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Preface

Computational intelligence (CI) techniques have garnered considerable interest in

recent decades within the earth and environmental science research communities

because of its capacity to solve and understand various complex problems achiev-

ing a sustainable planet. This book is a collection of recent developments and

applications of the computational intelligence techniques in earth and environmen-

tal sciences. Topics addressed in this volume include meteorology, atmospheric

modeling, climate change, environmental engineering, water resources, and

hydrological modeling. The editors hope that this volume will promote increased

collaboration of scientists with backgrounds in computer sciences with earth and

environmental scientists.

The main focus of the contents are divided into three broad categories—classical

intelligence techniques, probabilistic and transforms intelligence techniques, and

hybrid intelligence techniques. Part I of the volume serves as an overview of

computational intelligence techniques and their application in earth and environ-

mental sciences. In Part II, which covers classical intelligence techniques, the

contributions related to the classical methods applied to earth and environmental

sciences are gathered. Part III concerns probabilistic and transforms intelligence

techniques, more specifically, the application of Markov analysis and wavelet

transforms to the earth and environmental sciences. Lastly, the analyses of prob-

lems that cannot be adequately solved with traditional techniques are addressed in

Part IV. Hybrid approaches are highlighted.

The editors would like to thank all the contributors to this volume for their

valuable contributions and their patience with the editing of the manuscript.

College Park, MD, USA Tanvir Islam

Greenbelt, MD, USA Prashant K. Srivastava

Delhi, India Manika Gupta

Melbourne, Australia Xuan Zhu

Delhi, India Saumitra Mukherjee
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Part I

General



Chapter 1

Computational Intelligence Techniques

and Applications

Xuan Zhu

Abstract Computational intelligence is a group of computational models and tools

that encompass elements of learning, adaptation, and/or heuristic optimization. It is

used to help study problems that are difficult to solve using conventional compu-

tational algorithms. Neural networks, evolutionary computation, and fuzzy systems

are the three main pillars of computational intelligence. More recently, emerging

areas such as swarm intelligence, artificial immune systems (AIS), support vector

machines, rough sets, chaotic systems, and others have been added to the range of

computational intelligence techniques. This chapter aims to present an overview of

computational intelligence techniques and their applications, focusing on five

representative techniques, including neural networks, evolutionary computation,

fuzzy systems, swarm intelligence, and AIS.

Keywords Computational intelligence • Neural networks • Evolutionary compu-

tation • Fuzzy systems • Swarm intelligence • Artificial immune systems

1.1 Introduction

The earth and environmental systems are dynamic. They are shaped and changed

continuously by complex and interrelated physical, biological, and chemical

processes. For example, the physical process of weathering breaks down the

rocks and soils into their constituent substances. When it rains, the water droplets

absorb and dissolve carbon dioxide from the air, which causes the rainwater to be

slightly acidic. The released sediment and chemicals then take part in chemical

X. Zhu (*)

School of Geography and Environmental Science, Monash University, Building 11,

Clayton Campus, Clayton, VIC 3800, Australia

e-mail: xuan.zhu@monash.edu

T. Islam et al. (eds.), Computational Intelligence Techniques in Earth
and Environmental Sciences, DOI 10.1007/978-94-017-8642-3_1,
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reactions that erode the earth’s surface. The sediment may be transformed by

geological forces into other rocks and soils. Living organisms also play a dynamic

role through respiration, excretion, death, and decay. They recycle their constituent

elements through the environment. Therefore, earth and environmental systems

encompass numerous biological, physical, and chemical processes, which interact

with each other and which are difficult to model and analyze. In addition, many earth

and environmental systems present complex spatial and temporal patterns and

behaviors. The interactions between these systems are often ill-defined and their

relationships are generally nonlinear. Many earth and environmental problems have

no strong theoretical understanding and, therefore, there are no full numerical

models. The complexity of the earth and environmental systems has led to the

need for effective and efficient computational tools to analyze and model highly

nonlinear functions and can be trained to accurately generalize when presented with

new, unseen data. The emerging computational intelligence techniques have some

or all of these features. They provide an attractive alternative to developing numer-

ical models to conventional statistical approaches, from which the new insights and

underlying principles of earth and environmental sciences can be derived.

Computational intelligence is a group of computational models and tools devoted

to solution of problems for which there are no effective computational algorithms

(Konar 2005; Madani 2011). It is an offshoot of artificial intelligence, which focuses

on heuristic algorithms such as neural networks, evolutionary computation, and

fuzzy systems. Computational intelligence also involves adaptive mechanisms and

learning ability that facilitate intelligent behavior in complex and changing

environment. In addition to the three main pillars (neural networks, evolutionary

computation, and fuzzy systems), computational intelligence includes swam intel-

ligence, artificial immune systems (AIS), support vector machines, rough sets,

chaotic systems, probabilistic methods, and other techniques or a combination of

these techniques (Engelbrecht 2007). They have been successfully applied in a wide

range of applications in the earth and environmental sciences, for example, species

distribution modeling (Watts et al. 2011), site quality assessment of forests (Aertsen

et al. 2010), prediction of water quality (Areerachakul et al. 2013), and forecasting of

air pollution (Antanasijevia et al. 2013). This chapter aims to present an overview of

computational intelligence techniques and their applications, focusing on the fol-

lowing five representative techniques, including neural networks, evolutionary

computation, swam intelligence, AIS, and fuzzy systems.

1.2 Neural Networks

1.2.1 Basic Principles

Neural networks here refer to artificial neural networks (ANNs). They are developed

to emulate biological neural systems. The basic building blocks of biological neural

systems are neurons. A neuron consists of a cell body, an axon, and dendrites.

4 X. Zhu



A neuron is connected through its axon with a dendrite of another neuron.

The connection point between neurons is called a synapse. Basically, a neuron

receives signals from the environment. When the signals are transmitted to the

axon of the neuron, i.e., the neuron is fired, the cell sums up all the inputs, which

may vary by the strength of the connection or the frequency of the input signals,

processes the input sum, and then produces an output signal, which is propagated to

all connected neurons. An artificial neuron is a simplified computational model of a

biological neuron, performing the above basic functions.

In an artificial neuron, the cell body is modeled by an activation or transfer

function. The artificial neuron receives one or more inputs (representing signals

received through dendrites that are excited or inhibited by positive or negative

numerical weights associated with each dendrite), calculates the weighted sum of

the inputs, and passes the sum to the activation function. The activation function is a

nonlinear function, and its output represents an axon, which propagates as an input

to another neuron through a synapse. An activation function can be sigmoid,

hyperbolic tangent, or linear (Konar 2005).

An ANN is a layered network of artificial neurons. It typically consists of an

input layer, one or more hidden layers, and an output layer (Fig. 1.1). Each layer is

composed of a number of artificial neurons, also called nodes. The artificial neurons

Input layer Hidden layer Output layer

i1

i2

i3

o1

o2

I = [i1, i2, i3] = input vector

O = [o1, o2] = output vector 

Fig. 1.1 An artificial neural

network (ANN) with one

hidden layer
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in one layer are connected by weights to the artificial neurons in the next layer. It is

essentially a model representing a nonlinear mapping between an input vector and

output vector. As the output from an artificial neuron or node is a function of the

sum of the inputs to the node modified by a nonlinear activation function (e.g., a

logistic function), an ANN superposes many simple nonlinear activation functions

used by the nodes constituting the network, which enables it to approximate highly

nonlinear functions, thus introducing complex nonlinear behavior to the network

(Principe et al. 2000). These functions can be trained to accurately generalize with

new data. The adaptive property is embedded within the network by adjusting the

weights that interconnect the nodes during the training phase. After the training

phase the ANN parameters are fixed and the system is deployed to solve the

problem at hand. Therefore, an ANN is an adaptive, nonlinear system that learns

to perform a function from data.

There are several types of ANN, including multilayer feed-forward, recurrent,

temporal, probabilistic, fuzzy, and radial basis function ANNs (Haykin 1999).

The most popular one is the multilayer feed-forward neural network as shown in

Fig. 1.1. It is also referred to as the multilayer perceptron network. In this type of

ANN, the output of a node is scaled by the connection weights and fed forward as an

input to the nodes in the next layer. That is, information flow starts from the nodes

in the input layer, and then moves along weighted links to the nodes in the hidden

layers for processing. The input layer plays no computational role, but provides the

inputs to the network. The connection weights are normally determined through

training. Each node contains an activation function that combines information from

all the nodes in the preceding layer. The output layer is a complex function of the

outcomes resulted from internal network transformations.

Multilayer perceptron networks are able to learn through training. Training

involves the use of a set of training data with a systematic step-by-step procedure

to optimize a performance criterion or to follow some implicit internal constraint,

which is commonly referred to as the learning rule. Training data must be repre-

sentative of the entire data set. A neural network starts with a set of initial

connection weights. During training the network is repeatedly fed with the training

data (a set of input–output pattern pairs obtained through sampling) and the

connection weights in the network are modified until the learning rule is satisfied.

One performance criterion could be a threshold value of an error signal, which is

defined as the difference between the desired and actual output for a given

input vector. Training uses the magnitude of the error signal to determine how

much the connection weights need to be adjusted so that the overall error is reduced.

The training process is driven by a learning algorithm, such as back-propagation

(Rumelhart et al. 1986) and scaled conjugate gradient algorithms (Hagan

et al. 1996). Once trained with representative training data, the multilayer

perceptron network gains sufficient generalization ability and can be applied to

new data.

6 X. Zhu



1.2.2 Applications

ANNs are applicable when a relationship between the independent variables (out-

puts) and dependent variables (inputs) exists. They are able to learn the relationship

from a given data set without any assumptions about the statistical distribution of the

data. In addition, ANNs perform a nonlinear transformation of input data to approx-

imate output data, learning from training data and exhibiting the ability for gener-

alization beyond training data. This makes them more practical and accurate in

modeling complex data patterns than many traditional methods that are linear. They

are also able to deal with outlying, missing, and noisy data due to their ability to

generalize well on unseen data. The capability of learning from data, modeling

nonlinear relationships, and handling noises in data makes ANN particularly suitable

for pattern classification, function approximation, and prediction in most earth and

environmental applications. Pattern classification is to classify data into the

predetermined discrete classes. Functional approximation is to formulate a function

from a given set of training data to model the relationship between variables.

Prediction involves the estimation of output from previous samples or forecasting

of future trends in a time series of data given previous and current conditions.

ANNs have been employed to predict and assess air quality and forecast severe

weather. For example, Gardner and Dorling (1999) applied multilayer perceptron

networks to predict hourly NOx and NO2 concentrations in urban air in London. The

neural networks used in this study have two hidden layers, each containing

20 nodes. They used five variables (low cloud amount, visibility, dry bulb temper-

ature, vapor pressure, and wind speed) to predict the pollutant concentration. The

activation function used in the models was the hyperbolic tangent function

(Engelbrecht 2007). The networks were trained using the scaled conjugate gradient

algorithm based on hourly meteorological data on the five variables. Their results

suggest that ANNs outperform regression models, and can be used to resolve

complex patterns of source emissions without any explicit external guidance.

Sousa et al. (2007) used feed-forward ANNs to predict hourly ozone concentrations

with principal components as inputs, which effectively combined principal com-

ponent analysis and ANN techniques. This combination reduces the collinearity of

the data sets, determines the relevant independent variables for the prediction of

ozone concentrations, and thus leads to a less complex architecture of the ANN due

to the decrease of input variables. It also eliminates the overfitting problem, so that

mean square errors of both validation and training continuously decline. Data on

precursor concentrations and meteorological variables on ozone formation were

used. The principal component-based ANN was compared with multiple linear

regression, principal component regression, and feed-forward ANNs based on the

original data. The results suggested that the use of principal components as inputs

improved the ANN prediction. Krasnopolsky (2013) provided a representative set

of ANN applications in meteorology, oceanography, numerical weather prediction,

and climate studies.
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In geology ANNs have been used for sediment prediction, permeability predic-

tion, simulation of chemical concentrations in minerals, and geological hazard

assessment. For example, Yang and Rosenbaum (2003) built amultilayer perceptron

network, integrated with a GIS, to predict distributions of sediments (sand, silt, and

clay) in Gothenburg harbor, Sweden. The developed network has four input nodes

(water depth, distance from the river mouth, bank, and shipping lanes) and three

output nodes (one for each sediment grade) as well as two hidden layers. The

network was trained using the data from 139 sample stations. Fegh et al. (2013)

applied ANN to determine rock permeability of a gas reservoir fromwell logs at well

locations, and used the results from the ANN modeling as an input to several

geostatistical models through the structural model to construct 3D geological reser-

voir permeability models. Permeability prediction using ANN used the data sets

derived from four wells of the studied gas field. Two of the wells have core

permeability data, one used for constructing the ANN model and the other for

evaluating the reliability of the ANN model. The model was then applied to predict

permeability at the other un-cored wells. Torkar et al. (2010) used ANN to model

nonlinear dependency of radon concentrations in soil gas on five environmental

variables (air and soil temperature, barometric pressure of air and soil, and rainfall).

A four-layer perceptron network was developed in this study with five input nodes

(the environmental variables) and one output node (radon concentration) and it was

trained using the back-propagation algorithm. The ANN model correctly predicted

10 seismic events out of 13 within the 2-year period. Bui et al. (2012) investigated

the potentials of ANN in landslide susceptibility mapping at the Hoa Binh province

of Vietnam. They built two multilayer feed-forward ANNs with back-propagation

training algorithms, Levenberg–Marquardt and Bayesian regularization. Ten land-

slide conditioning factors were used as input nodes: slope, aspect, relief amplitude,

lithology, land use, soil type, rainfall, and distance to roads, rivers, and faults.

A landslide inventory over 10 years derived from satellite images, field surveys,

and existing literature was utilized as training data. The connection weights obtained

in the training phase were applied to the entire study area to produce landslide

susceptibility indexes. The prediction accuracy of landslide susceptibility mapping

by the Bayesian regularization neural network and the Levenberg–Marquardt neural

network was 90.3 % and 86.1 %, respectively. The study suggested that the ANNs

have good predictive capability, but the Bayesian regularization network model

appears more robust and efficient.

ANNs have also found to outperform traditional or classic modeling methods

in ecological modeling (Lek and Guegan 1999). There have been numerous

applications in ecological modeling in various fields of ecology since the early

1990s. For example, Ranković et al. (2010) built a feed-forward ANN model to

predict the dissolved oxygen in the Gruža Reservoir, Serbia. The input variables

of the neural network include water pH, water temperature, chloride, total phos-

phate, nitrites, nitrates, ammonia, iron, manganese, and electrical conductivity.

