution is aligned to the stratigraphic
units and we have to ask whether such a meshing is able to model a perched water
situation whenever potentially achievable. To examine perched water computations
let us start with a simplified 1D paradigm of an aquifer-aquitard-aquifer system as
described in Fig. 10.27 for which an analytical solution exists in steady-state [139].
The used parameters are listed in Table 10.19.

Perched water occurs if the infiltrating flux jqhj is larger than the smallest
gravitational efflux between layers, i.e.,

K2 > jqhj > K1 (10.131)

Due to continuity the vertical flux is q.z/ D const. If the water becomes perched in
the upper aquifer, saturated conditions must exist in the aquitard and the Darcy law
reads

qh D �K1

h1

d1
(10.132)

where h1 is the hydraulic head measured in the aquitard. Perched water in the upper
aquifer rises up to a height of hw D zw. Thus, we obtain with (10.132)
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Fig. 10.27 Paradigm of a 1D aquifer-aquitard-aquifer system for determining the perched water
height zw above the aquitard at a given stationary infiltration rate qh D �2 � 10�5 m d�1

Table 10.19 Parameters used for the 3-layer (aquifer-aquitard-aquifer) paradigm

Layer No. Thickness d (m) Conductivity K (m s�1)

Lower aquifer 0 d0 D 50 K0 D 10�4

Aquitard 1 d1 D 10 K1 D 10�10

Upper aquifer 2 d2 D 50 K2 D 10�4

qh D �K2

hw � h1
zw � z1

D �K2

zw C d1
K1
qh

zw � z1
(10.133)

From (10.133) we find the formula for the perched water height zw as

zw D
qhd1

�
1
K2
� 1

K1

�

1C qh
K2

(10.134)

For the case K2=K1 � 1 the perched water height zw is approximately

zw D � d1
K1

qh (10.135)

Using the parameters for the paradigm of Table 10.19 we determine the exact
perched water height at zexact

w D 23:148 m.



10.13 Examples 511

Table 10.20 Test cases and computational results for the 3-layer (aquifer-aquitard-aquifer)
paradigm

Case Description Parametersa Height zw (m) Error ı b (%)

1 VGM modelc ˛ D 4:1m�1 23.01 0.6
n D 2

2
Linear model

( � c D 1m 22.39 3.3
3 � c D 10m 18.56 19.8
4 � c D 50m Nonexistent –
a It is generally used: ss D 1, sr D 0:1 and  a D 0
b ı D jzw � zexact

w j=zexact
w � 100; zexact

w D 23:148m
c The VGM model uses: m D 1� 1

n
and � D 1

2

Numerical experiments are performed by using the VGM parametric model,
(D.3), (D.26), in comparison with the linear parametric model, (D.19), (D.42),
typically used in classic groundwater modeling with fixed meshes in a form
(cf. Sect. 9.5.4):

se D 1 �  

 c
and kr D se (10.136)

where se D .s�sr /=.1�sr / is the effective saturation and� c is the capillary fringe
thickness. The spatial discretization in regional models often follows stratigraphic
units resulting in a coarse vertical resolution. In essence, this corresponds to a
capillary fringe thickness � c in the order of the vertical element size he , viz.,

�  c D he (10.137)

In this case, the transition in the saturation is smeared over the entire vertical element
size, and accordingly,  c becomes element-dependent and is no longer a ‘physical’
parameter. The consequences will be shown in the numerical experiments listed in
Table 10.20. While test case 1 represents the ‘physically correct’ reference solution,
test case 4 corresponds to an example of a large capillary fringe � c typical for
an approach, where the vertical mesh resolution is on the order of the stratigraphic
units. The computed perched water height zw for the four test cases are compared
against the exact solution in Table 10.20. The resulting saturation profiles are
displayed in Fig. 10.28. For case 1 a vertical discretization of 
z D 0:1m was
applied. (Note, an equivalent linear model would need� c 	 1

˛
for a corresponding

accuracy, where the discretization should require
z � � c D 1
˛

).
It becomes evident that the error for the perched water height significantly

increases with increasing j c j (or equivalently with the increasing mesh coarseness

z 	 j cj). In case 4 the upper aquifer (layer 2) is simulated to be completely
unsaturated, resulting in a non-perched water situation. It indicates that the mesh
must be sufficiently resolved in the vertical direction, clearly more than the
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Fig. 10.28 Computed saturation profiles for the cases 1–4 of Table 10.20

stratigraphic units, otherwise the model is usually unable to predict a perched water
table.

10.13.4.2 Kirkland et al.’s Problem

Kirkland et al. [311] presented a 2D problem of a developing perched water
table surrounded by very dry unsaturated conditions. The problem is described
in Fig. 10.29. Water infiltrates with a very large rate into an initially dry soil at
 0 D �500m and encounters a clay barrier which allows for the formation of
a perched water table. All boundaries are no flow except where the infiltration
is imposed. The used parameters and conditions of the problem are summarized
in Table 10.21. The symmetric half of the domain is discretized in a 50 � 60
quadrilateral mesh (3,111 nodes) according to the spatial discretization used by
Kirkland et al. [311] having spatial increments of 
x D 
y D 5 cm. The present
simulations are based on the PVST.

A comparison of the pressure head contours at 1 day with Kirkland et al.’s results
reveals an acceptable agreement as displayed in Fig. 10.30. The present profile
exhibits a slightly higher sharpness. While the zero pressure head contours agree
quite well, the �400m isoline of Kirkland et al.’s result is slightly ahead, forming
a more diffusive vertical pressure front compared to the present solution. As further
discussed in [141] the observed differences can mainly be attributed to temporal
discretization effects. Typically, a smaller step number generates a phase lead and
a smoother front. In the present simulations the PVST with the automatic FE/BE
predictor-corrector time stepping took 1,211 time steps with 1,556 Newton steps in
total. The TBE.t D 1 d/ balance error (10.87) was found to be of O.10�4/ m3.



10.13 Examples 513

Sand

1 m
4 m

5 m

3
m

2
m

1
m

qh = -0.5 md-1

Sand

Clay0 = -500 m

Fig. 10.29 Perched water table problem (Modified from [311])

Table 10.21 Parameters and conditions used for Kirkland et al.’s problem [311]

Quantity Symbol Value Unit

Box measure (length; height) 5; 3 m
Specific storage coefficient So 10�4 m�1

Properties of material zones (Fig. 10.29) listed in Table 10.22
IC and BC
Initial condition (IC)  0 �500 m
Neumann-type BC at surface qh �0:5 m d�1

FEM
2D mesh of 50� 60 quadrilateral elements for symmetric half
Initial time step size 
t0 10�5 d
RMS error tolerance (FE/BE) � 10�4 1
Residual error tolerance �?2 10�4 m3 d�1

Simulation time period tend 1 d

Table 10.22 Material properties by using the van Genuchten-Mualem (VGM) parametric modela

(D.3), (D.26) applied to Kirkland et al.’s problem [311]

Materialb " (1) sr (1) ˛ (m�1) n (1) K (m s�1)

Sand 0.3658 0.07818 2.80 2.2390 6:262 � 10�5
Clay 0.4686 0.2262 1.04 1.3954 1:516 � 10�6
a Note that it is generally used: ss D 1, m D 1� 1

n
and � D 1

2
b Zones of materials are displayed in Fig. 10.29



514 10 Flow in Variably Saturated Porous Media

a b

-2.5

-2.5

-1.5

-1.5

-0.5

-0.5

0.5

0.5

1.5

1.5

2.5

2.5

-3 -3

-2 -2

-1 -1

0 0

Fig. 10.30 Simulated pressure head contours  at t D 1 d: (a) present results, heads and lengths
in (m) and (b) Kirkland et al.’s results [311], heads and lengths in (cm)
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Fig. 10.31 Diverting flow profiles in a capillary barrier (Modified from [298])

10.13.5 Capillary Barrier Modeling

In unsaturated flow conditions a capillary barrier can appear at the contact of a
layer of fine soil overlying a layer of coarse soil occurring both in natural situations
and engineered systems [298, 397, 448, 473, 558]. If the layer interface is tilted,
water infiltrating in the fine layer will be diverted and flow laterally down the
contact (Fig. 10.31). In practical applications, a capillary barrier can be built by
placing a fine layer (e.g., fine sand) over an inclined coarse layer (e.g., gravel).
For such a fine-over-coarse soil layer structure, the capillary forces are usually
high and prevent the water infiltration v entering into the underlying coarse layer
over a certain distance downslope, forming the impervious capillary barrier. With
increasing distance downslope the saturation in the fine layer further raises due
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to infiltration v and it occurs that the capillary forces can no longer prevent a
water influx into the coarse layer. The capillary barrier starts to release some water.
With the further increasing distance downslope, more and more water is released
vertically into the underlying coarse layer reaching a distance L. From there the
lateral (diverting) flow cannot be increased anymore and all further infiltrating
water percolates entirely into the coarse layer. This point at distance L defines the
breakthrough of infiltrating water. The length L is denoted as diversion length,
which qualifies the effectiveness of a capillary barrier. For distances downslope
larger than L, a capillary barrier becomes ineffective. To achieve large diversion
lengths L, sharply contrasting properties for the fine-over-coarse soil system are
required.

The discharge Qmax represents the maximum amount of water that the capillary
barrier can divert in the fine layer. It is determined from the vertical integration of
the horizontal flux of water diverted until breakthrough [448]

Qmax D
Z z2

z1

qxd z D K tan'
Z  1

 2

kr . /d (10.138)

where 2 is the pressure head at the top surface of the fine layer z2, 1 is the pressure
head at the bottom of the fine layer z1 (which is equal to the pressure head at the top
of the coarse layer), ' is the dip of the layers (Fig. 10.31),K and kr are the saturated
hydraulic conductivity and the relative permeability, respectively, of the fine layer.
For a constant infiltration v the diversion lengthL is simply the maximum discharge
Qmax divided by the infiltration rate v, L D Qmax=v, so that

L D K

v
tan'

Z  1

 2

kr . /d (10.139)

Ross [448] has derived a closed-form expression8 for the diversion length L, which
results in using an exponential relationship for kr . For other parametric models
(10.139) must be integrated numerically with appropriate BC’s [558]. In general,
the numerical simulation of capillary barriers presents a significant challenge.

8 Using the exponential relationship (D.39) in the form of kr D e˛ we can integrate (10.139)
analytically. The BC’s at the top and bottom of the fine layer are the following: At the top, the
relative permeability is simply the infiltration rate v divided by the saturated hydraulic conductivity
K of the fine layer, i.e., kr D v=K D exp.˛ 2/ so that  2 D 1

˛
ln. v

K
/. At the bottom of the fine

layer we find the pressure head equal to the value at the top of the coarse layer in a similar relation:
k?r D v=K? D exp.˛? 1/ so that  1 D 1

˛?
ln. v

K? /, where K? and ˛? are the saturated hydraulic
conductivity and sorptive number, respectively, of the coarse layer. Applying these BC’s for  2
and  1 we find the analytical solution of (10.139) for the diversion length as [448]

L D K
tan'

v˛

h� v

K?

�˛=˛? �
� v

K

�i
:
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Table 10.23 Parameters and conditions used for Webb’s capillary barrier problem

Quantity Symbol Value Unit

Domain measure (length; thickness) 100; 1 m
Dip ' 5 %
Specific storage coefficient So 10�4 m�1

Material properties of the two layers are listed in Table 10.24
IC and BC’s
Initial condition (IC) h0 �z m
Neumann-type BC at surface qh �0:0048 m d�1

Dirichlet-type BC along both
bottom and right vertical boundaries

hD 0 m

FEM
Nonuniform 2D mesh of 1,472 quadrilaterals in variable thicknesses
Initial time step size 
t0 10�3 d
RMS error tolerance (FE/BE) � 10�3 1
Simulation time period tend 100 d

Table 10.24 Material properties for Webb’s capillary barrier problem [558] by using the van
Genuchten-Mualem (VGM) parametric modela (D.3), (D.26)

Layer Thickness (m) " (1) sr (1) ˛ (m�1) n (1) K (m s�1)

Fine (upper) 0.5 0.39 0.3945 3.9 5.74 2:1 � 10�4
Coarse (lower) 0.5 0.42 0.0286 490 2.19 0:1

a Note that it is generally used: ss D 1, m D 1� 1
n

and � D 1
2

The numerical schemes have to tackle large parameter contrasts, highly exaggerated
and distorted geometries as well as dry IC’s.

10.13.5.1 Webb’s Problem

Oldenburg and Pruess [397] presented a first numerical study of a 2D tilted capillary
barrier. To find reasonable results they introduced an upstream weighting method.
However, both from the qualitative and quantitative point of view their results
became generally poor and no agreement with analytical results [448] was achieved.
Webb [558] could improve the steady-state results by using an upstream weighting
technique agreeing well with Ross’ analytical prediction [448].

We use Webb’s capillary barrier problem [558] to study the capability of the
present approaches. Webb’s capillary barrier consists of a two (fine over coarse)
layer configuration with a total thickness of 1 m. The fine and coarse layers are both
0.5 m thick, and the dip of the layers is 5% .2:86ı/. The parameters and conditions
used for simulating Webb’s two-layer problem are summarized in Tables 10.23 and
10.24. The infiltration rate v at the surface of the domain is 0:0048m d�1. The left
boundary is impervious and the right and bottom boundaries allow for drainage. This
can be done in several ways. In consideration of the extreme parameter situation
of the fine and coarse layers (cf. Table 10.24) we found a reasonable convergence
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Fig. 10.32 Model domain and mesh (1,472 quadrilaterals with 1,551 nodes) for Webb’s capillary
barrier problem [558] (vertical exaggeration 10:1)

behavior for a Dirichlet-type BC, where the hydraulic head h is imposed. Since the
˛�parameter of the coarse layer is very large the influence of the location of the
water table (the D 0 condition) cannot be significant. It is thus sufficient to set the
water table at the right lower corner of the domain (at z D 0) and prescribe a h D 0
Dirichlet BC along the bottom and the right boundaries. In accordance with this BC
a corresponding IC is assumed possessing a vertical linear distribution of h0 D �z
in the range from 0 to �6m. This results in averaged initial saturations s0 which
are very close to the residual saturations sr (cf. Table 10.24). The model domain
is appropriately discretized in quadrilateral elements as displayed in Fig. 10.32. At
the layer contact the element thickness is 0.005 m and gradually increases with the
distance from the interface.

Figure 10.33 exhibits the computed saturation distribution at 100 days. It reveals
how the saturated zone has built up along the contact zone in the fine layer while
the saturation in the coarse layer remains only slightly above the residual saturation.
From such a saturation pattern the capillary diversion cannot be identified. However,
the integration of the velocity field in form of streamlines clearly illustrates the
capillary diversion effects, as shown in Fig. 10.33. The diversion is maintained up
to a certain distance, the diversion lengthL, past which an amount of water equal to
the infiltration rate v enters the coarse layer.

A comparison of the above results with Ross’ analytical formula [448] and the
numerical results obtained by Webb [558] can be expressed as a function of the
leakage/infiltration ratio. The theoretical value of the diversion length L determined
from Ross’ formula (10.139) is 32:6m for the VGM present parameters (note, Webb
[558] computed 33:2 m). As evidenced in Fig. 10.34 there is a good qualitative and
quantitative agreement between the analytical and the numerical results. Note that
Webb’s solution is based on an upstream weighting scheme. The present method
was able to find solutions for both central and upstream weighting. As seen in
Fig. 10.34 the differences between upstream and central weighting are relatively
small. Upstream weighting damps the slight oscillations of the downstream velocity
field. The breakthrough point is not significantly affected.
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Fig. 10.33 Computed saturation and streamline pattern at t D 100 d for Webb’s capillary barrier
[558] (vertical exaggeration 10:1)
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Fig. 10.34 Leakage/infiltration ratio in the coarse layer for both central and upstream weighting
compared to Ross’ analytical formula (10.139) and Webb’s numerical results [558]. Diversion
length of L D 32:6m results from Ross’ formula
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Fig. 10.35 Capillary barrier model domain with used mesh consisting of 82 � 61 isoparametric
bilinear elements (vertical exaggeration 5:1)

It is to be mentioned that the specific advantages of the PVST disappear in
the present capillary barrier problem. Since the initial pressures remain moderate
and since conservation properties do not play a role for computing a steady-state
solution, the classic h�based form becomes an effective alternative. We obtained the
above solutions for the h�based form of the Richards’ equation, using the FE/BE
predictor-corrector time stepping scheme with the Picard iteration method.

10.13.5.2 Forsyth and Kropinski’s Problem

A numerically challenging capillary barrier problem was considered by Forsyth
and Kropinski [166]. The problem is described in Fig. 10.35 and Table 10.25. The
material properties and the initial pressure conditions for the different layers are
given in Table 10.26. As indicated the IC’s enforce very dry soils. The infiltration
rate at the surface of the cross-sectional domain is 15 cm year�1. The mesh is shown
in Fig. 10.35 consisting of 82 � 61 quadrilateral linear elements with 5,146 nodes.
As seen the element size is highly variable in the vertical direction. At the sand-
gravel interface the elements have a thickness as small as 0.002 m. The left vertical
boundary is considered impervious. To model free drainage at the bottom and the
right vertical boundary of the domain, proper gradient-type BC’s of qr

h D K are
imposed, whereK are the hydraulic conductivities of the layers (Table 10.26) at the
corresponding boundary sections.
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Table 10.25 Parameters and conditions used for Forsyth and Kropinski’s capillary barrier prob-
lem

Quantity Symbol Value Unit

Domain in Fig. 10.35 (length; thickness) 40:5; 3 m
Dip ' 5 %
Specific storage coefficient So 0 m�1

Material properties of the four layers are listed in Table 10.26
IC and BC’s
Initial condition (IC) of pressure p p0 Table 10.26 kPa
Neumann-type BC at surface qh �4:11 � 10�4 m d�1

Gradient-type BC along both
bottom and right vertical boundaries

qrh K (Table 10.26) m d�1

FEM
Nonuniform 2D mesh of 82�61 quadrilaterals, highly variable in vertical direction
Initial time step size 
t0 10�5 d
Maximum error tolerance (FE/BE) � 10�3 1
Residual error tolerance �?2 10�4 m3 d�1

Simulation time period tend 30 years

Table 10.26 Material properties and IC’s for Forsyth and Kropinski’s capillary barrier problem
[166] by using the van Genuchten-Mualem (VGM) parametric modela (D.3), (D.26)

Layer Thickness (m) " (1) sr (1) ˛ (m�1) n (1) K (m s�1) p0
b (kPa)

Loam 0.6 0.452 0.0752 4.3 1.246 1:668 � 10�5 �106
Sand 0.3 0.345 0.046 6.34 1.53 6:573 � 10�5 �106
Gravel 0.6 0.419 0.074 469 2.57 3:502 � 10�3 �30
Crushed tuff 1.5 0.345 0.032 1.43 1.506 2:776 � 10�6 �6 � 1010
a Note that it is generally used: ss D 1, m D 1� 1

n
and � D 1

2
b Pressure p is related to pressure head  by (3.259): p D  �0g, where �0 D 103 kg m�3 and
g D 9:81m s�2

Due to the extremely dry IC’s the PVST is the favorable solution strategy. Central
and upstream weighting are applied. However, the FE/BE predictor-corrector time
stepping requires a large number of time steps to simulate the complete 30-year
time period (up to 130,000 time steps for central weighting by using the maximum
error tolerance of Table 10.25) caused by the demand for bounding the temporal
discretization error. This is overdone if the major interest is only in the final solution
at steady-state. For this need a target-based scheme appears to be more useful
for which only about 5,000 time steps (with about 104 total Newton steps) are
necessary [141].

The present simulation results confirm Forsyth and Kropinski’s findings [166].
The computed saturation distributions are displayed for three specific contour levels
in Fig. 10.36 for the central weighting and in Fig. 10.37 for the upstream weighting.
Some details are depart from Forsyth and Kropinski’s simulations. It can be assumed
that most of them is caused by different BC’s. Forsyth and Kropinski imposed a
seepage point on the right-hand side boundary and handled the bottom of the tuff
layer as a no-flow boundary, however, at a far vertical position. In the present model,



10.13 Examples 521

x [m]

0 10 20 30 40
0

1

2

3

4

5

z 
[m

]

0.075
0.1

a b

Fig. 10.36 Saturation patterns simulated with central weighting at t D 30 years: (a) present
solution for the 82�61 mesh and (b) Forsyth and Kropinski’s results [166] for a 52�46 mesh
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Fig. 10.37 Saturation patterns simulated with upstream weighting at t D 30 years: (a) present
solution for the 82�61 mesh and (b) Forsyth and Kropinski’s results [166] for a 52�46 mesh

such a seepage point is not imposed and the bottom of the tuff is fully handled as a
free-drain boundary at the actual position as shown in Fig. 10.35. For the central
weighting (Fig. 10.36) we note a jagged saturation profile which disappears for
upstream weighting (Fig. 10.37). A small strip of lower saturation can be seen along
the gravel-tuff interface in both the upstream and the central solutions. Forsyth and
Kropinski found it only in their central weighting solution (Fig. 10.36b).

The computed streamline pattern in Fig. 10.38 illustrates the effect of the
capillary barrier at the sand-gravel material interface. The streamlines reveal that
the diversion length L is larger than Forsyth and Kropinski’s estimation with 10 m.
Actually, the velocity distribution along the bottom of the tuff layer indicates a
leakage increase from zero at about 10 m to the infiltration rate at about 25 m,
as depicted in Fig. 10.39. This relatively smooth breakthrough results from the
complex layered structure of this capillary barrier. The breakthrough curve is
slightly ahead for the upstream weighting. An evaluation of Ross’ analytical formula
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Fig. 10.38 Streamline pattern simulated with central weighting at t D 30 years

0 5 10 15 20 25 30 35 40
distance [m]

0

0.2

0.4

0.6

0.8

1

le
ak

ag
e/

in
fil

tra
tio

n

central
upstream
Ross’ formula

Fig. 10.39 Leakage/infiltration ratio in the tuff layer. Analytical diversion length results in
L D 17:9m

(10.139) using the above van Genuchten parameters for the sand and gravel zones
(Table 10.26) gives a diversion length of L D 17:9m. This value is in good
agreement with the present numerical simulations as seen in Fig. 10.39.

10.13.6 Dam Seepage Problem

Seepage through and under embankment dams is one of the standard tasks in finite
element modeling, in which unsaturated-saturated flow regimes have to be analyzed,
e.g., [329, 383]. If fluctuations in reservoir level are present the transient seepage
through the dam is highly dependent on conditions of the unsaturated zone. To study
the hydrodynamics of dam drainage and remedial sealing measures let us consider
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Fig. 10.40 Reservoir with embankment dam and selected underground

the example as displayed in Fig. 10.40. The dam and its underground consist of a
homogeneous isotropic sandy material. We simulate the seepage process when the
water reservoir becomes flooded. The reservoir is initially empty. The water level
in the reservoir is now raised up to 12 m during 5 days, afterwards the level in the
reservoir remains at the constant elevation of 12 m, without accretion. The dam is
equipped with a horizontal drain at the dam toe. It is assumed that this drain filter
is insufficiently operational. This is mimicked by a Cauchy-type BC which admits
only a limited drainage capacity controlled via the transfer rate ˚h D ˚out

h  0.
At the complete downstream slope of the embankment and the ground surface a
seepage face BC is imposed which allows a free drainage of water. To reduce
the seepage through and under the dam a partial sealing wall is considered as
shown in Fig. 10.40. We compare the transient seepage process without and with the
partial sealing wall. The used model parameter and conditions are summarized in
Tables 10.27 and 10.28. Unspecified BC’s represent no-flow conditions. Estimated
material parameters are used for the modified van Genuchten parametric model,
where the relative permeability kr D sıe can be typically accepted as a linear
relationship by using ı D 1 for the present class of seepage problems in which
the major interest is in determining the location of the free surface.

The simulation of the transient seepage problem can suitably based on the
standard h�form of the Richards’ equation, where the adaptive AB/TR predictor-
corrector time stepping scheme is preferred. The used finite element mesh shown
in Fig. 10.41 is appropriately refined in the dam body, at the sealing wall and
along the seepage face. The mesh is designed to handle different lengths of the
sealing wall. Figure 10.42 exhibits the simulated free-surface development, i.e., the
advance of the zero-pressure head . D 0/ contour line, for the case without and
with the partial sealing wall. In both cases the flow reaches steady-state conditions
after about 50 days. The total discharge through and under the dam is predicted
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Table 10.27 Parameters and conditions used for the dam seepage problem

Quantity Symbol Value Unit

Domain shown in Fig. 10.40 m
Specific storage coefficient So 10�4 m�1

Material properties are listed in Table 10.28
IC and BC’s
Initial condition (IC) h0 0 m

Dirichlet-type BC at ̂ABC a hD.t/

8
<

:

2:4 � t .0 	 t 	 5 d/
12 .t > 5 d/

m

Seepage face BC at ̂DEF a

8
<

:

h D z
Qnh < 0

m

Cauchy-type BC at ̂GEa

8
ˆ̂
<̂

ˆ̂
:̂

hD
˚out
h

˚ in
h

0:5

5 � 10�2
0

m
d�1

d�1

FEM
Unstructured 2D mesh of 20,451 triangles, refined at dam body and sealing wall
Initial time step size 
t0 10�3 d
Maximum error tolerance (AB/TR) � 10�4 1
Simulation time period tend 1 year
a Defined in Fig. 10.40

Table 10.28 Material properties for the dam seepage problem by using the modified van
Genuchten parametric modela (D.3), (D.33)

Zone " (1) sr (1) ˛ (m�1) n (1) m (1) ı (1) K (m s�1)

Dam body/underground 0.45 0.3 1.3 2.2 0.545 1 2 � 10�5
Sealing wall 0.55 0.4 0.8 1.8 0.444 1 10�8

a Note that it is generally used: ss D 1

by 18:91 m3 d�1=m at steady-state for the case without the sealing wall. With the
partial sealing wall it reduces to 7:79m3 d�1=m. Figure 10.43 illustrates the general
steady-state flow pattern in the presence of the partial sealing wall in form of the
computed flow net.9 It clearly indicates the effect of the sealing wall achieving a
reduced seepage loss and flow gradients at the downstream side of the dam.

9In 2D and under steady-state conditions equipotential lines are given by the interval of hydraulic
head 
h. The interval of streamlines (actually, interval of the streamfunction, cf. Sect. 2.1.11) 
�
is determined from


� D K

h


l

q

where 
l is the distance between two neighboring equipotential lines and 
q is the width of the
stream tube. A flow net can be constructed if setting
l D 
q so that streamlines and equipotential
lines form ‘curvilinear squares’. For such a flow net configuration it is


� D K
h:
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Fig. 10.41 Unstructured triangular mesh used for modeling the dam seepage problem in the 2D
cross section (NE D 20; 451, NP D 10; 418)
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Fig. 10.42 Advance of free surface . D 0/ in accordance with the raised water level in the
reservoir: (a) without and (b) with sealing wall, times t in (d)

10.13.7 On Draining and Flooding

In many applications the modeling of drainage or flooding processes in regional
3D phreatic aquifer systems are of specific concern. Typical examples refer to
the impact of drainage from mine operations and flooding of abandoned open-pit
mines. It is interesting to know how true unsaturated-saturated modeling approaches
are appropriate to simulate such type of large-scale flow problems in comparison
to the classic free-surface groundwater modeling strategies of Sect. 9.5. For this
purpose let us study the three following examples which are sufficiently generic in
this field.
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Fig. 10.43 Computed flow net at steady-state for the dam seepage with partial sealing wall (used
intervals 
h D 0:1m and 
� D 0:1728m2 d�1)

10.13.7.1 Vachaud et al.’s Problem: Drainage Experiment

Vachaud et al. [529] reported experimental results which referred to a ditch-drained
soil problem. Their results are useful for proving and comparing numerical schemes
applied to a typical drainage problem as already done by Gureghian [216] and
elsewhere [382, 474]. A half drain-spacing with a length of 3 m and a height of
2 m is considered (Fig. 10.44). Initially, the water level in the box is at z D h0
and the system is under hydrostatic equilibrium with  0 D h0 � z. The soil is
assumed to be isotropic with a saturated conductivity of 1:11 � 10�4 m s�1. The
Haverkamp parametric model (D.11), (D.36) is used for the unsaturated soil. The
initial hydraulic head h0 is given by 1.45 m. The water level of the ditch hw is
0.75 m. The magnitude hs represents the elevation of the seepage face which is
hs D h0 at t D 0 and has to be determined in the solution process. In Vachaud
et al.’s experiment the drainage process has been performed without any infiltration
(v D 0 on top, Fig. 10.44). Accordingly, the water table descends continuously up
to reaching the water level hw of the ditch. In contrast, Gureghian’s results [216]
are based on an infiltration rate given with v D 0:384m d�1 so that his solution
approaches to a non-horizontal water table in time. The parameters and conditions
used in the present simulations are summarized in Table 10.29.

We use the standard form of the Richards’ equation with the FE/BE predictor-
corrector method. The 2D domain is discretized by only 640 quadrilateral elements
as shown in Fig. 10.45 with the major BC’s. Figure 10.46 compares the present
numerical results with Vachaud et al.’s experimental data. As seen the agreement
is quite well. A comparison of the hydraulic head contours, the water table and
capillary fringe at time of hour is presented in Fig. 10.47 between the present
solutions and Gureghian’s results. The agreement is reasonable. Differences appear
for the upper head contours which obviously result from the different description of
the infiltration BC.
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Fig. 10.44 Sketch of Vachaud et al.’s drainage experiment [529]: geometry and BC’s

Table 10.29 Parameters and conditions used for Vachaud et al.’s problem (Fig. 10.44)

Quantity Symbol Value Unit

Box measure (length; height) 3; 2 m
Saturated conductivity K 1:11 � 10�4 m s�1

Porosity " 0:3 1
Specific storage coefficient So 10�4 m�1

Maximum saturation ss 1 1
Residual saturation sr 0 1
Haverkamp parametric model (D.11), (D.36)
Fitting coefficient ˛ 0:063396 m
Fitting coefficient A 3:6 � 10�4 m
Fitting exponent ˇ 2:9 1
Fitting exponent B 4:5 1
IC and BC’s
Initial condition (IC) h0 1:45 m
Neumann-type BC at top (infiltration) qh �0:384 m d�1

Seepage face BC at ditch
(within 0.75 m < z 	 1.45 m)

8
<

:

h D z
Qnh < 0

m
m3 d�1

Dirichlet-type BC at ditch
(within 0 m 	 z 	 0.75 m)

hw 0:75 m

FEM
2D mesh of quadrilateral elements displayed in Fig. 10.45
Mesh spacing 
x / 
z 15 = 5:83� 6:875 cm
Number of quadrilateral elements NE 20� 32 D 640

Number of mesh nodes NP 21� 33 D 693

Initial time step size 
t0 10�3 d
RMS error tolerance (FE/BE) � 10�4 1
Simulation time period tend 5 h
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Fig. 10.46 Descending water table of the drainage experiment: (a) simulated free-surface loca-
tions and (b) Vachaud et al.’s measured water tables given in [216], times in hours

10.13.7.2 Free Drainage of a Thick Porous Block

The prototypical 3D example is shown in Fig. 10.48. The data and conditions used
in the simulations are summarized in Table 10.30. The vertical drainage of a thick
aquifer is modeled by a porous block with a base of 1 square meter (A D 1m2)
and height of 100 m. The block is initially saturated, the water table h is on top
at h0 D 100m. Now, the domain begins to be freely drained and the water table
draws down continuously in time t due to the dewatering at the bottom of the block
enforced by a significantly deeper water level with hD D 0m. The flow is purely
gravitationally driven and basically 1D in the vertical direction. Accordingly, the
theoretical drainage capacity (discharge)Q at the bottom must be constant at larger
times, viz.,
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Fig. 10.47 Hydraulic head contour and water table location at t D 1 h: (a) present results and (b)
Gureghian’s solutions [216]

z
y

x

z

10
0

m

1 m
1 m

drainage q = K

g

Fig. 10.48 Study domain of the thick porous block and used 3D mesh consisting of 100
hexahedral elements with 
z D 1m (vertical exaggeration 0.03:1)
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Table 10.30 Parameters and conditions used for the thick porous block drainage

Quantity Symbol Value Unit

Block height L 100 m
Block base A 1 m2

Block volume V 100 m3

Total drainable water content V w 20 m3

Saturated conductivity K 10�5 m s�1

Porosity " 0:25 1
Specific storage coefficient So 10�8 m�1

Maximum saturation ss 1 1
Residual saturation sr 0:2 1
Specific yield "e 0:2 1
Modified van Genuchten parametric model (D.3), (D.33)
Pore size distribution index n 2 1
Fitting coefficient ˛ 10 m�1

Fitting exponent m 0:5 1
Fitting exponent ı 1 1
IC and BC
Initial condition (IC) h0 100 m
Dirichlet-type BC at bottom hD 0 m
FEM
Vertical space increment 
z 1 m
Initial time step size 
t0 10�8 d
RMS error tolerance (FE/BE) � 10�4 1
Simulation time period tend D tmax 23:15 d

Q D K A .0 < t � tmax/ (10.140)

where tmax is the maximum time reached when the domain is fully drained out. The
initially (total) drainable water content of the block is V w D "e V , where V is the
block volume and "e D ".1� sr / is the specific yield (3.296). Thus, the duration of
the drainage results in

tmax D V w

Q
D "eV

KA
D "eh0

K
(10.141)

which gives tmax D 23:15 d by using the parameters listed in Table 10.30. The
vertical drainage process is governed by the 1D flow equation for the (free-surface)
water table h as

"e
@h

@t
D � @

@z
.h q/ (10.142)

where q D Q=A D K is the drainage rate. Assuming q D const we obtain the
analytical solution for the water table h.z; t/ from (10.142) as



10.13 Examples 531

0 5 10 15 20 25
time [d]

0

10

20

30

40

50

60

70

80

90

100

fr
ee

 su
rf

ac
e 

lo
ca

tio
n 

[m
]

exact
BASD
unsaturated

Fig. 10.49 Descent of free
surface in time
.0 	 t 	 tmax/. Classic
free-surface groundwater
model results obtained with
moving mesh BASD
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h.z; t/ D 1

"e

�
"ez �Kt

�
with z D h0 (10.143)

which indicates that the water table h must fall simply linearly from h0 to zero
within the time range 0 < t � tmax.

The simulations are performed with the uniform 3D mesh shown in Fig. 10.48 by
using both the standard h�formulation of unsaturated-saturated flow model and the
classic free-surface groundwater strategy based on moving mesh BASD technique.10

Adaptive FE/BE predictor-corrector time stepping is preferred in both approaches.
The classic free-surface computation gives excellent results in comparison to the
exact solution (10.143) as shown in Fig. 10.49 for the linear decrease of the water
table and in Fig. 10.50a for the linear rise of the accumulated drainage volume
V w.t/ D A

R
t q.t/dt in time, where the drainage rate q.t/ is actually measured

at the bottom face of the porous block during the simulation. We obtain exactly
V w.t D tmax/ D 20m3 when the block is drained out. It is important to note that
the linearly falling water table according to (10.143) can only occur at larger times
after the gradient of the pressure head @ =@z disappears in the saturated zone of the
block. Due to the initial hydrostatic head condition of h0 D 100m and the abrupt

10The present example is easily solvable for classic free-surface flow modeling with moving mesh
(cf. Sect. 9.5.3), even with only a small number of elements. Contrarily, the classic free-surface
modeling strategy with fixed mesh and pseudo-unsaturated conditions (cf. Sect. 9.5.4) will not
give reasonable results for such type of a vertically dominant drainage because the free-surface BC
assigned unmovably to the upper element slice becomes ineffective when all underlying elements
fall dry in time.
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Fig. 10.50 (a) Accumulated drainage volume V w.t / D A
R
t q.t /dt in time .0 	 t 	 tmax/.

Classic free-surface groundwater model results obtained with moving mesh BASD technique and
unsaturated-saturated flow computation based on the modified VG parametric model in comparison
to the exact solution V w.t / D AKt . (b) The behavior of q.t/ magnified at small times t

head gradient enforced by the drainage BC hD D 0m at the bottom face of the
porous block, a little moment must elapse to equilibrate @ =@z 	 0 throughout
the (initially saturated) block, afterwards the constant free drainage establishes at
the bottom and the descent of free surface on top starts. The duration of the initial
pressure redistribution is controlled by the ratioK=So (with So > 0) and takes only
about 2 s for the chosen parameters. During this short time period the drainage rate
q approaches from a large (theoretically infinite) value to the constant q D K as
shown in Fig. 10.50b. Note that one could skip this phase if the simulation starts
immediately with  0 D 0 (or h0 D z) from beginning.

The simulation results are in good agreement with the exact predictions for
both modeling strategies as shown in Figs. 10.49 and 10.50. Slight deviations are
revealed towards the end of drainage at tmax. The moving mesh strategy must
avoid a mesh collapsing when the free surface approaches the bottom, while the
unsaturated-saturated model is influenced by the capillary rise induced by the lower
BC when the block becomes fully unsaturated. While the location of the free
surface is naturally given by the top boundary of the moving mesh, the free surface
location cannot be easily taken from h�values at nodes in the unsaturated zone for
the unsaturated-saturated model of a invariable mesh because the pressure head
in the unsaturated zone is only determined by the retention curve and therefore
strongly dependent on the used retention parameters. This becomes clear if seeing
the obtained history of the pressure profiles for the unsaturated-saturated model in
Fig. 10.51. Since the pressure head is zero in the saturated zone, an equivalent free
surface is to be defined at the transition to the unsaturated zone with a certain small
negative pressure head. Actually, a small negative pressure head of  D �0:15m
is taken. Note that the sharper the retention curve is chosen, the better the transition
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Fig. 10.51 Vertical pressure
head profiles at selected times
t computed with the
unsaturated-saturated flow
model. The free surface is
defined at a small negative
pressure head of
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Fig. 10.52 Sketch of the
pyramidal pit

from the saturated to the unsaturated zone can be identified. On the other hand,
however, a sharp retention curve requires a higher spatial resolution and increases
the computational effort.

10.13.7.3 Pit Flooding Test Case

Let us consider a simplistic open-pit mine with a geometry as shown in Fig. 10.52.
The pyramidal pit body with a volume Vpit of 3; 466; 666:67m3 will be flooded by
a constant water discharge Q of 792 m3 d�1. The pit is initially dry and we assume
for this in-pit domain a hydraulic conductivity of K D 100m s�1, a specific yield
of "e D 1 and a storage coefficient of So D 0. The surrounding porous body is
considered very low permeable, actually, we assign K D 10�9 m s�1, "e D 0 and
So D 10�4 m�1. As the solution the filling curve h D h.t/ is to be determined.
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Table 10.31 Parameters and conditions used for the pit flooding problem

Quantity Symbol Value Unit

Domain measure (width; depth; height) 800; 800; 21:5 m
Geometry of the mined-out pit is shown in Fig. 10.52
Material properties of the in-pit domain and the surround are listed in Table 10.32
IC and BC
Initial condition (IC)a h0 10�4 m
Multilayer well BC at pit center Qw 792 m3 d�1

FEM
3D mesh of 32� 32 � 2 brick elements for the classic free-surface BASD model
3D mesh of 32� 32 � 21 brick elements for the unsaturated-saturated model
Initial time step size 
t0 10�4 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 12 years
a Elevation z D 0 is defined at the pit base

Table 10.32 Material properties for the pit flooding problem. Unsaturated-saturated model uses
the modified van Genuchten parametric modela (D.3), (D.33). Classic free-surface BASD model
with moving mesh uses the specific yield "b

e

Subdomain So (m�1) K (m s�1) " (1) sr (1) ˛ (m�1) n (1) m (1) ı (1)

Pit 0 102 1 0 (10; 1) 2 0.5 1
Surround 10�4 10�9 0 0 1 2 0.5 1
a Note that it is generally used: ss D 1
b Specific yield is determined by "e D ".1� sr /

For the given case an analytical solution for the filling water height h can be easily
derived as

h.t/ D 10� 3
p
1C 2:1681 t � 1� .h in meters; t in years/ (10.144)

The open pit reaches its maximum height with ho D 20m after t D Vpit=Q D
12 years of filling with the given dischargeQ.

To simulate the flooding process for the idealized open-pit mine both the
classic free-surface modeling strategy with a moving mesh BASD technique and
the unsaturated-saturated modeling strategy are applied. The used parameters and
conditions are summarized in Tables 10.31 and 10.32. The simulations for both
strategies are performed with the adaptive AB/TR predictor-corrector time stepping.
The pit geometry solely determines the temporal storage in the flooding process.
For the moving mesh BASD strategy only two layers are sufficient to describe
exactly the stratigraphic relationship of the pit (Fig. 10.53a), where the upper layer
represents the ‘air’ domain to be filled. As evidenced in Fig. 10.54 for the computed
filling curve h.t/ the moving mesh gives an excellent agreement with the analytical
solution.
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Fig. 10.53 Meshes used for the pit flooding simulation (cut view, vertical exaggeration 10:1).
Study domain measures 800� 800� 21:5m: (a) classic moving mesh BASD technique based on a
simple two-layer 32� 32� 2 brick element schematization (only one layer approximates the inner
mined-out pit domain) and (b) unsaturated-saturated model discretized with 21 layers (20 layers
are used for the inner mined-out pit domain) consisting of 32� 32� 21 brick elements
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Fig. 10.54 Simulated filling curves h.t/. Results of the unsaturated-saturated model obtained for
two different ˛�values in comparison to the analytic solution (10.144) and predictions from the
BASD-based moving mesh strategy

While a free-surface moving mesh strategy is superior to simulate the present
open-pit flooding process, a fixed mesh with an unsaturated-saturated modeling
approach needs naturally more effort, however, in favor of its appropriateness
in complex applications. Clearly, an air-filled mine body cannot be affected by
capillary pressure relationships. Nevertheless, the variable saturation mechanism
should allow to model the water table position (as the zero pressure head) in the
mine regarded as a fillable ‘porous’ space. The unsaturated approach serves as a
contrivance to smooth the numerical solutions. For the unsaturated-saturated model
21 layers are chosen to schematize the pit body as shown in Fig. 10.53b. The
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standard h�based form of the Richards’ equation appears sufficient and appropriate
for this type of problem. The modified van Genuchten parametric model is preferred
with parameters listed in Table 10.32. The unsaturated parameters are suitably
selected. Two different ˛�values are tested to indicate their influence on the
accuracy of the predicted filling curve. The results are shown in Fig. 10.54 in
comparison to the analytical solution and the BASD-based moving mesh result.
Expectedly, the smoother the capillary pressure relationship in the pit is assigned,
the more the filling curve is smoothly shaped and, however, the more the rise of
the water table lags. As revealed in Fig. 10.54 a reasonable accuracy is achieved
for a ˛ of 10 m�1, regardless of the somewhat wavy behavior of the filling curve.
A compromise between vertical resolution and strength of the capillary pressure
relationship in the pit is to be found to get acceptable results even in open-pit
flooding processes.



Chapter 11
Variable-Density Flow, Mass and Heat
Transport in Porous Media

11.1 Introduction

In Chap. 3 the continuum approach of the porous medium has been described.
A fluid (or better a phase) appears there as an effectively continuous medium
with a mass density � (fluid mass per unit volume of fluid) as a fundamental
bulk property. The density of a fluid is often not uniform. In general, the fluid is
composed of N miscible chemical species with a partial density �k (mass of the
constituent k per unit volume of fluid), so that for the mixture � DPN

k �k (density
increases when dissolved mass of constituents increases). Moreover, the density of
a fluid can be influenced by the temperature T (density decreases when temperature
increases) and by the pressure p (density increases when pressure increases due to
compressibility). In a formal manner, the density is to be regarded as a dependent
thermodynamic variable for which an equation of state (EOS) � D �.p; �k; T /

holds, cf. Sect. 3.8.6.1.
Among the state variables, density merits special attention as its spatial and

temporal variations are fundamental to the class of variable-density flow, some-
times categorized as density-driven flow or buoyancy-driven flow. Mathemati-
cally, this is expressed by the presence of � in the gravity (buoyancy) term
�g appearing in the momentum balance equation for a fluid. In systems with
variable density many different, yet physically correct, flow patterns may occur.1

1We note that the impact of p, �k and T on � does not lead to the same flow effects.
Compression effects caused by pressure changes will not feature a new physical characteristic,
quite contrary to variable concentration or/and temperature fields which are governed by distinct
balance statements subjected to advection and dispersion/conduction. Only the presence of at
least one of these quantities is capable of forming complex convective flow phenomena such as
flow recirculations, stratified and physically oscillating flow patterns. Flow processes affected
exclusively by compression due to pressure changes will not belong to the distinct category of
variable-density flow.

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5 11,
© Springer-Verlag Berlin Heidelberg 2014
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The corresponding mathematical models can imply nonunique solutions, and issues
of physical stability, oscillations and chaos may arise.

In numerous natural and engineered systems, variable-density flow processes
play an important role. Besides various applications in the dynamics of pure
viscous fluids, atmospheric flows, oceanography, limnology, energy technology
and astrophysics, we find such phenomena in many areas of subsurface hydrology,
geothermics, reservoir mechanics, underground nuclear engineering and material
science. Typical applications include saltwater intrusion in exploited coastal
aquifers, saltwater upconing below pumping wells, concentrated brine transport,
infiltration of leachates from landfills and industrial waste disposals, design of
geothermal energy extraction and storage systems, large-scale convection in deep
geothermal areas, radionuclides released from repository in rock salt formations
and many others (Table 11.1).

Variable-density flow processes in porous media have received the attention of
many researchers during the last 40 years, although, the pioneering work in this
field is even older. Horton and Rogers [262], and independently Lapwood [333]
first addressed the porous-medium analog of the Rayleigh-Bénard convection with
regard to thermal instability in a saturated porous layer of infinite horizontal
extent. Wooding [569] extended these studies, and Schneider [463] and Elder [153]
performed laboratory experiments with Hele-Shaw cells. De Josselin de Jong [117]
developed the vortex theory for density-driven flows in saturated porous media.
While the first numerical computations of 2D convection processes in porous media
were given by Wooding [569] using an iterative relaxation method, Elder [153,154]
was the first to fully compute the multicellular thermal convection currents in 2D
porous layers for both steady-state and transient situations using a FDM. Since then,
the number of papers on the subject of variable-density flow processes in porous
media has been growing at an ever increasing rate.

Excellent reviews of prior work have been presented by Combarnous and
Borries [95], Cheng [77], Gebhart et al. [187], Tien and Vafai [515], Nield
and Bejan [389] and Holzbecher [255]. Most of the earlier (pre-1960) investiga-
tions were motivated by an interest in geophysical and geothermal phenomena.
As subsequent studies covered an increasing range of subjects, the importance
of numerical analysis soon became obvious with the application of the various
numerical techniques (finite differences, Galerkin technique, spectral method,
boundary element method, multigrid technique, finite elements, finite volumes,
e.g., [113, 248, 252, 457, 494]). More recent reviews of modeling variable-density
flow in porous media have been presented by Simmons et al. [478, 480], Diersch
and Kolditz [138] and Werner et al. [561]. Among the vast work we want to
highlight the following basic studies: The stability of 2D convection rolls in a
porous medium heated from below was studied by Straus [494], who showed that
at a given Rayleigh number less than 380, there is only a limited band of wave
numbers in form of a balloon-shaped closed curve for which convective rolls are
stable. Oscillatory convective currents in two dimensions were first reported by
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Table 11.1 Typical applications of variable-density flow in porous (and fractured) media

Application Case Pattern

Saltwater Intrusion

fr
es

hw
at

e r

sa
ltw

at
er

Upconing pumping well

saltwater

freshwater

Stratification/boundary layer/
flushing

freshwater

saltwater

Heavy/light solutes Fingering

Floating pumping well

Geothermics Heat extraction extractionreinjection

Hot-dry-rock pumpinginjection

fracture

Cooling/energy
underground storage

extractionreinjection

Underground nuclear
engineering

Radionuclides released
from a repository
(heat sources)

Others Salinization of soils
Convection in snow layers and

ice formations
Convection in permafrozen soils
Diagenetic processes in

sedimentary basins
Drying processes in engineered and

natural systems
Thermal isolation (pipes, dresses, hairs,

rocks, wood, : : :)
Convection in magma chambers
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Combarnous and Le Fur [96], Horne and O’Sullivan [260, 261] and simulated by
Horne and Caltagirone [259] and Schubert and Straus [466] in a square cavity.
Oscillatory convections in 3D porous boxes were studied by Horne [258], Schubert
and Straus [465], Straus and Schubert [495, 496] and Caltagirone et al. [67]. The
variation of the critical Rayleigh number (characterizing the onset of convection)
and corresponding preferred cellular modes were analyzed by Beck [41] for an
enclosed 3D porous medium. Numerical computations of cellular convection at high
Rayleigh numbers were performed by Steen and Aidun [491], Kimura et al. [308,
309], Caltagirone et al. [68] and Caltagirone and Farbie [66]. Effects of anisotropy
and heterogeneity were studied by Kvernvold and Tyvand [323], McKibbin and
O’Sullivan [364, 365], McKibbin and Tyvand [366–368] and others. Stabilizing
effects caused by hydrodynamic dispersion were modeled by Kvernvold and Tyvand
[324] and Georgiadis and Catton [190]. Non-Darcian flow effects were considered
by Katto and Masuoka [304], Walker and Homsy [556], and Prasad and Kladias
[428]. Thermohaline (double-diffusive) convection processes in porous media were
studied, among others, by Nield [387], Griffiths [214], Rubin [450], Rubin and Roth
[451,452], Trevisan and Bejan [518], Murray and Chen [380], Tyvand [526], Green
[207], Taunton et al. [507], Goyeau et al. [197], Oldenburg and Pruess [399], Diersch
and Kolditz [137], Pringle et al. [431], and Hughes et al. [271].

In hydrogeologic systems saltwater intrusion and upconing processes are a
subject of specific concern. In many situations fluid-density effects are important
in the vertical and horizontal displacement of saline water, which can be classified
into different groups on the basis of the total dissolved-solid (TDS) concentration
(3.214), see Table 11.2. Usually, the heavier saltwater underlies the lighter
freshwater in a natural system and the resulting density stratification stabilizes the
flow system. While the density of ‘average’ surface seawater ranges between 1,022
and 1,028 kg m�3 (typical seawater contains about 35 ppt TDS), brine densities
exceeding 1,300 kg m�3 can occur in deep formations. The existence of high
salt concentrations can give rise to large concentration gradients in the form of
a narrow freshwater-saltwater transition zone. Here, the underlain salinity acts
as the restoring force, while hydrodynamic dispersion and convection lead to a
mixing and vertical displacement of the brine. Classically, the sharp saltwater-
freshwater interface assumption is made to enable rather simple analytical and
numerical solutions. This concept was used independently by Badon-Ghyben
[19] and Herzberg [246] to derive a formula, today well-known as the Ghyben-
Herzberg relation, which relates the elevation of the groundwater table to the
elevation of the saltwater-freshwater interface assuming a hydrostatic equilibrium.
The sharp interface approach (saltwater and freshwater as two immiscible fluids)
was subsequently applied and improved in numerous works, for a review see, e.g.,
Reilly and Goodman [438], Bear [36], and Cheng and Quazar [78]. However, if an
assessment of the salt concentration in both local and regional flow systems is
desired, the more rigorous miscible-fluid approach is required. The first attempts
to model the density-dependent miscible saltwater-freshwater systems applied to
coastal problems were made by Henry [242] and Pinder and Cooper [420]. Due to its
practical importance, the numerical modeling of saltwater intrusion and upconing
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Table 11.2 Classification of salty waters

Krieger et al. [322] Davis and De Wiest [112]

Description TDS (ppt)a Description TDS (ppt)a

Slightly saline 1�3 Freshwater 0�1
Moderately saline 3�10 Brackish water 1�10
Very saline 10�35 Saltwater 10�100
Brine >35 Brine >100

a Total dissolved solids (3.214) in parts per thousand (ppt), equivalent to (g l�1)

processes has received increased attention in the water resources literature over
the last 30 years, resulting in better ways to model the advective and dispersive
mechanisms with fluid density and viscosity effects. Saltwater intrusion processes
were analyzed among others by Segol at al. [472], Segol and Pinder [471], Huyakorn
and Taylor [281], Huyakorn et al. [283], Volker and Rushton [548], Frind [174],
Voss [550, 551], Voss and Souza [552], Putti and Paniconi [432], Diersch [133],
Galeati et al. [180], Gambolati et al. [182], Kolditz et al. [318], Bués and Oltean
[63] and Abarca et al. [1]. Upconing below pumping wells was studied numerically
by Diersch et al. [143], Diersch and Nillert [140], Reilly and Goodman [439]
and Holzbecher [253]. Waste disposal in deep salt formations required modeling
of density-dependent flow processes in the vicinity of salt domes. Studies by
Herbert et al. [244], Oldenburg and Pruess [398], Oldenburg et al. [400], Johns
and Rivera [290], Kolditz et al. [318], Konikow et al. [320], Holzbecher [254] and
Younes et al. [583] contributed to a better informed discussion of this subject.

Variable-density flow processes in porous media are crucial in a wide spectrum
of thermal and saline transport problems. Numerical studies have emphasized the
importance of the Oberbeck-Boussinesq approximation and its (non-Boussinesq)
extension (see Sect. 3.10.3), the physical stability and the oscillatory behavior at
high density contrasts, e.g., [243, 574–576]. In the following, advanced numerical
strategies for solving the coupled spatio-temporal convection processes will be
considered. The consistency problem for the velocity approximation at high density
variations has to be of specific interest. Various benchmark tests exist for verifying
numerical models of 2D and 3D variable-density flow in porous media [138], which
will be revisited and discussed.

11.2 Basic Equations

The system of the basic PDE’s for 3D and 2D (including axisymmetric) variable-
density flow in porous media has been developed in Sect. 3.10.5 and summarized in
Table 3.7. Due to the density dependency the governing Darcy-type flow equation
is nonlinearly coupled with the mass and/or heat transport equation(s) via the
buoyancy term �e. We obtain the following general system of PDE’s written for
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the convective forms of the transport equations2
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where the remaining relations of s D s. /, kr D kr.s/ are defined in Appendix D
for variably saturated porous media, and K<k is defined by (3.253) and in Table 3.8.
For fully saturated porous media it is s D kr � 1. We note that the species
indicator k runs over the number of the considered solutes (a single-species solute
transport represents the special case with k D 1, where C � C1 dropping the
species indicator for convenience). Furthermore, notice that in (11.1) we use at first
for convenience the linear Fick’s law of hydrodynamic dispersion, (3.272) with
=H D 0. The treatment of non-Fickian dispersion will be subject of Sect. 11.10.
Chemically reactive multispecies processes in the fluid and solid phase will not be
considered in the present chapter, they will be focused in Chap. 12. The additional
sink term QEOB appearing in (11.1) is non-zero for the extended Oberbeck-
Boussinesq approximation (cf. Sect. 3.10.3), given by

2Alternatively, by using the divergence forms of the governing transport equations for mass and
heat, the coupled PDE system reads
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Note that the divergence form of heat transport in terms of the temperature T assumes that the
specific heat capacities c and cs are independent of T (cf. discussions in Sect. 3.9.1).
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The PDE system (11.1) has to be solved for the hydraulic head h, the saturation s,
the velocity q, the concentration Ck of chemical species k and the temperature T .
It is common practice to substitute q by the Darcy equation to obtain the governing
Richards-type equation (cf. Sect. 3.11) in a form given by (10.5) and to express the
saturation s via the available capillary pressure relationship (10.3) as discussed in
Chap. 10. Finally, the following PDE system holds
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where the source/sink termsQ D QhCQhw, QRk D ORkCQkwCQk andHe D QTC
QTw are suitably split into the supply terms Qh, ORk , Qk, QT D �H? C �sH?

s and
well-type SPC termsQhw,Qkw,QTw, respectively. The three density-coupled PDE’s
(11.4) have to be solved for the chosen primary variables of the hydraulic head h,
the concentration Ck of chemical species k and the temperature T by using the
constitutive relations (11.2) and the following set of BC’s of Dirichlet, Neumann and
Cauchy type as well as well-type SPC as introduced in Sects. 6.3.1–6.3.3 and 6.5.5:
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�.D � rCk/ �n D qkC on �Nk � t Œt0;1/

�.D � rCk/ �n D �˚kC.CkC � Ck/ on �Ck � t Œt0;1/

Qkw D �P
w Qw.t /ı.x� xw/.Ckw � Ck/ on xw 2 ˝ � t Œt0;1/

T D TD on �DT � t Œt0;1/

�.Λ � rT / �n D qT on �NT � t Œt0;1/

�.Λ � rT / �n D �˚T .TC � T / on �CT � t Œt0;1/

QTw D �P
w �cQw.t /ı.x � xw/.Tw � T / on xw 2 ˝ � t Œt0;1/

(11.5)
in combination with the IC’s of the form

h.x; t0/ D h0.x/

Ck.x; t0/ D Ck;0.x/

T .x; t0/ D T0.x/

9
=

;
in N̋ (11.6)
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where the total boundary is � D �Dh [ �Nh [ � r
Nh
[ �Ch D �Dk [ �Nk [ �Ck D

�DT [ �NT [ �CT . Corresponding BC’s of species concentration and temperature
exist for the divergence forms of the mass and heat transport equations, equivalent
to (8.4). Once (11.4) has been solved, the secondary variables of Darcy velocity q
and saturation s can be evaluated with known h. The essential parameters required
for solving (11.4) with (11.5) and (11.6) are listed in Tables I.1–I.8, I.10–I.12, I.16
and I.17 of Appendix I in accordance with the chosen problem type. Steady-state
flow, mass and heat transport conditions occur if @h=@t (@s=@t for unsaturated
conditions), @Ck=@t and @T=@t approach to zero.3

11.3 Sharp Interface Approximation

A common conceptual modeling strategy in saltwater intrusion is the sharp interface
approximation, e.g., [36, 38], where it is assumed that freshwater and saltwater are
two immiscible liquids. If we neglect any hydrodispersive mixing and capillary
pressure effects both liquids with their different densities and viscosities occupy the
own distinct portion of the flow domain and become separated from each other by
a sharp, possibly moving, interface, which has to be determined. Let us denote the
freshwater and saltwater by their ‘phase’ superscripts f w and sw, respectively, we
can deduce the governing flow equations from above for isothermal and saturated
conditions as

S fw
o

@hfw

@t
� r � �K fw � rhfw/ D Qfw

S sw
o

@hsw

@t
� r � �Ksw � rhsw/ D Qsw

(11.7)

where the piezometric (hydraulic) heads, cf. (3.260), for freshwater and saltwater
are introduced, respectively, as

hfw D pfw

�fwg
C z; hsw D psw

�swg
C z (11.8)

Since the pressure must be equal at the interface between freshwater and
saltwater, i.e.,

pfw D psw on the interface (11.9)

3Optionally, FEFLOW suppresses all time derivative terms @h=@t , @s=@t , @Ck=@t and @T=@t for
solving steady-state solutions. A specific option exists, named steady flow – transient transport, in
which only the derivative terms of the flow equation @h=@t and @s=@t are dropped to exclude flow
storage effects in the variable-density flow simulation. Note, however, due to the nonlinearity in
the flow equation the solution of the flow must be updated at each time t once the concentration
Ck and/or the temperature T change. As the result, h, s and q remain time-dependent.
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Fig. 11.1 Saltwater-freshwater interface in an unconfined coastal aquifer

we obtain from (11.8) the sought relation for the position of the sharp (possibly
moving) interface in the form

� D ıhfw � .1C ı/hsw (11.10)

in which � D �z represents the depth of the interface below a chosen reference
datum, for instance the seawater level (see Fig. 11.1) and

ı D �fw

�sw � �fw
(11.11)

is the density ratio, assuming �sw > �fw.
The piezometric heads hfw and hsw have to be determined from the solution

of (11.10). The interface relation (11.10), firstly introduced by Muskat [381] and
Hubbert [265], can also be used to predict the interface depth � from observed water
levels if two wells are located near to each other. Such a case is shown in Fig. 11.1,
where the deeper well measures the saltwater head hsw and the other shallow well
measures the freshwater head hfw. Then, (11.10) provides a much better estimate of
� than the Ghyben-Herzberg relation [19,36,246], which is often practiced. Ghyben
and Herzberg assumed in addition that the saltwater is stagnant. The pressure in
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the saltwater zone becomes hydostatic, i.e., hsw D const. Using the datum shown
in Fig. 11.1 it is hsw D 0 and (11.10) reduces to the well-know Ghyben-Herzberg
relation written as

� D ıhfw (11.12)

The advantage of the Ghyben-Herzberg relation (11.12) is that only the water
level in freshwater wells is necessary to predict the location of the stationary
saltwater-freshwater interface. It means that at any distance from the sea, the
saltwater-freshwater interface below sea level is ı times the height of the freshwater
table above it. For example, taking an average seawater concentration of 35 ppt TDS
we can estimate from (3.276) a saltwater density of about �sw D 1;025 kg m�3 so
that with �fw D 1;000 kg m�3 we obtain ı D 40. It results in this case that the
stationary saltwater-freshwater below the sea level interface is 40 times the height
of the freshwater table above it.

Sharp interface models do not consider hydrodispersive mixing of saltwater and
freshwater, which restricts significantly their applicability in real applications. Only
in cases, where the mixing zone is very narrow in relation to the vertical and horizon-
tal extent of the study domain, they can be useful provided only the location of the
saltwater-freshwater interface is of major interest. However, sharp interface models
are inappropriate to predict mixing concentrations in wells or bodies of water
threatened by upconing and/or spreading saltwater. Due to these reasons, today’s
modeling approach generally prefers the solution of the complete set of PDE’s
(11.4) providing a general physical description without essential restrictions and
simplifications, however, at the expense of a usually higher computational effort.

11.4 Hydrostatic Condition and Evaluation
of Observation Wells

A hydrostatic condition is given when either the fluid is at rest or a steady uniform
flow exists, i.e., q D const. Assuming that the gravity is directed vertically along
the z�coordinate so that gT D .0 0 �g/ and eT D .0 0 1/, it follows directly from
the governing Darcy equation, (3.258), (3.262) or (11.1), that

rzp C �g D const; rzhC � D const (11.13)

where the buoyancy coefficient (3.265) and the hydraulic head (3.260), respectively,
are defined as

� D � � �0
�0

; h D p

�0g
C z (11.14)
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which are related to the constant reference liquid density �0, conveniently be chosen
as the freshwater density, i.e., �0 � �fw and h � hfw. Two situations are here of more
practical interest:

(i) If we measure a saltwater head hsw in a piezometric pipe, where the complete
height in the pipe is filled by water of constant density �sw, the question arises
of how much is the equivalent freshwater level h D hfw in a piezometric pipe.
By using (11.13) the pressure p D �g R �dz C C at the position z D zi of
a saltwater-freshwater interface (Fig. 11.2) must be the same for saltwater and
freshwater, viz.,

p.zi / D psw D �g
Z hsw

zi

�swdzC C � pfw D �g
Z hfw

zi

�fwdzC C (11.15)

where C is an arbitrary constant (C D 0 for water at rest). If �sw and �fw are
constant over the considered heights, the equilibrium condition (11.15) yields
the following relationship

h D hfw D �sw

�fw
hsw �

�
�sw � �fw

�fw

	

zi D
�
1C 1

ı

�
hsw � zi

ı
(11.16)

where ı is defined by (11.11). Formula (11.16) is useful to convert measured
saltwater heads hsw at z D zi into equivalent freshwater heads h. For example,
if we measure hsw D 80m at elevation zi D 20m, a freshwater head of h D
81:5m results with ı D 40.

(ii) In practice, concentration and/or temperature-dependent density variations
along a piezometric pipe can occur due to a leaky or insufficiently insulated
observation well. Provided that the concentration and/or temperature distribu-
tions along the pipe are known from measurements (e.g., via conductimeters),
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the hydrostatic pressure at elevation z can be easily determined from

p.z/ D �g
Z z

z1

�.z/dzC C (11.17)

For example, if the temperature increases linearly with depth of a borehole
T .z/ D T1 � .T1 � T0/z=H (see Fig. 11.3), the density �.z/ D �0Œ1�ˇ.T .z/�
T0/� decreases linearly in depth according to �.z/ D �0Œ1�ˇ.T1�T0/.1�z=H/�
and a quadratic variation for the pressure in depth results

p.z/ D p1 � �0g
�
zC ˇ

2
.T1 � T0/. z2

H
� 2z/


(11.18)

assuming a constant thermal expansion coefficient ˇ. Similar expressions result
for a concentration profile increasing with depth of a borehole, however,
providing a reverse relation.

11.5 Convection Phenomena

11.5.1 Horton-Rogers-Lapwood Problem

The Horton-Rogers-Lapwood (HRL) problem is the porous-medium analog of the
Rayleigh-Bénard cellular convection problem, which was first analyzed by Horton
and Rogers [262] and independently by Lapwood [333]. It refers to an infinite
horizontal porous layer which is uniformly heated from below and, in addition,
subjected to concentration gradient(s) [387] (see Fig. 11.4). In the original HRL
problem formulation the porous medium is assumed homogeneous, isotropic and
fully saturated. It is further assumed that the Darcy law and the OB approximation
are valid. It is supposed that the fluid density �, (3.274), is a function of concentra-
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tion(s) Ck of non-reactive species k and temperature T written as

� D �0
�
1C

X

k

ˇck .Ck � Ck0/� ˇ.T � T0/


(11.19)

where ˇck and ˇ are considered as constant solutal and thermal expansion
coefficients, respectively. For the HRL problem the general balance equations (11.1)
reduce to

So
"
@h
@t
Cr � v D 0

v D �K
"
.rhC �e/

@Ck
@t
C v � rCk �Dkr2Ck D 0 .k D 1; : : : ; N /

S�
@T
@t
C v � rT �D�r2T D 0

(11.20)

with the definitions

v D q

"
; � D

X

k

ˇck .Ck � Ck0/� ˇ.T � T0/;

S� D 1C .1� "/�scs
"�c

; D� D "�C .1 � "/�s

"�c
(11.21)

where v is the intrinsic (pore) velocity, S�  1 is the thermal storage coefficient
(can also be understood as a thermal retardation factor) and D� is the thermal
diffusivity. It is obvious that the PDE’s set (11.20) has a basic steady-state solution,
which satisfies the BC’s T D T0C
T and Ck D Ck0C
Ck at z D 0 and T D T0
and Ck D Ck0 at z D H , given by
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q D 0
T D T1 �
T z

H

Ck D Ck1 �
Ck z
H

p D p1 � �0g
�
z � 1

2
.ˇck
Ck � ˇ
T /. z2

H
� 2z/



h D h1 C 1
2
.ˇck
Ck � ˇ
T /. z2

H
� 2z/

(11.22)

where 
T D T1 � T0 and 
Ck D Ck1 � Ck0. This solution corresponds to the
‘diffusion state’, in which mass and heat transfer are solely by diffusion and thermal
conduction, respectively.

11.5.2 Dimensionless Equations and Characteristic Numbers

To assess the relative importance of terms in the governing PDE’s set (11.20) let
us introduce dimensionless variables by choosing H , S�H2=D�, D�=H , 
T and

CkD�=Dk as scales for length, time, velocity, temperature and concentration,
respectively. Thus, the dimensionless variables are defined as

Ox D x

H
; Ot D D�t

S�H2
; Ov D Hv

D�

; OT D T


T
; OCk D Ck


Ck

Dk

D�

(11.23)

Using (11.23) the basic equations (11.20) can be written in dimensionless variables:

�SoH

"S�

�@ Oh
@Ot C

Or � Ov D 0

Ov D �Pet Or Oh �
�X

k

Rak. OCk � OCk0/ � Rat . OT � OT0/
�
e

�Lek
S�

�@ OCk
@Ot C Lek Ov � Or OCk � Or2 OCk D 0 .k D 1; 2; : : :/

@ OT
@Ot C Ov �

Or OT � Or2 OT D 0

(11.24)

where Or is the dimensionless gradient vector and the following characteristic
numbers naturally appear, viz.,

solutal Rayleigh number of species k:

Rak D ˇck
CkKH

"Dk

D ˛kKH

"Dk

(11.25)

thermal Rayleigh number:

Rat D ˇ
TKH

"D�

(11.26)
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thermal Darcy-Péclet number:

Pet D KH

"D�

(11.27)

Lewis number of species k:

Lek D D�

Dk

(11.28)

Turner (or buoyancy) number of species k:

Tuk D Rak
LekRat

D ˇck
Ck

ˇ
T
D ˛k

ˇ
T
(11.29)

The Rayleigh number relates buoyant forces to (thermal or solutal) diffusivity. It can
have a positive or negative sign in dependence on the definition of 
T or 
Ck
(cf. Fig. 11.4). Rayleigh number of zero means that density effects on the flow
are excluded. The Turner number plays an important role in coupled convective
mass and heat transfer, such as double-diffusive convection (DDC), which relates
the buoyant forces imposed by solute and temperature differences to each other.
Turner number of about unity means that solutal and thermal buoyant forces are
in the same order, which induces a highly nonlinear dependency of the convection
process. The Lewis number, which is often larger than unity, defines the ratio of
thermal diffusivity to mass diffusivity and indicates how the diffusion speed of heat
and species is related to each other. DDC phenomena are sensitively affected by the
Lewis number.

In addition, to evaluate heat and mass transfer at a boundary (surface) � the
ratio of the convective to pure conductive (diffusive) heat and mass transfer across
(normal to) the boundary has relevance. For the heat and mass transfer, respectively,
it is expressed in integral form by the

Nusselt number:

Nu D
R
A
qnT .t/d�R
A
qdiff
nT
d�

	 1

A

Z

A

. Or OT � n/d� (11.30)

Sherwood number of species k:

Shk D
R
A
qnkC .t/d�R
A
qdiff
nkC
d�

	 1

A

Z

A

. Or OCk � n/d� (11.31)

where qnT .t/ and qnkC.t/ represent boundary heat and mass fluxes, respectively,
which are either known from given BC’s (cf. Sect. 6.3) or computable via CBFM
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Fig. 11.5 Convection regimes of a porous layer heated from below in dependence on the thermal
Rayleigh number Rat

(cf. Sect. 8.19.2), the superscript ‘diff’ indicates pure diffusive steady-state bound-
ary fluxes, which are easily given for the present HRL problem as qdiff

nT
D �D�


T=H and qdiff
nkC
D �Dk
Ck=H (assuming qdiff

nT
¤ 0 and qdiff

nkC
¤ 0), and A

corresponds to the exchange area.

11.5.3 Convection Regimes

11.5.3.1 Free Convection

To explain striking features of free convection let us consider next the prototypical
HRL problem shown in Fig. 11.4 only for the presence of a temperature gradient
(so, put aside concentration gradients at first). Starting with a temperature difference

T of zero, let us observe the behavior of flow and heat transfer if we continuously
increase the temperature at the bottom of the porous layer, i.e.,
T increases and the
accordingly the thermal Rayleigh number Rat starts growing from zero (Fig. 11.5).
At a given Rat the properties of the layer are considered invariable, however, it is
assumed that either the velocity, the hydraulic head (equivalently the pressure) or
the temperature can be anyhow perturbed at initial state by a small, possibly random
finite amplitude.

1. Initially, at a small (or zero) Rat we realize that the heat flux imposed by
T  0
can be fully processed by pure thermal conduction/diffusion, i.e., the fluid
remains at rest, no convection occurs and any perturbation disappears (sooner or
later). The steady-state solution corresponds to (11.22). Note that pure thermal
conduction is also given for all negative Rat , where with 
T < 0 a stabilizing
thermal distribution exists (light hot fluid stratifies over heavy cold fluid).

2. Now, we will reach a Rayleigh number, where 
T has been raised high enough
so that pure thermal conduction/diffusion is not capable anymore of transferring
the imposed heat through the porous layer. This is the moment when the fluid
must start to move: the onset of free convection at a first critical Rayleigh number
Racrit1

t , the system becomes physically instable. This stability criterion can be
analytically determined by a linear stability analysis [389]. For the HRL problem
it gives Racrit1

t D 4�2. Different Racrit1
t exists for a 3D porous box of finite
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lengths [41] showing dependencies on the geometric aspect ratio. In general,
there are also influences from BC’s, the presence of mechanical dispersion,
anisotropic media, layered and sloped structures, e.g., [77,95,389]. To trigger this
instability, perturbation (noise) is needed because a perfectly undisturbed system
will not become instable. However, a real physical system has always inherent
perturbations and even in numerical modeling truncation and roundoff errors are
basically present and induce perturbations, intentionally or not. The movement
of fluid in the layer is characterized by a specific behavior. The fluid circulates
in form of rolls and exhibits cellular convective patterns. This process is fully
self-organizing, an interplay between upwelling fluid driven by buoyant forces
and downwelling fluid caused due to fluid mass conservation. Mathematically,
the former is implied by the buoyancy term �e and the latter is controlled via rh
in the governing (momentum) Darcy equation. For moderate Rayleigh numbers
Rat > Racrit1

t we observe stationary convective rolls.
3. Stationary convection exists up to a second critical Rayleigh number Racrit2

t ,
which cannot be exactly determined and is only assessable from numerical com-
putations. Straus [494] found a number of about 380, which can be considered
as an upper limit of Racrit2

t . Other numerical investigations [67,260,261] indicate
a range between 4�2 < Rat < (240–300), where stationary convection pattern
develop in form of 2D rolls rotating in clockwise or counter-clockwise direction,
3D rolls or 3D polyhedral cells. Once Rat > Racrit2

t 	 (240–300), the con-
vection can begin to oscillate. Transient fluctuations appear in form of periodic
convective patterns. It allows the sytem to ‘pump’ the imposed heat through the
layer in a larger extent. This convective regime implies sharper inherent gradients
and instable boundary layers. They cause oscillations which can be interpreted
as the continuous creation and disappearance of convective plumes. A larger
number of irregular plume patterns evolves over time. The convection process
becomes increasingly unpredictable because the inherent, usually unknown
perturbations determine the convection in a virtually uncontrollable manner,
even when the perturbations are basically very small. Perturbation can result in
manifold solutions (bifurcations). Possibly, the convection possesses different
solutions and a numerical simulation converges to only one solution. As already
observed by Horne and O’Sullivan [260] there is a possibility of either a steady
multicellular structure or a fluctuating unicellular structure. Once formed, these
two structures are not easily interchangeable, but the system may be assisted
into either mode by a suitable perturbation during its early development. Higher-
order transitions have been studied in [66,68] for a 2D square porous cavity. They
showed that a second bifurcation exists, occurring at Rat D 390. At this Rayleigh
number the flow becomes periodic. Between 390 and 600 the process is single-
periodic. Increasing Rat further, the flow is again periodic up to Rat D 1;000.
A quasi-periodic regime can maintain up to Rat D 1;500, after which the single
convecting roll splits into two unsteady cells by entering a chaotic restructuring
(i.e., fluctuating) regime. Techniques of bifurcation theory have been used in
two dimensions, among others, by Riley and Winters [444], Vadasz [530] and
Vadasz and Olek [531–533]. Vadasz and Olek [533] pointed out the significance
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of including a time derivative term in the momentum (DBF-type) equation,
cf. (3.232), when studying wave (oscillatory) phenomena.

There is a direct analogy of the above thermal free convection for solute free
convection if a concentration gradient is imposed on the porous layer (Fig. 11.4)
under isothermal condition. However, solute-driven free convection can only occur
if the concentration gradient acts destabilizing, i.e., a higher concentration must be
on top of the layer so that Ck0 > Ck1 and 
Ck D Ck1 � Ck0 is negative. We can
observe the same convection regimes for growing solutal Rayleigh numbers jRakj
analogously to Rat . Physically, however, we note that j
Ckj has an upper limit due
to a maximally dissolvable mass of species and, thus, a high jRakj can usually only
be associated with a large hydraulic conductivityK , large layer thickness H , small
porosity " and/or small diffusivityDk .

For sufficiently high Rayleigh numbers the flow regime can become physically
unstable. This is triggered and controlled by perturbations. Such perturbations
can have true physical meaning or can be purely numerical. It becomes clear,
that accuracy and stability of the numerical solution approach are essential. The
conflict that arises from a certain mathematical solution of such a class of problems
was already indicated by Horne and Caltagirone [259] who concluded: ‘This
nonlinear problem has a plethora of possible alternative flow regimes and histories
depending on the conditions applied initially and subsequently. Therefore the too-
perfect conditions that are achieved using analytical or numerical techniques
(paradoxically the most accurate ones in particular) may give rise to other artificial
solutions that are divorced from the flow observed in noisy physical systems. . . . It
is perhaps time to admit that mathematical solutions to nonlinear problems must
of necessity include non-deterministic forcing effects in order to avoid solutions
mathematically correct but physically unlikely’. The more it is important, first,
to take into account all relevant processes that occur in the physical system and,
second, to fully explore the structure of the solution to the mathematical model,
which enables the possible states of the system to be determined.

11.5.3.2 Double-Diffusive (Thermohaline) Convection

Double-diffusive convection (DDC) is a fundamental fluid dynamic process [522,
523], for instance responsible for large-scale circulation in oceans [53], and can
also be recognized in porous-media problems [389]. It represents a buoyancy-driven
transport process, which is simultaneously coupled by more than one diffusing
property (chemical substances, thermal energy). For the DDC phenomenon to
occur, the following three conditions must be met: (1) there should be a vertical
gradient in two or more properties affecting the fluid density (e.g., concentrations of
chemical species, temperature), (2) the resulting gradients in the fluid density must
have opposing signs, and (3) the diffusivities of the properties must be different.
In Fig. 11.6, �1 and �2 denote the distribution of density components to the two
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Fig. 11.6 Two density components �1 and �2 (with different diffusivities D1 ¤ D2) and total
density � as a function of depth (Modified from [524])

different properties mentioned above, and � D �1 C �2 denotes the total density
distribution, cf. (2.123) and (3.194).

A striking and most surprising feature of DDC is that physical instabilities can
arise even when the total density is increasing downwards, i.e., in a hydrostatically
stable fluid. An important subclass of DDC phenomena represents the so-called
thermohaline flows where the two stratifying properties consist of heat and salt.
Here, heat is usually associated with the larger diffusivity value. For subsurface
thermohaline processes with their two (top/bottom) configurations and two
(heat/salt) properties, there are 22 D 4 combinations as shown in Fig. 11.7
characterizing the four major thermohaline regimes: (a) hot and salty below (HSB),
(b) cold and salty below (CSB), (c) hot and salty above (HSA) and (d) cold and
salty above (CSA). The physical stability of these configurations was studied by
Nield [387, 388] for the HRL problem which was generalized to a thermohaline
flow (Fig. 11.4). He could show that within the .Rat ;Rak/ number space there
are stable and instable regions (see Fig. 11.8). We recognize two bounding lines:
(1) The line Rat � Rak D 4�2 represents the boundary between stable and unstable
monotonic convection. (2) Additionally, a regime of oscillatory convection can be
identified which is lower bounded by the line ˚kRat � Rak D 4�2.1C˚k/, where
˚k D Lek=S� is a ratio of diffusivities of heat and species k formed with the thermal
storage coefficient S� as defined in (11.21). If ˚k D 1, then both lines are parallel.
Otherwise, they intersect at Rat D 4�2˚k=.˚k � 1/ and Rak D 4�2=.˚k � 1/.
Figure 11.8 illustrates the normal case with ˚k > 1, which corresponds to a Lewis
number Lek > S�  1. The combination of Rat and Rak characterizes the different
DDC regimes which are of particular interest as follows:

Stable convection:
It represents a diffusive regime in which no convective currents occur. It is
valid for sufficiently large Rak and small/negative Rat : Rat � Rak < 4�2 and
˚kRat � Rak < 4�2.1C ˚k/ (see Fig. 11.8). A CSB configuration (Fig. 11.7)
gives always a diffusive regime.
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Fig. 11.7 Depth profiles of temperature T and salt C for different thermohaline regimes: (a) HSB
(hot and salty below), heat is destabilizing, salt is stabilizing, Q1 stability quadrant of Fig. 11.8
(stable, monotonic or oscillatory convection), (b) cold and salty below (CSB), completely
stabilized situation, Q2 stability quadrant of Fig. 11.8 (always stable diffusive regime), (c) hot and
salty above (HSA), heat is stabilizing, salt is destabilizing,Q3 stability quadrant of Fig. 11.8 (stable
or monotonic convection), (d) cold and salty above (CSA), both components acting in destabilizing
manner, Q4 stability quadrant of Fig. 11.8 (stable or monotonic convection) (Modified from [223])

Monotonic convection:
It is also referred to as the fingering regime and occurs when the difference of the
solutal and thermal Rayleigh numbers exceeds a critical Rayleigh number: Rat �
Rak  4�2 (Fig. 11.8). It can potentially occur in all three configurations HSB,
HSA and CSA. This regime is also termed supercritical. Supercriticality means
that the driving (destabilizing) force exceeds the restoring (stabilizing) force. For
instance, a destabilizing heavy saline fluid in a HSA configuration overcomes the
stabilizing influence of heat. Usually, the thermal diffusivity is distinctly larger
than solute diffusivity. If a parcel of hot salty fluid becomes perturbed downward
it cools with the surround, whereby it becomes heavier due to thermal diffusivity
which acts more rapidly than its dilution via the slower solute diffusivity so that
the parcel continues to fall. Likewise, fluid parcels perturbed upward continue
to rise. This mode of convection results in long narrow lobes of descending
and rising fluid in form of fingering patterns, termed as double-diffusive finger
convection (DDFC). In this regime the mass and heat transport occurs much
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The line Rat � Rak D 4�2
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faster than would be predicted by pure diffusion/conduction alone. An example
of DDFC is analyzed in Sect. 11.11.8.

Oscillatory convection:
It can only occur for a HSB configuration if ˚kRat � Rak  4�2.1C ˚k/ with
˚k > 1 (i.e., Lek > S�  1), Rak > 4�2=.˚k � 1/ and Rat > 4�2˚k.˚k � 1/
(cf. Figs. 11.7 and 11.8), where cold non-salty fluid overlies hot and salty fluid
(in terms of a thermohaline convection). The faster diffusing heat is the desta-
bilizing component while the slower diffusing salt is stabilizing. This regime
is also termed subcritical because it can take place under even statically stable
circumstances. Indeed, its fascinating feature is that instabilities in a basically
stable system can occur due to the phase lag from the different diffusivities by
heat and salt. The oscillatory mode is driven as follows: Considering a parcel
of hot salty fluid which is perturbed upward, it will diffuse heat more rapidly
than it diffuses salt when rising. Since it loses heat more rapidly than it loses
salt, the parcel eventually becomes heavier than the surrounding fluid at which
point it must begin to descend. Now, the fluid parcel will descend beyond its
original position, warming as it sinks. At the new lower position the parcel
eventually becomes less dense than the surrounding fluid at which point it begins
again to rise and repeats the motion. A reverse circulating mechanism can be
understood for fluid parcels initially perturbed downward. Finally, an oscillatory
convective motion results in form of a staircase-type pattern [522,523] exhibiting
well-mixed convecting layers separated by (more or less) sharp interfaces.
A simulation example of a staircase DDC pattern is shown in Fig. 11.9.

The DDC phenomena discussed above for thermohaline convection can also exist
in chemical systems consisting of two (or even more) species having, however,
different (fast versus slow) diffusivities. An example of DDFC is described in
Sect. 11.11.8 for two solutes.
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salinity temperature streamline

Fig. 11.9 Salinity, temperature and streamline fields for a staircase situation of a thermohaline
flow in a 2D square cavity at Rat D 400, Tu D 2 and Le D 100. Salinity consists of five
distinct layers with the heavy (single-species) solute on the bottom. The hot temperature is on the
bottom too

11.6 Finite Element Formulation

Based on the principles of FEM thoroughly described in Chap. 8 we apply now
the GFEM to solve the PDE system of coupled flow, mass and heat transport
equations (11.4) associated with the constitutive relations (11.2), the OB extension
(11.3) as well as the corresponding BC’s (11.5) and IC’s (11.6). For convenience we
only develop the finite element equations for the convective forms of the governing
mass and heat transport equations applied to fully 3D, vertical 2D and axisymmetric
problems. Their alternative divergence forms will be equivalent to the formulations
given in Sects. 8.5.1 and 8.9 for the general transport equation. In Sect. 11.9 the
special case of variable-density problems in 2D horizontally schematized aquifers
with a sloped or curved geometry will be considered.

11.6.1 Weak Forms

According to Sect. 8.5 the weak forms for the three governing PDE’s (11.4) of flow,
mass and heat transport can be derived analogously to the expressions (10.26) and
(8.55). We obtain
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where w is a suitable weighting function and the boundary integrals are suitably
separated into their segments � D �Dh [ �Nh [ � r

Nh
[ �Ch D �Dk [ �Nk [ �Ck D

�DT [ �NT [ �CT imposed by the Dirichlet, Neumann, gradient and Cauchy-type
BC’s (11.5).

11.6.2 GFEM and Resulting Nonlinear Matrix System

The weak statements (11.32)–(11.34) involve the four unknown variables h, s, Ck
and T . In using the FEM these variables are replaced by a continuous approximation
that assumes the separability of space and time (see Sect. 8.4). Thus

h.x; t/ 	P
j Nj .x/hj .t/

s.x; t/ 	P
j Nj .x/sj .t/

Ck.x; t/ 	P
j Nj .x/Ckj .t/

T .x; t/ 	P
j Nj .x/Tj .t/

9
>>>=

>>>;

j D 1; : : : ; NP

k D 1; : : : ; N (11.35)

where j designates global nodal indices. Using the Galerkin method with the
weighting function

w! wi D Ni ; i D 1; : : : ; NP (11.36)
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and applying the approximate solutions (11.35) in (11.32)–(11.34), we obtain the
following matrix systems of each NP equations (cf. Sects. 8.9 and 10.5.2) written as

O.h/ � PhCB � Ps.h/C S.h;Ck;T / � h � F .h;Ck;T / D 0
Hk.h;Ck/ � PCk CEk.h;Ck;T / �Ck �Rk D 0 .k D 1; : : : ; N /

P .h/ � PT CL.h;Ck;T / � T �W D 0
(11.37)

or alternatively written in a compact form as

G.U/ � PU CK.U/ �U D Q.U/ (11.38)
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showing the major nonlinearities in parentheses, where the matrices and RHS
vectors are given as
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where .i; j D 1; : : : ; NP/, .e D 1; : : : ; NE/ and .k D 1; : : : ; N /. Note thatDk and
Λ are also functions of saturation s D s.h/ and Darcy velocity q D q.h; Ck; T /
and accordingly nonlinearly dependent on h, Ck and T : Dk D Dk.h; Ck; T / and
Λ D Λ.h; Ck; T /. The integrals appearing in (11.42) are integrated on element level
in the local coordinates as described in Sect. 8.12. Analytical evaluations of partial
integral terms of (11.42) can be deduced from developments done in Appendix H for
selected element types. The differential elements d˝e and d� e differ for 3D, 2D
and axisymmetric problems as given by (8.122)–(8.124), respectively. The tensor
of the saturated hydraulic conductivity Ke of element e may be fully anisotropic
in formulations introduced in Chap. 7. Is is important to note that the resulting
global system of equations (11.38) is unsymmetric since the matrices Ek and L
are unsymmetric.

The Richards-type unsaturated flow equation is discretized above in the standard
h�based form, which is usually preferred for moderate saturation behaviors and
under full saturation. However, alternative formulations exist for unsaturated flow
conditions in case of need, in particular the mixed h � s�based form of Richards’
equation by employing Celia et al.’s linearization and the more general PVST, which
are thoroughly described in Chap. 10.

11.6.3 On Upwinding and Numerical Dispersion

Although the above matrix systems (11.37) for the discretized ADE’s of species
mass and heat transport are written by using the Galerkin method, they can easily
be combined with upwind strategies which have been thoroughly described in
Sect. 8.14. Useful upwind strategies refer to the SU and FU methods (Sect. 8.14.3),
SC method (Sect. 8.14.4) and PGLS method (Sect. 8.14.5), in which the tensor of
mechanical dispersionDmech as part of the hydrodynamic dispersion tensorDk and
tensor of hydrodynamic thermodispersion Λ (11.2) is appropriately modified by
stabilization terms in dependence on the actual spatial and temporal discretizations
or solution gradients. Practically, the following schemes can be chosen if evaluating
De

mech for each element e according to Table 11.3.
The temporal and spatial (upwind) discretization strategies affect the accuracy

of the solution. The inherent truncation errors can be expressed in terms of
numerical (nonphysical) dispersionDnum as described in Sect. 8.15 and summarized
in Table 8.9. The original (physical) diffusivity is artificially raised by Dnum.
Typically, it is on element level

Dnum D ˛ kq
ekhe
2

C
tnqe2.� � 1
2
/ (11.43)

where ˛ 2 .1; 0/ for upwind and GFEM (no upwind) scheme, respectively, and
� 2 . 1

2
; 1/ for TR and BE, respectively. As (11.43) shows, upwind schemes and

fully implicit temporal approximations introduce a maximum numerical dispersion.
Small element sizes he and time steps 
tn are required to reduce Dnum. Conse-
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Table 11.3 Different upwind schemes by modified longitudinal and transverse dispersivities, ˇeL,
ˇeT , respectively, occurring in the mechanical dispersion tensor De

mech of element e

De
mech D ˇeT kqekδ C .ˇeL � ˇeT /

qe˝qe

kqek

Scheme ˇeL ˇeT Reference

GFEM (no upwind)a ˇL ˇT
SUb ˇL C ˛ h

e

2
ˇT (8.245)

FUb ˇL C ˛ h
e

2
ˇT C ˛ h

e

2
(8.251)

SCc ˇL C 1
2
˛ch

e kq
e
Î
k

kqek
ˇT C 1

2
˛ch

e kq
e
Î
k

kqek
(8.258)

PGLSd ˇL C Cr he ˇT (8.295)

a True (physical) dispersivities are ˇL and ˇT
b Upwind parameter ˛ D 1; factor 1

2
for linear elements; he is characteristic element length defined

by (8.239)
c ˛c defined by (8.259); projected flux vector qe

Î
defined by (8.253)

d Courant number Cr defined in (8.236)

quently, a convection process is simulated with changed parameters, as quantified
by an effective Rayleigh number

Raeff D Ra

1C ˛PgC .� � 1
2
/Cr Pg

(11.44)

where Ra is the true (physical) Rayleigh number, Pg is the mesh Péclet number
(8.236) and Cr is the Courant number (8.236). From (11.44) the danger from upwind
schemes and/or fully implicit schemes becomes obvious: the solution can evolve to
a point rather far from the real physics of a flow problem, if upwinding on coarse
meshes, and/or fully implicit time marching schemes with large step sizes are used
(cf. discussions in Sect. 8.14.1).

