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Preface to Second Edition

The main change made in this edition is a new chapter, Chap. 10, located between
Chaps. 9 and 10 of the previous edition. It presents the method based on simulation
of advective solute transport through porous media with direct inclusion of
hydrodynamic dispersion. The method reduces solute transport simulation to
solving partial differential equations of the first order for different actual pore
water velocities which makes it very flexible. The ways of evaluating the actual
pore water velocities are suggested also. The method is an alternative to the
classical convective-dispersion model with it fictitious dispersion coefficient and
the mean actual pore velocity, excluding hydraulic dispersion, the main reason for
appearance of long tails of the observed breakthrough curves.

The history of this chapter appearance is following. A known hydrogeologist
stated to Dr. Steven Kraemer, my supervisor at that time, that the use of the first
type boundary condition in simulation of solute transport in porous media is
incorrect. He suggested overwriting all related software used by Environmental
Protection Agency, U.S.A., applying the boundary condition of the third type, the
flux condition, the only correct boundary condition, according to him. Before
discussing the issue with his supervisors, Steve asked me to clarify the situation.
The most detail basis for introducing the flux boundary condition which I could
find is the work of Parker and van Genuchten (1984). In my opinion the basis was
unsatisfactory, doubtful mathematically and physically, which I reported to Steve.
After becoming a free lance hydrogeologist, I got more free time and took part in
discussion (Gorokhovski 2013) on Batu (2010) holding that the flux condition is
the only correct one because it keeps mass-balance at the inlet. In the response to
my criticism, (Batu et al. 2013) do not refute my arguments but continue insist that
the flux boundary condition is the only correct one. It is obvious that the use of the
mean pore velocity in the classical model eliminates hydraulic dispersion from it.
The empirical dispersion coefficient should, as if, compensate for the hydraulic
dispersion. How this fictitious coefficient does the job was never explained, and it
does not factually. Long tails of the observed breakthrough curves exists due
mostly hydraulic dispersion. The impossibility in most cases to reproduce them by
simulation breakthrough curves is clear demonstration of this. The issue of fitting
the simulation breakthrough curves into the observed long tailed ones was the
main motivation for Parker and van Genuchten (1984) to introduce the flux
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boundary condition. Likely, its application did not resolve the issue (Parker and
van Genuchten 1984; Paseka et al. 2000; Delleur 2006; Dusek et al. 2007;
Appuhamillage et al. 2010).

Other changes include reviews of some works appeared after publishing of the
first edition of this book or related to Chap. 10. Thus, in distinction from the
previous edition, all examples related to solute transport are concentrated in this
chapter to minimize the necessary changes in the book. Few misprints and inac-
curacies slipped into the previous text were corrected also.
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Preface to the First Edition

This book concerns the uncertainty of the hydrogeological modeling. In a sense, it
is a development of the ideas published long ago (Gorokhovski 1977). The topic of
that book was impossibility of evaluating the uncertainty of the simulation results
in a provable quantitative way. The book happened to be a success: I had difficulty
finding its copies for my friends, some prominent hydrogeologists and geological
engineers started treating me with more respect, and some colleagues stopped
speaking to me for a long time. But no other consequences followed.

I personally was not fully satisfied. The book was mostly a critique based on
common sense and illustrated by simple and transparent examples from hydro-
geology and geological engineering. The examples could be easily verified, using
just a calculator. The book stated that the impossibility to evaluate the uncertainty
of simulation results does not preclude obtaining the results which are best in a
reasonably defined sense, though the uncertainty of those best results remains
unknown. But I had a vague notion on how to assure such results at that time.

Quantitative predictions of responses of geological objects on man made and
natural impacts were, are, and will remain in the foreseeable future a considerable
element of engineering design and decision making. Even in that time and even in
the Soviet Union, where I resided and worked, it was possible to simulate many
applied hydrogeological processes, though access to the pertinent software and
computers was not easy, at least for me (see Afterword for more details). At
present, due to the fast development of computers and numerical methods, we can
simulate almost any process based on contemporary concepts and theories. The
gravest obstacle remains uncertainty of the simulation results caused by paucity of
the available data on properties of geological objects, boundary conditions, and
impacts when the natural impacts are affecting factors. So one of the main issues,
in my opinion, is how to assure that the yielded results are the best, effective, in the
sense as the best is defined. I hope that this book is a considerable step to yielding
the effective simulation results.

The uncertainty of the results of hydrogeological modeling was and is discussed
intensively. Thus, Beck (1987) writes: “The difficulties of mathematical modeling
are not questions of whether the equations can be solved and the cost of solving
them many times; not are they essentially questions of whether priory theories (on
transport, dispersion, growth, decay, predation, etc.) is potentially capable of
describing the system’s behavior. The important questions are those whether the
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priory theory adequately matches observed behavior and whether the predictions
obtained from models are meaningful and useful”. Oreskes et al. (1994) hold that
geological models “predictive value is always open to question”. (See also,
Oreskes 2003, 2004). This is not surprising, since in hydrogeology “the modeling
assumptions are generally false and known to be false” (Morton 1993, Beven
2005). I could continue this list of similar quotations. But let me restrict myself
with one more. As Beven (2004), puts it mildly: “There is uncertainty about
uncertainty”. I think he is wrong: the uncertainty of the hydrogeological modeling
is the fact about which there is no uncertainty. Indeed: “It’s a fundamental tenet of
philosophy of science that the truth of a model can never be proved; only dis-
proved,” (Mesterton-Gibbons 1989).

The above quotations are a tribute to academism really. Experienced hydrog-
eologists are well aware of the uncertainty of most their conclusions. And the
reason is obvious. The models include properties and combinations of the prop-
erties of geological objects. Those must be known continuously, at least, when
differential or integral equations are involved. That is, they must be known at each
point of the object and at each instant of the simulation period, excluding sets of
isolated points and instants. But geological objects are inaccessible to direct
observations and measurements and the data on them are sparse. The geological
models are a tool to interpolate and extrapolate the sparse data at every point of the
geological object which they represent in simulations and at very instant of the
periods of the simulations. The tool is limited. The geological interpolation and
extrapolation are based on the principle that geological settings of the same origin,
composition, and geological history have the same properties. This principle leads
to so-called piecewise homogeneous geological models. Sometimes, the properties
are subjected to spatial trends whose mathematical descriptions are arbitrary in
essence (Chap. 3). So how can we evaluate in a quantitative way the reliability of
the geological models with respect to a problem at hand? It suffices just a common
sense to conclude that it is impossible except, maybe, in some rare cases.

Since the issue is not simulations, solving the corresponding equations, but the
uncertainty of the yielded results, the question arises, what to do? U.S. EPA (1987)
gives the answer related to environmental predictions, including hydrogeological
ones: “It should be recognized that the data base will always be inadequate, and
eventually there will be a finite sum that is dictated by time, common sense, and
budgetary constraints. One simply has to do the best one can with what is avail-
able”. Unfortunately, (U.S. EPA, 1987) does not explain what is and how to do
“the best”.

The situation seems to be clear enough: it is impossible to evaluate the
uncertainty of simulation results of the hydrogeological models in a provable
quantitative way. But, contrary to its own statement cited above U.S. EPA (1989)
holds that “Sensitivity and uncertainty analysis of environmental models and their
predictions should be performed to provide decision -makers an understanding of
the level of confidence in model results and to identify key areas for future study”.
It claims also that “A number of methods have been developed in recent years for
quantifying and interpreting the sensitivity and uncertainty of models”. NCR



Preface to the First Edition xi

(1990) states “Over the past decade, the development of stochastic modeling
techniques has been useful in quantitatively establishing the extent to which
uncertainty in model input translates to uncertainty in model prediction”. Binley
and Beven (1992), Beven and Freer (2001) and Beven (2005), suggest a general
likelihood framework for uncertainty analysis, recognizing that it includes some
subjective elements and, therefore, in my opinion, may not be provable. Hill et al.
2000, suggest the algorithm and program, permitting evaluating the uncertainty of
simulation results. Cooley, 2004, suggests a theory for making predictions and
estimating their uncertainty. And so on (Feyen and Caers 2006; Hassan et al. 2008;
Rojas et al. 2008, 2010; Ch and Mathur 2010; Mathon et al. 2010; Ni el at. 2010;
Singh et al. 2010a, b; Zhang et al. 2010; Doherty and Christensen 2011, and
others).

For example, Doherty and Christensen (2011) hold in the abstract to their paper
that it “describes a methodology for paired model usage through which predictive
bias of a simplified model can be detected and corrected, and postcalibration
predictive uncertainty can be quantified”. However, they write closer to the end of
their paper: “In designing and implementing the methodology discussed herein,
we have assumed that the processes and construction details of the complex model
approximate those of reality. It is obvious that this will not always be the case.
Indeed, even the most complex model is quite simple compared to reality itself. In
spite of this, a modeler can only do his or her best”. Something like this has been
already quoted (EPA, 1987). But let us continue. Several lines below their pre-
vious statement Doherty and Christensen (2011) write: “Nevertheless, the less
than perfect nature of a complex model, and its consequential failure to represent
all nuances of system behavior, may indeed result in some degree of underesti-
mation of predictive uncertainty. This, unfortunately, is unavoidable”.

I pay more attention to the work of Doherty and Christensen (2011) not only
because it is one of the most recent ones on the uncertainty of hydrogeological
simulation, but because it is typical. Many, if not most, of such publications
proclaim in the very beginning that a method of quantifying of the simulation
uncertainty is being suggested. However, somewhere closer to the end, the authors
explain that they can estimate the uncertainty to some degree. The authors, being
excellent mathematicians, understand that their simulations are based on a number
of explicit and implicit assumption, hypotheses, and simplifications most of which
cannot be validated or are knowingly false. So their estimates of the uncertainty
are not provable. This is from where all these “to some degree” appear. The Polish
poet and aphorist Jerzy Lec told about such kind of situations: “Impolitely to speak
‘it seems’ when everything is already clear”.

Doherty and Christensen (2011) attracted my attention also because their
methodology of the paired model usage, at first glance, seems to be similar to the
two-level modeling described in this book and presented previously, in various
contexts related to its different possible use (Gorokhovski 1986, 1991, 1996, 2012;
Gorokhovski and Konivetski 1994; Gorokhovski and Nute 1995, 1996). While
seemingly alike, the paired model usage and the two-level modeling differ with
respect to their mathematics and goals. The goal, as well as mathematics, of the
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two-level modeling is much more modest: It recognizes the impossibility to
quantify the uncertainty of simulation results in a provable way and is focused just
on obtaining the best simulation results in reasonably predefined senses.

Although the number of publications providing the methods, as if, quantifying
uncertainty of the results of hydrogeological modeling growths very fast, they
cannot call off the philosophical tenet which leaves us still with the only real
option: “to do the best one can with what is available”. In this book, it means
obtaining the best simulation results in the sense of the least squares criterion on a
given monitoring network, though other criteria of the efficiency are possible also.
Besides, the required ‘the best’ must relate not to the best fit during model iden-
tifications (calibrations), but to the best results in the coupled predictive simula-
tions. Such simulation results are called effective. To achieve the predictive
efficiency for a given simulation model, we need to find the effective parameters,
that is, the parameters making the pertinent predicting or evaluating effective.
A model furnished with the effective parameters is called effective. Once more, the
goal must be the models which are effective in predictive simulations and extended
evaluations, not in model identification procedures like calibration. This can be
achieved by introducing the transforming mechanisms converting the actual
properties of geological bodies into effective parameters of the predictive models
(Chap. 5). Chapters 6 and 7 contain examples of such mechanisms. The standard
procedure for evaluating the transforming mechanisms is called by me the two-
level modeling (Chap. 8). The transforming mechanisms can be applied for solving
inverse problems (Chap. 9). The notion of the inverse problem in this book differs
from the standard one accepted in hydrogeological modeling. That is, the inverse
problem is understood as evaluating properties of more complex models using less
complex ones. This second edition contains new Chap. 10 discussing solute
transport through porous media. Chap. 11 is a short conclusion. The book ends
with Chap. 12 in which I compare my Soviet and American experiences as a
teacher and a scientist. I hope it may by interesting for readers.

I hope that this book can be helpful for modelers working with the underground
flows and mass transport. But its main addressees are common hydrogeologists
and, maybe, students of hydrogeology and environmental sciences. I knew and
know many excellent hydrogeologists who never differentiated or integrated
anything after passing the final tests on calculus. For these reasons, I resort to the
sound sense and the simplest mathematical models and examples, rather of the
conceptual nature, i.e., “constructed to elucidate delicate and difficult points of a
theory” (Lin and Segel 1974, Kac 1969) as much as I can. However, the approach
to alleviating the issue of the uncertainty of the results of hydrogeological simu-
lations suggested in this book requires intensive computational calculations. This
does not permit avoiding mathematics completely. But the mathematics applied in
the text is mostly the least squares method. The examples and the results are
transparent and easy to understand and to interpret even for those readers who do
not want to mess with mathematics.
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Abstract

Geological models applied to predictive hydrogeological modeling are not exact
replicas of the objects they represent. Manifold details related to structures and
properties of the objects remain unknown. Those details can affect simulation
results considerably, differently, and unpredictably for different formulations of the
simulation problem. They cause the phenomenon of problem-dependence of model
identification, make the model parameters, effective in calibration, ineffective in
predictive simulations and do not permit the provable evaluation of uncertainty of
the simulation results. However, this does not preclude obtaining the best, effective,
simulation results based on the available data and predefined criteria of quality of
predicting. To provide such results, transforming mechanisms are introduced. They
are mathematical expressions for evaluating the model parameters, which are
effective in predictive simulations. Examples of the mechanisms are provided as
well as method of their evaluation, and how the mechanisms can be used for
interpretation hydrogeological data is also shown. In this edition, a new chapter is
included suggesting, as alternative to the dispersive-convective model of solute
transport through porous media, the advective model taking in consideration
hydraulic dispersion and demonstration of its advantage. In his last chapter, the
author compares the conditions under which he worked in the Soviet Union
(35 years) and in the United States (20 years) which may be interesting for readers.

XXi



Chapter 1
Introduction

Although hydrogeological conditions can be of interest per se, most of hydro-
geological investigations are of applied nature, and their results are used in
decision-making that may carry large ecological and financial risks. For example,
when developing a reservoir project, the developers have to evaluate possible
losses of water from the reservoir, stability of the dam and how the adjacent soils
and rocks could be affected by different project decisions. Hydrogeological
investigations related to the use of an aquifer for water supply should not only
conclude that the usage is possible. The developers must also have estimates on
how long and with what intensity the aquifer can be exploited by a well or a group
of wells. The developers of a landfill project must know whether the landfill can
cause contamination of the aquifer below and, if so, whether and when the con-
taminant plume reaches water supply wells and the concentration of the pollutant
at the wells. The developers of an irrigation project need to know to what extent
and how fast the water table rise should be expected, what consequences are
possible and how to deal with them, etc.

The point is that for the projects that affect geological surroundings to be
effective environmentally and economically, the responses of the surroundings to
the planning impacts must be taken in consideration. To this end the goal of the
applied hydrogeological investigations is to provide quantitative predictions of
those responses. Moreover, to make a correct or optimal decision, decision-makers
must know the errors of the quantitative predictions. (The term ‘to predict’ relates
to the processes developing in time. In this text it is used also as a synonyms of the
term ‘to evaluate’ in cases of evaluating some instant value or steady state con-
ditions, if such usage does not cause confusion.)

The usual tool for obtaining quantitative hydrogeological predictions is math-
ematical modeling, i.e., solving differential and integral equations describing the
pertinent processes or states. The mathematical models are applied to the geo-
logical models substituting for real geological objects. In this book, the mathe-
matical models are assumed to be adequate, i.e., that they reproduce the processes
of interest sufficiently accurately. This is not true in general (see Chap. 10), but the
mathematical models recognized by the professional community and applied
properly usually yield satisfying approximations of the reality. The main source of

V. Gorokhovski, Effective Parameters of Hydrogeological Models, 1
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the errors occurring in simulations is the distinction between predictive geological
models and actual geological objects, and inaccurate or often just wrong boundary
conditions, though inaccuracies of the mathematical models also contribute in
those errors. Since the geological surroundings are inaccessible to direct obser-
vations and measurements, and data on them are sparse, the issue is how the parts
of geological objects which are unknown or wrongly presented by geological
models can affect the accuracy of the simulation results.

Let us start with simple example: steady-state filtration in an unconfined aquifer
on a horizontal base when the recharge is absent (Fig. 1.1). Under the Dupuit-
Forchheimer assumption (simplification), considering the vertical component of
the Darcy velocity to be negligibly small, the filtration can be treated as one-
dimensional. It is governed by the following ordinary differential equation

where h(x) is the thickness of the aquifer at point x and K(x) is the hydraulic
conductivity varying along the x-axis. Equation 1.1 is derived based on the law of
conservation and the Darcy law stating that the velocity of filtration g (the Darcy
velocity, specific flux) is equal to

dh
dx’
The boundary conditions are the thickness of the aquifer at the ends of interval
[0, L] which is assumed to be known: h(0) = hy and h(L) = h;.

Let the goal be to evaluate the thickness of the aquifer at any arbitrary location
x within interval [0, L]. To this end, we have to integrate Eq. 1.1. Its first inte-
gration yields

qg=—-K(x) (1.2)

dh

2K (x)h(x) o c
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where C is an arbitrary constant. (The factor of two is being used to simplify
Eq. 1.3 below.) Assuming that K(x) # O in interval [0, L], we can rewrite the
above equation as

dx

Integrating the above equation, we obtain

X X

2/h(x)dh:h2(x) —1*(0) = C/K(x) (1.3)

0 0

To obtain a unique solution to Eq. 1.1, we need to define the arbitrary constant
C. To this end we use the second boundary condition at x = L:

L
dx hy —h?
2 _ 2 _ T
hLC/K(x)—i-ho and C= T
0 0 K(x)

Then the solution to Eq. 1.1 with the given boundary conditions takes form

Jo &5
0 K(x)
L _dx
0 K(x)

W (x) = hg — (g — )

(1.4)

Thus, to obtain the thickness of the aquifer, i(x), at arbitrary point x within the
interval [0, L], we need to know the boundary conditions %, and /, at the ends of
the interval and the hydraulic conductivity, K(x), continuously, i.e., at each point
of the interval, excluding, maybe, a countable set of points (i.e., a set of points that
can be enumerated, meaning separated from each other).

However, the knowledge of K(x) at each point of the interval of interest is not
possible physically and economically. A few, sparse measurements of the
hydraulic conductivity are available at best. We need to fill the information gap by
interpolating and extrapolating the available data on the hydraulic conductivity
over all points of interval [0, L]. Tools for doing this are geological (structural)
models (I prefer to call these models the geological ones, to emphasize that
geologists with their knowledge of geological settings and their spatial variability
play the most important part in interpolating and extrapolating geological data).
The tools are usually limited and even primitive. They are based on the principle
that the soils and rocks of the same origin, lithological composition, geological age
and history are homogeneous geologically. That is, each property of geologically
homogeneous structure is considered constant. Simple trends in the property
values are permissible, if the data reveal some spatial tendencies. Model calibra-
tion is also a tool for generalization of the variable property values of interest in
the predictive model parameters (see Chap. 4). Another approach to filling the
information gap is the use of random functions as a tool for describing spatial
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distributions of the geological properties (see Chap. 3). Both approaches can be
combined: geologists assign boundaries of geologically homogeneous parts of a
site, and different regressions and random functions can be used within those
geologically homogeneous parts.

The simplest interpolation in the considered example is recognizing the aquifer
as homogeneous within interval [0, L] with the constant hydraulic conductivity
K(x) = K. Then the constant hydraulic conductivity K can be factored out from
Eq. 1.1 or 1.4 and canceled, converting Eq. 1.4 into

h*(x) = hy — (h§ — hy) (1.5)

X
L

So as soon as the homogeneous model of the aquifer is chosen, the predicted
aquifer thickness does not depend on the hydraulic conductivity at all. Since the
actual hydraulic conductivity is not constant, the simulation results will carry
errors. The only possible estimate for these errors is that the real water table
elevations are between hy and h;. The errors are equal to zero at the ends of
interval [0, L] and reach the maximal absolute value somewhere inside the
interval. The magnitude of the error does not exceed lhy — hyl.

Let the previous scheme (Fig. 1.1) represent a cross section of a channel and a
capturing drain, and the goal be to evaluate the losses, flux Q, from the channel to
the drain parallel to the channel. The geological model is homogeneous still,
though the geological object is not. The losses depend on the hydraulic conduc-
tivity of rocks and soils between the channel and the drain. Assuming the steady-
state regime and absence of the infiltration within interval [0, L], we obtain the
constant flux Q which is described by the following equation at arbitrary point
x within interval [0, L]:

dh
= —K(x)h(x)— 1.6
0 = —K(x)h(x) . (16)
Separating variables, we can rewrite Eq. 1.6 as
dx
—— = —h(x)dh 1.7
0%y = ) (1.7)

Integrating Eq. 1.7 with the same boundary conditions (hy = h(0) and h; = h(L)),
yields

hy—hi
_ s
2/0 thx)

In the case of the homogeneous model Eq. 1.8 yields

0= (1.8)

R Ah2_h2
0=— % (1.9)
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So to evaluate the losses Q accurately, the effective hydraulic conductivity K of the
homogeneous model must be assigned as

; dx
/K(x) (1.10)
0

If the acceptable losses Q are known, and the soil between the canal and the
drain can be compacted, Eq. 1.9 could be applied to evaluate the necessary degree
of compression of the soil, but this is not the point here. Contrary to the case of
evaluating thickness of the aquifer, applying the homogeneous model, in this case
we are not able to evaluate the upper boundary for errors of the predicted losses Q,
if we do not know the range of the actual values of the hydraulic conductivities
K(x). However, Eq. 1.10 gives the rule for assigning the hydraulic conductivity to
the homogeneous models to estimate the losses, considering the Dupuit-Forch-
heimer assumption acceptable. It should be the weighted harmonic mean of the
actual hydraulic conductivities.

The most popular geological models represent geological sites as consisting of
homogeneous subintervals such that within subinterval [x;_;, x;] the hydraulic
conductivity is constant and equal to K;. Then Eq. 1.10 can be rewritten as

1

>
~I =

Xi

111 1 ¢~ Ay,
LIS (L [ 22 111
K LL Ki/ § L; K; (L11)

Xi—1

where n is the number of homogeneous subintervals and Ax; = x; — x;_;. Thus,
the hydraulic conductivity of the homogeneous model must be assigned as the
harmonic mean weighted with respect to the length of the homogeneous subin-
tervals. If the errors AK; for the hydraulic conductivities K; within each subinterval

[x;_1, x;] are known, evaluating the errors of the model parameter K and the losses
of the flux Q becomes possible.

The above examples demonstrate that not only geological settings define the
choice of model parameters, but also formulation of the simulation problem. Thus,
when evaluating the thickness of the aquifer on the horizontal aquitard applying a
homogeneous model under the Dupuit-Forchheimer simplification we do not need
to worry about choosing the model hydraulic conductivity at all (rather avoid the
homogeneous model in such sort of problems). However, evaluating the losses, we
need to worry about assigning the model hydraulic conductivity. Moreover, as
demonstrated in Chap. 6, the effective hydraulic conductivities (the model
parameters providing the best fit of the simulation results to the observations)
depend on the monitoring network. As shown in Chap. 7 the effective hydraulic
transmissivities can depend on time also.

Gomez-Hernandez and Gorelick (1989), hold: “If there is no best effective
hydraulic conductivity ..., the predictive capability of the model must be ques-
tioned.” Why? Two above examples are illustration of the well known
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phenomenon called the problem-dependence of model identification (Gorokhovski
1977; Carrera and Neuman 1986; Yeh 1986; Kool et al. 1987; Hornung 1990; van
Genuchten et al. 1990; Bear et al. 1992). The phenomenon does affect the pre-
dictive capability of the models. It means that the effective parameters of pre-
dictive model may be different for different formulations of the simulation
problems. Namely, the issue of obtaining the model parameters which are effective
in predictive simulations, not just in calibrations, is the main point of this book.

Let us consider two simple examples of assigning the hydraulic conductivity
values to our homogeneous model according to Eq. 1.10 [more examples can be
found in Gorokhovski (1977)]. In these examples, functions K(x) are such that
integral 1.10 can be found in any text-book on integral calculus.

First, let the hydraulic conductivity be a linear function of the coordinates:

K. — Ko

K(x) x+Kp

where Ky = K(0) and K; = K(L). Then according to Eq. 1.10,

Thus,

(1.12)

Second, let the hydraulic conductivity be an exponential function:
K(x) = Kpe 1K (x) — Koe &

Substituting the above K(x) into Eq. 1.10, we obtain

So in this case

(1.13)

Equations 1.12 and 1.13 also represent the harmonic means of the actual values
of hydraulic conductivities under their specific spatial distributions. What is
important, is that no statistical or probabilistic concepts or notions are applied to
yield those results. They have been obtained based on the usual deterministic
approach. Equation 1.11 is, for example, a complete analogy to the well-known
rule for calculating the total resistance of series electrical circuits. The horizontal
filtration along layers with fixed hydraulic heads at the ends of the interval of
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interest in a confined aquifer is analogues to an electrical parallel circuit. So the
hydraulic conductivity for evaluating the flux applying a homogeneous model
must be the arithmetic mean of the hydraulic conductivity of the layers weighted
with respect of their thicknesses.

There exist many ways for estimating errors of functions caused by errors of its
parameters. Let a model represent by the function

v = f(x.P) (1.14)

where x is an independent variable or a vector (list) of independent variables and
P = (P4, Ps,..., P;,..., P,) is a vector (list) of the governing parameters. Then the
errors of the model Ay caused by errors of the parameters AP can be estimated, for
example, as

n a 2
NENDD (fg%P’iP)AP,»)

i=1

or (1.15)

n

NEDY

i=1

af<x7 P) AP,
oP;

l

Estimates 1.15 are provable only if Eq. 1.14 represents the phenomenon of
interest adequately. If not all parameters affecting the modeled phenomenon are
included in list P, then it can happen that Estimates 1.15 are acceptable still, if we
are lucky, but the obtained errors are not provable.

If we had complete information on a geological object but for some reason were
going to simulate its response on an impact, using simplified geological models,
we could, at least in principal, evaluate the errors resulting from the simplification.
However, if we simplify something that we do not know in full, we cannot
evaluate the consequences of our simplifications. This is where, in my opinion, the
central issue of hydrogeological modeling lies. Computer power at present is such
that we are able to make predictions based on the highest theoretical level of the
hydrogeological sciences (Beck 1987). However, there is a gap between the data
necessary for making predictions and the available pertinent data. We do not know
how accurate is the function K(x) which we use in our simulations. Applying a
piecewise homogeneous model, we can miss some homogeneous parts of the real
site or add inexistent ones. We almost never know the exact locations of bound-
aries between the homogeneous parts and so on. We fill such informational gaps
with assumptions. But “the modeling assumptions are generally false and known
to be false” (Morton 1993; Beven 2005). Consequently, we cannot obtain provable
estimates errors of the simulation result.

The use of false or not provable assumptions does not make the results neces-
sarily wrong. They may be acceptable practically. For example, the Dupuit-
Forchheimer simplification neglecting the vertical component of the Darcy velocity
in all ours previous examples is wrong and contradictory. But as Muskat (1946)
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observed that the resulting fluxes “will nevertheless be surprisingly close to those
given empirically or by exact calculations”. False or not tested assumptions do not
permit provable estimations of the errors and uncertainty of the simulation results
which are important for informed decision-making. However, they do not preclude
achieving the best result and making the best decisions in some circumstances.

Two approaches to hydrogeological modeling exist at present. I call one of
them engineering and the other geostatistical. The first approach is based on
practical engineering experience. The second one is based on statistical methods
which are developed to work with incomplete and erroneous data. The approaches
do not exclude each other: the engineering approach includes some statistical
features, and the geostatistical one uses the elements of the engineering approach
essentially. Unfortunately, neither of them provides the provable estimates of the
simulation result uncertainty as discussed in details in Chaps. 2 and 3.

“To do the best” (U.S. EPA 1987), we need first to define ‘the best’ reasonably,
keeping our expectations in line with our possibilities. For example, we can
request that our estimation must be the best one in the sense of the least squares
method on a given monitoring network. Or it may be a subjective opinion of an
expert based on his or her experience, what model and its parameters are the best
in the given situation. After we defined meaning of ‘the best’, we need to furnish
our model (models) with the set (sets) of values of the model parameters providing
the best prediction in the defined sense. We are not able to evaluate the uncertainty
of our best decision yet. But what we can do is to make our decisions more
informed. It should not be one way to this end. Concept of one of them, based on
transforming mechanisms and two-level modeling is suggested in this book
(Chaps. 5-9).
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Chapter 2
Engineering Approach

In 1992, the journal Advances in Water Resources published a series of papers on
validation of hydrogeological models. In one of those papers, Konikow and
Bredehoeft (1992) hold that groundwater models cannot be validated but only
invalidated. It means that the real quality of a model can be judged only by
comparing the prediction that the model has produced with what have occurred
actually, i.e., only based on post audit, and that the accurate results in process of
model calibration do not warrant that the model will predict accurately. However,
if calibration goes wrong, the model cannot be trusted. Commenting their paper, de
Marsily et al. (1992) write:

We all know that the parameters of a model are uncertain, probably wrong in many cases,
and easily can be invalidated. Similarly, the ‘structures’ of the model (2-D, multi-layered,
3-D, etc.) can be incorrectly chosen. So what? As long as they reproduce the observed
behavior of the system, we can use them to make predictions. It also seems to us that the
better or the longer the reproduction of the observed behavior, the more confident we can
be of their validity. ... Using the model in a predictive mode and comparing it with new
data is not a futile exercise; it makes a lot of sense to us. It does not prove that the model
will be correct for all circumstances; it only increases our confidence in its value. We do
not want certainty; we will be satisfied with engineering confidence.

Writing this chapter, I had a strong urge to call it “So what?” and to use as an
epigraph the last sentence of the above quotation. But I overcame the urge and named
it instead after the approach engineering. It is simple and transparent conceptually.
Indeed, the modeling assumptions are generally “false and known to be false”
(Morton 1993; Beven 2005). However working on many similar projects in similar
geological surroundings and observing the results of implementation of those pro-
jects, professionals gain personal and collective experience of what models work
satisfactory, how their parameter and boundary conditions should be assigned to
yield the satisfactory results, and what is the chance that a given model fails which is
a factual empiric estimate of the uncertainty of the simulation results. Validated in
such probabilistic way, a model can be considered as “sound, fulfilling all necessary
conditions, and just good enough model” (McCombie and McKinley 1993).

Let us come back to the models based on the Dupuit-Forchheimer assumption,
that when the gradient of a water table is small enough, the vertical component of
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the Darcy velocity can be neglected and the flow considered as strictly horizontal.
Such sort of simplifications is pretty common in mathematical physics or in
engineering. Muskat (1946) calls the Dupuit-Forchheimer assumption “not trust-
worthy.” However he expresses his astonishment by the fact that the results of its
applications are accurate compared to “those given empirically or by exact cal-
culations.” Haitjema (1995) holds that “Dupuit-Forchheimer model could have
done the job, saving resources and cost.” Since the Dupuit-Forchheimer
assumption is false, there is no possibility to evaluate the errors of the simulation
results based on it in a closed way, i.e., based on errors of the model structure and
its parameters. However Beven (1981) considers it reasonable for the water table
slopes which are mild, and according to Bear (1972), it generates practically
acceptable errors in homogeneous shallow aquifer on a horizontal aquitard, if the
squared slope of the water table is less than 0.01.

Such use of not provable and even wrong assumptions, let us call them sim-
plifications, which lead to accepted practically results under some empirically
established conditions, I call the engineering approach. My attitude with respect to
this approach is rather positive. It recognizes the reality, the impossibility to
evaluate the uncertainty of predictions in a provable way. I would rather trust the
professionals, though I understand that their experience is subjective and that it is
different from an objective proof. However, this trust, though cautious, relates to
the situations where the engineering approach really exists, e.g., in the case of
building small reservoirs, or drilling water supply wells for small farms or family
houses. However, what to do if there is no such experience, e.g., a project is unique
per se, or unique for a given surroundings? Or what does one have to do, if
experienced professionals make different recommendations and estimations?

Lerner (1985), described several cases related to the ground water supply in
Africa, Latin America and England in which teams of highly qualified experts
made different but equally incorrect estimations and predictions, using the same
data. Anderson and Woessner (1992) report several instances with not so much
encouraging results of post audit in the USA. They explain the failures by errors in
conceptual models in developing which the professional experience plays the
major role. Andersen and Lu (2003) add several more examples of post audits, that
“have not provided high confidence in the predictive accuracy” of the applied
models.

In relatively good times for the Soviet hydrogeology, an extensive study of the
reliability of hydrogeological estimates of ground water resources was undertaken
(Yazvin 1972). The study of 89 large intakes from artesian aquifers revealed that
only in 12 cases the accuracy of the predictions was satisfactory. The resources
were considerably underestimated in 76 cases and overestimated in one case. The
study of 25 intakes from alluvial aquifers revealed that the resources were con-
siderably overestimated in 20 cases. In all 114 cases the estimates of ground water
resources were approved by the Central Commission on Ground Water Resources
of the U.S.S.R. consisting of highly experienced hydrogeologists. In most of the
above example, the professional expertise was combined with model calibration,
and this fact aggravates the situation even more.
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It may be consoling, at least in part, that the other fields where the completeness
of geological information is essential share the same plight. One of the most well
documented examples demonstrating that the uncertainty of geological modeling
is not just an abstract issue is the complete failure of geophysical data interpre-
tation relating to super-deep drilling at Kola Peninsula, Russia, (Kola 1984) and in
Bavaria, Germany (Kerr 1993). As drilling revealed, actual geological structures
differ completely from those anticipated. The same happened to the super-deep
bore in Azerbaijan (Kola 1984). These failures cannot be explained by the scarcity
of data or unsatisfactory qualifications of the interpretational teams. In such
expensive enterprises as super-deep drilling, the teams certainly were the best, and
the data (with respect to their amount and quality) exceeded what is available in
routine enterprises. The failures were caused by the use of the “sound, fulfilling all
necessary conditions, and just good enough” models recognized by the profes-
sional communities, but nevertheless fallible. Bredehoeft (2005) calls this “the
conceptualization model problem” and gives several examples from his and his
colleagues’ hydrogeological practice in the United States. Problems, including
civilian and economical, related to uncertainty of predictions made by experts in
seismology are discussed by Geschwind (1997) and Hanks (1997), and many
others. Unfortunately, professionalism and credentials do not always warrant the
confidence in models and simulation results.

The view point that the engineering confidence is good enough to trust pre-
dictions is usually grounded on two groups of arguments. First, during their studies
and professional activity, practitioners accumulate knowledge and develop thor-
ough professional experience on where and how geological and mathematical
models should be applied to yield practically meaningful results. We have dis-
cussed this kind of arguments above.

The second one is that all human progress is founded on the use of invalidated
or even provably incorrect models. Indeed, it is true that “astronomers, on the
basis of a few days of observations, will predict asteroid and comet orbits for
thousands of years with good accuracy” (McCombie and McKinley 1993). Their
argument can be even strengthen by mentioning one of the greatest achievement of
those models: Le Verrier’s discovery “on pen’s point” of Neptune based on
peculiarities of Uranus’ orbit. He calculated the orbit of the unknown planet, and
Neptune was discovered exactly at the location he predicted.

Somehow, it is less known that Le Verrier explained in the same way the
peculiarities of Mercury’s orbit (Levy 1973). This hypothesis was never confirmed.
Its failure gave birth to several other hypotheses that failed also. It is recognized at
present that Einstein’s theory of relativity explains Mercury’s behavior. My point is
that there has never once been a need to revise astronomic models.

Effective modern technologies based on models which are impossible to validate
can be included in this argument also. However, each such technology undergoes
extensive testing, and then when it is applied, e.g., in manufacturing new products,
special attention is paid to controlling the quality of raw materials, to assembly, and
to other pertinent procedures. Final products are also tested. For example, each
airplane and ship undergoes thorough tests before their practical use.
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In hydrogeology we do not have such luxuries. Each hydrogeological site is
unique. We cannot control its geological structure or even know the structure in
full. Its response is also unique and depends on impacts. The impacts can be
intensive and diverse, and many of them do not have analogs in the past. We do
not have long enough periods of observations, and no prediction for a period of
more than a 100 years has actually been tested. In science, if a hypothesis is
proved to be wrong, another hypothesis takes its place, then another, and another,
etc. In hydrogeology it may be too late to seek another model when it becomes
clear that the applied one is faulty.

Professionalism is a necessary condition for obtaining meaningful results
especially for development of geological models. As Tsang (1992) points out, a
sick person should go to an expert having an M.D. degree. However, faith that the
professional judgment is always true is also a fallacy.

Finally, let me repeat. If a professional has experience obtained on many similar
projects in similar environmental and has observed the results of implementation
of those projects, it could be reasonable to trust in the professional’s judgment.
Often such professionals do not need any mathematical modeling, they just know
what works. (In Athens, Georgia, where I am typing these lines, I have never seen
geological engineering or geotechnical explorations supporting projects for
developing residential middle-class neighborhoods. The builders just know what
kind of foundations must be used). However, in the case of the objects which are
very expensive and carrying large environmental and financial risks, it is difficult if
impossible to find a professional with the pertinent experience. Even if such
professional exists, it is not reasonable to rely on his or her subjective opinion. We
need models (quantitative theories) to predict what can happen, and of course we
need professionals for developing conceptual geological models. However, if the
professional’s judgment about the uncertainty related to the use of some model in
some situation is supported by the pertinent statistics, it should be taken in con-
sideration. When such statistics is not available, nothing could be said about the
quality and the uncertainty of the results obtained in the framework of the engi-
neering approach.

However the contemporary computational technique and methods permit the
development of a surrogate of the engineering experience. The surrogate cannot
provide the provable estimate of the uncertainty either. But it permits more
informed decision-making (see Chaps. 5-10).
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Chapter 3
Geostatistical Approach

The situation with the deterministic approach to predictive simulations is trans-
parent. It can provide evaluations of the uncertainty of the simulation results in
some typical circumstances for which the engineering experience does exist.
Those evaluations are of the statistical nature. They are based on observed suc-
cesses and failures of the decisions made based on results of the corresponding
simulations. However, if such experience does not exist, the engineering approach
fails to provide the provable estimates for the uncertainty of the simulation results.
The situation seems more complicated with the geostatistical approach.

Statistics is the science which deals with incompletely known and fallible data
which makes it so appealing to hydrogeologists (Shvidler 1963, 1964; Dagan
1986; Graham and McLaughlin 1989; Gomez-Hernandez and Gorelick 1989; NRC
1990; Review 1990; Cooley 2004; and many others). Thus, van Genuchten et al.
(1990), write: “Because measurements and model predictions are both subject to
uncertainty, the parameter estimation problem is essentially a statistical problem.”
More than this: geostatistics has come with the promise to quantify the uncertainty
of the hydrogeological simulations: “...geostatistics has been integrated with
hydrogeology to provide methods for quantifying uncertainty where estimation,
interpolation, and extrapolation of hydrogeologic attributes are required between
and beyond data locations” (Kitanidis 1997).

This widespread notion that statistics is a sufficient tool to overcome paucity of
the geological data and provide provable estimates for uncertainty of the simulation
results is a fallacy. Geostatistical estimates are strongly conditioned by many
assumptions. As demonstrated below, some of those assumptions are impossible to
test and some are known to be invalid. This means that the accuracy of the geo-
statistically acquired results cannot be proven. In this sense the deterministic and
geostatistical approaches do not differ. Moreover, the geostatistical approach makes
use of all or nearly all the assumptions of the deterministic one, plus many others.
This alone makes it more vulnerable. Thus, averaging processes popular in geo-
statistical applications and resulting in the harmonic, geometric or arithmetic means
of the actual hydraulic conductivity and transmissivity values are not related to the
probability distributions of these properties. They emerge from deterministic for-
mulations of some filtration problems as shown in Chap. 1. When a specific
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averaging process is defined (deterministically) and the probability distributions of
the pertinent properties are known, then we can use statistical methods to estimate
errors of those deterministically inferred parameters and the simulation results. So,
if we reject the deterministic approach, the geostatistical estimates do not make
sense. However, if we accept it, we can still doubt its geostatistical extensions, if
they are based on unverified or knowingly false assumptions.

Even if statistical assumptions are valid, the geostatistical approach may be
irrelevant. Thus, real ground-water flows always depend on the hydraulic con-
ductivity and its variability. However, simulation hydraulic heads are not affected
by the hydraulic conductivity, if the geological model is homogeneous, filtration is
steady-state and governed by the Laplace equation with prescribed hydraulic heads
as boundary conditions (Eq. 1.5). This shows that geostatistical formulations of
some real problems can be meaningless. Therefore, before applying them, we must
demonstrate their relevancy to the problem in hand. Mentioning the paucity and
inaccuracy of the pertinent information is insufficient. It is the same situation as
with numerical algorithms: not every algorithm is unstable, but because the
unstable algorithms exist, we must demonstrate each time that the algorithm which
we apply is stable when applied to the given problem.

It must be noted that the proponents of the geostatistics understand the artificial
nature of introduction of geostatistics into hydrogeology. Thus, Review (1990)
holds: “It should be noted here that the decision to select random functions to
model a regionalized variable is only a matter of analytical convenience. This does
not imply that the phenomenon under study is indeed random.” Indeed, the
hydraulic conductivity K(x) in the problem leading to Eq. 1.1, reproduced here for
convenience,

d (K(x)h(x) %))

=0
dx

is unique for a given site and is not a random function. The fact that the measured
values of K(x) carry random errors does not make K(x) a random function either.
We can try to minimize the resulting errors in estimations of thickness A(x) of the
aquifer or of flux Q. To this end we could use a regression equation approximating
K(x) obtained by the least squares method applied to available observations on the
hydraulic conductivity. In so doing, we are still in the frame of the deterministic
approach. However, when we assume that K(x) is a random function, we assume
that what we observe within our site is only one realization of the function K(x).
Since we have only one, deterministic, distribution of the hydraulic conductivity
the question arises: Where are the others? They must belong to other, analogous,
sites. So we assume that our site is an element of an ensemble comprising many
sites. The goal becomes to find stochastic characteristics of that ensemble and than
apply them to our one. To solve this additional problem, we have to resort to a
number of additional assumptions that can be as convenient and as false as the
assumption that K(x) is a random function.
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Now let us assume that we have finally solved our problem. We got some result.
It may be practically acceptable. Can we prove that our estimate of the uncertainty
of our result is true? We can, if all our assumptions are true, but not, if even just
one of them is false or untested. So let us consider some geostatistical assumptions
and practice in more details.

3.1 Ensembles

The concept of an ensemble is basic for geostatistical approach (Dagan 1986).
Conclusions, statements, and results of the statistical approach are related to
ensembles or to their elements with respect to the ensembles. We estimate expected
values of properties and the other statistics for an ensemble, the property’s corre-
lation and autocorrelation functions within the ensemble, the probability of a
quantity characterizing an element to be within some range of the ensemble values
of the same nature, etc. To evaluate an element belonging to an ensemble means to
place it within the ensemble. To this end we must know statistical properties of the
ensemble. If they are not known, but many other elements of the ensemble are
available, we can try to use the available elements and statistical methods, to
evaluate the ensemble properties and then proceed with the element of interest.
However, in the geostatistical applications to hydrogeology, the site we have to
work with is only one available element of an unknown ensemble. It is unique and it
is not obvious where to look to find the others. To overcome this conceptual
difficulty or, rather, to forget it, geostatisticians suggest that “the ensemble does not
actually exist” (Dagan 1986).

