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PREFACE

The accumulation of large amounts of ash from fossil fuel combustion for electric
power plant generation is becoming a major environmental concern in the United States.
Furthermore, stringent environmental regulations mandated by the Environmental
Protection Agency through the Clean Air Act, Clean Water Act, Resource Conservation
and Recovery Act, as well as state and local environmental regulations may result in even
more ash production with subsequent contact with the environment. The concentrations
of trace elements in coal residues are extremely variable and depend on the composition
of the original coal, conditions during combustion, the efficiency of emission control
devices, storage and handling of byproducts, and climate.

The research papers in this book were presented as a part of the Sixth
International Conference on the Biogeochemistry of Trace Elements held at the
University of Guelph, Ontario, Canada, from July 29-August 2, 2001. The purpose of this
conference was to present current knowledge on the source, pathways, behavior and
effects of trace elements in soils, waters, plants and animals. In addition, the book also
includes invited research papers from scientists who have done significant research in the
area of coal and coal combustion byproducts. All the research papers presented herein
have been subjected to peer review. The editors have arranged the articles systematically
by topic, beginning with the introductory chapter entitled “The Production and Use of
Coal Combustion Products” followed by the sections on Environmental Impacts of Coal
Combustion Residues, Trace Elements in Fly Ashes, Transport and Leachability of
Metals from Coal and Coal Ash Piles, and the Use of Coal Ash as Agricultural Soil
Amendment.

This book has been published for a variety of readers, including public health and
environmental professionals, industrial hygienists, environmental consultants, waste
management professionals, and academicians. It may also prove valuable to scientists
conducting research on coal and coal combustion byproducts.

The editors wish to thank the contributing authors for their diligence in providing
the changes requested by the reviewers and for their patience in waiting so long for those
to go into print.

Kenneth S. Sajwan

Ashok K. Alva
Robert F. Keefer
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THE PRODUCTION AND USE OF COAL COMBUSTION PRODUCTS

Tracy Punshon, John C. Seaman', and Kenneth S. Sajwan2

! Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken
SC 29802 USA

?Department of Natural Sciences and Mathematics, Savannah State University
Savannah GA 31404 USA

ABSTRACT

Coal combustion byproducts (CCBs) arising from energy generation are the most
abundant waste streams worldwide. Legislation aimed at reducing environmental
pollution associated with coal combustion will continue to add to this waste stream into
the future, increasing the need to develop pertinent and safe end uses for these materials.
While production of CCBs continues to rise so also do the costs associated with their
disposal and landfilling. This chapter presents updated information about the production
of the main categories of CCB in the U.S., outlining their individual characteristics and
describing their various end uses. Further, it introduces the reader to current research on
potential novel end uses of CCBs, and their effect on the environment.

INTRODUCTION

During 2000, 860 million metric tons (Mt) of coal were burned in the U.S.!,
producing 98 million Mt of coal combustion products (CCPs). This term is used in
reference to the various residues arising from the combustion of coal for electrical
energy, and has evolved over recent years from ‘coal combustion waste’ and ‘byproduct’.
The changing nomenclature 1nd1cates the increasing recognition of its standing as a
potentially beneficial commodity" 2. CCPs consist of fly ash (FA), bottom ash (BA),
boiler slag (BS) and flue gas desulfurization residue (FGD or synthetic gypsum), the
latter being the most recent addition to the product group following the Clean Air Act of
1990. Currently, FA is the most abundant of the CCPs; worldw1de, the coal-fired power
plants produce in excess of 500 million Mt FA every year’. Disposal of these products
through insufficient reuse is an immense burden on the environment, and the
develog)ment of economically and environmentally sound uses is a recognized global
need*®, The majority of unused CCPs are disposed of in lagoons’, disposal mounds and
landfill sites, although due to diminishing space and increasing expense associated with
landfilling the latter option is becoming increasingly scarce and, research shows,
environmentally unsafe in the long-term®°.

The main hazards associated with CCPs arise from the potentially toxic trace
metals, metalloids and excessive concentrations of soluble salts that leach from them'®,
provoking various toxicity responses in biota''. Worldwide, CCPs are most commonly
employed in vanous civil engineering applications; such as concrete production and road
construction'?, although there is a great need to expand potential uses for these abundant

Chemistry of Trace Elements in Fly Ash, edited by Sajwan et al.
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materials. Overall, the total amount of CCPs used in the U.S. in 2000 amounted to only
29% of the total produced', leaving 69 million Mt for disposal. Finding disposal and
recycling solutions congruent with good environmental stewardship represents an
enormous challenge to science and engineering. Recent scientific research carried out on
these materials — included in the following chapters of this volume — continues to form a
vital information base for safe CCP reuse, disposal, and risk assessment.

FLY ASH

Fly ash is a fine powdered ferroaluminosilicate material made up of hollow,
glassy particles enriched with Ca, K and Na'> !4, and with various trace elements (such as
As, B, Mo, Se and Sr) condensed upon the surface13 1316 Various types of particles can
be found within composite FA', ; cenospheres — true hollow particles, plerospheres —
filled will smaller aggregations known as microspheres, and opaque magnetite spheres,
which are related to the pyritic content of the source coal”. Due to its fine composition,
FA is collected by mechanical filters or electrostatic precipitators from the flue gas. It is
also pozzolanic in nature; a siliceous (or combination siliceous and aluminous) material
that, when in finely divided form and in the presence of moisture, chemically reacts with
calcium hydroxide at normal temperatures to form cementitious compounds'®,

In the United States, classification of FA by American Standards of Testing and
Materials (ASTM C618) separates the ashes into either class F or C. Specifications used
in the rest of the world have been based on this classification'®. In the European Union
(EU) a common specification known as EN 450 is being developed, although
classifications tend to be specific to each country of origin. In the U.S. class F coal is
produced from burning anthracite or bituminous coal, and class C from subbituminous
coal characteristic of the western U.S.'°. Class C ashes are pozzolanic, and can be used
for the production of cement, whereas Class F are not. This distinction greatly influences
potential re-use options. In-general, fly ashes from subbituminous and lignite coals
contain greater quantities of CaO, MgO and SO5'®. A minimum limit of 50% is set for the
content of Si0,, Al,O;, and Fe,0; in class C ash, and 70% for class F.

BOTTOM ASH AND BOILER SLAG

Bottom ash is defined as an uncombusted material that settles to the bottom of the
boiler; boiler slag is formed when operating temperatures exceed ash fusion temperature
and the slag remains in a molten state until it is drained from the bottom of the
combustion chamber?. Bottom ash is granular and is similar to concrete sand*. Boiler
slag is a shiny, black granular material that has abrasive properties, and is often used as
grit for snow and ice control, structural embankments, aggregate and as road base
material (Table 1). The utilization potential of BA is influenced by its physical
characteristics, for example the grain-size distribution, staining potential and colour?'. In
the scientific literature, the BA derived from coal and municipal solid waste (MSW) are
frequently confused; and some workers suggest that these materials have considerable
similarities??, or are similar in nature to FA. However, in the present volume, which
focuses on the chemical properties of the CCPs, distinctions are made between those
arising from coal, and those from the combustion of other solid materials.

FLUE GAS DESULFURIZATION RESIDUES

The Clean Air Act Amendments of.1990 (CAAA *90 Public Law 101-549) placed
stringent restrictions on the production of sulfur oxide (SO,) from coal combustion, with
a two phase implementation plan, which required electric utility companies to reduce SO,
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emissions thereby reducing atmospheric pollution and the incidence of acid rain?>, The
majority of utility companies previously used high-sulfur bituminous coal, which was
thought to have significantly contributed to incidences of acid rain in North America.
Following the instatement of the act, many companies switched to low-sulfur coal or fuel
oil for partial and rapid compliance with the new regulations, although retrofitting power
plants with flue-gas scrubbing systems was ultimately necessary to fully comply with the
act. This change effectively resulted in the creation of a new waste stream, termed flue-
gas desulfurization residue (FGD).

Flue gas desulfurization residue is an alkaline material produced when SO, is
extracted from the flue gas of coal-fired power plants using a range of sorbents?* %,
There are several technologies currently in use, differentiated by the sorbent used and the
method of SO, extraction. They are: (1) lime or limestone-based, (2) magnesium-based,
(3) ammonium sulfate based (used in Europe®) and (4) dry injection techniques.
Respectively they generate: (1) calcium sulfite (CaSO;) and calcium sulfate (CaSOy); (2)
magnesium sulfite (MgSO;) and magnesium sulfate (MgSO,); (3) ammonium sulfite
[(NH4)SOs], ammonium sulfate [(NH,),SO4], ammonium carbonate [(NH;),CO;] and (4)
sodium carbonate (Na;COs3) and sodium sulfate (Na;SO4). Dry FGD systems have a
number of advantages over wet-production systems; they are less costly to maintain
(because processes such as thickening, centrifugation, mixing and vacuum filtration are
not required), they save energy by removing the need for reheating and pumping steps,
and they can be handled by existing systems ordinarily used for FA. The only
disadvantage, and one which is by far outweighed by the advantages, is that relatively
more sorbent is needed to efficiently scrub flue gases in a dry system, because the solid-
gas reaction proceeds at a slower rate than the liquid-gas reaction?.

FGD residues are a rapidly changing group of CCPs; research is continually
underway that aims to increase scrubbing efficiency®® and this results in higher sulfur
content of the final product. In common with other CCPs, the quality of the product also
varies, based on the type of coal burned, the type of scrubbing system used (i.e., wet or
dryzs) and the handling and stabilization procedures. Stabilization usually takes the form
of mixing the FGD with FA”", and this often changes the re-use options of the stabilized
material. Fly ash and additional quicklime are usually added to stabilize FGD filter cake
prior to landfilling?®. Due to their alkaline nature, FGD residues have potential value as
neutralizing agents” *® for agricultural soils which suffer from excessive acidity?®, or for
the alleviation of excessive sodicity **>'. Beneficial reuse of FGD and other CCPs is
generally based on bulk chemical analysis, although recent investigative analyses of
typical FGD and FA material demonstrate heterogeneous distribution of chemical species
within stabilized FGD residues32, which typically consist of mixtures of CCPs, excess
sorbents and reaction products. Further, the stability of these species over time cannot be
presumed; this is of particular importance when the compressive strength of CCP-based
construction materials is a feature of its use. For example, ettringite _
[CasAl(SO4)3(OH)12* 26H,0] minerals, which degrade the strength of cementitious
minerals, can form over time and may also influence the movement and sorption
reactions of potentially toxic trace elements®>>*.

PRODUCTION

The extent of CCP production and use in 2000 are shown in Table 1, expressed as
millions of Mt**. Currently, the most widely employed applications of CCPs remain in
civil engineering®’. The greatest re-use of FA and BA are in structural fill materials, with
2.3 and 1.3 million Mt used respectively. For BS, the majority is applied as blasting grit,
or used in the manufacture of roofing materials — representing a particularly efficient
reuse rate for this material (Table 1); whereas FGD residues are primarily used as
wallboard. Only 0.01 million Mt FA is currently applied to agricultural soils. There is an
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abundance of experimental work that has shown enrichment of potentially toxic trace
elements in plants grown on FA treated soils™ including (but not limited to) B, Mo,
As and Se. The leaching characteristics of the various products are the main limiting
factor to their widespread and safe use.

USE OF CCPs

Analysis of production and reuse data for abundant products such as FA in
previous years (Figure 1) shows that the percentage of total FA that is recycled has
increased concurrently with increasing FA production; from 7% in 1966 to 29% in 2000;
an increase in use of approximately 0.5 million Mt per year. On average the production of
FA has increased approximately 4.5% per year between 1966 and the present, or
approximately 1.3 million Mt a year. The amount of CCPs produced and our reliance on
coal as an energy source maintains the need for advances in both science and engineering
to increase reuse rates considerably. FGD is a relatively new material, and as such the
rate of use is much lower, as research strives to find safe applications for the material.
Rates of reuse of this material remain low; and are still below 10%. This is a concemn
because the production of FGD residues is quickly increasing, with only 12.9 million Mt
produced in 1987 and approximately 23 million Mt produced in 2000 (Table 1).

Novel uses of CCPs have been found in the fields of restoration, remediation and
stabilization. In terms of restoration, the combination of FA with other abundant
industrial by-products such as sewage sludge™ and biosolids, can result in a high quality
restorative material> *"* %2, and thus applied to eroding soils that require physical
stabilization in addition to chemical improvement. Application of FA to soils has been
shown to improve the physical quality of the soil by introducing different sized particles
into the profile, enhancing the water-holding capacity of sandy soils, and improving
drainage in clay soils’”**, Enrichment of various potentially toxic trace elements is a
frequently undesirable effect, and in terms of limiting potential health risks, moderate
rates of CCP are recommended for application to the majority of soils. However, an
important stage in the effective recycling of any abundant waste material lies in
determining what it primarily contains, and where these constituents are currently in short
supply. One novel and safe application of CCPs may lie in using the trace elements they
contain to amend nutrient deficiencies in depleted, disturbed or eroded soils. Punshon et
al.,”! applied FA and poultry biosolids to the site of previous soil-borrow area, in an
attempt to replace lost topsoil and revegetate the site. The study was conducted in the
southeastern U.S., an area with a typically leached and nutrient deficient soil profile. The
eroded soils benefited from co-application of FA and biosolids, showing slower water
infiltration rates, and a lower bulk density. Further, agglication of poultry biosolid in the
mixture amended Cu and Zn deficiency. Sajwan et al” combined FA with sewage sludge
(SS) and applied various mixture ratios (SS:FA of 4:1, 4:2, 4:3 and 4:4) to a crop of
Sorghum vulgaris var, Sudanese Hitche. (“sorgrass™) and found stimulation in biomass at
rates of 50-100 tons acre’’ of all ratios of SS:FA mixtures. Again, safe application rates
have to be determined prior to use. The combination of by products such as CCPs and
biosolid materials (both of which pose environmental health concern when stockpiled
individually in large quantities) can produce a material which contains both trace
elements, nutrients and organic matter.

When monitoring studies are extended for greater periods of time, deleterious
environmental effects such as the increase in electrical conductivity of the soil solution —
a common side-effect of FA application® — can be seen to subside after several years®.
Further research indicates that there are many more uses for FA. FA is similar to
volcanic ash, also an aluminosilicate-based material, which forms zeolite when
alkalized®. Zeolite materials have many uses as drying agents, deodorants, water-
softening agents, soil conditioners and as in situ soil amendments®> %, and regions of the



world in which these substances occur naturally are limited®. Furthermore, processing FA
into potassium silicate fertilizers is an additional proposed end use’. Potassium silicate
fertilizers produced from FA are soluble in weak citric acid solutions, which prevents
rainwater leaching from the soil profile, and retains the nutrients for plant uptake®. This
would also recycle nutrients such as Ca, Mg and Fe back into the soil. Finally there are
even studies which indicate that FA can be used in the manufacture of sorbents for use in
dry injection flue gas desulfurization processes®.

Reuse of FGD materials, although slower at present, may have considerably more
potential, especially if technologies continue to produce purer materials. Clark et al.*° list
the beneficial effects of applying FGD material to soil for remedying various chemical
and physical soil problems. Amendment can mitigate soil acidity, provide a source of
nutrients to plants and animals (e.g. Mg, K, Zn, Cu and B), reduce Al toxicity®', reduce
surface crusting, soil compaction as well as improving water infiltration and holding
capacity to prevent erosion and reduce sodicity’®*'. However, research into increasing
the safety of civil engineering applications of FGD materials is also ongoing **®, so that
these materials can be used without the hazards associated with metals or salts leaching
out.

CONCLUSION

There is great impetus for continued research into the beneficial reuse and
recycling of CCPs. The information presented here indicates both the enormity of the
tasks facing science and engineering in finding suitable end uses for CCP, and the
immense potential that exists for making coal combustion for energy a more sustainable
process.

ACKNOWLEDGEMENTS

This work was supported by Financial Assistance Award Number DE-FC09-
96SR 18546 from the Department of Energy to the University of Georgia Research
Foundation.

REFERENCES

L. Kalyoncu, R. Coal combustion products
http://minerals.usgs.gov/minerals/pubs/commodity/coal/874400.pdf, 2000.

2. Schlossberg, M.J., Sumner, M., Miller, W.P. and Dudka, S. Utilization of coal
combustion by-products (CBP) in horticulture and turfgrass industries: technical
and environmental feasibility studies. Proceedings of 6t International
Conference on the Biogeochemistry of Trace Elements. 2001. Guelph, Canada.

3. Kikuchi, R. Application of coal ash to environmental improvement.
Transformation into zeolite, potassium fertilizer, and FGD absorbent. Resources
Conservation & Recycling 27, 333-346. 1999.

4. Keefer, R.F. Coal ashes - Industrial wastes or beneficial byproducts?, in Trace
Elements in Coal and Coal Combustion Residues., R.F. Keefer and K.S. Sajwan,
Editors. 1993, Lewis Publishers: Ann Arbor. 3-9.

5. Horiuchi, S., Kawaguchi, M. and Yasuhara, K. Effective use of fly ash slurry as
fill material. Journal of Hazardous Materials 76, 301-337. 2000.

6. Praharaj, T., Powell, M.A., Hart, B.R. and Tripathy, S. Leachability of elements
from sub-bituminous coal fly ash from India. Environment International 27, 609-
6154. 2002.




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Twardowska, L, Tripathi, P.S.M. and Das, R.P. Trace elements and their mobility
in coal ash/fly ash from Indian power plants in view of its disposal and bulk use in
agriculture. Proceedings of 6th International Conference on the Biogeochemistry
of Trace Elements. 2001. Guelph, Canada.

Suter I, G.W., Luxmoore, R.J. and Smith, E.D. Compacted soil barriers at
abandoned landfill sites are likely to fail in the long term Journal of
Environmental Quality 22, 217-226. 1993.

Danker, R., Adriano, D.C., Barton, C. and Punshon, T. Revegetation of a coal fly
ash - reject landfill. Proceedings of 6th International Conference on the
Biogeochemistry of Trace Elements (ICOBTE). 2001. Guelph, Canada.

Adriano, D.C., Page, A L., Elseewi, A.A., Chang, A.C. and Straughan, I.
Utilization and disposal of fly ash and other coal residues in terrestrial
ecosystems. A review. Journal of Environmental Quality 9, 333-334. 1980.
Jackson, B., Shaw-Allen, P., Mills, G., Hopkins, W. and Jagoe, C. Trace element-
protein interactions in fish from a fly ash settling basin. A study using size
exclusion chromatography coupled to ICP-MS. Proceedings of 6th International
Conference on the Biogeochemistry of Trace Elements. 2001. Guelph, Canada.
ACAA Fly Ash Facts for Highway Engineers. 1995, American Coal Ash
Association Inc., 2760 Einsenhower Avenue, Suite 304, Alexandria, Virginia,
22314: Washington D.C.

Page, A.L., Elseewi, A.A. and Straughan, 1. Physical and chemical properties of
fly ash from coal-fired power plants with references to environmental impacts.
Residue Rev. 71, 83-120. 1979.

El-Mogazi, D.D., Lisk, D.J. and Weinstein, L.H. A review of physical, chemical
and biological properties of fly ash and effects on environmental ecosystems.
Science of the Total Environment 74, 1-37. 1988.

Mattigod, S.V., Rai, D., Eary, L.E. and Ainsworth, C.C. Geochemical Factors
Controlling the Mobilization of Inorganic Constituents from Fossil Fuel
Combustion Residues: I. Review of the major elements. J. Environ Qual. 19, 188-
201. 1990.

USEPA Wastes from the combustion of coal by electricity power plants. 1988,
U.S. Environmental Protection Agency: Washington DC.

Fisher, G.L. and Natusch, D.F.S. Size dependence of the physical and chemical
properties of coal fly ash., in Analytical methods for coal and coal products., C.
Karr Jr., Editor. 1979, Academic Press: New York. 489-541.

Manz, O.E. Coal fly ash: a retrospective and future look. Fuel 78, 133-136. 1999.
Halstead, W.J. Use of fly ash in concrete. 1986, Transportation Research
Board,NRC: Washington.

Bluedorn II, D.C. Recent environmental regulation of coal combustion wastes -
revised. Proceedings of 2001 Conference on Unburned Carbon (UBC) on Utility
Fly Ash. 2001: National Energy Technology Laboratory.

Kula, I., Olgun, A., Sevine, V. and Erdogan, Y. An investigation on the use of
tincal ore waste, fly ash and coal bottom ash as Portland cement replacement
materials. Cement and Concrete Research 32,227-232. 2002.

Goodwin, R.W. and Schuetzenduebel, W.G. Residues from mass burn systems:
testing, disposal and Utilization issues. Proceedings of New York State Legislative
Commission of Solid Waste Management and Materials Policy Conference. 1988.
New York,.

Kalyoncu, R. Coal Combustion Products

http://minerals.usgs. gov/minerals/pubs/commodity/coal/874498.pdf, 1998.



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Punshon, T., Knox, A.S., Adriano, D.C., Seaman, J.C. and Weber, T.J. Flue Gas
Desulfurization residue (FGD): Potential Applications and Environmental Issues.,
in Biochemistry of Trace Elements in Coal and Coal Combustion Byproducts.,
K.S. Sajwan and R.F. Keefer, Editors. 1999, Lewis Publishers: Boca Raton, FL.
7-28.

Punshon, T., Seaman, J.C. and Adriano, D.C. The effect of flue gas
desulfurization residue on corn (Zea mays L.) growth and leachate salinity:
Multiple season data from amended mesocosms., in Chemistry of Trace Elements
in Fly Ash,K.S. Sajwan, A.K. Alva, and R.F. Keefer, Editors. 2002, Kluwer
Academic/Plenum Press: New York, NY. In press.

Baege, R. and Sauer, H. Recent developments in CFB-FGD technology. VGB
Powertech 80(2), 57-60. 2000.

Punshon, T., Adriano, D.C. and Weber, J.T. Effect of Flue Gas Desulfurization
Residue on Plant Establishment and Soil and Leachate Quality. J. Environ. Qual.
30(3), 1071-1080. 2001.

Chen, L., Dick, W.A. and Nelson, S. Flue gas desulfurization addition to acid soil:
alfalfa productivity and environmental quality. Environmental Pollution 114(2),
161-168. 2001.

Stehouwer, R.C., Sutton, P. and Dick, W.A. Transport and plant uptake of soil-
applied dry flue gas desulfurization by products. Soil Science 161(9), 562-574.
1996.

Clark, R.B., Ritchey, K.D. and Baligar, V.C. Benefits and constraints for use of
FGD products on agricultural land. Fuel 80(6), 821-828. 2001.

Chun, S., Nishiyama, M. and Matsumoto, S. Sodic soils reclaimed with by-
product from flue-gas desulfurization: corn production and soil quality.
Environmental Pollution 114(3), 453-459. 2001.

Laperche, V. and Bigham, J.M. Quantitative, chemical and mineralogical
characterization of flue gas desulfurization by-products. Journal of Environmental
Quality 31(3), 979-988. 2002.

Day, R.L. The effect of secondary ettringite formation on the durability of
concrete: A literature analysis. 1992, Department of Civil Engineering,
University of Calgary: Alberta, Canada.

McCarthy, G.J., Hasset, D.G. and Bender, J.A. Synthesis, crystal chemistry and
stability of ettringite, a material with potential in hazardous waste
immobilization., in Advanced Cementitious Systems: Mechanisms and Properties.
Materials Research Society Symposium Proceedings 245. 1992, Elsevier, NY.
ACAA 2000 Coal Combustion Product (CCP) Production and Use.
http://www.acaa-usa.org/CCP%20Survey/PDF/00SurveyComplete. PDF, 2000.
Dosskey, M.G. and Adriano, D.C. Trace element toxicity in VA mycorrhizal
cucumber grown on weathered coal fly ash. Soil Biol. Biochem. 25(11), 1547-
1552.1993.

Arthur, M.A., Rubin, G. and Woodbury, P.B. Uptake and accumulation of
selenium by terrestrial plants growing on a coal fly ash landfill. 2. Forage and root
caps. Environ. Toxicol. Chem. 11(9), 1289-1299. 1992.

Aitken, R.L. and Bell, L.C. Plant uptake and phytotoxicity of boron in Australian
fly ashes. Plant and Soil 84, 245-257. 1985.

Cary, E.E,, Gilbert, M., Bache, C.A., Gutenmann, W.H. and Lisk, D.J. Elemental
composition of potted vegetables and millet grown on hard coal bottom ash-
amended soil. Bulletin of Environmental Contamination & Toxicology 31, 418-
423.1983.




40.

41.

42,

43.

45.

46.

47.

48.

49.

50.

5L

52.

53.
54.
55.

56.

57.

58.

10

Furr, AK,, Parkinson, T.F., Gutenmann, W.H., Pakkala, 1.S. and Lisk, D.L
Elemental content of Vegetables, Grains and Forages Field-Grown on Fly-Ash
Amended Soil. J. Agric. Food Chem. 26(2), 357-359. 1978,

Furr, A K., Parkinson, T F., Elfving, D.C., Gutenmann, W .H., Pakkala, 1.S. and
Lisk, D.J. Elemental Content of Apple, Millet, and Vegetables grown in pots of
neutral soil amended with fly ash. J. Agric. Food Chem. 27(1), 135-138. 1979.
Furr, A K., Kelly, W.C., Bache, C.A., Gutenmann, W.H. and Lisk, D.J.
Multielement Uptake by Vegetables and Millet Grown in Pots on Fly Ash
Amended Soil. J. Agric. Food Chem. 24(4), 885-888. 1976.

Sale, L.Y., Naeth, M.A. and Chanasyk, D.S. Growth response of Barley on
Unweathered Fly Ash Amended soil. J. Environ Qual. 25, 684-691. 1996.
Elseewi, A.A. and Page, A.L. Molybdenum enrichment of plants grown on fly-
ash amended soils. J. Environ Qual. 13, 394-398. 1984.

Fail, J.L. and Wochok, Z.S. Soybean growth on fly ash-amended strip mine
spoils. Plant & Soil 48, 473-484. 1977.

Gissel-Nielsen, G. and Bertelsen, F. Inorganic element uptake by barley from soil
supplemented with flue gas desulfurization waste and fly ash. Environmental
Geochemistry and Health 10, 21-25. 1988.

Kukier, U. and Sumner, M.E. Boron availability to plants from coal combustion
by-products. Water, Air & Soil Pollution 87(1-4), 93-110. 1996.

Gollany, H.T., Bloom, P.R., Thomes, M.R., Gustin, F., Hassett, D. and Roffman,
H. Mobilizationof B, Hg, Mo, Na, S and V from a Coal Fly Ash Stabilized Soil.
Proceedings of 6th International Conference on the Biogeochemistry of Trace
Elements (ICOBTE). 2001. Guelph, Canada.: ICOBTE.

Yuncong, L., ZHnag, M., Stoffella, P., Bryan, H. and He, Z. Influence of fly ash
compost application on distribution of metals in soil, water and plants.
Proceedings of 6th International Conference on the biogeochemistry of Trace
Elements. 2001. Guelph, Canada.

Sajwan, K.S., Omes, W.H. and Youngblood, T. The effect of fly ash/sewage
sludge mixtures and application rates on biomass production. Journal of
Environmental Science and Health A30(6), 1327-1337. 1995.

Punshon, T., Adriano, D.C. and Weber, J.T. Restoration of drastically eroded land
using coal fly ash andpoultry biosolid. The Science of the Total Environment In
press. 2002.

Sloan, J.J. and Cawthorn, D. Mine soil remediation using coal ash and compost
mixtures. Proceedings of 6th International Conference on the Biogeochemistry of
Trace Elements. 2001. Guelph, Canada.

Chang, A.C., Lund, L.J., Page, A.L. and Warneke, J.E. Physical properties of fly-
ash amended soils. Journal of Environmental Quality 6,267-270.1977.
Carlson, C.L. and Adriano, D.C. Environmental impacts of coal combustion
residues Journal of Environmental Quality 22(2), 227-247. 1993.

Chen, X., Wright, J.V,, Conca, J.L. and Peurrung, L.M. Evaluation of heavy metal
remediation using mineral apatite. Water, Air and Soil Pollution 98, 57-78. 1997.
Chlopecka, A. and Adriano, D.C. Influence of zeolite, apatite and Fe-oxide on Cd
and Pb uptake by crops. The Science of the Total Environment 207, 195-206.
1997.

Ma, Q.Y ., Traina, S.J., Logan, T.J. and Ryan, J.A. In situ lead immobilization by
apatite Environ. Sci. Technol. 27(9), 1803-1810. 1993.

Edwards, R., Rebedea, 1., Lepp, N.W. and Lovell, A.J. An Investigation into the
Mechanism by which Synthetic Zeolites Reduce Labile Metal Concentrations in
Soil. Environmental Geochemistry and Health 21, 157-173. 1999.



59.

60.

6l.

62.

63.

64.

Yorita, G. Utilization of coal ash from the power industry. Bulletin of the
Electricity Association 3,26-28. 1993.

Nagashima, N., Arashi, N. and Kanda, O. Operation results of the first
commercial dry desulfurization plant in Hokkaido Electric Power Co. Proceedings
of SO, Control Symposium. 1993. Boston: Electrical Research Institute.

Stout, W.L., Sharpley, A.N. and Pionke, H.B. Reducing soil phosphorus solubility
with coal combustion by products. J. Environ Qual. 27, 111-118. 1998.

Schlieper, H., Duda, A., Jager, R., Kanig, M. and Kwasny-Echterhagen, R. FGD
Gypsum - A raw material for new binder systems. ACA4 Compendium 1973-
1997, Paper 97-48. 1997.

Taulbee, D.N., Graham, U.M., Rathbone, R., Robl, T.L. and Schram, W.H.
Leaching characteristics of light-weight pellets prepared from both wet and dry
FGD wastes. ACAA Compendium, 1973-1997 (Paper 97-40). 1997.

Kelly, T.D. and Kalyoncu, R. Coal combustion products statistics.

http://minerals.usgs.gov/minerals/pubs/of01-006/coalcombustionproducts.html,
2001.

11



OCCURRENCE AND MOBILIZATION POTENTIAL
OF TRACE ELEMENTS FROM DISPOSED COAL
COMBUSTION FLY ASH

Irena Twardowska', Jadwiga Szczepanska® and Sebastian Stefaniak'

'Polish Academy of Sciences

Institute of Environmental Engineering

34 M.Sklodowska-Curie St., 41-819 Zabrze, Poland
University of Mining and Metallurgy

Department of Hydrogeology and Water Protection
30 Mickiewicza Av., 30-059 Krakow, Poland

ABSTRACT

Despite many beneficial properties, high amounts of fly ash (FA) from coal-fired power
plants have been disposed in landfills. These amounts are continuously growing in consequence
of the limited possibility to utilize all generated FA due to the lack of market for it, or too high
shipping/handling costs compared to the natural competing materials. Besides landfilling, the
increasing utilization of FA as agricultural soil amendment that give an opportunity to dispose
this material in a big scale also leads to its spreading on the vast land surface where it is exposed
to the atmospheric conditions. To assess the effect of weathering processes on the mobilization
potential of trace elements in disposed FA, the unique studies were carried out that comprised
sampling FA along the vertical profile of 12 years’ old FA pond in the post-closure period,
extracting pore solution from the material by a pressure method and direct analysis of its
chemical composition using ICP-OES technique. Studied FA represented alkaline aluminum
silicate material of a composition and trace element enrichment within the range typical for FA
from the majority of other hard coal-fired power plants. The chemical composition of pore
solutions along the three vertical profiles in the fly ash disposal pond in the post-closure period
after 12 years' operation was found to reflect both the altered water flow (vertical downward
redistribution of ions) and the changed equilibria conditions. While the pore solution in FA in H-
6 profile reflects the Dissolution stage (II) (pH 7-10), in the looser FA profiles H-2 and H-3 it
indicates alteration of buffering properties of the system that can be defined as Delayed Release
(L) stage. The character of pore solutions along these profiles suggests that the major buffering
mechanisms controlling pH after depletion of carbonates comprise reactions involving
hydrolysis of aluminum ions from amorphous phase exposed to the direct contact with
percolating water due to the devitrification of glaze, with further formation of the secondary
minerals. These processes in simplified form can be described as reactions between dissolved
silica, water, as well as kaolinite and gibbsite at the stage of their formation. This caused high
non-linear release of trace elements from FA and significant qualitative/quantitative increase of
its contamination potential with respect to the ground water and soils in adjacent area (decrease
of pH to min. 4.3-4.5, and delayed extensive release of Zn, Fe, Mn, Mo, Cd, Cr, Be, B, V in high
concentrations). In conformity with pH-Eh-stability fields metals can be grouped according to
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the similar release-dissolution response to controlling parameters, e.g.: I: (Zn-Cd-W-Be); II:(Fe-
Mn) (reverse pH-dependent increase). Several metals (mainly oxyanions with broad fields of
aqueous species) show weak influence of pH-Eh parameters (Li, Mo, Se, Sr, B), while Al, Cu
and V are immobilized at pH 4.3-5.0. The screening study proved (i) possibility of FA
acidification and discontinuous non-linear time-delayed increase of its pollution potential to the
hazardous level due to weathering transformations (i) necessity of life-cycle
screening/monitoring of FA disposal sites for trace element release as a function of controlling
factors along the vertical profile of anthropogenic or natural vadose zone. The results suggest
also caution in use of FA as acidic soils improver.

1. INTRODUCTION

Continuous efforts to find sufficient and environmentally friendly alternative sources
of energy up to now have not resulted in substantial changes: coal remains the major fuel used
for generating electricity worldwide and both its production and consumption shows general
increasing trend. Over past 25 years almost 50 % growth in global hard coal production
occurred — from 2,400 million tons (Mt) in 1976 to 3,639 Mt in 2000, i.e. over 1,200 Mt, and
further increase in coal use for electric power production is anticipated. Currently, coal
generates about 38 % of the world’s electricity; according to 2000 data, countries heavily
dependent on coal for electric power generation include e.g. China (80%, estimate), India
(66%, estimate) and USA (56%). The European Union (EU-15) generates as a whole 25%
coal-based power (1999 data), though in several its Member States over 50% of electricity is
generated from coal (Greece, Denmark, Germany). The highest dependence on coal exhibits
Poland which electric power is almost thoroughly coal-based (96%).!

Coal burning results in generation of huge amount of coal combustion waste (CCW)
generated by coal fired electric utilities. This waste comprises fly ash, bottom ash, boiler slag
and FGD products (if flue-gas desulfurization is applied). Of these, fly ash (FA) is a
predominant kind of CCW that determines the total amount of waste used or disposed of. The
beneficial chemical and physical properties of FA make it suitable for a number of
applications. This induces many proponents of FA utilization to back up the term of “coal
combustion products or “by-products” that suggests its full use in technically sound,
commercially competitive and environmentally safe way with no considerable adverse
environmental impact during storage.2 The current status of FA utilization, along with
increase in coal use for electric power production, though, does not support this optimistic
view that can be exemplified in FA market in the United States. The recent data by US
Department of Energy (U.S. DOE) and American Coal Ash Association (ACAA), report
increase the U.S. coal production for 1% per year, to 1,268 Mt in 2015, while the trends in FA
use suggest prospective rate of FA utilization at the present level close to 25%, up to 30% of
the total amount generated. The largest volume of FA is used in cement, concrete and grout,
and this application shows a permanent upward growth trend, while other traditional
applications such as road base/sub-base or structural fill are of minor importance in the total
balance and do not exhibit increase. Of the applications developed in the last decade (waste
stabilization and flowable fill) only the first one shows some promise for higher utilization of
FA, though still inadequate to the increase rates of this waste generation.’ The limiting factors
for the rapid growth of traditional and emerging markets for FA and other CCW are
requirements to meet the standards on the one hand, and the unfavorable competing with
natural materials (e.g. due to high shipping costs) on the other hand. In view of the
omnipresence of inexpensive and easily available natural materials, the faster increase of FA
market needs serious legislative support that would either strongly favor use FA as
engineering materials compared to the natural ones, or put adequately stringent financial
restrictions on FA disposal. The lack of such protectionist regulations is a barrier to greater
increase of FA use. The ACAA’s goal “to gain recognition and acceptance of CCW as
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engineering material on par with (unrestricted) competing virgin, processed and
manufactured materials” does not seem realistic unless the aforementioned regulatory
handicap is applied that would add higher cost-efficiency to other benefits of FA compared to
natural materials. The results of deep-laid protectionistic legislation in Poland resulted in
75.7% use of 18,100 Mt CCW generated in 2000 that places this country at the top position
among large CCW generating states with respect to its utilization. Nevertheless, a huge
amount of 249,359 Mt of CCW generated in previous years is still stored in disposal sites
throughout the country, and this amount continuously increases, in 2000 for 3,865 Mt due to
still 24.3 % of CCW generated that was not utilized.*

To summarize, despite potentially vast markets of coal combustion waste (CCW) use,
a large its portion, in particular fly ash (FA), is disposed of annually in surface ponds or
landfills, and the total stored amount grows continuously in the countries heavily dependent
on coal for electric power generation. FA exposed to the atmospheric conditions may pose an
adverse environmental impact that requires adequate life cycle assessment. We still do not
know much about long-term weathering transformations of bulk waste and quite often
overlook the potential for “time-bomb effect”, i.e. for non-linear time-delayed release of
chemicals from the disposed material in harmful concentrations. At the same time, many
CCW ponds and landfills of other waste that are not hazardous under RCRA have been
located on land that is considered of low value for other use, such as abandoned sand and
gravel quarries or disused strip mines, which are susceptible to groundwater contamination.
Most of such landfills are unlined. Significant number of that impoundments is located in
areas with thin, permeable vadose zone over aquifers used as a source of drinking water. Old
CCW ponds/landfills can be particularly problematic as these utilities were sited when ground
water protection was rarely considered due to the inadequate general knowledge.

Here, the potential risk from FA is exemplified in a case study of time-delayed post-
closure transformations of pore solution quality in the Przezchlebie disposal site (Upper
Silesia coal basin USCB, Poland).

2. MATERIAL AND SITE CHARACTERISTICS

In this surface pond, “pure” FA from Rybnik power plant (without FGD products) was
disposed hydraulically from 1979 to 1991 in the disused sand quarry of the maximum depth
of 20 m. Due to construction of embankments of coal mining waste, the disposal of FA: water
slurry was continued above the surface level, up to the final surface area of 53 ha, FA
thickness up to 25-30 m and total volume 23 Mm® (Fig. 1). After closure, FA pond surface
was stabilized with carbamide resin spread from helicopter to prevent dusting and in
following years after advanced dewatering was reclaimed biologically with grass cover. The
disposed FA represents alkaline aluminum silicate material > CaO+MgO/SO; + 0.04 AL,O; =
1.7-3.6 (mean 2.6) that is within the range for FA from other European power plants. The
detailed discussion of this FA phase, petrographical and chemical composition in the
background of coal and “pure” FA characteristics from different European power plants has
been presented elsewhere and in general shows high similarity.® Combustion processes result
in enriching the majority of trace elements in FA (except Hg, I and F) in about an order of
magnitude compared to that in coal. Contents of trace elements (in mg/kg) show declining order
typical for FA from other European power plants 71107 (Ba>Sr>Mn>V) >> [ 10*] (Rb, Cr,
Zr, Ce, Zn, Ni, Cu) > [>10] (Co, Pb, La,Y, Nd, Sc, Th, Cs, As) > [= 10] (Sm, Be, U, Mo, Br,
Sb) > [<10] (Yb, Hf, Bi, W, Se) > [10'] (Eu, Ta, Tb, Lu, Hg, Cd, Ag) >> [107?] (Au, Ir).

The characteristic feature of “pure” FA (without FGDS admixture) is domination of
alkali cations in leachate that results in high pH (over 10-12) and lack of equilibria
constraints. In petrogaphic composition prevail superficially vitrified spherical and irregular
particles filled with amorphous aluminum silicate relics of clay minerals. These properties
make FA potentially attractive for use in agriculture as soil improver/amendment, in particular
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monitoring wells
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Figure 1. Przezchlebie fly ash (FA) pond of the Rybnik power plant (USCB, Poland) in the
post-closure period. H-6, H-3, H-2: screening boreholes for pore solution sampling along the
vertical profiles of FA pond; P1 — P10 — disused wells of the local ground water monitoring
network.

for application to the acidic soils for their neutralization, micronutrient supply and
improvement of physical properties. The FA pond described here represents a routine way of
FA disposal worldwide - in the form of water: FA mixture to enable its hydraulic transport
from the power plant. Due to continuous pulp supply, the hydrogeological conditions within
FA pond during the operating stage were specific for the saturation zone.

In the post-closure period, gradual dewatering of the pond and the transformation of
the hydrogeological conditions within the FA layer occurred, from the saturated zone typical
for the operating stage into the vadose zone conditions, when vertical percolation of atmospheric
precipitation had started. The material disposed in the pond displayed high to moderate hydraulic
conductivity (k = 102 to 10* cmy/'s) dependent of the compaction, and a high porosity (n = 0.58 -
0.50) adequate to the hydraulic conductivity of mean and fine sands. This assures free
percolation of atmospheric precipitation through the waste layer.

The newly formed anthropogenic zone was sampled along the vertical profiles in the
three drilled boreholes 5 to 11 m deep (H-6, H-2, H-3) in 1993 after 12 years’ operation and 2
years after closure. The age of sampled FA along the profiles ranged from 3 to 9 years. Pore
solution from FA samples was extracted by the pressure method under nitrogen and analyzed
for the metal content using ICP-OES technique (ICP Perkin Elmer Plasma 40). The elemental
speciation in pore solution and QA/QC testing was performed with use of the geochemical
computer programs WATEQ 4F and MINTEQ Visual 2.1 that give similar results and are
complementary to each other.

3. RESULTS AND DISCUSSION

The chemical composition of pore solutions along the three vertical profiles in the fly ash
disposal pond in the post-closure period after 12 years' operation reflects both the altered water
flow compared to the saturated zone under operational stage, and the changed macro- and trace
component release and migration due to changed equilibria conditions. Percolating precipitation
water flow results in the well-known phenomenon of a vertical downward redistribution of
leached macroconstituents’ concentrations/loads, which is particularly strong with respect to ions
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that are not bound by equilibria limitations, such as chlorides and sulfides balanced by alkali
cations.® Due to it, the highest concentrations of leached constituents will occur at the bottom of
the landfill where the percolating stream enters the natural vadose zone and further reaches the
unprotected Quaternary aquifer.

The leaching behavior of trace elements is controlled by several basic variables, of
these Liquid to Solid ratio L/S (reflecting the time factor), pH, redox Eh and complexation
have been considered the most important ones. The natural moisture content my in studied FA
profiles ranged from 23.2 to 40.7 % wt., mean values 26.7% (H6), 30.8% (H2) and 37.70% (H3);
mean liquid/solid ratio L/S accounts for these profiles 1: 3.7, 1: 3.2 and 1: 2.7, i.e. considerably
lower than in the pulp and the water-saturated layer under the operational conditions, while
cumulative L/S ratio is continuously growing in time.

The long-term leaching behavior of constituents from the disposed waste in principle
may follow the IIl-stage generic leach pattern that comprise Wash-out (I), solubility
controlled Dissolution (II) and Delayed Release (III) stages.9 This pattern reflects a situation
when due to change of solubility-controlling factor, the massive release of constituents at a
high rate may occur at some point delayed in time. In general, the correct prediction of the
possibility of occurrence and intensity of the Delayed Release (IIT) phase appears to be the
particularly problematic task. In the most frequent case, the development of this phase is
determined by two kinetically defined processes of acid generation and depletion of available
buffering constituents. The availability of buffering constituents quite often is not adequate to
their depletion: heterogeneity of waste cause that acidifying and buffering agents are not
occurring in the waste matrix in close proximity required for the direct interaction. The
complexity of real systems makes the correct prediction of the Delayed Release (III) stage
development extremely difficult and requires full and detailed information that besides the
chemical composition, comprise also phase composition of a waste material, including the
forms, dispersion and specific surface of the phases in the matrix, which influence their
reactivity and availability, as well as the trends in weathering transformations that they may
undergo in the waste layer during its exposure to the atmospheric conditions.

Due to the changing location of the pulp outlet in the operational stage, the
hydrogeochemical conditions within the fly ash pond were not uniform and reflected different
stages of waste transformations that permit to illustrate these stages.

While the pore solution in FA along H-6 profile still reflects the Dissolution stage under
operating conditions (pH 7-10), in the looser FA profiles H-2 and H-3 where vertical percolation
of precipitation and exchange of pore solution is considerably more advanced, it indicates
alteration of buffering properties of the system that can be defined as Delayed Release stage.
The major process that induce dramatic change of FA properties and results in deep
transformation of chemical composition of pore solution seems to be the weathering process that
causes the devitrification of surface glaze covering FA particulates and the exposure of
amorphous intrinsic content of the particle to atmospheric conditions. The character of pore
solutions along these profiles suggests that the major buffering mechanisms controlling pH are:
(i) depletion of calcium carbonates and sulfates in the form of calcite, anhydrite and gypsum,
along with formation of new secondary minerals such as ettringite CasAlx(SO4); (OH)12 26H,0 (.
— arystalline phasey and other hydrated sulfaluminates; (ii) reactions involving II-stage hydrolysis of
aluminum ions from amorphous phase exposed to the direct contact with percolating water due
to the devitrification of glaze, with further formation of the secondary minerals, at this stage
mainly gibbsite Al;O3 H,0 (; (iii) dissolution of silica and kaolinite H4A1,S1,09 () formation.
These processes in simplified form can be described as reactions between kaolinite and gibbsite
at the stage of their formation, dissolved silica and water. Detailed discussion of weathering
transformations of FA at these stages has been presented elsewhere.'” In short, these processes
result in shifting from highly alkaline pH value of the material and pore solutions at the initial
Wash-out (I) stage (pH 10- >12) through moderately alkaline to close to neutral pH 7- 8 at the
Dissolution (II) stage, up to acidic pH value at the level of pH 4 — 5 at the Delayed Release (IIT)
stage.
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Figure 2. Example pattems of pore solution chemical transformations along  the  vertical
profile of FA pond: selected elements (Al, SiO,, Zn, Fe, Mo) concentrations in the Dissolution
(II) (profile H-6) and Delayed Release (IIT) stages (profiles H-3 and H-2).



Table 1. Concentration range of selected constituents and trace elements in pore solutions
along the vertical profiles of FA pond of the Rybnik power plant (USCB, Poland)
in the post-closure period: Dissolution (II) (profile H-6) and Delayed Release (III)
stages (profiles H-2 and H-3).

Fly ash age: 3-9 years

Parame Concentration range in pore solutions, mg/L (mg dm™)
ter,

Borehole H 6 (0.1-9.0 m) Borehole H2 (0.1-11.0 m) Borehole H 1 (0.1-5.0 m) Drinking water

Consti- TR
tuent 1 i 1 2 3
min max mean min max mean min max mean Polan d US EPA
fﬁ:fy“.? 961 | 2150 | 1696 | 1194 | 1913 | 1536 | 1119 | 1756 | 1508
pH 7.35 9.8 7.93 4.46 6.5 5.02 4.29 5.04 4.62 6.5-8.5
Ca 23.26 88.41 40.26 2.29 87.29 4531 3.67 73.63 27.98
Cl 19.25 294.6 205.73 108.15 | 1116.06 | 566.14 108.6 589.62 337.71 300
SO, 227.53 828.89 542.8 393.01 | 129635 | 786.89 164.50 | 1745.25 | 731.64 200
HCO, 38.44 147.05 96.407 427 427 427 nd nd nd
Si0, 4.83 17.26 11.05 63.46 281.18 154.40 135.19 | 313.66 207.81
F 1.62 7.85 417 8.03 33.76 17.15 12.98 30.17 20.33 1.5 22

TDS | 681.40 | 1976.40 | 1501.40 | 1198.40 | 5079.80 | 2880.16 | 1564.90 | 3712.6 | 2292.25 | 800
Al 0744 | 1526 | 851 | <0.06 | 4.622 | 1.767 | <006 | 0663 | 0257 | 03 |110
B <001 | 3064 | 139 | 2868 | 7987 | 5590 | 3.343 | 1046 | 6546 | [1.0] | 3.30
Ba 0.069 | 0204 | 0.17 | 0096 | 0341 | 0203 | <0.002 | 0488 | 0210 2.6
Be | <0002 | <0.002 | <0.002 | 0.002 | 0.012 | 0.0044 | 0.002 | 0.007 | 0.005 0.0016
Cd | <0.005 | <0.005 | <0005 | 0013 | 0175 | 0.049 | 0.045 | 0.167 | 0.092 | 0.005 | 0.018
Cr, 0.059 | 0170 | 0.105 | <0.010 | 0940 | 0289 | o.t21 | 0310 | 0219 | 0.017 | 0.187
Cu 0.069 | 0200 | 0140 | <0.005 | 0036 [ 0010 | <0.005 [ 0.042 | 0018 | 0.05 14
Fe 0043 [ 0191 | 0080 | 3981 | 2093 | 42180 | 7222 | 23590 | 15.999 | 0.5

Li 0.537 3.512 2.160 0.430 4.000 2.822 0.345 2.548 1.334 0.73
Mn <0.002 0.012 0.007 0.081 4.061 0.932 0.222 0.399 0.302 0.1 0.18
Mo 0.088 1.48 0.862 0.086 1412 0.667 0.090 0.361 0.206 0.18

Sr 0.503 1.304 0.755 0.229 1.828 1.166 0.152 1.565 0.876 220

Ti <0.005 | <0.005 | <0.005 1 0.006 0.050 0.035 0.002 0.040 0.020

N 0.076 1.120 0.743 | <0.010 | 0.900 0.241 0.020 0.115 0.082 0.26

w <0.010 '{ 0.400 0.099 1.044 7.800 2.887 1.910 0.700 4.510 [1.0
Zn 0.004 0.052 0.018 38.84 | 279.20 88.75 73.17 272.57 141.63 5.0 11.0
DS em?
YMCL for drinking water (Polish regulations) *RBC (Risk-Based Concentrations) by US EPA, 1994'
Values that exceed RBC by US EPA are bold; Values that exceed Polish MCL are italic
nd - not detected;  Cr**

There is relatively abundant information concerning leaching behavior of “pure” FA at
the Wash-out (I) stage that in general has been considered the most problematic due to high pH
and alkalinity, unconstrained release of macro-component ions, particularly sulfates balanced by
alkali ions, release of aqueous aluminum as AlO;’, as well as oxyanions such as As, Mo, V or B
species. The reported field studies were conducted in the period when this stage already ceased.

The extensive leaching of highly soluble components in the dewatering stage and also
during the transformation of the water flow mode in the FA disposal site into vertical percolation
of atmospheric precipitation under vadose zone conditions resulted in the development of the
Dissolution (I) stage that generally lead to the conclusion that the contaminant mobility, in
particular problematic trace element concentrations reached the safe level below MCL values
due to decrease of pH within the range from moderately alkaline to close to neutral, when the
most of metals are stably immobile in the solid phase.'’ This stage is illustrated by the
composition of pore solution along the H-6 profile (Table 1, Fig. 2). In these solutions, entirely
maximum and mean cons of Mo and V still exceeded risk-based level (RBC),12 while in the
uppermost surface layer due to washout reduction of these mobile elements in FA matrix their
concentrations reached permissible values. In this after-closure period, monitoring of the ground
water in the vicinity of the site terminated. Due to it, the development of the Delayed Release
(TIT) stage caused by the aforementioned processes of the further FA weathering transformations
that involve reactions between gibbsite and kaolinite and their formation as secondary minerals
has been overlooked .
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Figure 3. Hydrogeochemical profile of pore solutions in the FA layer at the Delayed Release
(TI) stage (H-2 borehole). Acidification, massive Zn and SiO; release and vertical redistribution
of major constituents.

At the Delayed Release (III) stage high non-linear release of trace elements from FA and
significant qualitative/quantitative increase of its contamination potential with respect to the
ground water was observed (profile H-2 and H-1). The composition of pore solution along these
profiles displayed decrease of pH to min. 4.3-4.5, and extensive release of Zn, Fe, Mn, Mo, Cd,
Be, Cr, B, V in high concentrations showing characteristic patterns that reflect also construction
of FA pond in layers depending upon the heightening of embankments (Table 1, Fig. 2). In
conformity with pH-Eh-stability fields, some metal concentration patterns along the profiles
display the similar release-immobilization response to controlling parameters, e.g.: I (Zn-Cd-W-
Be); II (Fe-Mn) (reverse pH-dependent increase). Several metals (mainly oxyanions) show
either weak influence of pH-Eh parameters (B, Cr, Ba) or almost none (Li, Mo, Sr), while
concentrations of Al, V and Cu in pore solutions at pH 4.3-5.0 considerably decreased for
different reasons.

Particularly high mobilization showed Zn that reached concentrations up to 300-400
mg/L that changed its status from the trace element into a macro-component (Fig. 3). Another
abundant element was Fe; in concentrations much above natural level occurred also B and W.
Zn and Mo appeared to exceed RBC for more than an order of magnitude; also B, Be, Cd, Mn
and V exceeded RBC (As was not analyzed in this study).

Metal speciation by MINTEQ Visual 2.1 and WATEQA4F at the Dissolution (II) stage
(profile H-6) shows abundant occurrence of aluminum in solution predominantly in the form of
hydroxides, mainly AI(OH)s; formation of gibbsite Al(OH); is also observed at activity of
dissolved Al below 10 that determines the narrower pH range for AI(OH); solid; accessory
amounts of fluoride compounds were also calculated, mainly as AlF; 54 and AlF;. At this stage,
trace elements in cationic form occur in very low concentrations, mostly as carbonate, hydroxide
and sulfate species and free ions, e.g. Zn occurs as Zn”*, Zn(SOu), aq, ZnCO3 and ZnHCO;
species. In higher amounts are present oxyanions that show very large fields of water soluble or
metastable forms such as B, which is present mostly as boric acid H3BO3 ,q or Mo that occurs in
solution mainly as HMoOy 54 species.

At the Delayed Release (IIT) stage that is determined by kaolinite formation, dissolution
of silica in the H4SiO4 form and massive release to pore solution of metal cations, in particular
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Table 2. Example offprints of the selected element speciation in pore solution along the vertical
profiles of disused FA pond at the Dissolution (I) and Delayed Release (III) stages

(computed by WATEQ 4F)
Profile H-6 Profile H~-2
H Dissolution (II) Stage Delayed Release (I1I) Stage
Species _5_ 1,0 m below surface level 5,0 m below surface level
; (pH - 7,85; TDS - 1113 mg/L; COND. - 1361pS/cm) | (pH - 5,28; TDS - 3984 mg/L; COND. - 1870uS/cm)
Anal. ppm | Calc. ppm | Anal. Molal | Calc. Molal| Anal. ppm | Calc. Ppm | Anal. Molal | Calc. Molal
Si0, tot. 0 14,480 2,413 E-04 281,180 4,698 E-03
HdSiO,(aq) |0 22,942 2,390 E-04 449,689 4,698 E-03
HiSi04 -1 0,218 2,294 E-06 0,013 1,330 E-07
H,8i04 -2 0,00047 5,017 E-10 0,000000 9,954 E-14
SiFe -2 0,000000 5,428 E-28 0,000012 8,529 E-11
Al 3] 11,180000 | 0,000000 | 4,148 E-04 | 4368 E-12 | 0,171000 0,000000 | 6,363 E-06 | 8,871 E-14
AIOH 2 0,000070 1,600 E-09 0,000000 5,850 E-14
Al(OH), 1 0,36 5,839 E-07 0,000000 4,512 E-14
Al(OH), 0 3,521 4,519 E-05 0,000000 8,571 E-15
Al(OH)4 -1 34,936 3,681 E-04 0,000000 2,055 E-16
AlF 2 0,000173 3,777 E-09 0,000019 4,202 E-10
AlF, 1 0,015 2,303 E-07 0,011 1,648 E-07
AlF; (aq) 0 0,052 6,224 E-07 0,278 3,326 E-06
AlF, -1 0,06169 5,998 E-08 0,294 2,871 E-06
AISO, 1 0,000000 3,842 E-12 0,000000 5,348 E-14
Al(SOy),  |-1 0,000000 7,630 E-13 0,000000 1,382 E-14
AIHSO, 2 0,000000 2,184 E-20 0,000000 1,436 E-19
Zn 2] 0,006000 0,00,891 | 9,189 E-08 | 4427E-08 | 382,310 277,347 5,872 E-03 | 4,261 E-03
ZnHCO, 1 0,000559 4,432 E-09
ZnCO,y 0 0,002538 2,026 E-08
Zn(COs); 2 0,000552 2,984 E-09
ZnCl 1 0,000027 2,654 E-10 13,331 1,328 E-04
ZnCl, (aq) 0 0,000000 8,094 E-13 0,332 2,445 E-05
ZnCly -1 0,000000 3,505 E-15 0,013 7,666 E-08
ZnCly -2 0,000000 8,864 E-18 0,000336 1,630 E-09
ZnF 1 0,000006 6,940 E-11 3,608 4,295 E-05
ZnOH 1 0,000188 2,282 E-09 0,038 4,642 E-07
Zn(OH), 0 0,000160 1,611 E-09 0,000080 8,041 E-10
Zn(OH), -1 0,000000 4,150 E-13 0,000000 6,098 E-16
Zn(OH) 4 -2 0,000000 7,005 E-18 0,000000 3,519E-23
ZnOHCl(ag) |0 0,000024 2,007 E-10 0,29 2,465 E-07
ZnSO (aq) 0 0,002414 1,497 E-08 216,417 1,346 E-03
Zn(S0)2 -2 0,000136 5,271 E-10 22,032 8,592 E-05
Cd 2 0,175 0,067 1,563 E-06 | 5,967 E-07
CdcCl 1 0,097 6,598 E-07
CdCl(aq) {0 0,008827 4,836 E-08
CdCly -1 0,000186 8,527 E-10
CdF 1 0,000701 5,360 E-09
CdF, (aq) 0 0,000002 1,459 E-11
CdOH ! 0,000000 4,931 E-12
Cd(OH), 0 0,000000 3,996 E-17
Cd(OH); -1 0,000000 1,075 E-24
Cd(OH) 4 -2 0,000000 3,489 E-33
Cd,OH 3 0,000000 3,409 E-17
CdOHCl (aq) |0 0,000007 4,112E-11
CdNO; 1 0,000033 1,878 E-10
CdSO4(aq) |0 0,048 2,319 E-07
Cd(S04), -2 0,004145 1,997 E-08
B tot 0 0,957 8,862 E-05 7,343 6,819 E-04
H:BO; (aq) |0 5,228 8,464 E-05 41,933 6,810 E-04
H;B0, |- 0,241 3,974 E-06 0,005709 9,426 E-08
BF(OH); |-l 0,000523 6,479 E-09 0,038 4,669 E-07
BF;2(0H); -1 0,000000 1,634 E-12 0,030 3,584 E-07
BFOH __ |-1 0,000000 4,218 E-18 0,000238 2,815 E-09
BF, -1 0,000000 4,045 E23 0,000007 8,216 E-11




Zn, mostly as a free ion and as sulfate species ZnSOy4 4, and in minor amounts as ZnCl, ,q ,
Zn(SOx4),, and ZnF; occurrence of other Zn species is negligible; the prevailing species of other
metal cations in solution are also free ions and sulfate species. Oxyanions in this phase are
present in the same forms as at the Dissolution (II) stage. The selected element speciations in
pore solution for these two stages are given in Table 2 where the example offprints of metal
speciation computed by MINTEQ Visual 2.1 and WATEQA4F has been presented.

The reported results prove that FA besides beneficial properties display also
environmentally detrimental qualities that should be taken into consideration and adequately
controlled at either siting or construction of FA disposal facilities, or at using this waste material
for the purposes that involve land spreading, interaction with other materials (e.g. soil, biosolids
in mixtures) and exposure to atmospheric conditions. The typical application of this kind is FA
use as soil improver/amendment.

Despite continuous attention paid to FA properties and environmental implications of its
disposal and use, there is still no sufficient information, nor univocal assessment of the potential
long-term effect of FA on waters (in particular on ground water) and soil. This study is unique
with respect to the methodology and the direct analysis of the pore solution in the FA layer of the
defined age. In other known studies the research was focused either on the receiving water, or on
the leachate from the FA dump, or on the lysimetric studies with disturbed or undisturbed core
that were limited to the relatively thin layer. Some studies underestimate coal combustion waste,
in that FA, as a source of the environmental contamination and do not consider any potential
hazard from this source to the environment at any stage of its disposal.' These opinions are
somewhat alarming in particular that originate from India, the country where electric power
generation is predominantly coal-based and which is going to double its coal production and
combustion for power generation in a short time. Other evidences, though, do not support these
optimistic conclusions clearly showing the possibility of the adverse environmental impact of
coal combustion waste storage on surface and ground water quality. 3.4 These sources point out
enrichment of major and trace elements in FA compared to coal and easy leaching of soluble
compounds from this material. Monitoring observations of ground water quality, soil/subsoil
system and surface vegetation in the vicinity of the waste material disposal originating from two
different sources: coal pile and FA of different leaching behavior does not enable to define the
particular detrimental effect of each source on ground water and soil. Nevertheless, the authors
confirmed contamination of the shallow aquifer in the vicinity of the dump and emphasized the
importance of use weathered FA of high buffering capacity i.e. low B and high Ca and Mg fly
ash as amendment of agricultural soils and acidic mining waste dumps'®. Another recent study
reports more dramatic effects of coal FA — Coal Reject landfill, where pH of leachate was found
to drop down to pH 1.5." This level of acidity confirms the authors’ assumption that (fly ash
generation and disposal) “may pose more serious ecological problems than previously believed”,
as at this level of acidity even more massive release and leaching of toxic trace elements than has
been reported in the presented study can be anticipated, not only from the FA or coal reject, but
also from soil and subsoil of the vadose zone. The authors' refer to high level of highly toxic
metals, e.g. excess of Se found in animals exposed to coal FA and coal reject of the investigated
site.

These data confirm the results reported in this study and are also support the warning
against FA application as amendment of the acidic soils or for the joint disposal as a mixture
with the material susceptible to acidification due to weathering transformations that cause
Delayed Release of contaminants from FA. The FA properties presented by the authors of this
chapter’ and also by other authors in the monographic review related to biogeochemistry of trace
elements in CCW"  show clearly that trace elements are significantly (about 10-fold) enriched
in this material compared to coal and mean content in soils; this material has high hydraulic
conductivity and is fairly leachable; it also does not have permanently high buffering capacity.
As a result, this material is susceptible to acidification and massive trace element release.
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CONCLUSIONS

The reported results emphasize that FA of a typical composition exposed to the
atmospheric conditions has a potential for deep weathering transformations and related change of
leaching behavior, which should be strongly taken into consideration. As can be derived from the
approach of many soil scientists' they treat FA as a rather stable material with a permanent
highly alkaline reaction, therefore suitable as the acidic soils amendment. The composition of
pore solutions in the material from 3-4 to over 9 years’ old shows though that FA in the post-
closure period of a pond undergo changes that cause gradual shift from highly alkaline to
moderately alkaline/close to neutral pH values, with possible further acidification topH 4.5 in
the process of devitrification and formation of crystalline phases (gibbsite and kaolinite). In this
phase, the massive release of trace elements occurs, up to the macro-amounts adequate to the
Delayed Release stage. This can adversely affect ground water quality, and also increase
availability of trace metals to the receptors in FA-amended soil. These observations, confirmed
by the deep acidification (<pH 1.5) of FA-Coal Reject landfill along with the mobilization of
toxic metals and their high levels in exposed animals observed by other authors,'>!3 suggest the
need to be very careful with application of FA to the acidic soils or with disposal it in admixture
with the material susceptible to acidification, to avoid the development of environmentally
detrimental consequences in a long run. The screening study proved (i) possibility of
discontinuous non-linear time delayed increase of pollution potential of FA in the disposal sites
to the hazardous level due to externally or intrinsically induced transformations of FA properties
resulted from the environmental exposure and alteration of controlling factor values; (ii)
necessity of life-cycle screening/monitoring of FA disposal sites for trace element release as a
function of the primary (pH-Eh, ionic strength, ionic composition of solute) and secondary
controlling factors (L/S-liquid to solid ratio, water flow conditions) along the vertical profile of
an anthropogenic or natural vadose zone.
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ABSTRACT

The dynamic growth of coal consumption in India in order to meet the demand in
power, along with high ash content in coal (~30-40% wt.) will result in generation of about
140 Mt/yr of fly ash (FA) by 2020. This creates a problem of its environmentally safe
utilization and disposal. The use of FA in agriculture as soil amendment seems to be
particularly attractive to India as high-volume low-technology application, and potential sink
for almost unlimited amounts of coal combustion waste. In the chapter, the macro- and trace
element mobility in FA has been analyzed and exemplified in field studies: (i) on impact of
FA slurry pond on ground water quality; (ii) on effect of FA-amendment on a crop yield along
with trace element contents and uptake from FA-amended soil. With respect to major
chemical and phase characteristics, FA from Indian power plants does not differ from that
generated in other countries of the world. Trace element content in FA is of about an order of
magnitude higher than in coal and markedly exceeds the average concentrations in soil. FA
can be classified as alkaline aluminum silicate with predominantly low CaO content, and low
buffering potential ratio BPR ranging from 0.64 to 4.25, mean <2. This suggests the
susceptibility of FA to acidification in time due to weathering transformations and developing
the extensive trace constituents release from the disposed FA in the Delayed Release (IIT)
stage of leaching. The analysis of 1996 survey showed deep adverse alteration of ground
water quality in the vicinity of FA slurry pond under operation that reflected the Washout ()
stage of leaching. Release of soluble macro-constituents was a major process, while the most
of trace elements was within their stability fields in solid phase. Due to the weathering
transformations, the change of leaching pattern in time according to Dissolution (II) and
Delayed release (III) stages is anticipated. The field trials with use as soil amendment of
different doses of FA (from 25 to 500 t/ha) in acidic red and alkaline alluvial soils conducted
by CFRI (CSIR) India in 1994-2000, showed increase of different crop yield up to 45-75% at
FA dose of 200 t/ha, and from 16 to 33% at FA dose of 500 t/ha. The simultaneous increase
of total and DTPA-extractable trace element concentrations in both types of soil was also
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noticed. Crops displayed diverse susceptibility to metal uptake: soybean > linseed > jowar >
wheat. In the light of presented data, FA disposal in unprotected surface ponds is not
environmentally safe. Application in agriculture seems to be a prospective sink for FA,
though its large-area uncontrolled agricultural use may cause an irreversible soil or water
contamination in the long-range period. The caution and pollution prevention principles
suggest avoidance of FA application in acidic soils, and use it entirely in the well-buffered
alkaline/neutral soils, with careful selection of FA doses and cultivated crops.

1. INTRODUCTION

Currently, with its 310 Mt of hard coal production in 2000, India holds the third place in
the list of major producers of hard coal after PR China and the U.S.A. It belongs also to the
major coal importers: according to the key coal statistics, in 2000 India imported 9.1 Mt of steam
coal and 15.4 Mt of coking coal. Coal is the major fuel used for electricity generation: estimated
dependence of India on coal for this purpose accounts for 66%.' At power production of 70,000
MW in 2000, coal consumption for electricity accounted for 250 Mt that did not cover the needs.
To meet the growing demand in power, further almost double increase of the installed thermal
power generation capacity by 2020 is planned that will result in coal consumption of about 380
Mt. The specifics of Indian hard coal deposits are high ash content, around 30-40 % wt., which is
adequate to ash gcneratlon of 50-60 Mt/h for 200 MW unit. In total, it means estlmated ash
generation 90 Mt in 2000, and its increase by 2020 to about 140 Mt.> According to the same
source, for each MW of installed capacity, about 1 acre of land is required for FA disposal in a
layer 8-10 m.

The most widespread FA disposal facilities in India are FA-slurry surface ponds with
open water circuit that collect 85-90% of the solid waste generated by power plants, while
around 10% constitute dry or wet deposits on the adjacent land as emission from the stacks. In
general, all new power plants in India have their own FA ponds, but quite a few due to the
shortage of space, partly discharge FA slurry directly to the receiving stream.” According to
Indian Management and Handling Rule of 1989, FA is not hazardous waste. The existing
Environmental Protection Act in India does not set any regulations concerning FA disposal or
limitations on contaminant discharge from FA pond into the environment. The only standards to
be followed comprise pH values (pH 6.5-5.5), suspended solids (100 mg/L), and oil and grease
(20 mg/L) in the effluent from FA pond. The results of leach studies carried out by the Indian
researchers suggest effluent from the FA ponds to be “environmentally benign”.>*> A literature
review of studies on FA impacts on the basis of only three sources supports this conclusion.?