11.6.4 Preferred Strategy for Solving the Coupled Nonlinear
Spatio-Temporarily Discretized System

In general, for the present class of transient nonlinear density-coupled flow and
transport processes it cannot be predicted which time steps are allowable with
respect to the accuracy requirements. Accordingly, a time marching recurrence
scheme such as the ��method (Sect. 8.13.4) with predefined (fixed) time step
sizes 
tn is usually rather inappropriate and inefficient.4 Our favorite method for
transient variable-density problems is the GLS predictor-corrector time integrator
(Sect. 8.13.5), which provides a cost-effective, robust and accurate technique in that

4The time integration of (11.38) by using the simple ��method (Sect. 8.13.4) gives
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the time step size is increased whenever possible and decreased only when necessary
due to the error estimates. In addition, the predictor-corrector method with the
error-controlled adaptive time stepping is superior to linearize the nonlinear matrix
equations for flow, mass and heat transport and allows the embedding of the one-step
Newton (or alternatively one-step Picard) iteration method without the necessity of
repeated iteration within each time step (cf. Sect. 8.18.4).

The GLS predictor-corrector solution strategy breaks down into the following
main working steps:

STEP 0: Initialization
The predictor-corrector procedure necessitates the knowledge of the initial time
derivative (history vector) PU0 of the state vector U.t/ (11.40) containing the
vectors of hydraulic head h, species concentration Ck and temperature T at the
nodal points. It can be solved by evaluating the matrix equation (11.38) under
utilizing the IC’s (11.6) as

G.U0/ � PU0 D �K.U0/ �U0 CQ.U0/ (11.45)

where UT
0 D .h0 Ck;0 T0/ is known at initial time. The system (11.43) needs

to be solved only once and the extra work for the initialization is amortized over
the rest of computation.

STEP 1: Predictor solutions
Perform explicit predictor solutions by using the 1st-order accurate FE and 2nd-
order accurate AB scheme, respectively,

�
G.UnC1/


tn
CK.UnC1/�

�
�UnC1 D

�
G.UnC1/


tn
�K.UnC1/.1� �/

�
�Un C �

Q.UnC1/� CQ.Un/.1� �/
�

where � 2 . 1
2
; 1/ for the Crank-Nicolson and the fully implicit scheme,respectively. A nonlinear

matrix system RnC1 D A.UnC1/ �UnC1 �Z.UnC1;Un/ D 0 results, which must be iteratively
solved either via the Picard method (Sect. 8.18.1)

A.U �
nC1/ �U �C1

nC1 D Z.U �
nC1;Un/ � D 0; 1; 2; : : :

or via the Newton method (Sect. 8.18.2)

J.U �
nC1/ �
U �

nC1 D �RnC1.U
�
nC1;Un/ � D 0; 1; 2; : : :
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nC1 D U

�C1
nC1 �U �

nC1

J.U �
nC1/ D @RnC1.U

�
nC1;Un/

@U �
nC1

until satisfactory convergence is achieved for the iterations � at each given time stage nC 1. Note
that this iterative solution strategy is also applicable to steady-state variable-density problems if
setting � D 1 and 
tn ! 1.
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where the superposed p denotes the predictor valueUp T
nC1D.hpnC1 C

p

k;nC1 T
p
nC1/

at the new time plane nC 1. Note that, since PUn�1 is required, the AB formula
cannot be applied before the second step .n D 1/. The prediction has to be
started with the FE scheme, where PU0 is available from (11.45).

STEP 2: Corrector solutions
Do corrector solution for the nonlinear matrix system (11.38) achieved by the TR
or BE scheme
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to determine UT
nC1 D .hnC1 Ck;nC1 TnC1/ at the new time plane nC 1, where

� 2 . 1
2
; 1/ for the TR and BE scheme, respectively. In (11.47) the predictor

solution (11.46) is used to linearize the nonlinear dependencies of the matrix
system and
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appears as the partial Jacobian matrix based on the predictor which results
from the (one-step) Newton approach (note that this partial Jacobian does not
exist for the Picard method). Basically, the matrix system (11.47) has to be
solved simultaneously for hnC1, Ck;nC1 and TnC1 if subjected to a complete
iteration loop and to attain an improved rate of convergence for a full Newton
approach, however, at the cost of a significant memory and computational
burden, in particular for 3D and multispecies transport problems. The matrix
system for such a simultaneous solution can be ill-conditioned due to the
significantly different scales of the processes involved. But, in the preferred one-
step predictor-linearized formulation the system (11.47) naturally decouples into
the three partial systems
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(11.49)

for determining the corrector solutions hnC1, Ck;nC1 and TnC1 in a sequential
iterative approach (SIA), which reduces significantly the computational
effort. The resulting linearized systems (11.49) consisting of algebraic
equations of symmetric and unsymmetric structure are solved by techniques
as described in Sect. 8.17. The partial Jacobians OJk.hpnC1;C

p

k;nC1;T
p
nC1/ and

OJT .hpnC1;C
p

k;nC1;T
p
nC1/ appearing in (11.49) for the Newton method result

from the nonlinearities of fluid density in the advective terms of matricesEk and
L, respectively, and are given by5
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and
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5For the divergence form of the governing species mass and heat ADE’s it results
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where for convenience other nonlinear dependencies, e.g., occurring in the
velocity-dependent dispersion, fluid viscosity or saturation, are not incorporated.
Note that a Newton scheme for the flow matrix system under unsaturated
conditions can be alternatively used as described in Sects. 10.6.2 and 10.7.

STEP 3: Updated accelerations
Update the new acceleration vectors by inverting the FE and BE, respectively,
according to Table 8.7 as

PUnC1 D
(
UnC1�Un


tn
FE

�
2 � 
tn�1


tnC
tn�1
��UnC1�Un


tn

� � � 
tn

tnC
tn�1

��
Un�Un�1

tn�1

�
AB

(11.52)

to obtain PUT
nC1 D . PhnC1 PCk;nC1 PTnC1/ at the new time plane nC 1.

STEP 4: Error estimation
Compute the LTE for the FE/BE and AB/TR scheme as a function of the corrector
and predictor solutions in the form (cf. Table 8.7)

dhnC1 D '.hnC1 � hpnC1/
dcknC1 D '.Ck;nC1 �Cp

k;nC1/ .k D 1; : : : ; N /
dtnC1 D '.TnC1 � T pnC1/

(11.53)

with
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8
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1
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1

3
�
1C
tn�1


tn

� for AB/TR (11.54)

Appropriate error norms are applied to the LTE vectors dhnC1, d
ck
nC1 and dtnC1.

Commonly, the weighted RMS L2 error norms
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(11.55)

and the maximum L1 error norms
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kdhnC1kL1 D 1
hmax;nC1

maxi jdhi;nC1j
kdcknC1kL1 D 1

Ck;max;nC1
maxi jdcki;nC1j .k D 1; : : : ; N /

kdtnC1kL1 D 1
Tmax;nC1

maxi jd ti;nC1j
(11.56)

are chosen, where hmax;nC1, Ck;max;nC1 and Tmax;nC1 correspond to the maximum
values of hydraulic head, species concentration and temperature, respectively,
detected at the time plane nC 1, and used to normalize the solution vectors.

STEP 5: Tactic of time stepping
The potential size of the next time step can be computed by means of the error
estimates (11.53), (11.55), (11.56), the current time step size 
tn, and a user-
specified error tolerance � as


tnC1 D 
tn
�

�

max.kdhnC1kLp ; kdc1nC1kLp ; : : : ; kdcNnC1kLp ; kdtnC1kLp /
	1=�

(11.57)
where

� D
�
2 for FE/BE

3 for AB/TR

p D
�
2 for RMS error norm

1 for maximum error norm

(11.58)

and dhnC1, d
ck
nC1 .k D 1; : : : ; N / and dtnC1 are defined by (11.53). To monitor the

progress of the solution we use the criteria as summarized in Table 8.7.

11.7 Consistent Velocity Approximation

In the Darcy law (11.1) the discretization of the fluxes (velocities) q is nontrivial
if density effects become important. Specifically, a lower-order approximation
attainable for the hydraulic head gradients rh can conflict with a high-order
spatial variation in the gravity (buoyancy) term �e due to the following reasons.
There may be significant parts of the domain where the Darcy velocity should
be zero (or very small). In these regions, there should be a balance between two
contributions to the Darcy velocity: the hydraulic head gradient term and the density
term. However, if the hydraulic head, the species concentration and the temperature
are approximated using finite-element approximations based on the same order of
polynomials, then the hydraulic head gradient term is a lower-order polynomial in
position, and therefore cannot in general match the variation with position of the
gravity term, which varies with position in the same way as the species concentration
and temperature. As a result, although the Darcy velocity may be zero in some
average sense over an element, it varies on the scale of the elements. These artificial
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variations may have a major effect on the computed mass and heat transport, both
because they may lead to spurious advection of mass and heat and also because they
may lead to an increased dispersivity.

This problem has been addressed by Voss [550], Voss and Souza [552],
Herbert et al. [244] and Leijnse [336] who proposed modified schemes, termed
consistent velocity approximation, for evaluation of the discontinuous derivatives.
In Voss and Souza’s approach the spatial variation in the gravity term is reduced
to the same spatial variation as occurring in the hydraulic head gradient, i.e., for
linear finite elements the hydraulic head gradient is constant (piecewise constant
per element) and accordingly, the gravity term should also be piecewise constant.
While Voss and Souza [552] and Leijnse [336] tried to overcome the problem of
consistency by precision reduction, Herbert et al. [244] solved it by introducing
a mixed higher-order approximation for the different Darcy flux terms, which
significantly raised the computational expense.

11.7.1 The Hydrostatic Condition: The Requirement
of Consistency

Consider a hydrostatic situation for a single finite element as shown in Fig. 11.10,
where the fluid density � varies linearly in the vertical z�direction:

� D �1 � .�1 � �0/ z
H
; 0 � z � H (11.59)

Under such a hydrostatic condition we require that the Darcy velocity q expressed
in its h�formulation (11.1) as q D �krKf� � .rhC �e/ or in its p�formulation
(3.258) as q D � krK

�
� .rp � �g/ must be zero everywhere. This is termed as the

requirement of consistency, which implies

q � 0; rh D ��e; rp D �g (11.60)
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Suppose that the gravity is directed vertically along the z�coordinate so that gT D
.0 0 � g/ and eT D .0 0 1/ the pressure p and hydraulic head h, respectively,

p.z/ D �g
Z z

z1

�.z/dz; h.z/ D �
Z z

z1

�.z/dz; �.z/ D �.z/��0
�0

(11.61)

yield for the linear density function (11.59) a quadratic shape of the pressure as

p D p1 � g
�
�1z � �1��0

2H
z2
�

(11.62)

and similarly for the hydraulic head as

h D h1 � �1��0
�0

�
z � z2

2H

�
(11.63)

11.7.2 The Artifact: Spurious Nonconsistent Velocities
and Common Ways to Overcome

Typically, in a discretization algorithm the species concentration Ck and/or the
temperature T is linearly approximated in a finite element. This leads to a
corresponding linear relationship for the density � or buoyancy coefficient � as
considered above. But, the hydraulic head is also approximated by a linear function
in an element. This is (in the example of Fig. 11.10):

h 	 Oh D h0 � .h1 � h0/ z
H
; 0 � z � H (11.64)

Inserting (11.64) into the Darcy equation (11.1) and using the exact nodal values h1
and h0 D h1� �1��0

�0

H
2

from (11.63) as well as for the density (11.59) we get for the
z�component of the approximated velocity

qz D �krKzzf�
� �1��0

�0
. 1
2
� z

H
/

; 0 � z � H (11.65)

It clearly indicates that the approximated velocity only vanishes at the middle
position .z D H=2/ while at the other points artificial nonzero quantities occur
which take maximum values with opposite signs at the left .z D 0/ and right
.z D H/ point (cf. Fig. 11.10). Those spurious nonconsistent velocities can waste
the computational results in form of an overestimation of the mixing processes at
strong density coupling. In the advective terms of the governing transport equations
it will often not have a large effect, since the integration over elements and the
assembly of adjacent elements averages out the nonconsistent velocities. However,
if such spurious velocities are used to evaluate the mechanical dispersion tensor
Dmech (11.2) at element level an artificial increase of hydrodynamic dispersion
(mixing) can result [336].
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The most important way to overcome the problem is in reducing the spatial
variability in the gravity (buoyancy) term. Commonly, the gravity term is averaged
in the appropriate direction so as proposed by Voss [550], Voss and Souza [552] and
Leijnse [336]. In the above example we have to use now � D .�1 C �0/=2 and find
with the exact nodal values h1 and h0 D h1 � �1��0

�0

H
2

:

qz D �krKzzf�
�� �1��0

2�0„ ƒ‚ …
rzh

C �1��0
2�0„ƒ‚…
�ez

� D 0 (11.66)

which satisfies the equilibrium at all points.
Another possibility is in averaging the nonconsistent velocities at nodal points

by the local or global smoothing techniques as thoroughly described in Sect. 8.19.
It may smooth out the spurious velocities. Let us consider the following situations
as shown in Fig. 11.11, where node i shares two finite elements.

The smoothing procedure for the nonconsistent velocity (11.65) leads to a
velocity at the node i as

qz;i D krKzzf�
1

2�0

�
�0 C �2
2

� �1
	

(11.67)

If we can assume that the density �1 at the node i is an average of the upper and
lower density values, i.e., �1 D �0C�2

2
, then the nodal velocity (11.67) becomes

consistent with qz;i D 0. Obviously, this is true (or approximately true) for typical
density profiles as shown as case 1 in Fig. 11.11. However, if the density profile is
strongly variable over a short distance (e.g., a saltwater-freshwater interface with a
high density contrast) the nonconsistent velocities do not average out. This can be
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seen for the case 2 in Fig. 11.11 at the node i where an upgoing spurious velocity
remains in order of

qz;i D krKzzf�
1

2�0

�
�2 � �1
2

	

(11.68)

and the consistency is not satisfied at the node under those conditions.
We can summarize and conclude the following:

1. Consistency is the requirement to a zero velocity under hydrostatic conditions for
an arbitrary stable density gradient. A consistent velocity approximation satisfies
the relationship (11.60) at the local evaluation points.

2. Averaging of the gravity term for each element yields a consistent velocity
approximation, however, the accuracy in the spatial variability is reduced.

3. Smoothing of nonconsistent velocities derived at the Gaussian evaluation points
averages out spurious velocities in the most cases. However, if the density
gradients become very large spurious velocities at local points can remain.
Hence, smoothing is a procedure to derive continuous nodal velocities which
are often, but not always consistent in the sense of the statement (11.60).

4. In the context of variable-density flow a more general procedure is required for
consistent velocity approximations which will be described next.

11.7.3 The Frolkovič-Knabner Algorithm

Frolkovič [177] and Knabner and Frolkovič [312] introduced an algorithm,
hereafter referred to as the Frolkovič-Knabner algorithm (FKA), to approx-
imate consistent velocities in 2D and 3D finite elements in a more gen-
eral manner. FKA is described for isoparametric families of finite ele-
ments, where the computations are realized on generalized (local) coor-
dinates η (8.68), cf. Sect. 8.8.1. The idea is the introduction of integral
functions He

� .η/;H
e
� .η/;H

e
� .η/ to evaluate the Darcy velocities q D �krK

f� � .rhC �e/ for each element e in the form:
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kerK
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.heJ CHe
�J /

@
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N e
J .ηp/

1

C
A
�

.p D 1; : : : ; m/
(11.69)

where ηp is the vector of local coordinates, e.g., .�p; �p; �p/ for a 3D element,
.Je/�1 is the inverse Jacobian (8.119) of the isoparametric element,He

�J ,He
�J ,He

�J

are the nodal integral functions at local node J and m is the total number of Gauss
points, cf. Sects. 8.8.2 and 8.19.2. The integral functions are derived in Appendix K.
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By using these integral functionsHe
� .η/;H

e
� .η/;H

e
� .η/ the same spatial variability

for both the hydraulic head gradient term and the buoyancy term are achieved to
ensure consistent velocities.

The element-by-element evaluation (11.69) performed at the Gauss points p for
each element e leads naturally to a consistent velocity field, which is in general
discontinuous at the nodal points. To obtain continuous velocities local or global
smoothing techniques as thoroughly described in Sect. 8.19 can be easily applied.
Obviously, the smoothing procedures have no effect on the consistency of the
velocity. Since the velocities qe.ηp!J / for each element e are always consistent
at a node J , a smoothed (continuous) velocity must be consistent too.

11.8 Flow, Species Mass and Heat Budget Evaluation

To obtain precise budget evaluations for flow, species mass and heat the CBFM,
as introduced in Sect. 8.19.2, is applied to the specific weak formulations of the
coupled equation system. The corresponding boundary fluxes on � have to be
evaluated from the basic weak statements (11.32)–(11.34) written as

Z
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Z

�

Ni qnkC d� D �
Z

˝

Ni"s K<k @Ck
@t
d˝ �

Z

˝

Niq � rCkd˝ �
Z

˝

rNi � .Dk � rCk/d˝ �
Z

˝

Ni Œ."s#k<k CQh/Ck � ORk �Qk�d˝ �

.Ckw � Ck/Qw.t/ji
(11.71)

Z

�

Ni qnT d� D �
Z

˝

Ni
�
"s�c C .1 � "/�scs�@T

@t
d˝ �

Z

˝

Ni�cq � rTd˝ �
Z

˝

rNi � .Λ � rT /d˝ �
Z

˝

Ni Œ�cQh.T � T0/ �QT �d˝ � �c.Tw � T /Qw.t/ji (11.72)



574 11 Variable-Density Flow, Mass and Heat Transport in Porous Media

where all BC-related boundary segments are joined on � , qnh , qnkC and qnT are
the boundary fluxes for flow, species mass and heat, respectively. Expanding the
boundary fluxes on � as described in Sect. 8.19.2 the following matrix system
results to solve the consistent boundary flux vector qn, viz.,

M � � qn D �G.U/ � PU �K�.U/ �U CQ�.U/ (11.73)

for known U and PU at the corresponding evaluation time tnC1, where U , PU and
G.U/ are defined in (11.39)–(11.42) and
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(11.76)

in which .i; j D 1; : : : ; NP/ and .k D 1; : : : ; N /. In the budget analysis the integral
boundary balance flux is directly evaluated at each boundary node by

Qn D �M � � qn D G.U/ � PU CK�.U/ �U �Q�.U/ (11.77)
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(vertical exaggeration 5:1)
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whereQnh , QnkC andQnT correspond to the nodal vectors of the integral boundary
fluxes for flow, species mass and heat, respectively.

Note that the boundary mass flux qnkC and boundary heat flux qnT comprise
only its dispersive and conductive part, respectively, in the convective forms of
the governing transport equations. To obtain in addition the advective part of their
boundary fluxes an auxiliary weak formulation must be applied such as described in
Sect. 8.19.2.4. The expressions for the total (dispersive/conductive plus advective)
boundary fluxes will be given in Sect. 12.4 for mass transport and in Sect. 13.4 for
heat transport.

11.9 Modeling 2D Horizontally Schematized Aquifers
Using Projected Gravity

11.9.1 2D Treatment of Thin, Slightly Sloped or Curved
Aquifers

The numerical effort in solving variable-density flow is generally high due to the
potential need for a suitably refined spatial and temporal discretization. This has
serious consequences particularly in modeling of 3D problems, where meshes must
be appropriately refined in all coordinate directions. In a 3D model, even if the
aquifer is thin relative to its horizontal extent, a sufficient vertical discretization is
usually required (Fig. 11.12).

However, there is a special case for which a fully 3D meshing of the problem can
be avoided if the following conditions hold:
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• There is a thin aquifer with an essentially horizontal (aquifer-type) flow for
which the vertical flow components can be neglected. The horizontal extent of
the aquifer is much larger compared to the aquifer thickness. Hence, flow and
transport equations can be vertically integrated. This procedure is associated with
the well-known Dupuit assumption [33] (cf. Sect. 3.5).

• The aquifer is slightly sloped or curved so that gravity can effect the movement
of a solute (or heat) in such an aquifer.

• The aquifer is confined and saturated.

A typical application refers to the brine movement in a large-scale deep aquifer of a
basin form. The brine moves down in deeper locations of the basin by gravity effects.
The process is density-driven due to the sloped geometry of the aquifer layer. Under
such conditions there is a way to model the variable-density solute distribution only
in 2D. It is based on a 2D horizontally schematized aquifer described by vertically
integrated equations and a projected gravity field.

11.9.2 Vertically Averaged Equations in a Confined Aquifer
Including Gravity Term

In application of the averaging procedures described in Sect. 3.10.7 the following
2D vertically averaged flow, species mass and heat transport equations valid for a
confined aquifer can be derived from (11.1) to (11.3)

NSo @h
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(11.79)

associated with the constitutive relations
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D X
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and the extended Oberbeck-Boussinesq term
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written for the convective form of transport equations, where B D B.x; y/ is the
aquifer thickness, T D BK is the tensor of transmissivity (3.302), f�, ˇ.T / and
ˇ� are given in (11.2) and (11.3), respectively. The important difference to the
standard formulation for 2D horizontal problems in confined aquifers (summarized
in Table 3.11) is the buoyancy (gravity) term �e still appearing in the Darcy equation
of (11.79). This term normally vanishes for a ‘perfect’ horizontal aquifer geometry
because the gravity acts always perpendicular (vertical) to the aquifer horizon.
However, if the aquifer is sloped or curved there are components of the gravity
directed along the layer of the aquifer.

11.9.3 Local (Layer-Oriented) Coordinates x0
and the Projected Gravity Term

Let us consider the situation of an inclined aquifer layer as shown in Fig. 11.13.
We introduce local coordinates x0 at a local point on the inclined aquifer in such
a manner that x0 and y0 form the principal axes correlated with the geologic layer
structure, while z0 is directed perpendicular to the actual 2D x0 � y0�computational
plane.

The coordinate transformation between the global coordinates x and the local
(layer-oriented) coordinates x0 is described by the rotation matrixA as

x0 D A � x
0

@
x0
y0
z0

1

A D
0

@
A11 A12 A13

A21 A22 A23
A31 A32 A33

1

A �
0

@
x

y

z

1

A (11.82)

Accordingly, the gravity components in the local coordinates are given by the
transformation



578 11 Variable-Density Flow, Mass and Heat Transport in Porous Media

g0 D A � g
0

@
gx0

gy0

gz0

1

A D
0

@
A11 A12 A13

A21 A22 A23
A31 A32 A33

1

A �
0

@
gx

gy
gz

1

A (11.83)

The rotation matrix A is performed for each finite element e as Ae , which is
described in Sect. 7.3.2. The components ofAe have the form:

Aeij D cos.ui ;ej / D ui � ej
kuikkej k .i D 1; 2/ .j D 1; 2; 3/ (11.84)

with the base vectors (2.5) in 3D

e1 D
0

@
1

0

0

1

A e2 D
0

@
0

1

0

1

A e3 D
0

@
0

0

1

1

A (11.85)

where ui , (7.15)–(7.17), are directional vectors, which are evaluated for each finite
element e in the 3D space.

The complete set of governing equations (11.79)–(11.81) is formulated in the
local coordinates x0, where the gravitational unit vector e0 is also written for the
local x0 � y0�components directed along the principal axes of the inclined layer.
They can be computed by the projection

�
ex0

ey0

	

D e0 D � g0

kg0k D
�
A11 A12 A13
A21 A22 A23

	

�
0

@
0

0

1

1

A (11.86)

Note, in (11.86) it is kg0k D kgk and it is assumed that the gravity acts strictly
downwards parallel to the global z�axis, i.e., gT D .0 0 � g/ and kgk D g, where
g is the gravitational acceleration constant.

In using this transformation procedure the 3D problem is mapped onto a 2D
geometry so as exemplified for an idealized hemispherical basin geometry shown in
Fig. 11.14. The variable-density effect is illustrated in Fig. 11.15 for this example.
It shows how a dense solute sinks down to the center of the hemispherical basin
in time caused by an exclusive action of gravity (i.e., accomplished by free
convection). The density-driven solute movement is strongly dependent on the
parameter heterogeneity so as indicated.
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Fig. 11.14 Transformation of an idealized 3D hemispherical basin geometry into a 2D projected
domain: (a) 3D geometry in global coordinates (vertical exaggeration 1:2), (b) 2D projected
‘horizontal’ mesh to be solved in local coordinates and (c) plot of projected gravity components in
the x0 � y0�plane

11.9.4 Limitations

This approach is applicable to relatively thin aquifers in which flow and density
effects in the z0�direction perpendicular to layer-oriented principal directions are
negligible. This can often be assumed for aquifer layers having a small slope or
low curvature in their elevations. Furthermore, the solute (or heat) must be assumed
invariable over the aquifer thickness (that means along z0). If the aquifer slope is
becoming larger and the density effects are increasing, the variable-density flow
process modeled by such a projected gravity field must be more and more inaccurate
due to the fact that the approach suppresses vertical velocities even though becoming
important. The accuracy particularly deteriorates with the increasing slope of the
layer for free convection at a high density contrast (high Rayleigh number) when the
solute (or heat) movement is fully gravity-driven. For mixed convection problems
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heterogeneity

Fig. 11.15 Sinking down of
a brine into a hemispherical
basin in time, fringed solute
distribution and contoured
streamline pattern: (left
column) homogeneous
transmissivity, (right column)
heterogeneous transmissivity
distribution

(combined with a forced flow dynamics induced, for instance, by pumping),
however, a larger slope in the geometry can often be tolerated. Generally, it is not
possible to fix limits in form of critical slopes and curvature because it is widely
dependent on the actual problem.
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11.10 Non-Fickian Dispersion in Variable-Density Flow

11.10.1 Nonlinear Dispersion at High-Concentration
Gradients

In modeling variable-density flow and mass transport problems an increasing
interest has been cases where high-concentration (HC) differences in a system occur,
e.g., applications to hazardous waste disposal in salt formations or brine transport
in deep aquifers. Traditionally, density-dependent mass transport is modeled on the
basis of the classic Darcy law and the linear Fickian dispersion equation. However,
in 1D laboratory experiments [232, 464] with HC gradients it was found that the
dispersivity does not seem to be a property of the porous medium alone. It was
observed that the mixing process of saltwater is dependent on the concentration
gradient and the dispersivity had to be changed from case to case to get a
sufficient fit to the measurements. Using same porous media the dispersivity had
to be decreased as the difference in concentration of the resident and displacing
fluids increased. In past, various attempts were made to explain this phenomenon.
A formal dependence of dispersivities on the salt concentration has shown an
inappropriate and a theoretically contrary approach because the dispersivities are
a geometric property of the porous medium and should not be dependent on the
physicochemical property of the fluid flowing through the voids.

Hassanizadeh and Leijnse [232] and Hassanizadeh [225] have proposed exten-
sions of the dispersion theory in form of a non-Fickian law. In using such a nonlinear
dispersion theory the laboratory experiments could be explained and fit reasonably.
Experiments have confirmed these theoretical findings [464]. Furthermore, from the
theoretical point of view the non-Fickian dispersion is consistent with the classic
approach and theoretically well founded.

11.10.2 Extended Equations

In (11.1) only the standard linear Fick’s law (3.183) has been incorporated into the
species mass conservation equation. To extend the formulation to the non-Fickian
law (3.187) we use the governing balance and phenomenological equations for
species k as listed in Table 3.7:

"s K<k @Ck
@t
C q � rCk Cr � jk C ."s#k<k CQ/Ck D QRk (11.87)

or

"s K<k @Ck
@t
C q � rCk � r �

� Dk

=Hkjkk C 1 � rCk
�
C ."s#k<k CQ/Ck D QRk

(11.88)
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with

jk.=Hkjkk C 1/ D �Dk � rCk (11.89)

written for the convective form of the transport equation, where .k D 1; : : : ; N /,=H
represents the additional high-concentration (HC) dispersion coefficient (possibly
species-dependent in addition) required for the non-Fickian law and Dk is the
known Bear-Scheidegger dispersion tensor (11.2) with longitudinal and transverse
dispersivities, ˇL and ˇT , respectively, considered to be (constant) properties of the
porous medium and independent of the fluid properties and transport process.

HC-gradient experiments [232,464] have shown that the nonlinear dispersion law
(11.89) gives very good fits to measured breakthrough curves. It is found that the
HC dispersion coefficient =H varies inversely with the flow velocity q. Schotting
et al. [464] have summarized their fitted experiments in the following approximate
expression for =H D =H.q/ as

=H.q/ D 0:0125

kqk1:76 Œs m2 kg�1� for 9 � 10�5 < kqk < 3 � 10�3 Œm s�1�
(11.90)

11.10.3 Numerical Solution for Nonlinear Dispersion

The numerical solution of the governing balance equation (11.88) with the nonlinear
dispersion law (11.89) requires a specific iterative treatment. The finite element
formulations for the mass transport equations given in the preceding sections
can be easily adapted to the non-Fickian law if we replace the linear tensor of
hydrodynamic dispersion Dk by a nonlinear (extended) tensor of hydrodynamic
dispersionD?

k in the form

Dk !D?
k D Dk=H kjkkC1 (11.91)

A recursive scheme is preferred which is performed by the following iteration
procedure:

0: initial j0k D 0
1: step D?

k D Dk

=H kj0kkC1 j1k D � Dk

=H kj0kkC1 � rC1
k

2: step D?
k D Dk

=H kj1kkC1 j2k D � Dk

=H kj1kkC1 � rC2
k

:::
:::

:::

�: step D?
k D Dk

=H kj��1k kC1 j�k D � Dk

=H kj��1k kC1 � rC �
k

(11.92)
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where � represents the iteration counter. The iteration (11.92) is done at each time
step in dependence on the selected time stepping strategy: (1) For fixed (predefined)
time steps it is iterated at each time plane. The procedure is terminated if the
convergence criterion is satisfied. (2) For the GLS adaptive predictor-corrector time
integration schemes (Sect. 11.6.4) the nonlinear solution is fully controlled by the
time step itself, where the nonlinear dispersion tensor D?

k is linearized in time
according to

at new time plane nC 1: D?
k D Dk=H kjk;nC1kC1 jk;nC1 D � Dk=H kjk;nkC1 � rCk;nC1

(11.93)

where the non-Fickian dispersive mass flux jk;nC1 at the new time plane n C 1 is
evaluated by using the non-Fickian dispersive mass flux jk;n from the previous time
plane n. At initial time the procedure is started with the standard linear Fick’s law.

11.11 Benchmarks and Examples

As indicated in Sect. 1.2.2 the accuracy and reliability of models and algorithms
have to be proved by procedures of verification, benchmarking and validation. The
traditional verification procedure by use of analytical solutions is not generally
applicable due to the nonlinear nature of variable-density problems. In general, there
are no exact solutions for this problem class, except for a rather limited number of
analytical and semianalytical solutions for specific cases [78, 107, 242, 470, 492].
As a consequence, modelers must rely on benchmark tests, which thus obtain a key
role in proving variable-density flow models and simulation codes. Benchmarking
covers asymptotic and mesh convergence tests, as well as comparative studies
between different numerical solutions (mainly obtained with different simulators).

What are the characteristics of a valuable benchmark for variable density
problems?

• It should have a real, practically and/or physically relevant background.
• It should be mathematically correct, definite and well-posed.
• Benchmark solutions should be predictable (nonrandom), both in the physical

and mathematical sense.
• Ideally, the benchmark should have a physical model equivalent, for which

qualified laboratory data are available. Those measurements can form reference
solutions for a comparative analysis.

In this context, numerical solutions are required to understand the physical process
and its causal dependencies. This is what we define as a physical benchmark that
provides a physically reliable basis for further comparisons [138].

Physical benchmarks are frequently based on Hele-Shaw cell experiments,
e.g., [97, 98, 153, 154, 481, 571, 572]. A Hele-Shaw cell provides an analog of flow
in a porous medium to some extent, in that the equations that characterize flow
in a Hele-Shaw cell (to a good approximation) are the same as the equations that
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characterize flow in a porous medium. However, the equations that characterize
transport of salinity and heat in a Hele-Shaw cell are not quite the same as those
that characterize transport of salinity and heat in a porous medium. For instance,
dispersion and instabilities associated with 3D disturbances are different in a
Hele-Shaw cell [325].

11.11.1 Hydrostatic Test

This type of benchmark is quite simple, but very instructive. It is a test of the velocity
consistency (11.60) under hydrostatic and sharp density transition conditions as
originally proposed by Voss and Souza [552]. Consider a rectangular closed domain
as shown in Fig. 11.16. Initially, a stable saltwater layer with a salinity of C D Cs
exists below freshwater with C D C0 D 0, separated by a sharp horizontal interface
in the middle of the domain. (Note that the salinity C concerns a single-species
concentration, where for the sake of simplicity we drop the species index k.) The
boundary of the domain is impervious with respect to both the flow and the mass.
The fluid density contrast (solutal expansion coefficient) ˛ is defined by (3.275)

˛ D �s � �0
�0

with �s D �.Cs/; �0 D �.C0/ (11.94)

The ˛�coefficient is to be varied in the numerical study whereby the density
coupling strengthens with increasing ˛. We illustrate the results for an ˛�value
of 0:03.

The problem is hydrostatic at all times and the fluid motion within the box
should be zero, or in the numerical sense, negligibly small. Due to the molecular
diffusion D the saltwater mixes (linear Fickian law is assumed) and the initially
sharp saltwater interface (narrow transition zone) spreads in time. This process must
be independent of the density. Accordingly, we have to compare the results of the
saltwater interface spreading for the case without density coupling, against the cases
where density effects are included. As a reference solution we compute the problem
for ˛ D 0, based on a fine temporal and spatial discretization. We have simulated
the density-dependent problem for 2D and 3D meshes by using the different velocity
approximations (FKA and local smoothing technique), as discussed in Sects. 11.7.3
and 8.19.1.2. The findings are similar to those depicted in Fig. 11.17 for a 2D mesh
consisting of 32 � 64 linear quadrilateral elements.

The local smoothing method causes an artificially increased spreading of the
salinity much like numerical dispersion. This is caused by spurious local velocities
at the interface nodes, that locally violate the consistency requirement. The smearing
in the density profile increases, if dispersion (ˇL D 5m, ˇT D 0:5m) is additionally
taken into account. In contrast, the consistent velocity approximation by the FKA
avoids any spuriousness in the velocity field. These results agree very well with the
reference solution, independent of dispersion effects.
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This benchmark reveals the weakness of the smoothing methods, which normally
work satisfactorily. However, these techniques cannot guarantee the local consis-
tency in the velocity field for problems involving sharp transition zones in the
density contrast and, therefore, advanced evaluation techniques such as the FKA are
to be preferred. This benchmark can be extended by imposing a horizontal uniform
flow at hydrostatic conditions. In such a test a density profile should not be smeared
if transverse dispersivity and diffusion are set to zero.

11.11.2 Henry Problem

The Henry problem describes the advance of a saltwater front in a confined aquifer
which was initially saturated with freshwater. Henry [242] developed a semiana-
lytical solution technique for the steady-state case of this problem. Based on the
OB approximation he derived analytical expressions for the streamfunction and the
salt concentration in the form of Fourier series. The resulting algebraic equations
for determining the coefficients of the Fourier series must be solved by numerical
techniques. Using quite different approximation methods, a number of authors
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Fig. 11.17 Computed density profiles Œ�.x; z/ � �0�=�0, x D 10m, �20m 	 z 	 20m at time
t D 103 days for different solutions using quadrilateral elements: Reference solution is obtained
without density effects for a fine vertical mesh; the other solutions are simulated on a uniform
32� 64 mesh of linear quadrilateral elements (Modified from [138])

obtained similar results (e.g., Pinder and Cooper [420], Segol et al. [472], Desai
and Contractor [122], Frind [174], Voss and Souza [552], Galeati et al. [180],
Oldenburg and Pruess [398], Croucher and O’Sullivan [107], Kolditz et al. [318],
Bués and Oltean [63]). The ‘mystery’ of Henry’s solution is that no numerical
model has been able to reproduce closely his semianalytical results [470] (cf. dashed
line in Fig. 11.20). Only by modifying physical parameters in form of a reduced
freshwater inflow or by a reduced dispersion the worthiness of the Henry problem
could be improved [482, 588]. Nevertheless, as there exists no other non-numerical
technique for this kind of nonlinear problem, Henry’s solution has become one of
the standard tests of variable-density groundwater models. The idealized aquifer
for the simulation of Henry’s problem is shown in Fig. 11.18. The BC’s for flow
consist of impermeable borders along the top and the bottom. Hydrostatic pressure
is assumed along the vertical boundary of the sea side, which leads to a depth-
variable BC for the hydaulic head h such as derived and discussed in Appendix L.
The aquifer is charged with freshwater at a constant flux from the left side. At the
inland side, the concentration is zero, which corresponds to a freshwater condition.
At the coastal side the concentration of seawater is imposed. Instead of velocity-
dependent dispersion a correspondingly large diffusivity was used by Henry [242]
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Table 11.4 Parameters and conditions used for the Henry problem

Quantity Symbol Value Unit

Cell measure (length; height) 2; 1 m
Isotropic hydraulic conductivity K 10�2 m s�1

Specific storage coefficient So 0 m�1

Specific solutal expansion coefficient ˛ 0:025 1
Porosity " 0:35 1
Molecular diffusion coefficient D 6:6�10�6 m2 s�1

Longitudinal dispersivity ˇL 0 m
Transverse dispersivity ˇT 0 m
Maximum concentration (salinity) Cs 35 g l�1

Flow BC’s
Neumann-type BC at left side (inland) qh �5:7024 m d�1

Hydrostatic head at right side (coast) hD.z/ �˛z m
Mass IC and BC’s
Initial condition (IC) of salinity C0 0 g l�1

Dirichlet-type BC at left side (inland) CD 0 g l�1

Variants of Dirichlet-type BC’s of salinity at right side (coast):
Variant 1 – unconstrained salinity BC CD D Cs .�1 	 z 	 �0:5/ g l�1

Variant 2 – constrained salinity BC

�
CD D Cs
QnC > 0

.�1 	 z 	 0/
g l�1

g d�1

FEM
2D mesh of 100� 50 linear quadrilateral elements, GFEM (no upwind), OB approximation
Initial time step size 
t0 10�4 d
RMS error tolerance (AB/TR) � 10�3 1
Simulation time period tend 1 d

(reaching steady-state)

in order to allow a semi-analytical solution. The simulation parameters for the Henry
problem are given in Table 11.4.

The steady-state flow pattern and the concentration distribution derived by
Henry [242] are shown in Fig. 11.19. Additionally, the sharp-interface solution
(Ghyben-Herzberg relation) is superposed on Henry’s isochlors. Figure 11.20
summarizes some former findings for the Henry problem obtained by several
authors, who used quite different computation methods. Comparing these results,
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it has to be kept in mind that slightly different parameter values were chosen by the
authors. There have been some discrepancies in the use of the diffusion coefficients.
Further solutions and comparisons for the Henry problem have been presented by
Kolditz et al. [318].

Present results are shown in Fig. 11.21 in form of computed isochlors at
equilibrium (steady-state) simulated on a 2D uniform mesh consisting of 100 � 50
linear quadrilateral elements by using the conditions and parameters as listed in
Table 11.4. The results are in good agreement with previous findings as displayed in
Fig. 11.20. For the salinity BC at the coast side the two variants given in Table 11.4
are applied. In variant 1 the seawater concentration Cs is only imposed on the
lower half of the vertical boundary, where it can be assumed that seawater enters
the aquifer and no freshwater exits. Such a simplified BC is common and used
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Fig. 11.21 Results for the Henry problem simulated on a 2D mesh consisting of 100 � 50

quadrilateral elements: computed streamlines and positions of the 0.25, 0.50 and 0.75 isochlors
C=Cs in dependence on BC-variant 1 (bold black) and BC-variant 2 (bold blue) given in Table 11.4

in the most prior models. However, the vertical extent where seawater intrudes
must be solution-dependent. A physically more realistic BC represents variant 2,
where the complete boundary is imposed by the seawater concentrationCs , however,
combined with a constraint allowing the salinity BC only when saltwater enters,
while outflowing sections are switched to an open BC, qC 	 0, so that fresh and
mixed water can freely pass the upper part of the boundary. Nevertheless, as seen in
the results of Fig. 11.21 the differences between both BC variants are not remarkable
for the Henry problem and the simpler unconstrained BC variant 1 appears suitable.

The Henry problem is often used in past as a benchmark for variable-density flow
and single-species mass transport although it has some deficiencies. An unrealisti-
cally large amount of diffusion is introduced which results in a widely dispersed
transition zone. It makes the solution smooth and easy. We conclude that the Henry
problem is rather inappropriate for verifying purely density-driven flow situations.

11.11.3 Salt Dome Problem

This benchmark was proposed by the participants of the international HYDROCOIN
project for the verification of groundwater models (Swedish Nuclear Power Inspec-
torate 1986). The test case is designed to model variable-density groundwater flow
over a hypothetical salt dome, where the geometry is largely simplified. The geom-
etry and BC’s of the test problem are shown in Fig. 11.22. The cross section of the
model extends horizontally 900 m and vertically 300 m. The aquifer is considered to
be homogeneous, isotropic and saturated. The pressure varies linearly on the top of
the aquifer. The other sides are impervious to flow. The single-species concentration
(salinity) on the top is set to zero at the inflow domain. The middle section of the
base represents the top of the salt dome with normalized mass concentration of
solute OC D C=Cs equal to unity. On all the remaining parts of the boundary, the
normal concentration gradient was set to zero. The simulation parameters are listed
in Table 11.5. The results are compared for the steady-state solutions.
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Table 11.5 Parameters and conditions used for the salt dome problem

Quantity Symbol Value Unit

Domain measure (length; height) 900; 300 m
Isotropic hydraulic conductivity K 1:09853 � 10�5 m s�1

Specific storage coefficient So 0 m�1

Specific solutal expansion coefficient ˛ 0:2036 1
Porosity " 0:2 1
Molecular diffusion coefficient D 1:39 � 10�8 m2 s�1

Longitudinal dispersivity ˇL 20 m
Transverse dispersivity ˇT 2 m
Flow BC
Dirichlet-type BC at top hD 20:456 � 0:011364x m
Normalized massa IC and BC’s
Initial condition (IC) of salinity OC0 0 1
Dirichlet-type BC at top OCD .0 	 x 	 300/ 0 1
Dirichlet-type BC at bottom OCD .300 	 x 	 600/ 1 1
FEM
2D mesh of 120� 64 linear quadrilateral elements, GFEM (no upwind), OB approximation
Initial time step size 
t0 10�5 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 400 years

(reaching steady-state)
a Normalized salinity OC D C=Cs , where Cs occurs at the salt dome boundary

The salt dome was investigated by several authors (Herbert et al. [244],
Leijnse [337], Oldenburg and Pruess [398], Oldenburg et al. [400], Johns and
Rivera [290], Kolditz et al. [318], Konikow et al. [320], Holzbecher [254] and
Younes et al. [583], among others). Kolditz et al. [318] obtained the same stratified
system as Herbert et al. [244] already found. A freshwater region with higher
velocities is observed in the upper part, where flow is driven by the superimposed
pressure gradient on the top of the aquifer. There is a brine pool along the bottom,
where flow with small velocities recirculates. The outflow of the saltwater is
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Fig. 11.23 Results for the salt dome problem: steady-state salinity contours simulated by
(a) Herbert et al. [244] and (b) Oldenburg and Pruess [398]

focused on the upper right-hand corner of the domain. Johns and Rivera [290]
has reproduced the prior results by Herbert et al. [244]. In contrast, different results
have been presented by Oldenburg and Pruess [398], which has led to a broad
discussion on the role of BC’s and mechanical dispersion [254, 320, 400, 583]. The
conflicting results are summarized in Fig. 11.23. Oldenburg and Pruess’ solution is
called ‘fully swept-forward’ pattern. It was shown [583] that both a swept-forward
and a recirculation (Herbert-like) solution can be produced in dependence on the
numerical representation of BC’s (either salt concentration or salt mass flux) and
the magnitudes of D, ˇL and ˇT .

The present simulations have been performed on a nonuniform mesh consisting
of 120 � 64 linear quadrilateral elements having variable thicknesses in the vertical
z�direction (smallest element thickness is 0:22m at the bottom) by using the
parameters listed in Table 11.5. The results obtained in form of salinity contours
and streamlines shown in Fig. 11.24 confirm the recirculation-type pattern in a good
agreement with previous findings [244, 254, 290, 318, 320, 583].

In deep aquifers the saltwater upconing process is subject to the buoyancy
influences by a thermal gradient. Diersch and Kolditz [137] studied a thermohaline
extension of the salt dome problem, where in addition a temperature difference
between bottom and top boundary is applied (similar to the HRL problem of
Sect. 11.5.1). Simulated results of the salt dome problem at a time of 100 years
for different Turner numbers Tu, defined by (11.29), are shown in Fig. 11.25,
demonstrating that the temperature effect on the saltwater distribution remains
negligible or small if compared with the single-diffusive results at higher Turner
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Fig. 11.24 FEFLOW results of the steady-state salt dome problem: (a) salinity contours
OC D .0:05; 0:1; 0:2; : : : ; 1:0/ and (b) streamlines

salinity temperatureTu

5

3

2

Fig. 11.25 FEFLOW results of the extended thermohaline salt dome problem: computed salinity
and temperature distributions at 100 years for different Turner numbers Tu (Modified from [137])
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numbers Tu. However, as seen for Tu D 2, if the Turner number becomes smaller,
vigorous temperature influences on the brine pattern result in form of a ‘wavy’
salinity field caused by the thermal buoyancy. The ‘wavy’ salinity characteristics
are triggered in front of the salt wedge by thermally driven eddies. As expected, this
leads to an increased saltwater effluent on top of the aquifer. Note that a buoyancy
ratio of Tu D 2 implies large temperature difference for a high-concentration brine
and represents an extreme situation.

11.11.4 Elder Problem

The Elder problem serves as an example of free convection phenomena, where
the bulk fluid flow is driven purely by fluid density differences. Elder [153, 154]
presented experimental and numerical studies concerning the thermal convection
produced, by heating a part of the base of a porous layer. The original experiment,
which was performed in a Hele-Shaw cell, was called the ‘short-heater problem’.
Elder conducted these studies mainly to verify the finite difference model he
used for the 2D numerical analysis of thermal-driven convection. Furthermore, he
suggested criteria for preventing numerical instabilities. Since then, Elder’s short-
heater problem become a very popular and often stressed benchmark problem in
the water resources literature. It is rich in physical and numerical implications, and
its cellular flow characteristic is fascinating. The Elder problem has been modified,
extended, and remains a topic of, sometimes controversial, discussion.

Diersch [130] and later Voss and Souza [552] transformed the thermal Elder
problem into a solute-analogous convection problem, where heavy saltwater is
placed on top. Voss and Souza ‘blew up’ the geometry so that Elder’s problem
can now be deemed a large-scale, density-driven saltwater intrusion process in a
cross-sectional aquifer schematization. The original Elder problem of the thermal
convection in a Hele-Shaw cell and the solute-analogous convection problem are
mathematically equivalent (via the Rayleigh number). However, we note that the
problem in this formulation is completely imaginary and hypothetical. Dispersion,
which can play a very important role in a real aquifer, is not included. Usually, this
saline analog is also termed the Elder problem. The simulation parameters and BC’s
for the saline Elder problem are summarized in Table 11.6 and Fig. 11.26.

Neither exact solutions nor qualified measurements (!) exist for the Elder
problem. Consequently, the (currently) only way to compare is with numerical
solutions. However, strong discretization effects were observed by using different
meshes. Mesh convergence studies were conducted [138,178,288,318,401], where
the meshes were consecutively refined until a supposed mesh convergence was
achieved. Both the OB and the EOB approximation were studied [288, 318]. The
most important outcome of these studies was, that for some meshes there could
be a central upwelling flow while a central downwelling flow could be found
for finer meshes, as exemplified in Fig. 11.27 for the 20 year evolution of the
free convection. These observations gave rise to various numerical studies by
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Table 11.6 Parameters and conditions used for the (saline) Elder problem

Quantity Symbol Value Unit

Domain measure (length; height) 600; 150 m
Isotropic hydraulic conductivity K 4:754 � 10�6 m s�1

Specific storage coefficient So 0 m�1

Specific solutal expansion coefficient ˛ 0:2 1
Porosity " 0:1 1
Molecular diffusion coefficient D 3:565 � 10�6 m2 s�1

Longitudinal dispersivity ˇL 0 m
Transverse dispersivity ˇT 0 m
Solutal Rayleigh number Ra 400 1
Flow BC
Dirichlet-type BC at left-upper corner h.x; z/ D hD.0; 150/ 0 m
Dirichlet-type BC at right-upper corner h.x; z/ D hD.600; 150/ 0 m
Normalized massa IC and BC’s
Initial condition (IC) of salinity OC0 0 1
Dirichlet-type BC at top (z D 150 m) OCD .150 	 x 	 450/ 1 1
Dirichlet-type BC at bottom (z D 0 m) OCD .0 	 x 	 600/ 0 1
FEM
2D quadrilateral meshes of different resolution, GFEM (no upwind), OB approximation
Initial time step size 
t0 10�3 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 20 years
a Normalized salinity OC D C=Cs , where Cs occurs at the upper boundary

300 m

15
0

m

Ĉ 1=

600 m 
Ĉ = 0

h 0=h 0=

x

z

Fig. 11.26 Definition of the (saline) Elder problem – domain, BC’s and salinity contours OC D
.0:2; 0:4; 0:6; 0:8/ at t D 10 years

other authors [2, 70, 360, 410, 573]. The effects of heterogeneity in permeability
distributions on Elder’s convection process were studied by Prasad and Simmons
[429] using a stochastic framework.

Mesh convergence studies concern a systematical mesh refinement for a mesh
level ` D .0; 1; 2; : : :/. Using a uniform discretization by quadrilateral square
elements the number of elements NE and the number of nodes NP for the whole
and the half domain are given by
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upwelling downwelling

Fig. 11.27 Effect of spatial discretization on the computed salinity evolution at 5, 10, 15 and
20 year simulation time; positions of the 20 and 60 % isochlors: (left column) mesh with 4,257
nodes and 4,096 quadrilateral linear elements and (right column) mesh with 16,705 nodes and
16,384 quadrilateral linear elements

NE D 2 �NE2 NE2 D 2 � 4`
NP D 2 �NP2 � .2` C 1/ NP2 D 2 � .2` C 1/2 � .2` C 1/

(11.95)

FEFLOW results for mesh levels ` up to 9 (this is a rather fine mesh with NP2
equal to 525,825 for the half domain solved) are shown in Fig. 11.28, which confirm
Frolkovič and De Schepper’s observations [178] quite well. Note that in using a
half domain model, an additional symmetry condition is imposed. Up to a mesh
with resolution of ` D 5, a central upwelling is seen which agrees with the
previous findings reported by Oldenburg and Pruess [398], Kolditz et al. [318],
Ackerer et al. [2], and Oltean and Bués [401]. From `  6 onward the flow turns
back to a downwelling pattern. This is shown in Fig. 11.28 for levels 6 and 9; levels 7
and 8 (not shown) are comparable with level 6. As revealed in the streamline pattern
of Fig. 11.28, the flow behavior in the upper central location at a time between 2.5
and 5 years appears to be most critical for the further evolution of the convection
process. Various eddies begin to mutually interact, to fuse and to disappear, and the
local velocities control which rotation of the merged vortices finally prevails. At that
location and time, the solution evolves either to an upwelling or to a downwelling
flow regime. We can now summarize in Table 11.7 all of the findings relating to the
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Fig. 11.28 Computed salinities (0.2, 0.4, 0.6 and 0.8 isolines) and streamline patterns for four
times t (2.5, 5, 10, 20 years) and for four mesh levels ` (4,5,6,9): FEFLOW simulations using
GFEM on quadrilateral uniform meshes of the half domain without perturbations and automatic
AB/TR predictor-corrector time integration using FKA to compute consistent velocity fields
(Modified from [138])

form of the flow direction in the central section, qualified by the degree of mesh
refinement.

We evaluate the results in Table 11.7 only for their unperturbed solutions
obtained on (mostly) uniform meshes. It is to be expected that uniform and
aligned meshes with square elements are widely ‘free’ of perturbations, except
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Table 11.7 Flow direction in the central section with respect to the mesh discretization:
" – upwelling, # – downwelling (Modified from [401])

Very Very Extremely
Discretization coarse Coarse Fine fine fine
Number of unknownsa <800 1;000� 2;000 3;500� 5;000 6;000� 104 1:5 � 105 � 106

Diersch [130] # – – – –
Voss and Souza [552] – # – – –
Oldenburg and Pruess [398] – # " " –
Kolditz et al. [318] – # " " –
Ackerer et al. [2] " " " " –
Mazzia et al. [360] – # – – –
Oltean and Bués [401] "# "# " " –
Frolkovič and De Schepper [178]b – # .`D 4/ " .`D 5/ – " .`D 6/ # .`D 7/

Diersch and Kolditz [138]c – # .`D 4/ " .`D 5/ – # .`D 6; 7; 8; 9/

Johannsen [288] – – "# .`D 5/ – "# .`D 6; 7; 8/

Park and Aral [410] – # .`D 4/ – – # .`D 6/

Woods and Carey [573]d – – # .`D 5/ – " .`D 6; 7; 8/

a Related to the whole domain
b Unperturbed solutions, uniform mesh of linear elements
c No upwind, AB/TR time integration, uniform linear quadrilaterals, unperturbed solutions
d Using quadratic elements, AB/TR time integration, uniform mesh

‘noise’ of numerical round-off and discretization errors. Furthermore, Frolkovič and
De Schepper [178] also perturbed the problem by slightly modifying IC’s for one
of the vertices of the square element at the upper right corner of the half domain.
For smaller times (t < 4 years) there were no remarkable changes in the solutions,
but at later times the solution evolves in different directions. They observed three
directional behaviors which convert to three different stationary solutions in form
of a downwelling, an upwelling and a modified downwelling pattern (Fig. 11.30).
All three solutions could be reproduced for various mesh levels. They concluded
that nonunique stationary solutions exist for the Elder problem. It is suggested that
unaligned (unstructured) meshes can cause a perturbation which, eventually, may
determine the character of the numerical solution.

The convective behavior of the system can be well characterized by the vertical
solute flux entering and leaving the convection cell on top and bottom, respectively,
in form of the Sherwood number Sh (11.31), which can be easily computed by
boundary flux evaluations via CBFM (cf. Sect. 8.19.2). For example, Fig. 11.29
exhibits the history of Sh for the Elder problem simulated for the mesh level ` D 6.
It indicates that the convection at Ra D 400 leads to an about 5.7 times larger mass
throughput in approaching to steady state compared to the stationary pure diffusion
at Ra D 0.

In a systematic bifurcation analysis based on FVM, Johannsen [288] also
identified three stable steady-state solutions for the Elder problem at Ra D 400.
In a highly accurate pseudospectral approach Frolkovič and De Schepper’s as well
as Johannsen’s findings in form of the three stable steady-state solutions of the Elder
problem as exhibited in Fig. 11.30 could be fully confirmed by Reeuwijk et al. [543],
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Fig. 11.29 History of vertical solute flux Sh computed at top and bottom boundary for mesh level
` D 6

which were also shown in a perfect agreement with FEFLOW results. The three
solutions are denoted by S1, S2 and S3, where the subscript represents the number
of downward plumes in the solution. An interesting outcome of Reeuwijk et al.’s
analysis [543] is that the solutions S1 and S2 can be found quite easily by using IC’s
perturbed somehow, while solution S3 can be achieved only for a small subset of
perturbed IC’s.

The nonuniqueness of the Elder problem could question its usability for bench-
marking purposes. However, we have to take into account that for free convection
problems at a sufficiently high Rayleigh number the existence of multiple solutions
is the rule rather than the exception. It means for the Elder problem a benchmark
test like this should reproduce at least one of the three solutions of Fig. 11.30, where
solutions S1 and S2 are more likely.

Diersch and Kolditz [137] extended the originally 2D Elder problem to three
dimensions for studying both the saline convection and the DDC processes. The
3D counterpart consists of a porous box with a square base (600 � 600m2) and
height H D 150m. This box has the same cross-sections along the Cartesian
axes as defined in Fig. 11.26 for the 2D sketch. Salinity is held constant, in an
areal extent, on the top of the porous box. The parameters correspond to those
given in Table 11.6. In Diersch and Kolditz’s simulations a GFEM and an AB/TR
time integration was used, where only the symmetric quarter of the domain is
discretized by 48,000 linear hexahedral elements with 51,701 nodes (Fig. 11.31).
In comparison with the mesh requirements we have seen for the 2D problem, such
a 3D discretization is considered a ‘moderate’ resolution.
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Fig. 11.30 The three stable
steady-state solutions of the
Elder problem: (a) S1 – one
downward plume with central
downwelling, (b) S2 – two
downward plumes with
central upwelling and
(c) S3 – three downward
plumes with central
downwelling (Modified
from [543])

simulated mesh quarter

Fig. 11.31 Finite element
mesh of the 3D Elder
problem (NE D 48;000 linear
hexahedra and NP D 51;701

to discretize the symmetric
quarter of the domain)

The 3D free convection process is similar to the 2D counterpart, with some
interesting new features. To give more insight into the physics of the 3D convection
process Fig. 11.32 shows the evolution of salinity from different views. The 3D
cut-away images (left column of Fig. 11.32) display the progressing fingering
characteristics in the 3D space. Similar to the 2D case we find also an upwelling
salinity pattern in the center of the box at the given time stages. The 3D influence
becomes also apparent in the two horizontal views at an upper elevation of
0:9H (135 m) and the middle horizon of 0:5H (75 m) as shown in Fig. 11.32.
At the beginning the quadratic geometry of the intrusion area on top is visible in
the convection pattern. Fingers appear around the border of the intrusion area and
‘blobs’ grow down at the four corners. The quadratic pattern evolves into more
complicated multicellular formations via a number of characteristic stages. More
‘blobs’ appear up to the time when the salinity reaches the bottom. Then, the
structures begin to fuse and the pattern is completely reformed. After this phase
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Fig. 11.32 Computed salinity patterns of the 3D Elder problem at times of (a) 1, (b) 2, (c) 4,
(d) 10 and (e) 20 years (vertical exaggeration 2.6:1) (Modified from [137])

a convection pattern remains which has a characteristic diagonal ‘star’ form. This
‘star’ is a result of the geometry of the square intrusion area. It becomes clear that
the final formations have a strong dependency on the geometric relations.
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Fig. 11.33 Computed 3D isosurfaces of 50 % salinity for the 3D Elder problem (viewing into the
box from bottom to top) at times of (a) 1, (b) 2, (c) 4, (d) 10, (e) 15 and (f) 20 years (vertical
exaggeration 2.6:1) (Modified from [137])

An illustration of the pattern evolution in 3D space is given in Fig. 11.33 where
isosurfaces of the 50 % salinity are shown at characteristic time stages. Up to a
time of about 4 years the salinity primarily sinks down and forms a dissected finger
formation. At later time the upper part contracts and forms the typical diagonal
‘star’, while larger ‘blobs’ are getting fused below.

The computed salinity patterns of the 3D Elder problem have been confirmed
by the simulations performed by Mazzia and Putti [359] based on a mixed FEM
approach and tetrahedral meshing. Results of the 3D Elder problem extended to a
3D thermohaline problem have been reported by Diersch and Kolditz [137, 138].

11.11.5 Salt Lake Problem

The salt lake problem as a test case for variable-density saturated flow and solute
transport was introduced by Simmons et al. [479]. It represents a convection process
below an evaporating salt lake, which can be observed in shallow playa groundwater
systems (Fig. 11.34a). The evaporation process results in dense brine overlying less
dense fluid leading to a downward convection of salt fingers. The numerical results
modeled on a 2D schematization (Fig. 11.34b) were compared with those from a lab-
oratory Hele-Shaw cell developed by Wooding et al. [571,572]. Figure 11.34c gives
the layout of the experimental Hele-Shaw cell. The tilted cell has a slope at an angle
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Fig. 11.34 Definition of the salt lake problem: (a) conceptual model of brine reflux in a shallow
playa groundwater system (Modified from [390]), (b) idealized 2D model domain and (c) Hele-
Shaw cell analog showing gravity component gy D g sin � effective in the slit plane

of 5ı to the horizontal. The model parameters are listed in Table 11.8. Unspecified
BC’s represent no-flow boundaries, at which natural BC’s are imposed. Wooding
et al. [571, 572] described the observations from their experiments as follows: ‘At
early times many small plumes grow from the evaporating boundary layer. These
plumes descend under gravity and tended to coalesce to form larger-scale fingers.
Differential growth and coalescence as seen from the Hele-Shaw cell results . . .
are plausible mechanisms which allow for the growth of millimeter- or centimeter-
scale wavelength, corresponding to wavelengths of meters or tens of meters or more
which might be possible in nature. These larger plumes tended to maintain their
identity during growth. By (dimensionless time) Ot D 15:99 the leading plume had
encountered the lower impermeable boundary and had begun to spread.’

Simmons et al. [479] used two numerical codes for the analysis of the salt lake
problem: the SUTRA simulator developed by Voss [550], and a streamfunction
based finite difference model developed by Wooding et al. [571,572]. Simmons et al.
[479] obtained a reasonable spatial and temporal agreement between the numerical
and experimental outcomes. The criteria they choose for comparing the results
were: (i) qualitative comparison of the fingering pattern and coalescence with time,
(ii) examination of the effect of background advection on the movement of the finger
sequence to the left of the cell, (iii) comparison of vertical growth rates of fingers as
they move downwards, and (iv) representation of the entrainment of smaller fingers
by the larger leading plume that originates at the boundary of the salt lake.

For the FEFLOW simulations of the salt lake problem several structured
and unstructured meshes with different resolutions in combination with various
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Table 11.8 Parameters and conditions used for the salt lake problem

Quantity Symbol Value Unit

Cell measure (length; height) L; H 0:15; 0:075 m
Cell evaporation length Le 5 � 10�2 m
Cell plate spacing b 2:1 � 10�4 m
Cell angle to the horizontal � 5 ı

Effective gravity gy D g sin � 0:855 m s�2

Salinity at inflow and initial time C0 84 kg m�3

Salinity of the lake Cs 110 kg m�3

Reference liquid density at inflow �0 D �.C0/ 1:0646 � 103 kg m�3

Liquid density change [479] @�

@C
0:780 1

Specific solutal expansion coefficienta ˛ D �.Cs/��0
�0

1:9 � 10�2 1

Dynamic viscosity of liquid �0 1:1 � 10�3 kg m�1 s�1

Cell intrinsic permeability k D b2=12 3:68 � 10�9 m2

Isotropic hydraulic conductivity K D k�0gy

�0
3:045 � 10�3 m s�1

Porosity " 1 1
Molecular diffusion coefficient D 9 � 10�10 m2 s�1

Longitudinal dispersivity ˇL 9 � 10�10 m
Transverse dispersivity ˇT 9 � 10�10 m
Evaporation rate qe 1:03 � 10�6 m s�1

Solutal Rayleigh number Ra D ˛KH
"DCˇT qe

4;821 1

Flow BC
Neumann-type BC at̂ABb qh D qe 0:088992 m d�1

Dirichlet-type BC at ̂CDb hD 0 m
Mass IC and BC’s
Initial condition (IC) of salinity C0 84 kg m�3

Dirichlet-type BĈABb CD D Cs 110 kg m�3

Dirichlet-type BC at ̂CDb CD D C0 84 kg m�3

FEM
Nonuniform 2D meshes of different resolutions, GFEM and FU, OB approximation
Initial time step size 
t0 10�7 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time periodc Otend 18 1
a �.Cs/ D �0 C @�

@C
.Cs � C0/

b Defined in Fig. 11.34b
c Dimensionless time: Ot D ˛K

"H
t

numerical options have been used. The nearest similarity to the SUTRA findings
using an identical spatial resolution (4,876 nodes and 4,725 elements) was obtained
with an AB/TR time stepping scheme and a full upwind (FU) technique (Fig. 11.35).
However, the salt fingers arrive at the cell bottom earlier than in the SUTRA
simulations. Additionally, the development of smaller scale fingers at the salt lake
boundary is suppressed. Refined meshes (we used up to 169,621 triangular elements
with 85,401 nodes) seem to confirm the general features as upwelling-downwelling
pattern and the formation of small fingers at the right lake boundary, but the
evolution and number of intermediate convection cells is different (Fig. 11.36).
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Fig. 11.35 Salinities C for different dimensionless times Ot D ˛K
"H
t . Contour interval is 2 g l�1.

FEFLOW simulations on a coarse mesh (4,733 linear quadrilateral elements), full upwinding and
AB/TR time stepping. Total number of adaptive times steps is 290 (Modified from [138])

These results seem to compare better to the experimental findings by Wooding et al.
[571,572]. In a recent numerical study Wooding [570] found plume contours at early
stages similar to the results of Fig. 11.36.

Mazzia et al. [360] attempted a mesh convergence study for the salt lake
problem by using a mixed hybrid FEM. Three meshes were studied, with the
finest one consisting of 40,000 triangles with 20,301 edges. Their results have a
close similarity with our predictions shown in Fig. 11.36. In agreement with our
observations they also found that the predicted finger patterns agree paradoxically
much better with the laboratory observations, when simulated on coarse, instead on
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Fig. 11.36 Salinities C for different dimensionless times Ot D ˛K
"H
t . Contour interval is 2 g l�1.

FEFLOW simulations on a fine mesh (169,621 linear triangular elements), GFEM (no upwind)
and AB/TR time stepping. Total number of adaptive times steps is 2,700 (Modified from [138])

fine meshes. A mesh convergence was not achieved and they critically concluded
that such an assessment is problematic.

It is obvious that the simulations significantly depend on the discretization and
numerical features. We remark that the Rayleigh number of about 4,800 for the
salt lake problem is more than 10 times larger than for the Elder problem, and we
recall that a convection process with a Rayleigh number Ra > 1;000 is in a range
where different branches of flow regimes may exist. Accordingly, the main difficulty
must be expected in the extremely dynamic behavior of the convection process,
where physical perturbations caused by laboratory-scale heterogeneities that trigger
instabilities must be mimicked in a numerical simulation.
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Table 11.9 Simulation parameters for the HC displacement experiment

Quantity Symbol Value Unit

Column length .�4:0m 	 z 	 0:5m/a L 4:5 m
Porosity " 0:2 1
Flow rate qo 3:209 � 10�5 m s�1

Reference salinity (freshwater) C0 0 kg m�3

Brine input Cs 285:714 kg m�3

Molecular diffusion coefficient D 0 m2 s�1

Longitudinal dispersivity ˇL 1:0 m
HC dispersion coefficient =H 104 m2 s kg�1

Flow BC
Neumann-type BC at top .z D 0:5m/ qh D �qo �2:772576 m d�1

Dirichlet-type BC at bottom .z D �4:0m/ hD 0 m
Mass (brine) IC and BC’s

Initial condition (IC) C0

8
<

:

Cs for z � 0

0 for z < 0
kg m�3

Dirichlet-type BC at top .z D 0:5m/ CD D Cs 285:714 kg m�3

Neumann-type BC at bottom .z D �4:0m/ qC 0 kg m�2 s�1

FEM
Space increment 
z 5 � 10�3 m
Initial time step size 
t0 10�7 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time periodb Otend 1 1
a z directed upward
b Dimensionless time: Ot D qo

"ˇL
t

11.11.6 High Concentration Flow Through a Column

High concentration-gradient (HC) experiments in a column of glass beads [232,464]
have shown that the nonlinear dispersion law (11.89) gives very good agreements
with measured breakthrough curves for brines. Schotting et al. [464] have derived
analytical solutions in one dimension, which can be used to verify the approach
for the non-Fickian dispersion law as described in Sect. 11.10. We consider the
displacement of a high concentration through a column with constant properties.
The parameters are summarized in Table 11.9.

On top of the column brine Cs starts entering the column with a uniform
specific discharge qo. A natural BC is imposed on the outflowing boundary at
bottom. The column is discretized by 900 linear quadrilateral elements resulting
in a spatial increment of
z D 0:005m. For the temporal approximation the AB/TR
predictor-corrector time integration is used. It requires 144 time steps to simulate
the displacement process for a dimensionless time Ot D qo

"ˇL
t up to Ot D 1:0. The

numerical results are in a very good agreement with the analytical results given by
Schotting et al. [464] as shown in Fig. 11.37.
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11.11.7 Saltpool Problem

The saltpool problem was introduced by Oswald [404] and Oswald and Kinzelbach
[405, 406]. It represents a 3D saltwater upconing process in a cubic box under the
influence of density and hydrodynamic dispersion. A stable layering of saltwater
below freshwater is considered in time for two cases: (1) low density case (1 % salt
mass fraction) and (2) high density case (10 % salt mass fraction).

The experimental set-up consists of a cubic container covered by plexiglass walls
and filled with dry silica glass beads (average diameter 1.2 mm). At the beginning of
the experiment, saltwater is layered below freshwater, forming a horizontal narrow
transition zone. Inflow and outflow were possible only via small holes in the corners
of the test cube (Fig. 11.38). The box is recharged with freshwater through a single



608 11 Variable-Density Flow, Mass and Heat Transport in Porous Media

inflow opening at a constant rate Q. Water discharges through the outlet with a
variable salinity. In the experiments, salinity breakthrough curves at the outflow
opening were measured. The measured mixing concentration at the outflow is in
fact very small, i.e., in the order of 1

100
and 1

1;000
related to the maximum salinity

Cs for the low and high density cases, respectively. The position of the saltwater-
freshwater interface was determined by use of the nuclear magnetic resonance
(NMR) technique.

The saltpool problem has been investigated by various authors with different
success (e.g., Ackerer et al. [3], Thiele [512], Oswald and Kinzelbach [405, 406],
Johannsen et al. [289], Diersch [135], Diersch and Kolditz [138], Häfner and
Stüben [221], Häfner and Boy [220], Mazzia and Putti [359]). The numerical
modeling is complicated due to the extremely small dispersivities and a large density
contrast particularly for the high density case with 10 % mass fraction of salt. Good
agreements with the measurements have been achieved by Johannsen et al. [289].
To fit both experiments, however, they had to adjust some parameters within
accepted bounds given in parentheses: permeability (20 %), porosity (4 %) and
transverse dispersivity (50 %). They studied mesh convergence by using a hierarchy
of regular meshes consisting of hexahedral elements, up to mesh level ` D 8,
where the total number of elements is NE D 8`. It was shown that extremely fine
meshes (up to about 17 million nodal points with an element length of 0.78125 mm!)
are required to model the high density case with sufficient accuracy. In addition,
salinity-dependent viscosity effects had to be taken into account.

For the present FEFLOW computations meshes with only moderate resolutions
are employed. We use both a structured mesh of hexahedral elements with a mesh
level of ` D 6 (mesh A consisting of 274,625 nodes) and an unstructured mesh
of pentahedral elements for only the symmetric half, which is partially refined
at the outlet (mesh B consisting of 140,010 nodes). For the computations the
GFEM without any upwind and the AB/TR adaptive time stepping combined with
a one-step Newton method were applied, thus ensuring that the numerical results
will be second-order accurate, both in time and space. The model parameters are
summarized in Table 11.10. Unspecified BC’s represent no-flow boundaries, at
which natural BC’s are imposed.

The results for both the low (1) and high density cases (2) are presented in
Fig. 11.39. It reveals the role of density effects in mixing and in dilution of saltwater,
which is mainly controlled by the hydrodynamic dispersion process. In the high
density case, the transition zone between saline and freshwater is significantly
widened, forming a ‘diffusive upcone’ below the outlet at very low concentrations.
This mixing process is considerably influenced by the advective and dispersive
forces acting locally on the saltwater-freshwater interface, which is initially very
narrow.

The simulation of the low density case agrees well with the measurements. How-
ever, differences in the long-term behavior remain (Fig. 11.39c, left). A previous
solution based on the local smoothing technique of the velocity approximation
completely failed for the high density case, as the saltwater mixing concentration
at the outlet is significantly overestimated [135, 406]. Using FKA for the consis-
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Table 11.10 Simulation parameters of the saltpool problem

Value

Quantity Symbol Low density High density Unit

Cell measure (width; depth; height)a B; D; H 0:2; 0:2; 0:2 m
Opening width a 10�3 m
Initial freshwater height H1 0:14 m
Initial saltwater height H2 0:06 m
Isotropic hydraulic conductivity K 9:773 � 10�3 m s�1

Porosity " 0:372 1
Specific storage coefficient So 0 m�1

Molecular diffusion coefficient D 1 � 10�9 m2 s�1

Longitudinal dispersivity ˇL 1:2 � 10�3 m
Transverse dispersivity ˇT 1:2 � 10�4 m
Reference salinity (freshwater) C0 0 kg m�3

Maximum salinity Cs 10 100 kg m�3

Specific solutal expansion coefficient ˛ 7:6 � 10�3 7:35 � 10�2 1
Inflow/outflow rate Q 1:89 � 10�6 1:83 � 10�6 m3 s�1

Variable liquid viscosityb f� D �0
�

D 1
1C1:85!�4:1!2C44:5!3

1

Flow BC
Dirichlet-type BC at inlet .x D 0I y D 0I z D H/ hD 0 m
Well-type SPC at outlet .x D BI y D DI z D H/ Qw D Q 0:163296 0:158112 m3 d�1

Mass IC and BC’s

Initial condition (IC) of salinity C0

8
<

:

Cs for z 	 H2

0 for z > H2
kg m�3

Dirichlet-type BC at inlet .x D 0I y D 0I z D H/ CD D C0 0 kg m�3

FEM
3D meshes of different resolutions, GFEM, AB/TR, OB approximation
Initial time step sizec 
t0 10�8 d
RMS error tolerance (AB/TR) � 5 � 10�5 1
Simulation time period tend 160 min
a Measures defined in Fig. 11.38
b Using relationship (3.213) as function of mass fraction ! D C

�0
, where �0 D �.C0/ D

103 kg m�3
c In addition, maximum rate of time step change � D 
tnC1


tn
D 2 and maximum time step size


tmax D 2 � 10�4 d

tent velocity approximation, the computation of the breakthrough curves is in a
reasonable agreement with the experiment (Fig. 11.39c, right). This emphasizes
the importance of a consistent velocity approximation for high density situations,
which has proven to be a fundamental requirement for the successful solution of
the saltpool problem at large density contrasts. Small inconsistencies in the velocity
field would have dramatic consequences on the computational results. The data fit
can be improved by re-adjusting parameters, in particular the transverse dispersivity
ˇT , porosity " and conductivity K as shown by Johannsen et al. [289]. They have
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Fig. 11.39 FEFLOW results of the saltpool problem for the low (left) and high density cases
(right): (a) cross-sectional salinity distribution, (b) 50 % salinity surface at t D 160min,
(c) salinity breakthrough curves at the outlet obtained for meshes A and B, black circles correspond
to experimental results (Modified from [138])

also shown in their mesh convergence study that a mesh level of ` D 6 represents a
minimum spatial resolution required for an accurate simulation of the high density
case.
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11.11.8 Pringle et al.’s Double-Diffusive Finger Convection
Problem

Double-diffusive finger convection (DDFC) phenomena represent supercritical
convection regimes, which are characterized by long fingering patterns of rising and
falling fluid (cf. Sect. 11.5.3.2). It has been recognized that subsurface environments
(porous media and fractures) are favorable to DDFC. It can be important at deep
circulation in marine and terrestrial alluvial basins, for interaction of groundwater
and surface water and in transport of dissolved solutes from solid waste landfills.

DDFC processes were studied by Cooper et al. [98] and Pringle et al. [431] via
Hele-Shaw experiments using a light transmission technique that provides high-
resolution concentration fields. From a near perturbation-free initial layering of a
lighter sucrose solution over a dense salt solution, upward and downward moving
fingers quickly form at the interface between the two solutions. Particularly, the
recent experimental data obtained by Pringle et al. [431] provide a suited baseline
for use in the development and evaluation of numerical models.

Numerical models must play an increasing role in a better understanding of
DDFC phenomena in porous media. As already argued by Cooper et al. [98] a
limitation in finger growth due to large-scale circulation controlled by inertial forces
as observed in ordinary fluids (nonporous media) does not seem to exist in porous
systems characterized by low Reynolds numbers. An intriguing possibility is that
the merging and subsequent formation of conduits along which fingers travel could
be repeated at larger and larger scales. Cooper et al. [98] concluded that larger and
greater-spaced conduits for mass transport may naturally evolve in porous media,
leading to growth bounded on a much larger scale than has been observed in any
laboratory experiments.

The Hele-Shaw experiments collected by Pringle et al. [431] were successfully
simulated by Hughes et al. [271] using a modified version of the SUTRA code [270,
550] that combines GFEM and integrated FDM. The dataset of Pringle et al. [431] is
well-suited for code verification of DDFC numerical models because, unlike most
previous experimental Hele-Shaw datasets, it is of sufficient spatial and temporal
resolution to allow accurate comparisons of simulated and measured convective
fingering. In addition, computational high-resolution results obtained by different
numerical approaches and full-field images from the experimental dataset allow
qualitative comparison of the evolving flow field and quantitative comparison of
mass transfer rates.

Pringle et al. [431] used a Hele-Shaw cell to study the temporal and spatial
distribution of DDFC phenomena of two solutes initially in a density-stable
configuration with a mean interface thickness of about 1 � 10�3 m. The Hele-
Shaw cell was filled with a sucrose solution over a denser sodium chloride
solution (NaCl). The 2D domain measures 0:2541m (cell length L) by 0:1625m
(cell height H ), see Fig. 11.40. The Hele-Shaw cell is inclined at an angle of 25ı
relative to horizontal. To visualize sodium chloride concentrations and quantify
convective motion, a dye tracer with a low concentration was mixed with the



612 11 Variable-Density Flow, Mass and Heat Transport in Porous Media

Sucrose solution (0.05234 kg/kg)

Chloride solution (0.03463 kg/kg), dyed

Concentration of
sucrose

Concentration of
chloride

Density r

t0
ti

Dsucrose = 4.878 . 10-10m2/s

DNaCl = 1.477 . 10-9 m2/s

H
 =

 0
.1

62
5 

m
L = 0.2541 m

Aperture 1.77.10-4 m, inclination 25o

y

x

Fig. 11.40 Hele-Shaw study experiment by Pringle et al. [431]

sodium chloride. The dye had a negligible effect on fluid density. Accordingly,
three species .N ? D 3/ have to be considered: sucrose .k D s/, sodium chloride
.k D c/ and dye .k D d/. The used parameters are summarized in Table 11.11.
Unspecified BC’s represent no-flow boundaries, at which natural BC’s are imposed.
Note that NaCl concentrations are not mapped perfectly by the dye tracer because
the diffusivity of sodium chloride is approximately 2:5 times greater than the
diffusivity of the dye (Table 11.11). Because the motion is convective through most
of the experiment, Pringle et al. [431] suggested the diffusivity differences had little
impact on the mapping of sodium chloride concentrations over the length of time of
the experiment. Note further, the liquid viscosity is approximated as a linear function
of solute concentration

f� D �0

�.Ck/
	 �0

�0 CPN?

k #k.Ck � Ck0/
(11.96)

where the viscosity change coefficients #k are given in Table 11.11 for each species.
To maintain the full physical equivalence to the experimental and numerical

studies done by Pringle et al. [431] and Hughes et al. [271] the most important
physical quantities characterizing the DDFC problem are the Turner number Tu
given by 1.22, the Lewis number Le according to 0.3303 and one Rayleigh
number given for sodium chloride as Rac D 26;460. The remaining quantities
can be directly derived from these characteristic numbers. Note that by using
the dimensionless density expansion coefficients ˛k in the fluid buoyancy � of
(11.2), the density expansion becomes independent of the real values of species
concentrations and the maximum concentrations Cks can be arbitrarily chosen.
In agreement to the physical experiment Cks and Ck0 are chosen as listed in
Table 11.11.

It has been shown in stability analysis [389] and Hele-Shaw experiments [97]
as the Turner number Tu decreases from the stability boundary at Le�1, the
system transitions from being diffusion-dominated to convection-dominated. The
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Table 11.11 Parameters of Pringle et al.’s DDFC problem

Quantity Symbol Value Unit

Cell measure (length; height)a L; H 0:2541; 0:1625 m
Cell plate spacing b 1:77 � 10�4 m
Cell angle to the horizontal � 25 ı

Effective gravity gy D g sin � 4:14 m s�2

Reference concentrations Ck0 .k D s; c; d/ 0 kg m�3

Maximum sucrose concentration Css 52:235 kg m�3

Maximum chloride concentration Ccs 34:561 kg m�3

Maximum dye concentration Cds 0:2495 kg m�3

Reference liquid density �0 D �.Cs0; Cc0; Cd0/ 998 kg m�3

Sucrose expansion coefficient ˛s 0:0182787 1
Chloride expansion coefficient ˛c 0:022302 1
Dye expansion coefficient ˛d 0 1
Dynamic viscosity of liquid �0 1 � 10�3 kg m�1 s�1

Cell intrinsic permeability k D b2=12 2:61 � 10�9 m2

Isotropic hydraulic conductivity K D k�0gy

�0
1:07838 � 10�2 m s�1

Porosity " 1 1
Specific storage coefficient So 0 m�1

Sucrose diffusion coefficient Ds 4:878 � 10�10 m2 s�1

Chloride diffusion coefficient Dc 1:477 � 10�9 m2 s�1

Dye diffusion coefficient Dd 5:670 � 10�10 m2 s�1

Dispersivities ˇLI ˇT 0I 0 m
Viscosity change to sucroseb #s 2:75 � 10�3 m2 s�1

Viscosity change to chlorideb #c 1:59 � 10�3 m2 s�1

Viscosity change to dyeb #d 0 m2 s�1

Sucrose Rayleigh number Ras D ˛sKH
"Ds

65;664 1
Chloride Rayleigh number Rac D ˛cKH

"Dc
26;460 1

Lewis number Le D Ds
Dc

0:3303 1

Turner number Tu D ˛c
˛s

1:22 1

Flow BC
Dirichlet-type BC at central point h.x; y/ D hD.

L
2
; 0/ 0 m

Species IC’s

Sucrose ICc Cs0

8
<

:

Css for y � 0

0 for y < 0
kg m�3

Chloride ICc Cc0

8
<

:

Ccs for y 	 0

0 for y > 0
kg m�3

Dye IC Cd0

8
<

:

Cds for y 	 0

0 for y > 0
kg m�3

FEM
Uniform 2D meshes of different resolutions, FE/BE, GFEM, OB and EOB approximation
Initial time step size 
t0 10�8 d
RMS error tolerance (FE/BE) � 10�4 1
Simulation time periodd Otend 3:17 � 10�3 1
a Measures defined in Fig. 11.40
b Using viscosity relation function f� D �0

�
D �0

�0C#s .Cs�Cs0/C#c .Cc�Cc0/C#d .Cd�Cd0/
c Concentrations at the interface points .0 	 x 	 L; y 
 0/ are disturbed according to (11.99)
d Dimensionless time: Ot D Dc

H2 t
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corresponding stability and instability domains in the Rayleigh parameter space are
shown in Fig. 11.41. The current situation with a Turner number of 1.22 is clearly
located in the DDFC domain with increasing mass fluxes and finger velocities.
DDFC exists in the range 1 < Tu < Le�1. For Tu < 1 there is no more an initially
density-stable stratification of the solutes and the system becomes gravitationally
instable.

In the 16-h Hele-Shaw experiments done by Pringle et al. [431] a total of
300 images of the evolving concentration field was collected. A sequence of dye
concentrations from the experiment is shown in Fig. 11.42. Time is presented as
dimensionless Ot D Dc

H2 t . The measured time stages (t and Ot ) are listed in Table 11.12.
As seen in a sequence of concentration fields in Fig. 11.42 there are interesting

features in the behavior of the DDFC system. Due to the initially perturbed solution
interface an array of distinct fingers rapidly grows in unison at the early time
stage (Fig. 11.42a, b). These fingers begin to interact with one another causing a
re-organization of the initial uniform finger structure (Fig. 11.42c, d). A typical
feature at this stage is a large number of very small fingers with a wide variation
in vertical extent. As convection proceeds, small-scale fingers continuously emerge
from the region of the initial solution interface referred to as the finger generation
zone by Cooper et al. [98]. These newly generated fingers add to the structural
intricacy of the field by growing, and in many cases, merging with, and convecting
up through the stems of early formed neighbors. The generation of new finger pairs
as the tips of some upward and downward growing fingers can also be observed
(Fig. 11.42c–f). At Ot D 4:23 � 10�4 (Fig. 11.42e), the fastest growing fingers reach
the top and bottom boundaries of the cell and begin to spread laterally forming more
dense (at the bottom) and less dense (at the top) ‘clouds’ of fluid (Fig. 11.42f–h).
Within the finger generation zone, far from the boundaries, new fingers continue
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Fig. 11.42 Hele-Shaw observation results from Pringle et al. [431] for the dye component at
(a) Ot D 4:03�10�5 , (b) Ot D 1:31�10�4 , (c) Ot D 2:21�10�4, (d) Ot D 3:22�10�4 , (e) Ot D 4:23�10�4 ,
(f) Ot D 5:24 �10�4 , (g) Ot D 6:04 �10�4 , (h) Ot D 7:25 �10�4 , (i) Ot D 7:85 �10�4 , (j) Ot D 1:03 �10�3 ,
(k) Ot D 1:77 � 10�3 and (l) Ot D 3:17 � 10�3. (Ot D Dc

H2 t dimensionless time). Color sequence black-
blue-green-yellow-orange-red depicts normalized dye concentration from 0 to 1

to form from isolated pockets of nearly pristine solution located about the initial
solution interface (Fig. 11.42g–j). Finally, at late time, the finger structure becomes
‘tree-like’ with a branching pattern that has greater lateral travel than at early time.
This final convective structure remains long after motion has stopped, diffusion now
acting to slowly uniformize the field (Fig. 11.42l).

To solve successfully the DDFC problem a sufficiently fine spatial discretization
is fundamental. Because most transfer in a DDFC system is a result of convection,
small finger dimensions may evolve. Damping effects by artificial numerical
dispersion should be hold down on a lowest level to resolve accurately the minimum
finger dimension occurring in a DDFC simulation. A further important point in
DDFC computations refers to arising numerical perturbations which can affect the
evolution of DDFC [138]. It is to be expected that uniform and aligned structured
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Table 11.12 Measured time stages

Stages Ot (-) t (s) t (h)

(a) Early stage 4:03 � 10�5 720:5 0:20

(b) Mature stage: vertical growth of fingers 1:31 � 10�4 2;342:1 0:65

(c) 2:21 � 10�4 3;951:1 1:10

(d) 3:22 � 10�4 5;756:8 1:60

(e) Fingers reach top and bottom boundaries 4:23 � 10�4 7;562:5 2:10

(f) 5:24 � 10�4 9;368:2 2:60

(g) Roundown stage 6:04 � 10�4 10;798:5 3:00

(h) 7:25 � 10�4 12;961:8 3:60

(i) 7:85 � 10�4 14;034:5 3:90

(j) 1:03 � 10�3 18;414:7 5:12

(k) 1:77 � 10�3 31;644:6 8:79

(l) 3:17 � 10�3 56;674:2 15:7

Table 11.13 Meshes according to refinement levels `

Level ` Used FEFLOW mesh NE NP Spatial increment (mm)

0 – 41,984 42,405 0.992
.256� 164/ .257� 165/

1 – 67,936 168,777 0.496
.512� 328/ .513� 329/

2 mesh A 671,744 673,425 0.248
.1;024� 656/ .1;025� 657/

3 mesh B 2,686,976 2,690,337 0.124
.2;048� 1;312/ .2;049� 1;313/

4 – 10,747,904 10,754,625 0.062
.4;096� 2;624/ .4;097� 2;625/

meshes with square elements can minimize uncontrollable numerical perturbations
during the simulation.

For the present computations quadrilateral meshes with different resolution are
applied. It can be recognized as a stepwise global refinement of meshing: starting
with a 2D discretization each quadrilateral is subdivided into four equally sized
quadrilaterals. The number of linear quadrilateral elementsNE and number of nodes
NP then increase according to the refinement level ` D 0; 1; 2; : : ::

NE D 41 � 2.10C2`/
NP D NE C 105 � 2.2C`/ C 1 (11.97)

Table 11.13 summarizes the mesh properties up to level 4.
Hughes et al. [271] simulated meshes at levels ` of 0, 1 and 2. Their computations

with the finest mesh at ` D 2 agreed rather well with Pringle et al.’s Hele-Shaw
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experiments. They found that the coarser discretizations with ` D 0 and ` D 1 are
inappropriate to model the finger development with a reasonable accuracy. However,
even their finest discretization at ` D 2 with a spatial increment of 0:248mm is still
larger than the pixel size with 0:154mm of the Hele-Shaw experiment by a factor of
1.6. More refined meshes could not be simulated by Hughes et al. [271] due to their
computational limitations.