The statistical approach does not make much sense if there is no ensemble. So
we need to make up the ensemble, one element of which is our site. Since the
unknown ensemble “is only a matter of analytical convenience”, making it up is
not an issue. Following to Dagan (1986) we assume that the made up ensemble is
stationary (ergodic). This permits one to ascribe to the made up ensemble the
statistical properties of the “random” functions observed at our site. Note that,
even if an observed function exhibits some kind of stationarity within our site, the
statement about stationarity of the made up ensemble is still just a hypothesis
which is impossible to test, since only one element (one realization of the pertinent
random functions) is available.

Thus, the site of the interest, the only available element of the made up
ensemble, is assigned to be the mathematical expectation (the mean) of the made
up ensemble. The flow within the site becomes the mean flow for the made up
ensemble, and all geostatistical characteristics of the made up ensemble can be
estimated based on the available observations on our site. In this way, we obtain,
or rather make up, all necessary geostatistical data and can proceed with evaluating
the uncertainty of the results of our predictive problem.

Unfortunately, for the reasons discussed in Sect. 3.5 and Chap. 4 and well
known to geostatisticians, the use of the mean characteristics of an ensemble does
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not warrant the mean response of the ensemble on a given impact. However, let us
forget about this for awhile and ask the following question: How probably is that
the only sample from an ensemble coincides with the ensemble’s mean? The
answer is obvious: not very. However, does this question make sense? For our
convenience we constructed our made up ensemble in such a way that this should
happen for sure.

However, what does one have to do, if a property, e.g., the hydraulic con-
ductivity, as a function of coordinates, is not stationary obviously? No problem
again: Dagan (1986) suggests generalizing the definition of stationarity “allowing
for instance for polynomial trends and stationary increments”.

The polynomial trend is the universal and most convenient tool for describing
regional trends besides, maybe, the Fourier decomposition. We can try polynomials
of different order until we find the polynomial that satisfies our taste. The only
limitation is the maximal order of the polynomial, which depends on the number of
available observations. The polynomial of the maximal possible order, though very
attractive since its residuals equal to zero, is not stable with respect to additional
data.

In general the mathematical description of a trend is a compromise between
fulfilling the following requirements:

1. Reasonable considerations about a geological structure of the site.

2. Simplicity depending on amount of the available data and the intended
application of the trend description.

3. Minimization of the sum of the squared residuals.

The first two of these requirements are obviously subjective. The third one
follows from the first two. Thus, our judgment about the mathematical description
of regional trends and even their existence are hypotheses that are impossible to
prove. They may be more realistic than our hypotheses related to the random
functions and the made up ensemble, but still remain hypotheses.

Figure 3.1 illustrates the possibility of polynomial trend descriptions (the data
are from Bondarik 1974). Only polynomials of Ist, 2nd, 7th and 14th orders are
presented in Fig. 3.1. The polynomial of the 14th order is not stable and the
goodness of fitness criterion is not defined for it. Instead, we could use the linear
interpolation between neighboring observations. However, then our regional trend
becomes not differentiable at points of observation. Polynomial trends have the
advantage of being differentiable everywhere.

So we can use fifteen polynomials, including the polynomial of the zero order,
that is, the mean value of the observations, and many other mathematical repre-
sentations to describe the regional trend and, according to Dagan (1986) convert
our made up ensemble into stationary one. However, can we prove that our choice
is correct? Even if some of the polynomials can be practically close within the
region of interest, the situation remains the same: just the number of the alter-
natives decreases slightly. We would be also extremely lucky, if the true trend
were presented in our set of the alternatives.
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I do not know about you, but I feel some discomfort, since the made up
ensemble remains arbitrary still. It seems that G. Dagan feels the same. So he
recommends “to check a posteriori whether the stationary assumptions are met at a
given degree of significance” and to use “some prior information derived from
similar sites” (Dagan 1986).

I understand his first recommendation as testing the statistical homogeneity of
the residuals. I doubt that we have enough data for real testing of statistical
hypotheses in most cases and that such testing will make our choice less arbitrary.
Indeed, there is nothing more statistically homogeneous than the residuals for the
trend above presented by the polynomial of the 14th order with each residual equal
to zero. However, do you believe that it represents the real trend? In general, the
statistical testing of hypotheses is not a proof of their validity or invalidity. It only
creates some basis for decision making which is arbitrary still. “A given degree of
significance” means the probability to reject erroneously a tested hypothesis called
usually the null hypothesis. However, the null hypothesis “is never proved or
established, but possibly disapproved” (Fisher 1935). In other words, if a
hypothesis passes statistical testing on a given degree of significance, it means, that
we do not have enough evidence to reject it based on the criterion corresponding to
the given degree of confidence. A number of different hypotheses able to pass the
same test may exist. We know nothing about the probability of accepting the tested
hypothesis when it is false. But namely this is essential for evaluating uncertainty
of our simulation results (see Sect. 3.4).

Dagan’s suggestion to use “some prior information derived from similar sites”
seems to be an attempt to include the only available element in a really existing
ensemble and is a good idea. To do this, we must define what similarity of
hydrogeological sites and impacts means, how it can be evaluated, and already
know similar sites and their responses to the impact at hand. To my knowledge the
method of geological analogy (Rozovsky and Zelenin 1975) is the only example of
such approach. Interesting conceptually, it has few practical applications, since it
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requires the existence of similar sites with similar impacts and already observed
responses to those impacts.

Thus, we are able to make up a number of ensembles to which our site could
belong. However, this does not change the situation: the choice of the ensemble
remains an untested hypothesis.

3.2 Elements

Ensembles are collections of elements. The elements are bearers of properties or
characteristics. Thus, when statisticians study the height, weight or longevity of a
population, the elements are human beings. When they study income, the elements
can be families, and so on. To make the results more accurate and interpretable,
statisticians make the ensembles as statistically homogeneous as possible: they
partition the ensembles by gender, race, age, the number of the families members,
level of income, etc. The fictitious analogues site discussed in the previous section
are also elements characterized by different random functions. Since geostatisti-
cians consider all such elements to be analogous to the site at hand, let us restrict
ourselves with properties within the site only.

In geology and, in particular, in hydrogeology the role of the element carrying a
property is assigned to the representative elementary volume (REV). Following the
established tradition (Kolomensky and Komarov 1964; Bear 1972; Brown et al.
2000), let us introduce the notion of REV using porosity. In principle, porosity can
be measured on slices of media, applying the Bernoulli trail. That is, if a point
selected at random falls into a pore, the result of the measurement x; is assigned
equal 1 (x; = 1), otherwise x; = 0. If we repeat this procedure n times, than the
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porosity 0 of the sample is evaluated as the mean of the measurements: § = <==—,

Its variance, g% = 0(’11:10), decreases with increasing of the number of the mea-

surements. The standard procedure of evaluating porosity on samples of a finite
volume is more convenient, since each such evaluation substitutes for manifold of
the measurements on the slices. Nevertheless, the variation of the porosity depends
on the sample’s volume still. A possible pattern of changing of the mean porosity
estimates yielded by the samples of different volumes is shown in Fig. 3.2. The
volume of the samples for which the variance of the porosity becomes negligible is
assigned as REV. If we continue to increase the sample volume, the mean or the
mathematical expectation of porosity can start changing again. These changes are
usually attributed to the fact that the volume becomes too large and includes some
heterogeneous macroscopically changes in the structure of the media. It becomes
statistically and geologically heterogeneous.

The notion of REV defines the element bearing a property, its point value, and
makes the property as if continues in space. It is possible that different repre-
sentative elementary volumes exist for different properties. In such case the issue
can emerge whether to assign the same REV for all pertinent properties and how to
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make the choice or to use different REV for different properties which could be
inconvenient.

In the case of porosity, changing the sample volume leads to changing of the
variance ¢2. This phenomenon is called by Rats (1968) “scaling effect of the
second kind.” Tt is well known to statisticians (Yule and Kendall 1950). Some
properties have “scaling effect of the first kind” (Rats 1968). The means of such
properties depend on the volume of samples on which they are measured. For
example, the mean of the strength of soil and rocks decreases with growth of the
sample volume (Kolomensky and Komarov 1964) and the mean of the hydraulic
conductivity increases with growth of the sample volume (Rats 1968). According
to Bolotin (1969) the strength of a sample is defined by the weakest element of its
structure. The probability to have such elements in a sample increases with sample
size. Rats (1968) extended this explanation to the hydraulic conductivity: the
hydraulic conductivity is defined by the most conductive element in a sample.
The probability to find such structures within a sample is larger for larger samples.
One of the Weibull probabilistic distributions relates the mean of the hydraulic
conductivity obtained on samples of volume V with the mean conductivity of a
reference sample of volume V(. Thus, the results obtained by testing different
volumes of soils and rocks may be different statistically even for statistically
homogeneous media just because of differences in the volumes of samples. This
can cause some problems with defining the REV.

The notion of REV is convenient in laboratory studies when the volume of
samples can be controlled. But here we are most interested with the cases when we
can control neither the volumes nor the shapes of bearers of the obtained results, as
happens, for example, in pumping tests. To deal with such situations Rats (1968),
Dagan (1986), and many other hydrogeologists suggest a simple and straightfor-
ward approach. They introduce different scales of heterogeneity and use these
scales as elements of corresponding ensembles. Thus, Dagan (1986), speaking
about the hydraulic conductivity, writes that a point in the local scale has
dimension of the order 107'=10° m. These points are characterized by results
obtained on extracted cores and by slug tests. In the regional scale, according to
him, a point has dimension of the order 10'~10% m.



24 3 Geostatistical Approach

Such assigning of the elements carrying a property values is arbitrary in
essence. Thus, it is not clear why the results yielded on cores are of local and not of
laboratory scale. Pumping tests involve different volumes of soils and rocks,
depending on geological settings, duration and patterns of the tests and interpre-
tation models. For example, three-hour, three-day, three-week, and three-month
pumping tests involve different volumes of geological media. Then the question
arises: should or should not we introduce different scales for the results of the
pumping tests of different durations, and if we should, how many scales should we
have and how we define them? The results of pumping tests depend on interpre-
tation models. We can arbitrary change those and have different results and bearers
of the hydraulic conductivity or transmissivity. Say, if we consider an aquifer as a
homogeneous, unconfined in plane, and assign the boundary conditions in infinity,
then the resulting hydraulic conductivity or transmissivity formally relates to the
entire aquifer which is not realistic. If we had a developed monitoring network, we
could limit the infinity by the distances to the furthest monitoring wells that do
not respond to the pumping. Without such network, we can do what usually
geophysicists do, namely to call infinity the distances exceeding the thickness of
the aquifer in ten times, or something similar. If we apply a different interpretation
model, say a pumping test is conducted near a river well connected to the aquifer,
we may have quite different situation. When the hydraulic conductivity and
transmissivity are defined by model calibration, the elements bearing the results of
calibration depend on structures of the calibrated models and the model identifi-
cation problem formulation (Gorokhovski 1977; Yeh and Yoon 1981; Yeh 1986).

The scales and their interaction are confusing, at least, for me. So, it is inter-
esting to see how geostatisticians deal with them. For example, Zimmerman et al.
(1998) use in their work estimates of the hydraulic transmissivity at 41 boreholes
obtained through slug tests, local pumping tests, and three regional-scale pumping
tests lasted from 1 to 3 months. The obtained transmissivity values span 7 orders
of magnitude, from 10~ to 10° m%s. Nevertheless all these transmissivity values
are considered as a collection coming from the same ensemble (Zimmerman et al.
1998, Table 2a). Thus, the scaling is just ignored. I assume that this was done
because it was impossible to infer serious statistical conclusions from the results
obtained through three regional-scale pumping test. The same happens if we
separate slug tests and local pumping tests. (I do not believe that serious statistical
conclusions can be supported by 41 available values either.)

By the way, Zimmerman et al. (1998) state: “Large-scale pumping tests indeed
suggest that narrow, relatively conductive fractured zones are possible in some
areas.” This is possible. However, it seems a strange coincidence that all three
large scale pumping tests occurred within “narrow, relatively conductive fractured
zones.” It could be suggested as well that the larger transmissivity values are due
to the scaling effect of the second kind. It would be interesting to compare those
three conductivities with the conductivities obtained for the same zones by slug
tests or laboratory measurements. Anyway, both above explanations contradict to
the statements of Dagan (1986), Moore and Doherty (2006), and many others that
the results of the regional pumping tests are statistical averaging of locally scaled
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properties, that is, the regional-scale conductivities are not weighted averages of
the smaller-scale ones with not negative weights summing to one. Review (1990)
recognizes the existence of negative weights: “Negative weights (often, but not
always) occur for points that are “shadowed” by closer points.” The authors do
not explain what exactly “shadowed” means and why the negative weights occur.
Isaaks and Srivastava (1989) relate the appearance of the negative weights in their
Eq. 17.1 to the values of secondary data without any explanation what the
“secondary data” means. The appearance of the negative weighting factors fol-
lows from Eq. 8.25 presented by Kitanidis (1997) also without explanation. (The
mechanism of the appearance of the negative weights is demonstrated in Chap. 5.)

Unfortunately, the notion of an element in hydrogeological geostatistics is as
vague as the notion of an ensemble. Both are “a matter of analytical convenience”.

3.3 Sampling at Random

Sampling at random is one of the most important requirements for making
provable statistically inferences. But what is sampling at random? Gnedenko
(1963) writes that “many authors have arrived at the conviction that in the case of
infinite number of outcomes, no definition of probability can be given that is
objective and independent of the method of calculation.” He gives several
examples of the problems which, depending on the operational definition of
sampling at random, lead actually to different problems with different solutions
and describes the real-life situations relevant to each solution. One of them, called
the Bertrand’s paradox, is cited here.

The problem is formulated as following: A chord of a circle is chosen at
random. What is the probability that its length exceeds the length of a side of the
inscribed equilateral triangle?

Case 1 By consideration of symmetry, the direction of the chord can be fixed at
point A in advance. The chords of this direction exceed the length of a side of the
inscribed triangle if they intersect the diameter that is perpendicular to them within
interval CC’ (Fig. 3.3, Case 1). The length of this interval is equal to radius of the
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circle, r. Since the diameter of the circle is 2r, the probability for the chord length
to exceed the side of the equilateral triangle is equal to 1/2.

Case 2 Asin Case 1, we can fix one end of a chord in advance. The tangent to the
circle at this point and two sides of the inscribed equilateral triangle with vertex at
this point form three angles, each equal 60° (Fig. 3.3, Case 2). Only the chords
falling within the middle angle are favorable cases. Thus, by this method of
computation, the probability we are looking for is equal to 1/3.

Case 3 We also can fix the positions of a chord by indicating its midpoint posi-
tion. For chords to exceed the length of a side of the inscribed equilateral triangle,
their midpoints must lie within the concentric circle with radius OA = /2
(Fig. 3.3, Case 3). The aria of this circle is equal to 1/4 of our circle. Therefore, the
probability we are looking for is equal to 1/4.

Depending on how the notion “at random” is defined, we actually have three
different problems with three different solutions. Gnedenko (1963) provides the
real life situations relevant to each of these three formulations of the notion “at
random”.

Thus, good practice would dictate that when formulating a geostatistical
problem, the sampling at random must be defined operationally, and its relevance
to the problem formulation must be demonstrated. This is never being done in
hydrogeology. Moreover, the sampling systems in hydrogeology are almost never
random. They are based on the professional experience and understanding of
hydrogeological surroundings. Thus, prospecting ground water resources,
hydrogeologists allocate wells where they anticipate finding water. They do not
conduct pumping tests where low hydraulic conductivity is suspected. This is a
sound and effective hydrogeological practice. But the results based on such
sampling systems are not representative statistically: they are biased.

3.4 Probability Distributions

About all theoretical and practical developments of geostatistics in hydrogeology
are based on the assertion that the hydraulic conductivity and transmissivity have
the lognormal probabilistic distribution. The assertion is very convenient, greatly
simplifying calculations. However, it reminds the well known joke that physicists
consider that the universality of the normal distribution of probability is a theorem
proven by mathematicians, while mathematicians think that it is an empirical law
established by physicists. Likely, hydrogeologists and geostatisticians relate to the
lognormality of the hydraulic conductivity in the same way.

In fact, according to Review (1990), there exist many different probability
distributions of the hydraulic conductivity and transmissivity. Thorough studies
conducted in the Soviet Union (Borevsky et al. 1973) have revealed that proba-
bility distributions of the hydraulic conductivity can be divided into three
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approximately equal groups: normal, lognormal, and those which could not be
described as normal or lognormal.

As discussed above, the volumes characterized by the values of the hydraulic
conductivity are known only if they obtained in the laboratory tests. The elements
characterized by the hydraulic conductivity values obtained by slug and pumping
tests are not. Their volumes and shape depend on duration of the tests and the
geological surroundings Then the hydraulic conductivity of what do the proba-
bility distributions describe?

The common assertion that the hydraulic transmissivity has the same distri-
butions as the hydraulic conductivity just adds confusion. For example, in the case
described by Zimmerman et al. (1998) both have the lognormal distribution of
probabilities. However, the transmissivity is a product of the conductivity and the
thickness of the aquifer. Therefore, the thickness should have some special dis-
tributions for the product of the thickness and the conductivity to have the same
kind of the probability distribution as the conductivity. I never heard about a study
of the probabilistic distributions of the thickness of an aquifer or aquifers.

Statements about distributions of the hydraulic conductivity are based usually
on testing the hypothesis about its probabilistic distributions at “a given degree of
significance”. Let us consider this procedure more closely. Let an ensemble
consist of the elements bearing random values of property X. We assume that the
probability density function of X is po(x) (Fig. 3.4). To test our hypothesis, call it
H,, we perform the following simple procedure. We assign some criterion x,,. Then
we sample the ensemble at random. The obtained sample is characterized by value
x,. If x; > x,, we conclude that our hypothesis that X has the probability density
function py(x) is wrong and reject it. Otherwise we accept the hypothesis.

In practice we usually assign not x,, but o, the degree of significance,

o= /po(x)dx (3.1)

and calculate x,, based on Eq. 3.1. In technical applications the degree of signifi-
cance is usually assigned as 0.1, 0.05, or 0.01. If our selection of the sample has
been random, than the probability to obtain x; > x, is small. We expect that an

Fig. 3.4 Testing hypothesis p
H, based on a degree of A
confidence
Ho: p(x) = pox)
X
0 X



28 3 Geostatistical Approach

event with low probability is not likely to happen in a single experiment. But it has
happened. Therefore, our assertion that value x; has a low probability likely is
wrong. So we reject the hypothesis that X has the probability density function py(x).

However, rare events happen from time to time, and rejecting hypothesis H,
may be a mistake. The probability of such mistake is «. The degree of significance
is the probability to reject erroneously the hypothesis which we are testing when it
is true. In doing so, we commit so called a type I error. Obviously, assigning the
degree of significance is arbitrary. If we are critical with respect to the hypothesis,
we can increase o, moving our criterion x, to the left. It makes rejecting the
hypothesis more probable. If we like the hypothesis, we can decrease o and move
X, to the right. This decreases the probability of making type I error. Anyway,
assigning some degree of significance, we establish the criterion for recognizing
whether the obtained evidence is sufficient to reject our hypothesis and not more
than this.

However, what does a degree of significance say about the possibility of
committing a type II error, i.e., accepting hypothesis Hy when it is wrong? The
answer is not much. Common sense suggests that in our case, by moving x, to the
right and decreasing o, we relax the condition to accept our hypothesis. Therefore
the probability, f3, of type II error is increasing. If we increase o, moving x, to the
left, we increase the probability of type I error, and decrease the probability of type
II error. That is all. We cannot evaluate £ in a quantitative way unless we have the
probability density function p;(x) of an alternative hypothesis H.

Let us assume that we have alternative hypothesis H; with the probability
distribution function p(x) = p,(x) (Fig. 3.5). Only one of these two hypotheses is
true. The procedure of testing the hypotheses is the same as above. We assign a
criterion. It seems to be natural, but not mandatory, to pick as the criterion value
Xo; for which po(xg1) = p1(xo1). Then we sample at random ensemble and obtain
the sample for which x = x;. If x; > xo;, we conclude that hypothesis Hy is wrong,
reject it and consequently accept hypothesis H;. If x; < x¢;, we accept hypothesis
H,, rejecting hypothesis H;. The probability of erroneously rejecting hypothesis
H,, the probability of type I error, is

oo

o= /po(x)dx (3.2)

Xo1

The probability to reject erroneously hypothesis H; is equal

Fig. 3.5 Testing hypothesis: p
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Xo1

p= / pi(x)dx (3.3)
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Erroneously rejecting hypothesis H;, we erroneously accept hypothesis H.
Therefore f is the probability of type II error, to accept erroneously hypothesis H,
when it is wrong. So the probability for hypothesis H to be true is equal to  — f3.
This value is called the power of the criterion.

Our choice of value x(; does not consider the further use of the obtained result.
Having some additional information, we can select a different value xq;. If we
move xp; to the right we decrease the probability of type I error, but increase the
probability of type II error. If we move it to the left, we get an opposite effect: we
increase the probability of type I error and decrease the probability of type II error.
If we knew the losses (loss, and lossp) associated with errors of both types, we
could formulate the problem of finding x(; as a problem of optimization. That is,
we could select x(; in the way minimizing the goal function, representing the
mathematical expectation of the losses:

loss = aloss, + Plossg (3.4)

This provides about the most objectivity we can achieve, performing hypothesis
testing in the case of a simple alternative.

The hypothesis testing becomes more complicated in the case of many possible
alternatives. It would be solvable still, if we could compile a complete list of
alternatives weighted by their probabilities to be true. Say, we assume that the
hydraulic conductivity has a lognormal distribution. But what is the complete list
of the mutually incompatible alternative to our hypothesis? And how can we
weight the hypothesis, including Hy, to be true?

The point here is that making a choice based on a given degree of significance,
we cannot evaluate uncertainty associated with the choice. We do not know to
what elements values of the hydraulic conductivity relate, cannot compile the
complete list of the possible alternatives of the probability density functions and
formulate objectively the objective function for making the choice. Therefore, we
never know the probability that the accepted hypothesis is false. Or coming back to
the contest of evaluating uncertainty of the results of hydrogeological modeling,
we never know the uncertainty associated with the acceptance of our hypotheses.
This relates to all parameters involved in the underground water flow.

3.5 Effective Parameters

To produce predictions related to underground flow and contaminant transport
based on solving pertinent mathematical equations and their systems (mathematical
models), we have to know coefficients of the mathematical models continuously,
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that is, at each point of the geological object of interest and at each instant of the
period of the predictions, as well as the corresponding initial and the boundary
conditions. Since it is impossible, the simulation results never reproduce reality
exactly. In the geostatistics approach the goal is reproducing an average behavior of
all processes of interest related to the underground flow: the hydraulic heads, fluxes,
contaminant plume contours, travel times, etc. It is assumed that this can be
achieved, using some lump values of the pertinent parameters. Thus, instead of non-
countable (infinity large) sets of property values, their small finite amount could be
used (Cooley 2004). These values are called effective parameters. Since the goal of
the geostatistical approach is to predict some average behavior of the underground
flow, it seems to be natural to use some statistics of the pertinent characteristics as
effective parameters.

It was believed on the early stage of the geostatistics development, that the
statistically inferred effective hydraulic conductivity is effective in a broad spec-
trum of hydrogeological situations, since “if there is no unique best effective
hydraulic conductivity..., the predictive capability of the model must be ques-
tioned” (Gomez-Hernandez and Gorelick 1989). Dagan (1986), defining the
effective conductivity as the value that satisfies exactly the Darcy law for uniform
steady-state average flow, holds that the effective hydraulic conductivity, K., is
bounded with the harmonic mean, Ky = exp(,uy — o§/2), and the arithmetic
mean, K4 = exp(uy + 63/2), where pyand o} are the geometric mean and the
variation of the natural logarithms of the observed values of the hydraulic con-
ductivity K:

KHSKeffSKA (35)
He also holds that for three-dimensional flow in isotropic media

Ky = Ko(1+ 03/6) (3.6)

(K = exp (uy) is the geometric mean.)

Dagan (1986) states that Eq. 3.6 “is of a rather academic interest,” since “we
generally measure directly a space average of K by pumping tests” and “under
certain limiting conditions, yet to be elucidated in a quantitative manner, this space
averaging is close to K,” Equation 3.6 and the above Dagan’s statement seem
strange for me. A regional pumping test averages properties on local scale (the
elements with size 107! to 10° m) in radius 10" to 10*> m. Let an impermeable
boulder or even a pebble be among the local scale elements being averaged. The
result of such averaging is K = 0. Thus, just a pebble makes a regional hydraulic
conductivity equal zero. May be for this reason Dagan (1986) writes about
“certain limiting conditions” which are not elucidated yet.

Nevertheless, the concept that the results obtained by pumping tests on some
scaling level are averages of the hydraulic conductivity values, belonging to the



3.5 Effective Parameters 31

preceding scale level is shared by most of geostatisticians (Review 1990;
McLaughlin and Townley 1996; Cooley 2004; Moore and Doherty 2006, and
many others). However, as mentioned above, the results of pumping tests depend
on the chosen interpretation models, which are arbitrary in principle. It is hard to
believe that the choice of the interpretation model does not affect the character of
“the space averaging.”

The anxiety of Gomez-Hernandez and Gorelick (1989) that a unique value of
the effective hydraulic conductivity may not exists, happened to be justified. Beven
(1989) writes that many studies “have concluded that it is not possible to define a
consistent effective parameter value to reproduce the response of a spatially var-
iable pattern of parameter values.” Neuman and Orr (1993) showed that “an
effective hydraulic conductivity does not generally exist.” They also “demon-
strated numerically that in two dimensional mean radial flow an effective hydraulic
conductivity may increase from the harmonic mean of K(x) near interior and
boundary sources to the geometric mean far from such sources.” But contrary to
the statement of Gomez-Hernandez and Gorelick (1989), the predictive capability
of predictive models is not questioned by geostatisticians.

Cooley (2004) recognizing the absence of unique effective values of the
hydraulic conductivity, explains it, as do many other geostatisticians, with the fact
that hydrological mathematical models are nonlinear with respect to the hydraulic
conductivity. To understand this, let us consider a simple example. Let some
variable of interest g be a linear function of the property k:

q =ak+b

Let k take values k; and k,. Then the arithmetic mean of g is

aky +aky +2b  aky, + aks ki + ko
- 2

q= 5 5 +b=a +b=ak+b

So we can evaluate the arithmetic mean value of g and its statistical charac-
teristics applying the arithmetic mean value k and its statistical characteristics.
Thus, k and g are effective statistically and k provides the effective value 7.

Now let variable 4 be a quadratic function of k:

h=ak>+b

Then the arithmetic mean value £, is not equal to its estimate h calculated with
the use of the arithmetic mean k:

— ak®+ak?+2b - ki + k) j

hzwzg(k%+k%)+b7éak2+b:a 1R +b=nh
2 2 2

Indeed,

. ki + ko)

== 500+ R) oM7) =56 - 2k ) =k b
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Unless k; = k, or a = 0, making & constant, & # h, due to non-linearity of
mathematical models. Thus, though k is the effective statistics for k; and ko, it is
not effective parameter for evaluating h. So, different variables of interest can
require different effective values of the same parameters. Of course, this example
is oversimplification of the real life situations, just to demonstrate in the simplest
way how non-linearity works.

No doubt, the nonlinearity hydrogeological processes contributes to the fact that
the effective parameters are not universal. However, this obstacle can be over-
come, for example, by the use of the Monte Carlo method (Shvidler 1963, 1964).
The real issue is still the paucity of data on structures and properties of geological
objects. We cannot know how what is unknown can affect the effectiveness of the
parameters which we for some reason assigned as effective. Even different for-
mulations of simulation problem on the same object can require different effective
parameters (Gorokhovski 1977, 1996; Yeh and Yoon 1981; Yeh 1986; Beven
1989). This phenomenon is called problem dependence of model identification,
since it was revealed in process of calibration of predictive models. Therefore, if
even the effective hydraulic conductivities of hydrogeological models were sta-
tistics, which in general is not true (see Chaps. 5-7), they should be different
statistics for different formulations of simulation problems.

3.6 Meaning of Geostatistically Inferred Results

Let us assume that all our geostatistical assertions about the site of interest are true
and that we have obtained true results. What do they mean really? For example, an
insurance company evaluates the average longevity for a segment of population
and does this correctly. However, can the company predict what will happen to a
person with the average characteristics of a given segment of the population? The
answer is no. The segment of population to which my parents and my talented
colleague belonged had the average longevity about 60 years. My parents passed
away at age 89 and 92 years and my colleague at 40 years.

Meteorology, with its much longer historical records, numerous comparisons of
statistical generalizations with real facts, and much better developed observational
networks and predictive techniques than hydrogeology, makes a quite expressive
illustration of this point. Thus, a 100-year flood event statistics refers to the
disastrous floods which in a long sequence of years occur in average once per a
hundred year, that is, it has the probability equal to 0.01 to happen during a one-
year period. Nevertheless two such floods have happened in California just during
first three months of 1995 and then again in 1997. The possibility that the climate
change or some other factors depriving the long previous series of observations of
the statistical meaning for the future predictions makes the situation even worse.

In the same way, the geostatistical approach, if all its assumptions are true,
leads to the results that represent the average response of the made-up imaginary
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ensemble. They do not relate to the unique object used to make the ensemble up,
and to what can happen to the object.

3.7 Geostatistics and Uncertainty

As Hornung (1990) puts it, “One cannot substitute lack of theory and/or data by
sophisticated mathematical models for parameter identification.” Developing such
complex theories, as hydrogeological geostatistics or proving new and beautiful
theorems are challenging, and gratifying. However, how practical are those
achievements? V. N. Tatubalin, a colleague of A. N. Kolmogorov and B.
V. Gnedenko in the Department of the Probability Theory, Moscow State Uni-
versity, U.S.S.R., who often consulted hydrogeologists and geological engineers in
1960s and 1970s used to say: “You are looking for a razor. But considering
amount and quality of your data, you would better learn to work with a chopper.”
Shvidler (1963, 1964), one of the pioneers in application of random functions to
underground flows, gives the best, to my knowledge, practical example, applying
them to oilfields consisting of 60—80 wells located on a relatively small territory.
He describes the procedure of geostatistical solving the filtration problem in the
following way (his notation is substituted with the one used in this text):

1. From experimental data one realization of random function K(x) is
constructed.

2. From one realization, the appropriate functional characteristics—mathe-
matical expectation and autocorrelation functions of (the hydraulic conduc-
tivity) K(x)—are determined.

3. Based on them sufficiently many realization of K(x) are constructed.

4. Any algorithm whatever for solving the corresponding boundary value
problem for each realization of K(x) is applied.

5. From the set of boundary values solutions obtained the fundamental char-
acteristics of the random function A(x) are computed.

To realize steps 1-3, he applied the assumptions of stationarity of the observed
random function K(x) suggested later by Dagan (1986). To realize step 4, he
applies different algorithms including analytical or numerical solutions, the
method small perturbations, the random walk, and the Monte Carlo simulations, all
of them in the deterministic mode. Step 4 provided also the solution of the problem
of nonlinearity of the original deterministic problem. In Step 5, Shvidler usually
restricted himself with calculating the mean and the variations of the yield of the
oil pumping wells. The latter was usually based on the Chebyshev inequality: if
A > 1 is an arbitrary positive real number, ¢ is a random variable, g is its mean,
and o, is its standard deviation, than the probability of the event |g — g| > Ag, is
smaller than A2, that is,
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The Chebyshev inequality does not depend on the probabilistic distribution of
the random variable g and permits evaluating two-side confidential intervals for a
given confidence level and vise versa, though it overstates the confidence levels.
For example, an arbitrary distributed variable g lies in the interval g &+ 35, with the
probability close to 0.9.

Shvidler states also that it is necessary to have tens and in some cases even
hundreds of observations for reliable derivation of correlation functions. (In his
real-life examples, the number of observation wells is always above 60.) Since in
many cases, we do not have sufficient information for a valid determination of the
statistical characteristics of the random functions, we have to choose between the
deterministic and stochastic approaches. However, he writes: “It is quite obvious
that the statistical model should be preferred as being more general.” It may be,
but not for me.

Shvidler (1963, 1964) never mentioned that the statistical approach provides
provable estimates of the uncertainty of its results. He rather considers it as a way
to systematize and optimize modeling: Steps 1-3 above are preparations to step 4
which is deterministic essentially. It is possible that the geostatistical approach can
be useful in this sense sometimes, for example, in a context of model equifinality
(Beven and Freer 2001). However, what is discussed here is not the comparison of
the computational efficiency of the two approaches but the inability to obtain the
provable estimates of uncertainty of the results of the engineering approach and, as
if, the ability of the geostatistical one to provide such estimates.

It is a common and sound practice in mathematics to use convenient assump-
tions and methods such as the Lagrange multipliers or the perturbation methods to
facilitate analytical solving of many problems. When analytical solutions are
impossible, finite difference and finite element methods are convenient tools to
yield numerical solutions. Statistical concepts and Monte Carlo simulations are
used sometimes as a tool to solve deterministic problems such as evaluating
integrals and solving differential equations. The Buffon needle problem of the
value of 7 estimation is a famous example of the Monte Carlo method application
(Gnedenko 1963; Gentle 1985). However, all such applications include demon-
strations that the employed conveniences actually lead to the solutions of the
original problems, that is, the yielded solutions converge to the true solutions if the
number of experiments or nods, in case of numerical methods, goes to infinity.

This is not the case for hydrogeological applications of geostatistics in which
the word random is like the magic spell “open sesame”: one proclaims whatever
one wants as random and then is free to proceed. In geostatistics the analytical
convenience means a complete substitution of the problem needing solution by a
vaguely related problem which seems easier to solve. The deterministic problem of
finding space—time distributions of the hydraulic heads caused by a given impact
within a given site is replaced by the problem of evaluating the average
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distributions of the hydraulic heads or fluxes belonging to a made-up ensemble.
The reason for the substitution is the impossibility of estimating the error of the
results from the deterministic formulation of the problem. To solve this new
problem, an ensemble is made up which consists of undefined elements and
actually even does not exist, random functions are applied to the phenomena which
are not random, and many assumptions are employed which are not properly
tested, or not tested at all, and “generally false and known to be false” (Morton
1993; Beven 2005).

The geostatistical approach may render the results accepted practically. How-
ever, contrary to statements of geostatisticians, it does not permit evaluating the
uncertainty of those results in a provable way. Thus, one of their most power tools
to overcome non-linearity of hydrogeological models and complications with
defining statistical distributions of the simulation results is the Monte Carlo sim-
ulations. Let us forget that expressing the simulation result uncertainty in terms of
levels of significance without evaluating type II error is meaningless. The main
problem with such use of the Monte Carlo simulations is that their object is a
model itself but not its relation to the real world (Gentle 1985). Varying the
parameters of a model, one can evaluate the model sensitivity to its parameters, but
and not more than this.

I do not think that all this is news for geostatisticians, at least for those from the
first generations. I cited above works of Dagan (1986) and Review (1990) where
they stated directly that they introduce most of their assumptions not because they
are true, but because they are convenient. However, Kitanidis (1997) motivates the
next generation of geostatisticians, claiming that “because we cannot come up
with a deterministic mechanism that explains variability, we postulate a proba-
bilistic model”, that the common sense “is often the best guide” and that geo-
statistics are “practical and reasonable way to use what we know in order to make
predictions”. He recognizes that the geostatistical technique may be misleading
and should be avoided if certain assumptions are not met. Based on the common
sense, he suggests considering an assumption as met if it is reasonable, there are no
evidences to contrary, and the data do not discredit the assumption.

All of these and even more have been already discussed above. However, the
two following suggestions seem to be new. First, Kitanidis (1997) suggests, based
on the common sense and the geostatistical traditions, to use, the Fourier decom-
position “to grasp the concept of scale” for the properties varying in space. The
Fourier decomposition representing a function as a sum of infinite number of
harmonics of different periods and amplitudes is a powerful and widely used tool in
both pure and applied mathematics. But if we take in consideration that about any
trend, including linear and polynomial, can be subjected to the Fourier decompo-
sition, it becomes obviously that the Fourier decomposition has nothing to do with
the concept of scales. Applying such logic, we can use the Taylor expansion to
grasp the linear, quadratic, cubic and so on components (or scales?) of the regional
trend. Mathematics permits describing trends as sums of the harmonics, but any
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periodicity gets geological meaning, if it is supported by geological evidences and
considerations, not the other way round. Second, Kitanidis (1997) mentions a
couple times the principle of Occam’s razor, that is, the use of the simplest
empirical model consistent with the observed data. Taking into account how many
assumptions the geostatistical approach involves, citing the Occam’s razor as one of
the reasons for the geostatistical approach sounds at least ironic.

This chapter happened to be much longer than I expected. And the reason is that
due to brilliancy of the leading geostatisticians, geostatistics won the market, at
least, in terms of scientific publications. I speak without any irony about their
brilliancy. They have solved many difficult mathematical problems and obtained
many beautiful results. Unfortunately, all this does not resolve the issue of the
uncertainty of the results of hydrogeological modeling. The reason for the failure
to resolve it is the use of too many assumptions and postulates most of which
cannot be tested or are just not true. In the beginning of the application of geo-
statistics to hydrogeology, they honestly declared that those assumptions and
postulate are introduced for convenience only. We do not hear much about it at
present. Frequent use and tradition have made them as if valid. It seems that many
geostatisticians have believed that geostatistics really overcomes the uncertainty of
groundwater modeling problem. They communicate their belief to the community
of decision-makers and there exists a great danger if the decision-makers believe
them. This reminds me the situation described by known British statistician
Kendall (1959) in his poem “Hiawatha Designs an Experiment”. Fortunately,
pragmatic Indians had enough of sound sense not to believe their famous tribes-
man Hiawatha, statistician.

On the other hand, if somebody has enough data and wants to use the geo-
statistical methods as a tool of interpolation and extrapolation of sparse data and
does not pretend falsely that this methodology permits evaluating the uncertainty
in a provable way, the geostatistical approach is as good or bad as the deterministic
one. Although it is more cumbersome, the development of computational tech-
nique and methods make this factor less and less significant.

The statistical methods are a powerful instrument for organizing, sorting,
analyzing data, revealing whether the data support a hypothesis, or that their
structure has peculiarities which may possibly change the comprehension of a site
or a phenomenon. They are rather a starting point of developing conceptual
geological models. They permit calculating the confidence intervals and many
other statistics. But all of them are conditioned by different assumptions. And the
more assumptions are introduced, the less must be the trust to the conclusions
following from applications of those assumptions.

In general, the situation with the geostatistics is not so bad. Once a proponent of
geostatistics asked me why I am against it: “Nobody uses it in practice,”—added he.
And this is true. Serious application of geostatistics to hydrogeological problems
requires such amount of data that it is not feasible to acquire physically and eco-
nomically in the most hydrogeological and environmental projects.



References 37

References

Bear J (1972) Dynamics of fluid in porous media. Elsevier, New York, p 764

Beven K (1989) Changing ideas in hydrology—the case of physically-based models. J Hydrol
105:157-172 (Amsterdam)

Beven K (2005) On the concept of model structural error. Water Sci Technol 52(6):167-175

Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic
modeling of complex environmental systems using the GLUE methodology. J Hydrol
249:11-29

Bolotin VV (1969) Statistical methods in structural mechanics. Holden-Day, San-Francisco,
p 240

Bondarik GK (1974) Fundamentals of the theory of variability of Geological Engineering
properties of rocks (OcHosbl Teopun Msvenunmsocru Muzenepro-I eosiornueckux Cioricts
I"opnbix Ilopoxn). Nedra, Moscow, in Russian, p 272

Borevsky BV, Samsonov BG, Yazvin LS (1973) Methodology of evaluating parameters of
aquifers by pumping tests (Meroauka Onpesesienns |lapaverepos BosoHocHbix |'opusoHToB
1o Jlamibiv Otkauek). Nedra, Moscow, p 304 (in Russian)

Brown GO, Hsieh HT, Lucero DA (2000) Evaluation of laboratory dolomite core sample size
using representative elementary volume concepts. WWR 36(5):1199-1207

Cooley RL (2004) A Theory for modeling ground-water flow in heterogeneous media. US
Geological survey professional paper, Reston, 1679, p 220

Dagan G (1986) Statistical theory laboratory to formation, and formation to regional scale. WRR
22(9):109S5-134S

Fisher RA (1935) The design of experiments. Oliver & Boyd, Edinburgh

Gentle JE (1985) Monte Carlo methods. In: Kots S, Johnson NL (eds) Encyclopedia of statistical
sciences, vol 5. Wiley, New York, pp 612-617

Gnedenko BV (1963) The theory of probability. Chelsea, New York, p 471

Gomez-Hernandez JJ, Gorelick SM (1989) Effective groundwater model parameter values:
influence of spatial variability of hydraulic conductivity, leakance, and recharge. WRR
25(3):405-419

Gorokhovski VM (1977) Mathematical methods and reliability of hydrogeological and
engineering geological predictions (MaTemarnieckre MeTo/Abl M JOCTOBEPHOCTL I'MApPOreo-
JIorMYecKrx U MHzKeHepHo-reosioryeckrx rporHosos). Nedra, Moscow, p 77 (in Russian)

Gorokhovski VM (1996) Problem-Dependence of ground-water model identifications: Signifi-
cance, extent, treatment, Ground Water, 34(3):461-469

Graham W, McLaughlin D (1989) Stochastic analysis of nonstationary subsurface solute
transport. 1. Unconditional moments. WWR 25(2):215-232

Hornung U (1990) Parameter identification. In: Proceedings of the international symposium on
water quality modeling of agricultural non-point sources, part 2, U.S. Department of
agriculture, agriculture research service, ARS-81, 19-23 June 1988, pp 755-764

Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University
Press, New York, 561p

Kendall MG (1959) Hiawatha designs an experiment. Am Stat 13:23-24

Kitandis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge
University Press, Cambridge, 249 pp

Kolomensky NV, Komarov IS (1964) Geological engineering (Uizkenepnas | 'eosiorus). Vyshaja
Shkola, Moscow, p 489, (in Russian) Morton A (1993)

McLaughlin D, Townley LR (1996) A reassessment of the groundwater inverse problem. WWR
32(5):1131-1161

Moore C, Doherty J (2006) The cost of uniqueness in groundwater model calibration. Adv Water
Resour 29(4):605-623

Morton A (1993) Mathematical models: questions of trustworthiness. Br. J Phil Sci 44:659-674



38 3 Geostatistical Approach

Neuman SP, Orr S (1993) Prediction of steady state flow in nonuniform geologic media by
conditional moments: exact nonlocal formalism, effective conductivities, and weak approx-
imation. WWR 29(2):341-364

NRC (1990) National resource council, groundwater models: scientific and regulatory applica-
tions. National Academy Press, Washington, DC, p 320

Rats MV (1968) Heterogeneity of rocks and their physical properties (Heoaopojnocts | opiibix
[lopox 1 x Qusnueckne Ciorictsa). Nauka, Moscow, p 108 (in Russian)

Review (1990) Review of geostatistics in geohydrology I: basic Concepts. ASCE task committee
on geostatistical techniques in hydrogeology. J Hydraulic Eng 116(5):612-632

Rozovsky LB,. Zelenin IP (1975) Geological-engineering predictions and modeling (Po3oBckuit
JLb. u 3enenm W11, Unxenepro-I'eonornieckue Ilpornosst 1 Mojenmposanie, Onecckuit
I"ocyrapcrsenibin Yuusepcurer, Onecca) (in Russian)

Shvidler MI (1963), Oubrpanmonnsie Teuenns B Heojmopoanbix Cpenax, ['ocrexuziar
['ocynarcrsentoe WMznaresbcrso Hayunont u Texuuueckor Jlureparypht 1o Hedru
Munepaiibiont Torumton |lpombiiiennoctn, Mocksa, 110 c. (in Russian)

Shvidler MI (1964) Filtration flows in heterogeneous media (a statistical approach). Consultants
Bureau Enterprises, Inc., New York, USA, 104 p. (Translation from Russian, see Shvidler,
1963)

van Genuchten MT, Gorelick SM, Yeh WW-G (1990) Application of parameter estimation
technique to solute transport studies. In: Proceedings of the international symposium on water
quality modeling of agricultural non-point sources, part 2. US Department of agriculture,
agriculture research service, ARS-81, 19-23 June 1988, pp 731-753

Yeh WW-G (1986) Review of parameter identification procedures in ground water hydrology:
the inverse problem. WWR 22(2):95-108

Yeh WW-G, Yoon YS (1981) Aquifer parameter identification with optimum dimension in
parameterization. WRR 17(3):664-672

Yule GU, Kendall MG (1950) An introduction to the theory of statistics, 14h edn. Hafner, New
York, 701p

Zimmermann DA, de Marsily G, Gotway CA, Marrietta MG, Axness CL, Beauheim RL, Bras
RL, Carrera J, Dagan G, Davies PB, Gallegos DP, Gally A, Gomez-Hernandez J, Grindrod P,
Gutjahr AL, Kitanidis PK, Lavenue AM, McLaughlin D, Neuman SP, RamaRao BS, Ravenne
C, Rubin Y (1998) A comparison of seven geostatistically based inverse approaches to
estimate transmissivity for modeling adjective transport by groundwater flow. WRR
34(6):1373-1413



Chapter 4
Model Identification

To predict responses of geological objects on man-made or natural impacts
applying mathematical methods, i.e., by solving differential or integral equations,
the pertinent properties of the geological objects should be assigned continuously,
that is, at each point of the objects and at each instant of the period of simulations,
if the properties vary in time, besides maybe countable sets of points, i.e., isolated
in space and time points. The boundary and initial conditions must be known in the
same way. Unfortunately, only an infinitesimal part of the required geological
information is available for direct observations and measurements. The informa-
tion gap must be filled and geological models do the job. They are a tool of
interpolation and extrapolation of the sparse available data on all points of the
geological objects of interest.