Despite of extremely liberal environmental regulations in India, huge amounts of FA
generated and disposed currently and anticipated to be generated in the nearest future make this
waste highly problematic and induce some activity of Indian central and state governmental
institutions such as Central Pollution Control Board and the Ministry of Environment and Forest
directed to reduction of FA disposal. Taking into consideration W1dely known beneficial
properties of FA that can be used in a multitude of applications,”®’ their recommendations
suggested FA utilization by the year 2001 to achieve 50%, with the emphasis on use in
production of construction materials (bricks, cement, tiles), in agriculture as soil improver/
amendment, for abandoned mines backfilling (stowing) and for lining of irrigation canals.
Unfortunately, these recommendations have not been supported by any enforcement or incentive
mechanisms that resulted in the lack of significant progress in this area. The current coal ash
utilization level is negligible and according to a rough estimation ranges between 2-3 % and 6
%.2° Though numerous reports have showed successful use of FA in different, up to pilot or
small full scale applications in construction material production, they also pointed out the failure
of FA commercial viability in competition with natural materials.'®
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The use of FA in agriculture as soil amendment and fertilizer seems to be particularly
attractive to India as high-volume low-technology application, and potential sink for almost

unlimited amounts of coal combustion waste. Therefore, the content and mobility of trace
elements in FA from Indian power plants in the actual conditions of its disposal and use are of a
vital importance.

In this chapter, the trace element mobility has been analyzed and exemplified in field
studies on ground water quality in wells in the vicinity of the FA slurry pond under operation,
and on trace element contents and uptake from FA-amended soils, on the background of effect of
FA application on crop yield.

2. CHARACTERISTICS OF COAL ASH FROM INDIAN POWER
PLANTS

The available data on Indian hard coal burned in different power plants and coal ash/fly
ash from these power plants™'"'>"*! show that with respect to its major chemical and phase
characteristics, Indian FA does not differ considerably from each other and from FA originating
frem the different parts of the world, among them from the European power plants'', though
the specific features of this material can be also distinguished. In particular, Indian coal ash/fly

ash displays wide range of CaO content, predominantly low, and also low alkali concentrations
(Table 1).

Table 1. Chemical composition of fly ash from several Indian thermal Plolvyzelrftations under

NTPC, A.P.Genco, NALCO and other corporations (after > )
Average | Average
Major NTPC, 8 Thermal Power A.P.Genco , 4 Thermal FA a FA,a NALCO'"!
constituents Stations (TPS)'! Power Stations (TPS)'? few few
(% wt.) TPS™® | TPS®
from to mean from to mean mean mean mean
Si0, 55.50 64.76 62.04 62.50 65.60 63.39 56.80 49-67 62.72
ALO, 23.45 36.40 24.0 275 26.34 24.10 20-30 29.93
Fe, 0y 4.40 7.73 5.23 3.17 5.32 3.90 4.10 5-22 2.13
TiO, 0.50 1.55 1.23 1.20 0.1-2.0
Ca0 0.10 4.80 1.19 1.00 2.20 1.56 2.00 0.1-2.0 2.33
MgO 0.46 1.20 0.63 0.05 0.60 0.38 1.40 0.1-1.0 0.72
Na,0 0.15 0.60 0.31 0.04 0.65 0.39 0.1-0.2 0.19
K,0 0.70 1.13 0.88 0.85 1.72 1.30 0.1-1.0 0.25
SO, 0.07 0.35 0.18 0.12 (0.12) 0.1-1.0 0.18
BPR 0.64 4.25 1.47 1.22 2.15 1.68 2.19

"BPR - Buffering Potential Ratio = CaO+MgO / SO, + 0.04 Al,O, (dimensionless)”
**Power Plants from East India®

The Buffering Potential Ratio BPR = CaO+MgO/SO; + 0.04 Al O; for FA from
European power plants fired by hard coal ranges from 1.5 to 3.6, which classifies this material as
alkaline aluminum silicate.”” For FA considered typical for Indian power plants this ratio varies
widely from 0.64 to 4.25 (Table 1) with a domination of low-buffered material with low CaO
content ranging from 0.10 to 2.20, SIL123 Bor 8 power plants of NTPC, the average BPR is 1.47,
for NALCO power plant it accounts for 2.19, though for other power plants higher values may
also occur, as some reported CaO contents in FA appeared to be as high as 5-14 % !
Nevertheless, for average coal ash/FA collected from a few thermal power stations in eastern
India’® and the majority of other Indian power plants, the BPR = CaO+MgO/S80; + 0.04 ALO;
and alkali content is markedly lower than e.g. for FA from disposal pond of Rybnik power plant
in Poland, which showed acidification and intensive trace element release due to weathering
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transformations in the post-closure period (see Chapter XX). This suggests the possibility of the
similar weathering transformations that could cause acidification of the material in time and the
similar leaching behavior with the development of the time delayed release of trace elements in
hazardous concentrations. Thus, both storage and application of FA requires assessment of its
buffering capacity and taking adequate preventive measures with respect to the material
susceptible to acidification and extensive leaching of trace constituents in the Delayed Release
(T stage. Unfortunately, there is no reliable data on the “safe” CaO+MgO/SO; + 0.04 Al,O;
ratio, and probably sharp border between the permanently alkaline material and that susceptible
to acidification in time does not exist. Besides buffering capacity of the material, also the
intensity of the weathering processes such as devitrification, formation of gibbsite and
subsequent kaolinitization of the amorphous phase significantly affect the development of the
Delayed Release (II) stage.16 The information on the preconditions and kinetics of
transformation processes of FA are still scarce and need further extensive studies. On the other
hand, the principle of precaution and prevention suggests avoidance of any FA management
option that poses potential risk to the environment and health at any stage of its life cycle.

Comparison of the elemental composition of coal and FA from European coal-fired power
plants with that from India shows similarity of concentrations and trace element enrichment of
about an order of magnitude higher than in coal; in coal ash (mixture 80/20 of FA and bottom
ash) trace element content is somewhat lower than in FA '* %192 (Table 2). In general, trace
element concentrations in FA are also significantly higher than in natural soils under normal
geochemical conditions®' (Table 3). Of these elements, particularly environmentally problematic
are oxyanions of a high toxicity such as As, B, CrVI, Mo, Se that have a broad stability field in
solution and are mobile at any pH range, as well as toxic heavy metal cations that are able to
accumulate in the tissue of living organisms (Pb, Cd, Ni). Many metals are useful macro- and
microelements but exert detrimental effect in higher concentrations, e.g. Ca, Mg, Fe, Zn, Mn,
Cu. Most of metal cations are mobilizable at low pH, but several of them form mobile species at
extreme pH, both acidic and alkaline (e.g. Pb, Ni, Zn). In general, metal cations show high
mobility in the acidic pH range. Besides pH-Eh that are the major controlling factors, also
availability of trace elements for contact with pore solution, conditions of water circulation and
presence of complexing agents determine leaching behavior of trace elements from FA under
different conditions and stages of the environmental exposure determined by both FA
characteristics and its applied management option in a definite area.

3. ENVIRONMENTAL EFFECTS OF FLY ASH DISPOSAL AND USE

3.1. Impact of FA Pond on Ground Water Quality

The reports on “no adverse effect” of FA disposal ponds on the water quality**’
induced the authors to analyze the results of a survey® carried out in response to the World
Bank enquiry for evaluating the impact of the 17-years’ old coal ash pond under operation
(Maharastra State Electricity Board MSEB, Maharastra, Chandrapur) on the ground water
quality in the vicinity of the disposal site. Surface pond for disposal of coal ash is sited in the
submerged depression of the total area 27 km? in the Erai River basin near Chargaon village
(Fig. 1). The ash pond that has a storage capacity of about 166 Mm’ is expected to be filled up
in 30 years. The excess of water is discharged as the overflow directly into the Kankalya
Nalla, the tributary of the Erai River.

Within the ash pond area, the shallowest unprotected aquifer occurs 3-10 m below
ground level in alluvial sediments. The general direction of ground water flow is from NW-
NE to SE towards the main drainage watercourse of the Erai River. The alluvial aquifer has
been used as a major source of water supply from the shallow dug wells for the numerous
villages in the area sited predominantly within or down-gradient of the ash pond area.
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Table 2. Concentrations of major constituents and trace elements in Indian ccal and FA/coal
ash from thermal power stations (TPS) (TPS) compared to European coal/FA

The :

w | Netherlands'® India

E Fly ash” Coal ash” Fly ash

H] Tamil Nadu
= Fly 14 Bhusa-

§ Coal ash Coal Mean (From-to) From-to Chsa_r}z;rgeur wal TPS™

S TPP" | Mettr | BT
Major constituents, wt %
Al [ 1.65] 15.0°| 0.85+0.01 | 14.94(12.43-19.29) [ 12.76-13.90
C [732] 43 | 78.1140.37 0.08 | 0.26
Ca {0.14] 1.2 | 0.20+0.006 0.94 (0.07-3.43) 1.43-1.55
Fe [ 0.51 | 47 | 0.75+0.045 3.42(1.49-541) 2.79-2.80 | 3.15-3.17 | 2.98 1.7 | 25
K [0.17] 15 |0.074+0.0028 | 0.52(0.08-0.94) 0.81 032 | 0.10
Mg [ 0.08 | 0.7 [0.038+0.0008 | 0.43 (0.28-0.72) 0.84-3.06 13 2.6
N |16 ] 03 1.56+0.07 0.01 | 0.04
Na [0.04 | 04 [0.051+0.0011| 0.19(0.07-0.28) 0.36
P [0.01]0.10 0.24 0.19 | 0.21
S [07] 01 1.89+0.06 | 0.14(0.03—0.87) 03 | 06
Si |2.82] 257 29.01 (25.92-30.24) | 26.51-27.22 58 51,
Ti {0.08 | 0.8 |0.045+0.0017 0.72

Trace el (mg kg-1)
As {37 | 34 3.7240.09 34-3.7 19

B | 43 | 163

Ba | 158 | 1438 | 67.50+2.1 400 120-350

Cd [0.10 | 0.9 | 0.06+0.0027 11.8-12.1 | 9.7

Co| 58| 52 2.29+0.17 14 5-25 54-57 49 3.8 | 48
Cr [ 144 | 131 145 40-100 79-82 68

Cu 166 | 151 | 6.28+0.30 72 20-60 60-61 54 30 20
Ga| 20 | 18 50 15-25 4 35
Hg {0.16 | 0.23 <0.008 | <0.005

La | 76 | 69 108 15-20

Mn| 46 | 415 | 12.40+1.0 213-216 194 30 25
Mo | 3.0 | 27

Ni | 11 98 | 6.10+0,27 141-142.5 | 136

Pb | 85| 77 3.67+0.26 95 10-30 10-41 36 28 [ 31
Rb{ 92 | 84 | 505+0.11

Se | 2.2 13 1.29+0.11 10 1-8

Sr | 107 | 971 164 40-350

Th | 2.9 26 | 1.342+0.036 112 39-85

U | 1.5 | 13 |0436+0.012 21 8-27

V {29 | 262 321 55-150

Y 47 20-50

Zn | 24 | 218 | 11.89+0.78 295 180-460 106 -118 90 40 190

* Data obtained by the authors within the current research project of CFRI (CSIR) Dhanbad, India

The quality of the ground water within the ash pond and in its vicinity was assessed on
the basis of sampling in triplicate (with two weeks’ intervals) and analyzing water quality
from 11 dug wells and the effluent from the ash pond. As a control, the dug well up-gradient
of the ash pond was selected, which was unaffected by the leachate from the pond (Fig. 1).
More details on ash pond location and hydrogeological conditions in the area, as well as on
the scope of the survey have been presented elsewhere®.

The survey of 1996 showed significant adverse alteration of well water quality within
and down-gradient of the pond (Table 4). The major changes consisted in the multiple
increase of macro-constituent concentrations typical for the leachate from a power plant FA
(TDS, chloride, sulfate, hardness, Ca, Mg, alkalinity). Analyzed trace element contents (B,
Cd, Cr*, Hg, Pb) though were distinctly higher than the background concentrations, only
occasionally exceeded MCL (Cd, Pb) due to pH values within the stability field for the most
of these elements (pH 7.4-8,3). Only Hg and of other constituents also phenols were
permanently above MCL, while NO; exceeded background concentrations. The strongest
deterioration of ground water quality occurred within the ash pond (wells 11, 3, 10) that made
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~ catchment area
submergence area (ash pond)

outflow from the ash pond

direction of ground water flow

Ground water sampling points
(dug wells):

@ control well
[4  contaminated water
@ non-contaminated water

Figure 1. Location and impact of the 17-years’ old coal ash pond under operation
(Maharastra State Electricity Board MSEB, Maharastra, Chandrapur, India) on the
ground water quality.

water unfit for any use. Down-gradient of the ash pond (wells 4, 6, 5) groundwater quality got
improved due to dilution, but still did not meet the standards. To summarize, the general
pattern of adverse changes of groundwater quality caused by coal ash disposal reflects the
release of soluble constituents in the Washout (I) stage of leaching under the saturated zone
conditions. Owing to weakly alkaline pH values, most of trace elements remain within their
stability fields as solid phases, while leaching of soluble macro-constituents is the major
process, which strongly affect ground water quality. Hydrogeological conditions of FA pond
represent both horizontal flow typical for the saturated zone in the surface ash layer, and
vertical percolation of water through the underlying ash layers, with downward
concentration/loads redistribution and occurrence of maximum concentrations at the bottom
that is typical for the vadose zone. Elevated concentrations of Hg and phenols also in waters
not affected by the FA pond (wells 2, 1, 8, 7) suggest dry and wet deposition from the power
plant stack emission as a main source of these anthropogenic contaminants, in conformity
with their environmental behavior.

Low concentrations of contaminants in the excess water overflow (point 9 - Fig, 1,
Table 4) that are often used as the proof of a lack of adverse impact of ash disposed in the
pond on water quality”*** are misleading. They result from the method of ash: water slurry
preparation from fresh water, high water: ash ratio and short contact time of water with FA in
the open circuit. In this particular case, further extensive deterioration of the unprotected
shallow aquifer during the 30 years long operational stage of the ash pond is anticipated.
Large disposal area and volume, despite of a lack of sectional construction, may result in the
development of the different mode of soluble constituents release, including trace elements,
through Dissolution (II) stage of a lower dynamics of both macro- and trace constituents
release, up to the Delayed Release (III) stage with intensive leaching of trace elements
following the acidification of a material due to weathering transformations that is reported in
XX chapter of this book. Similar to that, increase of acidification and further long-term
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Figure 2. Effect on agricultural crops of FA application in red and lateritic soil (pH <5.5) at
BKTPP (field trials 1994-95).

intensification of the Delayed Release (IIT) adverse impact of ash pond on ground water in the
post-closure period may develop as a result of devitrification and crystalline minerals
formation (gibbsite, kaolinite, other clay minerals and aluminosilicates) from amorphous
phase.16

Besides opinions about FA as a negligible source of the aquatic environment
contamination cited above, the evidences of stron% long-term adverse environmental impact
of FA disposal sites are constantly increasing.'* 2* *° This leads to conclusion that much more
attention and efforts to understand the short- and long-term processes resulting in health
hazard and deterioration of the environment should be paid to avoid or attenuate the hazards
and utilize beneficial properties of waste from coal-based power generation.
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3.2. Studies on Agricultural Use of FA in India

The interest in FA use as soil amendment/ improver is growing steadily in many
countries, among them in India and in the USA, though the enthusiastic approach to this form
of this waste material utilization is not common. In particular, in many countries of the
European Union (e.g: in the Netherlands) and other European countries (e.g. in Poland) the
use of FA in agriculture is not permitted, and therefore the research in this area are scarce, if
any. The limit values of heavy metal concentrations in soil according to the regulations of the
European Community (EC), national regulations of the EU Member States and other
countries (Poland, Canada, USA and New Zealand) display significant differences that reflect
also different viewpoints and 0protocols adopted with respect to soil protection and risk
assessment (Table 5).2627:28.293031. gpA 5033 proposes definitely the highest limit values,
much beyond the maximum concentration levels of trace elements in soil regulated by the EC
and national legislation of European countries in force for application of sewage sludge. In
turn, the new EC directive that is currently under development® considers increasing
stringency of regulations compared to the current EC regulations in force. It should be
underlined that these regulations were developed for the specific purpose of sewage sludge
application as soil amendment. There are no regulatory limit values of trace element
concentrations in agricultural soils in India.

In India, several research centers, among them research institutions under Council of
Scientific and Industrial Research (CSIR) are involved in long-term research projects on FA
utilization for agricultural purposes. In this chapter, the experiments conducted at the Central
Fuel Research Institute (CFRI-CSIR) in Dhanbad since 1994 will be discussed, on the
background of other similar research projects.

The field trials using different doses of FA ranging from 25 t/ha to 500 t/ha (that is
0.8 - 16% wt. or 1.3 — 25% v/v for soil layer 20 cm thick) were conducted in acidic red and
lateritic soils (pH 5.5) and in alkaline alluvial soils (pH 8.0) in 1994-1995. FA used in field
trials to amend the acidic red and lateritic soils originated from Bakreswar Thermal Power
Project (BKTPP) under the management of West Bengal Power Development Corporation
(WBPDC) and from Farakka Super Thermal Power Project (FSTPP) under National Thermal
Power Corporation (NTPC). FA for amending alkaline alluvial soils came from FSTPP. The
experiments and field trials in the same soil types have been continued also in years 1997-
2000 using FA from Chandrapur STPS and Bhusawal TPP. Basic parameters and some trace
metal content (total and DTPA extractable) in the soils used in the field trials (alkaline
alluvial A, B, C) and acidic red soils (D), as well as in corresponding FA added to these soils
are presented in Table 6 (DTPA extractable trace elements are considered bioavailable to
plants). The comparison of these parameters for soil and FA shows FA superiority over soils
with respect to Water Holding Capacity (WHC), porosity and bulk density. Concentrations of
trace elements (Cu, Zn and Pb) in FA were distinctly higher than in amended soils; DTPA
extractable Cu and Zn were lower, while DTPA extractable Pb was higher in FA. Both total
and DTPA extractable contents of Fe and Mn appeared to be higher in soils than in FA. The
data on bioavailability based on DTPA extractable metals, though, do not characterize
bioavailability of metals in FA-amended soils that results from FA interaction with soil, and
may also change in time.

The crops grown in these soils included paddy, wheat, maize, soybean, mustard, till,
potato, radish and carrot. The major purpose of FA use was (i) improving some of the
important physico-chemical properties of the soil such as hydraulic conductivity, water
holding capacity WHC, bulk density, particle size and pozzolanic properties; (ii) neutralizing
the acidic soil of red and lateritic type (pH 5.0-5.5). Crops grown in FA-affected soil (where
FA was not added in purpose) were also investigated.

From the field trials 1994-95 it was concluded that FA application in doses from 25 to
100 t/ha to the acidic soils made them 10-30% more productive over control with respect to
different crops (example — Fig. 2). Application of FA to alkaline soils in amounts from 25 to
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Figure 3.  Effect on agricultural crops of FA application in alluvial (pH> 8.0) soil at FSTPP

(field trials 1994-96).

Table 7. Effect of FA application on concentration of trace and toxic metals in crops
cultivated in acidic soils at BKTPP (field trials 1994-95).

Fertilizer Part of j Trace elements (mg/kg, dry wt)
*FAdoze | aplent | s | cd [ co [ or [cu [ Mo [ N [P0 [ 7n
Paddy crop
NPK Grain nd nd 3,6 nd 25 | 225 | 34 06 | 11,9
Straw nd nd 5,5 nd 39 | 1398 | 50 13 | 436
NPK Grain nd nd 40 nd 2,4 20,9 3,5 0,7 12,0
+25 t/ha Straw nd nd 6,4 nd 40 | 1382 49 1,0 | 43,7
NPK Grain nd nd 3,8 nd 2,2 20,0 3,6 0,6 11,0
+50 tha Straw nd nd 6,3 nd 38 | 1184 | 54 1,2 | 406
NPK Grain nd nd 40 nd 2,0 19,8 38 0,5 10,9
+100 tha Straw nd nd 6,0 nd 3,6 | 1130 60 L1 | 387
Wheat grain
NPK ) <0,05| 0,0 | nd | 055 | nd nd nd | 027 | 12,81
Grain
+200 tha <0,05| 011 | nd | 070 | nd nd nd | 030 | 10,80
Maize comn
NPK Grain <0,05 | <0,05| nd | 0,67 | nd nd nd | 089 | 1421
+200 tha <0,05 | <0,05| nd | 060 | nd nd nd | 0,75 | 10,25

nd - not determined
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200 t/ha was found to increase crop yield significantly, up to 45-70% at the FA dose 200 t/ha
(Fig. 3), due to improving physico-chemical properties of the soil. No adverse effect of
heavy/toxic metals uptake by crops due to FA application to acidic soils in doses up to 200
t/ha was observed (Table 7). The FA dozes over 300 t/ha applied either to acidic or alkaline
soil did not increase the yield of crops, but also no adverse effect on crop growth during
cultivation period was observed. Therefore, FA dose up to 200 t/ha was assumed to be
beneficial and safe.

Further studies carried out by CFRI 1n 1997-2000 on FA effect from different power
plants onto acidic and alkaline soils gave similar results with respect to increase of different
crop yield; the increase of soil productivity in the range from 16 to 33% with respect to
control was observed also at FA doses of 500 t/ha (Table 8, Fig. 4).

The simultaneous increase of total heavy metal concentrations in FA-amended acidic
red soils was also noticed (Fig. 5). In FA-enriched alkaline soil, higher DTPA—extractability
compared to control suggested higher availability of metals to plants, though pH of soil
remained unchanged (Table 9). Heavy metal concentrations in FA-affected soil did not exceed
limit values proposed by EPA 503, and were much below EPA-RBC?!, though Cd and Ni
concentrations both in non-amended and FA-amended soil were considerably above the more
stringent and diverse limit values of the EC 2"?® and national regulations of the EC Member
States (Table 5). Other authors express the opinion about a rather low risk from trace element
mobilization from FA-amended soils in Washout (I) and Dissolution (II) stages at alkaline
pH*'*2, The reduction of plant available trace elements due to alkaline FA application to
acidic mine soils treated with sewage sludge was reported recently’>. On the other hand, there
is also an evidence of the elevated bioavailability of Zn, Fe, Mo in soils amended with FA
compost (composted mixture of FA and biosolids, 1:1 ratio), as well as of the potential of Zn
and Pb to be leached into groundwater from such soils. These observations lead to the
conclusion about the need of developing guidelines that establish an upper limit for the total
amount of FA application rate to the agricultural land™.

Comparison of trace element concentrations in crops grown in FA-enriched soil
showed diverse susceptibility of trace metal uptake by different crops:
soybean>linseed>jowar>wheat. The increase of concentrations varied depending upon metals
and crops. In soybean and linseed grain, all investigated metal concentrations were found to
increase, in soybean in the range from 3.5 % (Fe) to 23.8 % (Ni) and in linseed from 2.8 (Fe)
to 16.2% (Pb). In jowar grain, only Cu, Mn, Pb and Cr concentrations were higher than in
control, in the range from 2.2% (Cu) to 7.6% (Cr) while contents of Zn, Fe, Ni and Co
showed distinct decrease. In wheat grain from FA-affected soil, contents of all metals were
lower than in control that confirmed well-known wheat resistance to metal uptake (Table 9).

Table 8. Yield pattern of crops grown in the fields affected by FA from Chandrapur STPS
(~500 t FA/ha) in the period of 1997-2000.

Yield
Number of fields Seso:llnyt":rr)(ﬂeld Crop Qt/ha % In:;::::lover
Control FA-affected

Kharif 97 (6} _ N

8 Rabi 99 (2) Soybean 7.7-111 98-14.2 26.8-333
Rabi 97-98 (4) . i R

5 Rabi 99-2000 (1) Wheat 81-104 105-134 19.4-29.5
Rabi 97-98 (1}

4 Kharif 98-99 (1) Arhar 6.6-9.6 78-11.2 16.4 - 20.6
Kharif 99-2000 (2)
Kharif 98 (3) j R

4 Kharif 98-99 (1) Jowar 53-70 7.1-84 20.0-34.0

1 Rabi 98-99 (1) Gram 6.8 8.6 26.5

1 Kharif 97 (1) Moong 48 64 333
Rabi 97-98 (2)
Rabi 98-99 (2) . ; A R

5 Rabi 99-2000 Linseed 43-5.1 5.1-67 204-24
Rabi -2000
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Figure 4. Effect on crop yield of FA application from Chandrapur STPS and Bhusawal TPP
(pot experiments ) -

Other source®® noted no significant influence of high loads of As added to soil (6-9 kg/ha
year, 41 kg/ha of cumulative loading) from FA or FA/biosolids blends on element
concentration in mature plants of corn grain or on its leaching from soil profile. A low risk
from Ni, Pb, Cd, and Cr concentrations in shoots of maize grown in acidic soils amended with
FA and other coal combustion residues was also reporteds(’. Nevertheless, besides
encouraging results and opinions concerning beneficial effect and environmental safety of FA
use either alone or in FA/biosolids mixtures there is also an evidence of serious environmental
implications of FA use and disposal that drive to the conclusion that “coal as a major energy
source may pose more serious ecological problems than previously believed”?. This
conclusion is based on the growing number of reports on acidification and massive heavy
metal release from FA disposal sites discussed in the chapter XX and elsewhere'® 2, as well
as from FA/reject coal landfills®, and on finding high levels of heavy metals in animals
exposed to coal fly ash and coal rejects from burning coal.’’ These signals cannot be
neglected and suggest that more attention should be paid to the time-dependent
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Figure 5. Increase of heavy metal concentration in FA-amended acidic red soil (300 t/ha) ,

transformations of FA exposed to the atmospheric conditions due to weathering processes, in
order to utilize safely beneficial properties of this material and adequately reduce potential
and actual adverse effects.

4. CONCLUSIONS

In the light of presented data, FA disposal in surface ponds is not environmentally
safe, while application in agriculture seems to be a prospective sink for FA, in particular when
a significant increase of crop yield after application up to about 500 t/ha have been observed.
Though, considering low lime content in Indian CCW (predominantly <1 — 2 % CaO) typical
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also for the majority of this waste in other countries, and hence its short-term neutralizing
capacity, large-area uncontrolled disposal or agricultural use of FA may bring about an
irreversible water or soil contamination in the long-range period (in the Delayed Release
stage). High heavy metal enrichment including mobile oxyanions of proven toxicity (B, As,
Mo, Se) and adverse weathering transformations of FA properties, as well as susceptibility to
extensive trace metal release due to acidification caused by devitrification and mineralization
of amorphous phase support this anxiety. These premises resulted in a ban on CCW use in
agriculture as soil amendment in many countries, e.g. in the EU Member States and also in
Poland, and limited use in other countries (e.g. in Japan) as presumable environmentally
problematic application, while use of biosolids in agriculture is generally acceptable provided
the regulations are strictly followed. The safe utilization of CCW in agriculture, particularly
for the industrial dumping sites reclamation with use of technical species, €.g. aromatic plants
growth® though is sound and prospective, does not solve the problem of bulk utilization of
FA.

Currently, most of the studies on FA application in agriculture have been conducted
with use of the freshly generated FA, when its environmental behavior and interactions are
determined by the properties of strongly alkaline non-weathered vitrified material in the
Washout (I) or Dissolution (II) stages of macro- and trace elements release, and all the
conclusions and suggestions are relevant to these stages. Hence, further extensive studies on
the long-term environmental behavior of this anthropogenic waste material should be
conducted, in particular to elucidate the weathering transformations and interactions of
weathered FA with soil and plants also in the Delayed Release (III) stage. Until these
questions are not clear, the application of FA to the acidic soils should be avoided. If there are
no regulatory restrictions, the caution and pollution prevention principle suggests FA
application entirely to the well-buffered alkaline/neutral soils in the doses that increase the
crop yields but do not cause significant increase of metal bioavailability to plants. Plant
selection for cultivation in FA-amended fields should consider their susceptibility to metal
uptake and accumulation in the edible parts.
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1. ABSTRACT

The total generation of scrap car tires throughout the world is estimated at 1000
million pieces per year which presents economic, environmental treatment and disposal
problems. In the European Union, the estimated generation of scrap car tires is about 180
million per year of which 65% should be recycled by the member states. In Fnuand, the
recovery percentage is about 90. There are many ways scrap car tires can be reused and these
may include heat and power production, road construction, landfills, protection of sea shores
from waves and so on. A cement production plant at the south-west coast of Finland has
replaced traditional fossil fuel (coal and petcoke) by 10% scrap car tires. Car tires contain
heavy metals. This study focuses on how toxic elements Hg and TI can be captured as
particulates in presence of Mn and Cr oxides. The shifting of gaseous phases of metals to
particulate forms is more beneficial for the ecosystem because metal-containing particulates

are more easily seperatable from the gas stream by the emission control equipments.
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2. INTRODUCTION

2.1 Background

Coal, oil and natural gas are imported to Finland for the generation of heat and power.
The energy consumption depends on industrial production and domestic heating, and has
increased in Finland from 417270 TJ (tera joule = 10" J) in 1990 to 515807 TJ in 2000."' In
addition, in recent years special attention has been focused to alternative energy sources,
namely renewable wastes and waste tires.

Scarp car tires can be used as a fuel source in cement kilns, pulp and paper industry
and also power utilities. Recycling philosophy has developed very quickly and in 1996,
recycling of used car tires started in Finland based on the Council of State decision number
1246, October 12, 1995. It has been reported that about 30000 mt (metric tons) of used
vehicle tires are produced in a year. It means a number of used vehicle tires are of 2.4
million pieces, whereas in Europe, 250 million used car tires are produced.? In Finland,
90% scrap car tires are recycled, whereas the European Union declares scrap car tires as a
Dpriority waste stream@ and the target of recovery by the member states should be minimal
65%.3 In the United States, scrap car tires form approximately 1.8 wt % of the total
municipal solid wastes and in each year about 150 million mt used car tires are produced
with an estimated stock pile of 3000 million tires awaiting disposal or treatment
otherwise.** However, under the European Union legislation, e.g. the Landfill Directive
whole used tires will be banned from landfill sites by 2003 and shredded tires or chips by
2006.°

In cement production, 30 to 40% of production cost relates to energy, as a result of
which alternative fuel such as used car tires has become a key issue for the worldwide
cement industry. Cement producers are interested in evaluating to what extent conventional
fuels such as coal, oil and petcoke (petroleum coke) can be replaced by alternative fuels, i.e.
processed waste materials such as used car tires.*’ Nowadays, more than 80 countries
produce cement in very energy intensive process that releases NO,, greenhouse gas, mainly

CO0; and CO, and trace metals. In Finland, two cement facilities (dry process) are producing

about 1.3 million mta™ cement whereas world production was over 70 million mt in 1998-
99. The management of cement facilities in Finland realized the benefits of the use of scrap

car tires and Finnsementti Oy, situated in Parainen on the south-west coast of Finland near



Figure 1. Car tire scrap at the cement plant in Parainen, Finland. (a) received car tire
waste (b) iron wires separated from tires and (c) chips of sizes 25 x 25 x 10 mm.®

Figure 2. Schematic picture of the cement manufacturing process.

47



48

the city of Turku, evaluates the recycling of shredded car tires as a supplement fuel of a 4-

stage cyclone preheated rotary kiln (Fig 1).® In this study, the trend of trace metals
emissions from the stack in particulate and gaseous form during normal operation with coal
and petcoke mixture in the process has been compared with the situation when the

secondary fuel (10% of the total fuel input) is replaced by shredded car tires.

2.2 Cement manufacturing

Cement is the main component of concrete used in the construction of houses etc. It
can be produced by two main processes e.g., dry and wet process. Besides these processes,
there are other intermediate process such as semi-dry and semi-wet which are also used.
The process depends on raw materials, their form and moisture content. Generally, the
required raw materials are limestone, chalk, clay, sand and additives. In Finland, the dry
process is used. In this process, less energy is required about 3.3 MJ kg™ clinker than in the
wet process, where it is about 5.7 MJ kg™ clinker.”

Cement manufacturing consists of raw meal grinding, blending, pre-calcining,
clinker burning and cement grinding. In short, limestone and other materials containing
calcium, silicon, aluminium and iron oxides are crushed and milled into a raw meal. This
raw meal is blended (for instance in blending silos) and is then heated in the pre-heating
system to initiate the dissociation of calcium carbonate to calcium oxide and carbon
dioxide. A secondary fuel is fed into the preheating system to keep the temperature
sufficiently high. The meal then proceeds to the kiln for heating and reaction between
calcium oxide and other elements to form calcium silicates and aluminates at a temperature
up to 1450 °C. Primary fuel is used to keep the temperature high enough in the burning
zone for the chemical reactions to take place. The reaction products leave the kiln as a
nodular material called clinker. The clinker will be inter-ground with gypsum, limestone
and/or ashes to a fine product called cement'? Figure 2.shows a cement manufacturing
process from raw material quarrying to the bagging of the cement and the main reactions at
different stages inside the rotary kiln are given in Table 1. The waste tire particles are fed

into the lower part of the kilns pre-heating system, hereafter referred to as the riser duct.?

2.3 Alternative fuels in cement manufacturing
Traditionally, coal is used as a main fuel for manufacturing cement. In the modern

society, the increase of waste streams has created negative impact on the environment.



Table!. Main reactions inside the kiln during cement production by dry process ''

Reaction Reaction equation Enthalpy (kJ/kg)

1. Formation of oxides and
Decomposing reactions

Water evaporation H0 (1) > HO (g) 2453
Decomposition of kaolinite A1;03¢2Si0,02H,0 —»
ALOs + 28i0, +2H,0 780

Oxidation of carbon C+0,-CO; -33913
Dissociation of MgCO; MgCO; —» MgO + CO, 1395
Dissociation CaCO; CaCO; —» Ca0 +CO, 1780
1. Formation of

Intermediates
Formation of CA Ca0 + Al;03 —» CaO o ALLO; -100
Formation of C,F 2Ca0 + Fe;03 — 2Ca0 o Fe 04 -114
Formation of B-C,S 2Ca0 + Si0; —» 2Ca0 o Si0, -732

IOI.  Sintering reactions

Formation of C4AF CA + CoF + CaO - C4AF 25
Formation of C;A CA +2Ca0 - C;A 25
Formation of C;S B-C,S + CaO — C58 59

Note: In the cement industry, the following abbreviations are often used to simplify the
complex formulas.
Ca0 =C; Si0; = §; ALO; = A, Fe;O; =F

Scrap car tire is one of them. In recent years, scrap tires are found beneficial as a secondary
fuel for its chemical as well as its heating values. For these reasons, cement producers
recognize car tires as an alternative fuel.
2.4 Objectives of this paper

In this paper, the trend of heavy metals emissions in particulate and gaseous forms
during normal use of coal and petcoke (petroleum coke) mixture in the process has been
compared with the situation when the secondary fuel (10% of total fuel input) is replaced by
shredded car tires. In 1995, a study was conducted for Finnsementti Oy, measuring
(amongst other things) the release of heavy metals from stack gases at Parainen when using
only traditional fuels such as coal/petcoke and when using car tire scrap as well. This paper
is based on these measurements.'>"® Earlier studies on the use of shredded car tires at the

cement facility at Parainen were reported by Karlsson et al.'* and Katintee et al.®
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3. CARTIRE WASTE AS A FUEL

3.1  Car tire waste
The crucial problems associated with the disposal of vast amount of scrap tires

15 For this

and other types of waste generated annually world wide are well-known.
reason, special attention has been paid to recycling and preventing the generation of

wastes/hazardous wastes in the European Union (EU) as well as in other developed

countries. Many industries have focused on clean technology, avoiding or reducing the
production of hazardous wastes from the process. In the 1980s, a big problem with used
car tires was alack of encouragement for its applications. Often, used car tires were
dumped in landfills. However, strict regulation was implemented by the European
Commission in the mid 1990s for handling of scrap car tires. Also, their transportation
to the developing countries for disposal will be banned in the near future by the Basel
Convention.'® Stillitis not very clear whether scrap car tires are hazardous or non-
hazardous wastes. Brazil considers scrap car tires as hazardous waste. However, it may
be a waste material, but can be source of clean energy. Its calorific value is higher than
the calorific value of coal or petcoke.

Nowadays, the use of waste tires is well established in the sectors of energy, civil
engineering, construction and agriculture. Due to increasing fuel prices, special attention
has been focused on alternative energy sources including renewable waste materials such as
tire-derived fuel (TDF)."” Beside a high heating value, it is environmentally friendly due to
relatively low sulfur content (0.8% wt, dry; coal (bit.):1-5% wt), and high iron
concentration (15%-wt, dry).” '® Not but the least, TDF solves a local or regional waste
disposal problem. Table 2 indicates the use pattern of TDF in the United States, whereas in
Finland 90% is used for road construction and the rest for the maintenance of landfills and
energy recovery in the Parainen cement plant.? It is also interesting to note that there are
many old coal power plants worldwide. In these facilities, operation costs are higher than
the newer plants equipped with advanced technology. If these old power plants switch over
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Table 2. Use pattern of scrap car tires in the United States and Finland (million tires) "7

" Source USA 1998 Finland 1997*

(million car tires)

Fuel 114 0.71
Cement kilns 38 0.71
Pulp/paper mills 20 0
Tires to energy 25 0
Electric utilities 15 0
Industrial boilers 16 0
Civil Engineering 20 2.1
Products 23 0.45
Ground rubber 15 0
Cut/punched/stamped 8 0
Re-use not known 0.45
Miscellaneous agriculture 5.5 0
Export 15 0
Total 177 3.87
*Ranta”’

Note: For Finland, it is assumed that a car tire weighs 7 kg. Based on it, tons of car tires

have been converted into numbers.

to TDF, the cost of electricity production will be lower, owing to higher heating value than
coal. It is expected that these facilities may then compete with modemn power plants.
3.2  Application of car tire waste

It took a long time to develop and improve the quality of car tire. Car tire is
manufactured from a wide range of compounds including natural and synthetic rubbers
plus a large quantity of carbon black as a reinforcing agent and filler.'? During production,
oils are used for mixing the ingredients and to modify physical properties as well as
vulcanizing agents such as sulfur, zinc oxide and organic compounds to enable the
polymerization reaction at elevated temperature. The general use pattern of waste tire has
been mentioned earlier. Besides the energy sector, it also is used to construct artificial reefs

to promote fisheries, and a mixture of soil and tire has been considered for
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geoenvironmental applications such as in-ground barriers and landfill liner systems.'*™!

Attempts have been made to use a clay-tire mixture to absorb petroleum based
hydrocarbons, but it was unsuccessful due to swelling pressure on the material causing the
permeability of the soil-tire mixture to decrease.®® Scrap car tires are used also in road
paving e.g in the hot asphaltic concrete mixtures. One can use 2 to 6 tires per mt of hot mix

asphalt.”2

A great deal of studies are in progress on the leaching of organic compounds and
trace metals from waste tires due to its use in different sectors. In northern Europe, studies
have been made on bio-accumulation of organic compounds and trace metals by organisms

growing on the tire artificial reef units. Collins et al.?

could not observe any abnormal
presence of benzothiazoles and zinc, a major trace metal in tire manufacturing in species
grown inside the tire artificial reef unit. The European Tire Recycling Association (ETRA)
has examined a number of civil engineering applications, coastal erosion, tide control,
beach reinforcements where whole and shredded tires can be used. But the leaching of

organic compounds and trace metals to the aquatic environment or soil compartment is still

not quantified.”**

3.3 Properties of the fuels used in cement production

The range of fuels is extremely wide. Traditional kiln fuels are gas, oil or coal.
Materials like waste oils, plastics, auto shredder residues, waste tires and sewage sludge are
often proposed as alternative fuels for the cement industry. Also all kinds of slaughterhouse
residues are offered as fuel nowadays. To be able to use any of these fuels in a cement
factory it is necessary to know the composition of the fuel. Table 3 indicates the
concentration of heavy metals in different fuels including car tire. But the choice is
normally based on price and availability. The energy and ash contents are also important, as
are the moisture and volatiles contents. All kinds of varieties from liquid to solids,
powdered or as big lumps can be encountered when dealing with alternative fuels, requiring
a flexible fuel feeding system. Somehow they should all be fed into the burning chamber of
the process. It may be fed directly into the burning zone in the kiln itself or into the pre-
heating system for dissociating part of the carbonates from the meal before it enters the kiln

for clinker formation. In Table 4 we can see examples of different alternative fuels,



Table 3. Selected trace elements concentration (mg kg™) in different fuels (modified) %

Element | Coal oil* Petcoke | Paper- MSS Waste Biomass | Car tire*
sludge wood Mix**

As 26 0.02 1.1 32 84 10.0 23 0.65

Cd 0.10 0.2 0.2 0.53 3.79 14 0.70 <2

Cr 17 3.0 18 18 113 78 26 0.025

Cu 10 25 1.8 98 406 135 57 -

Hg 0.11 0.01 0.02 0.24 3.28 0.17 0.06 <0.1

Mn 41 2.5 5.7 6.3 546 92 157 -

Ni 12 120 278.6 10 83 31 16 0.013

Pb © |67 2.0 2.1 31 260 574 16 0.005

Sb 0.51 0.02 0.6 1.2 4.1 16 1.6 -

Sn 14 0.002 0.6 6.2 38 6.4 1.3 -

\ 24 180 1560 5 24 10 6 -

Zn 19 4.0 7.0 464 1349 807 133 15300

Caloric 244 32.0 35.0 10.98 13.14 11.86 - 36.0

value

MJ/kg

MSS; Municipal Sewage Sludge
*Meij and Pilage?’

*Abo Akademi University”®

**biomass mix consists of green wood, garden waste, straw, road side grass and manure

Table 4. Properties of fuels used in tests *

CAR TYRE RUBBER | COAL-PETCOKE
MIX
C (%-wt, dry) 87,0 75,1
H (%-wt, dry) 7,82 42
"N (%-wt, dry) 0,33 1,7
S (%-wt, dry) 0,80 3,0
0 (%-wt, dry) 1,81 4,9
Ash(%-wt, dry) 2,2 11,1
Volatiles (%) 66,6 not analysed
C-fix(%) 31,1 not analysed
H,0(%, 105°C) 0,73 1,3
LHV(MJ/kg) 35,58 29,71
HHV(MJ/kg) 37,31 28,97

Table 5. Altemnative fuel options for the cement industry

Source Types

Liquid waste fuels  Tar, chemical wastes, distillation residues, waste
solvents, used oils, wax suspensions, petrochemical
waste, asphalt slurry, paint waste, oil sludge

Solid waste fuels Petroleum coke (Apetcoke®), paper waste, rubber
residues, pulp sludge, used tires, battery cases,
plastics residues, wood waste, domestic refuse, rice
chaff, refuse derived fuel, nut shells, oil-bearing
soils, sewage sludge

Gaseous waste Landfill gas, pyrolysis gas
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separated into three groups. Here, only scrapped car tires are considered. Car tires contain
roughly 60% rubber, 25% steel and 15% other materials. It is used after shredding into
small pieces (50x50x 10 mm). Its heating value is about 37 MJ kg (dry) against 30 MJ kg'!
(dry) for a typical coal/petcoke mix.>* The properties of the two fuel types used here are
given in Table 5.

4. EXPERIMENTAL PROCEDURE

%10 trace elements emissions

As described extensively in the measurement reports,
were measured separately for the gas phase and the particulate phase. The samples were
taken at the stack of the cement plant at flue gas temperatures of approx. 120-130EC.
Particulate trace element material was collected by isokinetic sampling on a quartz filter
according to the Finnish standard procedure SFS 3866, whilst the gas phase trace elements
were sampled and dissolved in a 2 M HNO; solution. The material collected on the filter
and the HNO; solution were analysed at an external laboratory. Sampling duration was of

the order of 1-2 hours, the number of samples analysed was 2 and 3 for the tests with and

without scrapped car tyres as fuel, respectively.

5. RESULTS AND DISCUSSION

Emissions of heavy metals are subjects to a steady debates. In high temperature
processes, heavy metals are released either in non-volatile or volatile form. Their
behaviours in a smelting process is basically different from coal combustion or waste
incineration or from cement manufacturing process.”” The fuel and raw materials are the
main sources of heavy metals in a combustion system. The release of metals from cement
kiln does not depend so much on the concentrations in the raw materials, but chemical
mechanisms acting at the elevated temperature. It is an established fact that the physico-
chemical behaviour of heavy metals varies strongly from one metal to another. Each
different metal behaves in an unique fashion as it is concentrated with raw materials, coal
and scrap tire species in the reactor. A metal may react with other metal species and ashes
in the reactor to different degrees and it may remain in solid and vaporized form. The
vaporized metal species are carried away through the gas stream and recondense as the gas
cools. Generally, the vapour condenses homogenously to form new particles, and
heterogeneously on the surfaces of the entrained ash and other metal particles.® Both

processes produce different size of particles. The heterogeneous process tends to favour
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smaller particles due to with a higher surface area. The concentration of some metals in
small particles may be hundred times greater than the original concentration in the feed
material. In our study, we have observed this type of behaviour for Hg when fuel is replaced
by 10% of scrap tire.

Combustion temperature is an another factor which governs heavy metals released
from a process into the atmosphere via the stack. Figure 3 indicates the effect of
temperature on selected metals. The vapour pressure generally indicates the quantity of
material that vaporizes and subsequently condenses. In the Figure 3 vapour pressure
increases with the increase of temperature. But here vapour pressures shown are very small.
It means that most of the selected metals are in particulate forms. As noted by Clarke and
Sloss®, metal Mn is in the group 1 and Co, Cr and Tl are in group 2. Manganese does not
vaporize whereas elements such as Co, Cr, T, U, V, Zn are vaporized at high temperature
processes, but they condense on particulates in cooler areas.>

The elements Hg and Cd are most critical due to their potential environmental and
human health risk. It has been demonstrated that in the industralized regions of the world,
mercury loading to the environment has increased by a factor of two to five from the
beginning of the industral period (100-150 years ago), to the present day due to atmospheric
emission and transboundary deposition of mercury in soils and aquatic environment.>*
Considering car tire scrap as an alternative fuel it is well known that car tires contain more
Zn and Cd, but less Hg and As than fossil fuels. Zn volatilizes at 907 °C (at 1 atm), but due
to low temperatures and oxygen potential in the cyclone of the cement plant precalciner
system, Zn is released mostly in the particulate form. Due to the temperature in the kiln
(1450 °C), Hg is vaporized and is mostly emitted to the atmosphere as elemental Hg, Figure
4 shows the concentration of heavy metals (particulate and gaseous forms) in the exhaust
gases when operating with shredded car tires as secondary fuel as compared to operation
with coal/petcoke only. Fe emissions are significantly increased (465 dgm™n (dry) @ 11%
0, as compared to 149 ®g m™n (dry) @ 11% O,) when tire pieces were used as a
secondary fuel.

Considering the emission standards and the toxicity of compounds such s Hg and
Tl, the fuel switch is very beneficial. It was recently reported by Granite ef al.*>*® that

metal oxides such as MnO,, CrO; and MoS; have moderate capacities as sorbents for
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Figure 3. Effects of temperature on the volatility of selected trace elements.”'

Figure 4. Heavy metals emissions durin operation with coal/petcoke

(TOP) and during operation with car tire scrap as a secondary fuel
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Table 6. Trace element emissions from the cement plant and comparison with

emission regulations (this study)

Emission pg/m ; , dry Limit, current ~ 100% coal/petcoke  10% car tire scrap
@11% 0, and EC proposal 90% coal/petcoke
Hg 50 27 3
Cd+Tl 50 15 13
As+Cr+Cu+Mn+Ni+Pb+Sb+Sn+V 500 26 76

mercury, which corresponds to our findings. The current standards in Finland as well as the
near-future standards as proposed by the European Commission are practically identical and
concentrate on three classes, being 1) Hg, 2) Cd+Tl and 3)
Ast+Cr+CutMn+Ni+Pb+Sb+Snt+V. The results given in Figure 4 are combined into these

classes in Table 6.

6. CONCLUSIONS

Stack emission measurements at a cement manufacturing plant indicate cleaner
processing when car tire scrap is used as an alternative fuel. Although the emissions of Zn
and Fe increase, and the emissions of As+Cr+Cu+Mn+Ni+Pb+Sb+Sn+V are tripled (due to
Cr and Mn), the emissions of Hg are significantly reduced, as well as those of Cd+Tl in
presence of Cr and Mn. There is a strong shift of Hg and T1 from the gaseous phase to the
particulates, which are much easier to control and which is also beneficial for the

ecosystem.
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PRACTICAL AND REGULATORY CHALLENGES IN CONTROLLING TRACE
ELEMENT INPUTS TO SOILS FROM LAND APPLICATION OF FLUIDIZED BED
COMBUSTION RESIDUES

M. Hope-Simpson' and W. Richards
! Agrosystems Atlantic, P.O. Box 1674, Truro, Nova Scotia, Canada B2N 5Z5

?Nova Scotia Power Inc., Generation Services, Point Aconi Generating Station
P.O. Box 1609, Bras d’Or, Nova Scotia, Canada B1Y 3Y6.

1. INTRODUCTION

The 165 MW, circulating fluidized bed boiler at the Nova Scotia Power Inc. (NSPI) Point
Aconi Generating Station, located in eastern Cape Breton Island, Nova Scotia, is Canada’s
largest fluidized bed unit. Fluidized bed combustion (FBC) allows the burning of high sulphur
(S) fuels with in situ capture of S (removal of SO,). The lower operating temperature of the FBC
system (870 C versus 2000 C for pulverized coal boilers) permits the combustion of a wide range
of ‘opportunity’ fuels (e.g., petroleum coke <$F, a by-product of the oil refining process. >, low
grade coals, tires, and wood waste sludge) in an environmentally acceptable manner. The use of
large amounts of a limestone sorbent in FBC results in a high rate of sulphur capture (90%),
however, the rate of residue production is approximately two-times higher than that from
conventional pulverized coal-fired boilers. While the residue is currently disposed in a fully
engineered residue management site, there are environmental, financial, and other incentives for

NSPI to find beneficial uses for the residue to minimize placement of the by-product in the
landfill.

1.1. Residue Characteristics

The use of limestone for sulphur capture, combined with a lower temperature of
combustion in the FBC compared with the pulverized coal fired (PCF) boiler, results in a non-
vitrified solids residue with higher CaO and SO, levels and lower SiO, and Al,O; content than
ashes from conventional PCF combustion. The residues are significantly more alkaline and more
soluble, but less pozzolanic and lower in fuel-derived trace elements (e.g. As, B, Cd, Cu, Hg, Mo,
Pb, Se) than pulverized coal fly ash.">* The main constituents of these residues are CaO, CaSO,,
and fuel-derived ash (primarily oxides of Fe, Al, and Si). Some unreacted CaCO; and char
derived from the fuel (i.e., devolatilized and pyrolized solid fuel) are also present.' The residues
are important from an agricultural-use perspective because the CaO has significant liming
activity, the CaSO, represents a highly soluble source of plant available Ca and S, and the fuel-
derived ash contains a range of both essential plant micronutrients and other non-essential
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Fig. 1. Point Aconi Generating Station (Cape Breton, Nova Scotia) in the background, with the
residue landfill site in the foreground.

elements. The use of the term “residue” to describe this by-product importantly distinguishes it
from other forms of coal ash, and highlights the fact that only one-third of the material may
properly be termed “ash”, whereas up to two-thirds is beneficial, sorbent-derived components.

1.2. Research on Agricultural Use

In 1997, a collaborative research initiative between the Nova Scotia Agricultural College
(NSAC) and NSPI was launched in order to investigate the potential for using Point Aconi FBC
residue as a soil amendment and agricultural liming material. In addition to field testing the
residue as a nutrient source and liming material for vegetable (cabbage and rutabaga) and forage
crops, the research included a detailed analysis of soils and crops to assess the potential risk to the
food chain posed by trace elements present in the residues.

In the United States, agricultural uses for FBC residues have been evaluated for more
than 20 years,**57#101L1415 however, until the recent work in Nova Scotia, little research has
been done on agricultural use of this material in Canada. There were a number of conditions in
Canada, sufficiently different from those in the U.S., in particular, fuel sources for fluidized bed
combustion (influencing residue composition), and regulations and metal criteria for the use of
recycled/by-product materials, to justify a Canadian study on agricultural use of this material. In
addition, while there is a significant body of literature on bioavailability and fate of metals from
pulverized coal-fired (PCF) combustion ashes applied to soils, much less research has been
conducted on the potential risk to the food chain posed by trace elements present in the more
alkaline FBC residues. The greatest impetus for this work, however, was provided by Cape
Breton farmers who, faced with the loss of a trucking subsidy for limestone, contacted NSPI with
a view to utilizing Point Aconi residue as a lower cost limestone substitute. NSPI initiated this
work to investigate agricultural uses for the residue with the aim of providing a competitive
advantage to farmers in the area of the plant, while reducing the amount of by-product destined
for disposal.

The Nova Scotia research demonstrated Point Aconi FBC residue to be an effective
liming material<$F When the residue is applied to soils at the soil lime requirement, there is a
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rapid and predictable adjustment of soil pH to target or optimum pH values. FBC residues react
more quickly with soil particles than ground agricultural limestone but demonstrate similar liming
persistence 2-3 years following application. > with no adverse effects on crop quality or excessive
soil loading of metals. In addition to liming activity, the residues were found to have significant
fertilizer value. For example, the residues provide significant plant available Ca and S and lesser
but important amounts of B, which are advantageous for crops with high requirements for these
nutrients (Figures 2 and 3).

While none of the regulated heavy metals present in the residues demonstrated a potential
for plant uptake (even at very high loading rates (>50 t/ha)), soil concentrations of elements
increase proportionately with application rate. A key requirement for safe and responsible use is
therefore ensuring that concentrations of metals in the residue and residue-amended soils do not
exceed safe threshold levels.

The research has identified a number of practical and regulatory challenges which need to
be addressed in order to derive the greatest benefit from using this material as well as to minimize
potential risk. This chapter outlines the nature and importance of these challenges, as well as the
progress made to date in developing standards that identify the requirements for safe and effective
use of FBC residues as agricultural liming materials.

2. CHALLENGES IN CONTROLLING METAL INPUTS TO SOILS

FBC residues generally contain low concentrations of the heavy metals which are most
commonly regulated in waste materials (e.g., Cd, Cr, Cu, Hg, Ni, Pb and Zn). There are,
however, a number of potentially toxic elements in the residues, some of which are not captured
by existing metal criteria, whose concentrations are variable and highly fuel-dependant. For
example, As, Cd, Cu, Se, Pb and T1 (which tend to be present as sulfide minerals associated with
the organic fraction in coal’v7) are often higher in residues from combustion of high-S coals. With
the combustion of petroleum (pet) coke, residue concentrations of the latter group of elements are
often reduced, however, levels of V and Ni, in particular, are generally much higher.
Consequently, in 1997 (when the fuel source was domestic (Cape Breton) high-S, eastern
bituminous coal), residue element composition is typical of fly ash from high-S coals (elevated
As, Se, Pb, and T1), whereas with the current fuel blend (a mix of pet coke and various offshore
bituminous coals), the residue is more characteristic of pet coke-derived ash, with concentrations
of Mo, Ni and V increasing in the residues with the proportion of petroleum coke in the fuel mix
(Table 1).

The nature of the challenges in controlling metal inputs to soils posed by these elements
varies primarily according to whether or not these elements are regulated in soils and soil
amendment products in Canada.

2.1. Monitoring for Compliance with Regulatory Criteria

The standards to meet in order to permit the sale of by-products as soil amendments in
Canada are the metal standards for products specified in the Fertilizers Act and Regulations
(FAR) (Table 1). These standards specify the maximum acceptable concentrations in products
(mg kg") of nine metals (As, Cd, Co, Hg, Mo, Ni, Pb, Se, and Zn), as well as the maximum
cumulative additions of these metals in soils (kg ha™).'®

Our experience over the past 5 years suggests that meeting FAR product limits on Ni and
possibly Mo may present a challenge in marketing pet coke-derived residues, whereas As is the
main constraint in marketing residues derived from high-sulphur domestic (Cape Breton) coals
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Fig. 2. Yield and quality of cabbage in FBC residue treated plots (split ash treatment) were equal

" to or better than that of cabbage grown in plots amended with an equivalent rate of dolomitic

limestone (treatments applied at the soil lime requirement, split application).

Fig. 3. On the sandy, B-deficient soils in eastern Cape Breton, rutabaga from limestone treated
plots showed severe boron deficiency (brownheart), whereas no B-deficiency was found in
rutabaga grown in plots treated with an equivalent rate of FBC residue (high ash).



Table 1. Element content of Point Aconi FBC residue in 1997 and 2001, and metal criteria for
soil amendment products and soils.

Point Aconi FBC residue Metal criteria
Element 1997° 2001 Product’ Soil*
mg kg’ we-mg kgt kgha' -

Aluminum (Al) 25000 18 000 - -
Arsenic (As) 110 <2 75 15
Barium (Ba) 290 240 - -
Beryllium (Be) <5 <5 - -
Boron (B) 93 na - -
Cadmium (Cd) 1.1 <0.3 20 4
Chromium (Cr) 20 <2 - -
Cobalt (Co) 8 <1 150 30
Copper (Cu) 70 30 - -
Iron (Fe) 33000 11000 - -
Lead (Pb) 120 9.9 500 100
Manganese (Mn) 1100 820 - -
Molybdenum (Mo) 8 12 20 4
Nickel (Ni) 23 270 180 36
Selenium (Se) 8 <2 14 2.8
Strontium (Sr) 200 160 - -
Thallium (T1) 3 <0.1 - -
Vanadium (V) 35 1400 - -
Zinc (Zn) 140 69 1 850 370
Mercury (Hg) na 0.10 S 1

Element concentrations are total sorbed metals (dry weight basis) (EPA Method 3050A for all elements
except Hg. Hg was determined using the cold vapour technique (EPA 7471A)).

'1997 - residues derived from combustion of Cape Breton (CBDC-Prince coal).

22001- residues derived from combustion of 50% petroleum coke, 50% coal.

* Product metal criteria - maximum acceptable concentrations of metals (mg kg'') in fertilizer and
supplements (Fertilizers Act and Regulations).

*Soil metal criteria - maximum acceptable cumulative metal additions to soils (kg ha™') over a 45 year
period (Fertilizers Act and Regulations).

(Table 1). As not all of the by-product will meet the low contaminant criteria for soil
amendment use, one of the first steps in controlling metal inputs to soils, as well as allowing
commercialization of this by-product as a liming material, is to establish a reliable product quality
monitoring program for toxXic elements in the residues whose concentrations increase with the use
of certain fuels in fluidized bed combustion.

Under the FAR, metal limits are based on the assumption of applying a product at an
annual rate of 4.4 t ha™ for 45 years. While this application rate is a reasonable average for
liming materials, frequency of application would be less, as liming materials are not applied
annually but rather, on average, every 5 years <$F The rate and frequency of application of
liming materials to relatively low buffer capacity Atlantic region soils is in the range of 2-7 t ha™'
pH' unit every 5 years. > Consequently, metal loadings for this by-product within the specified
time frame are likely to be substantially lower than those allowed in the federal regulation.
Nonetheless, because soil concentrations of metals increase proportionately with application rate,
it is of critical importance to ensure that soil concentrations do not exceed threshold safe levels.

2.2. Elements not Regulated in Soils and Soil Amendment Products

Fossil fuel combustion residues contain varying amounts of at least 15 potentially toxic
elements'"*?*?! however, only 11 of these are commonly regulated or reported in the literature
as posing risks to human or ecosystem health. T1, V and B are not currently regulated in soils or
soil amendment products in Canada. Based on element characteristics such as toxicity,
bioavailability/risk pathways, and concentrations in the residues, however, safe thresholds for
these elements may be required for the utilization of FBC residues as an agricultural amendment.
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2.2.1. Thallium

In the field testing of Point Aconi residue, T1 was flagged because of its toxicity and
measurable increase in plants grown on residue-treated soils <$F T1 was the only non-essential
element which increased in plant tissues in FBC residue-treated soils. In treatments receiving
high rates of residue amendment (33 t ha™), Tl levels were 0.05 mg kg in rutabaga and 0.2 mg
kg in soils. These levels were significantly higher than Tl levels present in plants (not
detectable) and soils (0.1 mg kg™) in the control treatments.>'® Soil Tl levels are normally low;
the natural range is 0.01 to 2.3 mg kg dry weight, however, soils in industrialized areas <$F
Areas affected by coal combustion, heavy metal smelting, cement industry and refining
processes. > may contain much higher Tl levels (i.e., above 10 mg kg™).?? Fractionation
experiments on metal contaminated sludges indicate that bioavailability of anthropogenic Tl is
high and similar to that of Cd <$F Based on element recovery in the exchangeable fraction (1 hr
shaking, extracted with | m CH;COONH, at pH 7). > * Tl is readily taken up by plants,
particularly on sandy, low organic matter soils, and increased plant levels of this element may be
highly toxic to both plants and animals. TI is normally present in FBC residues in very low
concentrations but increases with the combustion of certain high-S coals (Table 1). While Tl is
not currently regulated in soils or soil amendment products in Canada, the Canadian Council of
Ministers of the Environment (CCME) <$F The CCME is the principle vehicle in Canada for
interjurisdictional cooperation on environmental issues of national and international concern.
Soil quality guidelines developed by the CCME provide equal protection to human health and
ecological receptors, and are used to provide a nationally consistent and scientific basis for
making decisions regarding the protection of environmental quality in Canada. > have established
a soil quality guideline (SQG) limit for Tl of 1 mg kg™ dry weight of soil.** While soil levels of
T1 found in this study were well below CCME limits, our results demonstrate that detectable
increases in plant uptake are possible for this element at soil concentrations below the guideline
limit.

2.2.2. Vanadium

V is considered important because of the highly significant increase of this element in the
residues with the combustion of pet coke (Table 1). V is one of a number of metals, previously
thought to be non-essential and now classified as beneficial to some plants or animals, whose
designation as either “essential” or “toxic” depends on concentration.”” V is relatively non-toxic
at normal soil concentrations (58-100 mg kg''), however, may be toxic to plants at soil solution
concentrations above 140 mg kg™ The CCME have established a SQG limit for V of 130 mg
kg"; unlike the limit for T1, however, the CCME limit for V does not include a full consideration
of all possible exposures and pathways (soil-plant-human).2* Bioavailability and other
characteristics of V are highly dependant on dissolution/precipitation reactions and oxidation
state. The most likely types of solubility-controlling solids and oxidation states of V in fossil fuel
combustion residues are oxides and V**, respectively.’®'” Leachability tests on pet coke-derived
residues have shown V to be strongly bound to the solids matrix (predominantly oxides of Ca, Si,
and Fe) resulting in leachate metal concentrations which are very low and comparable to
concentrations leached from coal-derived residues.?”* Inhalation of oxidized forms (V,05) is
the main pathway of toxic exposure for humans to V?, yet occupational exposures to the forms of
V present in V-containing petroleum coke-derived residues have not been fully assessed.

2.2.3. Boron

Boron is an essential plant micronutrient and most agronomic plants should contain at
least 20 ppm of B for normal growth. Under the Fertilizers Act, products represented for use as B
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fertilizers must have a minimum total B content of 0.02%, or 200 mg kg™ Boron levels in the
soil solution in excess of 20 ppm (hot water soluble B), however, are likely to be phytotoxic.'
While maximum content of B in soils and soil amendments is not regulated in Canada under the
Fertilizers Act, the province of Quebec has recommended a B content of less than 100 mg kg™
(total B) in municipal biosolids applied to soils with 200 mg kg™ of B as a maximum limit.* Soil
guideline limits for the amount of B in agricultural soils receiving waste materials are low and in
the range of 1 to 1.5 mg kg™ hot water-soluble B.*' The total B content of FBC residue varies
with coal source, however, the range present in these residues (95-170 mg kg™) is generally
higher than the mean B content of agricultural soils (2-100 mg kg").> The narrow range between
phyto-sufficiency/toxicity that exists for B means that, depending on concentration, B in coal
combustion residues may either be beneficial to crops or phytotoxic.'****! In the Nova Scotia
research, boron in FBC residues was considered to be advantageous for the production of
cabbage, rutabaga, and legume-based forages on B-deficient soils'® (Figure 3). B phytotoxicity
was likely avoided because of a number of factors, including moderate B content of the residues,
the use of B-deficient soils, a high requirement and tolerance for B of the crops, as well as the
reduced solubility of B at high soil base saturation with Ca.

For the above elements, reducing hazard of metal contamination from waste/ by-product
materials requires not only reliable soil and product quality monitoring, but also identifying
thresholds of element concentration that protect the food chain and minimize environmental
(phytotoxic, ecotoxic) or occupational exposure risks.

2.3. Variable Calcium Carbonate Equivalence

FBC residues are variable not only in element composition; these materials are also
variable with respect to CCE (calcium carbonate equivalent, or neutralizing value). The CCE of
FBC residues varies primarily with the CaO content, and may be anywhere from 40-90%; the
average is 60% *. The CCE of baghouse material (fly ash) from Point Aconi Generating Station
is typically between 65-80% <$F Based on lab analyses obtained on Point Aconi residues
between 1997-2001. > Because of a lower CCE of FBC residues compared with agricultural
limestones (which range in CCE from 90-108%), application rates are increased approximately
20% to provide equivalent acid neutralizing capacity. The agricultural study demonstrated that,
provided that loading is adjusted to account for the lower neutralizing value and higher product
efficiency <$F Unlike carbonate limestones which contain a range of particle sizes and must be
ground in order to react with soil particles, FBC residues predominantly comprise particles of less
than 0.15 mm in diameter. This size fraction is considered to be 100% efficient at neutralizing
soil acidity. > of the residues compared with agricultural lime, liming response to this material is
predictable and similar to agricultural lime. Consequently, variable CCE is not considered a
barrier to use of the material as a liming agent. One implication of the variable CCE, however, is
that the extent and rate of metal loading to soils will vary according to the amendment application
rate. As noted previously, soil metal criteria are typically based on assumptions of “reasonable”
amendment loading over a specified time frame, and higher amendment loading rates (associated
with a less efficient liming material) would result in limits on maximum permissible metal
additions to soils being reached within a shorter time frame. The majority of Point Aconi FBC
residues have a CCE >65%, and, provided the residue meets acceptable product criteria, the 20%
increased loading required for residues with CCE in the range of 65-80% is not considered to be
problematic at typical agricultural liming rates.'® Nonetheless, variable CCE in by-product
liming materials such as FBC residues may present an additional challenge to predicting element
loading as well as controlling metal inputs to soils.
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3. DEVELOPMENT OF A STANDARD FOR POINT ACONI FBC RESIDUES

In 2001, NSPI, in partnership with Nova Scotia Department of Environment and Labour
(NSDEL), commissioned a standard® to outline the requirements for Point Aconi FBC residue
when used as a soil amendment and agricultural liming material. This interim standard evolved
directly from the recommendations from the field testing, and was created to address the above
challenges as well as provide quality assurance to agricultural users with respect to performance
of the by-product as a liming material. To promote the safest and most beneficial use of this
material, the product requirements provided in the standard are supported by recommended
residue handling and application procedures, as well as testing and monitoring steps which should
be followed before and after land application.

The criteria outlined in the standard for Point Aconi FBC residues differ from those
outlined in guidelines for the land application of wastes (e.g., sewage biosolids), which apply in
Nova Scotia and most other provinces, in four main respects:

1) the requirements are not regulated by statute, and therefore have no legal authority;

2) the requirements include a wider range of considerations which may be important to
users than are found in most regulated standards <$F in addition to
safety/environmental quality parameters, there are also performance requirements for
attributes such as neutralizing value, product efficiency, and fertilizer value.>;

3) metal standards result in lower metal inputs to soils than metal criteria specified in
most provincial waste guidelines and in the Fertilizers Act and Regulations; and

4)  metal standards include interim criteria for two elements, T1 and V, which are currently
not regulated in soil amendment products, as well as recommended limits for B.

3.1. Metal Standards
3.1.1. Elements Regulated in Soil Amendment Products

The metal standards for by-product liming materials established by the Bureau de
Normalisation du Québec (BNQ) <$F The BNQ is a Quebec-based standards writing
organization (one of five accredited by the Standards Council of Canada) which has developed
standards for compost, by-product liming materials and granulated biosolids. >** were considered
to be the most appropriate standard for this by-product with respect to metals that are currently
regulated in soil amendment products. The BNQ metal standards were adopted in the interim
standard for Point Aconi FBC Residues without modification.