In the present FEFLOW simulations we recompute the DDFC problem in using
Hughes et al.’s finest 671;744�element mesh at ` D 2. Additionally, FEFLOW
simulations are performed on a further refined mesh having the refinement level
` D 3. In the following FEFLOW simulations we denote these meshes as mesh
A consisting of 1;024 � 656 linear quadrilateral elements (673,424 nodes) and
mesh B consisting of 2;048�1;312 linear quadrilateral elements (2,690,337 nodes),
see Table 11.13. Mesh A is comparable to the finest spatial discretization used by
Hughes et al. [271]. Note that the high-resolution mesh B is more refined than the
length scales of in the Hele-Shaw experiment. The spatial increment in mesh B
with 0:124mm is smaller than the pixel size of the Hele-Shaw experiment with
0:154mm.

It is important to note that mesh B requires 64-bit execution. In the present
study we prefer the FE/BE predictor-corrector time stepping strategy and parallel
computations. While the flow equations are solved by using AMG equation solver
(Sect. 8.17.2.7), the species transport equations are solved by using BiCGSTAB
equation solver (Sect. 8.17.2.6) with ILU preconditioning. Both solvers are applied
with a reduced stop criteria of 10�12 to terminate iterations in solving the sparse
finite-element matrix equation systems.

All external boundary faces represent no-flux conditions both for fluid flow and
for species mass transport. This is automatically satisfied by natural (zero-value)
Neumann-type BC’s and no specifications are required. But, there is one exception.
Because the specific storage coefficient So is zero in the flow equation there is no
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Fig. 11.44 FEFLOW results simulated with mesh A for the dye component at (a) Ot D 4:03 �10�5,
(b) Ot D 1:31�10�4 , (c) Ot D 2:21�10�4 , (d) Ot D 3:22�10�4 , (e) Ot D 4:23�10�4 , (f) Ot D 5:24�10�4 ,
(g) Ot D 6:04 �10�4 , (h) Ot D 7:25 �10�4 , (i) Ot D 7:85 �10�4 , (j) Ot D 1:03 �10�3 , (k) Ot D 1:77 �10�3
and (l) Ot D 3:17 �10�3 . (Ot D Dc

H2 t dimensionless time). Color sequence blue-green-yellow-orange-
red depicts normalized dye concentration from 0 to 1

more a regular time-derivative term and the flow equations should be linked to a
Dirichlet-type BC to stabilize the numerical solution. It is sufficient to specify at
least one node with an arbitrary head value h. While Hughes et al. [271] specified
both the upper left and upper right corner nodes with values for pressure and
species concentrations, in our simulations only the node at the center of the mesh is
specified with a hydraulic head h of 0:0, no extra BC’s are introduced for the species
concentrations.

At initial time t0 the three species k D s; c; d are distributed as follows within
the 2D domain .0 � x � L;�H

2
� y � H

2
/ in a layered configuration, where the

solute interface is located at y D 0 (see Fig. 11.40):
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Fig. 11.45 Comparison of Hele-Shaw experiments from Pringle et al. [431] to FEFLOW results
simulated with mesh B for the dye component at different dimensionless times Ot D Dc

H2 t . Case
of variable fluid viscosity f� D �0=�.Ck/. Color sequence black-blue-green-yellow-orange-red
depicts normalized dye concentration from 0 to 1

Cs.x; t0/ D
�
Css.0 � x � L; 0 � y � H

2
/

Cs0.0 � x � L;�H2 � y < 0/
Cc.x; t0/ D

�
Cc0.0 � x � L; 0 < y � H

2
/

Ccs.0 � x � L;�H2 � y � 0/
Cd .x; t0/ D

�
Cd0.0 � x � L; 0 < y � H

2
/

Cds.0 � x � L;�H2 � y � 0/

(11.98)

The present finger convection problem is very sensitive with respect to
perturbations. Pringle et al. [431] expended significant effort in minimizing initial
perturbations for the Hele-Shaw experiment. Although the thickness of the solute
interface was small (about 1 mm), perturbations at the start of the experiment could
not be avoided. They were seeds for initial finger developments. For the numerical
simulation a control of such type of initial seeds for finger developments is needed.
This should be mimicked by the following random procedure as proposed by
Hughes et al. [271].
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Pringle et al.’s experimental  and Hughes et al.’s numerical data FEFLOW results
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Fig. 11.46 Normalized mass transfer across the center line OM . Comparison of observed data taken
by Pringle et al. [431] and numerical results by Hughes et al. [271] (left) with FEFLOW results
computed for meshes A and B (right)

Random noise with a mean of zero and maximum amplitude of 0.5 % of
maximum initial concentrations Cks is applied to both sucrose and sodium chloride
at the initial solution interface. Dye concentrations at the interface are not perturbed.
To develop initial perturbations for sucrose and sodium chloride their nodal
concentrations at nodes sharing the solute interface at y D 0 are modified as
follows:

Do for all interface nodes i f
RN1 D random number between 0 and 1
If .RN1 < 0:5/ f
Cs.xi ; yi D 0; t0/ D 0:01 � RN1 � Css

g
Else f
Cs.xi ; yi D 0; t0/ D Css

g
RN2 D random number between 0 and 1
If .RN2 < 0:5/ f
Cc.xi ; yi D 0; t0/ D 0:01 � RN2 � Ccs

g
Else f
Cc.xi ; yi D 0; t0/ D Ccs

g
g

(11.99)

where xi and yi correspond to the x� and y�coordinates of node i .



11.11 Benchmarks and Examples 621

Table 11.14 Measured vs. simulated OM
OM

Hele-Shaw experiment FEFLOW
Ot Pringle et al. [431] mesh B

(a) 4:03 � 10�5 0:01 0:02

(b) 1:31 � 10�4 0:05 0:05

(c) 2:21 � 10�4 0:10 0:08

(d) 3:22 � 10�4 0:15 0:12

(e) 4:23 � 10�4 0:20 0:16

(f) 5:24 � 10�4 0:25 0:20

(g) 6:04 � 10�4 0:30 0:23

(h) 7:25 � 10�4 0:35 0:28

(i) 7:85 � 10�4 0:40 0:30

(j) 1:03 � 10�3 0:45 0:36

(k) 1:77 � 10�3 0:50 0:41

(l) 3:17 � 10�3 0:51 0:42

Fig. 11.47 FEFLOW results simulated for the dye component at different dimensionless times
Ot D Dc

H2 t . Comparison between mesh A (left) and mesh B (right) for the case of variable
fluid viscosity f� D �0=�.Ck/. Color sequence black-blue-green-yellow-orange-red depicts
normalized dye concentration from 0 to 1
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Fig. 11.48 FEFLOW results simulated with mesh A for the dye component at different dimension-
less times Ot D Dc

H2 t . Comparison of OB approximation QEOB 
 0 (left) to the EOB approximation
QEOB ¤ 0 (right) for the case of constant fluid viscosity f� 
 1. Color sequence black-blue-
green-yellow-orange-red depicts normalized dye concentration from 0 to 1

The simulation of mesh A and B required 3,205 and 3,626 adaptive time steps,
respectively. The time step history for the mesh B simulation is plotted in Fig. 11.43.
Figure 11.44 shows the FEFLOW-simulated dye concentrations for mesh A at the
same dimensionless times of Pringle et al. [431] (cf. Table 11.12). The results agree
rather well with the computations obtained by Hughes et al. [271]. Qualitatively,
the numerical results are similar to the experimental results as seen in Fig. 11.45 in
comparison to the mesh B results. As already indicated by Hughes et al. [271] the
experimental vertical finger evolution appears to be slightly ahead of the simulated
fingers.

A more quantitative comparison can be done by using the vertical mass flux
exemplified for the dye concentrations. A normalized mass transfer of dye upward
across the centerline of the cell can be defined according to

OM D M

M0

(11.100)



11.11 Benchmarks and Examples 623

Fig. 11.49 FEFLOW results simulated with mesh A for the dye component at different dimen-
sionless times Ot D Dc

H2 t . Comparison of constant fluid viscosity f� 
 1 (left) to the variable
fluid viscosity case f� D �0=�.Ck/ (right). Color sequence black-blue-green-yellow-orange-red
depicts normalized dye concentration from 0 to 1

where M is the dye mass above the centerline of the Hele-Shaw cell at time Ot and
M0 is the total dye mass in the cell. Numerical results compare reasonably well
to observed values of OM as depicted in Fig. 11.46. As also seen there FEFLOW’s
and Hughes et al.’s results agree very well. Their agreement with the Hele-Shaw
experiment is acceptable until Ot D 1 � 10�3. After Ot D 1 � 10�3, the simulated
mass transfer OM is less than observed mass transfer. Larger percent errors at early
times are an artifact of small OM values and represent small absolute differences in
mass transfer (e.g., 0:011 observed and 0:017 simulated) influenced by the initial
perturbation at the interface nodes for the given spatial discretization. Note further
that the simulated mass transfer OM did not changed anymore if using a more
refined mesh (cf. mesh A and mesh B results in Fig. 11.46). It indicates that the
numerical accuracy with respect to the mass transfer is sufficiently achieved at a
lower refinement level as given for mesh A. Table 11.14 compares the measured
mass transfer OM against the FEFLOW results obtained for mesh B.

A comparison of the finger evolution for the two meshes A and B is exhibited in
Fig. 11.47. It reveals a slightly faster finger development for the more refined mesh
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B compared to the coarser mesh A. While for mesh A at the front of the fingers
small wiggles in the numerical solution could be observed at early times (indicated
by white color spots in the fringed distributions of Fig. 11.47 left), the solution for
mesh B is fully wiggle-free.

We also studied the influence of the OB approximation and the fluid viscosity
on the simulation results. Noticeable but not significant differences exist in the
simulated finger patterns when comparing the solutions with and without the OB
approximation as seen in Fig. 11.48. More influence on the finger pattern results
from the fluid viscosity effect. As evidenced in Fig. 11.49 a constant viscosity
solution produces a slightly faster finger development as for the case with a variable
(concentration-dependent) viscosity.



Chapter 12
Mass Transport in Porous Media
with and Without Chemical Reactions

12.1 Introduction

In this chapter the computation of multispecies (including single-species) mass
transport in porous media with chemical reaction in particular is examined. The
complexity of those reactive transport processes arising in natural and engineered
porous media requires some specific treatment due to their nonlinearity and
the occurrence of multiple unknowns. In the preceding Chap. 5 the constitutive
relations in form of reversible reaction and irreversible chemical kinetics have been
developed. It ends up with a set of mass transport equations for each chemical
species k D 1; : : : ; N of an arbitrary number, nonlinearly coupled by the rate
expressions of chemical reaction in form of degradation type, Arrhenius type,
Monod type or freely editable kinetics. A given species k can be either mobile
associated with a liquid (aqueous) phase l or immobile associated with a solid phase
s, so thatN D N l CNs . Chemicals in the liquid phase are subject to advection and
dispersion, while in a solid phase there is no advection and dispersion. We solve the
reactive multispecies mass transport processes in multi-dimensional porous media
under variably saturated, variable-density and nonisothermal conditions. The focus
of this chapter is on the treatment of the species mass transport PDE system,
while for the flow computations we refer to Chap. 9 for saturated porous media,
to Chap. 10 for variably saturated porous media and to Chap. 11 for density-coupled
problems. Nonisothermal aspects are subject of Chaps. 11 and 13.

12.2 Basic Equations

12.2.1 3D, Vertical 2D and Axisymmetric Problems

The system of the basic PDE’s for 3D and vertical 2D (including axisymmetric)
multispecies mass transport in porous media has been developed in Sects. 3.10.5

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5 12,
© Springer-Verlag Berlin Heidelberg 2014
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and 5.4 and summarized in Table 3.7. Due to the chemical reaction the equations
can be nonlinearly coupled by the kinetic rate laws. The following general system
of PDE’s results for species k D 1; : : : ; N l CNs written for the divergence form of
the mass transport equations

@

@t
."s<kCk/C r � .qCk/� r � .Dk � rCk/C "s#k<kCk D ORk CQkw CQk

species k of liquid phase l
@

@t
."sC

s
k /C "s#kC

s
k D ORk CQk

species k of solid phase s
(12.1)

and for the convective form of the mass transport equations

"s K<k

@Ck

@t
C q � rCk � r � .Dk � rCk/C ."s#k<k CQh/Ck D ORk CQkw CQk

species k of liquid phase l

"s
@C s

k

@t
C "s#kC

s
k D ORk CQk

species k of solid phase s
(12.2)

associated with the constitutive relations1

1In 3D Cartesian coordinates the components of the mechanical dispersion tensor Dmech for the
classic Scheidegger-Bear dispersion model, cf. (3.182), are

Dmech;11 D 1
q

�
ˇLq

2
1 C ˇT q

2
2 C ˇT q

2
3

�

Dmech;22 D 1
q

�
ˇT q

2
1 C ˇLq

2
2 C ˇT q

2
3

�

Dmech;33 D 1
q

�
ˇT q

2
1 C ˇT q

2
2 C ˇLq

2
3

�

Dmech;12 D Dmech;21 D .ˇL � ˇT /
q1q2
q

Dmech;13 D Dmech;31 D .ˇL � ˇT /
q1q3
q

Dmech;23 D Dmech;32 D .ˇL � ˇT /
q2q3
q

where qT D �
q1 q2 q3

�
and q D kqk. In strictly stratified aquifer system, where the transverse

dispersion in the vertical x3�direction can be much smaller than in the horizontal, Burnett and
Frind [65] proposed the 3D mechanical dispersion tensor in an alternative form

Dmech;11 D 1
q

�
ˇLq

2
1 C ˇTH q

2
2 C ˇTVq

2
3

�

Dmech;22 D 1
q

�
ˇTH q

2
1 C ˇLq

2
2 C ˇTVq

2
3

�

Dmech;33 D 1
q

�
ˇTVq

2
1 C ˇTVq

2
2 C ˇLq

2
3

�

Dmech;12 D Dmech;21 D .ˇL � ˇTH /
q1q2
q

Dmech;13 D Dmech;31 D .ˇL � ˇTV /
q1q3
q

Dmech;23 D Dmech;32 D .ˇL � ˇTV /
q2q3
q

splitting the transverse dispersivity into a horizontal transverse dispersivity ˇTH and a vertical
transverse dispersivity ˇTV , where it is assumed that ˇTH � ˇTV . However, as noted by Bear
and Cheng [38], Burnett and Find’s mechanical dispersion tensor is not consistent with the basic
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Dk D "sDkδCDmech

Dmech D ˇT kqkδ C .ˇL � ˇT /
q˝q
kqk

"s D 1� "

<k D 1C �
1�"
"

�
'kK<k D 1C �

1�"
"

�
@.'kCk/

@Ck

'k D

8
ˆ̂
<
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:
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b
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k C
b
�
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k
�
k

1Ck
�
k Ck

Langmuir

(Table 3.8)

ORk D ORk."; s; C ˛
1 ; : : : ; C

˛
N ; T / ˛ 2 .l; s/

(12.3)

which has to be solved for species concentrations Ck , where for the sake of
simplicity we drop the liquid phase index l and the species index k is considered
unique in each phase (associated either with liquid l or solid s). In (12.1) and (12.2)
a modified bulk reaction rate ORk is introduced, in which the linear decay reaction
term is separated,2 "˛#kC ˛

k ; ˛ 2 .l; s/, and in addition the (non-reactive, zero-
order) well-type SPC term Qkw and a (non-reactive, zero-order) sink/source term
are split off, where Qkw is not applied to species of the solid phase. The reaction
rate ORk is related to the previously defined bulk reaction rate Rk (5.95) and the
deduced bulk reaction rate QRk (5.96) via

Rk D QRk �P˛ "˛#kC
˛
k ; ˛ 2 .l; s/

QRk D
� ORk CQkw CQk species k of liquid phase l
ORk CQk species k of solid phase s

(12.4)

Irreversible chemical reaction necessitates specification of rate expression Rk ,
actually ORk , where polynomial representations in form of degradation and Arrhenius
type kinetics or Monod type kinetics for more complex bio-chemical reaction
systems are typical (see Sect. 5.5 for more). For variably saturated porous media
additional constitutive relation exists for the saturation s D s. / as a function
of pressure head  (cf. Sect. 10.2). Notice, in the given formulations of the
mass transport equations we preferably use the linear Fick’s law of hydrodynamic
dispersion, (3.272) with =H D 0. Non-Fickian dispersion is commonly related to
variable-density problems as discussed in Chap. 11.

We note that usually there is no need to solve mass transport equations for
all species N . Only species k of interest will be considered, which are important
constituents of the chemical reaction process and/or have impacts on the flow

constitutive relations, such as derived in Sects. 3.8.5.4 and 3.8.5.5, and not conform with tensor
transformation rules shown by Lichtner et al. [349].
2The separation of the linear decay term allows its numerically implicit treatment in the LHS of
the resulting discrete equation system, while nonlinearities appearing in ORk require an appropriate
iterative approach. Indeed, the reaction rate ORk can also incorporate a linear degradation term (in
this case #k should be zero), however, its numerical computation can be less effective than in the
direct separation.
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and transport regime (e.g., spread and change of contaminants in an environ-
mental flow system). Typically, the transport equations are specified for selected
solutes3(dissolved components) in the liquid phase l and sorbed species at the
solid phase s, no more than the essential number of species N? < N in total (cf.
Sect. 3.9.2). In the above set of mass transport equations for species k occurring
either in the liquid phase l or in the solid phase s, it is stipulated that any species k
when also subjected to a sorptive equilibrium reaction (retardation) is referred to as
a solute constituent in the liquid phase l , while a species exclusively associated with
the solid phase s is deemed to be subjected to a (non-equilibrium) reaction kinetics.

The general species mass transport equations (12.1) or (12.2) have to be solved
for Ck subject to a set of BC’s of Dirichlet, Neumann and Cauchy type as well as
well-type SPC (see Sect. 6.3.2), which is for the divergence form

Ck D CkD on �Dk � t Œt0;1/

.Ckq �Dk � rCk/ � n D q
�

kC on �Nk � t Œt0;1/

.Ckq �Dk � rCk/ � n D �˚�
kC.CkC � Ck/ on �Ck � t Œt0;1/

Qkw D �P
w CkwQw.t /ı.x � xw/ on xw 2 ˝ � t Œt0;1/

(12.5)

and for the convective form

Ck D CkD on �Dk � t Œt0;1/

�.Dk � rCk/ � n D qkC on �Nk � t Œt0;1/

�.Dk � rCk/ � n D �˚kC.CkC � Ck/ on �Ck � t Œt0;1/

Qkw D �P
w.Ckw � Ck/Qw.t /ı.x� xw/ on xw 2 ˝ � t Œt0;1/

(12.6)

where the total boundary is � D �Ck [ �Nk [ �Ck , 8k. Note that there are no
BC’s for the species mass transport equations of the solid phase in (12.1) and

3In the special case of a single-species solute, where only one dissolved component exists, we can
drop the species indicator k and write the governing mass transport equation (12.1) and (12.2),
respectively, simply as

@
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b� C b��1 Freundlich
k�

1Ck� C
Langmuir

(Table 3.8)

OR D OR."; s; C; T /
for solving the solute concentration C associated with the liquid phase l , where QCw and QC

denote the well-type SPC term and the zero-order mass sink/source term, respectively, for the
single-species solute.
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(12.2). The normal mass fluxes on �Nk and �Ck differ between the divergence
form and the convective form. As already discussed in Sects. 2.2.2 and 6.3.2 the
divergence form imposes the total (advective plus dispersive) boundary mass flux,
while the convective form imposes a dispersive mass flux at the boundary. However,
the convective form can also be used to express a mass flux BC of an advective load
by specifying the Cauchy-type BC in the form

� .Dk � rCk/ � n D �˚kC„ƒ‚…
q�n

. CkC„ƒ‚…
q
�
kC

q�n

�Ck/ (12.7)

to obtain

.Ckq �Dk � rCk/ � n D q�kC D .q � n/CkC (12.8)

for a given advective normal boundary flux q �n and a boundary concentrationCkC,
which is equivalent to a Neumann-type BC of the divergence form (cf. Sect. 6.3.2.3).
Note further that OBC as discussed in Sect. 6.5.7 represents a special form of
Neumann-type BC on �NkO � �Nk � � , which will be treated either as a natural
Neumann-type BC with �.Dk � rCk/ � n 	 0 or as implicit OBC (cf. Sect. 8.5.3).

The solution of the governing transient mass transport equations (12.1) and (12.2)
requires IC in the form

Ck.x; t0/ D Ck;0.x/ in N̋ (12.9)

The essential parameters required for solving (12.1) and (12.2) with (12.5)–(12.9)
are listed in Tables I.11 and I.13 of Appendix I. Steady-state mass transport
conditions occur if @Ck=@t approaches to zero.4

12.2.2 Horizontal 2D Problems

The governing equations for the essentially horizontal, vertically averaged species
mass transport in unconfined and confined aquifers have been developed in
Sect. 3.10.7 and summarized in Tables 3.10 and 3.11, respectively. The following
2D depth-integrated mass transport equations result

4Optionally, FEFLOW suppresses the time derivative term @Ck=@t for solving steady-state
solutions. A specific option exists, named steady flow – transient transport, in which the advective
flow vector q is invariant with time.
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@
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written in the divergence form and
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written in the convective form, which are associated with the constitutive relations
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(Table 3.8)

NORk D B ORkORk D ORk."; s; C ˛
1 ; : : : ; C

˛
N ; T / ˛ 2 .l; s/

(12.12)

where similarly the deduced bulk reaction rate NQRk D NORk C NQkw C NQk is suitably

split into a depth-integrated bulk reaction rate NORk , a depth-integrated well-type SPC
term NQkw and a depth-integrated zero-order sink/source term for species k, where
NQkw is not applied to species in the solid phase. The solution of (12.10) or (12.11)

for the species concentration Ck is associated with the following BC’s of Dirichlet,
Neumann and Cauchy type as well as well-type SPC

Ck D CkD on �Dk � t Œt0;1/

.Ck Nq � NDk � rCk/ � n D Nq�kC on �Nk � t Œt0;1/

.Ck Nq � NDk � rCk/ � n D � N̊ �
kC.CkC � Ck/ on �Ck � t Œt0;1/

NQkw D �P
w CkwQw.t /ı.x� xw/ on xw 2 ˝ � t Œt0;1/

(12.13)
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written for the divergence form of the mass transport equation and

Ck D CkD on �Dk � t Œt0;1/

�. NDk � rCk/ � n D NqkC on �Nk � t Œt0;1/

�. NDk � rCk/ � n D � N̊kC.CkC � Ck/ on �Ck � t Œt0;1/
NQkw D �P

w.Ckw � Ck/Qw.t /ı.x� xw/ on xw 2 ˝ � t Œt0;1/

(12.14)

written for the convective form of the mass transport equation, imposed on � D
�Ck [ �Nk [ �Ck , 8k, and with the IC of the form

Ck.x; t0/ D Ck;0.x/ in N̋ (12.15)

The essential parameters required for solving (12.10) and (12.11) with (12.13),
(12.14) and (12.15) are listed in Tables I.12 and I.14 of Appendix I.

12.3 Finite Element Formulation

In Chap. 8 the fundamental concepts of FEM are exemplified for an ADE of a scalar
quantity, which is paradigmatic for the present species mass transport equations.
Based on these principles given there we use now the GFEM to solve the governing
mass transport equations (12.1) and (12.2) associated with the corresponding BC’s
(12.5), (12.6) and IC’s (12.9). Since most of the details are equivalent to the ADE
developments given in Chap. 8 we shall focus here only on aspects featuring the
reactive multispecies mass transport. For convenience we restrict our developments
to 3D, vertical 2D and axisymmetric mass transport problems (Sect. 12.2.1). The
formulations for the horizontal 2D mass transport in unconfined and confined
aquifers (Sect. 12.2.2) will appear rather similar and can be easily deduced from
the given statements.

12.3.1 Weak Forms

According to Sect. 8.5 we can find analogously to the statements (8.48) and
(8.55) the corresponding weak forms for the governing multispecies mass transport
equation written in the divergence form (12.1) as
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and written in the convective form (12.2) as
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where w is a suitable weighting function and the boundary integrals are suitably
separated into their segments � D �Dk [ �Nk [ �Ck imposed by the Dirichlet,
Neumann and Cauchy-type BC’s (12.5) and (12.6). OBC on �NkO � �Nk represents
special implementations of Neumann-type BC.5

5A boundary with OBC on �NkO can be separated from the Neumann boundary �Nk so that for the
divergence form

Z

�Nk

wq�kCd� D
Z

�Nk n�NkO

wq�kCd� C
Z

�NkO

w.Ckq �Dk � rCk/ � nd�

and for the convective form
Z

�Nk

wqkCd� D
Z

�Nk n�NkO

wqkCd� �
Z

�NkO

w.Dk � rCk/ � nd�

The implicit treatment of OBC requires the incorporation of the �NkO�integrals into the LHS of
the resulting matrix system (see below). In contrast, a natural Neumann-type BC with �.Dk �
rCk/ � n � 0 on �NkO is often the preferred alternative formulation for an OBC. Note, however,
that for both cases in the divergence form the boundary flux q � n must be known a priori. The
boundary flux q �n can be either explicitly given from a Neumann-type BC qh D q �n for flow or
must be computed by a postprocessing budget evaluation of the flow equation on the corresponding
outflowing boundary section imposed by Dirichlet-type or Cauchy-type BC of flow.
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12.3.2 GFEM and Resulting Nonlinear Matrix System

The weak statements (12.3.1)–(12.19) involve the unknown variable Ck of each
species k occurring either on the liquid phase l or solid phase s. In using the FEM
this variable is replaced by a continuous approximation that assumes the separability
of space and time (see Sect. 8.4). Thus

Ck.x; t/ 	
X

j

Nj .x/Ckj .t/; j D 1; : : : ; NP; k D 1; : : : ; N (12.20)

where j designates global nodal indices. Using the Galerkin method with the
weighting function

w! wi D Ni ; i D 1; : : : ; NP (12.21)

and applying the approximate solutions (12.20) in (12.3.1)–(12.19), we obtain the
following matrix systems of each NP equations (cf. Sect. 8.9) for each species k as
follows

Hk.C/ � PCk CEk.C/ �Ck �Rk.C/ D 0 .k D 1; : : : ; N / (12.22)

or

H1.C1; : : : ; CN / � PC1 CE1.C1; : : : ; CN / �C1 �R1.C1; : : : ; CN / D 0
H2.C1; : : : ; CN / � PC2 CE2.C1; : : : ; CN / �C2 �R2.C1; : : : ; CN / D 0
H3.C1; : : : ; CN / � PC3 CE3.C1; : : : ; CN / �C3 �R3.C1; : : : ; CN / D 0

:::

HN .C1; : : : ; CN / � PCN CEN .C1; : : : ; CN / �CN �RN .C1; : : : ; CN / D 0
(12.23)

and alternatively written in a compact form as

H.C/ � PC CE.C/ �C �R.C/ D 0 (12.24)

or
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with
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showing the major nonlinearities in parentheses, where the matrices and RHS
vectors are given for species k of the liquid phase l as
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(12.27)
and for species k of the solid phase s as
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in which .i; j D 1; : : : ; NP/ and .e D 1; : : : ; NE/, Hk D Hk.C/ .k D
1; : : : ; N / are the nonlinear symmetric storage matrices including retardation effects
for species k occurring in the liquid phase l , Ek D Ek.C/ .k D 1; : : : ; N /

are the unsymmetric ‘conductance’ matrices encompassing advection, dispersion
and retardation effects for species k occurring in the liquid phase l as well as
linear decay for species k in both the liquid phase l and the solid phase s, and
Rk D Rk.C/ .k D 1; : : : ; N / are the chemical rate vectors, which represent
nonlinear dependencies on the total concentration vector C according to the
considered reaction kinetics. We note that there is no advection and dispersion for
species k belonging to the solid phase s. The integrals appearing in (12.27) and
(12.28) are integrated on element level in the local coordinates as described in
Sect. 8.12. Analytical evaluations of partial integral terms of (12.27) and (12.28)
can be deduced from developments done in Appendix H for selected element
types. The differential elements d˝e and d� e differ for 3D, 2D and axisymmetric
problems as given by (8.122)–(8.124), respectively. Is is important to note that the
resulting global system of equations (12.24) is unsymmetric since the matrix E is
unsymmetric due to advection.

The matrix system (12.24) can be highly nonlinear mainly due to the dependence
of the reaction rate vectorR onC so that an efficient numerical solution strategy is
required, in particular for reactive multispecies transport problems.6 One possibility
would be the solution of the coupled matrix system (12.24) in a direct and
simultaneous manner. Although mathematically rigorous, practical implementation
of that approach is limited and not generally applicable to large, geometrically
complex and multidimensional problems because of the significant memory and/or
computational burden. The size of the coefficient matrices H and E in the
discretized system (12.24) grows as a product of the number of nodes NP and the
number of applied species N . In general, the direct approach involves solving a
NP �N system of nonlinear equations at each time plane. Furthermore, the system
for a simultaneous solution can be ill-conditioned due to the significantly different
scales of the processes involved. Alternatively, in order to reduce the computational
requirements, a decoupled (or split-operator) solution strategy is preferred, in which
the species equations are solved sequentially by using efficient iteration techniques.
Kanney et al. [299] discussed different strategies of such split-operator approaches.
Among a variety of split-operator techniques the sequential iterative approach
(SIA) have proven superior and powerful. In FEFLOW, we prefer an adaptive
error-controlled SIA strategy which is based on an efficient predictor-corrector time-
stepping technique. In contrast to a common SIA technique the transport equations
with the reaction terms are solved in an adaptive full time interval using predictor
solutions to linearize the nonlinear reaction terms. The overall iteration control is

6For single-species solute transport (12.24) and (12.22) reduce to simplified matrix system, where
nonlinearities can only occur due to nonlinear retardation (Freundlich or Langmuir adsorption
isotherms) and/or higher-order kinetic reactions, however, subjected to the same species of solute.
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fully embedded in a time-marching strategy via a sophisticated error-based time-
step adaptation.

For advective-dominant mass transport the discretized system (12.24) can be
easily combined with upwind strategies as introduced in Sect. 8.14. Useful upwind
strategies refer to the SU and FU methods (Sect. 8.14.3), SC method (Sect. 8.14.4)
and PGLS method (Sect. 8.14.5), in which the tensor of mechanical dispersion
Dmech as part of the hydrodynamic dispersion tensor Dk is appropriately mod-
ified by stabilization terms in dependence on the actual spatial and temporal
discretizations or concentration gradients. The required modifications of De

mech for
each element e were discussed in the preceding Sect. 11.6.3 and summarized in
Table 11.3.

12.3.3 Adaptive SIA-Based Solution Strategy for Multispecies
Mass Transport Embedded in the GLS
Predictor-Corrector Time Integrator

The GLS predictor-corrector time integrator (Sect. 8.13.4) with automatically
adapted time stepping has been shown very cost-efficient and robust for classes
of nonlinear systems such as variably saturated problems (Sect. 10.7.5) and/or
variable-density flow (Sect. 11.6.4). We also prefer this technique7 for solving the
present transient chemically reactive systems. At a multispecies presence .N ? > 1/

7Alternatively to the GLS predictor-corrector method, the time integration of (12.22) for each
species k by using the simple ��method (Sect. 8.13.4) gives

�
Hk .CnC1/


tn
CEk.CnC1/�

�
�Ck;nC1 D

�
Hk .CnC1/


tn
�Ek.CnC1/.1� �/

�
�Ck;n C �

Rk.CnC1/� CRk.Cn/.1� �/
�

where � 2 . 1
2
; 1/ for the Crank-Nicolson and the fully implicit scheme, respectively. For

chemically reactive processes a nonlinear matrix system R?
k;nC1 D Ak.CnC1/ � Ck;nC1 �

Zk.CnC1;Cn/ D 0 results, which must be iteratively solved either via the Picard method
(Sect. 8.18.1)

Ak.C
�
nC1/ �C�C1

k;nC1 D Zk.C
�
nC1;Cn/ � D 0; 1; 2; : : :

or via the Newton method (Sect. 8.18.2)

Jk.C
�
nC1/ �
C�

k;nC1 D �R?
k;nC1.C

�
nC1;Cn/ � D 0; 1; 2; : : :


C�
k;nC1 D C

�C1
k;nC1 �C�

k;nC1

Jk.C
�
nC1/ D @R?

k;nC1.C
�
nC1;Cn/

@C�
k;nC1

until satisfactory convergence is achieved for the iterations � at each given time stage nC 1. Note
that this iterative solution strategy is also applicable to steady-state mass transport problems if
setting � D 1 and 
tn ! 1.
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the solution is performed in a decoupled manner, where each k�species nonlinear
matrix system (12.22) is sequentially solved and appropriately linearized by using
the adaptive predictor-corrector time-stepping strategy consisting of the following
working steps:

STEP 0: Initialization
Computation of the initial acceleration vectors PCk;0 for time plane n D 0 (once
per k�species equation)

Hk.C0/ � PCk;0 D �Ek.C0/ �Ck;0 CRk.C0/ .k D 1; : : : ; N / (12.29)

and guessing an initial time step 
t0. The initial systems (12.29) are solved with
the initial concentration vector CT

0 D .C1;0 C2;0 C3;0 : : : CN;0/ known by the
IC’s (12.9) for each species k. They need to be solved only once at initial time t0.

STEP 1: Predictor solutions
Perform explicit predictor solutions for all species k by using the 1st-order
accurate FE and 2nd-order accurate AB scheme, respectively,

C
p

k;nC1 D
(
Ck;n C
tn PCk;n FE predictor

Ck;n C 
tn
2

��
2C 
tn


tn�1

� PCk;n � 
tn

tn�1

PCk;n�1


AB predictor

(12.30)

where the superposed p denotes the predictor values at the new time plane nC1.
Note that, since PCk;n�1 is required, the AB formula cannot be applied before the
second step .n D 1/. The prediction has to be started with the FE scheme, where
PCk;0 is available from (12.29).

STEP 2: Corrector solutions
Do corrector solutions for the nonlinear matrix system (12.22) of each species k
via the TR or BE scheme by applying the predictor solution
C
p T
nC1 D .C

p T
1;nC1;C

p T
2;nC1;C

p T
3;nC1; : : : ;C

p T
N;nC1/ from (12.30) to linearize the

species equations as

�Hk.C
p
nC1/

�
tn
CEk.C

p
nC1/

�
�Ck;nC1 D

Hk.C
p
nC1/ �

hCk;n

�
tn
C � 1

�
� 1� PCk;n

i
CRk.C

p
nC1/ (12.31)

to determine the concentration Ck;nC1 for each species k at the new time plane
nC 1, where � 2 . 1

2
; 1/ for the TR and BE scheme, respectively.

STEP 3: Updated accelerations
Update the new acceleration vectors for each species k by inverting the FE and
BE, respectively:
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(12.32)

to obtain PCk;nC1 at the new time plane nC 1.

STEP 4: Error estimation
Compute the LTE for the FE/BE and AB/TR scheme as a function of the corrector
and predictor solutions for each species k in the form (cf. Table 8.7)

dk;nC1 D '.Ck;nC1 �Cp

k;nC1/ (12.33)

with

' D
8
<

:
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for FE/BE
1

3
�
1C
tn�1


tn

� for AB/TR (12.34)

Suitable error norms are applied to the LTE vector dk;nC1 for each species k.
Commonly, the weighted RMS L2 error norm

kdk;nC1kL2 D
h
1
NP

� NPX

iD1

ˇ
ˇ dk;i;nC1
Ck;max;nC1

ˇ
ˇ2
�i1=2

(12.35)

and the maximum L1 error norm

kdk;nC1kL1 D 1
Ck;max;nC1

max
i
jdk;i;nC1j (12.36)

are chosen, where Ck;max;nC1 corresponds to the maximum values of k�species
concentration detected at the time plane nC1 and used to normalize the solution
vector.

STEP 5: Tactic of time stepping and error control
Predict the potential new k�specific time-step lengths by means of the error
estimate (12.33) for each species k, the current time step size 
tn and a user-
specified error tolerance � as:


tk;nC1 D 
tn
�

�

kdk;nC1kLp

	1=�
(12.37)

where
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� D
�
2 for FE/BE

3 for AB/TR

p D
�
2 for RMS error norm

1 for maximum error norm

(12.38)

The following criteria are used to monitor the progress of the nonlinear
solution:

(1) If


tk;nC1  
tn (12.39)

the solution Ck;nC1 for the species equation k is accurate within the error
bound defined by � and the increase of the time step is always accepted.

(2) Else if

	
tn � 
tk;nC1 < 
tn (12.40)

where 	 is typically 0.85, the kth solution Ck;nC1 is accepted but the time
step is not changed, i.e., 
tk;nC1 D 
tn.

(3) Else if


tk;nC1 < 	
tn (12.41)

the solution Ck;nC1 cannot be accepted within the required error tolerance
� and has to be rejected. The proposed new time step size (12.37) has to be
reduced according to


t red
k;nC1 D


t2n

tnC1

�
�

kdk;nC1kLp

	&
(& D 1 for FE/BE and & D 2=3 for AB/TR)

(12.42)

and the solution of all species k must be repeated for the time plane n C 1
with 
tn D mink.
t red

k;nC1/.
(4) If the criteria (12.39) and (12.40) are satisfied by all species equations and

the solutions Ck;nC1 can be accepted for all species k within the required
error tolerance �, the new time step is determined from the minimum of the
k�specific time step lengths, viz.,


tnC1 D min
k
.
tk;nC1/ (12.43)

and the time stepping procedure proceeds to the new time plane nC 2 with
the time step 
tnC1 (12.43).
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It is important to note that the error tolerance � is the only user-specified parameter
to control the entire nonlinear and transient solution process. The starting-up phase
is still influenced by the initial time step
t0 which should be kept small. In practice,
two further constraints for the time-step size have shown to be useful. Firstly, the
time step should not exceed a maximum measure, i.e., 
tnC1 � 
tmax. Secondly,
the rate for changing the time-step size � D 
tnC1=
tn can also be limited, where
� > 1 can be 2, 3 or even more. Using these constraints the actually increased new
time step results as 
t actual

nC1 D min.
tnC1;
tmax; �
tn/.
The predictor-corrector strategy fully monitors the nonlinear and transient

solution process via the time LTE in which the size of the time step is cheaply
and automatically varied in accordance with the overall accuracy requirements. The
time step is increased whenever possible and decreased only when necessary. It is
evident to note that by monitoring the temporal accuracy requirements, at the same
time the solution strategy provides an efficient control of the nonlinearities of the
species transport equation system via the predictor solutions. Due to the power of
the predictor-corrector strategy any additional iterative feedback within the adapted
time steps can be avoided.

12.4 Mass Budget Analysis

We use the CBFM, as introduced in Sect. 8.19.2, for obtaining a precise mass
budget analysis. It is based on the specific weak formulations of the governing
mass transport equations. The corresponding boundary mass fluxes on � have to
be evaluated from the basic weak statements (12.3.1) and (12.18) of the divergence
and convective form, respectively, written as
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to compute q�nkC or qnkC , where Ck is known at evaluation time tnC1. Note that
the boundary mass flux q�nkC D .Ckq � Dk � rCk/ � n of the divergence form
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encompasses the total mass flux consisting of the advective and dispersive parts,
while the boundary mass flux qnkC D �.Dk � rCk/ � n of the convective form
consists only of the dispersive part. Thus, for the convective form we need an
additional balance expression of the missing advective part qankC

D Ckq �n to obtain

q
�
nkC D qnkC C qankC

. This is attained by using an auxiliary weak formulation applied
to the governing flow equation (10.5) as described in Sect. 8.19.2.4. It yields
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to compute qankC
, where h, s and Ck are known at evaluation time tnC1. Expanding

the boundary flux on � as described in Sect. 8.19.2 the following matrix system
results to solve the consistent boundary total mass flux vector q�nkC for each species
k, viz.,

M � q�nkC D �Hk.C/ � PCk �E�

k.C/ �Ck CR�

k.C/

�
�

0 divergence form

V .h/ �Ck CA.Ck/ � h � F .Ck; s; Ph; Ps/ convective form

(12.47)

for known Ck, PCk, h, Ph, s and Ps at the corresponding evaluation time tnC1, where
Hk is defined in (12.27) and
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�
d˝ � CkQw.t/

ˇ
ˇ
i

(12.48)

in which .i; j D 1; : : : ; NP/, .e D 1; : : : ; NE/ and .k D 1; : : : ; N /. Note that V ,A
and F are only needed for the convective form. In the budget analysis the integral
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boundary balance fluxQnkC is directly evaluated at each boundary node by

QnkC D �M � q�nkC

D Hk.C/ � PCk CE�

k.C/ �Ck �R�

k.C/

C
�

0 divergence form

V .h/ �Ck CA.Ck/ � h � F .Ck; s; Ph; Ps/ convective form

(12.49)

whereQnkC corresponds to the nodal vector of the integral boundary mass flux.

12.5 Examples

12.5.1 Single-Species Solute Advective-Dispersive-Decay
Transport in a Column

Considering a 1D column of homogeneous saturated porous medium in which a
single-species solute intrudes with a constant concentration CD, the flow in the
column is maintained at a constant flux q D "v and in addition, the solute in
the column continuously undergoes linear decay # and linear adsorption <, then
the governing mass transport equation (12.2) written in 1D x�coordinate reduces to

<@C
@t
C v @C

@x
�D@

2C

@x2
�<#C D 0 (12.50)

with v D q

"
, D D DCˇLv and< D 1C . 1�"

"
/�, for which the following analytical

solution exists [33, 396, 540]8

8Since the complementary error function erfc./ is often in combination with exp./, it is numerically
useful to introduce the function exf.a; b/ defined as

exf.a; b/ D exp.a/erfc.b/

which is suitably approximated as follows [540]:

exf.a; b/ �

8
ˆ̂
<̂

ˆ̂
:̂

exp.a � b2/.a1� C a2�
2 C a3�

3 C a4�
4 C a5�

5/ if 0 	 b 	 3
1
p

�
exp.a � b2/=.b C 0:5=.b C 1=.b C 1:5=.b C 2=.b C 2:5=.b C 1////// if b > 3

2 exp.a/� exf.a;�b/ if b < 0
0 if jaj > 170 and b 	 0 or ja � b2j > 170 and b > 0

where � D 1=.1 C 0:3275911b/ and a1 D 0:2548296, a2 D �0:2844967, a3 D 1:421414,
a4 D �1:453152 and a5 D 1:061405.
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Table 12.1 Parameters and conditions used for the single-species solute advective-dispersive-
decay transport in a column

Quantity Symbol Value Unit

Column length L 100 m
Constant flux q 0:1 m d�1

Porosity " 0:2 1
Constant velocity v D q

"
0:5 m d�1

Henry sorption coefficient � 0:1 1
Retardation < D 1C . 1�"

"
/� 1:4 1

Decay rate # 2 � 10�8 s�1

Molecular diffusion D 0 m2 s�1

Longitudinal dispersivity ˇL 0:1 m
Dispersion D D D C ˇLv 5:787 � 10�7 m2 s�1

IC and BC’s
Initial condition (IC) of C C0 0 mg l�1

Dirichlet-type BC at x D 0 CD 1 mg l�1

Natural BC at x D L qnC D �DrC � n 0 gm�2 d�1

FEM
Space increment 
x 0:1 m
Initial time step size 
t0 10�4 d
RMS error tolerance (AB/TR and FE/BE) � 10�4 1
Simulation time period tend 200 d

C.x; t/ D 1
2
CD

�

exp
� .v � u/x

2D
�

erfc

�<x � ut

2
pD<t

	

C

exp
� .v C u/x

2D
�

erfc

�<x C ut

2
pD<t

	�

(12.51)

with

u D v
r

1C 4#<D
v2

; erfc.a/ D 2p
�

Z 1

a

exp.��2/d� (12.52)

associated with the IC and BC’s

C.x; 0/ D 0; C.0; t/ D CD; @C
@x
.1; t/ D 0 (12.53)

to solve C.x; t/.
The analytical solution (12.51) will be compared with numerical results by

using the parameters as summarized in Table 12.1. For the numerical simulations
a uniform spatial discretization consisting of linear elements is used. The mesh
is chosen sufficiently dense so that no upwinding is required. The adaptive GLS
predictor-corrector time integrator is preferred, where both the 2nd-order accurate
AB/TR and the 1st-order accurate FE/BE scheme are tested.
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The achieved numerical results in comparison with the analytical solutions are
shown in Figs. 12.1 and 12.2. The agreements are rather well, in particular for
the AB/TR scheme. Differences for the lower accurate FE/BE time stepping are
revealed at later times, which indicate temporal discretization effects by numerical
dispersion in the order O.
tn

2
v2/ (cf. Sect. 8.15). The simulations over the period of
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Fig. 12.3 Paradigmatic bilayered aquifer structure: (a) principal undisturbed state and
(b) schematic sketch (Modified from [513])

200 days required 210 time steps for the AB/TR scheme and 502 time steps for the
FE/BE scheme.

12.5.2 Hydrodispersive Mixing of Single-Species Solute
in a Bilayered Aquifer

Thiele and Diersch [513] studied a principal paradigmatic problem as illustrated
in Fig. 12.3 for a confined alluvial aquifer having a bilayered structure, where the
upper layer contains groundwater with lower salinity (freshwater) while in the
underlying layer saline groundwater (saltwater) occurs. The major objective is to
analyze the mechanism of transverse mixing the freshwater and saltwater flow under
uniform (and possibly different) velocities in the two layers. Analytical solutions
given by Thiele and Diersch [513] can be used to verify computational results when
neglecting density effects and excluding chemical reaction.

For the present problem the governing mass transport equation (12.2) written in
2D x � y�coordinates reduces to

<@C
@t
C vx @C

@x
�Dxx

@2C

@x2
�Dyy

@2C

@y2
D 0 (12.54)

with vx D qx
"

, Dxx D D C ˇLvx and Dyy D D C ˇT vx , where C D C.x; y; t/

represents the concentration of the single-species solute (salinity) to be solved. Note
that Dxy D Dyx D 0 since vy D 0 assuming an ideally x�parallel flow in the
aquifer layers. Imposing the following IC and BC’s
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inhomogeneous IC:

C.x; y; 0/ D
�
C1 .0 � y � E/
C2 .E < y � B/ ; .0 � x � L/ (12.55)

BC’s:

C.0; y; t/ D
�
C1 .0 � y � E/
C2 .E < y � B/ (12.56)

@

@x
C.L; y; t/ D 0; @

@y
C.x; 0; t/ D 0; @

@y
C.x;B; t/ D 0 .0 � x � L; 0 � y � B/

(12.57)

an analytical solution for the case of uniform velocity v D vx D v1 D v2 and
neglected molecular diffusionD D 0 can be derived [513]:

C.x; y; t/� C2

C1 � C2
D E

B
C
1X

iD1

�
1

i�
sin
�
i�
E

B

�
cos
�
i�
y

B

�h
exp

� x

2ˇL
.1� Ii /

�
erfc

� x � Ii vt

2
p
vˇLt

�
C

exp
� x

2ˇL
.1C Ii /

�
erfc

� x C Ii vt

2
p
vˇLt

�i
C 2

i�
sin
�
i�
E

B

�
cos
�
i�
y

B

�
exp

�
�i2�2 vˇT t

B2

�
�

h
1� 1

2
erfc

� x � Iivt

2
p
vˇLt

�
� 1

2
exp

� x

ˇL

�
erfc

�x C Ii vt

2
p
vˇLt

�i�

(12.58)

with

Ii D
r

1C 4i2�2

B2
ˇLˇT (12.59)

In using a homogeneous IC in form of C.x; y; 0/ D C2 .0 � x � L; 0 � y � B/
different to (12.55), (12.58) reduces to the Bruch and Street’s analytical solution [60]

C.x; y; t/ � C2
C1 � C2 D E

2B

h
erfc

� x � vt

2
p
vˇLt

�
C exp

� x

ˇL

�
erfc

� x C vt

2
p
vˇLt

�i
C

1X

iD1

�
1

i�
sin
�
i�
E

B

�
cos
�
i�
y

B

�h
exp

� x

2ˇL
.1 � Ii /

�
erfc

� x � Iivt

2
p
vˇLt

�
C

exp
� x

2ˇL
.1C Ii /

�
erfc

�x C Iivt

2
p
vˇLt

�i�

(12.60)

More complex analytical solution is given by Thiele and Diersch [513] for
nonuniform x�parallel velocities v1 ¤ v2 occurring in the two layers. Note that for
evaluating the analytical exp.:/erfc.:/ expressions appearing in (12.58) and (12.60)
the more suitable exf.:; :/ function is used as already introduced in Sect. 12.5.1.



12.5 Examples 647

Table 12.2 Parameters and conditions used for the bilayered aquifer problem

Quantity Symbol Value Unit

Domain shown in Fig. 12.3 with settings
Domain length L 3;500 m
Aquifer thickness B 30 m
Layer 1 thickness E 10 m
Layer 2 thickness F 20 m
Constant horizontal flux q D qx 0:15 m d�1

Porosity " 0:3 1
Constant horizontal velocity v D q

"
0:5 m d�1

Retardation < 1 1
Decay rate # 0 s�1

Molecular diffusion D 0 m2 s�1

Longitudinal dispersivity ˇL 5 m
Transverse dispersivity ˇT 0:5 m
IC and BC

Initial condition (IC) of C (12.55) C0 D
�
C1 .0 	 y 	 E/

C2 .E < y 	 B/

8
<

:

1

0
mg l�1

Dirichlet-type BC at x D 0 (12.56) CD D
�
C1 .0 	 y 	 E/

C2 .E < y 	 B/

8
<

:

1

0
mg l�1

FEM
Nonuniform 2D mesh of 1;000 � 70 linear and quadratic quadrilateral elements, GFEM
Initial time step size 
t0 10�4 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 2;400 d

To compare the numerical results to the analytical solution (12.59) we simulate
the mixing process in the bilayered aquifer for the case of a constant uniform
(steady-state) velocity v D vx D v1 D v2 with parameters and conditions as listed
in Table 12.2. Unspecified BC’s represent boundaries, at which natural BC’s are
imposed (12.57). The 2D cross-sectional model domain is appropriately discretized
by 1;000� 70 quadrilateral elements of both linear and quadratic element type. The
structured mesh is uniformly discretized in x�direction 
x D L=1;000, however,
in y�direction at the layer contact the element thickness 
y is about 4 cm and
gradually increases with the distance from the interface. The computations are
performed with GFEM without any upwind and the adaptive GLS AB/TR predictor-
corrector time stepping. For the matrix equation solution the direct Gaussian
elimination method is preferred.

The simulated breakthrough behavior in comparison to the analytical solution
(12.58) is shown in Fig. 12.4 for two different points located in the upper layer 2.
It reveals a typical nonmonothonic ‘overshooting’ characteristic resulting from the
inhomogeneous IC (12.55) in which the lower layer 1 is fully pre-salinated at initial
time. Those overshooting effects are thoroughly studied by Thiele and Diersch
[513], even for nonuniform velocities in the aquifer layers. As shown in Fig. 12.4
the agreement with the analytical solution is rather well both for linear elements and
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Fig. 12.4 Simulated versus analytical breakthrough curves of salinity C�C2
C1�C2

at two different
points P1.x; y/ D .200m; 12m/ and P2.x; y/ D .1;000m; 12m/ in a bilayered confined aquifer
with uniform velocity v D v1 D v2 and inhomogeneous IC (12.55)
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Fig. 12.5 Simulated salinity contours C�C2
C1�C2

at t D 2;400 d in comparison to the analytical
distribution (vertical exaggeration 10:1, shown domain ranges 0 	 x 	 1;000m, 0 	 y 	
B D 30m) using inhomogeneous IC (12.55). Simulation results based on quadratic element
mesh. Used contouring interval of normalized salinity is 0:025

somewhat better for quadratic elements. This is also illustrated in Fig. 12.5 for the
simulated salinity contours in comparison to the analytical distribution. It indicates
the fully mixing of salinity in the two layers for large distances x and elapsed times
t approaching to a value of .E C1 C F C2/=B D 0:3333.

To expose the breakthrough behavior in contrast to the pre-salinated state of layer
1, Fig. 12.6 exhibits the salinity history at two points in layer 2 for the case in which
both layers are filled by freshwater from beginning. Now, it reveals a monothonic
increase of salinity without any overshoots. The attained numerical findings are
shown in good agreement with the analytical solution, which is in this case given by
Bruch and Street’s expression (12.60).
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Fig. 12.7 Serial-parallel reaction network by Sun et al. [504]

12.5.3 Multispecies Mass Transport with Comparison
to Analytical Solutions

12.5.3.1 Sun et al.’s 1D Serial-Parallel Reaction Problem

Sun et al. [504] present analytical solutions for 1D multispecies transport problems
with serial and parallel reaction kinetics. As an example, the following reaction
network is considered (Fig. 12.7) consisting of five essential species .N ? D 5/. The
species B has three daughter species C1, C2, C3. The reaction network of Fig. 12.7
can be decomposed into three serial reaction chains: A! B ! C1, A! B ! C2
and A ! B ! C3. Accordingly, the following system of transport equations is
considered:
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Table 12.3 Problem parameters used for the 1D multispecies mass transport with serial-parallel
reactions

Quantity Symbol Value Unit

Extended length of column 2L 80 m
Longitudinal dispersivity ˇL 10 m
Pore velocity v 0:4 m d�1

Molecular diffusion D 0 m2 s�1

Dispersion D D D C ˇLv 4:63 � 10�5 m2 s�1

Rate constant of species A kA 0:2 d�1

Rate constant of species B kB 0:1 d�1

Rate constant of species C1 kC1 0:02 d�1

Rate constant of species C2 kC2 0:02 d�1

Rate constant of species C3 kC3 0:02 d�1

Stoichiometric coefficient of A ! B �B 0:5 1
Stoichiometric coefficient of B ! C1 �C1 0:3 1
Stoichiometric coefficient of B ! C2 �C2 0:2 1
Stoichiometric coefficient of B ! C3 �C3 0:1 1
IC’s and BC’s
Initial condition (IC) of Ck Ck;0 0 mg l�1

.k D A;B; C1; C2; C3/

Dirichlet-type BC of species CA at x D 0 CAD 1 mg l�1

Dirichlet-type BC of species Ck at x D 0 CkD 0 mg l�1

.k D B;C1; C2; C3/

Natural BC for species Ck at x D 2L qnkC D �Dr Ck �n 0 gm�2 d�1

.k D A;B; C1; C2; C3/

FEM
Space increment 
x D 2L=600 0:13333 m
Initial time step size 
t0 10�3 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 40 d

@CA
@t
�D @2CA

@x2
C v @CA

@x
D �kA CA

@CB
@t
�D @2CB

@x2
C v @CB

@x
D �B kA CA � kB CB

@CC1
@t
�D @2CC1

@x2
C v @CC1

@x
D �C1 kB CB � kC1 CC1

@CC2
@t
�D @2CC2

@x2
C v @CC2

@x
D �C2 kB CB � kC2 CC2

@CC3
@t
�D @2CC3

@x2
C v @CC3

@x
D �C3 kB CB � kC3 CC3

(12.61)

The RHS’s of (12.61) represent the reaction rates RA, RB , RC1 , RC2 and RC3 .
In (12.61) D D D C ˇL v is a constant dispersion coefficient, x is the 1D
coordinate, v is a constant pore velocity, kk .k D A;B;C1; C2; C2/ are 1st-order
rate constants and �k are corresponding stoichiometric coefficients. All species are
diluted chemicals in a mobile liquid phase. The transport parameters assumed for
this problem are listed in Table 12.3. There is no need to specify the porosity ".

To simulate the 5-species transport problem the column of its double extent 2L is
uniformly discretized by 600 linear elements. The automatic AB/TR time stepping
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procedure is applied. The simulation results can be compared to the analytical
solution presented by Sun et al. [504]. Suppose the following IC’s and BC’s

Ck.x; 0/ D 0 .k D A;B;C1; C2; C2/ x  0
CA.0; t/ D 1 t > 0

Ck.0; t/ D 0 .k D B;C1; C2; C2/ t > 0

Ck.1; t/ D 0 .k D A;B;C1; C2; C2/ t > 0

(12.62)

the basic equation system (12.61) rewritten for the species k in the form

L.Ck/ D �k kk�1 Ck�1 � kk Ck (12.63)

where L.:/ represents the differential operator, can be transformed by introducing
the auxiliary variable ak defined as

ak D Ck C

8
ˆ̂
<

ˆ̂
:

0 k D 1
k�1X

jD1

k�1Y

iDj

�iC1 ki
ki � kk Cj k > 1

(12.64)

to obtain the reactive transport equations in terms of ak , viz.,

L.ak/ D �kk ak 8k D 1; 2; : : : ; N ? (12.65)

Note that for k D 1 the transport equation (12.65) in terms of the first auxiliary
variable is identical to the original equation (12.63) since ak D Ck . The substituted
equations (12.65) can be easily solved by the basic analytical formula

ak.x; t/ D ak0

2
exp

� vx

2D
�
�

exp.�ukx/erfc

�
x � tpv2 C 4kkD

2
pDt

	

C

exp.ukx/erfc

�
x C tpv2 C 4kkD

2
pDt

	�

(12.66)

where

uk D
r

v2

4D2
C kk

D (12.67)

and ak0 is the IC in terms of the auxiliary variable. The solutions of all concen-
trations Ck in the real untransformed domain can be determined by a successive
substitution process using (12.64) in a reverse way
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Table 12.4 Species ID’s
used in Sun et al.’s 1D
problem

ID .D k/ Phase Name

1 Liquid A

2 Liquid B

3 Liquid C1
4 Liquid C2
5 Liquid C3

Ck D ak �

8
ˆ̂
<

ˆ̂
:

0 k D 1
k�1X

jD1

k�1Y

iDj

�iC1 ki
ki � kk Cj k > 1

(12.68)

where ak is the solution from (12.66). Note that for evaluating the analytical
exp.:/erfc.:/ expressions in (12.66) the more suitable exf.:; :/ function is applied
as already introduced in Sect. 12.5.1.

The infinite BC in (12.62) used in the analytical solution cannot be applied in
the numerical context and is replaced by a natural Neumann-type BC imposed at
the outlet boundary section of the double length 2L of the column, cf. Table 12.3.
The reaction kinetics for the present problem is of a degradation type. We employ
FEFLOW’s reaction kinetics editor (see Sect. 5.5.4) to specify the reaction rates Rk
as follows:

R1 D �Rate1 � C1
R2 D 0:5 � Rate1 � C1 � Rate2 � C2
R3 D 0:3 � Rate2 � C2 � Rate3 � C3
R4 D 0:2 � Rate2 � C2 � Rate4 � C4
R5 D 0:1 � Rate2 � C2 � Rate5 � C5

(12.69)

In (12.69) the parameters Ratek represent the reaction constants kk of Table 12.3.
The used species ID’s are linked to the species names and phases as summarized in
Table 12.4. A comparison of the computational results with the analytical solutions
gives perfect agreements as exhibited in Fig. 12.8. The simulation by using the
parameters and conditions as listed in Table 12.3 takes 72 time steps of variable
length.

12.5.3.2 Sun et al.’s 3D First-Order Degradation Reaction
Kinetics Problem

Sun et al. [503] have extended their analytical approach to 3D problems for homo-
geneous parameters and steady-state flow regimes. The solutions are demonstrated
for a four-species transport in a 3D aquifer of L � D � B D 100m � 41m �
25m. For the finite-element analysis the symmetric half-domain is discretized by
120 � 37 � 50 D 222;000 linear brick (hexahedral) elements consisting of 234,498
nodes as shown in Fig. 12.9.
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Fig. 12.8 Concentration profiles for the five species across the column of length L after t D 40

days of serial-parallel reactive transport: comparison of Sun et al.’s exact (analytical) solution to
FEFLOW’s numerical results

First-order reaction rates for the sequential reaction kinetics C1 ! C2 ! C3 !
C4 are given as follows

R1 D �k1 C1
R2 D k1 C1 � k2 C2
R3 D k2 C2 � k3 C3
R4 D k3 C3 � k4 C4

(12.70)
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Fig. 12.9 Discretized 3D aquifer for Sun et al.’s problem. Structured mesh consists of 120�37�50
brick elements for the symmetric half-domain L� D

2
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where kk .k D 1; 2; 3; 4/ are rate constants, which are listed together with the
remaining parameters in Table 12.5. All species are considered mobile in the liquid
phase; porosity " does not play a role. Unspecified BC’s represent boundaries, at
which natural BC’s are imposed.

The obtained results are shown in Figs. 12.10 and 12.11. The concentration
contours reveal differences between the analytical and numerical solutions. In the
finite-element analysis the aquifer is finite and natural Neumann-type BC’s (zero
concentration gradients) are applied at the outer border faces of the discretized
3D domain. Unlike, in the analytical solution the aquifer domain is considered
semi-infinite. Furthermore, Sun et al. [503] used an alternative dispersion model,
where different transverse dispersivities in the horizontal and vertical directions are
applied. In the FEFLOW simulations the Bear-Scheidegger dispersion model (12.3)
is preferred with only one transverse dispersion parameter (Table 12.5).

12.5.3.3 Rate-Limited Desorption and Decay: Comparison
to Fry et al.’s Analytical Solution

Fry et al. [179] studied rate-limited desorption and 1st-order decay on the feasibility
of in situ bioremediation of contaminated groundwater by using analytical solutions.
The conceptual model is shown in Fig. 12.12. A remedial pump-and-treat scheme
is considered assuming conditions of 1D, steady-state groundwater flow through a
homogeneous and isotropic aquifer. The modeled portion of the aquifer is bounded
by injection and extraction wells (see control volume drawn in Fig. 12.12).
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Table 12.5 Problem parameters used for the 3D multispecies mass transport with 1st-order
degradation reaction kinetics

Quantity Symbol Value Unit

Domain measure (length; half-with; thickness)a LI D
2

IB 100I 41
2

I 25 m
Longitudinal dispersivity ˇL 1:5 m
Transverse dispersivity ˇT 0:3 m
Pore velocity v 0:2 m d�1

Molecular diffusion .k D 1; 2; 3; 4/ Dk 0 m2 s�1

Rate constant of species C1 k1 0:05 d�1

Rate constant of species C2 k2 0:02 d�1

Rate constant of species C3 k3 0:01 d�1

Rate constant of species C4 k4 0:005 d�1

IC’s and BC’s
Initial condition (IC) of Ck .k D 1; 2; 3; 4/ Ck;0 0 mg l�1

Dirichlet-type BC of species C1 at C1D 1 mg l�1

.x1 D 0; 0 	 x2 	 5:5m;�2:5m 	 x3 	 2:5m/
Dirichlet-type BC of species C1 at C1D 0 mg l�1

.x1 D 0; x2 > 5:5m; x3 < �2:5m; x3 > 2:5m/
Dirichlet-type BC of species Ck (k D 2; 3; 4) CkD 0 mg l�1

at .x1 D 0; 0 	 x2 	 20:5m;�12:5m 	 x3 	 12:5m/
FEM
3D mesh of 120� 37� 50 brick elements (Fig. 12.9), GFEM and AB/TR
Initial time step size 
t0 10�7 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 400 d
a Measures and origin of coordinate system .x1; x2; x3/ defined in Fig. 12.9

The study concerns a method of restoration of a contaminated aquifer
domain, where organic compounds are degraded by indigenous or introduced
microorganisms. Degradation of the contaminant is represented by a 1st-
order decay, where the rate of degradation is a function of the contaminant
concentration in the aqueous (liquid) phase. Desorption is described using 1st-
order kinetics, where the rate of mass transfer of contaminant from the solid
phase to the aqueous phase depends on the concentration gradient between the
two phases and a single rate coefficient. The following 1D two-species transport
equations are considered (written in the present notation), which is a one-site
kinetic model [351, 542] with linear kinetic sorption and decay in the aqueous
phase:

"
@C

@t
C "s @S

@t
C q @C

@x
�D@

2C

@x2
D �"#C

"s
@S

@t
D "s˛.�sKdC � S/

(12.71)
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C1 C2

C4C3

Fig. 12.10 FEFLOW results of the 3D 0:01 isosurface concentration for the four species C1, C2,
C3 and C4 after t D 400 days

or

"
@C

@t
C q @C

@x
�D@

2C

@x2
D RC

"s
@S

@t
D RS

(12.72)

with

RC D �."# C "s�s˛Kd/C C "s˛S
RS D "s˛.�

sKdC � S/ (12.73)

where C is the aqueous concentration (at liquid phase), S is the sorbed concentra-
tion (at solid phase), D D "D C ˇLq is the hydrodynamic dispersion coefficient,
"s D 1� " is the solid volume fraction, �s is the solid density,Kd is the distribution
coefficient (cf. Table 3.8) and ˛ is the 1st-order desorption rate constant.

The aquifer is initially contaminated and concentrations C and S are uniform
throughout the control volume. Furthermore, the sorbed and aqueous phases are
initially in linear equilibrium as described with the distribution coefficient Kd .
These IC’s are stated as

C.x; 0/ D C0 .0 � x � L/
S.x; 0/ D S0 .0 � x � L/

S0 D �sKdC0

(12.74)

where C0 is the aqueous concentration at t D 0, S0 is the sorbed concentration at
t D 0 and L is the length of the control volume (Fig. 12.12).
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Fig. 12.11 Comparison of Sun et al.’s analytical solution [503] (left) with FEFLOW results
(right): concentration contours of the four species C1, C2, C3 and C4 in the x1 � x2�plane at
x3 D 13m and t D 400 days
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Fig. 12.12 Conceptual model of reacting contaminant transport in groundwater by Fry et al. [179]

At the control-volume inlet .x D 0/ the contaminant flux due to advection and
dispersion is zero at all times. At the control-volume exit .x D L/ the concentrations
are uniform with distance. Thus, the following BC’s hold:

�D@C
@x
.0; t/C qC.0; t/ D 0 t > 0

�D@C
@x
.L; t/ D 0 t > 0

(12.75)

A test case is considered for which the used parameters and conditions are listed in
Table 12.6. Due to the BC’s (12.75) the divergence form of the governing transport
equations is used, which allows the input of the total (advective plus dispersive)
mass flux at the boundary.

The reaction kinetics for the present problem is of a degradation type. We
employ FEFLOW’s reaction kinetics editor (see Sect. 5.5.4) to input the reaction
rates (12.73), which are specified as follows (note that species ID 1 represents the
aqueous species with concentration C � C1 and species ID 2 represents the sorbed
species with concentration S � C2):

R1 D �.Porosity1 � Rate1 C Rate2 � Rb � Kd/ � C1 C Rate2 � SolidFrac2 � C2
Rb D SolidFrac2 � 2:67 Kd D 0:68

R2 D SolidFrac2 � Rate2 � .Rs � Kd � C1 � C2/
Rs D 2:67 Kd D 0:68

(12.76)

The parameters in (12.76) are related to the notation used in (12.73) as follows:
R1 � RC , R2 � RS , Porosity1 � ", Rate1 � # , Rate2 � ˛, Rs � �s , Rb � "s�

s ,
Kd � Kd and SolidFrac2 � "s. The species ID’s are linked to the species names
and phases as summarized in Table 12.7. The FEFLOW results for the problem
are compared with the analytical solutions which are presented by Fry et al. [179].
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Table 12.6 Parameters and conditions used for Fry et al.’s rate-limited desorption and decay
transport problem in a column

Quantity Symbol Value Unit

Column length L 10 m
Constant flux q 0:04 m d�1

Porosity " 0:4 1
Solid volume fraction "s D 1� " 0:6 1
Distribution coefficient Kd 0:68 cm3 g�1

Solid density �s 2:67 g cm�3

Decay rate # 0:1 d�1

Desorption rate constant ˛ 0:01 d�1

Molecular diffusion D 0 m2 s�1

Longitudinal dispersivity ˇL 1 m
Dispersion D D "D C ˇLq 4:63 � 10�7 m2 s�1

IC’s and BC’s
Initial condition (IC) of C C0 1 mg l�1

Initial condition (IC) of S S0 1:816 mg l�1

Natural BC of C at x D 0 qnC D �DrC � nC qC jxD0 0 gm�2 d�1

Natural BC of C at x D L qnC D �DrC � n 0 gm�2 d�1

FEM
Uniform mesh consisting of 300 linear elements, GFEM
Space increment 
x 0:03333 m
Initial time step sizea 
t0 10�5 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 103 d
a In addition, maximum rate of time step change � D 
tnC1


tn
D 2 and maximum time step size


tmax D 0:5 day

Table 12.7 Species ID’s
used in Fry et al.’s 1D
problem

ID .D k/ Phase Name

1 Liquid C

2 Solid S

As shown in Fig. 12.13 very good agreement with the analytical results is obtained.
The FEFLOW simulation takes 2,039 time steps of variable length.

12.5.3.4 Two-Site Equilibrium/Kinetic Sorption with Degradation:
Comparison to STANMOD Analytical Solutions

The two-site sorption concept presumes that sorption or exchange sites in soils can
be classified into two fractions: one fraction (Type-1) on which sorption is assumed
to be instantaneous, and another fraction (Type-2) on which sorption is considered to
be time-dependent. The resulting two-site kinetic model interacts with a solid phase
composed of such different constituents as soil minerals, organic matter and various
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a b

Fig. 12.13 Aqueous (C=C0 , solid lines) and sorbed (S=S0, dashed lines) concentrations versus
distance x at times t D 200 days and t D 1;000 days: (a) Fry et al.’s analytical solution [179]
(pore volumes D tq=."L/) and (b) FEFLOW results

oxides. Studies in transport of pesticides indicate that the two-site kinetic model
may well be suitable [542].

The derivation proceeds in the same fashion as for the one-site sorption model of
the preceding Sect. 12.5.3.3. We introduce two different sorbed concentrations S1
and S2, where the first one is for Type-1 at equilibrium sites and the second one is
for Type-2 at kinetic sites. Because Type-1 sites are always at equilibrium, sorption
onto these sites is given by an adsorption function similar to (5.64), viz.,

S1 D f ' C (12.77)

where C is the aqueous concentration at liquid phase, f is the fraction of exchange
sites assumed to be at equilibrium and ' is a sorption function. The kinetic part S2
is subjected to a kinetic relationship in a form

S2! .1 � f /' C (12.78)

By using the equilibrium sorption (12.77) the Type-1 concentration S1 can be
eliminated (expressed by C ) from the 3-species basic equations and only 2 species
(namely C and S2) have to be solved. Assuming a linear degradation for all species
C , S1 and S2, as well as a Henry-type sorption for S1, we found the following
2-species model equations for a two-site kinetic sorption [517,542] with degradation
written in the present notation:

"s<@C
@t
C q � rC � r � .D � rC/ D RC

"s
@S2

@t
D RS

(12.79)
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with

RC D �
�
˛"s

.1�f /
f
� C "s�#S1 C "s#C


C C ˛"sS2

RS D ˛"s .1�f /f
�C � "s.˛ C #S2/S2

(12.80)

and (cf. Table 3.8)

< D 1C � 1�"
"

�
�

� D f�sKd
(12.81)

where C is the aqueous concentration (at liquid phase), S1 is the Type-1 sorbed
concentration (at solid phase), S2 is the Type-2 sorbed concentration (at solid phase),
"s D 1� " is the solid volume fraction, �s is the solid density,Kd is the distribution
coefficient (cf. Table 3.8), f is the fraction of exchange sites, ˛ is the 1st-order
kinetic rate coefficient, � is the Henry adsorption coefficient (cf. Table 3.8), #S1 is
the decay coefficient of sorbed species S1, #S2 is the decay coefficient of sorbed
species S2 and #C is the decay coefficient of diluted species C . Note that the two-
site adsorption model (12.80) reduces to the one-site fully kinetic adsorption model
comparable to (12.73) if f ! 0, where the .1� f /�=f terms in (12.80) have to be
replaced by .1� f /�sKd .

We solve the above two-site kinetic sorption equations for a 1D domain (column)
of lengthL, for which analytical solutions are available [517,527,542]. To compare
to analytical solutions the following dimensionless parameters are to be defined:

ˇ D <<? ; <
? D 1C

�1 � "
"

� �

f
; ! D ˛.1�ˇ/<? L

v
; Pe D qL

D (12.82)

where q D kqk is the constant 1D flux, v D q=.s"/ is the constant 1D pore velocity
and D D kDk is the dispersion coefficient. With given parameters<?, ˇ and !, the
model parameters �, f and ˛ can be specified as

� D "ˇ.<? � 1/� .1 � ˇ/"
1 � " ; f D �.1� "/

.<? � 1/" ; ˛ D !

.1 � ˇ/<? v
L

(12.83)

Note that ˛ is only defined if ˇ < 1. Equations (12.79) with (12.80) are solved for
an initially solute-free column subject to a pulse-type input BC. The IC’s and BC’s
are stated as

C.x; 0/ D 0 .0 � x � L/
S2.x; 0/ D 0 .0 � x � L/ (12.84)

and

�D@C
@x
.0; t/C qC.0; t/ D

� �qCo 0 < t � to
0 t > to

�D@C
@x
.L; t/ D 0 t > 0

(12.85)
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where Co is the input concentration and to is the time duration of the applied solute
pulse.

We consider the 1D column for a steady-state flow .q D const/ and saturated
conditions .s D 1/. Furthermore, we assume that all decay coefficients are the same,
i.e., # D #C D #S1 D #S2 . Accordingly, a dimensionless decay parameter � is
defined as

� D #L

v
(12.86)

The test case is considered for the dimensionless parameters with ˇ D 0:5, <? D
2:5, ! D 0:5, Pe D 4:7 and � 2 .0I 0:1I 0:3I 0:6I 1:0/. In accordance with (12.83)
the complete dataset used for the numerical simulation is listed in Table 12.8. Due
to the BC’s (12.85) the divergence form of the governing transport equations is
used, which allows the input of the total (advective plus dispersive) mass flux at the
boundary.

The reaction kinetics for the two-site kinetic transport problem is of a degrada-
tion type. We again prefer FEFLOW’s reaction kinetics editor (see Sect. 5.5.4) to
input the reaction rates (12.80), which are specified as follows (note that species
ID 1 represents the aqueous species with concentration C � C1 and species ID 2
represents the sorbed species with concentration S2 � C2):

R1 D �.Rate2 � SolidFrac2 � g �K C SolidFrac2 �K � Rate1C
Porosity1 � Rate1/ � C1 C Rate2 � SolidFrac2 � C2
f D 0:16667 g D .1 � f /=f K D Sorption1

R2 D Rate2 � SolidFrac2 � g �K � C1 � SolidFrac2 � .Rate2 C Rate1/ � C2
f D 0:16667 g D .1 � f /=f K D Sorption1

(12.87)

The parameters in (12.87) are related to the notation used in (12.80) as follows:
R1 � RC , R2 � RS , Porosity1 � ", Rate1 � # , Rate2 � ˛, Sorption1 � � and
SolidFrac2 � "s. The species ID’s are linked to the species names and phases as
summarized in Table 12.9.

The FEFLOW results for the problem are compared with the analytical solutions
which are evaluated by using the STANMOD package [527]. We simulate the
breakthrough characteristics for C and S2 measured at the effluent boundary at x D
L for different decay parameters � (12.86). The plots are related to dimensionless
aqueous and sorbed concentrations and , respectively, defined as

OC D C

Co
; OS2 D S2

�
1�f
f

�
�Co

(12.88)

Figure 12.14 reveals a good agreement with the analytical solutions. The required
number of adaptive AB/TR time steps is about 230.
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Table 12.8 Parameters and conditions used for the two-site kinetic transport problem in a column

Quantity Symbol Value Unit

Column length L 10 m
Constant flux q 0:04 m d�1

Porosity " 0:4 1
Pore velocity v D q

"
0:1 m d�1

Solid volume fraction "s D 1� " 0:6 1
Henry coefficient � 0:16667 1
Fraction of exchange site f 0:16667 1
Kinetic rate coefficient ˛ 0:004 d�1

Decay rate coefficient #

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

0

0:001

0:003

0:006

0:01

d�1

Molecular diffusion D 0 m2 s�1

Longitudinal dispersivity ˇL 2:128 m
Dispersion D D "D C ˇLq 9:85 � 10�7 m2 s�1

IC’s and BC’s
Initial condition (IC) of C C0 0 mg l�1

Initial condition (IC) of S2 S0 0 mg l�1

Input concentration of C Co 1 mg l�1

Pulse duration to 300 d

Neumann-type BC of C at
x D 0

qnC D �DrC � nC qC jxD0
8
<

:

�qCo 0 < t 	 to
0 t > to

gm�2 d�1

Natural BC of C at x D L qnC D �DrC � n 0 gm�2 d�1

FEM
Uniform mesh consisting of 300 linear elements, GFEM
Space increment 
x 0:03333 m
Initial time step size 
t0 10�5 d
RMS error tolerance

(AB/TR)
� 10�4 1

Simulation time period tend 800 d

Table 12.9 Species ID’s
used for the two-site kinetic
transport problem

ID .D k/ Phase Name

1 Liquid C

2 Solid S2

12.5.4 Multispecies Mass Transport of Sequential
and Nonsequential Chlorinated Solvents Degradation
Under Variable Aerobic-Anaerobic Conditions

In contrast to nonsequential (aerobic) degradation of chlorinated solvents, sequential
dehalogenation is performed by anaerobic bacteria that cannot work under aerobic
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a b

Fig. 12.14 FEFLOW results versus STANMOD solutions [527] for effluent breakthrough history
at x D L of (a) aqueous OC and (b) sorbed OS2 concentrations for different decay parameters � at
Pe D 4:7, ˇ D 0:5, ! D 0:5, < D 1:25 and to D 300 days

conditions.9 Both mechanisms can occur in the same contaminant plume depending
on oxygen and nitrate concentrations. Monitoring the chloride released during the
dehalogenation can be useful to locate the areas where dehalogenation occurs and to
estimate degradation rates. This example simulation issues from a benchmark within
the MACAOH (Modélisation, Atténuation, Charactérisation dans les Aquiféres des
composés Organo-Halogénés) project [4] of the French Environment and Energy
Management Agency (ADEME) with various university and private partners.
The project focuses on chlorinated solvents, specifically PCE (perchloroethylene),
TCE (trichloroethylene), DCE (cis- and trans-1,2-dichloroethylene) and VC (vinyl
chloride). The aim of the benchmark was to evaluate the state of the art in the
numerical simulation of the natural degradation of chlorinated solvents in aquifers
in France.

A mixture of PCE and TCE is injected continuously in an initially uncontam-
inated 1D domain containing dissolved oxygen, nitrate and chloride. The initial
aerobic conditions do not allow the degradation of PCE by anaerobic bacteria,
but a slow complete mineralization of TCE is considered. Daughter products of
TCE during the mineralization (H2O and CO2) are not simulated, except chloride
ions. The oxygen concentration decreases as a consequence of the aerobic bacteria
respiration. This behavior continues as long as the concentration of oxygen remains
above a critical level. The reactions take place only in the liquid phase. Reaction
and sorption with the solid phase are neglected.

Wiedemeier et al. [564] explained that anaerobic bacteria cannot work at oxygen
concentrations greater than 0.5 mg l�1. When no more oxygen remains in water,
aerobic bacteria use nitrate. After Wiedemeier et al. [564], anaerobic bacteria can

9FEFLOW results described in this section were obtained by D. Etcheverry✝ and Y. Rossier
(France).
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start the sequential reductive dechlorination of chlorinated solvents under nitrate
concentrations smaller than 1 mg l�1.

In the MACAOH benchmark, it was assumed that the sequential degradation
starts in the presence of nitrate as soon as the oxygen concentration reaches zero.
Thus, once oxygen reaches sufficiently low concentration anywhere in the domain,
the following reductive sequential degradation of chlorinated solvents starts

PCE
HC;2e��! TCEC Cl� HC;2e��! DCEC Cl� HC;2e��! VCC Cl� (12.89)

The concentration of nitrate is supposed to decrease independently of other species,
as soon as the oxygen concentration reaches zero, following a simple 1st-order
degradation law.

The 1D equations of transport for the homogeneous reaction of nonretarded
parent and daughter species can be written as

"
@Ck

@t
�D@

2Ck

@x2
C q @Ck

@x
D "�ıkkanae

k Ck � .1 � ık/kae
k Ck



"
@Cj

@t
�D@

2Cj

@x2
C q @Cj

@x
D "�ıj kanae

j Cj � ıj �k;j kanae
k Ck � .1 � ıj /kae

j Cj


(12.90)

where k denotes the parent species (PCE to DCE), j the daughter product (TCE to
VC),Ck andCj the concentration of species k and j , respectively,kae

k , kae
j , kanae

k and
kanae
j the 1st-order decay constants of species k and j under aerobic and anaerobic

conditions, respectively, �k;j the stoichiometric coefficient for the degradation of
species k to produce species j , ık and ıj functions equal to 0 for degradation in
aerobic conditions and equal to 1 for degradation in anaerobic conditions.

The reaction rates appearing on RHS’s of (12.90) are described as follows:

Chlorinated solvents:
Under aerobic conditions, there is no sequential degradation and the reaction
rates Rae

PCE;TCE;DCE;VC of chlorinated solvents in aerobic conditions simplify to

Rae
PCE D 0

Rae
TCE D �".kae

TCECTCE/

Rae
DCE D �".kae

DCE CDCE/

Rae
VC D �".kae

VC CVC/

(12.91)

Under anaerobic conditions, the sequential degradation from PCE to VC leads to
reaction rates Ranae

PCE;TCE;DCE;VC defined as follows
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Table 12.10 1st-order decay
rates and stoichiometric
coefficients used for the
MACAOH benchmark
example

Species k kanae
k (d�1) kae

k (d�1) �k;j (1)

PCE 0.03 0 –
TCE 0.09 0.009 �PCE;TCE D 0:792

DCE 0.009 0.15 �TCE;DCE D 0:738

VC 0 0.24 �DCE;VC D 0:644

O2 0 0 –
NO3� 0.1 0 –
Cl� 0 0 –

Ranae
PCE D �".kanae

PCECPCE/

Ranae
TCE D �".kanae

TCECTCE � �PCE;TCE k
anae
PCE CPCE/

Ranae
DCE D �".kanae

DCECDCE � �TCE;DCE k
anae
TCE CTCE/

Ranae
VC D �".kanae

VC CVC � �DCE;VC k
anae
DCE CDCE/

(12.92)

Except for PCE that has no parent species, all reaction rates are made of
an independent degradation term and of a production term dependent on the
degradation of the parent species.

Oxygen:
Aerobic bacteria do not use oxygen in definite proportions during their respi-
ration. The oxygen consumption was arbitrarily defined in the benchmark as
follows

@CO2

@t
D 4:5@CTCE

@t
C 4@CDCE

@t
C 3:5@CVC

@t
(12.93)

From the conceptual model, the terms in DCE and VC are superfluous because
they are not present in the system at the initial state and because TCE does
not degrade into those compounds in aerobic conditions. Thus in this example
simulation there cannot be DCE or VC under aerobic conditions and it follows
from (12.93) that

Rae
O2 D 4:5Rae

TCE C 4Rae
DCE C 3:5Rae

VC (12.94)

By definition there is no oxygen in anaerobic conditions, so that

Ranae
O2 D 0 (12.95)

Chloride:
Chloride is released into the groundwater during the dehalogenation of chlori-
nated solvents. The relation

@CCl�

@t
D �1:068@CTCE

@t
� 0:712@CDCE

@t
� 0:552@CVC

@t
(12.96)
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Table 12.11 Parameters and conditions used for the MACAOH benchmark example

Quantity Symbol Value Unit

Column length L 250 m
Constant flux q 0:4 m d�1

Porosity " 0:4 1
Pore velocity v D q

"
1 m d�1

Decay rates and stoichiometric coefficients of species: k D PCE;TCE;DCE;VC;O2;NO3�;Cl�

are listed in Table 12.10
Longitudinal dispersivity ˇL 1 m
Retardation factor (no adsorption) < D K< 1 1
Molecular diffusion D 1 � 10�9 m2 s�1

Dispersion D D "D C ˇLq 4:63 � 10�6 m2 s�1

IC’s and BC’s
Initial condition (IC) of CPCE CPCE;0 0 mg l�1

Initial condition (IC) of CTCE CTCE;0 0 mg l�1

Initial condition (IC) of CDCE CDCE;0 0 mg l�1

Initial condition (IC) of CVC CVC;0 0 mg l�1

Initial condition (IC) of CO2 CO2;0 10 mg l�1

Initial condition (IC) of CNO3� CNO3� ;0 20 mg l�1

Initial condition (IC) of CCl� CCl� ;0 15 mg l�1

Dirichlet-type BC of species CPCE

at x D 0

CPCED 3 mg l�1

Dirichlet-type BC of species CTCE

at x D 0

CTCED 5 mg l�1

Dirichlet-type BC of species CDCE

at x D 0

CDCED 0 mg l�1

Dirichlet-type BC of species CVC

at x D 0

CVCD 0 mg l�1

Dirichlet-type BC of species CO2
at x D 0

CO2 D 10 mg l�1

Dirichlet-type BC of species
CNO3� at x D 0

CNO3�D 20 mg l�1

Dirichlet-type BC of species CCl�

at x D 0

CCl�D 15 mg l�1

Natural BC of all species k at
x D L

qnkC D �DrCk �n 0 gm�2 d�1

FEM
Uniform mesh consisting of 250 linear elements, GFEM
Space increment 
x 1 m
Initial time step sizea 
t0 10�3 d
Maximum error tolerance (FE/BE) � 10�4 1
Simulation time period tend 365 d
a In addition, maximum rate of time step change � D 
tnC1


tn
D 1:1 and maximum time step size


tmax D 0:5 day
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Table 12.12 Reaction rates as defined in FEFLOW’s reaction kinetics editor (cf. Sect. 5.5.4)

Reaction rate Rk .k D PCE;TCE;DCE;VC;O2;NO3�;Cl�/ Comment

RPCE D
8
<

:

�".kanae
PCECPCE/ if CO2 < 0:1

0 otherwise
kae

PCE D 0

RTCE D
8
<

:

�".kanae
TCECTCE � �PCE;TCEk

anae
PCECPCE/ if CO2 < 0:1

�".kae
TCECTCE/ otherwise

RDCE D
8
<

:

�".kanae
DCECDCE � �TCE;DCEk

anae
TCECTCE/ if CO2 < 0:1

�".kae
DCECDCE/ otherwise

Degradation is
supposed under
aerobic conditions

RVC D
8
<

:

�".0� �DCE;VCk
anae
DCECDCE/ if CO2 < 0:1

�".kae
VCCVC/ otherwise

No VC decay in
anaerobic
conditions
.kanae

VC D 0/ but
decay supposed
under aerobic
conditions

RO2 D
8
ˆ̂
<̂

ˆ̂
:̂

�".4:5kae
TCECTCE C 4kae

DCECDCEC
3:5kae

VCCVC/ if CO2 > 0:05

0 otherwise

RNO3� D
8
<

:

�".kanae
NO3�CNO3� / if CO2 < 0:1

0 otherwise
Decay of nitrate

starts under
anaerobic
conditions

RCl� D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

".0:208kanae
PCECPCE C 0:262kanae

TCECTCEC
0:356kanae

DCECDCE C 0:552kanae
VC CVC/ if CO2 < 0:1

".1:068kae
TCECTCE C 0:712kae

DCECDCEC
0:552kae

VCCVC/ otherwise

is assumed under aerobic conditions, i.e., in terms of reaction rates

Rae
Cl� D �1:068Rae

TCE � 0:712Rae
DCE � 0:552Rae

VC (12.97)

For reductive dechlorination, different dechlorination kinetics is assumed, viz.,

@CCl�

@t
D �0:208@CPCE

@t
�0:262@CTCE

@t
�0:356@CDCE

@t
�0:552@CVC

@t
(12.98)

and

Ranae
Cl� D �0:208Ranae

PCE � 0:262Ranae
TCE � 0:356Ranae

DCE � 0:552Ranae
VC (12.99)

Nitrate:
Nitrate is supposed to degrade at a given independent rate if the oxygen
concentration is zero, which leads to the following reaction rates
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a

b

Fig. 12.15 Computed concentration profiles along the x�axis at 150 days for (a) oxygen, nitrate,
chloride and (b) chlorinated solvents

Rae
NO3� D 0

Ranae
NO3� D �".kanae

NO3� CNO3�/
(12.100)

1D steady flow and transient transport are supposed. The seven species simulated
are PCE, TCE, DCE, VC, oxygen, nitrate and chloride. The aquifer length is 250m,
a constant Darcy flux q of 0:4m d�1 is considered. For all species, porosity " is 0.4,
longitudinal dispersivity ˇL is 1m and retardation factor < is 1. Steady Dirichlet-
type species BC’s of 3mg l�1 for PCE, 5mg l�1 for TCE, 0mg l�1 for DCE and VC,
10mg l�1 for oxygen, 20mg l�1 for nitrate and 15mg l�1 for chloride are applied at
x D 0. IC’s are assumed uniform, corresponding to the BC for oxygen, nitrate
and chloride, and to zero for all chlorinated solvents. The 1st-order decay rates and



670 12 Mass Transport in Porous Media with and Without Chemical Reactions

-5

0

5

10

15

20

25

0 50 100 150 200 250

x [m]

ci
l

g
m[

1-
]

O2 NO3- Cl- Cl_ae_analytic
O2_analytic NO3_analytic Cl_anae_analytic

0

1

2

3

4

5

6

0 50 100 150 200 250

x [m]

ci
l

g
m[

1-
]

PCE TCE DCE VC
PCE_analytic TCE_analytic DCE_analytic VC_analytic

a

b

Fig. 12.16 Simulated versus analytical concentration profiles along the x�axis at steady state
(365 days) for (a) oxygen, nitrate, chloride and (b) PCE, TCE, DCE, and VC. Dashed lines
represent analytical solutions

stoichiometric coefficients are given in Table 12.10. Table 12.11 summarizes the
simulation parameters and used conditions.