Geologists, with their understanding of geological surroundings seem to be the
best developers of geological models representing geological objects in simula-
tions. But as discussed earlier, those models are not exact copies of real geological
objects. The results obtained by using the geological models cannot reproduce
simulation processes exactly. So the goal of predictive simulating is to yield the
best, in some predefined sense, possible results. To this end the models must be
furnished by the values of the model governing parameters providing those results.
Such parameters, their values, are called effective parameters.

The engineering and geostatistical approaches differ by the ways of assigning
the effective parameters. Proponents of the engineering approach just know, from
theirs and their colleagues’ practical experience, what models and what values of
their parameters, which may be some statistics, are best in a given situation.
Geostatisticians apply more complicated statistical methods inherent to their
general concept. Both approaches test and refine their choices of the effective
model parameters observing how they reproduce the available data.

This process of finding or refining predictive model parameters based on available
observations on natural or induced hydrogeological phenomena is known as model
identification, model calibration, historical matching, and site specific validation.
Model identification is often considered as inverse problem solving (Yakowitz
and Ducstein 1980; Yeh and Yoon 1981; Carrera and Neuman 1986; Yeh 1986;
Hornung 1990; van Genuchten et al. 1990; Aster et al. 2005: Carrera et al. 2005;
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Moore and Doherty 2006; Doherty and Christensen 2011). However, in general,
the term ‘inverse problem’ is not a synonym of the term ‘model identification’ and
its synonyms listed above (see Chap. 9).

Calibration is the most trusted method for assigning the effective parameters of
the predictive hydrogeological models at present. The results of calibration are often
considered as the strongest argument in support of model’s soundness. The faith in
the model calibration is based, at least in part, on the belief that the identified
parameter values compensate automatically for unknown details. Flavelle (1992)
writes: “The calibration (or tuning) of model can be described by a goodness-of-fit
parameter which reflects how well the calibrated results match the observed data
being simulated. This scalar parameter should incorporate the measurement
uncertainty of the observations as well as the uncertainty in the model output.” He
also holds that “validation tests can also be designed simply to measure the accuracy
of the predictions, without reference to a predetermined accuracy as a criterion for
acceptance or rejection”. The late statement expresses, likely, the Flavelle’s belief
that we can judge the accuracy of the future simulations based on the accuracy of
calibration of predictive models.

Some other professionals, relaying on the model identification as an effective
tool, are more cautious. Cited in Chap. 2 De Morsily et al. (1992) emphasize that
success in calibration “does not prove that the model will be correct for all
circumstances, it only increases our confidence in its value.” Indeed, there exist
many facts that put in doubt the statements like those of Flavelle (1992). Thus,
Yakowitz and Ducstain (1980) describe failures of several successfully calibrated
models to predict the hydraulic head development on the same water intake. They
explain the failures by incorrectness of the model identification, equating it to the
inverse problem. Freyberg (1988), using numerical experiments, demonstrated that
success in prediction may not be related to success in matching observed heads and
that a good calibration alone may not lead to good prediction.

Based on general philosophical considerations and examples from hydrogeo-
logical modeling practice, Konikow and Bredehoeft (1992) claim that a site spe-
cific validation “per se, is a futile objective”, the point disputed by De Marsily
et al. (1992). Beven (1989) goes even further, holding that the use of calibration as
a tool for setting model parameters is rather “an act of faith that is not based on
sound physical reasoning”. Oreskes et al. (1994), state: “Verification and vali-
dation of numerical models of natural systems is impossible,” and so on.

Accepting the philosophical arguments of Beven (1989); Hornung (1990);
Morton (1993); Oreskes et al. (1994); Oreskes (2004), and others that successful
model calibration does not guarantee success of predictive simulations, it seems
too much to claim that a site specific validation is “a futile objective”. We should
analyze every piece of available information. Model calibration is one of the tools
for such analysis. Playing with different models and parameter values can help
with better understanding geology and hydrogeology of the objects and their
possible responses on natural or man-made impacts, and why a specifically
site-validated model could become misleading in predictive simulations.
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4.1 Incorrectness in Mathematics

The usual explanation for model identification to yield misleading results is that it
is an ill-posed, incorrect, problem. This makes it worth discussing the mathe-
matical notion of incorrectness in more details.

A problem is well-posed, correct, if three following conditions hold:

1. The problem has a solution

2. The solution is unique

3. The solution is stable (continuous), meaning that small errors in the data lead to
small errors in the solution

If at least one of the above conditions is violated, the problem is ill-posed,
incorrect.

One of the main causes of incorrectness is the observation and rounding errors.
Their roles could be seen from the following simple example.

Let us consider evaluating of parameter A based on observation of the process
described by equation

x=Ae (4.1a)
where ¢ and x are the independent and dependent variables. The solution of this
inverse problem follows directly from Eq. 4.1a:

A=xe” (4.1b)

The process described by Eq. 4.1a has asymptote x = 0 (Fig. 4.1) which makes
the processes with different values of parameter A not distinguishable for large
values . However, using good mathematical software we can evaluate parameter
A for very large values t. Thus, for 1 = 250,

x = 5% = 0.35622882033706 x 1072° and
x = 10e7% = 0.71245764067413 x 10721

Fig. 4.1 Evaluating X
parameter A using
observations on the process
described by Eq. 4.1a
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Substituting these values x in Eq. 4.1b yields correspondingly
A = 5.00000000000000 and A = 10.00000000000000,

solving our inverse problem more than satisfactorily.

However, as soon as the errors of observations and rounding become com-
mensurable with the observed values, we obtain the situation presented in Fig. 4.1.
Assuming that the resolution of the figure corresponds to the accuracy of mea-
surements y, we see that the measurements does not permit separation of the A = 5
and A = 10 for large enough values t. The problem is correct, say, for t < 3 and
incorrect for r > 4. There exists also a grey zone 3 < ¢t < 4 where correctness or
incorrectness of the problem depends on the accuracy of the measurements.

This kind of situations is typical for hydrogeological processes developing from
transient filtration to steady-state one. Observation and calculation errors can make
solving inverse problems impossible for some parameters, if observations are
made close to the steady-state phase.

Let the actual behavior of the hydraulic heads be described by function A(x).
But what we observe is

hop(x) = h(x) + &(x) (4.2)

where ¢(x) is the error of the observation at x. In many situations there is a need to
evaluate gradient of A(x) based on observations £,,(x). If &(x) is not differentiable
(a random value, for example), h,,(x) is not differentiable either. So the problem of
evaluating the gradient based on observations does not have a solution, it is
incorrect.

Now let us assume that the error is differentiable. For example,

&(x) = A sin(wx) (4.3)

where A is the amplitude and o is the frequency of the oscillations. Then the
gradient does exist and can be evaluated as

h,(x) = (x) + Aw cos(wx) (4.4)

The upper boundary for the error in evaluating the gradient of 4 is |Awl. If the
frequency o is large, small errors in evaluating x can lead to large errors in
evaluating /'(x). This means that the problem of evaluating gradients based on
observations can be ill-posed, if even the error is differentiable. We can represent
the observations differently, applying different differentiable approximations such
as splines, polynomial regressions, and so on. But applying different approxima-
tions based on the same observations, we may obtain different gradients.

One-dimensional steady state filtration in a shallow homogeneous unconfined
aquifer on the horizontal aquitard in absence of recharge is described by differ-
ential equation where h(x) is the thickness of the aquifer, and K is its hydraulic
conductivity which is constant:



4.1 Incorrectness in Mathematics 43

(4.5)

If we want to use a homogeneous model (K(x) = const.) but the boundary
conditions in the model described by Eq. 4.5 are given as the aquifer thickness at
the ends of the interval of interest [0, L], we cannot use the model for finding the
hydraulic conductivity of the aquifer, since it disappears, is canceled, from Eq. 4.5.
This makes incorrect the inverse problem of finding the hydraulic conductivity
based on Eq. 4.5. However, let the boundary conditions be known at x = 0 as
h(0) = hy and

dh(x)

0(0) = Qo = —K(0)ho e
x=0

(4.6)

Then model presented by Eq. 4.5 can be used for finding the hydraulic con-
ductivity K(x) since

/x de  R(x)— i3
K(x)  20Qo

(4.7)

(see Eq. 1.8). In the case of the piecewise homogeneous object with boundaries
between its homogeneous parts at points x; and x;, the hydraulic conductivity
within the those parts could be found as

2Q0 (x,» - xj)
Kji= o9 (438)
7 () — h*(xi)

The solution presented by Eq. 4.8 exists for all A(x;) # h(x;) is unique and
stable, since it is continuous with respect to A(x), x and Q.

Let us assume that we work with a homogeneous model and have five obser-
vations over the thickness of the aquifer. This gives 10 possibilities to calculate the
hydraulic conductivity, using Eq. 4.8. If our model, measurements, and calcula-
tions are absolutely accurate, then all values of K;; are the same. But if the model
does not reproduce the real object exactly or the measurements and calculations
carry errors, it is possible that we can have up to ten considerably different values
of the hydraulic conductivity. If the differences between those values exceed what
could be expected based on the measurement errors, we have to recognize that our
solution becomes not unique and the problem is ill-posed.

There are at least two obvious ways to reformulate the above problem to make
it well-posed. One is to accept some statistics of the obtained values K;; as the
solution. On the other hand we can partition the aquifer accordingly to the
available observations and than consider that between the observations the aquifer
is homogeneous. Then different hydraulic conductivity values characterize dif-
ferent part of the aquifer, so we have a unique and stable solution of our problem
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but for the heterogeneous aquifer this time. In both cases we use ad hoc
assumptions which usually cannot be verified.
Many inverse and model identification problems are reduced to solving systems
of linear equations. Let us start with the following system
x—y=1
x+y=3

1 -1
S U

can be interpreted as characteristics of a model structure. Its right—hand vector

(4.9)

Matrix of the above system,

b= { ; } can be considered as observed data. The goal is to evaluate parameters

x and y which are properties of the model. Note that these parameters being
interpreted geometrically are coordinates of the point of intersection of the lines
presented by equations of System 4.9.

The problem of evaluating parameters x and y is formulated correctly: it has a
unique solution (x = 2 and y = 1) which is stable. Indeed, let us assume that the
structure of the model and the observations carry errors such that instead of System
4.9 we have system

0.97x — 1.02y = 0.99
1.04x 4+ 0.95y = 3.02

The unique solution to this system is x = 2.03 and y = 0.96. So in response to
reasonable inaccuracy of the model and the observations, we have reasonable
errors in evaluating parameters x and y.

Let us consider a different system

x—y=1

(4.10)
2x —2y =3

System 4.10 does not have solution at all: its determinant is equal to zero.
Equations 4.10 represent two parallel lines which never intersect. Therefore, the
problem of finding parameters x and y System 4.10 is ill-posed.

The system

1.05x 4 1.05y = 1.05

(4.11)
0.98x + 0.98y = 0.98

has infinity many solutions, since both equations represent the same straight line
and any value x and y = 1 — x satisfies System 4.11. Therefore, the problem
leading to System 4.11 is ill-posed.
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The system
x+y=3
y (4.12)
1.05x+y=4
is ill-posed also. Solution of this system is x = 20 and y = — 17. However, if its
coefficients carry measurement errors and System 4.12 takes, say, form
0.99x + 1.01y = 3.01
1.06x + 0.98y = 3.99
its solution becomes x = 10.76 and y = —7.56. Thus small errors in measure-

ments lead to the considerable error in solution. The reason is that the straight lines
represented by equations of System 4.13 are about parallel and small errors in their
coefficients lead to large errors in the coordinates of their intersection, parameters
x and y.

Since systems of linear equations play a considerable part in solving different
problems, including hydrogeological ones, let us consider a general system of
n linear equations

Ax=b (4.13)

where A is a square matrix of n X n size, x is a vector-column of the unknowns
and b is a vector-column of the observations (both are of 1 x n size). To have a
unique solution, matrix A must have inverse matrix A_l, such that A~'A =
A A™' = I (I'is a unit diagonal matrix: its non-diagonal elements are equal to zero
and its diagonal elements are equal to 1.) Matrix A~" exists, if the determinant of
matrix A is not equal to zero, Al # 0. Then solution to the system can be found by
the expression which rather represents a procedure:

A Ax=x=4""D (4.14)

Discussion on stability of the above solution requires introducing the notion of
vector and matrix norms. Let us start with definition of the vector norm.

A vector norm ||al| of vector a is a measure of the vector magnitude. It must be
a real number having following properties:

Iv.  |a| >0 ifa#0
v |a||=0 ifa=0
OIv  ||ual| = |u| = ||a|| wisareal number

If b is a vector with norm ||5|| and its dimension is equal to the dimension of
vector a, then the following properties hold

IVv  |ab| < ||a|| = ||b]] Cauchy—Buniakowsky—Schwarz inequality
Vv |la+b| < |la|| + ||b|| Triangle inequality
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There exist many different vector norms satisfying the above properties. The
most popular vector norms are following:

n

lally= > lail norm 1
i=1
o\ (4.15)
lal = (> a? norm or norm 2 or Euclidian norm ‘
i=1
lall .= max |a; norm infinity or maximum norm
1<i<n

Since matrices are sets of vector columns or vector rows, it is natural to
associate the matrix norms with the vector ones. Namely for matrix of size
n X n some most often applied norms are defined as

n
IA]l,= max 37 |ai| norm 1 : the maximum magnitude of sum of matrix columns

<i<njD

1/2
n n
lAllF = (Z >4 > Frobenious norm

1Al .= = max > Z laj;|  norminfinity: the maximum magnitude of sum of matrix rows
(4.16)

As an example, let us consider the matrix

A=

N N

2 3
5 6
8 9

Corresponding norms are presented in Table 4.1.
The matrix norms have properties of the vector’s ones plus one more, related to
the matrix—vector product (VIm):

Im |JA] >0 ifA #£0

IIm A =0 ifA=0

OIm ||pAl| = |g| * ||A]| pis areal number

IVm ||AB|| <||A|| = ||B|| Cauchy—Buniakowsky—Schwarz inequality

Vm ||A+B|| <||A|| + ||B|| Triangleinequality
Vim |4 < [[A]l + 5]

It is assumed that matrices A and B and vector b in the above list of the
properties permit the operations involved. In particular, matrices are assumed to be
squared of size n X n.

Table 4.1 Comparing

) . Norm 1 Frobenious norm Norm infinity
different norms of matrix A

18 16.8819 24
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The notion of the coordinated vector and matrix norms permits evaluating
errors of the solutions to systems of linear Eq. 4.13. If matrix A and vector b carry
errors, then factually System 4.13 becomes

(A + AA)(x+ Ax) = b+ Ab (4.17)

where AA is the matrix of errors of the elements of matrix A and Ab is the vector of
errors of the elements of vector b and vector Ax is the errors of the elements of
vector x. It follows from Eq. 4.17 that

Ax=A""(Ab— AAx — AAAx) (4.18)
Applying the norms and the triangle inequality to Eq. 4.18 yields
1Ax]] < [lA7H] < [1AB] -+ flA™H [ < JAAT < [l + [[A7H] < [JAA] < [l Ax]|

(4.19)
Inequality 4.19 can be reorganized as

[|Ax]] 4 (IIAbII IAAH)

< + (4.20)
el = 1 — 2l nel Al
where A(A) = ||A||"||A7"|| > 1 is the condition number. The condition number
A(A) > 1. Indeed,

|ATAl = 1] = 1< ||A7Y| 1Al = 4 (4.21)

Inequality (4.20) relates the relative errors of the solution to System (4.13) and
the relative errors of the initial data of matrix A and vector b. The system is well
conditioned, if .~ 1—10. A system is ill conditioned, if 1 > 10>-10°. There
exists the gray zone 10 < /. <10* within which the solution to linear systems may

[AA]

stay stable. Inequality (4.20) is meaningful, if A ‘H Al

HH AHH must be considerably smaller than 1. This requirement is practical enough,

< 1. This implies that ratio

since there is no sense to work with inaccurate System 4.13.

Note, the notion of incorrectness, as it is formulated in the very beginning of
this subsection relates to mathematical formulations of problems and solutions to
them. It happens sometimes that mathematically correct solution is incorrect
physically as, for example, a negative hydraulic conductivity. Why such results
may appear and what they mean is discussed in Chaps. 5. However, such situ-
ations are easily recognizable and could be rejected or accepted depending on
how the physically incorrect solution is intended to be used. (See for more
details Chaps. 6-9.) It may also happens, as shown in the following chapters,
that a solution looks physically correct but it is incorrect geologically being out
of the actual property value range. Such kind of the incorrectness, let us call it
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the geological incorrectness, is difficult if possible to recognize, though it could
lead to catastrophic consequences.

4.2 Regularization of IlI-Posed Problems

The notion of correctness with respect to inverse problem formulations came from
the applications of mathematics to studying properties of natural objects. They
have unique real property distributions and, if the properties change in time, at
each given instant. Their responses on given impacts are a unique also. The
responses should depend continuously on small changes of the property values and
impacts. Therefore, the inverse problems, using the observed data, must provide
those unique distributions of the actual property, impacts and initial and boundary
conditions when they are evaluated. (There may be natural processes that are
instable inherently. They are not discussed here.)

For these reasons at the time when the existence of the mathematically incorrect
problems was discovered, it was natural to think that the incorrectness was caused
unfortunate formulations of the pertinent problems. However it later became
obvious that there are many meaningful problems that are inherently incorrect.
Most problems of geophysical and hydrogeological data interpretation are of this
kind. (It is interesting to note that there are no processes in the nature corre-
sponding to inverse problems and model identification in geophysics or hydro-
geology.) As soon as this became clear, many methods to treat incorrect problems
were developed. Those methods reformulate the incorrect problems in correct
ones. Discretization of the hydraulic conductivity and numerical differentiation
can be considered as such methods. Indeed, if the locations of the observations
hop(x;) are such that x;.1 — x; = x; — x;_; = Ax, derivative of h,,(x;) can be
evaluated as

! ho i _ho i—
h,(xi) = b(XH)ZAx ol 1)-

As mentioned above, we can also apply splines, different regressions and many
other methods to obtain derivative h;b (x;). However attention is required here, as
different methods can provide different values of derivative % ,(x;) and even
evaluate the derivative which does not exist.

One of the most popular and thoroughly developed methods of converting
incorrect problems in correct ones is Tikhonov regularization (Tikhonov and
Arsenin 1977; Allison 1979; Aster et al. 2005). Applied to inverse problems, it
consists of looking for the set of parameters that minimizes the functional

n K

B=2"0 (hon (st ty) = (w1, )"+ 23 (P = pos)” (4.222)

j=1 i=1 k=1
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In Eq. 4.22a, h,,(x;, t;) is the observed value at the point with coordinate x; at
instant #;. The simulation results are presented by A(x, ¢, P), where P = [p1, po, ...
Dk ---» Pi] 1s the list (vector) of the parameters governing the simulation process,
Po = [po1> Po2s --- Poks ---» Pox] 1s an a priori guess for the unknown values of
parameters P, and / is a small positive number called the regularization parameter.
It is assumed often that P, = 0, meaning that all parameters in a priory guess are
equal to zero. Then Functional 4.22a can be rewritten in the form

m n

B="> (koo (xisty) = h(xi,t;, P)) " + 41 (4.22b)

j=1 i=1

Tikhonov regularization is a combination of the least squares regression with
penalties for a poor priory guessing. Different forms of the penalizing term are also
possible. In particular, it can be constructed to penalize larger values of derivatives
of the model A(x, f, P) to provide smoother solutions, so the penalizing term is
often called the smoothing term. There exist statistical interpretations of Tikhonov
regularization. They require additional assumptions on the statistical characteris-
tics of the observations and the model itself, and are not discussed here.

Regularization substitutes one problem with another. Different regularizations
of the same problem make up different problems having different solutions. The
sophisticated regularization methods, such as Tikhonov regularization, converge to
true solutions if the model subjected to the regularization is true, adequate, and the
noise, the random errors in observations and calculations, is the only complicating
factor. However, all geological models are knowingly false (Morton 1993; Beven
2005). For example, the numbers of the model parameters and the parameters
governing the actual processes are different usually. What regularization means
and achieves, if it is applied to false models, is disputable. It may be a proper
moment to cite V. N. Tatubalin again (Sect. 3.7): “You look for a scalpel, but with
such data as you have, you should rather learn to work with a chopper.” He meant
geostatistics, but it seems to be true with respect to regularization as well.

4.3 Problem-Dependence of Model Identification

The problem-dependence of model identification means that the results of iden-
tification depend on the formulation of the model identification problem. This
phenomenon is commonly recognized and often cited (Gorokhovski 1977; Yeh
and Yoon 1981; Carrera and Neuman 1986; Kool et al. 1987; Hornung 1990; van
Genuchten et al. 1990). Practicing hydrogeologists always knew, for example, that
the results of pumping test data interpretation depend on interpretation models, and
that it is possible to infer different, sometimes considerably different, hydraulic
conductivities and transmissivities based on the same data. What surprises is that
the problem-dependence is factually ignored in practical applications and theo-
retical developments of model identification. Commonly it is referred as some kind


http://dx.doi.org/10.1007/978-3-319-03569-7_3

50 4 Model Identification

of nuisance along with the recommendation to maintain caution. Thus Yeh and
Yoon (1981) write: “In order to obtain physically meaningful parameter estimates,
caution must be exercised.” Hornung (1990) requires lengthy discussion on the
coupled predictive and inverse problem and “a thorough knowledge of the diffi-
culties involved,” as if, those discussion and knowledge are enough to overcome
the problem-dependence. Batu (2006) citing Mercer and Faust (1981) writes:
“Confidence in predictive results must be based on (1) a clear understanding of
model limitations; (2) the accuracy of the match with the observed historical
behavior; and (3) data reliability knowledge about aquifer characteristics.”

Hornung (1990) by the way makes an excellent point, coupling predictive and
model identification problems explicitly. Indeed, the goal of model identification is
to find the parameters of a geological model, the effective parameters, which
reproduce the available observations the best in some predefined sense. When the
set of the parameter values is found, it furnishes the same structural geological
model to solve the coupled predictive problem. However, predictive problems
differ from the corresponding problems of identification nearly always. The dif-
ferences can include size and shape of the objects, impacts, boundary conditions,
and monitoring networks. Often models calibrated under steady-state conditions
are applied to predicting transient flows. It happens sometimes that the goals of
calibration and prediction are different: a model that is calibrated based on
observations on hydraulic heads is applied to finding streamlines that are not
observable directly. If a model were an exact copy of the pertinent geological
object, than the model identification made once would be effective with respect to
any predictive problem related to the object. But models are not exact copies of
geological objects, and this causes the problem-dependence. Namely, the effective
set of model parameters providing the best prediction of one kind, say, the water
table elevations, may not be and often is not the best one for a different kind of
predicting, say, the streamlines (Beven 1989; Neuman and Orr 1993; Cooley
2004). Even more, values of the effective parameters can change with the time
without any changing in the simulation problem formulation (see Chap. 7).

Let us consider a simple and transparent example (Fig. 4.2): a confined aquifer
consisting of two homogeneous bodies: one has the hydraulic transmissivity 7 and
the other 7. In the initial state the aquifer had the uniform distributions of the
hydraulic heads h(x, 0) = Hy. At instant ¢ = 0, the hydraulic head at x = 2L jumps
instantly to h(2L, 0) = H,; and then remains unchangeable: h(2L, ) = H,;. At
x = 0 the hydraulic head does not change: h(0, f) = Hy. This jump of the
hydraulic head initiates changing the aquifer hydraulic heads. We wish to predict
this process using a homogeneous model of the aquifer with the constant effective
hydraulic transmissivity 7 which value is to be found.

The simulated process of developing of the hydraulic heads in this case when
neither sources nor sinks are present in interval [0, 2L] is described by equation

Oh(x,t) - 0%h(x,1)

S, =132 (4.23)
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Fig. 4.2 Modeling a h
confined aquifer with
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where iz(x, 1) are the simulated hydraulic head at point x and instant ¢, 7" is the
effective hydraulic transmissivity of the homogeneous model and S is the known
constant storativity. It is assumed also that, observing the process during some not

long period of time, the effective value of the model transmissivity 7 is to be found.
To see what will happen to the simulation results with the use of the homoge-

neous model, let us consider the steady-state distributions of the simulated iz(x, 00)
and actual A(x, c0) hydraulic heads, i.e., when the process reaches the steady state.
Then the left-hand part of the Eq. 4.23 becomes zero, and the effective transmis-
sivity disappears from the equation, being concealed. Thus, the steady-state dis-
tribution of the simulated hydraulic heads is described by equation

d*h
220
dx?

which does not depend on the transmissivity. With the boundary conditions
assigned as

h(0) =Ho and h(2L) = Hay (4.24)
the solution to the simulated hydraulic heads /(x, ) is

_ Hy, — Hy

iz(x) 57

Solution 4.25 corresponds to the straight line (HyH,;) in Fig. 4.2 with

x+ Hy (4.25)

. H H

g, =2 + Ho
2

The steady-state filtration in the heterogeneous aquifer consisting of two geo-

logical bodies with the hydraulic transmissivities 7 and 75 is described by two

functions: left #;(x) within interval [0, L] and right h,(x) within interval [L, 2L].
The functions are solutions of the differential equations

(4.26)
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&> (h (x)) d* (2 (x))
Tae 0™ e
under the outer boundary conditions: 4,(0) = Hy and hy(2L) = H,;. There exist

also the inner boundary condition on continuity of the hydraulic heads and the flux
at x = L:

=0 (4.27)

-, 70 (4.28)

dhi (x)
! dx

l’ll (L) = hz (L) and T 7

x—L L—x

The conditions connect the solutions of Eq. 4.27 which are

H, —H
hy(x) = %x +Hy, 0<x<L (4.29a)
_ Hy — H

]’lz (x) L

(x—L)+H,, L<x<2L (4.29b)

where the unknown H; is the same for both solutions (the first Condition 4.28). To
find H;, the condition on continuity of the flux (the second Eq. 4.28) should be
applied. Since functions A;(x) and h,(x) are straight lines, their derivatives are
equal to their slopes. So we can rewrite the second Eq. 4.28 as

HL_HOZT Hy — Hp

T 4.30
1= 2= (4.30)
Solving Eq. 4.30 for H; we obtain
T, T
H = Hy + H 4.31
L T+ T, 0 T+ T, L ( )

Thus, the steady-state hydraulic head H; at the midpoint x = L is an average of
H, and H,; weighted according to the actual hydraulic transmissivities. The
equality H, = H, is true only if the aquifer is homogeneous (T}, = T,). If T} > T>,
then H, > H;, and if T; < T», than H, <H] (Fig. 4.2). The magnitude and sign of
the deviation of ﬁL from the observed value H; depend on H,; and H,, the ratio
TQ/T] and time.

Thus, calibrating the homogeneous model in transient regime can permit the
simulation results to fit the observation satisfactory for some period of time. Then
the simulated and actual hydraulic heads will start diverging inevitably. If the
calibration period is short, we may not see the divergence. But it makes itself
known later, in prediction.

The point of this simple example is obvious. The effective parameters of the
simplifying models may not and usually do not compensate for the unknown. We
cannot evaluate the error of the simulation results yielded by our homogeneous
model even in our simple case. It is possible that something like this caused the
failures described by Yakowitz and Ducstein (1980). The unlucky simulation
models could be the source of failures described by Kola (1984); Lerner (1985);
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Kerr (1993) and many others. However, in the presented case the homogenous
model can be applied successfully for solving our predictive problem. To this end
the effective hydraulic transmissivity must vary in time (see Chap. 7).

4.4 More Complex Model Versus Less Complex One

That all models are false is no news. Practicing hydrogeologists know also that
those false models often provide practically acceptable results. Otherwise mod-
eling would not have any sense at all. Nevertheless it seems interesting to illustrate
this contradiction (false models and acceptable results) on a simple-real life
example. However, our notions on real geological objects are not more than
models, and as such they are false. The only option left is to compare the results
yielded by a more complex model, considering it, as if, true, and less complex
which is false undoubtedly. It is desirable to find a simple and well-studied object
to make the comparison simpler.

The Borden landfill (Ontario, Canada) seems appropriate for such an exercise.
It was in operation from 1940 to 1976. The contaminant plume in the shallow
aquifer below the landfill was the subjected to detailed investigations that lasted
from 1974 to 1980. The simplicity of the site as a hydrogeological object, the
sharply delineated plume, and relatively large amount of data make the Borden site
a suitable object for testing different approaches and models that has been done
more than once (Frind et al. 1985; Frind and Hokkanen 1987; Batu 2006).

The more complex model is the model applied by Frind and Hokkanen (1987).
They simulated two-dimensional steady-state flow in the Borden aquifer in terms
of streamlines. Correspondingly, the boundary conditions are assigned as specific
fluxes normal to the object’s boundaries. The main goal of their model calibration
is to find the specific fluxes on the boundaries of the Borden site aquifer that
provide the best reproduction of the observed streamlines. (As discussed below,
only one streamline can be considered as observable within the Borden site.
Likely, the hydrogeological part of model had been calibrated by reproducing that
streamline.) Then they applied the obtained results, the recharge pattern and the
streamlines, to simulate contaminant-transport by the Borden aquifer.

The competing model is D1_Flow model developed by US EPA (Gorokhovski
and Weaver 2007). It is a screening-level model numerically simulating one-
dimensional steady-state flow in shallow unconfined aquifers on an arbitrary
shaped base. The model permits evaluating water table, streamlines and time for
contaminants to travel to selected locations. Being simple in terms of data prep-
aration and operating, it saves considerable resources and cost. The D1_Flow
model is based on the Dupuit-Forchheimer simplification neglecting the vertical
component of the Darcy velocity and considering only its horizontal component
which simplifies the mathematical description of the underground flow consider-
ably. The DI1_Flow model has been validated thoroughly on available, not
numerous, analytical solutions for the shallow aquifer on the horizontal and sloppy
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(Polubarinova-Kochina 1962) bases. The results are more than satisfactory. The
Borden site object has been chosen for validating the D1_Flow model on a real-life
object (Gorokhovski and Weaver 2007).

Compared with the more physically sound two-dimensional model by Frind and
Hokkanen (1987), the D1_Flow model is undoubtedly false: it simulates one-
dimensional flow which is actually at least two-dimensional, uses the knowingly
false Dupuit-Forchheimer assumption and the physically controversial method,
suggested by Strack (1989) and described in Sect. 4.4.3, for calculating two
dimensional streamlines applying based on the results yielded by one-dimensional
simulation. Model of Frind and Hokkanen (1987) does not need all these
assumptions and simplifications.

The main goal of the D1_Flow model calibration below is to demonstrate that a
simple and false model can yield results comparable to the results of more com-
plicated and physically sound models such as that of Frind and Hokkanen (1987).
Unfortunately, the factual data used by Frind and Hokkanen (1987) in calibrating
their model as well as the accuracy of reproducing by their model the corre-
sponding observations were not available. For this reason, only the results obtained
graphically from their publication are used in the D1_ Flow model calibration.
A byproduct of the D1_Flow model calibration below is explicit demonstration of
the problem-dependence of model identification. Frind and Hokkanen (1987) deal
with this phenomenon, though without mentioning it.

4.4.1 Short Description of the Borden Landfill

The unconfined aquifer under the Borden landfill consists of beds and lenses of
fine-, medium- and coarse-grained sand overlying an extensive deposit of clay and
sandy silt. The 10 ppm outline of chloride is chosen as the boundary of the
contamination plume. The longitudinal cross section of the site with the water
table, the contaminant plume, and the aquitard surface (Fig. 4.3) is obtained
graphically from Frind and Hokkanen (1987). The hydraulic conductivity of the
Borden aquifer is assigned based on pumping and permeability tests as equal to
10.11 m/day in the horizontal direction and 5.05 m/day in the vertical direction.
(D1_Flow simulations ignore this anisotropy and use only the horizontal hydraulic
conductivity 10.11 m/day.)

4.4.2 Simulating the Water Table

Frind and Hokkanen (1987), simulating the contaminant plume development
within the Borden site, assume that the flux in the Borden aquifer is steady-state.
Their problem formulation requires that the boundary conditions be stable as well
as the boundaries themselves. In particular, they assumed that the water table and
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precipitations do not change in time. In reality the water table is affected by the
seasonal changes of precipitation. Thus, their first task to be addressed is to assign,
as if, the long-term average steady-state water table. Frind and Hokkanen (1987)
write: “The aspect of the water table has been addressed by Frind et al. (1985)”
who in turn resolve the issue by stating: “The water table boundary was obtained
visually drawing a smooth curve through the relevant water level points.” [By the
way, Fig. 15 of Frind et al. (1985) and in Fig. 4 of Frind and Hokkanen (1987)
reveal that the water tables used in those works differ by up to 0.6 m.] The
“relevant points” are the factual observations in April and December 1979. The
water table such assigned is arbitrary in essence. Besides it is biased with respect
to the available observations (Fig. 4.4). However, it is likely, that the water table
was just an intermediate and not decisive part of their calibration processes. Their
final goal was “matching streamlines to the observed plume” (Frind et al. 1985).

The D1_Flow model is calibrated with respect to the water table of Frind and
Hokkanen (1987). The goal is to reproduce their water table by varying piecewise
constant recharge rates within the recharge pattern structure presented by Frind
and Hokkanen (1987). The boundary conditions is assigned in the water divide at
x = 135 m where the water table elevation is 222.36 m and the total flux Q is
consequently zero. The choice of the boundary conditions is based on the figures
of Frind and Hokkanen (1987). It supported by their boundary conditions. Indeed,
the specific flux on the boundary at x = 0, where thickness of the aquifer is about
30 m, is assigned as —70 cm/year. The recharge rate in interval [0, 140] m is
assigned equal to 15 cm/year. The water table divide seems to be somewhere close
but not exceeding 140 m, since there is no evidence of a contaminant up-gradient
to the landfill. The recharge pattern provided by simple D1_Flow model (Table 4.2
reproduces the water table by Frind and Hokkanen (1987) with the error magnitude
less than 5 cm (Fig. 4.4), i.e., satisfactory.

It is interestingly to note that if 1979 was not a special year with respect to the
long-term precipitation regime for the Borden site, it could be reasonable to
present the long-term steady-state water table as some averaging of the observa-
tions in April and December. The least squares method applied to those obser-
vations yields the following regression equation for depicting the water table:

rH(x) = —2.5725 x 107%? — 7.7991 x 10~*x 4 222.5731 m (4.32)
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Table 4.2 Recharge patterns according to Frind and Hokkanen (1987) and D1_Flow model (cm/
year)

Interval (m) 0-140 140-300 300-600 600-800 800-1050
Frind and Hokkanen (1987) 15 55 15 45 10
D1_Flow model 15 55 10 50 12

Table 4.3 Recharge pattern calculated by Eq. 4.33 (cm/year)
Interval (m) 0-140 140-300 300-600 600-800 800-1050
Equation 4.3 34 9 -1.6 2.7 —10

(Other regression presentations of the water table are possible also.) The water
table described by Eq. 4.32 is presented in Fig. 4.4. The corresponding total flux is
described by equation

= K(5.145 x 10 %x +7.7991 x 10*)(rH(x) — Y(x)) m*/day ~ (4.33)

where K(m/day) is the hydraulic conductivity and Y(x) is the aquifer base elevation
(m). The water table simulated by the D1_Flow model and based on the piecewise
recharge rate calculated by Eq. 4.33 (Table 4.3) reproduces the water table
depicted by Eq. 4.32 with the error magnitude less than 4 cm. Interestingly that
Frind et al. (1985), obtained negative recharge rate, —30 cm/year for x greater then
700 m, though the ‘slightly modified’ recharge pattern of Frind and Hokkanen
(1987) does not contain negative recharge rates (Table 4.2).
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Note, the assumption about the existence of the water divide in the long-term
average steady-state flow system makes the flow in the Borden aquifer three-
dimensional. It could be considered two-dimensional along the axis of symmetry,
if such axis exists. Likely, Frind et al. (1985) and Frind and Hokkanen 1987,
assume this implicitly.

Two observations above are just digressions. Since the goal is to demonstrate
that the simple, and false, model D1_Flow is able to reproduce the results obtained
by the complex model of Frind and Hokkanen (1987) we continue working with the
data used and obtained in process of calibration by Frind and Hokkanen (1987).

4.4.3 Calibration with Respect to the Streamlines
and the Arrival Time

As mentioned above, Frind and Hokkanen (1987), following to Frind et al. (1985),
assigned their water tables arbitrary and then calibrated the flow system based on
the plume configuration “matching streamlines to the observed plume” (Frind
et al. 1985). There are only two streamlines which could be considered, as if,
observed: the upper and bottom boundaries of the plume. The bottom boundary is
not informative, since the corresponding streamline starts nearby the water divide
and seepage along this streamline is extremely low, theoretically equal to zero.
Thus only the sharply outlined upper boundary of the Borden plume can be
interpreted as the streamline to be used in calibration.

Calibrating their model with respect to the streamlines Frind and Hokkanen
(1987) following Frind et al. (1985), scale simultaneously the recharge rates and
the hydraulic conductivity. Such scaling does not change the structure of the flow
simulated by their model. However, the hydraulic conductivity of the Borden
aquifer is evaluated based on pumping and permeability tests. As such, it must be
considered as an objective characteristic of the Borden aquifer. Scaling the
hydraulic conductivity is ad hoc substituting one geological object with another.
Since the recharge pattern is not observable and is evaluated as an effective
characteristic, it seems more natural to manipulate the recharge rates only. Frind
and Hokkanen (1987) do not explain their reasons for the scaling. Likely, they did
this to satisfy the travel time to reach the furthest location to which the plume has
been spread somewhere 600-650 m from the down-gradient edge of the landfill.
Proportional decreasing the recharge rates and the hydraulic conductivities
increases the travel time.

At first sight, the Dupuit-Forchheimer simplification ignoring the vertical
component of flow does not have tools for simulating curved, two-dimensional,
streamlines. Strack (1989) overcomes this controversy, suggesting that the
incoming recharge pushes down the existing streamlines, curving them. He pro-
vides the mathematical expression describing the process. Gorokhovski and
Weaver (2007), developing the D1_Flow model, applied his approach to one-
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dimensional flow in horizontally heterogeneous aquifers on the arbitrary shaped
base.

Let streamline S originate at location x,, on the water table (Fig. 4.5) and Qg
denotes the total flux Q(x) at x(Qs = Q(xy;)). Streamline S is the upper boundary
of the Qg part of the total flux Q(x). Since the specific flux does not depend on
depth according to the Dupuit-Forchheimer simplification, the following equality
holds at any location x > x:

0k _ H(x) - Y(x)
Os Hs(x) — Y(x)
where H(x), Hg(x), Y(x), and Q(x) are the elevations of the water table, streamline

and aquifer base and the total flux; index § relates to the streamline
S(Qs = QO(xy)). It follows from Eq. 4.34 that

H(x) — Y(x) = % (Hs(x) — Y(2)) (4.35)

The travel time for a particle to reach location x moving along streamline S is

(4.34)

Sy

ds
t(x) =RO | — 4.36
W =ro [ 2 (4.36)
where R is the retardation factor, 6 is the effective porosity and v(s) is projection
the horizontal Darcy velocity v(x) on streamline S. (According to Frind and
Hokkanen 1987, for the Borden aquifer, § = 0.38 and R = 1.) In one-dimensional
filtration model the Darcy velocity at any location x can be presented as

Os

v(x) = Hs() — 7(9) (4.37)

Fig. 4.5 Streamline
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Correspondingly

vs(x) = ——— (4.38)

and Eq. 4.36 can be rewritten as

7 2
(x) = Z—f / (Hs(x) — Y(x)) (1 + (‘%ﬁ”) )dx (4.39)

The D1_Flow model integrates Eq. 4.39 numerically, using the Trapezoid rule.

The D1_Flow model has been calibrated with respect to the upper boundary of
the plume representing the streamline starting at the water table beneath the down-
gradient edge of the landfill at x = 300 m. This streamline is the shortest and
fastest way for contamination to spread. The goal of the calibration is evaluating of
the recharge pattern for x > 300 m which provides the best reproduction of the
streamline and the travel time for the plume to reach the furthest distance from the
landfill which is located somewhere in interval 900-950 m. The starting point of
calibrating is the recharge pattern accepted by Frind and Hokkanen (1987)
(Table 4.4).

Calibration has been conducted in two steps. First, the recharge pattern was
found providing the best reproduction of the streamline. The results are presented
in Table 4.4 and Fig. 4.6. Magnitude of the errors in the best reproduction of the
streamline by D1_Flow model is equal to 5 cm. The second step is necessary,
since the travel time for the contaminant to reach x = 900 m along the obtained
streamline and the recharge rates is about 32 years instead of expected
39-40 years. The recharge pattern providing the travel time equal 39.1 years to
x =900 m and 40.2 years to x = 950 m presented in Table 4.4 also. The total
flux Qg under this streamline is 0.1253 m/day. It seems to be satisfactory com-
promise between reproducing the shape of the stream line and the available travel
time. Magnitude of the errors in reproducing the observed streamline is less than
5.04 cm. Some other streamlines obtained by of Frind and Hokkanen (1987) and
the D1_Flow model are shown in Fig. 4.7.

The calibration procedure has been simplified by the fact that according to
Eq. 4.34 the simulation results are defined by the ratio Q/Qs. However since the
model is not exact copy of the geological object and the procedure utilized in the
D1_Flow model is not more than the approximation of the real process, the final

Table 4.4 Recharge patterns (cm/year) for evaluating streamlines and travel time

Interval (m) 0-140 140-300 300-600 600-800 800-1050
Frind and Hokkanen (1987) 10 37 10 30 7

DI _Flow model:

Best streamline 7 34 12.1 26.5 10

Best travel time 5.85 28.41 10.2 23 8.36
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Fig. 4.6 Results of
calibration of the D1_Flow
model based on data of Frind
and Hokkanen (1987) on the
streamlinestarting at

x =300 m
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part of the second step required manual fitting the simulation results to the
observations. The manual fitting is not cumbersome either: D1_Flow model per-
mits fitting the available data sequentially.