The BNQ standards specify the maximum acceptable concentrations in products of the
nine metals regulated under the FAR (As, Cd, Co, Hg, Mo, Ni, Pb, Se, and Zn) with the addition
of limits for Cr and Cu. While the BNQ metal standards are based on the FAR criteria, the
approach used to set limits is slightly different. To account for variations in CCE of the various
materials and the resulting variable application rates, standards for metals are ratios of liming
value to metal concentration, i.e., the ratios are yielded using a CCE set at 50 divided by the
maximum values for fertilizers and supplements (Table 2). The total load not to be exceeded is
based on limits on metal additions to soil specified in the FAR (Table 1).

Advantages of the BNQ metal standards may be summarized as follows:

o  They are consistent with the FAR, so that liming materials meeting the standard can be
sold as agricultural liming agents anywhere in Canada. In other words, meeting the
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Table 2. Minimum ratio of CCE (%) to metal content, and maximum acceptable metal
concentrations in Point Aconi FBC residues with CCE ranging from 50-80%.

Minimum  Maximum metal concentration in product

Metal ratio CCES0%  CCE60%  CCE 70% CCE 80%
wemememmenmmmeeeemeeme g kg, dry weight bagis ----ee-eeeeceeneecas

Arsenic (As) 0.667 (5" (75) (75) (75)
Cadmium (Cd) 2.500 20 24 28 32
Cobalt (Co) 0.333 150 180 210 240
Chromium (Cr) 0.047 1060 1271 1483 1695
Copper (Cu) 0.066 757 908 1059 1210
Mercury (Hg) 10.000 5 6 7 8
Molybdenum (Mo)  2.500 20 24 28 32
Nickel (Ni) 0.278 180 216 252 288
Lead (Pb) 0.100 (500) (500) (500) (500)
Selenium (Se) 3.570 14 17 20 22
Zinc (Zn) 0.027 1 850 2222 2593 2963

*values in parentheses are fixed maximum concentrations.
Adapted from: Bureau de Normalization du Québec (BNQ). Liming Materials from Industrial
Processes. Standard NQ 0419-090. Bureau de Normalization du Québec, Ste. Foy, QC. 1997.

Table 3. Proposed interim criteria for Tl and B in FBC residues

Element Maximum metal concentration in product
-------------- mg kg ', dry weight basis -—----------—-

Thallium (T1)" 5

Boron (B)® 20

TUSEPA Method 3050A digestion procedure.
2 Hot-water soluble B.

limits for metals specified in the BNQ standard allows the residue to be sold as a
liming agent with potentially no further restrictions on use.

e Because product limits are ratios of liming value to metal content, the standards allow
increased metal content only in products with high liming activity (>50% CCE). This
approach has the advantage of maintaining flexibility in product standards while
providing an effective means of controlling metal inputs to soils. An additional benefit
of this approach is that it discourages the use of products with low neutralizing value,
which are inevitably less efficient and less cost-effective liming materials.

e The product limits obtained using the ratio approach are more stringent than those
adopted in Canadian and foreign standards, even with increasing admissible metal
concentrations for by-products with higher neutralizing value.** Because of the less
frequent application assumed with use of a liming material compared with organic
amendments (e.g., compost, sewage-based products), the standards effectively allow a
significantly lower metal loading within the specified time frame than the federal
regulation.

The FAR soil metal criteria (Table 1) on which the above product criteria are based are
recognized in Canada by both federal and provincial jurisdictions, as well as standard-setting
organizations such as the CCME and BNQ), as being of fundamental importance to promoting the
safe and efficient use of products derived from waste. These soil metal criteria were included in
the interim standard for Point Aconi FBC residue to provide benchmark values for monitoring

soil quality, and assist in determining the frequency and rate of amendment applications based on
metal additions to soil.
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3.1.2. Elements not Regulated in Soil Amendment Products

In addition to the product limits indicated in Table 2, interim criteria for thallium and
boron in FBC residues are proposed (Table 3), and criteria for V are currently under
development. The intent of these criteria is to establish maximum product concentrations of Tl
and V and recommended limits for B in FBC residues, to allow a more complete monitoring of
the quality of the by-product.

The numerical basis for the criteria for Tl and B was the CCME Interim Assessment
Criteria for Soil <$F Interim assessment criteria for soil are largely based on ambient or
background concentrations. As these criteria are more stringent than SQG for remediation®® and
SQG for the protection of environmental and human health®, they represent the most
conservative basis for determining acceptable limits at noncontaminated sites. >*, and product
limits were calculated according to methods which have been used by various standard-setting
bodies in Canada <$F Agriculture and Agri-Food Canada (AAFC) for fertilizers and
supplements, the CCME and BNQ for compost, and the BNQ for by-product liming materials. >
to calculate metal limits for soil amendment products®. A similar method will likely be used for
V.

The metal criteria for elements which are currently not regulated have not yet been
endorsed by the wider scientific or regulatory community; hence, they are considered interim
criteria. The criteria are, however, scientifically defensible, and based on nationally consistent
environmental quality criteria and criteria development methods which are recognized not only in
Canada but around the world as being amongst the most protective of the environment. A longer
term objective of this initiative may therefore include a more formal, broader based assessment of
the suitability of these criteria, and the soil guideline data on which they are based, for soil
amendment uses of this and other waste/by-product materials.

4. SUMMARY AND CONCLUSION

Nova Scotia research on the use of Point Aconi FBC residues as agricultural liming
materials has identified a number of practical and regulatory challenges in controlling trace
element inputs to soils which need to be addressed in order to derive the greatest benefit from
using this material as well as minimize potential risk. While FBC residues contain low
concentrations of most heavy metals which are commonly regulated in waste materials, there are
a number of potentially toxic elements in the residues whose concentrations are variable and
highly fuel-dependant. The main challenges in controlling metal inputs to soils presented by the
use of this by-product as a soil amendment include:

e  Compliance with regulatory criteria for toxic elements (As, Tl, Ni, Mo, V) whose
concentrations increase with use of certain fuels in fluidized bed combustion;

e Identifying safe thresholds of concentration for elements, such as T, V and B, which
are currently not regulated in soils and soil amendment products in Canada; and

e Variable rates of amendment loading, and corresponding metal inputs, with a by-
product with variable CCE.

The interim standard commissioned by NSPI in 2001, which outlines the requirements
for Point Aconi FBC residues as a liming material, was created to address the above challenges as
well as provide quality assurance to agricultural users. Metal standards developed by the
Quebec-based BNQ are not only highly protective of the environment but also provide an
effective means of controlling metal inputs to soils from by-product liming materials with
variable CCE. The BNQ metal standards have been adopted in this standard without
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modification. In addition, the standard for Point Aconi FBC residues specifies maximum product
concentrations of Tl and V (criteria for V are still under development) and recommended limits
for B to allow a more complete monitoring of the quality of the by-product. It is expected that
this standard for FBC residues will be amended on the basis of discussions currently underway
with the scientific and regulatory community, and with improved knowledge and experience with
use of the material.
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ABSTRACT

Federal and State regulations encourage reduction of industrial waste streams to
decrease the acreage consumed by landfills. In particular, applications that resolve
environmental problems are recognized by state policy as “beneficial uses.” These
large-scale projects may involve filling surface and underground coal mines with ash to
address hydraulic problems, acid mine drainage, pit backfilling and subsidence. In some
states, those mine filling projects classified as beneficial are not subject to industrial
waste disposal conditions such as liners, leachate collection and monitoring. Coal
Combustion Byproducts (CCBs) are attractive for such applications because they
constitute a source of low cost alkalinity and favorable economics resulting from
transport back to the mine in otherwise empty coal haulage trucks. The environmental
risk of land filling CCBs is generally evaluated by the Toxic Characteristics Leaching
Procedure (TCLP) or the Synthetic Precipitation Leaching Procedure (SPLP). However,
there is doubt regarding the applicability of these tests to long-term CCBs leaching
behavior in groundwater associated with coal mines. = The Mine Water Leaching
Procedure (MWLP) was developed to provide a site specific risk assessment tool. The
MWLP procedure is presented in this chapter as a study case and comparisons with
TCLP results were made.

INRODUCTION

Several test procedures have been developed in an attempt to predict the leaching
behavior of CCBs. The most widely used procedure is the Toxicity Characteristic
Leaching Procedure (TCLP), which was designed by the United States Environmental
Protection Agency to “determine the mobility of both organic and inorganic analytes
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present in liquid, solid and multiphasic wastes.”” However, this test may only account
for fast reactions that take place in short term leaching processes.2® The results obtained
with the TCLP on a limited number of fly and bottom ash samples showed that the range
of concentrations of specified constituents was well below the regulatory.zo These
residues are therefore classified as non-hazardous wastes and can be disposed of on land
without risk of contaminating groundwaters to the extent of exceeding drinking water
standards. However, Bhumbla et al. concluded that, environmental concerns about toxic
element release from fly ash amended soils have been lessened by evaluation of data
from short-term studies in highly alkaline environments.’ They point out that all soils in
humid regions ultimately become acidic and that the behavior of ash under conditions
pertaining over the long term needs to be addressed. Specifically: “How long will
potentially toxic elements in technogenic (i.e. man made) soils made from ashes remain
in discrete mineral phases or as components of the glassy fly ash matrix?” They
encouraged a better understanding of the mechanisms and rates of trace element release
from CCBs so that behavior over the long term can be predicted. The Mine Water
Leaching Procedure (MWLP) was developed to determine the long-term leaching
potential of toxic elements present in industrial wastes when placed in specific, saturated
environments. Of particular concern is the leaching behavior of these materials when
placed in acidic environments associated with reclamation of acidic mine spoils.

A quantitative assessment of leachate composition is crucial to the
environmentally sound disposal of solid residues. Currently applied laboratory extraction
procedures yield imprecise estimates of field leachate composition, and field studies
alone do not provide the causal relationships for the observed behavior. Also, since TCLP
and SPLP use standard leaching solutions, they do not predict interactions between the
solid waste and components of a specific mine water. Therefore, our research has focused
on developing improved laboratory methods for predicting the leaching behavior of
CCBs under field conditions. The geochemical reactions of dissolution/precipitation,
adsorption/desorption, and oxidation/reduction are recognized as controlling the
mobilization of various constituents from solid residues.” ** Therefore, an integrated
scheme has been developed that, through an empirical procedure, recognizes the
interactions among mine water chemistry and specific CCBs. This sheds light on the
fundamental geochemical reactions critical to interpretation and prediction of leachate
chemistry and interactions with various geological materials. Such laboratory studies can
be conducted for a wide range of conditions, such as pH, complexations, and ionic
strength of leachates and porewaters that would be encountered at different field sites.
Additionally, laboratory studies are less costly than field studies, and will provide useful
and widely applicable data as a variety of CCBs and mine waters are evaluated.

The Mine Water Leaching Procedure (MWLP) was developed to provide a site
specific risk assessment tool. The MWLP procedure is presented in this chapter as a
study case and comparisons with TCLP results were made.

COAL COMBUSTION BY PRODUCTS

Physical and Chemical Properties

Fly ash is the non-combustible particular matter removed from the flue of coal-
fired boilers. Itis an amorphous, ferro-aluminosilicate that contains significant
quanitities of Fe, Ca, K and Na? It may also be enriched with As, B, Mo, S, Se, Sr and
varying concentrations of C. Depending on the elemental composition of the source coal,
fly ash may also contain various amounts of other trace elements.

Eastern and Midwestern U.S. coals produce ashes composed of quartz, mullite,
hematite and magnetite.” These low lime, low S ashes are referred to as class F fly ash.
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Table 1. Typical Composition of Class F and C Ashes. Characterizations based on
American Standards and Testing Methods 618.3

Parameter Class F Class C
Si0, 54.9% 39.9%
Al04 25.8% 16.7%
Fe,0, 6.9% 5.8%
Ca0 8.7% 24.3%)
SO, 0.6% 3.3%|
Moisture Content 0.3% 0.9%
Loss on Ignition (LOI) (@750°C) 2.8% 0.5%
Available alkalis as Na2O 0.5% 0.7%
Specific gravity 2.34 2.67
Fineness, retained on #325 mesh seive 14.0% 8.0%

Class C fly ash is commonly produced from western subbituminous coal and contains the
above minerals, as well as, periclase, lime, anhydrite and tricalcium aluminate. Table 1
contains the ASTM definition of the typical Class F and Class C fly ashes.*

Bottom ash is the sand-sized material that is collected in the bottom of a dry
bottom boiler and boiler slag is the coarse, glassy material collected in the bottom of wet
bottom boilers. Physically, both are very different from the powdery fly ash in the flue
gas. However, their chemical compositions are very similar and consist primarily of Si,
Al, Fe and Cal

Fluidized bed combustion (FBC) units produce strongly alkaline ash. FBC
byproducts: fly ash and spent bed (bottom ash) contain the same type of minerals but in
dgifferent proportions. Bottom ash is enriched in anhydrite and lime while the fly ash
contains more silicon and iron oxides. FBC ashes contain large amounts of gypsum
(CaSOy) and, as much as 25-30% lime.” Flue gas desulfurization (FGD) residue consists
primarily of gypsum, Ca(OH),, and unreacted lime. These byproducts are higher in Ca
and S and lower in Si, Al, Fe and trace elements than fly ash. In spray drying and lime
injection systems, the FGD residue will also contain fly ash. FGD materials resulting
from these processes may be enriched in trace elements present in the fly ash. The most
important of these trace elements from an environmental standpoint are As, Ba, B, Cd,
Cr, Cu, Pb, Hg, Mo, Ni, Se, Sr, V and Zn. However, the trace element concentrations of
FGD residues are low. Punshon, et al. reported that B and Cl are the only elements that
commonly occur in elevated concentrations in FGD materials.??

Although both fly ashes have a small particle size (silt-size) Class F ashes tend to
be more germeable than class C ashes due to the tendency of class C ashes to self-
cement.” * ' Bottom ashes have a sandy to coarse gravelly texture and are highly
permeable. At the opposite extreme, fixated FGD solids have very low permeability and
the various CCB grouts behave like concrete and are virtually impermeable.

Use of CCBs for Coal Mine Reclamation

According to the American Coal Ash Association, 105 million tons of CCBs were
produced by the power generating utilities in 1997. Of that total, 1.68 million tons were
used in mining applications.” CCBs can be used in mine reclamation for acid mine
drainage (AMD) prevention and treatment, subsidence control and surface reclamation.®
Class C Fly ash and Class F fly ash mixed with lime exhibit self-cementing properties
and can be used to cap surfaces, line pavements and isolate acidic materials in the backfill
to prevent AMD formation. In addition, highly alkaline CCBs, such as FGD and FBC
residues, are used to directly neutralize acidic materials.
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A field demonstration of the use of ash for pit floor sealing and surface capping
was conducted at the Chaplin Hill Coal Mine near Morgantown, West Virginia. Mine
pits in this region had historically produced AMD due to a pyritic pit floor and pyritic
materials within the backfill. In 1991 the company began placing a 1 ft layer of FBC ash
over the pit floor prior to backfilling. In addition, another 1 ft lift of FBC ash was placed
on the graded spoil and compacted prlor to topsoil application. Since CCB application no
pits on this site have generated AMD."*

A 1995 project by the Maryland Department of Natural Resources and the
Maryland Department of the Environment demonstrated the use of CCBsfor AMD
abatement in an underground mine. A grout, consisting of FGD, FBC and Class F fly
ash, was injected into the Frazee mine in an attempt to fill the mine void and minimize
contact between groundwater and acidic materials in the mine. Unfortunately, the mine
size was underestlmated and was not completely filled. Asaresult the mine still
produces AMD.? Nevertheless, only Ni concentrations increased above background
levels.”

Fly ash generally has a strong influence on spoil pH. 12 Fly ashes are commonly
alkaline but may be neutral or acidic as a function of CaO and various amorphous oxides
of Fe, which adhere to the exterior of the fly ash spheres Alkalinity is released . as CaO
is liberated from the dissolving alumino-silicate matrix. 12,16 Alkaline ﬂy ashes normally
contain sufficient neutralization capacity to raise the pH of acid soils."> While many class
Ffly ashes havea high pastpH (10to 12), their neutralization potential is low so
extremely high additions (up to 625 tonnes of ﬂy ash per hectare) may be needed to
sustain a neutral pH in acidic coal mine soils. 171821 There have been several case studies
on the direct neutralization of AMD using highly alkaline CCBs.>"  In December 1996,
the Metikki Coal Corporation began injecting a mixture of FGD, fly ash, AMD metal
precipitates and fine coal refuse into its underground mine in Garrett County, Maryland.
The injection scheme has significantly reduced the acidity of the mine pool. Otherwise,
the principal effect of FGD addmon was to increase chloride and sulfate concentrations
within flooded parts of the mine.’

CCBs are also used during surface  reclamation to improve soil physical and
chemical properties of acidic minesoils.>® A study conducted by Dhaliwal and
associates compared the properties of a mineland area reclaimed with fly ash toan
adjacent area that received no fly ash. Even after 22 years the fly ash treated mine soil
had a higher pH and thicker organic horizon than the adjacent untreated area.'' Bhumbla
useda fly ash/rock phosphate mixture asatopsoil substitute and found that fly ash
addition improved certain physical conditions of the mine soils and reduced Al, Fe and
Mn toxicities.®

Implications of CCB Use in Mine Fills

After placement in the mine, bulk amendments, such as CCBs, will weather
according to their mineralogy and the chemistry of the mine water. Many mine waters
are severely contaminated with Fe, Al, Mn and other trace elements. When CCBs are
placed in acidic environments there is a concern over their potential to leach toxic levels
of trace elements, particularly As, Ba, B, Cd, Cr, Cu, Pb, Hg, Mo, Ni, Se, Sr, V and Zn,
into groundwater. Many of these elements are insoluble under alkaline conditions but
may become mobile after the alkalinity has been exhausted. Acidity generation is also
finite as controlled by the pytrite concentration of the mine spoil. In some cases, this
concern may be relieved by ensuring that adequate alkalinity is added to the acid
producing mine spoil to neutralize all potential acid production. The following formula
can be applied to estimated required amounts of industrial waste (amendment) for sites
where the volume of acid producing materials is known:
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Table 2: Water Analysis of Acidic Pit Water Used in the
Analysis of Fly Ash. MWLP was performed on the
India ashes using both acid waters. Concentrations are in mg/L.

India Sites West Virginia Site

Analyte Pit1 Pit 2 Seep 1
pH 2.8 26 3.6
net acidity 743.7 2128.0 3168.7
Mg 24.1 72.4 743.1
Ca 93.9 192.6 43341
Fe 39.3 240.3 2231
Al 86.0 181.6 342.4
Mn 3.0 10.6 278.3
Sb BDL BDL| BDL
As BDL BDL| BDL|
Ba 0.043 0.028 0.243
Be 0.039 0.122 0.013]
Cd 0.059 0.013 0.151
Cr 0.023 0.112 0.017]
Pb 0.028 0.044 0.022
Se BDL 0.037 BDL
Ag BDL BDL| BDL|
Cu 0.047 0.169 BDL,
Ni 0.973 3.257 BDL
Ti BDL BODL| 0.020
Zn 6.730 11.800 5.289
v 0.492 0.013 BDL
B BDL
Hg BDL BDL| 10.349

BDL= Below Detection Limit

A=Wx %S x3.125x F;
%NNP

Where:

A = required amendment (in tons)

W = amount of waste rock: spoil or tailings to be neutralized (in tons)

%S = per cent sulfur in waste rock, e.g. 2% = 2 tons per 100 tons of rock
%NNP = per cent net neutralization potential of amendment, e.g. %NP-%MPA
F; = safety factor, e.g. 1.1 = an F; of 10%

If this formula can be applied and the amendment blended uniformly with the acid
forming material, the spoil not become acidic. Three scenarios may, therefore, pertain:

¢ Amendment is placed in neutral to alkaline groundwater.
e The amendment and spoil remain alkaline until pyrite oxidation ceases.
o The amendment and spoil become acidic.

While toxic elements may be leached under all of these scenarios, acidification of the fly
ash is of particular concern. The MWLP was developed to evaluate toxic element
leaching potential under each of these scenarios.

CASE STUDY: THE MINE WATER LEACHING PROCEDURE

Materials and methods

Two leaching procedures were used: TCLP and MWLP. The TCLP was
conducted according to USEPA’s SW 846, Method 1311. The leachant was adjusted to
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pH 2.88 using acetic acid according to the method.

MWLP was developed to determine the long-term leaching behavior of industrial
wastes when placed in contact with the groundwater on a given site.  The method
sequentially leaches the CCB with a sample of the site’s groundwater until the alkalinity
is exhausted and the pH of the leachate returns to that of the mine water sample.

In this chapter MWLP results are presented for two fly ashes and three AMD
leachants. One fly ash was from a power station in Northern Indian (India fly ash). This
was a Class F ash that contained very little alkalinity (Neutralization Potential = 0.52%
CaCO; equivalent). The India fly ash was subjected to MWLP leaching with AMD from
two coal mine pits located near the power plant. Table 2 contains the chemical analyses
of these AMD samples.

A second fly ash sample was from a power plant in northemn West Virginia, USA
(West Virginia ash). This was also a class F ash and contained slightly more alkalinity
than the India ash (NP = 3.2%). Leaching water used for the MWLP analyses of West
Virginia ash was from an acid seep located on a reclaimed surface coal mine (Table 2).

The MWLP is nearly identical for all waste products, differing only in the number
of leaching cycles required for alkalinity exhaustion. This point is determined as the pH
of the untreated mine water. A general outline of the procedure is included below.

One hundred grams of fly ash were weighed out and transferred into 2-L plastic
reaction bottles. To each ash sample was added one of two leachants: mine water or
deionized water (control). Three replicates of each ash were prepared. The bottles were
then sealed with Parafilm and the lids were secured. Reaction bottles were arranged
evenly on a- rotating platform, identical to that used in the TCLP test, and rotated end-
over-end for 18 hours at 30 rpm.

Following each 18 hour cycle the contents of each bottle were filtered through a
0.7 um glass, borosilicate filter using a stainless steel pressure filtration unit at or below
40 psi. A two liter container was placed under the base of the filtration apparatus to
collect the filtrate. The contents of the fly ash + AMD reaction bottle were poured into
the top of the pressure cylinder, the lid was secured and N, was introduced to pressurize
the filtration unit. The pressure was slowly increased to 40 psi until all the liquid was
removed from the unit.

Following filtration the unit was dissembled and the filter cake (filter + solids)
removed and saved for use in the subsequent cycle.

Five hundred ml of each leachate was collected in two 250 ml bottles. One bottle
was sent to an analytical laboratory for pH, acidity and alkalinity determinations using a
Brinkman Autotitrator. The other bottle was acidified using 1 ml of 1IN nitric acid and
sent to the lab for elemental analysis (Sb, As, B, Ba, Cd, Cr, Pb, Hg, Ag, Cu, Ni, T], V,
Zn, Mo, Fe, Mn, Al, and B) using a high resolution ICP-Mass Spectrometer.

Solids collected during filtration were rinsed back into their corresponding
reaction bottles with 2 “fresh” liters of leachant and placed back on the rotating platform
for another 18 hour cycle. The leaching-agitation-filtration cycles continued until all
alkalinity was removed from the system. The India Fly Ash MWLPs and the West
Virginia MWLPs were continued for 3 and 5 cycles, respectively. The number of cycles
depended on the alkalinity of the ash.

RESULTS

The results from MWLP analyses performed on India and West Virginia fly ashes
are presented in Tables 3-6 and Figures 2-4. Leachate metal concentrations could be
attributed to four possible sources; leachant (AMD), released metals from dissolution of
the waste matrix; remobilized AMD metal precipitates and remobilized ash metal
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Figure 1. Diagram of the experimental system. Melals can be imported to the system from either the
AMD (aqueous form) or the waste (solid form). Once in the system, metals can either stay in the
aqueous phase, precipitate into the solid phase or resolubilize into the aqueous phase.

precipitates (Figure 1). Since concentrations and volumes of leachant and leachate waters
were known it was possible to prepare a series of mass balances. So, by subtracting the
elemental masses exported from the system (in the leachate) from the elemental masses
imported to the system (in the AMD or leachant), it was possible to determine the net
effect of ash addition on the concentration of toxic elements in the leachate. Table 3
shows the cumulative import, export, sequestration and release of Cr during the MWLP.
This example indicates that between pH 4.2 and 3.8, the system stops sequestering Cr and
begins releasing it.

These cumulative values can be used to make inferences about the leaching
behavior of individual waste products as the pH of the leachate changes. For example,
table 3 also indicates the percent difference between the mass of Cr imported via
leachant (AMD) and the mass of Cr exported via leachate. Negative release values
represent sequestration of Cr from the aqueous phase into the solid phase. So, during this
part of the leaching process, more Cr is entering the system through the AMD than is
exiting the system in the leachate. On the other hand, positive release values indicate Cr
concentrations are higher in the leachate than can be attributed to the addition of leachant
during each cycle. It is inferred that the additional metal ions were released from the
solid phase: CCB and previously precipitated metal oxy-hydroxides.

Table 3. Example of Cr import/ Export Table for Ciass F Fly Ash MWLP.
All in, out and release values are cummulative. For example, the value of
.180 mg for Cr In at Cycle 5 is the cummulative concentration of

Cr in the import water (AMD) for cycles 1-5. The Cr Out is calculated
similarly. This permits the calculation of the mg of cr released into the
leachate water as a result of the fly ash addition to the AMD.

Leachate  Crin __ CrOut "Fly ash

Cycle pH (le (mg) Release (mg) % Released
1 417 0.044 0.032 -0.012 -28.0%

2 3.82 0.088 0.161 0.073 83.0%

3 3.54 0.132 0.362 0.230 174.3%

4 2.87 0.176 0.547 0.371 210.9%

5 2.92 0.220 0.732 0.512 232.5%
average 134.5%
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export line indicating net sequestration of Cd in the solid phase as a result of the fly

ash addition. The area between the two lines represents the amount of Cd
sequestered in the solid phase.
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Figure 3. Import/ Export Trend Lines for Se from Indian Fly Ash Leached

With Acldic Pit 1 Water for Three Cycles. In this example, the export line is above
the import line indicating a net release of Se from the solid phase as a result of the fly

ash addition. The area between the two lines represents the magnitude of Se

release.

In this example, where the raw water contained no Se, we can assume that it's source

is fly ash dissolution.
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Figure 4. import/ Export Trend Lines for As from Indlan Fly Ash Leached With
Acldic Plt 1 Water tor Three Cycles. In this example, there was no arsenic
detscted in the raw water or any of the three leachates. Therefore, fly ash addition
did not result in any As increase in the leachate.

Sequestration and release trends can also be shown graphically. Figure 2
indicates import/export trends of Cd for the India fly ash. In this graph the import line is
above the export line indicating net sequestration of Cd from the acid water into the solid
phase. The amount of sequestration is equivalent to the area between the two lines.
Figure 3 illustrates the net release of Se from the same fly ash. Net release occurs when
the export line is above the import line. In some instances, waste product additions had
no effect on leachate metal concentrations. Figure 4 indicates that As was present in
neither the raw AMD nor the leachate.

The MWLP also enables estimation of the overall affect of industrial waste
additions to mine water while tracking leaching behavior over time and through various
pH ranges. There are five possible trends for metal leaching behavior: 1) net
sequestration, 2) net release, 3) sequestration then release, 4) release then sequestration,
or 5) no effect.

Table 4 summarizes leaching behavior of all analytes when the two fly ashes were
subjected to the MWLP. The West Virginia fly ash had no effect on the leachate
concentrations of Sb, V, Ag and Hg. Iron was the only element that underwent net
sequestration over all leaching cycles. On the other hand, As, B, Ba, Be, Cu, Ni, Mn, Pb,
Se, Tl and Zn were released throughout the leaching period. Aluminum and Cr were
initially sequestered but switched to net release after the pH reached 3.8 in cycle 2. Cd
showed the opposite trend: net release during the first four cycles and then net
sequestration in the final cycle. Table 4 also indicates the cycle and the pH where the
change occurred.

The leaching behavior of the India fly ash varied with the two AMD leachants.
Pit 1 AMD had a slightly higher pH (2.8 vs. 2.6) but significantly less acidity (676 mg/L
vs. 2,128 mg/L).  Nonetheless, eleven of the elements behaved similarly in both
leachants. Antimony, As, Ag and Hg concentrations in leachate were unaffected by fly
ash addition in both leachants while Pb was sequestered in both. Aluminum, Ba, Cu, Cr,
Mn and Ni all underwent net release in both leachants. In both leachants Tl was initially
released then sequestered. It is perhaps significant that none of the elements were
sequestered then released from the India fly ash. This may be explained by the lack of
alkalinity in this ash and the near absence of metal oxy-hydroxide precipitates relative to
the West Virginia fly ash. Another important difference between the West Virginia and
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Table 4. Si y of

q trends for the two fly ashes and three AMD leachants.
The leach cycles and pH are noted where a change in trend was noted.
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India ashes was the tendency to release As from the former and its absence from the ash
and leachant in the later.

Tables 5 and 6 compare elemental concentrations of TCLP and MWLP leachates
for the two fly ashes. The MWLP results represent the differences between leachant
(AMD) concentrations and leachate concentrations. Thus a negative value represents net
sequestration and positive values, net release. The West Virginia fly ash contained more
alkalinity than the India fly ash and required five rather than three cycles to return to the
pH of the AMD leachant. No elemental concentration in the TCLP tests exceeded
USEPA limits per the Resource Conservation and Recovery Act of 1976 (40 CFR section
261). While the results of TCLP and MWLP are not directly comparable since MWLP
uses AMD as the leachant, the later, nonetheless, indicated a trend toward increasing
elemental release with successive leach cycles and with decreasing pH.

DISCUSSION

The MWLP differs from TCLP in two ways. First, TCLP, uses standard synthetic
extraction fluids, titrated to various pH ranges with acetic acid, MWLP uses water from
the intended application site. It is expected to provide a more accurate simulation of field
conditions than TCLP and accounts for chemical interactions between ions released from
the CCB and those in the mine water. Second, TCLP uses a single 18 hr leach cycle
while MWLP continues leaching until all alkalinity is exhausted. In the case of many
CCBs the TCLP stops while the pH is still strongly alkaline. While the intent of the CCB
application may be to neutralize mine water acidity, the TCLP sheds no light on
situations where re-acidification of the CCB mass is a possibility.

While MWLP is meant to simulate the likely chemical products resulting from
exposure of a given CCB to a particular mine water, in its current configuration, it does
not simulate reducing conditions. Additionally, MWLP simulates many years of
weathering in a short period (roughly 32 pore water exchanges per leach cycle). It is
important to remember that field concentrations of contaminants will be strongly
influenced by the method of CCB placement, its volume, groundwater gradients and spoil
quality. Therefore, the concentrations yielded by the test are not expected to estimate
concentrations under field conditions.

It is clear that MWLP and TCLP yield very different results. For example, as pH
and acidity change through the MWLP cycles, various elements appear in the leachate.
In some instances, an element will appear for one or two cycles then drop below
detection limits. This could indicate that an element is being sequestered or it could
mean that its soluble fraction has been leached out of the fly ash. In either case, MWLP
will highlight elements that may become mobile and the pH range in which it is likely to
occur.

It is understood that the short 18 hour cycle time may not allow many
intermediate mineral phases to come into equilibrium. Accounting for these phenomena
and their significance over the long term are yet to be determined.

The MWLP is helpful in predicting the long term leaching behavior of wastes
placed in acid environments. Many metals, such as Al, Cu, and Pb may not be leached
from the waste until the leaching fluid becomes very acidic. In the case of highly
alkaline wastes this may not happen until dozens of pore water exchanges have
occurred,Comparisons of TCLP and MWLP leachates showed that in many cases
different toxic element mobilities were indicated by MWLP and TCLP. The relationship
of these results to field observations has yet to be made. While this project used strongly
acidic mine waters and the most acidic TCLP leachant, it is important to note that many
mine waters will be circumneutral and/or alkaline. They would, doubtless, yield very
different results than those reported in this study.
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The benefits of MWLP are most apparent when dealing with alkaline waste
products, where a single leaching cycle will not exhaust the alkalinity in the system. In
these cases several leaching cycles are necessary in order to understand the leaching
behavior of these wastes as its alkalinity is exhausted and the leachate becomes acidic.
This is not meant to imply that all CCB minefills will become acidic. Rather, it allows
the user to evaluate leaching behavior through a range of pH conditions controlled by the
pH of the leachant and the inherent alkalinity of the CCB.

CONCLUSIONS

The Mine Water Leaching Procedure (MWLP) was developed to determine the
long-term leaching behavior of industrial wastes in groundwater found on the potential
application site. The method sequentially leaches the fly ash with a sample of the site’s
groundwater until the alkalinity is exhausted and the pH of the leaching solution is
reestablished at its pre treatment level.

Results of comparisons between TCLP and MWLP indicates that MWLP
provides additional information for planners regarding the likelihood of toxic element
release from CCB minefills and the pH ranges which must be maintained in order to
minimize the risk of further groundwater contamination. Given these precautions,
MWLP can be used to enhance the environmental performance of many industrial waste
applications in mine reclamation and water treatment.

Import/export calculations showed the extent to which metals entering the
leaching system via AMD were sequestered as solid phase precipitates. It appeared that
precipitation and remobilization was a significant pathway for most metals.

A single MWLP cycle represents about 32 pore water exchanges. If one could
estimate groundwater flux through the CCB mass, it would be possible to estimate the
years required under field conditions to effect a single pore water replacement. This
would allow placement of a temporal axis on the leachate data and further enhance the
ability to predict risks associated with CCB placement in mine fills.

Elemental concentrations obtained via MWLP are unlikely to reflect actual field
concentrations. They will also be influenced by the method of CCB placement, its
hydraulic conductivity, the ability of the surrounding mine spoil to sequester toxic
elements, adjacent ground water quality and gradients. Nevertheless, MWLP is expected
to provide an important component of the overall risk assessment picture.
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MOISTURE RETENTION AND HYDRAULIC CONDUCTIVITY OF COARSE-
TEXTURED SOILS AMENDED WITH COAL COMBUSTION FLY ASH
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1. ABSTRACT

Previous studies have suggested that an increase in water holding capacity or
matric potential (y) may result from the addition of coal combustion fly ash (FA) to
coarse-textured soils, but common laboratory techniques for evaluating such
characteristics can be time-consuming and difficult to replicate. Therefore, centrifuge-
based methods were used to assess the matric potential (y) and hydraulic conductivity
(K) as a function of the degree of saturation for a coarse-textured surface soil from the
Southeastern US that was amended with acidic FA at application rates ranging from 0-
15% (wt/wt). In repacked columns, a low ionic strength rainwater surrogate was used as
the leaching solution. For comparison, similar amounts of standard clays and sand (i.e.,
kaolinite (KA); montmorillonite (MONT); and ottawa sand (OS)) were added to the test
soil to demonstrate the sensitivity of the centrifuge-based methods. The water dispersible
clay (WDC) content, an indicator of the susceptibility of the soil clay to dispersion, was
also evaluated for the amended soils. A minor increase in matric potential was observed
only at the highest FA application rates, while saturated K (Ks,) actually increased and
then leveled off with increasing FA addition. In contrast, the matric potential and K for
the other tested amendments was altered in the expected manner. KA and MONT
decreased HC and increased matric potential at a given moisture content, while OS
addition increased the soil HC and decreased the water holding capacity. Consistent
respective trends were also evident in the particle size analyses of the amended soil. The
seemingly inconsistent behavior observed for the FA amended columns may reflect
changes in pore-water composition resulting from soluble FA components that increased
the background ionic strength of the soil solution for the readily dispersive surface soil,
as column effluents were generally less turbid with increasing FA addition. Changes
observed in WDC for the various amendments support such a mechanism as the
dispersible clay decreased and the ionic strength increased significantly for the FA
amended soils.

2. INTRODUCTION

Previous studies have suggested that land disposal of coal combustion FA can
improve the water holding capacity of coarse-textured soils and the drainage properties of
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fine textured soils because of the dominance of silt-sized particles.' In a recent
example, Adriano and Webber® found that high application rates of fly ash (0, 280, 560,
1120 Mg h'') improved the water holding capacity and increased plant available water for
turfgrass plots without deleteriously impacting infiltration. However, Ishak et al.”
observed a significant reduction in the K, of a coarse-textured soil with even moderate
FA amendment levels (50 Mg h™).

High FA application rates necessary to enhance soil water holding capacity,
however, are likely to increase the potential for plant toxicity problems due to boron and
environmental hazards associated with other trace elements (As, Ba, Mo, Pb, Se, Sr) that
may pollute surface water or leach into groundwater.®® In spite of the potential hazards
associated with its use on cropland, alkaline FA can be an effective liming agent and
reduce the toxic effects of Al and Mn for acidic soils."”® Utilization of such materials as
soil amendments is further complicated by their tremendous variability in chemical
composition, in addition to the variability in the physical and chemical properties of soils
to which they are applied, making it difficult to develop standardized management
practices that ensure safe utilization.

Studies evaluating the environmental impact associated with the land application
of FA often focus on the solubility, plant toxicity, and migration of ash-derived trace
elements.*!" However, a better understanding of the influence of FA addition on the
physical properties of amended soils is also critical to the development of standardized
management practices. The lack of practical laboratory protocols for studying moisture
retention and solute transport under variably saturated conditions has often hindered our
understanding of such processes. Centrifuge-based techniques have gained recent
acceptance as a means of rapidly testing the matric potential and hydraulic conductivity
of porous media, both strong non-linear functions of soil water content.'>"* One
commercially available instrument, known as the Unsaturated Flow Apparatus (UFA;
UFA Ventures Inc.) consists of a modified centrifuge and rotor system (Figure 1). The
UFA enables the investigator to centrifuge repacked or intact soil columns while
continuously adding a leaching solution via an infusion pump to the top of the columns in
a controlled manner, and collecting the column effluent. When determining the matric
potential of a sample, the infusion pumps are not used.

In determining the equivalent pressure head resulting from centrifugation:

where P is the average pressure of the sample in cm of H,0, g is the acceleration due to
gravity (981 cm s?), p is the density of the sample fluid (g cm’), © is the rotational rate
(rad ), r; and r, are the radial distances from the point of rotation to the top and bottom
of the sample (cm), respectively.l6 The matric potential for a material is then determined
by first saturating the sample and then spinning it in the UFA at progressively faster
rotation speeds, periodically stopping to measure the water content of the sample after it
has reached steady state for a given centrifuge speed. Using the UFA, the y curve from
0.04 to 6 Bar can be generated for either two or four columns in approximately 10 days.

In a similar manner to v, the steady-state unsaturated hydraulic conductivity
(Kunsat) can be determined using the following Darcy relationship:

q=—K(y/)[dy//dr—pa)2r]
where q is the fluid flux density (cm), K is the hydraulic conductivity, r is the distance

from the rotation axis, p is the fluid density (gm cm™), o is the rotation speed
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Figure 1. Schematic diagram of the Unsaturated Flow Apparatus (UFA Ventures, Inc.).

(radian/sec), dy/dr is the matric potential gradient, and pw r is the centrifugal force. At
sufficient rotational speed and mass flux, the impact of matric potential is much less
significant than the centrifugal force, i.e., << pw r.!”'® When rearranged the hydraulic
conductivity (K) can be expressed as a function of matric potential () or in the present
case as function of volumetric water content (0):

K(@)=q/paw’r

In contrast to matric potential measurements, an infusion pump is used to
continually introduce a leaching solution while the column is spinning. The centrifuge
rotation speed is progressively increased, while the pumping rate is decreased in a
controlled manner to control inlet flux over a range of decreasing water contents. As
before, the column is periodically removed from the centrifuge rotor to empty the effluent
coltection cup and weigh the column to determine the water content at a given K or inlet
mass flux.'®!7 The K for two soil columns at 12 different moisture levels can be
determined in approximately four days using the UFA. In addition to measuring the
hydraulic properties of a given porous media, the UFA can also be used to conduct
unsaturated solute transport experiments by introducing the compound of interest with
the leaching solution once the desired degree of saturation has been achieved and then
retaining the effluent for subsequent analysis.'® 19

The objective of the current study was to evaluate the impact of FA addition on
the hydraulic properties (i.e., matric potential and hydraulic conductivity) of a coarse-
textured soil using a modified centrifuge system, namely the UFA. Experimental
conditions were chosen to mimic the field application of such material, including
incorporation within the surface soil horizon and subsequent exposure to low ionic
strength wetting solutions typical of precipitation.

3. MATERIALS AND METHODS

A coarse-textured surface soil (> 90% sand) collected from a mixed
coniferous/deciduous forest (0-15 cm depth) on the Department of Energy’s Savannah
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Table 1. Select physical and chemical properties of the surface soil and coal combustion

fly ash (FA) used in the current study.

Horizon A, FA
Sand (%)* 91.0

Silt (%) 3.49

Clay (%) 5.51

Organic Carbon (g 100 g')** 0.59

pH-water*** 5.48 +0.11 431+0.07
pH-1.0 M CKC1*** 3.98 +£0.02 4.35£0.05
EC (uS/cm)*** 103+1.5 3520+ 170
Clay Mineralogy**** k, HIV, goe, gibb

BET Surface Area***** m?g!
Surface Soil 2.40
Fly Ash 1.76
Kaolinite 11.18
Montmorillonite 86.3
*Hydrometer Method™'

**Dry Combustion Method™

**%2/] water:soil ratio for pH

**x¥Based on XRD: k = kaolinite, HIV = hydroxy-interlayered vermiculite, goe =
goethite, gibb = gibbsite

**++*BET Surface Area’

River Site, located near Aiken, SC, and stored in a field moist state at 4 °C was used in
the current study (Table 1). The clay mineralogy of the soil material consisted mainly of
kaolinite, hydroxy-interlayered vermiculite (HIV), and gibbsite. The coal combustion FA
used in the present study is likely a Class F, acidic ash, with limited nutrient value and
liming capacity.20 For comparison, clays such as kaolinite (kaolin, KGA-1A, 11.8 m? g?)
and montmorillonite (montmorillonite, SAZ-1, 86.8 m’ g™"), and ottawa sand were also
tested as amendments to demonstrate the utility of the UFA method. These treatments
will be referred to as KA, MONT and OS, respectively. The appropriate amount (0, 5,
10, and 15% wt/wt) of FA or an alternate soil amendment was thoroughly mixed with the
soil in a plastic bag before packing the UFA columns to a uniform bulk densities of 1.78
+0.02 gm cm” for the control and FA treatments, with bulk densities decreasing with
increasing amendment levels for the clay treatments. The treatment levels correspond to
0, 50, and 100 Mg ha assuming a 15 cm field incorporation depth. Repacked columns
were deemed appropriate for the current study because of the necessity to mimic
amendment incorporation after application in the field. Select properties of the treated
soils are presented in Table 2.

Since the composition of the leaching solution can alter water retention and
hydraulic conductivity 2", a surrogate artificial rainwater solution (ARW) t%pical of
precipitation in the southeastern US was used in the current study (Table 3). ~ For
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Table 3. Composition of the Artificial Rainwater (ARW) based on precipitation samples
collected on the Savannah River Site located near Aiken, SC.%

Analyte Concentration (mg L™)
Ca 0.082
K 0.042
Mg 0.033
Na 0.199
NH, 0.139
Cl 0.351
NOs 0.711
SO, 1.29

comparison, 0.001 M CaSO, was also used as a leaching solution for measuring Ky in
an effort to reduce possible clay dispersion and swelling that may occur under low ionic
strength conditions.

3.1. Matric Potential

Field moist soil was packed into a UFA column and then saturated with the ARW.
Once saturated, the columns were placed in the centrifuge and spun at progressively
higher rotation rates and durations to extract water under different equivalent tensions.
At predetermined time intervals for a give rotation speed, the rotor was removed from the
centrifuge and the columns were weighed to determine the amount of soil moisture that
had been extracted. At the end of the final centrifuge episode, the soil was removed from
the UFA and the final water content was determined gravimetrically after heating
overnight at 60°C. The calculated water tension in bars was then plotted against the
water content for the soil to produce the characteristic matric potential curve (see
Equation 1).

3.2. Saturated Hydraulic Conductivity

The Ky, of the amended soils was determined using ARW as the leaching
solutions for three replicates of each soil amendment treatment using a constant-head
permeameter in an upflow configuration.'® An analysis of variance (AN OVA) test was
performed to confirm treatment differences, and then a Tukey’s multiple comparison test
was conducted to define the least significant difference between sample means at the o =
0.05 significance level.

3.3. Unsaturated Hydraulic Conductivity

The Knsat of the amended soil was determined in the UFA using either ARW or
0.001 M CaSOj as the leaching solution.'®!” After a given column experiment was
completed, the soil materials were removed from the UFA column, and the final water
content was determined gravimetrically after heating a portion of the soil to 60 °C.
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Figure 2. Matric potential as determined by the UFA method for coarse-textured soil
amended for FA (A) and other soil materials (B).

3.4. Water Dispersible Clay

A batch study was conducted to determine the impact of FA and the mineral
standard treatments on the relative dispersibility of the clay fraction from the study soil.
Treatments were created by mixing the field-moist soil with FA or the standard clays at
application rates of 0, 50, 100 and 150 gkg™' (0, 5, 10, and 15% wt/wt). Triplicate five-
gram samples of soil treatments were then weighed into centrifuge tubes and shaken 4 hrs
with 35 mL of deionized water (DIW). After shaking, the water-dispersible clay (WDC)
was measured using a modified micro-pipette method, and the pH and electrical
conductivity of the remaining suspensions were also determined.”*** As above, an
ANOVA test was performed to confirm treatment differences, and then a Tukey’s
multiple comparison test was conducted to define the least significant difference between
sample means at the o = 0.05 significance level.

4. RESULTS AND DISCUSSION
4.1. Matric Potential

The soil matric potential increased only moderately for the FA-amended soils,
even at the 15% application rate (Figure 2A). The marginal increase in water holding

capacity led us to test additional materials that would alter the soil texture in a predicted
manner to demonstrate the sensitivity of the UFA method. The addition of either KA or
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Figure 3. Kgq for the coarse textured soil amended with FA and other soil materials.
Treatment means with the same letter are not significantly different at o = 0.05.

MONT enhanced the water holding capacity of the soil, especially for the MONT, even
though the clays were not size fractionated prior to addition (Figure 2B). Changes in soil
texture were also evident in the particle size data for the amendment treatments, with
only a slight increase in the clay and silt content observed with increasing FA addition
(Table 2). Adding 5% OS to the column resulted in only a slight decrease in water
holding capacity when compared to the control (data not shown).

4.2. Saturated Hydraulic Conductivity

The K, increased slightly for the two lowest FA amendment levels when
compared to the other amendment treatments, KA, MONT, OS (Figure 3). In some
respects, this seems inconsistent with even a minor increase in water holding capacity.
However, the column effluents for the control soil were turbid, indicative of the inherent
dispersibility of the clay fraction. The clay fraction in surface soil horizons from the
Southeastern US tends to be dispersive due to the low ionic strength of the pore solution,
the moderate intrinsic sodium adsorption ratios (SAR), and organic coatings on clay size
minerals which increase net-negative surface charge.”? The electric conductivity (EC)
increased and the turbidity decreased for the column effluents with increasing FA
addition (data not shown). This suggests that solubilized salts from the FA may help
flocculate the soil clays and reduce column plugging with ARW leaching. With
increasing FA addition, however, it appears that the increase in pore solution ionic
strength may be offset by the alteration in soil texture, resulting in a lower hydraulic
conductivity, even with less clay dispersion.

4.3. Unsaturated Hydraulic Conductivity

The Kynsat results were quite variable and highly dependent on the saturating
solution. In general; the position of the K(6) curve is controlled by the mean pore size,
while the shape is more a function of the pore-size distribution.”® A lower column water
content was observed for the CaSO4 leaching solution when compared to the ARW at a
given hydraulic conductivity, i.e. inlet flux and rotation speed, indicative of an increase in
the mean pore size of the material (Figure 4A). This was presumably due to the greater
soil flocculation when exposed to the higher ionic strength solution as the ARW effluents
were quite turbid for all amendment treatments, even the FA. When CaSO, was used as
the leaching solution the effluents were clear (NTU < 1) and there was little difference in
the Kunsar curves for the control soil and the FA amendments, regardless of application
rate (Figure 4B). An increase in back pressure that disabled the infusion pump was often
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Figure 4. Kyysa for the coarse-textured soil leached with either ARW or 0.001 A CaSO,

(A), and the soil amended with FA and leached with 0.001 M CaSO4 (B).

Table 4. Water dispersible clay and other suspension characteristics for soil amended

with FA and other test amendments. Treatment means with the same letter are not

significantly different at o = 0.05.

Treatment WDC EC pH
(g 100 gm soil) (S em™)

Control Soil 1.45 (A,B) 21.6 (A) 5.46 (A)
5% FA 038 (C) 175 B) 531 (B)
10% FA 0.40 (C) 257(C) 5.64 (C)
5% Kaolinite 3.97 (D) 12.6 (A) 5.55(A,C)
10% Kaolinite 3.32(A) 14.3 (A) 5.55(A,C)
5% Montmorillonite 1.39 (A,B) 12.1 (A) 6.04 (D)
5% Ottawa Sand 1.09 (A) 17.5 (A) 5.59 (C)
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observed for the clay amendments when leaching with ARW, especially the MONT
treatments, indicative of severe column plugging that precluded completion of the
experiment.

4.4 Water Dispersible Clay

Batch clay dispersion experiments were conducted to explain the impact of the
tested amendments on clay flocculation/dispersion and subsequent changes in the soil
matric potential and hydraulic conductivity. FA addition significantly reduced clay
dispersion as indicted by WDC when compared to other treatments (Table 4), presumably
resulting from the release of soluble salts that reduced colloidal stability as indicated by
the higher electrical conductivity of the FA amended suspension. Apparently the higher
ionic strength was sufficient to overcome any alterations in texture, except for the highest
FA amendment level, 15% FA (see Figure 2 and Table 2). Such an increase in soluble
salts was not apparent in the particle size data (Table 2) because of the greater dilution
inherent in the hydrometer method compared to the WDC procedure (i.e., 20/1 vs. 7/1)
and the utilization of a strong dispersing agent, sodium-hexametaphosphate.

5. CONCLUSIONS

The current results suggest that FA addition was marginally effective at
increasing the water holding capacity, i.e., matric potential, of the coarse textured test
soil. In addition, the lowest FA amendment rates (5 and 10%)) actually increased the Ky
of the soil, through the addition of soluble salts that reduced clay dispersion when
compared to the control or clay treatments. Apparently the increase in soluble salts was
offset at the highest treatment level, 15% FA. Such a mechanism is further supported by
the fact that little difference in Kyns, Was observed for the FA treatments in comparison
with the control soil when a high ionic strength 0.001 M CaSO,4 was used as the leaching
solution. The initial pore water composition may have a lesser impact on matric potential
determination when compared to hydraulic conductivity experiments because the limited
ability to alter soil chemistry with such a small volume of pore solution. These results
have obvious implications to the common practice of mixing flue-gas desulfurization
gypsum (i.e., CaSOy) with FA before land disposal.

Additional treatments such as KA, MONT, and OS were used to demonstrate the
utility of the UFA methods in a predictable manner. In contrast to FA, the clay
amendments clearly increased the matric potential, decreased saturated conductivity, and
often resulted in severe column plugging that precluded measuring the unsaturated
hydraulic conductivity using ARW.

The current study clearly demonstrates the utility of centrifuge-based techniques,
and more specifically the UFA, in evaluating the hydraulic properties of porous media;
however, the results observed for the FA amendments must be viewed with caution
because of the tremendous variability in coal combustion fly ash and the soils to which
they are applied. Companion studies are underway to test the influence of FA
aging/equilibration before and after soil application on the resulting soil physical
properties (y and K(0)), as well as the impact of the initial pore solution. In addition,
similar studies are underway to test the influence of a range of coal combustion materials
that are typical of the inherent variability encountered for FA materials. Also, field
experiments are underway to correlate the UFA-based matric potential results to that of
the undisturbed soil at the sampling site using soil tensiometers.

100



ACKNOWLEDGEMENTS

The authors would like to acknowledge the laboratory assistance of J. Logan and

J. Mclntosh. This research was supported by Financial Assistance Award Number DE-
FC09-96SR 18546 from the DOE to the University of Georgia Research Foundation.

REFERENCES

1.

10.

11.

12.

Adriano, D. C,, Page, A. L., Elseewi, A. A., Chang, A. C. and Straughan, I,
Utilization and disposal of fly ash and other coal residues in terrestrial
ecosystems: A review, J. Environ. Qual., 11, 563, 1980.

Chang, A. C., Lund, L. J., Page, A. L. and Warneke, J. E., Physical properties of
fly ash-amended soils, J. Environ. Qual., 6,267, 1977.

Jacobs, L. W., Erickson, A. E., Berti, W. R. and MacKellar, B. M., Improving
crop yield potentials of coarse textured soils with coarse fly ash amendments,
Proc. Ninth International Ash Use Symposium, 3, 59, 1991.

Ghodrati, M., Sims, J. T. and Vasilas, B. L., Evaluation of fly ash as a soil
amendment for the atlantic coastal plain: 1. Soil Hydraulic properties and
elemental leaching, Water, Air, and Soil Pollution, 81, 349, 1995,

Punshon, T., Adriano, D. and Weber, J., Restoration of eroded land using coal fly
ash and biosolids, TR-113940, EPRI, 1999.

Adriano, D. C. and Weber, J. T., Influence of Fly Ash on Soil Physical Properties
and Turfgrass Establishment, J. Environ. Qual., 30, 596, 2001,

Ishak, C. F., Seaman, J. C., Miller, W. P. and Sumner, M., Contaminant mobility
in soil amended with fly ash and flue-gas desulfurization gypsum: Intact soil cores
and repacked columns, Water, Air, and Soil Pollution, In Press, 2002.

Carlson, C. C. and Adriano, D. C., Environmental impacts of coal combustion
residues, J. Envorn. Qual., 22,227, 1993,

Keefer, R. F., Chapter 1: Coal ashes- Industrial wastes or beneficial byproducts?,
in Trace elements in coal and coal combustion residues, R. F. Keefer and K. S.
Sajwan, Eds., Lewis Publishers, Ann Arbor, 1993, 3.

Kukier, U., M.E. Sumner, and W.P. Miller, Boron release from fly ash and its
uptake by corn, J. Environ. Qual., 23, 596, 1994.

Sims, J. T., B.L. Vasilas, and M. Ghodrati, Evaluation of Fly Ash as a soil
amendment for the Atlantic Coastal Plain: II. Soil chemical properties and plant
growth, Water, Air, and Soil Pollution, 81, 363, 1995.

Nimmo, J. R., Stonestrom, D. A. and Akstin, K. C., The feasibility of recharge
rate determinations using the steady-state centrifuge method, Soil Sci. Soc. Am. J.,
58, 49, 1994.

101



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

102

Nimmo, J. R., Akstin, K. C. and Mello, K. A., Improved apparatus for measuring
hydraulic conductivity at low water content, Soil Sci. Soc. Am. J., 56, 1758, 1992,

Wright, J., Conca, J. L. and Chen, X., Hydrostatigraphy and recharge distributions
from direct measurements of hydraulic conductivity using the UFA method, PNL-
9424, Pacific Northwest Laboratory, 1994.

Khaleel, R., Relyea, J. F. and Conca, J. L., Evaluation of van Genuchten-Maulem
relationships to estimate unsaturated hydraulic conductivity at low water contents,
Water Resour. Res., 31, 2659, 1995.

UFA Method Technical Procedures, UFA Ventures, Inc. Richland, WA 99352.

ASTM, Test method for determining unsaturated and saturated hydraulic
conductivity in porous media by steady-state centrifugation, D18.21, 2000.

Nimmo, J. R., Rubin, J. and Hammermeister, D. P., Unsaturated flow in a
centrifugal field: Measurement of hydraulic conductivity and testing of Darcy’s
Law, Water Resour. Res., 23, 124, 1987.

Gamerdinger, A. P. and Kaplan, D. L., Application of a continuous-flow
centrifugation method for solute transport in disturbed, unsaturated sediments and
illustration of mobile-immobile water, Water Resour. Res., 36, 1747, 2000.

Mattigod, S. V., Rai, D., Eary, L. E. and Ainsworth, C. C., Geochemical factors
controlling the mobilization of inorganic constituents from fossil fuel combustion
residues: 1. Review of major elements, J. Environ. Qual., 19, 188, 1990.

Klute, A. and Dirksen, C., Chapter 28: Hydraulic conductivity and diffusivity:
Laboratory methods, in Methods of Soil Analysis, Part 1. Physical and
Mineralogical Methods, A. Klute, Ed., American Society of Agronomy, Madison,
W1, 1986, 687.

Klute, A., Water retention: Laboratory methods, in Methods of Soil Analysis, Part
1. Physical and Mineralogical Methods-Agronomy Monograph no. 9, A. Klute,
Ed., American Society of Agronomy-Soil Science Socity of America, Madison,
WI, 1986, 635.

Strom, R. N. and Kaback, D. S., SRP Baseline Hydrogeologic Investigation:
Aquifer Characterization Groundwater Geochemistry of the Savannah River Site
and Vicinity (U), Westinghouse Savannah River Company, Environmental
Sciences Section, 98, 1992.

Burt, R., Reinsch, T. G. and Miller, W. P., A micro-pipette method for water
dispersible clay, Commun. Soil Plant Anal., 24, 2531, 1993.

Miller, W. P. and Miller, D. M., A micro-pipette method for soil mechanical
analysis, Commun. Soil Plant Anal., 18,1, 1987.



26.

27.

28.

29.

30.

31

32.

33.

Kaplan, D. I, Bertsch, P. M., Adriano, D. C. and Miller, W. P., Soil-borne
colloids as influenced by water flow and organic carbon, Environ. Sci. Technol.,
27,1193, 1993.

Kretzschmar, R., Robarge, W. P. and Weeds, S. B., Flocculation of kaolinitic soil
clays: Effect of humic substances and iron oxides, Soil Sci. Soc. Am. J., 57, 1277,
1993.

Miller, W. P. and Radcliffe, D. E., Soil crusting in the southeastern US, Soil
crusting: Chemical and physical processes, 233, 1992.

Kaplan, D. 1., Sumner, M. E., Bertsch, P. M. and Adriano, D. C., Chemical
conditions conducive to the release of mobile colloids from ultisol profiles, Soil
Sci. Soc. Am. J., 60, 269, 1996.

Conca, J. L. and Wright, J., The UFA method for characterization of vadose zone
behavior, in Vadose Zone: Science and Technology Solutions, on CD, B. B.
Looney, B. B. and Falta, R. W, Eds., Battelle Press, Columbus, 2000,

Gee, G. W. and Bauder, J. W., Chapter 15: Particle Size Analysis, in Methods of
Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd Edition, 9, Ed.,
A. Klute, American Society of Agronomy, Madison, W1, 1986, 383.

Nelson, D. W. and Sommers, L. E., Total carbon, organic carbon, organic matter,
in Methods of Soil Analysis, 2,Eds., Page, A. L., Miller, R. H. and Keeney, D. R.,
Eds., American Society of Agronomy, Madison, WI, 1982, .

Carter, D. L., Mortland, M. M. and Kemper, W. D., Specific Surface, in Methods
of Soil Analysis, Part 1. Physical and Mineralogical Methods, A. Klute, Ed.,
American Society of Agronomy, Madison, W1, 1986, 413.

103



GEOCHEMISTRY OF AN ABANDONED LANDFILL CONTAINING COAL
COMBUSTION WASTE: IMPLICATIONS FOR REMEDIATION

Christopher Barton', Linda Paddock?, Christopher Romanek??, and John Seaman®

'USDA Forest Service, Center for Forested Wetlands Research, c/o Savannah
River Ecology Laboratory, Drawer E, Aiken, SC 29802

?University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken
SC 29802

3Department of Geology, University of Georgia, Athens, GA 30602
1. ABSTRACT

The 488-D Ash Basin (488-DAB) is an unlined, earthen landfill containing
approximately one million tons of dry ash and coal reject material at the U.S. Department
of Energy’s Savannah River Site, SC. The pyritic nature of the coal rejects has resulted in
the formation of acidic drainage (AD), which has contributed to groundwater
deterioration and threatened biota in adjacent wetlands. Establishment of a dry cover is
being examined as a remedial alternative for reducing AD generation within this system
by minimizing the contact of oxygen and water to the waste material. To determine the
potential benefit of a cover on pore water chemistry, a series of flow-through column
experiments were performed under varying environmental conditions using materials
from the site. The experiment was designed to demonstrate the influence of temperature,
gaseous composition (dissolved nitrogen vs. oxygen), and flow regime (continuous flow
vs. episodic wetting/drying) on effluent chemistry. Results indicated that the fluid
composition (e.g., pH, redox, elemental composition) was closely associated to dissolved

and/or gaseous oxygen content and wetting regime. Given these conditions, the use of a

dry cover could reduce the production of acid lechate over time, pending that it retards or
eliminates fluid and oxygen transport to the subsurface.

Chemistry of Trace Elements in Fly Ash, edited by Sajwan et al.
Kluwer Academic/Plenum Publishers, 2003 105



2. INTRODUCTION

The degradation of water resources from coal mining and coal combustion
activities is a problem of global significance. Acidic drainage (AD), a low pH water
enriched in iron, aluminum, sulfate and trace elements (e.g., lead, selenium, arsenic,
mercury, zinc), is formed upon exposure of pyrite to the oxidizing forces of air and water.
Pyrite (FeS;), the most common sulfide mineral on Earth, is often found within coal
seams and their associated geologic strata. Once disturbed or extracted during the mining
process, pyrite oxidation and AD generation may begin and can continue for thousands of
years. Moreover, since pyrite is found within coal seams, AD is not solely a “mining”
problem and may occur anywhere that pyrite enriched coal or its byproducts are stored.
In the United States alone, approximately 20,000 km of streams and over 72,000 ha of
lakes and reservoirs are impacted by AD'.

The oxidation of sulfide minerals and formation of AD is a complex process
involving hydrolysis, redox, and microbial reactions”. The general stoichiometry can be

described by the following reactions:

2FeSy + 70, + 2H,0 — 2Fe** +4S0,% + 4H' [
Fe?* +0.250, + H - Fe** + 0.5H,0 [2]
Fe*" + 3H,0 — Fe(OH)s) + 3H" [3]
FeSy) + 14Fe* + 8H,0 — 15Fe** +280,% + 16H" [4]

where iron sulfide and other mixed-metal sulfides decompose upon exposure to the
atmosphere, producing ferrous iron, sulfate and proton acidity [1]. The partial oxidation
of ferrous to ferric iron consumes some protons [2]. However, ferric iron may act as an
electron acceptor and contribute to additional acid production through hydrolysis [3]
and/or further pyrite oxidation [4]. Subsequently, acids produced from the oxidation may
dissolve minerals and mobilize metals from materials found in the surrounding

environment (coal, ash, soil etc.).
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The oxidation of ferrous to ferric iron was determined by Singer and Stumm? to
be the rate-limiting step in the generation of AD. Further, these researchers showed that
the oxidation of Fe** is pH dependent and extremely slow at pH =3.0. However, the
bacteria Thiobacillus thiooxidans, a sulfur-oxidizing bacteria, and Thiobacillus
ferrooxidans, a chemosynthetic iron-oxidizing bacteria, were found to act as catalysts and
accelerate the oxidation of ferrous sulfide to ferric sulfate at pH levels below 4.0%. Singer
and Stumm?® demonstrated that the rate of Fe** oxidation in an untreated mine sample was
16° times greater than that observed in a sterilized sample. As such, the rate of pyrite
oxidation may be influenced not only by redox conditions, but also by environmental
conditions that may affect the microbial communities (i.e., temperature and pH).

Several innovative techniques have been proposed to reduce AD generation by
limiting the exposure of pyrite to air and water. Inundation is a basic application of this
concept. The diffusion coefficient of dissolved oxygen in water is approximately 10,000
times lower than that in the gas phase. As such, oxygen-consuming reactions are greatly
reduced upon flooding of pyrite-bearing materials and bacterially enhanced pyrite
oxidation is diminished. However, equation [4] (above) indicates that oxidation of pyrite

may continue as long as ferric iron is present. Hence, long-term stagnation or bacterially

mediated hypoxia must also occur to maintain a reducing environment and hold iron in
the ferrous state.

A dry cover is an innovative technology that utilizes a layer of soil, compost or
other organic material (peat, hay, straw, sawdust) above mining waste to deplete oxygen
through bacterial consumptions. The organic waste may also inhibit oxidation by removal
of Fe’* from solution through complexation, and the formation of pyrite-Fe**-humate
complexes®. Changes in the particle size distribution of the cover over that of the mining
waste may also be engineered to enhance water storativity. As such, water percolation
through the waste and exposure to the pyrite could be decreased. Under such a scenario,

the use of vegetation may also be included to aid in the removal of water through
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Figure 1. D-Area power plant and vicinity on the Savannah River Site, SC.

evapotranspiration’. On a large scale, the net effect of these techniques is to cut off the
oxygen source. On a microscopic scale, these techniques may also aid in preventing
oxidation by altering the surface chemistry of pyrite. Several researchers have shown that
soluble organic acids from the breakdown of litter, and colloidal silicate and phosphate
salts from soils may act as passivating agents through the formation of a surface coating,
which may render pyrite impenetrable to oxidative attack®®®.

Establishment of a dry cover is being examined as a remedial altermnative for
reducing AD generation within the 488-D Ash Basin (488-DAB) at the U.S. Department
of Energy’s Savannah River Site, SC. In order to determine the potential benefits of a
cover, a series of column experiments was conducted to determine the effect of
temperature and wetting regime on surficial materials collected from the 488-DAB. Data

from these experiments are used to predict the chemistry of lechate anticipated under

various field conditions.
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3. MATERIALS AND METHODS
3.1. Site Description and Background

The 488-DAB is an unlined, earthen containment basin located on the Savannah
River Site, SC that received sluiced fly ash, dry fly ash and coal reject material from the
early 1950’s to the mid 1990’s (Figure 1). Non hazardous wastes deposited in the basin
contain metals typical of fly ash and coal (As, Co, Cr, Cu, Fe, Mn, Ni and Zn). The 488-
DAB is ~1,800’ x 600’ x 18’ in size and contains ~19 x 10° ft* of waste material. The
basin was constructed on the existing land surface at ~35m (msl) and is ~9m above the
Savannah River. The present surface of the basin is at ~40 to 37’ (msl), sloping gently to
the west and it is filled with waste, except in the far western reach where surface waters
collect during rainfall events.

The extent of water-saturated material in 488-DAB is not known, nor if any
communication exists between basin waste and the local water table. Based on limited
soil borings, the waste seems to be variably saturated, having both wet and dry zones that
vary with depth. The source of this water may be meteoric infiltration or lateral
groundwater flow from adjacent basins (488-1D, -2D and -4D). Hydraulic anisotropies
may have been created when various materials were introduced to the basin.
Alternatively, post-depositional features such as diagenetic “hard pans” may have
developed as materials weathered over time, creating local anisotropies
3.2. Column Construction

A 2x1x1 mdeep trench was excavated in the center of 488-DAB to retrieve
material for the column study. Six horizons were noted in a cross-section of the trench;

of these, a coal rubble zone (A) and fly ash residue zone (D) best represented the

character of the waste and were chosen for additional study. In the field, zone A
consisted of poorly-sorted, pebble-sized pieces of coal and pyrite, while zone D contained
a relatively uniform fine-grained material. Approximately 1 m> of material was shoveled

from zone A and D into individual plastic bags and subsequently placed inside large
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plastic containers to minimize atmospheric interaction. The containers were transported
to the laboratory where subsamples were collected for thin sectioning. The remaining
material was disaggregated by hand and stored for later use.

Flow-through columns were made using clear PVC pipe of approximately 15 cm
in diameter and 25 cm in length (~4500 cm®). Attached to the ends of each cylinder were
PVC plates that contained a circular groove, to ensure a snug fit, and ports for influent or
effluent flow. The base plate was permanently fixed with epoxy, while the top plate was
removable and contained a compression o-ring for an airtight seal. Each column was
connected to fluid and gas reservoirs with tubing. Columns were flushed with fluid from
the bottom up to minimize air-filled void space, and from top to bottom with gas to
facilitate the expulsion of liquid and accelerate the drying process. Preliminary
experiments revealed that the waste material could be dried to ambient water saturation
(~12% by wt.) within a day at a gas flushing rate of 1 L per minute.