The Levenberg–Marquardt algorithm was used to train the network. The results

were compared with the measured data on the basis of correlation coefficient,

mean absolute error, and mean square error, which indicated that the neural
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network model provided accurate results. Other examples include using ANN to

relate flow conditions to fish community diversity (Chang et al. 2013), determine

factors that influence the dispersal of invasive species (Pontin et al. 2011), predict

water quality indicators (Kuo et al. 2007; Huo et al. 2013), predict biodiversity

(Yoo et al. 2012), estimate tree height (Özçelik et al. 2013), and simulate denitri-

fication rates in wetlands (Song et al. 2013). Zhang (2010) offered an overall and

in-depth knowledge on algorithms, programs, and case studies of ANNs in

ecology.

Examples of ANN applications in hydrology include hydrological time series

modeling (Lohani et al. 2012), groundwater salinity forecasting (Banerjee

et al. 2011), rainfall–runoff modeling (Wu and Chau 2011), reservoir inflow predic-

tion (Okkan 2012), and suspended sediment load prediction (Kakaei et al. 2013).

Pattern recognition and image classification are among the most common appli-

cations of ANN in remote sensing. The major advantage of ANN to image classi-

fication over conventional statistical approaches, such as maximum likelihood and

Mahalanobis distance classifiers, is that ANN is essentially nonparametric and

nonlinear, and has no assumptions regarding the underlying distribution of values

of the explanatory variables and the training data. ANNs are found to be accurate in

the classification of remotely sensed data (Mas 2004; Bao and Ren 2011; Dobreva

and Klein 2011; Cruz-Ramı́rez et al. 2012).

1.3 Evolutionary Computation

1.3.1 Basic Principles

Evolutionary computation simulates natural evolution. It was born out of the idea of

evolutionary programming introduced in the 1960s (Eiben and Smith 2003). Evo-

lutionary computation includes evolutionary algorithms for solving search and

optimization problems. It was thought of as a model for machine learning in

which a population of randomly created individuals goes through a process of

evolution mimicking the process of natural selection and natural genetics (Yu and

Gen 2010). In every generation, a new set of artificial creatures is created using bits

and pieces of the fittest of the old. An artificial creature is an individual representing

a point in the problem’s solution search space.

Evolutionary algorithms use random choice as a tool to guide a highly exploit-

ive search toward regions of the search space with likely improvement. A single

point in the solution search space is an individual, represented by a chromosome,

which consists of genes. For example, a land use pattern is a single point in the

search space of a land use optimization problem. A land use pattern can be seen as

a chromosome. Genes are essentially the parameters of the problem to be solved.

A gene can take many forms depending on the problem definition. For the land use

allocation problem, a gene can be a land parcel with a given land use and land
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attributes. The fitness (survival strength) of a chromosome is measured by a fitness

or an objective function. A fitness function is some measure of profit, utility, or

goodness to be maximized. A population is a collection of all the chromosomes

being evolved. As new chromosomes are created and reinserted into the popula-

tion, less fit chromosomes are replaced and only the fittest survive into the next

generation. It is here that the process of evolution occurs, as the fitness of the

competing chromosomes is compared in order to select parent chromosomes to

reproduce.

Evolutionary algorithms generally follow the basic procedure as depicted in

Fig. 1.2. The first step is to define the problem, which includes defining genes to

encode the information needed for problem solving, specifying chromosomes to

represent single solutions, and defining a fitness function. After the problem is

defined, an initial population is randomly created as the first generation. All the

chromosomes in the generation are then evaluated using the fitness function. After

that, chromosomes are selected from the population according to their fitness

function values to ensure that only the fittest chromosomes can survive into the

next generation. The selected chromosomes are then combined in a process called

crossover to create a set of children. The children are randomly mutated to create a

new set of chromosomes to be reinserted into the population. Once enough children

chromosomes have been created to replace a population, a generation is said to have

passed. For the new generation, the evaluation, selection, crossover, mutation, and

insertion process starts again. After a number of generations have elapsed, an

optimal solution is converged and the process stops. The best chromosome is

selected from the final population and represents the optimal solution to the

problem being solved. Essentially what’s happening is that a random set of solu-

tions to a problem within a given search space is created and evolves over an

amount of time to find an optimal solution.

Stop

Insert offspring into the population
No

Yes

Define
problem

Convergence
?

Evaluate
fitness of

individuals

Mate
individuals
to produce

offspring via
crossover

Mutate
individuals
to produce
offspring

Create a
random

population

Select
individuals
for mating

Fig. 1.2 General procedure of an evolutionary algorithm

10 X. Zhu



There are different categories of evolutionary algorithms, including genetic

algorithms, genetic programming, evolutionary programming, and evolution strate-

gies. Genetic algorithmsmodel genetic evolution (Goldberg 1989); genetic program-

ming optimizes a population of computer programs based on genetic algorithms,

where each individual is a computer program (Langdon and Poli 2002); evolutionary

programming is similar to a genetic algorithm, but simulates only adaptive behavior

in evolution (Yao et al. 1999); and evolution strategies are used tominimize functions

of real variables, which are individuals, each having a “strategy variable” that

determines the degree of mutation to be applied to the corresponding variable

(Auger andHansen 2011). They all share a basic principle of simulating the evolution

of individuals through the process of evaluation, selection, crossover, mutation, and

reproduction.

1.3.2 Applications

Evolutionary computation has been used successfully for optimization, scheduling,

and time series approximation in earth and environmental applications.

Downing (1998) illustrated three applications of evolutionary computation in

environmental modeling: optimal foraging strategies, temporal ideal-free distribu-

tions of larval emergence dates, and evolution of microscopic aquatic ecosystems.

In nature, foraging animals often face difficult decisions on where to search for food.

They need to make tradeoffs based on their knowledge of the relative abundance of

food resources and predatory dangers as well as their current energetic condition

(e.g., starvation, strong, weak). A foraging strategy consists of a list of the best

foraging areas for each of the discrete energetic conditions. In optimization of

animal foraging strategies, a genetic algorithm was used. It starts with an initial

population of foragers that have randomly generated foraging strategies. Each

forager with the initial middle energy level implements its strategy over a season.

Every day over the season, the forager selects the area determined by its energy level

and strategy, and it is then charged the daily metabolic cost and possibly fed and/or

killed in accordance with the death and feeding-success probabilities associated with

that area. The fitness of the forager and its associated strategy is measured as the

average number of days it survives over the season. After all foragers and their

associated strategies in a generation have obtained a fitness value, the fittest foragers

are selected to produce the new generation of foragers by crossing over and mutating

the strategy chromosomes of the parents. The new generation of strategies is then

evaluated and the generational cycle continues until the convergence criterion is met

and near-optimal strategies are found. Other examples of optimization with evolu-

tionary computation include eco-design (Lim et al. 2013), mine planning (Riff

et al. 2008), optimization of power factor and power output of wind turbines (Kusiak

and Zheng 2010), and determination of the optimum pumping rates of coastal

aquifers (Mantoglou et al. 2004).
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The case of temporal ideal-free distributions of larval emergence dates

described in Downing (1998) is an example of time series approximation. An

ideal-free distribution refers to the situation where organisms diversify over space

and/or time so that each gets about the same amount of resources. For species for

which males often mate with several females, when male and female insects

emerge from dormant stages before mating, male emergence distributions often

match those of the females due to the competition for females (i.e., resources).

This phenomenon is known as protandry. In the representation of a genetic

algorithm, each individual is a chromosome encoding emergence times and sex.

Males mate several times over several days and have either fixed active periods or

age-independent mortality. Females mate only once on the emergence day. The

life cycle of an insect commences with a dormant phase, which lasts until its

emergence date. The insect becomes active for a fixed number of time steps,

during which it shares the available food resources with other active insects.

An insect’s fitness is directly proportional to the amount of resources it acquires

during the active period. The genetic algorithm was run on ten different cases.

Each case has a different initial distribution of emergence times (the number of

insects emerging on each day of the season), different frequency of the resource

curve, and different postemergence life-span of the simulated insects. In all cases,

the emergence distributions evolved to closely match the computed ideal-free

distributions for the situation. The protandry simulations support one of the tacit

assumptions of research on ideal-free distributions; that is, emergence times

are genetically controlled. Other examples of time series approximation using

genetic algorithms include the simulation of copepod population dynamics

(Record et al. 2010) and modeling of long-term hydrological time series

(Wang et al. 2009).

Timber harvest scheduling is a typical scheduling problem that can be solved

using evolutionary computation. For instance, Ducheyne et al. (2004) applied

genetic algorithms to develop forest harvesting plans. In the genetic algorithms,

each chromosome represents a harvesting plan, encoding the felling period of

each stand (gene). The fitness function maximizes the present value and mini-

mizes deviations between successive cutting periods. It suggested that using

multiple objective genetic algorithms to solve the harvest scheduling problem

speeds up the optimization process and distributes the solutions evenly along the

Pareto front.

1.4 Swarm Intelligence

1.4.1 Basic Principles

Swarm intelligence models the social behavior of organisms living in swarms

or colonies. It is a form of agent-based modeling aiming at collective behavior of

intelligent agents in decentralized, self-organized systems. Basic principles of
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swarm intelligence are derived from real swarms in nature, including ant colonies,

bees, bird flocking, animal herding, fish schooling, and bacterial growth. A swarm

intelligence system typically consists of a population of simple agents (individuals)

interacting locally with one another and with their environment. These agents

follow simple rules without centralized control dictating how individuals should

behave. Local interactions of agent-to-agent or agent-to-environment lead to the

emergence of intelligent global behavior or pattern which is unknown to the

individual agents. In addition, the behavior of agents may change when the local

environment is modified, which is referred to as stigmergy (i.e., the trace left in the

environment by an action incites the performance of a next action by the same or

different agents).

Swarm theory has led to the development of a number of algorithms for routing

and optimization (Blum and Merkle 2008). Ant colony optimization (ACO) and

particle swarm optimization (PSO) are two popular swarm intelligence techniques.

ACO is a probabilistic technique for solving computational problems which

involve finding optimum paths through graphs. It is inspired by the behavior of

ants in finding paths toward food sources or their colonies. In the real world, ants

initially roam randomly. Once they find foods, they return to their colony while

leaving pheromone trails. When other ants find such a trail, they are likely to

follow it and reinforce it with their own pheromone if they find foods. However,

the pheromone along the trail evaporates over time, reducing its attractive

strength. The longer it takes for an ant to travel along the trail, the weaker and

less attractive the pheromone it laid down becomes. Over a short path, the strength

of the pheromone remains high as it is reinforced as fast as or quicker than it can

evaporate or decay. Ants tend to choose their trails with stronger pheromone

concentrations. Therefore, when one ant finds a shorter path, other ants are more

likely to follow that trail, and positive feedback eventually leads all the ants

choose the shortest trail.

ACO mimics the behavior of ants with artificial ants walking along a graph

representing the problem to solve. The graph consists of edges linking nodes.

Each edge is a path from one node to another, representing a potential solution.

Each edge is also assigned a pheromone value. Figure 1.3 shows a general

procedure of ACO. First, the graph is initialized by assigning the same initial

pheromone value to each edge and randomly selecting a node to place an artificial

ant. Then the ant selects an edge to move at the current node with a probabilistic

transition rule. This rule is commonly expressed as the probability (Dorigo

et al. 1996)

p ei, j
� � ¼

τi, j
� �α

f i, j

h iβ

X
k2θi τi,k½ �α f i,k

� �β ð1:1Þ

where p(ei, j) is the probability of ei, j (the edge from node i to node j) being selected
at node i, τi, j is the pheromone value associated with ei, j, fi, j is a value of a weighting
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function (called a heuristic information) of ei, j measuring the desirability of the

edge, θi is the set of edges available at node i, and α and β are parameters defining

the relative importance of the pheromone strength and desirability. After a solution

is obtained by the ant, its goodness is evaluated using an objective function. The

pheromone value of each edge is then updated by uniformly decreasing all the

pheromone values (pheromone evaporation) and increasing the pheromone values

of one or more better solutions. The above process is repeated by applying a number

of ants per iteration until a given convergence criterion (e.g., a time limit) is

satisfied or all artificial ants follow the same path.

PSO simulates the social behavior of bird flocking and fish schooling. It is a

search and optimization technique, similar to evolutionary computation techniques.

It is initialized with a population of random solutions and searches for the optimal

solutions through updating generations. However, unlike evolutionary computation

techniques, it does not use evolution operators such as crossover and mutation.

In PSO, individuals, referred to as particles, are grouped into a swarm. Each particle

in the swarm represents a potential solution to the optimization problem. The

particles are “flown” through the multidimensional search space by following the

current “best” particle called guide. In each iteration, each particle is evaluated

using the fitness function, and its velocity and position in the search space are

updated using the following two equations (Kennedy and Eberhart 1995):

v tþ 1ð Þ ¼ v tð Þ þ c1 � R1 � pbest� p tð Þ½ � þ c2 � R2 � gbest � p tð Þ½ � ð1:2Þ

p tþ 1ð Þ ¼ p tð Þ þ v tþ 1ð Þ ð1:3Þ

where v(t) is the current velocity of the particle, p(t) is its current position, pbest and
gbest are the best solutions achieved so far by the particle and population, respec-

tively, R1 and R2 are the random numbers in the range [0, 1], and c1 and c2 are

acceleration coefficients. pbest is also called the personal best, and gbest the global
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Fig. 1.3 A general procedure of ant colony optimization (ACO)
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best. The process terminates when a time limit is reached or gbest cannot be

improved further. While ACO is mainly used for combinatorial optimization,

PSO is primarily employed for continuous optimization.

1.4.2 Applications

The study of swarm intelligence is providing insights that can help humans manage

complex systems, from truck routing to military robots. ACO has many successful

applications in discrete optimization problems such as travelling salesman problem.

For example, Afshar (2010) used ACO for optimal design of sewer networks. In this

study, the nodal elevations of the network were used as the decision variables of the

optimization problem. The pheromone concentration over the allowable range of

each decision variable was modeled with a Gaussian probability density function.

It tried two alternative approaches to the implementation of ACO: constrained and

unconstrained. The unconstrained approach did not take into account the minimum

slope and other constraints. In the constrained approach, the elevation at down-

stream node of a pipe is used to define new bounds on the elevation of the upstream

node, which represents the constraints on the pipe slopes. Other constraints include

hydraulic radius, pipe diameter, average excavation depth, velocity, and flow depth

of each link. The results from the constrained approach were compared with those

of the unconstrained one. The constrained ACO was shown to be very effective in

locating the optimal solution and efficient in terms of the convergence. It was also

found to be relatively insensitive to the initial colony and its size when compared to

the unconstrained algorithm.