Summarizing, the simple D1_Flow model exploiting some obviously false
assumptions yields the results which are practically comparable to those yielded by
the more physically sound model of Frind and Hokkanen (1987). In principle,
models with the larger number of governing parameters are more flexible: they are
easier to fit the available observations. For example, the D1_Flow model, simu-
lating the Borden plume, could reproduce the observation absolutely accurately, if

Fig. 4.7 Results of
calibration of the D1_Flow
model (solid lines) with
respect to streamlines of and
Frind and Hokkanen (1987),
(dots): 1 water tables, 2 base
of aquifer, 3 streamline
starting at x = 300 m, 4
streamline starting at

x = 170 m, 5 streamline
starting at 140 m

elevation A.S.L. (m)

0 200 400 600 800 1000
distance (m)
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the recharge rates had changed at the points (stayed constant between the points)
of observations. But what does this prove? Thus, the quality of calibration, fitting
the available observations, cannot be a decisive reason for choosing a model.
(Compare with the chose of mathematical expressions depicting regional trends
discussed in Sect. 3.1 and illustrated by Fig. 3.1.)

The calibration of both models explicitly demonstrates the problem-dependence
of model identification. Indeed, Frind and Hokkanen (1987) scaled the recharge
pattern and the hydraulic conductivities to satisfy the factual travel time. Their
scaling leads to substituting of the empirically established properties of the object by
different model parameters, that is, one object is substituted with another. In the case
of the D1_Flow model, to achieve a good fit, the recharge pattern have been
manipulated only. The hydraulic conductivity, that is, the hydrogeological object per
se remained the same. Nevertheless both calibrations can be considered as suc-
cessful. But the uncertainty of the simulation results in both cases cannot be evalu-
ated in a provable way, since the simulations use many unverified and even incorrect
assumption. The most obvious of them is assumptions about steady-state filtrations
plus the Dupuit-Forchheimer assumption in the case of the D1_Flow model.

Geological models are not exact copies of the real, not known in full, geological
objects which they represent. Those models can be tuned to simulate satisfactorily
the problems under conditions imposed in calibration. However, if the conditions
change, the parts of the objects, which are unknown, not represented or misrep-
resented, can affect the objects’ responses in the ways which differ considerably
from what are expected from simulation models. Namely this causes the problem-
dependence of model identification. (Inaccuracy of mathematical model can pro-
duce similar effects which might be a subject of special research.)

Model identification in hydrogeology is considered often as an inverse problem.
This is not accurate. Model identification is an optimization problem usually. Its
solution depends on the systems to be optimized. The systems include a number of
factors: structures and properties of the objects, known and not known; the models
representing them in simulation; mathematical descriptions of the processes in
model; actual and modeled boundary conditions; man-made and natural impacts
affecting the available data; criteria of quality of fitting the data; the monitoring
networks used for evaluating the criteria. (The list is not exhaustive.) The optimal
parameters are optimal, effective, in the sense they are assigned to be effective.
However, if the system that they optimize is changed, those effective parameters may
loose effectiveness and even become misleading. And this is indeed the case, since
predictive problems differ from model identification problems in many respects.
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Chapter 5

Transformation of Geological Objects’
Properties into Effective Model
Parameters

This short chapter is the key chapter of this book. The preceding chapters dem-
onstrate why successful calibration of hydrogeological models does not warrant
success of the simulations based on calibration results and that it is impossible to
estimate the uncertainty of the results of hydrogeological modeling, besides the
cases where statistics exists on successes and failures of the projects based on the
results of hydrological simulation, i.e., in the cases of typical projects in typical
geological surroundings. This leaves us with the only option: “to do the best one
can with what is available” (US EPA, 1987). One of many possible, I hope, ways
“to do the best” is suggested in the following chapters of this book and is based on
the concept of transforming mechanisms introduced in this chapter. The mecha-
nisms use the phenomenon of the problem dependence of model identifications
and permit obtaining the model parameters which are effective beyond calibration.

5.1 Geological Objects and Simulation Models

As discussed in the previous chapters, to simulate underground flow and mass
transport by solving differential equations describing the simulation processes within
asite, we need to assign pertinent boundary conditions on the boundaries of the site of
interest. Although some of the conditions can be controlled or induced by us, i.e.,
known, the considerable part of them remains unknown but just assumed. To find the
boundaries on which boundary conditions can be established, we usually have to go
out of the site of interest. If we cannot find them close enough to our site, then we
consider that the boundaries are in infinity and, based on this assumption, evaluate the
boundary conditions as close to the site as possible. Thus, simulation models must
usually represent larger geological surroundings than the sites of interest.

Let us assume that the goal of simulation is to predict how construction of a
landfill can affect water supplying wells (Fig. 5.1). Let rivers 1 and 2 and a channel
be closely connected to the aquifer used for the water supply. This permits assig-
nation of boundary conditions along those rivers and the channel and solving the
mass transport problem within the territory outlined by the rivers and the channel.

V. Gorokhovski, Effective Parameters of Hydrogeological Models, 65
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Fig. 5.1 Site of interest and River 2 ——
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Fig. 5.2 Five body
geological structure and two
block model

The territory including the sites of interest and outlined by the boundaries
permitting assignation of boundary conditions required for solving pertinent
hydrogeological and mass transport problems are called here geological objects or
just objects. Homogeneous geological units, the units comprising rocks and soils
of the same lithological composition, origin and geological history, are called
geological bodies or just bodies. Their properties are traditionally considered as
constant. Space and time trends of the properties are rarely taking in account. But
when they are, the coefficients of the corresponding trends can be considered as
properties of the geological bodies, constant within them.

Geological models or just models are simplified replicas of the geological
objects. They introduce rules of interpolation and extrapolation of sparse available
data on geological properties at every point of the objects, thereby filling the
information gaps created by the paucity of the data. The extrapolation rules are
primitive. Models usually consist of homogeneous units called model blocks (or
just blocks): One parameter value of each relevant property substitutes for the
variety of that actual property’s values within a given model block. This parameter
and its value are called the model block parameter (or just parameter). Figure 5.2
illustrates the notions of the geological object and geological model. The object
consists of five geological bodies and the model of two blocks. If bodies 1.3 and
2.1 are actually the same geological body, they are considered as two different
bodies, since they belong to different model blocks.
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5.2 Transforming Mechanisms

Let an object comprise N geological bodies. Its geological model consists of
M blocks (M < N). Block j represents N; geological bodies with actual values of
property G (gj1, - - gj‘N/.), and model block parameter g; substitutes for these
values in predictive simulations. Conversion of actual property values of the geo-
logical bodies into the effective model block parameter is called the transformation.
The term is to emphasize that the conversion is not necessarily statistical averaging
which is characterized by not negative and summing to one weighting factors.

Since geological models are not exact copies of the geological objects, the
simulation results do not reproduce the objects’ responses on natural and man-
made impacts exactly. We can request only that the results would be best in some
predefined sense, i.e., satisfy some criterion of quality on a given monitoring
network. The most popular and mathematically convenient is the least squares
criterion requiring minimization of the squared residuals between the data
observed at the monitoring network and the corresponding simulation results.
Other criteria can be applied as well. Model identification is the search for the set
of model parameters providing the best, in a predefined sense, results of the
pertinent predictive simulation, not just in calibration. Thus, the problem of model
identification is an optimization problem.

The model which is best in a defined sense is called effective. The corre-
sponding set of its parameters (g1, ..., &, - .., 8u) is effective. Each parameter of
the set is the effective parameter. A mathematical expression describing trans-
forming actual values of property G of the geological bodies comprising the
geological object into the effective parameter g;, generalizing property G in block
J, is called the transforming mechanism (or just the mechanism). The following
equation represents one of possible forms of such expressions:

M N,
gj = Z Z Wj,mﬁgm,n (513)

m=1 n=1

where geological bodies enumerated within each model block: g, , is the actual
value of property G in geological body n (n = 1 to N,,) belonging to the model
block m, w;,,, is the affecting factor describing the contribution of the body
n belonging to the block m in forming the effective parameter value g; of property
G for the block j. Equation 5.1a can be written also as

N
gj = ij,ngn (Slb)
n=1

where the enumeration of the geological bodies is total (1 < n < N) so g, and w;,,
are the actual value of property G in body n of the object. Block j for which the
effective parameter value g; is evaluated is called the evaluated block. Other
blocks are called affecting.
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Contrary to statistical averaging, including only the bodies belonging to the eval-
uated block j, summations in Eq. 5.1a, b include all geological bodies of the geological
object. Subsurface flow, as well as mass transport, is a dynamic process affected by the
internal conditions on continuity of flow and hydraulic heads or water table elevations
at the geological body contacts. The internal conditions bind all geologic bodies of
the object in a united system, and the response occurring in a part of the object
represented by some model block depends not only on properties of the bodies
represented by this block but on properties of each body of the object. Therefore,
any transformation of a spatially variable property G related to modeling dynamic
processes should incorporate relevant property values of all geological bodies.

Equation 5.1a, b represent a linear transforming mechanism, if the affecting
factors depend on positions of the geologic bodies and/or time only. Equation 5.1a,b
represent a non-linear transforming mechanism, if the affecting factors depend on
geologic bodies’ property values.

The transforming mechanisms can be property interrelating also. The interre-
lation can reflect real bounds as in the cases of the aquifer transmissivity (product
of the aquifer thickness and the hydraulic conductivity) and hydraulic diffusivity
(quotient of the hydraulic transmissivity and the storativity). The subsurface flow
transport models are essentially governed by non-dimensional coefficients, binding
different physical parameters. For example, one dimensional steady-state flow in a
homogeneous aquifer is described by equation

d(h(x) %“) B

e —-w (5.2)

where h(x) is the aquifer thickness and W= N/K where K is the hydraulic conductivity,
and N is the recharge. Thus, although Eq. 5.2 includes two parameters, factually it
is governed by their dimensionless ratio. In the case of the interrelating mechanisms,
the transforming mechanisms presented by Eq. 5.1b take the following form:

N P
8js = Z Winp8np (5.3)
1

n=1 p=

where g; is the effective value of property G, in model block j, and g, , is the
actual value of property G, of geological body n. The interrelating mechanisms are
not discussed in this work, since this would complicate presentation of the concept
of the transforming mechanisms.

5.3 Properties of Transforming Mechanisms

Let a geological model be an exact replica of a geological object with respect to
property G. This means that each model block is homogeneous in property G;
i.e., all geological bodies represented by each block have the same value of
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property G. Thus, all bodies belonging to model block m have the same value g,, of
property G. It is reasonable to assume in this case that the effective value g;
provided by Eq. 5.1a should be equal to the actual value of property in block j:
M [ Na
T 9] ) it P 54
m=1 \n=1

For Eq. 5.4 to be true for any set {g,,} of actual property values, three obvious
properties of the transforming mechanisms must hold.

Property 1 is expressed by the equality:

N
Z wjjn =1 for evaluated block j (5.5)

n=1

that is, the affecting factors related to the evaluated block j are summing to one in
any transforming mechanism forming effective parameter ;.

Property 2 is expressed by the equality:

N
Z Wjma =0 for affecting block m (m # j) (5.6)

n=1
that is, the affecting factors for any affecting block are summing to zero.
One more property follows from Properties 1 and 2:

Property 3

Z Wj,n =1 (57)

that is, the total sum of all affecting factors is equal to one.

The following example illustrates the above properties of the transforming
mechanisms. Let a geological object comprise five geological bodies, and its
model consists of two blocks (Fig. 5.3). Two effective parameters (g, and g,) must
represent actual values of property G in simulations. Two transforming mecha-
nisms convert properties of the geological bodies in the effective model
parameters:

81 = w1181 + w1282 + W1383 + Wi1484 + W1585

) (5.8)
&2 = W2181 T+ W2282 +W2383 + W2484 + W2 585

where g1 = g1.1, 82 = 812, 83 = 813> &4 = &2.1, &5 = &2 in Fig. 5.3.
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Fig. 5.3 Five-body object
and two-block model

Properties of the transforming mechanisms can be easily demonstrated by
Mechanisms 5.8. Indeed, let the discussed model be an exact replica of the object.
This means that property G is the same within each model block:

g1=8 =g =G and g4 =g5=0GCo. (5.9)

Then Eq. 5.8 converts into equations

g = (w1 +wiz+wi3)Gi+ (wia +wis)Go

5.10
& = (w21 + wap +w23)Gi + (W24 + w2s)Go. (3.10)

For the model which is an exact replica of an object, the model block effective
parameters are equal to the actual property values:

g1 = (Wi +wia+wiz)g + (wia+wis)g =G 5.1
&= (W2‘1 +wao + W2,3)g1 + (w2,4 + Wz‘s)gz — G>. .

Equation 5.11 must hold for any values g; and g,. To make this possible,
Mechanisms 5.11 should have Properties 1 and 2:

wi1 +wia2 +wiz =1 Property 1

wig +wis =0 Property 2
w1 +waa+wy3 =0 Property 2
waa+wys =1 Property 1

It follows from Property 2 that if an affecting block represents more than one
geological body, at least one of affecting factors of the block is negative. This
means that, in general, the effective parameters of models are not of the statistical
nature. That is, they are not statistical averages with the non-negative weighting
factors summing to one. In the case of the homogeneous models due Property 1,
the effective parameters can be the statistical averages. However, as shown in
Chap. 7, summing of the affecting factors of the evaluated blocks to one does not
warrant that all the factors are not negative. The fact that all geological bodies of
the object participate in forming effective parameters for any block undermines the
statistical nature of the effective parameters also.
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The effective parameters are the characteristics optimizing the system made up
by the geological structure of the object, the model representing it, the boundary
conditions, the natural or man-made impact which is to be simulated, the criterion
of quality of planning predictive simulations and the monitoring network on which
the given criterion is evaluated. The system changes if any of the above listed
factors change, and this changes the transforming mechanisms. Even the progress
of time can change the transforming mechanisms and the effective parameter
values. (See examples in Chaps. 6 and 7.)

The presence of the negative affecting factors in the transforming mechanisms
can lead to physically incorrect values of the effective parameters such as negative
hydraulic conductivities and transmissivities (see 8). This emphasizes that the
effective parameters are deprived of physical meaning. They are system charac-
teristics providing the system efficiency and nothing more. To be effectively in a
changed system, different effective parameters and different transforming mech-
anisms are required (showing problem dependence at work).

A physical incorrect effective parameter is self-obvious. But the effective
parameters, being correct physically, may be incorrect geologically, exceeding the
range of the actual values of the property they represent. The geological incor-
rectness is not obvious. The geologically incorrect effective parameters, being
effective in a given predictive problem formulation, may become misleading and
even dangerous in other applications.

The problem dependence are seen usually as an obstacle or, at least, as a
nuisance. On the other hand, the problem dependence of the effective parameters
permits obtaining different values of the effective parameters, using different
model identification problem formulations. This, in turn, permits better under-
standing of the structures of geological objects and can be used for formulating and
solving inverse hydrogeological problems (Chap. 9). (The transforming mecha-
nisms related to evaluating effective degradation rates are discussed in Chap. 10.)

The transforming mechanisms, defined by their affecting factors, describe
contributions of different objects’ parts to the effective parameters of the simu-
lation models. Therefore being evaluated before starting field investigations (Chap.
8), they can be a tool for optimization of those. The transforming mechanisms can
be applied also for assigning monitoring networks and even simulation models.

The transforming mechanisms are introduced here in the hydrogeological
context. However, their introduction does not assume any hydrogeological spec-
ificity. It would not be surprising if such mechanisms with the analogous properties
are known to professionals in the field of optimization. In any case the trans-
forming mechanisms and their properties can be applied to other fields where
simplified versions of complex systems are in use, such as geophysics, engineering
geology, environmental sciences.
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Chapter 6
Examples of Linear Transforming
Mechanisms

In the previous chapter the existence of the transforming mechanisms has been
postulated. Their properties follow from their existence and from a natural, but
nevertheless, assumption. This chapter contains several simple filtration problems,
permitting direct, analytical, inference of linear transforming mechanisms.
Mathematically they can be considered as a proof of the theorem of their existence.

6.1 One-Dimensional Steady-State Filtration to Fully
Penetrating Trench

Let us consider one-dimensional steady-state underground flow in unconfined
aquifer on a horizontal base with constant recharge N to a fully penetrating trench at
Xy = 0 (Fig. 6.1). The aquifer is piecewise homogeneous. Its hydraulic conductivity
changes at locations X;, X, and X3, taking within intervals [Xo, X;], (X1, X5], (X5, X3],
(X3, X4] values K, K, and K3 and K. Recharge N = 0.0001 m/day and X; = 25,
X, = 50, X5 = 75 and X4, = 100 m. The outer boundary conditions are given as the
aquifer thickness &, at X, and the slope (gradient) of the water table at Xy:

dh

ho = h(Xp), I

XiX4

Within the homogeneous interval j, [X;_;, X;], the flow is described by equation:

d(K; () 242

e )) =—-N, Xi_<x<ZX (6.1)

where A(x) is the aquifer thickness at x.
The inner boundary conditions on continuity of the water table elevation and
the flux at locations X; = 25, X, = 50, and X3 = 75 m are
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Fig. 6.1 One-dimensional h N
steady-state flow to a fully- bt s __,L $ 4 dh =0
penetrating trench in an | dx
unconfined aquifer
K K2 Kz Ks
o
0 > X
Xo X1 X2 i3 Ha
lim (h(x)) = lim (h(x))
x—X; Xjex
(6.2)

dh dh
’9‘(%) ey (ha)

Integrating Eq. 6.1, using the boundary conditions for interval [X;_;, Xj], yields
(see the inference in the text block 6.1 below):

N N
(3) = B 428 (LX) (= X)) — (= X)X <x<x,

j K;

Xjx

(6.3)

Text Box 6.1
Integrating Eq. 6.1 yields the general solution

N
) =~ (=X ) H Oy = X0) + G X <x<X,

where C; and C, are arbitrary constant. To obtain the particular solution of
our problem, we need find C; and C, based on the boundary conditions at the
ends of intervals, at locations: X; = 25 X, = 25, X, = 50, X3 = 75 and
X, = L = 100 m. It follows from the fist condition 6.2 that C, = h% (Xj,l).
To find C;, we have to write the equation for flux at the same location X;_;:

2K<h(x)%ix)> =2N(L—X;_) = —2%(x—xj,l)\xzxjﬁrcl =C

x=Xj_|

So, C; = 2 N(L — X;_,), and the particular solution, Eq. 6.3 follows

The squared thickness of the aquifer h; — ; 4 observed at locations X;, X5, X3
and X, follows from Eq. 6.3:

N
B =t (2L = X = X) (X - X,0) (6:4)
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Let the simulation geological model consist of two homogeneous blocks with
the boundary between them at location X = 50 m. The goal is evaluating two

effective hydraulic conductivities, kl and IA(z, for the model blocks based on
observations on the thicknesses of the aquifer at locations: X; = 25, X, = 50,
X; =175, and X4 = 100 m selected to simplify calculations. The simulated
thickness of the aquifer at those locations can be calculated as

. - N
B= b+ QX=X = X) (G = X), i=120 j=1,2.34 (65)

L

(The effective hydraulic conductivity K, substitutes for K 1 and K>, and K> for K5
and K,.) The goodness of fit for the parameters K; and K, is evaluated by criterion

4
s = ij (iz]z — h]z)z (6.6)
j=1

in which the weight p; assigns the significance of the squared differences between the
observed and simulation results at location X;. Substituting in Eq. 6.5, the given
values of Xo = 0,X; = 25,X, = 50,X5 = 75,X4, = 100 mand N = 0.0001 m/day
yields

hi = hg 4+ 0.4375 g,

B = h) +0.4375 g, +0.3125 g,

h3 = h} +0.4375 g; 4+ 0.3125 g5 + 0.1875 g3

h: = h +0.4375 g1 + 0.3125 g, + 0.1875 g5 + 0.0625 g4

(6.7)

where g = 1/K;, go =1/K,, g3 =1/K3, g4 = 1/K4 are the actual specific
hydraulic resistivities. The same procedure for simulation results, Eq. 6.5, yields
i = h} +0.4375 g
i3 =} +0.75 g
R =K% +0.75 g, +0.1875 &,
R =12 +0.758 4025 &,

(6.8)

where g; =1 / kl and g, =1 / kz are the effective specific hydraulic resistivities.
The resistivities are introduced to linearize Egs. 6.3, 6.4, 6.7 and 6.8 and the
transforming mechanisms following from them.

Substituting the simulation results (Eq. 6.8) in Criterion 6.6, yields

s =p1 (B3 +0.4375 gy — ) 4 pa (3 +0.75 &y — 13)°
+ p3 (g +0.75 g1 + 0.1875 g, — h§)2+p4 (hg+0.75 81 +0.25 &, — hﬁ)2
(6.9)
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Application of the standard procedure of the least squares method to Sum 6.9
leads to the linear system of equations for calculating the effective values g; and g,
based on the observed differences (hl2 - h(z)), (i=1,2,3,4):

(0.4375% py +0.75%(p2 + p3 + pa)) &1 + 0.75(0.1875 p3 + 0.25 ps)@>

= 0.4375p; (hi — hg) +0.75(p2 (K3 — B3) + p3(h3 — hg) + pa(hi — hj))
0.75(0.1875 p3 +0.25 p4) 81 + (0.1875 % p3 + 0.25% p4) 2>

= 0.1875 p3(h3 — hy) + 0.25 ps (hg — hy) (6.10)

The matrix ¢ of System 6.10 is

_ {0.43752 p1+0.75%(p2 4+ p3 4+ ps)  0.75(0.1875p3 + 0.25 p4) } (6.112)

0.75(0.1875 p3 + 0.25 ps) 0.18752 p3 + 0.252 p,

It depends on structure of the object and simulation model, the observation net-
work and the weights, but not on the observations. The right-hand terms (vector b)
of System 6.10

p_ 04375 (ht = hg) +0.75(pa(h3 — B3) + p3 (A3 — h§) + pa (ki — hg))
B 0.1875 p3 (h3 — h3) + 0.25 ps (h3 — h})
(6.11b)

depends on observations.
The effective hydraulic resistivities are solution of System 6.10:

sr=M4/4, & =4/4 (6.12a)
with determinants:

4 = ciicpn — cpea
A1 =bicy — bacnp (6.12b)
Ay = bycr1 — bicyy
Expressions 6.12a, 6.12b solve the above formulated model identification prob-
lem. To find the mechanisms transforming the actual hydraulic resistivities g;, go,

g3 and g4 into the effective resistivities g; and g, it is necessary to express vector
b (Expressions 6.11b) in terms of the resistivities g1, g», g3 and g4.

b, =0.4375(0.4375p; 4 0.75 (pr + p3 +pa)) &1
+0.3125 x 0.75 (p2 + p3 + pa) g2
+0.1875 x 0.75(p3 + ps) g3 + 0.75 x 0.0625 p4 g4
by =0.4375(0.1875 p3 + 0.25p4) g1 (6.13)
+0.3125(0.1875 p3 + 0.25 p4) g2
+0.1875(0.1875 p3 + 0.25 p4) g3
+0.25 x 0.0625 ps g4
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and then substitute them in Solution (6.12b). To write the result in a more compact
way, let us introduce vectors W; and W, constituted by the multipliers of the
hydraulic resistivities g;, g», g3 and g4 in Eq. 6.13:

0.4375(0.4375 p; 4+ 0.75 (p2 + p3 + p4))
0.3125 x 0.75 (p2 + p3 + p4)
0.1875 x 0.75(p3 + p4)

0.75 x 0.0625 p4
0.4375(0.1875 p3 + 0.25 ps4)
0.3125(0.1875 p3 + 0.25 py4)
0,1875(0.1875 p3 + 0.25 ps)

0.25 x 0.0625 p4

Wi

(6.14)

W,

Then the affecting factors of the pertinent transforming mechanisms can be cal-
culated as

Wican — Waea }T
C11C22 — C12C21
Waen — W1€12}T
C11€22 — C12021

{W11,W12,W13,W14} = {
(6.15)

{Wzl,W22,W23,W24} = {

where index ‘7T’ means transposition of the yielded vector of the affecting factors
as i.e., their representation as row vectors.

The affecting factors do not depend on values of {g;.4}. This means that the
mechanisms presented by them are linear.

6.2 Illustrative Cases

Several cases are presented in this section to get a better feeling for the trans-
forming mechanisms, their properties and sensitivity to each element of the model
identification problem formulation.

Cases 6.2.1 and 6.2.2 These cases differ only with respect to distributions of
the actual hydraulic conductivity values (Table 6.1). The weighting is uniform (all
weights are the same). The values of the effective hydraulic resistivities for the

Table 6.1 Cases 6.2.1 and 6.2.2: distributions of the hydraulic conductivity values

Intervals (m): 0-25 25-50 50-75 75-100
Hydraulic conductivity (m/day) K K> K3 K,
Case 6.2.1 1 0.9 0.2 0.1

Case 6.2.2 0.1 0.2 0.9 1
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model blocks 1 (interval [0, 50] m) and 2 (interval [50, 100] m) are evaluated,
using the same transforming mechanisms, since their affecting factors, calculated
by Eq. 6.15, do not depend on the hydraulic conductivity distributions and are the
same for both cases:

21 = 0.6861 g1 + 0.3139 g, + 0.0072 g3 — 0.0072 g4

6.16
2, = —0.3451 g; +0.3451 g» + 0.8155 g5 + 0.1845 g, (6.16)

Note, that Mechanisms 6.16 have the properties obtained in Sect. 5.3 based on
theoretical considerations.

The results for Case 6.2.1 are presented in Table 6.2 and Fig. 6.2. They seem to
be satisfying. The maximal error in the aquifer thickness is 0.0538 m at x = 75 m.
The results of Case 6.2.2 are presented in Fig. 6.2 and in Table 6.3. They are not so
good, comparing to the result of Case 6.2.1, with the maximal error in the aquifer
thickness equal 0.1708 m at x = 25 m. The most disappointing is the negative
value of the effective hydraulic conductivity K, which is meaningless physically.

The results of Case 6.2.2 are presented in Fig. 6.2 and in Table 6.3. They are
not so good, comparing to the result of Case 6.2.1, with the maximal error in
the aquifer thickness equal to 0.1708 m at x = 25 m. The most disappointing is

Table 6.2 Case 6.2.1: comparison of factual data and simulation results

Effective conductivity (m/day) K= 1.0011 K>=0.1678
Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m?) 0.4475 0.7947 1.7322 2.3572
Squared simulation aquifer thickness (m?) 0.4470 0.7592 1.8766 2.2491
Fig. 6.2 Cases 6.2.1 and 3 T T T T T T T T T

6.2.2: comparison of factual
and simulation aquifer

(;‘ase, 6.2.I2
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aquifer thickness (m)
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Table 6.3 Case 6.2.2: comparison of factual data and simulation results

Effective conductivity (m/day) K, =0.1186 K, = —1.5751
Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m?) 4.3850 5.9475 6.1558 6.2183
Squared simulation aquifer thickness (m?) 3.6987 6.3335 6.2144 6.1748

the negative value of the effective hydraulic conductivity K, which is meaningless
physically.

The first urge is to disregard Case 6.2.2 as an incorrect formulation of the model
identification problem, but what is wrong with the formulation? It does not differ
from that of Case 6.2.1. The transforming mechanisms are the same. The effective
hydraulic resistivities are unique solutions of linear systems which are stable.
What is more important, being physically incorrect, they provide the effective
simulation of the water table or the thickness of the aquifer at the observation
locations, doing exactly what have been required from them. Sure it would be
wrong to apply these hydraulic conductivities to reproducing streamlines, but the
streamlines have not been the goal of the optimization.

The negative conductivity has appeared as compensation for a very steep
growth of the aquifer thickness near the trench and its very slow growth at the right
half of the object, that is, as a consequence of the applied optimization procedure.
By the way, the value of effective conductivity K, in Case 6.2.1 is a little greater
than the real world hydraulic conductivity K;. Thus, being correct physically, it is
incorrect geologically. In the following cases, this phenomenon demonstrates itself
more clearly.

To avoid the use of the negative value of the effective hydraulic conductivity K,
and to see how physically based parameters perform in Case 6.2.2, let us try the
harmonic averages of the actual hydraulic conductivities as model parameters.
(Note, to assign a harmonic average conductivity as a parameter, we have to know
the factual values of pertinent hydraulic conductivities. In Cases 6.2.1-6.2.2, the
effective hydraulic conductivities were obtained based on the observed thickness
of the aquifer by solving System 6.10.)

Case 6.2.3 The effective hydraulic conductivity of the above two blocks is
assigned as harmonic means:

s K1K2 70.1 x 0.2
'""Ki+K, 01402
~ K3K4 09 x 1
K2 = =

K; + Ky 1.9

= 0.0667 m/day

= 0.4737 m/day

Substituting these values of the hydraulic conductivities into Eq. 6.8 yields results
presented in Table 6.4 and Fig. 6.3. The advantage of the formulation of the model
identification problem in Case 6.2.2 is obvious. (Note also, the above values of the
model parameters are not geologically correct.)
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Table 6.4 Case 6.2.3: comparison of factual data and simulation results

Effective conductivity (m/day) K, = 0.0667 K, = 0.4737
Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m?) 4.3850 5.9475 6.1558 6.2183

Squared simulation aquifer thickness (m?) 6.5725 11.2600 11.6558 11.7878

Fig. 6.3 Cases 6.2.3-6.2.5: 45 ! ! T ! ! T T ! T
Comparison of factual and : - : : : : :
simulation aquifer thickness

h w
n W »n

8]

-
[y}

aquifer thickness (m)

—_

05 If---- . L [ P +  real aguifer thickness
: : simulation aquifer thickness
+  factual data

0 10 20 30 40 50 60 70 80 90 100
distance (m)

Case 6.2.4 Let us try a homogeneous (one block) simulation model with the
effective hydraulic conductivity assigned as a harmonic mean of fourth factual
values of the hydraulic conductivities:

X 1 1

K= = = 0.0584 m/day
1 1 1 1 1 1 1 1
Tttt ortoatosty

The results of Case 6.2.4 are presented in Table 6.5 and in Fig. 6.3. Note, that the
above statistics is geologically incorrect again.

Comparison of the results of Cases 6.2.2—6.2.4 demonstrates that the physically
incorrect effective parameters perform better, much better, than those assigned
from physical and statistical consideration. Besides, the latter are geologically
incorrect as well. So, it is up to the modeler to decide what the model parameters
are preferable, i.e., simulating results more accurately or yielding less accurate but
‘politically correct’ results. (Political correctness is mentioned here based on the

Table 6.5 Case 6.2.4: comparison of factual data and simulation results

Effective conductivity (m/day) K = 0.0584
Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m?) 4.3850 5.9475 6.1558 6.2183

Squared simulation aquifer thickness (m?) 7.4961 12.8433 16.0517 17.1211
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author experience: each time when the efficiency of the physically incorrect
parameters was demonstrated, hydrogeologists object to them just because of their
physical incorrectness.)

Case 6.2.5 It is interesting also to compare Cases 6.2.3 and 6.2.4 with the
homogeneous (one block) model optimized in the sense of Criterion 6.6 with
uniform weighting (p; = 1, j = 1, 2, 3, 4). The corresponding effective hydraulic
resistivity in this case is equal to:

0.4375(hi — h§) +0.75(h3 — hg) 4 0.9375(h3 — h§) + (h — h})
0.43752+0.75% + 0.93752 + 1

2= (6.17)

The corresponding transforming mechanism can be obtained by substitution in the

above equation the values of differences (hjz — h(z)) from Eq. 6.7:

2=05193g; +0.3190g, + 0.1380 g5 + 0.0237 g4 (6.18)

The results of Case 6.2.5 are presented in Fig. 6.3 and Table 6.6. Although they
are worse than the ones in Case 6.2.2, they are considerably better than those of
Cases 6.2.3 and 6.2.4.

Case 6.2.6 Let us try some different formulations of the problem. For example, we
can assign the weights increasing with the distance from the trench, say, p; = 0.1,
p> = 0.2, p3 = 0.3, and p, = 0.4. Corresponding transforming mechanisms are

21 =0.6407 g +0.3593 g, + 0.0133 g3 — 0.0133 g4

6.19
2, = —0.1891 g; +0.1891 g5 +0.7802 g5 + 0.2198 g4 (6.19)

The results of Case 6.2.6 are presented in Table 6.7 and in Fig. 6.4. The
maximal error in the aquifer thickness is 0.2160 m at x = 25 m. Although it is a
little greater than the maximal error in Case 6.2.2 (0.1708 m), the accuracy of the
results in Case 6.2.6 growth with distance due to the choice of the weights.

Table 6.6 Case 6.2.5: comparison of factual data and simulation results

Effective hydraulic conductivity (m/day) K =0.1436

Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m?) 4.3850 5.9475 6.1558 6.2183
Squared simulation aquifer thickness (m?) 3.0572 5.2338 6.5397 6.9750

Table 6.7 Case 6.2.6: comparison of factual data and simulation results

Effective hydraulic conductivity (m/day) K, =0.1219 K, =7.0757
Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m?) 4.3850 5.9475 6.1558 6.2183

Squared simulation aquifer thickness (m?) 3.5997 6.1637 6.1902 6.1990
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Fig. 6.4 Case 6.2.6: 3 ! T T ! ! ! ! T !
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Moreover, the effective conductivity K, is physically correct, positive. However, it
is incorrect geologically exceeding the actual hydraulic conductivity K3 and K,
considerably. This can make the model as erroneous as the physically incorrect
effective value kz in Case 6.2.2 and in some different formulations of the
simulation problem.

Case 6.2.7 Let us change the observation network. We come back to the uniform
weighting, but move the observation from location x = 25 m to x = 10 m. This
leads to changing the above system composed by the geological object, simulation
model, and observation network. Consequently, this leads to different system of
equations for finding the effective conductivities and the transforming mecha-
nisms. The effective hydraulic resistivities g; and g, become the solution to the
system:

(0.19°p1 +0.75%(p2 + p3 + pa)) &1 + 0.75(0.1875p3 + 0.25p4) &>

= 0.19p; (i} — B) +0.75(p2 (K3 — 13) + p3 (h3 — h3) + pa (B3 — h3))
0.75(0.1875p3 + 0.25p4) &1 + (0.1875 *p3 + 0.25 *p4) &>

= 0.1875 p3 (h3 — hg) + 0.25 p4 (hy — hj)

The corresponding transforming mechanisms are (6.20)

21 =0.6076 g1 + 0.3924 g5 + 0.0091 g5 — 0.0091 g

6.21
2> = —0.0814g, +0.0814 g +0.8096 g5 + 0.1904 g 4 (621)

The results of Case 6.2.7 are presented in Table 6.8 and in Fig. 6.5. The
maximal error in the aquifer thickness is 0.1968 m at x = 25 m.
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Table 6.8 Case 6.2.7: comparison of factual data and simulation results

Effective hydraulic conductivity (m/day) K, =0.1244 K> = 1.4642
Monitoring location (m) 10 50 75 100
Squared factual aquifer thickness (m?) 1.9100 5.9475 6.1558 6.2183
Squared simulation aquifer thickness (m?) 1.5373 6.0389 6.1669 6.2096

Fig. 6.5 Case 6.2.7: 3 T T T T T T T T T
comparison of factual and i : i : ' i : i :
simulation aquifer thickness
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It is worth noting that the model identification in Case 6.2.7 is also geologically
incorrect: the effective hydraulic K, exceeds the factual values of the hydraulic
conductivity.

Case 6.2.8 Let us consider one more alternative to the model identification
problem presented in Case 6.2.2. This time we change the model itself: the first
block of the new model coincides with the first geological body (interval [0, 25]
m). The second block (interval (25, 100] m) consists of three geological bodies.
The observation network and weights are the same as in Case 6.2.2. The system of
equations for finding effective values g, and g, is

0.4375(p1 4 pa + p3 + pa)@1 + (03125 py + 0.5p3 + 0.5625 py) g2
= pi(B = ) + p (1 — 1) + ps (12 — 1) + pa (12 — 1)
0.4375(0.3125 p; + 0.5p3 + 0.5625 ps)@1 + (0.3125% p, + 0.5% p3 + 0.5625% p4) &>
=0.3125 py (3 — hg) + 0.p3 (A3 — hg) + 0.5625 p4(hy — hg)
(6.22)

The transforming mechanisms in this case are:

21=1x g +0.0048 go — 0.0743 g3 — 0.0205 g4

> (6.23)
2, =0x g +0.5612 g, +0.3673 g3 + 0.0715 g,
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Fig. 6.6 Case 6.2.8: 3
comparison of factual and
simulation aquifer thickness
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Table 6.9 Case 6.2.8: comparison of factual data and simulation results

Effective hydraulic conductivity (m/day) K, = 0.0964 K> =0.3043
Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m?) 4.3850 5.9475 6.1558 6.2183
Squared simulation aquifer thickness (m?) 4.5472 7.7881 8.4041 8.6095

The results of Case 6.2.8 are presented in Fig. 6.6 and Table 6.9. The maximal
error in the aquifer thickness is 0.4405 m at x = 100 m. In general, the results are
considerably worse than those in Cases 6.2. The effective parameters are incorrect
geologically. However, the accuracy of reproducing the aquifer thickness in
interval [0, 25] m is impressive. Maybe, it is worth to contemplate application of
different models to different parts of geological objects.

6.3 Discussion on Illustrative Cases

Table 6.10 summarizes the results of Sect. 6.2. The cases demonstrate clearly the
problem dependence of model identification and support statement that “it is not
possible to define a consistent effective parameter value to reproduce the response
of a spatially variable pattern of parameter values” (Beven 1989). We see that the
effective parameters of predictive models and the transforming mechanisms
depend on geological conditions (Cases 6.2.1 and 6.2.2), and literally on each
element of simulation problem formulation (Cases 6.2.2 and 6.2.5-6.2.8). All
transforming mechanisms have Properties 1-3, and they are not statistics, besides
that presented by Eq. 6.18.
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6.3 Discussion on Illustrative Cases

€roc0 ="y ‘z98ze="§

Y3 GILO0+ 8 €L9€°0+ 821960+ '8 x o = 11g 1
¥960°0 = Oy ‘peLE0l = 018 "8 6020°0 — €8 €5L0°0 — %8 8560°0 + 18 x | = 01§ 01 879
‘T=06 ¢ ‘0= 658 -
VL= 0E890 = e ¥ 4061°0 + 5 96080 + &5 $180°0 + 15 180°0— = 3 6
vre10 =8y ‘98¢08 = %3 8 1600°0 — 8 1600°0 + ¢ $76€°0 + '8 9,09°0 = 38 8 L'T9
=Ly ‘S1p10 = L8
LSLOL="F €10 =" T8 8617°0 + €6 T08L°0 + %6 1681°0 + 18 1681°0— = 48 L
61710 =y ‘ye0cs = % 8 €€10°0 — 8 €€10°0 + %8 €650 + 18 L0v9'0 = 98 9 979
6LE1°0 =Y ‘9ISTL =<8 v8 1€20°0 + €5 08€1°0 + %8 061€°0 + '8 €616°0 = 8 S )
OPLST— ="y 1590~ = "¢ "8 ¢p81°0 + €8 LS18°0 + 8 1SHE0 + 18 160~ = 8 b
98110 ="ty ‘T1€p'8 =*§ ¥82000°0 — €8 2L000 + %8 6£1¢€°0 + 18 19890 = €5 € TT9
0 =ty ¢ ¢ =13
BLOTO = s6s6%6 =" Y5 ¢y81°0 + €5 LSI8°0 + T8 16pE0 + 18 1pE0— = 8 (
1100'T =¥ ‘68660 = '3 ¥8 2L00°0 — €8 7L00'0 + %8 6€1€°0 + 18 19890 = '8 I 1'c9
1=y ‘8 s1opowered 9AndAPH wisiueyooW JUILIOJSueL], # uonenbyg ase)

(Kepjwr) /1 = ¥ SAIANONPUOD PUB (W/ABP) £ SINIANSISAI JI[NBIPAY SANIAPS Pue SWISIUBYIIUW SUTULIOJSURL], ("9 d[qeL



86 6 Examples of Linear Transforming Mechanisms

The problems in Sect. 6.2 are linear with respect to squared thickness of the
aquifer. Therefore they do not support the most popular explanation of the prob-
lem-dependence phenomenon by non-linearity of simulation processes. Being
results of optimization, the effective parameters are not physical or geological
entities. They are characteristics of the system made up not only by geological
objects but as well all elements of the model identification problem formulations.
That is why the effective parameters can be incorrect physically and geologically
but still remain effective in pertinent optimizations. However, they can become
misleading, if predictive simulations deal with the systems different from those in
which the parameters are obtained. Case 6.2.2 is revealing in this sense. The
effective hydraulic conductivities K; = 0.1186 and K, = —1.5751 m/day satis-
factory reproducing the aquifer thickness are misleading in evaluations of
streamlines which are not a subject of optimization in the calibration.

On earlier stages of investigation, exact formulations of simulation problems
may not be known yet. Then the goal of the model identification is finding geo-
logically correct parameters, i.e., the model characteristics must be within the
range of factual properties of the geological object of interest. The transforming
mechanism like in Case 6.2.5, being averaging of the statistical nature, can serve to
such end. But to be sure that the effective parameter values are indeed averaging of
the statistical nature, the transforming mechanisms must be presented explicitly.

Contrary to seeing the problem-dependence as an obstacle or annoying factor, it
is more profitable to consider it as a tool for investigation of geological objects.
Different formulations of the model identification problems and corresponding
transforming mechanisms carry information about the structures and properties of
geological objects. They even can be applied to formulating and solving inverse
problems. Geophysics is an example of such use of the phenomenon of problem-
dependency. The notion of the apparent electrical resistivity corresponds to the
effective parameters as they are defined in the hydrogeological model identifica-
tion herein. Namely, the apparent specific electrical resistivity provides the exact
difference of electrical potentials between the receiving electrodes for a given
configuration of the current electrodes. Its value is calculated based on assumption
that the geological object is homogeneous with respect to the specific electrical
resistivity. If the actual object is not homogeneous, changing the configuration of
the current electrodes, which is equivalent to changing the boundary conditions (or
locations of sources and sinks), leads to change of the apparent resistivity. The
pattern of the changing is used for qualitative or quantitative interpretation of the
object structure.

Let us consider the following system of equations:

0.6861 g1 + 0.3139 g, + 0.0072 g5 — 0.0072 g4 = 8.4311
—0.3451 g1 +0.3451 g» + 0.8157 g3 + 0.1843 g4 = —0.6351
0.6076 g1 +0.3924 g5 +0.0091 g5 — 0.0091g, = 8.0386

—0.0814 g; +0.0814 g> + 0.8096 g3 + 0.1904 g4 = 0.6930

(6.24)
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System 6.3.1 is composed from Eqgs. 3, 4, 8, 9 (Table 6.10). The actual
hydraulic resistivities g;.4 are assumed to be unknown. Corresponding effective
hydraulic resistivities, the right-hand terms are found from observations and as
such they are known. Solving System 6.3.1 for the unknown actual resistivities and
recalculating them in the actual hydraulic conductivities yield:

K,=01; K,=02;, K;=09 K,;=1,0 M/cytkn (6.25)

This is the exact actual properties of the considered object.