3.3. Flow-through Experiment Procedures

Waste material from the selected horizons was packed in columns. Nylon screens
(600-mesh) were placed on each end of a column to prevent mass loss. After loading, the
lid was securely fastened to the column base plate by connection with metal rods and
bolts. Gas-equilibrated water was pumped independently into the columns from a
common reservoir at 2.5 mL min™ with Barnant metering pumps. The flow rate was set
to be similar to measured infiltration rates for waste at 488-DAB (Smail, pers. comm.).
Depending upon the treatment, gas-equilibration of the influent was achieved by
continuous sparging of the inlet reservoir with either breathing quality oxygen or zero
grade nitrogen gas. Ultra purification of the nitrogen was achieved by passing the gas
over hot copper in a reduction furnace prior its introduction in an experiment. Non-
potable ground water pumped from a local artesian aquifer was stored in fifty-liter
carboys and pre-equilibrated to the appropriate temperature and gaseous conditions

before being pumped into the columns. Prior to an experimental run, each column setup

110



was examined for leakage, settling, and mass loss by flushing gas-equilibrated fluid
through the system.

Four experimental runs were conducted sequentially, each run consisted of four
independent columns that were leached for approximately 35 days. In each run, two
columns contained zone A material (columns 1 and 2) and two columns contained zone D
material (columns 3 and 4). In each run, columns 1 and 3 were flushed continually with
fluid while columns 2 and 4 experienced a periodic wetting (5 days) and drying (2 days)
cycle flow regime. Based on preliminary tests, gas flow rate was set at 1 L per minute.
Flow rates were monitored and adjusted periodically during each experiment. Column
experiments were conducted at two different temperatures, 12.7° and 29.4°C, to simulate
winter and summer soil temperatures, respectively. Maintenance of the experimental
conditions was achieved by housing the entire column set-up, including gas and liquid
reservoirs, in a large environmental chamber.

The treatment sequence for the experimental runs was: 1) Oz-equilibrated fluid at

12.7° C (Run 1), 2) N;-equilibrated fluid at 12.7°C (Run 2), 3) N;-equilibrated fluid at
29.4°C (Run 3), and 4) O,-equilibrated fluid at 29.4°C (Rufl 4). When a column

experiment was initiated, effluent was collected every 4 hours for the first 48 hours, and
daily thereafter. During each sampling event, effluent pH, Eh, temperature, and EC were
recorded, measurements of total Fe and Fe** were performed (HACH test kit), and three
samples of fluid were collected for laboratory analysis. Twenty milliliters of effluent was
filtered (0.45 micron acetate syringe filter) into a glass scintillation vial preloaded with
100 microliters of trace metal grade nitric acid for dissolved metal analysis, 60 mL of
unfiltered effluent was stored in an amber glass vial for measurement of acidity, and
approximately 20 mL of unfiltered effluent was collected for sulfate (SOs) analysis.
3.4. Analytical Methods

Measurements of pH, temperature, and EC were made in the environmental

chamber using a HI 991301 Hanna pH meter and probe. Eh was measured separately
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using an ORP probe and meter. Calibration checks were performed on all probes once
per week for quality control.

Acidity titration was performed using an ABU901 autoburette and TimTalk 9
computer software. The ICP-OES analyses were performed on a Perkin-Elmer Optima
4500DV Optical Emission Spectrometer. Total Fe, Fe’" and sulfate analysis were
conducted using HACH test kits and a DR/890 Colorimeter. Samples for iron and sulfate
determination were filtered with 0.1 micron and 0.22 micron syringe filters, respectively,
prior to analysis. Geochemical modeling of aqueous-phase chemical equilibria was
performed with the MINTEQA4 computer programlo. Measured pH and Eh values were
used as model inputs in the computer simulation.

Thin sections were made by Mineral Optics Laboratory (Wilder, Vermont) to
determine the texture, fabric and mineralogy of zone A and D materials prior to the
experiments. Percent silt and clay were determined on samples of zone A and D starting
material using the hydrometer method of Gee and Bauder''. The XRD analyses were
conducted on powder mounts of zone A and D materials prior to and at the conclusion of
each experiment using a XRD diffractometer (X2 Advanced Diffraction System, Scintag
Inc.) with Co Karradiation. A TGA 2950 thermogravimetric analyzer (TA Instruments,
New Castle, DE) was used for TG and DTG characterizations.

4. RESULTS AND DISCUSSION
4.1. X-Ray Diffraction and Thermal Analysis

Surficial waste material at the 488-DAB experienced fluctuating
saturated/unsaturated conditions that promoted the incongruent precipitation/dissolution
of minerals. During dry periods of the summer, yellow efflorescences erupting from
below the surface were observed and were a common superficial feature on the basin. In
addition, white globules consisting of a hard inner shell and soft outer coating with the
consistency of powder were abundant in the upper 1 cm of the surface horizon.

Diffraction patterns of the yellow efflorescences showed sharp peaks at 8.25, 5.45 and
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Figure 2. X-ray powder diffraction patterns of waste material from two depths in the 488-

DAB.

2.76-A, which are consistent with the iron sulfate mineral coquimbite (Fe,"'(SO4); *
9H,0). The precipitation of iron sulfate minerals is a commonly associated product of an
evaporative system that has accumulated dissolved species from pyrite oxidation'?, As
noted by Jambor et al'®, the subsequent dissolution of these salts during rain events
represents an additional source of acidity‘ and a major contributor to the contaminant pool
of these systems and adjacent environments.

Two minerals associated with the white globular material were identified by
XRD. Sharp diffraction peaks at 7.63, 4.28, 3.06 and 2.87- A characteristic of gypsum
(CaSO, * 2H,0) were exhibited from the external powder coating. The inner hard
material showed reflections at 3.03, 2.49 and 2.28- A, which are consistent with that of
calcite (CaCOs). Apparently, the acidic conditions of the basin have contributed to the
dissolution of limestone particles that were co-mingled within the waste material. As with
the iron salts, recrystalization of limestone as a sulfate salt likely occurred on the surface

of the calcite minerals during evaporative periods.
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The XRD patterns of basin material collected from zones A and D exhibited a
very similar array of peaks (Figure 2). Both horizons displayed sharp peaks at 3.34, 4.25,
2.45,2.28 and 1.81- A, which are consistent with quartz; and at 3.12, 2.71, 2.42, 2.2 and
1.63- A suggesting the presence of pyrite. Although it is difficult to assess due to
potential peak overlap, the reflection at 4.95- A may also suggest the presence of goethite
(0-FeOOH) in samples from both horizons. Material from zone A also displayed weak
refiections at 9.3, 4.71 and 3.69- A, which is indicative of basaluminite (AI(SO4)(OH),o).
Insoluble aluminum hydroxysulfates may precipitate from acid sulfate solutions when
buffered to a relatively high pH by carbonate materials, however, a pH near 5.0 must be
achieved for this to occur (pK; for Al-hydrolysis is 5.0'*). Although the presence of
calcite was verified in this zone, samples analyzed for pH rarely exceeded a value greater
than 2.5. It is possible such minerals formed in the local environment when pH was
buffer by the release of alkalinity.

Thermogravimetric (TG) analysis of zone A material displayed a weight loss of ~
5% between 25 and 300°C, followed by weight losses of ~ 9 and 3% in the 400 to 500
and 750 to 900°C regions, respectively (Figure 3). Derivative thermogravimetry (DTG)
indicated an inflection at 150°C, which is typical for the dehydration of gypsum"”.
Weight loss (TG) and strong DTG inflections at 450 and 500°C correspond to the
oxidation of pyrite to hematite'®'. A broad and weak inflection at 800°C corresponding
to the weight loss in the 750 to 900°C region is likely indicative of the decomposition of
carbonates (calcite) and evolution of CO,'°. Another weak DTG inflection is exhibited at
250°C may be the result of dehydroxylation of poorly crystalline goethite, lepidocrocite,
or akaganéite'® and/or an Al-hydroxide mineral',

Material from zone D showed only =1% weight loss in the 25 to 300°C range and
no significant DTG inflections. A weight loss of =5% occurred at the 300 to 600°C range
with sharp DTG inflections at 350 and 500°C. The inflection at 350°C is likely due to the

dehydroxylation of goethite?, while the 500°C inflection is attributable to the oxidation
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Figure 3. TG and DTG of waste material from two depths in the 488-DAB.

of pyrite to hematite as noted for zone A. Weight loss of =3% was observed in the 600 to
900°C region, but no significant DTG inflections were detected.

Based upon these results, it is likely that materials in the upper part of the basin
are enriched to some extent with carbonate materials, while subsurface zones are
primarily dominated with pyrite and secondary precipitates that resulted from its’
oxidation. Apparently, gypsum precipitation is a surface phenomenon on the basin due to
the relative abundance of carbonates in that zone. In addition, further evidence to support
the presence of Al-hydroxides in zone A was revealed by the thermal analysis. Given that
calcite was detected in zone A by both XRD and TG, the possibility for localized areas

containing enough buffering potential to support a mineral such as basaluminite exists.

However, gypsum and the Al-mineral phase will likely be short-lived on the 488-DAB as

carbonate alkalinity is consumed over time.
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Figure 4. Thin section from zones A and D of the 488-DAB in transmitted and reflected
light under 1.25x and 10.0x magnification.

Thermal analysis and XRD on samples collected from each column after the
leaching procedure indicated that no major changes in mineralogy occurred during the
course of the experiment.

4.2. Particle Size and Thin Section Observations

Bulk samples collected from the basin indicated that zone A and D contained 41.4
and 6.3% course fragments (>2mm diameter), respectively. Texture analysis indicated
that zone A material was composed of 7.1% clay, 14.2% silt and 78.1% sand, while zone
D contained 18% clay, 29.9% silt and 52.1% sand.

Thin sections of starting material for zones A and D are shown in Figure 4. Zone

A contains large clasts of coal and detrital pyrite, shown as brown and brassy material in
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reflected light, respectively, and as black grains in transmitted light. White areas in
transmitted light are pore space, occasional mineral grains, or country rock.

Zone D predominantly contains fine-grained material that cannot be distinguished
at relatively low magnification (12.5x). Under higher magnification (100x), a fine-
grained brassy texture is noted under reflected light that is pervasive throughout the
section. This material is either detrital or authigenic pyrite. At high magnification,
spherical brassy grains are observed and these are most probably authigenic pyrite grains
that formed through the weathering of overlying detrital pyrite grains. The circular cross-
section is indicative of pyrite framboids that commonly occur in marine sediments where
dissolved SO, diffuses into microenvironments that are slightly to strongly reducing. It is

probable that pyrite was oxidized at the surface, either inorganically or through

biomediated reactions, and the liberated SO, was transported with infiltrating waters to
the subsurface where microbial Fe- and sulfate-reduction were active. Analyses are
presently underway to measure 343/%23 ratios in these grains, as relatively low ratios are a
strong indicator of biological sulfate reduction in terrestrial environments.
4.3 Column Eluent Chemistry
4.3.1 Eh and pH

A plot of pH over time is presented in Figure 5 for each experimental run. For
column A1 (coal rubble, continuous flush), pH generally increased from ~1.0 to 6.0 over
the first two weeks and then remained relatively constant thereafter. Similar low pH
values (pH ~ 1 or lower) have been observed in sulfide-rich tailings impoundments and
mine waste sites that have been exposed to atmospheric conditions for long periods of
time?"?. For column A2 (coal rubble, periodic flush), pH generally increased from ~1.0
to ~2.5 within the first 3 days and increased to ~ > 3.0 by the end of the experiment.
Occasional transient events were noted in the lower temperature columns where pH
increased to ~6.0 over a relatively short time interval. For the fly ash residue columns

(D1 and D2), effluent pH was initially higher at ~2.5 and less variable over the course of
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the experiments. At the low temperature, zone D effluent pH rarely exceeded ~3.0-3.5,
regardless of flow regime. However, the higher temperature produced several events
where the pH exceeded ~6.0 in both the oxygen and nitrogen equilibrated columns.

Effluent Eh for the column experiments are presented in Figure 6. For column
Al, effluent Eh was relatively constant at ~450 mv for the first week then decreased
abruptly (< 200 mv) thereafter. For column A2, effluent Eh remained relatively high at
~400-500 mv, except for several transient low Eh spikes (~100 mv) that were coincident
with spikes in pH. For the fly ash residue columns (D1 and D2), effluent Eh remained
relatively higher than that observed from the coal rubble material and exhibited less
fluctuation for the duration of the experiments.

A general inverse correlation was observed between Eh and pH for all four
experimental runs and this relationship is similar to that noted elsewhere for acid mine

drainage®?*

. The relationship between Eh and pH was consistent *=07 8) both within
columns of an experimental run (e.g., among flow regimes for both the coal rubble and
fly ash residues) and among experimental runs (e.g., for different fluid compositions and
temperatures), although slight differences in the Y-intercept were noted which could be
explained by a temperature dependent reaction mechanism (Figure 7). This observation
suggests that the basic chemical mechanism responsible for the production of column
effluent was similar among treatments. In addition, the closeness of the curve fit between
runs may suggest that the driver for pyrite oxidation in these sediments is one of a
physicochemical nature rather than biological. As indicated in the introduction (equations
[2] and [3]), ferric iron may act as an electron acceptor and contribute to acid production
through hydrolysis and/or as a direct mechanism for pyrite oxidation. Further
examination of Figure 7 reveals two dominating clusters of points; one in the pH 2 to 3
range with Eh values between 400 and 500 mv, and another in the pH S to 7 range with
Eh values less than 200 mv. The clusters may represent the transition of iron from the

Fe** valence state (low pH, high Eh) to the Fe** state (circumneutral pH, low Eh). With
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Figure 7. Relationship between pH and Eh in column effluents.

the removal of ferric iron from the system (via reduction or precipitation) acid generaticn
and potential pyrite oxidation is lowered and waters make the transition from acidic to

circumneutral.

4.3.2 Major Element Composition

The discharge of sulfur from column A1 exhibited similar patterns throughout the
experiment, regardless of the temperature or gas phase (Figures 8 — 11). In general, the S
content gradually fell from an initial concentration near 10,000 mg L™ to 100 mg L™ after
one week of flushing. Subsequent effluent S concentrations remained relatively flat
between 100 mg L and 50 mg L Systematic decreases were observed in individual
flushing cycles of runs that experienced periodic wetting and drying conditions and this
was consistent with the pH-Eh data. Peaks and valleys observed in continuously flushed
columns may be indicative of the highly reactive material of the basin, but could also be
attributable to changes in the solution flow path within the column. Sulfur concentrations
from D1 eluents (all runs) followed the same pattern as those described for column Al

except that the initial concentrations were significantly lower in the deeper horizon
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Figure 12. Relationship between sulfur and ferric iron in column effluents.

material (1,000 vs. 10,000 mg L™"). The higher initial S content in the column A1 material
is likely a result of the dissolution of evaporative salts that formed on the basin’s surface.
The episodic wetting and drying in columns A2 and D2 showed the same general
downward trend in S levels with time, however, concentrations tended to exhibit a
“rebound” effect after each successive dry-down period. The magnitude of this “rebound”
differed slightly among columns and between runs, but the general result was similar in
that the S concentrations at the beginning and end of a wetting cycle were lower than that
of the preceding cycle. Even though the pH of these episodic events reached levels above
6.0 toward the end of a cycle, the pH value at the beginning of a cycle rarely exceeded a
level of 3.0 for both columns (A2 and D2) during all runs (Figure 5). As such, mobility of
the elements was highest at the beginning of a cycle.

Initial calcium concentrations in effluents were < 400 mg L™ for all runs. By the
end of week 1, Ca concentrations from zone A columns dropped to levels similar to that
of S and tracked S concentration thereafter. In zone D columns, S approached Ca by the

end of the experiment. The approach was kinetically favored at the higher temperature.
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The strong association between Ca and S suggests that these elemental concentrations
may be controlled by the solubility of a solid or mineral of similar stoichiometry, most
probably gypsum®. The episodic flushing of column D2 yielded a Ca “rebound” effect
similar to that of column A2.

Iron concentrations for column A1 eluents were near 10,000 mg L at the
beginning of each experimental run, and rapidly fell to levels approaching 10 mg L™ by
the end of the first week. Subsequent effluent Fe concentrations remained in the 1 to 10
mg L' range. Although lower in concentration, column Al elution curves for Fe
maintained a similar pattern to that observed for S and Ca for all runs. Column D1
eluents were similar to that of Al for all runs. Once again, the eluent pattern for the
columns experiencing episodic wetting exhibited a “rebound” effect, and mimicked that

3*)vs. sulfur resulted in a positive correlation (* = 0.80)

of sulfur. A plot of ferric iron (Fe
for all four experimental runs (Figure 12). This observation reemphasizes the possibility
that a basic chemical mechanism responsible for the production of column eluent was
similar among all treatments. In addition, the closeness of the curve fit between runs may
suggest that Fe** is the principal oxidizing agent leading to the formation of AD from the
488-DAB material. As such, maintenance of the iron redox couple at a level favoring the
ferrous state (~ < 150 mv) may be an essential factor for the control of pyrite oxidation in
these sediments.

Initial eluent aluminum concentrations for column A1 were less than 300 mg L™
for runs 1 and 2 (Figures 8a and 9a), and greater than 1,000 mg L for runs 3 and 4
(Figures 10a and 11a). The difference between the concentration levels is most likely
attributable to initial pH conditions of the runs. The warmer runs (3 and 4) produced a
more acidic initial solution (~0.3 pH units lower), which likely increased the solubility of
aluminum in those columns. By the end of the first week, A1 columns generally exhibited

an eluent pH > 4.0 (Figure 5) and aluminum concentrations were < 1.0 mg L' Runs 1, 2

and 4 for column A1 maintained an eluent concentration around 1.0 mg L for the

127



duration of the experiment, however, run 3 (N, at 29.4°C) exhibited a further decrease to
~0.05mg L (Figure 10a). We suspect that the lower aluminum concentration in run 3 is
attributable to enhanced microbial metabolism under anaerobic conditions, which
resulted in a higher pH within the column and enhanced Al precipitation.

4.3.3 Trace Element Composition

Examination of the trace element data from ICP analysis revealed four elements
(As, Cu, Se, and Zn) with appreciable quantities in the eluent samples. Graphs depicting
the change in concentration of these elements over the course of the experiment are
presented in Figures 13 —16. The concentration of zinc was relatively stable during the
experiment regardless of the temperature, gas phase, or column material. Zinc
concentrations fluctuated from 1 mg L™ at the beginning of a run to ~ 0.1 mg L™ at the
end. The rebound effect observed with the major elements did occur for Zn in columns
A2 and D2.

Copper concentration in columns Al and D1 follows a similar pattern to that of
zinc during the first week, but concentrations tend to decline further to the 0.01 mg L™
level through the remainder of the experiment. The “rebound” of copper is exhibited in
episodically flushed column A2 when oxygen is present (Figures 13c and 16c¢), however,
the response does not occur in the presence of nitrogen (Figures 14c and 15c¢). In
addition, the final effluent concentration in the A2 column is generally lower when
leached in the more reducing N, environment. Column D2, on the other hand, exhibits
the rebound for all runs but is more expressed at the higher temperature with a general
order of magnitude change in concentration during each solution pulse phase. This
suggest that a slight reduction in the water oxidation state may deter Cu leaching from the
zone A coal rubble material, whereas continual Cu releases from the zone D ash zone are
likely to continue with each successive wet/dry period.

Selenium concentrations in runs 2 through 4 were below detection for columns

Al and D1 after one week of continual leaching (Figures 14a,b-16a,b), while in run 1 (O,
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at 12.7°C) Se concentrations were slightly above detection ~ 0.03 mg L™ in both columns
(Figure 13a,b). Selenium mobility in soils is controlled by pH and redox conditions®, but
the difference between these factors over the four runs was not significant enough to
elicit the observed response. Relationships to other chemical constituents that may
explain the Se behavior in run 1 were not observed. As such, the enhanced Se mobility
was probably due to a mobile Se-colloidal fraction that formed under the specific
environmental conditions of this run. Selenium concentration in the eluents from episodic
flushing (columns A2 and D2) in the presence of N, (Figures 14c,d and 15c,d) did not
differ significantly from that in the saturated columns. Some fluctuation in Se
concentration was observed in the lower temperature run during episodic flushing (Figure
14), however, a “rebound” was not observed for all pulses. The episodically flushed
columns saturated with oxygen at a low temperature exhibited a nearly identical pattern
to those described for the saturated columns in run 1 (Figure 13). Once again,
concentration levels did not fall below ~0.03 mg L, and the rebound between pulses
were minimal during this run. At the higher temperature, the rebound was clearly evident
in the zone A coal rubble column (A2) (Figure 16¢) but missing in the deeper zone D ash
column (D2) (Figure 16d).

Arsenic showed a very similar pattern to that described for selenium. Initial As
concentrations were > 10 mg L and ~ 1 mg L in zones A and D, respectively. In the
saturated columns, As concentrations fell below detection after one week of leaching for
all runs. Arsenic in the episodically flushed columns exhibited a wide array of responses
with changes in environmental conditions. At low temperature, eluted As was below
detection in zone A materials within two weeks of leaching in the presence of O, (Figure
13c), but exhibited a rebound to levels of ~ 0.03 mg L™ with each successive pulse in the
presence of N (Figure 14c). Eluent As concentrations from zone D1 materials at this
temperature were below detection by week four regardless of the gas phase (Figures 13d

and 14d). Conversely, the higher temperature elicited quite a different response. Eluent
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As levels from the zone D2 columns (N; and O,) were below detection by the second
pulse phase of the run (Figures 15d and 16d). In the zone A1 columns under higher
temperature, As concentrations eventually fell below detection during week 2 in the
presence of N, (Figure 15c), but were maintained well above detection with each
successive pulse in the presence of O, (Figure 16c¢).

The response of As and Se in zone A under the presence of the differing gases at

the higher temperature (Figures 15 and 16) is very informative from the standpoint of

evaluating the usefulness of a cover for controlling AD release. For demonstration
purposes, we may assume that these two runs represent the ambient state of the 488-DAB
basin during the summer. Under saturated conditions there would be essentially no
release of these toxic substances from the surface materials once an initial pulse of fluid
has migrated through the subsurface. This initial contaminant pulse is probably
attributable to the dissolution of evaporative salts. Under the changing conditions
associated with intermittent rains at 488-DAB, the pulse is reestablished through each
successive wet/dry period. As such, the waste is a long-term source of potential
contamination via evaporation and precipitation. However, if there were a slight
reduction in the oxidation state of water that comes in contact with the coal rubble
material (e.g. N2 column experiments) Se and As mobility would be inhibited. The use of
a cover, particularly one enriched with organic matter, could generate this response. Not
only would the cover provide a buffer against direct exposure to the oxidizing forces of
water and air, but microbial oxygen demand within the cover could also result in
lowering the oxidizing potential of rainwater prior to contact with the waste material.
4.4 Mineral Solubility

The solution saturation indices (SI) of the column eluents with respect to various
minerals were evaluated using the equilibrium geochemical speciation model
MINTEQA2'". The SI (logQ/K), where Q = ion activity product and K = solubility

product constant, was calculated for each column after one and four weeks of leaching
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(Tables 1 and 2). A SI of zero indicates equilibrium, a negative value undersaturation,
and a positive value supersaturation. At one week of leaching most columns were
undersaturated with respect to the various minerals examined (Table 1). The column Al,
during run 2 (N; at 12.7°C), was the only example of a run containing eluents that were
supersaturated with respect to more than one mineral. The precipitation of basaluminite,
jurbanite (AI(OH)SOs), boehmite (y-AlOOH), diaspore (x-ALOOH), gibbsite (Al(OH);),
goethite, hematite (x-Fe,0;), lepidocrocite, magnetite (Fe;O4), and possibly an
amorphous Al(OH); may have occurred in this column due to high pH (6.0) conditions
that were not achieved by any other run or column at this stage of the experiment.
Hematite was also exhibited at or above saturation in many other columns and runs.
Gypsum, anhydrite (CaSO,) and jurbanite were close to equilibrium in several columns
during various runs.

After four weeks of leaching, column Al exhibited tremendous changes in its SI
for all runs. In this column, most of the eluent solutions were either at equilibrium or
supersaturated with respect to the Al and Fe oxide, hydroxide and hydroxysulfate
minerals modeled (Table 2). This correlates well with the high pH conditions observed
for column A1 at four weeks. With the exception of run 3 (N, at 29.4°C), however, SI’s
for column D1 did not change significantly after four weeks of leaching. Once again, this
correlates well with the pH values at that point in time (Figure 5). The experimental
conditions of run 3 resulted in pH levels that were sustained above 6.0 in column D1,
thus allowing for the potential precipitation of various Fe and Al minerals. The episodic
flushing of columns A2 and D2 resulted in lower pH values and higher element
concentrations at four weeks than that observed in the constantly saturated columns. As
such, the saturation indices did not change greatly through the course of the experiment.
A slight enrichment in SI was observed at four weeks for the iron minerals goethite,

lepidocrocite, magnetite and hematite for column D2 during run 1 (O at 12.7°C).

Saturation indices for pyrite remained highly unsaturated throughout the course of the
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experiment. Given the redox conditions of the experiment (Figure 6), the re-precipitation
of pyrite or formation of metal sulfides was not anticipated and was not considered as a
pathway for metal retention in the columns during the flow-through experiments.

5. CONCLUSIONS

In an effort to evaluate remedial options for an abandoned fly ash/ reject coal
landfill, a laboratory column experiment was conducted to characterize the geochemistry
of the waste material and associated lechate under differing environmental conditions.
Columns were generated using materials from the surface of the landfill, primarily coal
rubble, and those found deeper in the profile, primarily fly ash residue. The coal rubble
zone contained large clasts of coal and detrital pyrite, secondary iron and aluminum
precipitates, and evaporative iron-sulfate and calcium-sulfate salts, which formed from
the weathering of pyrite and dissolution of carbonates. The iron-sulfate salts
(coquimbite) represent a significant source of acidity on the landfill. The fly ash zone
contained authigenic pyrite framboids that were likely formed through the weathering of
the overlying detrital pyrite fragments, and secondary iron precipitates. Because of their
dissimilar compositions, the two materials responded differently to the environmental
conditions of the flow-through experiment.

Initial eluents from the coal rubble zone columns (zone A) were substantially
lower in pH (~ < 1.0) than that from the fly ash columns, regardless of temperature or
flow regime. In continuous flowing (saturated) columns, the pH of fluids from the coal
rubble zone established a dynamic equilibrium at a pH of 6 to 7 within the first week of
the experiment, whereas eluent pH from the fly ash zone fluctuated more erratically from
low to high. Eluent pH also increased consistently within columns that were episodically
flushed; regardless of the temperature or flow regime, although the long-term increase in
pH was significantly lower than that observed in the continuous flow experiments. A
temperature effect on acidity was exhibited in the fly ash columns. At 12.7°C, effluent

chemistry was not affected greatly by gas composition or flow regime, and pH generally
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did not increase above 3.5. However, eluent pH increased both episodically and
periodically at 29.4°C, suggesting that reactive surfaces were partially stabilized and
inorganic salts were effectively mobilized from the system. This effect was more
pronounced in columns that were exposed to nitrogen compared to those exposed to
oxygen.

As with the pH response, initial concentrations of major and minor elements were
substantially higher in the coal rubble effluents than the fly ash zone. However,
concentration ranges were similar between the two zones once the initial flush had
occurred. Elemental concentration patterns for eluents from the continuous flowing
experiments were similar between columns from the two zones regardless of gas phase or
temperature. In the episodically flushed columns, significant differences with respect to
the eluent elemental concentrations were observed under the varying environmental
conditions. These columns, which most closely resemble actual conditions on the basin,
showed the dynamic nature of materials in response to alterations in saturation and
oxidation state. In general, the column materials responded to the periodic wetting and
drying cycles with great swings in elemental concentrations. The beginning of a cycle
would generally correspond with high element concentrations in the eluents, followed by

a decline through the wetting period, and a subsequent rebound to higher levels following

a dry-down period. This is most likely a result of the deposition and resolubilization of
reactive salts during drying and wetting cycles, respectively. The magnitude of this swing
was influenced by both temperature and gas phase. The concentration gradient from
beginning to end of a cycle was greatest at the higher temperatures for elements directly
associated with pyrite oxidation (i.e. Fe and S), while species that may be influenced by
subtle changes in redox (i.e. As and Se) responded more clearly to differences with
respect to the gaseous composition.

These results suggest that the low pH fluids and high elemental concentrations

emanating from materials in the 488-DAB are closely associated with environmental
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factors that control dissolved and/or gaseous oxygen and to periodic wetting and drying
events. As such, a dry cover should reduce the production of acid lechate over time if it is
designed to retard or eliminate fluid flow and oxygen transport to the subsurface. In
addition, the use of a cover to minimize the occurrence of evaporative salts on the
landfills’ surface may significantly reduce the contaminant load given that they are a
major contributor of acidity in this system.
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SELENIUM CONTENT AND OXIDATION STATES
IN FLY ASHES FROM WESTERN U.S. COALS

Shas V. Mattigod and Thomas R. Quinn

Pacific Northwest National Laboratory
Richiand, WA 99352, USA.

ABSTRACT

A selective extraction scheme was developed for the determination of the oxidation states
of Se species in coal ashes. As compared to HF dissolution, extractions with 70% HC10, mobilized
90 to 100% of all compound and redox forms of Se from four of the five fly ashes. Extractions with 16M
HNO; did not mobilize all forms of Se as effectively as perchloric acid. Both oxidized forms of Se (IV
and VI) were completely mobilized by 12M HCl extraction. Deionized-distilled water was not an
effective extractant for mobilizing all compound forms of Se(IV) from fly ashes. Extraction data (70%
HCI0,, 16M HNO;, 12M HCI, DI water) indicated that the solid:solution ratio is a critical factor in Se
extractability from fly ashes. Maximum extractions in all cases were obtained only with very high
(1:500) solid:solution ratios. Extraction times from 1.5 to 25 hours did not significantly change Se
extractability with any of the extractants except with 12M HCI, which required a minimum reaction time
of 48 hours to attain maximum Se extractability. Reaction times shorter than the critical time and low
solid:solution ratios significantly affected Se extractability from these fly ashes. Measurements of Se
content and redox state in particle size and density fractions five western United States coal ashes
indicated that typically, the Se content increased with decreasing particle size.. However, no consistent
trend in Se concentration between the light and heavy density fractions of <2.7-pm size fraction was
observed. Selenium redox state data indicated that only Se(0) and Se(IV) forms were present in these five
coal ashes. The presence of Se(IV) is significant since it is much more easily mobilized than the
elemental form. Examination of fly ashes by the proposed scheme to determine Se redox species could
permit better estimation of the Se content of plants grown on fly ash amended soils.

INTRODUCTION

In the past two decades, coal production has doubled in the United States. In 1996, 1.06 billion
tons of coal was produced' with electric utilities consuming approximately 55% of the production.
Currently, coal combustion by these utilities annually results in the collection of about 63 million tons of
ash residues’. The need to dispose of such large quantities of ash and questions of environmental effects
prompted extensive research to determine alternative, beneficial uses for this material. Research into the
chemical and physical properties of fly ash, which have been reviewed extensively*” indicated that it
might be suitable for use as an agricultural soil amendment. Some of the early studies showed that fly
ashes could supply essential elements to crop species®’, favorably affect some soil physical properties'?,
and also function as a liming material”®. However, trace elements, such as Se, were also identified as
potentially limiting the use of fly ash as a soil amendment™*'*,

Selenium, although essential to animal and possibly human nutrition is toxic to animals at
relatively low concentrations. The range of Se concentrations between essential (>0.04 ppm'®) and toxic
(>3-5 ppm'®) levels in animal forage is narrow and leaves little room for error. Potentially toxic levels of
Se have been found in crop species grown on fly ash amended soils™?'. In one study, Furr et al."” found
that only one of four fly ashes with similar total Se content (16 ppm) yielded crops containing potentially
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toxic levels of Se. The other ashes yielded Se levels only one third as high, which did not represent a
significant hazard. Mbagwu'® determined that fly ashes could effectively serve as a Se supplement to
soils, which produce Se deficient forage. Since Se deficiency has been recognized as a significant factor
in livestock losses in large areas of the United States'> '®, identification of fly ash characteristics
responsible for these observed plant uptake differences would be beneficial.

Earlier work on Se toxicity in the Great Plains would seem to explain some of the observed
differences. Workers identified Se speciation as being of critical importance in plant uptake'®?. In a two-
year field experiment, total Se uptake by mustard, as a percentage of added Se was determined to be 30%
from K,SeO,, 4% from K,SeO;, and 0.10% from elemental Se?’. These observations, which confirm the
work of other researchers, are a result of the differing solubilities of the Se species. Selenates are very
soluble while selenites are only sparingly soluble and their dissolved concentrations are further limited by
adsorption on to hydrous oxide surfaces. Elemental Se is relatively insoluble. Based on extensive
observations of Se uptake by terrestrial plants growing on a coal fly ash landfill, a number of investigators
concluded that selenite and selenate species were taken up by plants by passive and active modes,
respectively, whereas, elemental selenium was unavailable to plants until oxidized to more soluble
forms??. These data clearly established that oxidation state of Se species in fly ashes would influence
the mobilization of this element upon disposal of these ashes.

A selective extraction method that provides the oxidation state of Se species in fly ashes would be
beneficial in several respects. The Se uptake of plant species grown on fly ash amended soils could be
examined with respect to the oxidation states of Se originally present in fly ashes and its subsequent
oxidation and mobilization. This could prove valuable in better understanding the behavior of Se in fly
ash amended soils. In addition, the potential hazards of Se mobilization from fly ash disposal sites could
be more readily evaluated.

Selenium in fly ashes can potentially exist in 0, IV, and VI oxidation states. Selenides that may
exist in parent coals are oxidized during combustion (similar to sulfide oxidation) and, therefore, will not
be found in fly ashes. In an earlier study, Andren et al.” reported the presence of only elemental Se and
Se(IV) in a single sample of fly ash. However, as procedures for extraction of Se were not reported,
methods used in this study to determine the oxidation state of Se species present in fly ashes are
somewhat in doubt.

Recently, several methods have been proposed for Se extraction from and speciation in soils
water, and sodium hydroxide leachates from fly ashes®®***, However, Martens and Suarez™' pointed out
failure to use of standard reference compounds and spikes with known concentrations and oxidation states
would limit the utility of schemes designed to determine Se speciation. Additionally, many of the studies
were focused on determining Se speciation in only water, seawater, and hydroxide leachable fractions.
Such extractions do not provide data on speciation of all Se (not an arbitrarily extractable fraction in
whole ash) originally present whole flv ashes. Also, it has been clearly established that factors such as
solid:solution ratio and length of time of extraction significantly affect extractions of trace elements from
solids such as soils”®. A review of published literature® listed wide variations in fractions of water and
acid extractable Se in various fly ashes thus confirming the effects of factors such as solid:solution ratio
and length of time of extraction. These data pointed out that a significant need exists to accurately assess
the effects of the various types and strengths of extractants, extraction times, and solid:solution ratios on
Se extractability from fly ashes.

At present, there are no systematic studies of speciation of total Se in fly ashes that includes
evaluation of factors such as the extractant type, solid:solution ratio, and extraction times that includes
appropriate use of standard reference compounds and Se spikes with known oxidation states. Therefore,
our objectives were to 1) develop a scheme for determining speciation of total Se in fly ashes that
included an evaluation of effectiveness of various extractants, effect of solid: solution ratio, and the length
of extraction time on extractability of various Se redox species from fly ashes, and to 2) determine the Se
content of size and density fractions and also Se speciation in of five western United States coal ashes.

27-32
>

MATERIALS AND METHODS
Fly Ash Samples

All fly ash samples were collected from the electrostatic precipitators of power generating stations.
The fly ashes SBOI, SB02, and SB03 were derived from combustion of subbituminous coals, and the fly
ashes BO1 and B02 resulted from burning of bituminous coals. After collection, the fly ashes were stored
in glass jars under nitrogen to avoid oxidation of reduced Se species”’.
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Size and Density Fractionation

The ash samples were initially dry sieved to separate the <45-um size fraction from the coarser
material. A Bahco microclassifier was then used to obtain <2.7-um, 2.7-8-um, 8-15-ptm, and 15-45um
size fractions by means of air elutriation. Only fractions <15um were used in these studies. In addition,
the <2.7um size fraction was subjected to sink-float separation in a 2.1-Mg m™ solution. The solution
was prepared from a mixture of 20% polyvinylpyrolidone (PVP) in absolute ethanol (EtOH), and 1,1,2,2,-
tetrabromoethane (TBE) (Malinkrodt)*’. A ratio of 39% v/v of PVP-EtOH and 61% TBE yielded the
desired density. The PVP is included to prevent flocculation of ash particles. Approximately 150 mg of
ash was placed on top of 20 ml of the density solution in a 40-ml glass centrifuge tube. After dispersing
the ash in the solution by means of a vortex mixer, the tubes were centrifuged for about 4 hours at 750
rpm in an IEC Model K Centrifuge. After determining that separation had occurred, the float fraction and
much of the solution were removed by means of a suction device. The float and the sink fractions were
then centrifuge washed 5 times with absolute ethanol to remove traces of TBE and PVP. Excess ethanol
was then removed from the samples in a vacuum desiccator. The total Se content was determined by HF
decomposition®, followed by Hydride Generation Atomic Absorption Spectroscopy (HGAA).

Effect of Time and Solid:Solution Ratio on Se Extraction

The effectiveness of different extractants used at different solid:solution ratios and leaching times on
Se extractability was evaluated using the SB01 fly ash. The oxidation states of Se were determined by
means of selective chemical extractions. Previous studies of soils have indicated that various redox
species of Se are selectively dissolved in various acids and water’®*" . It has been suggested that acids
such as perchloric, nitric, and hydrofluoric will solubilize Se in the 0, IV, and VI redox states ****. Based
on these studies, several extractants were tested to ascertain the degree of selectivity for various redox
species of Se that may be present in fly ash samples. The extractants tested were 70% HC10,, 16M
HNOs, aqua regia + 48% HF, 12M HCI, distilled, and deionized (DO) water. All extractions were
conducted in triplicate. The procedures for each of these was as follows:

1) Total Selenium

A. HC10, or HNO; Extraction: Fly ash sample and 70% HC10, or 16M HNO; were placed in 50-ml
screw cap Erlenmeyer flasks to obtain solid:solution ratio ranging from 1:4 to 1:500. After shaking for
1.5 - 25 hours on a Burrell Model 75 wrist action shaker, the solutions were analyzed for Se by means of
HGAA.

B. HF Decomposition®*’: 200 mg of coal ash was mixed with 1 ml of aqua regia (18/82 concentrated
HNO3 and concentrated HCI v/v) before 6 ml of concentrated HF was added to Teflon-lined bombs (Parr
4745 general purpose bomb, Parr Instrument Co., Moline, I11.). The bombs were heated at 105°C for 1.5
hours. Upon cooling to ambient temperature, the bomb contents were washed with water into 5.6 g H;BO;
in a polypropylene beaker. After dilution to approximately 80 ml, the samples were heated on a steam
bath until the H;BO; dissolved. The sample was cooled and transferred to a 100-ml volumetric flask.
After the sample was made to volume with distilled water, the samples were filtered and stored in plastic
containers. The Se content was then determined by means of HGAA.

2) Selenium (IV + VI)

HCI Extraction: Coal Ash and 12M HCI were placed in 50-ml or 100-ml screw cap Erlenmeyer flasks to
obtain solid:solution ratios of 1:4 to 1:500. After shaking for 1.5 - 65 hours on a Burrell Model 75 wrist
action shaker, the solutions were analyzed for Se by means of HGAA. As concentrated HCI reduces
Se(VI) to Se(IV), this analysis cannot differentiate between these oxidation states*,

3) Selenium (V1)

Distilled-deionized water extraction: Fly ash and DO water were placed in 50-ml screw cap Erlenmeyer
flasks to obtain solid:solution ratios of 1:4 to 1:500. The samples were then shaken on a Burrell Model
75 wrist action shaker for time periods of 1.5 - 25 hours. The samples were then analyzed for Se(IV) and
Se(VI) by means of HGAA. This was accomplished by analyzing the solutions before and after the
reduction of Se(VI) to Se(IV). Since the HGAA procedure is specific for Se(IV), the difference between
the Se concentration before and after reduction of Se(VI) with HCI (12M) would yield the quantity of
Se(V]) present in the solutions.
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Spike Recovery Experiments to Evaluate Extractant Specificity

The specificity of these procedures was tested through known additions (matrix spikes) of
approximately 100 ppm of various compounds containing known oxidation states of Se to one of the
(SB03) fly ashes. The reason for this choice was that this fly ash contained very low total Se
concentrations (<1 ppm) and thus would not affect the extractability of compounds added as matrix
spikes. The gray allotrope of elemental Se (Baker) was used to represent Se(0). Sodium selenate
(Na,SeQ,; Alfa) was used as a source of Se(VI). The Se(IV) compounds used were sodium selenite
(Na,Se0s; Alfa) and a synthetic iron oxide-selenite compound. The iron oxide-selenite compound was
prepared by adding selenous acid (0.1226 g SeO, in 40 ml distilled water) to 10 g Fe,O; (Mallinkrodt).
This mixture was centrifuge washed 5 times with distilled water to remove any excess Se. It was then
dried in a vacuum oven at 60°C. Selenium content of this compound was found to be 730 ppm Se by HF
decomposition method. These Se amended samples were then analyzed by the extraction procedures so
that the accuracy of these procedures could be known with greater certainty.

The HGAA procedure used to determine the Se content of the samples utilized a MHS 10 Hydride
Generator (Perkin-Elmer) coupled to a Perkin-Elmer Model 5000 Atomic Absorption Spectrometer which.
was set at the 196.0 nm wavelength for Se.

The MHS 10 contains a reservoir filled with 3% sodium borohydride (Aldrich) and 1% sodium
hydroxide (Mallinkrodt) in water. Nitrogen gas (38 psi) was used to transfer several milliliters of this
solution to the sample holder containing 0.1 - 4.0 ml of sample plus 10 ml of 4N HC1. The Se(IV)
present in the sample was then reduced to H,Se and swept from the sample holder by the N, gas into a
quartz cell in the flame of the Perkin-Elmer 5000. The H,Se decomposes in the flame allowing the Se
absorption peak to be recorded on a strip chart recorder. The Se concentrations of the samples were then
determined by comparison of the sample peak heights to a standard curve.

Selenium Concentrations in Size and Density Fractions and Oxidation States of Selenium in Bulk
Fly Ashes.

The total Se concentrations in the bulk ashes, the size fractions, size-density fractions, and the NBS 1633a
reference fly ash sample were determined by the HF dissolution method®®®. The redox states of Se in all
bulk fly ash samples were determined using the optimum extraction scheme that was developed in this
study.

RESULTS AND DISCUSSION

Particle size and Density Fractions

The total Se concentrations in the bulk ashes, the size fractions, size-density fractions, and the NBS
1633a reference fly ash sample determined by the HF dissolution method are presented in Table 1. The
value of 10.8 * 0.6 ppm found for the NBS 1633a compares favorably with the reported value of 10.3 +
0.6 ppm. Nadkarni*' reported similar accuracy when analyzing NBS reference materials by HGAA.

Table 1. Total Selenium Content (pg/g) of Size and Density Fractions for
' Five Western U. S. Fly Ashes Determined by HF Dissolution
Size Fraction um

Bulk* 8-15 2.7-8 <2.7 <2.7
Density (Mg m™)

Sample >2.1 <2.1

SBO1 21614 129205 247+16 346+22 363%36 623+6.]

SB02 52+05 43+03 85+04 129+12 147+20 9310

SB03 09+02 05+£01 1202 1.1£02 13+02 1102

BO01 94+04 151+12 19.1+13 197+1.0 181+13 284+24

B02 79405 56+06 17.1+18 236+15 285+22 153+08
*NBS 1633a fly ash standard analyzed at 10.8 + 0.6 pg/g as compared to a reported value
of 10.3 £ 0.6 ng/g.
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These results demonstrated a particle-size dependence of Se in these fly ashes. Studies by a number
of investigators have firmly established the size dependence concentration characteristic of Se in fly
ashes”™** Volatilization of Se with subsequent condensation on particle surfaces is an explanation for
this observed behavior. With higher surface area per unit mass, the finer particles achieve significantly
higher Se concentrations. Except for SB03, which contained the lowest concentration of Se, each of the
ashes examined in this study exhibited greater Se concentrations in the <2.7 um fraction than in the bulk
ash. In another detailed study of four size and density fractionated fly ashes Mattigod et al.** noted
similar particle-size dependence of Se concentration.
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Figure 1. The Effect of Solid to Solution Ratio and Time on Selenium Extractability
from SBO1 Fly Ash Using 70% Perchloric and 16M Nitric Acids.

If particle size is the only criteria in Se concentration on coal ash particulates, one would then expect
concentration to be independent of particle density and to observe similar concentrations of Se in the >2.1
Mg m-3 and the <2.1 Mg m-3 density fractions of the <2.7 um size fraction. However, these data clearly
demonstrated that in four of the five ashes studied, significant Se concentration differences existed
between two density fractions of the same particle size fraction of (Table 1). The SB01 and BO1 ashes
have the greatest Se concentrations in the <2.1-Mg m-3 fraction while the SB02 and B02 ashes have
higher Se concentrations in the >2.1 Mg m” fraction. These differences may be related to the differences
in volatile and nonvolatile fractions of Se that may be present in the source coals or to differences in
combustion techniques. It is known that coals contain both organic and inorganic Se sources that have
significantly different volatility during coal combustion®'. These differences would need to be examined
further to reach definite conclusions about Se distribution among density fractions of fly ashes.

Comparison of Extraction Methods

Selenium extractability from bulk SBO1 fly ash using various extractants as a function of different
solid:solution ratios and leaching times are shown in Figures 1 - 3. In all cases, the extractability of Se
was expressed as a percentage of total Se in bulk fly ash as measured by the HF decomposition method.

The data indicated (Figure 1) that extraction times ranging from 1.5 - 25 hours did not change Se
extractability with either acids at all solid:solution ratio. In all cases 70% HCIO, extracted significantly
higher proportion of total Se than 16M HNO;. The results of these extractions show that the
solid:solution ratio significantly affects Se extractability. At low solid:solution ratio (1:4) both acids
extracted only ~50 — 55% as compared to ~87 — 97% Se extraction at 1:500 solid to solution ratio. These
data show that the solid:solution ratio is a major factor in Se extractability from fly ash. Also, these tests
demonstrated that 70% HC10, acid extractions conducted for 1.5 to 25 hours at 1:500 solid:solution ratio
provides an excellent indication of total Se (as determined by HF method) in fly ashes.

The 12M HCl extraction (Figure 2) did not yield constant Se extractability until 48 hours of reaction.
As in the other extractions, the 1:500 solid:solution ratio yielded the high percentage of the added Se, but
there was no significant difference between the 1:200 and 1:500 solid:solution ratios. Extending the
period of extraction beyond 48 hours did not significantly increase the concentration of Se in solution. It
is clear from these data that 12M HCl extractions conducted at much lower solid:solution ratios, and for
shorter time periods resulted in significantly lower Se extractability. Thus, a 1:500 solid:solution ratio
with a reaction time of 48 hours appeared essential for maximum Se extraction by 12M HC1.
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Figure 2. The Effect of Solid to Solution Ratio and Time on

Selenium Extractability from SBO1 Fly Ash Using 12 M HCI
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Figure 3. The Effect of Solid to Solution Ratio and Time on Selenium
Extractability from SB01 Fly Ash Using Deionized Distilled Water.

The distilled-deionized water exiraction, like that of HC10, and HNO; extractions yielded constant Se
extractability for reaction times ranging from 1.5 to 25 hours (Figure 3). A 1:500 solid- solution ratio
yielded the best results, but, as in the case of HC1, the results were not significantly different than a 1:200
solid:solution ratio. At a 1:4 solid:solution ratio, however, Se(IV) was completely oxidized to Se(VI)
during a period of approximately one week (data not shown). The pH values of the 1:4 extracts were
between 11.4 and 12.3 and favor the formation of Se(VI) species under oxidizing conditions®?. The pH of
the 1:500 solid:solution ratio mixtures was approximately 10.0. While Se(VI) species are still favored
under oxidizing conditions at pH 10, These results showed that distilled-deionized water extraction was
also significantly influenced by the solid:solution ratio.

All these extraction data (70% HClO,, 16M HNO;, 12M HCI, DI water) indicated that
solid:solution ratio is an extremely important factor in Se extractability from fly ashes. Maximum
extractions in all cases were obtained with the highest (1:500) solid:solution ratios. Additionally, DI
water extractions of alkaline fly ashes at low solid:solution ratios (1:4) promoted Se(IV) oxidation. Also,
for all extractants except 12M HCI, reaction times between 1.5 - 25 hours did not significantly change Se
extractability. Extractions with 12M HCI indicated that a minimum of 48 hours of reaction time was
required to maximize Se extractability.

These results suggested that Se extractability for fly ashes reported in literature that were
generated at unoptimized (especially low) solid:solution ratios using extractants such as 70% HCIO,, 16M
HNOs, 12M HCI, and DI water are probably low estimates and do not represent potentially maximum Se
extractability.

Extractant Specificity

The recovery of Se compounds added to SBO3 fly ash is presented in Table 2. It can be seen that
essentially complete recovery of elemental Se is attained from the 70% HC10, extraction. The 70%
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HC10, extraction also yielded complete recovery of added Se(IV) and Se(VI) species. Therefore, 70%
HC10, appears to be a suitable extractant for the determination of total Se in the coal ashes tested in this
study. However, the validity of 70% HC10, extraction for determining total Se in acidic fly ashes and
other coal combustion byproducts such as bottom ash need to be established by comparing the results
with total Se values obtained with HF decomposition method.

The 12M HCl extraction did not solubilize detectable quantities of elemental Se (Table 2). It was,
however, able to yield essentially complete recovery of added Se(IV) and Se(VI) compounds. Thus, the
12M HCl extraction did provide the sum of the Se(IV) and Se(VI) species present in this ash. For these
fly ashes, the difference in values between the HF dissolution (or 70% HC10, extraction) and the 12M
HCI extraction yields a measure of the elemental Se present in the ash.

Table 2. Extractant Recovery Efficiency (%) of Selenium Compounds added to SB03 Fly Ash

Se Species Added” Extractant®

70% HCIO, 12M HC1 DD water
Se(0) Gray Allotrope 99.4+2.8 BD BD
Se(IV) Na,SeO, 1002+23 988+3.1 99.1+23
Se(IV) Fe,0; + SeO> Complex** 983129 1002+34 819130
Se(VI) Na,SeO, 99.1+25 987+£32 100.1+338

BD: Below Detection

100 pg/g. ** Fe,0; + Se0;” Complex contained 430 pg/g of Se.

PAll extractions were conducted at 1:500 solid to solution ratio. Perchloric acid and
water extractions were conducted for 24 hours, and HCL extractions were conducted for
48 hours.

The distilled-deionized water extraction was able to solubilize all the added sodium selenate and
sodium selenite, but only 81.9% of the 730 ppm Se from the iron-selenium (IV) compound. Thus water
cannot perform the function of the 12M HCl in obtaining the sum of the selenate and selenite species.
Because Se(VI) compounds are very soluble in water, it is still possible to quantify Se(VI) and Se(IV)
species present in these ashes. The HGAA method determines only Se(IV) species. Therefore, analysis
of water extracts before and after reduction of Se(VI) to Se(IV) [reduction is accomplished by HCI*]
permits quantification of Se(VI). The Se(IV) value is obtained by subtracting the Se(VI) value from the
combined Se(IV) and Se(V1) value obtained in the HCl extraction.

Oxidation States of Selenium in Fly Ashes.

Water extracts analyzed after reduction with HCI showed that there were no measurable
concentrations of Se(VI) in these ash samples (Table 3). Therefore, Se in these ash samples existed
mainly in two oxidation states [Se(0) and Se (IV)]. These data also revealed that between ~0 — 50% of the
Se(IV) present was not extracted by DD water. This result suggests that significant fractions of Se(IV) in
these ashes may be similar to the water inextractable phase of Fe,O; + SeO,” complex (Table 2).

Table 3. Selenium Redox Forms Extracted from Five Western U. S. Fly Ashes (pg/g)
Total: Se(0)+Se(IV)* Total Se(IV)"° Water soluble Se(IV)®
Fly Ash Bulk <2.7 um Bulk <2.7 um Bulk <2.7 ym
SBO1 216+14 346122 147+17 304113 126+0.8 155107
SB02 52105 129+12 43103 124107 28102 91104

SB03 09+02 1.1£02 02+01 02+0. 02+0.1 02+0.1
B01 94+04 197+1.0 83x05 16008 34103 7.8+03
B02 79+05 236+15 68104 193+0.8 48+03 13.7+04

*Determined by HF dissolution
©12M HCl extraction (48 hour extraction at 1:500 Solid to solution ratio).
‘DD water extraction (24 hour extraction at 1:500 Solid to solution ratio)

The percentages of Se(0) and Se(IV) in the bulk and the <2.7-um fractions of the ashes is shown in
Figures 4 and 5. These figures show that except in fly ash SB03, Se in all other ashes exists principally in
the oxidized form as Se(IV). The presence of significantly different levels of Se(IV) in fly ashes helps to
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explain the results of other investigators who found that ashes with similar total Se contents yielded
53,54

significantly different Se uptake by cabbage™".

Elemental Se and Se(IV) accounted for essentially all Se except in the case of the SBO3 ash. This
ash had a low Se content relative to the other ashes and appeared to contain Se in some unextractable
phase. Therefore, when determining Se oxidation states in coal ashes, it is recommended that both the
HC10, extraction and the HF decomposition be run on the samples. A comparison of these results would
indicate if significant levels of Se were not extractable by HC10,.

The presence of Se(0) and Se(IV) oxidation states in these fly ashes does not provide answers for the
actual Se species present. From the results obtained, however, some inferences may be made. The
elemental Se would exist as the gray allotrope as this form is the most stable at temperatures over 60°C.
The Se(0) could have been formed from either the oxidation of selenides or the reduction of Se(IV)
species present in the coal during combustion. The reduction of Se(IV) to Se(0) in the presence of SO,
was used by Andren et al.”® as a possible explanation for Se(0) being the only Se oxidation state found in
their ash sample. However, it is apparent that this reduction mode is not a dominant factor in the coal fly
ashes examined in this work. )

The Se(IV) present could be in the form of a number of compounds. Lakin'® suggested that SeO,
was a possible Se compound in fly ashes. The results obtained in this work were not inconsistent with
Se0, being a significant fraction of the total Se(IV) present in the ashes. However, the lack of total water
solubility of the entire Se(IV) fraction could indicate Se(IV) species with reduced solubility (Table 3).
Iron oxide-selenite species could account for the observed lack of complete water solubility (Table 2).
The presence of less soluble species is important since they serve to reduce the availability of Se to plant
species and the environment in general. Further work would be necessary to elucidate the nature of these
less soluble Se(IV) species that exist in fly ashes.
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Figure 4. Redox Species Distribution in Bulk Fly Ashes.
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Figure 5. Redox Species Distribution in <2.7 um Particle Size Fraction of Fly Ashes.

SUMMARY AND CONCLUSIONS

We developed a scheme for determining Se speciation in fly ashes by evaluating the effects of
factors such as specificity various extractants, varying solid to solution ratio and reaction time on
extractability of Se redox species. We also determined the Se content of bulk, size and density fractions,
and also Se speciation in fly ashes derived from three subbituminous and two bituminous coals from the
Western United States.
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Based on extractions of a fly ash sample (B02) spiked with various compounds that contained
various redox forms of Se, extractions with 70% HC10, completely mobilized all compound and redox
forms of Se. However, this extractant mobilized 90 - 100% of all Se from only four of the five fly ashes.
Extractions with 16M HNO; did not mobilize all forms of Se as effectively as perchloric acid. Both
oxidized forms of Se (IV and VI) were completely mobilized by 12M HCl extraction. Deionized-distilled
water was not an effective extractant for mobilizing all compound forms of Se(IV) from fly ashes.

Extraction data (70% HCIQO,, 16M HNO;, 12M HCI, DI water) indicated that solid:solution ratio is a
critical factor in Se extractability from fly ashes. Maximum extractions in all cases were obtained with
the highest (1:500) solid:solution ratios. Extractions of these alkaline fly ashes with deionized-distilled
water at low solid:solution ratios (1:4) promoted Se(IV) oxidation. Also, for all extractants except 12M
HCl, reaction times between 1.5 to 25 hours did not significantly change Se extractability. However, a
minimum reaction time of 48 hours was needed to attain maximum Se extractability with 12M HCIL.
Reactions times shorter than the critical time and low solid:solution ratios significantly affected Se
extractability from these fly ashes.

The five western United States coal ashes were examined for Se content and Se oxidation states.
The Se content varied inversely with particle size. Selenium concentrations in density fractions of the
<2.7-pm size fraction did not show any consistent trends. Further work is necessary to explain the
observed Se concentration characteristics in these density fractions.

Only Se(0) and Se(IV) were shown to be present in these five fly ashes. Se(VI) was not detected in
water-soluble fractions of any of these ashes. The presence of Se(IV) is significant since it is much more
easily mobilized than the elemental form. In addition, Se(IV) may be oxidized to Se(VI) at high pH
values. The presence of these Se(IV) and Se(VI) species has been shown to be important to plant uptake
of Se. Examination of fly ashes by the method presented could permit better estimation of the Se content
of plants grown on fly ash amended soils.
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RARE EARTH ELEMENTS IN FLY ASHES AS
POTENTIAL INDICATORS OF ANTHROPOGENIC
SOIL CONTAMINATION
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ABSTRACT

Studies of rare earth element (REE) content of disposed fly ashes and their potential mobility
were neglected for decades because these elements were believed to be environmentally benign. A
number of recent studies have now shown that REE may pose a long-term risk to the biosphere.
Therefore, there is a critical need to study the REE concentrations in fly ash and their potential
mobilization and dispersal upon disposal in the environment. We analyzed the REE content of bulk, size
fractionated, and density separated fractions of three fly ash samples derived from combustion of sub
bituminous coals from the western United States and found that the concentrations of these elements in
bulk ashes were within the range typical of fly ashes derived from coals from the North American
continent. The concentrations of light rare earth elements (LREE) such as La, Ce, and Nd, however,
tended towards the higher end of the concentration range whereas, the concentrations of middle rare earth
elements (MREE) (Sm and Eu) and heavy rare earth elements (HREE) (Lu) were closer to the lower end
of the observed range for North American fly ashes. The concentrations of REE did not show any
significant enrichment with decreasing particle size, this is typical of nonvolatile lithophilic element
behavior during the combustion process. The lithophilic nature of REE was also confirmed by their
concentrations in heavy density fractions of these fly ashes being on average about two times more
enriched than the concentrations in the light density fractions. Shale normalized average of REE
concentrations of fly ashes and coals revealed significant positive anomalies for Eu and Dy. Because of
these distinctive positive anomalies of Eu and Dy, we believe that fly ash contamination of soils can be
fingerprinted and distinguished from other sources of anthropogenic REE inputs in to the environment.

INTRODUCTION

Environmental aspects of coal resource utilization have come under increasing scrutiny in recent
years. This is in part due to the recognition that coal combustion represents a large-scale mobilization of
all naturally occurring elements in a magnitude that is comparable to the rates of mobilization and
transport that occur as part of natural geochemical cycling of elements."? Fly ash from coal combustion
contains significant quantities of trace elements that may be potentially beneficial or toxic to biological
systems. As a result, extensive investigations have been conducted to examine elemental associations in
coal fly ash so that the environmental effects could be assessed.

Fly ash utilization as a soil amendment has also generated some concern. Among the trace
elements in fly ash, As, B, Cd, Hg, Mo, Pb, and Se are considered to be the elements of greatest concern,
whereas, V, Cr, Ni, Cu, and Zn are considered to be elements of moderate concern.* Although
previously the REE in fly ashes were considered to be on no particular concern, a number of recent
studies have indicated that these elements may pose a long-term risk to the biosphere.**”%%!° Also, REE
concentrations have been used as indicators of anthropogenic contamination in soils, sediments, and
water.'"'>'*!"* Because large volumes of fly ash are disposed off in the environment, there is a significant
need to understand their REE composition of fly ashes and assess their effects on the biosphere.
Therefore, measuring REE content of fly ash can help to critically assess both the beneficial and harmful
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effects on biota, as well as, assessing the applicability of the REE content as an indicator of
anthropogenic contamination. Although a number of investigators have measured the concentrations of
REE in bulk fly ashes,*'¢'"81%22 oy 3 few studies have examined particle size™>* and the density
dependence of REE concentrations.”” Therefore, the objective of our study was to examine the elemental
characteristics of three fly ashes including the REE contents within fractions of differing size and density.
We assessed the applicability of REE concentration anomalies as potential environmental tracers. Such
characterization would add to the current body of available information on REE contents of fly ashes and
provide an improved basis for assessing its potential environmental effects.

MATERIALS AND METHODS

Fly ash samples (SBO1, SB02, and SB03) were obtained from the electrostatic precipitators of
three power stations that used sub bituminous coals from the western United States. The fly ashes were
stored under nitrogen in glass jars to avoid hydration of species such as anhydrite and oxides of Ca and
Mg and oxidation of reduced trace element species such as Se (0) and Se (IV). The ash samples were
initially dry sieved to separate the <45 pum fraction from the coarser material. A Bahco microclassifier
was then used to obtain <2.7 pm, 2.7-8 um, 8-15 um size fractions by means of air elutriation.

To determine the variation of elemental concentrations with density, the <2.7 um size fraction
was subjected to sink-float separation in a 2.1 g/cm’ solution. The solution was prepared from a mixture
of 20% polyvinylpyrrolidone (PVP) (Eastman 15420) in absolute ethanol and 1, 1, 2, 2-
Tetrabromoethane (TBE) (Mallinckrodt).** A ratio of 39% v/v of PVP-EtOH and 61% TBE yielded the
desired density. The PVP was included to prevent flocculation of fly ash particles. Approximately 150
mg of ash was placed on top of 20 ml of density solution in a 40 ml glass centrifuge tube. After
dispersing the ash in the solution by means of a vortex mixer, the tubes were centrifuged for about four
hours at 750 rpm in an IEC Model K centrifuge. After determining that separation had occurred, the float
fraction and much of the solution were removed by means of a suction device. The float and the sink
fractions were then centrifuge-washed five times with absolute ethanol to remove traces of TBE. Excess
ethanol was then removed from the samples in a vacuum desiccator.

The bulk ashes and the size and density fractions were then analyzed by means of instrumental
neutron activation analysis (INAA), inductively coupled argon plasma (ICAP), and hydride generation
atomic absorption spectroscopy (HGAA). For INAA, samples (200-700mg) were weighed and sealed into
0.5 dram polyvials (Olympic Plastics). The fly ash samples were subjected to two irradiations in the
thermal neutron flux of the UC Irvine TRIGA reactor. The first irradiation (30 sec @ 1x10' neutron cm?
sec”') was followed a minute later by a two minute count on an 18% efficiency Ge-Li detector. This
yielded data for Al and V. The remaining elements were determined after a five-hour irradiation (1.5
x10" neutron cm™ sec"). After a two-day decay interval, K, Na, As, and La were determined while the
remaining elements (Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, Lu, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Th, Zn, and Zr) were
determined after a 14 day decay period. Gamma-ray spectrometry was performed by means of an 18%
efficiency Ge-Li detector coupled to a 4096-channel spectrometer (Norland Industries, ULTIMA II).
Spectra were stored on disk and the peaks analyzed using MACROGAM software; the elemental
concentrations were determined by comparison of selected peak areas to those of standards.

The ICAP samples were prepared by means of the bomb digestion method.”® Samples of 100-
150 mg were placed in Teflon Parr Bombs with 2 ml of aqua regia and 6 ml of 48% hydrofluoric acid
(Baker). After being heated at 105°C in an oven for 1.5 hours, the samples were allowed to cool. The
contents were then transferred into polypropylene beakers containing 5.6 g boric acid (Mallinckrodt).
After diluting to 80 ml with distilled deionized water, the samples were heated on a steam bath until the
boric acid dissolved. The solutions were cooled and transferred to 100 ml volumetric flasks. The samples
were then filtered (Whatman #2) into 125 ml plastic containers. The samples and standards were then
analyzed by means of a Jarrel-Ash ICP coupled with an Atom Comp Series 800 multi-channel
spectrometer to determine the concentrations of Ca, Mg, Mn, Ni, and Si. Hydride Generation Atomic
Absorption Spectroscopy was used to obtain Se values used for ICP. An MHS-I0 hydride generator
coupled with a Perkin-Elmer 5000 was utilized. The MHS-I0 contains a reservoir filled with 3% sodium
borohydride (Aldrich) and 1% sodium hydroxide in water. Nitrogen gas pressure (38 psi) was used to
transfer several milliliters of this solution to the sample reservoir, which contained 0.01-5 ml of sample
plus 10 ml 6N HCL. Selenium (IV) was reduced to H,Se and was swept from the sample reservoir by N,
gas into a quartz cell in the flame of the Perkin-Elmer 5000. The H,Se decomposes as a result of the heat
and the Se absorption peak was then recorded on a strip chart recorder. The Se concentrations of samples
were determined by comparison of the unknown and standard sample peak height.
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RESULTS

Major and Trace Elements

The results of the major and trace elemental analyses are presented in Tables 1 - 3. Generally,

the composition of bulk ashes was within the ranges for fly ashes reported in the literature.”2%**’ The
elemental concentrations in these fly ashes increased with decreasing particle size, which is typical of
elemental distribution in fly ashes.”® Due to higher volatility, the chalcophilic elements (associated
mainly with sulfides and organics in coal), such as As, Se, Sb, and Zn, in these fly ashes exhibited

enhanced enrichment in finer particles, which is also one of the typical characteristics of fly ashes.”” The

density distribution of major and minor elements in these fly ashes exhibited similar trends as those in
other fly ashes described in several review articles.

Rare Earth Elements

26,27,28

The concentrations of the REE in bulk fly ashes were within the range of values observed for fly
ashes derived from North American coals (Table 4). In these fly ashes, the concentrations of LREE, such
as La, Ce, and Nd, tended towards the higher end of the concentration range, whereas the concentrations

of MREE (Sm and Eu) and HREE (Lu) were closer to the lower end of the observed range for North

American fly ashes.