PSO has few or no assumptions about the problem being optimized. It can search

large solution spaces. Ma et al. (2011) applied PSO for land use optimization. In their

study, each land parcel is abstracted to a particle by its centroid. Particles constantly

fly to adjust their positions and velocities according to their personal best and the

global best assessed in terms of the cost of land use transformation, biophysical

suitability, and compactness of landscape. Chou (2012) used PSO in modeling

rainfall–runoff relationships. The study compared PSO and a simple linear model

in simultaneous identification of system structure and parameters of the rainfall–

runoff relationship. The simple linear model combines classic models typically used

in hydrology to simulate the subsystems, and transforms the system structure

identification problem into a combinational optimization problem. The PSO was

employed to select the optimized subsystemmodel with the best data fit. It found that

the PSO simulates the time of peak arrival more accurately compared to the simple

linear model, and it also accurately identifies the system structure and parameters of

the rainfall–runoff relationship. PSO has also been applied for forecasting river stage

(Chau 2007), modeling turbidity intrusion processes in flooding season (Wang

et al. 2012), simulating soil moisture (Alizadeh and Mousavi 2013), optimizing

greenhouse climate model parameters (Hasni et al. 2011), scheduling electric

power production at a wind farm, predicting penetration rate of hard rock tunnel

boring machines (Yagiz and Karahan 2011), etc.
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1.5 Artificial Immune Systems

1.5.1 Basic Principles

AIS model the human immune system. The human immune system is a robust,

decentralized, error-tolerant, and adaptive system. It is composed of a great variety

of molecules, cells, and organs spreading all over the body. The main function of

the human immune system is to search for malfunctioning cells from its own body

(such as cancer cells) and foreign disease causing elements (such as bacteria and

viruses). The elements that can be recognized by the immune system are referred to

as antigens. The cells belonging to the body are called self or self-antigens, while

the foreign cells entering the body are termed nonself or nonself-antigens. The

immune system can distinguish between self and nonself. The field of AIS encom-

passes a spectrum of algorithms. Different algorithms mimic the behavior and

properties of different immunological cells (specifically B-cells, T-cells, and den-

dritic cells). There are three main categories of AIS algorithms derived from the

simplified immune systems: negative selection, clonal selection, and immune

networks.

Negative selection algorithms simulate the negative selection process that occurs

during the maturation of T-cells in the thymus. T-cells originate in the bone marrow,

but pass on to the thymus to mature before they circulate the body in the blood and

lymphatic vessels. Negative selection refers to the identification and elimination of

those T-cells that may recognize and attack the self-antigens presented in the

thymus. All T-cells that leave the thymus to circulate throughout the body are said

to be tolerant to self. A typical negative selection algorithm involves a self-set

S which defines the self-elements in a problem space (i.e., representative samples

of self-antigen), and a detector set F which contains all elements that have been

identified as nonself-antigens and do not belong to S (Dasgupta and Forrest 1999;

de Castro and Timmis 2002). Basically, the algorithm first generates a random set of

candidate elements C, and then compares the elements in C with the elements in S.
If an element in Cmatches an element in S, it will be discarded; otherwise, it will be
added to F. D’haeseleer et al. (1996) proposed a more efficient approach that tries

to minimize the number of generated detector elements while maximizing

the coverage of the nonself-space. After F is generated, it is used to detect

nonself-elements in a data set (feature set) S*, which may be composed of the set

S plus other new features or a completely new set. The elements in S* are checked
against those in F. A match indicates a nonself-element is identified and an action

will be followed. The follow-up action of detecting nonself varies according to the

problem under investigation. The efficiency and complexity of a negative selection

algorithm depend on the type of problem space (continuous, discrete, mixed, etc.),

the problem representation scheme, and the matching rules. Most of the research

works on the negative selection algorithm have used the binary matching rules like

r-contiguous (Forrest et al. 1994). Negative selection algorithms have been applied

to pattern recognition and classification.
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Clonal selection algorithms are inspired by the clonal selection theory that

explains how the immune system reacts when a nonself-antigen is detected by a

B-cell. B-cells produce antibodies. When an antibody strongly matches an antigen,

the corresponding B-cell is stimulated to generate clones of itself, which then

produce more antibodies. The binding of an antibody to a nonself-antigen is a

signal to destroy the invading organism on which the antigen is found. This process

is called clonal selection. Clonal selection algorithms are most commonly applied

to optimization and pattern recognition. They generally evolve candidate solutions

by means of selection, cloning, and mutation. de Castro and von Zuben (2002)

proposed a clonal selection algorithm for pattern recognition, which includes the

following steps:

1. Create a random population of individuals (B-cells or antibodies).

2. Given a set of patterns (antigens) to be recognized, for each pattern, determine

its affinity with each element of the population.

3. Select a number of the highest affinity individuals from the population and clone

these individuals to a certain number of copies proportional to their affinity with

the antigen. The greater the affinity, the larger the number of copies, and vice

versa.

4. Mutate all the clones with a rate inversely proportional to their affinity with the

input pattern. The higher the affinity, the smaller the mutation rate, and vice

versa.

5. Add the mutated individuals to the population, and reselect the maturated

(optimized) individuals to be kept as memories of the system. Delete other

superfluous clones and replace them with new randomly generated individuals.

6. Repeat steps 2–5 until a stop condition is met, e.g., a minimum pattern recog-

nition or classification error.

There are several variants of the clonal selection algorithm and clonal selection-

based hybrid algorithms, which are reviewed in Berna and Sadan (2011).

Immune network algorithms assume that B-cells form a network. When a B-cell

is activated as a response to an antigen, it stimulates all other B-cells to which it

connects in the network. These algorithms are similar to clonal selection algorithms

in that they both measure the goodness of B-cells by affinities and both involve a

process of selection, cloning, and mutation. The main difference is that the immune

network algorithms consider that B-cells are not isolated, but communicate with

each other via collective dynamic network interactions, while clonal selection

algorithms only care about the interactions between B-cells and antigens. An

immune network algorithm develops a population of individuals (B-cells) that

interact with data (antigens) and with each other. The interactions with antigens

and between B-cells fire up the B-cells. Highly stimulated B-cells undertake

cloning and mutation as they do in a clonal selection algorithm. The number of

clones and mutation rate also depend on the affinity of the cell with the current

stimulating antigen. This process is regulated by the interaction between B-cells,

which can stimulate them in order to create a memory of observed antigens, or

suppress them, in order to control the immune response. It also includes natural
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death of unstimulated B-cells and addition of new random B-cells to the population.

A working procedure of an artificial immune network can be found in de Castro and

von Zuben (2001). Immune network algorithms perform unsupervised learning.

They have been typically used for clustering, but have also been adapted to

optimization and classification.

1.5.2 Applications

AIS have been successfully used for optimization, classification/clustering, and

pattern recognition. For example, Liu et al. (2012) applied AIS for optimizing

multi-objective allocation of water resources in river basins. They integrated the

macroevolution algorithm (Marin and Sole 1999), clonal selection, and an entropy-

based density assessment scheme (EDAS) to perform a global optimal search. The

clonal selection was based on the diversity in the evolving population and applied for

solution exploitation. EDAS was used to distribute non-dominated individuals uni-

formly along the discovered Pareto-frontier, and the macroevolution algorithm is

employed to preserve the diversity of individuals and form part of the pool solution.

AIS have been widely used for remote sensing image classification and pattern

recognition (Xu and Wu 2008; Zhang et al. 2004; Zheng and Li 2007; Zhong

et al. 2007). Gong et al. (2011) developed an improved artificial immune network

algorithm for land cover classification from remote sensing images. It involves

creation of land cover class representatives as antibodies or B-cells. Basically, an

initial population of antibodies is randomly generated so that the possibility of

successful recognition of a land cover class is maximized without prior knowledge

of antigens. The initialized population of antibodies is then optimized by cloning

and mutating the antibodies that can best recognize the antigens. The system then

evolves antibodies over a number of generations until stopping criteria are met.

In this study, the best antibodies for each land cover class were preserved in each

generation. An adaptive mutation rate was used to adjust the learning speed in

response to the difference between the classification accuracies of the current and

previous generation. In addition, the Euclidean distance and spectral angle mapping

distance are used as affinity measures. A genetic algorithm was also used to identify

optimal weights representing contributions from different affinity measures. The

artificial immune network algorithm was applied to classify land covers in a

residential area in Denver, CO, with high-spatial resolution QuickBird image and

LiDAR data and in a suburban area in Monticello, UT, with HyMap hyperspectral

imagery. The method was compared with a decision tree, a multilayer feed-forward

back-propagation neural network, and another artificial immune networks algo-

rithm from de Castro and von Zuben (2001). The results showed that it

outperformed the other methods with higher accuracy and more spatially cohesive

land cover classes with limited salt-and-pepper effect.
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1.6 Fuzzy Systems

1.6.1 Basic Principles

Fuzzy systems make use of fuzzy sets or fuzzy logic. Traditional set theory requires

objects to be either part of a set or not. For example, the set of rice paddy fields is

distinct from the set of forest stands. If a piece of land belongs to one of the two sets,

it cannot belong to the other. Such sets are called crisp. Crisp sets have well-defined

boundaries with no ambiguity about an object’s membership. However, in earth and

environmental studies, our observations and reasoning are often not this exact and

usually include a measure of membership. For instance, many data collected in the

field survey are often described in ambiguous words: soils can be recorded as being

poorly drained, slightly susceptible to soil erosion, and marginally suitable for

maize. Such sets are fuzzy. With fuzzy sets, an object belongs to a set to a certain

degree of membership. Mathematically, a crisp set is described by a characteristic

function whose value is always either 1 for elements of the set or 0 for those outside

the set (Fig. 1.4a). A fuzzy set is defined by a membership function that takes values

in the range of 0 and 1 (Fig. 1.4b). An element belongs to a fuzzy set if the value of

the set’s membership function at that element is nonzero. A nonzero value of the

membership function indicates the degree to which an element belongs to the set.

Fuzzy logic allows approximate reasoning based on fuzzy sets. It usually uses

IF-THEN rules. The following is an example of a fuzzy rule:

IF the soil depth is shallow and accumulated temperature is moderate

THEN the suitability for maize is marginal

The AND, OR, and NOT logic operators of traditional Boolean logic are also used

in fuzzy logic. The AND operation is the intersection of fuzzy sets, given by the

minimum of the membership functions. OR is the union of fuzzy sets, defined as the
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maximum of the membership functions. NOT gives the complement of a fuzzy set.

Other operators exist in fuzzy logic (Zimmermann 2001).

A fuzzy system can be defined as a collection of IF-THEN rules with fuzzy

predicates, or an algebraic or differential equation in which parameters are

fuzzy numbers expressing the vagueness in the parameter values, or a system with

fuzzy inputs (such as readings from unreliable sensors or quantities relating to human

perception) and fuzzy outputs. In the earth and environmental systems, the majority of

the phenomena are understood only partially and therefore cannot be modeled using

mathematical models. A significant portion of knowledge about the earth and environ-

mental systems is available as the heuristic knowledge or rule of thumb from experts or

practitioners. Fuzzy rule-based systems can be used to represent such knowledge and

make approximate reasoning using the heuristic knowledge. From this point of view,

fuzzy systems can be considered as a type of expert systems or knowledge-based

systems (Patterson 1990). In addition, fuzzy systems provide an alternative approach to

dealing with uncertainty as not all types of uncertainty can be handled by traditional

stochastic modeling framework. The uncertainty in fuzzy systems is non-statistical,

based on vagueness, imprecision, and/or ambiguity. Non-statistical uncertainty is an

inherent property of a system and cannot be changed or resolved by observations.

Stochastic methods deal with statistical uncertainty, which is based on the laws of

probability and can be resolved through observations. Moreover, like other computa-

tional intelligence techniques such as ANN, fuzzy systems can be used to model

nonlinear systems and approximate other functions or measurement data with a desired

accuracy. They provide a more transparent representation of the system under inves-

tigation, mainly due to the linguistic model interpretation in the way close to the one

humans use for reasoning about the real world.

1.6.2 Applications

Fuzzy systems are often a choice when dealing with non-statistic uncertainties in

applications including classification/clustering, function approximation, and pre-

diction. Rezaei et al. (2013) provides an example of classification using fuzzy

logic in evaluation of groundwater pollution. In this study, groundwater vulner-

ability was assessed by using linguistic variables to describe hydrogeological

characteristics and linguistic terms to define vulnerability ratings. The Boolean

logic cannot reflect the actual differences between the points in a hydrogeological

setting; thus, regions that should have different vulnerability indices may be

characterized by the same index. In contrast, a fuzzy system is able to adjust

itself with the range of variation of input indices. The study demonstrated that

fuzzy logic allows better and more logical ratings to be obtained for the values

located near the classification boundaries. Other examples include using fuzzy

clustering methods to characterize the physicochemical properties of groundwater

and assess the impact of anthropogenic activities on the groundwater hydrology
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and chemistry (Güler et al. 2012), and to cluster forests according to their forest fire

risk (Iliadis et al. 2010).

An example of function approximation is the use of fuzzy systems to downscale

the regional wind climate to local wind conditions, considering the surrounding

topography, in order to assess the wind potential available in an area for wind

farms (de la Rosa et al. 2011). Wind exhibits high local-scale variability caused by

the local topography, roughness, obstacles, etc. Although the regional wind cli-

mate can be extrapolated from the wind measurements at the meteorological

stations, it does not reflect the local variability. The real wind is the result of

local conditions. Due to the vagueness in the terrain description (e.g., down slope,

up slope, and plain) in the local scale, the low quality of meteorological data

(without measuring local topographic effects) recorded at the stations, and the

chaotic dynamics inherent to atmospheric events, de la Rosa et al. (2011) proposed

to use a fuzzy system to transform the regional wind distribution into the real one,

which takes into account topographic parameters. The fuzzy system was designed

to establish a link between the local wind conditions and the terrain features.

It calculates the probability of possible changes in the wind direction based on

the analysis of the terrain in those directions. The membership distributions of the

fuzzy system were also optimized using a genetic algorithm. The fuzzy system

effectively approximated the local wind conditions by transforming a regional

wind climate model.