FEFLOW’s versatile reaction kinetics editor (see Sect. 5.5.4) allows to easily
define complex reaction rates. Particularly useful is the ‘if otherwise’ construct to
switch between aerobic and anaerobic behavior controlled via an oxygen concen-
tration limit bounding the oxygen consumption below. It allows the combination
of aerobic and anaerobic reaction rates in one composite reaction rate Rk for each
species k. The reaction rates are entered in FEFLOW’s reaction kinetics editor as
listed in Table 12.12.
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The simulation results are shown in Figs. 12.15 and 12.16 displaying the extent
of the aerobic zone versus the anaerobic zone. At 150 days steady state is reached
from x D 0 to x D 65m for all species. Two separate aerobic zones appear
from x D 0 to 65m and from x D 165m to the outlet. Anaerobic conditions
are found between these two zones allowing the degradation of nitrate and the
sequential degradation of PCE into TCE, DCE and VC. Under aerobic conditions
the fast increase in chloride is a result of the complete mineralization kinetics
of TCE. After 365 days the anaerobic zone extends from x D 65m to the
outlet. The sequential degradation of chlorinated solvents leads to an accumulation
of VC. The analytical solutions are obtained for each species, for the aerobic
domain first, then for the anaerobic domain, by applying the decoupling solution
of Sun et al. [503] (cf. Sect. 12.5.3). No method was found to solve the problem
analytically in transient state because the solution must include a switching term
between aerobic and anaerobic rates of reactions as a function of the oxygen
concentrations, which are varying in space and in time. On the other hand, steady
state offers by definition a stable space and time limit between aerobic and
anaerobic conditions. Thus, it is possible to solve first the aerobic domain, and
to take the concentrations calculated at the end of the domain as BC’s for the
calculations in the anaerobic domain. To avoid the development of a solution for
parallel reactions, the contributions of each chlorinated solvent to the production of
chloride under anaerobic conditions are solved separately and added to the chloride
concentration obtained at steady state at the end of the aerobic zone. As revealed in
Fig. 12.16 the numerical results for all species are quasi identical to the analytical
solutions.



Chapter 13
Heat Transport in Porous Media

13.1 Introduction

In this chapter we discuss the finite-element computation of heat (thermal energy)
transport in porous media. Nonisothermal porous-medium processes can be found
in many areas of application to natural and engineered systems, for instance
exploitation of geothermal reservoirs as a viable and renewable source of energy,
underground energy storage and recovery for heating and cooling purposes, waste
disposal of heat-generating materials, chemical reactor engineering, insulation of
buildings, material technology and many others. Modern industrial developments
have expanded significantly the fields, where numerical simulation is required as a
powerful tool to aid the design and operation of equipments. Of increasing interests
are geothermal technologies in form of various heat exchanger systems in the
underground to extract and/or to store thermal energy either in deep or even in
shallow geologic formations by using open or closed geothermal systems, e.g., [25].
Here, geothermal heat pumps constitute a very attractive technology of a ground
heat exchanger, equipped with a pipe network in which liquid (refrigerant) circulates
in a closed loop, applied to shallow geothermal systems (usually not deeper than
250 m below the ground surface). Borehole heat exchanger (BHE) has shown a very
suitable and cost-effective technology for both ground heat extraction and storage.
However, its modeling requires specific concern due to the extreme slenderness of
BHE’s, where the pipes are in the order of 30 mm in diameter, the diameter of the
borehole is in the order of 150 mm, the length of the borehole is in the order of
100 m and the extent of the model domain comprises hundreds or even thousands of
meters.

The focus of the present chapter is in the formulation and numerical treatment
of the governing porous-medium heat transport equations, including specific devel-
opments for BHE modeling. The solutions are associated with flow computations
occurring in saturated or variably saturated porous media, under variable-density
flow conditions or in combination with reactive mass transport which are subject of
the preceding Chaps. 9–12, respectively.

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5 13,
© Springer-Verlag Berlin Heidelberg 2014
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13.2 Basic Equations

13.2.1 3D, Vertical 2D and Axisymmetric Problems

The governing PDE’s for 3D and vertical 2D (including axisymmetric) heat
transport in porous media have been developed in Sect. 3.10.5 and summarized in
Table 3.7. A major assumption is that the liquid and solid phases forming the porous
medium are considered in a local thermodynamic equilibrium (3.241) leading to a
unified system temperature T and a parallel behavior of thermal conductivities for
the summed conservation equation of energy (first law of thermodynamics) written
in its divergence form1 as

@

@t

h�
"s�cC.1�"/�scs�.T �T0/

i
Cr � .�cq.T �T0//�r � .Λ �rT / D QT CQTw

(13.1)
and its convective form as

�
"s�cC .1� "/�scs�@T

@t
C �cq � rT �r � .Λ � rT / D QT CQTw � �c.T �T0/Q

(13.2)
associated with the constitutive relations

Λ D Λ0 CΛs
0 C �cDmech

Λ0 D "s�δ isotropic thermal conductivity of liquid

Λs
0 D

8
ˆ̂
<̂

ˆ̂
:̂

.1 � "/�sδ isotropic thermal conductivity of solid

.1 � "/�s
0

B
@

1 0 0

0 1 0

0 0 ��aniso

1

C
A anisotropic thermal conductivity of solid in 3D

Dmech D ˇT kqkδ C .ˇL � ˇT /q˝q
kqk

QT D �H? C �sH?
s

(13.3)

where the source/sink term He D �H C �sHs D QT C QTw is suitably split
into the supply term QT D �H? C �sH?

s and well-type SPC term QTw. Similarly,
the liquid sink/source term will be split by Q D Qh C Qhw. Furthermore, axis-
parallel anisotropy for the solid thermal concuctivity Λs

0 is optionally available in
3D according to (7.27) introducing the thermal anisotropy factor ��

aniso (7.26).
The heat transport equation (13.1) or (13.2) has to be solved for the temperature

T subject to a set of BC’s of Dirichlet, Neumann and Cauchy type as well as well-
type SPC (see Sect. 6.3.3), which is for the divergence form

1The divergence form (13.1) assumes that the specific heat capacities c and cs are independent of
T (cf. Sect. 3.9.1). Contrarily, the convective form (13.2) does not imply such an assumption.
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T D TD on �DT � t Œt0;1/
�
.T � T0/�cq �Λ � rT � �n D q

�
T on �NT � t Œt0;1/

�
.T � T0/�cq �Λ � rT � �n D �˚�

T .TC � T / on �CT � t Œt0;1/

QTw D �P
w.Tw � T0/�cQw.t /ı.x� xw/ on xw 2 ˝ � t Œt0;1/

(13.4)

and for the convective form

T D TD on �DT � t Œt0;1/

�.Λ � rT / � n D qT on �NT � t Œt0;1/

�.Λ � rT / � n D �˚T .TC � T / on �CT � t Œt0;1/

QTw D �P
w.Tw � T /�cQw.t /ı.x� xw/ on xw 2 ˝ � t Œt0;1/

(13.5)

in combination with the IC of the form

T .x; t0/ D T0.x/ in N̋ (13.6)

where the total boundary is � D �DT [ �NT [ �CT . The normal heat fluxes
on �NT and �CT differ between the divergence form and the convective form. As
already discussed in Sects. 2.2.2 and 6.3.3 the divergence form imposes the total
(advective plus conductive) boundary heat flux, while the convective form imposes
a conductive heat flux on the boundary. However, the convective form can also be
used to express a heat flux BC of an advective load by specifying the Cauchy-type
BC in the form

� .Λ � rT / � n D �˚T„ƒ‚…
�cq�n

. TC„ƒ‚…
q
�
T

�cq�n CT0

�T / (13.7)

to obtain
�
.T � T0/�cq �Λ � rT

� � n D q�T D �cq � n.TC � T0/ (13.8)

for a given advective normal boundary flux q � n and a boundary temperature
difference TC � T0, which is equivalent to a Neumann-type BC of the divergence
form (cf. Sect. 6.3.3.3). Note further that OBC as discussed in Sect. 6.5.7 represents
a special form of Neumann-type BC on �NO � �NT � � , which will be treated
either as a natural Neumann-type BC with �.Λ � rT / � n 	 0 or as implicit OBC
(cf. Sect. 8.5.3).

The heat transfer coefficients ˚�
T and ˚T appearing in the Cauchy-type BC’s

(13.4) and (13.5), respectively, can be expressed by thermal resistances of composite
materials in the form (exemplified for ˚T according to (6.48), cf. Sect. 6.3.3.3)

˚T D 1

S
P

i Ri
(13.9)
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where S is a specific exchange area and Ri is the specific thermal resistance of
material i , for which typical cases are described in Appendix E.

The Cauchy-type BC can also be utilized to model radiative heat transfer on
heated (solid) surfaces. The boundary heat flux for this type of thermal radiation
can be given by Kaviany [305]

� .Λ � rT / � n D F�.T 4 � T 40 / (13.10)

where � is the Stefan-Boltzmann constant and F is a form factor. The form factor
F is related to the boundary emissivity and the position of the boundary relative
to surrounding surfaces. The expression of thermal radiation (13.10) leads to a
nonlinear heat transfer coefficient in the form

˚T D F�.T C T0/.T 2 C T 20 / (13.11)

This type of radiation Cauchy-type BC is appropriate when a surface radiates to a
black body environment that can be characterized by a single temperature.

The essential parameters required for solving (13.1) and (13.2) with (13.4)–
(13.6) are listed in Table I.16 of Appendix I . Steady-state heat transport conditions
occur if @T=@t approaches to zero.2

13.2.2 Horizontal 2D Problems

The basic equations for the essentially horizontal, vertically averaged heat transport
in unconfined and confined aquifers have been developed in Sect. 3.10.7 and sum-
marized in Tables 3.10 and 3.11, respectively. The following 2D depth-integrated
heat transport equations result

@

@t

h
B
�
"�cC.1�"/�scs�.T �T0/

i
Cr �.�c Nq.T �T0//�r �. NΛ �rT / D NQT C NQTw

(13.12)

written in the divergence form and

B
�
"�cC .1� "/�scs�@T

@t
C�c Nq � rT �r � . NΛ � rT / D NQT C NQTw��c.T �T0/ NQ

(13.13)

written in the convective form, which are associated with the constitutive relations

2Optionally, FEFLOW suppresses the time derivative term @T=@t for solving steady-state solu-
tions. A specific option exists, named steady flow – transient transport, in which the advective
flow vector q is invariant with time.
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B D
(
h � f B unconfined
f T � f B confined

NΛ D NΛ0 C NΛs
0 C �c NDmech

NΛ0 D B"�δ isotropic thermal conductivity of liquid

NΛs
0 D

8
ˆ̂
<̂

ˆ̂
:̂

B.1 � "/�sδ isotropic thermal conductivity of solid

B.1 � "/�s
0

B
@

1 0 0

0 1 0

0 0 ��aniso

1

C
A anisotropic thermal conductivity of solid in 3D

NDmech D ˇT k Nqkδ C .ˇL � ˇT / Nq˝ Nq
k NqkNQT D B.�H? C �sH?

s /

(13.14)

where similarly the source/sink term NHe D B.�H C �sHs/ D NQT C NQTw is
suitably split into the depth-integrated supply term NQT D B.�H? C �sH?

s / and
depth-integrated well-type SPC term NQTw. The solution of (13.12) or (13.13) for
the temperature T is associated with the following BC’s of Dirichlet, Neumann and
Cauchy type as well as well-type SPC

T D TD on �DT � t Œt0;1/�
.T � T0/�c Nq � NΛ � rT

� � n D Nq�T on �NT � t Œt0;1/�
.T � T0/�c Nq � NΛ � rT

� � n D � N̊ �T .TC � T / on �CT � t Œt0;1/NQTw D �Pw.Tw � T0/�c on xw 2 ˝ � t Œt0;1/
Qw.t/ı.x � xw/

(13.15)

written for the divergence form of the heat transport equation and

T D TD on �DT � t Œt0;1/
�. NΛ � rT / � n D NqT on �NT � t Œt0;1/
�. NΛ � rT / � n D � N̊T .TC � T / on �CT � t Œt0;1/NQTw D �Pw.Tw � T /�cQw.t/ı.x � xw/ on xw 2 ˝ � t Œt0;1/

(13.16)

written for the convective form of the heat transport equation, imposed on � D
�CT [ �NT [ �CT and with the IC of the form

T .x; t0/ D T0.x/ in N̋ (13.17)

The essential parameters required for solving (13.12) and (13.13) with (13.15),
(13.16) and (13.17) are listed in Table I.17 of Appendix I.
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13.3 Finite Element Formulation

The governing ADE’s for heat transport are mathematically similar to the paradig-
matic ADE of a scalar quantity used in Chap. 8 to describe the fundamental concepts
of FEM. Based on the principles given in Chap. 8 we use now the GFEM to solve
the governing heat transport equations (13.1) and (13.2) subject to the corresponding
BC’s (13.4), (13.5) and IC (13.6). Since most of the details are equivalent to the ADE
developments given in Chap. 8 we shall focus here only on the specific aspects of
heat transport. For convenience we restrict our developments to 3D, vertical 2D
and axisymmetric heat transport problems (Sect. 13.2.1). The formulations for the
horizontal 2D heat transport in unconfined and confined aquifers (Sect. 13.2.2) will
appear rather similar and can be easily deduced from the given statements.

13.3.1 Weak Forms

In analogy to the statements (8.48) and (8.55) of Sect. 8.5 we find the corresponding
weak forms for the governing heat transport equation written in the divergence form
(13.1) as

Z

˝

w
@

@t

h�
"s�c C .1 � "/�scs�.T � T0/

i
d˝ �

Z

˝

.T � T0/�cq � rwd˝ C
Z

˝

rw � .Λ � rT /d˝ �
Z

˝

wQTd˝ C
X

w

w.xw/.Tw � T0/�cQw.t/C
Z

�NT

wq�T d� �
Z

�CT

w˚�
T .TC � T /d� D 0; 8w 2 H1

0 .˝/

(13.18)

and written in the convective form (13.2) as

Z

˝
w
�
"s�c C .1 � "/�scs�@T

@t
d˝ C

Z

˝
w�cq � rTd˝ C

Z

˝
rw � .Λ � rT /d˝C

Z

˝
wŒ�cQh.T � T0/�QT �d˝ C

X

w

w.xw/.Tw � T /�cQw.t/C
Z

�NT

wqT d� �
Z

�CT

w˚T .TC � T /d� D 0; 8w 2 H1
0 .˝/

(13.19)

where w is a suitable weighting function and the boundary integrals are suitably
separated into their segments � D �DT [ �NT [ �CT imposed by the Dirichlet,
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Neumann and Cauchy-type BC’s (13.4) and (13.5). OBC on �NO � �NT represents
special implementations of Neumann-type BC.3

13.3.2 GFEM and Resulting Matrix System

In using the FEM the unknown temperature variable T appearing in the weak
statements (13.18) and (13.19) is replaced by a continuous approximation that
assumes the separability of space and time (see Sect. 8.4). Thus

T .x; t/ 	
X

j

Nj .x/Tj .t/; j D 1; : : : ; NP (13.20)

where j designates global nodal indices. Using the Galerkin method with the
weighting function

w! wi D Ni ; i D 1; : : : ; NP (13.21)

and applying the approximate solutions (13.20) in (13.18) and (13.19), the following
matrix system of NP equations (cf. Sect. 8.9) results

P � PT CL � T �W D 0 (13.22)

3A boundary with OBC on �NO can be separated from the Neumann boundary �NT so that for the
divergence form

Z

�NT

wq�T d� D
Z

�NT n�NO

wq�T d� C
Z

�NO

w
�
.T � T0/�cq �Λ � rT � � nd�

and for the convective form
Z

�NT

wqT d� D
Z

�NT n�NO

wqT d� �
Z

�NO

w.Λ � rT / � nd�

The implicit treatment of OBC requires the incorporation of the �NO�integrals into the LHS of the
resulting matrix system (see below). In contrast, a natural Neumann-type BC with �.Λ�rT /�n �
0 on �NO is often the preferred alternative formulation for an OBC. Note, however, that for both
cases in the divergence form the boundary flux q �nmust be known a priori. The boundary flux q �n
can be either explicitly given from a Neumann-type BC qh D q �n for flow or must be computed by
a postprocessing budget evaluation of the flow equation on the corresponding outflowing boundary
section imposed by Dirichlet-type or Cauchy-type BC of flow.
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where

T D

0

B
B
B
@

T1
T2
:::

TNP

1

C
C
C
A
; PT D

0

B
B
B
B
B
B
@

dT1
dt

dT2
dt

:::

dTNP
dt

1

C
C
C
C
C
C
A

(13.23)

and the matrices and RHS vector

P D Hij D
X

e

Z

˝e

�
"ese�ece C .1 � "e/�s ecs e�NiNj d˝e

L D Lij D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

X

e

�
�
Z

˝e

�eceqe � rNiNj d˝e C
Z

˝e

rNi � .Λe � rNj /d˝eC
Z

� eCT

˚
�e

T NiNj d�
e C

Z

� eNO

Ni .�
eceqeNj �Λe � rNj / � nd� e

�

divergence form
X

e

�Z

˝e

Ni�
eceqe � rNjd˝e C

Z

˝e

rNi � .Λe � rNj /d˝eC
Z

˝e

�eceQe
hNiNj d˝

e C
Z

� eCT

˚e
T NiNj d�

e�
Z

� eNO

Ni .Λ
e � rNj / � nd� e

�
� ıij �cQw.t/

ˇ
ˇ
i

convective form

W D Wi D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

X

e

�
�
Z

˝e

�eceqe � rNiT0d˝e C
Z

˝e

NiQ
e
T d˝

eC
Z

� eCT

Ni˚
�e

T T
e
C d�

e C
Z

� eNO

Ni�
eceT0 q

e � nd� e�
Z

� eNT
n� eNO

Ni q
�e

T d�
e
�
� .Tw � T0/�cQw.t/

ˇ
ˇ
i

divergence form

X

e

�Z

˝e

Ni .Q
e
T C �eceQe

hT0/d˝
e C

Z

� eCT

Ni˚
e
T T

e
C d�

e�
Z

� eNT
n� eNO

Ni q
e
T d�

e
�
� Tw�cQw.t/

ˇ
ˇ
i

convective form

(13.24)

where .i; j D 1; : : : ; NP/ and .e D 1; : : : ; NE/. Note that we assumed in
the divergence form that the spatial and temporal derivative terms related to the
reference temperature T0 are negligible. The integrals appearing in (13.24) are
integrated on element level in the local coordinates as described in Sect. 8.12.
Analytical evaluations of partial integral terms of (13.24) can be deduced from
developments done in Appendix H for selected element types. The differential
elements d˝e and d� e differ for 3D, 2D and axisymmetric problems as given
by (8.122)–(8.124), respectively. Is is important to note that the resulting global
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system of equations (13.22) is unsymmetric since the matrix L is unsymmetric due
to advection.

For advective-dominant heat transport the discretized system (13.22) can be
easily combined with upwind strategies as introduced in Sect. 8.14. Useful upwind
strategies refer to the SU and FU methods (Sect. 8.14.3), SC method (Sect. 8.14.4)
and PGLS method (Sect. 8.14.5), in which the tensor of mechanical dispersion
Dmech as part of the hydrodynamic thermodispersion tensor Λ is appropriately
modified by stabilization terms in dependence on the actual spatial and temporal
discretizations or temperature gradients. The required modifications of De

mech for
each element e were discussed in the preceding Sect. 11.6.3 and summarized in
Table 11.3.

13.3.3 Time Integration

The resulting matrix system (13.22) has to be solved in time t with the associated
IC’s via suitable single-step semi-implicit or fully implicit time marching recurrence
schemes as described in Sect. 8.13. The GLS predictor-corrector time stepping
method combined with an automatic error-controlled time step selection strategy is
usually preferred. Its solution steps applied to the heat transport are fully equivalent
to the procedures as thoroughly described above in Sect. 8.13.5 (summarized in
Table 8.7) for a general ADE, in Sect. 10.7.5 for unsaturated flow, in Sect. 11.6.4
for density-variable flow, mass and heat transport and in Sect. 12.3.3 for reactive
mass transport. In the context of heat transport the (corrector) recurrence scheme
reads

� P

�
tn
CL

�
� TnC1 D P �

h Tn

�
tn
C � 1

�
� 1� PTn

i
CWnC1 (13.25)

to solve TnC1 at the new time plane n C 1, where � 2 . 1
2
; 1/ for the TR and BE

scheme, respectively. On the other hand, for user-defined (fixed) time step sizes
tn
the ��method (Sect. 8.13.4) is applicable

� P


tn
CL�

�
�TnC1 D

� P


tn
�L.1��/

�
�TnC

�
WnC1�CWn.1��/

�
(13.26)

where � 2 . 1
2
; 2
3
; 1/ for the Crank-Nicolson, the Galerkin-in-time and the fully

implicit scheme, respectively.

13.4 Heat Budget Analysis

The CBFM is used, as introduced in Sect. 8.19.2, to obtain a precise heat budget
analysis. It is based on the specific weak formulations of the governing heat
transport equations. The corresponding boundary heat fluxes on � have to be
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evaluated from the basic weak statements (13.18) and (13.19) of the divergence
and convective form, respectively, written as

Z

�

Ni q
�
nT
d� D �

Z

˝

Ni
@

@t

h�
"s�c C .1 � "/�scs�.T � T0/

i
d˝ C

Z

˝

.T � T0/�cq � rNid˝ �
Z

˝

rNi � .Λ � rT /d˝ C
Z

˝

NiQT d˝ �

.Tw � T0/�cQw.t/ji (13.27)
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Ni qnT d� D �
Z

˝

Ni
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"s�c C .1 � "/�scs�@T
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d˝ �

Z

˝

Ni�cq � rTd˝ �
Z

˝

rNi � .Λ � rT /d˝ �
Z

˝

Ni Œ�cQh.T � T0/ �QT �d˝ �

.Tw � T /�cQw.t/ji (13.28)

to compute q�nT or qnT , where T is known at evaluation time tnC1. Note that the
boundary heat flux q�nT D

�
.T � T0/�cq �Dk � rT

� � n of the divergence form
encompasses the total heat flux consisting of the advective and dispersive parts,
while the boundary heat flux qnT D �.Λ � rT / � n of the convective form consists
only of the dispersive part. Accordingly, for the convective form an additional
balance expression of the missing advective part qanT D .T � T0/�cq � n to obtain

q
�
nT D qnT C qanT is needed. This is attained by using an auxiliary weak formulation

applied to the governing flow equation (10.5) as described in Sect. 8.19.2.4. We find

Z
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Ni q
a
nT
d� D �

Z

˝

�crNi � ŒkrKf� � .rhC �e/�.T � T0/d˝ �
Z

˝

�cNirT � ŒkrKf� � .rhC �e/�d˝ C
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�cNi .T � T0/
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@h

@t
C "@s

@t

�
d˝ (13.29)

to compute qanT , where h, s and T are known at evaluation time tnC1. Expanding the
boundary flux on � as described in Sect. 8.19.2 the following matrix system results
to solve the consistent boundary total heat flux vector q�nT , viz.,

M � q�nT D �P � PT � L� � T CW �

�
�

0 divergence form

V .h/ � .T � T0/CA.T / � h � F .T ; s; Ph; Ps/ convective form

(13.30)
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with known T , T0, PT , h, Ph, s and Ps at the corresponding evaluation time tnC1,
where P is defined in (13.24) and

M D Mij D
R
�
NiNjd�

L� D L�ij D

8
ˆ̂
<̂

ˆ̂
:̂

� R
˝
�cq � rNiNjd˝ C
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i

convective form
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divergence form
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convective form
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A D Aij D
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ˇ
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(13.31)

in which .i; j D 1; : : : ; NP/ and .e D 1; : : : ; NE/. Note that the spatial and temporal
derivative terms in the divergence form related to the reference temperature T0
are again neglected. Furthermore, note that V , A and F are only needed for the
convective form. In the budget analysis the integral boundary balance flux QnT is
directly evaluated at each boundary node by

QnT D �M � q�nT
D P � PT CL� � T �W �

C
�

0 divergence form

V .h/ � .T � T0/CA.T / � h � F .T ; s; Ph; Ps/ convective form

(13.32)

whereQnT corresponds to the nodal vector of the integral boundary heat flux.

13.5 Incorporation of Borehole Heat Exchangers (BHE’s)

13.5.1 Introduction

In shallow aquifers a modern geothermal heat extraction technology (geoexchange)
concerns the use of borehole heat exchanger (BHE) systems of different construc-
tion. The most common in practice are single U-shape pipe (consisting of an inlet
pipe, an outlet pipe and grout), double U-shape pipe (consisting of two inlet pipes,
two outlet pipes and grout) and coaxial pipe (consisting of an inlet pipe included
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Fig. 13.1 Closed-loop scheme of BHE with different configurations in form of single U-shape
pipe (1U), double U-shape pipe (2U), coaxial pipe with annular inlet (CXA) and coaxial pipe with
centered inlet (CXC)

with an outlet pipe and grout) installations. Such heat exchangers form a vertical
borehole system, where a refrigerant of a heat pump circulates in closed pipes
(closed loop system). These pipes inserted vertically in a borehole are fixed by
filling the borehole with some sort of grout (backfill) material. It is in contact with
the surrounding soil, where conductive-convective heat transfer processes occur
(Fig. 13.1).

The modeling and simulation of the complex transient 3D transport phenomena
of BHE’s is complicated and cumbersome due to the extreme geometric aspect
ratios (extreme slenderness). A number of design tools based on finite element or
finite volume codes were used in the past to develop fully discretized BHE models
which are able to account for transient effects as well as for the correct borehole
geometry [28,330,477]. To reduce the computational effort some of the models were
limited to a 2D description [14,510,577]. However, if a complete description of the
borehole geometry is needed, only 3D models can include vertical heat transport
inside and outside the borehole, different ground layers, the vertical gradient of the
undisturbed ground temperature, the transient fluid transport inside the pipes, the
thermal short-circuiting between the upward and downward pipes and the correct
BC’s at the upper and lower boundary. On the other hand, the main disadvantage
of fully discretized 3D models is that, even on modern and powerful computers and
despite the possibility of parallel computing, extensive computation times result
due to the high number of small elements needed for a suited discretization of the
borehole cross-sections.
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Accordingly, the extreme geometric aspect ratios require more advanced and
efficient numerical strategies [145, 146], in particular

• The analytical BHE method based on Eskilson and Claesson’s solution [159] and
• The numerical BHE method based on Al-Khoury et al.’s solution [6–8].

Often, the local processes within BHE can suitably be modeled via the analytical
technique under the major assumption that local steady-state conditions are con-
sidered, where a thermal equilibrium immediately occurs between inlet and outlet
pipes for a given solid temperature at the borehole wall. Such type of analytical
solutions has been firstly introduced by Eskilson and Claesson [159]. Their local
analytical model can be taken as a robust and efficient alternative to the more
general Al-Khoury et al.’s numerical strategy, particularly for long-term predictions.
Eskilson and Claesson’s analytical solution has been extended to different types of
BHE and embedded in a general iterative finite-element strategy for solving the
overall problem in Diersch et al. [145, 146]. While the Al-Khoury et al.’s numerical
approach has proven appropriated over the full time range of processes, Eskilson
and Claesson’s analytical solution is not suited for short-term predictions (say,
thermal responses in a time range smaller than some hours), however, for long-term
predictions the analytical solution has been shown in a well and reasonable accuracy
in comparison to the general Al-Khoury et al.’s numerical solution [146].

For both BHE solution techniques an improved pipe-to-grout approximation
method will be preferred which is based on the extension given by the so-called
thermal resistance and capacity model (TRCM) introduced by Bauer et al. [29].
Previous formulations of thermal resistances, such as provided in [6–8], use only
one single capacity point for the grout material. However, Bauer et al. [29] have
shown that such a single grout point approximation is insufficient and less accurate
for transient computations. The TRCM takes the capacity of the grouting material
with one capacity per pipe into account and has proven accurate and effective both
for transient and steady-state BHE conditions, see [29] for more.

13.5.2 Implementation of BHE’s

The aquifer is discretized in FEFLOW by using 3D prismatic finite elements, where
BHE systems are modeled by vertical boreholes. Each borehole is discretized by
a number of NBHE nodes, which are linked to 1D pipe elements as exemplified
in Fig. 13.2 for a single 2U exchanger borehole. The NBHE nodes represent inner
boundary nodes of the soil (porous medium) s, to which the heat exchange is
performed between the soil and the BHE. The detailed pipe-grout structure of each
BHE remains completely hidden in the global mesh of the aquifer, where each BHE
is viewed as a singular well-type (SPC) representation of NBHE nodes.

The heat exchange mechanisms between the soil and the BHE’s lead to additional
heat transfer terms appearing in the discretized heat transport equations for the
porous medium (13.22) on the RHS as



686 13 Heat Transport in Porous Media

NBHE

1D 2U-element

Ti1 To1

To2 Ti2

s
i1

i2g4

o1
o2

1

2

3

4

7

9 10

1612

1

2

...

g1

5

13

g2
g3

6

8

11
14

15

3

Fig. 13.2 Discretized single 2U exchanger borehole

P s � PT s CLs � T s DW s � ORs� .T �/CR� � T s
„ ƒ‚ …
additional BHE exchange terms

(13.33)

and introduce an extra matrix system containing the heat transport equations of
BHE’s written in the form

P � � PT � CL� � T � DW � � OR�s.T s/ (13.34)

where superscript s indicates the soil equations, superscript� designates the internal
BHE (pipe-grout) equations for heat, the vectors ORs� , OR�s and matrixR� represent
BHE-soil heat transfer relations as derived in Appendix M. The soil and BHE
equations (13.33) and (13.34), respectively, are coupled via the heat transfer terms
and can be written in the compact form as

�
P � 0
0 P s

	

�
� PT �
PT s
	

C
�
L� 0
0 Ls �R�

	

�
�
T �

T s

	

D
�
W � � OR�s.T s/

W s � ORs� .T �/

	

(13.35)

for solving the internal (local) BHE temperaturesT � D T �.x; t/ and the global soil
temperatures T s D T s.x; t/ in dependence on the chosen BHE method as follows.

13.5.2.1 Analytical BHE Solution

For the analytical BHE method the matrices and vectors in (13.35) simplify:

P � D 0; W � D 0; L� D δ (13.36)
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so that (13.35) decouples into

T � D � OR�s.T s/

P s � PT s C .Ls �R�/ � T s DW s � ORs� .T �/
(13.37)

where � OR�s.T s/, � ORs� .T �/ and �R� are given by (M.116)–(M.118), respec-
tively, in Appendix M and leads in the temporally discretized form (cf. Sect. 13.3.3)
to

T �nC1 D � OR�s.T snC1/
As � T snC1 D Bs.T snC1;T sn /

(13.38)

where

As D P s

�
tn
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h
T sn
�
tn
C � 1

�
� 1� PT sn

i
CW s

nC1 � ORs� .T �nC1.T snC1//
(13.39)

for the corrector recurrence scheme and
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tn
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Bs.T snC1;T sn / D
�
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tn
� .Ls �R�/.1 � �/

�
� T snC�

W s
nC1 � ORs� .T �nC1.T snC1//

�
�C

�
W s

n � ORs� .T �n .T
s
n //
�
.1 � �/

(13.40)

for the ��method of time stepping.
Since in (13.38) the BHE temperatures T �nC1 D � OR�s.T snC1/ are dependent on

the soil temperature T snC1 by complex analytical expressions, the resulting matrix
systemAs �T snC1 D Bs.T snC1;T sn / in (13.38) for solving the soil temperatures T snC1
becomes nonlinear and must be solved via the following iterative procedure

starting solution � D 0: As � T s;�nC1 D Bs.T sn /

iteration � C 1: As � T s;�C1
nC1 D Bs.T s;�nC1;T sn /

(13.41)

where � D 0; 1; 2; : : : corresponds to an iteration counter. The iterations at the
current time plane nC 1 are stopped if

kT s;�C1
nC1 � T s;�nC1kLp � � (13.42)

where � is a given dimensionless error tolerance and k:kLp designates a suitable
(maximum or RMS) error norm.
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13.5.2.2 Numerical BHE Solution

For the numerical BHE method the heat transfer matrices in (13.35) result (see
Appendix M):

OR�s.T s/ D R�s � T s ; ORs� .T �/ D Rs� � T � (13.43)

so that (13.35) becomes

�
P � 0
0 P s

	

�
� PT �
PT s
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�
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D
�
W �

W s

	

(13.44)

where P � , L� , (R�s , W � , T � ), Rs� and R� are given by (M.126)–(M.128),
(M.132) and (M.133), respectively, in Appendix M and leads in the temporally
discretized form (cf. Sect. 13.3.3) to

�
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�
B�

Bs

	

nC1;n
(13.45)
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(13.46)

for the corrector recurrence scheme and

A� D P �
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�
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(13.47)

for the ��method of time stepping.
Due to the heat transfer relations (13.43) the resulting matrix system (13.45)

becomes basically linear. For the solution of (13.45) a static condensation strategy
(also known as substructuring technique [590] frequently used in finite-element
structural engineering) is preferred, where the internal BHE variables can be
eliminated from (13.45). In doing so, the first row of the matrix system (13.45)
reads

A� � T �nC1 CR�s � T snC1 D B�
nC1;n (13.48)
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and yields

T �nC1 D .A�/�1 � �B�
nC1;n �R�s � T snC1

�
(13.49)

Taking the second row of (13.45) the BHE temperature vector T �nC1 can be
eliminated by using (13.49). It finally gives a reduced equation system of the
following form

.As �A�s/ � T snC1 D Bs
nC1;n �B�s

nC1;n (13.50)

with

A�s D Rs� �
�
.A�/�1 �R�s

�

B�s
nC1;n D Rs� �

�
.A�/�1 �B�

nC1;n
� (13.51)

for solving only the soil temperature T snC1 at the new time plane n C 1, where the
modified matrix As � A�s represents the Schur complement [15]. Note that A�

is a local .NBHE ? DOF/ � .NBHE ? DOF/ matrix, which is commonly not large
NBHE � NNP (NBHE < 1000, DOF D 8 for 2U, DOF D 4 for 1U and DOF D 3

for CXA and CXC). Accordingly, the inverse .A�/�1 can be easily computed by
a direct Gaussian matrix solution for each BHE. If T snC1 is solved from (13.50)
the internal temperatures T �nC1 for each exchanger can be simply recomputed from
(13.49).

Using (13.50) and (13.49) a direct and non-sequential solution of complete
temperature field for the soil and the BHE, T snC1, T �nC1, appears possible. Basically,
there is no need for an iterative solution of the coupled system (13.45), which is
superior to the strictly iterative sequential strategy as used by Al-Khoury et al.
[7, 8]. However, the condensed matrix system (13.50) with the Schur complement
As �A�s has been shown frequently very stiff, particularly when the heat transfer
coefficients dominate above thermal conduction and advection of the global system.
In such cases numerical roundoff errors can distort the solution and balance errors
occur in long-term or steady-state simulations. To prevent these harmful effects the
solution of the severely ill-conditioned matrix system (13.50) is combined with an
iterative correction strategy as follows:

starting solution � D 0:

(
.As �A�s/ � T s;�nC1 D Bs

nC1;n �B�s
nC1;n

T �;�nC1 D .A�/�1 � �B�
nC1;n �R�s � T s;�nC1

�

iterative correction � C 1:

(
As � T s;�C1

nC1 D Bs
nC1;n �Rs� � T �;�nC1

T �;�C1
nC1 D .A�/�1 � �B�

nC1;n �R�s � T s;�C1
nC1

�

(13.52)

where � D 0; 1; 2; : : : corresponds to an iteration counter. At each time plane we
start with the Schur complement solution. It results the soil temperature T s;�nC1 and
the BHE temperature T �;�nC1 at initial state � D 0. With known T �;�nC1 the global
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soil matrix system (second row of matrix system (13.45)) is solved to find the new
iterate for temperatures of soil T s;�C1

nC1 and accordingly of BHE T �;�C1
nC1 . The iteration

in (13.52) is repeated until a satisfactory convergence is achieved, such as

kT �;�C1
nC1 � T �;�nC1kLp � � (13.53)

where � is a given dimensionless error tolerance and k:kLp denotes a suitable
(maximum or RMS) error norm. Usually, only one iteration is required in transient
simulations if the time step length 
tn is chosen appropriately small. This is
effectively controlled by using the adaptive time stepping strategy combined with
predictor-corrector schemes as described above.

13.5.3 Suitable Meshing of BHE Nodes

In using either the analytical or numerical solution strategies a BHE is reduced to
an internal well-type SPC occupied at a single node in a horizontal view on the 3D
finite element mesh of the global problem. It appears similar to a well node, where a
pumping well with a rateQw in the borehole is modeled at a singular node via a well
function applied to the sink/source term for flow such that Qhw D �Qwı.x � xw/,
where ı./ is the Dirac delta function and xw are the well coordinates of the well
node w.

Such types of nodal singularities in a mesh require specific considerations due
to the following reasons. If inserting Qw at a singular node w the resulting head
value hw in a flow simulation does not usually represent the head exactly at the
physical borehole radius rb; instead, the actually computed head hw at the node w is
to be deemed on a different radius, which is called virtual radius rvirtual; in regional
models often larger than the real physical radius rb. It can be shown that the virtual
radius rvirtual is primarily dependent on the mesh discretization around the node w,
represented by a nodal distance 
 (cf. Fig. 13.3). Accordingly, it has to be the goal
in present modeling to design the mesh around those singular well nodes w in such
a way that the virtual radius rvirtual meets at best the physical radius rb of the well.
In doing this, we introduce methods for tuning the mesh at BHE nodes [146].

A simple but efficient method represents the direct estimation of nodal distance

 which follows the ideas by Nillert [391] developed for 2D horizontal regular
meshes applied to wells in groundwater flow. Extending to conductive heat transport
we find the following relationships, which are similar to potential flow. In a
spatial discretization the conductive heat flux QTw at the singular node w can be
expressed by

QTw D #˚T .T
 � Tvirtual/ (13.54)

where T
 is the temperature at the distance
, Tvirtual is the temperature at the virtual
radius rvirtual, which must not be the physical BHE radius rb, ˚T is the heat transfer
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coefficient and # is a shape factor determined by the BHE-node surrounding mesh.
For regular 2D meshes Nillert [391] derived:

# D n tan
�
�
n

�
(13.55)

where n D 4; 5; 6; : : : denotes the number of surrounding nodes, where n D 6 is
typical for triangular horizontal meshes (see Fig. 13.3).

In contrast to the approximate solution (13.54), for a radially symmetric BHE we
find the analytical (heat) well formula [33]

Qana
Tw D 2�˚T

T
 � Tvirtual

ln. 

rvirtual

/
(13.56)

Equating (13.56) and (13.54) it yields


 D e˛rvirtual ; ˛ D 2�

n tan
�
�
n

� (13.57)

Equation (13.57) can be used to determine the required nodal distance 
 spacing
from the BHE node if forcing the virtual radius to the borehole radius: rvirtual D rb .
It obtains for typical horizontal meshes


 D arb ; a D
8
<

:

4:81 for n D 4
6:13 for n D 6
6:66 for n D 8

(13.58)

Relation (13.58) represents a direct and effective estimation for an optimal mesh
refinement around a BHE node. It will be shown further below (see Sect. 13.6.3)
that those meshes which are designed by using criterion (13.58) can give optimal
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accuracy, even better than spatial discretizations over-refined
 � rb or coarse
 >

arb around BHE nodes.
An alternative method providing an iterative estimation of nodal distance 
 has

been described in [146], which is applicable on the actual discretization. However,
the effort of this iterative procedure can be high, particularly if applied to arrays
of BHE. In practical applications, the above direct estimation method has shown
often superior and sufficient. We note that all estimation methods assume that the
heat transfer process is dominated by a radial conduction having no (or negligible)
variation in the vertical direction.

13.6 Examples

13.6.1 Heat Transport for a Well Doublet System in a Layered
Aquifer: 3D Modeling in Comparison to Analytical
Solution

As an example of an open geothermal system let us consider the heat transport and
exchange in a confined aquifer consisting of a high permeable layer overlain by
a low permeable layer. A well doublet is installed in the high permeable layer, in
which hot water is injected at the inlet well (source) and cool water is extracted
from the outlet well (sink) as illustrated in Fig. 13.4. The distance between inlet
well and outlet well is 2a. It is assumed that heat advection dominates in the high
permeable layer, while in the overlain low permeable layer only heat conduction is
present. As a result, a heat plume establishes around the inlet well, which migrates
toward the outlet well in time due to advection leading to a breakthrough of heated
water in the outlet well at later time (Fig. 13.4). In this process heat is exchanged
with the overlain low permeable layer due to the conductive heat transfer in vertical
direction.

For the present problem an analytical solution can be found which is based on
Muskat’s dipolar potential flow [381]. Suppose a steady-state horizontal flow in the
high permeable layer governed by the continuity and Darcy equations in the form,
respectively,

@qx

@x
C @qy

@y
D 0

qx D �K @h
@x
; qy D �K @h

@y

(13.59)

neglecting density and viscosity effects and assuming isotropic conditions, the
resulting potential equation for the hydraulic head h

@2h

@x2
C @2h

@y2
D 0 (13.60)
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Fig. 13.4 Well doublet
injecting hot water into a high
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gives with an imposed source at Q.x; y/ D Q.�a; 0/ and an imposed sink at
Q.x; y/ D Q.a; 0/ of known discharge the following distribution within the
x � y�plane for the hydraulic head

h D � Q

8�KE
ln

�
.x C a/2 C y2
.x � a/2 C y2

	

(13.61)

and for the Darcy velocity components

qx D Q

4�E

�
x C a

.x C a/2 C y2 �
x � a

.x � a/2 C y2
	

qy D Q

4�E

�
y

.x C a/2 C y2 �
y

.x � a/2 C y2
	 (13.62)

whereE is the thickness of the high permeable layer (Fig. 13.4). The corresponding
equations for the heat transport of the two-layer problem read

E
�
"�c C .1 � "/�scs� @T

@t
CE�c.qx @T@x C qy @T@y / D �s @T

@z z � 0 high permeable

�scs @T
@t
D �s @

2T
@z2

z > 0 low permeable
(13.63)

where it is assumed that pure advective transport governs in the high permeable
layer (i.e., no heat conduction occurs in the x � y�plane of this layer, however, a
vertical conductive heat exchange with the overlain layer exists), while advection is
completely excluded in the low permeable layer. The solution of (13.63) for T D
T .x; y; z; t/ subject to the IC and BC’s
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T .x; y; z; 0/ D T0; T .�a; 0; 0; t/ D TD; lim
z!1T .x; y; z; t/ D T0 (13.64)

can be obtained analytically [316, 467] leading to the following expression:

T .x; y; z; t/ � T0
TD � T0 D ı�t � I.x; y/� erfc

1

2
p
t � I.x; y/

� p
�s�scs

E."�cC .1 � "/�scs/

I.x; y/C
r
�scs

�s
z

	

(13.65)

with

I.x; y/ D 4�Ea2f

Q

�

1C 2 cot� arctan

�
tan �=2 .tanh �=2 � 1/
1C tanh �=2 tan2 �=2

	

�

sinh �

cosh � C cos�

�

sin�2 � for jcos�j ¤ 1 (13.66)

I.x; y/ D 4�Ea2f

3Q

�

1 � sinh �

cosh � C cos �

�
1C cos �

cosh � C cos�

��

for jcos�j D 1 (13.67)

and

� D 1
2

ln
�
.x � a/2 C y2
.x C a/2 C y2

	

; � D arctan
2ay

a2 � x2 � y2 ; f D "�c

"�c C .1 � "/�scs
(13.68)

where ı./ is the Dirac delta function.
For the numerical simulations a 3D finite element mesh of moderate resolution

is used as shown in Fig. 13.4. It consists of 215,670 pentahedral prismatic elements
with 116,970 nodes in total, formed by 15 slices in the vertical z�direction. The
mesh is suitably refined in the x � y�plane around the doublet wells (smallest
element is about 0.7 m there) while the size of elements gradually increases with
the distance from the wells. In the vertical direction the low permeable layer with a
total thickness F is subdivided by ten sublayers and the high permeable layer with
a total thicknessE by four sublayers of variable element thicknesses. At the contact
zone .z D 0/ between the low and high permeable layer the element thickness is
chosen 0.1 m. With the vertical distance from the contact zone the element thickness
gradually increases. The parameters and conditions used in the numerical simulation
are summarized in Table 13.1. Unspecified BC’s represent boundaries, at which
natural BC’s are imposed. To compare the numerical simulation with the analytical
solution the chosen domain should be sufficiently large so that the adiabatic (no-heat
flux) condition �.Λ � rT / � n D 0 imposed on the outer enclosing boundaries can
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Table 13.1 Parameters and conditions used for the well doublet problem

Quantity Symbol Value Unit

Domain shown in Fig. 13.4
Domain length L 300 m
Domain width D 300 m
Thickness of low permeable layer F 30 m
Thickness of high permeable layer E 10 m
Specific storage coefficient So 0 m�1

Longitudinal dispersivity ˇL 0 m
Transverse dispersivity ˇT 0 m
Constant doublet discharge Q 150 m3 d�1

Low permeable layer
Isotropic hydraulic conductivity K 10�8 m s�1

Porosity " 0 1
Volumetric heat capacity of solid �scs 2:52 � 106 J m�3 K�1

Heat conductivity of solid �s 3 J m�1 s�1 K�1

Anisotropy factor ��
aniso 1 1

High permeable layer
Isotropic hydraulic conductivity K 10�4 m s�1

Porosity " 0:3 1
Volumetric heat capacity of fluid �c 4:2 � 106 J m�3 K�1

Volumetric heat capacity of solid �scs 2:52 � 106 J m�3 K�1

Heat conductivity of fluid � 10�6 J m�1 s�1 K�1

Heat conductivity of solid �s 10�6 J m�1 s�1 K�1

Anisotropy factor ��
aniso 109 1

IC and BC’s
Initial condition (IC) of T (13.6) T0 10 oC
Multilayer well BC of inlet at Qw D �Q �150 m3 d�1

.x D �a; y D 0;�E 	 z 	 0/

Multilayer well BC of outlet at Qw D Q 150 m3 d�1

.x D a; y D 0;�E 	 z 	 0/

Dirichlet-type BC for h on outer boundary at hD (13.61) m
.�L

2
	 x 	 L

2
; y D ˙D

2
;�E 	 z 	 0/ and

.x D ˙L
2
;�D

2
	 y 	 D

2
;�E 	 z 	 0/

Dirichlet-type BC for T on inlet well at TD 60 oC
.x D �a; y D 0;�E 	 z 	 0/

FEM
Unstructured 3D mesh of 215,670 linear pentahedra, GFEM (no upwind)
Initial time step sizea 
t0 10�3 d
RMS error tolerance (FE/BE) � 10�4 1
Simulation time period tend 1; 000 d
a In addition, maximum rate of time step change � D 
tnC1


tn
D 2 and maximum time step size


tmax D 3 d
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be maintained. To model exactly the potential flow field in the high permeable layer,
we impose the known hydraulic head values h from (13.61) as Dirichlet-type BC’s
on the outer enclosing boundaries.

A difficulty in comparison with the analytical solution (13.65) is in the pure
advection of heat in horizontal direction of the high permeable layer, while heat
conduction in horizontal direction is suppressed. To obtain stable and sufficiently
accurate numerical results, GFEM without any spurious upwinding, however, with
the stabilized GLS 1st-order accurate FE/BE predictor-corrector time integration
is preferred. (Note that the use of a 2nd-order accurate AB/TR scheme would not
give stable solutions in the present case.) Additionally, a very small amount of heat
conduction (however, without thermodispersion) in horizontal direction of the high
permeable layer is admitted, while in the vertical direction of the high permeable
layer heat conduction can be taken suitably large (enforced by a properly large
anisotropy factor, cf. Table 13.1).

For the simulation of the heat transport over a time period of 1,000 days only 353
implicit time steps are required. The achieved computational results are compared
with the analytical solution (13.65) in Figs. 13.5 and 13.6. The agreements are
reasonably well. As revealed in Fig. 13.5 at early times the results compare better to
the analytical findings, however, with elapsing time the numerical solutions become
more diffused due to numerical dispersion effect caused by the 1st-order accurate
FE/BE scheme. At times when the heat plume reaches the outlet local oscillations in
the temperature profile can be observed (Fig. 13.5). Then, sharp temperature profiles
begin to be established at the outlet well, where heated and cool water joins at
the single well-type SPC node(s). Note that the situation can be improved if the
well-type SPC condition of the outlet well is replaced by a Neumann-type flux BC
imposed on a fully discretized borehole geometry of the outlet.
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Fig. 13.6 Simulated
temperature contours T�T0
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in the x � y�plane at z D 0

and t D 600 d in comparison
to the analytical distribution.
Used contouring interval of
normalized temperature is 0:1

13.6.2 Numerical vs. Analytical Solutions of BHE
for Steady-State Conditions and Given Temperature
at Borehole Wall

We directly compare the numerical and analytical solution strategies by Al-Khoury
et al. [6–8] and Eskilson and Claesson [159] for local BHE problems under steady-
state conditions. The analytical BHE solutions are compared to the numerical BHE
results for CXA, CXC, 1U and 2U-type BHE configurations with the parameters as
listed in Tables 13.2–13.4. Since the soil temperature Ts is here specified as a BC the
properties of soil become irrelevant for the present comparison analysis. The thermal
resistances and heat transfer coefficients as summarized in Table 13.4 are computed
from the formula given in Sects. M.2 and M.3, respectively, of Appendix M. In the
simulation models only the inner borehole is discretized, where BC’s for the solid
temperature Ts are prescribed at the BHE node patch as exhibited in Fig. 13.7. For
the vertical discretization 100 layers are used, i.e., 
z D 1m.

The numerical results versus the analytical solutions in form of steady-state
vertical temperature profiles of pipe(s)-in, pipe(s)-out and grout zone(s) are shown
in Fig. 13.8 for each of the CXA, CXC, 1U and 2U-type BHE configurations. As
evidenced in all cases the agreement is nearly perfect.

13.6.3 Transient Solution of Coaxial BHE System

We consider a BHE coaxial pipe system of annular inlet (CXA type) with parameters
as listed in Tables 13.5 and 13.6. The soil domain measures 100�100m in horizontal
directions and 100 m in depth. It is assumed that the soil is impervious and no
groundwater exists, i.e., " D 0 and q D 0. The used mesh for the BHE solution is
shown in Fig. 13.9. The BHE is located in the center of the domain, where the mesh
is locally refined. For the vertical discretization 100 layers are applied. Two variants
of heat injections are considered. The first one refers to a small-rate injection with
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Table 13.2 BHE parameters used for analytical comparison

Quantity Symbol Value Unit

Depth of borehole L 100 m
Borehole diameter D 10 cm
Pipe measures listed in Table 13.3
Reference temperature T0 10 ıC
Thermal conductivities of pipe walls ��

i1, �
�
o1 0:38 J m�1 s�1 K�1

Total flow discharge of refrigerant Qr 21:86 m3 d�1

Total heat input rate jQTwj 6:3216 � 109 J d�1

Volumetric heat capacity of refrigerant �rcr 4:1312 � 106 J m�3 K�1

Thermal conductivity of refrigerant �r 0:6405 J m�1 s�1 K�1

Dynamic viscosity of refrigerant �r 0:54741 � 10�3 kg m�1 s�1

Mass density of refrigerant �r 0:9881 � 103 kg m�3

Volumetric heat capacity of grout �gcg 2:19 � 106 J m�3 K�1

Thermal conductivity of grout �g 2:3 J m�1 s�1 K�1

Thermal resistances and heat transfer coefficients listed in Table 13.4
BC’s
Dirichlet-type BC for soil T on outer surface TD D Ts 10 ıC
Dirichlet-type BC of inlet T at pipe(s)-ina TD D Ti 80 ıC
FEM
3D cylindric mesh for the inner borehole consisting of 100 layers with 17,200 pentahedra
a Ti D jQTwj=.�r crQr /C T0

Table 13.3 Pipe measures for the BHE configurationsa

Parameter Symbol CXA CXC 1U 2U Unit

Outer diameter of pipe-inb doi1 5 2:4 3:2 3:2 cm
Outer diameter of pipe-outc doo1 2:4 5 3:2 3:2 cm
Pipe-in wall thicknessd bi1 4 3 2:9 2:9 mm
Pipe-out wall thicknesse bo1 3 4 2:9 2:9 mm
Pipe distance w – – 6 4:242 cm
a See definitions shown in Figs. M.1 and M.2 of Appendix M
b doi1 D 2roi1 D 2roi2
c doo1 D 2roo1 D 2roo2
d bi1 D roi1 � rii1 D roi2 � rii2
e bo1 D roo1 � rio1 D roo2 � rio2

laminar flow in the coaxial pipes, which is highly driven by thermal conduction. On
the other hand, a turbulent flow regime is applied, where advective heat transport in
the pipe system is more apparent. In both variants in the time range .0 < t � 90 d/
water with a temperature of 80 ıC is injected at the annular pipe-in. At later times
.90 d < t � 180 d/ the injection temperature amounts to 10 ıC.

Both the Al-Khoury et al.’s numerical BHE method and the Eskilson and
Claesson’s analytical BHE method are applied. The present FEFLOW results are
compared to a fully discretized FDM solution for an axisymmetric 2D formulation
of the problem as given by Heidemann [234]. Heidemann has discretized the
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Table 13.4 Thermal resistances R and heat transfer coefficients ˚ for the BHE configurations

Parameter Symbol CXA CXC 1U 2U Unit

Thermal resistances:
Pipe-in to grout Rfig 0:10874 – 0:15577 0:14485 m s K J�1

Pipe-in to pipe-out Rff 0:13037 0:13037 – – m s K J�1

Pipe-out to grout Rfog – 0:10874 0:15577 0:14485 m s K J�1

Grout to grout Rgg – – 0:11516 – m s K J�1

Grout to grout 1 Rgg1 – – – 0:00031 m s K J�1

Grout to grout 2 Rgg2 – – – 0:11776 m s K J�1

Grout to soil Rgs 0:01626 0:01626 0:02574 0:06833 m s K J�1

Heat transfer coefficients:
Pipe-in to grout ˚fig 69:698 – 77:993 83:877 J m�2 s�1 K�1

Pipe-in to pipe-out ˚ff 135:64 135:64 – – J m�2 s�1 K�1

Pipe-out to grout ˚fog – 69:698 77:993 83:877 J m�2 s�1 K�1

Grout to grout ˚gg – – 66:796 – J m�2 s�1 K�1

Grout to grout 1 ˚gg1 – – – 48; 489 J m�2 s�1 K�1

Grout to grout 2 ˚gg2 – – – 65:323 J m�2 s�1 K�1

Grout to soil ˚gs 195:74 195:74 190:24 143:32 J m�2 s�1 K�1

BHE node
Ts

D

Fig. 13.7 Discretized inner borehole with temperature BC of soil Ts (indicated on top slice)

meridional cross section by a 72 � 113 grid. The radial extension is taken with
50 m. His grid has been gradually spaced along the radial direction ranging from
1.5 mm up to 1 m. Heidemann used variable time steps between 30 min and 4 h.

The outlet temperature histories computed by the numerical and analytical
BHE methods in comparison to Heidemann’s solution are displayed in Fig. 13.10
for the laminar flow and in Fig. 13.11 for the turbulent flow. The results are in
a reasonable agreement. For the turbulent case we find an excellent agreement
between Heidemann’s and the analytical BHE solution as evidenced in Fig. 13.11a.
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Fig. 13.8 Analytical vs. numerical temperature distribution for (a) CXA, (b) CXC, (c) 1U and
(d) 2U BHE configuration

We have to note that the present analytical BHE solutions are invalid for variations
in a time scale shorter than about 3.5 h according to the limit (M.78). Using limit
(M.79) input variations cannot be simulated even below about 10 h for laminar
flow and about 4 h for turbulent flow. In Figs. 13.10b and 13.11b the short-term
temperature behavior of the analytical and numerical BHE methods are shown for
the laminar and turbulent flow cases, respectively. They reveal how the analytical
method overestimates the outlet temperature at transient input situations. However,
these errors vanishes in long-term predictions if no longer input variations occur as
depicted in Figs. 13.10a and 13.11a. It has been shown necessary to assign a high
thermal conductivity�s with an anisotropic factor ��

aniso for the inner BHE surplus
according to Table 13.5.

The present turbulent flow case of a single CXA-type BHE gives opportunity for
a mesh convergence study, where the level of mesh refinement around the singular
BHE node is systematically increased. This will reflect the statements of Sect. 13.5.3
regarding an optimal mesh design for BHE solutions. We test the accuracy of the
solution for a stepwise local refinement of mesh � around the BHE node according
to (cf. Fig. 13.12)
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Table 13.5 Parameters of the CXA exchanger problem

Quantity Symbol Value Unit

Depth of borehole L 100 m
Borehole diameter D 10 cm
Outer diameter of pipe-in doi1 5 cm
Outer diameter of pipe-out doo1 2:4 cm
Pipe-in wall thickness bi1 4 mm
Pipe-out wall thickness bo1 3 mm
Reference temperature T0 10 ıC
Thermal conductivities ��i1, �

�
o1 0:38 J m�1 s�1 K�1

of pipe walls
Total flow discharge

of refrigerant:
Laminar flow Qlaminar

r 1:0931 m3 d�1

Turbulent flow Qturbulent
r 21:8624 m3 d�1

Total heat input rate:

Laminar flow jQlaminar
Tw .t/j

8
<

:

3:1602 � 108 .0 < t 	 90 d/
0 .90 d < t 	 180 d/

J d�1

Turbulent flow jQturbulent
Tw .t/j

8
<

:

6:3203 � 109 .0 < t 	 90 d/
0 .90 d < t 	 180 d/

J d�1

Volumetric heat capacity �r cr 4:13 � 106 J m�3 K�1

of refrigerant
Thermal conductivity �r 0:48 J m�1 s�1 K�1

of refrigerant
Dynamic viscosity �r 0:52 � 10�3 kg m�1 s�1

of refrigerant
Mass density of refrigerant �r 0:988 � 103 kg m�3

Volumetric heat capacity �gcg 2:19 � 106 J m�3 K�1

of grout
Thermal conductivity of grout �g 2:3 J m�1 s�1 K�1

Porosity of soil " 0 1
Volumetric heat capacity of soil �scs 2:21 � 106 J m�3 K�1

Thermal conductivity of soil �s 2:2 J m�1 s�1 K�1

Anisotropy factor of soil ��
aniso 1 1

Thermal conductivity �s 103 J m�1 s�1 K�1

of BHE surplus
Anisotropy factor ��

aniso 0 1
of BHE surplus

Thermal resistances and heat transfer coefficients listed in Table 13.6
IC and BC
Initial condition (IC) of T (13.6) T0 10 ıC
Dirichlet-type BC for T TD D Ti .t/

a Variable ıC
at pipe-in

FEM
Nonuniform 3D mesh consisting of 100 layers with 239,100 pentahedra shown in Fig. 13.9
Vertical space increment 
z 1 m
Initial time step sizeb 
t0 10�6 d
RMS error tolerance (FE/BE) � 10�3 1
Simulation time period tend 180 d
a Ti .t/ D jQTw.t /j=.�r crQr/C T0
b In addition, maximum rate of time step change � D 
tnC1


tn
D 2
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Table 13.6 Thermal resistances R and heat transfer coefficients ˚ for the CXA exchanger
problem

Thermal resistance Heat transfer

Parameter Symbol Value Unit Symbol Value Unit

Laminar flow
Pipe-in to grout Rfig 0:14312 m s K J�1 ˚fig 52:955 J m�2 s�1 K�1

Pipe-in to pipe-out Rff 0:33963 m s K J�1 ˚ff 52:068 J m�2 s�1 K�1

Grout to soil Rgs 0:01626 m s K J�1 ˚gs 195:74 J m�2 s�1 K�1

Turbulent flow
Pipe-in to grout Rfig 0:10932 m s K J�1 ˚fig 69:326 J m�2 s�1 K�1

Pipe-in to pipe-out Rff 0:13183 m s K J�1 ˚ff 134:14 J m�2 s�1 K�1

Grout to soil Rgs 0:01626 m s K J�1 ˚gs 195:74 J m�2 s�1 K�1

100 m

10
0m

10
0 m

single BHE node of CXA

Fig. 13.9 Finite element mesh used for CXA-type BHE model consisting of 239,100 pentahedral
prisms. Vertical discretization concerns 100 layers

�` ` D 0; 1; 2; : : : ; 8 (13.69)

where ` is the refinement level of mesh �`. Starting with �0 consisting of a regular
triangular tessellation characterized by a BHE nodal distance 
 of about 4:42m,
the number of triangular prisms NE and total number of nodes NP then increase
according to the refinement level `, while the BHE nodal distance 
 is halved in
value for each refinement level `:

NE D 32.32C `/ � .NS � 1/
NP D Œ16.34C `/C 1� �NS


` D 2�`
; 
 	 L
32

p
2 D 4:42m; NS D 21

(13.70)
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Fig. 13.10 (a) Long-term and (b) short-term temperature history at pipe outlet of the CXA-type
BHE for laminar flow. Long-term temperature history is compared to Heidemann’s solution
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Fig. 13.11 (a) Long-term and (b) short-term temperature history at pipe outlet of the CXA-type
BHE for turbulent flow. Long-term temperature history is compared to Heidemann’s solution

where the BHE node (in the central position of the domain) is locally refined from
level to level ` (see Fig. 13.12). For the mesh convergence test only a vertical
discretization consisting of 20 layers (number of slices NS D 21) with a vertical
spacing of 
z D L=.NS � 1/ D 5m is considered.

The simulations by using the analytical BHE method are performed up to a
maximum refinement level of ` D 8. At that level the BHE nodal distance with about
1:7 cm is clearly smaller than the physical borehole radius of rb D D=2 D 5 cm.
Using the estimation (13.58) from Sect. 13.5.3 we can expect an optimal BHE nodal
distance
 of about 0:333m (with n D 8), which would require a refinement level `
of about 4 (
4 	 0:276m) to attain suited accuracy. Indeed, the simulations reveal
that the best agreement to Heidemann’s reference solution is for �4 as evidenced in
Fig. 13.13 for the turbulent flow case. As revealed both coarse meshes (�`; ` < 4)
and higher dense meshes (�`; ` > 4) under- and overestimates, respectively, the
reference solution for the outlet temperature. If the nodal distance falls below the
physical borehole radius rb the elements within 
 � rb have to assigned to a high
thermal conductivity to break the further increase of the temperature at the borehole.



704 13 Heat Transport in Porous Media

0

0

1

2

3

Fig. 13.12 Different mesh refinement levels for CXA-type BHE located in the center of the
domain. Vertical discretization concerns 20 layers
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Fig. 13.13 Outlet temperature at t D 90 d of the CXA-type BHE for turbulent flow versus the
BHE nodal distance 
. Refinement levels �` .` D 0; : : : ; 8/ in comparison to Heidemann’s
reference solution. For levels ` D 6 � 8 solutions with high contrast of the thermal conductivity
�s D 103 J m�1 s�1 K�1 for elements smaller than physical borehole radius rb D 0:05m are also
incorporated. Analytical BHE method is used
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Fig. 13.14 Outlet
temperature history of the
CXA-type BHE for turbulent
flow simulated with optimal
mesh of refinement level 4,
�4 (analytical BHE solution)
compared to Heidemann’s
solution

The results for the optimal �4 mesh give very good agreement with Heidemann’s
reference solution as shown in Fig. 13.14 for the full history of outlet temperature.
Although the mesh of level �4 is about ten times coarser (consisting only of 23,040
pentahedral elements) than the mesh studied above (Fig. 13.9) consisting of 239,100
pentahedral elements, the quality of the results is comparable (cf. Figs. 13.14 vs.
13.11a).

13.6.4 BHE Solution Versus Fully Discretized 3D Model
(FD3DM) Solution Applied to a 2U Exchanger

Comparisons between the proposed BHE solution and a fully discretized 3D model
solution (FD3DM) are performed for heating operation of a 2U configuration
located in central position of a confined aquifer domain measuring 20 � 20m in
horizontal directions and 55 m in depth. The used meshes for both solutions are
shown in Fig. 13.15 revealing a much more refined tessellation for FD3DM to
discretize appropriately the interior geometric structure of the 2U exchanger. In
both meshes, however, the vertical discretization is the same by using 55 layers. For
the 2U exchanger problem the used parameters and conditions are summarized in
Tables 13.7 and 13.8. A steady-state groundwater flow with a constant head gradient
between the left and right boundary of 10�3 is assumed. Unspecified BC’s represent
boundaries, at which natural BC’s are imposed, i.e., no-flow boundary and adiabatic
(no-heat flux) boundary. In FD3DM 1D discrete feature (fracture) elements have
been used to model the internal pipes. It was necessary to assign the inner pipe
surplus to a high thermal conductivity of solid with anisotropy. For the surplus we
took a value of �s D 103 J m�1 s�1 K�1 with an anisotropy factor of ��

aniso D 0. In
the surplus we use a porosity " of zero.
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Fig. 13.15 Finite element meshes for (a) BHE consisting of 130,185 pentahedral elements and
(b) FD3DM consisting of 1,204,665 pentahedral elements. Both meshes are vertically discretized
by 55 numerical layers

A comparison between the BHE solutions to the FD3DM is shown in Fig. 13.16
for the short-term outlet temperature history, in Fig. 13.17 for the long-time outlet
temperature history and in Fig. 13.18 for the vertical temperature profile after 12 h.
As revealed the agreement between the different solutions is quite well. For long-
term predictions the analytical BHE simulation has shown reasonably accurate and
fast, while the numerical BHE computations became superior to the analytical
BHE solution at short-term predictions and in a well agreement with the FD3DM
results from beginning. In Fig. 13.18 the vertical temperature profile of grout is not
evaluated for FD3DM because the grout temperature considerably varies within the
mesh nodes in the borehole at that early time.
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Table 13.7 Parameters and conditions used for the 2U exchanger problem

Quantity Symbol Value Unit

Depth of borehole L 55 m
Borehole diameter D 12 cm
Outer diameter of pipes-in/pipes-out doi1; d

o
i2; d

o
o1; d

o
o2 3:2 cm

Pipes-in/pipes-out wall thickness bi1; bi2; bo1; bo2 2:9 mm
Pipe distance w 4:2 cm
Reference temperature T0 10 ıC
Thermal conductivities of pipe walls ��

i1; �
�
i2; �

�
o1; �

�
o2 0:38 J m�1 s�1 K�1

Total flow discharge of refrigerant Qr 38:284 m3 d�1

Total heat input rate jQTwj 6:3242 � 109 J d�1

Volumetric heat capacity of refrigerant �rcr 4:13 � 106 J m�3 K�1

Thermal conductivity of refrigerant �r 0:65 J m�1 s�1 K�1

Dynamic viscosity of refrigerant �r 0:52 � 10�3 kg m�1 s�1

Mass density of refrigerant �r 0:938 � 103 kg m�3

Volumetric heat capacity of grout �gcg 2:19 � 106 J m�3 K�1

Thermal conductivity of grout �g 2:3 J m�1 s�1 K�1

Porosity of soil " 0:2 1
Porosity of surplus " 0 1
Volumetric heat capacity of groundwater �c 4:2 � 106 J m�3 K�1

Volumetric heat capacity of soil �scs 2:405 � 106 J m�3 K�1

Thermal conductivity of groundwater � 0:65 J m�1 s�1 K�1

Thermal conductivity of soil �s 2:46 J m�1 s�1 K�1

Anisotropy factor of soil ��
aniso 1 1

Thermal conductivity of BHE surplus �s 103 J m�1 s�1 K�1

Anisotropy factor of BHE surplus ��
aniso 0 1

Longitudinal thermodispersivity of aquifer ˇL 0:5 m
Transverse thermodispersivity of aquifer ˇT 0:05 m
Thermal resistances and heat transfer coefficients listed in Table 13.8
Flow BC’s
Dirichlet-type BC for h at left boundary hD 0 m

(all slices)
Dirichlet-type BC for h at right boundary hD �0:02 m

(all slices)
Heat IC and BC’s
Initial condition (IC) of T (13.6) T0 10 ıC
Dirichlet-type BC for T at pipe-in TD D T a

i 50 ıC
FEM
Nonuniform 3D meshes consisting of 55 numerical layers as shown in Fig. 13.15, GFEM
Vertical space increment 
z 1 m

(continued)
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Table 13.7 (continued)

Quantity Symbol Value Unit

BHE solutions
Initial time step sizeb 
t0 10�8 d
RMS error tolerance (FE/BE) � 10�3 1
FD3DM solution
Initial time step sizec 
t0 10�6 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 365 d
a Ti D jQTwj=.�r crQr /C T0
b In addition, maximum rate of time step change � D 
tnC1


tn
D 2

c In addition, maximum rate of time step change � D 
tnC1

tn

D 5

Table 13.8 Thermal resistances R and heat transfer coefficients ˚ for the 2U exchanger problem

Thermal resistance Heat transfer

Parameter Symbol Value Unit Symbol Value Unit

Pipe-in to grout Rfig 0:1326 m s K J�1 ˚fig 91:624 J m�2 s�1 K�1

Pipe-out to grout Rfog 0:1326 m s K J�1 ˚fog 91:624 J m�2 s�1 K�1

Grout to grout 1 Rgg1 0:02077 m s K J�1 ˚gg1 802:43 J m�2 s�1 K�1

Grout to grout 2 Rgg2 0:26287 m s K J�1 ˚gg2 31:702 J m�2 s�1 K�1

Grout to soil Rgs 0:05861 m s K J�1 ˚gs 181:02 J m�2 s�1 K�1
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Fig. 13.16 Short-term outlet temperature history of the BHE solution in comparison to the
FD3DM solution measured at the pipe’s outlet

For the FD3DM the GLS predictor-corrector AB/TR time integration scheme
with a RMS error tolerance of 10�4 has been used. It took 276 time steps for
the simulation period of 365 days. For the BHE solutions always the FE/BE time
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Fig. 13.17 Long-term outlet
temperature history of the
BHE solution in comparison
to the FD3DM solution
measured at the pipe’s outlet
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Fig. 13.18 Analytical BHE
solution of temperature
profile at t D 12 h in
comparison to the FD3DM
solution

marching predictor-corrector scheme with a RMS error tolerance of 10�3 was
preferred due to better robustness for this class of problems. The analytical BHE
required only 227 time steps.



Chapter 14
Discrete Feature Modeling of Flow, Mass
and Heat Transport Processes

14.1 Introduction

The discrete feature approach provides the crucial link between the complex
geometries for subsurface and surface, porous and fractured continua as well as
to incorporate engineered structures in modeling flow, mass and heat transport
processes. In such a holistic approach a 3D geometry of the subsurface domain
(aquifer system, rock masses) in describing a porous-medium structure can be
combined by interconnected 1D and/or 2D discrete features as shown in Fig. 14.1.
In the finite element context the 3D mesh for the porous medium can be enriched
by discrete line (channel, borehole, pipe network, tunnel, mine stope) and/or areal
(overland, fault, fracture) elements.

Discrete features are geometric representations of a lower spatial dimension hav-
ing commonly a significant fluid conductance in comparison to the porous medium.
Their conceptual modeling approach and resulting basic equations are thoroughly
described in Chap. 4, where a unified basis in form of diffusion-type flow equations,
e.g., Darcy, Hagen-Poiseuille or Manning-Strickler laws of fluid motion, as well as
mass and heat transport equations is derived. Discrete features are approximated as
1D or 2D finite elements termed as discrete feature elements (DFE’s), which can
be mixed with porous-medium elements in two and three dimensions (Fig. 14.2).
The 1D and 2D DFE’s share the nodes of the porous-medium elements and can be
placed along element edges and faces or can even interconnect arbitrary nodes in a
finite element mesh. Both the geometric and physical characteristics of DFE provide
a large flexibility in modeling complex situations.

14.2 Discrete Feature Master Equations

The governing balance equations for discrete features as listed in Tables 4.5–4.7
for flow, species mass and heat, respectively, can be generalized by the following
advection-diffusion-type master equation

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5 14,
© Springer-Verlag Berlin Heidelberg 2014
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1D DFE

2D DFE’s

r

r

t

3D porous matrix elements

rive

runoff surface

unsaturated zone

aquife

well

faul

saturated zone

Fig. 14.1 Schematization of a subsurface modeling system by combining discrete features with
volume discretizations of the total study domain: 1D feature elements are used to approximate
rivers, channels, wells and specific faults, 2D feature elements are appropriate for modeling runoff
processes, fractured surfaces and faulty zones, and 3D elements represent the basic tessellation
of the subsurface domain consisting of an aquifer-aquitard system and involving unsaturated and
saturated zones

Fig. 14.2 Example of 1D
and 2D DFE’s mixed with 3D
porous-medium elements

LF ./ D SF @
@t
C vF � r � r � .ΥF � r/C%F �QF CQwF D 0

in ˝F � <D .D D 1; 2/; t  t0
(14.1)

which has to be solved for flow . WD h/, species mass . WD Ck/ and heat
. WD T / in 1D or 2D space˝F � ˝ of a discrete featureF subject to the Dirichlet,
Neumann and Cauchy BC’s as well as well-type SPC as



14.3 Finite Element Formulation 713

 D D on �DF � t Œt0;1/
�.ΥF � r/ � n D qN on �NF � t Œt0;1/
�.ΥF � r/ � n D �˚F .C � / on �CF � t Œt0;1/

QwF D �
P

w

�
w � .xw/

�
Qw.t/ı.x � xw/ on xw 2 ˝F � t Œt0;1/

(14.2)

imposed on the discrete feature boundary �F D �DF [ �NF [ �CF and associated
with IC of the form

.x; t0/ D 0.x/ in N̋
F (14.3)

In the master equation (14.1)  corresponds to a generalized variable, the gradient
operator r refers only to 1D or 2D space and SF , vF , ΥF , %F , QF , QwF
represent specific quantities of storage, advection, dispersion, transfer, supply and
well-type sink/source, respectively, which have to be specified from Tables 4.5–4.7
in dependence on the occurring type and dimension of the discrete feature F . The
essential parameters required for solving (14.1) with (14.2) and (14.3) are listed in
Table I.9 for flow, in Table I.15 for mass transport and in Table I.18 for heat transport
of Appendix I. Steady-state situations occur if SF D 0.1

14.3 Finite Element Formulation

The governing ADE (14.1) of flow, mass and heat transport in 1D or 2D discrete
features is mathematically similar to the paradigmatic ADE of a scalar variable used
in Chap. 8. Based on the principles given there we use now the GFEM to solve (14.1)
for the generalized variable  D .x; t/ subject to the corresponding BC’s (14.2)
and IC (14.3). Since most of the details are equivalent to the ADE developments
given in Chap. 8 we shall focus here only on the specific aspects related to the DFE
approach.

14.3.1 Weak Form

In analogy to the statement (8.55) of Sect. 8.5 we find the corresponding weak form
for the governing ADE (14.1) in its convective form as

1Optionally, FEFLOW suppresses the time derivative term @=@t for solving steady-state solu-
tions.



714 14 Discrete Feature Modeling of Flow, Mass and Heat Transport Processes

Z

˝F

wSF @
@t
d˝ C

Z

˝F

wvF � rd˝ C
Z

˝F

rw � .ΥF � r/d˝ C
Z

˝F

wŒ%F  �QF �d˝ C
X

w

w.xw/
�
w � .xw/

�
Qw.t/C

Z

�NF

wqN d� �
Z

�CF

w˚F .C � /d� D 0; 8w 2 H1
0 .˝F / (14.4)

where w is a suitable weighting function and the boundary integrals are suitably
separated into their segments �F D �DF [ �NF [ �CF imposed by the Dirichlet,
Neumann and Cauchy-type BC’s (14.2) on the discrete feature.

14.3.2 GFEM and Resulting Matrix System

In using the FEM the unknown variable  appearing in the weak statement (14.4) is
replaced by a continuous approximation that assumes the separability of space and
time (cf. Sect. 8.4). Thus

.x; t/ 	
X

j

Nj .x/j .t/; j D 1; : : : ; NPF (14.5)

where j designates global nodal indices and NPF is the number of nodal points
related to a discrete feature F . Using the Galerkin method with the weighting
function

w! wi D Ni; i D 1; : : : ; NPF (14.6)

and applying the approximate solutions (14.5) in (14.4), the following matrix system
of NPF equations results

OF � PφCKF � φ� FF D 0 (14.7)

where

φ D

0

B
B
B
@

1
2
:::

NPF

1

C
C
C
A
; Pφ D

0

B
B
B
B
B
B
B
@

d1
dt

d2
dt

:::

dNPF
dt

1

C
C
C
C
C
C
C
A

(14.8)

and the matrices and RHS vector
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OF D OijF D X

e

Z

˝e
F

SeF NiNj d˝e

KF D KijF D X

e

�Z

˝e
F

Niv
e
F � rNj d˝e C

Z

˝e
F

rNi � .Υ e
F � rNj /d˝eC

Z

˝e
F
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FNiNj d˝
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Z

� eCF
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FNiNj d�

e
�

� ıijQw.t /

ˇ
ˇ
ˇ
i

FF D FiF D X

e

�Z

˝e
F

NiQ
e
F d˝

e C
Z

� eCF

Ni˚
e
F 

e
C d�

e �
Z

� eNF

Niq
e
N d�

e
�

� wQw.t /

ˇ
ˇ
ˇ
i

(14.9)

where .i; j D 1; : : : ; NPF / and .e D 1; : : : ; NEF /. The integrals appearing in
(14.9) are integrated on element level in the local coordinates η as described in
Sect. 8.12. Analytical evaluations of partial integral terms of (14.9) can be deduced
from developments done in Appendix H for selected element types, in particular
for the 1D linear line element (Sect. H.1) and the 2D linear triangular element
(Sect. H.2). Numerical integration via Gauss-Legendre quadrature is employed for
2D quadrilateral DFE’s.

14.3.3 Assembly of DFE’s into the Global System Matrix

14.3.3.1 Need for Coordinate Transformation

The matrix system (14.7) written in the form

OF � PφCKF � φ D FF
OF DP

eO
e
F

KF DP
eK

e
F

FF DP
e F

e
F

(14.10)

provides elemental matrix and vector contributions for each DFE e of feature F ,
which must be assembled additionally into the global finite-element matrix systems
resulting from the porous-media equations developed in the preceding sections, such
as (9.20) for flow in saturated porous media, (10.30) for flow in variably saturated
porous media, (11.38) for variable-density flow in porous media, (12.22) for mass
transport in porous media and (13.22) for heat transport in porous media.

The integrals (14.9) in Oe
F , Ke

F and F e
F for each DFE e and feature F are

performed in the local coordinates η for the corresponding Euclidean space <D
(cf. Sects. 8.8 and 8.11). Usually, 1D finite elements are mapped to the <1 space,
2D elements to the <2 space and 3D elements to the <3 space. In such cases the
mapping is strictly one-to-one, that means three global coordinates .x; y; z/ are
transformed to three local coordinates .�; �; �/ in 3D, two global coordinates .x; y/
to two local coordinates .�; �/ in 2D and one global coordinate .x/ to one local
coordinate .�/ in 1D. However, when 1D and 2D DFE’s are generally mapped onto
a 3D global space, the number of local coordinates η will be less than the number
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of global coordinates xe and the transformation Jacobian Je D @xe=@η for finite
elements (8.115) will not be any more an invertible square matrix (e.g., for the
� � ��system of a 2D DFE mapped onto the global x � y � z�system the third
row of Je contains zeros, J e31 D J e32 D J e33 D 0, because the ��coordinate does not
exist in 2D elements).

There are at least two ways to overcome this mapping conflict. A more general
method has been proposed by Perrochet [414], who uses expressions of gradients
in curvilinear coordinates and introduces covariant bases and metric tensors to
replace the usual Jacobian. Alternatively, the method of coordinate transformation
appears as a cost-effective and simpler method, we shall prefer here. Taking into
consideration that all flow and transport processes are invariant with respect to a
rotation (orthogonal transformation) of the global coordinates x D xe , 8e, we can
arbitrarily rotate x to the x0e�coordinates different for each element e by using a
suitable rotation matrix of directional cosinesAe as

x0e D Ae � xe
0

@
x0
y0
z0

1

A

e

D
0

@
A11 A12 A13

A21 A22 A23
A31 A32 A33

1

A

e

�
0

@
x

y

z

1

A

e

(14.11)

Taking an appropriate rotation of the global x � y � z�coordinate system in such a
way that the resulting local x0�y0�z0�system becomes aligned to the orientation of
the 2D or 1D DFE’s in the<3 space, there will be no more an elemental contribution
to the z0�direction for 2D elements and elemental contributions to the y0� and
z0�directions for 1D elements (see Fig. 14.3).

The advantages of this coordinate transformation are that the corresponding
Jacobian J 0e

J 0e D @x0e

@η
(14.12)

becomes again an invertible square matrix and the standard metric procedure can be
maintained in the assembly process for the global matrix system (14.10). To ease
the computations the x0 � y0 � z0�coordinate system may, in fact, be different for
every element e. Actually, the integrals (14.9) inOe ,Ke and F e over˝e

F , � e
CF

and
� e
NF

are performed in the local coordinates η which are directly mapped onto the
transformed coordinates x0e (Fig. 14.3):

˝e
F D ˝e

F .x
0e.η//; � e

CF
D � e

CF
.x0e.η//; � e

NF
D � e

NF
.x0e.η// (14.13)

14.3.3.2 Determination of the Directional CosinesAe of DFE e

The directional cosines Ae are only required for mapping 2D and 1D DFE’s in the
<3 space. Suppose the 3D continuum domain˝ with its boundary � is completely
filled by 3D finite elements (e.g., hexahedral or pentahedral isoparametric elements),
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Fig. 14.3 Global x�y� z�coordinate system, rotated elemental x0�y0� z0�coordinate system
and local � � .�/�coordinate system for 2D and 1D DFE’s in the <3 space

the 1D and 2D DFE’s share the nodal points of the 3D mesh and their geometric
extents are aligned to surfaces, edges or diagonals of the 3D porous-medium
elements (Fig. 14.4).

For 2D DFE’s forming surfaces of the 3D porous-medium element it is conve-
nient to derive the directional cosines directly from the shape of the 3D element.
We can construct the two directional vectors u1 and u2 (Fig. 14.4), which are
parallel to the local �� and ��axes, respectively. They can be found by the
following shape-derived relationships
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Fig. 14.4 Exemplified mapping of 2D and 1D DFE’s aligned to surfaces, edges and diagonals,
respectively, for a 3D finite porous-medium element. Global and local coordinates
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(14.15)

These directional vectors can be easily used to compute the directional cosines
according to

Aeij D cos.ui ;ej / D ui � ej
kuik kej k

„ƒ‚…
D1

for
i D 1; 2
j D 1; 2; 3 (14.16)

with the base vectors (2.5):
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Note that for 2D DFE’s we need only two directional vectors .i D 1; 2/, the
remaining directional cosines Ae3j are meaningless.

Often we can assume that the 2D DFE’s are perfectly plane, i.e., they represent
noncurved 2D geometries which occur for arbitrarily oriented linear triangles or
for vertical linear quadrilaterals in the 3D space. Instead of using the above shape-
derived expressions (14.14) and (14.15), in such cases it is convenient to derive the
directional vectors ui in a direct manner as follows (see Fig. 14.5). We specify the
x0�axis along the edge nm of the 2D DFE. The vector u1 is accordingly given by

u1 D
0

@
xn � xm
yn � ym
zn � zm

1

A (14.18)

The second directional vector u2 derived by simple vector algebra yields2

u2 D q �
� q � u1
u1 � u1

�
u1 (14.19)

with the auxiliary vector q formed along the adjacent side lm of the 2D element as

2Since the vector u2 D q � v is perpendicular to the vector u1, the dot product yields
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q D
0

@
xl � xm
yl � ym
zl � zm

1

A (14.20)

and the directional cosines Aeij .i D 1; 2I j D 1; 2; 3/ can be easily computed by
using (14.16).

For 1D DFE’s the same procedure can be applied to determine Aeij for .i D
1I j D 1; 2; 3/. Here, only one row Ae1j of the rotation matrix is of interest. Taking
into consideration that 1D DFE’s can be rather arbitrarily placed at mesh nodes
(which are not necessarily connected in one element and oriented along edges) the
following direct evaluation procedure can be used to compute Ae1j for a 1D linear
(noncurved) DFE spanning between the two nodes n and m (cf. Fig. 14.4):
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(14.22)

.q � v/ � u1 D 0 q

v

y ′

u2
u1

m

n
l x′

k

x

z
y

q – v

Using a parametric description of the vector v D tu1, the parameter t can be easily found:

.q � tu1/ � u1 D 0

t D q�u1

u1�u1

As a result, we get v D �
q�u1

u1�u1

�
u1 and finally u2 D q � �

q�u1

u1�u1

�
u1.
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14.3.4 Implicit Monolithic Solution of the Coupled Discrete
Fracture and Porous-Medium Equations

Discrete features and the porous medium are treated as a monolithic entity, where
all components are implicitly integrated in the solution domain

˝ D ˝P [
X

F

˝F (14.23)

consisting of the joint porous-medium domain˝P and a number of nonoverlapping
discrete feature domains ˝F , governed by different balance equations, however,
solvable via a common state variable  D .x; t/ (e.g., h for flow, Ck for species
mass and T for heat transport). In the finite element context the elementwise
continuous approximation for  	 O allows the assembly of the elemental
contributions of porous medium and discrete features in a standard manner such
that (cf. Sect. 8.6)

R
˝f: : :gd˝ D

X

e

Z

˝e

f: : :gd˝e

D
X

e

�Z

˝e
P

wLP . O/d˝e C
X

F

Z

˝e
F

wLF . O/d˝e
� (14.24)

where LP . O/ and LF . O/ represent the governing PDE’s for the porous medium and
the discrete features, respectively. Practically, the formation of the global matrix
system comprising both the porous medium and the discrete feature entities is
simply the assembly of their partial matrix and vector contributions. For example,
the matrix system of the porous-medium flow (9.20) extends now to

M � PhCD � h �Z D 0 (14.25)

with

M D OCPF OF

D D C CPF KF

Z D F CPF FF

(14.26)

to solve the hydraulic head h, where O, C and F are the porous-medium
contributions given by (9.22) and OF , KF and FF are the discrete feature F
contributions given by (14.9). Similarly, for variably saturated flow, variable-density
flow, species mass and heat transport the global matrix systems result if we assemble
the corresponding porous-medium matrix system (10.30), (11.38), (12.22) and
(13.22), respectively, with the matrix system (14.7) for the discrete feature F and
associated state variable h, Ck and T of hydraulic head, species concentration and
temperature, respectively.
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Since the DFE’s share the same nodal points with the porous medium, a natural
result of the assembly process is in the parallel behavior of exchanging (advective
and conductive/diffusive) fluxes between porous medium and discrete features.
Suppose KP and KF represent characteristic conductivities of porous medium and
discrete feature, respectively, at the same node, an exchanging flux between porous
medium and discrete feature is affected by its effective conductivityK D KPCKF .
IfKF � KP the flux becomes dominated by the discrete feature property, however
if KF ! 0 the effect from DFE vanishes and the exchanging flux is determined
by the porous-medium property alone. A disadvantageous consequence of the latter
is that there is no possibility to model clogging or sealing effects by simply using
DFE’s with sharing nodes because the exchanging flux can never be smaller than
that of the porous medium since K  KP , except for KP ! 0.

14.3.5 Time Integration

The global matrix systems for flow such as (14.25), and similar to mass and heat
transport comprising both the porous medium and the discrete feature entities have
to be solved in time t with the associated IC’s via suitable single-step semi-implicit
or fully implicit time marching recurrence schemes as described in Sect. 8.13.
The GLS predictor-corrector time stepping method combined with an automatic
error-controlled time step selection strategy is usually preferred. Its solution steps
applied to the global matrix systems are fully equivalent to the procedures as
thoroughly described above in Sect. 8.13.5 (summarized in Table 8.7) for a general
ADE, in Sect. 10.7.5 for unsaturated flow, in Sect. 11.6.4 for density-variable flow,
in Sect. 12.3.3 for reactive mass transport and in Sect. 13.3.3 for heat transport.

14.4 Computation of Velocity Fields and Budget Analysis

The flow vectors for the porous medium qP and for the discrete features vF are at
first separately evaluated by using smoothing techniques as thoroughly described in
Sect. 8.19.1. For the porous medium continuous Darcy velocities qP at the nodal
points are derived such as given in (10.120) for variably saturated media and in
(11.69) for variable-density flow. The same procedures are applied to compute the
discrete velocities at the nodes of a discrete feature F . For example, for the Hagen-
Poiseuille flow velocity (4.51) and for the overland and channel flow velocity (4.63)
the following discrete evaluation is performed

vF .x; tnC1/ D �
X

j

KF f� �
�rNj .x/ hj .tnC1/C �e


(14.27)

by using the known hydraulic head values hj .tnC1/ D hnC1 at nodes j of discrete
feature F at time plane n C 1, where KF corresponds to a generalized hydraulic
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conductivity of discrete feature F specifying the different flow laws according to
(4.51) or (4.63). Note that the velocity vF is only smoothed separately for the
contributions of the discrete feature nodes j , however, no smoothing is performed
with the velocity contributions of the porous medium. Finally, the total velocity q
is a result of superimposing the velocity of porous medium and discrete feature at
given location x and time stage tnC1, viz.,

q.x; tnC1/ D qP .x; tnC1/C vF .x; tnC1/ (14.28)

Note, however, the evaluations of the advective terms in the corresponding mass
and heat transport equations are always based on their separate (nonsuperimposed)
flow fields, i.e., porous-medium equations take the porous-medium Darcy velocities
qP and fracture equations use the fracture velocities vF .