Table 1. Elemental Concentrations in Size and Density Fractions of SB01 Fly Ash

Density Fractions

Major Elements B::: (glem) Particle Size Fractions (um)
<21 >2.1 <2.7 27-8 8-15
%
Al 11.10 16.70 24.70 10.40 10.40 10.30
Si 27.30 34.70 15.60 25.80 17.70 18.70
Na 1.43 2.80 2.40 191 1.65 1.30
K 0.74 0.97 0.95 0.76 0.70 0.74
Mg 0.86 0.83 1.28 1.13 0.95 0.77
Ca 5.64 394 7.61 7.30 7.15 515
Fe 3.72 1.98 4.62 3.87 3.53 3.38
Trace Elements mg/kg

As 14.7 25.6 43.1 29.9 16.3 7.8
Se 216 66.0 320 340 25.0 13.5
Sb 78.0 66.0 202.0 174.0 76.0 37.0
Rb 62.0 79.0 74.0 73.0 65.0 54.0
Cs 35.0 76.0 58.0 45.0 33.0 41.0
Sr 2079.0 581.0 2916.0 2612.0 2468.0 2205.0
Ba 4596.0 2505.0 7066.0 6260.0 4758.0 4239.0
Sc 18.2 12.5 283 23.0 20.1 18.5
v 81.0 - 180.0 113.0 110.0 69.0
Co 20.0 244 358 312 221 16.4
Cr 314 459 118.0 102.0 60.0 48.0
Mn 163.0 2120 2320 206.0 148.0 126.0
Ni 36.0 54.0 450 40.0 330 42,0
Zn 101.0 73.0 183.0 96.0 82.0 520
Zr 91.0 - - - - 500.0
Hf 18.5 6.0 18.3 16.3 16.5 212
Ta 1.8 - 21 2.1 1.9 1.3
Th 24.1 17.8 330 28.7 242 247

The concentrations of REE (Table 4, Figure 1 a,b,c) indicated that within the ranges of particle sizes
examined in this study, there was no significant enrichment of REE concentrations with decreasing

particle size. In fly ashes, similar particle size independent concentrations for lithophilic elements (e.g.,

REE) have also been observed by other investigators.'>'¢#2222:303L3233 o wever concentrations of
REE in heavy density fraction of these fly ashes (Table 4, Figure 1 ¢,d,f) were on average about two

times more concentrated as compared to the light density fractions. Such enhancement in heavier density

fractions can be attributed to the fact that bulk of REE are lithophilic elements which occur in coals

principally in inorganic mineral forms such as phosphates, silicates, and carbonates.* The REE bearing
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Table 2. Elemental Concentrations in Size and Density Fractions of SB02 Fly Ash

Density Fractions

Major Elements Bulk 3 Particle Size Fractions (um)
Ash (g/em’)
<2.1 >2.1 <2.7 27-8 8-15
%
Al 12.8 17.5 12.2 15.7 12.6 12.5
Si 204 20.8 204 20.5 18.5 19.6
Na 13 22 2.0 23 1.8 1.6
K 0.6 0.8 0.7 0.7 0.6 0.6
Mg 03 04 0.6 0.5 0.5 0.5
Ca 1.9 25 8.0 34 28 22
Fe 24 1.5 2.8 2.6 2.3 2.2
Trace Elements mg/kg

As 12.2 39.2 585 59.4 312 14.8
Se 52 93 14.7 12.9 85 43
Sb 41.0 104.0 162.0 157.0 102.0 61.0
Rb 42.0 52.0 40.0 420 46.0 36.0
Cs 29.0 39.0 31.0 37.0 320 27.0
Sr 384.0 351.0 559.0 565.0 258.0 316.0
Ba 647.0 475.0 919.0 861.0 704.0 628.0
Sc 109 103 15.8 14.7 13.6 12.1
v 70.0 67.0 92.0 118.0 93.0 64.0
Co 8.6 133 20.7 19.6 14.1 102
Cr 25.1 37.0 53.0 50.0 38.0 27.0
Mn 102.0 66.0 152.0 140.0 137.0 118.0
Ni 14.0 240 48.0 42.0 320 68.0
Zn 68.0 107.0 146.0 148.0 108.0 78.0
Zr 236.0 - 494.0 335.0 373.0 321.0
Hf 17.4 11.2 21.8 20.6 18.2 16.9
Ta 1.5 14 1.9 2.0 2.0 17
Th 232 22.7 294 284 26.8 24.7

Table 3. Elemental Concentrations in Size and Density Fractions of SB03 Fly Ash

Density Fractions

Major Elements Bulk 3 Particle Size Fractions (um)
Ash (g/em)
<2.1 >2.1 <2.7 2.7-8 8-15
%
Al 13.7 19.6 12.6 13.1 12.6 13.1
Si 8.1 18.5 18.6 17.2 18.4 156
Na 14 2.1 1.5 18 1.1 14
K 08 0.9 0.6 0.6 0.6 0.7
Mg 0.5 0.4 0.6 0.5 0.5 0.5
Ca 43 1.2 5.1 5.3 7.0 4.9
Fe 2.1 13 2.2 1.9 1.8 1.8
Trace Elements mg/kg

As 15.3 12.0 60.9 355 18.7 93
Se 0.9 1.1 1.3 1.1 1.2 0.5
Sb 50.0 45.0 113.0 95.0 55.0 29.0
Rb 45.0 53.0 51.0 41.0 39.0 47.0
Cs 220 34.0 27.0 26.0 23.0 25.0
Sr 776.0 464.0 805.0 802.0 915.0 865.0
Ba 3192.0 2104.0 4342.0 3840.0 2566.0 2141.0
Sc 13.0 “ 116 15.6 14.1 14.1 14.1
\% 52.0 62.0 93.0 87.0 60.0 71.0
Co 9.2 10.7 14.6 14.3 10.0 7.8
Cr 29.6 28.0 50.0 46.0 36.0 28.0
Mn 156.0 90.0 2220 202.0 217.0 178.0
Ni 24.0 38.0 30.0 32.0 37.0 26.0
Zn 79.0 82.0 123.0 107.0 89.0 63.0
Zr 4280 329.0 574.0 3240 - -
Hf 244 14.4 21.9 19.5 21.1 232
Ta 23 1.9 25 2.1 2.1 23
Th 31.6 29.9 345 31.8 319 333
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Table 4. REE Distribution in Fly Ashes derived from Sub bituminous Coals from Western U.S.

Range in Fly Density — .
REE Ashes® i:}l]k Fractions (gem?) Particle Size Fractions (um)
<2.1 >2.1 <27 27-8 8-15
SBO1
La 8-94 712 519 105.1 100.9 76.4 736
Ce 5-180 101.0 84.0 1470 1250 108.0  105.0
Nd 10 -300 49.0 - - 76.0 57.0 58.0
Sm <2-170 9.0 7.0 147 11.4 10.0 9.1
Eu 05-20 2.1 1.2 2.5 22 18 20
Lu 0.5-1.7 0.8 0.4 1.1 0.9 09 0.9
SB02
La 8-94 61.3 58.4 784 739 72.3 63.5
Ce 5-180 94.0 94.0 122.0 119.0 109.0 100.0
Nd 10 -300 41.0 33.0 69.0 54.0 52.0 42.0
Sm <2-70 9.7 9.0 13.0 10.0 9.0 7.8
Eu 0.5-20 1.5 1.3 19 20 17 1.6
Lu 0.5-1.7 0.5 04 0.8 0.7 0.6 0.6
SB03
La 8-94 78.4 63.1 914 86.9 81.6 79.6
Ce 5-180 1170 101.0 133.0 120.0 117.0 119.0
Nd 10 -300 46.0 330 64.0 53.0 57.0 37.0
Sm <2-70 13.0 7.7 142 104 10.0 12.3
Eu 0.5-20 1.8 1.5 2.1 1.9 1.9 19
Lu 0.5-1.7 0.7 0.5 0.7 0.7 0.7 0.7
*North American and Chinese fly ashes™>
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3 SB01 s , "\\ SBO1
13 120 —tr—- <2.7 micron S 1209 - AN ——Bulk
E " )a"a‘-\ g+ 2.7 -8 mlcron E " 3 N ---m - Light Density
é '.r" AN ~ =~ ~8-15micron § = & —Heavy Denslty
] ]
£ o0 g e
o Q
g 20 g 30
o o
0 - . 0 r . »
La Ce Nd Sm Eu Lu La Ce Nd Sm Eu Lu
Rare Earth Element Rare Earth Element
150 150
$B02 $B02
g 120 A - <& ~ <2.7 micron g 120 A et Bulk
£ w 7”’ "\ ---gr-- 27 -8 micron E . ...m. Light Dansity
é \t\ - -0~ — 8 - 15 micron b § ~ =& - Haavy Density
w AN, " .
£ 6 B\ £ 60
§ R g
S » \‘}\g¢ s w»
0 et S °
La Co Nd Sm € Lu La Ce Nd sm [N Lu
Rare Earth Element Rare Earth Element
150 150
5 SB03 SB03 !
£ ——<27micron g /A\ ——Bulk
_E_ - -+-g - 2.7 -8 micron E 0 4 \\\ -+ -- Light Density
% ~ =~ —8- 15 micron c 5 4 ~ -~ Haavy Dansity
g 60 ! E (]
§ 5 V
S w é 0 [
L S 0 i
La Ceo Nd Sm Eu Lu La Ce Nd Sm Eu Lu
Rare Earth Bement Rare Earth Bement

Figure 1. (a,b,c) Distribution of REE among Different Particle Size Fractions, and (d,e,f) Density
Distribution of REE for three Fly Ashes.
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heavier density minerals (e.g., zircon) are not affected by coal combustion and, therefore, end up
relatively intact in fly ashes.”** Minor fractions of organically associated REE would be converted to
nonvolatile oxides upon combustion and be retained in fly and bottom ashes.®® Therefore, combustion
would result in significant enrichment in the REE content of fly ashes. Such enrichment is evident from a
comparison of average REE contents of North American coals and fly ashes and REE content of bulk fly
ashes from this study (Figure 2). The magnitude of enrichment ratios (defined as the concentration ratio
of REE content in fly ash to that in source coals) obtained from literature and this study indicated that the
REE originally present in coal would be retained in solid byproducts upon combustion (Table 5). The
average REE enhancement ratios for fly ashes in this study (calculated using the average North American
coal composition) were similar to the typical North American and Chinese fly ashes (Table 5); thus
confirming that REE in coals are predominantly lithophilic. The magnitude of the overall average REE
enrichment ratio for typical North American and Chinese fly ashes (6.2 + 0.5) indicated that fly ashes are
a rich source of anthropogenically mobilizable REE. A comparison between the REE content of fly
ashes and soils indicated that fly ashes contain, on average, two to three fold higher
concentrations than world average REE content of soils.”’

Table 5. Typical Enrichment Ratios for REE in Fly Ashes
REE N.American FA* Chinese FA*  SBFA

La 6.0 6.3 6.7
Ce 6.5 5.8 58
Sm 6.8 6.3 6.3
Eu 63 57 4.5
Tb 52 5.7 ’
Dy 6.2 5.6

Yb 6.4 6.1 -
Lu 70 6.8 55

*North American and Chinese fly ashes™, Av. SB fly ashes: This Study.

Rare Earth Element Anomaly in Fly Ashes

To examine the REE anomaly in fly ashes, we calculated the weighted average of REE
concentrations of fly ashes, coals, and soils from various published sources.!!6!"18232933. The REE
profile for these materials show the typical saw tooth variation in absolute concentrations conforming to
the Oddo-Harkins effect/rule®® (Fig 3). According to this effect/rule, increased nuclear stability of even
atomic numbered REE show relatively higher abundances in chondritic and natural terrestrial materials.
To compensate for this effect, and to observe the REE anomalies, the measured concentrations are
typically normalized to chondrite or shale composition.”
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Figure 2. Comparison of REE Concentrations of SB Fly Ashes from this study
with Average REE Composition of NA Fly Ashes, Coals, and Soils.
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Figure 3. REE Concentrations in Fly Ashes, Coals, and Soils.

To observe any potential REE anomalies we normalized the REE weighted average compositions of fly
ashes!>161718233236 ooa]s, and soils.”” The normalized data revealed significant anomalies for Eu and Dy
in both fly ashes and coals (Figure 4), whereas, no such anomalies were evident for soils. Clearly, no soil
REE anomalies are expected because soils are typically derived from crustal rocks including shales and,
therefore, would have similar relative abundances of REE. Comparatively, coalification of organic
material with minor amount of primary and secondary mineral matter would result in noticeable REE
fractionation relative to normal soil forming processes. Not too surprisingly, the Eu and Dy anomalies
for fly ashes and coals are similar because all REE in coals being non-volatile are retained during
combustion process, thus preserving the coal’s original anomalous REE imprint.

It is clear from these observations, that an REE anomaly in fly ashes relative to soils can be used
as a tracer to identify the presence of fly ash (inadvertent or deliberate additions) in soils. Recent
observations'"'? indicate that anthropogenic REE inputs into soils and sediments are relatively easy to
extract as compared to the native REE in contaminated soils. Our study suggested that anthropogenic fly
ash additions could be detected by extracting soils with acids and by observing the Eu and Dy REE
anomalous signatures.

To understand the observed identical REE anomalies of fly ashes and parent coals, it is essential
to examine the source of REE and their probable transformation during the combustion process. Two
review articles®®’ that examined the elemental and mineral distributions in coals and fly ashes suggested
that REE, being mainly lithophilic in nature, are typically associated with the inorganic mineral
component of coals. Upon combustion, mineral-associated REE in coals are transformed into oxides of
low volatility and retained in fly ashes, thus preserving the REE anomalous signature of parent coals. For
instance, minerals such as feldspars, micas, and carbonate minerals occur most frequently and constitute
the major inorganic fraction of coals.”*** A number of observations of normalized REE profiles for
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Figure 4. Europium and Dysprosium REE Anomalies in Fly Ashes and Coals.
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plagioclase feldspar and carbonates show consistent positive Eu anomaly; whereas, mica minerals show a
distinct positive Eu and Dy anomalies.***"*? The reason for this anomaly is that Eu being a redox
species, in its divalent state, substitutes for alkaline earth elements in plagioclase feldspars and
carbonates.” Similarly, Eu (IT) can substitute for Ca in interlayer positions and Dy(III), due to its ionic
radius being similar to AI(IIT), can substitute in the octahedral position in micaceous minerals.

Therefore, the significant positive Eu and Dy anomalies in fly ashes can be used as a marker for
detecting anthropogenic fly ash input into soils. This is feasible in view of recent studies which show that
anthropogenic input of sewage sludges, and medical wastes in to sediments, soils, and water can be
detected by positive anomalies of several REE such as La, Ce, Nd, Sm, and Gd'""*" and negative
anomalies for Ce in surface soils due to its low leachability.'? These studies clearly suggest that the
anthropogenic perturbations of natural geochemical cycle of REE are reflected as anomalies in
environment near the source of discharge. Because of the distinctive positive anomalies of Eu and Dy,
we believe that fly ash contamination of soils can be fingerprinted and distinguished from other sources
of anthropogenic REE inputs in to the environment.

SUMMARY AND CONCLUSIONS

The results of the major and trace elemental analyses indicated that the composition of bulk ashes
was within the ranges for fly ashes reported in the literature. The elemental concentrations in these fly
ashes increased with decreasing particle size, which is typical of elemental distribution in fly ashes. Due
to higher volatility, the chalcophilic elements, associated mainly with sulfides and organics in coal, (e.g.,
As, Se, Sb, and Zn) in these fly ashes exhibited enhanced enrichment in finer particles, which is also a
typical characteristic of fly ashes. The density distribution of major and minor elements in these fly ashes
exhibited similar trends observed for a number of fly ash samples.

The concentrations of the REE in bulk fly ashes were within the range of values observed for fly
ashes derived from North American coals. The concentrations of LREE (e.g., La, Ce, and Nd) tended
towards the higher end of the concentration range; whereas, the concentrations of MREE (Sm and Eu)
and HREE (Lu) were closer to the lower end of the observed range for North American fly ashes. The
concentrations of REE indicated that within the ranges of particle sizes examined, there was no
significant enrichment of REE concentrations with decreasing particle size. In fly ashes, similar particle
size independent concentrations for lithophilic elements, such as REE, have also been observed by other
investigators. Concentrations of REE in heavy density fractions, however, were on average two times
more concentrated as compared to the light density fractions. Such enhancement in heavier density
fractions can be attributed to the fact that the REE are lithophilic elements.

The average REE enhancement ratios for the three fly ashes (calculated as a ratio of
concentration in fly ashes to the average concentration in North American coals) were similar to the
enrichment observed for typical North American and Chinese fly ashes. The magnitude of the overall
average REE enrichment ratio for fly ashes (6.2 £ 0.5) indicated that fly ashes are a rich source of
anthropogenically mobilizable REE.

Shale normalized REE data for typical fly ashes, coals, and soils revealed significant anomalies
for Eu and Dy in both fly ashes and coals; whereas, as expected, no such anomalies were evident for
soils. Recent studies have shown that anthropogenic input of sewage sludges and medical wastes into
sediments, soils, and water can be detected by positive anomalies of several REE, such as La, Ce, Nd,
Sm, and Gd, and negative anomalies for Ce in surface soils. These studies clearly suggest that the
anthropogenic perturbations of natural geochemical cycle of REE are reflected as anomalies in
environment near the source of discharge. Because of the distinctive positive anomalies of Eu and Dy,
we suggest-that fly ash contamination of soils can be fingerprinted and distinguished from other sources
of anthropogenic REE inputs into the environment.
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ABSTRACT

A study was conducted to determine the mode of transport of Cd, Cu and Ni
through the Steel Creek sediments at the Savannah River Site and to find the adsorption
of these metals to the sediments. The sediments collected from three adjacent sites
showed considerable heterogeneity but had a uniform pH approximating 6.0. Three
periodic collections of sediment cores (0-20 cm) from two sites and surface sediments (0-
10 cm) of 3" site were analyzed for three metals in the pore water and DTPA extract of
wet sediments. The concentrations of dissolved metals in the pore water were quite low
in the ranges of 0.02-0.5 pg L' Cd, 0.0-6.0 pg L' Cu, and 2.3-11.9 pg L' Ni. DTPA-
extractable metals in the sediments ranged 0.0-34.67, 0.0-491.4, and 44.6-676.4 ug L' for
Cd, Cu and Ni, respectively. Surface water enclosed in two polyethylene chambers
imbedded in the stream path was spiked with 100 pg L' of each metal. The metals
moved downward and outside the chambers through the sediments and equilibrated with
the ambient within two weeks. Adsorption study with seven sediment samples using Cd
and Cu solutions in the concentration range of 50-110 pg L™ provided essentially linear
adsorption isotherms at 25° C with significant correlation coefficients. The amounts of Cd
adsorption were greater as compared to Cu adsorption. Study revealed low
concentrations of dissolved metals in the surface and pore water and but relatively high
adsorption by the sediments and particulate matter which forms the mobility pattern of
these metals as a mechanism of transport in the swamp system.

INTRODUCTION

Increased use of coal for electrical generation has resulted in its greater outdoor
storage. This is a potential source for the release of large amounts of toxic metals into the
surrounding environment. At the Savannah River Site (U. S. Department of Energy
Center in Aiken, South Carolina) several creeks running through the area are affected by
discharges from coal-fired power plants. Creek waters initially enter the swamp area
before discharging into the Savannah River. These waters provide the essential
mechanism for the transport and deposition of heavy metals in the swamp area. The
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waters carrying the runoff from the surroundings of several coal-fired power plants are
generally contaminated with iron, aluminum, sulfate, chromium and nickel with lesser
amounts of trichloroethylene, cadmium and lead. Aquatic sediment particles containing
organic matter have a direct bearing on the accumulation and transport of heavy metals
released from coal and ambient ecosystems'. Present study was conducted to determine
the distribution and mobility of Cd, Cu and Ni in the ambient water and the sediment
column in the swamp zone of Steel Creek at the Savannah River Site. To determine the
metal retention capacity of swamp sediments adsorption studies were conducted with Cd
and Cu using sediments from three locations in the swamp. Several earlier studies were
concerrges(l with the adsorption or sorption of heavy metals by sediments and sewage
sludge “~

MATERIALS AND METHODS
Study Area

Steel Creek is one of the five main creeks that traverse the forested area of the
Savannah River Site near Aiken, South Carolina. These creeks flow from north to south
and discharge into the Savannah River via the swamp along the riverbank. Steel Creek
receives the seepage and runoff water from the surrounding area as well as the effluent
water from the L-Reactor located in the center of the site complex. Narrow creek
channels expand into a broad swamp area, which is interspersed with small streams and
extends over a distance of 1.5 km up to the bank of the river. Creek water is mostly
turbid due to suspended particles and flows at the rate of sixty cm/second near the entry
point of swamp area where the sampling sites were selected (Figure 1). Since the swamp
area is quite loose soil, a wooden board walk erected from the stream edge to the middle
of swamp, enabled to locate the sampling sites in the interior of the swamp. Three
sampling sites I, II, and III were located adjacent to the board walk at distances of 30 m,
75 m and 150 m, respectively away from the edge of the stream. This swamp area is
covered with a thick vegetation of pine and cypress trees, button bush plants and low
surface grass in open patches. Due to irregular deposition of water transported materials,
the physical and chemical characteristics of the study area are quite heterogeneous.

Sampling Procedure

Sediment samples were collected from three selected sites during the months of
June and July. Using a method employed by Menon et al.* sediment core samples were
collected from sites I and II with a core sampler (a stainless steel tube with a dia. 2.8 cm
and length 50 cm) which was lined inside with a polyethylene tube. Upon withdrawing
each sample core, it was laid on a plastic board and was cut into three sections as
indicated by the distinct color and texture changes of horizons with depth. A total of
three cores were withdrawn at each site and composite soil sections were transferred into
125 mL wide- mouthed polyethylene bottles. At site III, only the surface grab samples
were collected because the soil at this site was merely a fluid-like sediment-water
suspension.

In addition, surface water samples were collected at one-week intervals for a
period of three weeks from two experimental chambers set up at sites I and II. Separate
core samples were collected from the same chambers at the termination of the
experiment. A separate field trip was made to collect relatively large amounts of
sediment samples for adsorption experiments and other basic analyses. For this purpose a
stainless steel core sampler with internal dia. 16 cm and length 50 cm, previously used by
Ghuman and Menon ® was employed at sites I and II. Upon penetration of the core
sampler, surface water was removed with a plastic cup. Three sediment core sections
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Figurel. Sampling Sites at the Savannah River Site near Aiken, South Carolina.

were scooped and stored in polyethylene bags. At site III, four one-Liter wide- mouthed
polyethylene bottles were filled with sediment suspension to obtain the required amount
of sample.

Analyses of Cd, Cu and Ni in Pore Water and Sediments

All bottles, centrifuge tubes, filters and sample processing materials were pre-
cleaned by soaking in 2% nitric acid. Wet sediment samples were thoroughly mixed with
a teflon spatula, pH was measured and pore water was extracted by filtration through 0.45
um NUCLEOPORE polycarbonate, 47 mm dia. Filter. Pore water was acidified to pH
2.0 with a few drops of 1N HCIl and stored for analysis. Duplicate samples of filtered wet
sediments (10-15 g each equivalent to 8-12 g dry samples) were weighed into 50-mL
centrifuge tubes. Twenty mL of DTPA reagent (0.005 M DTPA (Diethylene Triamine
Penta-acetic acid) + 0.01 M CaCl, + 0.1 M TEA (Triethanol Amine) was added to each
sample and the mixture was shaken for 24 hours on a flat-bed shaker at 100 oscillations
/min.” The suspension was centrifuged at 2000 rpm for 8 minutes and clear supernatant
was transferred to a 50-mL volumetric flask. The residue was washed with additional 10
mL DTPA solution and the extract was combined with the previous one in the flask. The
combined extract was acidified to pH 2.0 with 0.5 mL (1:1) nitric acid. Volume was
made up to the mark with de-ionized water and the extract was filtered through Whatman
No. 42 filter to remove the suspended particles. Duplicate blank samples of DTPA
solution were also prepared in the same way as the test samples. Cadmium, copper and
nickel were analyzed in the acidified pore-water and DTPA extract of sediments by
flameless atomic absorption spectroscopy.

Field Chamber Experiment

For the study of transport pattern of metals through the water and sediment
column, two circular polyethylene chambers (dia. 37.6 cm) were implanted at sites I and
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11 in the paths of flowing streams. To design the chambers, the bases of polyethylene
containers were removed and the lids were cut to obtain wide openings for sampling.
Each chamber was penetrated to a depth of 25 cm in the sediment column, which
enclosed a surface water layer of 4 cm depth, thus providing a volume of four liters of
enclosed water. Surface water in the chamber was spiked with 0.4 mL each of 1000 ppm
solutions of Cd, Cu and Ni, which resulted in 100 pg L additional concentration of each
metal.

Added metal solutions were thoroughly mixed with the surface water using a
Teflonrod. After allowing a settling time of 15 minutes, duplicate aliquots of water
samples were taken from the chambers for analysis. Subsequently, water samples were
taken from the chambers for two additional weeks at one-week intervals after which the
experiment was terminated. At the time of termination, sediment core samples were also
taken from each chamber, splitting the cores into three sections as was done for the
contemporary cores taken from the spots adjacent to the chambers.

Analysis of Chamber Water and Sediments

After each collection, the volumes and pH of chamber water samples were
measured. For the estimation of total metal concentrations in water, one of the duplicate
samples was acidified to pH 2.0 with a few drops of 1N HCl and then all samples were
stored in a refrigerator. Next day, both types of water samples were filtered through 0.45
um NUCLEOPORE polycarbonate filters. Non-acidified water was then acidified to pH
2.0 and both types of samples were analyzed for Cd, Cu and Ni. Pore water from the wet
sediment samples was separated by filtration and portions of filtered sediments were
extracted with DTPA solution as described earlier. All three metals were analyzed in the
pore water and the DTPA extract of sediments.

Determination of Total Concentrations of Cd, Cu and Ni in Sediments

Remaining portions of wet sediments and the other bulk amounts of collected
sediments were dried in an air oven at 45°C. Dried samples were ground in an agate
pestle and mortar to pass through a 35-mesh sieve (0.5 mm esd.) and the coarse sand
fraction was discarded. Two-grams sample of each sieved and homogeneous sediment
fraction was weighed into a 140-mL Pyrex beaker. Sample was treated with 8 mL of
reagent grade conc. HNOj; and heated at 60° C for one hour with occasional shaking.
Digested mixture was diluted with deionized water and transferred to a 40-mL Pyrex
centrifuge tube and centrifuged for eight minutes at 2000 rpm. Clear supernatant was
decanted into a 50-mL volumetric flask. Sediment residue was washed with 5 mL water
by centrifuging and combining the decantate into the volumetric flask. Volume was
made up and the digest was filtered through Whatman No. 42 filter paper and the total
concentrations of three metals were determined by atomic absorption spectroscopy.

Adsorption Equilibrium Study of Sediments for Cd and Cu

Absorption study with Cd and Cu was conducted on seven sediment samples
collected from sites I, IT and III in the Steel Creek swamp. Sediments dried at 45° C and
ground to pass through a 35-mesh sieve were used for this study. Seven solutions
ranging from 10 to 110 pg L concentrations of Cd and Cu were separately prepared
from atomic absorption standards in the nitrate form. Each of these solutions contained
0.01M sodium nitrate to provide background electrolyte. Sodium nitrate was chosen as
against calcium chloride because it was thought that at very low equilibrium solution
concentrations, the adsorption of Cd might be inhibited in this study. Four-gram
duplicates of prepared sediments were added to 40 mL volumes of varying metal
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Table 1. Selected properties of sediments collected from the Steel Creek Swamp.

Site Sample pH Mechanical Composition Chemical Composition
No.  depth Coarse Sand  Fine Sand, Silt, Cd Cu Ni
(cm) 20-05mm &Clay(<05mm) (pgkg" Dry Sediment)
% %
I 0-8 6.66 42 95.8 9149 57750 22063
8-14 6.60 9.7 90.3 1934 4875 3625
14-20 6.61 142 85.8 23.00 10875 478.3
I 0-8 6.44 320 68.0 16.10 562.5 340.8
8-15 6.12 38.7 61.3 45.54 24375 793.8
15-20 6.34 65.7 343 11.54 375.0 56.3
s 0-10 6.72 0.0 100.0 126.59 123375 3956.3

Table 2. Analyses of periodic collections of pore water and sediments from the Steel

Creek Swamp.
Site  Sample pH Pore Water. ---Sediment(DTPA extract)--
No. depth Cd Cu Ni Cd Cu Ni
(cm) e 173 Dy —---—-pg kg’ Dry Sediment--
June 21 Collection
I 0-10 645 027 0.0 383 397 88.9 3149
10-20 649  0.12 0.1 404 035 54.0 302.2
I 0-10 6.62 0.50 04 5.08 451 88.2 195.3
10-18 6.61 0.30 0.4 448 7.81 1429 3703
18-25 6.83 1.10 0.7 9.36  24.50 3274 610.6
m 0-10 6.49 0.08 0.0 3.96 0.76 1832 676.4
July 4 Collection
1 0-8 647 005 3.0 8.70 1.67 254 85.1
8-14 6.57 0.24 3.5 8.70 3.88 141.8 162.5
14-20 6.55 0.13 244 4.50 6.59 130.8 175.8
I 0-8 6.76 0.07 5.0 9.50 6.94 87.3 58.7
8-15 633 003 3.0 4.50 0.73 64.1 121.0
15-20 6.70 0.40 6.0 1190 1.06 369 194.4
m 0-10 624  0.02 2.0 4.50 0.0 0.0 5449
suly 18 Collection
I 0-8 6.67  0.13 2.5 3.00 34.67 3333 499.0
8-14 6.60 022 2.5 3.90 27.00 4914 1402
14-20 6.62 0.41 3.7 5.70 60.53 961.1 3373
n 0-8 6.45 0.10 2.5 3.40 14.01 3052 157.3
8-15 6.14  0.09 25 2.30 3.59 59.3 4488
15-20 6.33 0.10 25 3.40 5.31 143.9 44.6
m 0-10 6.80 0.07 2.5 3.00 7.01 956 3975

concentration solutions contained in 50-mL polyethylene tubes. Initial pH of each
solution was 6.0, but the pH of suspension was again adjusted to 6.0 with 0.1N high-
purity nitric acid or NaOH. The tubes were shaken for four hours in a shaker with
constant temperature bath at 25° C. Preliminary study indicated that four hours shaking
time was sufficient to reach equilibrium. At the end of shaking time, the tubes were
centrifuged at 2000 rpm for eight minutes and the supernatant was analyzed for Cd and

Cu using atomic absorption spectroscopy. The adsorbed Cd and Cu were calculated from
the difference between each metal present in the initial and that determined in the

equilibrium solutions. The pH of the suspensions after shaking time of the tubes and that

of the supernatant solutions were measured in all samples. The metal uptake (adsorption)

concentrations were plotted against the initial solution concentrations for all the seven

sediment samples.
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RESULTS AND DISCUSSION

The selected properties of sediments collected from the steel creek Swamp are
presented through Table 1.Three periodic collections of sediment samples from the
swamp exhibited nearly constant pH values in the range of 6.14-6.83 (Table 2). This
indicated that all pH-dependent reactions in the Steel Creek swamp might be relatively
constant. Kanungo and Mohapatra® reported that trace metal ions release from fly ash
decreases sharply with increase of pH from 3.0 to 8.0. Filtered and acidified pore water
samples had very low concentrations of dissolved Cd, Cu and Ni, but showed appreciable
variations between the sampling periods, sampling sites and the depths of sediments.
Dissolved Ni concentrations of pore water ranged from 2.3 to 11.9 ug L™ with respect to
other samples, the maximum value was found in the bottom sample (15-20 cm depth) of
July collection at site II. Dissolved Cu concentrations of pore water varied between 0.0
and 6.0 ug L', with one exceptionally high value of 24.4 pg L' Cu in the bottom sample
(14-20 cm depth) of July collection at site I. All Cd concentrations of pore water samples
fell within the range of 0.02 — 0.50 ug L™, with one exceptional value of 1.1 pgL' Cdin
the bottom sample (18-25 cm depth) of June collection at site I. Surprisingly, the
consistent depth values of all three metals in the pore water from site III were lower than
in pore water from sites I and II. The concentrations of three metals ranged in the
decreasing order as : Ni > Cu > Cd.

The patchiness of sediment deposition in the swamp resulted in the heterogeneous
concentrations of DTPA-extractable metals (Table 2). Cadmium concentrations of most
samples fell between 0.0 and 34.67 pg kg with one exceptional value of 60.53 g kg'.
Copper concentrations were in the range of 0.0 - 491.4 pg kg ~! with one exceptional
value of 961.1 pg kg™ and the Ni concentrations were in the range of 44.6 — 676.4 g
kg . Just like the pore water metal concentrations, the DTPA-extractable metals of
sediments also range in the decreasing order as: Ni > Cu > Cd. The DTPA-extractable
concentrations of Cu and Ni were much lower than those reported by Tobin et al.® for the
flood plain sediments of Idaho. None of the samples exceeded the threshold
contamination concentration of 170 pg g"' Cuand 100 HE g"' Ni, concentrations
considered as critical threshold levels for contamination (New Jersey Department of
Environmental Protection'®). The average concentration of copper in American soils is
25 pg g and the natural range is 1 - 300 pg g (Shacklette et al.)"!

Results of Chamber Experiment

Periodic analysis of surface water samples from the two chambers clearly
distinguished the changes in metal concentrations (Table 3). Analysis of unfiltered
acidified water (B) provided the total metal concentrations and the analysis of filtered
acidified water (A) gave the dissolved metal concentrations. The difference between
these two types of concentrations is the particulate metal concentration. The samples
collected just after spiking the surface water of two chambers with 100 ug L' metal
solutions showed significant difference between the total and dissolved concentrations of
Cd, Cu and Ni.This indicates that the applied metals were immediately taken up by the
particulate matter (organic carbon, clay and other mineral particles) in the surface water.
Besides, at the prevailing pH of 7.0 + the applied metals could be rapidly precipitated as
insoluble colloidal forms. The differences between the total and dissolved decreased
with time and by the end of 3" week, no significant difference was observed. This may
be due to the complete settling of the metal carrying particulate matter or its transport
outside the chamber via the moving stream below the open chamber bottom and dilution
by the diffusion of fresh water into the chamber. A comparison between the metal
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Table 3. Periodic analysis of surface water of the experimental chambers spiked with
100 ug L™ each of Cd, Cu and Ni.

Site  Sample A Filtered acidified water B: Unfiltered acidified water
No. Date pH Cd Cu Ni pH Cd Cu Ni
---------- pg L eeeeeene e 114 D —

I *July4 681  9.62 650 150 695 62.04 4425 504
July 11 727 020 2.50 50 757 0.82 9500 95
July18 742 011 3.70 45 130 0.15 370 37

o July4 7.02 5.56 7.00 11.9 715 60.00 4023 374
July 11 7.60 0.17 2.50 87 179 0.62 310 225
July18  7.56 0.08 2.50 5.0 772 0.15 2.50 4.0

* Chamber waters were spiked with metals on July 4 and sample aliquots were taken for

A and B type analysis after 15 minutes of settling time.

Table 4. Analysis of pore water and sediments collected from the experimental chambers
after the termination of the experiment on July 18.

Site Sample pH Pore water Sediment (DTPA extract)
No. depth Cd Cu Ni Cd Cu Ni
(cm) e pgL! e e pg kg dry sediment ----
I 0-8 6.75 0.08 22 5.5 38.14 313.0 291.6
8-14 6.64 0.09 1.9 3.8 6.83 108.3 64.0
14-20 6.76 0.35 2.5 3.6 38.90 775.1 404.2
I 0-8 6.70 0.10 25 37 24.42 397.6 197.9
8-15 6.63 0.17 2.5 39 10.32 146.5 58.0
15-20 6.56 0.17 2.5 2.5 12.67 272.5 94.8

Table 5. Results of total concentrations of metals in the HNO; digest of sediments.

Site No. Sample depth ~  --cocommemeemeen Metal concentration kg ) ooeeee
- (cm) Cd Cu Ni
I 0-8 28.75 1387.5 412.5
8- 14 15.05 187.5 312.5
14 - 20 38.09 2150.0 706.3
I 0-8 39.82 1925.0 696.8
8-15 17.73 650.0 365.8
15 - 20 15.08 700.0 437.5

concentrations of water samples collected after two weeks (Table 3) with the metal
concentrations of pore water (Table 4) indicates that an equilibrium had been reached
between the two phases of water in both the chambers.

Results of DTPA-extractable and concentrated HNOs — extractable total
concentrations of Cd, Cu and Ni (Tables 4 and 5) in the sediments suggest a downward
movement of spiked metals, which partially enriched the bottom sediments of both
chambers. When metal concentrations in the chamber sediment columns are compared
with those in the adjacent open-surface sediments (Table 1), an appreciable deposition of
fresh particulate matter is seen in the top layer of site L.

Results of Adsorption Equilibrium Study

Cadmium and copper adsorption isotherms (Figures 2 to 6) for the seven sediment
samples from the three sites are essentially linear. The linear regression equations showed
significant correlation coefficients ranging 0.986 — 1.0 with small variations indicating a
good fit to the Langmuir Equation.
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Slopes of Cd adsorption curves for the sediments of sites I and II (Figs. 2 and 3)
are in the range of 7.013 — 9.650, the low values were for the site II sediments. At
equilibrium, only small proportions of Cd (3.2 — 26.8%) remained unadsorbed. Cadmium
adsorption curves are perfectly linear for all sediments of site I and of medium layer of
site II. Top and bottom layer sediments of site II (Fig. 4) are curvilinear at high Cd
concentrations, the top-layer ones curved upwards, while the bottom-layer ones curved
downward.

Slopes of Cu adsorption curves for the sediment core samples of sites I and II
range from 7.255 to 9.992. Appreciable proportions of added Cu (15.1 - 52.8%)
remained unadsorbed at equilibrium, and the maximum adsorption occurred from the
solutions of initial high concentrations. The unadsorbed fraction of Cu at equilibrium in
site Il sediments was in the range of 21.9-45.1%, while Cd adsorption for this site was
99-100%. Relatively greater Cd adsorption than Cu adsorption may be attributed to the
low initial Cd content of these sediments (Table 1). Copper adsorption depicted by these
isotherms indicates only a small faction of maximum adsorption possible by these
sediments. Additional Cu concentrations for maximum adsorption would have produced
departures from linearity, giving curvilinear isotherms. Such a curving tendency is
apparent in the Cu adsorption isotherm for the bottom sediments of site I (Fig. 4) when
solution concentration used was 90 pug L' of Cu. Adsorption solutions prepared in
0.01M NaNO; represent specific adsorption of Cu in this study. Elliott and Denney'?
reported that Cd adsorption was the least at low pH, but increased sharply to a maximum
uptake as pH approached neutrality (6.0-7.0), and leveled off or decreased slightly at
more alkaline conditions. McBride et al."’ observed that organic matter and clay in soil
were responsible for stronF adsorption of Cd and thus were able to limit Cd uptake by
plants. Gerritse and Driel® found that the exchangeable fractions were in the range of 10
~50% of total Cd, Zn and Cu in temperate soils. In view of these reports it is
conceivable that organic carbon, exchange sites on clay particles and oxides of iron and
manganese are responsible for the linear adsorption of Cd and Cu by the sediments of
Steel Creek Swamp.
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ABSTRACT

Removal of pollutants from water via adsorption on to activated carbon is a
promising remediation technique. However, due to its high cost and limited availability,
it is necessary to investigate alternate adsorbent sources. Fly ash is, an inexpensive and
abundantly available by-product from thermal power plants that utilizes coal for the
production of energy. A study was conducted to (i) identify the optimum conditions for
Cd adsorption by fly ash, (ii) evaluate the potential use of fly ash to remove cadmium
from a mixed metal solution of Cu, Cd, Mn, Ni, and Zn at room temperature mimicking
industrial and municipal effluents and (iii) study the kinetics of Cd adsorption.
Preliminary results of the study indicated that a pH of 5 was optimum for Cd removal.
Results of the kinetics-studies indicated that removal of Cd by fly ash increased with
increasing contact time while Cd removal also marginally increased with increasing
amount of adsorbent used. Fitting of Cd adsorption data for the full range of metal
concentrations was described by a Freundlich model with a moderate correlation
coefficient (r = 0.63) while the adsorption phenomena was described well by Langmuir
isotherms at moderate metal concentration levels (5 to 100 mg L) with high correlation
coefficient (r = 0.85). This study revealed that fly ash could be used as an adsorbent to
remove Cd from wastewater containing a mixture of various inorganic pollutants.

INTRODUCTION

The increase in industrialization results in a concomitant increase of wastewater
production and contamination of water that require solutions for purification, recovery
and reuse of wastewater. Potentially toxic trace metals (specific gravity > 5 and atomic
number > 23) ' are unlike other pollutants in that they occur naturally in the environment
in the form of oxides and or sulfates. These metals are non-biodegradable, persistent and
toxic to living organisms at relatively low concentrations. Discharge of effluents
containing heavy and trace metals from industries and wastewater treatment plants poses
a major threat to aquatic fauna and flora and to human health through food chain
biomagnification. Higher concentrations of heavy and trace metals in treated wastewater
from conventional treatment process are difficult to remove and prevent efficient reuse
and disposal.

The chemical composition of processed wastewater produced by the wastewater
treatment plants in cities around the globe varies with location and source of influent

Chemistry of Trace Elements in Fly Ash, edited by Sajwan et al.
Kluwer Academic/Plenum Publishers, 2003
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wastewater. Unlike fly ash, influent wastewater collected from various locations for
purification characteristically contains high levels of major plant nutrients, trace and
heavy metals and organic compounds. Among the various metals (Zn, Cu, Fe, Mn, Ni,
Cd, Cr, Pb, and Se) commonly present in influent wastewater, Cd is widely recognized as
the most hazardous element 3.

Though conventional adsorbents are available and used for treatment by
wastewater treatment plants, activated carbon is commonly used and considered the most
promising technique for removal the majority of organics contaminants and selected
metals from aqueous systems *. However, due to its high cost and limited availability, it
becomes necessary to identify and investigate alternate adsorbent sources. Fly ash is, an
inexpensive and abundantly available byproduct, from thermal power plants, and consists
of finely dispersed particulate matter >°. In India, the great majority of plants are coal-
fired ®. The quantity of coal burnt is at present very large and predicted to increase in the
near future, resulting in a huge and potentially unmanageable quantity of fly ash. The
composition of fly ash is similar to clay in that it contains large amounts of silica,
aluminum and some unburnt carbon ’. A potential use of fly ash, often overlooked, is as
an adsorbent, capable of removing many organic contaminants due to its large surface
area per unit volume and its high residual carbon content. The concentration of residual
carbon contained within the fly ash determines its effectiveness as an adsorbent.

Several scientists have studied the use of fly ash in the treatment of low molecular
weight organics compounds and industrial effluent ®°. Khanna and Malhotra '° studied
the kinetics and mechanism of adsorption of phenol on to fly ash particles and designed
an economical and flexible system of phenol removal. Gupta et al., ' '? treated aqueous
solutions with chrome dye and hazardous dye-house wastewater using fly ash, coal,
wallostonite, and china clay and concluded from the isotherm studies that the removal
efficiency of the fly ash was higher than that of any other adsorbents tested.
Vandenbusch and Sell ° have tried six different fly ashes for removal of color,
fluorescence, and reduction in the chemical oxygen demand (COD) from a municipal
treatment facility effluent. Singh et al., ® briefly explained sources and behavior of
organic pollutants, which can be adsorbed on to fly ash as well as the conditions, and
mechanisms that are involved in water and wastewater treatment using fly ash for
removal of organic contaminants.

In early 90s, interest arose in the investigation of materials that could be used in
non-conventional methods for scavenging heavy metal ions from industrial wastewaters
13 Singh and Rawat ' studied the adsorption of Cu from an aqueous system on
bituminous coal and found that adsorption was dependent on concentration, pH and
temperature. They also studied the kinetics and the mechanism of Cu sorption in this
system. Several studies have indicated that the efficacy of trace metal and metalloid
(such as Cd, Pb, Mn, Zn, As, and Se) and organic compound adsorption on fly ash could
be enhanced by a CO; infusion process 15,1617 18 1t was also demonstrated ' that the
sorptive behavior of trace metals on fly ash in aqueous systems is partly determined by
the pH of the system, the trace metals As, Cd, Cr, Cu, Pb, Ni, and Zn attained the lowest
solubility in solutions with a pH between 8 and 9. They attributed this observation to
increased adsorption and precipitation processes. In addition, significant increase in
solubility of these trace metals were observed when the pH dropped from 12 to 9 and
again below 6 in the presence of alkaline fly ash in aqueous system .

Therefore, there is considerable interest in investigating the ability of fly ash to

remove heavy metals from wastewater and contaminated aquatic systems. The objectives
of this study were to (i) determine the feasibility of using fly ash to remove cadmium
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Table 1. Selected characteristics of fly ash

Characteristic Magnitude Unit
Particle size 0.1-0.25 mm
Loss on Ignition 3N % by weight

(Carbon content)

pH 8.43

Si0; 40.45 % by weight
ALO; 16.75 % by weight
Fe; 03 4.13 % by weight
CaO 3.67 % by weight
MgO 2.58 % by weight
Cd 1.00 mg kg’

Mn 539.00 mg kg
Specific gravity 1.27 gmL’
Specific surface area 3520.00 em’g!

from aquatic systems by using mixed of metals solution and (ii) to understand the kinetics
and mechanisms associated with the adsorptive behavior of cadmium by fly ash.

MATERIALS AND METHODS
Adsorbent

Untreated fly ash (adsorbent) from the Koradi thermal power plant, Nagpur, India
was used in this study. Basic characteristics of the fly ash are presented in Table 1.

Adsorbate

The combined salts on common inorganic contaminants of wastewater and
aqueous systems (e.g. Cu, Cd, Zn, Ni, and Mn) were dissolved to prepare mixed metal
solutions. Removal of metals is difficult when effluents contain a mixture of metals due
to differences in the solubilities of those present *'.

Preliminary Study: pH Effect

The effect of pH ranging from 1 to 7 wds investigated for an initial metal
concentration of 10 mg L. The removal of pollutants from wastewater by sorption was
highly dependent on pH of the solution, which affects the surface charge of the adsorbent
and speciation of sorbate. When a mixed metal solution was adsorbed on fly ash,
cadmium adsorption was optimal at pH 4.5 to 5.0. This observation was in contrast to
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Figure 1. Mixing arrangement for batch experiment with fly ash.

observations by other scientists '* % and may be caused by certain characteristics of the

fly ash (Table 1) used in this study. Thus, mixed metal solutions were adjusted to a pH of
5 as an appropriate pH to fulfill the objective.

Adsorption Experiments

Adsorption studies were performed at room temperature (25° + 2° C) as batch
experiments. Mixtures of predetermined quantities of metal solution (5, 25, 50, 75, and
100 pg g™) and adsorbent (25, 50, 100, 200, 300, 400, and 500 g L") were agitated
continuously for 0.25, 0.5, 1, 2, 4, and 8 hours of contact in batch reactors (Fig. 1). A
blank control and treated samples were filtered through Whatman filter paper No. 42,
removed from the reactors at the specified contact periods, and analyzed for pH,
electrical conductivity, and metal concentration. Metals were analyzed by an 8000-
polarized Zeeman atomic adsorption spectrophotometer.

Cadmium Kinetics Studies

Kinetic studies of the metal-fly ash systems were performed to study the effect of
metal concentration in solution, quantity of fly ash mixed, and time of contact between
the adsorbate and adsorbent. These studies were: (a) kinetics of metal adsorption for
fixed initial metal concentrations in solution and varying fly ash concentrations, (b)
kinetics of metal adsorption for varying initial metal concentrations and a fixed fly ash
concentration, and (c) fly ash-metal adsorption isotherm. The kinetics studies were
conducted with mixing times 0of 0.25,0.5, 1, 2, 3, 4, 5, 6, 7, and 8 hours at room
temperature (25° + 2°) and at pH 5.

RESULTS AND DISCUSSION

The adsorption of solute onto the adsorbent presumably occurred in three
consecutive steps: (a) solute from solution moved to the exterior surface of the adsorbent,
(b) the solute moved through the pores of the adsorbent by intraparticle diffusion, and (c)
solute was adsorbed at the specific site on the surface of the adsorbent particle.
Effect of Adsorbent Concentration

Figure 2 shows the removal of Cd from mixed metal solution (10 mg L") by

varying quantities of fly ash ranging from 25 to 500 g L. The removal curves can be
expressed by equations 1 and 2:
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Figure 2, Kinetics of cadmium adsorption from various fly ash concentrations for fixed
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As = Kt X tm (1)
or log A, mlog t +logK;, 2

(see Appendix for characters used)

Equation 2 gives a straight line on a log-log plot with slope “-m-" varying from

0.23 to 1.693 and K, value from 0.491 to 0.894 for cadmium. The rate of adsorption has
been reported to be functions of m and K, *'. The amount of solute adsorbed per unit
weight (K,) increased with increasing fly ash concentrations indicating an increase in the
rate of metal removed (Fig. 2). The increase in the percentage of metal removed fell
substantially after a contact time of 2 hours. Equilibrium was attained after 7 to 8 hours
of contact between adsorbate and adsorbent. Maximum adsorption mechanisms for high
fly ash concentrations gave high values of “-m-".

The relationship between percent Cd removed and the concentration of fly ash is
shown in Figure 3. The metal removed was a function of fly ash concentration as shown
in equation 3 and 4:

A, = K x Cf €)
or log A n log Cr + log Ky “4)

(See appendix for characters used)

The rate of Cd removal at a particular contact time is the value for “-n-" (Fig. 3).
The “-n-" value increased up to a contact time of 2 hours and then an increase in “-n-"
appeared to become dependent on contact time. The percentage of metal removed by 100
g L of fly ash showed that an increase in contact time reduced further beyond 2 hours.
Thus, 2 hours of contact time appeared to be considered optimum.

One hundred gram of fly ash per liter removed 20% of the cadmium from solution
after a contact time of 2 hours. For each subsequent 100 g L™ increase in fly ash
concentration, the percent removal of Cd was 14, 13, 12, and 12 (Fig. 3). Therefore,
larger quantities of fly ash become comparatively less efficient per unit weight,
notwithstanding higher total percent metal removal for high fly ash concentrations. Thus,
taking into account handling problems for large quantities of fly ash quantities and the
considerably small percent removal for low fly ash quantities, a fly ash concentration of
100 g L' can be considered optimum for further experimentation.

The present investigation revealed that the average value of “-m-" was 1.10 for
Cd, which controlled the overall rate of adsorption because of the greater transport rate in
the fly ash. The surface of fly ash develops positive and negative electrical charges in the
presence of a water dipole. The potential determining ions of water molecules (H'/OH"
ions) that become associated with the metal oxides of the adsorbent and their subsequent
acid-base dissociations can produce comparatively different kinds of surface charge in
the acidic and basic mediums.

Effect of Adsorbate Concentration

Figure 4 shows the Cd adsorption from systems where fly ash concentrations were
fixed at 100g L' and concentration of metals varied from 5 to 100 mg L. The
relationship can be expressed by equation 2. An increase in concentration of Cd resulted
in a decrease in slope “-m-" and reduction in “K;.”” This reduction in immediate solute
adsorption is probably due to the lack of available sites on the fly ash surface compared
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to the relatively large number of sites required for high metal concentrations. A large
value of “-m-” implies strong bonds between adsorbate and adsorbent.

The relationship between Cd removed by a fixed fly ash concentration and
varying initial Cd concentrations were plotted (Fig. 5) to reveal an almost decreasing rate
of metal removal for high initial metal concentrations. The ultimate capacity of fly ash
used in the experiment was estimated as 0.127 mg of Cd g of fly ash.

Fly Ash-Metal Adsorption Isotherm

The degree of adsorption and resulting equilibrium relationship has been
correlated according to the empirical relationship of Freundlich and the theoretically
derived Langmuir relationship. An adsorption isotherm for a metal defines a functional
expression for the distribution of the metal in liquid and solid phases, i.e., fly ash at
constant temperature has been plotted and discussed for an efficient utilization of fly ash
adsorption capacity.

The equilibrium data have been processed in accordance with Freundlich
isotherm, defined by equations 5 and 6 (plot is not shown) for the full range of metal
concentrations investigated:

€ = K& x c'm (5)
or log ge log K + % log C 6)

(see appendix for characters used)

This is a special case of heterogeneous surface energies and its validity in the
system is probably correct as fly ash consists of carbon and oxides of silica, alumina, and
iron possessing different surface energies. A coefficient of correlation of this relationship
was 0.63.

Metals become adsorbed on silica, alumina, and functional groups present in the
fly ash. Adsorption of ions may be due to the desolvation of the sorbing species, change
in size of the pores, and the enhanced rate of intraparticle diffusion of sorbate. The value
of K represents the adsorption capacity of fly ash for a metal concentration of 1 mg L™

Similarly, the data for moderate metal concentrations (5 to 100 mg L) have been
correlated with the Langmuir isotherms. The extent of steady-state adsorption is a
function of the relative equilibrium concentration of the solute constituent according to a
monolayer adsorption mode. Equation 7 defines the Langmuir isotherm and data were
plotted (Fig. 5) for cadmium with a coefficient of correlation of 0.85, proving the strong
validity for Cd.

s e 4 (7)
qe Q bQ°C
(see appendix for characters used)

The value of Q° (1.63 x 10” mg Cd mg™' of fly ash) represents the limiting
amount of adsorbed metal to form a complete monolayer on the surface of the fly ash.
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Figure 6. Langmuir isotherm for moderate (5 to 100 mg L") cadmium concentration.

Cadmium data was tested with the BET (Brunauer, Emmett, and Teller) isotherm
at low metal concentrations up to 5 mg L. The BET isotherm can be represented by
Equation 8:

-------------- = e b e @®

(see appendix for characters used)

The value of Q° calculated from the slope and intercept of the linear plot was 1.28
x 10° mg Cd mg' fly ash. However, the relationship was very weak (r = 0.002)

CONCLUSIONS

The time of contact between adsorbent and adsorbate can be ascertained by the
rate of adsorption. The equilibrium of adsorption indicates the approximate ultimate
capacity of adsorbent that affects such design parameters. This study further indicated
that Cd adsorption phenomena by fly ash could be well described by a monolayer
adsorption mode (Langmuir isotherm) with strong correlation coefficient (r = 0.85).
These studies suggest that this experimental work can be applicable in a rational design
of a fly ash adsorption unit for removal of metals, such as cadmium, under slightly acidic
conditions so that the wastewater can be reused.
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APPENDIX

A = Percent metal removed

t = Mixing time

K = Rate factor (percent metal removed for t = 1 hr)

m = Slope of linear plot

Cr = Concentration of fly ash

K¢ = Constant denoting extent of solute removal

Ke = Constant denoting adsorption capacity

n = Slope of linear plot

qe = Amount of metal adsorbed per unit weight of fly ash

C = Concentration of metal in solution at equilibrium

b,B = Constants related to energy of adsorption

Cs = Saturation Concentration of metal
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ABSTRACT

Disposal of various coal combustion and municipal by-products is a serious and
challenging problem due to strict environmental regulations. This is due to the threat of
accumulation of certain heavy metals in soils, plants and groundwater when these
products are used as soil amendments or disposed of in landfills. This chapter describes a
study that was undertaken on a coarse and medium textured soils amended with single
rate of (74.1 Mg ha™') fly ash (FA), sewage sludge (SS) and sewage sludge ash (SSA) to
compare the transport and leaching potential of various elements and their distribution
within 30-cm soil columns. Transport and leaching potential of macro nutrient elements
were highest in SSA amended soils followed by SS and FA. Leaching potential of Cr, Cd
and Ni were the lowest in SSA followed by SS and FA. In addition, the total quantity of
metals in the leachate (total of 2640 mL) were generally greater when the amendments
were applied to coarse textured soil compared to medium textured soil with the exception
of Pb. The results also suggest that binding sites created by the interaction between soil
and amendments may modify metal adsorption-desorption and solubility, with a
consequential effect on leaching and downward transport of various elements.

INTRODUCTION

Despite accelerated development and use of alternate sources of energy, coal
remains an important source of power in the global economy. To achieve the national
goal of energy independence, coal combustion is expected to increase. This in turn
results in 1ncreased release of potentially toxic organic and inorganic contaminants into
the environment'. Fly ash (FA) traditionally forms the bulk of coal combustion products
(CCP) at present. Since FA and other coal residues contain a variety of potentially toxic
metals, their irrational disposal and management could cause considerable environmental
impacts. Despite this fact, public interest in recycling and reuse of CCP continues to
increase.

Chemistry of Trace Elements in Fly Ash, edited by Sajwan et al.
Kluwer Academic/Plenum Publishers, 2003 189



Sewage sludge (SS) is another major solid products released from wastewater
treatment plants in cities around the globe” >, which is generally disposed of in landfills >
456 The composition of SS varies considerably depending on the locality from which
the sewer and waste are derived.

Extensive research on the use of SS during the past three decades has helped to
realize the beneficial effects of land application in terms of increased crop production and
improved soil quality > %% 1116 "Thjs has resulted in renewed interest in reusing and
recycling SS from wastewater treatment plants. Land application of SS dramatically
increased from 20 % to 54 % in the USA from 1972 to 1995 respectively'""2.

Wastewater treatment plants, however, encounter public acceptance problems in
disposing of SS because of unpleasant odors, high acidity and levels of some heavy
metals in excess of maximum critical limits. The exploration of alternate disposal
methods has resulted in the production of ash from the incineration of dewatered
activated sewage sludge and weathered ash. The incinerated products are dissolved and
stored in ash ponds adjacent to wastewater treatment plants. These products are termed
as sewage sludge ash (SSA) and weathered sewage sludge ash (WSSA), respectively.
The same terminology is used to denote these by-products throughout the rest of the
manuscript.

Unlike CCPs, however, these relatively new wastewater treatment products are
still recognized as hazardous waste by the U.S. Environmental Protection Agency
(USEPA) and this presents regulatory obstacles to their effective use. In addition,
products from both municipal (SS) and industrial (FA) sources are enriched with trace
and heavy metals (e.g. Zn, Cd, Cr, Pb, and Ni), and this may also limits its application to
land '*'*, Unlike SS and FA, information available on these new byproducts from SS is
meager. To our knowledge there have been no studies that report data from a comparison
of the leaching potential of various elements from FA and SSA amended soils with
contrasting textural types. This leaching column study was designed to evaluate the
leaching pattern, potential and distribution of various elements within soil columns
amended with single application rate of FA, SSA, and SS.

MATERIALS AND METHODS
Soils and Amendments

An unweathered alkaline FA (pH 12.1), SS (pH 5.7) and SSA (8.0) were used in
this study. FA was collected from a coal-fired power plant near Beach Island, South
Carolina. SS and SSA were collected from President street wastewater treatment plant
located in Savannah, GA. Selected chemical properties of the products are presented in
Table 1.

The study was conducted on Ap horizon soil semples of a Candler fine sandy soil
(sandy, hyperthermic, uncoated, Typic Quartzipsamments) collected from a citrus grove
Polk County, FL, and an Orangeburg sandy loam (fine loamy, silicious, thermic Typic
Paleudult) from Aiken, South Carolina. Selected properties of these soils are presented in
Table 1.

Leaching Column Study

Plexiglass columns, 32-cm long and 7-cm inner diameter, were used to study the
transport and distribution of various elements (including heavy metals) in soils amended
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with single rate (74.1 Mg ha™) of FA, SS or SSA. Soils were dried, and sieved to pass a
2 mm sieve. Whatman No. 42 filter paper was placed at the bottom of the leaching
column and the soils were packed to a height of 30 cm to attain a bulk density of 1.5 g
cm”. Three replicate columns were used for each treatment. Appropriate quantities
(32.7 g per column) of amendments were mixed with the top 2.5 cm soil and repacked to
attain the same bulk density as above. Three more columns were included to
accommodate an un-amended control. All soil columns were saturated with distilled
water and allowed to drain overnight,

Whatman No. 42 filter paper was Placed on the top of the soil column and de-
ionized water was applied at 1.5 mL min™ using a peristaltic pump to facilitate leaching.
Leachate was collected at one half-pore volume fractions (220 mL) for a total of 12
fractions. Leaching events were repeated at 6d intervals. Upon completion of each
leaching event, soil columns were allowed to dry until the next leaching event (6d) at
room temperature (30°C). When the ionic strength leachate of all treatments approached
to that of non-treated control, addition of water was terminated. The total amount of
leachate generated was equivalent to 60 cm rainfall, which is about 45% of the mean
annual rainfall of southeastern coast of Georgia.

Concentrations of various nutrient elements (K, Ca, Mg, and P) and metals (Cr,
Zn, Cd, Cu, Ni, and Pb) in the leachate were determined using inductively coupled
plasma optical emission spectroscopy (ICP-OES Plasma RL 3300, Perkin Elmer Inc.,
Norwalk, CT). The quantity of metals leached was calculated using the concentrations of
each metal and the volume of leachate fraction. The leaching potential for individual
metals represents the cumulative amount of metal leached in all the leachate fractions. In
addition, electrical conductivity (EC) and pH of leachate samples were measured using
HI 8733 conductivity meter (Hanna Instruments, Singapore) and an Accumet Model 15
pH meter (Fisher Scientific, Pittsburgh, PA) respectively.

Distribution of Elements in Soil Column

After 6 pore volumes of water were leached through the soil columns, soil from
each was divided into 3 sections at 10 cm increments (0-10, 10-20, and 20-30 cm depth
sections). The soil was air-dried, homogenized and a sub sample was taken for pH
analysis (1:1 suspension of soil: water). Another sub sample was used for Mehlich 3 (M-
3) extraction using soil: extractant ratio of 1:10. The concentrations of various elements
and heavy metals in the M-3 extract were measured using ICP-OES as described above.

Statistical Analysis

Experimental data were analyzed using the SAS (version. 8.1) completely
randomized design (CRD) with four treatments and three replicates per treatment ',
Duncan’s Multiple Range Test (DMRT) at 0.05 probability-level was used to compare
means of cumulative amounts of each individual element leached. The same test was
used to evaluate the significance of means of various elemental concentrations at
different depth sections of the soil columns with various treatments.

RESULTS AND DISCUSSION
The leaching and drying conditions adapted in this study were to mimic the soil

conditions in areas Florida and southeastern Georgia during the summer months
characterized by frequent intense rainfall and rapid drying because of high temperature.
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pH of Leachate

Candler soil (fine sand) amended with various amendments had no significant
effects on leachate pH value (mean) irrespective of the original pH of amendments
(Tables 1 and 2). In contrast, the mean leachate pH values were greater in Orangeburg
sandy loam regardless of source of amendments, compared to leachate from unamended
Orangeburg sandy loam (Table 2). It is pertinent to note that the control leachate pH
from both soils indicated that soil type did not influence leachate pH (Table 2).
However, when soils were amended with material having varying pH, mean leachate pH
approached near neutral. During the beginning of leaching events, pH values varied
slightly around that of unamended soil. Elevated leachate pH arising from Orangeburg
soil may have been due to the creation of binding sites as a result of interaction between
the soil and the various amendments. These interactions are expected to modify metal
solubility, with consequential effect on leaching and leachate pH.

Concentration of Major Nutrient Elements in Leachate

Irrespective of soil types, the highest concentration of nutrient elements measured
in the leachate came from soils amended with SSA. Leachate from the fine sand
amended with SSA contained the highest concentrations of Ca, K, Mg and P (Figs.1- 4)
in contrast to sandy loam soil with same amendment. However, this finding was less
pronounced for Mg (Fig. 3) in sandy loam soil amended with SSA. This is a clear
indication of the greater leaching potential of the majority of elements in coarse textured
soils compared to that from medium textured sand. Peak concentration of nutrient
elements occur between the 4™ and 6™ leachate fractions in both soils amended with SSA.
Thereafter, concentrations of nutrient elements declined rapidly. However, in all other
treatments, peak nutrient element concentrations were observed much earlier at the 2" or
3" Jeachate fraction before declining to that of unamended soils.

The concentrations of Ca in the majority of leachate fractions from SSA amended
Candler fine sand were consistently above 10 mg I_jl. However, Ca concentrations were
generally below 10 mg L' in SSA amended Orangeburg sandy loam (Fig. 1). In
addition, leachate Ca concentrations fell below 10 mg L™ beyond the 4" leachate fraction
in both soils amended with all treatments with the exception of SSA amendment.

The leaching patterns of K from both soils amended with various amendments
were very similar; approximately 10-12 mg L. The total concentration of K in various
leachate fractions differed very little between Candler fine sand and Orangeburg sandy
loam although a comparatively greater volume of water was required to leach K from
sandy loam soil amended with SSA (Fig. 2).

The concentration of Mg in leachate remained below 12 mg L (Fig. 3) in all soil-
amendment combinations, except SSA-amended Candler fine sand. The peak Mg
concentration was ~ 15 mg L' in fine sand amended with SSA observed at 6" leachate
fraction and did not fall below 3 mg L™ throughout the study.

The concentration of P in various leachate fractions was below 0.8 mg L™ in both
soils amended with FA and SS. In addition, the concentrations of P in various leachate
fractions collected from both Orangeburg sandy loam and Candler fine sand were similar.
When these soils were amended with SSA, peak concentrations of P from Candler fine
sand was ~ 2.4 mg L' where as it was ~1.2 mg L in Orangeburg sandy loam (Fig. 4).
Concentrations of Ca and Mg in leachate fractions from both soils also followed a similar
pattern. It is important to note that Mehlic extractable P content in Candler fine sand was
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Fig. 1. Comparison of Ca leaching in Candler fine sand and Orangeburg sandy loam
amended with single rate of various amendments. Error bar on each point represents
standard error of the mean.
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Fig. 2. Comparison of K leaching in Candler fine sand and Orangeburg sandy loam
amended with single rate of various amendments. The error bars as in Fig. 1.
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five times greater than that in Orangeburg sandy loam. Similarly, P content of SS was
almost three times greater than that of P content in FA (Table 1). The observed low
concentrations of P could be attributed to the interaction among soil-FA-SS-SSA. These
interactions may modify solubility or enhance precipitation of P as Ca (PO4); and Mg
(POy); in both soils and /or other reactions, which may affect the leaching of P.

Concentration of Metals in Leachate

Mean concentrations of metals were calculated from the cumulative amount of
metals (Table 2) leached in 2640 mL leachate. ‘The mean concentrations of Cr in the
leachate from amended Candler fine sand were in the range of 0.02 to 0. 10 pg mL™ where
as the concentration of Cd varied in the range of 0.008 to 0.03 pg mL". Leachate from
Orangeburg sandy loam amended with SSA contalned concentrations in the range of
0.009 to 0.08 pug mL™" and 0.02 to 0.04 pg mL"! for Cr and Cd respectively. The critical

})per limits set for Cr and Cd for drinking water were 0.1 and 0.005 mg L™ respectively

Accordingly, concentrations of Cr and Cd in the leachate collected from both
amcnded soils used in this study at the single application rate of 74.1 Mg ha' did not
exceed the critical concentrations for drinking water standard.

The concentrations of Zn and Cu in the leachate from the Candler fine sand
amended with various amendments varied in the range of 72 to 1022 ug L' and 186.4 to
1981 pg L respectively. The corresponding concentration ranges for Orangeburg sandy
loam amended with similar amendments were 34.8 t0 262.9 pg L and 9.1 t0 22.7 pg L™
respectively. The average reported concentration of Zn in fresh water was 15 pg L™
(range 1 to 100) while that of Cu was 3 pg L™ (range 0.2 to 30) respectively '. The
concentrations of Zn in leachate from unamended soils of Candler fine sand, and
Orangeburg sandy loam were 66.7 and 24.6 ug L' respectively. Slmllarly, the
concentrations of Cu in unamended soils were 168.2 and 2.7 ug L' respectively. Highly
elevated concentrations of Zn and Cu in the leachate from amended Candler fine sand
may have originated in part from the soil itself since this soil received periodic fungicide

1200
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900 + (] 20t030cm
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LI
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Mehlich-3 calcium in soil (mg kg™)

Fig. 5. Concentrations of Mehlich 3 (M-3) extractable soil Calcium (Ca) at various depth
sections of Candler fine sand, which received single rate of various amendments. The
concentrations were determined after the completion of leaching of soil columns with

2, 640 mL of water. The error bars as in Fig. 1.
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application for citrus cultivation. Similarly the elevated concentration of Zn in
Orangeburg sandy loam also have originated from the soil itself due to previous
treatments made to this soil.

The concentrations of Pb and Ni in the leachate from the Candler fine sand
amended w1th various amendments varied in the range of 165.2 to 344.3 pg L' and 34.8
to 101.9 pg L™ respectively. The corresponding concentratlon ranges for Orangeburg
sandy loam with same amendments were 374.2 to 798.1 pg L' and 21.6 to 104. 9 pgL!
respectively. The average reported concentratlon of Pb in fresh water is 3 6p.g L' (range
0.06 to 120) while that of Ni is 0.5 pg L™ (range 0.02 to 27) respectively '°. However,
the reported range of Pb concentrations in drinking water are 1 t0 20 mg L from rural
areas and 1 to 40 mg L™ for drinking water from urban areas !”. The concentrations of Pb
in unamended soils of Candler fine sand, and Orangeburg sandy loam were 107.2, and
317 Omg kg respectively and these values lies within the reported range (2 to 300 mg
kg™) for agricultural soils except for Orangeburg sandy loam . Similarly, the
concentrations of Ni in unamended soils of Candler fine sand, and Orangeburg sandy
loam were 15.9, and 14.4 mg kg’' respectlvely and these values lies below the reported
mean concentration of 20 mg kg . In general concentrations of all the metals (except
Zn and Cu) in the leachate varied w1th various types of amendments but never exceeded
the critical value for drinking water standard.

Leaching Potential of Metals

Cumulative leaching of metals varied with both types of amendments and soils
used in this study. The leaching of Cr, Cd, and Ni from both soils amended with SSA at
74.1 Mg ha' was significantly lower than the values obtained with either SS or FA,
suggesting that this is a safer amendment in terms of metal leaching. Concentrations of
these metals in leachate collected from unamended soils were almost nondetectable with
the exception of Ni from Orangeburg sandy loam (Table 2). In addition, there were no
substantial differences in cumulative amount of Cr, Cd, and Ni leached between SS and
FA amended Candler fine sand and Orangeburg sandy loam (Table 2).
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Fig. 6. Concentrations of Mehlich 3 (M-3) extractable soil Potassium (K), the soils and
other details as in Fig. 5.
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Cumulative leaching of Cu and Zn was significantly greater in amended Candler
fine sand compared to that from the amended Orangeburg sandy loam. This indicates
that Candler fine sand has received recent fungicides applications prior to the collection
of samples for this study, which have added Cu and Zn to the soil. However, there was
no substantial increase of Cu and Zn evident in FA amended soils compared to that of
their respective unamended soils. Substantial increase of Cu and Zn was evident when
these soils (especially Candler fine sand) were amended with SS and SSA. Therefore, it
is apparent that the interactions of various amendments were different with different
types of soils. These interactions are influence the solubility, complexation, and
precipitation of Cu and Zn in both soils and /or other reactions, which may have
consequential effect on leaching of Cu and Zn.