In the study by Kayastha (2012), a fuzzy system approach was used to predict

landslide susceptibility. Eight causative factors were used in the predictive

modeling, including slope, aspect, slope shape, relative relief, distance from

drainage, land use, geology, and distance from active faults. Likelihood ratios

were calculated for each class of the causative factors by comparing with past

landslide occurrences. The likelihood ratios were then normalized to fuzzy

membership values between 0 and 1. The study compared several different

fuzzy operators and found that the fuzzy gamma (λ) operator with a λ-value of

0.70 produced the best prediction accuracy. Other instances of prediction with

fuzzy systems include prediction of air quality (Fisher 2003; Carbajal-

Hernández et al. 2012), ocean wave energy (Özger 2011), and habitat quality

(Mocq et al. 2013).

1.7 Conclusions

The complexity and nonlinearity of most earth and environmental problems have

led to the increased use of computational intelligence techniques. This chapter

reviewed five representative methods of computational intelligence and their appli-

cations. The characteristics of these techniques reveal that each technique has its

own merits and limitations. Fuzzy systems, for instance, are good at approximate

reasoning, but do not have learning and optimization ability, while ANN is capable

of adaptive learning and evolutionary computation is efficient in intelligent search
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and optimization. Fusion of different computational intelligence techniques thus

may provide better computational models. For example, coupling ANN and fuzzy

systems provides capabilities of learning from approximate data or knowledge and

approximate reasoning using the knowledge derived through adaptive learning

(Azar 2010). Attempts to combine evolutionary computation and ANN have a

long history. For example, evolutionary computation techniques can be used to

determine the weights of an ANN with the mean square error sum of the neurons at

the output layer as the fitness function (Piotrowski and Napiorkowski 2011).

Evolutionary computation can also be used to optimize parameters of a fuzzy

system and adapt the membership distribution to optimize the performance of a

fuzzy system (Sanchez et al. 1997; de la Rosa et al. 2011). An ANN can be trained

with fuzzy membership distributions that have been optimized by an evolutionary

computation technique. Moreover, evolutionary computation may be used to deter-

mine the best set of training data in an ANN-fuzzy system (Azar 2010). Chapter 2 of

this book provides a more extensive overview of computational intelligence appli-

cations in earth and environmental sciences. Other chapters in this book offer more

technical discussions on some computational intelligence techniques including

those that were not reviewed in this chapter.

Computational intelligence is a collection of computational models and tools,

whose classification, clusterization, optimization, prediction, reasoning, and

approximation capabilities have been improved incrementally and continuously.

There are already many computational intelligence techniques or combinations of

the techniques. It is always possible to find alternative techniques to address a

specific earth and environmental problem. However, domain-specific knowledge

underlying the physical, chemical, or biological processes in an earth or environ-

mental system under investigation should be incorporated into the problem for-

mulation, selection of appropriate computational intelligence techniques, and

evaluation of modeling results. There is also a need to incorporate computational

intelligence techniques into existing modeling framework so that they can be

widely accepted in the communities who are traditionally accustomed to process

models. Computational intelligence provides practical tools for earth and environ-

mental scientists to handle heterogeneous, incomplete, and noise data and to build

models of uncertainty trained on the historical, current, and predicted data. We will

see more advances in computational intelligence techniques and more innovative

use of these techniques in earth and environmental applications in the future.
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Özçelik R, Diamantopoulou MJ, Crecente-Campo F, Eler U (2013) Estimating Crimean juniper

tree height using nonlinear regression and artificial neural network models. For Ecol Manage

306:52–60
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Chapter 2

Vector Autoregression (VAR) Modeling

and Forecasting of Temperature, Humidity,

and Cloud Coverage

Md. Abu Shahin, Md. Ayub Ali, and A.B.M. Shawkat Ali

Abstract Climate change is a global phenomenonbut its implications are distinctively

local. The climatic variables include temperature, rainfall, humidity, wind speed,

cloud coverage, and bright sunshine. The study of behavior of the climatic vari-

ables is very important for understanding the future changes among the climatic

variables and implementing important policies. The problem is how to study the

past, present, and future behaviors of the climatic variables. The purpose of the

present study was to develop an appropriate vector autoregression (VAR) model for

forecasting monthly temperature, humidity, and cloud coverage of Rajshahi district

in Bangladesh. The test for stationarity of the time series variables has been

confirmed with augmented Dickey–Fuller, Phillips–Perron, and Kwiatkowski–

Phillips–Schmidt–Shin tests. The endogenity among the variables was examined

by F-statistic proposed by C.W.J. Granger. The order of the VAR model was

selected using Akaike information criterion, Schwarz information criteria, Hannan–

Quinn information criteria, final prediction error, and likelihood ratio test. The

ordinary least square method was used to estimate the parameters of the model.

The VAR(8) model was found to be the best. Structural analyses were performed

using forecast error variance decomposition and impulse response function. These

structural analyses divulged that the temperature, humidity, and cloud coverage

would be interrelated and endogenous in future. Finally, temperature, humidity, and

cloud coverage were forecasted from January 2011 to December 2016 using the best

selected model VAR(8). The forecasted values showed an upward trend in temper-

ature and humidity and downward trend in cloud coverage. Therefore, wemust show

our friendly behavior to the environment to control such trends.
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2.1 Introduction

Bangladesh is a developing country and likely to be one of the worst victims of the

climate change. Two-third of the country stands less than 5 m above sea level, and a

quarter of the country is flooded every year on average. Cyclones, floods, and

droughts often pay a visit to this country, badly affecting a large number of people,

especially those who live in rural areas. So, the learning of climatic variables is

necessary. The time series analysis of climatic variables is a way to learn whether

the climate change takes place or not. There are many climatic variables, but in this

study, three variables, such as monthly temperature, humidity, and cloud coverage,

have been considered to investigate their relationship and climate conditions. Time

series modeling and forecasting help us to understand the long-term weather

pattern. This study is very important because climatic change is now a problem

of whole world. To make a solution of this problem, we have to find out its pattern

first. Vector autoregression (VAR) model can play a vital role in sketching out this

pattern. This method is capable of producing forecasts of interrelated variables,

examining the effects of interrelated time series variable’s shocks, and analyzing

the dynamic impact of random disturbances. Many researchers have studied the

climatic variables. Ferdous and Baten (2011) used least square method for analyz-

ing trend of climatic data (temperature, rainfall, relative humidity, and sunshine) of

Rajshahi and Rangpur Division to observe the climate variability. Shamsnia

et al. (2011) used stochastic methods (autoregressive integrated moving average

[ARIMA] model) for modeling of weather parameters, such as precipitation,

temperature, and relative humidity. Kleiber et al. (2013) developed a bivariate

stochastic model was applied to a daily temperature (minimum and maximum)

data set covering the complex terrain of Colorado, USA, for studying climate

impact and successfully quarters considerable temporally varying non-stationarity

in both the direct-covariance and cross-covariance functions. But they didn’t study

the climate variability among temperature, humidity and cloud coverage for the

response of one climatic variable on the other variable. The variability study among

the climatic variables is essential. VAR offers such analysis. A VAR analysis is

widely used in several disciplines. Khan and Hossain (2010) used VAR model for

democracy and trade balance. Altaf et al. (2012) used the VAR model for macro-

economic variables of Pakistan’s economic growth. Moneta et al. (2011) used

structural VAR models for causal search. Awokuse and Bessler (2003) used VAR

model to the US economy. Stergiou et al. (1997) analyzed monthly fisheries catches

using seven forecasting techniques including regression and univariate and multi-

variate time series methods and finally mentioned that the univariate ARIMA and

multivariate dynamic regression (MDREG) and VAR time series models all

predicted persistence of catches. Durban and Glasbey (2001) used the vector

autoregressive moving average (VARMA) process as a model for daily weather
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data and selected a vector second-order autoregressive first-order moving average

process, which fits the data better and produces more realistic simulated series than

existing models. Mosedale et al. (2006) used bivariate VAR time series models to

fit daily winter time sea surface temperatures and North Atlantic Oscillation time

series produced by a 50-year simulation of the Third Hadley Centre Coupled

Ocean–Atmosphere GCM (HadCM3). Wang and Niu (2009) used the VAR

model for wind speeds, temperatures, soil temperatures, and dew points for Los

Angeles Long Beach area. Janjua et al. (2010) used the VAR model to investigate

the impact of climate change on wheat production in Pakistan and concluded that

there is no significant negative impact of climate change on wheat production in

Pakistan. Liu et al. (2011) used the VARmodel for examining how climate problem

indicates high-profile international event, and climate science feedback influence

media and congressional attention to global warming and climate change.

Adenomon et al. (2013) used VAR model for analyzing dynamic relationship

between time series rainfall and temperature data in Niger state, Nigeria, and

found that there exists bidirectional causation between them. So, it is needed to

analyze all the interrelated variables for a better forecast on climatic data. Thus, the

purpose of the present study is to develop an appropriate VAR model for a better

forecasting on climatic data such as monthly temperature, humidity, and cloud

coverage of Rajshahi district in Bangladesh.

2.2 Materials and Methods

2.2.1 Data

Temperature is a physical property of matter that quantitatively expresses the

common notions of hot and cold. Objects of low temperature are cold, while various

degrees of higher temperatures are referred to as warm or hot. Humidity is a term

for the amount of water vapor in the air. The relative humidity is a measure of the

amount of water in air relative to the total amount of water the air can absorb,

expressed as a percentage. A small part of the sky obscured by clouds, when

observed from a particular location, is referred to as cloud coverage. In this

study, we have used relative humidity and defined it as humidity. The measurement

units of these variables are Celsius, percent, and octas. The monthly data of the

climatic variables—temperature, humidity, and cloud coverage—of Rajshahi dis-

trict for the period of January 1979 to December 2010 (i.e., 32 years) are used in this

study and data are collected from Bangladesh Agricultural Research Council

(BARC). Here the sample size (N ) is 384. The data was compiled and no value

for either of the variables was found to be missing.

After collecting the data we have compiled, tabulated, and analyzed them

according to the objectives of the study. The data were put into MS excel in order

to arrange them as time series data, and the popular software R and EViews were

used for whole statistical analysis related to the objectives.

2 Vector Autoregression (VAR) Modeling and Forecasting of Temperature. . . 31



2.2.2 Test of Stationarity

Before applying VAR model among the temperature, humidity, and cloud cover-

age, a pretest for stationarity for each of the variables is needed to know the nature

of the variables. If a time series is stationary, then its mean, variance, and

autocovariance (at various lags) remain the same over time; that is, they are time

invariant. The present study used the following three methods for testing

stationarity of the variables.

2.2.2.1 Augmented Dickey–Fuller Test

The augmented Dickey–Fuller (ADF) test (Dickey and Fuller 1979) examines the

presence of unit root (non-stationarity) in the autoregressive model. The ADF test

here consists of estimating the following regression (Eq. 2.1):

Δyt ¼ β1 þ β2tþ δyt�1 þ
Xp

j¼1

γjΔyt�j þ εt, ð2:1Þ

where yt is any time series variable, yt�1 is the one period lag value of yt, Δyt ¼ yt
� yt�1, and t is the trend variable. The symbols β1, β2, δ, and γ are the parameters,

and εt is a pure white noise error term. The fourth term on the right hand side of

Eq. 2.1 is the augmentation term. The ADF test is based on the following hypoth-

esis: H0 : δ ¼ 0 (non-stationary) against the alternative hypothesis that H1 : δ < 0

(stationary). The null hypothesis is rejected if the ADF test statistic (tau statistic) is

less than its critical value.

2.2.2.2 Phillips–Perron Test

Phillips and Perron (1988) propose a nonparametric statistical method to take

care of the serial correlation without augmented term of the ADF equation

(Eq. 2.1). In this test, the series is assumed to be non-stationary under null

hypothesis. For the Phillips–Perron (PP) test, firstly δ is estimated from the

non-augmented Dickey–Fuller (1979) equation (Eq. 2.2) as

Δyt ¼ αþ βtþ δyt�1 þ εt ð2:2Þ

and modifies the tδ ¼ δ̂ =se δ̂
� �

of the δ coefficient so that serial correlation does not
affect the asymptotic distribution of the test statistics. The PP test is based on the

statistic:
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tδ,PP ¼ tδ
γ0
f 0

� �1=2

� N f 0 � γ0ð Þ se δ̂
� �� �

2f
1=2
0 s

, ð2:3Þ

where δ̂ is the estimated value of δ, tδ is the t-ratio of δ, se δ̂
� �

is coefficient standard

error, and s is the standard error of the test regression. In addition, γ0 is a consistent
estimate of the error variance in non-augmented Dickey–Fuller (DF) equation

(Eq. 2.2) and calculated as (N � K )s2/N, where K is the number of regressors.

The remaining term, f0, is an estimator of the residual spectrum at frequency zero.

2.2.2.3 Kwiatkowski–Phillips–Schmidt–Shin Test

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) (1992) test differs from the other

tests. In this test, the series is assumed to be stationary under null hypothesis. The

KPSS statistic is based on the residuals from the ordinary least square (OLS)

regression of yt on the exogenous variables of lagged yt. For one exogenous variable
using one lagged value of yt, the regression model can be written as follows:

yt ¼ δyt�1 þ ut: ð2:4Þ

The LM statistic is being defined as:

LM ¼
X

S tð Þ2= N2f 0
� �

, ð2:5Þ

where f0 is an estimator of the residual spectrum at frequency zero andS tð Þ ¼
Xt

r¼1

û r

is a cumulative residual function based on the residuals û r (Eq. 2.4). It is pointed out

that the estimator of δ used in this calculation differs from the estimator for δ used by
GLS detrending since it is based on regression involving the original data, and not on

the quasi-differenced data. To specify the KPSS test, we must specify the set of

exogenous regressors of lagged yt and a method for estimating f0. The reported

critical values for LM test statistic (Eq. 2.5) are based upon the asymptotic results

presented by KPSS and the whole procedure is known as KPSS test.

2.2.3 Vector Autoregression Model

VAR models are well documented through many textbooks and scientific articles

(Hamilton 1994; Johansen 1995; Hatanaka 1996; Lütkepohl and Krätzig 2004;

Lütkepohl 2005; Litterman 1986; Canova 1995; Sun and Ni 2004; Ni and Sun

2005; Liu and Theodoridis 2012; and so on). A VARmodel can be built through the

following steps (Fig. 2.1).
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2.2.3.1 Selection of Variables Under Study

In simultaneous equation model, some variables are treated as endogenous and

some as exogenous. According to Sims (1980) all the variables in a VAR system are

endogenous variables. The concept of building a VARmodel is that all the variables

under study are endogenous and usually no one is exogenous (Gujarati 1993).