The precise budget analysis for flow, mass and heat transport problems which
are mixed with discrete features is fully analogous to the technique as described for
porous-media processes in Sects. 9.7, 10.11, 11.8, 12.4 and 13.4 based on CBFM
introduced and thoroughly described in Sect. 8.19.2. Similarly, we use the basic
weak statement (14.4) of the discrete feature transport equation to express the
corresponding boundary flux on the discrete feature boundary �F as
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which leads to the matrix system

MF � qnF D �OF � Pφ�K�
F � φC F �

F (14.30)

with

MF D MijF D
R
�
NiNjd�

OF D OijF D
R
˝F

SFNiNjd˝
K

�
F D K�

ijF
D R

˝F
NivF � rNjd˝ C

R
˝F
rNi � .ΥF � rNj /d˝C

R
˝F
%FNiNjd˝ � ıijQw.t/

ˇ
ˇ
ˇ
i

F
�
F D F �

iF
D R

˝F
NiQF d˝ � wQw.t/

ˇ
ˇ
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(14.31)

for solving the continuous boundary flux vector qnF of discrete feature F . To com-
pute the boundary flux of the total system comprising both the porous medium and
the discrete feature entities we can simply assembly their partial matrix and vector
contributions. For example, the matrix system of porous-medium flow budget (9.65)
extends now to

M � � q�n D �O� � Ph �C� � hC F � (14.32)
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with

q
�
n D qn CPF qnF

M � DM CPF MF

O� D O� CPF OF

C� D C� CPF K
�
F

F � D F � CPF F
�
F

(14.33)

to solve the total boundary flux vector q�n, whereM ,O�,C� andF � are the porous-
medium contributions given by (9.66) and MF , OF , K�

F and F �
F are the discrete

feature F contributions given by (14.31). Note that in the budget analysis the total
integral flux Q�

n is directly evaluated at each boundary node by

Q
�
n D �M � � q�n
D O� � PhCC� � h � F �

(14.34)

Similarly, for variably saturated flow, variable-density flow, species mass and
heat transport the global matrix systems for budget analysis result if assembly
the corresponding porous-medium matrix system (10.123), (11.73), (12.47) and
(13.30), respectively, with the matrix system (14.30) for the discrete feature F
and associated state variable h, Ck and T of hydraulic head, species concentration
and temperature, respectively.

14.5 Examples

14.5.1 Solute Diffusion into Porous Matrix from a Single
Fracture

The single solute transport through fractured media was studied by Grisak and
Pickens [215] for the case of a thin single fracture situated in a saturated porous
rock as illustrated in Fig. 14.6. Advective transport is dominant in the fracture,
while diffusive solute transport is usually dominant in the adjacent porous matrix.
The diffusion into the porous matrix reduces the solute advancement in the fracture
and thereby delays the migration of the solute, which acts as a diffusive loss for the
fracture. Grisak and Pickens [215] used the standard FEM to model the fracture-
matrix system, where the single fracture is discretized by thin areal 2D elements
(i.e., no DFE).

An analytical solution for the fracture-matrix system of Fig. 14.6 has been
developed by Tang et al. [506] by using Laplace transforms, which includes
(1) advective transport along the fracture, (2) longitudinal dispersivity in the
fracture, (3) molecular diffusion within the fracture, in the direction of the fracture
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Fig. 14.6 Schematic sketch
of the fracture-matrix system

axis x, (4) molecular diffusion from the fracture into the matrix, in the y�direction
perpendicular to the fracture axis, (5) linear adsorption onto the face of the matrix,
(6) linear adsorption within the matrix and (7) linear radioactive decay. It solves the
coupled system of single solute mass balance equations governing in the fracture
domain .0 � x � 1; 0 � y � a/ as
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associated with the IC and BC’s

C.x; 0/ D 0; C.0; t/ D CD; C.1; t/ D 0 (14.36)

and governing in the porous matrix domain .a � y � 1/ as

<0 @C 0

@t
�D0

yy

@2C 0

@y2
C<0#C 0 D 0 (14.37)

associated with the IC and BC’s

C 0.x; y; 0/ D 0; C 0.x; a; t/ D C.x; t/; C 0.x;1; t/ D 0 (14.38)

with the retardation factors< D 1CKd 0

a
and<0 D 1C �sK

d

"
as well as the dispersion

coefficientDxx D DCˇLv D D in the fracture and diffusion coefficientD0
yy D D0

in the porous matrix, where all symbols quoted with 0 refer to the porous matrix,
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unquoted symbols are related to the fracture or being indifferent, C and C 0 are the
single solute concentrations in the fracture and in the porous matrix, respectively,
a is the half of fracture width (see Fig. 14.6), Kd 0

and Kd are the distribution
coefficients for the porous matrix and fracture, respectively (cf. Table 3.8), �s is
the bulk density of the porous matrix, v is the groundwater velocity in the fracture
(positive in x�direction), " is the porosity of the porous matrix, # is the decay rate
and ˇL is the longitudinal dispersivity.

Tang et al.’s general solution [506] of (14.35)–(14.38) takes the form of an
integral which must be evaluated by numerical quadrature for each point in space
and time (actually, Gaussian quadrature is used). On the other hand, a closed
analytical transient solution can be derived for the simpler case which assumes
negligible dispersion within the fracture, i.e., D � 0. It yields [506] the solute
distribution within the fracture as
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and the solute distribution within the porous matrix as
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where

A.y/ D
r<0
D0

.y � a/ (14.41)

Note that for evaluating the analytical exp.:/erfc.:/ expressions appearing in (14.39)
and (14.40) the more suitable exf.:; :/ function is used as already introduced in
Sect. 12.5.1.

To predict the ultimate penetration distances steady-state solutions can be useful.
Closed analytical steady-state solutions can be found [506] without the need for
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finite element mesh (vertical
exaggeration 300:1) of the
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y D a

neglecting dispersion within the fracture so as necessary for the transient solutions
(14.39) and (14.40). The steady-state solute distribution within the fracture results as
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and the steady-state solute distribution within the porous matrix results as

C 0

CD
D exp

" 
v

2D �
s

v2

4D2
C # C "

p
D0#
a

D

!

x

#

exp

�

�
r
#

D0 .y � a/
�

(14.43)

Equation (14.42) can be used to estimate the penetration depth dı into the fracture
at steady state for a given concentration of ı D C=CD. It gives

dı D ln ı

v
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4D2 C #C"
p

D0#
a

D

(14.44)

We compare the analytical solutions given by (14.39) for the solute behavior
in the fracture and by (14.40) for the solute behavior in the porous matrix with
FEFLOW’s finite-element simulations based on the spatial discretization shown in
Fig. 14.7. The symmetric half of the fracture-matrix domain is discretized by only
50�25 quadrilaterals in variable thicknesses in y�direction. The fracture is modeled
by using 50 1D DFE’s sharing the corresponding quadrilateral element edges of
the porous matrix at y D a, 0 � x � L (Fig. 14.7). Note that the discretized 2D
domain measuresL�.D�a/ in x� and y�direction (Fig. 14.6) while the thickness
(aperture) of the fracture is integrated in the 1D parameters of the used DFE’s.

The parameters and conditions used in the numerical simulations are summarized
in Table 14.1. Unspecified BC’s for flow and solute transport represent boundaries
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Table 14.1 Parameters and conditions used for the fractured media diffusion problem

Quantity Symbol Value Unit

Half-domain shown in Fig. 14.6
Domain length L 3 m
Domain width D 5 � 10�3 m
Half of fracture width a 6 � 10�5 m
Porous matrix
Isotropic hydraulic conductivity K 10�22 m s�1

Porosity " 0:35 1
Molecular diffusion D0 [10�10 – 10�14] m2 s�1

Longitudinal dispersivity ˇL 0 m
Transverse dispersivity ˇT 0 m
Retardation <0 1 1
Decay rate # 0 s�1

Fracture
Flow law Hagen-Poiseuille (Table 4.5, case PN, 1D)
Hydraulic aperture b D 2a 1:2 � 10�4 m
Cross-section area aB 6 � 10�5 m2

Hydraulic radius rhydr D b
2

6 � 10�5 m
Parameter factor (standard) f0 D �0g=�0 7:55 � 106 m�1 s�1

Molecular diffusion D 0 m2 s�1

Longitudinal dispersivity ˇL 0 m
Retardation < 1 1
Decay rate # 0 s�1

Groundwater velocity (steady-state) in the fracture v 2 m d�1

Flow BC
Neumann-type BC at fracture inlet .x D 0; y D a/ qh D �v �2 m d�1

Dirichlet-type BC at fracture outlet .x D L; y D a/ hD 0 m
Solute IC and BC
Initial condition (IC) of solute C0 0 mg l�1

Dirichlet-type BC at fracture inlet .x D 0; y D a/ CD 1 mg l�1

FEM
Mesh of 50� 25 quadrilateral elements with 50 1D DFE’s (Fig. 14.7), GFEM (no upwind)
Initial time step sizea 
t0 10�5 d
RMS error tolerance (FE/BE) � 10�4 1
Simulation time period tend 4 d
a In addition, maximum rate of time step change � D 
tnC1


tn
D 2

at which natural BC’s are imposed, i.e.,�.K �rh/ �n D 0 and �.D �rC 0/ �n D 0,
respectively. For the fracture a Hagen-Poiseuille law of flow motion is assumed (cf.
Sect. 4.3.2.2 and Table 4.5). Since the analytical solution (14.39) is only valid for
negligible dispersion within the fracture .D � 0/, we also set the dispersion to zero
for the DFE’s in the numerical approach. To stabilize the numerical simulations we
prefer the GLS 1st-order accurate FE/BE predictor-corrector time stepping method,
however, no resort to upwinding is necessary.
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Fig. 14.8 Simulated versus analytical solute breakthrough curves in the fracture .y D a/ at
distance of x D 0:76m from the source point for values of matrix diffusion D0 in the range of
10�10–10�14 m2 s�1

FEFLOW’s finite-element results are compared in Figs. 14.8–14.10 with the
analytical findings. The agreement is rather well, although the used mesh is
relatively coarse. Figure 14.8 shows the solute breakthrough curves in the fracture
for values of different matrix diffusion D0. Differences to the analytical solutions
are only revealed for very small diffusion, i.e., for cases where the advective
solute transport is dominant in the fracture. This is also seen in the computed
solute profiles into the porous matrix as depicted in Fig. 14.10, where the used
discretization in y�direction is obviously insufficient for a small matrix diffusion of
D0 D 10�14 m2 s�1. The results for this case can be improved by using more refined
meshes.

For the solute profiles in the porous matrix in longitudinal x�direction shown
in Fig. 14.9 we can observe that the accuracy of the numerical results expectedly
decreases with increasing matrix diffusion, such as revealed in particular for D0 D
10�10 m2 s�1 in Fig. 14.9. A more refined mesh could also improve the accuracy
for those cases of dominant matrix diffusion. The numerical simulations required
numbers of adaptive time steps ranging between 113 and 266 for simulating a time
period of 4 days in dependence on the used matrix diffusions D0.



730 14 Discrete Feature Modeling of Flow, Mass and Heat Transport Processes

0 1 2 3

x [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

analytical
numerical

D ' 10
10–

=

D ' 10 11–=

D ' 10 12–=

D ' 10 13–=

D ' 10 14–=no
rm

al
iz

ed
 c

on
ce

nt
ra

ti
on

 C
/C

D
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Fig. 14.10 Simulated versus analytical solute profiles at t D 4 days into the porous matrix in
y�direction at x D 0:76m for values of matrix diffusion D0 in the range of 10�10–10�14 m2 s�1
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(Modified from [198])

14.5.2 Density-Dependent Solute Transport in a 45ı�Inclined
Single Fracture Embedded in a Low-Permeable Porous
Matrix

Graf and Therrien [198] have studied density-dependent solute transport in single
fractures of arbitrary inclination embedded in a low-permeable porous matrix.
We shall benchmark their results for the 45ı�inclined fracture problem against
FEFLOW and the research code Ground Water (GW) developed by F. Cornaton
[102]. This single fracture problem is shown in Fig. 14.11. The fracture inclined
by 45ı is discretized by using correspondingly inclined 1D DFE’s. The left and
right boundaries of the L �H enclosing porous matrix domain are assumed to be
impermeable. The top and bottom boundaries are modeled as open boundaries with
a constant hydraulic head h (set to zero). A contaminant source of constant solute
concentrationC D Cs overlies groundwater of initial concentrationC D C0, where
C0 D 0 < Cs D 1. The simulations cover a time of 20 years. The model parameters
and conditions are summarized in Table 14.2. It is assumed that the porous matrix
is isotropic and homogenous and that the entire domain is completely saturated.
BC’s unreported in Table 14.2 for flow and solute transport represent boundaries at
which natural BC’s are imposed, i.e., �.K � rh/ � n D 0 and �.D � rC/ � n D 0,
respectively.
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Table 14.2 Parameters and conditions used for the inclined single fracture problem

Quantity Symbol Value Unit

Study domain shown in Fig. 14.11.
Domain length L 12 m
Domain height H 10 m
Fracture slope � 45 ı

Fracture aperture b 5 � 10�5 m
Porous matrix
Isotropic hydraulic conductivity K 8:7216 � 10�9 m s�1

Specific storage coefficient So 1:743 � 10�5 m�1

Specific solutal expansion coefficient ˛ 0:2 1
Porosity " 0:35 1
Molecular diffusion coefficient D 5 � 10�10 m2 s�1

Longitudinal dispersivity ˇL 0:1 m
Transverse dispersivity ˇT 0:005 m
Fracture
Flow law Hagen-Poiseuille (Table 4.5, case PN, 1D)
Fracture area bB 5 � 10�5 m2

Corrected hydraulic aperturea bcorr 5:374 � 10�5 m
Effective hydraulic radius rhydr D bcorr

2
2:687 � 10�5 m

Specific storage coefficient So 4:4 � 10�6 m�1

Specific solutal expansion coefficient ˛ 0:2 1
Molecular diffusion coefficient D 5 � 10�9 m2 s�1

Longitudinal dispersivity ˇL 0:1 m
Flow IC and BC’s
Initial condition (IC) of hydraulic head h0 0 m
Dirichlet-type BC on top at hD 0 m
.0 	 x 	 L; y D H/

Dirichlet-type BC on bottom at hD 0 m
.0 	 x 	 L; y D 0/

Solute IC and BC
Initial condition (IC) of solute C0 0 mg l�1

Dirichlet-type BC on top at .0 	 x 	 L; y D H/ CD 1 mg l�1

FEM
Uniform mesh of 24,000 triangles with 100 1D inclined DFE’s (Fig. 14.12), GFEM (no upwind)
Constant fully implicit time stepping variant 1 (combined with Picard iteration):
Constant time step size 
t 0:2 years
Adaptive time stepping variant 2 (AB/TR predictor-corrector strategy):
Initial time step sizeb 
t0 10�5 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 20 years
a Hydraulic aperture b has to be corrected by the factor

p
f=f0 due to a different viscosity

magnitude, where f D �g=� and f0 D �0g=�0 D 7:55 � 106 m�1s�1, see Sect. 4.4.2
b In addition, maximum rate of time step change � D 
tnC1


tn
D 2 and maximum time step size


tmax D 73 d
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Fig. 14.12 2D triangular finite element mesh with 1D DFE’s used for FEFLOW and GW
simulations

Graf and Therrien [198] tested different fracture slopes � and mesh refinement
levels. The present study focuses on the 45ı�inclined fracture problem at their
highest grid refinement level, consisting of 12,221 nodes and 24,000 triangles as
shown in Fig. 14.12. We use two time stepping strategies: (1) in agreement to
Graf and Therrien [198] a fully implicit time step marching scheme (combined
with a Picard iteration) with a constant time step length 
t of 0.2 years, and
(2) alternatively, the adaptive GLS 2nd-order accurate predictor-corrector AB/TR
time stepping using a RMS tolerance error of 10�4. No upwinding is employed in
all simulations. The computation of the consistent velocity fields is performed by
using FKA. The inclined fracture is modeled by 100 1D DFE’s fitted to the edges of
the corresponding triangular elements (Fig. 14.12). For the flow in the fracture the
Hagen-Poiseuille law is applied. Fluid viscosity is considered independent of the
concentration � D �0 D const. Graf and Therrien’s variable-density computations
employed standard Oberbeck-Boussinesq (OB) approximation (cf. Sect. 3.10.3).

For the 45ı�inclined fracture problem the results obtained by Graf and Therrien
[198] and by FEFLOW in form of computed concentration distributions as well
as velocity fields and pathline patterns at 2, 4 and 10 years simulation time are
shown in Fig. 14.13. It reveals how the solutes migrate from the fracture into the
adjoining porous matrix mainly governed by hydrodynamic dispersion and to a
small degree by convection. As a typical feature of the problem two convection cells
form above and below the fracture with increasing extent in time. Both cells move
downward in time. Note that the cell above the fracture moves faster downward
than the lower cell. Both convection cells remain separated by the high-conductive
fracture, therefore, acts as a barrier to convection.

At a first glance, FEFLOW and Graf and Therrien’s results agree very well.
However, as already seen in Fig. 14.13 the advance of solute transport in the fracture
seems slightly faster at early times in Graf and Therrien’s predictions compared
to the FEFLOW results. Indeed, this can be confirmed if as shown in Fig. 14.14.
While the FEFLOW curves for adaptive time stepping (taking 236 steps) and for
constant time steps (100 implicit steps with each of 0.2 years length) provide
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Fig. 14.13 Computed concentration distributions and velocity/pathline field after 2, 4 and 10 years
simulation. Comparison of FEFLOW results obtained by using AB/TR time stepping (right) to
findings by Graf and Therrien [198] modeled by a fully implicit constant time stepping (left). OB
approximation is used
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Fig. 14.14 Breakthrough curves at observation point x D y D 6m (Fig. 14.11). Comparison of
Graf and Therrien’s results [198] to GW [102] (with adaptive time stepping) and FEFLOW (with
constant and adaptive time stepping) in using OB approximation

reasonably close solutions, Graf and Therrien’s breakthrough curve is apparently
advanced at early times. Due to the high velocity contrasts between matrix and
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Fig. 14.15 Computed solute
concentration contours at
t D 15 years: FEFLOW
versus GW results in using
OB approximation
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Fig. 14.16 Breakthrough
curves at the observation
point x D y D 6m
(Fig. 14.11). Comparison
between OB approximation
and EOB approximation.
Adaptive time stepping is
used for FEFLOW’s solutions

fracture, the influence of early times on the spreading of solute in the depth is crucial
and requires further model comparisons.

The problem was also simulated by using the GW finite-element simulator
[102]. The GW results provide a nearly perfect agreement with the FEFLOW
predictions (cf. Figs. 14.14–14.16). As evidenced in Fig. 14.14 FEFLOW’s and
GW’s breakthrough curves are very close. This could be confirmed by using
both adaptive and constant time stepping strategies. Note further that the type of
solving the resulting sparse equation systems did not influence the outcome. Direct
and iterative equation solvers were tested in FEFLOW. Additionally, the extended
Boussinesq approximation (EOB), cf. Sect. 3.10.3, is also performed. As indicated
in Fig.14.16 the breakthrough curve for the EOB is slightly shifted in advance
compared to FEFLOW’s OB solution, however, remains further behind Graf and
Therrien’s OB solution. It can be concluded that the discrepancies between Graf
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Fig. 14.17 Schematic representation of the fractured sandstone block

and Therrien’s findings and the results simulated by FEFLOW or GW are not
attributed to different time stepping strategies, Boussinesq approximations and
different sparse matrix solvers. Furthermore, more spatially refined meshes did not
change notably anymore the solutions because the mesh convergence is practically
achieved at the analyzed mesh refinement level.

14.5.3 Wendland and Himmelsbach’s Experiment: Solute
Transport in a 3D Fracture-Matrix System

Wendland and Himmelsbach [560] conducted laboratory experiments and numerical
computations of solute transport in a fractured sandstone block. The sandstone
block has a length of 24 cm, a width of 21 cm and a height of 24 cm (Fig. 14.17).
The fracture with a mean aperture of >350(m divides the block into two parts.
The geometric details of the fracture plane are shown in Fig. 14.18. Water is pumped
from below flowing upwards at a constant rate of Q D 4:57ml h�1 through the
fracture plane. A multi-tracer experiment with pyranine and cadmium as solutes was
performed. The tracer is injected in the fracture at the bottom and the tracer break-
through is observed at the outlet on the top of the fracture (Figs. 14.17 and 14.18).

In the tracer experiment the injection of the solutes is considered as a pulse
directly into the fracture. The injection of the total tracer mass of 32:2(g lasted less
than 1 min. For modeling purposes, Wendland and Himmelsbach [560] smoothed
the pulse injection over a time interval of 6 min, which is still small relative to
the duration of the tracer experiment. Geometric relations, IC, BC’s and material
parameters used for the present simulation are summarized in Table 14.3. BC’s
unreported in Table 14.3 for flow and solute transport represent boundaries at which
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Fig. 14.18 Geometry of the fracture plane at z D L=2 D 120mm

natural BC’s are imposed, i.e., �.K � rh/ � n D 0 and �.D � rC/ � n D 0,
respectively. The flow is modeled steady-state while the solute transport is transient.

In Wendland and Himmelsbach’s simulation [560], the sandstone block was
discretized into 8,668 3D elements for the porous matrix and 435 2D elements for
the plane fracture. They used a symmetric streamline stabilization technique (cf.
Sect. 8.14.5) and an implicit time stepping with 2,000 constant time steps. In the
present FEFLOW simulation the spatial discretization is largely similar to Wendland
and Himmelsbach’s mesh in that, considering the expected concentration profile
in the porous matrix, logarithmic grid spacing is employed. The first nodal row is
located at a distance of 2 � 10�5 m from and parallel to the fracture interface. The
subsequent nodes are at distances of 5 � 10�5, 1:4 � 10�4 and 4 � 10�3 m. All further
nodes parallel to the vertical fracture are located at a constant horizontal distance
of 1 cm, except the last two slices having distances of 4 cm. The resulting finite
element mesh of the entire sandstone block is shown in Fig. 14.19. Note that in the
FEFLOW simulations only the symmetric half of the domain is considered. This
leads to a half-mesh consisting of 20,160 3D linear brick elements for the porous
matrix and 1,904 2D linear quadrilateral fracture elements. In order to account for
the sealed areas in the fracture plane (Fig. 14.18), the corresponding 2D elements of
the fracture were deleted from the mesh.

In the FEFLOW simulation the adaptive GLS FE/BE predictor-corrector scheme
is applied with an initial time step of 10�5 d and a RMS error criterion of 10�4.
The simulations are performed for a period of 660 min, which required 173 variable
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Table 14.3 Parameters and conditions used for Wendland and Himmelsbach’s 3D fracture-matrix
problem

Quantity Symbol Value Unit

Domain and fracture plane shown in Figs. 14.17 and 14.18, respectively.
Domain width L 240 mm
Domain depth D 210 mm
Domain height H 240 mm
Flux at injection point Q 4:57 ml h�1

Porous matrix
Isotropic hydraulic conductivity K 1 � 10�9 m s�1

Porosity " 0:085 1
Molecular diffusion coefficient D 5 � 10�11 m2 s�1

Longitudinal dispersivity ˇL 0 m
Transverse dispersivity ˇT 0 m
Fracture
Flow law Hagen-Poiseuille (Table 4.5, case PN, 2D)
Fracture aperture b 507 (m
Fracture thickness of half-space B 2:535 � 10�4 m
Effective hydraulic radius rhydr D b

2
2:535 � 10�4 m

Parameter factor (standard) f0 D �0g=�0 7:55 � 106 m�1 s�1

Molecular diffusion coefficient D 0 m2 s�1

Longitudinal dispersivity ˇL 0:006 m
Transverse dispersivity ˇT 0 m
Steady-state flow BC’s
Dirichlet-type BC at outlet hD 0 m

(x D 120 mm; y D H; z D L=2)
Well-type SPC at inlet, discharge in the Qw D �Q

2
�5:484 � 10�5 m3 d�1

half-space .x D 100 mm; y D 0; z D L=2/

Solute IC and BC
Initial condition (IC) of solute C0 0 mg l�1

Dirichlet-type BC at inlet
.x D 100 mm; y D 0; z D L=2/

CD

8
<

:

70:46 at t 	 6 min
0 at t > 6 min

mg l�1

FEM
Nonuniform 42 � 48� 10 mesh of 20,160 brick elements in variable extents for the
simulation half-domain .0 	 x 	 D; 0 	 y 	 H; 0 	 z 	 L=2/, PGLS upwinding
Initial time step size 
t0 10�5 d
RMS error tolerance (FE/BE) � 10�4 1
Simulation time period tend 660 min

time steps. Similar to Wendland and Himmelsbach [560] a PGLS upwind technique
(cf. Sect. 8.14.5) is used to stabilize the numerical solution.

Figure 14.20 illustrates the resulting flow field and head distribution in the
fracture-matrix system. The computed distribution of solutes within the fracture
at the final time of 660 min is shown in Fig. 14.21. Wendland and Himmelsbach’s
[560] results are displayed in Fig. 14.22. A comparison of the FEFLOW results
with solution given by Wendland and Himmelsbach [560] reveals differences in the
solute concentration at the sealed areas and near the outlet of the fracture. We note,
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Fig. 14.19 FEFLOW’s finite element mesh of the sandstone block with a vertical fracture: view
of the entire block and magnified mesh at the fracture
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Fig. 14.20 Computed stationary pathlines in the fracture and head distributions in the contacted
sandstone (half-space view)

however, that the magnitudes of solute concentrations are in good agreement
(the same concentration levels are used both in Figs. 14.21 and 14.22). Perhaps
more significant are the results of the breakthrough behavior at the outlet shown
in Figs. 14.23 and 14.24. The agreement with Wendland and Himmelsbach’s [560]
measurements is quite well. Wendland and Himmelsbach obtained a higher peak
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Fig. 14.21 FEFLOW results of solute distribution within the fracture .z D L=2/ at final
simulation time t D 660min
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Fig. 14.22 Wendland and Himmelsbach’s [560] simulation results of solute distribution within
the fracture at final simulation time t D 660min

concentration in their simulations compared to the measurements (Fig. 14.24) and
the FEFLOW simulation (Fig. 14.23). Obviously, the solute diffusion into the matrix
and its accurate numerical representation in the 3D fracture-matrix system is of high
importance. The better agreement of the FEFLOW results can result from the more
refined spatial resolution.
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Fig. 14.23 Breakthrough curve at the outlet: FEFLOW results compared to the measurements
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Fig. 14.24 Measured and simulated breakthrough curves at the outlet obtained by Wendland and
Himmelsbach [560]

14.5.4 Flow and Solute Transport in a Fracture Network
of Rock Mass

The simulation of flow and transport processes in a collection of individual fractures
(fracture network) is a challenging task due to the inherent geometric complexity
and its required numerical resolution.3 While a small set of individual fractures

3I acknowledge F. Cornaton (DHI-WASY) for providing the fracture network generation and
simulation results performed by the finite-element simulator Ground Water (GW) [102].
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Fig. 14.25 Study domain and fracture network generated by Josnin et al.’s algorithm [293] using
shape parameters E D F D 0:5m. At central LHS boundary .95 m 	 x 	 155 m; y D L/ a
solute source is imposed

can still often be described in a deterministic way, a fracture network, where
a whole set of crossing and intersecting fractures is typical, necessitates more
advanced modeling approaches [5]. Fracture networks are usually described either
via stochastic or fractal approaches [80] or by using mechanical parameters in
combination with statistical rules for the underlain rock masses [293, 294].

We consider a 2D example of a sedimentary rock mass measuring B � L D
250 � 500m (Fig. 14.25). A fracture network is generated by using the algorithm
developed by Josnin et al. [293] based on stochastic and mechanical parameters
given for a tabular stratified rock. A discontinuity network results which is
composed of two orthogonal joint sets normal to bedding in the tabular sedimentary
rock mass, controlled by two shape parameters: the half-wide E and parameter
F for adjusting joint overlap. The resulting orthogonal fracture network shown in
Fig. 14.25 was generated by choosing E D F D 0:5m.

The fracture network geometry (Fig. 14.25) is mapped onto a regular finite-
element mesh consisting of 305 � 984 linear quadrilateral elements. The individual
fractures are assigned to the edges of corresponding quadrilaterals. In doing so,
68,488 1D DFE’s finally result to model the fracture network in the spatially
discretized domain. For the fracture network the Hagen-Poiseuille law of flow
with uniform apertures of 100(m is assumed. A steady-state flow is modeled by
prescribing a hydraulic gradient of 1 % between the LHS boundary at y D L D
500m and the RHS boundary at y D 0, (0 � x � B D L=2 D 250m).
At the central LHS boundary a single-species solute intrudes into the domain with a
constant concentration CD , migrates through the fracture network and penetrates
the porous matrix over time. The simulations cover a time of 1,000 years. The
model parameters and conditions are summarized in Table 14.4. It is assumed
that the porous matrix is isotropic and homogenous and that the entire domain is
completely saturated. BC’s unreported in Table 14.4 for flow and solute transport
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Table 14.4 Parameters and conditions used for the fracture network model problem

Quantity Symbol Value Unit

Domain and fracture network shown in Fig. 14.25.
Domain length L 500 m
Domain width B D L

2
250 m

Porous matrix
Isotropic hydraulic conductivity K 1 � 10�8 m s�1

Porosity " 0:13 1
Molecular diffusion coefficient D 5 � 10�10 m2 s�1

Longitudinal dispersivity ˇL 0 m
Transverse dispersivity ˇT 0 m
Fracture network
Flow law Hagen-Poiseuille (Table 4.5, case PN, 1D)
Fracture area A 1 � 10�4 m2

Fracture aperture b 1 � 10�4 m
Effective hydraulic radius rhydr D b

2
5 � 10�5 m

Parameter factor (standard) f0 D �0g=�0 7:55 � 106 m�1s�1

Molecular diffusion coefficient D 5 � 10�9 m2 s�1

Longitudinal dispersivity ˇL 0:1 m
Transverse dispersivity ˇT 0 m
Steady-state flow BC’s
Dirichlet-type BC at LHS hD1 5 m
.0 	 x 	 B; y D L/

Dirichlet-type BC at RHS hD2 0 m
.0 	 x 	 B; y D 0/

Solute IC and BC’s
Initial condition (IC) of solute C0 0 mg l�1

Dirichlet-type BC at central LHS CD 1 mg l�1

.95 m 	 x 	 155 m; y D L/

Dirichlet-type BC at remaining LHS CD0 0 mg l�1

.0 	 x < 95 m; y D L/ and

.155 m < x 	 B; y D L/

FEM
Uniform 305 � 984 mesh of 300,120 linear quadrilateral elements with 68,488
1D DFE’s (Fig. 14.25), GFEM (no upwind)
Initial time step sizea 
t0 10�3 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 1;000 years
a In addition, maximum rate of time step change � D 
tnC1


tn
D 2 and maximum time step size


tmax D 50 years

represent boundaries at which natural BC’s are imposed, i.e., �.K � rh/ � n D 0

and �.D � rC/ � n D 0, respectively.
In the FEFLOW simulations the GFEM (without any upwind) and the adaptive

GLS 2nd-order accurate predictor-corrector AB/TR time integrator with a RMS
tolerance error of 10�4 are used. To evaluate the computational results, comparisons
to the finite-element research code Ground Water (GW) [102] are performed. GW
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Fig. 14.26 Steady-state hydraulic head distribution h.x/ in the fracture network domain:
FEFLOW vs. GW simulation results

is independently developed and uses differently implemented solution techniques.
FEFLOW and GW can run on the same mesh and fracture network data.

The steady-state hydraulic head distribution h.x/ in the fracture network domain
is compared in Fig. 14.26 between FEFLOW and GW revealing a nearly perfect
agreement. This can also be evidenced in more detail for h�profiles such as
exemplified in Fig. 14.27 at y D 400m, 0 � x � B . For the transient
solute transport through the fracture network domain we also recognize very good
agreements between FEFLOW’s and GW’s computational results. This is evidenced
in Fig. 14.28 comparing the solute distributions at three selected time stages, in
Fig. 14.29 showing the FEFLOW vs. GW solute breakthrough curves at four points
selected in the fracture network domain and in Fig. 14.30 comparingC�profiles for
the cross section at y D 400m, 0 � x � B . FEFLOW took 226 variable AB/TR
time steps for the simulation period of 1,000 years. A different, but likewise variable
time stepping of 2nd-order accuracy was used in the GW simulations.
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Fig. 14.27 Hydraulic head profiles at y D 400m, 0 	 x 	 B , in the fracture network domain
simulated by FEFLOW and GW
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Fig. 14.28 Comparison between FEFLOW’s and GW’s solute distributions simulated in the
fracture network domain at different times t (years)
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Fig. 14.29 Comparison between FEFLOW’s and GW’s solute breakthrough curves at
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Fig. 14.30 Concentration profiles at y D 400m, 0 	 x 	 B , in the fracture network domain for
different times t (years) simulated by FEFLOW and GW

14.5.5 Thermohaline Variable-Density Convection
in an Aquifer-Aquitard-Aquifer System
with Abandoned Borehole

In this hypothetical example we study the effect of a single abandoned borehole
causing a short-circuit flow situation in a deep stratified aquifer-aquitard-aquifer
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Fig. 14.31 Schematic representation of the aquifer-aquitard-aquifer system with the abandoned
borehole in the center of the aquitard

system driven by heavy saltwater and buoyant thermal gradients (Fig. 14.31).4

The abandoned borehole is to be modeled via the discrete feature approach. The
borehole bridges very locally the upper and lower aquifer so that saltwater and
heat can be efficiently exchanged over this preferential flow channel. The study
domain measures L � H � B D 100 � 100 � 100m for a 3D schematization and
L�H D 100�100m for a 2D cross-sectional schematization as shown in Fig. 14.31.
The upper and lower aquifers have thicknesses of each 20 m, the aquitard in between
is 60 m thick. In the center of the domain the abandoned borehole is located, which
interconnects the upper and the lower aquifer in a vertical distance of 60 m. Traces
of the abandoned borehole in the aquifers are neglected.

At initial time, the aquifer system is in a stable hydrostatic equilibrium: the
model domain contains freshwater and is subjected to a thermal gradient increasing
linearly with depth from 10 to 60 ıC. On the top and bottom surface corresponding
conditions for hydraulic head h, salinity C and temperature T are held constant.
In the simulation a heavy saltwater starts to enter on the top surface. It initializes
cellular convective currents in the upper aquifer layer, where the saltwater sinks
down, enters the abandoned borehole and salinates the lower aquifer layer. At the
same time cooler water reaches the lower aquifer layer via the abandoned borehole.
This thermohaline convection process is purely driven by the saltwater density and
affected by thermal buoyancy.

The used model parameters and conditions are summarized in Table 14.5.
We assume isotropic and homogeneous material conditions for each layer of the
aquifer system. The flow in the abandoned borehole is described by Darcy law. The

4This test case was introduced by F. Cornaton in 2007 at the University of Neuchâtel, Center of
Hydrogeology, Switzerland, with a number of unpublished simulations.
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Table 14.5 Parameters and conditions used for the abandoned borehole problem

Quantity Symbol Value Unit

Aquifer-aquitard-aquifer model domain shown in Fig. 14.31.
Domain measure (width; depth; thickness) .LI H I B/ .100I 100I 100/ m
Aquifer thicknesses H1 20 m
Aquitard thickness H2 60 m
Aquifer-aquitard-aquifer system
Hydraulic conductivity (aquifers; aquitard) .KI K/ .1 � 10�4I 1 � 10�8/ m s�1

Specific storage coefficient So 1 � 10�6 m�1

Specific solutal expansion coefficient ˛ 0:2 1
Thermal expansion coefficient ˇ 2 � 10�4 K�1

Porosity (aquifers; aquitard) ."I "/ .0:2I 0:35/ 1
Molecular diffusion coefficient D 5 � 10�10 m2 s�1

Volumetric heat capacity of (fluid; solid) .�cI �scs/ .4:2 � 106I 2:52 � 106/ Jm�3 K�1

Heat conductivity of (fluid; solid) .�I �s/ .0:65I 3/ Jm�1 s�1 K�1

Longitudinal dispersivity (mass and heat) ˇL 2 m
Transverse dispersivity (mass and heat) ˇT 0:2 m
Borehole DFE representation
Flow law Darcy (Table 4.5, case PN, 1D)
Fracture area A 1 m2

Isotropic hydraulic conductivity K 0:1 m s�1

Specific storage coefficient So 1 � 10�6 m�1

Specific solutal expansion coefficient ˛ 0:2 1
Thermal expansion coefficient ˇ 2 � 10�4 K�1

Porosity " 0:05 1
Molecular diffusion coefficient D 2:5 � 10�13 m2 s�1

Volumetric heat capacity of (fluid; solid) .�cI �scs/ .4:2 � 106I 0/ Jm�3 K�1

Heat conductivity of (fluid; solid) .�I �s/ .0:65I 0/ Jm�1 s�1 K�1

Longitudinal dispersivity (mass and heat) ˇL 0:1 m
Flow IC and BC’s
Initial condition (IC) h0 0 m
Dirichlet-type BC on top .y D 0/ hD1 0 m
Dirichlet-type BC at bottom .y D �H/a hD2 �0.5 m
Salinity IC and BC’s (normalized)
Initial condition (IC) of salinity C0=Cs 0 1
Dirichlet-type BC on top .y D 0/ CD1=Cs 1 1
Dirichlet-type BC at bottom .y D �H/ CD2=Cs 0 1
Heat IC and BC’s
Reference temperature T0 10 ıC
Initial condition (IC) of temperature f .y/ D � 1

2
y C T0

ıC
Dirichlet-type BC on top .y D 0/ TD1 10 ıC
Dirichlet-type BC at bottom .y D �H/ TD2 60 ıC
FEM
Uniform 2D and 3D meshes of .102 � 2`/D linear quadrilateral and brick elements, respectively,
containing 60 � 2` 1D DFE’s .` D 0; 1; 2I D D 2; 3/, GFEM (no upwind), OB approximation

(continued)
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Table 14.5 (continued)

Quantity Symbol Value Unit

Initial time step sizeb 
t0 10�5 d
RMS error tolerance (AB/TR) � 10�4 1
Simulation time period tend 365 d
a Hydrostatic condition is assumed at bottom by using (L.16) of Appendix L with h0 D CD2 D 0,
Ts D 60 ıC, T0 D 10 ıC

b In addition, maximum rate of time step change � D 
tnC1

tn

D 2 and maximum time step size

tmax D 0:5 d

simulations covering a time of 1 year are fully transient both for flow, saltwater and
heat transport. BC’s unreported in Table 14.5 for flow, saltwater and heat transport
represent boundaries at which natural BC’s are imposed, i.e., �.K � rh/ � n D 0,
�.D � rC/ � n D 0 and �.Λ � rT / � n D 0, respectively.

We simulate the thermohaline convection process by using both 2D and 3D
models with different spatial resolutions. Regular meshes of linear quadrilateral
elements in 2D and linear brick elements in 3D are chosen. With increasing mesh
refinement level of ` D 0; 1; 2; : : :, the resulting number of elements NE and nodes
NP are

NE D .102 � 2`/D
NP D .102 � 2` C 1/D (14.45)

where D D 2; 3 represents the dimension. The abandoned well is embodied
in the meshes by using 60 � 2` 1D DFE’s both in 2D and 3D schematizations.
For all FEFLOW simulations we use GFEM (without any upwinding), adaptive
GLS 2nd-order accurate predictor-corrector AB/TR time integrator, FKA consistent
velocity and OB approximation. Comparisons will be given to the computational
results obtained by the finite-element research code Ground Water (GW) [102] using
same mesh and DFE data.

Due to the layer structure and the presence of hydrodynamic dispersion it is
obvious that the quantification of the convective regime via solute and thermal
Rayleigh numbers, Rac (11.25), Rat (11.26), is not possible. In particular, the dis-
persivities ˇL, ˇT introduce additional nonlinear dependences of saltwater mixing
and thermal conduction on the convective velocity. If we disregard dispersivity
effects (acceptable at initial phase) and consider only the top aquifer layer we
can make a rough estimate from a HRL problem equivalence (cf. Sect. 11.5) and
assess a solutal Rayleigh number of Rac D �4 � 106 and a thermal Rayleigh
number of Rat D 33, which clearly indicate a monotonic convection representing
a fingering regime in the CSA quadrant of the DDC stability diagram of Fig. 11.8.
A Turner number (11.29) of Tu D 100 indicates the gravitational dominance of the
saltwater. As a consequence, we must expect a strong primarily solute-driven free
convection behavior which is sensitive to inherent perturbation and discretization
effects. We note, however, that dispersion effects can significantly reduce jRacj
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Fig. 14.32 Salinity patterns for 2D meshes of refinement levels ` D 0; 1; 2 .NE D 104;

4 � 104; 1:6 � 105/ and different times t D 5; 10; 20; 100 (d) simulated by FEFLOW. Color sequence
blue-lightblue-green-yellow-orange-red depicts normalized salinity C=Cs from 0 to 1 using 20
intervals

and jRat j because the effective ‘diffusion’ increases with "D C ˇLjqcj, where the
density-dependent Darcy velocity jqcj could be in the range 0 � jqcj . K .

The evolution of salinity and temperature for 2D meshes of three consecutive
refinement levels ` D 0; 1; 2 simulated by FEFLOW is shown in Figs. 14.32
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Fig. 14.33 Temperature patterns for 2D meshes of refinement levels ` D 0; 1; 2 .NE D 104;

4 � 104; 1:6 � 105/ and different times t D 5; 10; 20; 100 (d) simulated by FEFLOW. Color
sequence blue-lightblue-green-yellow-orange-red depicts temperature T from 10 to 60 ıC using 20
intervals

and 14.33, respectively. It clearly reveals the dependence of the spatial resolution
on the convection process. While a coarser mesh with ` D 0 produces symmetric
patterns, more refined meshes lead always to unsymmetric patterns in the salinity
and, correspondingly, in the temperature field. It is obvious, a higher resolution
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Fig. 14.34 Salinity breakthrough curves at entry point point P1.x; y/ D .50m, �20 m) and exit
point P2.x; y/ D .50m, �80 m) of the abandoned borehole simulated by FEFLOW for 2D meshes
of refinement levels ` D 0; 1; 2
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Fig. 14.35 Temperature breakthrough curves at entry point point P1.x; y/ D .50m, �20 m) and
exit point P2.x; y/ D .50m, �80 m) of the abandoned borehole simulated by FEFLOW for 2D
meshes of refinement levels ` D 0; 1; 2
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Fig. 14.36 Comparison between FEFLOW’s and GW’s salinity patterns for 2D mesh of refine-
ment level ` D 1 .NE D 4 � 104/ and different times t D 5; 10; 20; 100 (d). Color sequence
blue-lightblue-green-yellow-orange-red depicts normalized salinity C=Cs from 0 to 1 using 20
intervals
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Fig. 14.37 Comparison
between FEFLOW’s and
GW’s salinity breakthrough
curves at entry point point
P1.x; y/D (50 m, �20 m) of
the abandoned borehole for
2D meshes of refinement
levels ` D 0; 1
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Fig. 14.38 Comparison of
salinity breakthrough curves
at entry point point
P1.x; y; z/D (50 m, �20 m,
0 m) and exit point
P2.x; y; z/D (50 m, �80 m,
0 m) of the abandoned
borehole simulated by
FEFLOW for 3D and 2D
meshes of refinement level
` D 0

implies more inherent perturbing noise, which triggers the convective instability
in the upper boundary layer of salinity at certain locations in a random manner.
Notice, for the present simulations we do not induce extra perturbations on the top
boundary. As illustrated in Fig. 14.32 the salinity reaches the bottom of the upper
aquifer layer after about 10 days and leads to a breakthrough of salinity in the
abandoned borehole. Once saltwater enters the borehole a fast descent into the lower
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Fig. 14.39 Fifty percentage salinity isosurface and temperature field for 3D mesh of refinement
level ` D 0 .NE D 106/ at different times t D 5; 10; 20; 100 (d) simulated by FEFLOW. Color
sequence blue-lightblue-green-yellow-orange-red depicts temperature T from 10 to 60 ıC using
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aquifer occurs, where saltwater spreads conically over time. On the other hand, the
temperature field features a negative image to the salinity pattern (Fig. 14.33). With
the sinking of heavy saltwater the aquifer layers and the borehole are cooled down.
It is remarkable that fingering convection only occurs at beginning in the upper
aquifer layer. At later times this effect vanishes and the solution approaches to a
steady state equivalent for all mesh resolutions. As a consequence, the saltwater
and temperature breakthrough in the borehole at beginning is determined by the
history of convection in the upper aquifer layer, which implies mesh dependency
as evidenced in Figs. 14.34 and 14.35. In dependence on the actual history of free
convection developing in the upper aquifer the simulated breakthrough curves can
be nonmonotonic and lagged.

In the FEFLOW simulations the number of AB/TR adaptive time steps took
about 1,200 for refinement level ` D 0 (both in 2D and 3D), about 1,800 for
for refinement level ` D 1 and about 3,700 for for refinement level ` D 2.
In Fig. 14.36 FEFLOW’s salinity results for the 2D mesh with refinement level
` D 1 are compared to the findings obtained by the finite element simulator GW
[102]. It indicates that both codes simulate quite different convection patterns at
beginning. It is obvious that in FEFLOW’s computations the finger evolution is
faster and the resulting saltwater breakthrough in the borehole is more advanced.
This is also shown in the breakthrough curves of Fig. 14.37 for the two refinement
levels ` D 0; 1.

FEFLOW simulations are also performed for the equivalent 3D problem by using
a mesh of refinement level ` D 0 .NE D 106/. The 3D breakthrough histories in
comparison to 2D are given in Fig. 14.38 for ` D 0. It reveals that the breakthrough
in 3D is clearly faster than in 2D. The developments of salinity and temperature
for the 3D model are shown in Fig. 14.39. It illustrates how the heavier and cooler
saltwater intrudes very locally via the tubular borehole.



Chapter 15
Specific Topics

15.1 Finite Element Meshing

15.1.1 General

The finite element solution of the governing flow, mass and heat transport equations
as described in the preceding chapters requires the discretization of the equations to
replace the continuous PDE’s with a system of simultaneous algebraic equations
(cf. Chap. 8). The spatial discretization is accomplished by subdividing the study
domain with its boundary into a number of nonoverlapping finite elements of
different shapes, such as triangles, tetrahedra, bricks (see Fig. 8.6), forming the finite
element mesh associated with a set of nodes and interpolation functions. Such a
mesh should be sufficiently dense and appropriately refined according to the changes
in the solution gradients to obtain accurate numerical approximations. On the other
hand, the constructed mesh should ensure computational efficiency and robustness,
e.g., in avoiding too distorted element shapes and discontinuous changes.

Meshes can be classified according to

(i) CONFORMITY. We can differ between conformal and nonconformal meshes
(Fig. 15.1). Conformal meshes are characterized by a perfect match of edges
and faces between neighboring elements, while nonconforming meshes do
not match perfectly between neighboring elements and give rise to so-called
hanging nodes. A conformal discretization can be attained on a nonconforming
mesh by using constraints and associated interpolation functions. However,
such type of interpolation must not satisfy local conservativity at those hanging
nodes. Although nonconforming meshes are very convenient in handling
adaptive local mesh refinements, their use can reduce accuracy and stability.
In the present work we generally prefer conformal meshes.

(ii) ALIGNMENT. We differ between surface alignment of meshes whose boundary
faces match perfectly the surface (or interfaces) of the domain and nonsur-
face aligned meshes in which faces are crossed by the surface (Fig. 15.2).

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5 15,
© Springer-Verlag Berlin Heidelberg 2014
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conforming nonconforming

hanging node

Fig. 15.1 Conformal versus
nonconformal mesh

surface aligned nonsurface alignedFig. 15.2 Surface aligned
versus nonsurface aligned
mesh

An important advantage of FEM is in working with surface alignment, where
outer and inner boundaries or material interfaces and zones can be correctly
meshed.

(iii) TOPOLOGY. We differ between structured and unstructured meshes
(Fig. 15.3). A mesh is called structured if each nodal point has the same
number of neighbors (except for nodes on boundaries) so that the nodes can
be ordered into a regular index array .i; j; l/ with the assumption that the
nodes .i; j; l/, .i C 1; j; l/, etc., are neighbors, representing for instance a
FDM-like stencil of quadrilateral or hexahedral configurations. Contrarily, an
unstructured mesh possesses nodes which can have an arbitrary number of
neighbors, typically in using triangular or tetrahedral elements. There are also
composite meshes termed as multiblock meshes, where the mesh is assembled
from groups of structured submeshes of quadrilaterals or bricks, forming
together an unstructured mesh. FEM is superior in using unstructured meshes
providing a maximum in geometric flexibility.

The finite element meshing process starts in preparation of all important geometric
entities and input data describing the study domain with its boundaries, material
zones, subregions, interfaces and local points on which specific conditions and
parameters must be assigned. This work can be very comprehensive and time-
critical. There are in principle two ways of describing the required geometric entities
possibly linked to input data:

• Using analytical functions. This technique is practiced in engineering industry
by using CAD/CAM systems where the problem is usually described by a com-
position of analytical, semianalytical and/or parametric-based entities. Splines,
B-splines, NURBS or other types of functions can be used to define the surface
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Fig. 15.3 Different mesh topology
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Fig. 15.4 (a) Input superelement mesh: boundaries, material zones and BC locations of a 2D
computational domain are described by a number polygons, add-in lines and points in form of
superelements. (b) Unstructured finite element mesh resulting from a suitable triangulation of the
superelements

of the domain providing an explicit and continuous representation, which can
form a direct input for the finite element meshing process [514].

• Using discrete data. This technique is usually preferred in geosciences by
using GIS systems [155, 419, 434] and 3D geologic modeling [263], where
an analytical and continuous representation of the geometric data is usually
not given. GIS handles digital data in (1) vector or (2) raster form, which
are geographically referenced as maps. Vector data are the set of points, lines
and polygons that are used to represent map feature locations. Raster data
are described as a grid of square or rectangular data. GIS allows the storage,
manipulation, analysis and visualization of a large volume of data. It provides
database functionality and can easily maintain and update spatial data with their
associated information. An important feature of GIS in the present context is that
database information linked to the geometric entities can be directly exploited
in the meshing process for assigning material data, BC’s and other quantities to
the corresponding locations in the discretized model domain. A 2D example is
shown in Fig. 15.4, where polygon, line and point data are collected to so-called
superelements, which form the input of the mesh generation. The assembly of all
superelements is termed as superelement mesh.
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15.1.2 Mesh Generation

A number of powerful methods of generating meshes that are suited to particular
applications have been developed [188, 514]. We shall describe those strategies
which are most useful for the present class of porous-media and fracture modeling,
available in FEFLOW.

15.1.2.1 Transport Mapping

Transport mapping represents a relatively simple, but fast and robust meshing
method to generate structured or multiblock unstructured finite element meshes
[165,188,314,514]. It is commonly restricted to domains which are of quadrilateral
or hexahedral shape or can be composed of a number of quadrilaterals or hexahedra
(e.g., cross section, rectangular domain, regularly layered structure).

Let us briefly describe the method in 2D. A global quadrilateral domain or a
superelement of quadrilateral shape is described by four sides. In doing so, we can
transform the physical domain given in Cartesian coordinates x to a much simpler
square domain given in local coordinatesη. This coordinate transformation provides
a one-to-one mapping between the physical x�space and the computational
η�space, viz.,

x D x.η/ (15.1)

provided that the Jacobian jJ j D j @x
@η j is nonzero.

To treat curved boundaries we chose curvilinear geometries and prefer a
biquadratic isoparametric map which is identical to the transformation used for
the curved 8-node biquadratic finite element (cf. Table G.2c of Appendix G). As
shown in Fig. 15.5 such type of mapping allows the construction of a biparabolic
geometry in the physical coordinates x with prescribed local coordinates η similar
to (8.71)

x DP8
JD1 NJ .�; �/xJ

y DP8
JD1 NJ .�; �/yJ

(15.2)

where .xJ ; yJ / are the 2D Cartesian coordinates of the 8 nodes describing the
curved sides of the quadrilateral superelement and NJ are the isoparametric shape
functions listed in Table G.2c of Appendix G.

In practice, the mesh is generated with less computational effort by subdividing
regularly the computational domain along the �� and ��directions with given
increments
� and
�, respectively, according to a chosen number of rows NR > 1
and columns NC > 1 for the quadrilateral sides
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Fig. 15.5 Mapping of a quadrilateral superelement with parabolic sides

ba

Fig. 15.6 (a) Superelement mesh consisting of five quadrilaterals, where their parabolic sides are
specified by corner and midside (superelement) nodes. (b) Resulting all-quadrilateral element mesh
by using transport mapping for a 5� 5 subdivision of each quadrilateral superelement


� D 2

NR � 1 ; 
� D 2

NC � 1 (15.3)

where .�1 � � � 1/ and .�1 � � � 1/. It leads to an array of NR � NC
local coordinates .�i ; �j / with �i D �1 C .i � 1/
�; 1 � i � NR and
�j D �1C .j � 1/
�; 1 � j � NC. This regular array of local coordinates in the
η�space is input in the coordinate transformation (15.2) to compute the coordinates
in the physical space x:

x.i;j / DP8
JD1 NJ .�i ; �j /xJ

y.i;j / DP8
JD1 NJ .�i ; �j /yJ

�

.1 � i � NR; 1 � j � NC/ (15.4)

For each quadrilateral superelement the mapping (15.4) produces a regular mesh of
.NR � 1/ � .NC � 1/ quadrilateral elements. The procedure is performed for each
quadrilateral of a given superelement mesh such as exemplified in Fig. 15.6 for five
quadrilateral superelements, each subdivided simply by 5 � 5 quadrilaterals.

This type of biquadratic mapping also allows stretching and compression of
points along the sides of the superelement quadrilaterals so that specific regions
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of the domain can be resolved more accurately. It can be done easily by moving the
midside superelement node along the side up to a maximum displacement of the
quarter of the side length such as shown in the example of Fig. 15.7. The midside
node movement should not equal to or larger than the quarter of the side length,
otherwise the transformation Jacobian could be no more positive and the mapping
must fail1.

There are cases where the superelement sides cannot suitably be transformed
via a simple biquadratic isoparametric map (15.2), for example one or two sides
form circular arc segments are given in polar (cylindrical) coordinates (Fig. 15.8).
The easiest extension is the use of algebraic mapping [165, 314, 514] in which
boundary data are interpolated to generate the interior mesh that is orthogonal or
near-orthogonal adjacent to the bounding lines (surfaces). The standard method is
known as transfinite interpolation [165, 314]. In 2D the four sides 1̂2, 2̂3, 3̂4 and
4̂1 of a quadrilateral superelement are described by suited parametric equations
F12.η/, F23.η/, F34.η/ and F41.η/, respectively, as function of the parametric
(local) coordinates η. Internal mesh lines are constructed by linear interpolation
between opposite bounding lines followed by an orthogonal adjustment of the
generated points. The linear interpolation can be combined by stretching function
s.�/ such as [165]

s D P� C .1 � P/
�

1 � tanh ŒQ.1 � �/�
tanhQ

	

(15.5)

1Considering a superelement side of lengthL and move the midside node to the distance aL, where
0 	 a 	 1

2
is a shifting factor, viz.,

L

moved midside superelement node
aL

x

graded element spacing

D x

the smallest element length
x of the graded element spacing obtained with the parabolic mapping
is:


x D 
�LŒ
�. 1
2

� a/C 2a � 1
2
�

where 
� > 0 is the given increment (15.3) of the superelement side subdivision. It results by
taking the parabolic interpolation functions of Tab. G.1(b) of Appendix G with � D �1C
� for
the second evaluation point. For a D 1

2
the standard equally graded spacing with 
x D 1

2

�L is

given, while with the a midside node shift of a D 1
4

a left-sided densification with
x D 1
4

�2L

results. Since 
�. 1
2

� a/C 2a � 1
2

must be positive, the following constraints are required:

a > 1
2

�
1�
�

2�
�

�
for 0 	 
� 	 1


� > 1�4a
1�2a

for 0 	 a 	 1
4

We recognize that with decreasing 
� ! 0 the shift of the midside node must satisfy a > 1
4
.
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L 2

move node < L 2/4

a b

Fig. 15.7 (a) Midside nodes along the sides of the superelement are moved up to the quarter of
the side lengths Lx to densify meshing. (b) Resulting mesh with compressed elements at boundary
for a movement of Lx=4:1

a b
circular arc

circular arc

r

Fig. 15.8 (a) Annular superelement bounded by two circular arc segments. (b) Resulting all-
quadrilateral element mesh by using transfinite interpolation for a 9� 18 subdivision

where 0 � � � 1 is a normalized coordinate,P andQ are free parameters to provide
mesh point control. In FEFLOW’s implementation P is set in dependence on the
shift of the middle node along a superelement side and is taken in the range of 10�3
and 1:9, while Q is set to 2. An example of mesh generation by using transfinite
interpolation is shown in Fig. 15.8b for a quadrilateral superelement which consists
of two bounding circular arcs.

Transport mapping has proved to be a fast and robust method to generate
regular, structured or multiblock unstructured, all-quadrilateral and all-hexahedral
element meshes in 2D and 3D, respectively. This geometric regularity can be
desired in various applications. Sometimes, however, a regular triangular mesh
is more favorable to attain a higher geometric flexibility for a subsequent local
refinement. For this need it is possible to partition a quadrilateral mesh by triangles.
Each quadrilateral element can be split into two triangles with respect to the shortest
diagonal or by specifying the diagonal or can be split into four triangles such as
exemplified in Fig. 15.9.
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a

c d e

b

Fig. 15.9 (a) Basic quadrilateral superelement mesh, (b) resulting all-quadrilateral element mesh,
(c) two-triangle splitting with respect to the shortest diagonal, (d) two-triangle splitting with respect
to a specified diagonal and (e) four-triangle splitting

15.1.2.2 Advancing Front Technique

Advancing front technique (AFT) is very attractive to generate unstructured triangu-
lar meshes in 2D and tetrahedral meshes in 3D [188,353,514]. It constructs the mesh
of the domain from its boundary and can handle rather complex geometric shapes.
While AFT offers a great geometric flexibility in the mesh generating process, the
generated number of points and elements vary through the domain in dependence on
the boundary geometry, the number of used boundary points and their distributions.
As a consequence, a lack of regularity results in the mesh and, contrary to the
transport-mapping method (Sect. 15.1.2.1), the number of elements of the final mesh
is not assessable in advance.

The AFT generation process starts by discretizing each boundary curve. Typ-
ically in 2D, at the start the boundary consists of the sequence of straight line
segments of a superelement that connect consecutive boundary nodes.2 It represents
the initial front. This generation front is used to create internal triangles in

2Boundary nodes xi .i D 1; 2; : : :/ are created on each side of a superelement. Their distances
depend on the desired element resolution. They can be equally distributed along the superelement
side or can be densified locally by using a parabolic grading function:

xi D x2 C �i .k/ŒaC �i .k/b�; .�5 	 k 	 5/

with
a D 1

2
.x3 � x1/; b D 1

2
.x3 C x1/� x2

�i .k/ D �i � s.k/.�2i � 1/; �i D �1C .i � 1/
�; s.k/ D 1
4
sgn.k/

jkjX

jD1

2�jC1
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dependence on the geometric properties of the segments. The length of the segments
must be consistent with the desired local distribution of mesh size. Let ˛ be the
angle formed by two consecutive segments of the front, then three major patterns
for concave and convex geometry can be identified [188]:

• Pattern (a): ˛ < �
2

, the two segments with the angle ˛ form two edges of a single
triangle created (Fig. 15.10a).

• Pattern (b): �
2
� ˛ � 2�

3
, an internal point is created and two triangles are

generated by using the two segments with angles ˛ (Fig. 15.10b).
• Pattern (c): 2�

3
< ˛, one segment is retained, a triangle is created with this

segment as an edge and an internal point (Fig. 15.10c).

The position of the internal points are chosen to obtain new triangles as equilateral
as possible. At each point creation it must be verified that the point is inside the
domain, but not inside an existing element. This verification is most crucial for AFT,
in particular for 3D where the front consists of triangular faces [188, 353, 514].

While the creation of internal triangles progresses, the generation front is updated
in such a way that only segments remain part of the front which are available to
form an element side of further internal triangles in a next step. Accordingly, the
generation front changes continuously and needs to be updated whenever a new
element is created. The AFT generation process finishes when the front becomes
empty, i.e., when the domain is completely filled by triangles. An example of AFT
meshing is illustrated in Fig. 15.11 for a circular 2D domain showing the initial front
and the form of the mesh at various stages during the AFT generation process. We
recognize that AFT can advance geometric irregularity in the mesh starting from
the initial front. Note also that AFT may fail for pathological cases, for example if
the point-discretized starting front is chosen too coarse or too sharply varied so that
it becomes inconsistent with a complexly shaped boundary. To get better control
of the interior meshing behavior and overcome possible weaknesses it is useful
to subdivide the computational domain into a larger number of simpler-shaped
superelements, in particular if the domain has a complicate geometry. For each
superelement of a superelement mesh the AFT triangulation is performed and even
very complex domains can be successfully and quickly meshed.

There are many variants of AFT [188, 514]. For example, the automatic mesh
generator GRIDBUILDER [369] can belong to this category in a broader sense,
which is loosely based on Sadek’s approach [455] using a specific technique
for advancing triangulation from boundaries of the subdivided domain, however,
restricted only to 2D geometries.

where x1, x2 and x3 are the coordinates of the left, middle and right nodes of a superelement side,
respectively, k is a grading counter (for k D 0 there is no grading and the nodes become equally
distributed, k > 0 leads to left-sided densification, k < 0 leads to a right-sided densification of
boundary nodes) and 
� D 2=.NS C 1/ is a local coordinate increment determined by the desired
number of superelement side segmentation NS.
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a

b

c

Fig. 15.10 AFT construction
of triangles and internal
points from a 2D generation
front for the three major
patterns (a)–(c) (Modified
from [188])

15.1.2.3 Delaunay-Voronoı̈ Method

The Delaunay-Voronoı̈ method (DVM) represents a very powerful and fertile mesh-
ing concept to generate unstructured triangular or tetrahedral meshes [188,353,514].
Given a set of points P WD x1;x2; : : : ;xn, we may subdivide the space into regions
or volumes V WD V1; V2; : : : ; Vn assigned to each of the points in such a way that
any location x within Vi is closer to xi than to any other of the points, viz.,

Vi D
n
P W kx � xik < kx � xj k

o
; 8j ¤ i (15.6)

This tessellation V , which covers the domain completely, results in a set of
nonoverlapping convex regions called Voronoı̈ regions forming convex polygons
in 2D and convex polyhedra in 3D. The sum of all points x satisfying (15.6) defines
such a Voronoı̈ region.

In 2D it is easy to recognize that a bounding side of a Voronoı̈ polygon must be
midway between the two pointsxi ,xj and form thus a segment of the perpendicular
bisector of the line joining these two points. If all the pairs of points xi and xj
are joined by straight lines, a triangulation of the convex hull of P results. This
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a b c

f e d

Fig. 15.11 AFT generation showing different stages during the triangulation process for a circular
2D domain: (a) discretized outer boundary forming the initial front, (b)-(e) intermediate fronts
advancing into the circular domain, (f) final unsmoothed mesh

triangulation is known as the Delaunay triangulation. An example of a 2D Delaunay
triangulation is shown in Fig. 15.12. Equivalent geometric construction exists in
3D where a set of tetrahedra results from joining the points across polyhedral
boundaries of Voronoı̈ volumes [188, 353, 514].

An important property of any Delaunay triangulation is the in-circle criterion.
It states that no other point is contained within the circumcircle (circumsphere)
formed by the nodes of the triangle (tetrahedron), valid in arbitrary dimensions.
This property is used to construct algorithms for the triangulation. By satisfying the
in-circle criterion a Delaunay triangulation possesses further attractive properties
such as ensuring angle regularity of the triangles (tetrahedra) which has positive
consequences in the discretized finite element equations.

There are several algorithms used to construct the Delaunay triangulation [188,
353,514]. Most of these are based on the Bowyer-Watson algorithm [50,557], which
can be briefly summarized as follows (3D interpretation is given in parentheses):

STEP 1 Define the convex hull within all points will lie. This can be four points
(eight points) subdivided into two triangles (five tetrahedra).

STEP 2 Introduce a new point xnC1 within the convex hull.
STEP 3 Find all triangles (tetrahedra) whose circumcircle (circumsphere) con-

tains xnC1. These identify the triangles (tetrahedra) that will be deleted.
A void of elements results.

STEP 4 Find all points belonging to these triangles (tetrahedra).
STEP 5 Find all external edges (faces) of the void resulting from the deletion.
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Fig. 15.12 Delaunay triangulation (solid line) with circumcircle of a selected triangle and Voronoı̈
regions (dashed line)

STEP 6 Form new triangles (tetrahedra) by connecting the found external edges
(faces) to the new point xnC1.

STEP 7 Add the new elements and the point; update data structure.
STEP 8 Repeat STEPS 2–7 for the next point.

This algorithm provides the basis for unstructured meshing methods. Appropriate
treatment is required for recovering points and edges (faces) describing the dis-
cretized boundary. An example of Delaunay triangularization is shown in Fig. 15.13
for the circular 2D domain already used for AFT mesh generation in Fig. 15.11 with
a similar resolution. We recognize that quite different unstructured meshes can result
possessing high irregularity. In comparison to AFT, Delaunay meshes usually look
more ‘ragged’ due to the connectivity of points which is completely free and only
constrained via the in-circle criterion.

In the Delaunay mesh generation process the reliable and fast check of the in-
circle criterion is a key issue. It states that a point xp is within the radius R of a
circle (sphere) centered at xc if

d2p D .xp � xc/ � .xp � xc/ < R2 (15.7)
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Fig. 15.13 Delaunay
triangularization generated
for the circular 2D domain of
Fig. 15.11 using a
homogeneous mesh density

The in-circle check can fail and the triangulation process breaks down if jdp � Rj2
becomes of the order of the computer round-off. To overcome this weakness the test
should be better conducted as [353]

jdp �Rj2 < �R (15.8)

where �R is a pre-set tolerance that depends on the floating point accuracy of the
computer (e.g., 10�12 in double precision arithmetic). Another related difficulty in
the Delaunay-based meshing may arise for so-called sliver elements. For example,
giving the circumcircle for a triangle as

.xi � xc/ � .xi � xc/ < R2; i D 1; 2; 3 (15.9)

it may happen that the three nodes i lie on a straight line so that R ! 1.
In such a case, the point to be inserted has to be rejected and stored for a later use
(skip and retry). The in-circle criterion can also break down for certain degenerate
point distributions. A common degeneracy arises when the points are distributed
in a regular manner. For instance, if in 2D four or more points lie on a circle,
the triangulation is no more unique. To overcome this problem, the decision as to
whether a point is inside or outside the circumcircle must be consistent for all the
triangles involved.

It is possible to define line and point sources to provide an appropriate control
of local mesh point spacing during the unstructured meshing process. A useful
gradation function has the form [514]

ı.x/ D
(
ı1 if x � xc
ı1e

j x�xcD�xc
j log 2 if x > xc

(15.10)
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a b

Fig. 15.14 (a) Gradation function (15.10) and (b) resulting point density of a mesh controlled
through point and line sources

to control the target size ı.x/ of an element in the distance x from the point or line
source by specifying the quantities ı1, D and xc (Fig. 15.14a). An example of a 2D
Delaunay mesh which is locally densified around point and line sources through
function (15.10) is shown in Fig. 15.14b.

Many DVM-based meshing codes have been developed [514]. For example,
a fast and powerful non-commercial 2D triangulator is TRIANGLE [475] which
generates high-quality triangular meshes suitable for finite element modeling in
many applications.

15.1.3 Mesh Quality Enhancement

Mesh quality represents a rather general term and refers to two aspects: (1) the
geometric quality of a mesh which means that the mesh should have a good
regularity indicating smoothly varying element sizes having a proper ratio of the
maximum to minimum side lengths per element and a reasonable shape (e.g.,
no excessively deformed and skewed elements, triangles or tetrahedra should not
contain large obtuse angles, the minimum angle should be large, number of elements
surrounding a nodal point should be limited to avoid rosette-shaped patches), (2) the
mesh should be in accordance with the underlying physical problem to be solved,
i.e., finer meshes are required where large gradients in the solution variable(s) have
to be captured or where discontinuities in material properties or BC’s occur; coarser
meshes are suited in the far field or in parts of the domain where it can be expected
a priori that the solution(s) will not vary significantly; thinly shaped (prismatic)
elements are useful to adapt properly anisotropic behavior or layered structures. In
the following we consider important ways to a posteriori improve a generated mesh
for a better quality or to better adapt it to a solution.
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a

b

c

i

Fig. 15.15 (a) Element
removal by edge collapse, (b)
diagonal swapping to
maximize the smallest angle
in the triangles and (c)
selective mesh movement of
patch node i

15.1.3.1 Element Removal, Diagonal Swapping and Selective Mesh
Movement

A simple way to eliminate badly deformed elements is in their removal by edge
collapsing so that nodes coincide as shown in Fig. 15.15a. The removal leads to
a better shaped, more regular element distribution. For meshes of triangular (or
tetrahedral) elements local diagonal swapping represents another straightforward
procedure performed on a pair of adjacent elements to improve mesh regularity.
A 2D example is shown in Fig. 15.15b, where the connectivity of the triangles is
changed to eliminate obtuse angles. It attempts to attain improved mesh configura-
tions containing elements with the largest minimum angle. By moving a node i of an
element patch (Fig. 15.15c) the mesh quality can be improved in terms of the ratio
of edge lengths or the largest minimum angle. The selective movement of i is only
allowed while the adjacent elements do not produce singular Jacobians occurring in
the coordinate transformations of the elements (cf. Sect. 8.11).

15.1.3.2 Mesh Smoothing

Mesh smoothing technique can be useful to enhance mesh quality. Most typically, it
seeks to reposition mesh nodes such that each internal node is at the centroid of the
polygon (polyhedron) formed by its adjacent elements. This repositioning is usually
done iteratively. In addition, mesh smoothing can be associated with physical
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items to include solution gradients into the repositioning process. Our preferred
approach is the weighted Laplacian smoothing method proposed by Marchant and
Weatherill [372]. Let 0 be an internal node which is surrounded by M nodal points
of an element patch, its moved coordinates x�C1

0 at the new relaxation (iteration)
level � C 1 are obtained according to

x�C1
0 D x�0 C !

PM
iD1 Ci0.x�i � x�0/
PM

iD1 Ci0
(15.11)

where x�0 and x�i are the coordinates of node 0 and surrounding nodes i D
1; : : : ;M , respectively, at the previous iteration � , ! is the relaxation parameter
(usually, set to 0:1) and Ci0 is a weight factor given by

Ci0 D k1 C k2
ˇ
ˇ
ˇ
ˇ
i � 0
i C 0

ˇ
ˇ
ˇ
ˇ (15.12)

in which  represents a solution variable (e.g., hydraulic head, concentration, tem-
perature) and the constants k1 and k2 provide a damping to background noise and
amplification of gradients, respectively. The iterations (15.11) are performed over
all internal nodes of the mesh (excluding nodes belonging to internal boundaries
or interfaces of material zones, which should not be moved) and terminate if their
coordinate movements fall below a given small tolerance. If the solution dependence
is excluded (i D 0), choosing k1 D 1 and taking full relaxation (! D 1), (15.11)
reduces to a simple barycentric smoothing algorithm [188] written in the form

x�C1
0 D 1

M

MX

iD1
x�i (15.13)

Prototypical examples of mesh smoothing are illustrated in Fig. 15.16.

15.1.4 Prismatic Mesh Topologies

A relatively simple, but highly efficient and robust strategy for generating 3D
meshes is the extension of a planar (unstructured or structured) mesh to a third
coordinate direction. In such a procedure, each element of a triangular or quadri-
lateral 2D mesh forms a basis for the construction of layers of pentahedra and
hexahedra, respectively, by prolongation in the third direction (Fig. 15.17). Typically
in groundwater modeling, the third direction represents the vertical coordinate
direction so that layered structures and geologic strata can be appropriately dis-
cretized by prisms. All the more because the horizontal extent can be significantly
larger in comparison to the layer thicknesses and very thinly shaped elements must
result. For numerical reasons prismatic elements have shown to be best suited to
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a

b

Fig. 15.16 Smoothing of 2D meshes: (a) barycentric smoothing of quadrilateral mesh and (b)
Laplacian smoothing of triangular mesh with solution gradients at central position
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Fig. 15.17 Expanding planar mesh to 3D prismatic mesh by vertical or horizontal prolongation

approximate such type of elongate structures. If the construction of prisms is done
exactly in a straight-line direction, we avoid skewed prismatic shapes so that a
possible split into tetrahedral elements lead to acceptable angle conditions even
for such thin structures. We note that the third direction can also be a horizontal
coordinate direction, for instance if we want to expand a vertical 2D mesh into a 3D
prismatic topology.



774 15 Specific Topics

hexahedra

pentahedron

pentahedra

tetrahedronpyramid

a b

Fig. 15.18 Pinching of (a) hexahedral and (b) pentahedral topology by inserting transitional
elements in form of pentahedra, tetrahedra or pyramids

The resulting prismatic meshes constitute a number of layers and slices. Layers
define the extent of each prism and contain the material properties, while slices
define the upper and lower boundaries of each prism and are associated with the
nodes of the (linear) prismatic elements to which the computational results are
related. Slices can be curved to adapt spatial variation of the layered structures,
however, they cannot intersect each other (a typical example is shown in Fig. 9.4).
In cases where the number of layers is not present over the whole (horizontal) extent
of the domain (e.g., cropped, faulted or eroded layers, local lenses, underground
constructions) the prisms can be pinched out to merge layers or pinched in to
subdivide layers at a local extent. To retain conformal 3D meshes after pinching,
transitional elements in form of pentahedra, tetrahedra and pyramids are used for
adapting hexahedral and pentahedral topologies, respectively (Fig. 15.18).

15.1.5 Mesh Refinement and Derefinement

To improve the accuracy of a finite element solution a refined mesh over the
computational domain can be useful. However, because mesh refinement increases
the computational cost, a selective refinement over the critical areas of the domain
would be more efficient. On the other hand, in regions where the solutions have
shown sufficiently accurate, the mesh can be possibly derefined to improve the
efficiency of the finite element solution. The mesh refinement/derefinement (enrich-
ment/coarsening) can be either performed by a simple trial and error procedure or
via a fully automatic mesh adaptation based on error estimation of the numerical
solution (see following Sect. 15.1.6).

To refine a given mesh bisection of adjacent element edges (faces) is most com-
mon. In 2D a quadrilateral element splits into four quadrilaterals and a triangular
element splits into four smaller triangles, in 3D a brick element splits into eight
hexahedra and a tetrahedral element splits into six smaller tetrahedra as illustrated
in Fig. 15.19. For tetrahedral elements various splitting alternatives exist, e.g., [64].
Prismatic hexahedral and pentahedral elements can be suitably split into a number
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a b

Fig. 15.19 Uniform bisection of (a) quadrilateral and triangular element subdivided into four
geometrically similar elements and (b) hexahedral and tetrahedral element subdivided into eight
and six elements of the same type, respectively
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Fig. 15.20 Splitting (a) a hexahedron into five tetrahedra and (b) a pentahedron into three
tetrahedra (each for the RHS and LHS variants)

of tetrahedra (see Fig. 15.20), which can afterwards further be subdivided into
tetrahedral elements via bisection. For structured quadrilateral (brick-type) meshes
bisection requires mesh lines running to the outer boundaries to retain the four-
neighbor (eight-neighbor) structure, similar to grids used in FDM, suitable at most
for a global refinement in FEM. To refine locally quadrilateral (brick-type) meshes
transitional quadrilaterals become necessary to create conformal all-quadrilateral
meshes (Fig. 15.21), however, their use is limited and can lead to badly shaped
elements when the local refinement is consecutively applied.

Much more flexibility is provided by using unstructured triangular (pentahedral
or tetrahedral) element meshes, which are usually preferred for purposes of adaptive
and local mesh refinement/derefinement. We start from a given triangulation
(the basic mesh) obtained by using a mesh generator such as described above
(Sect. 15.1.2). A powerful and highly flexible refinement/derefinement strategy has
been proposed by Bank [23, 24] which is called red-green triangulation. It uses
regular bisection of a triangular element into four geometrically similar triangles.
Such bisected elements are called red. To retain conformal meshes (i.e., no hanging
nodes) adjacent elements sharing a bisected edge of a red element are irregularly
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a b

Fig. 15.21 Regular 3� 3 quadrilateral mesh being three times consecutively refined by (a) global
refinement leading to a uniform 3 � 23 � 3 � 23 mesh resolution and (b) local refinement around
selected patch nodes and at a single element

subdivided into two triangles. They are called green elements (Fig. 15.22). Green
elements, however, have a useful property: once a refinement of green elements
is required afterwards, their irregular two-triangle subdivision is abolished and
replaced by a regular one-to-four triangle split, so that the green element turns to
a red element (Fig. 15.23). This procedure keeps the angles of the refined triangles
in acceptable bounds and mesh quality is retained even in hierarchies of element
refinements. The process can be repeatedly performed over an arbitrary number
of refinement levels so that red elements can be further subdivided in a systematic
hierarchical manner (Fig. 15.24). In doing so, elements introduced by refinement are
regarded as offspring of coarser parent elements and a derefinement (coarsening)
of an already refined mesh becomes easy by turning back within the refinement
hierarchy, where elements nested within a parent element are removed and the
parent is restored as the element (Fig. 15.25). Note, however, coarsening beyond
the basic mesh (refinement level 0) is not possible. Bank’s red-green triangulation
can easily be applied to prismatic pentahedral 3D meshes when accepting the refine-
ment/derefinement procedure for each layer. Alternative refinement techniques have
been developed for tetrahedral meshes, e.g., [347, 353, 501].

15.1.6 Adaptive Mesh Refinement (AMR)

A successful use of numerical methods (FEM, FVM) requires significant expertise
and cost. The accuracy and reliability of the computations are of theoretical as
well as of practical interest and represent a central problem in the numerical anal-
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Fig. 15.22 Bank’s red-green
triangulation: regular
bisection of red element into
four triangles and adjacent
green elements each
irregularly subdivided into
two triangles (shown dashed)

Fig. 15.23 Regular
refinement of a green triangle
of the mesh shown in
Fig. 15.22 to avoid a second
bisection of irregular
triangles. New refinements
are shown as dashed lines

Fig. 15.24 Second
refinement (level 2) of the red
triangle of the refined mesh
(at level 1) shown in
Fig. 15.22. New refinements
are shown as dashed lines

ysis [16]. Promising self-adaptive strategies for an automatic quantitative control
of the discretization error(s) have been developed [353, 433, 545, 590]. Ideally, an
adaptive method should be reliable in the sense that the discretization-error control
should be guaranteed, and also efficient in the sense that the computational effort
should remain within acceptable bounds. However, for the most practically relevant
problems analytical (a priori) error estimates do not exist. Nevertheless, adaptive
finite element algorithms can be constructed on the basis of a posteriori error
estimates. They postulate that a finite element solution can indicate which regions
in a given domain need refinement or allow coarsening.

An adaptive procedure is divided into two phases: error estimation and mesh
refinement/derefinement. Since the exact solution is not known, a method to
approximate the error of a numerical solution is needed. Thus, an appropriate
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Fig. 15.25 Multiple refinement applied to the mesh shown in Fig. 15.22 and attained derefinement
in a selected area

measure, a norm, or seminorm, of the error has to be defined (cf. Sect. 8.4.2).
Commonly, the error energy norm

kek2 D
Z

˝

eTL.e/d˝ (15.14)

is used [593], where L is a differential operator and e is a local error measure.
Denoting the exact and the approximate finite element solution by φ and Oφ,
respectively, e is defined as

e D φ� Oφ (15.15)

For advection-dispersion equations we can determine an equivalent energy func-
tional if the differential operator L in (15.14) is expressed by the dispersive flux
vector fd from (8.2), viz.,

L.e/ D �r � .fd � Ofd / (15.16)

Inserting (15.15) and (15.16) into (15.14), integrating by parts, using Gauss’s
integral theorem (2.77) and noting that the error vanishes on the boundary �
because φ or fd are prescribed there, the error estimator becomes3

3Alternatively, to find an appropriate energy expression for coupled variable-density flow, mass and
heat transport in porous media, the internal Clausius-Duhem entropy production �� � 0, (3.125),
can be utilized. It provides a physically consistent functional in which all relevant state variables
of the nonlinearly coupled process in form of Darcy flux q, hydraulic head h, species mass Ck and
temperature T are present. A simplified version of (3.125) yields

N� .q; T; Ck/ D T �� D �0gq �.K�1 �q/C 1

T

�rT �.Λ �rT /�CX

k

@�k

@Ck

�rCk �.Dk �rCk/� � 0

and the following entropy error norm appears suitable

kek2 D
Z

˝

N� .q � Oq; T � OT ; Ck � OCk/d˝
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kek2 D
Z

˝

�r.φ � Oφ/� � �fd � Ofd �d˝ (15.17)

where the dispersive fluxes fd and Ofd are expressed by their exact and approximate
finite element solutions according to (8.2), which depend on the state variableφ and
Oφ, respectively. In fact, (15.17) forms a functional of the hydraulic head h, species

mass Ck and temperature T variables.
While (5.17) characterizes the error, a measure for the exact solution is also

needed. Such a norm can be similarly derived as

kφk2 D
Z

˝

φTL.φ/d˝ D
Z

˝

.rφ/ � fdd˝ (15.18)

We recognize from (15.17) and (15.18) that exact values of hydraulic head, species
mass and temperature gradients (derivatives), which are generally unknown, must
be required. Therefore, these values must be approximated. A usual way is to
compute these derivatives by a higher-order approximation. Fluxes of higher-order
accuracy can be easily obtained by using global or local smoothing techniques, such
as already discussed in Sects. 8.19.1.1 and 8.19.1.2, respectively. They can also be
obtained by adequate SPR technique, as described in Sect. 8.19.1.3. In doing so, we
compute the higher accurate and continuous rφ by a flux smoothing or recovery
technique, while the lower accurate and discontinuous r Oφ is obtained by direct
differentiation similar to (8.402). The norms kek and kφk are evaluated as the sum
of their respective element contributions, viz.,

kek2 D
NEX

eD1
.keke/2; kφk2 D

NEX

eD1
.kφke/2 (15.19)

where the element norms keke and kφke are given for each element e as

.keke/2 D R
˝e

�r.φe � Oφe/� � �fde � Ofde �d˝e

.kφke/2 D R
˝e .rφe/ � fded˝e

(15.20)

equivalent to (15.17) and (15.18), respectively. Note that only the square of the error
norm is additive.

Usually, global and local error criteria can be defined to rate the accuracy of the
solution by using appropriate relative quantities, where a mesh is considered optimal
if these global and/or local (elementwise) error criteria are satisfied [402]:

(a) Global error condition requires that the error relative to the exact solution must
be smaller than a permissible error tolerance, such as

where q, Ck , T are the exact solutions and Oq, OCk , OT are the approximate finite element solutions.
The Darcy flux q D q.h; Ck; T / or Oq D Oq. Oh; OCk; OT / takes the form of (11.1).
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& D kekkφk � �
 (15.21)

where �
 represents the spatial AMR-specific error tolerance to be set. A global
error indicator &g is defined as

&g D kek
�
kφk (15.22)

so that &g � 1 satisfies the global error criterion, whereas &g > 1 indicates a
need for further mesh refinement.

(b) Local error condition is used to bound the error in each element of a mesh.
It can be expressed as

keke D keker ; .e D 1; : : : ; NE/ (15.23)

where keker is a ‘required’ error norm valid for the element. A local error
indicator &e is defined as

&e D kek
e

keker
(15.24)

so that &e D 1 indicates an optimal size of element e, whereas &e > 1

and &e < 1 indicate that the size of element e needs further refinement or
derefinement, respectively. Clearly, the definition of keker is a key issue, which
strongly affects the mesh resolution and element size distribution. The follow-
ing two major AMR strategies will specify different mesh optimality criteria
for keker .

In the preferred AMR process both global and local error conditions will be
satisfied. To control the mesh refinement and derefinement the following element
refinement parameter is used

�e D &e&g D kekkeke
�
kφkkeker

(15.25)

which results from combining (15.22) and (15.24). It represents an appropriate
indicator to relate the actual element error to the distributed value of the permissible
error over the mesh. Thus, �e  1 will indicate that element e needs further
refinement, whereas �e < 1 indicates that both the local and global error conditions
are satisfied in element e. We employ the following two different optimality criteria
in the AMR process:

(A) ZIENKIEWICZ AND ZHU’S OPTIMALITY CRITERION [594]. By using this
criterion the global error is equally distributed for all elements NE of a mesh.
The ‘required’ error for each element is considered as an average of the global
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error per element e, i.e.,

.keker /2 D
kek2
NE

(15.26)

Then, the element refinement parameter �e (15.25) gives

�e D kek
e
p
NE

�
kφk (15.27)

(B) OÑATE AND BUGEDA’S OPTIMALITY CRITERION [402]. This criterion dis-
tributes the specific error in form of the square of the error per unit area (or
volume) over the whole mesh, viz.,

.keker /2
˝e

D kek
2

˝
(15.28)

so that the element refinement parameter �e (15.25) gives

�e D keke
�
kφk

�
˝

˝e

	 1
2

(15.29)

Note that Zienkiewicz and Zhu’s optimality criterion (15.27) and Oñate and
Bugeda’s optimality criterion (15.29) coincide for meshes consisting of elements
equal in size ˝

˝e D NE. However, for unstructured meshes both criteria are generally
different and the advantage of Oñate and Bugeda’s optimality criterion is that more
and smaller elements are generated in those areas where steep solution gradients
have to be captured, so as physically useful.

The element refinement parameter �e , (15.27) or (15.29), indicates elements
which are above or below a permissible error measure. To meet the required
accuracy according to the chosen optimality criterion, there are three strategies:
(i) the h�adaptation, where the mesh is refined or coarsened locally, (ii) the
p�adaptation, in which the polynomial degree of the finite element basis (trial)
functions is locally increased or decreased, while the mesh is not changed and
(iii) the r�adaptation, in which the mesh is relocated or moved. These strategies
may be used singly or in combination and can also be combined with mesh
smoothing (see Sect. 15.1.3.2).

For the present problem class the h�refinement has shown best suited and robust.
Basically, the h�refinement strategy can be treated hierarchically. The finer mesh
is created within the coarser mesh, and vice versa. Triangles in two dimensions and
tetrahedra in three dimensions are particularly convenient and flexible in contrast to
quadrilateral and hexahedral elements. Most common is the red-green triangulation
(cf. Sect. 15.1.5 above), in which the basic (coarse) mesh is locally refined and
redefined in accordance with the error criteria to be satisfied for each element of the



782 15 Specific Topics

T T0=

10 H

T T1=

h 0=

x
z H

HH 8 H

Fig. 15.26 Definition of Elder’s long-heater problem – domain and BC’s

mesh. Practically, whenever the element refinement parameter �e  1, the element
e is indicated as red and becomes refined by a regular one-to-four triangle split;
otherwise if �e < 1 the element e can be potentially coarsened. To avoid extremely
small element sizes in critical regions, the refinement is terminated if the element
area (volume) falls below a minimum magnitude. This refinement/derefinement
process is iteratively repeated until the mesh becomes optimal in a sense that �e will
be approximately unity for all elements of the mesh and no refinement is necessary
within the AMR-specific error tolerance pre-set by �
.

For transient problems the spatial adaptation has to be embedded in an appropri-
ate time-stepping cycle. In using an automatic time-stepping control, the overall
solution becomes fully adaptive for the proposed predictor-corrector technique.
However, the computational effort can increase substantially and an efficient moni-
toring of the temporal and spatial refinement/derefinement is necessary. Ideally, the
spatial adaptation is performed at each time plane n C 1. Alternatively, one can
check the error criteria only after a certain step number of advances in time and
allow remeshing only if error variation with time is significant [169].

The AMR procedure in combination with adaptive time stepping monitors the
actual spatial and temporal discretization requirements (‘watching physics’). We
illustrate the use of such a fully adaptive solution procedure for the solution of
Elder’s variable-density ‘long-heater problem’ [154] as sketched in Fig. 15.26.
The used simulation parameters, IC and BC’s are summarized in Table 15.1.
The assumed flow and thermal parameters are isotropic and constant, thermodis-
persivity does not occur. At the center of the cross-sectional domain, measuring
10H � H units, a reference hydraulic head h is set to zero. On the top boundary
a constant temperature T0 is imposed, while at the bottom of the domain a higher
temperature T1 > T0 is imposed over a distance of 8H units. On all the remaining
parts of the boundary, natural BC’s are set. Boundary values and parameters are
equivalent to a thermal Rayleigh number Rat , (11.26), of 200.