Similarly, substantially higher Pb leaching was recorded in Orangeburg sandy
loam compared with the Candler fine sand from a citrus grove. This was probably due to
higher concentrations of Pb in unamended Orangeburg sandy loam compared to Candler
fine sand. In general, about 60 to 70 % of cumulative leaching of most of these metals
was accounted in the first 6 to 8 leaching events. Peak leaching of metals occurred at 5™
or 6™ leaching event irrespective of soils or rates of amendment used (data not presented).

Distribution of Major Nutrient Elements and Metals in the Soil Column

The distribution of elements in soil columns were determined by analyzing soils
for Candler fine sand only at 10 cm depth increment sections following the termination of
leaching of 2, 640 mL of water. Amending soil with FA, SS, and SSA resulted in
increased concentration of soil Ca (M-3 extractable) at a depth of 0-10 cm compared to
that of an umamended Candler fine sand. The concentration of Ca at this depth followed
the order FA> SSA> SS> control (Fig. 5). The differences in concentration of Ca in the
10-20 cm and 20-30 cm depth sections were not significantly different in FA and SS
amended soil columns. However, the concentration of Ca was significantly different at
the last two 10 cm depth sections of soil columns amended with SSA (Fig. 5). In
contrast, the concentration of Ca was significantly higher in the two lower depth sections
of SSA amended Candler fine sand compared to amendment with either FA or SS. This
indicates that transport of Ca may be promoted by amending soil with SSA (Fig 5).

The concentrations of M-3 extractable K followed a somewhat similar trend as
that of Ca by having higher concentrations in the top 0-10 cm of the soil columns at the
end of leaching (Fig 6). The highest concentration of K (140 mg kg™') was observed in
the top 10 cm of the SSA amended soil column. The concentrations of K in the top 10
cm depth section of the unamended control soil columns and those amended with FA, SS
were almost 4 to 5 times less than SSA amended soil column. Similarly low K
concentrations were observed in the lower profile (10-20 cm and 20-30 cm) of FA or SS
amended soil columns.

The concentration of M-3 extractable Mg was the highest in the top 10 cm of the
SSA amended soil column. Mg in the top 10 cm depth decreased in the order: SSA >SS
> FA > control (Fig. 7). Results also showed that concentrations of M-3 extractable Mg
were similar across all the depth sections of unamended control and in FA amended soil
columns. This indicates that transport of Mg is not hindered in coarse textured soils by
FA amendment. However, amending soil with SS or SSA did not enhance substantial
downward transport of Mg and most of the M-3 extractable Mg was present at the top 10
cm depth section of the soil column.
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Fig. 7. Concentrations of Mehlich 3 (M-3) extractable soil Magnesium (Mg), the soils
and other details as in Fig. 5.

The concentrations of M-3 extractable P in the top 10 cm of the coarse textured
soil profile increased in the order: SSA > SS > Control > FA. Mehlic-3 extractable P
concentrations were neither affected in the lower depth sections of the unamended control
soil columns nor those amended with FA and SS. However, significant downward
transport of P was observed in the soil columns amended with SSA after the completion
of leaching with 2, 640 mL of water (Fig 8).

Measured concentrations of M-3 extractable various metals indicated that there
were no significant differences in the distribution of Cr, Zn, Cd, Pb, Ni, and Cu at various
depth sections of the soil columns amended with various types of amendments after the
completion of leaching with 2,640 mL of water. Therefore no data is presented.
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other details as in Fig. 5.
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CONCLUSIONS

This study strongly suggests that most of the metals leaching potential of sewage
sludge ash is lower than either fly ash or sewage sludge and sewage sludge ash could be
used at higher rates without deleterious effect. The leaching potential of macronutrient
elements were, however, higher with SSA compared FA or SS. Greater cumulative
leaching of elements was observed in coarse textured soil than with medium textured soil
amended with all amendments. About 60 to 70 % of the cumulative leaching of various
elements was over within first 7 to 8 leachate fractions. For all amendments, the
concentration of majority of elements monitored did not exceed critical limit or did not
exceeded the average concentrations of those respective metals generally found in the
natural fresh water environment. With little caution, it may be possible to ap?ly these
amendments safely to agricultural land at low to medium rates ( 100 Mg ha™) without
causing excessive loading of metals into groundwater which are of serious concern.
However, field studies with groundwater monitoring are warranted in different soil types
prior to making this recommendation.
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1. ABSTARCT

The sluicing of coal fly ash to settling basins is a major method for disposal of
this industrial by-product. Fly ash often contains elevated concentrations of trace
elements such as As, Se, and Mo, which can be solubilized upon contact with water and
also become elevated in the surficial sediments. Both the soluble and sediment-sorbed
trace elements can be bioavailable and potentially toxic to animals inhabiting the ash
basins. This study examines the aqueous speciation of As in the surface and interstitial
waters and the solid phase As speciation in the sediments of a fly ash basin system. Ion
chromatography coupled to inductively coupled plasma mass spectrometry (IC-ICP-MS)
was used to determine arsenite As(Ill), arsenate As(V), dimethylarsenate (DMA), and
momomethylarsenate (MMA) in the aqueous samples. Hydoxylamine hydrochloride and
oxalic acid extractions were used to assess the proportion of amorphous Fe, amorphous
Al and amorphous aluminosilicates in depth sectioned samples of a sediment core taken
from the ash basins. The concentration of As solubilized by these extractants was also
measured. Surface water As concentrations were low with an average of 13 and 3 pg 1"
determined in the summer and fall 2000. Arsenate was the major As species in the
surface waters; DMA and As(IIl) were detected in the summer sampling but no DMA
was detected in the fall sampling. Pore water As concentrations were much higher than
the surface waters, reaching a maximum of 110 pg 1" at a sediment depth of 8-12cm.
Arsenate was the major dissolved species at the sediment-water interface but decreased

with depth, while the proportion of As(IIl) increased to a maximum at a depth of 8-12
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cm. The increase in total dissolved As with depth was mirrored by an increase in soluble
Mo and an increase in pH, and the depth of maximum As concentration marked the onset
of an increase in soluble Fe. This suggests that the observed increased As solubility may
result from the decrease in sorption by amorphous Fe phases due to the onset of reductive
dissolution, coupled with the prevalence of As(I), that may be poorly sorbed by the
remaining mineral phases in the sediment. This observation was supported by the
selective extraction data of the sediment core sections, which indicated that As was
mostly bound to amorphous Fe phases in the sediment. The oxalate extraction also
showed that a significant proportion of total Al was present as amorphous phases and that

< 20% of amorphous Al was present as amorphous aluminosilicates.

2. INTRODUCTION

Large quantities of coal fly ash are generated annually through fossil fuel
combustion. In 1998 it was reported that 63 million tons of fly ash were generated in the
US.! The trace element content of fly ash is highly variable depending on the original
coal, combustion conditions, and ash handling practice. However, it is generally the case
that trace element concentrations in the ash are higher than average background
concentrations in the terrestrial environment. For example average concentrations of As
and Se in fly ash have been reported as 2 - 440 and 0.2 — 130 mg kg'l, compared with soil
background concentrations of 1 — 50 and 0.1 — 2 mg kg, respectively.? In addition,
volatile trace elements such as Zn, As, Se and Cd are often present as surface condensates
on fly ash particles and thus are highly soluble. The two major methods for the disposal
of fly ash are landfilling and sluicing to settling basins. Land filling poses potential
environmental problems from leaching of contaminants to groundwaters. Aquatic
disposal through settling basins presents identical environmental problems to that of
landfilling and the additional issue that a wide range of wildlife invariably inhabits these
wetland sites and thus become subject to trace element toxicity and act as vectors for the
dispersal of increased trace element concentrations within the ecosystem.

In a study of 24 ash samples from the south east, total As concentrations ranged
from 12.9 - 321 mg kg‘l, while the percent of the total As that was water soluble from
these ashes ranged from 0.28-19%, respectively.’ X-ray absorption fine structure
spectroscopy has been used to investigate the speciation of As associated with fly ash and

while both As(Il) and As(V) oxidation states were detected, the predominant speciation
was identified as As(V).*” It has been postulated that As my be present as calcium

arsenate in alkaline coal fly ashes as a result of the reaction between CaO and As;O; in
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the stacks.® Upon contact with water during the sluicing of fly ash a proportion of As
will be solubilized, and may undergo changes in speciation depending on the prevailing
pH and eH conditions. As(V) has been identified as the major species in coal fly ash
leachates in a number of studies.*””

A basin settling system removes fly ash from the water column through
gravitational settling, hence the sediments of these systems are predominantly fly ash in
progressive stages of weathering. The weathering products of fly ash in these
environments may thus exert a primary control on As solubility and solid phase
speciation. It has been suggested that the secondary precipitates of amorphous Fe oxides
may control the solubility of As and Se in acidic fly ashes.'” Accelerated leaching
experiments on coal fly ash identified calcite and gypsum as major solid phases, while Si
and Al from the ash may form the amorphous clay minerals allophane and imogolite.'" 12
The presence of these high surface area, variably charged minerals could affect solubility
of both cations and anions in ash basin systems.

This study focuses on the speciation of As in the surface waters of the fly ash
basins, the interstitial waters of the sediments, and the possible solid phase speciation of
As in the sediments. Aqueous speciation of As is investigated in terms of oxidation state
and potential methylated As compounds, while speciation in sediments is investigated in
terms of the solid phase speciation/association of As. The study was conducted at the D-
area ash basins at the Savannah River Site in Aiken, SC. This ash basin system has been
intensively studied over the last thirty years. and increased body burdens of As and Se
have been identified in amphibians, reptiles and invertebrates inhabiting this ash basin
system, '

Aqueous speciation analysis at environmentally relevant concentrations requires
low detection limits. Liquid chromatography coupled to inductively coupled plasma
mass spectrometry (LC-ICP-MS) has been used to investigate As speciation in drinking
waters'® and soil interstitial waters.!® The main inorganic As species in natural water are
As(V) and As(ill), with the relative species distribution controlled by pH and Eh
conditions. In addition, microbially-mediated methylation products, namely
monomethylarsenate (MMA) and dimethylarsenate (DMA), may also be produced in
surface and interstitial waters. Because these four As species are anionic, ion exchange
chromatography has been used extensively for their separation. ' 7 While suppressed
conductivity has been used as a detection system for As species‘8 considerable
improvements in detection limits can be achieved with the use of ICP-MS as an elment-

specific detector.>
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3. MATERIALS AND METHODS
3.1 Sample Collection

Samples were collected from the D-Area fly ash basin system and the USDOE
Savannah River Site located in Aiken, SC. In this system, fly ash is first slucied to two
receiving pits where the majority of the large fly ash particles quickly settle out.
Suspended solids then flow through a primary settling basin, a secondary settling basin,
then to a swamp area. Discharge from this swamp area flows via Beaver Dam Creek to
the Savannah River. Surface water samples were collected from the primary and
secondary basins and the swamp in the summer and fall of 2000. Surface water samples
were collected in acid washed, 250 ml nalgene bottles that had been thoroughly rinsed
with DI water. Pore water samples were initially collected (summer 2000) using a
vacuum operated pore water extractor.”” Upon being returned to the laboratory all
aqueous samples were filtered (0.22 um pore size) and pH and electrical conductivity
were determined. An aliquot of the filtered sample was acidified for dissolved elemental
analysis, while a sub-sample (not acidified) was taken for speciation analysis. All
samples were stored at 4 °C prior to analysis and samples were analyzed for dissolved As
species within 24 hrs of collection.

An intact sediment core was also collected during the fall sampling. This core
was collected in a 50 cm polyethylene cylinder that was capped after collection in the
water column to retain the sediment-interstitial water relationship as best as possible.
The core was kept upright, transported back to the laboratory and split into six sections.
Saturated sediment samples from each of these sections were loaded in to high speed
centrifuge tubes without any further addition of water, and centrifuged at 15,000 rpm to
collect interstitial water. Sub samples of each core section were air-dried, ground to pass
through a 2mm sieve and subsequently used for determination 6f total HNO3 extractable
elements, dilute salt extractable elements, NH,OH/HC1 extractable elements, and 0.2 M

oxalate/oxalic acid extractable metals.

3.2 Trace element determination

All trace element analysis was conducted by ICP-MS (Elan 6100DRC, Perkin Elmer,
Shelton, CT). Quality control for aqueous samples involved initial and continuing
calibration verification using a secondary source calibration standard and duplicate
analysis of samples. Total HNOj; extractable trace elements were determined on samples
from the sediment core following hot block digestion of 0.25 g of air-dried sediment
sample with 10 mls 1:1 DI:HNO; at 105 °C for 2 hrs followed by two 1 ml additions of
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H,;0,. Duplicate samples of each core section were digested and analyzed by ICP-MS.

Standard reference materials were also analyzed as a further quality control measure.

3.3 Chemical extraction of sediment core sections

The proportion of amorphous Al, amorphous Fe, amorphous aluminosilicates and
associated trace elements were estimated by chemical extraction techniques. Two sets of
triplicate samples of 0.25 g air-dried sediment from each core section were initially
extracted with 10 mM NHy acetate (pH 6) to remove readily soluble As, Se, Fe, Si, and
Al After shaking for two hours the samples were centrifuged (3000 rpm) and
supernatant was decanted for subsequent ICP-MS analysis of As, Fe, Si, and Al. One set
of triplicate samples was then extracted with either 0.25M NHOH- HCL/0.25M HCl at 50°
C for 30 min. (extraction of amorphous Fe (hydr)oxides) or 0.175M NH;C,04/0.1 M
oxalic acid (extraction of amorphous Al (hydr)oxides and aluminosilicates) in the dark
for 2 hrs. Following extraction, the suspensions were centrifuged and the supernatant
was decanted for ICP-OES (Optima 4300DV, Perkin Elmer, Norwalk, CT) analysis of
Al Si and Fe and ICP-MS analysis of trace elements.

3.4 Speciation analysis
The As species arsenite (As III), arsenate (AsV), monomethylarsenate (MMA), and
dimethylarsenate (DMA), were separated on an Dionex lonpac AS7 column using a
HNO; gradient elution. This separation methodology was originally used to separate
these As species from arsenobetaine, an organic form of As commonly found in marine
animals,'” and was further developed to allow for the speciation of the four As species
listed above in addition to the As poultry litter feed additives roxarsone and p-arsanilic
acid®® FEluant was delivered to the As 7 column using a Dionex GP50 pump, and the
column was interfaced with the ICP-MS by a length of peak tubing directly to concentric
nebulizer of the ICP-MS. Prior to speciation analysis the lens voltage of the ICP-MS was
optimized daily for maximum signal intensity at m/z 75 by aspirating a 10 pug I"' standard
As solution. A programmable autosampler (AS3500, Thermo Separations) was used to
perform automated standard and sample injections and was also programmed to send
timed event outputs to trigger data collection by the ICP-MS and to start and reset the
gradient conditions of the GP50 pump. With this configuration complete automated
analysis by the IC-ICP-MS was possible.

Three point calibration curves were established for each species using serial

dilution of a mixed As species standards. The mixed As species calibration standard was
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Table 1. IC-ICP-MS gradient elution program for the As7 column (1 % methanol added to

mobile phases)
(2.5mM HNO;) (50mM HNO3)
Time A B flow rate
0.0 100% 0% 1 ml min.”?
1.00 100% 0% 1 ml min."!
1.01 0 100% 1 ml min.?
5.99 0 100% 1 ml min.?
6.00 100% 0% 1 ml min.?

prepared daily from stock solutions of the individual As species, which had been
prepared from reagent grade salts, or in the case of MMA, had been purchased as a 100
mg 1" stock solution (Crescent Chemical, Haupauge, NY). An injection volume of 100
ul was used for standards and samples. All calibration curves were linear with R? values
> 0.995. Detection limits for each of the As species was ca. 0.02 pg I". The gradient
conditions for this separation are given in Table 1 and an example chromatogram
showing the separation of a 11 pg 1" mixed As standard is shown in Figure 1. This
methodology was found to be both precise and accurate for measurement for the low
concentrations of As species as evidenced by the excellent agreement between total As
concentration and sum of As species determined by IC-ICP-MS on duplicate field
samples taken from the secondary ash basin (Figure 2).

12000 1

MMA
10000 -

DMA

A
8000 - M)

5000 - As(TIT)
4000 -

2000 -

ICP-MS response (counts/sec)

0 T T T T T )
0 50 100 150 200 250 300

time

Figure 1. IC-ICP-MS chromatogram of 11 ug I mixed As species standard.
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Figure 2. IC-ICP-MS As speciation analysis of duplicate field samples.

4. RESULTS AND DISCUSSION

4.1 Surface water concentration and speciation

The concentration of As throughout the basin system at any one sampling
occasion was found to be fairly constant. The results for total As concentration and the
corresponding speciation analysis of individual samples collected from the ash basin
system during the two sampling dates are given in Table 2. Even at the low As
concentrations found in the ash basin system the results of the speciation analysis were in
good agreement with the total As determination with the sum of As species usually
within £ 10% of the total As determination. The reproducibility of the speciation analysis
on duplicate samples taken from the secondary ash basin in fall 2000 is shown in Figure
2. The concentration of As during the summer sampling was approximately 12 pg 1" and
the major As species was As(V) with lower concentrations of As(Ill) and DMA also
detected. Arsenic solubilized from the fly ash would be inorganic mostly As (V), hence
the presence of an organic As compound, DMA, in the surface waters during the summer

indicates that biological methylation was occurring during this season. Total As

Table 2. Total dissolved As and As speciation in ash basin surface waters.

Location sampling date total As As speciation
As() | As(V) | DMA [ZAs species
pgl” g 1

Receiving pit Fall 4.05 0.75 36 nd. 4.35
Primary settling basin Summer 12 0.33 72 1 8.53
Secondary settling basin Summer 12.6 0.06 9 1 10.06
Secondary settling basin Fall 2.5 0.76 1.65 n.d. 241
Swamp Summer 13.6 1.1 10.2 0.55 11.85
Swamp Fail 2.25 0.5 1.8 nd. 23
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concentrations were lower in the fall sampling, approximately 3 pg 1" on average. The
major As species detected was As(V) but, while smaller concentrations of As(IIl) were
again detected, DMA was not detected in the surface waters during the fall sampling. A
seasonal decrease in dissolved As in this ash basin system had previously been reported.?!
However, because the source term (fly ash) of As released into the basin system is
variable, depending on the As concentration of the coal, it is not possible to ascribe
differences in As concentrations to seasonal biogeochemical cycles within the basin
system.

Total dissolved concentrations of As determined in this study are low, and not of

particular environmental concern. The maximum determined As concentration of 13 pg
I"" was well below the USEPA clean drinking water standard of 50 pg I that was

applicable at the time of collection and is only slightly above the new proposed limit of
10 pg I'". The ash basins are not subject to drinking water regulation, and clearly it
appears that these settling basins are effective in reducing dissolved As concentrations to
acceptably low levels. Previous studies of this ash basin system have reported somewhat
higher total dissolved As concentrations. A seasonal study conducted in 1982 reported a
mean As concentration for the ash basin system of 46 + 31pg I” (N=63).2] Arsenic
concentrations throughout the ash basin system were similar at any one sampling, and the
variation in As concentrations arose through seasonal fluctuations. A study conducted in
1990 reported variable As concentrations in the basin system, with values of 7, 46, and 65
pg TI'' of dissolved As reported for the primary, secondary, and swamp areas,
respectively.”? The decreased dissolved As concentrations reported in our study may
reflect changes in ash handling practices over the last decade but may also be due to

differences in the As content of the source coal.

4.2 Pore water As concentrations

Initial pore water sampling using in-situ samplers indicated that dissolved As
concentrations in the interstitial waters were much higher than those found in the surface
water. Pore water As concentrations of 3 - 91 pg I'' were found in the secondary basin
and concentrations of 13 - 122 pg 1" were found in the swamp (data not shown). Some
of the variability in As concentrations resulted from the difficulty in using the in-situ
samplers at a repeatable and measurable depth. In order to further investigate the As
speciation in the sediment as a function of depth an intact sediment core was collected
from the ash basin swamp and was sectioned in the laboratory and total trace element

analysis and As speciation analysis was determined. The pH and dissolved
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Table 3. Total elemental concentrations in the depth-sectioned sediment core determined by
HNO3/H,0, digestion.

Core
section

Na [Mg[Al] K |[Ca] V]C [Mn|Fe]Co]Ni|[Cu

mg kg’

0-4 cm

2459

4494

15280]|600.3| 3159 (42.94|36.57|102.3| 8203 |22.51|84.21{192.2

4-8 cm

280.5

494.9

16430(613.5{3194 {51.39(39.121113.0} 8952 |24.24187.88195.8

8-12cm

264.6

433.5

16650/366.2| 2874 {33.03 [ 18.60|78.58 | 5281 | 7.98227.58145.11

12-14cm

239.6

3959

18450/338.7| 2121 |17.85(13.6133.67] 2420 |{2.44610.15]12.18

14-20 cm

204.9

294.1

15130)265.8]| 1150 [11.83]11.06]16.07| 1328 |0.9234.823 [4.114

20-23cm

135.8

2234

9769 {192.4{635.5|8.279(8.49719.938|947.6|0.372|2.204|1.189

Core
section

Zn

As

Se | Rb | Sr | Cd | Cs | Ba{ Tl |Pb| U

mg kg’

0-4 cm

2712

64.46

23.20(7.200(98.16|8.821|1.388]405.5/5.712|27.70(5.873

4-8 cm

317.5

79.26

28.02(7.534[114.6/8.930)1.453]455.0{6.379|30.18(6.490

8-12cm

79.34

20.22

10.10(7.587)95.16|1.99011.780{276.1 {1.542)|25.73 [3.150

12-14cm

35.64

3.508

3.014(6.29862.27|10.411[1.607{161.4|0.433119.25|2.435

14-20 cm

24.58

0.694

1.2333.98628.60{0.0911.338/113.4/0.186|16.24|1.986

20-23cm

7.749

0.194

0.522{2.917]14.9810.026/1.114[80.6210.129|12.73 [1.156

concentrations of As, Mo, Fe, and Mn are given in Figure 3 and the total (concentrated

HNO:) extractable elemental concentrations for the sediment core sections are given in

Table 3.

depth (cm)

As (ppb)
50 100 150

20

25 -

-0 As(llf)
-} total As

Figure 4. Interstitial water As speciation in sectioned sediment core.

Arsenic concentrations in the interstitial water increase markedly to 100 pg I at 10 cm

depth in the core, then decrease rapidly to 8 pug 1" at depth 20 cm. The As concentration

profile is identical to Mo, and the solubility of both these anions increases concurrently

with an increase in pore water pH. An increase in the solubility of oxyanions with a rise
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in solution pH suggests that the primary sorption mechanism of As and Mo in these
sediments is adsorption. Specific adsorption of anions is generally at maximum around
their pKa and then decreases with increasing pH as the proportion of negatively charged
surface functional groups of variable charged surfaces increases. Both these oxyanions
are strongly sorbed by amorphous Fe oxide phases and the observed increase in As
solubility under reducing conditions has been ascribed to dissolution of the sorptive Fe
phase.”® However, whether this mechanism is operative here is unclear; soluble Fe
concentrations increase with depth suggesting a more reducing environment, but at the
peak of As solubility soluble Fe is still fairly low.

Speciation of As in the pore water extracts was examined by IC-ICP-MS (Figure
4). The increase in soluble As occurs concurrently with a change in the relative As
species distribution from predominantly As(V) and low solubility at the sediment water-
interface to predominantly As(IIl) and increased solubility at a depth of 10 cm.
Interestingly, DMA concentrations, albeit very low in comparison to total soluble As,
mirror the As(IIT) concentration profile and suggest that microbial methylation may also
be occurring in this zone. Unlike As(V), which is anionic in the pH range of natural
waters, As(IIl) is a very weak acid that it is undissociated under natural pH conditions
(pKa; =9). Itis for this reason that As(IIT) has been reported to be less strongly sorbed in
soils and sediments than As (V).Z“’25 However, other studies have suggested that when
amorphous Fe oxides is the sorbent, As(Ill) is adsorbed as strongly as As(V).26 Hence,
the occurrence of soluble As(IIl) in sediment systems may also be due to the reductive
dissolution of amorphous Fe oxides and reduction of solubilized As(V) rather than an
inherent greater solubility of As(II).

The major and trace element composition of the sediment core changes with depth
(Table 3) as a result of the input of freshly deposited ash, the weathering of previously
deposited ash, and the leaching of soluble elements. The upper 8 cm of the sediment core
is approximately 1.5 % Al, 0.8-0.9 % Fe, and has the greatest concentration of trace
elements. The concentration of most elements decrease with depth, which indicates a
change in mineralogy from Al and Fe oxides to crystalline aluminosilicate clay minerals
or quartz, which would not be dissolved by the HNO; digest procedure used in this study.
The decrease in trace element concentrations to low levels at a depth of 23cm indicates
that leaching does not appear to be occurring to any great extent. The core section which
exhibited the greatest As solubility (i.e. 8 =12 cm) is actually four times lower in total As
concentration than the sediment above. Total Fe concentration also decreases at this

depth, and soluble Fe concentrations begin to increase at this depth suggesting the onset
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of reducing conditions. Hence a decease in variable charged oxide solid phases, an

increase in solution pH, and the prevalence of dissolved As(IIl), which may be less
highly adsorbed than As(V) by the remaining mineral phases, may explain the soluble As
maximum. Soluble As decreases significantly after this depth in accordance with low

total As concentrations deeper in the of the sediment core.

4.3 Partial chemical extraction of sediments

After extraction with 10 mM NH4Oac (pH 6) to remove soluble and weakly
exchangeable trace elements, samples of the core sections were extracted with either
0.2M oxalic acid/ NH; oxalate or 0.25M NH,OH- HCI/0.25M HCl. The oxalic acid
extraction technique dissolves amorphous Al oxides and hydroxides and the amorphous
aluminosilicate minerals allophane and imogolite.2” The latter two mineral phases have

L1 gilicon

been suggested as secondary weathering products in weathered fly ashes.
recovered in this extract is considered quantitative for the amorphous aluminosilicate
originally present in the solid sample, while any Al excess in the molar Al:Si > 2 is due to
amorphous Al phases.”’ Amorphous Fe content of the sediment cores was assessed with
the hydroxylamine extraction.® Because the oxalate extraction was conducted in the
dark it is also effective for the extraction of amorphous Fe oxides? thus allowing a
comparison between the two techniques.

The concentration of oxalate-extractable Al is much greater than oxalate-
extractable Si throughout the profile (Table 4) and the mole ratio of Al:Si increases
greatly at depths > 12 cm. The low extractable Si below 12 cm and the large decrease in
acid-extractable trace element concentrations below this depth (Table 3) suggest that the
depth of fly ash deposition in swamp area where the core was taken is limited to the
upper 12 cm of sediment. The ratio of Al:Si in the upper portion of the core (7-11) is
much higher than the 0.5 — 1 range reported for weathered Danish and Indian coal fly

Table 4. Oxalate extractable Al and Si and Al:Si ratio in the depth-sectioned sediment core.

Core Al si Al:Si
section % (w/w) mole
ratio
0-4 cm 0.56 0.07 7.8
4-8 cm 0.59 0.08 7.8
8-12cm 0.55 0.05 11.9
12-14cm 0.44 0.03 15.3
14-20 cm 0.30 0.01 22.6
20-23cm 0.12 0.00 255.6
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Table 5. Extractable elemental concentrations expressed as a percentage of the total HNOj; acid
digestion concentrations (given in Table 2).

Core Hydroxylam| Oxalate
section ine extract extract
Fe | As | Fe | As
0-4 cm 12% {36% | 9% | 66%
4-8 cm 8% |29% | 6% | 59%
8-12cm 6% {51% | 5% |94%
12-14cm 10% | 64% | 9% |100%
14-20cm | 24% | 73% | 25% |100%
20-23cm 33% | 95% | 31% |100%

ashes'? and suggests that amorphous Al oxides phases may be an important solid phase
controlling sorption in the upper portion of the sediment.

The % of extractable Fe and As relative to the HNO; digestion values for both the
hydroxylamine-and oxalate extractions are given in Table 5. Both extraction methods
gave similar results for extractable Fe, which is in agreement with previous studies that
have shown that either extractant is selective for the amorphous Fe phase.?® The
concentration of extractable As differed between the extractions with higher
concentrations of As extracted with the oxalate extraction. A similar increase in
extraction of As with oxalate has been observed in single and mixed systems of
amorphous Fe and goethite.? In that case it was shown that oxalate can displace some As
sorbed to goethite and prevent readsorption of As to goethite after the dissolution of an
amorphous Fe solid. The % extractable Fe is a direct measure of the % amorphous Fe in
the sediment profile, and it can be seen that the depth of minimum % amorphous Fe in
the solid phase also corresponds to the depth of maximum soluble As. Hence the
observed maximum in dissolved As concentrations at this depth appears to be due to a
minimum in amorphous Fe solid phase, the prevalence in As(II) as the main As species,

and a maximum in solution pH.

5. CONCLUSIONS

Dissolved As concentrations in the basin system were low and the predominant
speciation was As(V). Sediment As concentrations were > 90 mg kg™’ at the sediment-
water interface but decreased to < 10 mg kg'1 below 20 cm depth. Dissolved As
concentrations in the sediment interstitial waters increased to a maximum of 100 pg I"" at
12 cm and the predominant species at this depth was As(Ill).  Arsenic was associated

with amorphous Fe oxides in the sediment core. It appeared that As solubility was
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controlled by redox conditions in the sediment profile, and the maximum in As solubility

was coincident with an increase in soluble Fe and the prevalence of As(II) in solution.

Ton chromatography coupled to ICP-MS was demonstrated to be a precise and accurate

method for As speciation and provided the low detection limits necessary for

environmental analysis.
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LEAD DESORPTION AND REMOBILIZATION POTENTIAL BY COLLOID
PARTICLES IN CONTAMINATED SITES

A.D. Karathanasis

Agronomy Department, University of Kentucky
Lexington, KY 40546

1. ABSTRACT

The utilization of coal combustion byproducts (CCB) alone or in conjunction with other
wastes as soil amendments has steadily increased during the last few years. In spite of their
beneficial contributions, these amendments, if not monitored, pose a considerable environmental
risk because of their high heavy metal concentrations. Lead is one of several toxic metals found
in CCB in relatively high quantities. Although Pb has shown substantial attenuation by the soil
matrix, it has also exhibited great sorption affinity and transportability in association with
colloidal particles. This study investigated the potential of water-dispersible colloids to desorb
Pb from contaminated soil particle surfaces and co-transport it to groundwater. The study
employed intact soil monoliths contaminated by Pb, which were flushed with colloid suspensions
of different mineralogical composition and deionized water (d-H,O) used as a control. The soil
monoliths represented upper solum horizons of an Alfisol and a Mollisol with contrasting
macroporosity and organic carbon content. The soil colloids were fractionated from low ionic
strength Bt horizons of Alfisols with montmorillonitic, mixed, and illitic mineralogy and variable
physicochemical and surface charge properties. The results indicated a sharp decrease, to near
zero, of Pb desorbed by deionized water-flushing solutions after 3 pore volumes of leaching, but

a continuous desorption and transport of Pb in the presence of colloids. The colloid-induced
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desorption and remobilization of Pb was in the range of 10-60% of the initial eluent Pb
concentration. Colloids with high surface charge (montmorillonitic) and small size diameter
showed a greater Pb desorption and transport potential, but the amount of remobilized Pb was the
result of contributions by both ion exchange and physical exclusion processes. These findings
have important ramifications on assessing and predicting contamination risks and developing
remediation strategies.
2. INTRODUCTION

In recent years, improper disposal of various waste materials has posed serious threats to
surface and groundwater supplies and developed into a global scale soil and water pollution
problem."* A number of studies have shown considerable advantages in the utilization of waste
amendments, including CCB, first as a way of disposal, but also as sources of nutrients and for
improvements of soil physical and chemical properties.® However, most of these wastes contain
elevated concentrations of heavy metals, which under certain conditions may cause increased
contamination and toxicity risks. Although most heavy metals are generally considered to be
relatively immobile in most soils for short periods, their mobility under certain solution- and soil
chemical conditions may exceed ordinary rates and pose a significant threat to groundwater
quality.**® This threat has been substantiated by recent research evidence showing that water-
dispersed colloidal particles migrating through soil macropores and fractures can significantly
enhance metal mobility, causing dramatic increases in transported metal load and migration
distances.”®*10:!1

Lead is considered one of the most potentially hazardous metals on a global scale because
of its prominent showing in the enrichment factors, transfer rates and its toxic effects to ecology
and human health. In spite of the low solubility and high attenuation by organic and mineral soil
matrices, which inhibit the apparent mobility of Pb in soil environments, it has been found that a
significant fraction of Pb can be transported in association with particulate material or colloid
lead carbonate, lead oxide and lead hydroxide minerals.'*'> Due to the larger overall surface
charge of the colloid particles, metals show a greater affinity to be adsorbed and carried by them
rather than be attenuated by the stationary soil matrix. This may result in gross underestimation

of groundwater contamination levels and metal migration distances.
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Dorr and Munnich found that the downward migration of Pb in European forest soils
receiving waste amendments was rather independent of pH and soil type, but strongly associated
with the movement of particulate organic material with which they formed stable organic
complexes.'* Similar studies in forest soils of the Northeastern United States have shown that
the maximum Pb transfer rate predicted from lysimeter measurements (considering only soluble
Pb) accounted for only 22% of the annual actual transport.”® The remaining unaccounted Pb
fraction was hypothesized to be transported by a mobile organically-enriched solid phase mostly
of colloidal dimensions. Alva et al. found a substantial increase in Pb elution in a loamy sand
and a fine sand soil amended with fly ash-sewage sludge mixtures.'®

Grolimund et al. demonstrated that colloid-facilitated transport can be the dominant
transport pathway for a strongly sorbing contaminant such as Pb.'” Between 3-7% of the total
amount of sorbed Pb was transported by colloidal particles in their experiments, underestimating
the solute model-predicted amount by up to 7 orders of magnitude, depending on the eluent ionic
composition. Similar trends were reported by Kretzschmer and Sticher for Pb-facilitated
transport by humic-coated hematite colloidal particles.'® Karathanasis also found drastically
higher colloid-bound than soluble Pb levels transported through undisturbed soil columns
subjected to various loads of soluble or colloid Pb, simulating waste amendment applications."?

Therefore, substantial evidence exists to support preferential sorption of soluble Pb
present in the macropore space of soils receiving waste applications by suspended colloids and
facilitated transport to greater soil depths and distances. This mobilization may be enhanced
even further by the high pH of some of the wastes, including some CCB, which may reduce
somewhat the soluble Pb pools, but may increase dramatically colloid dispersion and
mobilization of particulate Pb. Under alkaline conditions, in weakly buffered soils, suspended
colloids may even preferentially desorb Pb already attenuated by the soil matrix and remobilize it
to groundwater, thus making the conditions even more dangerous.

The objectives of this study were: (a) to assess the potential of colloid particles
suspended in macropores of undisturbed soil monoliths to desorb Pb from contaminated soil
matrix surfaces and co-transport it to groundwater, and (b) evaluate the effect of colloid and soil

matrix properties on the extent of Pb desorption and remobilization.
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3. MATERIALS AND METHODS

3.1 Intact Soil Monoliths

Intact soil monoliths were taken from upper Bt horizons of Maury (fine, mixed, mesic
Typic Paleudalfs) and Loradale sil (fine-silty, mixed, mesic Typic Argiudolls) soils. These two
soils were selected because they have considerably different hydraulic conductivities and OC
contents. The upper Bt-horizon depth was sampled to represent a rooting-depth subsurface soil
layer. Each monolith was prepared by carving the soil into a cylindrically-shaped pedestal of 13
cm diameter and 20 cm length and encasing with an equal length of polyvinylchloride (PVC)
pipe of 16 cm diameter. The size of the monoliths was selected to compensate for spatial
variability, especially in soil hydraulic conductivity. The annulus between the soil monolith and

the PVC pipe was sealed with expansible polyurethane foam. The monoliths were left in the

field overnight to allow the foam to dry before they were separated from their base and
transported to the laboratory. Physicochemical and mineralogical properties of the soils used in

the monolith experiment are reported in Table 1.

3.2 Colloid Fractions

Water-dispersible colloids (WDC) were fractionated from upper Bt horizons of three
soils representing the series: Beasley sil (fine, montmorillonitic, mesic Typic Hapludalfs),
Loradale sil (fine-silty, mixed, mesic Typic Argiudolls), and Shrouts sicl (fine, illitic, mesic
Typic Hapludalfs). These soils were selected for the diverse mineralogical and physicochemical
composition of their colloidal fraction. The extraction of the WDC fractions was accomplished
by mixing about 10 g of moist soil with 200 mL of d-H,O (without addition of dispersing agent)
in plastic bottles, shaking overnight, centrifuging at 750 rpm for 3.5 min, then decanting. The
concentration of the colloid fraction was determined gravimetrically, and before it was stored as
a stock suspension, 0.002% (by weight) of NaN; was added to suppress microbial activity.
Subsamples of stock colloid suspensions were air-dried, gently crushed, and passed through a
0.23 mm opening diameter sieve for characterization. Physicochemical and mineralogical

properties of the colloid fractions are shown in Table 1.
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3.3 Metal Solutions

An aqueous solution of 100 mg/L was prepared from a PbCl, reagent (> 99% purity,
Aldrich Chemicals, Milwaukee, WI). This solution was used in the contamination phase of the
leaching experiments. The same PbCl; reagent was used to prepare the equilibrium solutions for
the adsorption isotherm experiments.

3.4 Leaching Experiments
3.4.1 Preparation Phase

Prior to setting up the leaching experiment, the soil monoliths were saturated from the
bottom upward with d-H,O to remove air pockets. Then, about five pore-volumes of d-H,0
containing 0.002% of NaN; were introduced into each monolith (downward vertical flow) using
a peristaltic pump at a constant flux (2.2 cm/h) to remove loose material from the pores of the
soil monoliths and suppress biological activity.

3.4.2 Contamination Phase

Four duplicate monoliths from each soil were leached with a 100 mg/L Pb flushing
solution at a rate of 2.2 cm/h for 350 to 400 pore volumes to achieve a certain level of Pb
contamination. This level was considered reached when the eluted Pb attained a concentration of
about 5 mg/L, which corresponded to about 33-40% saturation of the soil matrix.

3.4.3 Flushing Phase

A flushing solution/suspension was applied to each contaminated monolith at a constant
flux of 2.2 cmv/h for the next 25-28 pore volumes. The flushing solution (control) consisted of d-
H,O0, while three flushing suspensions consisted of 300 mg/L colloid suspension (one for each
soil and colloid type) in d-H,O. Eluents were monitored periodically with respect to volume,
colloid, and Pb concentration. Breakthrough curves (BTC) were constructed based on reduced
Pb and colloid concentrations (ratio of effluent concentration to influent concentration = C/C,)
and pore-volume (flux averaged volume of solution pumped per monolith pore volume). A
value of C, 5 mg/L was used for Pb, and C, = 300 mg/L was used for colloids.

Colloid concentrations in the eluent were determined by placing 200 mL of the sample

into a Bio-Tek multichannel (optical densitometer with fiber-optic technology; Bio-Tek
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Instruments, Inc., Winooski, VT) microplate reader and scanning at 540 nm. Total Pb

concentration in the eluents was allocated to solution phase and colloidal phase (colloid-bound
contamination). The eluent samples were centrifuged for 30 min at 3,500 rpm to separate the
soluble contaminant fraction from the colloid-bound contaminant fraction. The soluble Pb
fraction was analyzed by ICP-spectrometry.

3.5 Metal Adsorption Isotherms

Most eluted colloid samples contained moderate to high colloid concentration (> 50
mg/L), and their eluted colloid-bound Pb was extracted with 1 N HCI-HNO; solution and
analyzed by ICP spectroscopy.”” For the few eluted samples with colloid concentration < 50
mg/L, the experimental and analytical uncertainty was too high to rely on direct extraction
determinations. Therefore, for these samples the colloid-bound Pb fraction was calculated from
adsorption isotherms generated from batch experiments. The amount of the colloid-bound metal
eluted in the leaching experiments was calculated by extrapolating the metal equilibrium
concentration in the eluent to the adsorption capacity of the colloid and multiplying by the
colloid concentration in the eluent. Agreement between extracted and isotherm-estimated Pb on
low colloid concentration eluted samples was verified with extractions of selected samples
following a concentration pretreatment.

The batch equilibrium experiments were carried out using 50 mL test tubes. A 250 mg of
air-dried colloid sample was added to each test tube along with 35 mL of adsorbate metal
solution containing 0-20 mg/L of Pb. After 24 h or shaking, the samples were centrifuged at
3,500 rpm for 30 min and the supernatants were analyzed with the respective analytical methods
described earlier. Similar experiments were used for development of Pb whole soil isotherms in
order to compare metal affinity differences between colloids and soil matrices.

4. RESULTS AND DISCUSSION
4.1 Adsorption Isotherms

Isotherms of Pb sorption by soils and colloid fractions were prepared by plotting

equilibrium concentrations of Pb against the calculated amount adsorbed in the solid phase. The

data conformed well to the Freundlich equation (Table 2). The Maury soil exhibited about three
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TABLE 2. Freundlich equation parameters for Pb absorbed by soils and colloids

Kd I R

Soils
Loradale 0.60 0.49 0.97
Maury 1.75 1.09 0.98
Colloids

11.43 0.90 1.00
Beasley
Loradale 15.29 0.97 1.00
Shrouts 4.15 0.30 1.00

times greater sorption affinity for Pb than the Loradale soil, even though the latter contained four
times higher OC content. This is attributed to the higher amounts of Fe and especially Mn-oxide
concentrations of the Maury soil, which are known to be excellent scavengers for Pb. The lower
pH of the Maury soil (5.8) compared to that of Loradale (6.3) may have also accentuated the
very high sorbate-sorbent affinity.

The sorption affinity of the colloids followed the sequence Loradale > Beasley > Shrouts.
In all cases, the affinity of the colloids for Pb was greater than that shown by the soil matrix,
suggesting preferential sorption by colloids as a plausible mechanism for enhanced Pb transport
through soil macropores to the groundwater. The Kd of the Loradale colloid was about 25 times
higher than that of the Loradale soil matrix, probably due to its higher organic carbon content.
Lead sorption affinity for the Beasley and Shrouts colloids was 19 and 7 times greater than for
the Loradale soil matrix, and 6.5 to 2.4, higher, respectively, for the Maury soil matrix. The <1
values of 1/n in the Freundlich equation for soil colloids suggest a decreasing energy of sorption
with increasing surface coverage, especially in the illitic colloid (Shrouts).
4.2 Lead Sorption During the Saturation Phase

Both monoliths exhibited a strong affinity for Pb showing complete attenuation until
breakthrough traces occurred at about 200 pore volumes for Maury and 240 pore volumes for
Loradale. The sorption phase continued until breakthrough levels of Pb just exceeded 5 mg/L.
At that stage, the corresponding Pb saturation level was estimated to be approximately 33% and

40% for the Loradale and Maury monoliths, respectively. However, under the pH conditions of

the soil monoliths (  6.0), retention of Pb through metal hydrolysis is also possible.2’ This
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hydrolysis may be accompanied by precipitation of metal hydroxides in a manner not easily
distinguishable from adsorption reactions. Geochemical modeling of aqueous phase chemical
equilibria using the MINTEQA2 program indicated that conditions were favorable for the
formation of Pb oxides and hydroxides.’'

Following the Pb saturation phase, the monoliths were flushed with distilled water at 360
(Maury) and 400 (Loradale) pore volumes to displace excess soluble Pb remaining in the soil
pores. Leaching with water continued for approximately three more pore volumes, and ended
when the eluent Pb concentration was stabilized around 5 mg/L. The total quantity of Pb
removed during the H,O flushing stage accounted for less than 1% of that applied to the
monoliths. Eluted Pb concentrations in the last collected samples were 4.9 and 4.6 mg/L for the
Maury and Loradale monoliths, respectively. These final values were used as the influent
concentrations (Co) for construction of the BTC at the flushing phase of the experiment.

4.3 Colloid Elution
No measurable colloid elution in any of the columns was detected during the Pb sorption

phase or during flushing with d-H,O solutions (controls). Colloid breakthrough in colloid

Colloid Concentration (C/C,)

1 3 5 7 9 10 12 14 16 18 20 22 24 26 28

Colloid Concentration (C/C,)

1 2 4 6 7 9 10 12 14 15 17 18 0 2 23
Pore Volumes

——Beasley -B-Loradale —4— Shrouts

Fig. 1. Colloid elution through Maury (a) and Loradale (b) soil monoliths during the
colloid-flushing phase.
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flushing suspensions was greater than anticipated and substantially higher in the Maury than in
the Loradale monolith (Fig. 1). The reduced colloid elution through the Loradale monolith is
likely the consequence of its lower hydraulic conductivity and macroporosity, which resulted
into more effective straining of the suspended colloids. Greater colloid elution through the
Loradale monolith may have also been inhibited by higher eluent EC levels (155u.S/cm)
compared to the 50-60 uS/cm EC values observed in eluents of the Maury monoliths.”?
According to van Olphen decreases in the repulsive potential between colloid surfaces occur
with increases in solution ionic strength, which may result in some colloid coagulation and
increased filtration by the soil matrix.”

Colloid elution in colloid flushing suspensions increased sharply during the first 5 pore
volumes to about 0.35 and 0.50 C/C,, in the Loradale and Maury monoliths, respectively.
Thereafter, the Loradale monoliths experienced a gradual increase in colloid breakthrough,
which reached maxima at the end of the experiment (C/C, = 0.55). There were no significant
differences in the breakthrough of different colloids, except for an initial lower elution of the
illitic colloids. In contrast, the Maury monoliths experienced a small drop in colloid
breakthrough from 0.60 to 0.45 C/C,between 11 and 15 pore volumes, which was followed by
another surge up to the 25t pore volume. During this surge, there were clear differences
between colloid breakthrough C/C, maxima, following the sequence montmorillonitic (1.0) >
mixed (0.75) > illitic (0.55). This is attributed to mineralogical composition and surface charge
differences, as well as the smaller mean colloid size diameter of the montmorillonitic colloid
(Table 1).2* A decrease in colloid mobility with increasing diameter through porous media has
been documented by several researchers.>?® Karathanasis noted that the mobility of mixed
mineralogy and kaolinitic Pb-saturated soil colloids was about 50% and 10%, respectively, of
that observed for montmorillonitic colloids, mainly due to double layer suppression and
coagulation effects.'> Therefore, the larger particle size of the floccules may be responsible for
the reduced elution of the mixed and the illitic colloid. The colloid breakthrough thresholds
observed after the 5™ or 25™ (Maury) pore volume is attributed to a steady state porosity reached

by the monoliths as a function of colloid flux and colloid filtration rates that compromised a
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Fig. 2. Lead elution in d-H20 (control) and colloid suspensions flushed through Maury

and Loradale soil monoliths.
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portion of the originally available colloid flow paths. Finally, the colloid elution resurgence
between 15 and 25 pore volumes in the Maury monolith could be the result of flow path
rearrangements, due to flux-related detachment of pore wall particles or some biological activity
within the columns.

4.4 Lead Elution

Lead elution by d-H,O flushing solutions (controls) decreased drastically to near 0 after
six pore volumes, suggesting absence of soluble Pb in the macropore space and total inability of
d-H,0 to desorb Pb previously attenuated in the soil matrix (Fig. 2). In contrast, Pb elution as
soluble or total (soluble + colloid bound) by colloid flushing suspensions continued throughout
the leaching cycle in all soil monoliths. While the soluble Pb fraction in the eluents was
relatively stable between soils and colloids in the range of 0.05-0.15 C/C,, the total Pb and
therefore, colloid-bound fraction, varied significantly averaging between 0.2 and 0.5 C/C, (Fig.
2).

Most BTC showed considerable asymmetry, which is attributed not only to preferential
flow, but to extensive chemical interaction with the soil matrix. This interaction is anticipated
considering the variable affinity of soil matrices and colloids for Pb (Tab. 2). In addition, even
though the colloid input flow velocity was maintained at a constant rate throughout the
experiment, the variable filtration rate of the colloids by the soil matrix and the resulting
reduction of macroporosity due to partial clogging may have altered the solution flow path and
soil hydraulic conductivity.”” These irregular decreases in flow velocity within the matrix may
have also enhanced the formation of soluble metal-organic complexes, due to increased
interaction time and reduced mass transfer resistance for Pb dissolution.

In all cases, the total Pb fraction was considerably higher than the soluble fraction during
the colloid application cycles, showing good correlation with colloid breakthrough trends. Since
there was no soluble source of Pb in the macropore space, this is the strongest evidence yet that
the higher affinity of the colloids for Pb over that of the soils resulted in competitive sorption
between the two solid phases, which allowed Pb to be stripped from the soil matrix and adsorbed

onto the migrating colloids (Fig. 3). This mechanism was supported by the identical
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Fig. 3. Diagram showing potential competitive sorption interactions between the Pb-
saturated soil matrix and the flushing colloids causing desorption and remobilization of
Pb in the macropore space.
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remobilized from Maury and Loradale soil monoliths by d-H20 (control) and colloid
flushing suspensions.
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mineralogical composition of the eluted compared to the input colloids, suggesting that in-situ
colloid generation and detachment within the soil monoliths, and therefore, contribution to the
eluted Pb was negligible. Mills et al. suggested that competitive sorption exchanges of a metal
between two solid phases may continue until a state of equilibrium is established.”® Exchange
equilibrium rates are relatively fast, and likely within the range of residence times spent by the
colloids within the monoliths. Since the number of interactive exchange sites available on the
eluting colloids is limited compared to the sites available within the matrix of the entire soil
monolith, the extent of Pb desorption is controlled by the concentration of the colloid eluted
through the soil monolith, and the accessibility of interactive sites within the monolith and soil
matrix.’ The association of the eluted Pb with the eluted colloids was assessed with HCI-HNOs
extractions.'® The results indicated that exchange sites on the eluted colloids were between 35
and 60% saturated with Pb.

The range in Pb desorption and remobilization by the colloid flushing suspensions was
colloid- and soil monolith-specific. Total Pb elution was greater overall through the Maury soil
monoliths, especially for the montmorillonitic (Beasley) and illitic (Shrouts) colloids (Fig. 4),
even though the lower Pb sorption affinity of the Loradale soil would have made it easier to
desorb Pb from its matrix. Apparently, the lower colloid breakthrough caused by the lower
hydraulic conductivity and macroporosity of the Loradale soil limited further Pb mobilization, in
spite of the greater potential suggested by the Kd coefficients. The similar Pb elution by the
mixed mineralogy (Loradale) colloids in both soil monoliths may suggest additional Pb
contributions in the form of organic complexes to the lead load transported in the high O.C.
content Loradale soil.*® Indeed, nearly 85% of the total Pb transported in the presence of the
mixed mineralogy colloids through the Loradale soil monolith was in the soluble fraction (Fig.
2). The greater potential of the illitic (Shrouts) colloids to desorb Pb from the soil matrix
compared to the mixed mineralogy (Loradale) colloids, in spite of their 4-fold lower Kd, and
their smaller surface charge and surface area is surprising. This suggests that other
physicochemical parameters and possibly physical exclusion mechanisms may also exert

considerable influence on the overall colloid behavior.
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Fig. 5. Power function-fitted BTC for soluble Pb desorbed and remobilized from Maury
and Loradale soil monoliths by d-H20 (controt) and colloid flushing solutions.

The presence of colloids in the flushing suspensions enhanced the transport of both
soluble and colloid-bound Pb fractions. Since the soluble source of Pb in the macropore space
was negligible, as indicated by the control solutions (d-H;0), the additional soluble Pb eluted in
the presence of colloids must have been caused by colloid-induced desorption from the soil
matrix. Weakly held outer-sphere Pb complexes sorbed on the colloids or soil matrix may be
easily converted to soluble forms through ionic strength changes or organometallic interactions
induced by continuous flow rate and flow path changes within the soil matrix.>' Furthermore,
direct ion exchange reactions between soluble cations present in the colloid suspensions and b
sorbed in the soil matrix may also contribute a portion to the eluted soluble Pb fraction. Even
though the differences in the eluted soluble Pb fraction between colloids were small, elution was
highest in the presence of illitic colloids passing through the Maury monoliths, and the mixed

colloids passing through the Loradale monoliths (Fig. 5).
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5. CONCLUSIONS
The potential for desorption and remobilization of Pb from contaminated soils by ex-sit

mineral colloids migrating through the macropore space was clearly demonstrated in this

experiment. The magnitude of desorption and remobilization was dependent upon the
physicochemical characteristics of the colloids and the soil matrices. The high sorptive affinity
for Pb and the small particle size diameter of the montmorillonitic colloids, especially in soils
with greater macroporosity, contributed to significant enhancement in desorption and transport of
soluble and colloid-bound Pb compared to that generated by d-H,O flushing solutions or other
colloid types. The mechanism involves competitive sorption exchange of Pb between the
migrating colloids and the soil matrix and direct ion exchange between soluble cations of the
colloid suspensions and outer-sphere Pb complexes of the soil matrix.

Considering the extent of metal impacted sites worldwide, involving different types of
soil clays, and the common practice of covering some contaminated areas with clay caps or
liners, the findings of this experiment have significant ramifications. Mobilized clay colloids
generated through natural leaching processes have the potential to strip metals retained by the
soil matrix and enhance their migration to deeper depths. Therefore, these processes should be

given serious consideration in assessing groundwater contamination risks and in developing

effective remediation strategies.
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ABSTRACT

Reclamation of abandoned acid mine soils is often limited by lack of suitable soil materials for
establishing self-sustaining vegetation. Fly ash has been used to create technogenic soils for
reclamation of abandoned mine lands. Fly ash contains toxic trace elements such as selenium and
molybdenum that can leach into the groundwater from ash treated soils. In abandoned acid mine
lands, oxidation of pyrite generates acidity and dissolved Fe and Al. Neutralization of pyrite
oxidation generated acidity with alkalinity from fly ash produces coatings of iron and aluminum
hydrous-oxides on the surface of soil clay minerals. Kaolinite is the dominant clay mineral in these
soils and Fe and Al coated kaolinite can retain Se and Mo. Laboratory investigations were
conducted to determine the effect of three levels of oxide coatings on kaolinite, on Se and Mo
retention capacity of coated kaolinite. Adsorption of selenite and molybdate occurred on hydrous
oxide coated kaolinite above pHo. Significant adsorption of selenate only occurred at pH values
lower than pH, of the concerned solid phase. Coating of kaolinite with Fe as well as Al hydrous
oxide increased the anion retention capacity of the mineral. The effect was, however, more for Fe
than Al hydrous oxide. Surface sites for the adsorption of anions were limited. Results of this
investigation show that adsorption will play a very important role in controlling the mobility of
oxyanions in fly ash treated mine soils containing relatively high amounts of Fe and Al hydrous
oxide coatings.

INTRODUCTION

Fly ash, a power plant product has been used as an alkaline amendment for the reclamation of
surface-mined acidic mine soils” . Fly ashes have several characterlstlcs which are beneficial for
the establishment of vegetation on the disturbed mine lands®®. The desirable role of fly ash in
establishment and long-term sustenance of vegetation on amdlc mine soils has been demonstrated
in a number of i 1nvest1gat10ns . However, fly ashes contain elevated levels of trace elements'® and
the mobilization of oxyamon-formmg trace elements (Mo and Se) from fly ash undergoing
weathering in acidic mine soil environment is one of the major concems in the use of fly ash in
reclamation.

Forms of Mo and Se present in fly ash are easily acces51ble to solution and are expected to be
readily released into solution in a weathering environment'®. The anionic species of Mo and Se ina
near surface aqueous environment like fly ash treated acldlc mine soil pose an environmental risk.
These elements being bio-toxic may pollute the food chain via plant uptake and the ground water
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through leaching. Therefore, it is very important to understand the processes involved in
retention/mobility of these elements in environments used for the disposal of fly ash.

Adsorption by soil solid phases is the major process, which may attenuate aqueous concentrations
of Mo and Se below levels considered environmentally safe'®. The solid phases responsible for the
adsorption of Mo and Se are those with ligand-exhangeable surface OH™ groups'" "%, Such solid
phases occur in relatively hi§h contents in tropical region soils and are responsible for their high
anion retention capacitiesl 17 The temperate regions soils with their dominantly permanent charge
clay mineralogy usually lack large anion retention capacities. Consequently, a bulk of the literature
on anion adsor;ption has involved the investigation of solid phases representative of the tropical
region soils"™"

Acidic mine soils formed as a result of pyrite oxidation contain unusually high concentrations of
aqueous Fe* and aluminum®. Reclamation of these soils with alkaline fly ash results in the
neutralization of soil acidity forcing aqueous Fe’* and A’ into the solid phase. In a soil system
with predominance of permanent charge clay minerals, these newly formed solid phases containing
Fe and Al will be deposited on the surface of clay minerals. These two dimensional deposits of Fe
and Al hydroxy material formed on the surface of clay minerals are called sesquioxide coatings“’.
Because of unusually high concentration of aqueous Fe and Al in acidic mine soils, unusually high
amounts of sesquioxide coatings may be generated in acidic mine soils reclaimed with fly ash. Iron
and Al hydrous oxide coatings are known to modify the surface charge characteristics of the host
solid phase making it more like those of the pure Fe and Al hydrous oxide solid phases'®.
Therefore, these new solid phases formed in fly ash treated mine soils may play an important role in
controlling the aqueous concentrations of Mo and Se in these soils.

To understand the mechanism of a natural phenomenon, it is necessary to obtain definitive
information by working with simplified systems allowing unambiguous interpretations of results.
Once the fundamental information is available, this information can be used to interpret the results
of investigations involving more complex systems representative of the natural conditions.
Therefore, to understand the anion retention behavior of fly ash treated soils, one may select pure
clay minerals representing solid phases in these soils and artificially coat them with Fe and Al
hydroxy material in the laboratory.

Molybdenum and Se are adsorbed by hydroxylated surface through a ligand exchange mechanism
involving A type surface hydroxyl groups coordinated to a single cationic atom in the structare'”.
This adsorption process is dependent upon the nature of the adsorbent surface and the system -pH” .
System pH affects adsorption of Mo and Se by regulating the equilibrium among various anionic
aqueous species and by changing the surface charge on the adsorbent. In systems where solid
phases consist of oxide minerals like goethite and gibbsite carrying a positive variable charge over a
large pH range, adsorption continues to occur at high pH values because anionic species with
various degrees of protonation can be adsorbed on to a positively charged surface'®, However, the
solid phases consisting dominantly of permanent charge clay minerals and/or sesquioxide coated
permanent charge clay minerals will develop a net negative variable charge at relatively low pH
values. Although anion adsorption could occur on negatively charged variable charge surfaces,
protonated aqueous anionic species are required for adsorption to occur”’. Therefore, pH changes
are expected to have more drastic effect on the adsorption of various anions by solid phases that
develop net negative variable charge at low pH. The pure solid phases consisting of crystalline
forms of both Fe and Al hydrous oxides have high anion retention capacities. Although the content
of Fe and Al hydroxy material occurring as coatings may be small, they may impart high anion
retention capacities to the host solid phases. Occurrence of the hydroxy material as a two-
dimensional layer on the surface of high surface area clay minerals should result in a very high
specific surface area of this material. The present investigation was conducted to evaluate the effect
of various amounts of Fe and Al hydrous oxide coatings on the anion retention characteristics of
common clay minerals. Molybdenum and Se were selected for this investigation because of their
importance in fly ash treated mine soils. Kaolinite is the dominant clay minerals in soils developing
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Table 1. Important physico-chemical characteristics of kaolinite.

Characteristic Mineral
Kaolinite

Identification KGa-1,

N: Surface area 23.50 + 0.06 (m’g’")
Cation Exchange capacity 33
(c molckg'])

Si0, 439 %

ALOs 38.5%

Fe203 0.98 %

MgO 0.03 %

on recently surface mined sites, so kaolinite was used as the model clay mineral in these
investigations.

MATERIALS AND METHODS

Well-crystallized kaolinite used in this investigation was obtained from Source Clay Repository of
Clay Mineral Society. Some of the important physico-chemical properties of this mineral are given
in Table 1. The < 2 um fraction of the mineral was separated by centrifugation method and this
fraction was used in further studies.

1. Preparation of Coated Samples

The procedure used for the preparation of Fe and Al hydrous oxide coated samples was similar to
that used by Hendershot and Lavkulich (1983) Samples were prepared with two levels of each of
Fe and Al hydrous oxide coatings. Two coating levels were 0.5 and 4.0% Fe(OH)3/Al(OH); by
weight. The coatings were generated by titrating appropriate concentrations of FeCls and AICl;
solutions with NaOH in the presence of the clay mineral using 250-mL centrifuge tubes as reaction
vessels. The samples were titrated to pH 7.0, shaken overnight on a reciprocating shaker, and if
necessary the pH was readjusted to 7.0 on the next day. This process was continued until the pH
was virtually constant. The samples were centrifuged, the supernatant was acidified to pH 2.0 and
analyzed for Fe/Al to make sure that the entire amount of Fe/Al was precipitated. After
centrifugation, the solid was transferred to dialysis tubing and dialyzed against deionized distilled
water until Cl-free. The samples were transferred to polyethylene beakers, dried at 40°C, and aged
by saturating with water and re-drying at 40°C a total of 10 times.

1.1. Adsorption Studies

The adsorption isotherms for various samples were obtained from a batch investigation. For this
purpose 45 mg solid samples was weighed into 50-mL centrifuge tubes and to each tube 0.05 M
NaCl solution was added along with predetermined amount of HC/NaOH to give a definite pH and
a volume of 29.7 mL. The head-space in the centrifuge tubes was filled with argon and the tubes
were tightly capped and shaken on a reciprocating shaker for 30 minutes. Different concentrations
of solutions of Na salts of selenite, selenate, and molybdate were added to the centrifuge tubes as
300 L volumes so that the final volume in each centrifuge tube was exactly 30 mL. There were 3
different initial pH values and 11 different initial amon concentrations for each sample. Initial
anion concentrations varied from 0.4 to 40 mmol m~. The contents of centrifuge tubes were shaken
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Fig. 1. Selenite adsorption on the kaolinite clay mineral coated with hydrous oxides of iron at the
rates of 0%, 0.5%, and 4.0% Fe; and at three levels of equilibrium pH 4.5, 5.5, and 6.5

for exactly 12 hours followed by centrifugation. The supernatant was divided into two portions one
each for reading pH and analyzing for the anion concentration. The portion saved for pH was
maintained under argon environment at all times. Anion concentrations in the supernatant samples
with < 100 ugL" of an anion were determined by using Graphite Furnace Atomic Absorption
Spectrophotometer. The Inductively Coupled Plasma Emission Spectrometer was used for
analyzing the supernatant samples with > 100 ugL'I of an anion. All the samples were analyzed as
such without any further dilutions. The amount of an anion adsorbed was calculated by the
difference between the initial and the final concentrations of the equilibrium solution.

RESULTS AND DISCUSSION

The adsorption isotherms for selenite at different pH values and different levels of Fe and Al
hydrous oxide coatings are given in Fig. 1 & 2. The amount of selenite adsorbed by uncoated
kaolinite was very low. Also the adsorption occurred only at low equilibrium concentration of
selenite. At higher equilibrium concentrations, there was an apparent decrease in the total amount
of selenite adsorbed and the amount adsorbed became negative with further increase in equilibrium
concentration. The total amount of selenite adsorbed also decreased with increase in pH. Also
there was a decrease in equilibrium concentration above which the apparent adsorption began to
decrease. These results indicate that selenite reacted specifically with the surface sites. The surface
sites, which could be involved in this reaction, were very limited and became saturated at relatively
low equilibrium concentration. With increase in pH, there was a decrease in the number of sites
which was reflected in decrease in total amount adsorbed, decrease in equilibrium concentration up
to which positive adsorption occurred. The increase in negative adsorption with increase in pH
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Fig. 2. Selenite adsorption on the kaolinite clay mineral coated with hydrous oxides of aluminum at
the rates of 0%, 0.5%, and 4.0% Al; and at three levels of equilibrium pH 4.5, 5.5, and 6.5

indicates that there was an increase in the number of negatively charged sites. Coating of kaolinite
surface with Al as well as Fe hydrous oxides increased the total amount adsorbed as well as the
equilibrium concentration up to which the positive adsorption occurred (Figs. 1 & 2). Amounts of
selenite adsorbed by both Al and Fe coated kaolinite samples were much higher than one would
expect if the two phases existed independently of each other™ . Therefore, coating of kaolinite
with small amounts of Fe and Al hydrous oxides produced new solid phases with adsorption
characteristics markedly different from the pure forms of the either phase.

Although both Fe and Al hydrous oxides increased selenite adsorption by kaolinite, their effect was
not the same (Fig. 3). In terms of molar concentrations the levels of Al hydrous oxide coating were
higher, but Fe hydrous oxide coating increased the adsorption to a larger extent. This indicates that
Al hydrous oxide coatings created lower number of ligand-exchageable sites than those created by
equivalent amounts of Fe hydrous oxide coatings. Aluminum is known to polymenze in solution
before complete prec1p1tatlon2 Apparently, precipitation of polymeric species produces some sort
of three-dimensional order on the surface of the clay mineral reducing the number of Al atoms
exposed on the surface. This would in turn reduce the number of singly coordinated OH groups
involved in ligand exchange mechanism of anion adsorptlon . Gibbsite has been observed to
adsorb lower amount of selenite compared to goethite®'. Iron hydrous oxide coated clay samples
have been shown to have higher surface area compared to Al hydrous oxide coated clay samples

Another interesting observation was the negative adsorption of selenite on Al hydrous oxide coated
samples (Fig. 2). At 0.5% coating level (Fig 2), the negative adsorption produced by Al hydrous
oxide coated sample was higher than that produced by uncoated sample (Fig. 2). This suggests that
surface of Al coated samples contains a higher amount of negative charge in the region of negative
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adsorption compared with the uncoated sample. The only plausible explanation for this to happen
seems to be that adsorption by Al coated sample imparted negative charge to the sites of adsorption.
Since the Al hydrous oxide coated sample had more number of adsorption sites compared to those
on uncoated sample, it could have higher amount of negative charge as well. If the adsorption
should always produce negative sites, Fe coated sample would also show higher negative
adsorption. However, this did not happen because negative adsorption preduced by Fe coated
sample was not higher than that produced by uncoated sample (Fig. 1). Specific adsorption of
anions by hydroxylated surfaces can occur by three mechanisms described as schemes 1, 2, and 3
by Hingston et al. (1972) Schemes 2 & 3 convey a negative charge to the surface and scheme 3
can actually produce a negatively charged surface. Results of this investigation seem to suggest that
in adsorption of selenite by Fe hydrous oxide coated samples schemes 1 and 2 predominate whereas
in case of Al hydrous oxide coated samples scheme 3 plays an important part in addition to schemes
1 and 2 (Fig. 2).

The isotherms for the adsorption of selenate by kaolinite at different pH values and different
amounts of Fe as well as Al hydrous oxide coatings are given in Figs. 4 & 5. The positive
adsorption of selenate only occurred on surfaces with a net positive charge. There was virtually no
adsorption of selenate on the uncoated mineral (Fig. 4) whose pHo was 4.26. Actually, the surface
charge characteristic data indicate that even the uncoated mineral should have a net positive charge
at pH 4.0. Virtually zero adsorption of selenate suggests that the number of positively charged sites
is very limited and C1" competes with selenate for adsorption at low concentrations of selenate. As
the concentration of selenate increases, there is probably some adsorption of selenate, which is
masked by the effect of negative adsorption.

Coating of surface with Al as well as Fe increased the net positive charge. This is reflected in
adsorption of relatively higher amounts of selenate by the coated samples (Figs. 4 and 5). There
was an initial decrease in the adsorption of selenate even by coated samples indicating that at very
low selenate concentrations CI° competes with selenate for the adsorption sites. The increase in
adsorption of selenate at higher concentrations, however, indicates that selenate has a greater
affinity for positively charged hydroxylated surfaces than chloride. The concentration of CI' in the
equilibrium solution was 0.05 M whereas that of selenate varied from 0.38 to 40 uM. Therefore,
selenate probably adsorbs by ligand exchange but only with aqua groups occumng at positively
charged sites on the hydroxylated surfaces. Infrared studies have shown SO4” to be adsorbed by a
ligand exhange mechanism at protonated surfaces™. Sulfate has also been shown to form binuclear
complex with surfaces, which do not produce a negative charge and do not lower the ZPC. Results
of this investigation indicate that selenate probably adsorbs by a mechanism similar to that for
sulfate. This seems to be so because although the adsorption for selenate was less than that for
selenite, the negative adsorption was also less for selenate (Figs. 1-5). This pattern also indicates
that adsorption of selenite does impart a negative charge to the surface which has been observed in
a number of studies with the pure hydrous oxides.