Logically, our study variables: temperature, humidity, and cloud coverage, are

endogenous in nature. The endogenity of the variables can be tested using Granger

causality detection process that was proposed by Granger (1969), and later on, it

was popularized by Sims (1972). The variables having endogenous property are

finally selected for the VAR analysis.

Fig. 2.1 Flow chart of

vector autoregression

(VAR) modeling strategy
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2.2.3.2 Making a Model of Order p (Arbitrary)

Let us denote the temperature, humidity, and cloud coverage by Tt, Ht, and

Ct; t ¼ 1, 2, . . ., N (sample size ¼ N ), respectively. The three-variable VAR

model of arbitrary order p can be denoted by VAR( p) and written as:

Tt ¼ c1 þ a111Tt�1 þ � � � þ a11pTt�p þ a211Ht�1 þ � � � þ a21pHt�p þ a311Ct�1

þ � � � þ a31pCt�p þ ε1t, ð2:6Þ

Ht ¼ c2 þ a121Tt�1 þ � � � þ a12pTt�p þ a221Ht�1 þ � � � þ a22pHt�p þ a321Ct�1

þ � � � þ a32pCt�p þ ε2t, ð2:7Þ

Ct ¼ c3 þ a131Tt�1 þ � � � þ a13pTt�p þ a231Ht�1 þ � � � þ a23pHt�p þ a331Ct�1

þ � � � þ a33pCt�p þ ε3t: ð2:8Þ

In matrix notation, we can write

Tt

Ht

Ct

0

@

1

A ¼
c1
c2
c3

0

@

1

Aþ
a111 a211 a311
a121 a221 a321
a131 a231 a331

0

@

1

A
Tt�1

Ht�1

Ct�1

0

@

1

Aþ � � �

þ
a11p a21p a31p
a12p a22p a32p
a13p a23p a33p

0

B@

1

CA
Tt�p

Ht�p

Ct�p

0

@

1

Aþ
ε1t
ε2t
ε3t

0

@

1

A: ð2:9Þ

Therefore, the reduced form of VAR process of order p can be written as follows

yt ¼ cþ A1yt�1 þ A2yt�2 þ � � � þ Apyt�p þ εt, t ¼ 1, 2, . . . ,N, ð2:10Þ

where yt is 3 � 1 vector, c is a 3 � 1 vector of constants (intercept), Ai is a 3 � 3

matrix (for every i ¼ 1, 2, . . ., p), and εt is a 3 � 1 vector of error terms and

assumed εt ~ NID(0, Ω).

2.2.3.3 Determining the Value of Order p

In VAR model, we need to have the number of appropriate lags to fit the model but

there is no formal unique guidance for choosing this. To determine the lag length in

VAR model, the Akaike information criterion (AIC) (Akaike 1974) (Eq. 2.11),

Schwarz information criteria (SC) (1978) (Eq. 2.12), Hannan–Quinn information

criteria (HQ) (1979) (Eq. 2.13), final prediction error (FPE) (Akaike 1969)

(Eq. 2.14), and likelihood ratio statistic (LRT) (Lütkepohl 1991) (Eq. 2.15) are

used. Based on the same sample size, N, the above information criteria are
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AIC pð Þ ¼ log
��Ω̂ pð Þ��þ 2m p2 þ 1ð Þ

N
, ð2:11Þ

SC pð Þ ¼ log
��Ω̂ pð Þ��þ log Nð Þm p2 þ 1ð Þ

N
, ð2:12Þ

HQ pð Þ ¼ log
��Ω̂ pð Þ��þ 2log log Nð Þð Þm p2 þ 1ð Þ

N
, ð2:13Þ

FPE pð Þ ¼ N þ mpþ 1

N � mp� 1

� �m��Ω̂ pð Þ�� ð2:14Þ

with Ω̂ pð Þ ¼ N�1
XN

t¼1

ε̂ tε̂
0
t and m( p2 + 1) is the total number of the parameters in

each equation, m is the number of equation or variables in VAR model, and

p assigns the lag order. The likelihood ratio test statistic is defined as:

λN ¼ �2 L θ̂
� �� L θ̂ 0

� �� �
: ð2:15Þ

Under the null hypothesis, λN asymptotically has a χ2 distribution with

degrees of freedom equal to the number of restrictions imposed under null hypoth-

esis (H0).

2.2.3.4 Estimating Parameters

The likelihood function is defined as the joint density function of random variables

but considered as a function of parameters. For Eq. 2.10, the sample log likelihood

function (Eq. 2.16) can be written as:

L Ω;Πð Þ ¼ �Nn

2
log 2πð Þ þ N

2
log

��Ω�1
��

� 1

2

XN

t¼1

yt � Π
0
xt

	 
0

Ω�1 yt � Π
0
xt

	 

, ð2:16Þ

where Π0 ¼ [c A1 A2 � � � Ap] and xt ¼ [1 yt�1 yt�2 � � � yp]
0.

Using the maximum likelihood method, we get the estimated value of Π and Ω

as Π̂
0 ¼

XN

t¼1

ytx
0
t

" #
XN

t¼1

xtx
0
t

" #�1

and Ω̂ ¼ N�1
XN

t¼1

ε̂ tε̂
0
t, respectively, which are the

same as the least squared estimator of the parameters of VAR( p) model.
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2.2.3.5 Diagnostic Checking

For diagnostic checking of selected VAR( p) model, it is used unit root test for

checking stationarity, the normal Q–Q plot for normality of the residual, and

Durbin–Watson d test (1951) for autocorrelation. The outliers of the fitted models

were checked using standardized residuals plot.

2.2.3.6 Cross Validity of the Fitted VAR Models

Cross validity predictive power (Stevens 1996, p. 100) is used for testing the validity

and stability of the fitted VAR models. The fitted equations with high value of cross

validity predicted power are assumed a better representation of the population. The

cross validity predictive power (Eq. 2.17), denoted by ρ2cv, is defined as:

ρ2cv ¼ 1� N � 1ð Þ N � 2ð Þ N þ 1ð Þ
N N � k � 1ð Þ N � k � 2ð Þ 1� R2

� �
, ð2:17Þ

where N is the sample size, k is the number of predictors in the regression equation,

and the cross-validated R is the correlation coefficient between observed and

predicted values of the dependent variable. Using the above statistic, it can be

concluded that if the prediction equation is applied to many other samples from the

same population, then (ρ2cv � 100 ) % of the variance on the predicted variable

would be explained by the regression equation (Stevens 1996, p. 100).

2.2.3.7 Forecasting

Forecasting is the prediction of values of a variable based on its known past values.

In VAR model, this forecasting also depends on the lag values of other endogenous

variables. Since reduced forms of the VAR models represent the conditional mean

of a stochastic process, they lend themselves in forecasting. The 1-period-ahead

forecasts are constructed as follows:

ŷ tþ1 ¼ Â 1yt þ Â 2yt�1 þ � � � þ Â pyt�pþ1 ð2:18Þ

and recursively we can find the forecast values of ŷ tþ2, ŷ tþ3, . . . , ŷ tþh, . . ..

2.2.3.8 Forecast Error Variance Decomposition

The forecast error variance (FEV) decomposition is the part of structural analysis

which is a tool for investigating the impact of shocks in VARmodels. Forecast error

can be obtained from the variance decomposition of each VAR model. The hth step
forecast error and its variance can be computed, respectively, as:
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ytþh � E ytþh

� � ¼ Ψ 0εtþh þ Ψ 1εtþh�1 þ � � � þ Ψ h�1εtþ1 ð2:19Þ

and

vart ytþh

� � ¼ Ψ 0Ψ
0
0 þ Ψ 1Ψ

0
1 þ � � � þ Ψ h�1Ψ

0
h�1: ð2:20Þ

Then, wh,r ¼
Xh�1

j¼1

Ψ jINΨ
0
j is the variance of h step ahead forecast errors due to the

Nth shock and the variance is the sum of these components, e.g., vart(yt + h) ¼
X

N

wh,r.

2.2.3.9 Impulse Response Function

Impulse response function (IRF) is another part of structural analysis. The stochas-

tic error terms are called impulses or innovations in the language of VAR. Impulse

responses trace out the response of current and future values of each of the variables

to a one-unit increase in the current value of one of the VAR errors, assuming that

this error returns to zero in subsequent periods and that all other errors are equal

to zero.

Any covariance stationary VAR( p) process has a Wold representation (vector

MA(1) process) of the form as

yt ¼ μþ εt þ Ψ 1εt�1 þ Ψ 2εt�2 þ Ψ 3εt�3 þ � � �:

Thus the matrix Ψ s has the interpretation

∂ytþs

∂ε0
t

¼ Ψ s

That is, the row i, column j element ofΨ s identifies the consequences of a one-unit

increase in the jth variable’s innovation at date t (εjt) for the value of the ith variable at
time t + s(yi,t+s) holding all other innovations at all dates constant. A plot of the row i,
column j element of Ψ s as a function of s is called the impulse response function.

2.3 Results and Discussion

2.3.1 Descriptive Statistics

Descriptive statistics, e.g., mean, minimum, maximum, range, standard deviation,

skewness, and kurtosis, for the climatic variables temperature, humidity, and

cloud coverage are calculated and shown in Table 2.1. The software EViews

38 M.A. Shahin et al.



and R were used. The cloud coverage is more concentrated followed by the temper-

ature and humidity. The distribution of temperature and humidity is negatively

skewed but cloud coverage is positively skewed. Again the curve of the distribution

of humidity is leptokurtic but temperature and cloud coverage are platykurtic.

2.3.2 Tests for Stationarity

The test for stationary has been done by the test statistics: ADF, PP, KPSS are listed

in Table 2.2. From this table, it is clear that the ADF, PP, and KPSS tests show that

temperature, humidity, and cloud coverage are stationary at level except humidity

in KPSS test only.

2.3.3 Selection of Variables Under Study

The Granger causality test was applied for testing endogenity (dependency) of the

variables temperature (T ), humidity (H ), and cloud coverage (C), and the results are
shown in Table 2.3. From this table, it is found that the causality with lag length

2, 3, 4, and 5 is the same type but lag length 1 is different. Table 2.3 also shows the

unidirectional causality in humidity to temperature, temperature to humidity, tem-

perature to cloud coverage, cloud coverage to humidity, and humidity to cloud

coverage but there is no unidirectional causality in temperature to cloud coverage at

lag 1. Since the direction of causality varied with lag length we will choose the lag

length for which SC is minimum. Regressing temperature on lagged itself and cloud

Table 2.1 Descriptive statistics of temperature, humidity, and cloud coverage

Variable Mean Minimum Maximum Range

Standard

deviation Skewness Kurtosis

Temperature 31.116 21.300 39.200 17.900 3.603 �0.563 2.623

Humidity 77.909 44.900 90.300 45.400 8.952 �0.983 3.610

Cloud overage 3.265 0.200 6.900 6.700 2.030 0.210 1.554

Table 2.2 Unit root test for the time series data of temperature, humidity, and cloud coverage

Variable ADF PP KPSS

Temperature �3.747*** �6.768*** 0.202*

Humidity �3.052** �6.393*** 1.338

Cloud coverage �3.265** �4.576*** 0.485***

Note: The asterisks ***, **, and * represent the statistical significance at 1 %, 5 %, and 10 %

levels, respectively
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coverage with lag 1–5, the values of SC are found and shown in Table 2.4. The

value of SC is minimum at lag 4, implying unidirectional causality in cloud

coverage to temperature. For example, if X is granger causes to Y and Y is granger

causes to X then it is called bidirectional causality between X and Y. Therefore, the
Granger causality test suggests that there exists bidirectional causality between the

variables temperature, humidity, and cloud coverage. This direction of causality is

diagrammatically shown in Fig. 2.2. Figure 2.2 shows that the variables are

interrelated and endogenous in nature that is in favor of the VAR application.

Table 2.3 The F-statistic for the pairwise Granger causality test among temperature, humidity,

and cloud coverage

Null hypothesis

Lag

1 2 3 4 5

H 6! T 40.950*** 46.144*** 80.806*** 68.207*** 57.828***

T 6! H 233.820*** 138.184*** 93.734*** 69.284*** 59.395***

C 6! T 0.017 104.326*** 141.845*** 120.729*** 94.346***

T 6! C 93.735*** 53.109*** 43.668*** 28.603*** 23.691***

C 6! H 113.873*** 46.923*** 42.874*** 27.388*** 26.458***

H 6! C 113.476*** 37.452*** 22.842*** 11.628*** 11.452***

Note: The symbol 6! indicates “does not granger cause”. The asterisk *** represent the statistical

significance at 1 % level

Table 2.4 Schwarz information criteria (SC) for different lag lengths in regression

Regression

SC for the lags

1 2 3 4 5

Temperature on lagged itself and cloud coverage 4.769 3.852 3.553 3.509* 3.517

Note: * indicates lag order selected by the criterion

Fig. 2.2 Diagram for the

direction of causality
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2.3.4 Selection of Order (p)

To build a VAR model, at first we need to select the order (lag length) of VAR

model. This order can be determined through the procedures: (1) Likelihood ratio

test statistics (LRT), (2) Final prediction error (FPE), (3) Akaike information

criteria (AIC), (4) Schwarz information criteria (SC) and (5) Hannan-Quinn infor-

mation criteria (HQ) or (1) LRT, (2) FPE, (3) AIC, (4) SC and (5) HQ. The results

are shown in Table 2.5. From this table, the LRT statistics, FPE, and AIC indicate

that the appropriate lag order of VAR is 8 but that of SC and HQ is 7. Ivanov

and Kilian (2001) suggest that in the context of VAR models AIC tends to be

more accurate with monthly data. Also, almost all of the selection criteria suggest

that the appropriate lag order is 8. Therefore, the order of VAR model in this study

is chosen as 8.

2.3.5 Estimation of Parameters

Applying OLS method, the parameters of the best selected VAR(8) model are

estimated and the results are shown in Table 2.6. From this table, the first column,

second column, third column, and forth column (except first and last rows) repre-

sent the predictor variables and estimated parameters of Eqs. 2.6, 2.7, and 2.8,

respectively. The first and last rows represent the response variables and the

coefficient of determination (R2) for Eqs. 2.6, 2.7, and 2.8, respectively. The

significance coefficient of estimated model is defined by asterisks. The R2 of

VAR(8) models are 0.884, 0.826, and 0.891 with respect to temperature, humidity,

and cloud coverage, respectively; means fit the data as well. The actual and fitted

values of VAR(8) model in place of temperature, humidity, and cloud coverage are

shown in Figs. 2.3, 2.4, and 2.5, respectively. The actual and fitted values are

presented by solid and dot line, respectively.