Applying the AMR strategies to the transient long-heater problem we observe
a different effect on the mesh resolution in time depending on the used optimality
criterion. Figure 15.27 shows the sequence of refined meshes with related results
of isotherms and streamline patterns at selected (dimensionless) times Ot by using
Oñate and Bugeda’s optimality criterion. The equivalent results for the Zienkiewicz
and Zhu’s optimality criterion are shown in Fig. 15.28. In both cases, the simulation
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Table 15.1 Parameters and conditions used for Elder’s long-heater problem

Quantity Symbol Value Unit

Study domain shown in Fig. 15.26.
Domain measure (height; length) H ; 10H
Thermal Rayleigh number, (11.26) Rat 200 1
Specific storage coefficient So 0 m�1

Thermal storage coefficient, (11.21) S� 1 1
Flow BC
Dirichlet-type BC at center h.x; z/ D hD.5H;

H
2
/ 0 m

Dimensionless temperaturea IC and BC’s
Initial condition (IC) of temperature OT0 0 1
Dirichlet-type BC at top (z D H ) OTD .0 	 x 	 10H/ 0 1
Dirichlet-type BC at bottom (z D 0) OTD .1H 	 x 	 9H/ 1 1
FEM
Adaptive triangular meshes, GFEM (no upwind), OB approximation
Initial time step sizeb 
Ot0 1:33 � 10�6 1
Temporal RMS error tolerance (AB/TR) � 10�3 1
Spatial AMR error tolerance (Zienkiewicz-Zhu) �
 5 � 10�2 1
Spatial AMR error tolerance (Oñate-Bugeda) �
 3 � 10�3 1
Simulation time periodb Otend 0:4 1
a Dimensionless temperature OT D T

T1�T0
, where T0 and T1 > T0 occur at the top and bottom

boundary, respectively
b Dimensionless time Ot as defined in (11.23)

starts from a coarse mesh consisting of only 658 triangles. We can see how the
thermal gradients are appropriately adapted by the mesh varying in time. The dis-
tribution of elements, the taken refinement levels and the trailing derefinement of
the mesh have shown very dynamic during the evolution of the thermal convection
process. Zienkiewicz and Zhu’s strategy leads to meshes exhibiting more spread
of refinement around gradients, while Oñate and Bugeda’s strategy enriches the
mesh more locally in dependence on the evolving temperature gradients. Both AMR
strategies take about 900 adaptive time steps of variable size by using the AB/TR
predictor-corrector time integrator showing similar characteristics in the time step
behavior (Fig. 15.29a), however, their resulting mesh resolutions develop rather
differently as depicted in Fig. 15.29b for the total number of elements NE in time.
At later times more refined meshes are obtained from Zienkiewicz and Zhu’s AMR
strategy. However, we can recognize from Figs. 15.27 and 15.28 the different meshes
have no or only very small influence on the achieved solution results. Furthermore,
we note that the AMR procedures do not lead to actually symmetric meshes,
which may imply additional perturbations in the convection process. In Figs. 15.29c
and 15.29d the statistical evaluation gives additional insight into the spatial and
temporal behavior of the element refinement parameter �e in form of its average
and mean deviation. Since the AMR process has been performed at each time plane,
the mesh tends to slightly fluctuate in time between refinement and derefinement
once �e approaches unity (i.e., reaching the optimal state). The suitable choice of
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Fig. 15.27 AMR simulation results of Elder’s long-heater problem for thermal Rayleigh number
Rat D 200 at different dimensionless times Ot based on Oñate and Bugeda’s optimality criterion
(15.29): adapted meshes, fringed isotherms and contoured streamlines

an additional threshold parameter could remedy these transient mesh oscillations. In
combination with the adaptive time stepping, the overall AMR procedure is prone
to underestimate �e , which leads to potentially ‘superoptimal’ meshes with �e < 1

indicating more refinement than necessary. Practically, as revealed in Fig. 15.29c
both automatic AMR strategies realizes an average value of element refinement
parameter of �a 	 0:7 over the complete time range (where Oñate and Bugeda’s
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Fig. 15.28 AMR simulation results of Elder’s long-heater problem for thermal Rayleigh number
Rat D 200 at different dimensionless times Ot based on Zienkiewicz and Zhu’s optimality criterion
(15.27): adapted meshes, fringed isotherms and contoured streamlines

strategy looks somewhat better), except at beginning when the AMR process is
initiated in the adaptive time stepping, which starts from a very coarse mesh.
As a consequence of the transient AMR control, the mean deviation of element
refinement parameter �� as shown in Fig. 15.29d could not run lower than about
0.3 over the most time stages. In conclusion, taking into account that the overall
AMR solution process is controlled by only two error tolerance measures (� for
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Fig. 15.29 Characteristic results for the AMR solution of Elder’s long-heater problem in compar-
ison between Oñate and Bugeda’s and Zienkiewicz and Zhu’s optimality criterion: History of (a)
the adaptive time steps 
Ot , (b) the number of total elements NE (mesh resolution), (c) the average
value of element refinement parameter �a D 1

NE

P
e �

e and (d) the mean deviation of element

refinement parameter �� D 1
NE

P
e j�e � �aj

the adaptive time stepping and �
 for the spatial AMR control), the proposed fully
adaptive strategy has shown promising in reducing ‘user-defined’ discretization
influences from the finite element solutions.

15.2 Particle Tracking Techniques

15.2.1 General

Pathlines are widely used to describe and visualize fluid motion (cf. definitions
introduced in Sect. 2.1.11). They indicate the advective movement of massless
particles in a known velocity field v.x; t/ that are introduced at suitable points in the
flow. The trace of a swarm of particles provides visual information on flow direction.
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a b

c

Fig. 15.30 Pathlines and isochrons for (a) 2D steady-state flow field, (b) 2D unsteady flow field
and (c) 3D unsteady flow field computed via backward particle tracking around pumping wells

Pathlines can be marked at regular time intervals to feature travel times in form of
isochrons. A typical example is shown in Fig. 15.30 for steady-state and transient
flow caused by a number of pumping wells in an unconfined aquifer. We note
that pathlines in steady-state flow coincide with streamlines (Sec. 2.1.11). While
streamlines do not intersect (Fig. 15.30a, except at a stagnation point where v � 0),
pathlines can intersect themselves or other pathlines (Fig. 15.30b).

Particle paths are governed by the set of ODE, (2.96)

dx

dt
D v.x; t/; x.t0/ D x0 (15.30)

where x0 is the initial location of the particle. The location x and the velocity v can
be given in Cartesian or cylindrical coordinates, (2.70) and (2.71), respectively. The
initial value problem (15.30) must be solved to describe the particle trajectory for
the known velocity field v, viz.,

x.t/ D x0 C
Z t

t0

v
�
x.t/; t

�
dt (15.31)
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where x.t/ corresponds to the position of the particle at time t . The integration
(15.31) is known as particle tracking, for which a number of different approaches
exist, e.g., [222, 424, 587]. It is performed in a postprocessing computation for
which the velocity field is available at a series of discrete points and time planes.
For a sufficiently simple velocity v, (15.31) may even be integrated exactly in
an analytical (semianalytical) tracking procedure. More general and favorable,
however, are numerical tracking methods, commonly preferred in FEM. In the
following, we shall describe the basic principles of both tracking strategies to show
their advantages and drawbacks in the present modeling context.

Independently of the actually used particle tracking solution strategy, both
(semi)-analytical and numerical methods, there are a number of sources of errors,
which influence the accuracy of any particle tracking solution [424]:

1. Errors in nodal velocities. The accuracy of the derived velocity distribution
computed from the flow model is most crucial. It depends on the spatial and
temporal resolution and the used techniques to derive velocities (as a secondary
variable) from primary solution variables.

2. Spatial interpolation. Even if the nodal (discrete) velocities are exact, their inter-
polation, needed for computing the velocities at any position in the computational
domain, affects the results of tracking.

3. Error of numerical integration. The solution of the governing ODE (15.30) can
introduce errors. While analytical methods lead (potentially) to an exact solution,
numerical methods can cause errors due to truncation errors and round-off errors.
However, by using higher-order numerical approaches with fully adaptive error
control, these sources of errors can be kept sufficiently small.

4. Exit error. This error can be introduced in determining the position of particles
when they leave discrete units (elements, cells) of the computational domain.

Obviously, in the integration (15.31) the evaluation of the velocity v is a key issue.
From the numerical flow modeling via FEM (or others), the velocity v is only
available as discrete values, i.e., at nodal points and time planes. It is obvious
from (15.31) that v can only be successfully integrated if the velocity is unique and
sufficiently smooth, at least piecewise-smooth. Practically, a continuous (smoothed)
velocity field v is required which can be obtained by using the smoothing techniques
as described in Sects. 8.19.1, 9.7, 10.11, 11.7 and 14.4. The resulting velocity
v.x; t/ smoothly behaves over the discretized domain N̋ so that for any location
x 2 N̋ a unique and piecewise continuous velocity value is available by using
interpolation (Sect. 15.4).

To track particles due to pure advection, the velocity v has to be an intrinsic
quantity. In porous-media flow, the intrinsic velocity results from evaluating the
Darcy equation, e.g., (3.303), (4.38), (9.1), (10.1), (11.1), as the pore velocity
(3.240) given by

v D q

s "
(15.32)
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where q D q.x; t/ is the Darcy velocity, s D s.x; t/ > 0 is the saturation and
" D ".x; t/ > 0 is the porosity. To track particles which are subjected in addition to
sorption, the advection is represented through the use of a retarded velocity and the
intrinsic velocity results as

v D q

s "<k (15.33)

where <k D <k.x; t/  1 is the retardation factor (see Table 3.8) valid for
the particle associated with species k. We note that the actual values of the
intrinsic velocity are important in presence of a transient velocity field v.x; t/
and in determining travel times (isochrons), while for stationary velocity v.x/
the shape of particle trajectory (pathline, streamline) will not be affected by the
‘scaling’ operation according to (15.32) or (15.33), i.e., becoming independent of s,
" and <k .

The particle tracking procedures can be used either as forward tracking or as
backward tracking. In a forward tracking the velocity v is used in its original values
and the particles are commonly started in sources, recharge wells or upgradient
areas. On the other hand, in a backward tracking the velocity is applied in a reversed
manner so that the particles track in the reverse flow direction starting from sinks,
pumping wells or downgradient areas (see Fig. 15.30), viz.,

v WD
� Cv forward tracking

�v backward tracking
(15.34)

15.2.2 Pollock’s Semianalytical Tracking Method

In classic finite-difference groundwater modeling Pollock [425] introduced an effi-
cient algorithm for computing pathlines via a semianalytical approach. It is termed a
‘semianalytical’ method because the velocities are evaluated numerically (actually,
on a regular FDM grid) while the pathline integration is performed analytically.
Let us describe at first the basic version of Pollock’s method. Afterwards, possible
extensions and generalizations will be discussed. We consider a block-shaped
difference cell with spacing 
x � 
y � 
z, where on its surfaces six constant
velocity values are given (Fig. 15.31). In Pollock’s method it must be assumed that
the velocity in the cell (1) behaves steady-state and (2) varies linearly. Under these
assumptions the velocity is approximated as

v.x/ D
0

@
vx.x/

vy.y/

vz.z/

1

A D
0

@
Ax.x � x1/C vx1
Ay.y � y1/C vy1
Az.z � z1/C vz1

1

A ;

Ax D .vx2 � vx1/=
x
Ay D .vy2 � vy1/=
y
Az D .vz2 � vz1/=
z

(15.35)
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Fig. 15.31 Definition of a
3D difference cell
.
x D x2 � x1; 
y D
y2 � y1;
z D z2 � z1/ with
its velocity components
.vx1; vx2; vy1; vy2; vz1; vz2/ on
the six cell surfaces and a
possible particle path between
surface entry point p and
surface exit point e

and the governing ODE (15.30) of particle tracking takes separated expressions for
the x�, y� and z�components as

dx
dt D vx.x/; or dx

vx.x/
D dt

dy
dt D vy.y/; or dy

vy .y/
D dt

dz
dt D vz.z/; or dz

vz.z/
D dt

(15.36)

Since vx depends only on x, vy depends only on y and vz depends only on z, the
partial ODE’s (15.36) can be integrated analytically between two arbitrary times tn
to tnC1, viz.,

Z x.tnC1/

x.tn/

dx

vx.x/
D R tnC1

tn
dt

Z y.tnC1/

y.tn/

dy

vy.y/
D R tnC1

tn
dt

Z z.tnC1/

z.tn/

dz

vz.z/
D R tnC1

tn
dt

(15.37)

where x.tn/, y.tn/ and z.tn/ are the particle coordinates at time tn, and x.tnC1/,
y.tnC1/ and z.tnC1/ are the particle coordinates at time tnC1. Since Ax , Ay and
Az from (15.35) are constant for the difference cell, the integration (15.37) simply
yields

ln
vx.x.tnC1//
vx.x.tn//

D Ax
tn
ln
vy.y.tnC1//
vy.y.tn//

D Ay
tn

ln
vz.z.tnC1//
vz.z.tn//

D Az
tn

(15.38)

where
tn D tnC1�tn is the time increment. Assuming that the velocity at time tn is
known so that vx.tn/ D vx.x.tnC1// ¤ 0, vy.tn/ D vy.y.tnC1// ¤ 0 and vz.tn/ D
vz.z.tnC1// ¤ 0, we can insert (15.35) into (15.38) to find explicit expressions for
the particle location at the new time tnC1 as
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x.tnC1/ D x1 C 1
Ax
Œvx.tn/ exp.Ax
tn/� vx1�

y.tnC1/ D y1 C 1
Ay
Œvy.tn/ exp.Ay
tn/� vy1�

z.tnC1/ D z1 C 1
Az
Œvz.tn/ exp.Az
tn/ � vz1�

(15.39)

provided that Ax ¤ 0, Ay ¤ 0 and Az ¤ 0. It is to be emphasized that the
integration (15.38) is only valid when the values of Ax , Ay and Az are constant
and nonzero. As a consequence, the time increment
tn must be selected not larger
than the particle crosses a cell surface. However, we can estimate directly from
(15.38) the maximum time increment 
te for a cell which results when a particle
entering the cell surface at the entry point .xp; yp; zp/ will reach an exit point
.xe; ye; ze/ at a cell surface (Fig. 15.31). Assuming that the velocity components
at the entry point p and time tn are given by vxp, vyp and vzp, we can determine
from (15.38) potential time increments which are possible to reach any exit on
the cell surfaces. To demonstrate the procedure we consider the situation shown
in Fig. 15.31, where the entry point p is located on the front face of the 3D cell and
five choices (in 2D three choices) for reaching an exit on cell surfaces are possible.
Let 
ty be the time increment to reach the opposite face, 
tTz and 
tBz be the
increments to reach either the top or the bottom face, respectively, and 
tLx and

tRx be the increments to reach either the left or the right face, respectively, we
obtain


tLx D 1
Ax

ln vx1
vxp
; 
tRx D 1

Ax
ln vx2

vxp


ty D 1
Ay

ln vy2
vyp


tTz D 1
Az

ln vz2
vzp
; 
tBz D 1

Az
ln vz1

vzp

(15.40)

and the permissible time step is selected as the smallest increment:


tn � 
te D min.
tLx ;
t
R
x ;
ty;
t

T
z ; 
t

B
z / (15.41)

Choosing 
tn D 
te in (15.39) we can immediately determine the coordinates of
the exit point .xe; ye; ze/ as

xe D x1 C 1
Ax
Œvxp exp.Ax
te/ � vx1�

ye D y1 C 1
Ay
Œvyp exp.Ay
te/ � vy1�

ze D z1 C 1
Az
Œvzp exp.Az
te/� vz1�

(15.42)

The above procedure is repeated for each cell where the exit point of one
cell forms the entry point of the other adjacent cell until the particle leaves the
computational domain or stops at internal boundaries. Heuristic rules are applied
[425] to treat discontinuous velocity components at the interfaces between adjacent
cells, e.g., the velocities at the interface could have opposite directions. Stagnation
points and pumping well conditions require special attention. To overcome the
restriction to steady-state flow, Pollock’s algorithm approximates time-varying
velocities by a stepwise updating in time, i.e., at each time step the velocity must be
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treated as a steady-state solution. Another seriously restrictive feature of Pollock’s
method is the requirement for decoupling the particle tracking ODE’s via separation
of variables as given in (15.36), which is only achievable for a simple linear velocity
interpolation typical in regular grid-cell geometries. Contrarily, in FEM the element
interpolation of velocities, even for linear functions, implies mixed interpolation
terms and can involve nonlinear dependencies arising, e.g., from variable-density
and variably saturated flow, the decoupling like (15.36) is not possible in general
for unstructured meshes and more complex flow conditions. Nevertheless, for linear
flow problems Pollock’s method has shown to be extensible to irregular meshes
[99, 222, 424] if the algorithm is performed in transformed coordinates based
on a one-to-one mapping of Euclidean x�space to the local η�space similar to
isoparametric transformations (cf. Sect. 8.8.1). Accordingly, the particle tracking
ODE’s are formulated in local coordinates ηT D .� � �/ for a finite element e as

0

B
@

d�

dt
d�

dt
d�

dt

1

C
A D .Je/�1 �

0

@

dx
dt
dy
dt
dz
dt

1

A D .Je/�1 �
0

@
vx
vy
vz

1

A (15.43)

where .Je/�1 is the inverse element Jacobian defined in (8.119). To make analytical
integration of (15.43) possible, the Jacobian has to be approximated by constants
to get an analytically tractable set of uncoupled pathline ODE’s expressed in their
local coordinates:

d�

dt D v�.�/
d�

dt D v�.�/
d�

dt D v�.�/

(15.44)

But, these transformed formulations are still restricted to simple element geometries
(exceptions of constant Jacobians are discussed in Appendix H) and do not seem
to make Pollock’s tracking method substantially more flexible and applicable to
unstructured meshes. Furthermore, it cannot remedy its basic deficiency with respect
to the restriction to purely linear velocity relations and (at least elementwise) steady-
state flow conditions. Much more flexibility at comparable accuracy, however, is
provided by numerical tracking approaches to be studied next, which are applicable
with any scheme of velocity interpolation in space and time.

15.2.3 Numerical 4th-Order Runge-Kutta Tracking Method

Practical tracking needs solution of the governing ODE (15.30) for generally
nonuniform and unsteady flow fields v.x; t/. Analytical and semianalytical solu-
tions are limited to cases with simple geometry, (elementwise) steady-state flow
conditions and strictly linear velocity dependency. Numerical tracking methods, in
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Fig. 15.32 Representation of the 4th-order Runge-Kutta method. In each time step, the velocity
v.x; t / is evaluated four times: once at initial point p1, twice at trial midpoints (p2 and p3) and
once at a trial endpoint p4. Taking these velocities the final position for the next step (shown as a
filled dot) is computed (Modified from [587])

particular higher-order Runge-Kutta methods, have shown very powerful, flexible
and efficient [424]. Combined with adaptive stepping control they provide excellent
accuracy needed for particle tracking computations in general flow fields with
spatially and temporarily variable velocity. The numerical integration (15.31) can be
performed either in global or local coordinate systems. In the following we describe
the favorite 4th-order Runge-Kutta particle tracking integrator, which is explicit in
time and basically operates in a global coordinate system (Cartesian coordinates in
3D and 2D as well as r � z�cylindrical coordinates of 2D meridional domain for
axisymmetric problems).

The explicit 4th-order Runge-Kutta method is one of the most commonly used
strategies for solving ODE’s of type (15.30), see, e.g., [430] for more. It requires
four evaluations of the velocity v.x; t/ for each particle tracking step 
tn: once
at the initial point p1, twice at two trial midpoints (p2 and p3) and once at a trial
endpoint p4 as illustrated in Fig. 15.32. One Runge-Kutta step for the movement of
a particle from the position xn at given time plane n to the position xnC1 at the new
time plane nC 1 with a time step increment
tn D tnC1 � tn then reads

xnC1 D xn C 1
6
.vp1 C 2vp2 C 2vp3 C vp4/CO.
t5n/ (15.45)

where

vp1 D 
tn v.xn; tn/

vp2 D 
tn v.xn C vp1
2
; tn C 
tn

2
/

vp3 D 
tn v.xn C vp2
2
; tn C 
tn

2
/

vp4 D 
tn v.xn C vp3 ; tn C
tn/
(15.46)

Since the accuracy of the integration method is primarily dependent on the tracking
step size 
tn, an adaptive time step size control is desirable to monitor the
integration error of the particle tracking solution and achieve efficient computa-
tions. Regarding the Runge-Kutta method, the most straightforward techniques for
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Fig. 15.33 Step doubling for adaptive step size control in the 4th-order Runge-Kutta method

adaptive time step size control is step doubling [430]. In such a step doubling
procedure, a tracking step 
tn is always taken twice: once as a full step and once
as two half steps. Thus, the resulting difference in the particle location is found
as dnC1 D x
nC1 � x
=2nC1, where x
nC1 is the position for the full step according

to (15.45) and x
=2nC1 is the position after two half steps (Fig. 15.33). If 
tn is small
enough, kdnC1kwill also be small. Since the accuracy of the 4th-order Runge-Kutta
method implies an error of O.
t5n/, the following error estimation holds

�

tn


tnC1

	5
D kdnC1k
kdnC2k (15.47)

where dnC2 is the difference in particle location associated with the forthcoming
step length
tnC1. Based on the requirement that an error norm for the forthcoming
step should be equal to a pre-set tolerance error �Î D kdnC2k, e.g., 10�4, we can
utilize (15.47) to estimate the new time step size 
tnC1. The following pragmatic
relation results


tnC1 D

8
ˆ̂
<

ˆ̂
:

&s
tn

�
�ÎkdnC1k

	1=5
if kdnC1k � �Î

&s
tn

�
�ÎkdnC1k

	1=4
if kdnC1k > �Î

(15.48)

where &s is a ‘safety factor’, usually set to 0:9. Note in (15.48), when the step size
must be reduced at kdnC1k > �Î, the new prediction is deemed only appropriate
for an error O.
t4n/ so that the exponent becomes 1=4 instead of 1=5 [430]. In the
practical computation the error norm kdnC1k is taken in (15.48) as a maximum error
norm defined as

kdnC1kL1 D max
i

� jx
i;nC1 � x
=2i;nC1j
jxi;nj C j
tnvi;nj

	

; .i D 1; 2; 3/ (15.49)

where vectors x and v are written in index notation (Sect. 2.1.1).
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In the context of FEM the 4th-order Runge-Kutta method is implemented with
the following practical rules:

• The Runge-Kutta steps are performed within a finite element until the following
criteria are satisfied:

– If the predicted point xnC1 is located on the element boundary or outside the current
element, the exit point of the element is computed (see further below). The pathline ends if
the element boundary is part of a global (inner or outer) boundary � of the computational
domain N̋ , otherwise the adjacent element is determined and the Runge-Kutta stepping is
proceeded, where the exit point is taken as entry point for the new element.

– Tracking stops if an effective stepping velocity veff falls below a minimum velocity:

veff D kxnC1 � xnk

tn

	 1
100
vmin (15.50)

where vmin is determined as the measure of the smallest velocity in the mesh. This typically
occurs if a pathline approaches to a pumping well (nodal singularity). If the particle point
is sufficiently close to a pumping well, the situation usually arises that the first half step
in the advancing Runge-Kutta process will generate a particle point behind the well, while
the second half step will locate the point more closely again to the well position due to the
opposite velocity direction, which can lead to an oscillation around the well point. Criterion
(15.50) is efficient to terminate pathlines at wells in avoiding a too costly oscillatory
approach.

– A maximum number of integration steps within an element is exceeded (default value: 200).
This is beneficial to avoid oscillations in the tracking process for pumping wells surrounded
by coarse elements.

– For a steady-state velocity field the maximum travel time (default: 1030 d) is exceeded.

• The adaptive stepping of the Runge-Kutta method is exclusively monitored via
the dimensionless tolerance error �Î. It significantly affects the accuracy and
the performance of the numerical integration and must be appropriately chosen.
Values of �Î D 10�4; : : : ; 10�6 have shown useful.

• The initial step size
t0 is assessed for an element e, where the tracking starts, by


t0 D 0:3 he

vemax
(15.51)

where he is the characteristic element length (8.239) and vemax is the measure of
the maximum velocity occurring in the element e. The empirical factor of 0:3
ensures that at least three integration steps are taken to pass through the element.

• During the Runge-Kutta stepping at each particle point x and time t the velocity
v.x; t/ is obtained via interpolation by using three working steps (Sect. 15.4):
(1) Find from the given global coordinate x the corresponding element e and
determine the local coordinates η, (2) determine the element shape functions
Ne
J .η/ at given η and (3) interpolate the velocity ve.x.η/; t/ DPJ N

e
J .η/v

e
J .t/

from the known nodal velocities veJ .t/ at element nodes J D 1; : : : ; NBN.
• To determine whether a point x is still located in the current element e, the

associated local coordinates η are tested against their limits C1= � 1 or 0=1 in
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dependence on the actual element type, extended by a small numerical tolerance
of 10�7, e.g., �1 � 10�7 � η � 1C 10�7 applied to quadrilaterals (bricks).

• Suppose that xnC1 represents a predicted pathline point which is located outside
the current element e and suppose that xn represents the previous pathline point
which is located within the element e, the exit point xEnC1 is determined by
clipping the particle line segment with the corresponding bounding lines (faces)
of element e, such as

xEnC1 D xn C k.xnC1 � xn/ (15.52)

where the factor 0 � k � 1 is determined from appropriate clipping algorithms.
However, due to numerical noise it may happen that xn is already located on the
element face or slightly ahead so that k becomes negative. To handle this, the
clipping is tested for �10�6 � k � 1.

• Travel times are marked by isochrons, which represent predefined time stages
tp .p D 1; 2; : : :/. Their coordinate x.tp/ results from linear interpolation
between the previous coordinate xn and predicted coordinate xnC1 of the
pathline if tn � tp � tnC1.

• The accuracy of the adaptive Runge-Kutta method can demand a large number
of steps so that the generated number of pathline points considerably exceeds
the resolution, which is sufficient for a graphical display of the pathline.
A compression of the pathline points is commonly suited to reduce significantly
the number of pathline points in accordance with the actual graphical resolution.

15.3 Streamline Computation

15.3.1 Introduction

The evaluation of velocity fields is of important interest in the finite-element
flow analysis. Commonly, velocities v are derived as nodal quantities from pri-
mary variables by using suited smoothing techniques as described elsewhere, see
Sects. 8.19.1, 9.7, 10.11, 11.7 and 14.4. If velocity v is known different methods
are available to trace and visualize the flow field in a postprocessing procedure.
The most general method concerns particle tracking (see preceding Sect. 15.2),
where a pathline of an individual fluid particle is traced in space x and time t via a
Lagrangian approach. Particle tracking methods are applicable both in 2D and 3D
under very general flow conditions (presence of interior sinks/sources and/or BC’s
such as pumping wells and others). While they refer to individually moving particles
which have to be appropriately assigned at starting positions, a continuous picture
of the overall flow movement is sometimes difficult to attain, even if a large number
of particles is traced.
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Fig. 15.34 Definition of a
streamline

There are efficient, but specific alternative methods for limited cases in 2D
applications. These methods represent streamline integrators, which facilitate the
computation of flow pattern and distributed discharge through the flow systems in a
direct way. The two most important streamline integrators will be described in the
following.

15.3.2 Streamline and Streamfunction

The basic definitions of streamline and streamfunction as already introduced in
Sect. 2.1.11 are briefly rediscussed in the present context. We follow the definitions
of spatial variables and derivatives according to Sect. 2.1.6. A streamline is the locus
of points that are everywhere tangent to the instantaneous velocity vector v. This
tangency requires that the cross product must give v � dx D 0, where dx is a
differential along a streamline (Fig. 15.34). Referring to 2D Cartesian coordinates
with vT D .v1 v2/ and dxT D .dx1 dx2/, it yields

dx1
v1
D dx2

v2
(15.53)

and similar for axisymmetric flow. Two streamlines cannot intersect, except where
v D 0. Since, by definition, no flow can cross a streamline it requires that the
velocity vector field v have to be divergence-free (solenoidal), i.e.,

r � v D 0 (15.54)

That means the flow has to be steady-state and no distributed sources and sinks can
exist in the flow domain. An equation that would describe such streamlines in a 2D
and axisymmetric steady-state flow may be written in the form

� D
�
�.x1; x2/ 2D Cartesian

�.r; z/ axisymmetric
(15.55)
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Fig. 15.35 Streamfunction in a plane flow

where � is called the streamfunction. We note that a streamfunction analog doesn’t
exist for 3D flow. The following definition relates � and the velocity components

v1 D @�

@x2
; v2 D � @�

@x1
2D Cartesian

vr D 1

r

@�

@z
; vz D �1

r

@�

@r
axisymmetric

(15.56)

The definitions (15.56) automatically satisfy the condition of free divergence (15.54)
in using (2.74). A major characteristic of the streamfunction is that the change
ı� in � between two streamlines is equal to the volume flow rate between those
streamlines. Let us consider two streamlines with values �A and �B as shown in
Fig. 15.35, then the volume flow rate between the streamlines is (in 2D Cartesian)

ı� D
Z B

A

v � n dS D
Z B

A

.v1n1 C v2n2/ dS (15.57)

where nT D .n1 n2/ is the unit normal vector, directed outward to the integration
path dS . By geometry, we have the relations n1 dS D dx2 and n2 dS D �dx1, and
(15.57) becomes

ı� D
Z B

A

.v1 dx2 � v2 dx1/ D
Z B

A

d� D �B � �A: (15.58)

The flow rate between streamlines is the difference in their streamfunction values.
This equation is also unaffected by the addition of an arbitrary constant to � .
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15.3.3 Streamline Integration via Vorticity Equation

For 2D and axisymmetric flows a very efficient approach of computing the
streamfunction distribution for a given velocity field v is based on using the vorticity
ω D r � v, defined in (2.75). While in 3D ω represents a general vector field, in
2D and for axisymmetric flows the following useful curl-relations hold

! D kωk D

8
<̂

:̂

@v2

@x1
� @v1
@x2

2D .x1; x2/ Cartesian

@vr

@z
� @vz

@r
axisymmetric .r; z/

(15.59)

where ! is the (scalar) vorticity function. By substituting the streamfunction
definition (15.56) into the vorticity equation (15.59) the following elliptic partial
differential (Poisson-type) equation is obtained

� r2� D

8
ˆ̂
<̂

ˆ̂
:̂

@v2

@x1
� @v1
@x2

2D .x1; x2/ Cartesian

�
@vz

@r
� @vr
@z

	

r axisymmetric .r; z/

(15.60)

Equation (15.60) can be easily solved via FEM if formulating a unique boundary
value problem of the domain ˝ enclosed by the boundary � . Introducing finite
element interpolation functions for the streamfunction and velocity components
(exemplified for 2D Cartesian)

� DP
j Nj .x/�j

v1 DP
j Nj .x/Uj

v2 DP
j Nj .x/Vj

9
>=

>;
.j D 1; : : : ; NP/ (15.61)

where Nj represent the j�nodal finite element basis functions, �j , Uj and
Vj correspond to the nodal values of the streamfunction and v1; v2�velocity
components, respectively, the GFEM formulation of (15.60) leads to the following
matrix system

A � Ψ D B.U ;V / (15.62)

to be solved for the nodal streamfunction vector ΨT D .�1 �2 : : : �NP/ with
known velocity vectorsUT D .U1 U2 : : : UNP/ and V T D .V1 V2 : : : VNP/ on the
RHS, in which
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A D Aij D
X

e

Z

˝e

rNi � rNj d˝e

B D Bi D
X

e

�Z

˝e

Ni
�X

j

@Nj
@x1
Vj �

X

j

@Nj
@x2
Uj
�
d˝e C

Z

� eN

Ni .r� � n/d� e
�

(15.63)

Similar expressions result for axisymmetric flow. The boundary integral in
(15.63) vanishes because the flux normal to the streamline direction is zero,
r� � n D @�

@x1
n1 C @�

@x2
n2 D �v2n1 C v1n2 D 0 if the velocity vector field v

is divergence-free (15.54).
The matrix A is symmetric and sparse. The linear equation system (15.62) is

easily solved by using standard matrix solvers. However, a suitable BC for � is
required. Practically, at only one node on the outer boundary � the streamfunction
is set to a Dirichlet-type reference value of zero. The solution of (15.62) is restricted
to a solenoidal 2D (or axisymmetric) velocity vector field v, i.e., steady-state flow,
no interior BC’s (e.g., fluxes, wells) and absence of sinks and sources.

15.3.4 Streamline Integration via Boundary Integral

The streamline integration method is based on the numerically solution of differen-
tial (15.57) written in the form

ı� D
( R B

A
.v1n1 C v2n2/ dS 2D .x1; x2/ Cartesian

2�
R B
A
.vrnr C vznz/ r dS axisymmetric .r; z/

(15.64)

where ı� is the change in the streamfunction which is to be solved along a defined
boundary. In the preferred method the computation of ı� is carried out using
(15.64) along each boundary of finite elements � e , where the integration path ÂB
is taken as element edge. We consider a typical element boundary as shown in
Fig. 15.36. The following finite element interpolations for element e are introduced
(exemplified for 2D Cartesian)

ve1 D
P

J N
e
J .η/U

e
J ; xe1 D

P
J N

e
j .η/X

e
J

ve2 D
P

J N
e
J .η/V

e
J ; xe2 D

P
J N

e
j .η/Y

e
J

)

.J D 1; : : : ; NBN/ (15.65)

where Ne
J are finite element shape functions and U e

J ; V
e
J ; X

e
J ; Y

e
J are nodal point

velocities and coordinates, respectively, associated with element e. In the finite
element standard procedure the global coordinates .x1; x2/ in 2D are transformed to
local coordinates .�; �/ (Fig. 15.36). For an infinitesimal line element dS it results
(in 2D Cartesian)
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Fig. 15.36 Definition of element boundary for streamfunction computation exemplified for a
quadrilateral element

dS D
s
�@x1

@�

�2 C
�@x2

@�

�2
d� D Ld� (15.66)

written for the local coordinate .�1 � � � C1/ at element boundaries where � D
˙1. In (15.66) L corresponds to the length of the boundary segment. Using (15.66)
the unit normal vector can be expressed by

n D
�
n1
n2

	

D
�

@x2
@S

� @x1
@S

	

D 1

L

 
@x2
@�

� @x1
@�

!

(15.67)

Combining (15.66) and (15.67) with (15.64) the streamline integral along any finite
element boundary of element e takes the form (exemplified for 2D Cartesian)

ı�e D
Z C1

�1

�X

J

@N e
J

@�
Y eJ

X

J

N e
JU

e
J �

X

J

@N e
J

@�
Xe
J

X

J

N e
J V

e
J

	

d� (15.68)

where the element interpolation functions (15.65) are applied.
The change in the streamfunction along any element boundary is computed from

(15.68) with known nodal velocity vectors U ; V . The computation of the stream-
function for an entire finite element mesh is generated by applying (15.68) along
successive element boundaries, starting at a node for which a reference value of �
has been specified. Unlike the vorticity integration method (Sect. 15.3.3) the present
boundary integral method is only an element-by-element procedure, which is com-
putationally efficient and does not require the solution of a matrix problem. How-
ever, the boundary integrator is also limited to solenoidal velocity fields, i.e., steady-
state flow, no interior BC’s (e.g., fluxes, wells) and absence of sinks and sources.

15.3.5 Discussion

While both streamline integrators are only limited to steady-state 2D (or
axisymmetric) flow problems, where neither interior BC’s (such as fluxes or
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pumping wells) nor sinks and sources should exist, they have shown very
useful to visualize flow patterns in relation to the actual discharge distribution
within a flow domain. Typical applications have been illustrated in Figs. 10.33,
10.38,10.43,11.5,11.9,11.15,11.21,11.24,11.28,14.13,15.27 and 15.28 of the
preceding chapters. While the boundary integral method does not require the
solution of a matrix problem, the vorticity equation integrator produces often
more accurate results and has been proven more robust. Of particular relevance
are streamline integrators in application to variable-density flow situations, where
complex recirculating flow patterns (eddies) can occur, which cannot be easily
detected and suitably visualized by using particle tracking methods. In such cases,
although the density-coupled mass (or heat) transport process is transient, the flow
field may be divergence-free at each time step (FEFLOW runs in the so-called
steady flow-transient transport simulation mode) because the absence of storage
(by fluid and skeleton compression) in the flow problem without interior flux BC’s
and sinks/sources.

15.4 Interpolation on Finite Elements

15.4.1 Scope

Computational results of a finite element solution are given in form of primary
variables (e.g., hydraulic head, species concentration, temperature) and secondary
variables (e.g., velocity, saturation) at nodal points of a finite element mesh. In
various postprocessing evaluations it is required to determine the variables at
arbitrary location xp 2 N̋ of a point p within the discretized domain N̋ by using
appropriate interpolation on finite elements, where the following three working steps
are necessitated (Fig. 15.37):

1. Find the element e within which the point p lies.
2. For the given global coordinates xp of the point p, determine the corresponding

local coordinate ηp of the point p in the element e.
3. Take the local coordinates ηp to interpolate a variable .x; t/ at point p on

element basis, viz.,

.xp.ηp/; t/ D
NBNX

JD1
N e
J .ηp/ 

e
J .t/ (15.69)

whereNe
J are the element shape functions at local node J and eJ .t/ are the nodal

values of the variable at given time t .

While the first step can be easily performed by using standard selection techniques
(e.g., bounding box and point-in-polygon search), the second step needs specific
attention because a direct reversion of the basis functions is not possible for the
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Fig. 15.37 Evaluation of a variable  at a specified point p on a finite element mesh

most finite element types and a more general strategy is required to determine ηp
from given xp for any element type in an efficient way as discussed next. Once ηp
is known the third step becomes simple. The local coordinates ηp are easily used,
together with the shape functions, to evaluate the variable at the point p via standard
finite element interpolation.

15.4.2 Accomplishment of Reverse Transformation
for Isoparametric Elements

Global coordinatesx are related to the local coordinates η of an isoparametric finite
element e by mapping (8.71)

xe D
NBNX

JD1
N e
J .η/x

e
J (15.70)

exemplified in 3D Cartesian

xe DP
J N

e
J .�; �; �/ x

e
J

ye DP
J N

e
J .�; �; �/ y

e
J

ze DP
J N

e
J .�; �; �/ zeJ

9
=

;
.J D 1; : : : ; NBN/ (15.71)

where the shape functionsNe
J .η/ are listed for different isoparametric element types

in Appendix G. The task is now to determine ηTp D .�p �p �p/ at a given point
p with its global coordinates xTp D .xp yp zp/ D .xep yep zep/. It requires the
reverse transformation, in which the Eqs. (15.71) must be solved for �p , �p and �p
simultaneously at point p. As seen from Tables G.2–G.4 of Appendix G, the local
coordinates in the shape functions of 2D and 3D isoparametric elements are usually
nonlinearly combined so that a direct reversion of (15.70) fails, except for linear
triangular and linear tetrahedral elements for which the local coordinates could
be reversely solved via simple resubstitution. A general and efficient solution is
preferred here, which is applicable to all element types and based on the Newton
iteration method (cf. Sect. 8.18.2).
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The Newton iteration method applied to the 3D Cartesian (15.71) requires the
solution of the three nonlinearly coupled equations, viz.,

F1.η/ DP
J N

e
J .η/ x

e
J � xe D 0

F2.η/ DP
J N

e
J .η/ y

e
J � ye D 0

F3.η/ DP
J N

e
J .η/ zeJ � ze D 0

9
=

;
.J D 1; : : : ; NBN/ (15.72)

for the local coordinates ηT D .� � �/ at known global coordinates .xe; ye; ze/ of
given point p (for convenience we omit the p�subscript). Expanding the functions
F1, F2 and F3 as truncated Taylor series, the following Newton iteration scheme
results

F1.η
�C1/ D F1.η� /C @F1.η

� /

@��
.��C1 � �� /C @F1.η

� /

@��
.��C1 � �� /

C @F1.η
� /

@��
.��C1 � �� /� xe D 0

F2.η
�C1/ D F2.η� /C @F2.η

� /

@��
.��C1 � �� /C @F2.η

� /

@��
.��C1 � �� /

C @F2.η
� /

@��
.��C1 � �� /� ye D 0

F3.η
�C1/ D F3.η� /C @F3.η

� /

@��
.��C1 � �� /C @F3.η

� /

@��
.��C1 � �� /

C @F3.η
� /

@��
.��C1 � �� /� ze D 0

(15.73)

or written in matrix form

0

@
a11 a12 a13
a21 a22 a23
a31 a32 a33

1

A �
0

@

��


��


��

1

A D
0

@
a14
a24
a34

1

A (15.74)

where � is the iteration counter, a11 D @F1.η
� /=@�� , 
�� D ��C1 � �� , a12 D

@F1.η
� /=@�� , 
�� D ��C1 � �� , a13 D @F1.η

� /=@�� , 
�� D ��C1 � �� , a14 D
xe � F1.η� / and so forth. Using Cramer’s rule we solve


�� D 1

jaj
�
a14.a22a33 � a32a23/� a24.a12a33 � a32a13/C a34.a12a23 � a22a13/




�� D 1

jaj
��a14.a21a33 � a31a23/C a24.a11a33 � a31a13/� a34.a11a23 � a21a13/




�� D 1

jaj
�
a14.a21a32 � a31a22/� a24.a11a32 � a31a12/C a34.a11a22 � a21a12/



with
jaj D a11.a22a33 � a32a23/� a21.a12a33 � a32a13/C a31.a12a23 � a22a13/ ¤ 0

(15.75)

for 3D elements.4 The partial derivative terms are evaluated numerically by
perturbation of the variables, e.g.,

4Equivalently, for 2D finite elements the Newton iteration scheme results
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@F1.η
� /

@��
	 F1.�

� C ı; �� ; �� /� F1.�� ; �� ; �� /
ı

(15.76)

and similar for the remaining derivatives appearing in (15.73), where the increment
ı has shown sufficient with 0:01.

To accelerate the numerical evaluations of the functions F1.η� /, F2.η� / and
F3.η

� /, they are suitably separated into constant and variable parts. We replace
(15.72) by

F1.η/ DP
J C

e
1J .x

e
J / f

e
J .η/� xe D 0

F2.η/ DP
J C

e
2J .y

e
J / f

e
J .η/ � ye D 0

F3.η/ DP
J C

e
3J .z

e
J / f

e
J .η/ � ze D 0

9
=

;
.J D 1; : : : ; NBN/ (15.77)

or written in a compact form as

F .η/ D Ce.xe/ � f e.η/� xe D 0 (15.78)

where the nodal NBN vector f e.η/ covers the variable factors and the nodal D �
NBN matrix Ce.xe/ contains the constant factors for an element e. The latter is
expressed as

Ce.xe/ DXe.xe/ �Qe (15.79)

where Xe.xe/ represents the D � NBN matrix of constant coordinate entities of
element e given for 3D Cartesian .D D 3/ as

Xe.xe/ D
0

@
x1 x2 : : : xNBN

y1 y2 : : : yNBN

z1 z2 : : : zNBN

1

A (15.80)

F1.η
�C1/ D F1.η

� /C @F1.η
� /

@��
.��C1 � �� /C @F1.η

� /

@��
.��C1 � �� /� xe D 0

F2.η
�C1/ D F2.η

� /C @F2.η� /
@��

.��C1 � �� /C @F2.η� /
@��

.��C1 � �� /� ye D 0

or �
a11 a12
a21 a22

	

�
�

��


��

	

D
�
a13
a23

	

and


�� D 1

jaj
�
a13a22 � a23a12

�


�� D 1

jaj
�
a11a23 � a21a13

�

with
jaj D a11a22 � a21a12 ¤ 0
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Table 15.2 Constant nodal matrixQe and variable nodal vector f e.η/ for different element types

Type NBN Qe f e.η/

3

0

@
1 �1 �1
0 1 0

0 0 1

1

A

e 0

@
1

�

�

1

A

e

4 1
4

0

B
B
@

1 �1 �1 1

1 1 �1 �1
1 1 1 1

1 �1 1 �1

1

C
C
A

e
0

B
B
B
B
@

1

�

�

�

�

1

C
C
C
C
A

e

8 1
4

0

B
B
B
B
B
B
B
B
B
B
@

�1 0 0 1 1 1 �1 �1
2 0 �2 2 0 0 2 0

�1 0 0 1 1 �1 �1 1

2 2 0 0 2 0 0 �2
�1 0 0 1 1 1 1 1

2 0 2 2 0 0 �2 0

�1 0 0 1 1 �1 1 �1
2 �2 0 0 2 0 0 2

1

C
C
C
C
C
C
C
C
C
C
A

e 0

B
B
B
B
B
B
B
B
B
B
@

1

�

�

�2

�2

��

�2�

��2

1

C
C
C
C
C
C
C
C
C
C
A

e

4

0

B
B
@

1 �1 �1 �1
0 1 0 0

0 0 1 0

0 0 0 1

1

C
C
A

e 0

B
B
@

1

�

�

�

1

C
C
A

e

6 1
2

0

B
B
B
B
B
B
@

1 �1 �1 1 �1 �1
0 1 0 0 1 0

0 0 1 0 0 1

1 �1 �1 �1 1 1

0 1 0 0 �1 0

0 0 1 0 0 �1

1

C
C
C
C
C
C
A

e 0

B
B
B
B
B
B
@

1

�

�

�

��

��

1

C
C
C
C
C
C
A

e

8 1
8

0

B
B
B
B
B
B
B
B
B
B
@

1 �1 �1 1 1 �1 �1 1

1 1 �1 1 �1 1 �1 �1
1 1 1 1 1 1 1 1

1 �1 1 1 �1 �1 1 �1
1 �1 �1 �1 1 1 1 �1
1 1 �1 �1 �1 �1 1 1

1 1 1 �1 1 �1 �1 �1
1 �1 1 �1 �1 1 �1 1

1

C
C
C
C
C
C
C
C
C
C
A

e 0

B
B
B
B
B
B
B
B
B
B
@

1

�

�

�

��

��

��

���

1

C
C
C
C
C
C
C
C
C
C
A

e

5 1
4

0

B
B
B
B
@

1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1
1 1 1 1 �1 1

1 �1 1 �1 �1 �1
0 0 0 0 4 0

1

C
C
C
C
A

e

0

B
B
B
B
B
B
B
@

1

�

�

��

�
���

1��

1

C
C
C
C
C
C
C
A

e

(continued)

and the NBN � NBN matrix Qe contains constant element factors. The matrix Qe

and vector f e.η/ are summarized for different 2D and 3D finite element types in
Table 15.2. Note that the linear 5-node pyramidal element requires one extra variable
due to the nonlinear dependency in the shape functions.
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Table 15.2 (continued)

Type NBN Qe f e.η/

20 1
8

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�2 1 1 �1 1 �1 1 1 �1 1 1 �1 �1 1 �1 �1 1 0 0 0

2 0 �2 2 �2 2 �2 0 0 0 0 0 0 0 2 0 0 �2 0 0

�2 �1 1 �1 1 �1 1 1 1 1 1 1 �1 �1 �1 1 �1 0 0 0

2 2 0 2 0 0 0 �2 �2 �2 0 0 0 0 0 �2 0 0 2 0

�2 �1 �1 �1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

2 0 2 2 �2 �2 �2 0 0 0 0 0 0 0 �2 0 0 2 0 0

�2 1 �1 �1 1 1 1 1 �1 1 1 �1 1 �1 1 �1 �1 0 0 0

2 �2 0 2 0 0 0 �2 2 �2 0 0 0 0 0 2 0 0 �2 0

2 �2 �2 0 0 0 0 0 0 0 �2 2 2 0 0 0 �2 0 0 2

2 2 �2 0 0 0 0 0 0 0 �2 �2 2 0 0 0 2 0 0 �2
2 2 2 0 0 0 0 0 0 0 �2 �2 �2 0 0 0 �2 0 0 2

2 �2 2 0 0 0 0 0 0 0 �2 2 �2 0 0 0 2 0 0 �2
�2 1 1 1 1 �1 �1 1 �1 �1 1 �1 �1 �1 1 1 1 0 0 0

2 0 �2 �2 �2 2 2 0 0 0 0 0 0 0 �2 0 0 2 0 0

�2 �1 1 1 1 �1 �1 1 1 �1 1 1 �1 1 1 �1 �1 0 0 0

2 2 0 �2 0 0 0 �2 �2 2 0 0 0 0 0 2 0 0 �2 0

�2 �1 �1 1 1 1 �1 1 1 �1 1 1 1 �1 �1 �1 1 0 0 0

2 0 2 �2 �2 �2 2 0 0 0 0 0 0 0 2 0 0 �2 0 0

�2 1 �1 1 1 1 �1 1 �1 �1 1 �1 1 1 �1 1 �1 0 0 0

2 �2 0 �2 0 0 0 �2 2 2 0 0 0 0 0 �2 0 0 2 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

e 0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

�

�

�

�2

�2�

�2�

�2

��2

�2�

�2

��2

��2

���

�2��

��2�
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��

��
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1
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Fig. 15.38 Projecting point
p onto element base lines

To utilize the rapid quadratic convergence of the Newton iteration, a good initial
guess of the local coordinates η�D0 for the given global coordinate xep of point p
is necessary. A good initialization is attainable by point projection onto the base
lines for planar or prismatic finite elements as shown in Fig. 15.38. Let dxT1 D
.dx1 dy1/ be the base line vector and dxT2 D .dx2 dy2/ be the vector spanning
between the point p and the first point of the base line, we obtain by simple vector
projection (2.25)

�0p D 2
dx1dx2 C dy1dy2

dx21 C dy21
� 1 (15.81)
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and similarly for �0p . For prismatic 3D elements the �0p coordinate can be estimated
by interpolation between top and bottom elevation zT and zB , respectively, of a
vertical baseline such as

�0p D
2zep � zT � zB

zT � zB
(15.82)

This initialization has been found to be effective and the Newton method rapidly
converges usually within ten iterations providing up to seven decimal places of
accuracy.



Appendix A
Nomenclature

A.1 Roman Letters

A L2 area;
A˛ L2T �2 Helmholtz free energy of ˛�phase;
B L aquifer thickness;
b L hydraulic aperture;

b
�

k .ML�3/1�b
�
k Freundlich sorption coefficient of species k;

b
�

k 1 Freundlich sorption exponent of species k;
b
p

k rate constants of species k, .p D 0; 1; : : : ; N /;
C L1=2T �1 Chezy roughness coefficient;
C L�1 moisture capacity;
C�1 L inverse moisture capacity;
Ck ML�3 mass concentration of species k;
Cks ML�3 maximum mass concentration of species k;
Ckw ML�3 prescribed concentration of species k at well point

xw;
Cr 1 Courant number;
c L2T �2%�1 specific heat capacity;
cF 1 Forchheimer form-drag constant;
D spatial dimension;
D L diameter or thickness;
D 2nd-order differential operator or dispersion coeffi-

cient;
Dk L2T �1 tensor of hydrodynamic dispersion of species k;
D?
k L2T �1 nonlinear (extended) tensor of hydrodynamic disper-

sion of species k;
NDk L3T �1 D BDk , depth-integrated tensor of hydrodynamic

dispersion of species k;

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5,
© Springer-Verlag Berlin Heidelberg 2014
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Dk;0 L2T �1 tensor of diffusion of species k;
Dmech L2T �1 tensor of mechanical dispersion;
NDmech L3T �1 D BDmech, depth-integrated tensor of mechanical

dispersion;
Dk L2T �1 coefficient of molecular diffusion of species k in

porous medium;
MDk L2T �1 coefficient of molecular diffusion of species k in

open fluid body;
D� L2T �1 D Œ"�C .1 � "/�s�=."�c/, thermal diffusivity;
d T �1 D 1

2
Œrv C .rv/T �, rate of deformation (strain)

tensor;
d L characteristic length, thickness or diameter;
da L2 microscopic differential area;
dS L2 projected planar area of averaging volume;
dV L3 averaging volume;
dv L3 microscopic differential volume;
E ML2T �2 internal (thermal) energy;
E L2T �2 specific internal (thermal) energy density;
E ML�1T �2 Young’s (or elastic) modulus of the solid phase;
E# L2T �2 activation energy;
e 1 D �g=kgk, gravitational unit vector;
e.�;�;�/ 1 e�vector with respect to local coordinates, defined

by (K.2);
e 1 strain tensor;
e, e error and error vector, respectively;
ei 1 i th component of base vector;
Nei 1 i th component of tangent coordinate vector;
F extensive quantity;
F surface or interface function;
f function or intensive quantity;
f B L bottom bounding surface of aquifer;
fD 1 Darcy-Weisbach roughness coefficient;
f� 1 viscosity relation function;
fN 1 Newton-Taylor roughness coefficient;
f� LT �2 interfacial drag term of fluid momentum exchange;
f T L top bounding surface of aquifer;
f� ML�2T �2 deviatoric drag term of fluid momentum exchange;
G ML�1T �2 shear modulus of the solid phase;
G L�1 first derivative of relative permeability kr with

respect to pressure head  ;
G number of grout zones of BHE;
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G˛ L2T �2 Gibbs free energy of ˛�phase;
g LT �2 gravity vector;
g LT �2 D kgk, gravitational acceleration;
gi 1 i th component of base vector of transformed coordi-

nates;
Ngi 1 i th component of tangent vector of transformed coor-

dinates;
H L height;
H˛ L2T �3 supply (source/sink) of energy of ˛�phase;
H˛ L2T �3 bulk source/sink term of energy of ˛�phase;
He ML�1T �3 overall source/sink term of internal energy;
NHe MT�3 D B He , depth-integrated source/sink term of inter-

nal energy;
H? L2T �3 modified heat source/sink term without well func-

tion;
h L hydraulic head;
he L characteristic element length or height;
I 1 ionic strength;
I functional;
J Jacobian matrix;
=F M�1LT Forchheimer coefficient;
=H M�1L2T non-Fickian HC dispersion coefficient;
N=H M�1LT D B =H , depth-integrated non-Fickian HC disper-

sion coefficient;
jk ML�2T �1 mass flux of species k;
Njk ML�1T �1 D B jk , depth-integrated mass flux of species k;
jS MT�3%�1 entropy flux;
jT MT�3 heat flux;
j arbitrary flux vector;
Qj smoothed flux;
K LT �1 D k�0g=�0, tensor of hydraulic conductivity;
K ML2T �2 kinetic energy;
Keq 1 equilibrium constant;
Kd
k M�1L3 D �k=�s , distribution coefficient of species k;

Km ML�3 Michaelis-Menten’s half-saturation constant;
k L2 porous-medium permeability tensor (phase-

independent);
kf L2 intrinsic porous-medium permeability tensor of

f �phase;
k
�

k 1 Langmuir numerator sorption coefficient of
species k;
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k
�

k M�1L3 Langmuir denominator sorption coefficient of
species k;

kr 1 relative permeability;
L L�1 symmetric gradient operator;
L L length, macroscopic scale length;
L differential operator, PDE (system) operator;
Lek 1 Lewis number of species k;
` mesh level or refinement level;
M number of phases present in the system;
M L1=3T �1 Manning roughness coefficient;
Mf ML�1T �1%�1 Soret coefficient of phase f ;
M M mass;
m 1 specific unit vector;
m 1 VG-curve fitting parameter;
m total number of Gauss points;
mk M molecular mass of species k;
N DP˛ N

˛ , total number of chemical species;
Ne
I 1 shape function of element e at node I ;

No number of reactants;
N˛ number of chemical species in the ˛�phase;
NBHE number of nodes of single BHE;
NBN number of nodes per element;
ND number of Dirichlet nodes;
NDOF number of degrees of freedom;
NE number of finite elements;
NEp number of finite elements agglomerated into parti-

tion p;
NEQ number of equations;
NP number of points (nodes);
NPA number of partitions of agglomerated finite elements;
NPAD number of disjoint partitions of agglomerated finite

elements;
NS number of slices;
Nk MLT�3 Dufour coefficient of species k;
Nr number of chemical reactions;
N˙ number of patch elements;
Nu 1 Nusselt number;
N � D P

˛.N
˛ � 1/, essential number of chemical

species;
NW number of wells;
n 1 outward-directed unit normal vector;
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nk 1 concentration exponent of species k;
n 1 pore size distribution index;
n number of Gauss points in each direction;
P LT �1 vector of accretion on a phreatic surface;
P LT �1 groundwater recharge (infiltration rate) on a phreatic

surface;
Pet 1 thermal Darcy-Péclet number;
Pg 1 grid (mesh) Péclet number;
Pr 1 Prandtl number;
p ML�1T �2 (thermodynamic) pressure;
pc ML�1T �2 capillary pressure;
pmech ML�1T �2 mechanical pressure;
Q˛ T �1 supply (source/sink) of mass of ˛�phase;
Q˛ T �1 bulk source/sink term of mass of ˛�phase;
Q T �1 D Qh CQhw, bulk source/sink term of flow;
NQ LT �1 depth-integrated bulk source/sink term of mass;
QEOB T �1 correction sink/source term of extended Oberbeck-

Boussinesq approximation;
Qn arbitrary integral boundary balance flux;
Qnh L3T �1 integral boundary balance flux of liquid (positive

inward-directed);
Qh T �1 supply term of flow;
Qhw T �1 specific liquid sink/source function of wells;
NQh LT �1 depth-integrated supply term of flow;
NQhw LT �1 depth-integrated specific liquid sink/source function

of wells;
Qk ML�3T �1 zero-order kth-species mass sink/source function;
NQk ML�2T �1 depth-integrated zero-order kth-species mass

sink/source function;
Qkw ML�3T �1 specific kth-species mass sink/source function of

wells;
NQkw ML�2T �1 depth-integrated kth-species mass sink/source func-

tion of wells;
Qr L3T �1 total refrigerant flow discharge of BHE;
QT ML�1T �3 He�QTw, overall heat source/sink term without well

function;
NQT MT�3 NHe � NQTw, depth-integrated heat source/sink term

without well function;
QTw ML�1T �3 specific heat sink/source function of wells;
NQTw MT�3 depth-integrated heat sink/source function of wells;
Qw L3T �1 discharge of single well w (pumping rate);
qf LT �1 D "f .vf � vs/, Darcy velocity;
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q LT �1 D qf , Darcy velocity of fluid;
Nq L2T �1 D B q, depth-integrated Darcy velocity;
qn arbitrary boundary flux (positive outward-directed);
qnh LT �1 D q � n, normal boundary flux of liquid (positive

outward-directed);
Nqnh L2T �1 D Nq � n, depth-integrated normal boundary flux of

liquid;
qnkC ML�2T �1 normal boundary mass flux of species k (positive

outward-directed);
NqnkC ML�1T �1 depth-integrated normal boundary mass flux of

species k;
qnT MT�3 normal boundary heat flux (positive outward-

directed);
NqnT MLT�3 depth-integrated normal boundary heat flux;
qh LT �1 prescribed Neumann boundary liquid flux;
Nqh L2T �1 prescribed depth-integrated Neumann boundary liq-

uid flux;
qkC ML�2T �1 prescribed Neumann boundary mass flux of species

k of the dispersive part;
q
�
kC ML�2T �1 prescribed Neumann boundary mass flux of species

k of the total (convective plus dispersive) part;
NqkC ML�1T �1 prescribed depth-integrated Neumann boundary

mass flux of species k of the dispersive part;
Nq�kC ML�1T �1 prescribed depth-integrated Neumann boundary

mass flux of species k of the total (convective plus
dispersive) part;

qT MT�3 prescribed Neumann boundary heat flux
of the dispersive part;

q
�
T MT�3 prescribed Neumann boundary heat flux

of the total (convective plus dispersive) part;
NqT MLT�3 prescribed depth-integrated Neumann boundary heat

flux of the dispersive part;
Nq�T MLT�3 prescribed depth-integrated Neumann boundary heat

flux of the total (convective plus dispersive) part;
R L2T �2%�1 
8.314 J/ıK mole, molar gas constant;
R L radius of pipe or wellbore;
NR, NRn M�1L�2T 3% thermal resistance and thermal resistance of material

n, respectively;
R, Rn M�1L�1T 3% specific thermal resistance and specific thermal resis-

tance of material n, respectively;
Ra, Rb M�1L�1T 3% (specific) internal borehole thermal resistance and

(specific) borehole thermal resistance, respectively;
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Rk ML�3T �1 D P
˛ "˛.r

˛
k C R˛k/, bulk rate of reaction of species

k in all phases;
QRk ML�3T �1 D Rk CP˛ "˛#kC

˛
k D ORk CQkw CQk , deduced

bulk reaction rate;
ORk ML�3T �1 QRk �Qkw �Qk , modified bulk reaction rate;
NRk ML�3T �1 D BRk , depth-integrated reaction bulk rate of

species k;
NQRk ML�3T �1 D B QRk , depth-integrated reaction bulk rate;
R˛k ML�3T �1 heterogeneous reaction rate of species k of ˛�phase;
Ra 1 Rayleigh number;
Rat 1 thermal Rayleigh number;
Rak 1 solutal Rayleigh number of species k;
Re;Rep 1 Reynolds number and pore Reynolds number,

respectively;
<D D�dimensional Euclidean space;
<k 1 retardation factor of species k;
N<k L D B <k , depth-integrated retardation factor of

species k;
K<k 1 derivative term of retardation for species k;
NK<k L D B K<k , depth-integrated derivative term of retarda-

tion for species k;
R prototypical storage (retardation) coefficient;
KR derivative prototypical storage (retardation) coeffi-

cient;
r L general position vector;
r˛k ML�3T �1 homogeneous reaction rate of species k of ˛�phase;
r L radial coordinate or radius;
rb L borehole radius;
rhydr L hydraulic radius;
rr ML�3T �1 bulk rate of reaction r ;
S ML2T �2%�1 entropy;
S L2T �2%�1 specific entropy density;
S L line boundary or segment or specific surface;
Shk 1 Sherwood number of species k;
So L�1 D �0g."	 C �/, specific storage coefficient;
S?o L�1 D �0g"	 , modified specific storage coefficient;
NSo 1 D B So, depth-integrated specific storage coeffi-

cient;
Sk L2T �2%�1 specific entropy density of species k;
Sf 1 vector of friction slopes at channel bottom;
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S� 1 D 1CŒ.1�"/�scs�=."�c/, thermal storage coefficient
(thermal retardation factor);

s 1 saturation of fluid in the void space ";
s L arc length of curve;
se 1 effective saturation;
sp 1 pseudo-saturation;
sr 1 residual (irreducible) saturation;
ss 1 maximum saturation;
T L2T �1 D kB�0g=�0, tensor of transmissivity;
T % temperature;
Ti % inlet temperature;
To % outlet temperature;
Tw % prescribed temperature at well point xw;
T� 1 tortuosity;
TBE./ L3 total balance error;
Tuk 1 Turner (or buoyancy) number of species k;
t 1 unit tangent vector;
ts ML�1T �2 elasticity matrix of the solid phase;
t T time;
t0 T initial time;
tend T final time;
t1=2k T reaction half-life of species k;
UC ML�3 mass-mechanical coefficient;
UT ML�1T �2 thermo-mechanical coefficient;
u L displacement;
u LT �1 vector of refrigerant fluid velocity;
u LT �1 D kuk, magnitude of refrigerant fluid velocity;
V MLT�1 (linear) momentum;
v LT �1 velocity, pore velocity;
v˛ LT �1 velocity of the ˛�phase;
v˛s LT �1 D v˛ � vs , relative velocity of the ˛�phase to the

s�phase;
v LT �1 D kvk, magnitude of velocity;
vm ML�3T �1 Michaelis-Menten’s maximum growth rate;
W ˛ L2T �3%�1 supply (source/sink) of entropy of ˛�phase;
W LT �1 velocity of macroscopic interface;
W./ 1 well function;
w LT �1 velocity of microscopic interface;
w 1 spatial weighting function;
w L width;
X L Lagrangian material coordinates;
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x L Eulerian spatial coordinates;
x L macroscopic position vector;
xw L position of well w;
x1; x2; x3 L Cartesian coordinates;
x; y; z L Cartesian coordinates;
Z L�1 D 1 m�1, unit-canceling coefficient;
z L axial or vertical coordinate;
z L nodal vector of vertical coordinates;
zk 1 charge on the kth species;

A.2 Greek Letters

˛ L�1 curve fitting parameter, sorptive number;
˛ 1 upwind parameter, .0 � ˛ � 1/;
˛ 1 specific solutal expansion coefficient of a single-

species solute, density ratio;
˛k 1 specific solutal expansion coefficient of species k,

density ratio;
˛L MT�2%�1 longitudinal thermodispersivity;
N̨L ML�1T �1%�1 specific longitudinal thermodispersivity;
˛T MT�2%�1 transverse thermodispersivity;
N̨T ML�1T �1%�1 specific transverse thermodispersivity;
ˇ %�1 thermal expansion coefficient;
ˇck M�1L3 D ˛k=.Cks � Ck0/, solutal expansion coefficient of

species k;
ˇL L longitudinal dispersivity;
ˇT L transverse dispersivity;
ˇTH L horizontal transverse dispersivity;
ˇTV L vertical transverse dispersivity;
� L2 areal boundary;
	˛ 1 ˛�phase distribution function;
	f M�1LT 2 compressibility of f �phase;
	k 1 activity coefficient of species k;
Δ 1 Boolean matrix;

ı.r/ L�D D
8
<

:

C1; r D 0
0; r ¤ 0 , Dirac delta function of spatial

dimension of r, D D 1; 2; 3;
ı 1 error tolerance;
ı L microscopic scale length;
ı 1 curve fitting exponent;
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ı 1 constant of friction slope relationship;
δ unit or identity matrix;
ıij Kronecker symbol;
ε 1 strain pseudovector;
ε Levi-Civita tensor;
" 1 volume fraction, porosity (void space);
� 1 error tolerance;
�2 1 (dimensionless) residual error tolerance;
�
 1 (dimensionless) AMR-specific error tolerance;
�Î 1 (dimensionless) particle tracking error tolerance;
��
2 L3T �1 (dimensional) residual error tolerance;
"e 1 D ".1 � sr /, specific yield (storativity of phreatic

aquifer);
"ijk permutation symbol;
η 1 transformed (local) coordinate vector;
� 1 local coordinate;
� Eulerian angle;
� 1 weighting coefficient, .0 � � � 1/;
� 1 D s", moisture content;
#k T �1 decay rate of species k;
�k 1 Henry sorptivity coefficient of species k;
�.A/ 1 condition number of matrixA;
Λ MLT�3%�1 tensor of hydrodynamic thermodispersion;
NΛ ML2T �3%�1 D B Λ, depth-integrated tensor of hydrodynamic

thermodispersion;
Λ0 MLT�3%�1 tensor of thermal conductivity;
Λmech MLT�3%�1 tensor of mechanical thermodispersion;
� MLT�3%�1 coefficient of thermal conductivity of liquid;
�˛ MLT�3%�1 coefficient of thermal conductivity of ˛�phase;
�r MLT�3%�1 coefficient of thermal conductivity of refrigerant fluid;
�s MLT�3%�1 coefficient of thermal conductivity of solid;
�f ML�1T �1 dilatational viscosity of the fluid phase;
�s ML�1T �2 LamKe constant of the solid phase;
�f ML�1T �1 dynamic viscosity of the fluid phase;
N�l0 ML�1T �1 specific dynamic reference viscosity of the liquid

phase;
�k L2T �2 chemical potential of kth-species;
�s ML�1T �2 LamKe constant of the solid phase;
� 1 Poisson’s ratio;
�k; �kr 1 stoichiometric coefficient of species k (and reac-

tion r);
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� ML�3 mass density;
�k ML�3 mass density of species k;
� ML�3%�4 Stefan-Boltzmann constant;
σ ML�1T �2 stress tensor;
σB ML�1T �2 bottom surface momentum exchange vector;
σT ML�1T �2 top surface momentum exchange vector;
τ ML�1T �2 deviatoric stress tensor;
� generalized friction factor;
� L2T �3%�1 net production of entropy;
� M�1LT 2 coefficient of skeleton compressibility;
˚ L2T �1 potential function;
˚h T �1 liquid transfer (colmation/leakage) coefficient;
N̊
h LT �1 depth-integrated liquid transfer coefficient;

˚k 1 D Lek=S�, ratio of diffusivities of heat and species k;
˚kC LT �1 mass transfer coefficient of species k

of the dispersive part;
˚
�
kC LT �1 mass transfer coefficient of species k

of the total (convective plus dispersive) part;
N̊kC L2T �1 depth-integrated mass transfer coefficient of species k

of the dispersive part;
N̊ �

kC L2T �1 depth-integrated mass transfer coefficient of species k
of the total (convective plus dispersive) part;

˚T MT�3%�1 heat transfer coefficient of the dispersive part;
˚
�
T MT�3%�1 heat transfer coefficient of the total

(convective plus dispersive) part;
N̊
T MLT�3%�1 depth-integrated heat transfer coefficient

of the dispersive part;
N̊ �
T MLT�3%�1 depth-integrated heat transfer coefficient

of the total (convective plus dispersive) part;
 arbitrary function, azimuthal coordinate or Eulerian

angle;
'k 1 adsorption function of species k;
� 1 D 
tnC1=
tn, maximum rate of time step change;
�aniso 1 ratio of anisotropy of hydraulic conductivities;
��

aniso 1 anisotropy factor of solid-phase thermal conductivi-
ties;

� 1 D .� � �0/=�0, buoyancy coefficient;
� L2T �1,L3T �1 streamfunction for 2D and axisymmetric problems,

respectively;
 scalar variable or Eulerian angle;
 L pressure head;
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 a L air-entry pressure head;
 c L capillary fringe pressure head;
˝ L3 domain or volume;
ω T �1 vorticity;
! 1 2 .0; 1/, coating factor;
!k 1 mass fraction or specific density of species k;
� 1 local coordinate;
� 1 local coordinate;
r L�1 Nabla (vector) operator;

A.3 Subscripts

0 reference or initial;
˛ phase index taking a value of l , g, and s; subscript designates bulk

quantities;
˛k phase which contains the species k;
ˇ phase index taking a value of l , g, and s; subscript designates bulk

quantities;
C Cauchy-type boundary;
D Dirichlet-type boundary;

 reversal;
eq equilibrium;
ex external;
F discrete feature;
f fluid phase taking a value of l , and g; subscript designates bulk

quantities;
g gaseous phase; subscript designates bulk quantities;
g grout;
	 phase index taking a value of l , and g; subscript designates bulk

quantities;
H coarse mesh level;
h fine mesh level;
het heterogeneous;
hom homogeneous;
int intermediate;
i; j; l; d spacial coordinate or global node indices;
i pipe-in or internal;
I; J local node indices;
k;m; n species indicator;
k BHE component index;
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n time plane;
n layer, material;
L longitudinal;
l liquid phase; subscript designates bulk quantities;
m Michaelis-Menten;
mech mechanical;
N Neumann-type boundary;
o pipe-out or outer;
s solid phase; subscript designates bulk quantities;
P porous medium;
R Robin-type boundary;
r reaction or refrigerant;
T transverse;
w well;

A.4 Superscripts

ae aerobic;
anae anaerobic;
˛ phase index taking a value of l , g, and s; superscript designates

intrinsic quantities;
B bottom;
ˇ phase index taking a value of l , g, and s; superscript designates

intrinsic quantities;
crit critical;
d drying;
diff diffusive;
e element counter;
eff effective;
f fluid phase taking a value of l , and g; superscript designates intrinsic

quantities;
f w freshwater;
	 phase index taking a value of l , and g; superscript designates intrinsic

quantities;
g gaseous phase; superscript designates intrinsic quantities;
g grout;
g global;
H coarse mesh level;
h fine mesh level;
I interface;
i internal;
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in inward;
l liquid phase; superscript designates intrinsic quantities;
K iteration number to restart;
k iteration counter;
m Michaelis-Menten;
o outer;
opt optimal;
out outward;
� pipe (BHE) system;
p predictor;
r refrigerant;
s solid phase; superscript designates intrinsic quantities;
s slice or soil;
sw saltwater;
T transpose;
T top;
TB top and bottom;
w wetting;
� iteration counter;
4 Delta configuration;
r gradient type;
� Y configuration;
C forward reaction;
� backward reaction;

A.5 Special Symbols

./ � ./ scalar (dot) product;

./ � ./ vector (cross) product or Cartesian product of sets;

./˝ ./ tensor (dyadic) product;
P./ T �1 D @=@t , differentiation with respect to time t ;
R./ T �2 D @2=@t2, 2nd derivative with respect to t ;
«./ T �3 D @3=@t3, 3rd derivative with respect to t ;
./0 L�1 D @=@x, differentiation with respect to the 1D space

coordinate x;
./00 L�2 D @2=@x2, 2nd derivative with respect to x;
./000 L�3 D @3=@x3, 3rd derivative with respect to x;
./.n/ L�n D @n=@xn, .n D 4; 5; : : :/, nth derivative with respect

to x;
O./ normalized or approximate quantity;
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.N/˛ intrinsic mass average of ˛�phase;
h i˛ intrinsic volume average of ˛�phase;
h i˛ volume average of ˛�phase;
r L�1 gradient vector;
Or 1 dimensionless gradient vector;
ri L�1 D @=@xi .i D 1; 2; 3/, gradient operator in xi�coordinate

direction;
rz L�1 D @=@z, gradient operator in z�coordinate direction;
r.�;�;�/ 1 gradient vector with respect to local coordinates, defined

by (K.1);
@=@t T �1 time derivative;
D˛=Dt./ T �1 D @./=@t C v˛ � r ./, Eulerian material derivative of

˛�phase;
P

summation notation;
Q

product notation;
j j absolute value of scalar or determinant of matrix;
k k vector norm;
k kRMS RMS error norm;
k kL1 maximum error norm;
Œ � molarity;
d c diagonal matrix (tensor);
f g activity;



Appendix B
Coleman and Noll Method

The functional dependence for the N.2 C D/ C M.2 C 2D C D2/ constitutive
variables listed in (3.105) is chosen as (3.106). This functional form is restricted
in that the assumed dependence (3.106) of (3.105) may not violate the entropy
inequality (3.69) for any process. This is the object of the Coleman and Noll method
[94]. Using (3.103) the Clausius-Duhem inequality (3.69) can be written as
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where the interface relation (3.42) with Table 3.4 have been applied to introduce
the relative velocity v˛s . The differentials in (B.1) will be developed for the chosen
independent variables (3.106). For instance, the use of the chain rule to DsA˛=Dt

yields:
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The same expansion takes place for rA˛:
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and similar to r�˛k . Furthermore, the conservation equation (3.48) for mass of the
˛�phase .˛ D f; s/ can be written with (3.103) as

"˛
Ds�˛

Dt
D �v˛s � r."˛�˛/� "˛�˛.δWd˛/C "˛�˛.Q˛CQ˛

ex/��˛
Ds"˛

Dt
(B.4)

Equation (B.4) is substituted into (B.2). Then substitution of (B.2) and (B.3) into
(B.1) yields:
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The terms in the square brackets of (B.5) represent coefficients of quantities which
the constitutive functions do not depend on by assumption (3.106). Therefore, the
necessary and sufficient condition for �� to be non-negative for all independent
thermodynamic states is that these coefficients have to vanish. Hence, all bracketed
terms in (B.5) must be equal to zero. In doing so, the following restrictions result:

• A˛ must be independent of vf s ;df ;r!ˇk ;rT ˇ
• Af is independent of εs and �	¤f
• �˛k must be independent of vf s ;df ; εs;r!ˇk ;rT ˇ
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X

˛

"˛�
˛

T ˛
@A˛

@!
ˇ

k

D "ˇ�
ˇ

T ˇ
�
ˇ

k

X

˛

"˛�
˛

T ˛
@A˛

@T ˇ
D �"ˇ�

ˇ

T ˇ
Sˇ

X

˛

"˛�
˛

T ˛
@A˛

@εs
D �"sσ

s

T s
C
X

˛

.
"˛�

˛

T ˛
@A˛

@�s
�sδ/

.˛; ˇ D s; f / (B.6)



Appendix C
Thermally Variable Fluid Density Expansion
ˇf .T f /

The temperature-dependent fluid density �f ranging between 0 and 100 ıC can be
fit by a 6th order polynomial with a high accuracy as

�f .T f / D aCbT f C cT f 2 CdT f 3C eT f 4Cf T f 5 CgT f 6 in [g/l] (C.1)

with the coefficients for water

a D 9:998396 �102
b D 6:764771 �10�2
c D �8:993699 �10�3
d D 9:143518 �10�5
e D �8:907391 �10�7
f D 5:291959 �10�9
g D �1:359813 �10�11

(C.2)

where the temperature T f is in ıC and a represents the fluid density at T f D 0.
Taking also into consideration of mass fraction and pressure dependencies we can
argue the measured curve (C.1) is related to a reference mass fraction !fk0 and

a reference pressure pf0 . Indeed, the coefficients (C.2) have been derived for a

freshwater condition !fk0 D 0 .k D 1; : : : ; N f � 1/. Introducing a reference

temperature T f0 we can then obtain directly from (C.1) an expression for the

reference fluid density �f0 , viz.,
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To find the thermally variable fluid density expansion ˇf .T f / of the fluid density
function (3.199)
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(C.4)

a Taylor series expansion for �f around T f0 , !fk0 and pf0 is used:
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providing a 6th-order accuracy for the temperature T f while only a linear 1st-order
approximation is deemed to be sufficient for !fk and pf dependencies. By utilizing

(C.1) we can evaluate the above @n�f =@T f
n

at T f0 , !fk0 and pf0 according to
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As the result the fluid density �f (C.5) yields

�f .T f ; !
f

k ; p
f / D �f0

�
1C

Nf �1X

kD1
˛
f

k .!
f

k � !fk0/C 	f .pf � pf0 /
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0 C 4eT f
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0 C 6gT f
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C.c C 3dT f0 C 6eT f
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0 C 15gT f
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Cg.T f � T f0 /6 (C.7)

From (C.7) to (C.4) we finally obtain the expression for computing the nonlinear
thermally variable density expansion to be used in (C.4)

ˇf .T f / D � 1

�
f
0

h
.b C 2cT f0 C 3dT f

2

0 C 4eT f
3

0 C 5f T f
4

0 C 6gT f
5

0 /

C.c C 3dT f0 C 6eT f
2

0 C 10f T f
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0 C 15gT f
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0 /.T f � T f0 /

C.d C 4eT f0 C 10f T f
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0 C 20gT f
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C.e C 5f T f0 C 15gT f
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0 /.T f � T f0 /3
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Cg.T f � T f0 /5
i

(C.8)

with �
f
0 computed from (C.3) and the coefficients .a; b; c; d; e; f; g/ as given

by (C.2). As the consequence of the nonlinear thermally variable fluid density
expansion the term .1=�f /@�f =@T f in (3.197) is no longer a constant ˇf . Instead,
we have

1

�f
@�f

@T f
D � ˇf .T f /C @ˇf .T f /

@T f
.T f � T f0 /

1C 	f .pf � pf0 /C
PNf �1

kD1 ˛
f

k .!
f

k � !fk0/ � ˇf .T f /.T f � T f0 /
(C.9)
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where ˇf .T f / is taken from (C.8) and the derivation of ˇf .T f / in (C.9) becomes

@̌ f .T f /

@T f
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Appendix D
Parametric Models for Variably Saturated
Porous Media

D.1 Definitions

For the sake of simplicity the fluid/liquid phase indices f; l will be omitted for the
symbols used here. We introduce the capillary pressure head  of the liquid phase
defined as

 D pc

�0g
(D.1)

where pc is the capillary pressure (3.221) or (3.257), �0 is the reference density of
the liquid phase and g is the gravitational acceleration. In an unsaturated water-air
system  is usually negative, so  is sometimes termed as suction. Furthermore,
we define the effective saturation of the liquid phase as

se D s � sr
ss � sr (D.2)

where sr  0 is the residual (or irreducible) saturation of liquid and ss is the
maximum saturation of liquid. We note that ss is usually unity.

D.2 Analytic Saturation s. / and Inverse Capillary Pressure
 .s/�Relations

D.2.1 Van Genuchten (VG) Relationship

Van Genuchten [539] proposed the analytic function

se D
8
<

:

1

.1C j˛ jn/m for  < 0

1 for   0
(D.3)
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which has gained wide acceptance in practice, where ˛, m and n are positive curve
VG-fitting parameters. The parameter n is known as the pore size distribution index.
Equation (D.3) is used to express the relation s. /

s D sr C .ss � sr /
�
1C j˛ jn��m (D.4)

and its inverse  .s/

 D � 1
˛

�
s

� 1
m

e � 1
� 1
n (D.5)

Their first derivatives give1

C D @s

@ 
D mn˛ j˛ jn�1

.1C j˛ jn/mC1 .ss � sr /

C�1 D @ 

@s
D 1

mn˛ .ss � sr /
�
s

� 1
m

e � 1�
1
n

�1
.se/

�.1C 1
m
/

(D.6)

where C and C�1 are known as the moisture capacity and the inverse moisture
capacity, respectively.

D.2.2 Brooks-Corey Relationship

Brooks and Corey [58] and Corey [100] introduced the relationship

se D
8
<

:

1

j˛ jn for  < � 1
˛

1 for   � 1
˛

(D.7)

where ˛ and n represent positive curve fitting coefficients. The limit .� 1
˛
/ in (D.7)

can be identified as an air-entry pressure head  a D � 1
˛

. Since

s D sr C .ss � sr /j˛ j�n (D.8)

1 The second derivative of s. / with respect to  reads for the VG relation

@2s

@ 2
D �

�
.mC 1/mn2˛2.˛ /2n�2

Œ1C .˛ /n�mC2
C m.1� n/n˛2.˛ /n�2

Œ1C .˛ /n�mC1

�

.ss � sr /:

As seen s is continuously differentiable at  D 0 if n � 1. However, if 1 < n < 2, then s is not
Lipschitz continuously differentiable, and the second derivative of s is infinite at  D 0. Only for
n � 2 a second derivative exists at  D 0.
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and its inverse

 D � 1
˛
s

� 1
n

e (D.9)

their first derivatives are

C D @s

@ 
D n˛

j˛ jnC1 .ss � sr /

C�1 D @ 

@s
D 1

n˛ .ss � sr / s
�.1C 1

n
/

e

(D.10)

D.2.3 Haverkamp Relationship

Haverkamp [528, 529] proposed the empirical equation

se D
8
<

:

˛

˛ C jZ jˇ for  < 0

1 for   0
(D.11)

where ˛ and ˇ are positive curve fitting coefficients and Z � 1 m�1 is a unit-
canceling coefficient. With

s D sr C .ss � sr /˛.˛ C jZ jˇ/�1 (D.12)

and its inverse

Z D ��˛.s�1
e � 1/

 1
ˇ (D.13)

their first derivatives yield

C D @s

@ 
D ˛ ˇ jZ jˇ�1

.˛ C jZ jˇ/2 .ss � sr /

C�1 D @ 

@s
D ˛

ˇ s2e .ss � sr /
�
˛.s�1

e � 1/
 1
ˇ

�1
(D.14)
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D.2.4 Exponential Relationship

Gardner [185] and Rijtema [443] proposed an exponential relation in the form

se D
�
e˛. � a/ for  <  a

1 for    a (D.15)

which is applicable to analytic (exact) solutions of unsaturated flow problems, e.g.,
[490], where ˛ is the only positive fitting coefficient, sometimes termed as sorptive
number, and  a � 0 is the air-entry pressure head to be prescribed. Since

s D sr C .ss � sr /e˛. � a/ (D.16)

and its inverse

 D 1

˛
ln

�
s � sr
ss � sr

	

C  a (D.17)

their first derivatives are

C D @s

@ 
D ˛.ss � sr /e˛. � a/

C�1 D @ 

@s
D 1

˛ .s � sr /
(D.18)

D.2.5 Linear Relationship

A simple linear relationship can be given in the form

se D

8
ˆ̂
<

ˆ̂
:

 c �  
 c �  a for  c <  <  a

1 for    a
0 for  �  c

(D.19)

to approximate the capillary pressure in a capillary fringe of thickness  a �  c at
a phreatic surface, where  c <  a < 0 is the capillary fringe pressure head and
 a � 0 is the given air-entry pressure head. With

s D sr C .ss � sr /  c �  
 c �  a (D.20)
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and its inverse

 D  c � . c �  a/se (D.21)

their first derivatives are

C D @s

@ 
D � ss � sr

 c �  a
C�1 D @ 

@s
D � c �  a

ss � sr

(D.22)

D.2.6 Time-Centered Analytic Moisture Capacity Evaluation

Mass balance accuracy in the numerical modeling of unsaturated flow is affected to a
large extent by the actual treatment of the moisture capacityC D C. /. Commonly,
the evaluation of C (and accordingly C�1) in time t is done at the current time
CnC1 D C. .tnC1//, where nC1 corresponds to the new time plane. Alternatively,
for stability reasons it can be useful to evaluate analytically C between the previous
and current time stages as [297]

C D .1 � !/Cn C !CnC1 (D.23)

where C corresponds now a time-weighted capacity, subscripts n and nC 1 denote
previous and current time plane, respectively, and ! is a time-weighting coefficient
varying between 0 and 1. The time-centered analytic moisture capacity results for
using ! D 1

2
in (D.23).

D.3 Analytic Relative Permeability kr.s/
and kr. /�Relations

D.3.1 Van Genuchten-Mualem (VGM) Relationship

In a statistical approach the porous medium is conceptualized as a collection of
interconnected cylindrical pores, where for each pore a laminar Poiseuille-like flow
is considered having a parabolic flow profile in a tube. Based on this approach,
Mualem [379] derived for the relative permeability

kr D s�e
�
f .se/

f .1/

	2
with

f .x/ D
Z x

0

1

 .�/
d�

(D.24)
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where � is a pore connectivity parameter. Applying the VG relation (D.5)–(D.24)

f .x/ D
Z x

0

1

 .�/
d� D

Z x

0

˛

 
�
1
m

1 � � 1m

! 1
n

d� (D.25)

we can derive a closed solution for kr.s/ after some manipulations as [536]

kr .s/ D s�e
h
1 � .1 � s

1
m
e /

m
i2

(D.26)

if the so-called Mualem assumption holds

m D 1 � 1
n

(D.27)

The exponent � in (D.26) usually set to � D 1
2

accounts in Mualem’s interpretation
for tortuosity and connectivity so that in a physical sense � > 0. However, � is
sometimes considered as a free fitting parameter and even negative � can frequently
be determined (e.g., [416]).

Equivalently, by using the VG relation (D.3) we can express (D.26) as the
function kr. / in the form

kr. / D .1C '/�
5m
2
�
.1C '/m � 'm2 with the auxiliary variable

' D .˛ /n
(D.28)

The first derivative of kr. / (D.28) with respect to  yields

G D @kr

@ 
D .n � 1/˛.˛ /n�1.1C '/� 5m

2
�
.1C '/m � 'm �

h 1

.˛ /

� 5'

2.1C '/ � 2
�
� 1

2
.1C '/m�1i (D.29)

D.3.2 Brooks-Corey Relationship

Brooks and Corey [58] and Corey [100] suggested the following function

kr.s/ D sıe (D.30)
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where se is given by (D.7) and ı is a prescribed exponent. Brooks and Corey expre-
ssed the exponent ı by the pore size distribution index n in the form2: ı 	 2

n
C 3.

Using (D.7) we can write (D.30) as the function kr . / according to

kr. / D j˛ j�nı (D.31)

where its first derivative with respect to  is

G D @kr

@ 
D n ı ˛ j˛ j�.nıC1/ (D.32)

D.3.3 Modified van Genuchten Relationship

In contrast to the VGM parametric model consisting of the kr.s/�relation (D.26)
derived from the VG  .s/�function (D.5) under the Mualem assumption (D.27), it
is often advantageous to formulate the relative permeability kr.s/ in the same form
as (D.30)

kr.s/ D sıe (D.33)

but now in combination with the VG-retention curve (D.3), where the fitting
exponent ı can be prescribed independently. A typical value for the exponent is
ı 	 3 as suggested by Irmay [286]. A simple linear relationship is obtained be
setting ı D 1. Inserting the VG-relation (D.3) into (D.32) we obtain the modified
VG kr. /�relation in the form

kr. / D .1C j˛ jn/�mı (D.34)

2Using the Mualem relation (D.24) for the Brooks-Corey function (D.9) it is

f .x/ D
Z x

0

1

 .�/
d� D ˛

Z x

0

�
1
n d�

and we can derive

kr.s/ D s
2
n
C�C2

e

It is obvious, with � D 1
2

we find

kr.s/ D sıe :

where

ı D 2

n
C 5

2

which is slightly different to the Brooks-Corey exponent 2
n

C 3.
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with its first derivative

G D @kr

@ 
D mnı ˛ j˛ jn�1

.1C j˛ jn/mıC1 (D.35)

In this alternative formulation there is no need for the Mualem assumption (D.27)
and the fitting parameters n and m can be used independently.