Inverse problems are incorrect inherently. The source of incorrectness is errors
in the coefficients making up the matrix of System 6.24 and in the right-hand
vector. Solutions of the systems like System 6.3 depend strongly on the accuracy
of the initial data and rounding errors (see Eq. 4.20). The above success is due to
the fact that the made up artificial situation permits calculating values of the
affecting factors and effective parameters with accuracy of fourteen digits. If
solving the inverse problem with the data presented in Table 6.10, that is, with
four significant digits, the result becomes

K,=01; K,=0,1997: K;=0,9109, K,=0,9622 wm/cytku (6.26)

which is appropriate still. If the system for finding the actual hydraulic resistivity is
made up by Eqgs. 3, 4 and 6, 7 from Table 6.10 and the pertinent values rounded up
to three digits to the right from the decimal point the obtained solution is not so
good:

K1 =0.0997, K, = 0.2030, K3 = 0.8137, K, = 1.4905 m/day  (6.27)

though it can be acceptable, considering the usual accuracy of hydrogeological
information. Some systems made up from other combinations of four equations
represented in Table 6.10 may yield much worse results.

In day-to-day practice to have four correct significant digits is an unavailable
luxury. More practical approach to solving our inverse problem is to use excessive
systems of equations and solve them by the least squares method. For example, the
affecting factors in Egs. 3—11 from Table 6.10 can be considered as independent
variables and the unknown the actual values g, g, g3, g4 as coefficients of the
linear regression

&= giwji + &wp + g3wjz + gawjs (6.28)

(Due to the Properties 1-3 the affecting factors are not independent. This does not
preclude considering them as such. However, the dependence of the affecting
factors can simplify solving inverse problems.)

Applying the least squares method to minimize sum

11

~N\2
s = Z (81Wj1 + &2Wjp + &3Wj3 + gaWja — 8j) (6.29)
=3
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yields the system of four equations for evaluating regression coefficients g;, g2, g3,
g4. Solution of that system expressed in terms of the hydraulic conductivities is

K; =0.0995, K, = 0.1981, K3 = 0.8627, K4 = 1.1594 m/day (6.30)

This approach to solving inverse problems, using the transforming mechanisms
is considered in more details in Chap. 9.

Konikow and Bredehoeft (1992) claim that a site specific validation “per se, is a
futile objective.” In my opinion, they are wrong. We just should stop looking at
calibration as at the procedure of searching for the effective parameters of a given
model which provide the best fit of the available observations and start seeing it as
a procedure for systematic study of the hydrogeological objects. The transforming
mechanisms may become a tool for this kind of investigations, though I believe
that other tools can be found also.

6.4 Borden Landfill

I think that Frind and Hokkanen (1987) assigned their recharge rate pattern and the
steady-state water table for the part of the Borden site located down-gradient of the
landfill (x > 300 m) in Sect. 4.4, taking in consideration the observed streamline
which coincides with the upper boundary of the contaminant plume. Then they
scaled the recharge pattern and the hydraulic conductivities to satisfy the
approximately known arrival time. The goal of this section is obtaining the
mechanism transforming the recharge rates N3, N, and N5 into one effective
recharge rate N of the homogeneous simulation model for x > 300 m (Fig. 6.7).

The effective recharge rate N should provide the effective, as if, steady-state
water table. (Note that if the structure of the model of Frind and Hokkanen (1987)
in Sect. 4.4 were an exact replica of the Borden site, then effective recharge rates
were equal to the actual recharges, i.e. N3 = N3, N4 = N, and Ns = Ns, and as
shown in Sect. 5.3, the corresponding transforming mechanisms with affecting
factors wyp=wyp=w3z3 =1, wia=wiz=wy; =wyz3=w3;=w3,=0
become trivial.)

Fig. 6.7 Borden site: model MODEL
homogeneous with respect to f
recharge rate

N; OBJECT N, N,

300 400 500 600 700 800 900
Distance (m)
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The transforming mechanisms for the homogeneous model can be presented as

N = wiN3 + woNg + w3Ns (63])
where the affecting factors wy, w, and w3 are summing to one. According to Eq.
4.35, the actual water table H(x) for x > x,, is described by equation

O(x
H(x) = g (Hs(x) — Y(x)) + Y(x) (6.32)
where Hg(x) is the streamline S elevation, Y(x) is the aquifer base elevation, Q(x) is
the total flux, and Qg = Q(x,,), where x,, is the coordinate of the point of the
streamline S on the water table.
The effective water table H(x) is described by equation

where Q(x) is the effective total flux at x > x,,. The effective value of the

(Hs(x) = Y(x)) + Y(x) (6.33)

homogeneous recharge rate N minimize the sum

n

5= (Hx) — Hx)) (6.34)

i=1

where x; is the locations where values H(x) Y(x) and Hg(x) are observed. However
observations on H(x) are not necessary and even may not exist in this case. Indeed,
substituting Eqs. 6.32-6.33 in Criterion 6.34 yields

T QIZ ((Q0x) — Qilx)) (Hs(xi) — Y (x1)))’ (6.35)

So the problem is reduced to evaluating the effective recharge rate based on an
observed streamline. According to the least squares method the effective recharge

rate N is the solution of equation
1 dQ(x,)

IZ:]: ((Q(x,) - Q(x,'))(HS(x,») — Y(x,»))) W =0 (6.36)

Substituting the data from Table 6.11 in Eq. 6.36 and solving it for N yield
Eq. 6.31 with w; = 0.8005, w, = 0.1727, w3 = 0.0269 summing to 1.0001. (The
error 0.0001 is due to rounding. Adding one more digit, i.e. putting w; = 0.80045,
wy = 0.17267, w3 = 0.02688 makes summing equal to one.) So finally, the
transforming mechanisms converting the recharge rates N3, N4, and N5 into the

effective recharge rate N is

N = 0,8005 N5 + 0, 1727 Ny + 0,0269 Ns (6.37)


http://dx.doi.org/10.1007/978-3-319-03569-7_4

90 6 Examples of Linear Transforming Mechanisms

Table 6.11 Data for evaluating transforming mechanism for effective recharge rate

# x Hg Y u=Hs-Y Q Q

0 300 22231 20431 17.99 Qs Qs

1 400 219.25 206.17 13.08 Qs + 100K Qs + 100 N3

2 500 218.26 209.55 8.71 Qs +2008 Qs + 200 N3

3 600 21746 210.85 @ 6.61 Qs + 3008 Qs + 300 N3

4 700 216.07 21133 474 Qs + 400K Qs + 300 N3 + 100 N4

5 800 21547 211.86 3.61 Qs + 5000 Qs + 300 N3 + 200 Ny

6 900 21567 21279 288 Qs + 6008 Qs + 300 N3 + 200 N, + 100 Ns

Substituting into Eq. 6.37 the recharge pattern N.5; = [5.85, 28.41, 10.20, 23.00,
8.36] cm/year (Table 4.4) which satisfies the streamline shape and the travel times
to x =900 m and x = 950 m (about 39.1 and 40.2 years) yields the effective
recharge

N = 0.8005 x 10.2 4 0.1727 x 23 + 0.0269 x 8.36 = 12.36 cm/year  (6.38)

To obtain Mechanism 6.37 we do not need the observation on the water table,
and the total flux Qg at x = 300 m. Taking in consideration the seasonal variability
of the water table which is expected to be greater than the variability of the
streamline elevations, the water table obtained with the use of the effective
recharge N seems to be a better first approximation. However, the above result
N =12.36 cm/year can be checked by straightforward calculation of the effective
recharge applying the observed water table. To this end it is necessary to minimize
criterion

s=2 (%((Hs(xz') — Y (xi)) — (H(x) — YJ)) (6.39)

with H(x) corresponding to the above mention recharge pattern from Table 4.4
(Ny.s = [5.85, 28.41, 10.20, 23.00, 8.36] cm/year). The data for calculation are
presented in Table 6.12 Note also, the effective recharge rate of the model which is

Table 6.12 Data for evaluating the transforming mechanism for effective recharge rate N

(rN =N /Qs)

# X H v=H-Y Y Hs u=Hs—-Y 0/0s

0 300 222.31 17.99 204.31 222.31 17.99 1

1 400 222.23 16.06 206.17 219.25 13.08 1+ 100rN
2 500 222.11 12.56 209.55 218.26 8.71 1 +200rN
3 600 221.95 11.09 210.85 217.46 6.61 1+ 300rN
4 700 221.72 10.39 211.33 216.07 4.74 1 +400rN
5 800 221.42 9.56 211.86 215.47 3.61 1 +500rN
6 900 221.04 8.24 212.79 215.67 2.88 1 + 600rN
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homogeneous with respect to recharge for x > 300 m must minimize the differ-
ence between the observed water table and the simulated one.
The minimum value of the Criterion 6.39 depends on ratio 0; / Qs. Thus the

goal is to find the optimal value of this ratio, denoted here as rN. The standard least
squares technique leads to equation

100 (uf + 4u3 + 9uf + 16u3 + 25u3 + 36u%)rN
=u (v —u1) + 2ur(v2 — up)
+3u3(V3 — u3) + 4u4(V4 — u4) + 5Lt5(V5 — u5) + 6u6(v6 — u6)

(6.40)

According to Eq. 6.40rN = 0.0027. Calculated based on recharge rates
Ni, = [5.85, 28.41] cm/year the total flux Qg at x = x; = 300 m is equal
0.1253 m*/day. Thus the effective recharge rate is

N =N x Q, x 100 x 365 = 12.40 cm/year (6.41)

The results obtained by Eqgs. 6.38 and 6.41 consistent though based on slightly
different data. Thus, the transforming mechanism presented by Eq. 6.38, as
expected, provides effective parameter N for the discussed simulation model. The
magnitude of the maximal error in reproducing the water table is less than 9.1 cm.
However, the magnitude of the maximal error in evaluation the streamline starting
at x = 300 m is too large, about 0.56 m (Fig. 6.8), since the streamline was not the
goal of reproduction. Nevertheless the travel time to x = 900 m and x = 950 m
are equal approximately to 38.5 and 39.7 years is close to those found in Sect. 4.4
(39.1 and 40.2 years).
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Chapter 7
Examples of Nonlinear Transforming
Mechanisms

Linear transforming mechanisms are rare in practical applications. Even the
mechanisms presented in Sect. 6.2 were obtained by linearization of non-linear
mechanisms. Mathematical descriptions of the non-linear mechanisms and their
inferences and applications are considerably more complicated. However, it is
possible to find simple examples for illustrations.

7.1 Simulation of Transient Filtration in Two-Body Object
by Homogeneous Model: Problem Formulation

As shown in Sect. 4.3, a homogeneous model with constant hydraulic transmis-
sivity and storativity cannot successfully represent the development of hydraulic
heads in a confined aquifer consisting of two geological bodies with the hydraulic
transmissivities 7, and T, (Fig. 7.1). However, the situation is different, if we use
the effective hydraulic transmissivity changing in time.

Let the aquifer have uniform distribution of the hydraulic heads in the initial
state: h(x, 0) = H,. At instant r = 0, the hydraulic head at x = 2L jumps to h(2L,
0) = H,;. At x = 0 the hydraulic head remains unchanged: h(0, ) = Hy. The
instant jump of the hydraulic head at x = 2L initiates process of changing the
aquifer hydraulic heads. The goal is effective simulation of the hydraulic head at
location x = L, using a homogeneous, one-block, model.

Filtration within two geological bodies, that is, within intervals [0, L] and [L,
2L] is described by two partial differential equations

Ghj(x, t) — A Gzhj(x, l)

o w2
where x and ¢ are the distance and the time, h;(x, 1) is the hydraulic head in
intervals [0, L] G = 1) or [L, 2L] (j = 2), A; = T/S is the hydraulic diffusivity of
body j, T; is its transmissivity and § is the storativity which, for the sake of

j=12 (7.1)

V. Gorokhovski, Effective Parameters of Hydrogeological Models, 93
Springer Hydrogeology, DOI: 10.1007/978-3-319-03569-7_7,
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Fig. 7.1 Modeling a two- =
body object by a T
homogeneous model MODEL
Ty T2
X
0 L 2L
OBJEKT

simplicity, is assigned equal to 0.1 for both bodies. The initial and boundary
conditions are the following:

hi(x,0) =Hy, j=12 0<x<2L (7.2)
hl(O, t) = Hy and h2(2L, l) = Hy (73)

The inner boundary conditions on continuity of the hydraulic head and the flux
exist at the boundary between the geological bodies at x = L

]’l](L7 I) = hz(x, t) = h(L, t)

T (L) ( o (7.4)

= Tohy(L,t) (ahzai(j:’t))

x—L L—x

The real world made up in the above problem formulation is to be simulated by a
homogeneous model. The corresponding simulation process is described by
equation

dh(x,t) . 0%h(x,1)
ot =A dx? (7:3)

where iz(x, t) is the effective hydraulic head at location x and at time instant f,

A= T/ S and T is the effective hydraulic transmissivity. Model storativity S is
assigned equal to 0.1.

The simulation must reproduce effectively the next hydraulic head, iz(L, ) =
fli, based on the observed previous head h(L,#;_;) = h;—;. For simplicity, time
increment At = t; — t;_; is constant. The simulations are to be conducted by the
explicit finite differences. The model must be effective in time interval [#; ¢,] in
the sense of the least squares, that is, the simulated hydraulic heads must minimize
sum

m

s =Y (hi = 1y)” (7.6)

i=k

To this end the effective hydraulic transmissivity, Tk,m, the only parameter gov-
erning the simulation, must be found.
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7.2 Explicit Numerical Simulation

There exists an analytical solution for the hydraulic heads in the above formulated
problem. However, to simplify obtaining the pertinent transforming mechanism, the
explicit finite difference method with the stencil presented in Fig. 7.2 is applied to
simulate both, the real world and the homogeneous model. (To simplify calculations,
the boundary conditions are assigned as Hy = h(0,f) = 0u Hy, = h(2L,f) = 1 m).

The equation for evaluating the real world hydraulic head based on the
immediately preceding observed hydraulic head is

At
hi%hi,l—‘r—z((l—h,’,l)Tz—hi,]Tl) (77)

SL
where h; = h (L, t;), At = t;, — t;_1 = const. The hydraulic heads simulated on the
homogeneous aquifer model with the effective hydraulic conductivity Tk,’m can be

obtained from Eq. 7.7 by putting T} =T, = 7";(7,,,

A At .
l’ll‘ ~ hi—l + E (1 — Zhi—l)Tk,m (78)
Then Criterion 7.6 can be written as
At & . 2
§ = (1= 2R )T — (1 = hiet)T2 = hii T1)) (7.9)
SL i=k+1

Applying to Eq. 7.9 the standard least squares technique, that is, differentiating it
by Tk,m and equalizing the derivative to zero, yields

) m pe (1 — 2k m o — k) (1 =2k
Tk.m:_Zl:k 1( l)T _’_thk( 1)( ])TZ, k>0

1
S (1= 2hi )’ S (1= 2hi )

(7.10)
Equation 7.10 can be rewritten in terms of the affecting factors
Tim = Wi Tt +wapm T (7.11)
where the affecting factors wy 4 ,,,) and wy 4 ) are

ik hici(1—2hiy) _ i (L= i) (1 — 2k )
™ 5 Wolkm = m 2
>ici (1= 2hiy) 2k (1= 2hiy)

Wi km] = — s k>0

(7.12)

It is easy to check that the above affecting factors hold Property 1 (Sect. 5.3,
Eq.5.5), summing to one. However, they can have different signs. If ininterval [#, #,,]
all h;_; are less than 0.5 m, w [ ) is negative and wy [ »,) is positive. If in interval
[#x, t,,] all h;_, are greater than 0.5 m, wy 4, 1S positive and wy 4 ) 1S negative.
Therefore, the effective hydraulic transmissivity fkm are not statistics of the
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Fig. 7.2 Four point stencil hi=(L,t)
for numerical modeling of the
hydraulic heads

2 L - L -
h(,1)=0 hia=(L,t;1) h2L,H=1

hydraulic conductivities 7 and T5, though the affecting factors in Eq. 7.11 sum to
one.

It is somehow more cumbersome to see non-linearity of Mechanism 7.11. But
in the case of the effective parameter Tl,z this is fairly obvious. It follows from the
initial Condition 7.2 and Eq. 7.7 that

At
hy=0 d h~—=T
0 an 1~g;et?
Substituting the above values in Eq. 7.12 yields
_ (-2 T) T (g ) (125 1)
W11[1=2] - At 2 WZ,[I,Z] - At 2
1+ (1-245Ty) 1+ (1-245Ty)

Thus, the affecting factors w1 2; and w; [ ) depend on 7,, demonstrating non-
linearity of the corresponding transforming mechanism. Note that the above fac-
tors do not depend on transmissivity 7. This fact is useful when the transforming
mechanisms are applied for formulations and solving inverse hydrogeological
problems Chap. 9. Note also that transmissivity 7, appears in the transforming
mechanisms Tz‘g, T 3 and all others with m > 3.

Let us simplify the problem even more, requesting that the effective transmis-
sivity 7",',1’,- should provide exact reproduction of the hydraulic head h; = h(L, t,),
at instant #; based on the observed hydraulic head 4;_, at instant #;_4, i.e., applying
instead of Criterion 7.6 the criterion

h; = h; (7.13)

Then the effective transmissivity 7},1,,- can be obtained straightforward from
Eq. 7.10 or by equalizing the hydraulic heads presented by Eqs. 7.7 and 7.8:
hi 1 —hi

Tiyi=— T T 7.14
L [ A R B T e (7.14)

The affecting factors for the transforming mechanism presented by Eq. 7.14 are

hi_] 1- hi—]

_ L S 7.15
=2k, " " 1-2m, (7.15)

Wi =

It follows from the Expressions 7.15, that the effective hydraulic conductivity

T;_1; is not a statistics. Note that, the affecting factors and the effective hydraulic
transmissivity are not defined for the instant when the hydraulic head %;_; is equal
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to 0.5 m. Note also that at # = 0 the hydraulic head h(0) = hy = 0. Thus factor

wy,1 = 0 and the effective hydraulic transmissivity ?0, 1 = T5.

The simulation results for two contrasting cases are presented in Fig. 7.3: one is
the real world consisting of two bodies with the hydraulic transmissivities
T =0.1 and 7, = 0.9 m2/day and the other with the hydraulic transmissivities
T, =09and 7, = 0.1 m2/day. The main distinction between these cases is that in
one of them the asymptotic value of the ‘observed’ hydraulic heads % is equal to
0.1 m. It does not reach the crucial number 4 = 0.5 m. In the other the asymptote
of the hydraulic heads is equal to 0.9 m, and the observed hydraulic heads over-
come the crucial number 7 = 0.5 m.

Case 7.2.1 T, = 0.9 and T, = 0.1 m*/day. The homogeneous model works per-
fectly. The affecting factors w ; and w,; and the effective transmissivity Ti_],i, are
presented in Fig. 7.4.

The upper left effective hydraulic transmissivity value is equal to T, = 0.1 m?/
day which follows from Eqs. 7.14 and 7.15. The case demonstrates as well that the
effective hydraulic transmissivities are incorrect geologically either, approaching
zero with the time progress.

Case 7.2.2 T; = 0.1 and T, = 0.9 m?*/day. The results are presented in Figs. 7.5
and 7.6. (The affecting factor w, ; is shown only, since w,; = 1 — wy ;). In this
case there exists the instant #ys such that h(tys) = 0.5 m. At this instant the
affecting factors and the effective hydraulic transmissivity do not exist. Thus, the
effective transmissivity is deprived of both physical and geological meanings in
this case as well. But it does not preclude its values from providing effective
reproduction of real world hydraulic heads.

As stated in Sect. 4.3, calibrating homogeneous models in a transient regime
can permit the simulation results fitting the observations satisfactory for some
short time interval. The use of the changing in time effective hydraulic
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transmissivity and conductivities permit obtaining considerably more accurate
results. Two above cases demonstrate clearly those effective parameters are not
statistics and even not geological or hydrogeological entities. They are just optimal
characteristics of the corresponding systems and have not any physical meaning.

7.3 Implicit Numerical Simulation

In the previous section an explicit finite difference method is applied. To provide
stability of the explicit numerical integration, the time increment At must be
sufficiently small. The increment Af equal to 0.1 day in Cases 7.2.1 and 7.2.2 is
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selected for this reason. Although at the present time of automation, duration of the
time increment between measurements is not an issue, it may be not practical to
have it very small. The stable numerical solution for the problem formulated in
Sect. 7.1 can be obtained for time increments of an arbitrary duration by inte-
grating Eq. 7.7 over time. Indeed for infinitesimal At (At — 0), Eq. 7.7 can be
rewritten, after separation of variables, as

dh____ dr
(1 —h)T, —hTy SIL?

Integrating the above equation in intervals [/k;_;, ;] and [t;,_;, #;] correspondingly
yields

hi 1

dh 1 N dt
=— In(T, — (T, + To)h)|,, = — (7.16
/ T2 — (Tl + Tz)h (Tl + Tz) n( 2 ( 1+ 2) )|h,~71 / SL2 ( )

hi- tii

It follows from Expressions 7.16 (see Box 7.1) that

T, T+ T, T+ T,
h;, = 1—|1—(——|hi_ — i — b 7.17
ez Ul [l O g GBI G Gl (R DAL

Comparison of the results obtained by Eqs. 7.7 and 7.17 are presented in Figs. 7.7
and 7.8 (the time increments for Eq. 7.17 are 100 days in Fig. 7.7 and 250 days in
Fig. 7.8). In spite of increase of the time increment in 1,000 and 2,500 times, the
results are identical.
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Fig. 7.8 Comparison of the 03 T T T T T T — 1 T
explicit and implicit b B & 3 iR
xpuett P 08 ------ Rt AL femeeees Feemmee izl Ty =01 < Ty=0.9 mi/day
simulations : : : : ' : ' : :
07 beeeee fniitn it Eamanad s vy foss g ]
o0
= y y ] 1 !
L 05 ! explictt simulation, increment 0.1 day
7 — +  implicit simulation, increment 250 days
g 72 S T S S A S A
B p3fee- LR eeeeen R SO SSSHS S prEE P i
= ; :. : : : ' : i i
02F-- s S R S e

s e T e
/if*.’”* i | Ti=09>T=01mbdy
1 | i i 1 1

0 10 20 X0 40 S0 &0 700 @0 0 0w

time (day)

Text box 7.1
Inference of Eq. 7.17

Substituting in the right Equality of Expressions 7.16 the limits of inte-
gration yields

1 b 1 T — (T1 + Tz)h[
—In(T, — (T}, + TH)h)|,’ = — n
(Th + 1) (2 = (T + TR, . (Ttl +7T,) T, — (T + T>)hi—y
ti—tig
- SI2

Potentiating the above equality gives

T?—_((TIT1++TZ§2:i1 o ( (T + T2)< SLIZH))

or

T = (T + T)hi = (T = (T1 + To)hi-y) eXP(_(T1 + 1) (ti ;Lt;l))

Solving the above equation gives

T T |
e (ool (5)
T + T (Tl 1 1) exp\ =N+ 12) (=5

Factoring out the term 7»/T, + T, yields Eq. 7.17.
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For an homogeneous simulation model (Tl =1 =T_ 1,) Eq. 7.17 converts
into

.1 2Ti71,i
hi = 3 <1 — (1 =2hiy) exp<— 2 (t; — ti—1)>) (7.18)

The requirement to the model to be effective in the sense that izi = h; leads to
the following choice for the effective hydraulic transmissivity

. SI? 1 —2h;
Tioy; = | 7.19
L 2(li — tifl) n 1 —2h; ( )
Substituting in Eq. 7.19 the hydraulic head &; from Eq. 7.17 yields the following
transforming mechanism

7 SL? | 1—2h;
1= n
ll Z(ti — ti—]) 1— ﬁ {Tz T2 — (T] + Tz)h, ]] exp( 711;23'2 (ll ti—l))}

(7.20)

The nonlinear transforming mechanism presented by Eq. 7.20 is difficult for
analysis. However, it follows immediately from Eqgs. 7.19 and 7.20 that the
effective hydraulic transmissivity and the affecting factors are not defined for the
case Ty < T, at instant #y 5 for which 4 (¢35, L) = 0.5 m. To the left and right from
this instant the effective hydraulic transmissivities and the affecting factors are
continuous function of time and the hydraulic transmissivities 7; and 7,. The
hydraulic head % (155, L) < 0.5 m always if 7| > T5, So, the effective transmis-
sivity and the affecting are continuous in time in this case.

The affecting factors and the effective transmissivity for cases 77 = 0.9 and

T, =0.1 mz/day and 7, = 0.1 and 7, = 0.9 mz/day with the time increment
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50 days are presented in Figs. 7.9 and 7.10. As expected, in the first case (7, = 0.9
and T, = 0.1 m*/day) the affecting factors and the effective transmissivity are
changing smoothly in time. The affecting factor w, ; takes non-positive values. The
factor w,; always exceeds 1. The effective hydraulic transmissivity decreases
smoothly from 0.1 to 0. In the case 7; = 0.1 and T, = 0.9 m*/day the affecting
factors and the effective transmissivity are not defined in vicinity of instant
approximately 200 days (Figs. 7.10, 7.11 and 7.12). Factually there exist two
different transforming mechanisms. One is valid for time interval [0, 200] the other
for interval (~200, 1000] days. It should be noted also that the affecting factors
and the effective transmissivities obtained implicitly vary less than those obtained

explicitly.
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Sections 7.2 and 7.3 demonstrate that values of the effective parameters and the
transforming mechanisms depend on the methods of their evaluation. Although
some affecting factors of the mechanisms are negative, they are summing to one.
Thus summing the affecting factors to one does not warrant that the pertinent
effective parameter is a statistics. The most right values of the effective hydraulic
transmissivity have zero as an asymptote. It occurs because the hydraulic head
approaches asymptotically its maximum value at x = L.

Most hydrogeologists hold that the use of the effective but incorrect values of
the geological parameter such as negative hydraulic conductivity or transmissivity
in simulations is unacceptable. The question is what do we want: more accurate
predictions and evaluations provided by physically incorrect parameters or less
accurate ones based on physically correct parameters? The physically correct
parameters can be incorrect geologically as demonstrated here as well as in Chap.
6. Why is the use of geologically incorrect parameters acceptable? Just because we
do not know that they are incorrect? Being an engineer, I prefer the accuracy and
the tools providing it. One must simply understand the systematic, optimizing,
nature of the effective model parameters. They are not physical entities and are
effective only in the formulation in which they have been obtained. Any change in
a simulation problem changes the system and requires reevaluating the parameters.
Applying the effective parameters obtained for one simulation problem to another
can cause misleading results even when differences in the problem formulations
may not seem to be considerable.


http://dx.doi.org/10.1007/978-3-319-03569-7_6
http://dx.doi.org/10.1007/978-3-319-03569-7_6

Chapter 8
Evaluation of Transforming Mechanisms

In the examples of Chaps. 6 and 7 the transforming mechanisms were obtained
analytically. Such a direct approach can be cumbersome and even not available in
many situations. The fwo-level modeling introduced below is more universal and
seems to be more practical.

8.1 Two-Level Modeling Concept

The following hypothetical example explains the two-level modeling concept.
Supposedly we are going to apply a particular simulation model to predict
response of a particular geological object to a given impact. Information on the
object is sparse, but we have complete information on many other geological sites
with the same boundary conditions, impact and monitoring network. Their
responses to the impact have been already observed. Applying our simulation
model to those sites, we could evaluate how different geological conditions affect
simulation results and use this knowledge. That is, we could see sensitivity of our
model to different geological conditions, what parts and properties of geological
objects (what information) are essential for effective predicting, applying our
model, and how to assign its effective parameters. We could even abandon the
model, if it is not satisfactorily effective and to try different ones.

In other words, we can accumulate specific engineering experience to deal with
a specific problem. This does not eliminate the uncertainty of the simulation
results, since the object of interest is not yet fully known. However, studies such as
those would make our decisions related to predicting and its interpretation,
including its uncertainty, more informed and focused. We acquire better under-
standing of what could go wrong and when, whether and when we have to update
the simulation model, what additional feasible information could be necessary, etc.

Unfortunately, we do not have objects with completely known geological
surroundings, exactly the same impacts, monitoring networks and long enough
periods of observations. However, we can make them up as computer models. We
can produce, using terminology of McLaughlin and Wood (1988), the synthetic

V. Gorokhovski, Effective Parameters of Hydrogeological Models, 105
Springer Hydrogeology, DOI: 10.1007/978-3-319-03569-7_8,
© Springer International Publishing Switzerland 2014
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data, reference systems, real worlds, as complex as computational resources per-
mit, simulate their responses to a given impact, and compare those responses with
the results yielded by a given simulation model. Simply speaking, we can make up
some surrogate of the specific engineering experience.

There is nothing new about the use of artificial sites or synthetic data in ground-
water modeling. In fact, the entire geostatistical approach with its made-up
ensembles and other assumptions is based on them. McLaughlin and Wood (1988)
use a synthetic, stochastically homogeneous ensemble of sites or, rather one site
representing, as if, the mathematical expectation of the ensemble, to evaluate the
accuracy of a proposed modeling study before extensive resources are committed to
data collection and model development. Synthetic data are used by Zimmermann
et al. (1998) and many others. Unfortunately, in practice the relationship between
artificial and actual sites is ambiguous, and the extension of the obtained results to
real world situations is difficult or even impossible (Eggleston et al. 1996).

The similarity of the reference systems to the geological object of interest is not
necessary in the above hypothetical example. On the contrary, the diversity of
conditions could be beneficial, permitting deeper understanding of the predictive
problems. The reverse side of such diversity is the abundance of information
making it difficult to review and analyze the acquired data. The transforming
mechanisms are suggested as generalization of the obtained information.

Thus, the idea behind the described approach, called here two-level modeling,
is to investigate how the given predictive model performs when representing more
complex geological models. In a sense, it is Monte Carlo simulations, only
reversed. Routinely in Monte Carlo simulations “the object of the investigation is
a model itself” (Gentle 1985). Varying properties of a simulation model permits to
explore the sensitivity of the simulation results to the model’s parameters. How-
ever, the sensitivity of the simulation results to the model’s parameters tells us
nothing about the model’s ability to represent the real geological objects (Two
exceptions are possible: low or high sensitivity of a model indicate that it may not
be practical). In two-level modeling the structure of the geological model is fixed
and the real worlds vary. This permits evaluating how different factors, including
the unknowns, can affect the simulation results.

The concept of the two-level modeling can be described in general on the
example of Cases 6.2.1 and 6.2.2. The geological object, the real world, in these
cases consists of four geological bodies and the geological model of two blocks.
Pertinent transforming mechanisms for the first and second model blocks are
described by equations

81 = Wi,18) + W128, + W1383 + W1.484

. (8.1)
& = w2181 +W228> + W2383 + W2484

where g, =1/ Kiandg, =1 / K, are the effective specific hydraulic resistivities of
the first and second model blocks (K| and K, are the corresponding effective
hydraulic conductivities), g; = I/K; (i = 1,..., 4) are the real world specific
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Table 8.1 Set consisting of

Effective parameters Actual parameters

M subsets of observed = -

effective and actual hydraulic 811> 812 811, 812, 813, 814

resistivities 82,1, 822 82,1, 822, 823, 824
gm,lv gm,Z 8m,1y 8m2; 8m3, ma4
8m.1, 8m2 gm1, 8m2, 8Mj3, M4

hydraulic resistivities of the geological bodies (K; are the corresponding hydraulic
conductivities).

The transforming mechanisms described by Egs. 8.1 are linear and not
depending on time. They can be interpreted as regressions and their affecting
factors wj; (j = 1,2 and i = 1,..., 4) as coefficients of those linear regressions. To
evaluate them, we need a large enough set consisting of subsets of data: {g,, 1, gm.2,
8m3> 8ma} representing different real worlds and {gm,l,gmﬁz} representing the
corresponding effective parameters of the predictive model. M such subsets are
presented in Table 8.1. Independent variables {g,.1, 8m2> 8&m3 8&ma} can be
assigned arbitrarily, in particular to be generated as random values. Their
knowledge permits calculating ‘observations’ (Eq. 6.7). The corresponding
dependent variables {gu,1, &,,} for a given set {g,,1, &m2: &m3» gma} can be
calculated by solving System 6.10.

8.2 Examples of Evaluating Linear Transforming
Mechanisms

Case 8.2.1 Let us come back to the problem described in Sect. 6.1: one-dimen-
sional steady-state flow with constant recharge N to a fully penetrating trench at
Xo =0 m in an unconfined aquifer on a horizontal aquitard (Fig. 8.1). The
boundary conditions remain those assigned in Sect. 6.1.

As shown in Sect. 6.1, the effective resistivities for Cases 6.2.1 and 6.2.2 are
solutions of System 6.10 which in the case of the uniform weighting
(p1 = p2 = p3 = p4 = 1) takes form

Fig. 8.1 One-dimensional h H
steady-state flow to a fully-

penetrating trench in an 1
unconfined aquifer
K1 K3z Kz K4

&|&
I

=13
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81 = 0.5635(h — hg) + 0.9659 (h3 — hg) + 0.1546(h3 — hg) — 0.1159 (hj — h{)
8, = —1.8931(hj — h§) — 3.2454(h3 — hg) + 1.4005(h3 — hg) + 2.9491 (hj — hg).
(8.2)

Equation 8.2 permit evaluating effective values g, ,, and g, ,, for any subset
m of the real world hydraulic resistivities g,, 1, &m2> &m3> &ma4» if corresponding
squared thicknesses of the aquifer are known (calculated by Eq. 6.7).

M such subsets are presented in Table 8.1. Equations 8.1 can be rewritten for
convenience as one equation

8mj = Wj18m1 + Wj28m2 + Wj38m3 + Wja8ma, J=1,2 (8.3)

where index j defines the model block and g, 1, &2, &m.3> &m.a are the randomly
assigned hydraulic resistivities. Since the affecting factors wj ;, w;», w; 3, wj4 of the
linear transforming mechanisms do not depend on the real world hydraulic
resistivities, they can be interpreted as regression coefficients of the regression
represented by Eq. 8.3, and evaluated by the standard least squares technique, that
is, by minimizing sum

M
N 2.
N Z (Wj,lgm,l + Wi28m2 + W;i38m3 + Wi48ma — gm,]) J= la 2 (84)

m=1

where M is the number of sets {g,,1.4}. The least squares technique leads to two
systems (j = 1, 2) of linear equations for finding coefficients wj 1, w;2, wj3, Wj4:

M M M M M

2 .
Wil E &n1 T W2 E 8m,18m2 +W;3 E 8m,18m3 + Wj4 E 8m18m4 = E 8m,18m,
m=1 m=1 m=1 m=1

m=1

M M M M M
2 ~
Wi E 8m18m2 + Wj2 E 82 T Wi3 E 8m28m3 t+ Wja E 8m28m4 = E 8m28m,
m=1 i=1 i=1 i=1 i=1
M M M M M
E E E 2 § ~
Wil 8m,18m,3 + Wi2 8m28m,3 + Wj3 gm‘3 + Wja4 8mj38m4 = E gmﬁgmlj
m=1 i=1 i=1 i=1 i=1

M M M M M
2 ~
Wj1 E &m,18m4 + Wj2 E 8&m28m4 +Wj3 E 8&m38m4 + Wj4 E 8ma = E 8&mAa8m,-
=l i1 i=1 i=1 i=1

(8.5)

Solving Systems 8.5 yields the affecting factors w; i, w;o, wj3, Wja.
The resulting transforming mechanisms obtained with M = 50, 100, 1,000 are
exactly those obtained analytically for Cases 6.2.1 and 6.2.2 (Eq. 6.16):

2, = 0.6861g, + 0.3139g, + 0.0072g3 — 0.0072g4

8.6
2, = —0.3451g; + 0.3451g, + 0.8155g3 + 0.1845g,. (8.6)
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Case 8.2.2 Let us consider the above example only with more complex piecewise
homogeneous real world. It comprises eight geological bodies with the boundaries
at locations Xy =0, X; =12.5, X, =25, X3 =375 X,=50, X5=0625,
Xe = 75, X7 = 87.5 and Xg = 100 m. The hydraulic conductivities K; are constant
within intervals [X;_;, X;]: K, K>, K3, K4, K5, K¢, K7, Kg. The two block geological
model with the boundary between the homogeneous blocks at X, = 50. The
monitoring network located at the same four locations: X, = 25, X4 = 50,
X¢ = 75, and Xg = 100 m. The criterion of efficiency remains the same, Eq. 6.6.
Under assumption of uniform weighting of observations, it can be rewritten as

f:(hz, hg) . (8.7)

i=1

Equation 6.4 for calculation of the real world observed squared water table
elevations at the boundaries of geological bodies takes form

N
h? = ht +E(2X8 X=X )X —X;.1), i=1,...,8 (8.8)

The following equations describe ‘the observations’ at locations X; (i = 1-8)
for N = 0.0001 m/day (g; = 1/K;):
hi = hg + 0.2344g,
B} = hj +0.2344g, +0.2031g,
h% = hj +0.2344g, +0.2031g, + 0.1719g;
h3 = h% +0.2344g, +0.2031g, + 0.1719g3 + 0.1406g4
h% = hj +0.2344g, +0.2031g, + 0.1719g; + 0.1406g, + 0.1094g5
hé = h(z) +0.2344g, + 0.2031g, + 0.1719g3 + 0.1406g4 + 0.1094g5 + 0.0781gs
h3 = h% +0.2344g, +0.2031g, + 0.1719g3 + 0.1406g4 + 0.1094g5 + 0.0781g6
+ 0.0469g7
hi = h% +0.2344g, +0.2031g, + 0.1719g3 + 0.1406g4 + 0.1094g5 + 0.0781g6
+ 0.0469g7 + 0.0156gs.
(8.9)
Since the simulation model, the observation network and the criterion of
goodness of fit stay the same, finding the effective hydraulic resistivities needs only
change in enumeration of the observations in Eq. 8.2:
8, = 0.5635(h3 — hg) + 0.9659 (h — g) + 0.1546 (hg — hg) — 0.1159 (hg — hy)
8, = —1.8931(h3 — hg) — 3.2454(h; — hg) + 1.4005 (hg — hg) + 2.9491 (hg — hg).
(8.10)
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The regression equations relating the real world hydraulic resistivities and the
effective hydraulic conductivities of two model blocks differ from Eq. 8.1 by the
numbers of the independent variables g; and the regressions coefficients w; ; and
w,,; representing the affecting factors:

81 = W1,181 + w1282 + W1383 + Wiags + W1585 + Wi686 + W1,787 + Wi ggs
8y = w2181 + W2282 + W2383 + Waags + Wasgs + Wae86 + w2787 + Wasgs.
(8.11)

The standard least squares technique applied for evaluating the affecting factors
leads to two linear systems consisting of the equation including eight regression
coefficients each. Generating randomly the real worlds data g,, 1, &m.2> &m3 &m4
8&ms 8me 8m7 &ms. permits calculating the squared water table elevations
h%n,Z’ hiA, hguﬁ’ and hfmg, the effective hydraulic conductivities g, ; and finally the
affecting factors w; 1, wjo, Wj3, Wj4, Wjs, Wje W;7, W;s. For the situation corre-
sponding to Cases 6.2.1 and 6.2.2 and the ‘real world’ consisting of eight geo-
logical bodies the results are transforming mechanisms

2, =0.3676g, + 0.3185g> + 0.1727g; + 0.1413g4 + 0.0042g5
+0.0030gs — 0.0054g; — 0.0018gs

2, = —0.1849g, — 0.1602g, + 0.1899g5 + 0.1553g4 + 0.4759g5
+0.3397g¢ + 0.1383g7 + 0.0461 g5.

(8.12)

The mechanisms described by Eq. 8.12 have the properties of the transforming
mechanisms described by Egs. 5.5 and 5.6. Indeed, the affecting factors belonging
to the evaluated blocks wy 1, Wi, w13, Wi and was, Wae Wa7, W2 g SUm to one
and the affecting factors belonging to the affecting blocks wy 5, w6, w17, w; g and
Wa.1, Waa, Wa3, Wag are sum to zero. Besides, the affecting factors are additive.
Thus, if K; = K, K3 = K4, Ks = K, K7 = Kg, Eq. 8.12 convert into Eq. 8.5.

Properties 1 and 2 of the transforming mechanisms (Sect. 5.3) permit simpli-
fication of the evaluating of the affecting factors be decreasing their numbers. For
example, Regressions 8.1 can be rewritten as

wii(gr —g2) +wis(gs —8s) =8 — &

> (8.13)
wo1(g1 — &2) +w23(g3 — 84) = & — 8&a-

Applying the least squares method to the first Eq. 8.13 leads to system of two
equations for evaluating w;; (Wi, =1 — wy;) and w3 (W4 = —w;3). The
second equation yields system of two equation for evaluating w, ; (Wop = —w5 1)
and wy3 (Wpq =1 — wy3).
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8.3 Transforming Mechanisms for Effective Recharge
Rates at Borden Landfill

Let us come back to the problem described in Sect. 6.4. The mechanism converting
three recharge rates in the effective recharge of a homogeneous model simulating
the water table within the Borden site was obtained analytically there. To this end,
the available observations on the streamline starting at x = 300 m and the aquifer
base elevations are used. The effective recharge rate N has been calculated, using
additionally the water table elevation providing satisfactory reproduction of the
streamline and the arrival time. Here the transforming mechanism is evaluated by
two-level modeling. The technique applied is exactly as described in the above
section.

This time the goal is to obtain the affecting factors (w;, w,, and ws) of the
transforming mechanism

N = wiN3 + woNy 4 w3Ns (8.14)
where N is the effective recharge rate of the homogeneous model and N3, N4, N5
are the actual recharge rates (Fig. 8.2). For subset m of the independent variables
N3, N4, Ns, Relationship 8.14 takes form

Ny = wiNy3 +woNy 4 + wilNy,s. (8.15)

Equation 8.15 can be interpreted as linear regression in which the affecting
factors wy, w,, w3 can be evaluated as regression coefficients. Thus first, M sets of
recharge patterns {N3z.5} and corresponding to them M sets of the effective
recharge rates {N } should be accumulated (M must be a large enough number).
Then the redundant system of equations like Eq. 8.15 can be made up and solved
for the affecting factors wy, w,, w3 by the least squares method.

Subsets {N,, 3, Ny.4, Nys} can be generated randomly. The problem is evalu-
ating the recharge rate N,, providing effective reproducing the water table. The
effective recharge rates should be obtained based on the generated recharge rate
{Nw.3, N4, N5} and data presented in Table 8.2. Since the randomly picked

Fig. 8.2 Borden site and its MODEL
homogeneous model with e
respect to the recharge rate N
N3 OBJECT N, Ny

30 400 500 600 700 800 900
Distance ()
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Table 8.2 Data for evaluating effective recharge rate N,

# x  Hs Y u=Hs—Y O, 0,

0 300 22231 204.31 17.99 O 0O

1 400 21925 206.17 13.08 Qs + 100N, 05 + 100N,
2 500 21826 209.55 8.71 Qs + 200N, Os + 200N,
3 600 217.46 21085 6.61 Qs + 300N, Os + 300N,
4 700 21607 21133 474 Qs + 300N,,3 + 100N,,,4 Os + 400N,
5 800 21547 211.86 3.61 Qs + 300N, 3 + 200N, 4 Os + 500N,
6 900 215.67 212.79 2.88 Qs + 300N, 3 + 200N,,4 + 100N,,5 Qg + 600N,

recharge rates {N,,3, N, 4, N, 5} are known, there is no need to resort to, as if,
steady-state water table and its effective simulation (Eqgs. 6.32, 6.33). So the
effective recharge N,, can be evaluated by minimization of Criterion 6.36 which,
for working with subsets {N,, 3, Ny, 4, N, 5} and NW,, can be rewritten as

6

5= (O — Qni) (Hsi — Y:))". (8.16)

i=1
The standard least squares technique lead to equation
(u + 4u3 + 9u + 1615 + 25u% + 36Uz )N, = (u? + 415 + 9u3 + 124 + 15u2 + 18u?)
N3 + (4uj + 10u3 + 12ug)Nyys + 6UugN, 5.
(8.17)

So

Ao (u? + 413 + 9ud + 1203 + 15u2 + 18u2) Ny 3 + (413 + 10u2 + 1202) N,y s + 6UZN,y 5
W2+ 4ud 4 9u3 + 16u3 + 25u2 + 36u2 '

(8.18)

The coefficients in terms containing N,, 3.5 are made up from observations. They
are equal to those presented in Eq. 6.37, though the corresponding effective
recharges Nm are different. However, such convenience is not always available,
and it can be easier to apply the two-level modeling exactly as this has been done
in the previous section. The affecting factors wy, w,, w; are those minimizing sum

(Nm - Wle,3 - W2Nm,4 - W3Nm,5)2- (819)

i
M=

1

3
I

The standard least squares technique leads to the following system of linear
equations for evaluating the affecting factors:


http://dx.doi.org/10.1007/978-3-319-03569-7_6
http://dx.doi.org/10.1007/978-3-319-03569-7_6
http://dx.doi.org/10.1007/978-3-319-03569-7_6
http://dx.doi.org/10.1007/978-3-319-03569-7_6
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M M M M
wi Z Nos+ w2 ZNm,3Nm,4 +ws Z Nn3Nms = Z N3N
m=1 m=1 m=1 m=1

M M M M
wi ZNm,4Nm,3 +ws ZN,ZM +ws ZNmANmﬁs = ZNmANm (8.20)
m=1 m=1 m=1

m=1
M M M M
5 .
wi E NyusNm3 +wo E Ny sNima + w3 E N, s = E Ny sNy,.
m=1 m=1 m=1 m=1

Solving System 8.20 yields the affecting factors {w, wy, w3} which for M equal
10, 100 and 1,000 stay the same:

wi =0.8005, wa=0.1727, w; = 0.0269.