Table 2.5 Various selection criteria for detecting lag order of VAR model

Lag Log L LRT FPE AIC SC HQ

0 �2866.897 NA 855.579 15.265 15.297 15.278

1 �2288.221 1145.040 41.330 12.235 12.361 12.285

2 �2124.355 321.631 18.135 11.411 11.631 11.499

3 �2009.098 224.382 10.305 10.846 11.160 10.971

4 �1961.723 91.475 8.403 10.642 11.050 10.804

5 �1938.443 44.578 7.789 10.566 11.068 10.765

6 �1910.218 53.599 7.033 10.464 11.060 10.700

7 �1864.722 85.666 5.793 10.270 10.960* 10.544*

8 �1848.726 29.865* 5.582* 10.233* 11.016 10.544

Note: * indicates lag order selected by the criterion
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Table 2.6 The estimated coefficients of VAR(8) model for Eq. 2.10

Variable Tt Ht Ct

Constant ĉ1 ¼ 41:697��� ĉ2 ¼ �25:2660 ĉ3 ¼ 2:5155

Tt�1 â111 ¼ 0:5330��� â121 ¼ 0:2428 â131 ¼ 0:0424

Tt�2 â112 ¼ �0:1471�� â122 ¼ 0:6570��� â132 ¼ 0:0030

Tt�3 â113 ¼ �0:348��� â123 ¼ 0:6737��� â133 ¼ 0:0559

Tt�4 â114 ¼ �0:1624�� â124 ¼ 0:0425 â134 ¼ �0:0058

Tt�5 â115 ¼ 0:1217� â125 ¼ �0:5067�� â135 ¼ �0:0327

Tt�6 â116 ¼ 0:0252 â126 ¼ �0:0271 â136 ¼ �0:0841��

Tt�7 â117 ¼ �0:1245� â127 ¼ 0:0073 â137 ¼ �0:06946�

Tt�8 â118 ¼ �0:0766 â128 ¼ 0:1336 â138 ¼ �0:0730��

Ht�1 â211 ¼ �0:0261 â221 ¼ 0:5653��� â231 ¼ 0:0166

Ht�2 â212 ¼ 0:05420� â222 ¼ �0:0572 â232 ¼ 0:0047

Ht�3 â211 ¼ �0:0943��� â223 ¼ 0:2426��� â233 ¼ 0:0132

Ht�4 â214 ¼ 0:0205 â224 ¼ �0:0218 â234 ¼ 0:0056

Ht�5 â215 ¼ 0:0001 â225 ¼ �0:0278 â235 ¼ 0:03216��

Ht�6 â216 ¼ 0:0322 â226 ¼ �0:1764�� â236 ¼ �0:0314��

Ht�7 â217 ¼ �0:0936��� â227 ¼ 0:2638��� â237 ¼ 0:0507���

Ht�8 â218 ¼ 0:0349 â228 ¼ 0:0746 â238 ¼ 0:0040

Ct�1 â311 ¼ 0:4308��� â321 ¼ �0:0710 â331 ¼ 0:2107���

Ct�2 â312 ¼ 0:3494��� â322 ¼ �0:4873 â332 ¼ �0:0610

Ct�3 â313 ¼ �0:2395� â323 ¼ 0:4095 â333 ¼ 0:0249

Ct�4 â314 ¼ �0:469��� â324 ¼ 0:2142 â334 ¼ �0:12357�

Ct�5 â315 ¼ �0:0310 â325 ¼ �0:4658 â335 ¼ �0:2199���

Ct�6 â316 ¼ �0:0072 â326 ¼ 0:4688 â336 ¼ �0:0481

Ct�7 â317 ¼ 0:2565�� â327 ¼ �0:7400�� â337 ¼ �0:1928���

Ct�8 â318 ¼ �0:1043 â328 ¼ 0:0380 â338 ¼ �0:0788

R2
R2
1 ¼ 0.8841 R2

2 ¼ 0.8259 R2
3 ¼ 0.8908

Note: The asterisks ***, **, and * represent the statistical significance at 1 %, 5 %, and 10 %

levels, respectively

Fig. 2.3 Actual and fitted plot for temperature of VAR(8) model
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2.3.6 Diagnostic Checking

The diagnostic checking on residual of the selected VAR(8) model is confirmed

using the Q–Q plot for normality, ADF test for unit root, and DW test for autocor-

relation. From the results shown in Table 2.7, it is clear that all residuals series are

stationary. The problem of serial correlation really fades away. The Q–Q plot

(Fig. 2.6) of the residuals series for temperature, humidity, and cloud coverage is

approximately normally distributed. Also, the histograms of the residuals series for

all the variables (Figs. 2.7, 2.8, and 2.9) are roughly normally distributed.

To detect the outliers, the standardized residuals plot against the time is consid-

ered. We know that 68-95-99 rule for perfect normal frequency distribution is that

68.26 % of the samples fall between [mean � 1 standard deviation], 95.44 % of the

samples fall between [mean � 2 standard deviation], and 99.73 % of the samples

fall between [mean � 3 standard deviation]. In case of a standard normal distribu-

tion the mean is zero and variance is one. Then we investigated whether they are

between 3.0 or 3.5 and 4.0 (Pankratz 1991, p. 208) with their absolute values. We

take the value 3.0 and the residuals are outlying 3.0 with their absolute values as an

indication of outliers.

From the graphical representation (Fig. 2.10) we observe that there are five

residuals for the series temperature falls outside 3.0 with its absolute value as

Fig. 2.4 Actual and fitted plot for humidity of VAR(8) model

Fig. 2.5 Actual and fitted plot for cloud coverage of VAR(8) model
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considered outliers. The values of five residuals are January 1998 ¼ �3.118,

February 1999 ¼ 3.577, January 2003 ¼ �3.106, June 2005 ¼ 3.104, and Febru-

ary 2006 ¼ 3.327.

Similarly, from Fig. 2.11, we observe that there are three residuals for the series

humidity speed falls outside 3.0 with its absolute value. The values of three

residuals are March 1986 ¼ �3.648, March 1992 ¼ �3.161, and April

2010 ¼ 3.345.

Table 2.7 Augmented Dickey–Fuller (ADF) and Durbin–Watson (DF) tests for residuals series of

VAR(8) model

Series of

residuals

ADF-value

(probability)

5 % critical

value Comment DW-value Comment

Temperature �20.197 (0.000) �2.869 Stationary 1.999 No autocorrelation

Humidity �19.335 (0.000) �2.869 Stationary 2.000 No autocorrelation

Cloud coverage �19.037 (0.000) �2.869 Stationary 2.000 No autocorrelation

Fig. 2.6 Normal Q–Q plot for the residuals of VAR(8) model

Fig. 2.7 Histogram of the

residuals for temperature of

VAR(8) model
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Fig. 2.8 Histogram of the

residuals for humidity of

VAR(8) model

Fig. 2.9 Histogram of the

residuals for cloud coverage

of VAR(8) model

Fig. 2.10 Standardized residuals plot for temperature of VAR(8) model

Fig. 2.11 Standardized residuals plot for humidity of VAR(8) model
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From Fig. 2.12, we observe that there are two residuals for the series cloud

coverage falls outside 3.0 with its absolute value. The values of two residuals are

October 1981 ¼ �3.138 and May 1982 ¼ �3.773.

2.3.7 Cross Validity of the Fitted VAR Models

The computed cross validity predicted power (Eq. 2.17) of the estimated equations

(Eqs. 2.6, 2.7, and 2.8) for temperature, humidity, and cloud coverage was 0.868,

0.801, and 0.876, respectively. The cross validity predicted power was higher for

the equation of cloud coverage (Eq. 2.8) than that of temperature (Eq. 2.6) and

humidity (Eq. 2.7). Hence, all the fitted VAR models are highly cross-validated.

More than 80 % endogenity of the climatic variables temperature, humidity, and

cloud coverage were explained by the predicted VAR models, implying some other

climatic variables should be needed to include in the models.

2.3.8 Forecast Error Variance Decomposition

To examine the short-run dynamic interactions between the variables, FEV is used.

Here the period is month because the data is monthly spaced. The computed

decomposition of FEV with the forecast horizons 1, 6, 12, and 18 months is

presented in Table 2.8. The decomposition divides the forecast variance into

different parts explained by their own innovations.

From Table 2.8, the response of temperature on itself, humidity, and cloud

coverage is observed. The temperature seemed to be less exogenous in the system

that explained more than 65 % of its FEV after 1 year (12 periods). The humidity

and cloud coverage were accounted for more than 9 % and 19 % of the variation in

temperature, respectively. The humidity to itself explained more than 55 % FEV

after 1 year. More than 30 % and 11 % FEV were, respectively, explained in

temperature and cloud coverage for the variation in humidity. More than 55 %

Fig. 2.12 Standardized residuals plot for cloud coverage of VAR(8) model
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FEV for cloud coverage were explained after 1 year by cloud coverage itself. Also,

more than 20 % FEV were explained by temperature and humidity in the variation

of cloud coverage. Therefore, the climatic variables are interrelated to each other.

2.3.9 Impulse Response Function

Using Monte Carlo simulation with 10,000 repetitions, the IRF with its standard

error was estimated and shown in Fig. 2.13. The response in each variable is

expressed to 1 SD innovation. The temporary response from temperature to humid-

ity showed a significant effect at 5 % level with its fourth month, implying after

4 months the temperature decreased 0.065 % in response for the 0.076 % increasing

shock in humidity. Also, the cloud coverage showed significant effect on temper-

ature at 5 % level and the temperature will be increased by 0.075 % for the 0.071 %

increasing shock in cloud coverage after fourth month.

At 5 % level of significance, humidity will be increased by 0.737 % for the

0.227 % increasing shock in temperature after third month. But, after seventh

month, humidity will be increased by 0.035 % for the 0.202 % increasing shock

in cloud coverage.

After fifth month the cloud coverage will be decreased by 0.045 % for the

0.038 % increasing shock in temperature. Cloud coverage will be decreased by

0.063 % after sixth month for the 0.036 % increasing shock in humidity.

2.3.10 Forecasting Using VAR(8) Model

Time series analysis is very important for predicting or forecasting. The forecast of

the climatic variables temperature, humidity, and cloud coverage from January

Table 2.8 Forecast error variance decomposition for VAR(8) model

FEV in Period (month) Standard error (SE) Temperature Humidity Cloud coverage

Temperature 01 1.268 100.00 00.000 00.000

06 1.787 72.364 10.224 17.412

12 1.913 70.590 09.556 19.854

18 2.231 66.137 09.460 24.403

Humidity 01 3.738 32.441 67.559 00.000

06 4.987 30.806 65.968 03.227

12 5.382 30.356 58.582 11.062

18 5.726 33.119 54.869 12.012

Cloud coverage 01 0.693 13.490 23.425 63.084

06 0.743 13.263 25.890 60.847

12 0.876 22.233 20.845 56.922

18 0.948 21.664 20.726 57.609
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2011 to December 2016 with 95 % confidence intervals (CIs) was generated using

fitted VAR(8) model and shown in Fig. 2.14. The forecasted values (blue line in

Fig. 2.14) divulged slightly upward trends in temperature and humidity but down-

ward in cloud coverage.

2.4 Conclusion

The climate data analysis is very important in recent time. This study included the

analysis of temperature, humidity, and cloud coverage during January 1979 to

December 2010. These variables were stationary at level with bidirectional causality

among themselves, implying all the variables were interrelated that can be modeled

with VAR analysis. Appropriate order (i.e., lag length) of VAR model was ensured

using AIC, SC, HQ, FPE, and LRT and it was found that this order is 8.

The diagnostic check of VAR(8) model divulged that the residuals were stationary,

non-autocorrelated, and approximately normally distributed. All the fitted VAR

models are highly cross-validated. More than 80 % endogenity of the climatic

Fig. 2.13 Impulse response function (IRF) from the Cholesky decomposition for VAR(8) model.

The scale in the X-axis indicates the lag in month
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variables temperature, humidity, and cloud coverage were explained by the

predicted VAR models, implying some other climatic variables should be needed

to include in the models. The temperature explained more than 65 % of its FEV after

1 year. The humidity and cloud coverage were accounted for more than 9 % and

19 % of the variation in temperature, respectively. The humidity to itself explained

more than 55 % FEV after 1 year. For the variation in humidity, more than 30 % and

11 % FEV were explained in temperature and cloud coverage, respectively. More

than 55 % FEV for cloud coverage were explained after 1 year by cloud coverage

itself. Also, more than 20% FEVwere explained by temperature and humidity in the

variation of cloud coverage. After 4 months the temperature decreased 0.065 % in

response for the 0.076 % increasing shock in humidity. The temperature will be

increased by 0.075% for the 0.071% increasing shock in cloud coverage after fourth

month. Humidity will be increased by 0.737 % for the 0.227 % increasing shock in

temperature after third month. But, after seventh month, humidity will be increased

by 0.035% for the 0.202% increasing shock in cloud coverage. Cloud coverage will

be decreased by 0.045 % for the 0.038 % increasing shock in temperature after fifth

month and decreased by 0.063 % after sixth month for the 0.036 % increasing shock

in humidity. Finally, forecast value of VAR(8) model showed slightly upward trend

Fig. 2.14 Forecasted value of the climatic variables temperature, humidity, and cloud coverage

from the fitted VAR(8) model from January 2011 to December 2016. The blue and red colors lines
indicate forecasted value and 95 % confidence interval, respectively
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in temperature and humidity but downward trend in cloud coverage. The policy

makers should consider these results in their policy implication.
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Chapter 3

Exploring the Behavior and Changing Trends

of Rainfall and Temperature Using Statistical

Computing Techniques

Abdus Salam Azad, Md. Kamrul Hasan, M. Arif Imtiazur Rahman,

Md. Mustafizur Rahman, and Nashid Shahriar

Abstract The present study aimed at quantifying the change in surface air

temperature and monthly total rainfall. The changing trend was detected using

Mann–Kendall trend test, seasonal Mann–Kendall trend test, and Sen’s slope

estimator. K-means clustering algorithm was used to identify the rainfall distribu-

tion patterns over the years and also their changes with time. A comparative

analysis was done among different time series prediction models to find out their

suitability for forecasting daily temperature in climatic condition of Bangladesh.

The analysis was performed using daily temperature and rainfall data of more

than last 40 years (till 2009). The study found an increasing trend in maximum

temperature during June to November and in minimum temperature during

December to January in Bangladesh. There has been seen no significant change

in rainfall over the years. However on the western side of the country, the amount of

rain is significantly less than the eastern side. The study found that different

prediction models were appropriate for different conditions.