D.3.4 Haverkamp Relationship

Haverkamp [528, 529] proposed a relationship for the relative permeability kr. /,
which has a characteristic quite similar to the corresponding retention curve (D.11),
viz.,

kr. / D A

AC jZ jB (D.36)

where A and B are positive curve fitting parameters and Z � 1 m�1 is a unit-
canceling coefficient. The first derivative with respect to  gives

G D @kr

@ 
D AB jZ jB�1

.AC jZ jB/2 (D.37)

D.3.5 Exponential Relationship

For the relative permeability Gardner [185] and Rijtema [443] proposed the relation

kr.s/ D se (D.38)

where the exponential expression (D.15) is used for the effective saturation se .
Inserting (D.15) into (D.38) it yields

kr. / D e˛. � a/ (D.39)

with its first derivative

G D @kr

@ 
D ˛ e˛. � a/ (D.40)
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Table D.1 Analytic parametric models for retention and relative permeability curves

Parametric model se kr References

(1) van Genuchten-Mualem
(VGM)

1

.1C j˛ jn/m
p
se

h
1� .1� s

1
m
e /

m
i2

[379, 536, 539]

(2) Modified van
Genuchten

1

.1C j˛ jn/m sıe [100, 539]

(3) Brooks-Corey
1

j˛ jn sıe [58, 100]

(4) Haverkamp
˛

˛ C jZ jˇ
A

AC jZ jB [62, 528, 529]

(5) Exponential e˛. � a/ se [185, 443]

(6) Linear
 c �  

 c �  a
se

D.3.6 Linear Relationship

For the relative permeability a linear relationship is given by

kr.s/ D se (D.41)

if the linear expression (D.19) is used to express the effective saturation se . Using
(D.19) in (D.41) we obtain

kr. / D  c �  
 c �  a (D.42)

with its first derivative

G D @kr

@ 
D � 1

 c �  a (D.43)

The analytic parametric models described above are summarized in Table D.1.

D.4 Spline Approximation of Retention and Relative
Permeability Curves3

Analytic relations for the retention (capillary pressure) and relative permeability
curves are not always suitable, because they may not describe experimental data suf-
ficiently well in certain cases. This is exemplified for a capillary-pressure-saturation

3This section is contributed by V. Mirnyy (DHI-WASY).
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experimental data

curve as shown Fig. D.1, where a cubic spline graph fits the experimental values
very well in contrast to an analytic VG curve. The idea to automate the way from
experimental data to analytic curves leads to the application of splines that can
be derived directly from the experimental sample points .xi ; yi /, i D 0; : : : ; P

of the curves, where xi stands for pressure head values  i and saturation values
si of the retention and relative permeability curves, respectively, and yi stands
for saturation values si and relative permeability values kri of the retention and
relative permeability curves, respectively. Application of cubic splines to the
physical characteristics of soils appeared in a couple of works during past few
years. Kastanek and Nielson [303] applied classical interpolating cubic splines to
the saturation-pressure relation, while allowing the introduction of ‘virtual data
points’ to achieve necessary curve properties, such as monotonicity. Classical cubic
interpolating splines that go exactly through the measured values are appropriate
if the number of experimental data points is small but each measurement is of
sufficiently low uncertainty (i.e., measurement errors are insignificant). In contrast
to the classic cubic splines, monotonic spline approximation methods are available
to enforce curve monotonicity and even positivity in the first derivatives, which has
a particular relevance for the capillary pressure curve. For the following definition
and analysis of different kinds of splines it is referred to [115].
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Table D.2 Conditions to compute cubic interpolating spline coefficients
(Note that 0 denotes differentiation with respect to x)

Condition Range
Number of
constraints

Si .xi / D yi i D 0; : : : ; P � 1 P

Si .xiC1/ D yiC1 i D 0; : : : ; P � 1 P

S 0i .xiC1/ D S 0iC1.xiC1/ i D 0; : : : ; P � 2 P � 1

S 00i .xiC1/ D S 00iC1.xiC1/ i D 0; : : : ; P � 2 P � 1

D.4.1 Definition of Cubic Spline

Spline S is a piecewise polynomial continuous function defined on the interval
Œx0; xP � and represents a very flexible approach of data fitting. Let the interval be
covered by P disjoint subintervals Œxi ; xiC1� with

a D x0 � x1 � : : : � xP�1 � xP D b; i D 0; : : : ; P � 1 (D.44)

The given points x0; : : : ; xP are called spline knots. Interpolating spline assumes
that the spline curves go exactly through the given values y0; : : : ; yP at knots
x0; : : : ; xP . These are the initial data for an interpolating spline:

x x0 x1 . . . xP

y y0 y1 . . . yP

The polynomial in the interval Œxi ; xiC1� is defined as Si .x/. Then the spline
function reads

S.x/ D

8
ˆ̂
<̂

ˆ̂
:̂

S0.x/ x0 � x � x1
S1.x/ x1 � x � x2
:::

:::

SP�1.x/ xP�1 � x � xP

(D.45)

Cubic polynomials are chosen in the following form

Si.x/ D ai C bi .x � x0/C ci .x � x0/2 C di.x � x0/3 (D.46)

to achieve a continuous spline curve up to second derivative. The set of 4P
polynomial coefficients ai ; bi ; ci ; di .i D 0; : : : ; P � 1/ must be determined from
several conditions. Most of them are listed in Table D.2.

The first and the second row of the table describe that the polynomials Si and
SiC1 are connected in the point .xiC1; yiC1/. The third and the forth row define
continuity of the first and the second derivatives, respectively. Totally, the table
contains 4P � 2 conditions. Two conditions are still required to determine 4P
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polynomial coefficients uniquely. Since there are no continuity constraints in the
end points, it is natural to gain the missing two conditions in the first and the last
knot of the spline. There are different ways for treating BC’s. Some of them are:

• Fixed slope at the end points: S 0.x0/ D C0; S 0.xP / D CP
• Natural spline: S 00.x0/ D S 00.xP / D 0
• Not-a-knot condition: S 000 is continuous in x1 and xP�1
Table D.2 and selected BC’s result in a linear algebraic system of 4P equations with
4P unknowns, which has a unique solution.

D.4.2 s. /�Dependency

Specific BC’s are employed to approximate the saturation-pressure head curve via
cubic interpolating splines. We apply a natural spline condition S 00.x0/ D 0 in the
first knot and a fixed slope condition S 0.xP / D 0 at the last point.

D.4.2.1 Continuation to Minus Infinity

Since spline function is defined on an interval Œa; b�, we have to advance the spline
approximation to the interval Œ�1;C1�. If we claim that the last given spline knot
xP D 0 and S.xP / D 1, then a simple constant continuation to plus infinity is

SC1.x/ D 1 (D.47)

The fixed slope condition S 0.xP / D 0 ensures a smooth transition from SP to SC1.
In opposite direction, when x ! �1, the saturation-pressure head curve should

tend to 0. It can be realized using exponential function of the form

S�1.x/ D aebx (D.48)

where parameters a and b can be calculated from two smoothness conditions in the
first spline knot: S�1.x0/ D S0.x0/ and S 0�1.x0/ D S 0

0.x0/. Defining S0.x0/ as y0
and S 0

0.x0/ asm0 we obtain

a D y0e�m0x0
y0 ; b D m0

y0
and S�1.x/ D y0e

m0
y0
.x�x0/ (D.49)

D.4.2.2 Monotonic Spline Curve

Interpolating cubic splines described above are though continuous up to the second
derivative, but may become non-monotonic even when spline knots are monotonic
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(y0 � y1 � : : : � yP�1 � yP /. An example of such a behavior is shown in
Fig. D.2, where the first derivative of the cubic spline becomes negative. For some
parametric curves such fluctuations might be acceptable, while the monotonicity of
the saturation-pressure head dependency is important due to its physical meaning.

Monotone interpolation can be accomplished by using cubic Hermite spline
with the tangents mi modified to ensure the monotonicity of the resulting spline.
Cubic Hermit spline is generally continuous up to the first derivative only. Thus,
monotonicity is achieved loosing continuity of the second derivative comparing
to the cubic interpolating spline. The tangents mi will be computed by using the
Fritsch-Carlson method [176] as follows:

1. Compute the slopes of the secant lines between successive points:


i D yiC1 � yi
xiC1 � xi ; i D 0; : : : ; P � 1

2. Initialize the tangents at every data point as the average of the secants

mi D 
i�1 C
i

2
; i D 1; : : : ; P � 1

For the end points one-sided differences are used:m0 D 
0 and mP D 
P�1.
3. If two successive points have equal values .yi D yiC1/, then setmi D miC1 D 0,

as the spline connecting these points must be flat to preserve monotonicity. Next
steps 4 and 5 are omitted.
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4. Let ˛i D mi=
i and ˇi D miC1=
i . If ˛i D 0 or ˇi D 0, then the input data
points are not monotone. In such cases, piecewise monotonic curves can still be
generated by choosing mi D miC1 D 0, although global monotonicity is not
possible.

5. To prevent overshoot and ensure monotonicity, the function

.˛; ˇ/ D ˛ � .2˛ C ˇ � 3/
2

3.˛ C ˇ � 2/
must have a value greater than zero. One simple way to satisfy this constraint is
to restrict the magnitude of vector .˛i ; ˇi / to a circle of radius 3. That is, if ˛2i C
ˇ2i > 9, then set mi D �i˛i
i and miC1 D �iˇi
i , where �i D 3=

q
˛2i C ˇ2i .

For this algorithm the only one path is required.

To evaluate the cubic monotonic spline at an arbitrary point x, we find the interval
Œxk; xkC1�, such that xk � x � xkC1 by using a binary search algorithm [315]. We
define, ı D xkC1 � xk and t D .x � xk/=h. Then the interpolant is

QS.x/ D ykh00.t/C ımkh10.t/C ykC1h01.t/C ımkC1h11.t/ (D.50)

where Pii are the basis functions for the cubic Hermite spline:

h00.t/ D 2t3 � 3t2 C 1 D .1C 2t/.1 � t/2
h10.t/ D t3 � 2t2 C t D t.1 � t/2
h01.t/ D �2t3 C 3t2 D t2.3 � 2t/
h11.t/ D t3 � t2 D t2.t � 1/

(D.51)

Figure D.1 shows the classical VG fitting function for the saturation-pressure head
dependency that poorly approximates experimental data given as spline knots. On
the other hand, it has a well-shaped first derivative behavior (Fig. D.2). Differences
between cubic interpolating and cubic monotonic spline curves are hardly visible in
Fig. D.1, however, the first derivative plots (Fig. D.2) reveal clearly the positivity for
the monotonic spline and the lost of the smoothness.



Appendix E
Heat Transfer and Thermal Resistance for Wall
Configurations

E.1 Conduction Heat Transfer

E.1.1 Single and Composite Plane Wall

First, let us consider the thermal conduction through a single plane wall of thickness
d made of solid material with a thermal conductivity�s as shown in Fig. E.1a. The
temperatures at the two inner and outer solid surfaces of the wall are fixed at T1 and
TC with T1 > TC . For steady conditions without heat supply and constant thermal
conductivity �s , the heat transport equation, e.g., Table 3.5 (assuming " D 0 for
thermal conduction in solids), is for the 1D solid problem

��s @
2T

@x21
D 0

� @

@x1
jT D 0

�
(E.1)

where jT is the Fourier heat flux in 1D, cf. (3.176). We assume that jT is aligned
with the boundary heat flux qnT normal to the wall surfaces, i.e.,

qnT D jT D ��s @T

@x1
(E.2)

Using the BC’s

T .x1 D 0/ D T1 and T .x1 D d/ D TC (E.3)

integration of (E.1) gives the following linear temperature distribution

T D T1 C .TC � T1/x1
d

(E.4)
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1
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T2

2
s

d2

Fig. E.1 One-dimensional
heat conduction through
(a) single and (b) composite
plane wall of solid

Applying (E.4), we obtain from (E.2) the heat flux relation

qnT D �
�s

d
.TC � T1/ (E.5)

which corresponds to a Cauchy-type boundary flux condition, e.g., (6.40), where the
heat transfer coefficient yields ˚T D �s=d with T D T1.

Second, the same procedure is applicable to a composite wall as shown in
Fig. E.1b. Due to energy conservation @qnT =@x1 D 0 the heat flux qnT is constant
and we find

qnT D �
�s
1

d1
.T2 � T1/ D ��

s
2

d2
.TC � T2/ (E.6)

and eliminate T2 to obtain

qnT D �
1

�
d1
�s1
C d2

�s2

� .TC � T1/ (E.7)

This can be further generalized to a composite wall consisting of n material layers:

qnT D �
1

�
d1
�s1
C d2

�s2
C d3

�s3
C : : :C dn

�sn

� .TC � T1/ (E.8)

Once qnT has been determined, the temperatures at the inner material interfaces can
be computed as
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Fig. E.2 Radial heat conduction through (a) single and (b) composite circular pipe wall of solid

T2 D T1 � qnT d1
�s1

T3 D T1 � qnT
�
d1
�s1
C d2

�s2

�

Tn D T1 � qnT
�
d1
�s1
C d2

�s2
C : : :C dn�1

�sn�1

�
(E.9)

E.1.2 Single and Composite Circular Pipe Wall

First, we consider a single circular pipe wall of inside radius r1, outside radius r2,
length L and thermal conductivity �s as shown in Fig. E.2a. At the inside surface
and at the outside surface of the circular pipe wall constant temperatures T1 and TC ,
respectively, are prescribed with T1 > TC . For steady-state condition without heat
supply and constant thermal conductivity �s , the heat transport equation reads for
the axisymmetric problem (cf. Sect. 2.1.6)

��s @

@r

�
r
@T

@r

�
D 0

� @

@r
qnT D 0

�
(E.10)

where r corresponds to the radial coordinate, supplemented by the BC’s

T .r D r1/ D T1 and T .r D r2/ D TC (E.11)

In the same analytical procedure as done for the single plane wall we obtain the
temperature distribution for the single circular pipe wall as
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T D T1 C TC � T1
ln.r2=r1/

ln
� r

r1

�
(E.12)

which leads to the radial heat flux

qnT D �
�s

r ln.r2=r1/
.TC � T1/ (E.13)

as a function of the radial coordinate qnT D qnT .r/.
In analogy to the composite plane wall we find for the composite circular pipe

wall as shown in Fig. E.2b the following heat flux relation:

qnT D �
1

r
� ln.r2=r1/

�s1
C ln.r3=r2/

�s2

� .TC � T1/ (E.14)

In generalization, the heat flux for a n�layered circular pipe wall system leads to

qnT D �
1

r
� ln.r2=r1/

�s1
C ln.r3=r2/

�s2
C ln.r4=r3/

�s3
C : : :C ln.rnC1=rn/

�sn

� .TC �T1/ (E.15)

E.2 Heat Transfer Coefficient, Thermal Resistance
and Specific Thermal Resistance

From above the heat flux qnT can be expressed

qnT D �˚T .TC � T / (E.16)

which represents a Cauchy-type boundary heat flux condition, cf. (6.40), where TC
is the known (external or ambient) temperature on the boundary and T .D T1/ is
the internal temperature. It can be recognized as a specific form of the Newton’s law
of cooling [43, 447]. In (E.16) ˚T is the heat transfer coefficient which is given for
the configurations:

˚T D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

�s

d
single plane wall

�s

r ln.r2=r1/
single pipe wall

1�
d1
�s1

C d2
�s2

C:::C dn
�sn

� composite plane wall

1

r
�

ln.r2=r1/
�s1

C ln.r3=r2/
�s2

C:::C ln.rnC1=rn/

�sn

� composite pipe wall

(E.17)

This heat transfer relation has a direct analogy to electric resistance. According to
the Ohm’s law the electric resistance is defined as the ratio of the voltage difference
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to the current flow. A thermal resistance NR can accordingly be defined as the ratio
of the temperature difference to the associated rate of heat transfer. Thus

NR D .T � TC /R
qnT d�

D 1

˚TA
(E.18)

where
R
qnT d� represents the integral of the heat flux over the surface (boundary)

� , which is approximated by

Z

�

qnT d� 	 A qnT (E.19)

where A corresponds to the exchange area. On the other hand, the specific thermal
resistance R defines the thermal resistance per unit length and represents a material
property. It is related to the heat transfer coefficient as

R D 1

˚T S
D NRL (E.20)

where S D A
L

is the specific surface and L is a length. With these definitions, the
thermal resistances and specific thermal resistances of material i for a plane wall
and a circular pipe wall, respectively, are

NRi D

8
ˆ̂
<

ˆ̂
:

di

A�s
i

plane wall

ln.riC1=ri /
2�L �s

i

circular pipe wall

(E.21)

Ri D

8
ˆ̂
<

ˆ̂
:

di

S �s
i

plane wall

ln.riC1=ri /
2� �s

i

circular pipe wall

(E.22)

where for the circular pipe wall the specific exchange area is S D 2� r . The
advantage of using specific thermal resistances is in particular for analyzing heat
conduction through composite materials, where we can write for a n�layered
structure

qnT D �
1

S R
.TC � T /

R D R1 CR2 C : : :CRn DPn
iD1 Ri

(E.23)

forming a serial thermal resistance R composed of their partial resistance values
Ri .i D 1; : : : ; n/ according to (E.22).
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Fig. E.3 Serial and parallel heat transfer through a composite circular pipe wall with material
zones showing its thermal circuit

It can also be possible that the composite wall is additionally structured in zones
having different thermal properties as exemplified in Fig. E.3 for a circular pipe wall.
It generates a combined serial and parallel heat transfer. It is usual to indicate the
thermal resistance by its thermal network in direct analogy to electrical resistances
in electric circuits (Fig. E.3). The serial-parallel heat transfer results for the first case
(Fig. E.3a) as

qnT D �
1

2 S

�
1

R1 CR2 C
1

R3 CR4
	

.TC � T / (E.24)

and for the second case (Fig. E.3b) as

qnT D �
1

S

�

R1 C 1
1
2

�
1
R2

C 1
R3

� CR4
	 .TC � T / (E.25)

where the partial thermal resistances Ri are given from (E.22). In such a way
thermal resistances for more complex configurations can be developed, see e.g.,
[43, 237, 447].
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E.3 Thermal Circuits of Prototypical Configurations
in Boreholes

Borehole heat exchanger (BHE) represents a typical application of thermally
interacting components of circular pipe geometries (cf. Sect. 13.5 and Appendix M)
for which the effective thermal resistances can be derived by using the above
technique. There are two prototypical configurations consisting of three thermal
resistors: Delta configuration and Y configuration.

E.3.1 Delta Configuration

Considering a borehole cross-section containing two inner pipes denoted by sub-
script i (pipe-in) and subscript o (pipe-out) as shown in Fig. E.4. The borehole wall
is in direct contact with the surrounding soil denoted by subscript s. In the Delta
configuration (Fig. E.4a), in electrical engineering referred to as the Pi configuration,
there is a series-parallel combination of the three thermal resistors between pipe-in
and pipe-out, pipe-in and soil as well as pipe-out and soil, for which the equivalent
specific thermal resistance can be expressed by

1

R▵
D 1

Rio
C 1

Ris CRos
(E.26)

or

R▵ D Rio.Ris CRos/

Rio CRis CRos
(E.27)

where Rio, Ris and Ros correspond to the thermal resistances of pipe-in – pipe-
out, pipe-in – soil and pipe-out – soil, respectively. In the BHE context [237] the
resistance R is usually termed as internal borehole thermal resistance Ra D R▵

and with Rb the borehole thermal resistance is defined as

1

Rb
D 1

Ris
C 1

Ros
or Rb D RisRos

Ris CRos
(E.28)

which measures only the thermal resistance in a parallel heat transfer between the
two pipes with the surrounding soil. The Delta configuration has been preferred in
BHE modeling by Eskilson and Claesson [159], see Sect. 13.5 and Appendix M for
more.

E.3.2 Y Configuration

The Y configuration, in electrical engineering referred to as the Wye or T config-
uration, describes a series combination of three thermal resistors. In the borehole
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Fig. E.4 (a) Delta and (b) Y configuration for three thermal resistors in a borehole containing two
inner pipes

the resistances with the backfill, the grout component denoted by subscript g, is
additionally considered. As shown in Fig. E.4b for this circuit there is a serial
connection of resistor Rgs occurring between grout and soil to a parallel connection
of the resistors Rig and Rog occurring between pip-in and grout as well as pipe-out
and grout, respectively, which can be expressed by

R� D Rgs CRio

D Rgs C 1
1
Rig
C 1

Rog

(E.29)

in which Rio represents the equivalent thermal resistance of the parallel circuit
betweenRig andRog. The resulting thermal resistanceR of (E.29) can be considered
as an internal borehole thermal resistance Ra D R� for the Y configuration.
In contrast to the Delta configuration, the Y configuration entails that no direct
thermal interaction between pipe-in and pipe-out exists. In BHE modeling such
a Y configuration has been preferred by Al-Khoury et al. [8] and Al-Khoury and
Bonnier [7].

The prototypical Delta and Y configurations represent basic circuits for BHE’s,
which can be enriched and extended by further inner components such as wall
materials, grout zones and different pipe arrangements, so as thoroughly described
in Appendix M.



Appendix F
Optimality of the Galerkin Method

The optimality of the Galerkin method indicates that the Galerkin criterion (choos-
ing weighting function equal to the basis function) is the best approximation
possible compared to any other approximation according to an appropriate measure
of error. This is particularly true for 2nd-order PDE’s of elliptic type and is expressed
by the inequality

kekE; G � kekE; O (F.1)

where kekE; G and kekE; O are the energy (Hilbert space) norm errors (8.22) pro-
duced by the Galerkin method and by any other approximation method, respectively.
This error estimate is central in FEM and formulated by Céa’s lemma, see e.g.,
[84, 193, 555], and tells that, at least valid for elliptic PDE’s, there is never a
better approximation than the Galerkin approximation. To prove (F.1) we follow
Lewis et al. [345] and consider a steady-state diffusion equation of elliptic type (cf.
Sect. 8.3) written in the form:

� r � .D � r/ D H on ˝ � <D (F.2)

where  is the scalar function to be solved, D is a diffusion tensor and H a
source/sink term. The weak form of (F.2) is given by (cf. Sect. 8.5)

Z

˝

rw � .D � r/ d˝ D
Z

˝

wH d˝ �
Z

�N

wqN d� (F.3)

subject to the Neumann-type BC: qN D �.D � r/ � n on �N , where w D w.x/
is a weighting function, which is at least once-differentiable, and  D .x/ is the
exact solution. The weak form (F.3) must be valid for every w.

Let us the define the error in the Galerkin approximation by

eG D  � O G (F.4)
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where O G is the Galerkin-based approximate solution, and the error in an approxi-
mation

eO D  � O O (F.5)

when any other approximate solution O O is used. Applying the Galerkin approxi-
mation  	 O G to the weak form (F.3), it must satisfy

Z

˝

rw � .D � r O G/ d˝ D
Z

˝

wH d˝ �
Z

�N

wqN d� (F.6)

for every w. Subtracting (F.6) from (F.3) it yields

Z

˝

rw � .D � reG/ d˝ D 0 (F.7)

for every w.
Let us define the energy (Hilbert space) norm error of a function f according to

(8.22) in the following form

kf k2E D
Z

˝

rf � .D � rf / d˝ (F.8)

we can expand (F.5) to

eO D  � O O D . � O G/C . O G � O O/ D eG C . O G � O O/ (F.9)

and find

kek2E; O D kek2E; G C 2k. O G � O O/eGkE C k O G � O Ok2E (F.10)

Using (F.8) and (F.10) leads to

kek2E; O D
Z

˝

reG � .D � reG/ d˝ C 2
Z

˝

r. O G � O O/ � .D � reG/ d˝ C
Z

˝

r. O G � O O/ �
�
D � r. O G � O O/


d˝

(F.11)

Since (F.7) is valid for every weighting function w, the second term on the RHS of
(F.11) must vanish

Z

˝

r. O G � O O/ � .D � reG/ d˝ D 0 (F.12)
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and it follows from (F.11)

kek2E; O D kek2E; G C k O G � O Ok2E (F.13)

From the definition of the error measure (F.8) it results that k O G � O Ok2E  0 is
strictly non-negative and the optimality condition (F.1) becomes now apparent.



Appendix G
Isoparametric Finite Element Shape Functions
and Their Derivatives

Standard isoparametric elements in 1D, 2D and 3D can be found in finite element
textbooks, e.g., [590]. Pyramidal 3D elements are described by Zgainski et al. [586].

G.1 One Dimension

Table G.1 One-dimensional isoparametric shape functions Ne
I and their derivatives at node I of

element N̋ e � <1 of type: (a) line and (b) parabola

Type I N e
I

@Ne
I

@�
Element in global and local coordinates

(a) 1

2

1
2
.1� �/

1
2
.1C �/

� 1
2

1
2
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x1

(-1) (+1)
1

2

1 2

(b) 1

2

3

1
2
�.� � 1/

1� �2

1
2
�.� C 1/

� � 1
2

�2�
� C 1

2 1

quadratic

(-1) (+1)(0)

1 32

x

1
2
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Appendix H
Analytical Evaluation of Element Matrices
and Vectors

The element matrices and vectors appearing in (8.104) for the discretized ADE
will be analytically evaluated for certain types of elements, where we assume
constant coefficients within each element. A necessary and sufficient condition for
the analytical evaluation is that the Jacobian is constant. This is always given for
the linear 1D element, the linear 2D triangle and the linear 3D tetrahedron, for
which the Jacobians are independent of the element shapes. However, to evaluate
analytically quadrilateral, hexahedral, pentahedral or pyramidal elements, geometric
simplifications are necessary to attain constant Jacobians for undisturbed elements.
These can be shown for a quadrilateral element if simplifying to a rectangle or
parallelogram, for a hexahedral element if simplifying to a brick or parallelepiped,
for a pentahedral element if simplifying to a triangular prism with parallel top
and bottom surfaces and for a pyramidal element if simplifying to a pyramid with
parallelogram or rectangular base and oblique shape.

H.1 Linear 1D Element

We consider the linear 2-node element e as shown in Fig. H.1 with the shape
functions at the nodes 1 and 2 (cf. Appendix G, Table G.1a)

Ne
1 D 1

2
.1� �/

N e
2 D 1

2
.1C �/ (H.1)

and their derivatives

@Ne
1

@�
D � 1

2

@Ne
2

@�
D 1

2

(H.2)
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21
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Fig. H.1 Basis functions
Ne
I .I D 1; 2/ of the linear

1D element

for .�1 � � � 1/. Furthermore, we have for the element, cf. (8.71)

x D Ne
1 x

e
1 CNe

2 x
e
2 (H.3)

and with (8.117) and (8.120) we obtain the Jacobian (and its determinant)

J e11 D jJej D
@x

@�
D @N e

1

@�
xe1 C

@N e
2

@�
xe2 D


xe

2
(H.4)

which is constant, and the inverse Jacobian according to (8.119)

.Je/�1 D 1

jJej D
2


xe
(H.5)

where 
xe is the element length (Fig. H.1). Then, the divergence term (8.118)
becomes with (H.2)
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0

@
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!

(H.6)

Using (8.122) it is

d˝e D dx D jJe jd� D 
xe

2
d� (H.7)

Thus, the matrices and vectors of the ADE convective form (8.104) to (8.105)
become for element e:
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where for convenience we assume constant parameters (storage coefficient KRe , flux
qe , dispersion De , decay rate #e , flow supply Qe, transfer coefficient ˚e and
source/sink He) within the element. Finally, the spatially discretized ADE in the
convective form (8.99) can be summarized as
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Similar expressions can be obtained for the divergence form of ADE (8.98).

H.2 Linear 2D Triangle

We consider the linear 3-node triangular element e as shown in Fig. H.2 (cf.
Appendix G, Table G.2a) having the following shape functions
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(H.11)

and local derivatives
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for .0 � �; � � 1/. Furthermore, we have for the triangular element, cf. (8.71)

x D Ne
1 x

e
1 CNe

2 x
e
2 CNe

3 x
e
3

y D Ne
1 y

e
1 CNe

2 y
e
2 CNe

3 y
e
3

(H.13)



H.2 Linear 2D Triangle 867

where xeI ; y
e
I .I D 1; 2; 3/ correspond to the Cartesian coordinates of the vertices

(nodes) of the triangle. Using (H.12) and (H.13) in (8.116), (8.119), and (8.120) we
obtain the Jacobian
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the inverse Jacobian
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and its determinant
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which is twice the area Ae of the triangle. We recognize that the triangle has the
advantage of having a constant Jacobian (and its inverse) independent of the element
shape in the Cartesian coordinates (we shall see further below this is not the case
for the quadrilateral). The global derivatives (8.118) result with (H.12) in
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introducing the coordinate matrix
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where eI are nodal base vectors defined as
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With (8.122) and (H.16) as well as (8.123) and (H.15) it is
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Thus, the matrices and vectors of the ADE convective form (8.104) and (8.105)
become for element e:
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where for convenience we assume constant parameters (storage coefficient KRe , flux
qe , dispersion De , decay rate #e , flow supply Qe, transfer coefficient ˚e and
source/sink He) within the element. In (H.24) the components of the unit normal
vector n in the Cartesian x� and y�coordinate direction on the outflow boundary
�NO are indicated by n1 and n2, respectively. Finally, the spatially discretized ADE
in the convective form (8.99) can be summarized as
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Similar expressions can be obtained for the divergence form of ADE (8.98).

H.3 Linear 3D Tetrahedron

We consider the linear 4-node tetrahedral element e as shown in Fig. H.3
(cf. Appendix G, Table G.3a) having the following shape functions
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(H.27)

and local derivatives
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Fig. H.3 Linear 4-node
tetrahedron in the global and
local coordinate system

for .0 � �; �; � � 1/. It is for the tetrahedral element, cf. (8.71)
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where xeI ; y
e
I ; z

e
I .I D 1; 2; 3; 4/ correspond to the Cartesian coordinates of the

vertices (nodes) of the tetrahedron.Using (H.28) and (H.29) in (8.115) and (8.119)
we obtain the Jacobian
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the inverse Jacobian
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where
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and its determinant
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which is six times the volume V e of the tetrahedron. We see that the tetrahedron has
the important advantage of having a constant Jacobian (and its inverse) independent
of the element shape in the Cartesian coordinates (we shall see further below this is
not the case for the other 3D elements). The global derivatives (8.118) result with
(H.28) in
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introducing the coordinate matrix
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with
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where eI are nodal base vectors defined as
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With (8.122) and (H.33) as well as (8.123) and (H.31) it is
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Thus, the matrices and vectors of the ADE convective form (8.104) and (8.105)
become for element e:
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with
P
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where for convenience we assume constant parameters (storage coefficient KRe ,
flux qe , dispersion De, decay rate #e , flow supply Qe, transfer coefficient ˚e

and source/sink He) within the element. In (H.42) the components of the unit
normal vectorn in the Cartesian x�, y� and z�coordinate direction on the outflow
boundary �NO are indicated by n1, n2 and n3, respectively. Finally, the spatially
discretized ADE in the convective form (8.99) can be summarized as
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Similar expressions can be obtained for the divergence form of ADE (8.98).
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H.4 Simplified Element Shapes in 2D and 3D to Attain
Constant Jacobians

H.4.1 Linear Quadrilateral Element as Parallelogram
or Rectangle

The linear 4-node quadrilateral element as described in Appendix G (Table G.2b)
has the following shape functions

Ne
1 D 1

4
.1 � �/.1 � �/

N e
2 D 1

4
.1C �/.1 � �/

N e
3 D 1

4
.1C �/.1C �/

N e
4 D 1

4
.1 � �/.1C �/

(H.46)

and the local derivatives
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(H.47)

for .�1 � �; � � 1/. It is for the quadrilateral element, cf. (8.71)
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(H.48)

where xeI ; y
e
I .I D 1; 2; 3; 4/ correspond to the Cartesian coordinates of the vertices

(nodes) of the quadrilateral. Using (H.47) and (H.48) in (8.116) we obtain the
Jacobian

Je D 1
4

 
.�xe1 C xe2 C xe3 � xe4 C �.xe1 � xe2 C xe3 � xe4// .�ye1 C ye2 C ye3 � ye4 C �.ye1 � ye2 C ye3 � ye4 //

.�xe1 � xe2 C xe3 C xe4 C �.xe1 � xe2 C xe3 � xe4 // .�ye1 � ye2 C ye3 C ye4 C �.ye1 � ye2 C ye3 � ye4 //

!

(H.49)

We see from (H.49) that the JacobianJe of the quadrilateral is a function of the local
coordinates �; �, which makes an analytical evaluation impossible. To eliminate the
�; ��dependency from Je we have to enforce xe1 �xe2Cxe3 �xe4 D 0 and ye1 �ye2C
ye3 � ye4 D 0, which become valid for the parallelogram and the rectangle as shown
in Fig. H.4. The parallelogram is characterized by the geometric conditions:

ıex D xe4 � xe1 D xe3 � xe2 Lex D xe2 � xe1 D xe3 � xe4
ıey D ye2 � ye1 D ye3 � ye4 Ley D ye4 � ye1 D ye3 � ye2

(H.50)
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Then, the Jacobain of the parallelogram
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e
y

!

(H.51)

becomes constant. It yields the inverse Jacobian

.Je/�1 D 1

2jJej

 
Ley �ıey
�ıex Lex

!

(H.52)

and the determinant

jJej D 1
4
.LexL

e
y � ıexıey/ D 1

4
Ae (H.53)

which corresponds to the quarter of the parallelogram area. We note that ıex D ıey D
0 for a rectangular element aligned to the global coordinate axes. Now, it is possible
to evaluate the element matrices and vectors for the parallelogram and the rectangle
in a similar way as done in Sect. H.2 for the triangle.

H.4.2 Linear Hexahedral Element as Parallelepiped or Brick

The linear 8-node hexahedral element as described in Appendix G (Table G.3c) has
the following shape functions
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and the local derivatives

@Ne
1

@�
D � 1

8
.1� �/.1C �/;

@Ne
1

@�
D � 1

8
.1� �/.1C �/;

@Ne
1

@�
D 1

8
.1� �/.1� �/

@Ne
2

@�
D 1

8
.1� �/.1C �/;

@Ne
2

@�
D � 1

8
.1C �/.1C �/;

@Ne
2

@�
D 1

8
.1C �/.1� �/

@Ne
3

@�
D 1

8
.1C �/.1C �/;

@Ne
3

@�
D 1

8
.1C �/.1C �/;

@Ne
3

@�
D 1

8
.1C �/.1C �/

@Ne
4

@�
D � 1

8
.1C �/.1C �/;

@Ne
4

@�
D 1

8
.1� �/.1C �/;

@Ne
4

@�
D 1

8
.1� �/.1C �/

@Ne
5

@�
D � 1

8
.1� �/.1� �/;

@Ne
5

@�
D � 1

8
.1� �/.1� �/;

@Ne
5

@�
D � 1

8
.1� �/.1� �/

@Ne
6

@�
D 1

8
.1� �/.1� �/;

@Ne
6

@�
D � 1

8
.1C �/.1� �/;

@Ne
6

@�
D � 1

8
.1C �/.1� �/

@Ne
7

@�
D 1

8
.1C �/.1� �/;

@Ne
7

@�
D 1

8
.1C �/.1� �/;

@Ne
7

@�
D � 1

8
.1C �/.1C �/

@Ne
8

@�
D � 1

8
.1C �/.1� �/;

@Ne
8

@�
D 1

8
.1� �/.1� �/;

@Ne
8

@�
D � 1

8
.1� �/.1C �/

(H.55)

for .�1 � �; �; � � 1/. It is for the hexahedral element, cf. (8.71)
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where xeI ; y
e
I ; z

e
I .I D 1; : : : ; 8/ correspond to the Cartesian coordinates of the

vertices (nodes) of the hexahedron. Using (H.55) and (H.56) in (8.115) we obtain
the Jacobian

Je D 1
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where

a�x D �xe1 C xe2 C xe3 � xe4 � xe5 C xe6 C xe7 � xe8
a�y D �ye1 C ye2 C ye3 � ye4 � ye5 C ye6 C ye7 � ye8
a�z D �ze1 C ze2 C ze3 � ze4 � ze5 C ze6 C ze7 � ze8
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a�y D �ye1 � ye2 C ye3 C ye4 � ye5 � ye6 C ye7 C ye8
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(H.58)
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Fig. H.5 Linear 8-node parallelepiped in the global and local coordinate system

bx D xe1 � xe2 C xe3 � xe4 C xe5 � xe6 C xe7 � xe8
by D ye1 � ye2 C ye3 � ye4 C ye5 � ye6 C ye7 � ye8
bz D ze1 � ze2 C ze3 � ze4 C ze5 � ze6 C ze7 � ze8
cx D �xe1 C xe2 C xe3 � xe4 C xe5 � xe6 � xe7 C xe8
cy D �ye1 C ye2 C ye3 � ye4 C ye5 � ye6 � ye7 C ye8
cz D �ze1 C ze2 C ze3 � ze4 C ze5 � ze6 � ze7 C ze8
dx D xe1 � xe2 C xe3 � xe4 � xe5 C xe6 � xe7 C xe8
dy D ye1 � ye2 C ye3 � ye4 � ye5 C ye6 � ye7 C ye8
dz D ze1 � ze2 C ze3 � ze4 � ze5 C ze6 � ze7 C ze8
ex D �xe1 � xe2 C xe3 C xe4 C xe5 C xe6 � xe7 � xe8
ey D �ye1 � ye2 C ye3 C ye4 C ye5 C ye6 � ye7 � ye8
ez D �ze1 � ze2 C ze3 C ze4 C ze5 C ze6 � ze7 � ze8

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

(H.59)

It is obvious from (H.57) that the Jacobian Je of the hexahedron is still a
function of the local coordinates �; �; �. Any analytical evaluation needs that the
�; �; ��dependencies in Je vanish, i.e., all coefficients b; c; d and e of (H.59) must
be zero. This is valid for the parallelepiped and the brick as shown in Fig. H.5, where
the following geometric conditions hold:

ıexz D xe4 � xe1 D xe3 � xe2 D xe8 � xe5 D xe7 � xe6
ıexy D xe4 � xe8 D xe1 � xe5 D xe3 � xe7 D xe2 � xe6
ıeyx D ye1 � ye5 D ye2 � ye6 D ye4 � ye8 D ye3 � ye7
ıeyz D ye2 � ye1 D ye3 � ye4 D ye6 � ye5 D ye7 � ye8
ıezx D ze2 � ze1 D ze6 � ze5 D ze3 � ze4 D ze7 � ze8
ıezy D ze8 � ze5 D ze4 � ze1 D ze3 � ze2 D ze7 � ze6
Lex D xe2 � xe1 D xe3 � xe4 D xe6 � xe5 D xe7 � xe8
Ley D ye4 � ye1 D ye3 � ye2 D ye8 � ye5 D ye7 � ye6
Lez D ze4 � ze8 D ze1 � ze5 D ze3 � ze7 D ze2 � ze6

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(H.60)
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Then, the Jacobain of the parallelepiped
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becomes constant. It yields the inverse Jacobian
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(H.62)

and the determinant

jJej D 1
8
ŒLex.L

e
yL

e
z � ıeyxıezy/C ıexz.ı

e
yxı

e
zx � ıeyzL

e
z /C ıexy.ıeyzı

e
zy � ıezxLey/� D 1

8
V e

(H.63)

which corresponds to one-eighth of the parallelepiped volume. We note that ıexz D
ıexy D ıeyx D ıeyz D ıezx D ıezy D 0 for a brick element aligned to the global
coordinate axes. The element matrices and vectors can now be analytically evaluated
for the parallelepiped and the brick element in a similar way as done in Sect. H.3 for
the tetrahedron.

H.4.3 Linear Pentahedral Element as Triangular Prism
with Parallel Top and Bottom Surfaces

The linear 6-node pentahedral element as described in Appendix G (Table G.3b) has
the following shape functions

Ne
1 D 1

2
.1 � � � �/.1C �/

N e
2 D 1

2
�.1C �/

N e
3 D 1

2
�.1C �/

N e
4 D 1

2
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N e
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2
�.1 � �/

N e
6 D 1

2
�.1 � �/

(H.64)

and the local derivatives
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� (H.65)

for .0 � �; � � 1/ and .�1 � � � 1/. It is for the pentahedral element, cf. (8.71)

x D
6X

ID1
N e
I x

e
I ; y D
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ID1
N e
I y

e
I ; z D

6X

ID1
N e
I zeI (H.66)

where xeI ; y
e
I ; z

e
I .I D 1; : : : ; 6/ correspond to the Cartesian coordinates of the

vertices (nodes) of the pentahedron. Using (H.65) and (H.66) in (8.115) we obtain
the Jacobian

Je D 1
2

0

@
.a�x C �bx/ .a�y C �by / .a�z C �bz/

.a�x C �cx/ .a�y C �cy/ .a�z C �cz/

.a�x C �bx C �cx/ .a�y C �by C �cy/ .a�z C �bz C �cz/

1

A (H.67)

where

a�x D �xe1 C xe2 � xe4 C xe5
a�y D �ye1 C ye2 � ye4 C ye5
a�z D �ze1 C ze2 � ze4 C ze5
a�x D �xe1 C xe3 � xe4 C xe6
a�y D �ye1 C ye3 � ye4 C ye6
a�z D �ze1 C ze3 � ze4 C ze6
a�x D xe1 � xe4
a�y D ye1 � ye4
a�z D ze1 � ze4

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(H.68)

bx D �xe1 C xe2 C xe4 � xe5
by D �ye1 C ye2 C ye4 � ye5
bz D �ze1 C ze2 C ze4 � ze5
cx D �xe1 C xe3 C xe4 � xe6
cy D �ye1 C ye3 C ye4 � ye6
cz D �ze1 C ze3 C ze4 � ze6

9
>>>>>>>=

>>>>>>>;

(H.69)

It is obvious from (H.67) that the Jacobian Je of the hexahedron is still a
function of the local coordinates �; �; �. Any analytical evaluation needs that the
�; �; ��dependencies in Je vanish, i.e., all coefficients b and c of (H.69) must be
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Fig. H.6 Linear 6-node triangular prism with parallel top and bottom surfaces in the global and
local coordinate system

zero. This is valid for the triangular prism with parallel top and bottom surfaces as
shown in Fig. H.6, where the following geometric conditions hold:

ıexy D xe3 � xe1 D xe6 � xe4
ıexz D xe1 � xe4
ıeyx D ye2 � ye1 D ye5 � ye4
ıeyz D ye1 � ye4
ıezx D ze2 � ze1 D ze5 � ze4
ıezy D ze3 � ze1 D ze6 � ze4
Lex D xe2 � xe1 D xe5 � xe4
Ley D ye3 � ye1 D ye6 � ye4
Lez D ze1 � ze4

(H.70)

Then, the Jacobain of the triangular prism with parallel top and bottom surfaces
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becomes constant. The inverse Jacobian results
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with the determinant

jJe j D Lex.LeyLez � ıeyzı
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(H.73)

which is twice the volume of the triangular prism. The special case represents a
triangular prism which is vertical and has horizontal top and bottom surfaces, so
that ıexz D ıeyz D ıezx D ıezy D 0. Then, it simplifies
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jJej D .LexLey � ıexyıeyx/Lez D 2AeLez D 2V e

where Ae D 1
2
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e
y � ıexyıeyx/ D 1

2
Œxe1.y

e
2 � ye3/C xe2.ye3 � ye1/C xe3.ye1 � ye2/� is

the base area of the triangular prism. In using these relations the element matrices
and vectors for the triangular prismatic element can be analytically evaluated in a
similar way as done in Sect. H.3 for the tetrahedron.

H.4.4 Linear Pyramidal Element with Parallelogram
or Rectangular Base and Oblique Shape

The linear 5-node pyramidal element as described in Appendix G (Table G.3d) has
the following shape functions
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(H.75)

and the local derivatives
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for .�1 � �; � � 1/ and .0 � � � 1/. It is for the pyramidal element, cf. (8.71)

x D
5X

ID1
N e
I x

e
I ; y D

5X

ID1
N e
I y

e
I ; z D

5X

ID1
N e
I zeI (H.77)

where xeI ; y
e
I ; z

e
I .I D 1; : : : ; 5/ correspond to the Cartesian coordinates of the

vertices (nodes) of the pyramid. Using (H.76) and (H.77) in (8.115) we obtain the
Jacobian
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where

a�x D �xe1 C xe2 C xe3 � xe4
a�y D �ye1 C ye2 C ye3 � ye4
a�z D �ze1 C ze2 C ze3 � ze4
a�x D �xe1 � xe2 C xe3 C xe4
a�y D �ye1 � ye2 C ye3 C ye4
a�z D �ze1 � ze2 C ze3 C ze4
a�x D �xe1 � xe2 � xe3 � xe4 C 4xe5
a�y D �ye1 � ye2 � ye3 � ye4 C 4ye5
a�z D �ze1 � ze2 � ze3 � ze4 C 4ze5

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

(H.79)

bx D xe1 � xe2 C xe3 � xe4
by D ye1 � ye2 C ye3 � ye4
bz D ze1 � ze2 C ze3 � ze4

9
>=

>;
(H.80)

It is obvious from (H.78) that the Jacobian Je of the pyramid is still a func-
tion of the local coordinates �; �; �. Any analytical evaluation needs that the
�; �; ��dependencies in Je vanish, i.e., all coefficients bx , by and bz of (H.80) must
be zero. This is valid for the pyramid with a parallelogram base and oblique shape
as shown in Fig. H.7, where the following geometric conditions hold:
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Fig. H.7 Linear 5-node (oblique) pyramid with a parallelogram base in the global and local
coordinate system
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Then, the Jacobain of the pyramid with a parallelogram base
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becomes constant. The inverse Jacobian results
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with the determinant
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(H.84)

which is three quarters of the pyramid volume. We note that ıexz D ıeyz D ıezx D
ıezy D 0 for a right pyramid, where the apex is aligned directly above the center of
the base. The element matrices and vectors can now be analytically evaluated for
the pyramid with a parallelogram or rectangular base and possibly oblique shape in
a similar way as done in Sect. H.3 for the tetrahedron.



Appendix I
Parameters in Relation to Selected Problem
Class, Medium Type and Dimension

The following tables summarize the essential parameters (material/constitutive
relationships and BC-related parameters) required for solving the governing flow,
mass and heat transport equations as listed in Tables 3.7 and 3.9–3.11 for porous-
media problems as well as in Tables 4.5–4.7 for fractured media (discrete feature)
problems. They depend on both the problem class (flow, mass transport, heat
transport, thermohaline problem), the type of medium (porous medium, fractured
medium), the free-surface or variably saturated media formulation and the dimen-
sion (3D, 2D (vertical, axisymmetric, horizontal)) of the chosen problem. Generally,
the parameters can be functions of space and time, e.g.,

K11 D K11.x; t/

K22 D K22.x; t/

K33 D K33.x; t/
:::

˚out
h D ˚out

h .x; t/
:::

(I.1)
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I.1 Flow

Table I.1 Parameters for 3D flow in porous media (with and without mass transport)

Item Symbol Unit Default Reference(s)

Axis-parallel anisotropy:
Conductivity [Kxx] K11 10�4 m s�1 1 Sect. 7.4.1
Conductivity [Kyy] K22 10�4 m s�1 1
Conductivity [Kzz] K33 10�4 m s�1 1

General and shaped-derived anisotropy (optional):
Conductivity [K1m] Km

1 10�4 m s�1 1 Sects. 7.3.1 and 7.3.2
Conductivity [K2m] Km

2 10�4 m s�1 1
Conductivity [K3m] Km

3 10�4 m s�1 1

Eulerian angles only for general anisotropy:
  ı 0 Sect. 7.3.1
� � ı 0
  ı 0

In(C)/out(�)flow on top/bottom P 10�4 m d�1 0 (9.4)
Density ratio ˛k 10�4 0 (3.199) and (3.275)
Specific yield "e 1 0:2 (3.296) and (9.4)
Specific storage coefficient So m�1 10�4 (4.25) and (9.2)
Source(C)/sink(�) Qh 10�4 d�1 0 (9.2)
In-transfer coefficient ˚ in

h 10�4 d�1 0 (6.7) and (6.8)
Out-transfer coefficient ˚out

h 10�4 d�1 0 (6.7) and (6.8)
Unsaturated properties as listed in Table I.10

Table I.2 Parameters for 3D flow in porous media (at heat transport)

Item Symbol Unit Default Reference(s)

Axis-parallel anisotropy:
Conductivity [Kxx] K11 10�4 m s�1 1 Sect. 7.4.1
Conductivity [Kyy] K22 10�4 m s�1 1
Conductivity [Kzz] K33 10�4 m s�1 1

General and shaped-derived anisotropy (optional):
Conductivity [K1m] Km

1 10�4 m s�1 1 Sects. 7.3.1 and 7.3.2
Conductivity [K2m] Km

2 10�4 m s�1 1
Conductivity [K3m] Km

3 10�4 m s�1 1
Eulerian angles only for general anisotropy:
  ı 0 Sect. 7.3.1
� � ı 0
  ı 0

In(C)/out(�)flow on top/bottom P 10�4 m d�1 0 (9.4)
(continued)
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Table I.2 (continued)

Item Symbol Unit Default Reference(s)

Constant thermal expansion coefficient:
Expansion coefficient (constant) ˇ 10�4 K�1 0 (3.199)

Variable thermal expansion (optional):
Expansion coefficient (variable) ˇ.T / 10�4 K�1 0 (C.4) and (C.8)

Specific yield "e 1 0:2 (3.296) and (9.4)
Specific storage coefficient So m�1 10�4 (4.25) and (9.2)
Source(C)/sink(�) Qh 10�4 d�1 0 (9.2)
In-transfer coefficient ˚ in

h 10�4 d�1 0 (6.7) and (6.8)
Out-transfer coefficient ˚out

h 10�4 d�1 0 (6.7) and (6.8)
Unsaturated properties as listed in Table I.10

Table I.3 Parameters for 3D flow in porous media (at thermohaline transport)

Item Symbol Unit Default Reference(s)

Axis-parallel anisotropy:
Conductivity [Kxx] K11 10�4 m s�1 1 Sect. 7.4.1
Conductivity [Kyy] K22 10�4 m s�1 1
Conductivity [Kzz] K33 10�4 m s�1 1

General and shaped-derived anisotropy (optional):
Conductivity [K1m] Km

1 10�4 m s�1 1 Sects. 7.3.1 and 7.3.2
Conductivity [K2m] Km

2 10�4 m s�1 1
Conductivity [K3m] Km

3 10�4 m s�1 1

Eulerian angles only for general anisotropy:
  ı 0 Sect. 7.3.1
� � ı 0
  ı 0

In(+)/out(-)flow on top/bottom P 10�4 m d�1 0 (9.4)
Density ratio ˛k 10�4 0 (3.199) and (3.275)

Constant thermal expansion coefficient:
Expansion coefficient (constant) ˇ 10�4 K�1 0 (3.199)

Variable thermal expansion (optional):
Expansion coefficient (variable) ˇ.T / 10�4 K�1 0 (C.4) and (C.8)

Specific yield "e 1 0:2 (3.296) and (9.4)
Specific storage coefficient So m�1 10�4 (4.25) and (9.2)
Source(C)/sink(�) Qh 10�4 d�1 0 (9.2)
In-transfer coefficient ˚ in

h 10�4 d�1 0 (6.7) and (6.8)
Out-transfer coefficient ˚out

h 10�4 d�1 0 (6.7) and (6.8)
Unsaturated properties as listed in Table I.10
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Table I.4 Parameters for vertical or axisymmetric 2D flow in porous media (with and without
mass transport)

Item Symbol Unit Default Reference(s)

Conductivity [Kmax] Kmax 10�4 m s�1 1 Sect. 7.2
Anisotropy factor [Kmin/Kmax] �aniso 1 1 (7.9)
Angle from C x-axis to Kmax  ı 0 Fig. 7.2
Density ratio ˛k 10�4 0 (3.199) and (3.275)
Specific storage coefficient So m�1 10�4 (4.25), (9.2)
Source(C)/sink(�) Qh 10�4 d�1 0 (9.2)
In-transfer coefficient ˚ in

h 10�4 d�1 0 (6.7) and (6.8)
Out-transfer coefficient ˚out

h 10�4 d�1 0 (6.7) and (6.8)
Unsaturated properties as listed in Table I.10

Table I.5 Parameters for vertical or axisymmetric 2D flow in porous media (at heat transport)

Item Symbol Unit Default Reference(s)

Conductivity [Kmax] Kmax 10�4 m s�1 1 Sect. 7.2
Anisotropy factor [Kmin/Kmax] �aniso 1 1 (7.9)
Angle from C x-axis to Kmax  ı 0 Fig. 7.2

Constant thermal expansion coefficient:
Expansion coefficient (constant) ˇ 10�4 K�1 0 (3.199)

Variable thermal expansion (optional):
Expansion coefficient (variable) ˇ.T / 10�4 K�1 0 (C.4) and (C.8)

Specific storage coefficient So m�1 10�4 (4.25) and (9.2)
Source(C)/sink(�) Qh 10�4 d�1 0 (9.2)
In-transfer coefficient ˚ in

h 10�4 d�1 0 (6.7) and (6.8)
Out-transfer coefficient ˚out

h 10�4 d�1 0 (6.7) and (6.8)
Unsaturated properties as listed in Table I.10

Table I.6 Parameters for vertical or axisymmetric 2D flow in porous media (at thermohaline
transport)

Item Symbol Unit Default Reference(s)

Conductivity [Kmax] Kmax 10�4 m s�1 1 Sect. 7.2
Anisotropy factor [Kmin/Kmax] �aniso 1 1 (7.9)
Angle from C x-axis to Kmax  ı 0 Fig. 7.2
Density ratio ˛k 10�4 0 (3.199) and (3.275)

Constant thermal expansion coefficient:
Expansion coefficient (constant) ˇ 10�4 K�1 0 (3.199)

Variable thermal expansion (optional):
Expansion coefficient (variable) ˇ.T / 10�4 K�1 0 (C.4) and (C.8)

Specific storage coefficient So m�1 10�4 (4.25) and (9.2)
Source(C)/sink(�) Qh 10�4 d�1 0 (9.2)
In-transfer coefficient ˚ in

h 10�4 d�1 0 (6.7) and (6.8)
Out-transfer coefficient ˚out

h 10�4 d�1 0 (6.7) and (6.8)
Unsaturated properties as listed in Table I.10
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Table I.7 Parameters for horizontal 2D flow in porous media (confined aquifer)

Item Symbol Unit Default Reference(s)

Transmissivity [Tmax] Tmax 10�4 m2 s�1 1 Sect. 7.2, (3.302)
Anisotropy factor [Tmin/Tmax] �aniso 1 1 (7.9)
Angle from C x-axis to Tmax  ı 0 Fig. 7.2
Specific storage coefficient NSo 1 10�4 (3.299) and (9.11)
Source(C)/sink(�) NQh 10�4 m d�1 0 (9.12)
In-transfer coefficient N̊ in

h 10�4 m d�1 0 (6.7) and (6.9)
Out-transfer coefficient N̊ out

h 10�4 m d�1 0 (6.7) and (6.9)

Table I.8 Parameters for horizontal 2D flow in porous media (unconfined aquifer)

Item Symbol Unit Default Reference(s)

Conductivity [Kmax] Kmax 10�4 m s�1 1 Sect. 7.2
Anisotropy factor [Kmin/Kmax] �aniso 1 1 (7.9)
Angle from C x-axis to Kmax  ı 0 Fig. 7.2
Aquifer bottom elevation f B m 0 (3.283) and (9.7)
Aquifer top elevation f T m 103 (3.283) and (9.31)
Specific yield "e 1 0:2 (3.296) and (9.8)
Specific storage coefficient So m�1 10�4 (4.25) and (9.8)
Source(C)/sink(�) NQh 10�4 m d�1 0 (9.8)
In-transfer coefficienta ˚ in

h 10�4 d�1 0 (6.7) and (6.8)
Out-transfer coefficientb ˚out

h 10�4 d�1 0 (6.7) and (6.8)
a For integral third kind BC (Sect. 6.5.4) depth-integrated N̊ in

h Œ10
�4 md�1� (6.9) is used

b For integral third kind BC (Sect. 6.5.4) depth-integrated N̊ out
h Œ10�4 md�1� (6.9) is used

Table I.9 Parameters for flow in fractured media (discrete features)

Item Symbol Unit Default Reference(s)

1D fracture type:
Cross-sectional area A m2 1 Table 4.8

2D fracture type:
Thickness B m 10�3 Table 4.8

Darcy flux law:
Conductivity K 10�4 m s�1 1 (4.38), Table 4.5

Hagen-Poiseuille flux law:
Hydraulic aperture b m 10�3 Table 4.9

Manning-Strickler flux law:
Roughness coefficient M m1=3 s�1 30 Tables 4.9 and 4.4

Specific yield "e 1 1 (4.29), Table 4.5
Specific storage coefficient So m�1 10�4 (4.25), Table 4.5
Source(C)/sink(�) Q 10�4 d�1 0 Table 4.5
Density ratio ˛k 10�4 0 (4.63) and (3.265)

(continued)
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Table I.9 (continued)

Item Symbol Unit Default Reference(s)

Constant thermal expansion coefficient:
Expansion coefficient (constant) ˇ 10�4 K�1 0 (4.63) and (3.265)

Variable thermal expansion (optional):
Expansion coefficient (variable) ˇ.T / 10�4 K�1 0 (4.63) and (C.4)

In-transfer coefficient ˚ in
h 10�4 d�1 0 (6.7) and (6.8)

Out-transfer coefficient ˚out
h 10�4 d�1 0 (6.7) and (6.8)

Table I.10 Parameters for unsaturated porous media (analytical parametric models summarized
in Table D.1) (Spline approximations alternatively exist to input experimental sample points for
the parametric curves of saturation s and relative permeability kr , see Sect. D.4 of Appendix D)

Item Symbol Unit Default Reference(s)

Porosity " 1 0:3 (3.219)
Residual saturation sr 1 0:0025 (D.1)
Maximum saturation ss 1 1:0 (D.1)

van Genuchten-Mualem parametric model:
Fitting coefficient ˛ m�1 4:1 (D.3)
Fitting exponent n 1 1:964 (D.3)

Modified van Genuchten parametric model:
Fitting coefficient ˛ m�1 4:1 (D.3)
Fitting exponent n 1 1:964 (D.3)
Fitting exponent m 1 0:491 (D.3)
Fitting exponent ı 1 3:4 (D.32)

Brooks-Corey parametric model:
Fitting coefficient ˛ m�1 4:1 (D.7)
Fitting exponent n 1 1:964 (D.7)
Fitting exponent ı 1 3:4 (D.29)

Haverkamp parametric model:
Fitting coefficient ˛ 1 4:1 (D.11)
Fitting exponent ˇ 1 1:964 (D.11)
Fitting coefficient A 1 3:4 (D.35)
Fitting exponent B 1 0:491 (D.35)

Exponential parametric model:
Sorptive number ˛ m�1 3:4 (D.15) and (D.38)
Air-entry pressure head  a m 0 (D.15) and (D.38)

Linear parametric model:
Fringe pressure head  c m �4:1 (D.19) and (D.41)
Air-entry pressure head  a m 0 (D.19) and (D.41)

Hysteresisa

a Parametric models under hysteretic conditions require a double dataset for drying and wetting
curves
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I.2 Mass Transport

Table I.11 Parameters for 3D, vertical or axisymmetric mass transport of species k at liquid phase
l in porous media

Item Symbol Unit Default Reference(s)

Porosity " 1 0:3 (3.219)

Henry sorption:
Sorption coefficient �k 1 0 (5.65), Table 3.8

Freundlich sorption:

Sorption coefficient b
�

k (mg l�1)1�b
�
k 0 (5.65), Table 3.8

Sorption exponent b
�

k 1 0 (5.65), Table 3.8

Langmuir sorption:
Numerator sorption coefficient k

�

k 1 0 (5.65), Table 3.8

Denominator sorption coefficient k
�

k l(mg)�1 0 (5.65), Table 3.8

Molecular diffusion Dk 10�9 m2 s�1 1 (3.184), Table 3.7
Longitudinal dispersivity ˇL m 5 (3.184), Table 3.7
Transverse dispersivity ˇT m 0:5 (3.184), Table 3.7

Nonlinear (non-Fickian) dispersion:
HC dispersion coefficient =H m2 d g�1 0 (3.272), Table 3.7

Chemical reactions for single-species solute transport:
First-order decay:

Decay rate #k 10�4 s�1 0 (5.73), Table 3.7

Michaelis-Menten:
Maximum growth rate vm 10�4 mg l�1s�1 0 (5.90)
Half-saturation constant Km mg l�1 0 (5.90)

Chemical reactions for multispecies mass transport:
Rate constant kk 10�4 s�1 0 Sect. 5.5
˙ ) Reaction kinetics editor

Source(C)/sink(�) Qk g m�3 d�1 0
In-transfer coefficienta ˚ in

kC m d�1 0 (6.22) and (6.24)
Out-transfer coefficientb ˚out

kC m d�1 0 (6.22) and (6.24)
a For the divergence form ˚

� in
kC is input

b For the divergence form ˚
� out
kC is input
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Table I.12 Parameters for 2D horizontal mass transport of species k at liquid phase l in porous
media (unconfined and confined aquifer)

Item Symbol Unit Default Reference(s)

Confined aquifer:
Aquifer thickness B m 1:0 (3.283)

Porosity " 1 0:3 (3.219)

Henry sorption:
Sorption coefficient �k 1 0 (5.65), Table 3.8

Freundlich sorption:

Sorption coefficient b
�

k (mg l�1)1�b
�
k 0 (5.65), Table 3.8

Sorption exponent b
�

k 1 0 (5.65), Table 3.8

Langmuir sorption:
Numerator sorption coefficient k

�

k 1 0 (5.65), Table 3.8

Denominator sorption coefficient k
�

k l(mg)�1 0 (5.65), Table 3.8

Molecular diffusion Dk 10�9 m2 s�1 1 (3.184), Table 3.10
Longitudinal dispersivity ˇL m 5 (3.184), Table 3.10
Transverse dispersivity ˇT m 0:5 (3.184), Table 3.10

Nonlinear (non-Fickian) dispersion:
HC dispersion coefficient N=H m d g�1 0 (3.272), Table 3.10

Chemical reactions for single-species solute transport:
First-order decay:

Decay rate #k 10�4 s�1 0 (5.73), Table 3.10

Michaelis-Menten:
Maximum growth rate vm 10�4 mg l�1s�1 0 (5.90)
Half-saturation constant Km mg l�1 0 (5.90)

Chemical reactions for multispecies mass transport:
Rate constant kk 10�4 s�1 0 Sect. 5.5
˙ ) Reaction kinetics editor

Source(C)/sink(�) NQk gm�2 d�1 0
In-transfer coefficienta ˚ in

kC m d�1 0 (6.22) and (6.24)
Out-transfer coefficientb ˚out

kC m d�1 0 (6.22) and (6.24)
a For the divergence form ˚

� in
kC is input. For confined conditions or integral third kind BC

(Sect. 6.5.4) N̊ in
kC Œm

2d�1� (6.23) and (6.25) is used
b For the divergence form ˚

� out
kC is input. For confined conditions or integral third kind BC

(Sect. 6.5.4) N̊ out
kC Œm

2d�1� (6.23) and (6.25) is used

Table I.13 Parameters for 3D, vertical or axisymmetric mass transport of species k at solid phase
s in porous media

Item Symbol Unit Default Reference(s)

Solid volume fraction "s 1 0:7 (3.219)

First-order decay:
Decay rate #k 10�4 s�1 0 (5.73), Table 3.7

(continued)
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Table I.13 (continued)

Item Symbol Unit Default Reference(s)

Chemical reactions for multispecies mass transport:
Rate constant kk 10�4 s�1 0 Sect. 5.5
˙ ) Reaction kinetics editor

Source(C)/sink(�) Qk gm�3 d�1 0

Table I.14 Parameters for 2D horizontal mass transport of species k at solid phase s in porous
media (unconfined and confined aquifer)

Item Symbol Unit Default Reference(s)

Confined aquifer:
Aquifer thickness B m 1:0 (3.283)

Solid volume fraction "s 1 0:7 (3.219)

First-order decay:
Decay rate #k 10�4 s�1 0 (5.73), Table 3.7

Chemical reactions for multispecies mass transport:
Rate constant kk 10�4 s�1 0 Sect. 5.5
˙ ) Reaction kinetics editor

Source(C)/sink(�) Qk gm�3 d�1 0

Table I.15 Parameters for mass transport of species k at liquid phase l in fractured media (discrete
features)

Item Symbol Unit Default Reference(s)

1D fracture type:
Cross-sectional area A m2 1 Table 4.8

2D fracture type:
Thickness B m 10�3 Table 4.8

Darcy flux law only:
Porosity " 1 1:0 (4.7)
Henry sorption coefficient �k 1 0 (5.65), Table 3.8

Molecular diffusion Dk 10�9 m2 s�1 1 (4.67), Table 4.6
Longitudinal dispersivity ˇL m 5 (4.68), Table 4.6
Transverse dispersivity ˇT m 0:5 (4.68), Table 4.6

Chemical reactions for single-species solute transport:
Decay rate #k 10�4 s�1 0 (4.66), Table 4.6

Chemical reactions for multispecies mass transport:
Rate constant kk 10�4 s�1 0 Sect. 5.5
˙ ) Reaction kinetics editor

Source(C)/sink(�) Qk gm�3 d�1 0
In-transfer coefficienta ˚ in

kC m d�1 0 (6.22) and (6.24)
Out-transfer coefficientb ˚out

kC m d�1 0 (6.22) and (6.24)
a For the divergence form ˚

� in
kC is input

b For the divergence form ˚
� out
kC is input
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I.3 Heat Transport

Table I.16 Parameters for 3D, vertical or axisymmetric heat transport in porous media

Item Symbol Unit Default Reference(s)

Porosity " 1 0:3 (3.219)
Volumetric heat capacity of fluid �c 106 J m�3 K�1 4:2a (3.208), Table 3.7
Volumetric heat capacity of solid �scs 106 J m�3 K�1 2:52b (3.208), Table 3.7
Heat conductivity of fluid � J m�1 s�1 K�1 0:65 (3.172), Table 3.7
Heat conductivity of solid �s J m�1 s�1 K�1 3 (3.172), Table 3.7

3D problems only:
Anisotropy factor Œ�s

zz=�
s
xx;yy � ��

aniso 1 1 (7.26)

Longitudinal dispersivity ˇL m 5 (3.238), Table 3.7
Transverse dispersivity ˇT m 0:5 (3.238), Table 3.7
Source(C)/sink(�) of fluid �H? J m�3 d�1 0 (13.3), Table 3.7
Source(C)/sink(�) of solid �sH?

s J m�3 d�1 0 (13.3), Table 3.7
In-transfer coefficientc ˚ in

T J m�2 d�1 K�1 0 (6.40) and (6.42)
Out-transfer coefficientd ˚out

T J m�2 d�1 K�1 0 (6.40) and (6.42)
a � D 1;000 kg m�3, c D 4;200 J kg�1 K�1
b �s D 2;650 kg m�3, cs D 950 J kg�1 K�1
c For the divergence form ˚

� in
T is input

d For the divergence form ˚
� out
T is input

Table I.17 Parameters for 2D horizontal heat transport in porous media (unconfined and confined
aquifer)

Item Symbol Unit Default Reference(s)

Confined aquifer:
Aquifer thickness B m 1:0 (3.283)

Porosity " 1 0:3 (3.219)
Volumetric heat capacity of fluid �c 106 J m�3 K�1 4:2a (3.208), Table 3.10
Volumetric heat capacity of solid �scs 106 J m�3 K�1 2:52b (3.208), Table 3.10
Heat conductivity of fluid � J m�1 s�1 K�1 0:65 (3.172), Table 3.10
Heat conductivity of solid �s J m�1 s�1 K�1 3 (3.172), Table 3.10
Longitudinal dispersivity ˇL m 5 (3.238), Table 3.10
Transverse dispersivity ˇT m 0:5 (3.238), Table 3.10
Source(C)/sink(�) of fluid B�H? J m�2 d�1 0 Table 3.10
Source(C)/sink(�) of solid B�sH?

s J m�2 d�1 0 Table 3.10
In-transfer coefficientc ˚ in

T J m�2 d�1 K�1 0 (6.40) and (6.42)
Out-transfer coefficientd ˚out

T J m�2 d�1 K�1 0 (6.40) and (6.42)
a � D 1;000 kg m�3, c D 4;200 J kg�1 K�1
b �s D 2;650 kg m�3, cs D 950 J kg�1 K�1
c For the divergence form ˚

� in
T is input. For confined conditions or integral third kind BC

(Sect. 6.5.4) depth-integrated N̊ in
T [J m�1 d�1 K�1] (6.41) and (6.43) is used

d For the divergence form ˚
� out
T is input. For confined conditions or integral third kind BC

(Sect. 6.5.4) depth-integrated N̊ out
T [J m�1 d�1 K�1] (6.41) and (6.43) is used



I.3 Heat Transport 901

Table I.18 Parameters for heat transport in fractured media (discrete features)

Item Symbol Unit Default Reference(s)

1D fracture type:
Cross-sectional area A m2 1 Table 4.8

2D fracture type:
Thickness B m 10�3 Table 4.8

Darcy flux law only:
Porosity " 1 1:0 (4.7)

Volumetric heat capacity of fluid �c 106 J m�3 K�1 4:2a (4.75), Table 4.7

Darcy flux law only:
Volumetric heat capacity of solid �scs 106 J m�3 K�1 2:52b (4.75), Table 4.7

Heat conductivity of fluid � J m�1 s�1 K�1 0:65 (4.76), Table 4.7

Darcy flux law only:
Heat conductivity of solid �s J m�1 s�1 K�1 3 (4.76), Table 4.7

Longitudinal dispersivity ˇL m 5 (4.68), Table 4.7
Transverse dispersivity ˇT m 0:5 (4.68), Table 4.7
Source(C)/sink(�) of fluid �H J m�3 d�1 0 (4.74), Table 4.7

Darcy flux law only:
Source(C)/sink(�) of solid �sHs J m�3 d�1 0 (4.74), Table 4.7

In-transfer coefficientc ˚ in
T J m�2 d�1 K�1 0 (6.40) and (6.42)

Out-transfer coefficientd ˚out
T J m�2 d�1 K�1 0 (6.40) and (6.42)

a � D 1;000 kg m�3, c D 4;200 J kg�1 K�1
b �s D 2;650 kg m�3, cs D 950 J kg�1 K�1
c For the divergence form ˚

� in
T is input

d For the divergence form ˚
� out
T is input



Appendix J
Elements of PVST for Solving the Mixed
ψ � s�Based Form of Richards’ Equation

J.1 Jacobian J for the Pressure Head ψ as Primary
Variable

The derivative of the residual (10.64) with respect to the pressure head ψ�nC1 at
the new time plane n C 1 and the current iterate � yields the following expression
.i; j; l D 1; : : : ; NP/:
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where the matrices O, B, D and the RHS-vector F are defined in (10.61). The
partial Jacobians in (J.1) are obtained as follows
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with

C �
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and
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(J.8)

The derivativesC �
j;nC1 andG�

j;nC1 are given functions which can be evaluated either
analytically from the parametric models summarized in Appendix D or numerically
from chord slope approximations given in Sect. J.3 for the known variables s and
 at the iterate � , the global node j and the time plane n C 1. Here, C�

nC1 is the
moisture capacity function known from the standard unsaturated flow modeling.

J.2 Jacobian J s for the Saturation s as Primary Variable

The derivative of the residual (10.64) with respect to the saturation s�nC1 at the
new time plane n C 1 and the current iterate � yields the following expression
.i; j; l D 1; : : : ; NP/:
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where the matrices O, B, D and the RHS-vector F are defined in (10.61). The
partial Jacobians in (J.9) are obtained as follows
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with the inverse moisture capacity
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which can be evaluated either analytically from the parametric models summarized
in Appendix D or numerically by using chord slope approximations given in
Sect. J.3. Notice, it is necessary to use the pressure head  instead of the hydraulic
head h to evaluate the moisture capacity functions C �

j;nC1 and C�1�
j;nC1. Actually,

C �
j;nC1 can also be expressed by h since @s=@ D @s=@h, but the inverse moisture

capacity C�1�
j;nC1 is not simply invertible for h because @ =@s D @h=@s � @z=@s.

It is important to note that in the derivation of the residual R with respect
to the saturation s no assumptions are implied for spatial derivations of inherent
parameters. Thus, (J.9) is also valid for inhomogeneous porous media. This is an
essential difference to transformations for developing the common s�form of the
Richards’ equation as discussed in Sect. 10.3 or the Kirchhoff transformation as
introduced in Sect. 10.4.

J.3 Chord Slope Approximations of Saturation Derivatives

In contrast to analytical derivatives in form of the moisture capacity C�
nC1 (J.7)

and its inverseC�1�
nC1 (J.15) chord slope approximations can be useful and effective.

Within the GLS predictor-corrector one-step Newton scheme the derivative terms
are evaluated by using the predicted solutions ψpnC1 and spnC1 for the current
time plane n C 1. For instance, a simple first-order accurate finite difference
approximation ofC�

nC1 would lead to

C�
i;nC1 D

s�i;nC1 � si;n
 �i;nC1 �  i;n

(J.16)

For the GLS predictor-corrector one-step Newton technique only one iteration per
time step is employed. Thus, the iterates indicated by the superscript � can be
replaced by the predictors denoted by the superscript P . This yields

C
p
i;nC1 D

s
p
i;nC1 � si;n
 
p
i;nC1 �  i;n

(J.17)

It can be easily seen that this derivative is nothing more than the quotient of the
acceleration vectors for the saturation and the pressure head

C
p
i;nC1 D

Psi;n
P i;n

(J.18)
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which represents a chord slope approximation of the saturation derivative applied to
the first-order accurate BE scheme.

A corresponding second-order accurate chord slope approximation suited for the
TR scheme can be similarly derived [141]:

C
p
i;nC1 D


t2n�1.s
p
i;nC1 � si;n/C
t2n.si;n � si;n�1/


t2n�1. 
p
i;nC1 �  i;n/C
t2n. i;n �  i;n�1/

(J.19)

The chord slope approximations for the inverse moisture capacity C�1p
i;nC1 yield

equivalent expressions.
Note here that limitations exist for the chord slope approximations if the

denominator of (J.18) and (J.19) tends to zero. Practically, below an absolute
minimum difference tolerance (typically we use 10�18 for the pressure head and
10�8 for the saturation) the evaluation of the derivative becomes an analytical
(exact) procedure.



Appendix K
Integral Functions of the Frolkovič-Knabner
Algorithm (FKA)

K.1 Transformations in Local Coordinates

The FKA computations are performed on generalized (local) coordinates η (8.68).
The mapping from the local coordinates η to the global ones x is given by (8.114)
and requires the transformation Jacobian Je , (8.115)–(8.117), for an element e.
Using this transformation we have

r.�;�;�/ D

0

B
@

@
@�

@
@�

@
@�

1

C
A D Je � r; r D .Je/�1 � r.�;�;�/ (K.1)

for the derivatives and

e.�;�;�/ D
0

@
e�
e�
e�

1

A D Je � e; e D .Je/�1 � e.�;�;�/ (K.2)

for the gravitational unit vector (3.261). Using these relationships the equivalent
formulation of the Darcy velocity q D �krKf� � .rhC�e/ in local coordinates is
given by

q D �krKf� �
�
.Je/�1 � .r.�;�;�/hC �Je � e/

�
(K.3)

or

q D �krKf� �
�
.Je/�1 � .r.�;�;�/hC �e.�;�;�//

�
(K.4)
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K.2 FKA Formulation

Introducing the following integral functions [177, 312] for each element e

He
� D He

� .�; �; �/ D
Z �

0

�.�; �; �/e�.�; �; �/d�

He
� D He

� .�; �; �/ D
Z �

0

�.�; �; �/e�.�; �; �/d�

He
� D He

� .�; �; �/ D
Z �

0

�.�; �; �/e�.�; �; �/d�

(K.5)

and since
0

B
B
B
@

@He
�

@�
@He

�

@�

@He
�

@�

1

C
C
C
A
D �e.�;�;�/ (K.6)

we can write the Darcy velocity (K.4) in an equivalent form on element level

q D �krKf� �
�
.Je/�1 �

0

B
@

@
@�
.hCHe

� /

@
@�
.hCHe

� /

@
@�
.hCHe

� /

1

C
A
�

(K.7)

The integral functions He
� , He

� , He
� allow us to obtain the same spatial variability

for both the h�term and the ��term.
The consistency for (K.7) in the definition of (11.60) can be proved. Assuming

the gravity acts in the z�direction, i.e., �.x; y; z/ D �.x0; y0; z/, we can write

He
� D

Z �

0

�.x0; y0; z.�; �; �//e�d� D ez

Z z.�;�;�/

z0

�.x0; y0; �/d� (K.8)

where .x0; y0; z0/ D .x.0; 0; 0/; y.0; 0; 0/; z.0; 0; 0// and similarly forHe
� and He

� .
In the FEM the functions h, He

� , He
� , He

� are interpolated by their nodal basis
functions:

h D
NBNX

JD1
N e
J .�; �; �/ h

e
J

He
� D

NBNX

JD1
N e
J .�; �; �/H

e
�J
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He
� D

NBNX

JD1
N e
J .�; �; �/H

e
�J

He
� D

NBNX

JD1
N e
J .�; �; �/H

e
�J (K.9)

and we obtain the velocity (K.7) in the discretized formulation

q D �krKf� �
�
.Je/�1 �

NBNX

J

0

B
@

.heJ CHe
�J /

@
@�
N e
J .�; �; �/

.heJ CHe
�J /

@
@�
N e
J .�; �; �/

.heJ CHe
�J /

@
@�
N e
J .�; �; �/

1

C
A
�

(K.10)

which represents a fully consistent approximation of the Darcy velocities. We solve
(K.10) for given hydraulic heads h and the values of the He

� ;H
e
� ;H

e
� �functions

at the nodes J . The nodal quantities He
�J ;H

e
�J ;H

e
�J are dependent on the finite

element types and will be evaluated next for linear elements in two and three
dimensions. In doing this, the buoyancy coefficient � in the gravity term is
interpolated according to

� D
NBNX

JD1
N e
J .�; �; �/ �

e
J (K.11)

where �eJ are the buoyancy coefficient values at node J . Using � from (11.2) the
finite element expansion of the buoyancy coefficient reads

� D
X

k

˛k
Cks�Ck0 .

X

J

N e
JC

e
kJ � Ck0/ � ˇ.T e/.

X

J

N e
J T

e
J � T0/ (K.12)

or

�eJ D
X

k

˛k
Cks�Ck0 .C

e
kJ � Ck0/� ˇ.T e/.T eJ � T0/ (K.13)

in relation to the expansion (K.11)

K.3 The Nodal QuantitiesHe
�J
;H e

�J
;H e

�J
of the Integral

Functions

K.3.1 2D Linear Triangular Element

The linear triangle is described in Sect. G.2 of Appendix G, where its shape
functions and its local derivatives are given in Table G.2a. Its Jacobian Je (H.14)
appears independent of the local coordinates .�; �/ and the gravitational unit vector
e.�;�/ in the local coordinates (K.2) is also constant. Accordingly, we can write
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He
� D

Z �

0

�.�; �/e�.�; �/d� D e�
Z �

0

�.�; �/d�

D e�

Z �

0

� 3X

JD1
N e
J .�; �/�

e
J

�
d� D

D e�

Z �

0

�
.1 � � � �/�e1 C ��e2 C ��e3


d�

D e�
�
.� � �2

2
� ��/�e1 C �2

2
�e2 C ���e3



(K.14)

and similarly forHe
� . From the integrals we find the nodal values forHe

� andHe
� as

He
� .0; 0/ D He

�1 D 0
He
� .1; 0/ D He

�2 D 1
2
e�.�

e
1 C �e2/

He
� .0; 1/ D He

�3 D 0
(K.15)

He
� .0; 0/ D He

�1 D 0
He
� .1; 0/ D He

�2 D 0
He
� .0; 1/ D He

�3 D 1
2
e�.�

e
1 C �e3/

(K.16)

Now we can express the gravity term (K.6) in local coordinates as

�e.�;�/ D
0

@

@He
�

@�

@He
�

@�

1

A

D
 @Ne

1

@�
He
�1 C @Ne

2

@�
He
�2 C @Ne

3

@�
He
�3

@Ne
1

@�
He
�1 C @Ne

2

@�
He
�2 C @Ne

3

@�
He
�3

!

D 1
2

 
e�.�

e
1 C �e2/

e�.�
e
1 C �e3/

!

(K.17)

representing a consistent approximation in which the density is appropriately
averaged in the gravitational direction.

K.3.2 2D Linear Quadrilateral Element

The linear quadrilateral is described in Sect. G.2 of Appendix G, where its shape
functions and its local derivatives are given in Table G.2b. While for this element
the Jacobian Je (H.49) is in general space-dependent, the gravitational unit vector
e.�;�/ in local coordinates (K.2) takes the special form

�
e�
e�

	

D
�
e�.�/

e�.�/

	

(K.18)
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Similarly to the above triangular element, we can compute the integral functions
He
� , He

� at the corner nodes J for the linear quadrilateral element as

He
� .�1;�1/ D He

�1 D � 14e�.�1/.3�e1 C �e2/
He
� .1;�1/ D He

�2 D 1
4
e�.�1/.�e1 C 3�e2/

He
� .1; 1/ D He

�3 D 1
4
e�.1/.3�

e
3 C �e4/

He
� .�1; 1/ D He

�4 D � 14e�.1/.�e3 C 3�e4/
(K.19)

He
� .�1;�1/ D He

�1 D � 14e�.�1/.3�e1 C �e4/
He
� .1;�1/ D He

�2 D � 14e�.1/.3�e2 C �e3/
He
� .1; 1/ D He

�3 D 1
4
e�.1/.�

e
2 C 3�e3/

He
� .�1; 1/ D He

�4 D 1
4
e�.�1/.�e1 C 3�e4/

(K.20)

The gravity term (K.6) written in local coordinates yields

�e.�;�/ D
0

@

@He
�

@�
@He

�

@�

1

A

D
 @Ne

1

@�
He
�1 C @Ne

2

@�
He
�2 C @Ne

3

@�
He
�3 C @Ne

4

@�
He
�4

@Ne
1

@�
He
�1 C @Ne

2

@�
He
�2 C @Ne

3

@�
He
�3 C @Ne

4

@�
He
�4

!

D 1
4

�
e�.�1/.1� �/.�e1 C �e2/C e�.1/.1C �/.�e3 C �e4/
e�.�1/.1 � �/.�e1 C �e4/C e�.1/.1C �/.�e2 C �e3/

	

(K.21)

For the linear quadrilateral element the consistent approximation (K.21) can be
recognized as the consistent formulation previously introduced by Voss [550], where
the gravity term is averaged in a directional manner, so for instance

�e.�D1;�D1/ D 1
2

�
e�.1/.�

e
3 C �e4/

e�.1/.�
e
2 C �e3/

	

(K.22)

K.3.3 3D Linear Pentahedral (Triangular Prismatic) Element

The linear pentahedral (triangular prismatic) element is described in Sect. G.3
of Appendix G, where its shape functions and its local derivatives are given in
Table G.3b. Since the Jacobian Je (H.67) is space-dependent, the gravitational unit
vector e.�;�;�/ in local coordinates (K.2) is

0

@
e�
e�
e�

1

A D
0

@
e�.�/

e�.�/

e�.�; �/

1

A (K.23)
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The integral functionsHe
� , He

� , He
� at the corner nodes J for the linear pentahedral

element are then

He
� .0; 0; 1/ D He

�1 D 0
He
� .1; 0; 1/ D He

�2 D 1
2
e�.1/.�

e
1 C �e2/

He
� .0; 1; 1/ D He

�3 D 0
He
� .0; 0;�1/ D He

�4 D 0
He
� .1; 0;�1/ D He

�5 D 1
2
e�.�1/.�e5 C �e6/

He
� .0; 1;�1/ D He

�6 D 0

(K.24)

He
� .0; 0; 1/ D He

�1 D 0

He
� .1; 0; 1/ D He

�2 D 0

He
� .0; 1; 1/ D He

�3 D 1
2
e�.1/.�

e
1 C �e3/

He
� .0; 0;�1/ D He

�4 D 0

He
� .1; 0;�1/ D He

�5 D 0

He
� .0; 1;�1/ D He

�6 D 1
2
e�.�1/.�e4 C �e6/

(K.25)

He
� .0; 0; 1/ D He

�1 D 1
4
e�.0; 0/.3�

e
1 C �e4/

He
� .1; 0; 1/ D He

�2 D 1
4
e�.1; 0/.3�

e
2 C �e5/

He
� .0; 1; 1/ D He

�3 D 1
4
e�.0; 1/.3�

e
3 C �e6/

He
� .0; 0;�1/ D He

�4 D � 14e�.0; 0/.�e1 C 3�e4/
He
� .1; 0;�1/ D He

�5 D � 14e�.1; 0/.�e2 C 3�e5/
He
� .0; 1;�1/ D He

�6 D � 14e�.0; 1/.�e3 C 3�e6/

(K.26)

The gravity term (K.6) written in local coordinates gives

�e.�;�/ D

0

B
B
B
@

@He
�

@�

@He
�

@�

@He
�

@�

1

C
C
C
A

D

0

B
B
@

@Ne
1

@�
He
�1 C @Ne

2

@�
He
�2 C @Ne

3

@�
He
�3 C @Ne

4

@�
He
�4 C @Ne

5

@�
He
�5 C @Ne

6

@�
He
�6

@Ne
1

@�
He
�1 C @Ne

2

@�
He
�2 C @Ne

3

@�
He
�3 C @Ne

4

@�
He
�4 C @Ne

5

@�
He
�5 C @Ne

6

@�
He
�6

@Ne
1

@�
He
�1 C @Ne

2

@�
He
�2 C @Ne

3

@�
He
�3 C @Ne

4

@�
He
�4 C @Ne

5

@�
He
�5 C @Ne

6

@�
He
�6

1

C
C
A

D 1
4

0

@
e�.1/.1 C �/.�e1 C �e2/C e� .�1/.1 � �/.�e5 C �e6/

e�.1/.1 C �/.�e1 C �e3/C e�.�1/.1� �/.�e4 C �e6/

2Œe�.0; 0/.1� � � �/.�e1 C �e4/C e�.1; 0/�.�
e
2 C �e5/C e�.0; 1/�.�

e
3 C �e6/�

1

A

(K.27)
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K.3.4 3D Linear Hexahedral (Brick) Element

The linear hexahedral (brick) element is described in Sect. G.3 of Appendix G,
where its shape functions and its local derivatives are given in Table G.3c. The
Jacobian Je (H.57) is space-dependent and the gravitational unit vector e.�;�;�/ in
local coordinates (K.2) reads

0

@
e�

e�
e�

1

A D
0

@
e�.�; �/

e�.�; �/

e�.�; �/

1

A (K.28)

The integral functionsHe
� , He

� , He
� at the corner nodes J for the linear hexahedral

element can be derived as

He
� .�1;�1; 1/ D He

�1 D � 14e�.�1; 1/.3�e1 C �e2/
He
� .1;�1; 1/ D He

�2 D 1
4
e�.�1; 1/.�e1 C 3�e2/

He
� .1; 1; 1/ D He

�3 D 1
4
e�.1; 1/.3�

e
3 C �e4/

He
� .�1; 1; 1/ D He

�4 D � 14e�.1; 1/.�e3 C 3�e4/
He
� .�1;�1;�1/ D He

�5 D � 14e�.�1;�1/.3�e5 C �e6/
He
� .1;�1;�1/ D He

�6 D 1
4
e�.�1;�1/.�e5 C 3�e6/

He
� .1; 1;�1/ D He

�7 D 1
4
e�.1;�1/.3�e7 C �e8/

He
� .�1; 1;�1/ D He

�8 D � 14e�.1;�1/.�e7 C 3�e8/

(K.29)

He
� .�1;�1; 1/ D He

�1 D � 14e�.�1; 1/.3�e1 C �e4/
He
� .1;�1; 1/ D He

�2 D � 14e�.1; 1/.3�e2 C �e3/
He
� .1; 1; 1/ D He

�3 D 1
4
e�.1; 1/.�

e
2 C 3�e3/

He
� .�1; 1; 1/ D He

�4 D 1
4
e�.�1; 1/.�e1 C 3�e4/

He
� .�1;�1;�1/ D He

�5 D � 14e�.�1;�1/.3�e5 C �e8/
He
� .1;�1;�1/ D He

�6 D � 14e�.1;�1/.3�e6 C �e7/
He
� .1; 1;�1/ D He

�7 D 1
4
e�.1;�1/.�e6 C 3�e7/

He
� .�1; 1;�1/ D He

�8 D 1
4
e�.�1;�1/.�e5 C 3�e8/

(K.30)

He
� .�1;�1; 1/ D He

�1 D 1
4
e�.�1;�1/.3�e1 C �e5/

He
� .1;�1; 1/ D He

�2 D 1
4
e�.1;�1/.3�e2 C �e6/

He
� .1; 1; 1/ D He

�3 D 1
4
e�.1; 1/.3�

e
3 C �e7/

He
� .�1; 1; 1/ D He

�4 D 1
4
e�.�1; 1/.3�e4 C �e8/

He
� .�1;�1;�1/ D He

�5 D � 14e�.�1;�1/.�e1 C 3�e5/
He
� .1;�1;�1/ D He

�6 D � 14e�.1;�1/.�e2 C 3�e6/
He
� .1; 1;�1/ D He

�7 D � 14e�.1; 1/.�e3 C 3�e7/
He
� .�1; 1;�1/ D He

�8 D � 14e�.�1; 1/.�e4 C 3�e8/

(K.31)
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For the hexahedral (brick) element the consistent formulation of the gravity term in
form of the integral functions, (K.29)–(K.31), is equivalent to the formulation given
by Leijnse [336]. This should be exemplified for the �e��component of the gravity
term:

�e� DP8
JD1

@Ne
J

@�
He
�J D 1

8

�
e�.�1; 1/.1� �/.1C �/.�e1 C �e2/C
e�.1; 1/.1C �/.1C �/.�e3 C �e4/C
e�.�1;�1/.1 � �/.1 � �/.�e5 C �e6/C
e�.1;�1/.1C �/.1 � �/.�e7 C �e8/



(K.32)

K.3.5 3D Linear Pyramidal Element

The linear pyramidal element is described in Sect. G.3 of Appendix G, where
its shape functions and its local derivatives are given in Table G.3d. Since the
Jacobian Je (H.78) is space-dependent, the gravitational unit vector e.�;�;�/ in local
coordinates (K.2) is

0

@
e�
e�
e�

1

A D
0

@
e�.�; �/

e�.�; �/

e�.�; �; �/

1

A (K.33)

The integral functions He
� , He

� , He
� at the corner nodes J for the linear pyramidal

element are then

He
� .�1;�1; 0/ D He

�1 D � 14e�.�1; 0/.3�e1 C �e2/
He
� .1;�1; 0/ D He

�2 D 1
4
e�.�1; 0/.�e1 C 3�e2/

He
� .1; 1; 0/ D He

�3 D 1
4
e�.1; 0/.3�

e
3 C �e4/

He
� .�1; 1; 0/ D He

�4 D � 14e�.1; 0/.�e3 C 3�e4/
He
� .0; 0; 1/ D He

�5 D 0

(K.34)

He
� .�1;�1; 0/ D He

�1 D � 14e�.�1; 0/.3�e1 C �e4/
He
� .1;�1; 0/ D He

�2 D � 14e�.1; 0/.3�e2 C �e3/
He
� .1; 1; 0/ D He

�3 D 1
4
e�.1; 0/.�

e
2 C 3�e3/

He
� .�1; 1; 0/ D He

�4 D 1
4
e�.�1; 0/.�e1 C 3�e4/

He
� .0; 0; 1/ D He

�5 D 0

(K.35)

He
� .�1;�1; 0/ D He

�1 D 1
4
e�.�1;�1; 0/.�e1 � �e2 C �e3 � �e4/

He
� .1;�1; 0/ D He

�2 D 1
4
e�.1;�1; 0/.��e1 C �e2 � �e3 C �e4/

He
� .1; 1; 0/ D He
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Then, the gravity term (K.6) written in local coordinates reads
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Appendix L
Formulation of Hydraulic Head BC’s
for Variable-Density Problems

L.1 Problem Description

In formulating flow BC’s the prescription of a hydraulic head (first kind Dirichlet-
type or third kind Cauchy-type) BC at a given boundary portion is a common task
(Sect. 6.3.1). However, in modeling variable-density problems such as saltwater
intrusion or geothermal processes these hydraulic head BC’s have to consider the
specific definition of the hydraulic head h (3.260), viz.,

h D p

�0g
C z (L.1)

which must be appropriately related to a reference fluid density �0 (cf. Sect. 3.8.6.1).
A typical example is the saltwater intrusion from a sea into a coastal aquifer as
schematized in Fig. L.1, where at the sea side the boundary is imposed by a given
hydraulic head distribution h.z/. On the other hand, at the sea the hydraulic head
can be measured in form of a piezometric head hs which is related to the actual fluid
density of saltwater �s , while the reference fluid density �0 typically refers to the
freshwater.