That is, the affecting factors are exactly those obtained in Sect. 6.4 (Eq. 6.37).

The explicit use of the properties of the transforming mechanism can simplify
evaluating the affecting factors as shown in the previous section. In particular,
since the affecting factors summing to one, one of them can be expressed through
two others. So instead of system 8.20 consisting of three equations, it is possible to
work with a system consisting of two equations.

It may seem that in the case of the linear transforming mechanisms the two-
level modeling is more complicated than their analytical deducing in Chap. 6.
However, when geological objects and the corresponding simulation model
become more complex the situation may change. Besides the two-level modeling
may work when there are no observed data yet, i.e. before starting field researches
as shown in Sect. 8.2 or with the data whose accuracy is low as with the data on the
water table in the Borden site. The procedures of the two-level modeling reveal
more information on objects. They are easier to be standardized and programmed.

8.4 Two-Level Modeling for Non-Linear Transforming
Mechanisms

The problems involving the non-linear transforming mechanisms are considerably
more complex than those involving the linear mechanisms, since the non-linear
mechanisms depend on the actual distributions of the actual properties (geological
bodies). There is no developed methodology of their evaluation at this moment.
However, some notions on how it could be done are demonstrated below on the
conceptual examples of Sect. 7.3.

Let a two body geological object be simulated by a one-block model. To
simulate effectively the hydraulic heads A(L, f) under the boundary conditions:
h(0, t) = 0 and h(2L, ) = 1, we have to use the effective hydraulic transmissivity
varying in time. As shown in Sect. 7.3 the pertinent effective hydraulic conduc-
tivities are described by Eq. 7.19 which is repeated here:


http://dx.doi.org/10.1007/978-3-319-03569-7_6
http://dx.doi.org/10.1007/978-3-319-03569-7_6
http://dx.doi.org/10.1007/978-3-319-03569-7_6
http://dx.doi.org/10.1007/978-3-319-03569-7_8
http://dx.doi.org/10.1007/978-3-319-03569-7_7
http://dx.doi.org/10.1007/978-3-319-03569-7_7
http://dx.doi.org/10.1007/978-3-319-03569-7_7
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A SL* 1 —2h;,

T =5 =, (8:21)

[S = 0.1 is the storativity, h;_; = h(L, t;_y) and h; = h(L, t;) are the observed
hydraulic heads at L = 50 m and instances f;.; and #;]. Equation 8.21 permits
evaluating the effective transmissivity Ti,u which reproduces exactly the
hydraulic head A4; based on the known hydraulic head 4;_,. They are obtained for
implicit formulation of the simulation problem and valid for the arbitrary
time increment At between observations. In the example discussed below Ar =
t; — t;_; is equal to 7 days.

Equation 8.21 assumes that both hydraulic heads A;_; and h; are known. That is,
Eq. 8.21 is a tool for calibration. As we know, the effective transmissivities
depends on time. So the goal should be extrapolating them beyond the period of
calibration. It is possible since, as follows from Eq. 8.21, the effective transmis-
sivity is a continuous function of /;_; and h;, and consequently of time, besides the
instant when one of them is equal 0.5 m in our case. For this reason, we can expect
that the effective transmissivity evaluated by Eq. 8.21 remains close to efficiency
for some time beyond the calibration period. As soon as monitoring revels that the
simulation results become unsatisfactory, the simulation model must be
recalibrated.

Case 8.4.1 The hydraulic transmissivity of the first body is greater than of the
second one. (To make the ‘observations’, the transmissivity 7 and 7, are assigned
equal to 0.9 and 0.1 m*day respectively in this case). The model has been cali-
brated on the available thirteen hydraulic heads obtained during first thirteen
weeks (91 days) of observation. The results are presented in Fig. 8.3. The cali-
bration is an obvious success. To extrapolate its results beyond the period of
calibration we need to describe the time dependence of the effective transmissivity
explicitly. It can be done in many ways. The approximation (regression) presented
in Fig. 8.3 is polynomial of the third degree

T ~—1.0833 x 107'°(t —7)°+3.7356 x 107 (t — 7)°

8.22
—2.8554 x 107*(1 — 7) + 0.0862 (8:22)

where 7 = 49 days.

During about 60 weeks (420 days) the model worked more than satisfactorily
(Fig. 8.4).

Then a systematic deviation appears between the simulation results and the
observations. If the deviations are not permissible, the model must be recalibrated
based on all available data. Let the new approximation be a polynomial of the 4th
order. The least squares method applied to the 81 weeks of ‘observations’ yields:

Tr—-3x10%1-1"-20173 x 107'°(t — 7)°

o ) (8.23)
+2.3536 x 1077 (t — 7)°—1.3809 x 107*(r — 7) + 0.0372
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Fig. 8.4 Case 8.4.1: extrapolating simulations beyond period of calibration to the 81th week,
applying the transforming mechanisms described by Eq. 8.22

where 7 = 287 days. The results of recalibration and extrapolation the transforming
mechanisms described by Eq. 8.23 on the entire prediction period, 1,000 days, are
presented in Figs. 8.5 and 8.6. They reveal that there is no need in additional
model recalibration.

By the way, location x = 50 m, convenient for illustration, is not the best for
monitoring in this case. The hydraulic heads h(L, f) is approaching the value 0.1
asymptotically. The closer the observed hydraulic heads to this value the less
informative they become. To the right from that location, say, at x = 75 m, the
process of development of the hydraulic heads is more dynamic and informative.

Case 8.4.2 The hydraulic transmissivity of the first body is less than the one of the
second body. To make the “observations” T, = 0.1 and T, = 0.9 m*day are
assigned in this case. The case differs from the previous one. Developing in time,
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Fig. 8.5 Case 8.4.1: recalibration on data related to the first 81 weeks. The effective hydraulic
transmissivity given by Eq. 8.23
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Fig. 8.6 Case 8.4.1: extrapolating simulations beyond period of calibration (81 weeks) applying
the transforming mechanisms described by Eq. 8.23

the hydraulic heads exceed the critical value A(L, ) = 0.5 m. According to
Eq. 8.21, the effective hydraulic transmissivity as a function of time is discon-
tinuous at that instant. Thus, two different transforming mechanisms have to be
applied for simulation: one for period when A(L, t) is less than 0.5 m less and the
other for the period when A(L, f) exceeds 0.5 m.

The model has been calibrated on the available thirteen hydraulic heads
obtained during first 13 weeks of observations. The results of calibration are
presented in Fig. 8.7. They seem to be quite satisfactory. To extrapolate those
results, on the hydraulic heads development beyond the period of calibration, we
need to describe the time dependence of the effective transmissivity mathemati-
cally. The regression which does the job is presented by equation
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Fig. 8.7 Case 8.4.2: calibration on data related to the first 13 weeks

T ~1.4589 x 107(r — 1)* 4+2.2495 x 1077 (¢ — 1)’

. B (8.24)
+3.2093 x 107(r — 7)” +4.8893 x 1073(r — 7) + 1.0714

where 7 = 49 days. It works excellently on the first thirteen observations. Since it is
continuous, we can try to extrapolate it for some further time. As shown in
Fig. 8.8, it works satisfactory up to 28 weeks (196 days).

Since to this time the hydraulic head is nearing the critical number 0.5 m, it
may have no sense to extrapolate the obtained transforming mechanism further. As
soon as the hydraulic head exceeds the critical value, new data should be collected
for new calibration. Let the collection start at the 30th week and last 13 weeks,
that is, during period from 210 to 301 days. The results of the model calibration
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Fig. 8.8 Case 8.4.2: extrapolating simulations beyond period of calibration to the 28th week,
applying the transforming mechanisms described by Eq. 8.24
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Fig. 8.9 Case 8.4.2: recalibration on data related to 30-43 weeks

are presented in Fig. 8.9 and seem to be satisfactory. The transforming mechanism
in this case is presented by regression

| —

—~ —4.0923 x 1078(t —7)°=1.9219 x 1075(t — 7)* — 9.8878 x 107> (t — 7)
—0.4697

N]

(8.25)

where = 259days. This transforming mechanism was extrapolated on all
remaining period of simulation for 30-143 weeks (about 1,000 days). As shown in
Fig. 8.10, there is no need for the model recalibration.

Contrary to Case 8.4.1, location L = 50 m is not a bad choice for monitoring
this object since the range of the hydraulic heads is larger in this case. The point

o
w0

o
=]

o
2]

+  observed hydraulc heads

hydraulic heads (m)
o

; ; , simulated hydraulic heads
200 300 400 500 600 700 800 900 1000 1100
time (days)

o
m

Fig. 8.10 Case 8.4.2 extrapolating simulations beyond period of calibration (43 weeks) applying
the transforming mechanisms described by Eq. 8.25
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Fig. 8.11 Case 8.4.2: reproducing development hydraulic heads by Eq. 8.26 without involving
effective hydraulic transmissivities

here is that assuming different values 7 and T, or rather different ratios 7, /T, the
choice for location or locations for monitoring wells can be done priory starting
field explorations.

8.5 Conclusion

This chapter illustrates the general concept and demonstrates a principal possibility
to evaluate the mechanisms transforming real properties of geological objects into
the parameters which are effective in simulation of predictive or evaluating
problems according to those problems’ formulations. However, evaluating the
non-linear transforming may require overcoming considerable computational
difficulties.

Indeed, evaluation of the linear transforming mechanisms is straightforward. If
a linear mechanism depends on time, the procedure described in Sects. 8.1 and 8.2
must be repeated for the instants of interest. However, it can be done before of the
beginning of field exploration still. Evaluation of the non-linear mechanisms
requires some knowledge on the object’s reaction on the planning impact, that is,
monitoring of the reaction, and recalibration model from time to time.

By the way, it is possible to predict the development of the hydraulic heads
without finding effective parameters, transforming mechanisms, and physically
based simulation models at all. The available observations can be used for eval-
uating the regression relationship describing those observations in time which can
be extrapolated in future. When it becomes unsatisfactory, the additional data
obtained by monitoring are applied to obtain new regression relationship, and so
on. In particular, in Case 8.4.2, the regression (Fig. 8.11)

ha—1.66x 1072 +4.9846 x 10°°F

8.26
—5.8572 x 107%2 + 0.0034¢ (8.26)

works satisfactory.
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Chapter 9
Inverse Problems and Transforming
Mechanisms

As mentioned in Chap. 4, the term ‘inverse problem’ is not a synonym of the terms
‘model identification’, ‘model calibration’, ‘historical matching’, ‘site specific
validation’. Those terms relate to evaluating the effective characteristics for a
given simulation model which is usually an optimization problem. The goal of the
inverse problems is to estimate the actual properties of geological objects using
available observations on natural phenomena or on responses on man made
impacts. Since the notions on geological objects are not more than models, it
seems to be more accurate to define inverse problems as applications of simpler
models for evaluating properties of more complex ones. The simpler models
applied for solving inverse problems are called the interpretation models.

The physical and geological meaning of results of model identification does not
matter. The effective parameters must provide the best results for the coupled
simulation problem, and they depend on formulation of the problem. In contrast,
the result of solving an inverse problem must not depend on its formulations, and
its solution is not acceptable, if it is deprived of the physical meaning.

As demonstrated in Sect. 6.3, the linear transforming mechanisms obtained in
Sect. 6.2 can be applied to solving inverse problems in a straightforward way.
Indeed, if affecting factors w;; (j = 1-2 indicates model blocks, i = 1-4 geolog-
ical bodies) and the pertinent effective parameter g; are known, a transforming
mechanism

& = wj181 +Wj282 +Wj383 + w484 (9.1)

can be considered as an equation with respect to the unknown actual property values
g1.4- So it suffices to make up the sufficient number of the transforming mechanisms
with known affecting factors and effective parameters values, to consider them as a
system of equations, closed or redundant, and to solve it for g,.4. Exactly this has
been done in Sect. 6.3, (System 6.24). However development of many different
formulations of a model identification problem, like those in Sect. 6.2, is a cum-
bersome enterprise. The approach described in this chapter standardizes this pro-
cedure. The manifold of the mechanisms in this procedure is being created by
automatic assigning different, random, sets of weights to the available observations.
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Inverse problems are incorrect inherently. However, as shown in Sect. 4.1, this
does not mean that they are incorrect always. Mathematical correctness or
incorrectness of an inverse problem depends on the actual structure and properties
of the geological object, the choice of the model representing the object and the
diversity and accuracy of the available observations. Any practicing geophysicist
has the experience of success and failure, interpreting geophysical data. Under-
standing of the geology and the observed process are the necessary condition of the
success.

9.1 Linear Transforming Mechanisms: Illustrative
Examples

Let us rewrite Criterion 6.6, introducing arbitrary subsets of the weights
{p}n = {Pm1 Pm2> Pm3 Pma} to the errors of our simulation of the squared
thickness of the aquifer in different observation locations:

4 2

S = me,i (i’;, — h,z)

i=1

9.2)

Then System 6.10 converts into

(0.43752 pyt +0.75% (P2 + P + Ppa) ) &t + 0.75(0.1875 ps + 0.25pps) &2
= 0.4375py1 (b} — 15) + 0.75 (pma (B3 — 15) + P (B3 — 1g) + Pma (b — 1))
0.75 (0.1875 pi3 + 0.25 pys) 8p1 + (0.1875°p3 +0.25°p4) 8
= 0.1875py3 (B3 — hg) + 0.25 pa (G — 15).

(9.3)

The matrix of System 9.3 is

o = 043752 pu1 +0.752 (pu2 + pm3 + pma)  0.75(0.1875py3 + 025 pa)
™1 0.75 (0.1875 pys + 0.25 pis) 0.1875% pu3 + 0.252 s :

(9.4a)
Its right-hand term vector is
[ 0.4375 pui (= h5) +0.75(pm2 (W — 1) + P (W3 — hg) + pma(hi — h5))
| 0.1875 pus (B2 — B2) +0.25 pa (K2 — 12) '
(9.4b)

(Compare to Expressions 6.11). Solving System 9.3 yields two values of the
effective hydraulic resistivities: 25,1 and gz,.
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To find the affecting factors of the corresponding transforming mechanisms, Eq.
6.15 can be applied to each set of the weights:

!
Wom—1Cm22 — W2mcm,l.2}

{MmelJ Wom—12 Wam—13 w72m71,4}:: {
Cm,1,1Cm22 — Cm,12Cm2,1

, (95)

Wom,Cm1,1 — W2m1.1Cm,2,1}

{Wzm,l Wom2  Wamj3 W2m.4} = {
Cm,1,1Cm22 — Cm,12Cm,2,1

where vectors W,,,_; and W,,, are defined by Expressions 6.14.

0.4375 (0,4375 put + 0.75 (P2 + P + Pma))
0.3125 % 0.75 (Pm2 + P + Pma)
0.1875 % 0.75 (P + Pma)

0.75 x 0.0625 p, 4
0,4375 (0.1875 pu3 + 0.25 pp4)
0.3125 (0.1875 ppu3 + 0.25 pins)
0.1875 (0.1875 3 + 0.25 pins)
0.25 x 0.0625 p,,.4

Wom—1 =

W, =

Thus in the case of two block interpretation model and M sets of weights {p},,,
we can accumulate 2M effective values and sets of the affecting factors (Table 9.1)
permitting making up an excessive system for evaluating the four actual hydraulic
resistivities g1, g», g3, ga-

To solve the above excessive system, the least squares method can be applied.
That is, the unknown values g, g, g3, g4 are considered as the regression coef-
ficients minimizing sum

2M
~ 2
Sm= Y (81Wm1 + &2Wm2 + &3Wm3 + aWma — &m) - (9.7)

m=1

Table 9.1 Set consisting of M subsets of weights for evaluating the real-life hydraulic resis-
tivities as regression coefficients

Eq. No. Weights Effective parameters Affecting factors

1 {rh 81,1 (Wi, Wi, Wiiss Wiia)

2 812 {Wl,z,h Wi22, W123, W1,2,4}

3 {r} 823 (w231, Wa32, W233, Wa3a)

4 824 {(Waa,1, Wa42, Wa43, Waaa}

2m—1 {P}m 8m,2m—1 Wi 2m—1.1> Win2m—12> Win,2m—1.3s Wm,2m—14}
2m gm,Zm {Wm,Zm,h Wm,2m,2’ Wm,Zm,3a Wm,2m,4}

2M—1 {PIm EM2M—1 {WM,ZM—I,ls Wpmom—1,2 WMm2M—1.35 WM,2M—1,4}

2M M 2M {War.201,1, Wat201,2 Wat, 20,3 Waa2a1.4)
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Applying the standard least squares technique to Sum 9.7 leads to the system of
four equations:

2M 2M 2M 2M 2M
2 ~
81 E W, +8& E Wi 1Wm2 + &3 E Wi 1Wm3 + &4 E Wi 1 Wing = E Win,18m,1
m=1 m=1 m=1 m=1 m=1
2M 2M 2M 2M 2M
2 o ~
81 Wm2Wm,1 + 8 Wm,z + 83 Wi 2Wm,3 + 84 Wm2Wm4 = Wm,28m,2
m=1 m=1 m=1 m=1 m=1

2M 2M 2M 2M 2M
2 ~
81 E Win3Wm,1 + 8 § Wi 3Wm2 + 83 § Wm,3 + 84 § Wm3Wm4 = E Wy 38m,3
m=1 m=1 m=1 m=1

m=1
oM oM M oM oM
2 _ ~
81 WimaWm1 + &2 WinaWm2 + &3 WinaWm3 + 84 W4 = EmAWma.
m=1 m=1 m=1 m=1 m=1
(9.8)

Solving the above system yields value gj.4.

Case 9.1.1 Let the available observations on the squared water table elevations be
those obtained and used in Cases 6.2.2 and 6.2.1 (Tables 9.2 and 9.3). The squared
elevations in Table 9.2 are obtained with the following distribution of hydraulic
conductivities: K; = 0.1, K, = 0.2, K3 = 0.9 and K, = 1 m/day in intervals (0,
25], (25, 501, (50, 75] and (75, 100] m correspondingly.

Applying the above procedure to the data presented in Table 9.2 with use of a
hundred transforming mechanisms (M = 50) yields

K; =0.1000, K, = 0.2000, K3 = 0.9001, K4 = 1.0000 m/day.

That is, the above procedure solved the inverse problem accurately.

Since the inverse problem is prone to incorrectness, it is interesting to watch
how the errors in the initial data affect the results. Thus, rounding the squared
water table elevations in Table 9.2 to three digits to the right from the decimal
point results in solution:

K; =0.1000, K, = 0.1999, K3 = 0.9014, K4 = 1.0081 m/day.
Rounding the same data to two decimal digits yields:
K =0.0999, K, = 0.2003, K3 = 0.8929, K4 = 1.0417 m/day.

Rounding the same data to one decimal digit brings:

Table 9.2 “Observed” data in Case 6.2.2

i 1 2 3 4

x (m) 25 50 75 100
W (m?) 4.3850 5.9475 6.1558 6.2183




9.1 Linear Transforming Mechanisms: Illustrative Examples 125

K =0.1,K, = 0.2, K3 = 0.6, Ky = 1.49 x 10> m/day.

The last result, at least in respect to K, is unacceptably corrupt. (The error in
value K3, about 30 %, could be considered as acceptable by many practitioners).

The last result demonstrates incorrectness, instability, of this inverse problem.
The reason is that the slope of the water table approaches the water divide at
x = 100 m and becomes about horizontal: the difference between water table
elevations at x3 = 75 m and x, = 100 m is less than 2 cm. The situation is close
to that presented in Fig. 4.1. It is difficult to expect that under such circumstance
there exists a mathematical manipulation able to convert the problem in a correct
one. If it is impossible to improve the accuracy of the initial data, we have to
exclude the data related to location x; from consideration and limit ourselves
finding the hydraulic conductivities K;, K, and Kj3. For evaluating the hydraulic
conductivity of the fourth body, the aquitard must be perturbed by a pumping test
or in some other way.

The data on Case 6.2.2 have been selected because reproducing the thicknesses
aquifer in this case is much worse than in Case 6.2.1. Nevertheless it is interesting
to apply to the data of Case 6.2.1 the above procedure. The corresponding values
of the conductivity in Case 6.2.2 are K| = 1, K, = 0.9, K3 = 0.2, K, = 0.1 m/
day. The squared thicknesses of the aquifer for this case are presented in Table 9.3.

Application of the above described procedure to the data in Table 9.2 yields the
following results

K; = 1.0000, K, = 0.9001, K3 = 0.2000, K4 = 0.1000 m/day.

Rounding the squared water table elevations in Table 9.3 to three decimal digits
to the right from the decimal point results in solution:

K =0.9989, K, = 0.9006, K3 = 0.2001, K4 = 0.1000 m/day.
Rounding the same data to two decimal digits yields:

K; =0.9943) K, = 09191, K3 = 0.1995, K4 = 0.0992 m/day.
Rounding the same data to one decimal digit brings:

K, =1.1218, K, = 0.7812, K3 = 0.2083, K4 = 0.0893 m/day.

These results seem to be more stable and accurate due, probably, the absence of
the “observations” which are not undistinguishable practically.

Table 9.3 ‘Observed’ data in Case 6.2.1

i 1 2 3 4

x (m) 25 50 75 100
¥ m? 0.4475 0.7947 1.7322 2.3572
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Case 9.1.2 Let the interpretational model be the simplest one, i.e., homogeneous.
For this model the relationship between the effective hydraulic resistivity and the
effective squared water table can be presented as following

2, —hy = 043753,
by — g =075,

) R (9.9)
hfw — h} =0.93753,
him - hg = &m-
Criterion 9.2 takes form
N 2 “ 2
S = Pt (04375 8 — (BT — 13))” + pim2(0.75 8, — (B3 — h3)) 5.10)

N 2 N 2
+ w3 (0.9375 g = (3 = g)) "+ Pma(&m — (b — h5))
where {p},, is the mth set of weights. Applying the standard least square technique
yields

_ 04375 py (i — hg) +0.75 pma (3 — hg) +0.9375 pn3 (W3 — h5) + pma (3 — ho)
0.43752 pyy 1 + 0.752 pu + 0.93752 pyus + Pina

&m

(9.11)

The actual squared water table elevations are described by the expressions

h? — h} = 0.4375g,

h3 — h} = 0.4375g; + 0.3125g>

h3 — hy = 0.4375g; +0.3125g, + 0.1875g;

h — b} = 0.4375g; + 0.3125g, + 0.1875g3 + 0.0625g,.

(9.12)

Substituting Expressions 9.12 in Eq. 9.11 and combining the terms containing
the same real world hydraulic resistivities yield the following affecting factors

Wit = 0.4375(0.4375 p oy +0.75p s + 0.9375 ps + Pis) /Cm
W2 = 0.3125(0.75 pp + 0.9375 pus + pma) [m

9.13
W3 = 0.1875 (O.9375pm73 + pm74)/cm ( )
W4 = 0.0625 pm,4/cm
where
em = 043752 puy +0.752 prua +0.9375% pus + pia- (9.14)

Thus, we obtain Regression 9.1

81Wm,1 + 82Wm2 + &3Wm3 + 8aWma = &m (9.15)
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and find the pertinent hydraulic resistivities as coefficients of the above regression
in which affecting w,,; factors play part of the independent variables and g, is
calculated based on the observations.

The homogeneous model yields results which are exactly the same as in Case
9.1.1, though the model and the inverse problem solving are considerably simpler.

Case 9.1.3 Cases 9.1.1-9.1.2 demonstrated that the transforming mechanisms can
be successfully applied for inverse problem solving in some situations. But it is not
always so. Let us assume now that in the inverse problem considered above the
geological object consists of eight geological bodies with the boundaries at
locations Xy = 0, X; = 12.5, X, = 25, X3 = 37.5, X4, = 50, X5 = 62.5, X¢ = 75,
X7 = 87.5 and Xg = 100 m with the constant hydraulic conductivities within
intervals [X;_;, Xj]: Ky, K, K3, Ku, K5, K¢, K7 and Kg (hydraulic resistivities
g1 = UKy, g =1/K5, g3 = /K3, g4 = 1/K4, g5 = 1/Ks, g6 = 1/K¢, g7 = 1/K7
and gg = 1/Kg). The monitoring network and the observed squared water table
elevations are those presented in Table 9.2. The recharge rate also remains the
same, N = 0.0001 m/day. The task is to find the hydraulic conductivities K;, K>,
K5, K4, Ks, K, K7, and Kg based on the available water table elevations using a
homogeneous interpretation model.

The approach to solving this inverse problem remains the same as in the pre-
vious cases. Namely, the unknown hydraulic resistivities g to gg are coefficients of
the linear regression

81Wm1 + 82Wm2 + 83Wm3 + aWma + &5Wims + 86Wime + 87Wm7 + &8Wimg = &m
(9.16)
where w,, ; (i = 1-8) are the pertinent affecting factors corresponding to the set of
weights {p},, = {Pm.1, Pm2 Pm3 Pma} and playing independent variables, g, is
the known pertinent effective value of the hydraulic resistivity, ‘the observation’.
Thus the goal is to make up large number of sets of the affecting factors
Wha, = (W1, Wi2s..., Wi s} and the pertinent effective parameters g,,.
The effective resistivity g, corresponding to the set of weights {p},, = {pm 1,
Dm.2> Pm.3» Pma4} can be calculated by Eq. 9.9. In the case of the eight-body real
world, Eq. 9.9 become

h? — hy = 0.2344g; +0.2031g,
h — W = 0.2344g, +0.2031g, + 0.1791g3 + 0.1406g4
B — hj = 0.2344g, +0.2031g, + 0.1791g; + 0.1406g, + 0.1094g5 + 0.0781g6
h; — hy = 0.2344g; +0.2031g> + 0.1791g;3 + 0.1406g, + 0.1094g5 + 0.0781g6
+0.0469g; + 0.01563gs.
(9.17)

Substituting Expressions 9.17 in Eq. 9.11 and calculating multipliers in terms
with different g,.g yield the following affecting factors
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0.2344(0.4375p,,1 + 0.75pm2 + 0.9375p,3 + Pms) 0.203 1w,

Wm,1 = Cm v Wm2 T 0034
0.1719(0.75p2 4 0.9375pu 3 + pma) ~0.1406w,,3

Wm3 = Cm ' Wmd =0 1719
0.1094(0.9375p,3 + Pms) 0.0781 w4

YWms = Cm ; Yme = T0.1004
0.0469p,,4 ~ 0.01563p,,4

Wml =~ Wms = T0.0469

(9.18)

where the denominator c,, is defined by Eq. 9.14.

Now we can apply standard least squares technique for evaluating the unknown
hydraulic resistivities g;.g, the regression coefficients of Regression 9.16. Based on
the data presented in Table 9.2 and M = 100 corresponding to 100 sets of inde-
pendent variables {w},, and the known values g,, we obtain

K =[-0.0321,0.0262, —0.0596,0.0435,0.0848, —0.2215, —0.0021,0.0007] m/day
instead of the factual hydraulic conductivities:
K =10.1,0.1,0.2,0.2,0.9,0.9, 1, 1] m/day.

Thus, the inverse problem formulation in Case 9.1.3 is incorrect. The mathe-
matical cause of the incorrectness is bad conditioning of the system for finding the
hydraulic resistivities g;.g. It happened because the affecting factors are mutually
dependant and not enough diverse. (This is not the case for evaluating the affecting
factors per se by the two-level modeling. Indeed, we are free to select any values
of the real world parameters and to make them as diverse as we want). However,
the main reason is mismatch of the complexity of the object and the data for
solving the inverse problem. What may provide comfort is the possibility to
establish correctness or incorrectness of formulation of an inverse problem before
starting field explorations by the-two-level modeling and to look for the appro-
priate changing of the methodology of the investigations.

9.2 Borden Landfill: Evaluating Actual Recharge Rates

Let the simulation model in Sect. 4.4 represent the real geological object. The goal
is to evaluate the actual recharge rates pertaining to intervals (300, 600], (600, 800]
and (800, 900] m assigned by Frind and Hokkanen (1987). The data for solving the
inverse problems are presented in Table 9.4 (cf. Tables 6.11 and 6.12). They
comprise the available observations on the water table and the streamline starting
at x = 300 m and the expressions for calculating the total flux at the points of the
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Table 9.4 Data for solving inverse problems for the Borden landfill

# x H V=H-Y Y H u =He—Y Q

0 300 22231 17.99 20431 22231 17.99 0,

1 400 22223 16.06 206.17 219.25 13.08 0, + 100N,

2 500 222.11 12.56 209.55 21826 8.71 0, + 200N,

3 600 221.95 11.09 210.85 21746 6.61 0, + 300N,

4 700 221.72 10.39 21133 21607 474 0, + 300N; + 100N,

5 800 22142 956 211.86 21547 3.61 0, + 300N; + 200N,

6 900 221.04 824 212.79 21567 2.88 0, + 300N; + 200N, + 100Ns

observations. (The recharge rates in interval [0, 300] m and the total flux
Os = 0(300) = 0.1253 mz/day are assumed known.)

Case 9.2.1 Let the interpretation model be a homogeneous with respect to
recharge pattern for x > 300 m (Fig. 9.1). The approach to solving this inverse
problem is about the same as in the previous section. Namely, the goal is to make
up a manifold of transforming mechanisms by applying different subsets of
weights to the observed data, u;.¢. As soon as the manifold is obtained, the cor-
responding transforming mechanisms are considered as linear regressions with the
unknown regression coefficients N3.s. The effective

N3Wm,1 + N4Wm,2 + NSWm,S = Nm (919)

recharge rates Ny, corresponding to the random set of weights {p,,.¢}, can be
evaluated based on the available observations. With all necessary data accumu-
lated, the unknown recharge rates N;.5 can be obtained by standard least squares
technique as solution of the following system

M M M M
5 .
N3 E Wm,l + Ny E Win,1Wm2 + N5 E Wi |1 W3 = E Win, 1N,
- - - oy

M
N3 Zwm 2Win,1 +N42Wm2 -+ Ns Zwmzwmz = Zwm,ZNm (9.20)

M
N%Zwm3wm1 +N4ZWm%Wm2 +Ns Zwmq = Zwm%Nm-

Fig. 9.1 Case 9.2.1: INTERPRETATION MODEL
homogeneous interpretational &

model for evaluating recharge
rates N3, Ny and N5

N; OBIECT N, Ny

300 400 500 600 700 800 500
Distance (m)
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In Sect. 6.4, the transforming mechanism has been obtained analytically for
uniform weighting. The same can be done for non-uniform weighting. Let us
assume that recharges N3, N, and Ns are known. The effective recharge rates
corresponding to weighting {p,.1.¢} and the above recharge pattern can be
obtained straightforwardly, minimizing criterion

6
Sm = me,i(ém,i - Qi)zui2 (921)
i=1

where Q; and Qm’,- are the actual and effective total fluxes at the observation
points, presented in Table 9.5. The standard least squares procedure requires
solving for equation

6 R
R dQp i
2 m,i
m,ill; mi — i = =0. 9.22
; Pty (Qni = Q1) 0 5:22)

Substituting in Eq. 9.22 the expressions for Q; and QmJ from Table 9.5 and
solving it for Ny yield Eq. 9.19 in which

Wm,1 = bm,l/Cm7 W2 = bm,2/cm7 W3 = bm,S/Cm (923)

and

Cm = Pm,lM% + 4Pm,2”§ + 9pm,3u§ + 16pm4u421 + 25Pm,5“§ + 36pm,6ué

Bt = Pty + 4pmatts + 9 ppsus + 12 pyaus + 15 pysuz + 18 pyguig
) ) ) (9.24)
by = 4ppauy + 10y sus + 12 py, eltg

2
bm73 = 6pm76u6~

(It is easy to check that, as expected, the affecting factors in Mechanisms 9.23 sum
to one).

Thus, the affecting factors comprising coefficients of System 9.20 are obtained.
To complete creating System 9.20, it is necessary to obtain the right-hand terms

including N,,, the actual effective recharge rate corresponding to each set of
weights {p,, 1.6}- N,, can be found by minimization of criterion

Table 9.5 Case 9.2.1: expressions for calculating total fluxes Q; and Qm,

# x 0 On

0 300 Qs Os

1 400 Qs + 100N; Qs + 100N,
2 500 Qs + 200N; Qs + 200N,
3 600 Qs + 300N; Qs + 300N,
4 700 Qs + 300N; + 100N, Qs + 400N,
5 800 Qs + 300N5 + 200N, Qs + 500N,
6 900 Qs + 300N3 + 200N, -+ 100N5 Qs + 600N,
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6

Sm = me,i(Qm,iMi — Osvi) ’ (9.25)

i=1
(cf. criterion 6.39) leading to the equation

IOO(pm 1u1 + 4pm2u2 + 9pm;u3 + 16 py. 4u4 + 25p,,,5u5 + P, 6u6 N
B Pmat (Vi — up) + 2 ppata(va — uz) + 3 iz (vs — u3) (9.26)
- S( A piatts(va — ug) + Spmsus(vs — us) 4 6 ppsite(ve — tts) )
Substituting the data from Tables 9.4 and 9.5 in Eq. 9.26 yields

N = &ZEZI pm,iiui(vi — Mi)
o100 Zle Pmiitu?

Now System 9.20 can be made up and solved. The results of several realizations
of the above procedure are presented in Table 9.6. They seem consistent. The
results obtained for M = 50 are presented in Fig. 9.2. They are practically satis-
fying the travel time to x equal 900 and 950 m is about 38.9 and 40 years. The
magnitude of the maximal error in reproducing the stream line is at x = 500 m. It
is less than 5 cm which is better than that obtained in process of the model
identification (Sect. 4.4). However for x > 800 m the error grows considerably,
meaning that the recharge rate Ns needs correction. Besides, the condition numbers
of Systems 9.20 for different M are large.

Fortunately the interpretation model permits manual correcting. Indeed, the
model is such that the recharge rate N5 for x > 800 m does not affect the previous
observations. Thus the recharge pattern

. (Qs = 0.1253 m?/day). (9.27)

N; =10.29, Ny =22.75 and Ns = 8cm/year

makes magnitude of the error at x =900 m close to 2 cm. (Compare to
N3 = 10.2, Ny, = 23 and N5 = 8.36 cm/year, Table 4.4, The travel time to x equal
900 and 950 m are about 39 and 40.2 years).

Case 9.2.2 Let us change the interpretation model. Now it comprises two blocks:
interval (300, 600] m constitutes the first homogeneous block with the effective

Table 9.6 Some results of solving inverse problem in Case 9.2.1 (M is the number of
simulations)

M Recharge rates (cm/year) Condition number System 9.20
N3 N, Ns
10 10.38 22.53 16.70 6,017
50 10.29 2275 18.33 4,261
250 10.31 22.68 18.89 3,992
1,250 10.30 22.68 18.59 4,247

6,250 10.30 22.66 18.66 3,897
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recharge rate Nl; interval (600, 900] m constitutes the second one with the
recharge rate N, (Fig. 9.3).

In general the procedure of solving the inverse problem in this case does not
differ from the previous one. The goal is to create and solve the system of
equations like System 9.20, The available information remains the same
(Table 9.4). Since two effective recharge rates exist: Nm7 1 for the first model block
and ng for two different mechanism should be involved.

]f]mv1 = wm’171N3 + Wm’172N4 + Wm,1,3N5 (928)
Nz = W2 1N3 + Win22Ns + Wi 2 3N5.

The necessity to work with two transforming mechanisms could complicate the
problems in general, but not in this case. According to Properties 1 and 2 of the
transforming mechanisms, Sect. 5.3, the affecting factors w,,1; = 1, w1, = —
W13 W21 =0, w23 =1 — w,2, and Mechanisms 9.28 can be rewritten as

N = N3 + Wy 12Ns — Wi 12N5

A (9.29)
Nip = Wim22Ns + (1 — wip2)Ns.
Fig. 9.3 Case 9.2.2: two- INTERPRETATION MODEL
block interpretation model for f,‘;] i i
finding recharge rates N, Ny
and Ns
Ny OBIECT N, Ny

300 400 500 600 700 800 900
Distance (m)
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However we will consider all affecting factors as unknown and will use their
properties to control the calculations.

Mechanisms 9.28 can be evaluated analytically as it has been done in Case
9.2.1, though it may be a cumbersome task. We come back to the standardized
procedure described in Sects. 8.1-8.3. Let us assign R sets of the recharge rates
{N,3, N,4, N,s} at random. Then for a given set of weights {p,, 1.c} and each sets
{N,3:5}, the effective recharge rates Nm“ and N,n_ryz are evaluated by minimiza-
tion of criterion

6
- 2
= me,i’/l,g (Qm,r,i - Qr,i) (930)
i=1
(cf. criterion 9.26) where u; is the observed thickness of the aquifer’s part below
the streamline S. Expressions for calculating the effective total fluxes Qm%] are

presented in Table 9.7. The standard least squares method leads to system of two
equations

6 ) dQ )
m,i 2 myri — Xri AmJ’l:O, :172 9.31
;P it} (O, Q,)de” j (9.31)

which can be presented explicitly as

3 6 6
(Z izpm,iul‘z + 9 me.iul‘z> Nm,r,l + 3 <Z (l - 3)pm,iul‘2> Nm,r,Z
i=4

=1 i—4

2 6 6
= (Z izpm,iui2 + 9 mezu,2> Nr,3 + 3 <Z (l - 3)pm,i“,2 - pm6u12> Nr,4
i=1 i=3 i

i=4

+ 3pm 6“2Nr5

6 6 6
<Z l_3pmtu> m)l+ (Z 1_3) szu> mr23<Z(i_3)pm,iui2>Nr,3

i i i=4

.:>

+ pm4u4 + 4pm 5“5 + 6pm 6U ) ra + 3pm 6“6Nr5

(9.32)
Table 9.7 Case 9.2.2: expressions for calculating total fluxes Q,; and Qmﬁ,.ﬁl-
# X 0, Omr
0 300 Os Oy
1 400 Qs + 100N, 5 Qs + 100N, .,
2 500 Os + 200N, 3 Qs + 200N,
3 600 QOs + 300N, 3 Qs + 300N,
4 700 Qs + 300N, 3 + 100N, 4 Qs + 300N,,,,.1 + 100N,,,,
5 800 QOs + 300N, 3 + 200N, 4 Qs + 300Nm,r,1 +200N,,,5
6 900 Os + 300N, 3 + 200N,.4 + 100N, 4 Qs + 300N,u,..1 + 300N,
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Solving System 9.32 yields M coupled values of the effective recharge rates
Nyuyi and N, 2. Substituted values N, and N,,, ., in Eq. 9.28 which for a fixed
m and different r can be rewritten as

Wi 1 ANr3 + Wi 12N 4 + Wi 13N 5 = Ny rt (9.33)
W2 1IN 3 +Wi2oNpa + Wi 3Ny s = Ny

we obtain the excessive system of linear equations for evaluating the unknown
affecting factors w,, ;1.3 (j = 1, 2) which could be solved by the least squares
method.

The next step is evaluating actual effective values NmA’l and Nmﬂz corresponding
to different sets of weights applying the data from Tables 9.4 and 9.7 by mini-
mization of Criterion 9.25

6 6
<pm,lu% + 4Pm‘2M% + 9 me‘iuiz) Nm,l + 3 mej(i - 3)”,'2Nm,2
i=3 i=4

0 6
= Wi) Pty (vi — u1) + 2ppotn(va — u) + 3 me,iui(vi —u;)

i=3

6 6 6
3 (Z (i— 3)pm7,-ui2> N+ (Z (i— 3)2p,,,7,-u[.2) N, = % (Z (i = 3)pmiui(vi — u,))

i=4 i=4 i=4

(9.34)

Its solution is 2M values of effective recharge rates Nm,l and Nm,z.

Now the system of equations similar to System 9.20 can be made up and solved.
Several results of realization of the above procedure are presented in Table 9.8.
They are close to those obtained in Case 9.2.1. Note that condition numbers of
System 9.20 in Case 9.2.2 is much better than in Case 9.2.1, meaning that the
inverse problem in Case 9.2.2 is practically stable.

Case 9.2.3 Let the interpretation model be an exact copy of the real object. This
means that now for x > 300 m it comprises three blocks in intervals (300, 600],
(600, 800], x > 800 m. In this case the above approach, that is, creating and
solving systems of equations like System 9.19 does not work. Indeed, the three

Table 9.8 Some results of solving inverse problem in Case 9.2.2 (M is the number of
simulations)

M Recharge rates (cm/year) Condition number
N; Ny Ns
10 10.34 22.48 19.69 343
50 10.34 22.44 18.93 132
250 10.31 22.59 18.85 151
1,250 10.32 22.64 18.98 139

6,250 10.31 22.60 18.93 134
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corresponding transforming mechanisms do not depend on weighting the obser-
vations and affecting factors stay the same: w;; =w, =ws;3 =1 and
Wip = Wiz = Wa 1 = Wp3 = w3 = w3 = 0 for any weighting. This converts
the current inverse problem into an optimization one: three unknown recharge
rates N3, Ny and Ns can be evaluated as the effective ones by straightforward
application of the least squares method, that is, by minimization of criterion

6
5= (Qui— Osvi)’ (9.35)

i=1

where the total flux Q; is defined by column Q,; in Table 9.6 in which index ‘7’ is
ignored. The standard least squares technique leads to the following system of
linear equations:

6
o
> (Qui— Qvu =0, j=1,2,3 (9.36)

i=1 J

which can be presented explicitly as

3 6
( Pur +9 Z u?>N3 +3 (uf1 + 2u? + 2ué)N4 + 3uZNs
i=1 i=4

6
= IQT; <u1(v1 —u1) +2ur(v2 — up) + 3 Z ui(vi — u,))

= (9.37)

3(u3 + 2u§ + 2ué)N3 + (uﬁ + 4u§ + 4u§)N4 + 2uéN5

= ﬁ(lfm(\u — u4) + 2u5(V5 — Ms) + 2u6(v6 — ug))

3u6N3 + 2u§N4 + uéNs ue(ve — Ug).

Os
100"

The results of solving System 9.37 are presented in Table 9.9. They are close to
the results obtained in Cases 9.2.1 and 9.2.2.