Adsorption data for molybdate is given in Figs. 6 & 7. Adsorption of molybdate exhibited a
general trend similar to that for selenite (Figs. 1 & 2). However, adsorption of molybdate at pH 4.0
was invariably higher than that for selenite. The explanation for this may lie in the fact that pKa
value for conjugate acid of molybdate is about 4.5. Therefore aqueous species of molybdate at pH
4.0 will be a combination of HMoOs and MoOs* representing a very favorable condition for
specific adsorption on to a surface carrying a combination of protonated and neutral OH sites.
Selenite will dominantly occur as HSeOs™ aqueous species, pK; and pK: of its conjugate acid being
2.75 and 8.5, respectively. Therefore, although the molar concentration of molybdate and selenate
may be the same, at pH 4.0 concentration of adsorbing species will be higher for molybdate. This
effect of the concentration of various aqueous species and the type of surface sites present is further
demonstrated by a more drastic decrease in the adsorption of molybdate than selenite as the pH
increases. With increase in pH concentration of the aqueous molybdate species will shift more
towards MoO4”" with concurrent decrease in surface sites favoring the adsorption of this species.
This dual effect will result in a drastic decrease in adsorption of molybdate with increase in pH.
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Fig. 7. Molybdate adsorption on the kaolinite clay mineral coated with hydrous oxides of aluminum
at the rates of 0%, 0.5%, and 4.0% Al; and at three levels of equilibrium pH 4.5, 5.5, and 6.5

Increase in pH should increase the concentration of HSeOs™ aqueous species of selenite adsorption
of which does not require the hydroxylated surface to be positive. Although adsorption of selenite
will decrease with increase in pH simply because of decrease in the number of adsorption sites, the
effect of pH should not be as drastic as for molybdate.

SUMMARY AND CONCLUSIONS

Investigation of the adsorption of Se (IV), Se (VI), and Mo by Fe and Al hydrous oxide coated
kaolinite show that the general principles governing the adsorption process are same as those for
pure forms of hydrous oxides. The effect of pH is more drastic than that for pure hydrous oxides
because the charge characteristics of hydrous oxide coated clays and pure hydrous oxides markedly
differ. Adsorption of selenite and molybdate occurred on hydrous oxide coated kaolinite above
pHo. Significant adsorption of selenate only occurred at pH values lower than pH, of the concerned
solid phase. Coating of kaolinite with Fe as well as Al hydrous oxide increased the anion retention
capacity of the mineral. The effect was, however, more for Fe than Al hydrous oxide. Surface sites
for the adsorption of anions were limited. High affinity between these sites and the anions was
indicated by adsorption at extremely low equilibrium concentrations and very steep slope of the
adsorption isotherms until the adsorption sites were apparently saturated. Adsorption of Mo and Se
(IV) imparted negative charge to the surface whereas adsorption of Se (VI) didn't. Beyond the
equilibrium concentrations where the surface adsorption sites were saturated, negative adsorption of
all anions occurred. Results of this investigation show that adsorption will play a very important
role in controlling the mobility of oxyanions in fly ash treated mine soils containing relatively high
amounts of Fe and Al hydrous oxide coatings.
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ABSTRACT

This study was conducted to evaluate effects of coal ash mixture (coal ash, biosolids and
yard waste compost ratio of 1:1:1 v/v) on accumulation of trace metals in soil and their
distribution in crop leaves and fruits, and its leaching potential into groundwater. Coal ash
mixture was applied at rates of 0, 25, 75 Mg ha'. Samples of soil and tomato (Lycopersicon
esculentum Mill. cv. ‘Sanibel’) tissue (leaves and fruits) were collected and analyzed for trace
metals (Zn, Cu, Mn, Fe, Cd, Pb, Ni, and Mo). Zero-tension pan lysimeters were installed to
monitor water quality. Application of the coal ash mixture significantly increased AB-DTPA
extractable Fe, Ni and Mo in treated soils and concentrations of Mn and Mo in tomato leaves.
Only concentrations of Fe and Mo in tomato fruits from plots treated with this coal ash mixture
were greater than those from control plots. Application of 75 Mg ha™' coal ash mixture
significantly increased total amounts of Zn, Pb and Mo collected in lysimeter water during 12
months following application. Concentrations of trace metals analyzed in this study were very
low. The maximum concentrations of Mn, Pb and Cd in lysimeter water samples from both
treated and control plots were only occasionally greater than MCL (Manxmen Contaminant
Level for drinking water). Therefore, appropriate application of coal ash mixture should not lead
to any significant detriment to soil, food, and groundwater.

INTRODUCTION

Power plants in the United States in 2000 used over 857 million Mg (tons) of coal, and
three of the 70 major electric utility coal consumers are located in Florida, namely Tampa
Electric Co., Florida Power Corporation, and Gulf Power Company.' The data released by the
American Coal Ash Association showed that over 108 million tons of coal combustion products
including about 80 million tons of fly and bottom ash were produced in 2000. On the national
level, less than 30 percent of coal ash produced was utilized. Agricultural use of coal ash was
only 0.02 million tons per year, or about 0.02% of coal ash produced.

Coal ash use as a soil amendment for agriculture has a large potential. There are a
number of benefits that result from the application of coal ash to agricultural soils. The benefits
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include improvment of soil texture, modification of soil pH, and provision of essential plant
nutrients for crop production.** Townsand and Hodgson ° reported that the particle fractions of
coal ash samples ranged from 45-70% silt and 1-4% clay. The fine-sized ash particles should
increase the total porosity of the soil. Ghodrati et al.® reported that moisture holding capacity in
a soil amended with 30% fly ash was increased from 12% to 25%, and that the rate of water flow
through the soi! were reduced three-fold. Coal ash consists of over 40 elements, and most of the
trace elements are essential nutrients for plant growth. Application of coal ash increases
bioavailability to plants of nutrients in soils. Adriano et al.” studied the effects of coal ash on
soil chemical properties, growth and mineral nutrition of corn (Zea mays L.) and bush bean
(Phaseolus vulgaris'L.), and reported that the application of fly ash increased concentrations of
extractable K, Ca, Mg, Cu, Fe, Mn, and Zn in the soil, and concentrations of K and Fe in corn
shoots, and K, Ca, Mg, S, and Cu in bush bean shoots. Similar results had been reported for
barley (Hordeum vulgare L. var. ‘Leduce’),® rice (Oryza sativa cv. ‘PR 106”), wheat (Triticum
aestivum L.),° tomato (Lycopersicon esculentum Mill. cv. ‘Pusa Ruby’) "* and other vegetable
crops. "' Application of coal ash also increased content of boron in alfalfa (Medicago sativa L.)"?
in corn.** Therefore coal ash can be a source of nutrients for crops and an amendment for
Florida’s sandy or coarse soils.

Coal ash contains no, or very little, nitrogen and phosphorus, which are essential to crop
growth. Mixing coal ash with an organic waste such as biosolids, animal manure, and compost
has been found to supply N and P, and to improve the bioavailability of other nutrients. "
Amendment of a soil with a mixture of fly ash and organic waste significantly increases nutrient
uptake and yield of tall wheat grass (4gropyron elongatum).'* Menon et al. ' reported that
application of fly-ash amended compost improves yields of collard greens and mustard greens
grown on sandy loam soil, and increased the concentrations of K, Ca, Mg, S, Zn and B in
amended soils. Soil microbial activity was increased by mixing fly ash and sewage sludge into
soil. "'® Probably the addition of organic materials to coal ash binds trace metals, and reduces
their leaching potential. '*° The disposal of urban yard debris is a well-known and serious
problem in Florida. Florida alone generates over 3 million tons of yard waste annually. The past
methods of urban yard debris disposal were incineration or landfilling. Both of these methods are
very expensive and environmentally unfavorable. Recently Florida enacted a state law that
prohibits landfilling of yard waste. Available disposal alternatives for urban yard debris are
mulch and compost production. Many pubic and private landfill operators in Florida, as well as
elsewhere in the U.S., have expanded in yard debris mulching or composting facilities. Research
has demonstrated that yard waste compost can serve as a soil amendment to increase organic
matter, improve microbial activities in soil, provide nutrients, and ultimately improve plant
growth and yield.?

Even the utilization of coal ash or the co-utilization with organic waste (biosolids and
yard waste composts) can significantly improve soil fertility, however, environmentai concern is
always an issue in the land application of coal ash products. Of particular concern is the
possibility of trace metal accumulation in treated soils * and the possible uptake and
concentration in the edible parts of plants. Metals released from fly ash may be leached into

groundwater. '*** Sometimes an environmental agency may require relevant assessments before
the coal ash use can be permitted in agriculture. In U.S., coal combustion by-products are
generally exempt from hazardous waste regulations and some states have elected to regulate
these materials as solid, specific or industrial wastes. Under Florida regulations, coal ash and
other wastes generated from the combustion of coal and other fossil fuels are exempt from
regulation as hazardous waste. However, the state environmental agency is opposed strongly to
the unregulated use of coal waste products. To meet this stricture it is necessary to conduct
environmental monitoring, and to obtain a permit for experiment plots that will be treated with
pure coal ash. To meet requirements in this project, we used commercially available coal ash
products. Our research results may be of value to the regulatory agency in evaluate their practices.
The objective of this study was to evaluate the effects of co-utilization of coal ash and
organic waste (biosolids and yard waste compost on the accumulation of selected metals (Zn, Cu,
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Table 1. Chemical composition of coal ash/biosolids, yard waste, mixture and soil used in this study.

Materialsorsoil pH OB N za cu Mn Fe Cd Pb Ni Mo

C
-~ g kg mgkg?*
Yard waste (YW) 74 1549 92 184 33 67 1990 01 4 4 3
Coal ash/biosolids
. 395 21533 13 15 39 9
(CA/BS) 7.7 828 7.7 120 67 3
Coal ash mixture
. 9 17400 13 23 31 8
CA/BS/YW 74 103.7 93 121 301 8
Soil 7.6 28.9 09 79 537 623 20533 13 19 18 1

Mn, Fe, Cd, Pb, Ni, and Mo) in soil, their distribution in tomato leaves and fruits, and their
potential to leach into groundwater.

MATERIALS AND METHODS

The field experiment was initiated in 1999 at the University of Florida, Tropical Research
Education Center, Homestead, FL. The soil is a Krome very gravelly loam (loamy-skeletal,
carbonatic, hyperthermic Lithic Udorthents) containing 58 %, 19 %, 15 % and 8 % gravel
(>2mm), sand, silt and clay, respectively. The coal ash/biosolid product (composted mixture of
coal ash and biosolids, 1:1) was obtained from the Ft. Meade processing facility, Florida-N-Viro,
Sarasota, FL. Yard waste compost was collected from the City of St. Petersburg, FL. Coal ash
product and yard waste compost were then mixed to produce the final material (coal ash mixture)
with 1:1:1 ratio of coal ash, biosolids and yard wastes. Soil samples from the experimental site,
coal ash/biosolids, yard waste compost, and final coal ash mixture were analyzed for pH (H,0),
organic carbon, total nitrogen and trace metals. Total carbon and nitrogen was determined using
a Vario Max CNS analyzer (Elmentar Americas, Inc., Mt. Laurel, NJ). Inorganic carbon was
analyzed with a titration method ** and organic carbon was calculated as the differences between
total carbon and inorganic carbon in the material. Total concentrations of metals were
determined using the USEPA 3050A method. * Chemical composition of yard waste, coal ash
product, the mixtures and the soil used in this study are shown in Table 1. Coal ash/biosolids,
yard waste compost, final mixture have pH values similar to that of the soil used in this study.
The final mixture had levels of organic C and N about 3.6 and10 times higher, respectively, than
those in the soil. Concentrations of Zn, Pb, Ni and Mo in the final mixture are higher than those
in the soil, while concentrations of Fe, Cu, and Mn were lower in the coal ash mixture.
Concentrations of trace metals analyzed in this study were far below the maximum
concentrations specified in the USEPA 503 regulation for land application of biosolids. **

The experimental plots were laid out on a split plot design with 2 irrigation treatments us
main plots (data not presented), and different rates of coal ash mixture (coal ash/biosolids/yérd
waste) as subplots with 4 replications. Subplots consisted of three rates of coal ash mixture (0,
25, and 75 Mg ha as dry weight basis). Traditional raised-beds with drip irrigation for vegetable
production were established in December 1999. Beds were 180 cm from center to center with a
width of 95 cm wide and a height of 15 cm. Coal ash composts were applied using a compost
spreader. Materials were rototilled 10 cm deep and beds were then refinished and covered with
plastic mulch. Tomatoes (cv. ‘Sanibel’) seedlings were transplanted on February 2000 in a
single row in the center of each bed with 50 cm between plants. Tomatoes were managed with
standard practices ** and harvested in May 2000.

Soil samples were taken at 0-20 cm depth prior to tomato planting and after harvesting,
air-dried and extracted with AB-DTPA (ammonium bicarbonate - diethylenetriaminepentacetic
acid), which is a method to determine plant nutrients available in calcareous soils. ¥ The extracts
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Figure 1. Ammonium bicarbonate-DTPA extractable trace metals in soil amended with coal ash mixture.
Letters above the bars indicate significant differences between mean values of the same metal of the
different rates of coal ash mixture at P <0.05.

were analyzed for selected metals (Zn, Cu, Mn, Fe, Cd, Pb, Ni, and Mo) using inductively
coupled argon plasma spectroscopy (ICPAEC; Model 61E Thermo Jarrell Ash Inc., Franklin,
MA).

Newly mature leaves were collected during period when the fruit was developing. Three
tomato fruits from each plot were also collected on May 11, 2000. The tissue samples were
washed, oven dried (70C for 72 hr), and analyzed for selected trace metals.

Thirty zero-tension pan lysimeters were constructed and installed in the field for water
quality monitoring. A plastic cylinder with 34-cm dia. and 11 cm deep was used to collect rain or
irrigation water, which leached down through the crop root zone. Water collected in the pan was
drained through a plastic tube (I.D. 9.5mm) into a water collector. The latter was constructed
from 17-cm PVC (I.D. 15 cm) and capped on both ends. Water samples were collected from
lysimeters monthly. Water sample volume was measured immediately following each sampling
and the solution was analyzed for selected trace metals.
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All data were analyzed with SAS. * The analysis of variance (ANOVA) was conducted
to check for differences in the concentrations of metals in soil, plant tissue and water samples.
Means were separated with Duncan’s multiple range tests.

Other elements (nitrogen, phosphorus, calcium, magnesium, potassium, aluminum, boron
and silicon) in soil, plant tissue and water samples were also analyzed. Tomato numbers, total
weight and color of fruit from each plot were also recorded. The latter data will be presented
elsewhere.

RESULTS AND DISCUSSION

Metals in soils

Total amounts of AB-DTPA extractable Fe, Ni and Mo in the soils treated with 75 Mg ha''
coal ash mixture were significantly greater than those for the treatment of 25 Mg ha™' coal ash
mixture and control (Fig 1). These results are affected by the concentrations of these metals in
original soils and coal ash mixture. The concentrations of Ni and Mo in coal ash mixture were
about 1.7 and 8 times higher than these in soil (Table 1).

Total Fe contents were very high in both untreated soil (20.5 g kg™') and coal ash mixture
(17.4 gkg™). Soil Fe is mainly in the form of iron oxides and not readily extractable by AB-
DTPA.” The application of a large amount (75 Mg ha™") of coal ash mixture directly increased
AB-DTPA extractable iron. It is also possible that increasing soil organic matter through
application of coal ash mixture increased iron availability. Iron deficiency is major problem for
crops grown on calcareous soils. Using coal ash mixture could help to increase iron
bioavailability. Sikka and Kansal ° reported significantly increase of DTPA-extractable Fe in coal
ash treated soils.

Coal ash mixture application did not increase AB-DTPA extractable Zn and Pb even
though the total Zn and Pb in coal ash mixture are about 1.5 and 1.2 times, respectively, higher
than those in soils. Total input of Zn and Pb were only 9 and 1.7 kg ha, respectively, at the
application rate of 75 Mg ha™ of the coal ash mixture, which was not enough to increase
bioavailable Zn and Pb in the soil. Likewise this rate of application of the coal ash mixture did
not significantly increase the concentrations of extractable Cu, Mn, and Cd.

Metals in tomato leaves

The concentration of Mo in tomato leaves was 3 times higher in soils treated with coal
ash compost than in the control (Fig. 2). The maximum concentrations of Mo in leaf samples
were also much higher from amended soils than from control plots (Table 3). Plants
accumulated more Mo in leaves because the AB-DTPA extractable Mo concentration had been
elevated in soils amended with 75 Mg ha™ coal ash mixture. Molybdenum is required for human
and animals. Relatively high Mo levels in leaves of crops consumed by humans or animals may
be nutritionally beneficial. The application of coal ash alone or mixed with organic waste has
been reported to increase Mo concentrations in leaves of maize (Zea mays L.) ¥ and of barley. ®

The reduction of Mn concentrations in tomato leaves following the application of the coal
ash mixture can not be explained by the levels of AB-DTPA-extractable Mn found in treated
soils. Indeed there was no significant difference between the levels of AB-DTPA extractable Mn
in treated and untreated soils. Nevertheless, the background level of Mn in untreated soil is more
than six times higher than in the coal ash mixture (Table 1). This indicates that plants growing in
treated soils take up more Mn than predicted based on levels extracted by AB-DTPA.

The treatments with the coal ash mixture did not significantly affect the concentrations of
Zn, Cy, Fe, Cd, Pb, and Ni in tomato leaves, while others have reported increased concentrations
of iron and decreased concentrations of Zn in tissue samples of rice and wheat. °
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Table 2. Concentrations of selected trace metals extracted by AB-DTPA from soils collected after tomato

harvest.
Application rate of coal ash mixture (Mg ha™)
0 25 75
mgkg T

Zn 213 223 19.5
Cu 584 58.3 55.6
Mn 113 11.1 9.46
Fe 106.3a' 75.0b 43.0c
Cd 0.58 0.58 0.58
Pb 2.80 2.89 2.68
Ni 0.55a 0.46bc 0.41c
Mo 0.23a 0.08b 0.02b

"Means followed by similar letter within each row are not significantly different at p=0.05 level of
probability.

Table 3. Maximum concentrations of selected trace metals in tomato leaves collected during tomato
growing season.

Application rate of coal ash mixture (Mg ha™)

0 25 75
mgkg ™
Zn 17.6 304 224
Cu 25.6 22.0 23.6
Mn 171.6 114.8 81.2
Fe 80.4 84.0 88.0
Cd 0.80 0.80 0.80
Pb 2.00 0.40 0.80
Ni 0 2.80 1.60
Mo 0.80 4.40 240

Table 4. Maximum concentrations of selected trace metals in tomato fruits.

Application rate of coal ash mixture (Mg ha™)

0 25 75
mgkg ™'
Zn 232 28.0 272
Cu 16.8 13.6 12.8
Mn 232 164 15.6
Fe 324 416 372
cd 0 0 0
Pb 0 0 0
Ni 0 0 0
Mo 0.40 0.80 0.80
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Figure 2. Concentrations of trace metals in tomato leaves collected during the growing season. Letters
above the bars indicate significant differences between mean values of the same metal of the different
rates of coal ash mixture at P <0.05.

Metals in tomato fruits

Fruits, a consumable part of plants, normally accumulate lower amounts of trace metals
than other plant organs. However, the levels of trace elements in fruits pose the greates concern
for regulatory and consumers when crops are grown in soils amended with biosolids or coal ash.
However we did not find significant changes of mean concentrations of metals, except those of
Fe and Mo in tomato fruits following the application of the coal ash mixture (Fig. 3).
Concentrations of Cd, Pb, and Ni in tomato fruits were below detection limits. Molybdenum in
fruits from plots without coal ash mixture amendment ranged from 0-0.4 mg kg™ with a mean of
0.2 mg kg, while fruits from plants grown in soils amended with 75 Mg ha" coal ash mixture
had minimum, maximum and mean Mo concentrations of 0, 0.8 and 0.67 mg kg, respectively
(Table 4 and Fig 3). There is currently no recommended daily allowance (RDA) for Mo in food.
We also have no knowledge of the health effects of high Mo in fruits. Molybdenum is known to
be essential for the proper functioning of certain enzyme-dependent processes, including the
metabolism of iron. Molybdenum also forms part of several enzymes. Including those needed to
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Figure 3. Concentrations of trace metals in tomato fruits grown on a calcareous soil amended with or
without coal ash mixture. Letters above the bars indicate significant differences between mean values of
the same metal of the different rates of coal ash mixture at P <0.05.

convert purine into uric acid. *' The National Academy of Sciences * has suggested that between
75-250 pg/day of Mo are safe and adequate in the diet for a normal adult person, and this is
equivalent to 0.11-0.37 kg of tomato, based on the mean concentrations of Mo in fruits from the
75 Mg ha treatment. Molybdenum toxicity is extremely rare in the United States. Neverthelss,
Mo is one of the trace metals in edible part of crops that should be monitored carefully when coal
ash products are used to amend agricultural soils.

Concentrations of another trace metal, Fe, were significantly increased from 26.5 mg kg'!
(control) to 32.9 mg kg™ in tomato fruit following the application of 75 Mg ha” of the coal ash

mixture. Such enrichments of Fe in tomato fruit should be considered as beneficial in increasing
of nutritional value of the produce.

Metals in lysimeter water

Cumulative amounts of metals in lysimeter water samples during the 12 months of the
study ranged from 0.002 kg ha™' for Cu to 0.25 Mg ha" for Zn (Fig. 4). The amounts of Zinc, Pb
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Figure 4. Total amounts of trace metals in lysimeter water samples during 12 months. Letters above the
bars indicate significant differences between mean values of the same metal of the different rates of coal
ash mixture at P <0.05.

and Mo leached from soils treated with 75 Mg ha™ coal ash compost were significantly higher
than those from untreated soils. However, concentrations of all metals in leachates were very low
and most values were below the detection limits (data not presented). The maximum (peak)
concentrations of trace metals from lysimeter samples are presented to show the possibility of
leaching of these metals in to groundwater (Table 5). The maximum concentrations of Zn, Fe and
Cu were below MCL (Maximum Contamination Level), which is the highest level of a
contaminant that is allowed in drinking water in the US (Table 6). The experimental site is a
Krome very gravelly loam soil, which is a typical calcareous soil with soil pH 7.6 and consists of
69% calcium carbonate. These metals probably were precipitated or adsorbed by the soil as they
moved through soil profile down to groundwater. On the other hand, the maximum
concentration of Mn in lysimeter water from control plots was 0.20 mg L', while MCL for Mn is
only 0.05 mg L. Similar Mn concentrations in groundwater from area near the experimental site
were reported previously. ** The high levels of Mn in the soil and the bedrock probably are the
cause of the high concentrations of Mn in groundwater. Concentrations of Mn in unfarmed
natural calcareous soils in the area are about 11 times higher than the mean concentration of Mn
in 448 Florida surface soils. ** However, Mn is in secondary drinking water standards, which are
not enforceable.
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Table 5. Maximum concentrations of trace metals in lysimeter water.

Application rate of coal ash mixture (Mg ha™)

0 25 75
mgL -
Zn 0.30 0.15 0.02
Fe 0.19 0.20 0.20
Cu 0.02 0.31 0.04
Mn 0.20 0.02 0.01
Pb 0.02 0.01 0.01
Cd 0.01 0.01 0.03
Ni 0.01 0.53 0.06
Mo 0.73 0.10 0.16

Similar results were observed for Pb and Cd (Table 5 and 6). Coal ash mixture
treatments neither affected the cumulative amounts, nor the maximum concentrations of these
two trace metals. However, the concentrations of both metals in water samples from control
plots and Cd from coal ash mixture treated plots exceeded the MCLs. Howie ¥ reported that lead
concentrations in the Biscayne aquifer beneath of the south Miami-Dade area ranged from
<0.001 to 0.016 mg L. Just as Mn in local water is a cause for concern, soil Pb and Cd are
significant factors in the water quality in the area. The concentrations of Pb and Cd in untreated
soils were about 4 and 325 times, respectively, greater than those in Florida surface soils. **

A peak Ni concentration of 0.53 mg L” was detected in water samples from the 25 Mg
ha! coal ash mixture treatment (Table 5). However, the cumulative amounts of Ni in lysimeter
water were not affected by the treatments (Fig 4). Nickel is not included in the current National
Drinking Water Standards. 3

Molybdenum was expected to move into groundwater because of its high concentration in
coal ash mixture and the high soil pH. *** Molybdenum is anionic and more soluble at high pH.

The cumulative amount of Mo in lysimeter water from the 75 Mg ha™ treatment was about 4.6
times greater than in lysimeter water from the control (0.037 vs. 0.008 kg ha™") (Fig. 4). However,
the highest Mo peak was detected in water samples from control plots (Table 5). Jackson et al. *
reported that the concentration of Mo in lysimeter water under soi! treated with fly ash and
poultry litter was as high as 0.15 mg kg'. Mo is also not regulated under the current drinking
water standards.

Table 6. Current drinking water standard for trace metals in US. *

MCL/MCLG' Secondary standard’
mgLT

Zn 5

Fe 0.3

Cu 1.3/1.3 1.3

Mn 0.05

Pb 0.015/zero

Cd 0.005/0.005

'MCL (Maximum Contaminant Level) is the highest level of a contaminant that is allowed in drinking
water and is an enforceable standard; MCLG (Maximum Contaminant Level Goal) is the level of a
contaminant in drinking water below which there is no know or expected risk to health and is a non-
enforceable public health goal.

2EPA recommends secondary standards for drinking water.

260



SUMMARY

Under the conditions of this study, the application of a coal ash mixture (25 or 75 Mg ha'')
to a calcareous soil increased AB-DTPA extractable Fe, Ni and Mo in soil. The high
concentrations of Ni and Mo in the coal ash mixture increased their bioavailability in the treated
soil. With respect to Fe, organic components in the coal ash mixture could be a reason for
substantial increases in the amount extractable with AB-DTPA. [ron availability is very
important to crops grown on calcareous soils. Leaf analyses showed increased concentrations of
Mo and Mn as a result of soil amendment with the coal ash mixture. Concentrations of Mo and
Fe in tomato fruits were elevated through application of the coal ash mixture. But these two
elements are not considered to cause heath problems. A high application rate of coal ash mixture
leads to increased cumulative amounts of Zn, Pb, and Mo in lysimeter water compared to the
control. However, concentrations of these trace metals usually are relatively low, occasional
peaks exceeded the MCL. These peak concentrations occurred both in treated and control plots.
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THE EFFECT OF FLUE GAS DESULFURIZATION RESIDUE ON CORN (Zea
mays L.) GROWTH AND LEACHATE SALINITY: MULTIPLE SEASON DATA
FROM AMENDED MESOCOSMS

T. Punshon, J.C. Seaman, and D.C. Adriano

Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC
29802, USA.

1. ABSTRACT

The environmental effects of applying a weathered flue gas desulfurization
residue (FGD) to soil was monitored in a mesocosm experiment conducted over several
cropping periods. Dry biomass and elemental composition of crop plants were measured,
as well as the quality and chemical composition of soil and leachate collected from
treated mesocosms. Data collected in the first year following FGD amendment showed
no effect on the germination of corn (Zea mays L. var Dekalb DK-683), soybean (Glycine
max L. Merr. Var. Haskell Pupa 94), radish (Raphanus sativus L. var. Sparkler), and
cotton (Gossypius hirsutus L. var. Deltapine 51) and a significant stimulation in biomass.
Metal and metalloid enrichment of plant tissues, specifically As, B, Se and Mo was also
significant. Application of FGD residue drastically altered the pH of the soil and the
salinity of the leachate. Studies were continued into a second season to monitor the
duration of beneficial and deleterious effects arising from FGD amendment, as it is
expected that the majority of environmental effects will occur in the initial season
following application. Second season data using a monoculture of corn showed no
significant stimulation or inhibition of biomass, in contrast to findings of the initial year.
Concentrations of metals and metalloids within plant tissues in the second season were
lower, although still elevated above control concentrations. Elecmcal conduct1v1ty of
mesocosm leachate; elevated from a control level of 0.05 dS m™ to 3.4 dS m™” with
addition of 100 tons FGD ‘acre, was still elevated 550 days after application. Repeated
monitoring of leachate salinity showed evidence of only a slight decline 928 days after
application. Soil data collected at the end of the second growth season showed that Se
concentration had fallen below detection limits, and levels of As had also fallen by
approximately 29%. The duration of environmental effects from FGD residue application
can be summarized in terms of their half-lives, i.e. the length of time required for a 50%
reduction in altered environmental parameters toward control levels. When half-lives for
plants, soil and leachate are compared, the increase in soil pH and leachate salinity have
the longest half-lives, and stimulation of plant biomass the shortest.

2. INTRODUCTION
There is a need to investigate the re-use of coal combustion by-products on a
more realistic scale, both in terms of the size of experimental systems and the duration

over which their effects are monitored. Previous studies have attempted to identify
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potential environmental effects of coal combustion by-products (CCBs) using small scale
growth chamber or greenhouse experiments!-1, however, comparative studies using the
same FGD residue material, applied to the same soil but using different experimental
systems (i.e. greenhouse compared to large mesocosm units) have given conflicting
results.!! It is likely that the elucidation of many environmental side effects such as
leaching of soluble salts and potentially toxic elements through the soil profile may
require larger systems, realistic weather conditions and longer periods of time to allow
more accurate predictions to be made.

The re-use of excess CCBs, specifically application to land, has been the focus of
a considerable body of research? 12-16, Of the diverse products arising from coal
processing and combustion®, FGD residue is currently of increasing significance because
of more stringent air quality standards!7. 13, Due to its relative novelty amongst the family
of CCBs, potential re-use opportunities of FGD residues have not been fully realized;
only about 10% of FGD materials are beneficially re-used!’. In the past, material has
been treated as waste and landfilled, although exhaustion of landfill space the elevation of
and associated elevated costs have made the search for beneficial uses of high-volume
waste materials is a priority.

FGD residue (the solid material arising from the removal of SO, from the flue gas
of coal fired power plants) generally contains Ca-S containing compounds!®. There are
two main types of FGD by-product, based on the type of desulfurization process used;
namely wet or dry FGD. Wet FGD residue, produced in the highest quantity, is usually
dewatered via centrifugation prior to use and stabilized with fly ash. Dry FGD residues
are produced from technologies developed for retrofitting existing coal burning plants,
the most common of which is fluidized bed combustion desulfurization. The common
element to both procedures is the introduction of a Ca based sorbent into the flue gases,
which reacts with the SO;, removing it from the gas stream. In wet extraction slaked lime
or limestone slurry is used, whereas dry extraction generally uses hydrated lime
[Ca(OH),], limestone (CaCQs) or dolomite [CaMg(CO;),]. In the latter case, a variable
product results!’.

FGD has the potential to provide essential plant nutrients, in that it contains
varying — often appreciable — concentrations of calcium sulfate (CaSO, 2H,0)?° and can
therefore have similar effects as agricultural gypsum when applied to land!?. It is a
particularly useful amendment for alleviating problems with excessively low soil pH2!, as
well as reducing P solubility in situations where excessive P in the soil leaches out into
the surrounding water bodies causing eutrophication?2. Application of FGD can increase
water infiltration in compacted soils and improve the aggregate stability of sodic soils?2.
Other additional benefits include pozzolanic and anhydrate reactions, buffering capacity
of fly ash mixtures and as a possible source of Mg!7.

The resolution of longer-term environmental side effects resulting from FGD
application can at present only come from long-term field experiments. Work is
underway to develop a rapid screening method that will preclude the need for time-
consuming experimental trials, and simulate soil-specific results under conditions of
long-term weathering?3, Until a satisfactory extraction technique is developed, however,
the variability of FGD materials and the soil to which it is applied require that studies
evaluating its safety be conducted on a case-by-case basis. FGD residue composition is
influenced by factors such as the source of the coal, the stabilization, treatment and
storage procedures, as well as the type of flue gas scrubbing system employed.
Furthermore, innovations in the flue-gas scrubbing systems are likely to change the
quality of FGD residues for some time to come?. It is now well known that FGD
materials can bring about effects ranging from the inhibition of germination and growth
in crop plants, to the enrichment of plant tissue, soil and groundwater with potentially
toxic elements, usually As, B, Se and Mo. As the material weathers, however, both
hazards and benefits are depleted!’, and studies have not shown conclusively the
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comparative rate at which these important changes once again approach levels seen in
unamended soil in a naturally weathered (i.e. field mesocosm or field study) system. This
work describes second season data from a long-term mesocosm experiment in terms of
observed changes in beneficial and deleterious environmental effects in comparison with
first season data!l» 19,

3. METHODS AND MATERIALS
3.1. Mesocosm establishment

Fresh FGD residue was collected from a coal-fired power plant in Cope, South
Carolina. The material was air-dried and mixed with locally obtained Orangeburg soil
(fine-loamy, siliceous, thermic, Typic Paleudult) in a large volume soil homogenizer to
obtain treatment mixes which were equivalent to 0, 25, 50, 75 and 100 tons FGD acre’,
(0, 55.5, 111.1, 166.6 and 222.2 Mg FGD ha™"). The Orangeburg soil had a pHyater (1:1)
of 5.4 (20.7), 0.5% organic C with 84.8% sand, 10.9% silt, and 4.2% clay. Mesocosm
units were constructed from galvanized iron cattle tanks measuring 2.4 m in diameter and
60 cm deep, equivalent to an area of 4.67 m” or 0.0012 acres!®. FGD material used in this
study was a low-grade gypsum product, containing 2% S and 9% ash, produced from a
dry scrubber process (see Punshon et al., 2001 for elemental composition). The material
was particularly enriched with B: 6.068 mg kg™ (water soluble) with 42.15 mg kg in
total (HF + aqua regia extraction).

Each FGD-soil mix was represented by four randomly arranged replicates. After
they were set up, the units were allowed to equilibrate for 4 mo, during which times
samples of mesocosm leachate were periodically collected from ports fitted at the base of
each unit for pH and electrical conductivity (EC) determination. This monitoring was
carried out following rainfall events 9, 27, 43, 84, 86, 96, 121, 550 and 928 days after
initial incorporation. Details of first season planting activities and subsequent growth and
elemental composition are given in Punshon et al.!%.

Mesocosms were established in March 1998, with second season planting
commencing in June 1999 involving planting units with a monoculture of corn (Zea mays
L. var. Dekalb DK-683) at a rate of 30 individual plants per mesocosm. The mesocosms

Figure 1. Biomass (g DW plant™) of com (Zea mays L.) grown on FGD-amended soil in
the second growth season. (Data are means + SD where n = 4).
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Figure 2. Comparative growth of corn (Zea mays L.), expressed as % of control growth in
season 1 and 2.

were destructively harvested to obtain elemental composition of plant tissues on three
occasions; July 14, August 11 and September 14, 1999.

3.2. Monitoring Methodology

Soil and leachate pH were determined using an Orion 250+ glass electrode, using
milli-Q water and soil at a ratio of 1:1. Elemental composition of all environmental
samples was determined using a Perkin Elmer Sciex Elan Inductively Coupled Plasma-
Mass Spectrometer. Soil and FGD residue extractions determined total [HF (40% v/v) +
H3BOs] and extractable [0.1 M HNO;]?5 elements. B concentration was determined using
a hot-water extraction technique?.

At each of the three destructive harvesting dates, corn plants were severed at the
root-shoot junction and separated into leaf (+ petioles) and kemnels, weighed to determine
dry biomass before oven-drying (48h @ 60°C). Material was gound to a fine powder
(Imm stainless steel screen) and digested in 10 ml HNO; (+ 30% H,0,) by microwave
(CEM Corporation, MDS-2000) in Teflon™ PFA vessels.

Table 1. Concentration (mg kg"' DW) of boron, selenium and arsenic in kernels of (Zea
mays L.) grown in FGD-amended mesocosm soils for a period of 3 mo. (Data are means
+ SD, where n=4).

FGD (t acre™) mg kgt DW
Boron Selenium Arsenic
0 0.62 (0.5) 0.26 (0.3) 0.10 (0.08)
25 2.39(0.6) 1.79 (1.6) 0.25(0.1)
50 2.07(1.0) 1.87(1.0) 0.13 (0.01)
75 410 (2.7) 2.27(0.9) 0.16 (0.05)0
100 2.10(0.2) 3.42 (0.6) 0.16 (0.02)
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Figure 3. Concentration of As (3A), Se (3B) and B (3C) within corn tissues grown in
FGD amended soil in season 1 and season 2 (mg kg"). Data are means + SD, where n=4.

4. RESULTS

4.1, Growth of Zea mays L.

Growth of corn plants harvested on the three successive harvesting dates is shown
in Figure 1, and indicates a slight, but not statistically significant stimulation in biomass
as compared to control plants. In all FGD treatments with the exception of the control
biomass in the third successive harvest are lower than the second. Growth of corn in
season one was approximately 300% of control plants, compared to a maximum of 130%
in the second season (Figure 2).
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Figure 4. pH of FGD-amended mesocosm soils taken at the beginning of season 2. Data
are means * SD, where n=4, with one-way ANOVA notation.

Figure 5. Total concentration of arsenic (mg kg'l) in mesocosm soils in season 1 and 2
following amendment with FGD residue. (Data are means + SD where n=4).

Figure 6. Electrical conductivity of leachate collected from FGD amended mesocosms
(Data are means = SD where n=4).
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4.2. Elemental Composition of Plant Tissue

Corn grown in FGD-amended soil in season two contained higher concentrations
of As, Se, Mo, B and Ca in the leaf tissue than control plants, with higher concentrations
of Se, Ca, and B also detected within the kernels of plants grown in FGD amended soil
(Table 1). When first and second season leaf tissue concentrations are compared, the
concentration of As, Se and B fall considerably; on average the concentration of enriched
metals fell by between approximately 30 — 60%. In general, levels of trace elements
showed the greatest reduction between seasons 1 and 2 in the 100 tons FGD acre’
application rate, with a » 50% drop in As (Figure 3A) and ~ 60% for both Se and B at
this level (Figure 3B and 3C).

4.3, Soil Quality

Analysis of mesocosm soils for total elemental composition at the end of the second
growing season showed a reduction in soil Se concentration to below detection limits (0.6
pug kg?), and a reduction in As. Total As (mg kg') content of amended soils the
preceding year are compared (Figure 4). Reduction in soil As concentrations were
between 18 — 29%, with the highest reduction observed at the highest rate of FGD
amendment. Other developments in soil chemistry as a result of weathering were a
substantial decrease in the concentration of Na in the soil, and a slight increase in Mg. All
other elements were not significantly different from control soil. Soil pH remained highly
elevated at 8.1 (Figure 4) in the second growth season.

4.4. Leachate Quality

Initial monitoring of mesocosm leachate indicated a substantial rise in EC, although no
concurrent changes in leachate pH. Elevated leachate salinity was maintained throughout
the second growth season, and began to show indication of a downward trend 928 days
after treatment. Figure 6 shows the progress of leachate salinity throughout the entire test
period.

Leachate quality immediately after application of FGD material showed enrichment with
B and Se, and second season data indicate a decline in concentrations of both elements
This decline aplpears more pronounced for Se, where leachate collected from 25 and 50
tons FGD acre™ contain no more Se than control mesocosms after 927 days (Figure 7A).
FGD material appeared to raise the B concentration of leachate water to a maximum 121
days after application, and although this level had dropped by 893 days, it was still
greatly elevated above control concentrations. After 928 days of exposure, B content for
the different FGD residue application rates were not significantly different from one
another (Figure 7B), although the 75 and 100 tons acre”! contained the highest levels of
B, with approximately 0.62 and 0.72 mg L respectively. The concentration of soluble
salts such as Ca and K in the leachate was also elevated by FGD addition, and these
levels fell steadily from approximately 94 days onward.

5. DISCUSSION

The application of FGD materials to land intended for crop production carries
with it obvious benefits and drawbacks. Research presented here supports the majority of
studies performed on FGD residues in that the application of these products greatly
elevates soil pH, soluble salt content of leachate and the concentration of potentially toxic
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Figure 7. Se (A) and B (B) concentration in sequential mesocosm leachate samples (ug L)
(Data are means + SD where n=4).

trace elements within the tissues of crop plants grown on the amended soil. Evaluation of
these effects in order to guide the decision making process with respect to safety and
recommended application rates must take into account the relative length of time over
which changes in environmental quality are likely to remain. The use of FGD by products
in place of commercial gypsum is entirely feasible when the purpose of the application is
to ameliorate problems associated with the compaction of sodic soils (i.e. soil particle
dispersion)?2. The material used in this case provided a stable elevation of soil pH that
was not observed to fall within the duration of the study. However, effects which would
further support beneficial use e.g. an observed fertilizer effect - rapidly disappeared,
leaving behind considerable enrichment of soil, leachate and plant tissue with As, Se and
B, with varying rates of depletion. Short term growth chamber or greenhouse studies may
misinterpret the use of the material in this case as being suitable for use as a fertilizer,
because of the immediate boost to crop growth, probably associated with the addition of
Ca and S, and other micronutrients such as Cu and Zn, which could lead to misuse. In
terms of the length of time taken to observe a 50% reduction in the environmental effect
of FGD application on plant tissues, soil and leachate, far the most persistent changes in
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environmental quality occur in the soil and leachate — taken as an indication of
groundwater effects.

This suggests that FGD residues used for the correction of mineral deficiencies in
plant tissues may be effective only over a relatively short period of time, and that
repeated application of FGD residues may present problems in the increase of the metal
load of the soil and salinity of the groundwater. Application rates used in this mesocosm
study are far higher than those generally reported by other workers!?, and agronomically
feasible application rates are far lower, and these high application rates may explain the
extent of the increase in soil pH (Figure 4). Some concern must be attached to the
enrichment of the soil with As, and the relatively slow rate at which it is depleted — at
about 30% per year following application. Arsenic was not detected within the leachate
water, and therefore the assumption may be that it remains bound to the soil, where a
fraction is still available for plant uptake. Selenium — present in the soil in the first year
also appears to have moved through the soil profile to a degree where it is no longer
above ICP-MS detection limits, although it remains present in the leachate.

The beneficial re-use of FGD products by application to land remains a viable
option, although with the current grade of by-products, care should be taken to weigh
positive and negative effects, and the different periods of time over which they persist.
Risks associated with long term enrichment with potentially toxic trace elements, and
enhancement of groundwater salinity remain a pertinent issue in the safety of FGD
residue application.
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ABSTRACT

Coal combustion by-products (CCBP) include fly ash, bottom ash (cinders) and various
desulfurization by-products. They contain plant nutrients, have variable capacities to neutralize
soil acidity, and may improve physical properties of mineral soils. They have been usefully
applied in agricultural, horticultural, turfgrass and land reclamation settings. However, inherent
traits of CCBP such as bulkiness, excess trace metal concentrations, inconsistent availability of
P, and low content of N and K make CCBP an untenable fertilizer supplement. Likewise,
utilization of municipal biosolids (sewage sludge) can be problematic due to trace metal levels
and undesirable nutrient ratios. Therefore, this study was initiated in early 2000 to determine the
feasibility of blended CCBP and biosolids/biosolid products for use as growth media for
horticultural ornamentals and turfgrass sod. Trace element concentrations in mixes used for both
soil amendment and sod media were below USEPA regulatory limits. In the sod production
component, growth media were uniformly spread to heights of 2, 3, and 4 cm on compacted
subsoil, sprigged with bermudagrass [Cynodon dactylon (L.) Pers. X C. transvaalensis Burrt-
Davy var. ‘TifSport’ (formerly Tift 94)], and maintained under ideal commercial sod field
conditions. Following a maturation period of 99 d, sod was harvested and installed at the Georgia
Experiment Station in Griffin. Remaining sod were destructively analyzed for determination of
their physicochemical attributes. Field data collected from the ornamental beds showed yield and
quality of flowers grown on CCBP-amended soil to outperform the commercially-amended soil
under limited fertility conditions. Post-installation evaluations of sod made in April, 2001 did not
reveal significant differences in rooting strength by mixture or sod thickness. All finished CCBP-
containing sod retained significantly more volumetric water (¥,,<-80 kPa), while possessing 26-
39% less gross (wet) weight than the control mix sod. The finished sod grown in selected
combinations of bottom ash, fly ash, and biosolids possessed significantly greater hiomass than
the control sod mix, while requiring less supplemental fertilization. Utilization of the described
CCBP-mixes as supplemental growth media in bermudagrass sod production was successful and
may be a significant advantage when compared to some SE US soils. These experimental
observations, in tandem with similar published results, indicate that utilization of CCBP in
horticulture and turfgrass industries is technically feasible and environmentally-sound.

Chemistry of Trace Elements in Fly Ash, edited by Sajwan et al.
Kluwer Academic/Plenum Publishers, 2003 275



INTRODUCTION

Coal is the fossil fuel used most widely in US energy production. Current levels of
carbon-based fuel reserves presuppose continued coal use for hundreds of years. Eighty percent
of coal combustion by-products (CCBP) generated by the US electric utilities are comprised of
fly ash, bottom ash, and boiler slag. Total annual production of fly ash (FA) in the US was 6 x
107 Mg, and bottom ash (BA) was approximately 1 x10” Mg in 1998.'

Fly ashes (FA) have been classified based on their elemental composition into two
categories: class-C and class-F.2 Class-C ashes are derived from sub-bituminous coals (mined in
the western US) and are commonly low in S and high in base cations and alkalinity. This makes
class-C fly ash more highly pozzolanic and therefore more valuable as a cement additive. These
fly ashes (FA) also possess measurable calcium carbonate equivalencies (CCE) and are
sometimes used as lime-substitutes. Class-F ashes are derived from bituminous coals and are
high in Fe and relatively low in base cations. Some class-F fly ashes possess regulated metal
concentrations which limit their potential use. It is important to remember that either class fly ash
can be generated anywhere, depending only on the coal fuel source. Class-F fly ash (FA) is
sometimes used in structural fill and other engineering applications. Unused FA is often
impounded in lagoons or landfills.' Increasing regulatory pressure and elevated costs of CCBP
disposal methods have stimulated discovery of innovative and practical CCBPapplications.

Possibly the greatest limitation to incresed use of CCBP is its distinction for being
chemically amorphous and spatially- and temporally-variable. Fly ash composition has been
reported to vary with the parent coal from which it was derived, conditions during its
combustion, efficacy of emission control devices, storage and handling of the byproducts and
climate.’ An investigation of ashes of differing geographic region reports wide value ranges for
elemental concentrations and pH.* In a study of 29 FA samples collected from power plants
throughout the SE US, results showed samples collected from a single power plant possessed a
range of physicochemical attributes as varied as samples taken from different power plants.’

Physical characteristics of CCBP are also diverse. Sand-sized components of bottom ash
(BA) (0.05-2.0 mm diam.) are relatively inert, possess comparatively low trace metal
concentrations and have lighter densities than sand, potentially minimizing shipping and
handling weight of consumer products containing them. Nearly all FA is silt-sized (2-50 um
diam.) with greater specific surface area and bulk densities than its coarser BA counterpart.

Numerous studies have evaluated FA as an alkalinity source/lime supplement. In a recent
investigation, two acidic alfisols were amended with two alkaline FA at rates equivalent to 12.4,
49.4, and 123.6 Mg ha™' (0.5-5.0 % v/v). These amendments resulted in significant increases in
soil pH. At the highest application rate, soil pH of the less buffered soil increased 3 units and the
pH of the more-clayey soil 2 units.® A less-recent greenhouse study examined the effect of 5 and
10 % (by mass) fly ash additions versus traditional liming of three acidic fine sands. Pre-mixed
soil-filled pots were sowed with transplanted com (Zea mays L.) seedlings. The higher rate of FA
significantly raised soil pH above the control in all the fine sands as did the lower rate in 2 of 3
fine sands. The lime application made at 0.3% (by mass) also significantly raised all the soil pH
levels above the control.” Positive correlations (r=0.92) between the CCE of fly ash and the final
pH of soils receiving an 80 Mg ha" application have been reported.? Efficacy of acid
neutralization relies on the addition of a ‘high CCE’ FA to an inherently acidic soil.

Coal combustion byproducts applied to soil to replace phosphorous and micronutrient
fertilizers has been reported to correct nutritional deficiencies of P, Mg, Ca, S, Mo and B.*"
Delivery of certain plant essential elements (such as B) is generally more dependable than for
others. For example, an examination involving sizable additions of pulverized FA containing
0.2% P did not result in a significant increase in the inorganic P fraction of treated soils." Ina
field study of clover (Trifolium subterraneum var. Dalkeith), fly ash (FA) (0.5% P and 0.3% K)
applications equivalent to 0, 5, 10, 20, 50 and 100 Mg ha! were combined with complete
fertilizer, fertilizer minus P, fertilizer minus K, and no fertilizer split-plot treatments. Main-plot
effects showed the 100 Mg ha'! application of FA significantly increased dry matter production
by an average of 56% at all sites. Results showed very little K was taken up into plant tissue
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unless provided in the complete fertilizer application, while tissue P showed a significant
increase with increasing levels of FA."

Mixtures of CCBP and organic waste products have been more reliable in consistently
providing the primary nutrients needed to support agronomic crops. Sajwan et al. found sewage
sludge/FA mixtures in ratios of 4:1, 2:1, 4:3, or 1:1, applied at rates of 124 to 248 Mg ha' to be
beneficial to the growth and nutritional status of cereals.'s Results from a greenhouse study of
corn indicated FA mixed with poultry manure sometimes produced more dry matter than FA and
sewage sludge. Plant tissue analysis indicated the comparatively elevated levels of K and N in the
poultry manure were responsible for the observed biomass increase.’

CCBP additions to soil have also been made for the purpose of improving soil physical
properties. Because many CCBP possess silt to sand-sized particle diameters, they have been
used for improving capillary porosity in sandy soils, and for increasing air-filled porosity in fine-
textured soils. Studies investigating these attributes of coal ash date back to at lgast 1967." A
recent field experiment tested tillage of a class-F FA into an acidic, excessively drained sand.
Rates of 316, 632, and 950 Mg ha'' FA significantly raised the water-holding capacity in the
plow depth of the treated soil. Infiltration rates decreased dramatically (to approximately 80% of
control plots) on those same soils.'® A similar study reported sizable increases in capillary
porosity of both fine and coarse sands to which FA had been pre-mixed. However, this slight
gain was at the expense of non-capillary pores and saturated hydraulic conductivity.” Field and
laboratory studies have shown modification of turfgrass soils with sintered fly ash to assist in
drainage and infiltration rates of fine-textured turfgrass soils. The high-temperature sintering
process pelletized fine fly ash into coarser, porous aggregates (similar to bottom ash). Sintered
fly ash additions to the top 15 cm of soil at rates of 33% (v/v) resulted in reduced capillary
porosity, but increased infiltration rate.?’

Ostensibly, CCBP have practical agronomic value under specific condmons Mixtures of
CCBP and biosolids appear to result in a synergistic tandem of slow-release primary nutrients
and exchangeable micronutrients. Unfortunately, these materials are considered low-analysis
fertilizers and are expensive to apply. Additionally, trace metals associated with both societal
waste products can accumulate in soils and potentially contaminate groundwater. The Clean
Water Act limits cumulative applications of materials possessing measurable regulated metal
concentrations. This restriction favors utilization of CCBP/biosolid/biosolid products.in
agronomic or horticultural applications where the soil media is concomitantly exported with the
final product. This would include the ‘soil’ growth media of either container-grown horticultural
plants or turfgrass sod. Additionally, morphology and growth habit of particular turfgrasses make
them well-suited candidates for stabilization (vegetation) of CCBP land applications. Turves
rarely amass high quantities of B in leaf tissue because B accumulates apically, and leaf tips are
frequently removed by mowing practices. Bermudagrass (Cynodon dactylon L.) is an aggressive
turf and adapted to a wide range of soil types, generally performing best on fine-textured soils
with high fertility and available moisture. The salt tolerance of bermudagrass is considered
good.”!

An extensive investigation of an acidic, class-F fly ash application to a sod production
field was conducted in the SE US.” Fly ash was applied to a Congaree silt loam (fine-loamy,
mixed, active, nonacid, thermic Udifluvents) at rates equivalent to 0, 280, 560, and 1120 Mg ha’,
The FA material was tilled into the soil and seeded with centipedegrass [Eremochloa ophiuroides
(Munro) Hack.] 2 d following. This planting was later abandoned because of germination failure
in the treated plots. Soil tests indicated elevated soluble salts, particularly boron. The plots were
re-tilled 8 months following and seeded again. In the following establishment period, diminished
growth and vigor continued to be recorded as long as 57 days after planting on the plots treated
with the two highest FA rates. The foremost-observed benefit of the FA applications was
increased water retention at the 10 kPa tension level. Soil moisture at tensions >75 kPa were not
measured. The authors asserted the phytotoxic effects of 560 and 1120 Mg ha™' application rates

diminished 1 or more years following the initial application, and concluded turf farms were a
viable utilization venue for fly ashes.”
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Turfgrass sod production is a commeon agricultural enterprise in the SE US. A
combination of elevated housing starts in the south (up 9.7% annually since 1997)* and
increasing interest in traditional row-crop alternatives has instigated a consistent annual
expansion in sod production hectarage. Most southeastern states currently have from 5 to 9 x 10°
ha in sod production, while Florida has nearly 3 x 10 ha. Agricultural productivity on southern
Piedmont soils is notoriously limited by edaphic constraints. Upland Piedmont soils are typically
characterized by an ochric A horizon and a deep acidic B horizon with low available water
holding capacity. Recently established sod fields, especially seeded fields, require adequate soil
moisture and receive frequent irrigation applications. Following establishment of a root system
by sod, favorable plant-available water-holding capacity in the upper soil profile can minimize
irrigation requirements throughout the sod maturation period (5-23 months, depending on grass
species).?* This potential reduction in irrigation requirement could minimize variable cost
contributions.

Adequate soil fertility is paramount in timely establishment and maturation of turfgrass.”
Sod producers are advised to submit soil for testing annually and to maintain optimum fertility
and pH levels on production fields. Any nutrient deficiency in farm soil, particularly a primary
nutrient, could postpone sod maturity and bungle an opportune entry to market. Adequate soil
phosphorous is particularly crucial in the preparation of seedbeds.?' Fertilizer rate
recommendations in the SE US vary by turfgrass species and soil properties. Assuming adequate
soil P, an application of 100 kg N and 50 kg K ha™' (K based on soil levels) is commonly made
following the first mowing, regardless of species. Bimonthly N and K applications are sometimes
extended until complete ground cover is achieved in production of bermudagrass and zoysiagrass
(Zoysia spp.) sod. Iron is sometimes applied in a soluble foliar application antecedent to
harvest.2!

Thus, considering current levels of CCBP accumulation, productivity limitations of
Piedmont soils, proven effectiveness of CCBP for physical and chemical soil conditioning,
appropriateness of CCBP use in non-food chain applications, and the suitability of turfgrasses for
vegetation of land applications of CCBP, our experimental objectives were to evaluate the
suitability of fly ash, bottom ash, and biosolid mixtures as (1) soil amendments in ornamental
bed or garden preparation, and (2) supplemental soil media for generation of a bermudagrass sod
product in a typical commercial method.

MATERIALS AND METHODS
Ornamental Beds

Experimental growth media blending bottom ash, fly ash, and municipal waste were
evaluated as soil amendments in establishment of pansy (Viola tricolor L.) in raised flowerbeds.
The experimental growth media/soil amendment was comprised of 10 parts municipal compost,
5 parts bottom ash (BA), and 2 parts fly ash (FA)(v/v). A commercially-available mix of pine
bark, peat moss, and perlite, was used as a control (Fafard 3B, Fafard, Inc. Anderson, SC). All
mixes were easily handled and generally amiable. All mixture components were nitric or
HF/aqua regia digested for elemental composition. The empirically derived physicochemical
characteristics of the media mixtures are specified in Table 1. In November 2000, two
application rates of experimental and control soil amendments were made at 500 and 1000 m’ ha
! (5 and 10 cm application height, respectively) to four 1x2 m experimental plots established on a
Cecil soil series (clayey, kaolinitic, thermic family of the typic Kanhapludults) in full sun. Ali
applications were then roto-tilled to a depth of 15 cm. Three d following, pansies were
transplanted into the prepared beds and established on 15 cm centers. The established flower
beds were then mulched with a 4-cm layer of pine straw and bark to minimize soil evaporation.
Fertilizer applications were withheld to intensify plant nutrient availability of any particular
blend. Soils were collected and analyzed for extractable nutrients (Mehtich 3)* and elemental
composition (HF/aqua regia digest) following removal of the pansies in April, 2001.
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Sod Production

All experimental soil amendments and sod growth media were considered exceptional
quality sludges under USEPA regulations and unrestricted for horticultural or land applications
not exceeding annual load limits” (Table 1). Based on preliminary greenhouse tests, three mixes
of CCBP and biosolids/biosolid products were selected for the sod production study. The
treatment mixes were formulated on a volume basis: 2 parts BA to 1 part municipal compost
(CP) (2:1), 1 part BA to one part CP (1:1), and 4 parts BA to one part sewage sludge to one part
FA (4:1:1). The control growth media consisted of two parts sand (fine to medium, felsic) mixed
with one part compost (2 Sand:1 municipal compost (CP). Mix physicochemical properties are
described in Table 1. The sod production field experiment was initiated in May, 2000. Mixes
were uniformly spread to heights of 2, 3, and 4 cm (200, 300, 400 m® ha™') over a compacted
Cecil subsoil (clayey, kaolinitic, thermic family of the typic Kanhapludults) in full sun. The
experimental growth media were not tilled into the soil. Experimental design of the sod
experiment was a two-way (growth media formulation by application height) strip-plot design
with four replications (n=48). Mature ‘TifSport’ bermudagrass sod (Cynodon dactylon (L.) Pers.
X C. transvaalensis Burrt-Davy [formerly Tift 94]) was obtained from a foundation stock field
at the Georgia Crop Improvement Association, Inc., Athens, GA. The 48 m” of experimental
growth media were established with viable sprigs at an equivalent rate of 60 kg moist sprigs per
ha. A broadcast application of commercial fertilizer provided 12.2, 48.8, and 10.1 kg ha™' of
actual N, P, and K, respectively, on 9 June, one day after planting (DAP). Following ~50%
vegetative cover of all plots [36 days after planting (DAP)], the field was mowed every 4 d with a
motorized reel-mower at a height of 3 cm and the plots irrigated equally to prevent wilt. Leaf
clippings of the fifth mowing (55 DAP) were collected, triple-rinsed with de-ionized (DI) H,O,
and measured for N content by dry combustion (CNS-2000, LECO Inc., St. Joseph, MI). These
procedures were repeated every 8 d until sod harvest (99 DAP). Supplemental fertilizer sprays
(24.5 kg ha'' ammonium nitrate) were applied to all plots of a specific growth medium type when
average leaf clipping N concentration fell below 80% of the well-fertilized bermudagrass
reference (maintained on-site), every 8-d period. Application events were recorded (Figure 1).

Additional plant tissue was harvested at the sixth mowing (60 DAP), triple-rinsed with DI
water, and nitric acid digested for trace elemental concentrations. Elemental composition of all
plant tissue and growth media were analysed using inductively coupled plasma-mass
spectroscopy (ICP-MS)(Elan-6000, PerkinElmer, Boston). Physicochemical properties (pH, EC,
etc.) of growth media were analysed by standard methods.”*° Following the 99 d maturation
period, bermudagrass sod was harvested with a sod-cutting device (Ryan Sod Cutter [45.7-cm
width], Textron Golf, Inc., Augusta, GA). Sod grown on varying growth media volumes were all
harvested at their corresponding depths, e.g., sod grown on the 4 cm application media volume
were cut to include all 4 cm of the growth media. Accordingly, the height of the cutting blade
was adjusted three times. The following day, 1.3 m® of sod grown on each type of media at each
application volume (15.6 m’ total) were installed both conventionally and on high-strength steel
grids in a maintained turfgrass area of the Georgia Experiment Station in Griffin (Figure 1).

The remaining sod was destructively analysed immediately. Growth media were
separated from shoot biomass and analysed for soil moisture retention and bulk density. Soil
water retention was measured using pressure plates (Soil Moisture Equipment Co., Santa
Barbara).” Growth media samples were tightly packed into steel cores of 2-cm radius and 0.9-
cm height and saturated with 0.1 M CaCl, solution at atmospheric pressure. Four replications of
every treatment were simultaneously measured at each level of matric potential (1.8, 5.9, 10, 80,
250 and 1450 kPa). Plant available water data reflects volumetric soil water available under
tensions of 80-1450 kPa. Bulk density measurements were replicated 24 times. Sod biomass,
referring to shoots and roots present in sod, were collected in triplicate subsamples and oven-
dried (95 °C) before weighing. The sum of the media bulk density value and dry shoot biomass
(on an area basis) comprised the sod dry weight. Soil moisture retention data was used to
calculate soil water, and the sums of gravimetric soil water (‘¥,,< -80 kPa) and dry weight of the
finished sod used to formulate total sod weight for comparing handling and installation ease.
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Figure 1. (above) High-strength steel grids installed
below transplanted sod material (September, 2000);
{below) Grids and sod being pulled for rooting strength
determination (April, 2001).

In April, 2001, the steel grids installed under the experimental and control sod were
relocated, edged, and fastened by four hooks to a motorized winch. Tensile strength of sod
fastening, or rooting strength, was measured by a load sensor (MSI 7200 Dyna-link,
Measurement Systems Int., Seattle) upon force application and subsequent root failure (Figure 1).
The experimental design of the horticultural experiment was a randomized complete block
(RCB) and the sod experiment was a two-way strip-plot. Sod experiment soil moisture data, bulk
density, LOI, and CEC measurements were conducted on growth media collected from only the 4
cm application volume sod and thus analysed as randomized complete blocks. The PROC GLM
subroutine of SAS (SAS Institute, Inc., Cary, NC) facilitated analysis of all data.

RESULTS AND DISCUSSION

Ornamental Beds

CCBP-biosolid blends, as a flower garden soil amendment, resulted in enhanced plant
growth of pansies compared to the control amended-soil. Total plant biomass and average flower
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mass of pansies grown in the CCBP-amended flower beds were significantly greater than pansies
grown in control plots. Additionally, there was a significant effect of application volume. At the
5 cm application volume, the CCBP-based amendment increased yield of both plant biomass and
flower mass by a factor of 6.8 compared to a § cm application of the control amendment. The 10
cm application increased yield of both plant biomass and flower mass by factors of 9.4 and 9.3,
respectively, compared to the equivalent control amendment application (data not shown).

The observed increases in plant growth can be attributed, in part, to elevated
exchangeable nutrient levels in the CCBP-treated soil versus the control soil. Available, Ca and P
levels were nearly 2 and 9 times greater than those levels observed in the control plots,
respectively. Mn and Zn levels were also elevated, but to a lesser extent (Table 2). Soil pH,
electrical conductivity (EC) and exchangeable N levels were similar for the experimental and
control beds. Total concentrations of regulated trace elements in the potting mix/soil amendment
experiments were well below regulatory limits and similar to background levels in untreated soils
(Table 2).*' The results of the potting mix experiment were similar to those reported for
poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) and peperomia (Peperomia viridis L.)
grown in bottom ash mixes.*

Sod Production

In the bermudagrass sod production study, one experimental block was destroyed by
surface runoff during a rain deluge in mid-June 2000. The remaining 3 replications were
unaffected. Under irrigated, full-sun, and optimal-temperature conditions bermudagrass vigour is
often directly related to N sufficiency. Mineralized soil N from fertilizer (1 DAP) and organic N
in the compost and sewage sludge inclusions adequately supplied N during the first 2 months of
production, as average leaf tissue N at the 2 August mowing (54 DAP) was >4% by weight for
bermudagrass grown on all mixes (range 3.81-4.86 N%, by mass). These organic N applications
applied concomitantly with the growth media were sizable. For both the 2:1 and 2 Sand:1CP
growth media, organic N was added at rates of 661, 496, and 331 kg N ha'' for the 4, 3, and 2 cm
height applications, respectively. For the 1:1 growth media, organic N was added at rates of
1000, 750, and 500 kg N'ha' for the 4, 3, and 2 cm height applications, respectively. In the
application of the 4:1:1 growth media, organic N was added at rates of 1687, 1265, and 844 kg N
ha for the 4, 3, and 2 cm height applications, respectively. Wong et al., showed sewage sludge
additions to a sandy soil (0.25-3.5%) to result in elevated NH," concentrations as long as 70 days
after application.” N mineralization from compost is also well substantiated. A recent growth
chamber study indicates N from biosolid compost accounted for 33% of mineral N requirements
in tall fescue (Festuca arundinacea Schreb.) culture.3* A field study showed reduced N fertilizer
requirements to be expected for the maintenance of turves when composted wastes are
incorporated into a soil before the establishment of turfgrass.®® Leaf tissue of 4BA+1SS+1FA
grown sod maintained a nearly constant N concentration and required only one supplemental
fertilization during the season (68 DAP). The control sod required 4 fertilizations over the same
period (DAP 59-90; Figure 2). Warm-season sod establishment and biomass production have
been accelerated by increasing N fertility rate.*

Mixture composition and application volume (height) significantly affected sod biomass
production (Table 3), but application height and media type effects did not interact. The 4 cm
height (for all mixtures combined) resulted in significantly greater biomass than the 2 and 3 cm
application heights. Considering all experimental growth media were nutrient-rich and possessed
favorable growth conditions when compared to the compacted subsoil counterpart, increased sod
biomass was a predictable response to the greatest application volume (4 cm or 400 m® ha™').
Because there were no application height by media type interactions, it can be inferred that there
were no phytotoxic levels of nutrients or salts accumulated at the CCBP application rates
implemented in this study. Additionally, leaf clippings of CCBP-grown bermudagrass sod
collected 60 DAP did not possess concentrations of regulated metals significantly different from
bermudagrass grown on control mixtures (data not shown). Moreover, leaf tissue concentrations
of As, Cr and Se in all replications of every growth media were below ICP-MS detection limits
(data not shown).

284



*juasaxd erpsw 1moI3 Jo wd ¢ pue (D 0L) SSEWOIq Pos AIp-UdA0 uo paseq ‘(ed> 08>"h e
OH SLnowIARIS) 191BM [10S PUB (SSEWOIq POS + AJISusp Y[nq) 1yStom KI1p Aq sseur 1o[[ed pos [e10, “¢ 231y

HN-E /¥ B)] ssew pos |ejo|

00clt 008 00V 0

| (do1L:pues 2) 10nu0)

sempes] 7Mbby vet+dor
ssew AUp pOS N I
b Y ez + o

Y SS|+VdL+vay

285



The 4BA+1FA+1SS (4:1:1) experimental mix possessed significantly greater sod
biomass than any other growth media, for all application heights combined (Table 3). This
significant treatment effect was observed because of two likely reasons. The first reason is that
although the organic matter addition in the 4:1:1 mix was only16.7% sewage sludge by volume,
the sewage sludge possessed a greater density than the municipal compost and had significantly
greater N and P content by mass (Table 1). Second, the chemistry of the actual organic N differed
greatly between the two organic materials. Fresh manures reportedly provide greater quantities of
mineral N than the same exact manure following composting.”” Municipal compost used in this
experiment was formulated from 33% yard waste and 67% sewage sludge by volume and was
likely more resistant to short-term decomposition than fresh manure (sewage sludge).

Following sod harvest, laboratory tests of the experimental sod mixtures revealed
significantly different values of bulk density and soil water retention (Table 3). Due to the high
rate of composted organic matter inclusion and its inherent low mass, bulk densities of
experimental sod growth mixes were low. Volumetric soil water near saturation (1.8 kPa tension,
data not shown) of the CCBP-mixes was significantly greater than levels observed of the control
mix. Additionally, both gravimetric and volumetric soil water retained by the CCBP-containing
mixes at ¥, < -80 kPa were significantly greater than water retained in the control sod. Finished
sod is comprised of dry weight (soil + vegetative mass) and water weight. However, the number
of pallets which can be delivered by truck is limited by the weight of the finished product.
Commercial sod weight can range from 0.8 to 1.6 Mg per pallet.** All CCBP-grown sod in this
experiment possessed total weight between 0.7-0.8 Mg per pallet (Figure 3), while retaining
significantly greater capillary water than the control sod. This clear benefit should be realized by
the end-users at installation (handling weight) and throughout grow-in (irrigation requirements).