L.2 Reference Potential from Measured Heads

A measurement of a piezometric head is normally related to the actual fluid density.
It can be expressed for saltwater by

hs D p

�sg
C z (L.2)

where �s is the fluid density at known salinity Cs and temperature Ts: �s D
�.Cs; Ts/. (Note that the salinity Cs concerns a single-species concentration, where
for the sake of simplicity we can drop the species index k.) It is obvious that

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5,
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freshwater 0
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p – s gz=
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z

h f z s=

Fig. L.1 Saltwater intrusion in a coastal aquifer with related BC’s

the piezometric head hs cannot be directly used as a BC. Instead, it has to be
transformed to the hydraulic head h (L.1), which is related to the reference fluid
density �0. This can be simply done under considering the following relationships:

Expanding (L.2) by �0

hs D p

�0g

�0

�s
C z (L.3)

we obtain if introducing (L.1)

hs D �0

�s
hC

�
1 � �0

�s

�
z (L.4)

and finally

h D �s

�0
hs �

��s � �0
�0

�
z (L.5)

For the fluid density relation we find from (3.265), (3.278) or (11.2)

�s � �0
�0

D ˛ � ˇ.Ts/.Ts � T0/ (L.6)

where ˛ is the specific solutal expansion coefficient (density ratio) defined by
(3.275) and ˇ.Ts/ is the thermal expansion coefficient defined in (11.2). Inserting
(L.6) into (L.5) it results

h D .1C ˛/hs � ˛zC ˇ.Ts/.Ts � T0/.z � hs/ (L.7)

The relation (L.7) is to be used to calculate the (freshwater) hydraulic heads h from
(saltwater) piezometric heads hs measured at a known saltwater density �s (at known
salinity Cs and temperature Ts). Under isothermal conditions (L.7) reduces to

h D .1C ˛/hs � ˛z (L.8)
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L.3 Hydrostatic Condition

Let us consider the pressure distribution in the vertical z�direction of gravity g
under hydrostatic conditions. We assume that the density � D �.z/ is varying
linearly in the depth as shown in Fig. L.2:

� D �1 C .�1 � �2/ z
H
; �H � z � 0 (L.9)

The fluid is hydrostatic for the vertical problem if

dp

d z
D ��g

p.z/ D �g
Z z

z1

�.�/d�
(L.10)

which yields with (L.9)

p D p1 � g
�
�1zC �1��2

2H
z2
�

(L.11)

The hydraulic head h (L.1) related to the reference density �0 is then

h D h1 �
�
�1��0
�0

�
z � 1

2H

�
�1��2
�0

�
z2 (L.12)

At boundaries where hydrostatic conditions can be imposed two cases are com-
monly of interest as illustrated in Fig. L.3:

1. A constant saltwater density in the depth and
2. A linear increase of density as typical in a transition zone.

From (L.12) we obtain with �1 D �2 D �s for the case of a constant saltwater
density (case 1), written for the sake of simplicity under isothermal conditions

h D hs � ˛z (L.13)

For the case 2 with �1 D �0, �2 D �s , we get from (L.12) for a linear saltwater
density (case 2)

h D h0 C ˛
2H

z2 (L.14)

The hydraulic head at the depth z D �H is then h D hs C ˛H for the constant
density and h D h0 C ˛

2
H for the linear density relationship. Corresponding

expressions can be derived for nonisothermal conditions if using (L.6), viz.,

h D hs C Œ˛ � ˇ.Ts/.Ts � T0/�H (L.15)
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for the constant density relationship and

h D h0 C 1
2
Œ˛ � ˇ.Ts/.Ts � T0/�H (L.16)

for the linear density relationship.
Based on these relations we are able to specify head conditions along boundaries

with a given fluid density profile. Let us consider the example as shown in Fig. L.4
where a transition zone at a vertical boundary should be modeled for a saltwater
intrusion process. The fluid density � D �.z/ varies linearly through the transition
zone with a thickness of ı. At such a boundary a hydraulic head condition h D h.z/



L.3 Hydrostatic Condition 923
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Fig. L.4 Boundary with a predefined saltwater-freshwater transition zone

has to be imposed. From (L.14) to (L.13) we obtain the following sample values for
the hydraulic head profile under isothermal conditions as illustrated in Fig. L.4:

h1 D h0 C ˛
2
ı

h2 D h1 C ˛.H � ı/ D h0 C ˛
�
H � ı

2

� (L.17)

where h0 represents the hydraulic head at the boundary which is related to the
freshwater density �0.



Appendix M
BHE Modeling: Numerical and Analytical
Approaches

M.1 Types of BHE

In this section, different types of BHE with their individual pipe and grout
components are described. They form highly slender cylindrical boreholes. The
BHE systems are represented by 1D schematizations, where the pipe and grout
components have a reduced spatial dimension. They imply that the variation of the
temperature is along the vertical axis. The heat fluxes normal to the contact surfaces
for the 1D pipe and grout components are modeled by heat transfer relations.

M.1.1 Double U-Shape Pipe (2U)

The double U-shape pipe (2U) exchanger is a cylindrical borehole consisting of
two inner pipes forming a U-shape and filled with a grout material, cf. Fig. 13.1.
Basically, the grout can be considered as a homogeneous impervious material and
could be schematized by only one component so as proposed in [6–8]. However, to
improve the approximation of the inner pipe-to-grout heat transfer we introduce a
larger number of grout components in the extended TRCM, which correlates with
the number of pipes of BHE [29]. This has some advantages: (1) A better accuracy
results in modeling the transient behavior of U-shape pipe exchangers. (2) It allows
a much higher flexibility in configuration of U-shape pipe systems, particularly, the
U-shape pipes can be arranged crosswise or side by side. (3) Furthermore, the flow
through double U-shape pipe configurations can be parallel or serial. In total, we
schematize a 2U exchanger by eight components (Fig. M.1):

• Two pipes-in (denoted as i1 and i2)
• Two pipes-out (denoted as o1 and o2)
• Grout material, which is subdivided into four zones (denoted as g1, g2, g3, g4)

H.-J.G. Diersch, FEFLOW, DOI 10.1007/978-3-642-38739-5,
© Springer-Verlag Berlin Heidelberg 2014
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Fig. M.1 Inner pipe-grout heat flux resistance relationships of a 2U borehole consisting of four
pipe components and four grout zones

The four pipe components i1, i2, o1 and o2 transfer heat across their cross-sectional
areas and exchange fluxes across their surface areas. The radial heat transfer from
the pipes is directed to the grout zones gi .i D 1; : : : ; 4/. The grout zones gi .i D
1; : : : ; 4/ exchange heat directly to the surrounding soil (the porous matrix with the
filled fluid in the void space) denoted as s and to other contacted grout zones too.
It can be seen that, as physically occurring, the heat coupling only occurs via the
grout zones gi .i D 1; : : : ; 4/, which work as intermediate media that transfer heat
from one pipe to another and vice versa. Only the grout zones exchange heat with
the surrounding soil s because there is no direct thermal contact between the pipes
i1, i2, o1 and o2 with the soil s.

The 2U system involves several material and geometric parameters, which are
either given by the manufacturer of the heating system or determined experimen-
tally. These relations are used to express the overall thermal resistance between
the 2U borehole and the soil. The usual practice is to lump the effects of the 2U
components into effective heat transfer coefficients representing the reciprocal of the
sum of the thermal resistances between the different components (cf. Appendix E).
The inner pipe-grout heat flux resistance relationships are shown in Fig. M.1.

M.1.2 Single U-Shape Pipe (1U)

The single U-shape pipe (1U) exchanger can be easily degenerated from a 2U
configuration when dropping the second U-tube. A 1U configuration only consists
of four components (Fig. M.2):

• One pipe-in (denoted as i1)
• One pipe-out (denoted as o1)
• Grout material, which is subdivided into two zones (denoted as g1, g2)
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Fig. M.2 Inner pipe-grout heat flux resistance relationships of a 1U borehole consisting of two
pipe components and two grout zones

Similar to the 2U exchanger the U-tube of the 1U configuration transfers heat in
radial direction to the grout zones gi .i D 1; : : : ; 2/, while the grout material zones
exchange heat directly to the surrounding soil s and to the adjacent grout zone.
The corresponding inner pipe-grout heat flux resistance relationships are shown in
Fig. M.2.

M.1.3 Coaxial Pipe with Annular (CXA) and Centered
(CXC) Inlet

These types of BHE consist only of three components (Figs. M.3 and M.4):

• One pipe-in (denoted as i1)
• One pipe-out (denoted as o1)
• Grout material considered in one zone (denoted as g1)

Such coaxial BHE systems represent pipe-in-pipe installations, where two principal
cases occur. In the case of the CXA exchanger the pipe-out is configured inside
the pipe-in as shown in Fig. M.3 forming an annular inlet and a centered outlet.
Accordingly, the heat exchange to the grout material g1, which is in contact to the
surrounding soil s, is only performed via the pipe-in i1. On the other hand, the pipe-
in i1 exchanges heat with the pipe-out o1 component. The coaxial pipes can also
be installed with interchanged inlet and outlet. This represents the CXC exchanger,
where the pipe-in is configured inside the pipe-out as shown in Fig. M.4 forming a
centered inlet and an annular outlet. Here, the heat exchange to the grout material
g1 is only performed via the pipe-out o1.
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M.2 Thermal Resistances

Thermal resistance is a measure of material’s ability to resist heat transfer through
its surface and contact zone (cf. Appendix E). Thermal resistances are determined
from the physical, material and geometric engineering parameters of the different
BHE configurations as shown in Fig. M.1 for the 2U exchanger, in Fig. M.2 for the
1U exchanger, in Fig. M.3 for the CXA exchanger and in Fig. M.4 for the CXC
exchanger. As indicated the interaction between the different components of the
pipe exists between the pipe-in and grout zone(s), the pipe-out and grout zone(s)
as well as the pipe-in and pipe-out. The thermal resistances due to heat conduction
in the grout material are derived by adding correction terms gained from numerical
simulations to well-known 2D heat conduction shape factors. These resistances then
are divided in such a manner, that the grout points are suitably located to obtain
accurate transient computation results, see [29]. The following specific thermal
resistances can be derived.
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M.2.1 2U Exchanger

The thermal resistance between the pipes and grout zones is caused by the advection
of the pipe flow and thermal conductivity of the pipe wall material specified
separately for pipe-in and pipe-out

R2U
fig D R2U

advk CR2U
conak
CR2U

conb .k D i1\ i2/ (M.1)

R2U
fog D R2U

advk CR2U
conak
CR2U

conb .k D o1\ o2/ (M.2)

M.2.1.1 Thermal Resistance Due to the Advective Flow of Refrigerant in
the Pipes

R2U
advk
D 1

Nuk�r�
.k D i1; o1; i2; o2/ (M.3)

where �r is the thermal conductivity of the refrigerant. In (M.3) the Nusselt
numbers, Nuk.k D i1; o1; i2; o2/, differ between laminar and turbulent flow [544],
viz.,

Nuk D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

4:364

for laminar flow if Rek < 2; 300

.�k=8/RekPr
1C12:7p�k=8.Pr2=3�1/

h
1C

�
d ik
L

�2=3i

for turbulent flow if Rek  104

.1 � 	k/4:364C 	k
n

.0:0308=8/104Pr
1C12:7p0:0308=8.Pr2=3�1/

h
1C

�
d ik
L

�2=3io

for flow in transition range if 2,300 � Rek < 104

(M.4)

in which Pr represents the Prandtl number and Rek are the Reynolds numbers
defined as

Pr D �rcr

�r
; Rek D jukj

2Ud ik
.�r=�r /

.k D i1; o1; i2; o2/ (M.5)

where d ik are the inner diameters of the pipes d ik D 2rik.k D i1; o1; i2; o2/.
Furthermore,L corresponds to the length of the pipe and

�k D
�
1:8 log10 Rek � 1:5

��2

	k D Rek�2;300
104�2;300 .0 � 	k � 1/

9
=

;
(M.6)
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.k D i1; o1; i2; o2/ (M.7)

whereQr is the total refrigerant flow discharge of the 2U exchanger.

M.2.1.2 Thermal Resistances Due to the Pipes Wall Material and Grout
Transition
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k
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where ��
i1;�

�
o1;�

�
i2;�

�
o2 correspond to the thermal conductivities of the pipe wall

material.
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g (M.9)
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and
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2Cd2o�s2
2Ddo

/

2��g

�
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D
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�
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whereD denotes the borehole diameter, do D 1
4

P
k d

o
k is the average outer diameter

of the pipes dok D 2rok.k D i1; o1; i2; o2/ and s D w
p
2 corresponds to diagonal

distances of pipes (see Fig. M.1).

M.2.1.3 Thermal Resistance Due to Inter-grout Exchange
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2R2U
gs .R
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g /
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(M.12)
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with
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2��g
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M.2.1.4 Thermal Resistance Due to Grout-Soil Exchange

R2U
gs D .1 � x2U/R2U

g (M.16)

M.2.2 1U Exchanger

It is
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M.2.2.1 Thermal Resistance Due to the Advective Flow of Refrigerant
in the Pipes

R1U
advk
D 1

Nuk�r�
.k D i1; o1/ (M.19)

where Nuk is given by the expressions (M.4)–(M.6) in which the refrigerant fluid
velocity for 1D pipe is

jukj1U D Qr

2�.rik/
2

.k D i1; o1/ (M.20)

M.2.2.2 Thermal Resistance Due to the Pipes Wall Material and Grout
Transition
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2���
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�
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where w corresponds to distances between the pipes (see Fig. M.2).

M.2.2.3 Thermal Resistance Due to Inter-grout Exchange
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with
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M.2.2.4 Thermal Resistance Due to Grout-Soil Exchange

R1U
gs D .1 � x1U/R1U

g (M.27)

M.2.3 CXA Exchanger

It is
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M.2.3.1 Thermal Resistance Due to the Advective Flow of Refrigerant
in the Pipes
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ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

3:66C
h
4 � 0:102�

doo1

dii1

�
C0:02

i�doo1
d ii1

�0:04

for laminar flow if Rei1 < 2; 300

.�i1=8/Rei1Pr
1C12:7p�i1=8.Pr2=3�1/

h
1C

�
dh
L

�2/3i
(
0:86
�
doo1

dii1

�0:84C
h
1�0:14

�
doo1

dii1

�0:6i

1C
�
doo1

dii1

�

)

for turbulent flow if Rei1  104

.1 � 	i1/
(

3:66C
�

4 � 0:102�
doo1

dii1

�
C0:02

�)
�doo1
d ii1

�0:04C

	i1

(
.0:0308=8/104Pr

1C12:7p0:0308=8.Pr2=3�1/�

h
1C

�
dh
L

�2=3i
�
0:86
�
doo1

dii1

�0:84C
h
1�0:14

�
doo1

dii1

�0:6i

1C
�
doo1

dii1

�

�)

for flow in transition range if 2,300 � Rei1 < 104

(M.34)

where

Pr D �r cr

�r
; Reo1 D juo1jCXAd io1

.�r=�r /
; Rei1 D ju11jCXAdh

.�r =�r /
(M.35)
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and

dh D d ii1 � doo1
�k D

�
1:8 log10 Rek � 1:5

��2

	k D Rek � 2; 300
104 � 2; 300 .0 � 	k � 1/

.k D i1; o1/

9
>>>>>>=

>>>>>>;

(M.36)

juo1jCXA D Qr

2�.rio1/
2

jui1jCXA D Qr

2�Œ.rii1/
2 � .roo1/2�

9
>>=

>>;
(M.37)

M.2.3.2 Thermal Resistance Due to the Pipes Wall Material and Grout
Transition

RCXA
conk
D ln.rok=r

i
k/

2���
k

.k D i1; o1/ (M.38)

RCXA
conb D xCXARCXA

g (M.39)

with

xCXA D
ln
�p

D2C.doi1/2p
2doi1

�

ln. D
doi1
/

(M.40)

and

RCXA
g D ln.D=doi1/

2��g
(M.41)

M.2.3.3 Thermal Resistance Due to Grout-Soil Exchange

RCXA
gs D .1 � xCXA/RCXA

g (M.42)

M.2.4 CXC Exchanger

RCXC
ff D RCXC

advi1 CRCXC
advao1
CRCXC

coni1 (M.43)

RCXC
fog D RCXC

advbo1
CRCXC

cono1 CRCXC
conb (M.44)
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M.2.4.1 Thermal Resistance Due to the Advective Flow of Refrigerant
in the Pipes

RCXC
advi1 D

1

Nui1�r�
(M.45)

RCXC
advao1
D 1

Nuo1�r�

dh

doi1
(M.46)

RCXC
advbo1
D 1

Nuo1�r�

dh

d io1
(M.47)

with

Nui1 D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

4:364

for laminar flow if Rei1 < 2; 300

.�i1=8/Rei1Pr
1C12:7p�i1=8.Pr2=3�1/

h
1C

�
d ii1
L

�2=3i

for turbulent flow if Rei1  104

.1 � 	i1/4:364C 	i1
n

.0:0308=8/104Pr
1C12:7p0:0308=8.Pr2=3�1/

h
1C

�
d ii1
L

�2=3io

for flow in transition range if 2,300 � Rei1 < 104

(M.48)

Nuo1 D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

3:66C
h
4 � 0:102�

doi1

dio1

�
C0:02

i� doi1
d io1

�0:04

for laminar flow if Reo1 < 2; 300

.�o1=8/Reo1Pr
1C12:7p�o1=8.Pr2=3�1/

h
1C

�
dh
L

�2/3i
(
0:86
�
doi1

dio1

�0:84C
h
1�0:14

�
doi1

dio1

�0:6i

1C
�
doi1

dio1

�

)

for turbulent flow if Reo1  104

.1 � 	o1/
(

3:66C
�

4 � 0:102�
doi1

dio1

�
C0:02

�)
� doi1
d io1

�0:04C

	o1

(
.0:0308=8/104Pr

1C12:7p0:0308=8.Pr2=3�1/�

h
1C

�
dh
L

�2=3i
�
0:86
�
doi1

dio1

�0:84C
h
1�0:14

�
doi1

dio1

�0:6i

1C
�
doi1

dio1

�

�)

for flow in transition range if 2,300 � Reo1 < 104

(M.49)
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where

Pr D �r cr

�r
Rei1 D jui1jCXCd ii1

.�r =�r /
Reo1 D juo1jCXCdh

.�r =�r /
(M.50)

and

dh D d io1 � doi1
�k D

�
1:8 log10 Rek � 1:5

��2

	k D Rek � 2; 300
104 � 2; 300 .0 � 	k � 1/

.k D i1; o1/

9
>>>>>>=

>>>>>>;

(M.51)

jui1jCXC D Qr

2�.rii1/
2

juo1jCXC D Qr

2�Œ.rio1/
2 � .roi1/2�

9
>>=

>>;
(M.52)

M.2.4.2 Thermal Resistance Due to the Pipes Wall Material and Grout
Transition

RCXC
conk D

ln.rok=r
i
k/

2���
k

.k D i1; o1/ (M.53)

RCXC
conb D xCXCRCXC

g (M.54)

with

xCXC D
ln
�p

D2C.doo1/2p
2doo1

�

ln. D
doo1
/

(M.55)

and

RCXC
g D ln.D=doo1/

2��g
(M.56)

M.2.4.3 Thermal Resistance Due to Grout-Soil Exchange

RCXC
gs D .1 � xCXC/RCXC

g (M.57)
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M.2.5 Notes to Negative Thermal Resistances of Grout
for 2U and 1U Exchangers

In dependence on geometric measures for 2U and 1U exchangers negative thermal
resistances for grout R2U

gg1; R
2U
gg2; R

1U
gg may occur. This is caused by the applied

TRCM conception of grout zones and can be accepted in both numerical and
analytical BHE models. However, the following constraints have to be satisfied:

�
1

R2U
gg1

C 1

2R2U
gs

	�1
> 0

�
1

R2U
gg2

C 1

2R2U
gs

	�1
> 0

(M.58)

for 2U exchangers and

�
1

R1U
gg

C 1

2R1U
gs

	�1
> 0 (M.59)

for 1U exchangers. In cases where (M.58) or (M.59) are violated the values of x2U

and x1U, respectively, have to be reduced until the constraints (M.58) and (M.59)
are met. The following correction procedure is applied:

1. If (M.58) or (M.59) are violated reduce x2U;1U
new D 2

3
x

2U;1U
old and check (M.58) or

(M.59).
2. If (M.58) or (M.59) are still violated reduce x2U;1U

new D 1
3
x

2U;1U
old and check (M.58)

or (M.59).
3. If (M.58) or (M.59) are again violated set x2U;1U

new D 0.

M.2.6 Direct Use of Borehole Thermal Resistances Ra and Rb
Obtained from Thermal Response Test (TRT)

From practical point of view it could be useful to specify directly thermal resistances
which have been measured in the field. Such field-related thermal resistances result
for instance from Thermal Response Tests (TRT’s), e.g., [25]. In such cases the
borehole thermal resistance Rb and the internal borehole thermal resistance Ra
are determined according to the definition introduced by Hellström [237] given
for a Delta configuration of thermal circuit such as described in Sect. E.3.1 of
Appendix E. With known Rb and Ra the complete set of thermal BHE resistances
can be determined in dependence on the chosen analytical or numerical solution
strategy as follows.
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M.2.6.1 Analytical BHE Solution

2U Exchanger:
Replace (M.1), (M.2) and (M.16) by

R2U
fig D 2Rb

R2U
fog D 2Rb

R2U
gs D 2Rb

(M.60)

respectively, as well as (M.12) and (M.13) by

R2U
gg1 D

8Rb.Ra � 2Rb/
4Rb � Ra

R2U
gg2 D R2U

gg1

(M.61)

respectively.

1U Exchanger:
Replace (M.17), (M.18), and (M.27) by

R1U
fig D Rb

R1U
fog D Rb

R1U
gs D Rb

(M.62)

respectively, as well as (M.25) by

R1U
gg D

2Rb.Ra � 2Rb/
4Rb � Ra (M.63)

CXA Exchanger:
Replace (M.28), (M.29), and (M.42) by

RCXA
ff D Ra

RCXA
fig D Rb

2

RCXA
gs D Rb

2

(M.64)

respectively.
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CXC Exchanger:
Replace (M.43), (M.44), and (M.57) by

RCXC
ff D Ra

RCXC
fog D Rb

2

RCXC
gs D Rb

2

(M.65)

respectively.

M.2.6.2 Numerical BHE Solution

2U Exchanger:
Defining

R2U
adv D 1

4
.R2U

advi1
CR2U

advi2
CR2U

advo1
CR2U

advo2
/

R2U
con D 1

4
.R2U

conai1
CR2U

conai2
CR2U

conao1
CR2U

conao2
/

(M.66)

we replace (M.11), (M.14), and (M.15) by

R2U
g D 4Rb � R2U

adv � R2U
con

R2U
ar1 D

.2Cp2/R2U
g .Ra � R2U

adv � R2U
con/

R2U
g CRa �R2U

adv �R2U
con

R2U
ar2 D

p
2R2U

ar1

(M.67)

respectively.

1U Exchanger:
Defining

R1U
adv D 1

2
.R1U

advi1
CR1U

advo1
/

R1U
con D 1

2
.R1U

conai1
CR1U

conao1
/

(M.68)

we replace (M.24) and (M.26) by

R1U
g D 2Rb � R1U

adv � R1U
con

R1U
ar D Ra � 2.R1U

adv CR1U
con/

(M.69)

respectively.
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CXA Exchanger:
Replace (M.28) and (M.41) by

RCXA
ff D Ra

RCXA
g D Rb � RCXA

advbi1
�RCXA

coni1

(M.70)

respectively.

CXC Exchanger:
Replace (M.43) and (M.56) by

RCXC
ff D Ra

RCXC
g D Rb �RCXC

advbo1
� RCXC

cono1

(M.71)

respectively.

M.3 Heat Transfer Coefficients

A heat transfer coefficient ˚T represents the reciprocal of the effective specific
thermal resistanceR with its specific exchange area S (cf. Sect. E.2 of Appendix E),
viz.,

˚T D 1

R S
(M.72)

Accordingly, the specific thermal resistancesRfig, Rfog,Rgg1,Rgg2,Rff , Rgg andRgs

given by the relationships in the preceding Sect. M.2 for the 2U, 1U, CXA and CXC
configurations can be used to express the corresponding heat transfer coefficients
˚fig, ˚fog, ˚gg1, ˚gg2, ˚ff , ˚gg and ˚gs for the BHE configurations as follows:

2U Exchanger:

˚2U
fig D 1

R2U
fig

1
Si

˚2U
fog D 1

R2U
fog

1
So

˚2U
gg1 D 1

R2U
gg1

1
Sg1

˚2U
gg2 D 1

R2U
gg2

1
Sg2

˚2U
gs D 1

R2U
gs

1
Sgs

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(M.73)
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Table M.1 Specific
exchange surfaces S
for the BHE configurations

S 2U 1U CXA CXC

Si �d ii1;i2 �d ii1 �d ii1 –
So �d io1;o2 �d io1 – �dio1
Sio – – �dio1 �d ii1
Sg1

1
2
D D – –

Sg2 D – – –
Sgs

1
4
�D 1

4
�D �D �D

1U Exchanger:

˚1U
fig D 1

R1U
fig

1
Si

˚1U
fog D 1

R1U
fog

1
So

˚1U
gg D 1

R1U
gg

1
Sg1

˚1U
gs D 1

R1U
gs

1
Sgs

9
>>>>>>>=

>>>>>>>;

(M.74)

CXA Exchanger:

˚CXA
fig D 1

RCXA
fig

1
Si

˚CXA
ff D 1

RCXA
ff

1
Sio

˚CXA
gs D 1

RCXA
gs

1
Sgs

9
>>>>=

>>>>;

(M.75)

CXC Exchanger:

˚CXC
fog D 1

RCXC
fog

1
So

˚CXC
ff D 1

RCXC
ff

1
Sio

˚CXC
gs D 1

RCXC
gs

1
Sgs

9
>>>>=

>>>>;

(M.76)

where the related specific exchange areas of the BHE configurations are listed in
Table M.1.
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M.4 Analytical Solution of the Local Problem

In this section, the BHE equations are solved by Eskilson and Claesson’s analytical
method [159]. This method is applied to the different BHE configurations by using
the extended TRCM [29]. Explicit relations result for temperatures of the pipes
and the grout zones at vertical position and time. They are coupled to the soil
temperature due to the incorporated heat transfer between BHE and the soil system.
The analytical method has shown highly efficient, precise and robust, however, not
applicable to short-term processes (a temporal scale in order of seconds, minutes or
few hours).

M.4.1 Local Steady-State Condition with Given Temperature
at Borehole Wall

The present analytical solution is only valid for local steady-state heat transport
and given temperature Ts D Ts.z; t/ at borehole wall. It was firstly derived by
Eskilson and Claesson [159] for heat transfer between two pipes and the borehole
wall assuming a Delta configuration of the corresponding three thermal resistors
with their specific thermal resistances R▵1 , R▵2 andR▵12 as illustrated in Fig. M.5, see
also Sect. E.3.1 of Appendix E. We extend this analytical method to 2U, 1U, CXA
and CXC configurations of BHE. In accordance with Fig. M.5, the local steady-state
heat balance equations for fluid in pipe-in and pipe-out read

Ai�rcr juj@Ti1
@z
D q1 � q12 D Ts � Ti1

R▵1
� Ti1 � To1

R▵12

�Ai�rcr juj@To1
@z
D q2 C q12 D Ts � To1

R▵2
C Ti1 � To1

R▵12

(M.77)

which have to be solved for the pipe(s)-in temperature Ti1.z/ and pipe(s)-out
temperature To1.z/, where the z�coordinate is directed downward, superscript r
refers to the refrigerant fluid, u is the refrigerant fluid velocity directed positive
downward in z�direction (i.e., positive in pipe-in i1 and negative in pipe-out o1).
They represent 1D heat transport equations for each pipe in the vertical z�direction,
where the vertical heat conduction within the pipes is neglected. It is further
assumed that the inner cross-sectional area of pipe-in and pipe-out is equal, i.e.,
Ai D Aii D Aio. The local steady-state condition limits the application of (M.77) to
a time scale larger than [159]

t > t
steady
limit D

5

4
D2
�"�c C .1 � "/�scs
"�C .1 � "/�s

�
(M.78)
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R12

i1 o1

s

R1 R2

Ts

Ti1 To1

q12

q1 q2

D

DD

Fig. M.5 Borehole cross
section, heat flow
components and thermal
circuit of Delta configuration
(Modified from [159])

The time for the refrigerant to circulate through the borehole is 2AiL=Qr . Accord-
ingly, Eq. (M.77) can only describe transient input variations of inlet temperature
and pumping rate on a time scale larger than [159]

t > t
steady
limit C Ai

2L

Qr

(M.79)

The specific thermal flux .z; t/ exchanging heat of the borehole with the adjacent
soil s is given from (M.77) according to

.z; t/ D Ts � Ti1
R▵1

C Ts � To1
R▵2

(M.80)

M.4.2 Eskilson and Claesson’s Analytical BHE Solution

The coupled equations (M.77) can be solved by using Laplace transforms [159]. It
yields

Ti1.z; t/ D Ti1.0; t/f1.z/C To1.0; t/f2.z/C
Z z

0

Ts.�; t/f4.z � �/d�

To1.z; t/ D �Ti1.0; t/f2.z/C To1.0; t/f3.z/ �
Z z

0

Ts.�; t/f5.z � �/d�
.0 � z � L/

(M.81)

The functions f1; f2; : : : ; f5 are given by the expressions

f1.z/ D eˇzŒcosh.	z/ � ı sinh.	z/�

f2.z/ D eˇz ˇ12

	
sinh.	z/

f3.z/ D eˇzŒcosh.	z/C ı sinh.	z/� (M.82)
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f4.z/ D eˇz
�
ˇ1 cosh.	z/� .ıˇ1 C ˇ2ˇ12

	
/ sinh.	z/



f5.z/ D eˇz
�
ˇ2 cosh.	z/C .ıˇ2 C ˇ1ˇ12

	
/ sinh.	z/



where

ˇ1 D 1

R▵1A
i�rcru

ˇ2 D 1

R▵2A
i�rcru

ˇ12 D 1

R▵12A
i�rcru

ˇ D ˇ2 � ˇ1
2

	 D
r
.ˇ1 C ˇ2/2

4
C ˇ12.ˇ1 C ˇ2/ ı D 1

	

�
ˇ12 C ˇ1 C ˇ2

2

�
(M.83)

The following BC’s are applied

Ti1.0; t/ D Ti .t/
Ti1.L; t/ D To1.L; t/ (M.84)

where Ti.t/ represents the inlet temperature. Using (M.84) in (M.82) and (M.83)
the outlet temperature To.t/ is given as

To.t/ D To1.0; t/ (M.85)

M.4.3 Solutions for 1U and 2U Configurations

It is assumed that the pipes are arranged symmetrically within the borehole, i.e.,

R▵2 D R▵1 (M.86)

so that

ˇ2 D ˇ1 D 1

R▵1A
i�rcru

ˇ12 D 1

R▵12A
i�rcru

ˇ D 0
	 D

q
ˇ21 C 2ˇ12ˇ1

ı D 1
	
.ˇ12 C ˇ1/

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(M.87)
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Hence, (M.82) simplifies

f1.z/ D cosh.	z/ � ı sinh.	z/

f2.z/ D ˇ12

	
sinh.	z/

f3.z/ D cosh.	z/C ı sinh.	z/ (M.88)

f4.z/ D ˇ1 cosh.	z/ � .ıˇ1 C ˇ2ˇ12

	
/ sinh.	z/

f5.z/ D ˇ2 cosh.	z/C .ıˇ2 C ˇ1ˇ12

	
/ sinh.	z/

In using (M.84) the Eq. (M.81) can be equalized at z D L and solved for the outlet
temperature To.t/, viz.,

To.t/ D Ti.t/f1.L/C f2.L/
f3.L/ � f2.L/ C

Z L

0

Ts.�; t/Œf4.L � �/C f5.L� �/�
f3.L/ � f2.L/ d�

(M.89)

With known inlet temperature Ti .t/ from the BC (M.84) and outlet temperature
To.t/ from (M.89) the temperature distributions Ti1 and To1 as a function of z and t
are obtained after evaluating the integrals in (M.81). It yields1

Ti1.z; t/ D Ti.t/f1.z/C To.t/f2.z/C
Z z

0

Ts.�; t/f4.z � �/d�

To1.z; t/ D �Ti.t/f2.z/C To.t/f3.z/ �
Z z

0

Ts.�; t/f5.z � �/d�
(M.90)

Note that for the 2U configuration we assume Ti2 D Ti1 and To2 D To1. The
integrals in (M.90) are performed elementwise, where the solid temperature Ts at
the borehole wall is numerically approximated as a linear function from the nodal
finite element solution at time t . For example

Z z

0

Ts.�; t/f4.z � �/d� 	
X

e2.ze1;ze2/

T es .z
e
1; t/C T es .ze2; t/

2
F4.z; z

e
2; z

e
1/ (M.91)

1The integrals f4.z � �/ and f5.z � �/ result for 1U and 2U configurations, respectively,

F4.z; a; b/ D R b
a f4.z � �/d� D � ˇ1

	
sinh.	.z � �//jba C

�
ıˇ1
	

C ˇ2ˇ12
	2

�
cosh.	.z � �//jba

F5.z; a; b/ D R b
a f5.z � �/d� D � ˇ2

	
sinh.	.z � �//jba �

�
ıˇ2
	

C ˇ1ˇ12
	2

�
cosh.	.z � �//jba
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where ze1; z
e
2 represent the vertical coordinates of the lower and upper nodes,

respectively, of element e.
The temperature distributions for the grout zones are derived from horizontal

steady-state heat flow balances at the grout points, where the total heat exchange
between the grout zones, pipe(s) and soil is assumed in equilibrium, such that

Tg1 � Ts
R1U

gs

C Tg1 � Ti1
R1U

fig

C Tg1 � Tg2
R1U

gg

D 0

Tg2 � Ts
R1U

gs

C Tg2 � To1
R1U

fog

C Tg2 � Tg1
R1U

gg

D 0
(M.92)

given for the 1U exchanger (Fig. M.2) and

Tg1 � Ts
R2U

gs

C Tg1 � Ti1
R2U

fig

C Tg1 � Tg2
R2U

gg2

C Tg1 � Tg3
R2U

gg1

C Tg1 � Tg4
R2U

gg1

D 0

Tg2 � Ts
R2U

gs

C Tg2 � Ti2
R2U

fig

C Tg2 � Tg1
R2U

gg2

C Tg2 � Tg3
R2U

gg1

C Tg2 � Tg4
R2U

gg1

D 0

Tg3 � Ts
R2U

gs

C Tg3 � To1
R2U

fog

C Tg3 � Tg4
R2U

gg2

C Tg3 � Tg1
R2U

gg1

C Tg3 � Tg2
R2U

gg1

D 0

Tg4 � Ts
R2U

gs

C Tg4 � To2
R2U

fog

C Tg4 � Tg3
R2U

gg2

C Tg4 � Tg1
R2U

gg1

C Tg4 � Tg2
R2U

gg1

D 0

(M.93)

given for the 2U exchanger (Fig. M.1). Accordingly, the temperature distribution for
the two grout zones Tg1.z; t/ and Tg2.z; t/ of the 1U configuration can be derived as

Tg1.z; t/ D

hTs.z; t/

R1U
gs

C To1.z; t/

R1U
fog

C
�Ts.z; t/

R1U
gs

C Ti1.z; t/

R1U
fig

�
u1R

1U
gg

i
R1U

gg

.R1U
gg /

2u21 � 1

Tg2.z; t/ D
�Tg1.z; t/

R1U
gg

C To1.z; t/

R1U
fog

C Ts.z; t/

R1U
gs

� 1

u1
(M.94)

with

u1 D 1

R1U
fig

C 1

R1U
gs

C 1

R1U
gg

(M.95)

and the temperature distribution for the four grout zones Tg1.z; t/, Tg2.z; t/, Tg3.z; t/
and Tg4.z; t/ of the 2U configuration results in



M.4 Analytical Solution of the Local Problem 947

Tg1.z; t/ D Tg2.z; t/ D
h2Ts.z; t/

R2U
gs

C 2To1.z; t/

R2U
fog

C
�2Ts.z; t/

R2U
gs

C

2Ti1.z; t/

R2U
fig

�
u2v

i� v

v2u22 � 1
�

Tg3.z; t/ D Tg4.z; t/ D
�Tg1.z; t/

v
C 2To1.z; t/

R2U
fog

C 2Ts.z; t/

R2U
gs

� 1

u2
(M.96)

with

u2 D 2

R2U
fig

C 2

R2U
gs

C 1

v

v D R2U
gg1R

2U
gg2

2.R2U
gg1 CR2U

gg2/
(M.97)

assuming R1U
fig D R1U

fog and R2U
fig D R2U

fog. The thermal resistances R▵1 and R▵12 are
given by

R▵1 D R1U
fig CR1U

gs

R▵12 D
.u1R1U

fig R
1U
gg /

2 � .R1U
fig /

2

R1U
gg

9
>>=

>>;

for 1U configuration (M.98)

and

R▵1 D
R2U

fig CR2U
gs

2

R▵12 D
.R2U

fig /
2

4
.u22v �

1

v
/

9
>>>=

>>>;

for 2U configuration (M.99)

M.4.4 Solution for CXA Configuration

For coaxial BHE pipes with annular inlet there is

R▵2 D 1 (M.100)
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so that

ˇ1 D 1

R▵1A
i�rcru

ˇ2 D 0
ˇ12 D 1

R▵12A
i�rcru

ˇ D �ˇ1
2

	 D
q

ˇ21
4
C ˇ12ˇ1

ı D 1
	

�
ˇ12 C ˇ1

2

�

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

(M.101)

Hence, (M.82) simplifies

f1.z/ D eˇzŒcosh.	z/ � ı sinh.	z/�

f2.z/ D eˇzˇ12

	
sinh.	z/

f3.z/ D eˇzŒcosh.	z/C ı sinh.	z/� (M.102)

f4.z/ D eˇz
�
ˇ1 cosh.	z/ � ıˇ1 sinh.	z/



f5.z/ D eˇzˇ1ˇ12

	
sinh.	z/

The outlet temperature To.t/ is determined by

To.t/ D Ti.t/f1.L/C f2.L/
f3.L/ � f2.L/ C

Z L

0

Ts.�; t/Œf4.L � �/C f5.L� �/�
f3.L/ � f2.L/ d�

(M.103)

and the temperature distributions Ti1 and To1 are obtained from the integral
expressions2

Ti1.z; t/ D Ti.t/f1.z/C To.t/f2.z/C
Z z

0

Ts.�; t/f4.z � �/d�

To1.z; t/ D �Ti .t/f2.z/C To.t/f3.z/ �
Z z

0

Ts.�; t/f5.z � �/d�
(M.104)

2The integrals f4.z � �/ and f5.z � �/ result for the CXA configuration

F4.z; a; b/ D R b
a f4.z � �/d�

D ˇ1
	2�ˇ2

exp.ˇ.z � �//jba
h
.	ı C ˇ/ cosh.	.z � �//jba � .	 C ıˇ/ sinh.	.z � �//jba

i

F5.z; a; b/ D R b
a f5.z � �/d� D ˇ1ˇ12

	2�ˇ2
exp.ˇ.z � �//jba

h
ˇ

	
sinh.	.z � �//jba � cosh.	.z � �//jba

i
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With the equilibrium condition (Fig. M.3)

Tg1 � Ts
RCXA

gs

C Tg1 � Ti1
RCXA

fig

D 0 (M.105)

the temperature distribution for the grout zone Tg1.z; t/ yields

Tg1.z; t/ D
RCXA

fig

RCXA
fig CRCXA

gs

�
Ts.z; t/ � Ti1.z; t/

C Ti1.z; t/ (M.106)

The thermal resistances R▵1 and R▵12 are given by

R▵1 D RCXA
fig CRCXA

gs

R▵12 D RCXA
ff

(M.107)

M.4.5 Solution for CXC Configuration

For coaxial BHE pipes with centered inlet there is

R▵1 D 1 (M.108)

so that

ˇ1 D 0
ˇ2 D 1

R▵2A
i�rcru

ˇ12 D 1

R▵12A
i�rcru

ˇ D ˇ2
2

	 D
q

ˇ21
4
C ˇ12ˇ2

ı D 1
	

�
ˇ12 C ˇ2

2

�

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

(M.109)

Hence, (M.82) simplifies

f1.z/ D eˇzŒcosh.	z/ � ı sinh.	z/�

f2.z/ D eˇzˇ12

	
sinh.	z/

f3.z/ D eˇzŒcosh.	z/C ı sinh.	z/� (M.110)
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f4.z/ D �eˇz ˇ2ˇ12

	
sinh.	z/

f5.z/ D eˇz
�
ˇ2 cosh.	z/C ıˇ2 sinh.	z/



The outlet temperature To.t/ is determined by

To.t/ D Ti.t/f1.L/C f2.L/
f3.L/ � f2.L/ C

Z L

0

Ts.�; t/Œf4.L � �/C f5.L� �/�
f3.L/ � f2.L/ d�

(M.111)

and the temperature distributions Ti1 and To1 are obtained from the integral
expressions3

Ti1.z; t/ D Ti.t/f1.z/C To.t/f2.z/C
Z z

0

Ts.�; t/f4.z � �/d�

To1.z; t/ D �Ti .t/f2.z/C To.t/f3.z/ �
Z z

0

Ts.�; t/f5.z � �/d�
(M.112)

With the equilibrium condition (Fig. M.4)

Tg1 � Ts
RCXC

gs

C Tg1 � To1
RCXC

fog

D 0 (M.113)

the temperature distribution for the grout zone Tg1.z; t/ yields

Tg1.z; t/ D
RCXC

fog

RCXC
fog CRCXC

gs

�
Ts.z; t/ � To1.z; t/

C To1.z; t/ (M.114)

The thermal resistances R▵1 and R▵12 are given by

R▵2 D RCXC
fog CRCXC

gs

R▵12 D RCXC
ff

(M.115)

3The integrals f4.z � �/ and f5.z � �/ result for the CXC configuration

F4.z; a; b/ D R b
a f4.z � �/d� D ˇ2ˇ12

ˇ2�	2
exp.ˇ.z � �//jba

h
ˇ

	
sinh.	.z � �//jba � cosh.	.z � �//jba

i

F5.z; a; b/ D R b
a f5.z � �/d�

D ˇ2
ˇ2�	2

exp.ˇ.z � �//jba
h
.ˇ � 	ı/ cosh.	.z � �//jba C .ıˇ � 	/ sinh.	.z � �//jba

i
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M.4.6 Resulting Exchange Terms

For solving the coupled matrix system (13.37) for the BHE temperature T � and
soil temperature T s the following exchange terms have to be known: � OR�s.T s/,
� ORs� .T �/ and �R� . From the preceding sections we find:

� OR�s.T s/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

0

B
B
B
B
B
B
B
B
B
B
B
@

Ti1.zi ; t/
Ti2.zi ; t/
To1.zi ; t/
To2.zi ; t/
Tg1.zi ; t/
Tg2.zi ; t/
Tg3.zi ; t/
Tg4.zi ; t/

1

C
C
C
C
C
C
C
C
C
C
C
A

2U configuration

0

B
B
@

Ti1.zi ; t/
To1.zi ; t/
Tg1.zi ; t/
Tg2.zi ; t/

1

C
C
A 1U configuration

0

@
Ti1.zi ; t/
To1.zi ; t/
Tg1.zi ; t/

1

A CXA and CXC configurations

.1 � i � NBHE/ (M.116)

where zi corresponds to the z�coordinate at the BHE nodal point i , the pipe and
grout temperatures are given by the analytical expressions (M.90), (M.94), (M.96),
(M.104), (M.106), (M.112), and (M.114), which are dependent on the unknown soil
temperature Ts.z; t/. Furthermore, it is

� ORs� .T �/ D
Z

z

�
Ti1

R▵1
C To1
R▵2

	

d z (M.117)

and

�R� D δ
Z

z

�
1

R▵1
C 1

R▵2

	

d z (M.118)

with

Ti1 D

0

B
B
B
@

Ti1.z1; t/
Ti1.z2; t/

:::

Ti1.zNBHE ; t/

1

C
C
C
A
; To1 D

0

B
B
B
@

To1.z1; t/
To1.z2; t/

:::

To1.zNBHE ; t/

1

C
C
C
A

(M.119)
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whereR▵1 andR▵2 are given by (M.86), (M.98), (M.99), (M.100), (M.107), (M.108),
and (M.115) for the corresponding BHE configurations.

M.5 Numerical Solution of the Local Problem

In this section, the BHE equations are solved by the numerical method which is
based on the ideas given by Al-Khoury et al. [8], Al-Khoury and Bonnier [7],
and Al-Khoury [6]. This method is applied to the different BHE configurations
by using the extended TRCM [29]. The governing BHE heat transport equations
are discretized by 1D finite element discrete feature elements (DFE’s), cf. Chap. 14,
which are coupled to the global heat transport equation for the soil (porous medium)
via heat transfer relations. In comparison to the analytical method (Sect. M.4) the
numerical method is more general and applicable both to short-term and long-
term analyses, however, can be less efficient and stable in particular for long-term
simulations.

M.5.1 Basic BHE Equations of Heat Transport in Pipes
and Grout Zones

The BHE represents a closed pipe system, where a refrigerant fluid is circulating
with a given velocity u. The 2U configuration consists of 8 borehole components
(2 pipes-in, 2 pipes-out and 4 grout zones, Fig. M.1), the 1U configuration consists
of 4 borehole components (1 pipe-in, 1 pipe-out and 2 grout zones, Fig. M.2) and
each of the CXA and CXC configurations consists of 3 borehole components (1
pipe-in, 1 pipe-out and 1 grout zone, Figs. M.3 and M.4), which are schematized
by the corresponding number of 1D DFE’s as shown in Fig. M.6. Their 1D heat
transport equations are given as follows for the pipe(s)

�rcr
@Tk

@t
C �rcru � rTk � r � .Λr � rTk/ D Hk in ˝k

with Cauchy-type BC: � .Λr � rTk/ � n D qnTk on �k

for k D i1; o1; .i2; o2/
(M.120)

and for the grout zone(s)

�gcg
@Tk

@t
� r � .�grTk/ D Hk in ˝k

with Cauchy-type BC: � .�grTk/ � n D qnTk on �k

for k D g1; .g2; .g3; g4//
(M.121)
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Fig. M.6 BHE pipe(s)-in, pipe(s)-out and grout zone components for 2U, 1U, CXA and CXC
configurations discretized by 1D DFE’s. Local node numbering is used for the vertical 1D
representations of the components

which are considered impervious, where

Λr D .�r C �rcrˇLkuk/δ (M.122)

is the hydrodynamic thermodispersion for the refrigerant, r D @=@z is defined here
for the vertical 1D line direction z along the BHE ‘well’ axis and the boundary heat
fluxes qnTk are summarized in Table M.2 for the related BHE components k. Note
that ˚CXA

ff ¤ ˚CXC
ff due to the different pipe radii for pipe-in and pipe-out in a

coaxial pipe installation.

M.5.2 Finite Element Discretization of the BHE Equations

The BHE Eqs. (M.120) and (M.121) are discretized by finite elements. Introducing
the spatial weighting function w the following weak statements result for the pipe(s)
components

Z

˝k

h
w�rcr

�@Tk

@t
C u � rTk

�
Crw � .Λr � rTk/

i
d˝ D

�
Z

�k

w qnTkd� C
Z

˝k

wHkd˝ for k D i1; o1; .i2; o2/ (M.123)

and for the grout zone(s) components of the BHE
Z

˝k

h
w�gcg

@Tk

@t
Crw � .�grTk/

i
d˝ D

�
Z

�k

w qnTkd� C
Z

˝k

wHkd˝ for k D g1; .g2; .g3; g4// (M.124)
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where the boundary heat exchange qnTk is specified in Table M.2. Using GFEM
(M.123) and (M.124) lead to the following matrix system

P � � PT � CL� � T � DW � �R�s � T s (M.125)

with

P � D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

0

B
B
B
B
B
B
B
B
B
B
B
B
@

Pi1 0 0 0 0 0 0 0
0 Pi2 0 0 0 0 0 0

0 0 Po1 0 0 0 0 0
0 0 0 Po2 0 0 0 0
0 0 0 0 Pg1 0 0 0
0 0 0 0 0 Pg2 0 0

0 0 0 0 0 0 Pg3 0
0 0 0 0 0 0 0 Pg4

1

C
C
C
C
C
C
C
C
C
C
C
C
A

2U

0

B
B
@

Pi1 0 0 0
0 Po1 0 0
0 0 Pg1 0
0 0 0 Pg2

1

C
C
A 1U

0

B
@

Pi1 0 0
0 Po1 0
0 0 Pg1

1

C
A CXA or CXC

(M.126)

L� D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
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ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
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ˆ̂
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ˆ̂
ˆ̂
ˆ̂
ˆ̂
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ˆ̂
:

0

B
B
B
B
B
B
B
B
B
B
B
B
@

Ki1 0 �Rio 0 �Ri1 0 0 0
0 Ki2 0 0 0 �Ri2 0 0

�Rio 0 Ko1 0 0 0 �Ro1 0
0 0 0 Ko2 0 0 0 �Ro2

�Ri1 0 0 0 Kig �Rg2 �Rg1 �Rg1

0 �Ri2 0 0 �Rg2 Kig �Rg1 �Rg1

0 0 �Ro1 0 �Rg1 �Rg1 Kog �Rg2

0 0 0 �Ro2 �Rg1 �Rg1 �Rg2 Kog
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C
C
C
C
C
C
C
C
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A
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�Ri1 0 Kig �Rg1
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1

C
C
A 1U

0

B
@

Ki1 �Rio �Ri1

�Rio Ko1 0
�Ri1 0 Kig

1

C
A CXA

0

B
@

Ki1 �Rio 0

�Rio Ko1 �Ro1

0 �Ro1 Kog

1

C
A CXC

(M.127)
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R�s D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

0

B
B
B
B
B
B
B
B
B
B
B
@

0
0
0
0

�Rs

�Rs

�Rs

�Rs

1

C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
@

0
0

�Rs

�Rs

1

C
C
A

0

@
0
0

�Rs

1

A

; W � D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

0

B
B
B
B
B
B
B
B
B
B
B
@

Wi1

Wi2

Wo1

Wo2

Wg1

Wg2

Wg3

Wg4

1

C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
@

Wi1

Wo1

Wg1

Wg2

1

C
C
A

0

@
Wi1

Wo1

Wg1

1

A

; T � D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

0

B
B
B
B
B
B
B
B
B
B
B
@

Ti1
Ti2
To1
To2
Tg1
Tg2
Tg3
Tg4

1

C
C
C
C
C
C
C
C
C
C
C
A

2U

0

B
B
@

Ti1
To1
Tg1
Tg2

1

C
C
A 1U

0

@
Ti1
To1
Tg1

1

A CXA or CXC
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and similarly for PT � , where

Pk D

8
ˆ̂
<

ˆ̂
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X

e

Z

˝e
k

�rcrNiNjd˝
e for k D i1; o1; .i2; o2/

X

e

Z

˝e
k

�gcgNiNjd˝
e for k D g1; .g2; .g3; g4//

(M.129)

Ki1 D Ci1 CRi1 CRio

Ki2 D Ci2 CRi2

Ko1 D Co1 CRo1 CRio

Ko2 D Co2 CRo2 (M.130)

Kig D Gig CRi1 C 2Rg1 CRg2 CRs

Kog D Gog CRo1 C 2Rg1 CRg2 CRs

Ck D X

e

Z

˝e
k

�
Ni�

r cru � rNjrNi � .Λ � rNj /
�
d˝e for k D i1; o1; .i2; o2/

Gig D Gog D
X

e

Z

˝e
k

rNi � .�grNj /d˝e for k D .g1; g2; g3; g4/

Wk D X

e

Z

˝e
k

NiHkd˝
e for 8k

(M.131)

and the boundary heat exchange matrices as listed in Table M.3, in which .i; j D
1; : : : ; NBHE/ and e runs over the associated numbers of 1D DFE’s. The symbols
˝e
i1;i2; � e

i1;i2 denote the domain and surface of pipe(s)-in, ˝e
o1;o2; �

e
o1;o2 for
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pipe(s)-out and ˝e
gi; �

e
gi .i D 1; : : : ; G/ for the grout zones (� e

g1�g4 for all grout
zones) of finite element e (G is the number of grout zones: 4 for 2U, 2 for 1U
and 1 for CXA and CXC configurations). Furthermore, the following heat transfer
matrices are defined:

Rs� D R�sT D
8
<

:

�
0 0 0 0 �Rs �Rs �Rs �Rs

�
2U

�
0 0 �Rs �Rs

�
1U

�
0 0 �Rs

�
CXA or CXC

(M.132)

and

R� D �GRs (M.133)

which appear in the coupled matrix system (13.44).
Analytical integration of matrices (M.129)–(M.131) and those of Table M.3 is

performed for linear 1D elements in accordance with Sect. H.1 of Appendix H. In
doing so, the volume and surface elements are

d˝e D Ad z D AjJejd� D A
ze

2
d�

d� e D Sd z D S jJejd� D S
ze

2
d� (M.134)

where jJej D 
ze=2 is the Jacobian (H.4), 
ze is the length of element e, � is the
local coordinate, S is the specific exchange surface given in Table M.1 and A is a
cross-sectional area given in Table M.4 for the inner pipes and grout zones. The used
linear 1D element e consists of two nodes with each DOF temperature variables for
the BHE components i1; i2; o1; o2; g1; g2; g3; g4 and with only one temperature
variable for the soil s as depicted in Fig. M.7.

In using these relationships we find the matrices for element e as follows:

P e
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r cr
ze

6
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1 2

	

P e
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1 2

	

P e
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ze

6

�
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1 2

	

(M.135)
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Table M.4 Cross-sectional areas A for the BHE configurations according to Figs. M.1–M.4

A 2Ua 1U CXA CXC

Aii �.rii /
2 �.rii /

2 �Œ.r ii /
2 � .roo /

2� �.rii /
2

Aio �.rio/
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2�
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1
4
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–
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4
� .roo /

2


�
�
1
2
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4
� .roo /

2


– �
�
D2

4
� .roo /

2


a In case of 2U exchangers it is assumed that the radii for the two pipes-in and two pipes-out are
equal, i.e., it is defined: rii D rii1 D rii2, r

o
i D roi1 D roi2, r

i
o D rio1 D rio2 and roo D roo1 D roo2
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Fig. M.7 1D element e used for BHE components of 2U, 1U, CXA or CXC configuration and for
soil s
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(M.139)

If the advective part in the heat transport equations of the BHE pipes becomes
dominant, wiggles in the temperature solutions can occur and the spatial discretiza-
tion with the standard GFEM becomes insufficient. A common technique is the
SU scheme (cf. Sect. 8.14.3), which introduces a balancing diffusivity to produce
stabilized wiggle-free (smooth) solutions. It is equivalent to modifying the thermal
dispersion tensor (M.122) for the refrigerant of the 1D pipes according to

Λr D ��r C �rcr .ˇL C ˇnum/kuk
�
δ (M.140)

with a numerical thermodispersivity ˇnum D 
ze=2 derived for linear finite ele-
ments (cf. Table 8.9).



References

1. Abarca, E., Carrera, J., Sánchez-Vila, X., Voss, C.: Quasi-horizontal circulation cells in 3D
seawater intrusion. J. Hydrol. 339(3–4), 118–129 (2007)
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11. Aricò, C., Sinagra, M., Tucciarelli, T.: The MAST-edge centred lumped scheme for the flow
simulation in variably saturated heterogeneous porous media. J. Comput. Phys. 231(4), 1387–
1425 (2012)

12. Aris, R.: Vectors, Tensors, and the Basis Equations of Fluid Mechanics. Dover, New York
(1962)

13. Atkins, P.: Physical Chemistry, 5th edn. Oxford University Press, Oxford (1994)
14. Austin, W., Yavuzturk, C., Spitler, J.: Development of an in-situ system and analysis

procedure for measuring ground thermal properties. ASHRAE Trans. 106(1), 356–379 (2000)
15. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)
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18. Babuška, I., Miller, A.: The post-processing approach in the finite element method – part 1:
calculation of displacements, stresses and other higher derivatives of the displacements. Int.
J. Numer. Methods Eng. 20(6), 1085–1109 (1984)

19. Badon-Ghyben, W.: Nota in verband met de voorgenomen putboring nabij Amsterdam (notes
on the probable results of well drilling near Amsterdam). In: Tijdschrift van het Kononklijk
Instituut van Ingenieurs, vol. 9, pp. 8–22. The Hague (1888)

20. Baker, A.: Finite element method (Chapter 28). In: Johnson, R. (ed.) The Handbook of Fluid
Dynamics, pp. 28:1–98. CRC/Springer, Boca Raton/Heidelberg (1998)

21. Bakhvalov, N.: On the convergence of a relaxation method with natural constraints on the
elliptic operator. USSR Comput. Math. Math. Phys. 6(5), 101–135 (1966)

22. Bakker, M., Hemker, K.: Analytical solutions for groundwater whirls in box-shaped, layered
anisotropic aquifers. Adv. Water Resour. 27(11), 1075–1086 (2004)

23. Bank, R.: PLTMG: a software package for solving elliptic partial differential equations –
user’s guide 11.0. Technical report, Department of Mathematics, University of California at
San Diego, La Jolla (2012). http://ccom.ucsd.edu/�reb/software.html

24. Bank, R., Sherman, A., Weiser, A.: Refinement algorithms and data structure for regular
local mesh refinement. In: Steplemen, R., et al. (eds.) Scientific Computing, pp. 3–17.
IMACS/North Holland, Brussels (1983)

25. Banks, D.: An Introduction to Thermogeology: Ground Source Heating and Cooling.
Blackwell, Oxford (2008)

26. Barenblatt, G., Entov, V., Ryzhik, V.: Theory of Fluid Flows Through Natural Rocks. Kluwer
Academic, Dordrecht (1990)

27. Bathe, K.J., Khoshgoftaar, M.: Finite element free surface seepage analysis without mesh
iteration. Int. J. Numer. Anal. Methods Geomech. 3(1), 13–22 (1979)

28. Bauer, D., Heidemann, W., Diersch, H.J.: Transient 3D analysis of borehole heat exchanger
modeling. Geothermics 40(4), 250–260 (2011)

29. Bauer, D., Heidemann, W., Müller-Steinhagen, H., Diersch, H.J.: Thermal resistance and
capacity models for borehole heat exchangers. Int. J. Energy Res. 35(4), 312–320 (2011)

30. Bause, M.: Higher and lowest order mixed finite element approximation of subsurface flow
problems with solutions of low regularity. Adv. Water Resour. 31(2), 370–382 (2008)

31. Bause, M., Knabner, P.: Computation of variably saturated subsurface flow by adaptive mixed
hybrid finite element methods. Adv. Water Resour. 27(6), 561–581 (2004)

32. Baxter, G., Wallace, C.: Changes in volume upon solution in water of the halogen salts of the
alkali metals. J. Am. Chem. Soc. 38(1), 70–105 (1916)

33. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)
34. Bear, J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979)
35. Bear, J.: Modeling flow and contaminant transport in fractured rocks. In: Bear, J., et al. (eds.)

Flow and Contaminat Transport in Fractured Rock, pp. 1–37. Academic, San Diego (1993)
36. Bear, J.: Conceptual and mathematical modeling. In: Bear, J., et al. (eds.) Seawater Intrusion

in Coastal Aquifers – Concepts, Methods and Practices, pp. 127–161. Kluwer Academic,
Dordrecht (1999)

37. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media.
Kluwer Academic, Dordrecht (1991)

38. Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport. Springer,
Dordrecht (2010)

39. Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution. D. Reidel, Dordrecht (1987)
40. Beauwens, R.: Modfied incomplete factorization strategies. In: Axelsson, O., Kolotilina, L.

(eds.) Precondioned Conjugate Gradient Methods. Lecture Notes in Mathematics, vol. 1457,
pp. 1–16. Springer, Berlin/Heidelberg/New York (1990)

41. Beck, J.: Convection in a box of porous material saturated with fluid. Phys. Fluids 15(8),
1377–1383 (1972)

42. Behie, A., Vinsome, P.: Block iterative methods for fully implicit reservoir simulation. SPE J.
22(5), 658–668 (1982)

43. Bejan, A., Kraus, A.: Handbook of Heat Transfer, 1st edn. Wiley, Hoboken (2003)

http://ccom.ucsd.edu/~reb/software.html


References 963

44. Belytschko, T., Lu, Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng.
37(2), 229–256 (1994)

45. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys.
182(2), 418–477 (2002)

46. Bergamaschi, L., Putti, M.: Mixed finite elements and Newton-like linearization for the
solution of Richard’s equation. Int. J. Numer. Methods Eng. 45(8), 1025–1046 (1999)

47. Berger, R., Howington, S.: Discrete fluxes and mass balance in finite elements. J. Hydraul.
Eng. 128(1), 87–92 (2002)

48. Bixler, N.: An improved time integrator for finite element analysis. Commun. Appl. Numer.
Methods 5(2), 69–78 (1989)
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talebenen diskreten Grundwasserströmungsmodellen (simulation of wells as inner boundary
conditions for horizontal 2D discrete groundwater flow models). Ph.D. thesis, Technical
University Dresden, Dresden, Germany (1976)

392. Nordbotten, J., Celia, M., Dahle, H., Hassanizadeh, S.: Interpretation of macroscale variables
in Darcy’s law. Water Resour. Res. 43(W08430), 1–9 (2007). doi:http://dx.doi.org/10.1029/
2006WR005018
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Absorption, 55
Accuracy, 7
Activity, 53, 174

coefficient, 54
Adams-Bashforth method, 299, 302
Adaptive

mesh refinement, 776–786
time marching process, 304

Adiabatic boundary condition, 205
Adsorption, 55

function, 118, 180
isotherms, 177

Advancing front technique, 764–765
Advection, 54
Advection-dispersion equation, 244
Algebraic multigrid method, 373–374
Amplification

factor, 309
matrix, 308

Anisotropy, 227–235, 435
axis-parallel, 233
randomly distributed, 438
Springer’s method, 231–233
thermal factor, 234

Aperture, 47, 152
corrected, 163
hydraulic, 159

Aquiclude, 46
Aquifer, 46

averaging, 64–65
balance equations, 76–79
confined, 46, 408, 429
perched, 47
phreatic, 47
system, 46
unconfined, 47, 406, 413, 429

Aquifuge, 46
Aquitard, 46, 420, 509, 747
Arrhenius kinetics, 188–189
Assembly, 262, 279–283

parallelization, 282–283
Average operator

Boltzmann, 62, 65
intrinsic mass, 62, 65
intrinsic volume, 62, 65
and quantities, 61–63

Averaging theorem, 63, 65
Axisymmetric problems, 40

Balance equations
convective form, 71
divergence form, 70
general, 69
macroscopic, 66–76
vertically averaged, 76–79

Balance error, 379, 472
Bandwidth, 357
Barycentric variables, 68
BASD technique, 416–421, 531, 534
Base vectors, 24, 718, 867, 873
Basis functions, 248

finite element, 266–274
Benchmark, 7, 583
Bifurcation, 553
Borehole, 222

abandoned, 224, 746
heat exchanger, 673, 683–692, 925–960

analytical solution, 697, 942–952
coaxial pipe, 927
double U-shape pipe, 925
heat transfer coefficients, 940–941
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numerical solution, 952–960
single U-shape pipe, 926
thermal resistances, 928–940

Boundary conditions, 48, 193–226
1st kind (see Dirichlet-type)
2nd kind (see Neumann-type)
3rd kind (see Cauchy-type)
adiabatic (see natural (no-heat flux))
Cauchy-type, 49, 196, 200, 205
Dirichlet-type, 48, 195, 199, 204

implementation, 349–350
essential, 48
free exit (see outflow)
free surface, 216–217
gradient-type, 220–221
integral, 219–220
mixed (see Robin-type)
multilayer well, 221–224
natural

no-flux, 49, 195
no-heat flux, 205
no-mass flux, 199

Neumann-type, 48, 195, 199, 204
outflow, 224–226
Robin-type, 49, 201, 206
seepage face, 217–218
surface ponding, 218

Boundary element method, 240
Boundedness, 6, 317
Boussinesq approximation. See Oberbeck-

Boussinesq approximation
Bowyer-Watson algorithm, 767
Brackish water, 45, 541
Brine, 45, 100, 541
Brinkman term, 119
Brooks-Corey relationship, 447, 834–835,

838–839
Budget analysis, 391–398

discrete feature, 722–724
flow, 427–429, 485–487, 573–575
heat, 573–575, 681–683
mass, 573–575, 640–642

Buoyancy coefficient, 124, 128, 546
Buoyancy-driven flow, 537–624
Buoyancy number. See Turner number
Burnett and Find’s dispersion tensor, 626

Céa’s lemma, 256
CAD, 12, 758
Capacity

moisture, 449
inverse, 451

specific heat, 105

Capillary barrier, 514–522
Capillary diffusivity, 451
Capillary pressure, 109–111

assumption, 122
head, 833

Celia et al.’s approximation method, 458, 471
Cellular convection. See Rayleigh-Bénard

convection
Channel flow, 154, 722
Chemical

component (see species)
constituent (see species)
equilibrium, 175
kinetics, 172
potential, 75, 106
reaction, 167–191, 625
species, 52

essential number, 119
Chezy law, 155
Cholesky method, 356
Chord slope approximation, 906–907
Clausius-Duhem

entropy production, 778
inequality, 76, 825–828

Clogging. See Colmation
Coating factor, 171
Coleman and Noll method, 84, 95, 825–828
Collocation

point, 255
subdomain, 256

Colmation, 196
Compressibility

fluid, 103
skeleton, 117

Concentration, 53
mass, 53, 125

maximum, 127
molar, 53, 177

Condition number, 360
Conduction, 55

hydraulic, 55
thermal, 55, 847–850

Conductivity
hydraulic, 124
isotropic, 234
relative, 111
thermal, 97, 116, 234

Confined aquifer, 46, 408, 429
Conformity, 757
Conjugate gradient method, 362–363
Conservation

energy, 74
mass, 71–72
momentum, 73
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principles, 66
species mass, 72–73

Conservativity, 6, 399
local, 399

Consistency, 6
Consistent boundary flux method, 391–398
Consistent mass, 293
Consistent velocity approximation, 568–573
Constitutive theory, 80–111
Constraints, 208–216
Content

moisture, 497
soil water (see Moisture)

Continuum, 3, 57
mechanics, 9

Convection, 54, 548–557
cellular (see Rayleigh-Bénard)
double-diffusive, 138, 554–557, 611–624

finger, 556, 611
forced, 54
free, 54, 552–554
mixed, 54
monotonic, 555
oscillatory, 554, 555, 557
Rayleigh-Bénard, 548
regimes, 552–557
stable, 555
stationary, 553
thermohaline, 138, 554–557

Convective form
advection-dispersion equation, 259–260
balance equation, 71

Convergence, 6, 360
criterion, 376, 472–473
quadratic, 377
radius, 377, 379
super-, 385

Coordinates
Cartesian, 28
cylindrical, 33
Eulerian, 29
Lagrangian, 29
material, 29

Coordinate system, 28
orthogonal, 31
rotated, 35

Coordinate transformation, 31, 267, 274, 283,
291, 577, 760, 761

Courant-Friedrichs-Lewy condition, 316
Courant number, 314
Crank-Nicolson scheme, 298, 310, 312, 347
Cross effects, 94, 98, 99
Cross product. See Vector product
Crout method, 353–357

Cubic law, 152
Curl, 39

Dam seepage, 522–524
Danckwerts condition. See Boundary

conditions, natural (no-mass flux)
Darcy

equation, 121, 122, 151
flow, 94
velocity, 116, 139, 148, 405, 427, 485, 909

depth-integrated, 407
Darcy-Brinkman-Forchheimer equation, 121
Darcy-Forchheimer equation, 121
Darcy-Péclet number, 551
Darcy-Weisbach law, 155
Davies relationship, 54
Decay, 118, 167, 181–182, 627, 642, 654

rate, 181
Deformation tensor, 81

rate of fluid phase, 83
rate of solid phase, 81

Degradation kinetics, 187–188, 652–654,
663–671

Degrees of freedom, 255, 266, 402, 404
Delaunay-Voronoı̈ method, 766–770
Density, 53

bulk mass, 54
entropy, 53
fluid, 102–103
internal energy, 53
mass, 53
momentum, 53
ratio, 128
specific, 53, 54
thermally variable, 829–832

Density-driven flow, 537–624
Derived quantities, 382–398
De Saint-Venant equation, 154
Desorption, 55

rate-limited, 654–659
Diagonal tensor, 26
Diffusion, 54

coefficient, 100
molecular, 99
tensor, 99
thermo-, 99

Diffusion-type flow equation, 155, 711
Diffusivity, 86

capillary, 451
thermal, 549

Directional cosines, 35, 228–230, 716
DFE, 716–720

Direct solution methods, 352–358
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Discrete feature, 141–165
elements, 425, 711
modeling, 711–750

Disjoint domain partitioning, 282
Dispersion

Burnett and Find’s tensor, 626
hydrodynamic, 99
mechanical, 70, 99
numerical, 346, 562–563
Scheidegger-Bear model, 97, 99
thermo-

hydrodynamic, 97
mechanical, 97

Dispersivity
longitudinal, 97, 99

numerical, 328
transverse, 97, 99

Displacement, 30, 81, 96
Dissipation, 74

anisotropic balancing, 328
Distribution coefficient, 131, 179
Divergence, 39
Divergence form

advection-dispersion equation, 257–259
balance equation, 70

Divergence theorem. See Gauss’s integral
theorem

Divergenceless. See Solenoidal
Domain, 48

partitioning, 282
Dot product. See Scalar product
Double-diffusive convection, 554–557,

611–624
fingering, 556, 611

Double dot product, 25
Drainage, 526–533
Drawdown, 429
Dufour effect, 98
Dupuit assumption, 64
Dupuit-Forchheimer relationship, 116
Dyadic product, 24

Einstein’s summation convention, 23
Elasticity matrix, 96
Elder problem, 593–601

long-heater, 782
Energy, 52

internal, 53, 103–106
kinetic, 53
total, 66

Entropy, 52
balance, 74–75

inequality, 87–89
Envelope, 357
Equations of state, 89, 102–108
Equilibrium

chemical, 175
condition, 547, 949, 950
constant, 175
hydrostatic, 540
pre-, 176
restrictions, 85–86
thermodynamic, 85, 116
two-site, 659

Error norm, 250
Errors, 5, 250–252, 344–349
Essential boundary condition, 48
Eulerian angles, 36, 228
Euler method

backward, 298, 299
forward, 298, 299

Excavation, 483
Expansion coefficient, 103

solutal, 103, 128
thermal, 103
variable thermal, 103

Exponential relationship, 836, 840
Extensive quantity, 52, 66

Fault, 142, 711
FEFLOW, ix

development, x
Fick’s law, 99, 156
Fill-in, 357

reduction, 357–358
Filtration velocity. See Darcy velocity
Fingering regime, 556
Finite difference method, 240, 256
Finite element mesh, 262, 757–786
Finite element method, 239–404

Bubnov-Galerkin (see Galerkin)
extended, 242
Galerkin, 256
least squares, 256, 332–339
Petrov-Galerkin, 256, 321–327

Finite volume method, 240, 256
Fixed point iteration, 376
Flooding, 533–536
Fluctuation, 63
Forced convection, 54
Forchheimer

coefficient, 94
flow, 94
term, 121
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Fourier heat flux, 98, 158, 847
Fracture, 47, 60, 141, 142, 711, 724–729,

736–740
inclined, 731–735
network, 741–744

Fractured porous rock, 47
Free convection, 54, 552–554
Free surface, 51, 131, 145, 216

computation, 412–424
Freshwater, 45, 103, 544
Freundlich adsorption, 131, 179, 626
Friction, 74, 119, 121

slope, 154
Frolkovič-Knabner algorithm, 572–573,

909–917
Functional spaces, 250–252

Galerkin method, 256
Gardner’s problem, 488–489
Gaussian elimination, 352–353
Gauss-Legendre quadrature, 288
Gauss points, 289, 291, 386, 389, 487
Gauss’s integral theorem, 40, 258, 259, 265,

395
Geothermal

energy extraction, 2, 538, 683
energy storage system, 2, 538
heat pumps, 673

Ghyben-Herzberg relation, 540, 545
Gibbs free energy, 85
Gibbs’ notation. See Symbolic notation
GIS, 12, 759
GMRES method, 364–365
Gradient operator. See Nabla operator, 63, 65,

77, 82, 144, 713
Gravity, 73, 88, 123, 131, 537, 546, 570

projected, 575–580
GRIDBUILDER, 765
Groundwater, 1, 45

divide, 47
flow, 405–444
perched, 47
recharge, 47, 134
whirls, 435

Hagen-Poiseuille flow, 151, 159, 222
Half-life, 181
Hanging nodes, 757, 775
Haverkamp relationship, 835, 840
Heat

flux, 96–98

Fourier flux, 98, 158, 847
radiative, 676
specific capacity, 105
transfer, 847–854

coefficient, 205, 850, 940–941
parallel, 852
serial, 851

transport, 673–709
Heaviside function, 415
Hele-Shaw cell, 538, 583, 593, 601, 611
Henry adsorption, 131, 178–179, 626
Henry problem, 585–589
Heterovalence, 172
Hook’s law, 95
Hoopes and Harlemann’s two-well problem,

340
Horton-Rogers-Lapwood problem, 548–550
Hydraulic

aperture, 159
conduction, 55
conductivity, 124
head, 123
radius, 145, 159

Hydrostatic condition, 546–548, 569–570, 584,
921–923

Hysteresis, 110, 479–483

Identity matrix. See Kronecker symbol
Incidence matrix, 279
Index notation, 23
Infiltration, 47, 134, 196
Initial conditions, 48, 194
Inner product, 254
Intensive quantity, 52, 66
Interface, 51

boundary, 51
graphical, 13
sharp, 544

Interpolation, 802–808
transfinite, 762

Ion exchange, 177
Irrotational, 42
Isoparametric elements, 268, 859–863
Isotropy, 234
Iterative solution methods, 358–374

Jacobian, 30, 33, 37, 284
inverse, 285
matrix, 32, 378
partial, 378, 415

Juxtaposition, 11
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Kantorovich method, 248
Kinematics, 80–82
Kinetics

Arrhenius type, 188–189
chemical, 172
degradation type, 187–188
editor, 190, 652, 658, 662, 670
Monod type, 189–190

Kirchhoff integral transform, 453
Kriging, 13
Kronecker symbol, 24

Lanczos
bi-conjugate gradient stabilized method,

367
conjugate gradient square method, 366

Langmuir adsorption, 131, 178, 626
Laplacian

equation, 43
operation, 39
smoothing, 772

Law of mass action, 175
LBB condition, 404
Leaching, 202
Leakage, 50, 196
Leipniz’s integral rule, 41
Levi-Civita tensor, 24
Lewis number, 551, 555, 612
Locking, 282
Lumping, 295–296

Macroscopization, 69
Manning-Strickler law, 155, 159
Mapping, 32
Mass

concentration, 53, 125
maximum, 127

density, 53
fraction, 54
matrix

consistent, 293
lumping, 295–296

species flux, 98–100
transfer coefficients, 201
transport, 625–671

Material derivative, 31
Matrix solution methods, 351–374
Mesh

adaptive refinement, 776–786
alignment, 757
conformal, 757
derefinement, 774–776

fixed, 422
generation, 760–770
moving, 416
nonconformal, 757
optimal, 691
prismatic, 772–774
refinement, 774–776
smoothing, 771–772
structured, 758
superelement, 759
unstructured, 758

Meshless method, 240
Method of characteristics, 240
Method of weighted residuals, 252–256
Michaelis-Menten mechanism, 168, 183–186
Mixed

boundary conditions (see Boundary
conditions Robin-type)

convection, 54, 579
finite element formulation, 402
Richards’ equation  � s�form, 449

Model
conceptual, 5
development, 9
final equations, 121–137
mathematical, 4
numerical, 9
simulation, 9
standard equations, 138–139

MODFLOW, 412
Moisture

capacity, 449
inverse, 451

content, 497
Molar concentration, 53, 177
Molarity, 53
Monod kinetics, 168, 189–190
Monovalence, 172
Moving

interface, 145
mesh, 416–421
surface, 131, 133

Mualem assumption, 838
Multigrid methods, 367–374

algebraic, 373–374
geometric, 370–373

Multilayer well
boundary condition, 221–224
incorporation, 425–426

Multilevel nested dissection method, 358

Nabla operator, 31, 34
Navier-Stokes equation, 92, 150, 151, 154, 402
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Newton iteration method, 377–379, 415, 465,
467, 803

modified, 380
one-step, 382, 465, 474, 564
quasi-, 380

Newton-Raphson method. See Newton
iteration method

Newton’s law of cooling, 50, 850
Newton’s viscosity law, 92, 150
Newton-Taylor law, 155
Nodal reordering, 357–358
Non-Fickian law, 100, 581–583, 606
Norm

energy, 251
error, 250
maximum, 252
root mean square, 252
vector, 25

Normalized vector, 25
Numerical dispersion, 346, 562–563
Nusselt number, 551, 929

Oberbeck-Boussinesq approximation, 125–127
extended, 126

Optimality, 6
Galerkin method, 855–857
Oñate and Bugeda’s criterion, 781
Zienkiewicz and Zhu’s criterion, 780

ORTHOMIN method, 363–364
Outflow boundary condition, 224–226
Overland flow, 154, 722

Péclet number, 314
Partial differential equations

elliptic, 246
hyperbolic, 246
parabolic, 246

Particle tracking, 786–796
Pollock’s method, 789–792
Runge-Kutta method, 792–796

Partitions, 282
Pathline, 44, 786
Perched

aquifer, 47
water table, 509–512

Permeability, 94, 111
relative, 111, 837–841
saturated, 111
tensor, 94, 111

Permutation symbol, 24
Perturbation, 552, 553, 596, 605, 611, 623

initial, 620

Petrov-Galerkin method, 256, 321–327
least square, 332–339

Phase, 51
fluid, 58, 122
gaseous, 58
liquid, 58
nonwetting, 109
solid, 58
stagnant, 122
wetting, 109

Phenomenological equations, 86, 89–100
Phreatic aquifer, 47
Phreatic surface. See Free surface
Picard iteration method, 375–377, 415, 421,

458
one-step, 382, 564

Piezometric head. See Hydraulic head
Pinching, 774
Poisson’s ratio, 95
Pollock’s tracking method, 789–792
Pore

diameter, 150
Reynolds number, 119
scale, 479
size distribution index, 483, 834, 839
velocity, 549, 788

Porosity, 58
drainable (see Specific yield)
fillable (see Specific yield)
time-varying, 483–485

Porous medium, 57–139
Potential

chemical, 75
flow, 42
function, 42
pseudo-, 43
reference, 919

Prandtl number, 929
Preconditioning, 360–362
Predictor-corrector methods, 299–308
Pressure

aquifer, 46
capillary, 109
head, 123, 833
mechanical, 91
thermodynamic, 84, 91

Primary variable switching technique, 454,
465–477, 903–907

Principle
admissibility, 83
equipresence, 83
objectivity, 83

Profiling, 350
Projection, 27, 331, 807
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Pseudopotential, 43
Pseudo-unsaturated flow, 422
Pumping wells, 198

Rational thermodynamics, 3
Raviart-Thomas element, 404
Rayleigh-Bénard convection, 548
Rayleigh number

critical, 552, 553
effective, 563
solutal, 550
thermal, 550

Rayleigh-Ritz method, 252
Reaction, 100–101

bulk rate, 101
chemical, 167–191
consecutive, 168, 182–183
decay, 181–182
equilibrium, 101
heterogeneous, 100, 167
homogeneous, 100, 167
irreversible, 101, 167
kinetic, 101, 167
kinetics editor, 190, 652, 658, 662, 670
reversible, 101, 167
serial-parallel, 649–652
stoichiometry, 172
surface, 168

Red-green triangulation, 775
Reference temperature, 84, 103, 106, 829
Refrigerant, 684

velocity, 931
Relative permeability, 111, 837–841
Representative elementary volume, 58–60

aquifer, 64
Residual, 253, 254, 300, 377, 379, 467, 469,

472
control, 474
error, 255, 472
vector, 361

Resistance, 50
specific, 50

thermal, 207, 851
thermal, 851

borehole, 853
internal borehole, 853, 854

Retardation, 180–181
derivative, 119, 131
factor, 119, 131
thermal, 549

Retention curve, 111, 833–846
drying, 479
wetting, 479

Reverse Cuthill-McKee method, 358
Reynolds number, 119, 929
Reynolds’ transport theorem, 41
Richards’ equation, 139, 447

s-form, 450
mixed  � s�form, 449
standard h-form, 449

Richardson iteration, 359
Robustness, 8
Roughness coefficients, 155, 163

corrected Manning, 164
Runge-Kutta tracking method, 792–796

Saline water, 45
Salt dome problem, 589–593
Salt lake problem, 601–605
Saltpool problem, 607–610
Saltwater, 45, 107, 541, 544

encroachment (see Intrusion)
intrusion, 45, 538
upconing, 538, 591

Saturated zone, 47
Saturation, 109
Scalar product, 23
Scheidegger-Bear dispersion model, 97, 99,

156, 224, 626
Schur complement, 689
Schwarz’s inequality, 254
Seepage

face, 217, 523
velocity (see Darcy velocity)

Self-adjoint differential operator, 253
Sequential iterative approach, 566, 635
Shape functions, 266, 859–863

global, 268–274
local, 268–274

Sharp interface approximation, 544–546
Shear

modulus, 95
strain, 82
stress, 92, 154

Sherwood number, 551, 597
Shock capturing, 329–332
Simulation model, 9
Smoothing

global, 384–385, 571
Heaviside function, 415
local, 385–388, 571
mesh, 771–772

Soil water content. See Moisture, content
Solenoidal, 42
Solute, 102

single-species, 102, 628
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Solvent, 102
Soret effect, 99
Sorption, 55

Freundlich, 131
Henry, 131
isotherm, 118
kinetic, 659–662
Langmuir, 131

Sorptive parameter, 453
Species. See Chemical, species
Specific

density, 53
heat capacity, 105
resistance, 50
yield, 135

Spectral element method, 240
Spline approximation, 111, 447,

841–846
Springer’s method, 231–233
Stability, 6, 317, 344–349

time integration, 308–317
Static condensation, 688
Steady state, 55, 138

approximation, 175
Stoichiometric coefficient, 172
Stoichiometry, 172
Stokes’ assumption, 92, 150
Stokes’ theorem, 41
Storage coefficient

specific, 128
thermal, 549

Storativity. See Storage coefficient
Strain, 96

normal components, 82
pseudovector, 81
shear components, 82
tensor, 73, 81, 147

rate, 81
Streamfunction, 43, 798
Streamline, 43, 787

computation, 796–802
stabilization, 333
upwind, 327–329

Stress
deviatoric fluid tensor, 86, 91–93
deviatoric solid tensor, 96
solid tensor, 94–96
surface, 147
wind, 154

Subsurface
hydrology, 122, 405
water, 1, 45

Suction, 833
Superconvergence, 385

Superconvergent patch recovery, 388–390
Supercriticality, 556
Superelement mesh, 759
Surface, 51

condition, 145
material, 145
ponding, 218
reaction, 168
runoff, 47
specific exchange, 941
stress, 147
velocity, 134
water, 45

Symbolic notation, 23
Symmetric tensor, 26
Symmetrization, 332

Temperature, 75, 106
reference, 84, 103, 106, 829
system, 116

Tensor product. See Dyadic product
Test functions. See Weighting functions
Theis’ problem, 429
Thermal

conduction, 55
conductivity, 234
resistance, 851

borehole, 853
internal borehole, 853, 854

resistance and capacity model, 685
specific resistance, 207, 851

Thermodispersion
hydrodynamic, 97
mechanical, 97

Thermodynamics, 3, 9
first law of, 52, 66, 74
rational, 3
second law of, 52, 69, 75–76, 79

Thermohaline convection, 554–557
Time integration, 293–317

explicit scheme, 298
implicit scheme, 298
predictor-corrector methods, 299–308
stability, 308–317
trapezoid rule, 298, 299

Time step, 294
adaptive control, 299, 304–308
critical, 311
target-based control, 477

Tortuosity, 100, 838
Total balance error, 472
Total dissolved solids, 107, 540
Trajectory, 44, 488
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Transfer
coefficients, 196

heat, 205
mass, 201

condition, 50
Transfinite interpolation, 762
Transformation

coordinate, 31, 267, 274, 283, 291, 577,
760, 761

methods, 453–455
Transmissivity, 136, 227, 230
Transport

mapping, 760
theorem, 63, 65

Transpose, 25
Trapezoid rule, 298, 299, 302
Trial functions. See Basis functions
TRIANGLE, 770
Turner number, 551, 591, 612

Unconfined aquifer, 47, 406, 413, 429
Unit matrix. See Kronecker symbol
Unit vector, 25
Unsaturated

flow, 445–536
porous media, 139
zone, 1, 47, 134

Upstream weighting, 487–488
Upwind, 317–339, 562–563

full, 325, 329
least squares, 332–339
methods, 317–339
parameter, 321

optimal, 325
shock capturing, 329–332
streamline, 327–329

Upwinding. See Upwind, methods

Vadose zone. See Unsaturated, zone
Validation, 5, 7
van Genuchten-Mualem relationship, 837–838
van Genuchten relationship, 447, 833–834

modified, 839–840
Variable-density flow, 537–624
Variables

dependent, 83

independent, 83
switching, 454, 465–477, 903–907

Variably saturated porous media, 445–536
Variational functional, 253
Vector product, 23
Velocity, 31, 38, 723

barycentric, 68
consistent, 568–573
continuous, 383, 788
Darcy, 116, 139, 148, 383, 405, 427, 485,

909
depth-integrated, 407

divergenceless (see Solenoidal)
interface, 51, 63, 78, 146
normal, 49
particle, 67
pore, 549, 788
refrigerant, 931
relative, 82, 83, 825
solid phase, 81
surface, 134
total, 723

Verification, 7
Virtual radius, 690
Viscosity

dilatational, 91
dynamic, 91, 106–108
reference fluid, 107
relation function, 108, 124

Void space, 58, 109
Voigt notation, 81
Vorticity, 39, 799

function, 799

Water table, 47, 133, 429
Weak forms, 257–262
Weighting functions, 254, 255, 321, 330
Well bore, 222, 425
Well doublet system, 692–696
Well-type singular point conditions, 198, 203,

207
Wells, 198
Whirls, 435
Wiggles, 6, 318, 320, 960

Young’s modulus, 95
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