Overestimation of rate Ns obtained by solving the previous inverse problems
with respect to the effective value Ns may cause some discomfort, though the
difference between them can be considered as acceptable practically. The reason
for the difference is expectable: too many assumptions and the assumptions about
the structure of the real object and the steady-state water table specially. However,

Table 9.9 Results of solving inverse problem in Case 9.2.3

Recharge rates (cm/year) Condition number
N Ny Ns
10.31 22.64 18.98 254
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different formulations of the considered inverse problem led to consistent results.
This could be a good reason to reconsider the assumptions applied in the model
identification.

9.3 Non-Linear Transforming Mechanisms: Illustrative
Example

In principle solving inverse problems involving non-linear transforming mecha-
nisms does not differs much from solving inverse problems involving linear ones.
To make up closed or redundant systems of the equation resolving the problems,
we may use weighting of the pertinent observations. Unfortunately, the obtained
systems consist of equations like Eq. 7.20 and their solving may present a difficult
mathematical problem. This issue can be avoided if to approach to the solving
hydrogeological problem as they do in geophysics and, in particular, in the case of
vertical electric sounding, using, the, so called, master curves for interpretation of
the obtained data. This geophysical approach is discussed below. However, first
we discuss some simple approximate ways of evaluation of actual parameters
based on the transforming mechanisms presented in Sect. 7.2.

Let us come back to the object presented in Sect. 4.3, that is, to the confined
aquifer comprising two homogeneous bodies having the hydraulic transmissivity
T, and T, (Fig. 9.4). In the initial state the aquifer has the uniform distributions of
the hydraulic heads h(x, 0) = Hy. At instant t = 0, the hydraulic head at
x = 2L = 100 m jumps instantly to h(2L, 0) = H,; and stays the same: h(2L,
t) = Hy;. At x = 0 the hydraulic head does not change: h(0, t) = Hy. (Without
loosing generality, values Hy and H,; are assigned equal to 0 and 1 m.) The jump
of the hydraulic head at x = 2L initiates the process of changing the aquifer
hydraulic heads. The goal is to evaluate the hydraulic conductivities, observing
changing the hydraulic head A(L, f) at x = L = 50 m and using homogeneous,
one-block, interpretational model.

Fig. 9.4 Two body object h
and homogeneous Ha
interpretation model
(confined aquifer with
horizontal base)
hy (t)
o | L i
L OBIJIECT T
HOMOGENEOUS INTERPRETATION MODEL
T
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The real observations can have an arbitrary time increment. For example, the
observations can be conducted once a day, once a week, once in two weeks, and
even be irregular. Therefore, the affecting factors in the corresponding inverse
problems must be obtained by the implicit method (Sect. 7.3). However, the
hydraulic heads often change slow in time. In such cases the transforming
mechanism obtained in Sect. 7.2 by the explicit method may be an acceptable
approximation of the transforming mechanism of the mechanism obtained in Sect.
7.3 even if the time increments are not very small. This mechanism, described by
Eq. 7.14, is presented here for convenience:

. hi 1—hi

Ti1i=— T
L [T A ey

T, (9.38)

where h;; = h (L, t;_), can be a satisfactory accurate approximation of Eq. 7.20.
Equation 9.38 can be rewritten as

Ti1i=Tiwi; +Towy; (9.39)
where

h,;] 1 - l’l,;l

and Wi = 1——2]’11 . (940)

ST 2o,

The simplest way of solving the inverse problem is to consider Eq. 9.39 for two
different instants #; and #; and solve the system of these two equations. Equa-
tion 9.39 can be interpreted also as a linear regression with 77 and 7, unknown
actual transmissivities playing the part of regression coefficients and the affecting
factors being the independent variable. (Note that w; ; = 1 — w,;.) Then T} and T,
can be found by the least squares method exactly in the same way as it has been
done in the above cases with the linear transforming mechanisms. Several results
of solving inverse problems based on Eq. 9.39 are presented in Table 9.10. The
corresponding forward problems, providing ‘“observations”, are produced
explicitly with the time increment At = 0.1 day (Sect. 7.2). According to the
mechanism presented by Eq. 9.38 at the initial instant tp = 0 h;o = 0 also.
Therefore, YA}_I’,- =T,. If the observations are continued long enough and
h(t) becomes close to its asymptote, it follows from Eq. 4.31 that

Table 9.10 Solving inverse problems by Eq. 9.39

Actual transmissivity m*/day Interval between measurements (days)

1 7 14

T, T, Results of solving inverse problems: T;, T, mz/day

0.1 0.9 0.1050, 0.9013 0.1050, 0.9013 0.1056, 0.9016
0.5 0.9 0.5005, 0.8999 0.5005, 0.8999 0.5006, 0.8999
0.9 0.9 0.9000, 0.9000 0.9000, 0.9000 0.9000, 0.9000
0.9 0.5 0.9000, 0.5001 0.9000, 0.5001 0.9000, 0.5001

0.9

0.1

0.9003, 0.1000

0.9003, 0.1000

0.9003, 0.1000
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1-H

T
Hp

T, (9.41)

and so on.

There are many such ad hoc ways of solving inverse problems. Systematic
approach to solving inverse problems, interpretation of observations, can be bor-
rowed from geophysics. They work with effective parameters directly. Geophys-
icists call those parameters apparent and calculated, using usually homogeneous
interpretational models. Since geological objects are not homogeneous, the
apparent parameters vary with changing conditions under which they were
obtained. Their changes are interpreted to evaluate the structures and properties of
geological object by comparing the observed apparent parameters with the master
curves calculated for geological objects of different structures and properties.

In this section, we also use a homogeneous interpretation model and our
effective transmissivities are exactly what is called the apparent parameters in
geophysics. The master curves presented in Figs. 9.5 and 9.6 correspond exactly to
formulation of the forward and inverse problems discussed in this section: the
object consists of two bodies with actual transmissivities 7 and 75, the effective
transmissivity versus time are calculated for once a week observations at
x = L. The curves factually depend on ratios 7T',/T,. The curves obtained based on
actual observations is compared with the master curves. The master curve fitting
the observations best provides the transmissivity 7;. (Transmissivity 7, can be
evaluated as the left asymptote of the curves.) The period of the observations is
chosen as 182 days to avoid the instant of possible discontinuity of the trans-
forming mechanisms when 7} < T, as discussed in Case 7.2.2.

By the way the use of the geophysical master curves of electrical sounding, with
three and four current electrodes and dipoles for interpreting data of pumping and
injecting tests in not fully penetrating wells in steady-state regime was suggested
by Gorokhovski and Jazvin (1970). At that time pumping tests lasting from several

Fig. 9.5 Master curves for 0.10% T T T T T T T T T
effective transmissivities for i S S
T, <T, Tp=01|g

0.095

effective transmissivity (m?2/day)

i i i i i i
0 10 20 30 40 50 60 70 80 90 100
time (days)
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Fig. 9.6 Master curves for 14 T T T T T T T T T
effective transmissivities for : : : i ! : ] ; !
T, >T,

- -
h [ o I ")
N W

-y
=
(2]
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time (days)

days up to half of year had been a common practice in the Soviet Union. I had used
those master curves always when it seemed to be appropriate. However I am not
aware of somebody else who had been doing this.

Let us complicate the problem slightly. Namely, the hydrogeological process is
the same as above with the same initial and boundary conditions but hydrogeo-
logical object comprises three geological bodies (Fig. 9.7). The “observations”,
that is, the results of solving the forward problem, are obtained at x = 2L. Inter-
pretation model is homogeneous. The flow within each geological body is
described by three equations

Oh(x, 1) 7A'62h(x, 1)
o a2

where x and ¢ are the distance and time coordinates, A(x, f) are the hydraulic head
inintervals [0, L] j = 1) and [L, 3L] (j = 2) and [3L, 4L] G = 3) and A; = T/S is

j=1,2,3 (9.43)

Fig. 9.7 Three-body h 4
confined aquifer and 4L
homogeneous interpretation
model Har®
Hor (D
H®
Ho
T3
i L L 3L a "
HOMOGENEOQOUS INTERPRETATION MODEL
T
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the hydraulic diffusivity of body j, 7; is the hydraulic transmissivity of body j, and
S = 0.1 is the storativity which is the same for all bodies. The initial and boundary
conditions are the following:

h(x,0)=0, 0<x<4L (9.44)
h(0,1)= Hy=0 and h(4L,1)= Hy = Im (9.45)

The inner boundary conditions on continuity of the hydraulic heads and the flux
exist at x = L and x = 3L:

Oh(x,t t
lim(h(x, 1)) = lim(h(x,0)); Ty tim 2D gy (521)
x—L L—x x—L L—x 0x
Oh(x, ) ohxy  (040)
i (1, 0) = Jim (8, 0); T lim O 7y i P

The explicit approximation of the hydraulic heads h(2L,t;,,) can be presented as
hiyi —hi  Tohap; —2hi + hy;
At S L?
where ]’li = h(2L,ti), hi+1 = h(2L,t,-+1), hL,i = h(L ti) and hL,i = h(?’L,ti), or

T, At
l’li+] ~ /’li =+ W (h3L,i — 2]’1, —+ hLJ‘). (947)
It follows from the inner boundary conditions (Eq. 9.3.9 (9.46)) that

T, T3+ Th

- hi, hii= . 9.48
T, + T, S A (9-48)

hy;

Substituting the above results in Eq. 9.3.10 (9.47) yields the following proce-
dure for making up the ‘observations’:

T, At T T T,
]’l,‘ ~ ]’li -2 h,‘ . 9.49
R (T2+T3+<T2+T3+T1+T2 ) > (5:49)

The made-up ‘observations’ for one hundred days for the object with the
hydraulic conductivities 7, = 0.1, T, = 0.2 and T, = 0.9 m*/day calculated by
Eq. 9.49 are presented in Fig. 9.8.

Fig. 9.8 Development of the

~
4 g 08 ;
hydraulic heads at i :
x = 2L during the first 'E L
100 days according to < o4
Eq. 949 (T, =0.1, 7, =02 _% :
and T, = 0.9 m*/day) g 0.2}
2 0 1 I i 1 I i I i i
0 10 20 30 40 50 60 70 80 90 10C
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Fig. 9.9 Master curves
obtained by the homogeneous
interpretation model to the
object presented in Fig. 9.8
with the hydraulic
transmissivities 7; = 0.1,

T, = 0.2 m*/day. Values of
the transmissivities 75 are
shown on the pertinent plots
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The effecting hydraulic transmissivity of the homogeneous model (Fig. 9.7) for

the given structure of the geological object and the efficiency criterion (A4 =
hi+1) can be calculated by equation applying implicit method this time:
. SI? 1 —2h;

Ty = I . 9.50
L 2(li — l‘,;]) n 1 —2h; ( )

Masters curves in Fig. 9.9 are presented for the case when hydraulic conduc-
tivities T, = 0.1, 7, = 0.2 mz/day are fixed and hydraulic conductivity 75 varies.
The same curves can be made up for other combinations of 7.3 and for objects
with different numbers of geological bodies.

9.4 Conclusion

The transforming mechanisms can be applied to formulating and solving inverse
problems related to underground flows. However they cannot eliminate the
inherent incorrectness of those problems. When manifolds of the transforming
mechanisms are created by the usage of different weightings, the incorrectness
usually is caused by limited diversity of the weights assigned to the available
observations. Whatever weights are applied, they are acting as if their values are
interval [0, 1] or [—1, 1], if negative weights are applied. The failures can be
caused also by unlucky choices of the models representing real geological object
and monitoring networks providing not satisfactory amount or diverse data. For-
tunately, the possibility of such failures can be found out before even starting the
pertinent field investigations and taking in consideration in the stage of designing
the pertinent projects. The projects can be corrected and optimized during their
implementations based on incoming information. Thus the approach based on the
transforming mechanisms permits obtaining the best results according to the
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accepted definition of the ‘best’. However, since our notions of geological objects
are just models and, as such, false, the results of solving inverse problems are
uncertain, meaning that their inaccuracy is impossible to evaluate in a provable
way.
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Chapter 10
Advective Solute Transport Through
Porous Media

As mentioned in Chap. 1, the mathematical models, recognized by professional
community, yield usually satisfying approximations of reality. The model of
convective-dispersive solute transport through porous media discussed in this
chapter makes exclusion. This model is considered as classical or fundamental
(Parker and van Genuchten 1984; Pasek et al. 2000; Delleur 2006). However, it
often fails to reproduce long tails of breakthrough curves. The procedure suggested
in this chapter provides more flexible and accurate reproducing those long tails and
the breakthrough curves in general. It also permits more thorough interpretation of
the observed data.

The chapter is written for the second edition of this book. To minimize changes
in the text of the previous one, the whole discussion on solute transport through
porous media is concentrated in this chapter which structure resembles in general
the structure of the first edition. The chapter starts with analysis of the traditional
approach to simulation solute transport in porous media based on convective-
dispersive equation. The weak spot of this classical model, difficulty with repro-
duction of long tails of the observed breakthrough curves, can be overcome by
exclusion from the classic model of the fictitious dispersion coefficient and the
mean pore water velocity. Instead hydrodynamic dispersion should be included in
simulation procedures directly. The transforming mechanisms are not forgotten,
though they are not a main focus here.

10.1 On Classical Convective-Dispersive Model

10.1.1 First Versus Third Type of Boundary Condition
at Inlet

At present the standard, classical or fundamental, approach to simulation of solute
transport through porous media is based on convective-dispersive equation. In the
case of one-dimensional transport, the equation takes form
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© Springer International Publishing Switzerland 2014


http://dx.doi.org/10.1007/978-3-319-03569-7_1
http://dx.doi.org/10.1007/978-3-319-03569-7_1

144 10 Advective Solute Transport Through Porous Media

oC(x,t) 282C(x,t) _ UOC(x,1)
o R Ox? R 0Ox

where C(x, f) is the solute concentration in pore water at location x and instant #;
and the constants D, R, U and A represent the dispersion coefficient, the retardation
factor, the mean pore water velocity and the degradation rate accounting for decay
and linear interactions of the solute with the surroundings such, for example, as
linear sorption and desorption. However, solutions to Eq. 10.1 are prone to
yielding simulation breakthrough curves which do not represent well long tails of
the observed curves. “Such discrepancy is often regarded as incongruous with the
classical convective-dispersive equation, a view seemingly corroborated by the
inability of certain solutions of this equation to fit observed breakthrough curves,”
write Parker and van Genuchten (1984). To mitigate the issue, they suggest
assigning the third type, flux, boundary condition at the inlet (x = 0):

—%c@g (10.1)

G DocC 0<t<T
Coly— o= { 0 Cc04) — Uax:o+7 P> T (10.2)
instead of the first type boundary condition:
- Co - 0<t<T
Gl o= {§ = oo O7I5T (103)

where Cy|,_ , is the solute concentration in the influent reservoir (x < 0), usually
constant, and C(0,) its concentration in pore water in the column at the boundary
with the influent reservoir (x > 0), T is the duration of the pulse.

Equation 10.2 represents continuity of the flux concentration Cy at the inlet. Cy
is defined as

D oC,

U Ox’
where C, is the resident concentration, the solute concentration in pore water, i.e.,
the concentration understood traditionally. For example, concentration C in
Eq. 10.1 is the resident concentration. (Note, if solution in the influent reservoir is
well mixed, 9Cy/0x = 0 for x < 0, then both concentrations represents the same
entity). Parker and van Genuchten (1984) write: “Flux concentration may be
interpreted physically as representing the mean of the microscopic fluid concen-
tration weighted by their respective microscopic fluid velocities”. Such interpre-
tation seems confusing, at least for me, in particular since the flux concentration is
not measurable (Kreft and Zuber 1978; Parker and van Genuchten 1984). In my
opinion, Eq. 10.4 is rather a mathematical transformation. In the case discussed by
Parker and van Genuchten (1984) this transformation permits converting equation
written for the resident concentration

G =G (10.4)

oC,(x,1)  _0*Ci(x,)  OC(x,1)
= DI - U (10.5)
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to an identical equation written in terms of the flux concentration, and the
boundary condition of the third type (Eq. 10.2) expressing the flux concentration
becomes the boundary condition of the first type for the equation in term of the
flux concentration. However, such complete elimination of the resident concen-
tration from equations is possible seldom. Solute transport through porous media is
usually simulated in terms of the resident concentration. And since the flux con-
centration is not measurable, Parker and van Genuchten (1984) suggest its local
calculating based on Eq. 10.4.

Batu (2006) writes that Brigham (1974), Kreft and Zuber (1978, 1979), Parker
and van Genuchten (1984) emphasize that the distinction between these two forms
of concentrations is of fundamental importance in order to stipulate boundary
conditions appropriate for specific experimental solute detection modes.
[According to Kreft and Zuber (1978) the existence of resident and flux concen-
trations makes up four specific experimental solute detection modes, meaning the
type of input and output concentrations. If both input and output concentrations are
resident than the mode is RR, if the input concentration is resident and the output
one is flux, the mode is RF. Two other modes are FR and FF]. Parker and van
Genuchten (1984) motivate the use of the flux boundary condition at inlets of
experimental soil columns by the fact that the simulation breakthrough curves
obtained under the first type boundary condition do not fit well the observed
breakthrough curves. However, the issue is not resolved yet (Paseka et al. 2000;
Delleur 2006; Dusek et al. 2007; Appuhamillage et al. 2010). This may mean that
the flux boundary condition either does not work as they should according to
Parker and van Genuchten (1984), or their suggestion is ignored or both. Never-
theless, Parker and van Genuchten continue holding that only the flux condition is
correct at inlets (Batu et al. 2013). This makes it interesting to look more atten-
tively at the mathematical and physical basis for their suggestion presented most
completely, to my knowledge, by Parker and van Genuchten (1984).

Parker and van Genuchten (1984), demonstrate the properness of the third type
boundary conditions at the inlet by integrating Eq. 10.5 in small intervals [0, I/2]
within porous media (x > 0):

[oCtn , [ (,PCkn 000
oC,(x,t) , 0°C,(x,t _ OC,(x,t
/T""/(D Vo )"x
0, 0,
_ [0C.(1/2,1)  OC,(04,1)
_D< T o — U(C,(1)2,1) — C,(04,1))

(10.6)

Then they approach the upper limit of their integrals to zero: 0, « Il/2. Since
function C,(x, ) within the solution domain (the porous media), including its
boundary at x = 0,, must be continuous with respect to x and #, the result of the
above integrating when / approaches zero (0, <« [) is trivial identity 0 = 0. Parker
and van Genuchten (1984) recognize this for the most left integral equalizing it to
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zero. Then they reorganize the remaining terms of Eq. 10.6 bringing the terms
containing //2 to the left part of the obtained equation:
0C,(04,1)
p—\
Ox
(10.7a)

, . (OC.(1/2,1)\
Uolfrfl(C,(l/Lt)) - D(ﬁ’ﬂl(T) = UC,(0,,1) —

and now a peculiar manipulation follows. They change the direction from which
[ approaches zero from right, 0, « [/2, to left, [/2 — _0 and write

(aC’(al)/C 2’t)> = UC/(04,1) — DiaC’gl*’t)

(10.7b)

Ulﬁ’g(cr(l/zvt)) - Dll_lfgl

Mathematically such change of direction is valid only, if limits exist, meaning that
both limits, from right and left, are equal. Parker and van Genuchten (1984) do not
discuss the existence of the limits in Eq. 10.7b. However, as follows from their text
which I quote later, they understand that C,. experiences discontinuity at x = 0 and,
therefore, the transition from Eq. 10.7a to b is mathematically incorrect. Note that
physically both parts of Eq. 10.7a relate to the porous media. However, only the
right part of Eq. 10.7b relates to the porous media, and its left part belongs to the
influent reservoir. The solution in the reservoir (x < 0) is assumed well mixed,
(0C(1/2,1)/0x = 0)and C,(l/2,1) = C(l/2, ) for any l approaching zero from left,
I — _0. So the result desired by Parker and van Genuchten (1984) is obtained.
However, their way of treating mathematics deprives their conclusion of provability.

The physical explanation presented by Parker and van Genuchten (1984)
misuses the notion of representative elementary volume REV, which they define as
interval [0, I/2]. The property value characterizing a REV represents average
properties of many heterogeneous elements within the REV. In this sense, REV
has geological and mathematical (statistical) meaning and is used to represent, as
if, a geological point, providing continuity of description of geological properties
(Brown et al. 2000). However, when the volume of REV approaches zero, the
REV loses its representativeness as the means of averaging. Besides some aver-
aged geological characteristics, such as strength of soil (Bolotin 1969), hydraulic
conductivity (Rats 1968; Gorokhovski 2012), and dispersion coefficient (Dell-
eur 2006; Dispersion 2013) depend on volumes of the samples on which they are
being evaluated.

Since the introduction of the flux boundary condition does not have a proper
mathematical and physical basis, it is interesting to see practical results of
application of the flux type boundary conditions. The example below has been
presented by Batu (2010) promoting the use of the flux condition. He considers
steady state solute transport described by equation

d*C(x) _vdC(x) @C

= o~ Cw = o. (10.8)
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According to Batu (2010), Eq. 10.8 is identical for both resident, C,, and flux, Cj,
concentrations. The boundary condition at the inlet for the flux concentration is of
the first type:

G (0,) = Co = C(0.), (10.92)

where C, is the solute concentration in the influent reservoir. The third type
boundary condition at the inlet is assigned when Eq. 10.8 presented in terms of C,:
D dC,(x)

Crl04) - U dx

= . (10.9b)
x=04

The outlet is put at infinity where both, concentration or its first derivatives, are
equal to zero.

The solutions to both problems according to Batu (2010) and Gorokhovski
(2013) are

U U\> RA
Cf(x) = C() exp E — <E> + F X1, (10103)
C U U\> RA
Co(x) = — (;, ——ep| |55 - <2D> +|x]- (10.100)
P+ oV G+

Comparing them in a peculiar way, which I could not explain, Batu (2010) con-
cludes that the solution obtained under the first type boundary condition “may
significantly overestimate the degradation parameter value” (coefficient A).
However, in reality the solutions presented by Eq. 10.10a and b are just scaled
versions of each other:

2
o= 3+ 2/ E)ew o

If for evaluating A to use the ratios

Gly) _, Crly) U U\> RA
In Gt e = (5 = %) | 55 — (@> +5 ] (012)

the resulting value of A is the same for both types of the boundary conditions. Note
also that plots of (x, In(C(x))) and (x, In(C,(x))) are similar, just shifted with
respect to each other, and have similar tails.

However, this is not all yet. The keynote of Batu (2010) is the mass balance at
the inlet, as if, provided by the use of the third, flux, type boundary condition. This
means that the entire mass of a solute enters the porous media in form of the flux
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concentration. Then the resident concentration C,(0,) must be equal to zero.
According to Egs. 10.10b and 10.11, this is not the case. Thus, the inlet boundary
produces an additional mass of the solute somehow. It would be interesting to
know from where the additional mass appears. Thus, Batu (2010) does not add
anything in support of the use of the flux condition. Contrary, it rather puts doubts
in its correctness and practical usefulness.

Parker and van Genuchten (1984) understood that their foundation for intro-
duction of the flux boundary condition is lame. Indeed, solutions to equation of
mathematical physics must be continuous at boundaries of the solution domain.
However, in the case presented by Batu (2010) we have

Co=Cr(-0) = G(04) = C(-0)
DaC, (10.13)

d Cy=C(.0) £ CH(O0 = 7
and Co=CL0) # G0 + 55

i.e., the resident concentration experiences discontinuity at the inlet if 9C,/0x #
0 at x = 0,. Parker and van Genuchten (1984) write about the discontinuity
appearing due to their introduction of the flux boundary condition: “The incon-
gruity of a concentration discontinuity at the boundary....must be tempered by
realization that calculated values have no physical relevance within //2 of the
boundary.” They also cannot accept the assumption that C,/0x = 0 at x =0
because its acceptance would mean “a loss of mass flux continuity.” Parker and
van Genuchten (1984) write: “Considering the indeterminant nature of the
microscopic features of the boundary transition region, the least we can do is
require that the basic condition of mass conservation be met by the boundary
conditions.” However, as demonstrated by Batu’s (2010) example, the flux
boundary condition at the inlet violates the law of mass conservation.

To conclude discussion on validity of the first or third type boundary conditions
at the inlet, let us remember that all solute transport equations are equations of
mass conservation which must hold at any point of the solutions domains. If the
law of mass conservation is violated just at a point, the corresponding, as if,
solution is not a solution. The solutions to solute transport equations must be
continuous in space and time at all points of the solution domains. Consider the
following imaginary experiment. Let the influent reservoir and the soil column be
considered as a heterogeneous object. Then the inlet boundary between them
becomes an inner boundary condition. At such boundary both, the solute con-
centration and the solute mass flux must be continuous. The necessity of sacri-
ficing one of these continuities rests in the classical Eq. 10.1 itself which includes
the fictitious dispersion coefficient, as if, compensating for hydraulic dispersion,
the main factor responsible for creating long tails of the observed breakthrough
curves, and the mean pore water velocity excluding hydraulic dispersion from the
classical model.
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10.1.2 On Dispersion Coefficient

Two parameters of Eq. 10.1 make it inadequate tool for simulating solute transport
through porous media. The first is the mean pore velocity U. The second is the
dispersion coefficient D. The use of the mean pore velocity excludes from simu-
lation the real physical phenomenon called hydraulic dispersion. The phenomenon
expresses itself in the fact that fluids have different velocities within porous media.
The actual velocities depend not only on hydraulic gradients and permeability of
the media but on sizes and shapes of the pores and fractures and locations of
observation points respectively to their walls. The streamlines carrying solute with
low actual water velocities are responsible for long tails of the observed break-
through curves mainly.
The dispersion coefficient is defined as

D = DM + O(LU7 (1014)

where D,, is the coefficient of molecular diffusion and «; represents the longitude
dispersivity. The dispersivity is an empiric parameter whose definition varies
depending on the researchers. Delleur (2006) writes: “Dispersivity is a transport
property that is relatively difficult to measure experimentally.... Values of the
longitudinal dispersivity typically range from about 1 cm for packed laboratory
columns, to about 5 or 10 cm for field soils.” A few definitions of the dispersivity
from Delleur (2006) are presented in Table 10.1 in which L is the reference
distance, i.e., the distance form the inlet in one-dimensional case.

According to Parker and van Genuchten (1984) the dispersion coefficient
defined by Eq. 10.14 is incorporated into Eq. 10.1 to represent “the combined
effect of diffusion and hydrodynamic dispersion on transport.” How the dispersion
coefficient does this has been never explained, to my knowledge. “The combined
effect” should be somehow related to the dispersivity o;. One of the most recent
and typical descriptions of the role which dispersivity, as a component of the
dispersion coefficient, plays in the solute transport models can be found in
Wikipedia (Dispersion 2013) where the unknown author writes: “Dispersivity is
actually a factor which represents our lack of information about the system we are
simulating. There are many small details about the aquifer which are being
averaged when using a macroscopic approach (e.g., tiny beds of gravel and clay in
sand aquifers), they manifest themselves as an apparent dispersivity. Because of
this, « is often claimed to be dependent on the length scale of the problem—the
dispersivity found for transport through 1 m® of aquifer is different than that for
transport through 1 cm® of the same aquifer material.”

Table 10.1 Few definitions 2, = 0.0175L1% Neuman (1990)

ODfﬁ‘SPegggg) according to " g1 Gelhar et al. (1992)
etieur 2, = 0.83(logL)>*" Xu and Eckstein (1995)
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The above quotation, as well all others explaining or introducing the dispersion
coefficient and the dispersivity, elucidates nothing about why and how this ficti-
tious property represents “our lack of information.” And this is not surprising. If
the dispersion coefficient would represent a real physical entity, all terms in its
definition, Eq. 10.14, were of the same dimension. However, it follows from the
definitions of the dispersivity in Table 10.1, that only one of them, given by Gelhar
et al. (1992), is consistent with the theory of dimension (note that consistent does
not mean true). Two others deprive Eq. 10.14 of any physical meaning. They are
just ad hoc empiric parameters used to fit better the corresponding observations.
The definition of Xu and Eckstein (1995) is most obvious in this respect: they use a
dimension entity as an argument of logarithm.

The suggestion to exclude the dispersion coefficient from solute transport
models is not anything new. U.S. EPA (1987) writes: “Generally, short-time tracer
experiments in permeable material are affected almost exclusively by hydrody-
namic dispersion. In contrast, the concentrations of natural tracers moving very
slowly in highly heterogeneous materials are affected profoundly by molecular
diffusion.” “Short-time” in this sense is not only the tracer experiments but also
most day-to-day practical problems.

By the way, Parker and van Genuchten (1984) write: “In general, the flux
transformation of the convective-dispersive equation will be valid only for con-
stant D.” By its definitions, the fictitious coefficient D is not constant. This not
only deprives any sense the discussion about the only correct type boundary
conditions but put in doubt Eq. 10.1 itself.

10.2 Model of Advective Solute Transport Involving
Hydrodynamic Dispersion

10.2.1 Introductory Examples

10.2.1.1 Piston Displacement

To feel better the role of hydrodynamic dispersion, let us start with the simplest
model of the solute transport, the piston displacement, described by equation

8CU,~ (.X, l) - U, 8CU,. ()C7 l)

ot ox

where U, is the constant actual pore water velocity along some set of streamlines
and Cy,(x, 1) the concentration of the solvent in the flow carried by the set. The
initial condition for all sets is

(10.15)

C(x,0) = 0 (10.16)
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The boundary condition for all sets of streamlines is

C(0,1) = {co 0<t<T

PR (10.17)

where T is the duration of the pulse. The solution to the problem formulated by
Egs. 10.15-10.17 is being sought in domain (0 <x < c0) X (0 <t < 00) where
x = 0 corresponds to the inlet boundary. The method of characteristics leads to the
following solution:

0, < g
Cy(x,t) = ¢ Co, ¢ < IST—Fﬁ[ (10.18)
0, 1>T+y

To obtain the breakthrough curve at some location x, we need to sum the results for
all N sets of different velocities, taking into account the shares of the total flux
carried by each of them

N
xt) =Y piCy(x1), (10.19)
i=1

where p; is the share, the weight, of the total flux carried by the set of streamlines
having the actual pore water velocity U;. The weights are not negative. When the
shares of the flux carried with different actual pore water velocities do not expe-
rience superposition, as for example, in case of an instantaneous pulse, then the
weights are summing to one. Then the weights provide equality:

N
U=> pU (10.20a)
i=1

where U is the mean pore water velocity. The above equality is actually the
boundary condition of the first type for each set of streamlines carrying the flux
with the actual pore water velocity U;:

N
CoU = Co »_piU; (10.20b)
i=1

The condition provides continuity of the concentration and solute mass flux at the
inlet. (In the case of continuous distributions of the actual pore water velocities,
Egs. 10.19 and 10.20a, b could be rewritten in the integral form). When pulse
duration is finite, superposition of mass carried with different actual pore water
velocities takes place. This case is discussed below in Sect. 10.2.2.

Figure 10.1 presents the results of simulation of the piston replacement of a
tracer taking into account only the mean pore water velocity (U = 0.3367 m/day)
and calculated by Eqs. 10.18 and 10.19. The assigned distributions of the actual
pore velocities and their weights are presented in Table 10.2. Duration of the pulse
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Fig. 10.1 Comparison of Two Models of Piston Replacement
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is 2 h, its concentration, Cy, is 1 g/L, the length of the column, L, is 0.5 m. The
velocity and the pulse duration are selected in a way to minimize superposition of
the solute mass at the outlet. This permits equalizing the observed effluent con-
centrations to the weights and demonstrating that in the case of discrete distri-
bution of pore water velocities, the periods may appear when the effluent
concentrations of the tracer are equal to zero.

The envelope to the discrete concentrations in Fig. 10.1 could be interpreted as
an approximation of the breakthrough curve caused by hydrodynamic dispersion.
Its shape depends on distributions of the actual pore water velocities and shares of
the total flux carrying by them. In the case of nonreactive tracers, only hydrody-
namic dispersion stretches and makes breakthrough curves asymmetric. The
stretching could be and usually is considerable. Thus, in the above example the
pulse which duration is 2 h is passing the outlet boundary during 20 days and 2 h,
i.e., 482 h. According to the standard piston model the solvent comes at the outlet
at 1.4848 day and leaves the column at 1.5682 day. Only limitations on the
duration of the experiments and the accuracy of concentration measurements do
not permit observing actually very long tails of the breakthrough curve.

10.2.1.2 Transport of Solute Interacting with Surroundings Linearly

Let us add to Eq. 10.15 the term accounting for linear interaction between the
solute and the surroundings:
6CU,(x, t) U; GCU[(x, t) A
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The initial and boundary conditions remain those presented by Eqs. 10.16 and
10.17. Then the solution to the problem formulated by Eqgs. 10.21, 10.16 and 10.17
obtained by the method of characteristics is

0, <R3
Cu 1) = { Coep(—A4), Ri <t<RT+R. (10.22)
0, t>RT +{x

The following data are assigned for the example below. The concentration of
the pulse Cy = 1 g/L; the pulse duration 7' = 2 h, the length of column L = 0.5 m
and A = 0.3/day. The pore water velocities U; are decreasing from 1 to 0.1 m/day
with decrement —0.001 m/day. The lowest velocity is assigned equal 0.05 m/day.
This choice of the pore water velocity is defined by the desire to make their
distribution closer to continuous. The corresponding weights p; are obtained as a
series of the values from 10 to 0.99 decreasing with decrement —0.01 and then
divided by their sum.

The results of solute transport simulation under the above conditions, the
breakthrough curves at x = 0.25 m and at the outlet at L = 0.5 m, are presented in
Fig. 10.2. The part of the breakthrough curve presented in Fig. 10.3 reveals also
that the simulation pore water velocities are discrete. It is shown in Fig. 10.3 that
there exist intervals in the breakthrough curves in which concentration of the
solute is equal to zero. For example, the share of the solute carried with the
velocity 0.1 m/day leaves the column at 7 h after beginning of the process, and the
one carried with the velocity 0.05 m/day arrives at the outlet 3 h later. Thus, in
interval [7, 10] h, the effluent has concentration equal to zero, but traces of the
solute in the effluent could be found even after 10 h of the test.

The parts of the breakthrough curves at x = 0.25 and 0.50 m in time interval
[0, 2] day are presented in Fig. 10.4. Both curves starts at the instant when the
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solute carried with the maximal velocity reaches the corresponding reference
points (f = 0.25 and ¢ = 0.5 day). At these moments concentration of the solute in
the streamlines with the maximal actual pore water velocity is 0.9277 and
0.8607 g/L. All other streamlines do not bring the solute at the reference points
yet. Thus, what has been brought is diluted by the total flux, multiplied by the
corresponding weight, to the effluent concentrations 0.0019 and 0.0017 g/L.Then
other streamlines started adding their shares of the solute and its concentration in
the effluent grows, achieving at some instants its maximum, C (0.25,
0.333) = 0.4053 and C (0.5, 0.584) = 0.2281 g/L correspondingly. Then the
concentration starts decreasing, since the streamlines with greater actual pore
water velocity do not carry the solute.

10.2.2 Example of Simulation of Real Column Test

Practical application of the suggested advective solute transport simulation method
involving directly hydraulic dispersion is demonstrated on the data published by
Paseka et al. (2000). Their goal was testing the classical convective-dispersive
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model in column tests with undisturbed and disturbed soils. They worked with
three ionic tracers C1~, Br~ and K*. The anions were considered to be nonreactive
and traveling through the column without retardation, R = 1. Paseka et al. (2000)
wrote that the K™ ion was subjected to nonlinear adsorption and to cation exchange
with Ca** and Mg2+. However, they did not provide quantitative characteristics of
the exchange. They applied only a pulse source to the column with undisturbed
soil and pulse and continuous sources to the columns with disturbed soil. The
breakthrough curves for the nonreactive tracers were in sufficient agreement with
the simulation results only in the test with steady state solute transport in column
of 3.5 cm length. Describing application of the pulse source which lasted 2.39 min
to the column of 36 cm length with undisturbed soil, Paseka et al. (2000) wrote:
“Comparison of experimental breakthrough curves of all tracers with numerical
solution indicates that it could not adequately describe the transport of ions. Both
CI™ and Br~ were expected to first reach their initial concentrations and then drop
sharply.... Instead, their concentrations reached only about 70 % of the originally
introduced concentrations. In addition, the K™ peak was approximately four times
lower than the given by numerical solution” (see Fig. 10.5). In the experiments
with durations of pulses 78.7 and 74.7 h with disturbed soils in columns of 15 cm
length, they obtained good agreements of the observed and simulation break-
through curves for their ascending parts for both CI™ and Br~. However, the
descending parts of the simulation breakthrough curves are inadequate to the
observed ones. Paseka et al. (2000) state that their K* transport simulation was a
complete failure in all their column experiments. (For unexplained reasons, they,
likely, used the piston replacement model, simulating the K* transport through the
undisturbed soil).

The data on the column test conducted by Paseka et al. (2000) with the
undisturbed soil and on simulation of the K* transport with the direct use of
hydrodynamic dispersion are presented in Table 10.3. Their data do not suit
requirements of the suggested method in full. Thus, the first measurement of the
solute concentrations was made at 1 min from the beginning of the experiment.
The measured concentrations of the nonreactive tracers in the effluent at that
instant were high enough, meaning that maximal pore water velocity remained
unknown and is, likely, considerably higher than its mean value. The pulse
duration 2.39 min for the mean pore water velocity 36 cm/min in the column of
36 cm length was relatively long and led to superposition at the outlet of the
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Table 10.3 Comparison of concentrations of K* ion observed by Paseka et al. (2000) in test
with the undisturbed column 1 and simulated by Eq. 10.24

Time (min) Paseka et al. (2000) Eq. 10.23

Cl™ Br~ K* U K*

(mg/L) C/Cy (mg/L) C/Cy (mg/L) C/Cy (cm/min) C/Cy
1 111.79 0.47 186.11 0.48 53.37 0.11 36 0.2377
2 191.87 0.71 241.82 0.63 114.79 0.24 18 0.2387
3 166.33 0.62 257.85 0.67 72.99 0.15 12 0.1209
4 73.85 0.27 152.59 0.4 29.34 0.06 9 0.0305
5 25.52 0.09 56.85 0.15 nd 0 7.2 0.0059
6 18.63 0.07 42.72 0.11 nd 0 6 0.0027
7 12.12 0.04 29.48 0.08 nd 0 5.1429 0.0009
8 8.19 0.03 21.73 0.06 nd 0 4.5 0.0004
9 6.14 0.02 17.73 0.05 nd 0 4 0.0002
10 4.71 0.02 14.88 0.04 nd 0 3.6 0.0001
11 4.97 0.02 12.85 0.03 nd 0 3.2727 0.0000
30 0.11 0 5.32 0.01 nd 0 1.2 0.0000

[Initial concentrations Cy: 270.37 (C1~ ), 384.17 (Br™ ), 486.15 (K" ); mg/L]

tracers’ masses carried with different pore water velocities, making it difficult to
find the weights corresponding to the particular velocities. (Some suggestions on
better column test methodology for the approach being discussed are mentioned in
Sect. 10.4). However, the conditions close to ideal are rare, if ever, met in practical
applications. The discussed example permits demonstrating the way around which,
probably, can work in many, if not all, circumstances.

Let us calculate the concentration which is not equal to zero based on Eq. 10.22
which for x = L take form

L R R
Cy.(L,t) = Coexp (—/1 ﬁ) = Coexp(—At;), T <! < RT + Tx

1 1 1

(10.23)

where ¢; is the observed arrival time at the outlet at x = L. Since the pulse has a
finite duration, the concentration observed at this instant is superposition of the
solute concentration carried by the streamlines which actual pore water velocities
make up some interval including U;. The corresponding dimensionless concen-
trations of nonreactive tracers CI~ and Br~ can be interpreted as apparent weights
pl@, corresponding to velocity U;. Since different streamlines with different
velocities arrive simultaneously at the outlet, their sum naturally exceeds one and
for this reason I call these weights apparent. Then Eq. 10.19 can be rewritten as
C(L.t;) = pl”Cy,(L, 1), (10.24)

In this example the apparent weights correspond to the dimensional concen-
trations of C17, though concentrations of Br~ or some their combination could be
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applied as well. The values of the simulation concentration of the K* ion are
presented in the last column of Table 10.3. The arrival time of the K* ion carried
with the fastest pore water velocity is assigned arbitrary as 0.8 min. This corre-
sponds to the pore water velocity 45 cm/min.

The concentrations observed by Paseka et al. (2000) and calculated by
Eq. 10.24 with direct involvement of hydrodynamic dispersion are presented in
Fig. 10.6. The later are obtained with coefficient A4 = 0.546/min which is found by
the trial and error method. Comparison of the results presented in Figs. 10.5 and
10.6 demonstrates clearly the advantage of the suggested approach.

10.3 Transforming Mechanisms for Degradation Rate
10.3.1 Estimating Hydraulic Dispersion

The explicit incorporation of the hydrodynamic dispersion in formulation of solute
transport simulation requires preliminary resolving of two issues. First is estima-
tion of the actual pore water velocities. The second is estimation of the weights,
the shares of the total flux carried by different actual water pore velocities. Both
properties can be evaluated by direct observations on breakthrough curves in the
experiments with nonreactive tracers.

Conceptually, the most obvious and theoretically pure way of evaluation of the
actual pore water velocities and the corresponding weights is conducting experi-
ments with nonreactive tracer steady state transport. An example of a possible
breakthrough curve in this case is presented in Fig. 10.7: the tracer is carried with
each velocity all the time and the breakthrough curve becomes an analog of a
cumulative distribution function from the theory of probability. Based on this
curve, a function of the density actual pore water velocity, analog of the proba-
bility density function (pdf), can be obtained. Concentrations of the tracer corre-
sponding to different velocities are the shares of the flux carried with
corresponding velocities.

Another way of finding distribution of the pore water velocities and the perti-
nent weights is the use of instant pulses of tracers. In this case the pulse passes the
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Fig. 10.7 Possible steady state breakthrough curve for nonreactive tracer in Paseka et al. (2000)
experiment with undisturbed soil

outlet instantly which exclude superposition of the tracer’s mass. If it had been
possible to make the pulse duration as well as sampling of effluent concentrations
instantaneous, it would be possible to find all the actual pore water velocities and
their weights even for the actual pore water velocity changing continuously. The
results shown in Fig. 10.8 are obtained by simulation of a tracer injected by the
pulse whose duration is 0.001 min. The actual pore water velocities in this case are
selected in the way excluding superposition of the tracer masses which is not
difficult considering that duration of the pulse. Figure 10.8 represents factually a
specter of the concentrations corresponding to the simulated pore water velocities
from which those velocities could be evaluated. (Reactive tracers can be used also
for evaluation of the actual water pore velocities and their weights. However, their
use makes more complicated interpretation of the observations, since the inter-
pretation requires knowledge of the parameters and mechanisms of interaction of
the tracers with surrounding).