Keywords Climate change • K-means clustering algorithm • Mann–Kendall trend

test • Sen’s slope estimator • Data mining • Pattern recognition • Time series

prediction • Statistical analysis

3.1 Introduction

Bangladesh is likely to be one of the countries in the world which is most vulnerable

to climate change. In recent times natural hazards are more frequent and intense

compared to the similar kind of events occurred in one or two decades ago.
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National governments and IPCC (Intergovernmental Panel on Climate Change)

scientists accepted that these climate hazards are the result of climate change at

the global and regional level. According to the Fourth Assessment Report (AR4)

of IPCC in Climate Change 2007: Synthesis Report, during the last hundred

years the global temperature increased by 0.74 � 0.18 �C. The model results of

AR4 for Bangladesh are appropriate for global scale. But they did not use the local

data of 37 stations in Bangladesh operated by the Bangladesh Meteorological

Department (2012). Various researchers have contributed to the study of rainfall

and temperature of Bangladesh with local data.

Rana et al. (2007) attempted to construct linear relationship between monthly,

seasonal, and annual rainfall over Bangladesh with the southern oscillation index

(SOI). Ahasan et al. (2010) analyzed the variability and trends of summer monsoon

(Jun–Sep) rainfall over Bangladesh and found that the annual profile of the monthly

total country average rainfall shows a unimodal characteristic with highest in July

followed by June and August and lowest in January followed by December and

February.

Basak et al. (2013) tried to detect trends in the monthly average maximum and

minimum temperature and rainfall based on linear regression method. Long-term

changes of near surface air temperature over Bangladesh have also been studied by

Islam (2009). Various studies like Warrick et al. (1994), Karmakar and Shrestha

(2000), Nahrin et al. (1997), Chowdhury and Debsarma (1992), Mia (2003), and

Debsarma (2003) also focused on trends of change in rainfall and temperature in the

context of Bangladesh.

However, to the best of our knowledge, several effective and advanced methods

like Mann–Kendall trend test, clustering, etc. have not been utilized to investigate

the climatic conditions to a greater extent.

The Mann–Kendall trend test is a widely known method for finding trends in

time series data. Jain et al. (2013) examined trends in monthly, seasonal, annual

rainfall, and temperature for the northeast region of India. The magnitude of

trend in a time series was determined using Sen’s estimator and statistical

significance of the trend was analyzed using the Mann–Kendall trend test.

Tripathi and Govindaraju (2009) used the Mann–Kendall trend test to study

the changes in rainfall and temperature patterns over India. The method was

also used to analyze the changing trend of the nonuniformity in rainfall of the

upper Yangtze basin by Huang and Wang (2011). A number of researchers like

Xi-ting et al. (2011), Gaoliao et al. (2012), Yue and Hashino (2003), Singh

et al. (2008a, b), and Kumar and Jain (2010) also employed MK test to find

trend in climatic data.

Clustering is a process of partitioning a set of data in a set of meaningful

subclasses called clusters, which can effectively be used to analyze the distribution

pattern of rainfall. Ramos (2001) used clustering techniques including K-means

clusteringmethod to analyze the rainfall distribution patterns over the years and their

changes over time in a Mediterranean region. The study found that the variations of

the mean annual rainfall in the Alt Penedès area throughout a period of 111 years

have not followed a consistent trend. Pelczer and Cisneros-Iturbe (2008) also
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applied the K-means clustering technique to establish intensity classes to identify

rainfall patterns over the Valley of Mexico. Major circulation patterns, associated

with daily precipitation in Portugal, were classified by Corte-Real et al. (1998) based

on the K-means clustering algorithm coupled with principal component analysis.

In our study inspection was done on more than 40 years climatic data of all the

stations (37) of Bangladesh. Then five important places—Dhaka, Cox’s Bazar,

Khulna, Sylhet, and Rajshahi were analyzed with their geographic position in

consideration, as these stations give quite a clear picture of the entire country.

This study undertook the challenge of finding the trends in daily temperature

changes and monthly total rainfall on those stations using the Mann–Kendall

trend test and Sen’s slope. For finding any trend in monthly total rainfall,

seasonal Mann–Kendall trend test was also run to incorporate the seasonality.

Monthly total rainfall of these selected regions was investigated to find the distri-

bution of rainfall throughout the year. K-means clustering algorithm was used for

this purpose.

As an agricultural country short-term temperature prediction is very important

for Bangladesh. The study analyzed some of the well-known time series prediction

models for finding their applicability to local data of Bangladesh. The models that

were analyzed are autoregressive integrated moving average (ARIMA), Naive,

random walk with drift (RWD), and the Theta model.

The later sections provide the details of our study. Section 3.2 provides an

overview of the methods and materials that have been used in our study. In

Sect. 3.3 the results of our study are discussed and in Sect. 3.4 we conclude the

study with our key findings.

3.2 Materials and Methods

In this section we briefly discuss about the different methods and materials used in

our study.

3.2.1 K-Means Clustering

Clustering is a main task of explorative data mining. It assigns a set of objects

into groups (clusters) so that the objects in the same cluster are more similar.

For clustering K-means clustering algorithm (MacQueen 1967) was used. It is

an algorithm for putting N data points (x1,x2, . . ., xn) in an I-dimensional space

into K clusters. The mean of each cluster is denoted by m(k). Each vector x has

I components xi. Distances between points in real space is as follows:

d x; yð Þ ¼ 1

2

X

i

xi � yið Þ2
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The K-means m(k) is initialized to a random value. Then it follows two steps.

Assignment step: Each data point n is assigned to the nearest mean. For the cluster

k(n), the point x(n) belongs to

k̂ nð Þ ¼ argminkd m kð Þ; x nð Þ
� �

The indicator variable, r
ðnÞ
k is set to one if mean k is the closest mean to data

point x(n); otherwise, r
ðnÞ
k is zero.

r
nð Þ
k ¼ 1 if k̂ nð Þ ¼ k

0 if k̂ nð Þ 6¼ k

�

Update step: The model parameters, the means, are adjusted to match the

sample means of the data points that they are responsible for.

m kð Þ ¼

X
n
r
nð Þ
k x nð Þ

R kð Þ if R kð Þ > 0

Oldest m kð Þ if R kð Þ ¼ 0

8
>><

>>:

where R(k) is the total responsibility of mean k,

R kð Þ ¼
X

n

r
nð Þ
k

The assignment step and update step is repeated until the assignments do not

change.

3.2.2 Mann–Kendall Trend Test

The Mann–Kendall test (Mann 1945; Kendall 1975) is a nonparametric test

for identifying trends in time series data. The test compares the relative magnitudes

of sample data rather than the data values themselves (Gilbert 1987). Here

it is assumed that that there exists only one data value per time period. Let

(x1, x2, . . ., xn) represent n data points where xj represents the data point at time j.
Then the Mann–Kendall statistics (S) is given by

S ¼
Xn�1

k¼1

Xn

j¼kþ1

sign xj � xk
� �
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where

sign xj � xk
� � ¼

þ1 if xj � xk > 0

0 if xj � xk ¼ 0

�1 if xj � xk < 0

8
<

:

A very high positive value of S is an indicator of an increasing trend, and

a very low negative value indicates a decreasing trend. However, it is necessary

to compute the VAR(S), Sen’s slope associated with S and the sample size n,
to statistically quantify the significance of the trend. When n � 8, the S is approxi-

mately normally distributed with the mean. The variance of S, VAR(S), by the

following equation (Helsel and Hirsch 1992):

VAR Sð Þ ¼
n∗ n� 1ð Þ∗ 2nþ 5ð Þ �

Xm

i¼1
ti ið Þ i� 1ð Þ 2iþ 5ð Þ

18

where ti is considered as the number of ties up to sample i. VAR(S) and Sen’s

slope estimator both are used to estimate the trend in time series data. A positive

S value indicates a positive trend and a negative value indicates a negative trend

in time series data.

3.2.3 Seasonal Mann–Kendall Trend Test

Hirsch et al. (1982) developed this test that is used to find the monotonic trend in

time series data with seasonal variation. Mann–Kendall statistics S is computed

separately for each month and then summed to obtain the overall test statistic.

Mann–Kendall statistics Sk for each season k (k ¼ 1, 2, . . ., p):

Sk ¼
Xnk�1

i¼1

Xnk

j¼iþ1

sign xjk � xik
� �

where

xjk ¼ Observation from season k in year j
xik ¼ Observation from season k in year i

Then these statistics are summed to form overall statistics Sn:

Sn ¼
Xp

k¼1

Sk
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Here the overall variance of the test statistics VAR(Sn) is obtained by summing

the variances of the Kendall score statistics for each month.

Test interpretation for Mann–Kendall trend test and seasonal Mann–Kendall
trend test:

The null and alternative hypotheses for both the Mann–Kendall trend test and

seasonal Mann–Kendall trend test:

H0: There is no trend in the series

Ha: There is a positive/negative trend in the series

Here the significance level alpha (α) is 5 %. If the computed p-value is greater

than alpha, then the null hypothesis H0 cannot be rejected.

3.2.4 Sen’s Slope Estimator

In nonparametric statistics, Sen’s slope estimator (1968) is a method for robust

linear regression that chooses the median slope among all lines through pairs of

two-dimensional sample points. The magnitude of linear trend is predicted by the

Sen’s estimator. The slope (Q) of all data pair is

Q ¼ x
0
i � xi

i
0 � i

for i ¼ 1, 2, 3, . . . ,N

where

Q ¼ slope between data points Xi and X
0
i

X
0
i ¼ data measurement at time i0

Xi ¼ data measurement at time i
i0 ¼ time after time i

Sen’s estimator of slope is simply given by the median slope (Q0), shown
below as:

Q
0 ¼

Q
N þ 1

2

2

4

3

5 if N is odd

Q N þ 1½ � þ Q N þ 2½ �
2

if N is even

8
>>>>><

>>>>>:

where N is the number of calculated slopes.

Then, Q’med is computed by a two-sided test at 100 (1 � α) % confidence

interval and then a true slope can be obtained by the nonparametric test. Positive

value of Sen’s slope indicates increasing trend and a negative value indicates a

decreasing trend.
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3.2.5 Naive Model

Naive approach is the simplest but an efficient forecasting model of time series

data. If the data is stable according to this model, forecast of any periods are equal

to the actual value of previous period. When the sequence of observations begins at

time t ¼ 0, the simplest form of Naive is given by the formulae:

yt ¼ yt�1, t > 0

Naive forecast can be used as a benchmark against which other forecasting

models can be compared.

3.2.6 Autoregressive Integrated Moving Average Model

ARIMA model is a generalization of an autoregressive moving average (ARMA)

model (Box and Jenkins 1970). This model is used to predict future points in the

series. ARIMA models aim to describe the autocorrelations in the data. It combines

differencing with autoregression and moving average (MA) model.

The full model can be written as:

y
0
t ¼ cþ

Xp

i¼1

ϕiy
0
t�iþ

Xq

i¼1

θiet�i

ARIMA models are defined for stationary time series. Therefore, if the data

shows non-stationary time series, then it is needed to difference the time series

until a stationary time series is obtained.

Differencing method makes time series stationary by computing the differences

between consecutive observations. First-differenced series y
0
t can be written as:

y
0
t ¼ yt � yt�1

When the differenced series is white noise with nonzero mean, the original

series can be written as

yt � yt�1 ¼ cþ et

where c is the average of the change between consecutive observations.

et ¼ White noise
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Sometimes it is needed to difference the data second time to obtain stationary

series:

y
00
t ¼ y

0
t � y

0
t�1

¼ yt � 2yt�1 þ yt�2

The backward shift operator B shifts the data yt back to one period.

Byt ¼ yt�1 ð3:1Þ

So first difference can be written as:

y
0
t ¼ yt � yt�1 ¼ yt � Byt ¼ 1� Bð Þyt

Similarly second difference can be written as:

y
00
t ¼ y

0
t � y

0
t�1 ¼ 1� Bð Þ2yt

In general, a dth order difference can be written as:

ydt ¼ 1� Bð Þdyt

Autoregressive model (AR) is a multiple regression model that specifies that

the output variable can be computed from linear combination of its own previous

values. This model forecasts the value at time t by the weighted average of past few
observations. The notation AR( p) indicates an autoregressive model of order p. The
AR( p) model is defined as:

yt ¼ cþ
Xp

i¼1

ϕiyt�i þ et ð3:2Þ

where ϕ1, ϕ2, . . ., ϕp are the parameters of this model. Using backshift operator

B from Eq. 3.1 the AR( p) model can be written as:

yt ¼ cþ
Xp

i¼1

ϕiB
iyt�i þ et

Changing the values of ϕ1, ϕ2, . . ., ϕp results in different time series patterns.

Autoregressive model can be restricted to stationary data by putting some constraints

on the values of the parameters. This equation only gives one step ahead forecast. For

n ahead step forecast, past forecast values are used for weighted average on the right
side of the equation (Eq. 3.2). There are some problems with forecasting using the AR

model. It will not tell very much about future. Forecast will not reach the peaks of the

data, because it smoothes out the data by taking the mean of observed values.
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The moving average (MA) model is another model to forecast time series data.

While the AR model uses past values of forecast variable in regression, the MA

model uses past forecast errors. The MA(q) model can be written as:

yt ¼ cþ
Xq

i¼1

θiet�q þ et

where et ¼ white noise and θ1, θ2, . . ., θq are the parameters of the model.

Any value at time t is the weighted average of past few forecast errors. Some

constraints are needed to put on parameters for restricting the model to stationary

data. Time series pattern can be changed by changing the parameters. But changing

the value of et will just change the scale not the pattern.

ARIMA model:
ARIMA model is the combination of all these methods. First the data must be

differenced d times to obtain stationary series if needed. Then full ARIMA model

is applied on stationary data to forecast. The full model is:

y
0
t ¼ cþ

Xp

i¼1

ϕiy
0
t�iþ

Xq

i¼1

θiet�i ð3:3Þ

This is called ARIMA(p, d, q) model, where

p ¼ order of the autoregressive part

d ¼ degree of first differencing involved

q ¼ order of the moving average part

Equation 3.3 can be written using backshift notation:

1�
Xp

i¼1

ϕiB
i

 !

1� Bð Þdyt ¼ cþ 1þ
Xq

i¼1

θiB
i

 !

et

Determining the appropriate value of p, d, and q for the data is difficult. The

appropriate value of p, d, and q cannot be found from a time plot. From autocor-

relations and partial autocorrelations plot, the value of q and p can be determined.