Plant available water (PAW) in sod proceeding harvest is highly desirable during periods
of measurable evapotranspiration rates. The portion of capillary water designated as plant
available is directly related to sod quality (even survivability) under transport and water-stressed
conditions. Plant available water (PAW) appears to correlate with carbon content (LOI) by
weight, with the exception of the 4:1:1 mixture (Table 3). Volumetric water retention of the 4:1:1
mixture greatly exceeds that of the compost-amended mixes near saturation. Conversely, at
tensions greater than 80 kPa the volumetric water-holding capacity of the compost amended-
CCBP mixtures greatly exceed the sewage sludge-amended 4:1:1 mixture. The particle size
distribution and soil structure of the 4:1:1 mixture appears to result in proportionally greater
macro-porosity when compared to the other mixes.

Fall of 2000 was warm, with average maximum temperatures in Griffin, GA exceeding
27, 25, and 16°C for Sept., Oct., and Nov., respectively.”® All installed sod broke dormancy and
flourished in April, 2001. Seven months following installation, there were no significant
differences in rooting strength (Table 3) or turf quality (data not shown) among treatment mixes
or application heights.

Container plants and sod are horticultural products associated with sizable retail markets.
Implementing CCBP and biosolids as growth media in production of these items appear to be
agronomically, environmentally and economically sound methods of societal waste disposal. All
soil and plant materials associated with our experimental productions possessed trace element
concentrations well below regulated levels. Under no conditions were the plants grown in the
CCBP/biosolid experimental mixes outperformed by plants grown in traditional potting mixes or
conventional soils. On the contrary, the experimental mix containing fly ash and sewage sludge
fostered significantly greater bermudagrass biomass following the experimental period than the
control mix, indicating an agronomic advantage in CCBP/biosolid use.
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1. ABSTRACT

Chemical fractionation of heavy metals in ash, sludge and amended soil was
performed using sequential extraction. The metals were predominantly found to be present in
the residual and carbonate fractions in the native soil and ash while amounts of Ni, Cd and
Zn were significant in the exchangeable fractions of sludge. The distribution of metals in the
extractable fractions differs according to the metal extracted, the treatment and the
proportions of application. Among the metals, Ni and Zn and to a lesser extent Cd moved
readily in the sludge amended soils due to lowering of pH and simultaneous increases in their
most labile forms. Better yields of paddy and peanut with ash addition and reduction with
sludge proportion were observed. The paddy straw and peanut shoot showed the maximum
accumulation of metals indicating a physiological barrier in the transfer of metals from the
shoot to the grain. Linear relationships were observed between the soil total metal
concentrations with that in the crops. The study indicated that at the applied rate, the
behavior of heavy metals in the amendments was primarily controlled by sludge.

2. INTRODUCTION

Coal is one of the most abundant fossil fuel used as a source of electrical energy
throughout the world. Following the burning of coal for power generation, a large amount of
fly ash is produced which needs to be disposed with negligible environmental impact. High
ash content (30-50%) of Indian coals is contributing to approximately 110 million tonnes of
annual ash generation with consequent management problems. Coal fly ash contains several
plant essential macro and micronutrients, and therefore has been used as a soil amendment to
alleviate the micronutrient deficiencies in agricultural soil demonstrating favourable response
to crop growth and productivity.'” The alkaline pH of ash has significant beneficial effects in
addressing 5011 ac1d1ty problems and in turn reducing the availability of metals and lessening
phytotoxoclty wh11e the presence of predormnantly silt size particles improves the soil
physical properties.” However, environmental risk is also associated due to the potential
buildup of element concentrations in soil, plant and ecosystem beyond toxic limits following
ash utilization.'®"!

Biosolids/sewage sludge from the treatment plants contain relatively high
concentrations of trace metals both essential and non-essential for soil and plant and their

Chemistry of Trace Elements in Fly Ash, edited by Sajwan et al.
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indiscriminate application can cause contamination and phytotoxicity.'” '* Presence of high
organic matter and substantial N and P in biosolids suggest its use preferentially as a
fertilizer in agriculture or as a regenerator of soil." Long-term field observations have shown
that while sludge-applied metals can remain sufficiently available even in non-acid soils to
harm sensitive crops,” the reduction in yield and retardation in Elant growth are generally
induced by high concentrations of metals in soils or in sludges,'® high application rates of
sludge'” or by high cumulative sewage sludge loading rates.'®

Fly ash alone is a poor source of the macronutrients N and p° mainly due to
volatilization of nitrogen during coal combustion and most of the P being in relatively
unavailable forms.'® Application of sludge tends to increase the acidity in soils as a result of
proton release from organic matter decomposition and mineralization of ammoniacal N. On
the contrary, the combination of fly ash and biosolids offers a viable distributed recycling
alternative to landfill and has the potential for agronomic use as substitutes for lime, fertilizer
or simply as a soil amendment.”® Evaluation of the bioavailability of metals and crop
response of fly ash plus organic waste have earlier been studied.”?? Determination of
specific chemical forms of metals and their mode of binding in soil is useful for predicting
the bioavailability, mobility and transformation between chemical forms in agricultural or
polluted soil. 224 1 recent years, various sequential extraction techniques have been used to
fractionate metals in soil into a variety of operatlonally defined geochemical pools2 27 and
the advantages and limitations of the various extractants and techniques have been
reviewed.?

The objective of this study was to determine the different geochemical forms of Cd,
Cr, Cu, Ni, Pb and Zn and the changes in their distribution in an acid lateritic soil as a
function of their speciation in sludge or sub-bituminous coal ash. The responses of a cereal
and a leguminous crop to the amendment and the subsequent transport and accumulation of
metals in them have also been investigated.

3. METHODOLOGY
3.1 Properties of soil and amendment

Soil collected up to a depth of 15 cm was air-dried, mixed and screened through 2-
mm sieve pnor to analysis. The pH was measured in deionized water at 1:2.5 (w/v) ratio
s01l/solut10n, % electrical conductivity (EC) in delomzed water at 1:5 (w/v) ratio soil/solution,
® organic carbon (OC) by Walkley-Black procedure, *° cation exchange capacity (CEC) by
ammonium acetate method, *° available n1trogen by alkaline permanganate method®' and
total nitrogen by micro-kjeldahl technique*’ and is given in Table 1. Total element
concentrations were determined on aqua regia digests of soil, ash and sludge® **samples
ground to <150 um and plant available element content was determined on a Mehlich 3
extraction” followed by measurement employing an inductively coupled plasma atomic
emission spectrometer (ICP OES), Perkin-Elmer PE-3300DV. Selective major elements in
soil (Table 1) were analyzed for total element content by using Philips PW 2404 X-ray
Fluorescence spe:ctrometer.36 Coal fly ash (FA) from Kolaghat Thermal Power Plant and
sewage sludge (SD) from Howrah Sewage Treatment Plant in India were collected,
processed and analyzed for various parameters as in the case of soil and reported in Table 1&
2.

3.2 Field Experiment

One time application of ash and sludge at 52 Mg/ha on dry weight basis either alone
or in mixture proportions was made into the upper 15 cm layer of the selected soil in a field
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Table 1. Selected properties of soil, sludge and fly ash used in

this study

Parameter Soil SD FA
Texture Sandy Loam

pH (1:2.5) 5.2 43 75
EC (dS/m) 0.04 2.99 0.13
CEC (Cmol/kg) 5.43 19.73 4.50
Organic C (g/kg) 54 144 8.6
Total N (%) 0.05 1.03 0.017
Total P (%) 0.02" 0.91 0.15
Total K (%) 0.05 0.26 0.07
Total Al (%) 2.98* 1.84 0.68
Total Ca (%) 0.12" 2.06 0.44
Total Fe (%) 1.27" 6.27 2.14
Total Mg (%) 0.039 0.38 0.087
Total S (%) 0.003 28 0.02
Available N (mg/kg) 76.86 2625 0
Mehlich Ill P (mg/kg) 13.1 96 360
Mehlich Ill K {mg/kg) 783 150 120
Mehlich 11l S(mg/kg) 19.6 9000 114

SD: Sewage siudge
FA:Fly ash
* Analysis done using WD-XRF

experiment laid out in a randomized block design with seven treatments and three
replications. The treatments consisted of control, NPK (in crop specific recommended doses),
SDOO/FA 100, SD25/FA75, SD50/FAS0, SD75/FA25 and SD100/FA00. Rice (Oryza sativa
L.) variety IR36 was transplanted in July 1997 and harvested in October 1997. The land was
kept fallow for a period of three months till sowing of peanut (Arachis hypogaea L.) variety
AK-12-24 that was harvested in May 1998. Representative plant samples were collected
from each treatment for analysis.

3.3 Plant Analysis

The plant samples were washed with Milli Q water and oven dried at 65° C. The dried
plant parts were ground using Pulverisette (P-14, Fritsch) with zirconium blade to pass 20-
mesh. Kemnel samples were ground using an agate mortar and pestle to pass 2-mesh.
Concentrations of Cd, Cr, Cu, Ni, Pb and Zn was determined in these samples through dry
ashing followed by acid dissolution.’” The digested samples were analyzed employing Perkin
Elmer AAnalyst 300 Atomic Absorption Spectrometer (AA) with HGA 850 graphite furnace.

3.4 Heavy Metal Fractionation

Chemical forms of metals gresent in paddy soil are likely to be affected by both
oxidizing and reducing conditions.’®*’ During this study, post harvest soil samples were
collected under oxidizing conditions using a stainless steel agar from each plot. Chemical
fractionation*' of heavy metals was carried out on ash, sludge and both native and post
harvest soils. Soil equivalent to 2.0 g on dry weight basis was sequentially extracted with 0.5
M KNO; for 16 hours (exchangeable fraction), with deionized water for 2 hours, (extracted
two times and combined for adsorbed fraction), with 0.5M NaOH for 16 hours (organic
fraction), with 0.05M Nay-EDTA for 6 hours (carbonate fraction) and with 4M HNO; at 80°C
for 16 hours (sulphide/residual fraction). The concentrations of metals in each fraction were
determined by employing an AA.
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Figure 1. Yield response of paddy and peanut in different treatments.

4, RESULTS AND DISCUSSION

The soil besides being acidic has low OC, EC, CEC and available nitrogen (Table 1).
Aluminium and Fe are found to be dominant in soil while it is deficient in Ca and Mg.
Relative to the soil, the sludge was acidic with high OC, nitrogen, P, Fe and CEC with lesser
concentrations of Al and the fly ash was alkaline with low CEC, OC, N, Al, Fe, but with
sufficient plant available P and K. The concentrations of heavy metals in the sludge were
below the ceiling limits of EPA, 2 where Cd = 85 mg/kg, Cr = 3,000 mg/kg, Cu = 4,300
mg/kg, Ni = 420 mg/kg, Pb = 840 mg/kg and Zn = 7,500 mg/kg.

4.1 Crop Responses and Yield

The response of both paddy and peanut yields to FA, SD and mixture addition to the
soil is shown in Figurela&b. The paddy yield (Fig. 1a) increased by 9% with application of
ash at 52 Mg/ha relative to control and the highest was in SD25/FA75, but, with further
increase in the sludge proportion it reduced. The NPK treatment showed higher yields than
both control and 100% sludge. Peanut pod yield (Fig. 1b) showed systematic decrease with
increase in sludge proportion. Application of sludge at 52 Mg/ha decreased the yield by 20%,
while it increased by 33% with ash application at similar rate over the control. Ash addition
had a positive impact on yield of both the crops, the magnitude of increase over control being
higher in case of peanut. Application of 100% sludge to the soil decreased the yield in case of
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Figure 2.Changes in the pH, Electrical Conductivity (EC), Organic Carbon (OC), and Available Nitrogen in treatments after
the harvest of paddy (a,b) and peanut (c,d.).

both crops and only in case of peanut the yield performance was lower than the control. In
general, yield performances in the mixture amended soil were primarily controlled by sludge
proportion.

Legumes grown on sludge treated soil often expenence marked reduction in yiel
due to toxicity of metals directly affecting the plant or indirectly by harming the microbial
activity.**" However, factors such as soil type, quality and quantity of sludge, crop variety
etc. influence the performance of yield in one or the other way.

Py

4.2 Post Harvest Soil Properties

The changes of pH, EC, OC and available N in the treatments after harvest of paddy and
peanut are shown in Figure 2. The increase in the ratio of sludge in the amendments
decreased the pH in both post harvest soils. The lowering of pH is attributed to the nature of
the sludge, “ “the high organic carbon content (144g/kg) and the high total (2.8%) and
available (9000 mg/kg) sulphur content in the sludge. Addition of 100% ash increased the pH
in post paddy (5.2 to 5.5) and post peanut (5.3 to 5.7) soils relative to control. Marginal
increase in pH was noted in control, NPK, SDO0/FA100 and SD25/FA75 of post peanut
compared to post paddy soils. The electrical conductivity increased moderately with ash,
sludge or mixture addition; the sludge amended ones showing comparatively higher values.
The post peanut soils showed higher EC values over post paddy soil except for the control
and NPK treatments. General increase in soil salinity levels following sludge eddition are
widely reported.’ *! Gradual increases in both OC and available N content in the post paddy
soil were accompanied with sludge addition; the increase over control is sharp at 100%
sludge addition, while the other treatments showed moderate increases. Organic carbon
decreased in all the treatment in post peanut soils. Significant increases in organic carbon®> >
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Figure 3. Chemical fractionation of heavy metals in soil, fly ash and sewage sludge.
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in sludge-amended soils have been reported from earlier studies. Although the increase in OC
and N in soils after mixture application would be beneficial for their fertility, it may be noted
that the decline in pH may result in higher metal mobility.

4.3 Fractionation of Metals

Figure 3 shows the distribution of chemical forms of Cd, Cr, Cu, Ni, Pb and Zn in native soil,
ash and sludge and the contribution of major fractions to the “total” of all fractions. On
comparison of the sum of the metals extracted from each fraction with the total concentration
(aqua regia digest) of each metal in soil, the recoveries were found to be within 20%.

Metals in the exchangeable (EXC) phase have been considered to be nonspecifically
adsorbed that can easily be replaced by competing cations; metals in association with organic
matter by complexation, adsorption and chelation as organic fraction (ORG); metals
precipitated or coprecipitated as carbonates represent the carbonate fraction (CARB) and
metal fractions in resistant silicate material represent residual (RES) and are likely to be
available only after digestion at elevated temperatures.>*

4.4 Distribution of Heavy Metals in Soil, Ash and Sludge

The EXC and the water-soluble fractions are found to be very low in soil, ash and sludge
except for Cd (16%), Ni (30%), Zn (10%) in sludge and Ni (10%) in ash. In soil and sludge,
the RES and to a lesser extent the CARB fractions are the two major chemical forms in
which Cd is distributed, while the distribution is reverse in the case of ash. Earlier studies
have reported Cd in sludge to be associated with CARB followed by ORG and RES
fractions> CARB, ORG and RES™ or CARB, RES and the EXC fractions.”’ The total Cr in
sludge (85%), ash (83%) and soil (77%) is present in RES phase indicating very low mobility
and also have been reported earlier. ” Cu is mostly organic bound in soil and sludge whereas
is most predominant in the RES fraction in ash. Presence of Cu in ORG followed by CARB
and RES fraction® *® and mainly with RES fraction®” has been reported. Highest occurrence
of Ni was in the RES form in all the three materials while the second major form was the
ORG bound Ni in the case of soil and sludge and the CARB form in case of ash. Ni has been
found to be equally present in the CARB, ORG and RES fraction in sludge, *® mainly in the
RES, ORG and the CARB fractions®’ or mainly in the EXC and ADS fractions.'® The soil
and ash have majority of the Pb held in the CARB form followed by the insoluble RES
fraction. The sludge has half of the total Pb in the RES fraction followed by 41% in the
CARB form. Previous studies have reported Pb to be present mostly in the ORG fraction®® *
or in the RES and CARB fractions.”’ Zn was predominantly found to be in RES followed by
CARB and ORG fractions in soil, ash and sludge. On the contrary, Zn in sludge has earlier
been reported to be associated with carbonate and organic fractions® ® and carbonate, ORG
and RES fractions® or mainly in the EXC and ADS fractions.'* Heavy metals in the soil and
ash are primarily found to be present in the RES and CARB fractions and hence are poorly
mobile. Conversely, significant amounts of Ni, Cd and Zn being present in the EXC fractions
in sludge are more labile and easily mobile.

4.5 Heavy Metal Distribution in Post Harvest Soil

The concentrations of metals in various chemical fractions in post harvest soil after
each crop are given in Table 4 and 5. The predominant fractions recovered in the control
after harvests are: Cd — RES (40-41%), Cr — RES (80%), Cu — ORG (51-54%), Ni — RES
(51%), Pb — CARB (41%), and Zn — RES (66-67%). Similar extractabilities of metals have
also been reported. °> '
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concentrations in Peanut.
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Application of amendments to soil increased Cd concentration in all the fractions.
The distribution of Cd in both control and amended soil collected after paddy harvest was
RES>CARB>0ORG>EXC>ADS. While CARB¢; predominated over the REScq in post
harvest peanut control, NPK and 100% ash amendments, EXC¢q increased over ORGc¢q4 in
the mixture and 100% sludge amended soil. Increase in Cd concentrations in EXC (3-4%)
and CARB (5-16%) with simultaneous decrease in ORG (4-5%) and RES (7-10%) fractions
in the amended soil after peanut harvest suggest a redistribution of Cd with time to more
mobile fractions. The distribution of Cd in soils is influenced by pH, redox potential, and
total Cd concentration.®% Presence of 15-17% EXCcq in post harvest sludge amended soils
and the increase by 3-4% in it after peanut harvest can be attributed to the resultant low pH of
sludge amended soils and the presence of 16% EXCcqin sludge itself. 100% ash applied soils
had only 7% EXCcq as compared to the 3% in the native soil and marginally decreased (2%)
in the post peanut harvest soil. Cd in ash was mainly in the CARB form (49%) and the
increase in the CARBy in 100% ash amendment suggests its reduced solubility relative to
the sludge and mixture treatments.

In this study, very small percentages of Cr were detected in the EXC and ADS
fractions in all the treatments. A trend towards increase in its insoluble forms was noted
indicating the contributions by FA, SD or both mainly resided in the less available fractions.
Previous studies’’ have reported more than 80% of Cr to be present in residual fraction in
sludge treated soil. The distribution pattern of Cr (RES>ORG>CARB>EXC>ADS) remained
unchanged in all post-harvest amended soils except in case of 100% ash amendments where
ORG and CARB fractions changed positions. A marginal increase in ORG and RES forms
and a decrease in CARB forms of Cr were noted after the harvest of peanut relative to post
harvest paddy soil.

Copper recovery was highest in the ORG fraction in all the treatments and the
distribution was in the order of ORG>RES>CARB>EXC>ADS. Similar observations have
earlier been made on Cu to be predominantly present in the ORG fraction*"” ** or mainly in
inorganic precipitated form® in sludge-treated soils. Marginal increase in ORGq, (2-4%) and
CARBc, (7-8%) was noted in sludge applied soil only after peanut harvest. Insignificant
changes in EXC, ADS and RES concentrations of Cu were noted in the post harvest amended
soils of either crop. Distribution of Cu in native soils was not significantly affected by any
amendment. The solubility and the bioavailability of Cu appears to be controlled mainly by
the organic matter from sludge since it acts as a source of Cu and also serves as its major
adsorbent and to a limited degree by the pH.”

Amendment contributed Ni increased its concentration significantly in all the
chemical fractions and had greatest effect on the EXC and the RES fractions. Changes in
distribution patterns associated with increase in Ni concentrations in EXC (5-7%) and ORG
(3-4%) fractions were noted after peanut harvest in the sludge amended soils with subsequent
decrease in the RES fraction (10-11%). Sludge amendment to acidic soils decreases Ni in the
RES fraction with associated increase in the ORG fraction.”’ Conversely, the control, NPK
and only ash amended soils showed decrease in the EXC (3-4%) fraction with subsequent
increase in the RES (2%) fraction. Ni distribution in control, NPK and 100% ash amended
soil was: RES>ORG>CARB>EXC>ADS and changed to RES>EXC>ORG>CARB>ADS in
sludge amended soils. Relative to EXCy; (12%) in post peanut control, EXCy; in 100%
sludge treatment increased to 24% and did not change at all with similar levels of ash
application. Increased mobility with the increase in EXCy; in sludge treated soils was
observed while and no such indication for the ash amendments was noted.

No significant changes were observed in EXC, ADS and ORG fractions of Pb in
either of the post harvest native or amended soils. Decrease in the CARBp;, associated with
increase in the RES fraction was observed in sludge treated soil relative to the control in both
the post harvest soils. The redistribution of Pb from the CARB in native soils to the RES in
the sludge treated soils can be attributed to its chalcophilic properties®” and the likely
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formation of PbS as the available S content in sludge was high (Table 1). Pb contributed by
ash addition increased the CARBp, concentration in 100% ash amended soil, since 58% of
Pb was present in the CARB fraction of ash. The distribution of Pb in native soil was
CARB>RES>0RG>EXC>ADS and with sludge amendment the concentrations in the RES
fraction increased over the CARB fraction. Previous studies® %% on contaminated soils also
reported low exchangeable Pb. Pb in sludge treated soils have been reported to be present
mainly in the CARB fraction.*"*’

Major increases in the EXC fraction of Zn was observed in sludge treated soils. 100%
sludge application increased the Zn by 19% and 21%, respectively in the post paddy and
peanut soil relative to the control. Between the similar treatments, Zn concentration in the
EXC fraction increased by 3% from post paddy to post peanut soil. A simultaneous decrease
in the RES form was also noted in 100% sludge amendment by 10% and 13%, respectively
in post paddy and post peanut soil relative to the control. Only ash application showed no
significant change in EXC, ADS fractions; a marginal increase in ORG, CARB and RES
fractions in both the post harvest soils. The sludge proportion in the mixtures appears to be
controlling the distribution pattem of Zn. The order of extraction for Zn was
RES>CARB>ORG>EXC>ADS in control, NPK and 100% ash application that changed to
RES>EXC>CARB>0ORG>ADS in sludge and mixture treated soils. Zn in sludge treated soils
mainly occurred in the CARB and RES forms.*"" >’ Prolonged application of sludge to soil
increase;Zn in the CARB, " ® or ORG and EXC fractions with decrease in the RES
fraction.

4.6 Relationship between Total Soil and Plant Metal Concentrations

The relationships between the concentration of metals in paddy, peanut and that of the
total concentration in soil are shown in Fig 4a&b. Even though the metal concentrations
differed between the crop, between the vegetative tissues and the storage organs; it is clear
that most of the relationships are linear and there is no evidence of plateau within the ranges
of soil concentration of metals established in this study.

Table 5 shows the concentration ranges in plant parts and the parameters of linear
regression for individual metals. The ranges of concentration of metals in the vegetative
tissues are higher than the storage organs. The slope of regression indicates the transfer
efficiency of metals from soil to the plant.*® It is seen that the vegetative tissues have greater
slopes than the storage tissues (grain or kernel) indicating a physiological barrier in the
transfer of heavy metals from the vegetative parts to the storage organs. The slopes of Cr in
vegetative and storage tissues were less in paddy and peanut indicating low transfer
efficiency from the soil to the plants. Cr concentration in peanut kernels was below analytical
detection limits. The fractionation of Cr in the post harvest soils also indicates it to be mainly
present in the resistant form thereby reducing its bioavailability. The transfer efficiency in the
paddy straw was Cd>Cu>Pb>Ni>Zn>Cr, while the order for peanut shoot was
Ni>Cd>Cu>Zn>Pb>Cr. The orders indicate high uptake of Cd in the vegetative tissue of both
crop, and Ni in the shoot of peanut only. The increase of Ni and Cd in EXC fractions in post
peanut soils increased the bioavailability and thereby increasing their accumulation in plants.
The slopes of Cd, Cu, Ni, and Pb were very similar in grain tissues in paddy indicating not
much difference in the transfer of these metals from the soils to the crop. Compared to paddy
grain, peanut kernels had higher transfer efficiency for Cu, Ni and Zn. The transfer efficiency
of Ni was highest in peanut kernel, while that of Cu and Zn were similar. The transfer
efficiency of Zn was found to be low even though its range of concentration in plant tissue
was the highest among the metals studied. This may be attributed to substantially high
concentrations of total Zn in amended soil reflected in the low slope for all tissues and the
regression being performed considering all the treatments. Earlier studies %% 7 had also
shown that Zn uptake by plants is higher in acid than in alkaline soil.
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5. CONCLUSION

Heavy metals in the soil and ash were primarily present in the residual and carbonate
fractions, while significant amounts of Ni, Cd and Zn were present in the exchangeable
fraction of the sludge. Changes in the distribution pattern with increase in the exchangeable
fraction of Ni, Zn, and, Cd to a lesser extent was noted in post peanut soils indicating an
increase in the soluble and mobile forms of these metals in the soil over time. Ash
application to the soil did not increase the soluble forms of any of the metals studied. Sludge
application did not change the distribution of Cu and Cr, while Pb was redistributed into its
residual form indicating that Cu and Pb mobility was not pH dependent. The changes in the
metal distribution in the mixture treated soils were primarily controlled by the sludge. Paddy
and peanut yields increased over control with 100% ash addition, but decreased in sludge
treated soils more so in the case of peanut. The total and plant available concentrations of all
heavy metals increased in soil with sludge, ash and their mixture additions and related
linearly to their concentrations in both vegetative and storage tissues. The vegetative tissues
showed higher transfer efficiency for all metals than the storage organs indicating a
physiological barrier. Despite the migration of Zn in the more mobile forms in sludge treated
soils resulting in higher range of concentration in plant parts, the transfer efficiency was low.
The incorporation of ash did not show any metal accumulation in the soil and also there was
no evidence of increase in their mobile forms. This short-term study represents a small
fraction of residence time of metals in sludge amended soils and hence the role of organic
matter in metal immobilization cannot be regarded as permanent. Potential relevant risks
could arise from mineralization of organic matter and consequently from the release of
metals into their more soluble forms over time.
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ABSTRACT

Combinations of coal combustion ashes and composted animal manures may accelerate
revegetation of drastically disturbed landscapes, such as surface mines. The objective of this study
was to evaluate the effect of coal ash plus compost mixtures on soil chemistry and plant growth in
acid mine soils. Scrubber sludge (flue gas desulfurization residue + fly ash) or bottom ash was
mixed with three types of compost (dairy manure, poultry litter, and biosolids) at rates of 0, 33, 67
and 100 % (v/v). The coal ash + compost mixtures were blended with acid mine soil (pH 4.0) at
rates of 15, 30, and 45% (v/v) (equivalent to 150, 300, and 450 dm® m™) and placed in pots in a
greenhouse. Ryegrass seeds were planted in each pot and harvested after two months growth with
no fertilization. Applying scrubber sludge residue alone at rates of 15, 30 and 45% (v/v) decreased
ryegrass yield, but increased soil pH from 4.0 to 7.2, 7.1, and 7.6, respectively. The same rates of
bottom ash increased soil pH to 5.2, 5.6, and 6.5, respectively, but had little effect on ryegrass
yield. Composted dairy manure and biosolids increased ryegrass growth at rates up to 45% (v/v)
when applied alone. Composted poultry litter increased ryegrass growth at a 15% rate, but
decreased it at rates of 30 and 45% due to excess dissolved salts. Copper and Zn uptake were
correlated to organic matter application rate. Leachate concentrations of P were increased by the
addition of organic amendments and sulfur concentrations were increased by the addition of
scrubber sludge. Bottom ash had no significant effect on heavy metal uptake or leachate
composition. The results demonstrate that combinations of animal manure compost with coal
combustion ashes can effectively stimulate biomass production in acidic surface mine soils.

INTRODUCTION

Many regions of the country and world are faced with the challenge of dealing with
multiple waste byproducts. Eastern Texas is dominated by agriculture, surface mining and
electrical generating activities (Fig. 1). Each of these activities generates waste byproducts or, in
the case of surface mining, disrupts natural ecosystem functions. Since these activities occur in
relative close proximity to each other, there is a unique opportunity to combine the waste products
to create soil amendments that can significantly improve the re-vegetation of drastically disturbed
surface-mine soils.

Surface mining destroys the upper layer of soil that typically has the best combination of
biological, chemical and physical properties to support vegetative growth. A common mining
practice is to replace the top soil with subsurface materials that do not contain acid-producing
minerals (e.g., pyrite). Although these topsoil replacement materials do not generate acidic runoff,
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Figure 1. Location of coal and lignite mines in Texas. Shaded areas are counties that produced more than
275,000 metric tons of animal manure (beef, dairy, and/or poultry) during 2000 (courtesy of Foundation for
Organic Resources Management).

they lack the proper combination of properties to support healthy plant growth. They tend to have
acid pH values (<5.5) and are essentially devoid of organic matter. Typically, high rates of
inorganic fertilizer are needed to reestablish vegetation, typically grasses. In fact, these areas
usually require a high level of management for many years in order to reestablish a self-sustaining
ecosystem.

Re-vegetation of land that suffers from topsoil depletion would benefit from addition of
appropriate amendments that neutralize acidity and contain organic matter and essentlal plant
nutrients. Such amendments would foster the re-establishment of soil microbiology', reduce the
environmental and food-chain risks associated with heavy metals, and provide suitable physical
qualities to promote rapid plant root and shoot growth.

The various ashes generated by burning coal in order to produce electricity have properties
that could prove beneficial for acidic surface mine soils.” Fly ash is the fine particulate material
filtered from the exhaust stream. Fly ash amendments have improved the physical properties of
both heavy clay and sandy soils, and to a lesser extent, improved soil chemical properties to
maximize plant growth Fly ash can supply essential plant nutrients, such as Ca, S, B, Mo, and Se.
However, excessive loading of some trace elements, including B, Se, As, and Mo, and highly
soluble salts are of concern when using coal combustion by-products as soil arnendments.4 Fly ash
mixed with biosolids at the Bunker Hill Superfund Site corrected surface and subsoil acidity,
increased field water holding capacity and electrical conductivity in proportion to the amount
applied, up to 112 Mg ha™?

The use of lime slurries to remove SO, from the combustion vapors creates a wet flue gas
desulfurization (FGD) residue, also called scrubber sludge.® In some cases, the fly ash is combined
with the FGD residue to create a material that is easier to handle. FGD residues were used
effectively as a boron source on Hubbard loamy sand and Renova silt loam soils in Minnesota. 7.8
The placement of the FGD residue at 0.15m depth was determined to inhibit soybean seedling
emergence while a depth of 0.25m showed no significant impairment to seedlings.”
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Table 1. Chemical properties of coal combustion scrubber sludge and bottom ash. Scrubber sludge is an
85:15 combination of fly ash:FGD residue (w:w).

Parameter Scrubber Bottom ash
sludge

pH 10.7 7.2

Bicarbonate alkalinity as HCO3 (mg kg™) <20 920

Carbonate alkalinity as CO3 (mg kg 1580 <20

TCLP extractable elements (mg L")
As 0.08 0.02
Ba 0.29 2.27
Cd <0.01 <0.01
Cr 0.09 <0.01
Pb <0.05 <0.05
Hg 0.0051 <0.0002
Se 0.30 <0.02

Elemental Analysis (%)
Silica, Si02 50.1 59.8
Alumina, A1203 12.9 11.3
Titania, TiO2 0.8 0.9
Ferric Oxide, Fe203 10.9 16.4
Calcium Oxide, CaO 12.9 6.6
Magnesium Oxide, MgO 1.8 1.7
Potassium Oxide, K20 1.2 0.6
Sodium Oxide, NaO 0.3 0.3
Sulfur Trioxide, SO2 6.2 0.3
Phosphorus Pentoxide, P205 0.1 0.01
Strontium Oxide, StO 0.1 0.15
Barium Oxide, BaO 0.2 <0.01
Manganese Oxide, Mn304 0.1 0.03

Although fly ash and FGD residue have received some attention as soil amendments, little
information is available on the use of bottom ash for similar purposes. Drum-type boilers that burn
pulverized coal produce a course-textured cinder-like bottom ash. This ash is usually hydraulically
sluiced from the boiler to an onsite lagoon for long term storage. Previous research found that
plant growth was not inhibited by the inclusion of bottom ash in a potting medium.>'> However,
after studying microbial activity at sluiced coal ash disposal lagoons, Klubek et al.' concluded that
application of bottom ash to soil would require the addition of low C:N ratio residues to stimulate
microbial community development. Properly composted and cured animal manures should have
low C:N ratios, plus supply other essential nutrients for microbial and plant growth.

In addition to mining activities, the eastern half of Texas is also the setting for several
animal production industries, including beef, dairy and poultry production. In most of the
counties, the combined manure production from all animal operations exceeded 275,000 Mg
during the year 2000 (Fig. 1). Many livestock and poultry operations in this area have reached the
point where they can no longer apply manure to adjacent soils due to excessive nutrient loads.
Composting animal manures prior to transportation stabilizes the organic matter and reduces the
overall bulkiness. Therefore, composted manure can be transported more economically than raw
manures, making it easier to remove the material from watersheds that are already excessively
nutrient rich.

Utilization of coal combustion byproducts is an increasing national and international
concern as annual production of these materials in the U.S. reached 98.2 million Mg in the year
2000." At the same time, proper utilization of animal manures and biosolids is currently receiving
national and international attention due to non-point source loading of nutrients and pathogens into
surface and underground water resources. Due to the cost of transportation, most electrical
generating plants in East Texas store their various coal ashes onsite. In many cases, the electrical
plant is located adjacent to the surface-mine where the coal is extracted. Large dairies and
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confined animal feeding operations are beginning to compost their animal manure in order to
reduce its bulkiness and prepare it for possible transportation out of the nutrient-rich watershed.
Thus, the situation in Eastern Texas is conducive to the use of coal ashes and composted animal
manures for remediating surface mine soils.

Since the production of coal combustion by-products and animal manures continues to
exceed the rate of use, there is a need to develop strategies that utilize the beneficial properties of
these waste materials while protecting soil and water quality. Utilizing coal ashes and animal
manures for the purpose of revegetating surface mine soils may have a positive effect on the
environment by preventing excessive buildup of nutrients in soils adjacent to animal operations
and by reducing the erosion of sediments from disturbed mine soils through the rapid
reestablishment of vegetation. The objective of this research was to evaluate the ability of coal ash
and animal manure compost mixtures to improve vegetative growth in an acidic surface mine soil.

MATERIALS AND METHODS

Coal ashes: Two types of coal combustion ashes were used in the study. Both ashes were
collected from an electrical generating power plant near Hallsville, Texas that produces 303,000
Mg fly ash, 204,000 Mg flue gas desulfurization (FGD) residue, and 86,700 Mg bottom ash per
year. At the power plant, most of the fly ash is mixed with dewatered FGD residue to produce a
more manageable product that we call scrubber sludge. The scrubber sludge is transferred by
conveyor to a storage pit for temporary storage before removal to an onsite disposal area. For this
study, we used scrubber sludge that was a 85:15 mixture of fly ash:FGD residue (w/w, dry wt.).
The scrubber sludge was collected from the temporary storage pit. Bottom ashes are hydraulically
sluiced from the boiler into storage lagoons. Later the lagoon is drained and a bulldozer pushes the
bottom ashes into large mounds in order to reduce storage space and reutilize the disposal lagoon.
The bottom ash used in this study was collected from one of the large storage mounds. Coal ashes
were air-dried, ground with a hammer mill grinder, and passed through a 2 mm sieve. Chemical
properties of the scrubber sludge and bottom ash are shown in Table 1.

Composts: Poultry litter compost was produced from 1-year old bedding from a broiler production
facility in Eastern Texas. Water was added to the poultry litter to raise the moisture content to 40%
before composting. Dairy manure came from a freestall confined dairy operation in Como, Texas.
Manure was hydraulically flushed from the stalls to a holding tank, from which a submersible
pump moved the slury into a solid/liquid separator. Solid waste was deposited on a concrete slab
while liquid effluent was returned to the lagoon for recycling as flush water or for irrigation. Solid
manure was left on the concrete slab until the moisture content dropped from about 75% to 65%.
Both poultry and dairy manures were thermophylically composted (>54°C for 3 days) in a rotating
drum for approximately 10 days. No additional bulking agents were added to the manures prior to
composting. Biosolids were collected from the wastewater treatment plant in Sulphur Springs,
Texas and blended 50:50 with soft wood shavings, followed by composting in the same way as the
poultry litter and dairy manure. The composted organic materials were screened through a 10 mm
sieve to remove any large particles.

Soil: Rather than stockpiling the original topsoil for later reuse, the mine operators identified
non-acid producing subsurface overburden for use as a topsoil replacement after extraction of coal.
We collected overburden material from the upper 30 cm of an area that had been leveled and
prepared for revegetation. Soil was air-dried, ground in a hammer mill grinder and then passed
through a 2 mm sieve to make particle sizes more uniform.

Mixtures and application rates: Scrubber sludge or bottom ash was mixed with each form of
compost at rates of 0, 33, 67, and 100% (v/v), resulting in a total of 12 mixtures. Each of the
mixtures was added to mine soil at rates of 150, 300 and 450 dm® m™. For scrubber sludge applied
alone, the rates were equivalent to 165, 324, and 478 g kg™ mix and for the bottom applied alone,
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Figure 2. Effect of scrubber sludge (left column) or bottom ash (right column) addition to composted dairy
manure, poultry litter, or biosolids on ryegrass growth when mixes were applied to an acidic mine soil (pH
4.0) at rates of 150, 300, and 450 dm’ m™ (15, 30, or 45% (v/v)). Ryegrass yield for the control (no soil
amendments) was 0.380.02 g pot™.

the rates were equivalent to 160, 316, and 468 g kg mix. Each treatment was replicated 3 times.
An unamended mine soil control was also included. Twenty ryegrass seeds were planted in each
pot. Plants were harvested after two months growth and analyzed for yield and heavy metal
concentrations.

Leachate chemistry: In a separate procedure, a portion of each of the amended soils was leached
with water to determine the potential for groundwater contamination from the coal ash/compost
mixtures. Amended soil was placed in a 7.6-cm diameter by 15.2-cm long polyvinyl chloride
(PVC) leaching column and leached with 1 pore volume of deionized water. Leachate water was
filtered through Whatman No. 1 qualitative filter paper and analyzed for inorganic P, S, and heavy
metals.

RESULTS AND DISCUSSION
Ryegrass yield

Ryegrass yields varied widely for the various mixtures and application rates (Fig.2). In
general, ryegrass yield decreased as the amount of coal ash in the composted manure increased for
every application rate. This was primarily due to the dilution of nutrients in the composted manure
by the coal ash. However, as scrubber sludge became the dominant ingredient in the mix, the
decrease in ryegrass yield was greater than could be explained by nutrient dilution. Due to a
pH>10 and a high carbonate content (Table 1), scrubber sludge quickly increased soil pH to above
7 (Fig. 3b). Itis likely that a large and rapid increase in soil pH and salt content had an adverse
effect on plant growth, microbial activity, and nutrient availability (Carlson and Adriano, 1992).*
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Figure 3. Effect of (A) composted organic amendments and (B) coal combustion ashes on ryegrass yield
when applied as individual ingredients to an acidic surface-mine soil (pH=4). Values next to each point are
the corresponding soil pH value for that treatment.

In the case of composted dairy manure and composted biosolids, there was very little interaction
between the bottom ash content of the mixture and the mixture application rate. Bottom ash clearly
had no effect on the composted manures other than to decrease ryegrass yield by diluting the
amount of available nutrients.

Ryegrass yield responses were more easily explained by evaluating responses to individual
ingredients. Ryegrass yields increased with dairy manure and biosolids application rates up to 450
dm® m* when applied without coal ashes (Fig. 3A). Both of these amendments also increased soil
pH from 4.0 to above 5.0 for application rates above 300 dm® m>. Aluminum and Mn can be
present at toxic concentrations at pH 4, but are quickly converted to non-toxic forms at pH > 5.0.'%
16 Sloan and Basta'” showed that anaerobically-digested biosolids applied without lime can
increase the pH of soil solution and remove toxic AI**  Our results suggests that in regards to
revegetation of acidic mine soils, composted dairy manure and biosolids should be applied to mine
soils at relatively high rates (450 dm® m). Although actual application rates would depend on
the chemical properties of the specific composted manures, benefits from using high application
rates would be expected because of similar management practices at dairy operations and
municipal wastewater treatment plants.

Composted poultry litter produced a different response than the other composted manures
when applied to the acidic mine soil. The 150 dm?® m? rate of composted poultry litter increased
ryegrass yield eguivalent to the 450 dm® m rates of composted dairy manure and biosolids, but
300 and 450 dm> m rates prevented ryegrass growth (Fig. 3A). Composted poultry litter was also
more effective at increasing soil pH than composted dairy manure and biosolids. Composted
chicken litter increased soil pH from 4.0 to 6.2, 6.7, and 7.6 for the 150, 300, and 450 dm® m”
application rates, respectively. Negative responses above the 150 dm® m™ rate were due to excess
salts present in the compost (data not shown). Results suggest that care must be taken when using
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Figure 4. Effect of composted manures on ryegrass uptake of Ni, Zn, and Cu from an acidic surface mine
soil.

composted chicken litter. More generally, all organic matter sources should be evaluated prior to
application to soil to avoid harmful concentrations of salts or other elements.

Ryegrass yield did not significantly respond to bottom ash applied alone, but there was a
very slight trend for increased growth with application rate. The bottom ash, for the most part, was
arelatively inert material and supplied very few plant nutrients. However, the bottom as did
contain small amounts of bicarbonates, which was probably responsible for the increase in soil pH
from 4.0 t0 5.2, 5.6, and 6.5 for the 150, 300, and 450 dm® m™ application rates, respectively.
Although the increased pH was probably beneficial for plant growth, there was little response in
ryegrass yield due to limited soil nutrients. From a disposal perspective, bottom ash can be applied
to soil at high rates with no adverse effects to plant growth. Bottom ash, which is a coarse-textured
material, may improve the physical properties of a clay-textured soil. Coarser-textured soils have
better internal drainage, which generally provides a better environment for root respiration and
microbial activity.

Ryegrass growth responded negatively to scrubber sludge at the lowest application rate of
150 dm® m” (165 g kg™") when it was applied alone without organic matter composts (Fig. 3B).
However, ryegrass responded favorably when scrubber sludge was mixed with the composted
manures and applied at rates resulting in scrubber sludge additions greater than 165 g kg™ (Fig. 2).

Soil pH was increase from 4.0 to between 7 and 8 for all scrubber sludge application rates.
Although increased soil pH is generally favorable for plant growth in an acid soil, the excess salts
added with large applications of scrubber sludge were detrimental to plant growth. Although not
measured in this study, high application rates of scrubber sludge and flue gas desulfurization
residues can result in boron toxicity.” Stehouwer et al.'"® ' found that FGD residue rates 120 g
kg increased ryegrass growth in acidic mine overburden soils, while increasing soil pH from 3.95

to >7. Our results suggest that only small amounts (150 dm’ m‘3) of scrubber sludge should be
applied directly to acidic mine soil.
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Figure 5. Effect of coal ash applications on leaching of sulfur from an acidic surface mine soil.

Heavy metal uptake

In general, heavy metal uptake by ryegrass was very low (Fig. 4) and could be attributed to
composted manure amendments rather than coal ashes. Copper and Zn uptake, but not Ni, were
positively correlated to application rates of composted dairy manure, poultry litter, and biosolids.
Copper and Zn uptake from soil that received composted poultry litter was slightly higher than
from soil amended with composted dairy manure or biosolids. However, heavy metal uptakes
from all three organic matter sources were similar in magnitude. Pant tissue concentrations of Cd,
Cr, and Pb were below detection limits of 0.15, 0.5, and 0.5 mg kg™, respectively.

There were probably two reasons heavy metal uptake was not correlated to coal ash
applications. First, heavy metal concentrations were generally low in the coal ash materials (Table
1), so the amount added to soil from those sources was insignificant. Second, both coal ash
materials increased soil pH to levels that would decrease heavy metal solubility, and thus their
availability for plant uptake.”

60
~ 50 Leachate P ® Biosolids
= -— kK
2 4 ¥ =0.84
o .
w 30 v Dairy Manure
';t_: 10 r? = 0.69***
T .
o, ®  Poultry Litter
2 r* = 0.95**
0 u
0 15 30 45

ORGANIC MATTER APPLICATION RATE (%)

Figure 6. Effect of composted organic amendments of leaching of inorganic phosphorus from an acidic
surface-mine soil.

316



Leachate

The FGD residue, which was a major component of the scrubber sludge, contained a large
amount of sulfur (Table 1). Consequently, S concentrations in leachate water increased
significantly with even small additions of FGD residue (Fig. 5). Bottom ash, which contained very
little sulfur, had no significant effect on leachate S concentrations (Fig. 5). The high S content of
FGD residue can increase soil solution SO4-S for up to two years after application.®

Organic matter additions significantly increased the concentrations of inorganic P in
leachate from the mine soil (Fig. 6). Composted poultry litter had much greater quantities of
soluble P than either composted dairy manure or biosolids. Part of the detrimental affect to
ryegrass that resulted from applications of 300 dm® m™ composted poultry litter might be due to
the antagonistic effect of high P levels on the availability of micronutrients. None of the organic
matter amendments or coal ashes affected Cu, Ni, or Zn concentrations in mine soil leachate (data
not shown).

CONCLUSIONS

Composted animal manures and biosolids successfully promoted ryegrass growth in acidic
surface mine soil when applied at rates that prevented salt injury to plants. Composted dairy
manure and biosolids were beneficial to ryegrass growth at application rates up to 45% (v/v), but
composted poultry litter was detrimental to growth when applied at rates above 15% (v/v).
Scrubber sludge, a combination of fly ash and flue gas desulfurization residue, increased the pH of
the acidic surface mine soil, but was detrimental to plant growth when applied at rates above 150
dm® m? (165 gkg™). Bottom ash had small positive benefits on plant growth and soil pH at rates
up to 450 dm® m™ (468 g kg™), probably due to its modification of soil physical conditions.
Overall results from the study support the idea of combining animal manures and coal ashes to
create amendments that promote revegetation of acidic mine soils in regions that produce excess
quantities of these materials.
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1. ABSTRACT

The effects of adding various soil amendments and a pyrite oxidation inhibitor to
aid in the establishment of vegetation and to reduce acid drainage (AD) from coal fly ash
and coal reject (FA + CR*) were assessed in an outdoor mesocosm study. Preliminary
greenhouse experiments and field observations at the U.S. Department of Energy’s
Savannah River Site (SRS) indicated that plants would not survive in this material
without altering its physical and chemical characteristics. Samples of mixed FA + CR
were obtained from a field site at the SRS. The following treatments were used:
Biosolid only (Treatment A), Biosolid + Surfactant (Treatment B), Topsoil + Surfactant
(Treatment C), and Biosolid + Topsoil + Surfactant (Treatment D). Leaching was
induced due to inadequate rainfall. Loblolly pine seedlings (Pinus taeda) inoculated with
ectomycorrhizal fungi - Pisolithus tinctorius (Pt) and Scleroderma cepa (Sc) - were
transplanted into each mesocosm tank. Soil solution samplers were installed in each unit
at 15 and 41 cm depths. Samples were taken periodically and measured for pH, EC, and
other parameters.

The results indicate that the addition of amendments can aid in the revegetation of
a FA + CR landfill and control AD. Pine seedlings growing in treatments with biosolid
application were significantly taller than the treatment without it; however, there were no
significant differences concerning diameter, biomass, and plant tissue concentrations of
Al, Fe, and Mn for the pines. Biosolid addition also appears to be effective for mitigating
proton generation. Sodium lauryl sulfate (SLS) and topsoil addition were not as
important to plant survival and growth as biosolid addition; nonetheless, SLS and topsoil
addition did not appear to be disadvantageous to growth in the treatment with biosolid
addition (Treatment D). Based on leachate data, the topsoil + surfactant treatment had a
much lower initial pH (pH ~ 3 or below) than the other treatments, and Al concentrations
were correspondingly high. Electrical conductivity, in general, has been decreasing since
the inseption of the study and appears to indicate that the addition of biosolid + surfactant

*CR = coal reject — refers to raw coal discarded due to its low combustion quality.
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(Treatment B) is the most effective treatment for inducing the lowest sulfate and metal
concentrations. Preliminary results indicate that the use of amendments is essential for
plant growth and establishment in pyrite enriched coal waste sites.

2. INTRODUCTION

Worldwide, coal-fired power plants burn gigatonnes of coal annually, thus
producing enormous amounts of coal combustion products (CCPs). In the United States,
860 million tonnes of coal were burned during 2000, generating 98 million tonnes of
CCPs'. The general types of CCPs are fly ash (FA), bottom ash (BA), boiler slag (BS),
and flue gas desulfurization residue (FGD or synthetic gypsum)'. Fly ash is the primary
CCP produced of which little (<30%) has been reutilized for beneficial purposes in the
United States>. Due to a lack of utilization, the accumulating FA becomes a waste
disposal problem’. Currently, the most widely accepted disposal methods for FA are
landfilling, stockpiling, and storage in settling ponds’.

The mineralogical, physical, and chemical properties of FA are extremely variable
and depend on the nature of the parent coal, combustion conditions, emission control
device efficiency, storage and handling methods, and climatic conditions” 3. Certain
elements (As, B, Mo, and Se) present in FA can bioaccumulate and could become critical
in the food chain® . The pH is an important factor in determining the bioavailability of
FA derived metals and can vary from 4.5-12.0, being primarily dependent on the S
content of the parent coal and amount of lime (i.e. for desulfurization) added to the
material®,

High levels of metals/metalloids in animals exposed to FA and CR left over from
combustion activities had been reported at the U.S. Department of Energy’s Savannah
River Site (SRS)’. For example, studies at the SRS indicate that Se could cause
morphological deformities in both teeth and spinal columns in bullfrog tadpoles’.
Research concerning the problems related to FA and CR storage and disposal merits
attention. By-products arising from worldwide reliance on coal as a major energy source
will continue to pose serious ecological problems.

Located at the SRS, the 488 D-Area Ash Basin is an unlined, earthen basin
approximately 8.5 ha in size that contains approximately 1 million tonnes of dry ash and
CR® (Fig. 1). The CR is pyritic in nature resulting in the generation of acid drainage
(AD) that has contributed to a deterioration in groundwater quality and poses a threat to
the biota in down gradient wetlands®. Pyrite (FeS,) is commonly associated with coal as
well as metal ore deposits (including Zn, Cu, U, Au, and Ag) (e.g. from old mining sites).
The exposure of pyrite and other iron sulfides to air and water oxidizes the sulfides
resulting in AD. This process is complex due to the involvement of chemical, biological,
and electrochemical reactions that are sensitive to various environmental conditions’.
The general stoichiometry can be described by the reaction:

FGSZ(S) +3.750, + 3.5H,0 Fe(OH)3(s) + 2H,S04 [Eq. 1]

where iron sulfide and other mixed-metal sulfides decompose upon exposure to the
atmosphere, producing sulfuric acid and insoluble ferric iron hydroxide from
hydrolysis'

The AD is highly acidic (pH can be <<2) and is often enriched with Fe, Mn, Al,
SO4% and other trace elements’. The kinetics of pyrite oxidation depend on oxygen
availability, abundance of iron-oxidizing bacteria, surface area of the exposed pyrite, and

chemical characteristics of the influent water''. Thiobacillus ferrooxidans is the primary
iron-oxidizing bacteria involved in pyrite oxidation and catalyses the reaction. Anionic
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Figure 1. Location of the fly ash—coal reject landfill site (D-Area Ash Basin, DOE
Savannah River Site, SC).

surfactants (e.g. sodium lauryl sulfate - SLS), applied at concentrations greater than 25
mg L can reduce this bacterial activity consequently slowing acid production'?. In
previous studies, SLS was found to inhibit Thiobacillus ferrooxidans activity at lower
concentrations than other generally available surfactants''. In essence, surfactants wash
away the protective slime coating of the bacteria, breaking the surface tension of the cell
wall and causing the cell to lyse''. However, anionic surfactants are very soluble and
thus are susceptible to leaching. Accordingly, surfactant solutions may have a short
period of effectiveness, generally only 2 or 3 months, but such a time frame of
effectiveness may be sufficient to promote vegetative establishment on problem sites'".

Use of a vegetative cover to control AD via enhanced evapotranspiration has been
hypothesized by Barton et al.">. Not only would a vegetative cover influence the redox
conditions and AD generation of a waste site, but enhanced buffering capacity due to
organic metabolites from root exudates and plant decay could help to break the acid
production cycle'!. A healthy root system can compete with acid-producing bacteria for
both oxygen and water, and organic acids can be formed by beneficial heterotrophic soil
bacteria and fungi creating an unfavorable environment for Thiobacillus ferrooxidans"'.
Biosolids, such as municipal sewage sludge and animal waste, are an important group of
soil amendments that are increasingly being used in agro-forestry and reclaimed lands?.
As well as supplying plant nutrients, the organic matter (OM) in biosolids enhances
aeration, porosity, tilth, and water retention capacity of soils’.

The main objective of this research was to examine the use of various
amendments to facilitate the establishment of vegetation and inhibit AD generation in
coal combustion waste (in this case combined coal FA and CR). The study was aimed to
elucidate these effects in a large-scale mesocosm study using dry FA and CR from the
488 D-Area Ash Basin on the SRS.
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3. MATERIAL AND METHODS

An outdoor mesocosm study was initiated on 13 June 2000. Field samples of
mixed FA + CR from the D-Area Ash Basin were used for the experiment. The material
was contained in 61 x 244 cm galvanized steel cattle tanks fitted with leachate ports.
About 30 cm of the mixed FA + CR was deposited in the bottom of the tanks with the
amendment material (15 cm) and the topsoil added (7 cm) on the surface: Treatment A —
Biosolid only, Treatment B - Biosolid + Surfactant, Treatment C - Topsoil + Surfactant,
and Treatment D — Biosolid + Topsoil + Surfactant. The biosolid material consisted of
sanitary sewage sludge, poultry waste, and wood chips composted for 90 days. Sodium
lauryl sulfate was applied in the amount of approximately 0.24 L of a 0.6 % SLS solution
to the mixed FA + CR to inhibit acid-producing bacteria. The soil type of the topsoil was
Dothan sand (Fine-loamy, siliceous, thermic Plinthic Paleudults) and was collected on the
SRS.

Aug. 30, 2001 [diameter(cm)
Hht (cm)

Diameter/height

Treatment

April 17, 2002 Bdiameter(cm)
Bht (cm)

350 DObiomass (g)

Diameter/height/biomass

A B [ D
Treatment

Figure 2. Height, diameter, and biomass data for pines (mean and standard deviation
where n=3 for height and diameter; mean and standard deviation where n=6 for biomass)
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Table 1. Chemical characteristics of substrate materials used in the mesocosm study.* *

Parameter Topsoil Biosolid/compost FA-CR mix

pH (1:1) 507(0.62F  6.83(1.03) 1.72 (0.75)

EC(1:5) mScm’) 0.07(0.08)  2.66(0.53) 5.92 (1.86)

OM (%) 319

NO;-N 10.3 (3.0) 31.0 (14.7) BDL

p! 6.8(2.9) BDL BDL

K' 17.2(10.0)  79.6(19.2) 2.3(1.5)

Mg' 48.7(343)  146.0(107.6) 174.3 (82.2)

Ca 208.2(1183)  766.3 (64.5) 526.0 (47.0)

Al 4193.8 430 1767.9 (495)
(146.3)

Fe! 3510.5 351 20476.4 (13827.1)
(195.5)

Mn' 2223(8.89)  2.33 7.18 (12.3)

Znt 143(11.1) 495 1.96 (6.00)

cdt BDL 0.13 0.1 (0.58)

Pb? 8.15 (1.1) 28.4(12.4)

As? 9.88(0.72)  BDL 64.7 (43.0)

Set BDL BDL 8.88 (5.80)

*mg kg except where noted otherwise.

*Mehlich-1 method (HINO3-H;SOy).

'U.S. EPA method 200.2 (HNO3-HCY).

BDL = below detection limit

*Values in parentheses represent standard deviation.

These tanks were set up in a restricted access area at the Savannah River Ecology
Laboratory, having a randomized order with three replicates per treatment. The treated
materials were moistened and then equilibrated before planting. Loblolly pine seedlings
(Pinus taeda L.) (9 seedlings/tank) inoculated with Pisolithus tinctorius (Pt) and
Scleroderma cepa (Sc) were transplanted in mid-April 2001. An automatic sprinkler
system was set up, and lysimeters (Soilmoisture Equipment Corp., Goleta, CA) were
installed at two depths (15 cm and 41 cm) in mid-June 2001. After one year of growth,
biomass samples of the pine seedlings were taken mid-April 2002; two seedlings were
sampled, keeping disturbance of the soil to a minimum. Rainfall data taken by a weather
station at the SRS showed the average rainfall per month from June 2001 to December
2001 to be 62 mm; however, there was very little rainfall for the months of October to
December with the average being only 16 mm. For January 2002 to June 2002, the
average was 38 mm. Rainfall averages compiled since 1952 showed an average rainfall
per month of 100 mm for June through December, 76 mm for October to December, and
106 mm for January to June. Thus, drought-like conditions were indicated for much of
the study period.

For periodic sampling of the soil solution, the tanks were slightly oversaturated by
the sprinkler system and suction applied to the ceramic lysimeters after an overnight
equilibration. The pH and EC were measured immediately after collection. Samples
were taken on the following dates: 6/29/2001, 7/13/2001, 8/31/2001, 11/29/2001,
1/24/2002, 3/27/2002, 5/28/2002, and 7/31/2002. Solution samples were filtered using
0.45 pm nylon syringe filters, acidified by adding HNO; (1% of sample volume), and
maintained in cold storage for Inductively Coupled Plasma Optical Emission
Spectroscopy (ICP/OES) analysis. Ion Chromatography (IC) was used for anion
analysis.

For plant biomass and analysis of plant tissue metal concentrations, plant material
was oven-dried at 65°C until no further weigh loss occurred. The material was then
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separated into leaves, stems, and roots and weighed to determine dry biomass. Dried
plant tissue was ground using a sample mill (Thomas, Arthur H., Wiley, 2-mm mesh,
Philadelphia, PA) and digested in a 5 M HNO; + H,0, by microwave (CEM Corp. MDS-
2000, Matthews, NC) in pure Teflon PFA vessels.

Analysis of variance (ANOVA), general linear models (GLMs), and PROC
Univariate were calculated using SAS (SAS, 1999) to determine significant differences
within the data.

4. RESULTS AND DISCUSSION

4.1 Substrate Material

The FA + CR substrate material exhibited high acidity (pH = 1.72) and high EC
(5.92 mS cm™). Low pH values (pH ~ 1 or lower) had been observed in sulfide-rich
tailings from impoundments and weathered mine sites'® '°. Since the FA + CR mix is
composed of alumino-silicate and sulfide minerals, high concentrations of Fe, Al, and
other trace elements were evident. The low buffering capacity and low nutrient content
of the FA + CR substrate are not conducive to plant establishment or growth. On the
other hand, the biosolid exhibited a high OM content (~ 32%) and should provide ample
buffering capacity for the substrate. The biosolid data also indicate the presence of
primary and secondary plant nutrients that, although initially low, may serve as a slow
release fertilizer in addition to serving as a buffering agent. The topsoil exhibited near
circumneutral pH conditions and low quantities of nutrients.

Table 1. Chemical characteristics of substrate materials.*®

4.2. Effect on Pine Growth ,

Growth measurements for the pines (4 and 12 months after transplanting)
indicated that there was no significant difference in diameter induced by the treatment;
however, differences in height were apparently due to the biosolid application, with the
pines in treatments containing biosolid (Treatments A, B, and D) being significantly
(P<0.0001) taller than the topsoil + surfactant treatment (Treatment C) (Fig. 2).

Soils with pH values below 5.5 generally contain exchangeable Al at sufficiently

high concentrations to be toxic to plants'®. In addition, the oxidation of sulfur containing
compounds may result in the formation of high acidity in the soils, generally noted by pH
values below 4.0, which is highly unfavorable to the growth of most plant species'’. For
the shallow samples the pH did not drop below 3.5, and no plant mortality was noted.
Soil solution (i.e., leachate) data indicate that Treatment C had a much lower initial pH
than the other treatments (pH ~ 3 or below), with Al concentrations being
correspondingly high (Fig. 6). The potential for Al toxicity at these levels is high and
may have contributed to the difference in plant height.

Although results indicated that the topsoil addition was not as important to plant
survival and growth as biosolid addition, the topsoil addition did not appear to be

Table 2. Al, Fe, and Mn concentrations (mg kg") in leaf tissue (mean and standard
deviation where n=6).* *

Treatment Al Fe Mn

A 25181 79(17)  237(100)
B 191(85)  72(10) 176 (120)
C 335(108) 86(38) 328 (139)
D 298 (114)  85(26)  322(178)

* Analysis of variance (ANOVA) indicates no significant difference.
*Values in parentheses represent standard deviation.
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Figure 3. pH of soil solution/leachates from two sampling depths (15 and 41 cm) (mean
and standard deviation where n=3)
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detrimental to growth in the treatment with biosolid addition (Treatment D). In addition,
height differences may be attributed to the OM content in the biosolids which supplied
plant nutrients and enhanced physical soil properties®. Like the data for the diameter,
biomass analysis showed no significant difference (P=0.4891, n=6) for the different
treatments. There were also no significant differences in plant tissue concentrations of
Al, Fe, and Mn for the pines (Table 2).

4.3. Effect of Treatments on pH and EC

In comparison with the initial data (Table 1) of the untreated FA + CR material,
the pH was dramatically increased from 1.7 to an average pH of 5 (for the four
treatments) at the shallow depth (15 cm) in the beginning of the study (6/29/2001) (Figs.
4 and 5). The pH lingered for about a month through the second sampling date
(7/13/2001) and rapidly declined on the third sampling date (8/31/2001); conversely, the
EC started low (5.92 mS cm™) at the inception of the study, stayed somewhat low
through the second sampling date, and drastically increased on the third sampling date —
exactly the opposite of pH. For the lysimeter soil solution samples collected at the 15 cm
depth, pH values appear to have gradually decreased over time for Treatments A, B, and
D, but not for Treatment C. Initially, the OM and/or humic compounds in the biosolid
can complex F ¢**, which otherwise at this state may serve as an electron acceptor that can
exacerbate the oxidation of the pyrite. Over time, the OM undergoes oxidation and the
buffering potential decreases eventually resulting in a lowering of the pH.

Based on the pH, the effect of the SLS on acid generation was negligible. These
results may be due to the solubility and subsequent leaching and/or biodegradation of the
surfactant. However, this may also suggest that the primary mechanism of the oxidation
of pyrite in these materials is one of a physicochemical, rather than of a biological nature.
A study by Barton et al. indicated a similar phenomenon for these substrate materials
where Fe** served as the primary oxidizing agent, i.e., electron acceptor'”.

The OM content of the biosolid likely inhibited oxidation by serving as an
electron donor (i.c., lowering oxidation) and complexing of Fe**. The EC of the
leachates followed an inverse correlation to that of the pH. When pH values were low,
EC concentrations were high. The IC data indicate that sulfate was the most dominant
anion; only low concentrations of chlorides and nitrates were observed. The dominance
of the sulfates was apparently due to the FeS, oxidation; the sulfates may serve as the
main ion pair for the metals. Sulfate concentrations somewhat correspond with the EC
(Fig. 4). The EC as well as the sulfate concentrations appear to be decreasing over time.

From the sulfate data (Fig. 5), the biosolid + surfactant (Treatment B) appears to have
induced the lowest sulfate concentrations for the 41 cm depth samples, while the biosolid
only (Treatment A) induced the lowest sulfate concentrations for the 15 cm depth
samples. The peaks for the 41 cm samples occurred around the 19 November 2001
sampling date, with the leachate pH at its lowest (Fig. 3). The correspondence between
the EC and sulfate concentrations was expected due to exorbitant generation of SO;*
from pyrite oxidation of the reject coal, becoming the dominant electrolyte in the soil
solution/leachate. The dominating mitigating effect of the biosolid on acidity (i.e., low
pH) as well as total dissolved solids (TDS), i.e., as indicated by the EC (TDS can be
estimated by multiplying EC (mS cm™) by 640 for soils with EC values between 0.1 and
5.0 mS cm™ and 800 for those with EC values > 5.0 mS cm™), is very obvious throughout
virtually the duration of the study but especially during the initial 5 months'®. This might
be due to the time needed to equilibrate the various amendments with the substrate and to
decompose the biosolid.
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Figure 5. Sulfate concentration (mg L") of soil solution/leachates from two sampling
depths (15 and 41 cm) (mean and standard deviation where n=3)
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4.4. Effect on Metal Concentration

As expected, Fe was the most dominant metal in the leachate. From these data, it
appears that the biosolid + surfactant (Treatment B) was the most effective at reducing
the concentrations of metals in the lower depth. This occurred even though the pH values
of the treatments containing biosolid were similar.

Iron and aluminum concentrations for the 15 cm depth samples peaked around
November 2001 coinciding with the fall of pH. For the 41 cm depth samples, the
biosolid only (Treatment A) was consistently higher in both Fe and Al concentrations
than the biosolid + surfactant (Treatment B); this may be due surfactant addition in
Treatment B.

Based on initial chemical characteristics of the substrate material (Table 1),
Treatments C and D were expected to have the highest Al concentration. Leachate data
indicated that Treatment C had a much lower initial pH than the other treatments (pH ~ 3
or below); Al concentrations were correspondingly high (Fig. 6). While Fe could have
been derived primarily from the dissolution of the pyrite in the CR, the Al could have
been dissolved by such low pH from the clay minerals, the alumino silicates in the FA
and Al oxyhydroxides.

Manganese concentrations for the 15 cm depth samples corresponded with the pH
and Fe/Al data peaking around November 2001. Manganese concentrations for the 41
cm depth samples followed the same general trend peaking at around the same date. For
the 41 cm sampling depth, samples from Treatment A had consistently higher Mn
concentrations than those from Treatment B; once again this may be due to surfactant
addition in Treatment B. The topsoil had a significantly higher concentration of Mn than
the CR material (Table 1), and there were instances at the initial sampling dates in which
treatments containing the topsoil (Treatments C and D) had higher concentration of Mn
than treatments that did not contain it (Treatments A and B). At a pH above 4, Mn is not
as readily available to plants, which may explain why it is not problematic. For the 15
cm sampling depth, the pH of the leachates has been above 4 for all of the treatments
except Treatment C for most of the experiment.

5. CONCLUSIONS

The results indicate that revegetation of a FA + CR landfill is feasible for

controlling AD with the addition of proper amendments. Differences in height of the
pine seedlings appear to be due to biosolid application, with those growing in the
treatments containing biosolid being significantly taller than the treatment without it;
however, there were no significant differences concerning diameter, biomass, and plant
tissue concentrations of Al, Fe, and Mn for the pines. Biosolid addition appears to be
effective for mitigating proton generation, supplying plant nutrients, and enhancing
physical soil properties. Surfactant and topsoil addition were not as important to plant
survival and growth as biosolid addition; nonetheless, SLS and topsoil addition did not
appear to be detrimental to growth in the treatment with biosolid addition (Treatment D).
Based on leachate data, the topsoil + surfactant treatment had a much lower initial pH
(pH ~ 3 or below) than the other treatments and Al concentrations were correspondingly
high.
As such, differences in plant growth were observed. Based on these 1-year data, the most
critical factor limiting plant establishment in pyritic coal waste (i.e., that has some
resemblance to pyritic mine waste), i.e., extreme acidity, can be mitigated by adding
amendments (especially biosolid and top soil) in order to limit the diffusive flux of O,
from the atmosphere, to enhance the buffering capacity of the substrate, and to provide a
more favorable rooting environment including initially supplying plant nutrients.
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Figure 6. Fe and Al concentration (mg L") of soil solution/leachates from two sampling
depths (15 and 41 cm) (mean and standard deviation where n=3)
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Figure 7. Mn concentration (mg L") of soil solution /leachates from two sampling
depths (15 and 41 cm) (mean and standard deviation where n=3)
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mainly to producing a digest of research on the chemical composition and leaching
characteristics of coal combustion by-products by the Electric Power Research Institute
(EPRI). He was a major contributor to a book section on arsenic mobilization and
bioavailability in soils published in Advances in Environmental Science and Technology,
entitled Arsenic in the Environment.

His latest accomplishment has been writing a book entitled, A Handbook of Soils
for Landscape Architects, to be published by Oxford University Press this year (2000).
This book was developed from a course in soils that Dr. Keefer taught at WVU for
landscape architectural students. The handbook contains soil science information that can
be readily understood and used by persons who do not have a scientific background, but
wish to know more about soils. The many illustrations clarify the importance of soils
information in growing plants for landscape applications.
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