Thus, the experiments with transport of nonreactive tracer could be considered
as the method of evaluation of hydrodynamic dispersion. However, both steady
state regime and instant pulse of the tracer could be not acceptable practically.
Then the use of the apparent weights, described in Sect. 10.2.2 is, likely, the best
practical way to deal with hydrodynamic dispersion. It is also important to fix the
first appearance of tracers in the effluent for evaluating the maximal pore water
velocity.
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10.3.2 Estimating Effective Value for Degradation Rate
Jor Homogeneous Model

Let as assume that the superposition of the solute mass carried by the sets of
streamlines with different actual pore water velocities is absent. Then the effective
concentrations different from zero at the instant #; = L/U; can be presented based
on Eqgs. 10.23 and 10.24 as

~ ~ L ~
Cy(L,t;) = piCoexp(—/l F) = piCoexp(—/lt,-) (10.25)

1

where A is the unknown rate of degradation and #; is the time when the solute
carried with the actual pore velocity water U; reaches x = L. Taking the natural
logarithms of Eq. 10.25 we obtain:

6 (L, t; ~
 Cullot) _ — Ay (10.26)
piCo

If we have N observations on C(L, t;), the effective value of ?1, can be obtained by
the least square method by minimization of the sum

N N 2
5 = (Zzi - lnM) (10.27)

“ CU(L, ti)> ~ N 2
tiin————=) = —A4 t; 10.28
Z ( piCo Z ( )

i=1

and finally

A=—— ” 10.29
S ( )
It is easy to check that if the homogeneous model represents the object which is
really homogeneous and the observations and calculations are executed without
errors, then 4 = A. Indeed substituting in Eq. 10.26 C,(L, t;) instead of 6U,- (L,1),
we obtain

4o = _ pimtli oy (10.30)

In the case of data carrying errors the effective parameter can differ from the
actual one. Besides to make the problem easier, Eq. 10.25 is linearized by taking
logarithms. Consequently the effective degradation optimizes logarithms of the
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concentrations, not the concentrations themselves. As Eq. 10.30 shows, this does
not matter, if our model represents the object exactly and calculations are accurate.
However, if the model is not true, such linearization yields worse results than the
results of the trial and error method, and the simulated breakthrough curves based
on them could be biased more or less, i.e., shifted with respect to observations. It
should be noted also that the logarithm of zero does not exists and Eq. 10.27
cannot include zero concentrations.

Though the difference between the results obtained by Eq. 10.29 (4 = 0.463/
min) and by the trial and errors method (A = 0.546 min~") can be considered as
acceptable practically, the use in simulation of A = 0.463/min leads to some shift
of the simulation results (Fig. 10.9). The results are obtained on the data presented
by Paseka et al. (2000) on the observation on the ion K* transport in their
experiment with the column of undisturbed soil (Table 10.3). Nevertheless, the
reproduction of the breakthrough curve with degradation rate obtained by
Eq. 10.29 is much better than that obtained by Paseka et al. (2000).

10.3.3 Solute Transport Through Piecewise Heterogeneous
Porous Media

Let us consider one-dimensional solute transport through porous media in which at
location x; coefficient A experiences discontinuity changing from A; to A,. The
actual water pore velocities Uj.y and their weights p,.y are known. The goal is
simulation of the breakthrough curve at x = L(L > x;).

The breakthrough curve at x; makes up the boundary condition for interval
(x1, L]. The solute concentrations brought at x; by the ith set of streamlines are
described by Eq. 10.24 where x; substitutes for L and A; for A. Then the break-
through curve at x; can be obtained as

N
Clxr,1) = Y _piCu,(x1,1) (10.31)
i=1
Fig. 10.9 K" ion transport: g
results presented by Paseka H o4 -
et al. (2000) and simulated by g T e
Egs. 10.23 and 10.24 with g% . .

q: - g ©  degradation rate obtained by Eq.10.29
degradation rate A4 = 0.546/ O g3l e ]
min and obtained by least ﬁ
square method (A = 0.463/ g o -
min, Eq. 10.29) @ 0 ] i i
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"S time [min]



162 10 Advective Solute Transport Through Porous Media

The solution for the concentrations carried by the ith and not equal to zero within
interval (x;, L] is

Cy(L,1) = C<x1, - R%)exp(—AzLUixl) (10.32)

Since the first right hand multiplier in Eq. 10.32 represents the concentration at x;
for interval (0, x;), Eq. 10.32, we can write

L_
Cy(Lt;) = piCoexp</11)lC]—1>exp(A2 U’“) (10.33a)

or
Cy,(L,t;) = piCoexp(—Altl-l)exp(—Az (t; — tll)) (10.33b)

where #! is the travel time of the solute from the inlet to the boundary at x = x; and
t; is its traveling time to the outlet at x = L. Summing the above solutions for each
set for streamlines, we finally obtain

X1 L — X1
L t, szcoexp<— (/11 UI + Ay U, )) (10348.)

or

C(L,1;) Zp,Coexp Mt + A (1 —1}))) (10.34b)

where N is the number of different actual pore water velocities. Solutions for
greater number of piecewise interval can be obtained in the same way.

10.3.4 Transforming Mechanisms for Degradation Rate
and Inverse Problem Solving

Let a porous media be piecewise homogeneous in sense of the degradation rate,
i.e., it consists of two homogeneous bodies with boundary between them at x = x;.
The degradation rates of the bodies are A, and A, correspondingly. However, their
values are not known and the goal is to evaluate them using observations on the
breakthrough curve at x = L.

Let us start with linearization of the solution presented by Eq. 10.33b by taking
the natural logarithm of its both terms

In(Cy,(L,1;)) = In(piCo) — (Mit; + Ax(t; — 1)) (10.35)
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For the homogeneous model the same procedure leads to equation

l}’l(ayi(L, ti)) = ln(plCO) — Z];Nti (1036)

where N is the number of observations on the breakthrough curve at x = L taken in

account for evaluation of the effective degradation rate A 1.n- To find it, we need to
minimize the sum

N ~ 2
s=Y (ln(CUi(L, z,-)) — In(Cy,(L, ri))> . (10.37)
i=1

Substituting in Eq. 10.37 the corresponding Eqs. 10.36 and 10.35 and applying the
list square method, we obtain the transforming mechanism

Ay = wiaw Ay + wo /s (10.38a)

with the affecting factors

N 1 N 1
E Lt g i1 \li — 1)t
LT and wy gy = Lzt (i — 1) (10.38b)

S S
which sum, as expected, is equal to one to one.

As discussed in the previous chapter, there are different ways of formulating
and solving the inverse problem, i.e., evaluating values of the governing param-
eters of models based on available data. The simplest way to find the degradation
rates A; to A, seems to be calculating the transforming mechanisms for two
distinguished sets of observations on the breakthrough curve. The second sent
obtained by the use of K observations yields the second transforming mechanism:

WIILN =

Aig = wiixdy + wa 1k A2 (10.39)

which with the mechanism presented by Eq. 10.38a make up system comprising
two equations for two unknowns. The corresponding effective degradation rates
can be evaluated by the trial and error method or by Eq. 10.30.

Note, that the weights p;.y and p;.x are assumed to be apparent like those used
in the example of Sect. 10.2.2.

10.4 Conclusions

Inability of the solutions to the classical convective-dispersive equation, Eq. 10.1,
to fit long tails of the observed breakthrough curves is the evidence of its incon-
gruousness indeed. Asymmetry of the curves is caused mainly by the hydrody-
namic dispersion. The constant mean pore velocity eliminates it from the model,
and the fictitious dispersion coefficient introduced into Eq. 10.1, as well as in the
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definition of the flux concentration, does not create any mechanisms compensating
for hydrodynamic dispersion. Only for very low pore water velocities, diffusion
starts playing role which could be comparable with advective solute transport. In
such cases, diffusion should be presented in Eq. 10.1 as coefficient of molecular
diffusion (U.S. EPA 1987).

The use of Eq. 10.21 applied to different actual pore water velocities, seems
sounder and better physically grounded than the use of the classical convective-
dispersive Eq. 10.1. The flexibility and the ability of the solution to Eq. 10.21 to fit
the asymmetric breakthrough curves is the obvious evidence of its advantage over
Eq. 10.1. Solving Eq. 10.1 in column tests requires knowledge conditions at both,
inlet and outlet. Although the observed breakthrough curves present boundary
conditions at the outlets, analytical solutions to Eq. 10.1 for column of finite length
are expressed by infinite series. They are inconvenient and difficult for interpre-
tation of the observed breakthrough curves. For this reason, solving Eq. 10.1, the
second boundary condition is put in infinity which causes errors. Contrary,
Eq. 10.21, to be solved, requires only one boundary condition. The controlled
boundary condition at the inlet is sufficient. Equation 10.21 is the partial differ-
ential equation of the first order. This simplifies the solving solute transport
problems and permits obtaining analytical solutions in many cases when its
coefficients R, U and A are functions of time and/or distance. For example, if the
actual pore velocity varies, U; = U;(x), where x is the distance along a streamline,
the solute transport is described by equation

Riacyé(tx, 0 _ ——a(Ul(x)aCx w51 _ ey (x0), (10.40)
The solution to it under the initial and boundary conditions presented by
Egs. 10.16 and 10.17 is

0, <R[
o
X X
CU’.(X, t) = C()exp ((/1 + dUl/d)C i{?}f) {dﬁg T (1041)
0, tfRodef >T

Another example: Paseka et al. (2000) mention that the K* ion was subjected to
nonlinear adsorption and to cation exchange with Ca®* and Mg?*. Let us assume
that one of these processes is linear and the other is nonlinear, and that nonlinear is
proportional to concentration in some power o. Then the solute transport can be
described by equation, presenting a mixed model:

oCy. OCy.
P U[ Y
ot Ox

R — ACy, — A,C,, (10.42)
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where U; is constant as well as parameters o« and A, governing by nonlinear
interaction with the surroundings. Parameter o describes order of the nonlinear
interaction. The dimension and physical meaning of A, depend on parameter o.
Parameter « is dimensionless, [¢] = 1. Since dimensions of all terms comprising
Eq. 10.42 must be the same, then

= ML = [T (1043)

4] = {Racui] _ MLT!

Ot M*L 3

where M, L and T are the dimensions of mass, length and time respectively. The
retardation factor R is dimensionless, [R] = 1. Thus, A, define the rate of changing
of values C' .

Equation 10.42 is integrated in domain (0 <x < 00) X (0 <t < 00), where
x = 0 corresponds to the inlet boundary, under the initial and boundary conditions
given by Eqgs. 10.16 and 10.17. The yielded nonzero solute concentrations carried
by the streamlines whose actual flow velocity is U; with flow are described by
equation

1
X A (o — x Tl X X
Ax 1)A#- o—1
Cy, = Coe vz<1+7°‘(1—e(“ M)co ) , R—Ui<t§RT+R—Ui

(10.44)

The breakthrough curve obtained by application of Eq. 10.44, with summation
prescribed by Eq. 10.24, to the data of Paseka et al. (2000) on the test with the
undisturbed soil column is presented in Fig. 10.10. The figure shows that the
mixed linear-nonlinear model with parameters « = 1.1, A = 0.546/min,
A, = 0.1 mg™ "' cm®? min~" reproduces the observed actual concentrations sat-
isfactory. However, it may happen that a different set of the parameters or another
kind of interaction between the solute and surroundings could do the same or even
better job. The simulation results obtained by the linear and mixed model based on
the data of Paseka et al. (2000) are presented in Fig. 10.11. They are undistin-
guishable practically. This means that speculations on which, if any, of the well
working sets of the parameters is true are fruitless without understanding of the
mechanisms of competing kinds of the interactions.

To distinguish between linear and nonlinear interactions of solute with sur-
roundings, the experiments must be conducted with different boundary concen-
trations Cy. This does not change the dimensionless concentration in the case of
the linear interaction. If the interaction is nonlinear, the difference between the
dimensionless concentrations obtained for different Cy, depends on the governing
parameters of the interaction. If this difference is not considerable, as in the case
presented in Fig. 10.11, it is naturally to assume that the nonlinearity, if exists, is
not essential. In the case of nonlinear interactions the changing may be consid-
erable (see Fig. 10.12). The main factor of such changes is the order of interaction
o, though the other governing parameters affect them also.
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Fig. 10.10 K" ion transport:
results presented by Paseka
et al. (2000) and simulated by
Egs. 10.44 and 10.24 with
parameter values o = 1.1;

A = 0.546/min;

Fig. 10.11 Comparison
based on the data of Paseka
et al. (2000) the simulation
results obtained by linear
model, Eqs. 10.23 and 10.24,
and mixed one, Eqs. 10.44
and 10.24
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where Cy; and Cy, are the boundary condition concentrations, and Co;y, and Cpy,
are the corresponding dimensionless concentrations delivered at (x, f) by the
streamlines carrying the solvent with the actual pore water velocity U;. Then the

equation follows

(C]U[ ()C, t)
C2U,- ()C, t)

o) 14 A (1 _ e*““i)
e —0 (10.46)
i
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Fig. 10.12 Breakthrough Breakthrough Curves for Two Di fferent Boundary Concentrations of K™
curves simulated by mixed, 0.08 ! : ! —— Cp = 48615 mgL
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different boundary condition : :
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where Ciy,(x,t) and Cyy,(x,1) are the actual concentration corresponding to the
velocity U;. Using different arrival times (x/U;) we obtain the system of equations
to find three unknown (o, A, A,). To solve it is not an easy task but is possible still.
The knowledge of one or two unknowns could be very helpful.

However, working with nonlinear or mixed models, one must be careful. Thus,
when o = 1, Eq. 10.44 experiences discontinuity, though it seems to be remov-
able. For o < 1, physically incorrect (growing with the time passing, negative and
imaginary) concentrations can and will appear. I am not competent to explain in
physical and chemical terms whether such values of « are realistic. If they are, then
different models are needed to be worked out with this sort of solute transport
problems.

The last example which I wish to present returns us to the linear advective
solute transport model with the constant governing parameters, Eq. 10.21. How-
ever, at this time the initial condition is nonzero, and the boundary condition is
Zero:

C(x,0) = f(x) (10.47)
C(0,1) = 0 (10.48)

The solution to this problem for the solute carried by the streamlines with the
actual pore velocity U, is

Cy,(x,1) :f( - %)exp(—%t) (10.49)
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The total solute concentration C(x, f) can be obtained by summing with pertinent
weights the concentrations provided by streamlines with different actual pore
water velocities, Eq. 10.19. This last example shows that advective solute trans-
port models with nonzero initial conditions, like this one, can be simple and
flexible instrument in planning groundwater restoration and protection programs.

All problems in this chapter are one-dimensional. This is done in part to make
presentation of the suggested approach simple and transparent. Nevertheless, the
advective transport along streamlines is one-dimensional. To obtain two- and
three-dimensional picture, it suffices to solve the corresponding transport equations
along different streamlines within the object.

The other reason is that, in my opinion, the use of complex two- or three-
dimensional problems complicates the simulations and specially the data prepa-
ration, but does not add reliability to the simulation results, since involves
numerous assumptions about two or three dimensional structure and properties of
the simulation objects which cannot be tested. The example from Sect. 4.4 dem-
onstrates that one-dimensional models, more workable and manageable, can
compete with two-dimensional ones successfully. However, those who prefer
complexity can, likely, apply the method characteristics as well.

Whatever models we use, less or more complex, they are not more than
approximations of real objects and processes, always false according to Mesterton-
Gibbons (1989), Morton (1993), Beven (2005). However, these approximation
models yield practically acceptable results often. Otherwise nobody would use
modeling. The suggested approach does not differ from other approaches in this
respect. It is not absolute accurate description of the reality. However, as shown in
Sect. 10.4, it is able to solve complex enough problems. It does not use fictitious
ad hoc parameters like the dispersion coefficient, but only real physical entities like
hydraulic dispersion and shares of the total flux carried by streamlines with dif-
ferent velocities which can be evaluated by the use of nonreactive tracers or even
reactive if values of their properties responsible for their interaction with sur-
roundings are known. Of course, we cannot evaluate numerically the uncertainty
of our simulations in a provable way. However, the suggested approach with its
flexibility in fitting factual observations seems to me better and practical than the
model which is not sound physically and mathematically and is not able to fit the
observed data.

For realization of this approach, it is necessarily that each field experiment of
mass transport would include observations on, at least, one nonreactive tracer. It is
very important to evaluate the maximal pore velocity as accurately as possible. It
means more often sampling of the solution in the very beginning of the solute
transport experiments. It is desirable that the sampling was going on as long as the
solute concentration stays measurable.


http://dx.doi.org/10.1007/978-3-319-03569-7_4

References 169
References

Appuhamillage TA, Bokil VA, Thomann E, Waymire E, Wood BD (2010) Solute transport across
an 20 interface: a Fickian theory for skewness in breakthrough curves. WRR 46:21.
doi:10.1029/2009WR008258

Batu V (2006) Applied flow and solute transport modeling in aquifers: Fundamental principles
and analytical and numerical methods. CRC Press, Taylor & Francis Group, Boca Raton, US,
p 667

Batu V (2010) Estimation of degradation rates by satisfying mass balance at the inlet. Ground
Water 48(4):560-568

Batu V, van Genuchten MT, Parker JC (2013) Respond to the comment by Gorokhovski. Ground
Water 51(1):5-8

Beven K (2005) On the concept of model structural error. Water Sci Technol 52(6):167-175
(IWA Publishing)

Bolotin VV (1969) Statistical methods in structural mechanics. Holden-Day, San-Francisco,
p 240

Brigham WE (1974) Mixing equations in short laboratory columns. Soc Pet Eng J 14:91-99

Brown GO, Hsieh HT, Lucero DA (2000) Evaluation of laboratory dolomite core sample size
using representative elementary volume concepts. WWR, 36(5):1199-1207

Delleur JV (2006) Elementary groundwater flow and transport processes. In: Delleur JV (ed)
Handbook: groundwater engineering, 2nd edn. CRC Press, Florida, p 1320

Dispersion (2013) Hydrogeology, Wikipedia. http://en.wikipedia.org/wiki/Hydrogeology

Dusek J, Dohnal M, Vogel T (2007) Pollutant transport in porous media under steady flow
conditions. http://www.cideas.cz/free/okno/technicke_listy/4tlven/TLO7EN_3112-6.pdf, Czech
Technical University in Prague

Gelhar LW, Welty C, Rehfeld KR (1992) A critical review of data on field scaled dispersion in
aquifers. WRR 28:1957-1974

Gorokhovski V (2012) Effective parameters of hydrogeological models. Springer, Berlin, p 168

Gorokhovski V (2013) Technical commentary on “estimation of degradation rates by satisfying
mass balance at the inlet” by Vedat Batu, 51(1): 5-8. In: Batu V (ed) Ground water 48(1):
560-568

Kreft A, Zuber AA (1978) On the physical meaning of the dispersion equation and its solutions
for different initial and boundary conditions. Chem Eng Sci 33:1471-1480

Kreft A, Zuber A (1979) On the use of the dispersion model of fluid flow. Int J Appl Radiat Isot
30:705-708

Mesterton-Gibbons M (1989) A concrete approach to mathematical modelling. Addison-Wesley
Publishing Company, Boston, p 597

Morton A (1993) Mathematical models: questions of trustworthiness. Brit J Phil Sci 44:659-674

Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic
media. WWR 26:1749-1758

Parker JC, van Genuchten MT (1984) Flux-averaged and volume-averaged concentrations in
continuum approaches to solute transport. WRR 20(7):866-872

Paseka Al, Igbal MZ, Walters JC (2000) Comparison of numerical simulation of solute transport
with observed experimental data in a silt loam subsoil. Environ Geol 39(9):977-989

Rats MV (1968) Heterogeneity of rocks and their physical properties (Heoaopojnocts | opiibix
[lopox 1 Ux Dusnueckne Ciorictsa). Nauka, Moscow, p 108 (in Russian)

U.S. EPA (1987) Handbook: ground water, UPA/625/6-87/016, p 228

Xu M, Eckstein Y (1995) Use of weighted least-squares method in evaluation of the relationship
between dispersivity and field scale. Ground Water 33(6):905-908


http://dx.doi.org/10.1029/2009WR008258
http://en.wikipedia.org/wiki/Hydrogeology
http://www.cideas.cz/free/okno/technicke_listy/4tlven/TL07EN_3112-6.pdf

Chapter 11
Conclusion

Great physicist Nobel Prize Winner Feynman (1965) wrote. “Science is uncertain;
the moment you make a proposition about a region of experience that you have not
directly seen then you must be uncertain. But we always must make statements
about the regions that we have not seen, or whole business is no use”. Hydro-
geological modeling, as hydrogeology as a whole, is a science. Even more, they
are an applied science. Their results are used for practical and often very
responsible decision making. Hydrogeologists, including modelers, usually, if not
always, “must make statements about the region we have not seen” and make
decisions based on incomplete and erroneous data (US EPA 1987). Therefore, the
issue of finding effective decisions under condition of uncertainty is one of the
most important for them and for the users of the information provided by them.

Contemporary computational technique permits simulating about any predictive
problem based on up-to-date hydrogeological theories and concepts. The real issue
is reliability of the simulation results, their uncertainty. Geological objects and
their properties are not known in full and how the unknown can affect the simu-
lation results is impossible to evaluate. Hornung (1990) writes: “One cannot
substitute lack of theory and/or data by sophisticated mathematical models for
parameter identification”.

Thus, effective decisions, the best possible decisions in some predefined sense,
must be the goal. Nevertheless, those decisions are still uncertain and do not
warrant success. Even a post audit demonstrating failure or success of a decision
does not mean that the decision was bad, or good. In 1960s or 1970s I have, read a
book by an American author, I guess the author is H. A. Simon, about decision
making. One of his examples impressed me strongly. A person who needs to come
to New York from San Francisco asks his friend whether it is better to fly or to go
by car or train. The friend advises to fly. The person flies. The airplane crashes.
The person perishes. Thus, the post audit is disastrous, but does this mean that the
advice and the decision to fly were bad? The successful post audit does not make
the corresponding decision good either. Possibly, the same result could be
achieved in more effective economically or technologically ways. Thus, we must
judge the quality of decisions, considering only the information available at the
time of the decision making.
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In my opinion, the engineering experience, where it exists, seems to be the best
practical tool for estimating probabilities of failures. For example, construction of
typical family houses in typical and well studied geological conditions makes
geotechnical explorations unnecessary often. Construction of small dams and
reservoirs might be also based on simplified or reduced explorations. Practitioners
know what models and model parameters are best for evaluating the dam stability
and the losses of water from the reservoirs in given geological conditions. They
may be wrong sometimes, and the rate of the failed decisions can be interpreted as
an approximation of the uncertainty.

However, what if the required experience does not exist? This happens usually
in with unique projects which failures can cause great financial or environmental
loses. This book suggests one of possible approaches to how “to do the best” in
such situations. The contemporary computers and computational techniques permit
developing a surrogate of the engineering experience, applying simulation model
or models based on geological considerations to more complex models with fully
known properties, called real worlds. (The certainly known details of actual
objects can and must be included in the real worlds). Comparing the results
obtained by a simulation model (or models) applied to numerous real worlds with
different properties and their distributions permits evaluating how different factors
could affect the simulation results for a given predictive problem. This is what I
call the two level-modeling. Essentially it is the Monte Carlo simulation only the
other way around: the real worlds are changing, but the predictive model remains
the same only its effective parameters are different for different real words as
demonstrated by the conceptual examples in Chaps. 5-8.

Since the factors affecting the ‘observations’ in the real worlds are numerous
and not all of them are taking into consideration in the simulation model or
models, the issue arises how to generalize the results of model calibrations on
different real worlds in a practical, workable, way. The transforming mechanisms,
describing how the actual geological parameters convert into effective parameters
of the simulation model in the accepted formulation of the predictive problem, can
be one way of such generalization. The transforming mechanisms discussed in
Chaps. 6-8 demonstrate clearly that in the case of dynamic processes such as
underground water flow and mass transport the converting of actual properties into
effective parameters is not of a statistical nature. The effective parameters are
characteristics of the systems made up by impacts, geological conditions, struc-
tures of models, boundary conditions, criteria of effectiveness, monitoring net-
works and time. The transforming mechanisms provide the effective parameters
only for the systems in which they are obtained. Any changes within the systems
lead to changes of their transforming mechanisms. Thus, the transforming
mechanisms and parameters effective for predicting water table or hydraulic heads
may not be effective for evaluating streamlines or fluxes or solute transport.

The transforming mechanisms, in particular their affecting factors, can be a tool
for developing the methodology of field investigations. They demonstrate how
important is the knowledge about geological properties of different parts of the
object for the accepted formulation of the predictive problem. They can be applied
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to formulate and solve inverse problems or, more accurately, to find actual
parameters of more sophisticated models (objects) applying less complex inter-
pretation models (Chap. 9). The suggested approach is similar to the approach to
interpreting geophysical data and in particular to the data of the electric pros-
pecting. And often the correctness or incorrectness of a given formulation of an
inverse problem can be evaluated prior to starting field explorations.

It should be emphasized once more that the transforming mechanisms and two-
level modeling do not eliminate the uncertainty of the simulation result. I do not
insist also that the suggested approach is the only possible or the best for allevi-
ating the issue of the uncertainty of hydrogeological simulation results. I hope that
this work can help in search of other, may be quite different, ways to making
hydrogeological modeling more informed and consequently better.

In this edition of the book, a new chapter, Chap. 10, is included. It is devoted to
solute transport through porous media. The classical convective—dispersive model
of the solute transport is that rare case when the model recognized by scientific
community does not do the job it is supposed to do. The cause of this is two
governing parameters of the classical model. One of them is the mean pore
velocity which excludes from simulation hydrodynamic dispersion, the main factor
affecting solute transport when the convective transport exceeds the diffusion
process considerably (US EPA 1987). The second is the dispersion coefficient, a
fictitious parameter which, as if, compensates for exclusion of hydrodynamic
dispersion, but how it does this job was never explained. The method suggested in
Chap. 10 is based on advective solute transport equations including hydrodynamic
dispersion directly. The method reduces the solute transport model to solving
partial differential equations of the first order and is very flexible. The ways of
evaluating hydrodynamic dispersion are suggested also.

Hydrogeological modeling is a science only in part. Its considerable component
is art requiring imagination and boldness. And if a scientific method in hydro-
geological modeling exists, it “is nothing more than doing one’s damnedest with
one’s mind, no holds barred,” as the other Noble Prize Winner (Bridgman 1955)
wrote. He likely meant physics, but I believe, this is true for hydrogeological
modeling as well.
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Afterword

Before coming to the United States in 1991, I worked for 35 years in applied
geophysics, hydrogeology, geological engineering, and as a professor at two
Universities in the Soviet Union. In this country I work for 20 years: with a private
firm on projects of Environmental Protection Agency (U.S. E.P.A.), as an
instructor in a few colleges, a developer of models of underground flow and mass
transport in the University of Georgia, where I received a Master Degree in
Applied Mathematics, and as a grantee with U.S. E.P.A. I think that comparison of
my Soviet and American experiences may be of interest for readers.

In the very beginning of my professional carrier, I tried to apply statistical
methods as much as I could to the data obtained by my colleagues and me. My
colleagues were appreciative when I used such statistical methods as regression
analysis, analysis of variances, discriminant analysis and some others to their data
especially when the data sets were huge. The methods made their reports look
more considerable and scientific. But they were usually skeptic about confident
intervals and probabilities related to hypothesis testing, regressions and so on.
Their skepticism, based on their practical experience and common sense, made me
reflect on the role of the statistical methods in geological applications. The results
of my reflections are presented in Chap. 3. Briefly, although statistics is an
effective tool for analysis of geological information, it is useless for the provable
evaluating the uncertainty of simulation results in the case of modeling dynamic
processes. In 1974, I wrote a pamphlet (Gorokhovski 1977) in which I discussed
this issue. Many colleagues were positive about my work in personal communi-
cations. But a couple of well known geologists stopped speaking to me for pretty
long time. However, no positive or negative reviews appeared in professional
publications. An American publisher bought the right to publish the pamphlet and
I got my first five hundreds American dollars. This made my wife Inna happy: she
could shop in ‘Berjozka’, where only people having foreign currency could shop,
the privilege not available to most Soviet citizens. But the pamphlet was never
published abroad.

At that time I have already been aware of the philosophical concept that all
models are false and therefore it is impossible to prove the validity of modeling.
But we can reiterate about the uncertainty of the simulation results as much as we
wish. The models remain our tool, likely our best one, for envisioning the effects

V. Gorokhovski, Effective Parameters of Hydrogeological Models, 175
Springer Hydrogeology, DOI: 10.1007/978-3-319-03569-7,
© Springer International Publishing Switzerland 2014


http://dx.doi.org/10.1007/978-3-319-03569-7_3

176 Afterword

induced by natural or man made impacts on geological surroundings. So in my
opinion, the goal should be finding how to achieve the best with what we have, as
US EPA (1987) states.

Once, while preparing simple problems for my students on evaluating effective
hydraulic conductivities, like those presented in Sect. 6.2, I found that some of the
effective hydraulic conductivities obtained by the least squares method are nega-
tive. It was not the first time that I obtained physically incorrect effective
parameters. Following to the common practice, I discarded those results as
incorrect based on the definition of incorrectness. However, formally the definition
assumes the absence of a mathematical solution. The examples were so simple that
they permitted obtaining analytical solutions. Thus, solutions exist, were unique
and stable. Nevertheless some of the solutions had physical meaning, being
positive, and some did not. Thus, the issue could not be related to the model
identification problem formulation. Then what was this? Two weeks of jogging
and thinking led me to the concept described in Chap. 5.

I was happy with my finding, in particular with the properties of the affecting
factors. However my concept of the transforming mechanisms and their properties
seemed so self-evident that I was concerned that somebody else would come to it
soon inevitably. To keep my priority, I wrote a paper (Gorokhovski 1982) and sent
it in a paper repository. Such repositories in the Soviet Union did not require
independent peer reviews and provided a very fast registration of the received
material as a paper (3 months). Then the paper could be referred to as a
publication. (It could be ordered and bought also.) Later the concept was published
two more times (Gorokhovski 1986, 1991).

To my knowledge, the concept was original. Since it contradicted to the
common notion, existing at present even, that the effective parameters of
hydrogeological models are some statistics of the pertinent property values, the
examples in my publications were such that they could be easily checked using a
calculator or even by hand. But again, my colleagues demonstrated little interest to
the concept. No response, positive or negative, appeared in professional media,
though in personal communications they called it interesting and promising.
(Sorry, I am not accurate. I had one negative response. A prominent Soviet
hydrogeologist after reading my first paper on the transforming mechanism,
Gorokhovski (1982) told me: “You are not modest”, and that was it. The reason
for such severe judgment was the phrase ending Chap. 5 about the possibility of
using the transforming mechanisms not only in hydrogeology but in other fields as
well.) So I decided that there was a need for a detailed publication with more
examples, maybe slightly more sophisticated, but transparent still.

At that time I worked as an associate professor of the Geology and Geography
Department of the Rostov State University. My teaching load in the Spring
semester of 1991 was 16 class hours a week, plus 10 course projects, plus 13
master thesis, plus consulting. (I mention only my last semester with the
University, because I remember it distinctly. But that load was close to average, if
to exclude master theses which we did not have in the winter semesters.) My desk
was one of five in a shared office. A typewriter occupied the sixth one. We
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consulted students and performed all necessary jobs in this office. For a short time,
a real PC was available to me but only two hours per week. I was deprived even
those hours very soon. Instead I got, in my full possession, a Soviet PC. The PC
had a RAM of 64 Kb and a tape recorder instead of a hard drive. My graduate
students used this PC for solving some simple problems related to their theses. I
used it for preparing my lectures and other materials and for solving some
problems related to teaching. In other words, there was no hope for me to develop
my concept further in those circumstances.

In 1990 I met and befriended Dr. Zia Hosseinipour, an American scientist
working on a project of cleaning up the low flow of the river Don. Returning to the
United States, he asked me whether I would like to work there. My response was
immediate: “Yes.” For me as for most Soviet scientists working in the United
States was a dream. The American science, scientists and work conditions,
including salaries, were a benchmark. I hoped also that I would be able to continue
my work on the concept of the transforming mechanisms and some other projects.

In the spring, 1991, I got an invitation from an American firm to work on a
project. To have an invitation for a job abroad was not enough for leaving the
Soviet Union at that time. You needed your bosses’ consent. My University bosses
did not want me to go. To make a long story short, being in complete despair, I
took the liberty calling to Professor V. I. Sedletski. We were not friends. He was a
head of the Mineralogy Chair of the department. More essential, he was a vice-
president of the North Caucasus Science Center of Higher School. He told me that
he needed a couple of days. Then I should start the process again. I got the desired
permission to leave for the United States four days later. I owe the deepest
gratitude to V. I. Sedletski still.

About 2 months later Zia Hosseinipour introduced me to Dr. James Martin,
Head of the Athens, Georgia, branch of the company that hired me. Dr. Martin
immediately took me to my office. My first American shock happened when I had
seen it: two desks, one with PC and the other with telephone and a chair to travel
between the desks. The office was mine only!

I started working, and nobody asked what I was doing during the first 3 months.
It was absolutely different from my previous experience. In the Soviet Union,
every supervisor asked you how your work was going, whether it was going
accordingly to the planned schedule, and so on. And most annoyingly, it did not
matter whether the supervisor understood or not what you were doing, the
supervisor told you what to do and how to do it. So I was a little worried that Dr.
Martin did not ask, teach and give advices to me. Zia explained that James
considered me as an expert in my field. When I finally finished my project, he
would send it for review. At the time being, if I had a problem, I should go to
James and he would do everything he could to help me.

I got a problem when the project was almost finished. James passed me an
instruction on conducting the sensitivity analysis. According to the instruction, I
had to select the most important model parameters and to evaluate the model’s
sensitivity to each selected parameter, having fixed all others on their average
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levels. In my case, the block of the model describing mass transport through the
vadose zone, contained 23 parameters when the zone was assumed homogeneous.

How to decide which parameters are most important and on what average levels
the not so important parameters should be fixed were not clear: the task was to
validate the model in general without any specificities related to object structures
and properties. Even if I selected the important parameters correctly and fixed all
others on the right average levels, why would the sensitivity of a parameter
obtained in such a way be representative? It can depend essentially on combining
particular values of entire sets of the governing parameters. As I understand, the
requirement or advice to fix all other parameters on their average level was
dictated by the desire to make the sensitivity analysis workable. But there are other
ways to make the sensitivity analysis workable, at least in my case. The most
natural way is to perform the sensitivity analysis in the dimensionless form as I
taught my Soviet students to do. My model was governed by three dimensionless
parameters in the steady-state version and by four or five ones in the transient
version. All these parameters are important. The sensitivity could be studied in the
maximal realistic domain comprising all participating parameter values. The
results for such a small number of the dimensionless parameters can be presented
as contour maps. They can also be recalculated for any set of all actual parameter
values. So I came to James and refused to do the sensitive analysis as the
instruction required. He asked: “Why?” I explained. And, the second shock, his
response was: “Well, do it as you consider the best”. In the Soviet Union, my boss
would either tell me: “Do not pretend that you are the cleverest one. Do what you
are told to do” or, if I were more fortunate, the boss would make me send a
detailed letter to the instruction’s authors and wait for their response.

I could say more positive words about the conditions under which scientific
researches are being done in the United States. Sure there is control. But this is not
a control by the administration usually but by peers. They review your project, its
implementation on different stages and the final product. And you can dispute their
conclusions if you disagree. The administration helps you, since you do the job.
(They are for you, not you for them.) They also help you to get any information
you wish. (I found here the Russian text books on mathematics which had been
used in Russian schools more than sixty or even seventy years ago. I could not find
them in the Soviet Union.)

However, not all my impressions related to scientific research in the U.S.A. are
so positive. I have been surprised by the standard approaches to the applied
scientific researches by many of my American colleagues. The above instruction
on the sensitivity analysis is just one example. It describes a standard procedure
which does not take in consideration the specificity of the situation. The standards
are useful and convenient. They save time and serve as a safeguard for engineers.
But they do not have any relation to the real science and scientific research.
Geological explorations deal with objects which are not known in full. In this
sense they are scientific, and the best way to conduct them is “doing one’s
damnedest with one’s mind” (Bridgman 1955). I taught my Soviet students that if
they act as engineers, they have to follow standards to protect themselves, even if
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they do not like or disagree with the standards. But if they work as researchers or
scientists, the only limitation on their work is the detailed protocol of their actions
and clear presentation of their concepts and results. I rarely observed my American
colleagues, realizing such a scientific approach, though the protocol for them
seems to be about a holy thing.

Soviet hydrogeological models had bad interfaces in my time. This required
that their users understood well hydrogeological structure and properties of the
object as well as the process they were simulating and its computational algorithm.
They must be prepared to make non-trivial decisions sometimes. On the other
hand, the American models are user friendly: their developers try to foresee and
prevent any issue that a user could meet. And this is very convenient and effective,
if the modeler is a professional. However, the convenience permits performing
modeling by lay-modelers as well. The first American model, I worked with, led
you through simulations, prompting what to do and even gave optional model
parameters values if you had issues with their assigning. Once a colleague, who
had a master degree in the environmental protection and worked with the same
model, asked me to explain what the hydraulic conductivity is. In turn I was
interested to know how she simulated her problems, having no notion on the
hydraulic conductivity. She explained that she just followed prompts of the
software while assigning different properties to different soils. I think that the
example does not require any comment about the uncertainty of simulation results.

The above example leads me to comparing the Soviet and American education
systems. When we just came to the United States, our American friend who was
teaching mathematics and Russian in a high school invited my wife to visit a
lesson on mathematics in his freshman year class. When I met my wife that
evening, she was excited: the lesson started with repeating the table of
multiplication. In the Soviet Union, we had to learn it by heart in elementary
school and never returned to it again. I even cannot imagine a student of the fifth
grade not knowing the multiplication table in the Soviet Union.

I taught precalculus in several colleges in this country. There was no such
subject in Soviet Universities and Institutes in my time. All Soviet students were
studying the same subjects and in the same details. (Those who wanted to get some
additional knowledge usually had the opportunity to do this.) The students entering
the Universities and Institutes that required knowledge of algebra, geometry and
trigonometry had to pass entry tests. If they were not prepared properly, they
failed.

The students in geology, hydrogeology, geological engineering and geophysics
of all Universities had the same syllabi. (Again, those who wanted to get some
additional knowledge usually had the opportunity to do this.) Any future
geophysicist studied general geology and hydrogeology, paleontology, historical
geology, mineralogy, tectonics, geology of the Soviet Union and so on, though in
less detailed comparing to geologists and hydrogeologists, besides geophysics and
pertinent physics and mathematics. So it was expected that geophysicists were
aware of hydraulic conductivity, geological age, and most other main geological
notions and geologists and hydrogeologists have the knowledge on geophysics



180 Afterword

which permits understanding of methodology and interpretation of geophysical
explorations. Such education makes easier teamwork and even changing the fields
of interest as it happened to me.

When I met my first American colleague in his University office, he was on the
phone, explaining somebody the method of characteristics. This was also some
kind of surprise. I knew just a few Soviet hydrogeologists who were able to
explain the method of characteristics: maybe, half dozen not more. And here the
first one met knew. I was delighted. But later I came to the understanding that
many American hydrogeologists are rather mathematicians applying mathematics
to hydrogeology. Hydrogeology seems secondary for them, just a field for the
applied mathematics.

Returning to my first American model, it was defined as a screening level one
and not interesting per se. It comprised two blocks. The first one simulated the one
dimensional mass transport from a landfill through the vadose zone which could be
piece-wise homogeneous. The second block simulated filtration within a
homogeneous confined aquifer on the horizontal base. The flow in the aquifer
was considered one-dimensional and steady-state with constant and known
seepage. No sorption, no degradation. The goal was to evaluate the arrival time for
the contaminant from the landfill to an intake well which also worked in a steady-
state regime.

I was interested in the first block mostly. The block simulates input of the
pollution in the confined aquifer which seems to me a little strange. Sensitivity
analysis of the simulation results showed that for some physically acceptable
values of the dimensionless parameters and the pertinent physical characteristics
the contaminant mass coming into the confined aquifer were negative. Before
writing my report, I advised the leader of the team working on the model
developing about my discovery. He did not show any surprise and told that this
problem was not major and would be corrected. I guess that he knew already about
the problem.

I mention this story not to demonstrate that American modelers are bad.
Contrary, they are thorough professionals. Although the model I worked had been
in practical applications already, it was in a stage of development still, so errors
could happen. The reason for me to tell this story came later when I was presenting
my dimensionless sensitivity analysis on a conference. I concluded my
presentation by saying that I discovered the negative concentration in the output
of one block. We cannot expect that a modeler solving a practical problem has
time and possibly skills for performing such thorough analysis. I suggested that
every model which is to be used in practical applications must be tested and
licensed by an independent body. The response of the audience was instant and
unanimous: “No, this is not the American way”. My arguments that they go to
licensed doctors and lawyers, send their kids to licensed schools and so on did not
change the response of the colleagues: licensing the models developed by them is
not the American way.

Let us return to my concept of the transforming mechanisms and two-level
modeling. In 1993, I told a known American geostatistician that effective
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parameters of hydrogeological simulation models are not statistics and explained
why. He answered that it was very interesting and that he liked my approach. Later
I sent him my paper (Gorokhovski 1996). His response was brief: “I like this less”.
I never heard from him again. I gave my paper to another well known
geostatistician during the same conference. He promised to review the paper and to
send his review to me. He did not. I asked him about his opinion on my paper
when we met in at another conference. He told me that he read it in airplane on his
way back from the previous conference, was very interested and going to send me
a review but could not find my paper. He asked to give him one more copy. I sent it
immediately. I never heard from him again. I tried to publish several papers on my
concept and made several presentations in the United States. Some my papers were
rejected. (Interestingly, one review started with phrase: “I do not understand what
the author is about”. Well, if you do not understand, it would be reasonable to
return the paper to the editor. But the reviewer continued with unmerciful critique
of what he or she did not understand. When I asked the editor to pay attention to
this fact, he responded that he trusted his reviewers.) Any way, a couple of papers
and texts of my presentations were published. The response was the same as in the
Soviet Union: no response. My conclusion was also the same: I have to describe
the concept in a more detailed and still transparent form. To do this has taken a
long time and arduous effort which I do not want to describe here. But if you read
these lines, then I have fulfilled my goal. It would not be possible in Russia, and I
am grateful to the United States of America for giving me this wonderful
opportunity,

P.S. to the second edition:

In several lines above, I criticize an American reviewer of my first attempt to
publish a paper in U.S. My recent experience shows that the issue is not a country
but rather reviewers and editors themselves. Working on Chap. 10, of this edition,
I decided to publish a part of it related to the suggestion to reject convective-
dispersion model and to include hydraulic dispersion in solute transport simulation
process directly, i.e., to consider only advective transport under different actual
pore water velocity and to sum properly the results obtained for different veloci-
ties, in a respected European hydrogeological journal. The paper was rejected. The
reviewers recognize existence of the issue with simulation of the long tails of the
observed long tails of breakthrough curves but hold that it can be resolved by
many ways. They do not mention a work stating this fact and ignored the list, long
enough, of the works, to which I refer, whose authors concerned with the issue
still. One reviewer states: “To derive the velocity distribution and the share of flux
from different flow paths from non-reactive tracer transport, it is not acceptable.”
Why it is not acceptable remains a puzzle. The reviewer ignores my demonstration
related to evaluating and usage those velocities. Or: “The hydrodynamic disper-
sion in the model was accounted by dispersion coefficient”. My argument on
impossibility to find physical and mathematical description of the mechanisms
permitting the dispersion coefficient to compensate for hydraulic dispersion are
just ignore as well as on inconsistence of physical representation of the dispersion
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coefficient, and so on. The reviewers and editor do not dispute my physical or
mathematical arguments. The reviews are rather statement of the absolute belief in
the convective-dispersive model and the fictitious dispersion coefficient which
does not require any scientific argumentation.

Somewhere in 1980s, I submitted a paper criticizing existing then approach to
assigning effective parameters to hydrogeological simulation models in a Soviet
journal. Once, being in Moscow, I met one of the reviewers of the paper who told
me that his review of my paper was positive. Since I heard nothing from the
journal, I met its editor. The editor told me that they would not publish my paper,
since their goal was promoting the method I criticized. “What about the positive
review?” I asked. The answer was: “You are a mature man. You should know that
there is no problem for us to get as many negative reviews as we want”. We parted
peacefully and the paper was never published. However, I like more the approach
of the Soviet editor than the letter from the editor from the European journal: “We
are sorry that your submission was not successful this time. We do appreciate your
interest in publishing in HJ and hope that you will consider doing so again in the
near future”.
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