ARIMA model selection becomes problematic with missing observations and other

data irregularities.

3.2.7 Random Walk with Drift

When a time series shows irregular pattern, it is better to try to predict the change

that occurs from one period to the next. Random walk model can be written as:

Y tð Þ ¼ Y t� 1ð Þ þ α
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where

Y(t) ¼ Predicted value at time t
Y(t � 1) ¼ Previous value

α ¼ Drift: Average change between periods

Time series value at any period will be equal to the last period’s value plus the

average change between periods. Average change between two periods is called

drift (α) which acts like a trend. This model is known as “random walk” model:

it assumes that from one period to the next, the original time series merely takes

a random step away from its last position. If the constant term (α) in the random

walk model is zero, then it is called random walk without drift. This is similar

to the Naive model.

If the series being fitted by a random walk model has an average upward

trend (α > 0) or downward trend (α < 0), then a nonzero constant (α) drift term
must be added. This drift along with previous frequency determines new forecast

(Pesaran and Pick 2009). It is known as random walk with drift.

3.2.8 Theta Model

Theta method is used for obtaining forecast from series of data. Forecasts obtained

by theta method are equivalent to simple exponential smoothing (SES) with drift.

Theta method is simply a special case of SES with drift, where the drift parameter is

half the slope of the linear trend fitted to the data. The method performed well,

particularly for monthly series and for microeconomic data. The detail of the Theta

model is described by Assimakopoulos and Nikolopoulos (2000).

3.2.9 Wilcoxon Test

The Wilcoxon signed rank test is a nonparametric method of testing whether

two populations X and Y have the same continuous distribution without assuming

them to follow the normal distribution (Wilcoxon 1945). Two data samples are

matched if they come from repeated observations of the same subject. The null and

alternative hypotheses for the Wilcoxon signed rank test are:

H0: median difference between the pairs is zero

Ha: median difference is not zero

The output of Wilcoxon signed rank test is p-value. It is used to determine

which hypothesis will be accepted. Ninety-five percent confidence level is used.

If the value is less than 0.05 significance level, null hypothesis can be rejected

which yields that two samples are not identical. Otherwise data samples follow

the same distribution.
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3.2.10 RMS Error

Root mean square (RMS) error is a measure of the average error, weighted

according to the square of the error. It is a good measure of accuracy, but only to

compare forecast errors of different models. RMSE can be defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

Fi � Oið Þ2
vuut

where

Fi ¼ the forecast values

Ot ¼ the corresponding verifying value

N ¼ the number of observation points

3.2.11 SMAPE

Symmetric mean absolute percentage error (SMAPE) is an accuracy measure based

on percentage error. For n forecast, the SMAPE can be defined as:

SMAPE ¼ 1

n

Xn

i¼1

yi � f ij j
yi þ f ið Þ=2

where

yi ¼ actual value

fi ¼ forecast value

The absolute value of yi and fi is divided by their average.

3.2.12 Materials Used During the Study

The Mann–Kendall trend test and seasonal Mann–Kendall trend test are

implemented in Java. K-means clustering algorithm is implemented using WEKA

(Hall et al. 2009). The time series prediction models are implemented using the

forecast package of R (R Core Team 2013).

The analysis was done during 2012–2013 in BUET, Bangladesh.
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3.2.13 Data Used in the Study

The daily minimum temperature, maximum temperature, and rainfall data in

the period 1947–2009 from 37 weather stations of Bangladesh were collected

from Bangladesh Meteorological Department (BMD). Daily minimum, maximum

temperature and rainfall data were cleaned by filling in missing values with mean

values of adjacent days.

With geographic position in consideration, we selected Dhaka, Rajshahi,

Khulna, Sylhet, and Cox’s Bazar stations for our study.

3.3 Results and Discussion

In this section results of different analysis are presented and investigated. In

Sects. 3.3.1 and 3.3.2 the changing trends of temperature and rainfall are inspected

by means of the Mann–Kendall trend test and Sen’s slope estimator. The distribution

of rainfall in Bangladesh is discussed in Sect. 3.3.3. In Sect. 3.3.4 a comparative study

is presented on applicability of some of the well-known time series prediction models

for providing temperature forecast.

3.3.1 Change in Temperature

Regression analysis and then the Mann–Kendall trend test were run on average

maximum and minimum monthly temperature on the selected stations. The results

show that the maximum temperature (Tmax) of the months June to November has

increased and the minimum temperature (Tmin) of winter has increased in Dhaka,

Cox’s Bazar, and Sylhet. On the contrary Tmin shows negative trend in Khulna and

Rajshahi.

The result of the Mann–Kendall trend test and Sen’s slope estimator on average

maximum and minimum temperature are shown in Tables 3.1 and 3.2, respectively.

The change in temperature per decade is shown in Fig. 3.1.

In Dhaka an increasing trend in maximum temperature is observed during

the months June to November (Table 3.1). On average the maximum temperature

has increased 0.19 �C/decade. Figure 3.1c clearly shows the increasing trend during
this time span. On the other hand the Tmin has significantly increased during

November to March (Table 3.2). A very high increase, more than 0.55 �C/decade
is observed (Fig. 3.1c).

At Cox’s Bazar positive trend is detected throughout the year. Only the month

of May has not experienced any trend for Tmin. Specially from the start of the

Monsoon (Jun–Sep) till the month of November Tmax showed a significant rise,

more than 0.29 �C/decade (Fig. 3.1d). While Tmin is increased significantly in
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winter (Dec–Feb) by 0.35 �C/decade. These changes are verified by the Mann–

Kendall statistics and Sen’s slope (Tables 3.1 and 3.2).

Also in Sylhet the temperature has seen a positive trend almost throughout the

year. During June to November, the positive trend in Tmax is about 0.29
�C/decade.

In winter Tmin has increased by about 0.31 �C/decade (Fig. 3.1e). The Mann–

Kendall statistics and Sen’s slope also suggests that.

In Rajshahi Tmax has shown a positive trend in June, July, August, and November

(Table 3.1). Tmin increased in July, August (Table 3.2). While January has shown a

negative trend both in minimum and maximum temperature. In monsoon Tmax has

shown increasing trend more than 0.2 �C/decade (Fig. 3.1a). In winter (Dec–Feb)

Tmin is found stable (Fig. 3.1a). The Mann–Kendall trend test has shown no trend.

In Khulna Tmax has shown a positive trend in June to November and negative

trend in January and March (Table 3.1). Tmax has increased about 0.16 �C/decade
(Fig. 3.1b). Only in Khulna it is found that in winter Tmin has shown negative trend.

Tmin has decreased in December to February and May (Table 3.2). A slightly

decreasing trend in Tmin, about 0.11
�C/decade, is found in winter (Fig. 3.1b).

Table 3.1 Mann–Kendall statistics (S) and Sen’s slope (SS) of maximum temperature of different

regions

Month Rajshahi Khulna Dhaka Sylhet Cox’s Bazar

January S ¼ �227 S ¼ �567 S ¼ þ221 S ¼ þ427

SS ¼ �0.02 SS ¼ �0.026 SS ¼ þ0.015 SS ¼ þ0.015

February S ¼ þ231 S ¼ þ639

SS ¼ þ0.032 SS ¼ þ0.029

March S ¼ �315 S ¼ þ679

SS ¼ �0.016 SS ¼ þ0.029

April S ¼ þ752

SS ¼ þ0.031

May S ¼ þ286 S ¼ þ680

SS ¼ þ0.026 SS ¼ þ0.027

June S ¼ þ219 S ¼ þ505 S ¼ þ625 S ¼ þ525 S ¼ þ672

SS ¼ þ0.03 SS ¼ þ0.019 SS ¼ þ0.034 SS ¼ þ0.036 SS ¼ þ0.029

July S ¼ þ398 S ¼ þ773 S ¼ þ732 S ¼ þ460 S ¼ þ724

SS ¼ þ0.03 SS ¼ þ0.022 SS ¼ þ0.024 SS ¼ þ0.033 SS ¼ þ0.28

August S ¼ þ523 S ¼ þ653 S ¼ þ836 S ¼ þ580 S ¼ þ887

SS ¼ þ0.037 SS ¼ þ0.022 SS ¼ þ0.032 SS ¼ þ0.039 SS ¼ þ0.034

September S ¼ þ330 S ¼ þ521 S ¼ þ431 S ¼ þ929

SS ¼ þ0.012 SS ¼ þ0.022 SS ¼ þ0.031 SS ¼ þ0.032

October S ¼ þ435 S ¼ þ557 S ¼ þ677 S ¼ þ955

SS ¼ þ0.014 SS ¼ þ0.028 SS ¼ þ0.036 SS ¼ þ0.037

November S ¼ þ268 S ¼ þ438 S ¼ þ548 S ¼ þ634 S ¼ þ892

SS ¼ þ0.018 SS ¼ þ0.017 SS ¼ þ0.03 SS ¼ þ0.033 SS ¼ þ0.041

December S ¼ þ448 S ¼ þ905

SS ¼ þ0.025 SS ¼ þ0.038

Positive value of SS and S signify positive trend and vice versa

Empty cell denotes no trend
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3.3.2 Changes in Monthly Total Rainfall

The Mann–Kendall trend test and seasonal Mann–Kendall trend test were run

on monthly total rainfall on the selected stations with intent to find any trend in

rainfall over the years. The significance level, α was set to 5 % for both the tests.

The period value was set to 12 for the seasonal Mann–Kendall trend test.

Table 3.3 summarizes the tests results. It tabulates the statistics (S), Sen’s slope
(SS), and p-values for the Mann–Kendall trend test. For the seasonal Mann–Kendall

trend test, the statistics (Sk) and p-values are tabulated. p-Values less than

0.05 (significance level, α) indicate the presence of trend in the time series data.

If there is a trend, positive values of statistics (S) and Sen’s slope (SS) (for the

Mann–Kendall trend test) denote positive trend in the series and vice versa.

From the results of the Mann–Kendall trend test, it can be seen that all the

p-values are greater than 0.05. So, the null hypothesis cannot be rejected. It

indicates that monthly total rainfall has seen no trend over the years in the selected

regions, if seasonality is not taken into account.

Table 3.2 Mann–Kendall statistics (S) and Sen’s slope (SS) of minimum temperature of different

regions

Month Rajshahi Khulna Dhaka Sylhet Cox’s Bazar

January S ¼ �266 S ¼ �355 S ¼ þ727 S ¼ þ339 S ¼ þ569

SS ¼ �0.034 SS ¼ �0.04 SS ¼ þ0.05 SS ¼ þ0.025 SS ¼ þ0.025

February S ¼ �226 S ¼ þ786 S ¼ þ393 S ¼ þ759

SS ¼ �0.021 SS ¼ þ0.055 SS ¼ þ0.025 SS ¼ þ0.04

March S ¼ þ0.479 S ¼ þ358 S ¼ 558

SS ¼ þ0.04 SS ¼ þ0.029 SS ¼ þ0.033

April S ¼ þ347

SS ¼ þ0.017

May S ¼ �239

SS ¼ �0.015

June S ¼ þ319 S ¼ þ506

SS ¼ þ0.011 SS ¼ þ0.016

July S ¼ þ169 S ¼ þ312 S ¼ þ244 S ¼ þ581

SS ¼ þ0.007 SS ¼ þ0.008 SS ¼ þ0.009 SS ¼ þ0.012

August S ¼ þ185 S ¼ þ431 S ¼ þ372 S ¼ þ667

SS ¼ þ0.009 SS ¼ þ0.009 SS ¼ þ0.012 SS ¼ þ0.015

September S ¼ þ234 S ¼ þ631

SS ¼ þ0.011 SS ¼ þ0.012

October S ¼ þ336 S ¼ þ373 S ¼ þ660

SS ¼ þ0.013 SS ¼ þ0.025 SS ¼ þ0.012

November S ¼ þ726 S ¼ þ495 S ¼ þ439

SS ¼ þ0.048 SS ¼ þ0.043 SS ¼ þ0.034

December S ¼ �263 S ¼ þ747 S ¼ þ464 S ¼ þ559

SS ¼ �0.022 SS ¼ þ0.056 SS ¼ þ0.038 SS ¼ þ0.033

Positive value of SS and S signify positive trend and vice versa

Empty cell denotes no trend
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The seasonal Mann–Kendall trend test shows the same result too, except in

Cox’s Bazar, where there is seen a positive change over the years.

3.3.3 Clustering of Rainfall

Applying K-means clustering algorithm, monthly total rainfall were partitioned

into five different clusters. The clusters give five categories of monthly rainfall
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based on its amount. Cluster 1 depicts the months with negligible or no rainfall

where Cluster 5 represents the highest (Table 3.4). Thus over the years, the

distribution of months in different clusters depicts a clear picture of rainfall of

that region on the time period (Fig. 3.2).

In Cox’s Bazar there is seen a negligible amount of rain during December to

March, falling in Cluster 1. Then it increases from April, reaching its peak rainfall

during June to August. During this period, huge amount of rainfall is observed,

mostly falling in Clusters 4 and 5. Then it starts decreasing from September

(Fig. 3.2a–c).

Study for Sylhet shows slightly less rainfall than Cox’s Bazar, negligible rain during

November to February, an increase fromMarch. The peak rainfall (Cluster 3–5) is seen

during May to August. Then starts to decrease from September (Fig. 3.2m–o).

In Dhaka negligible rainfall is experienced during November toMarch (Cluster 1).

Then it increases fromApril, reaches peak duringMay to September (Clusters 2 and 3)

and then starts decreasing (Fig. 3.2d–f).

In Khulna during November to February very less rainfall is seen (Cluster 1).

Then it increases from March, remains constant in its peak rainfall during May to

September (Clusters 2–4) and starts decreasing from October (Fig. 3.2j–l).

The study shows the least amount of rainfall in Rajshahi. Here, the rainfall

constantly remains in Cluster 1 from November to April spanning half of the year.

The peak rainfall is seen during June to September mostly residing in Clusters 2 and

3 (Fig. 3.2g–i).

Higher cluster number denotes higher amount of rainfall, the actual range can be

found in Table 3.4.

The study also shows that over the years the distribution of rainfall has no

significant change. Only the month of September shows some increase in Khulna

from the year 1996.

Table 3.3 Outcome of Mann–Kendall trend test and seasonal Mann–Kendall trend test on

monthly total rainfall data

Stations

Mann–Kendall trend test Seasonal Mann–Kendall trend test

S SS p-Value Trend Sk p-Value Trend

Dhaka �941 0 0.781 No �279 0.324 No

Cox’s Bazar 4,221 1,464 0.114 No 714 0.007 Positive

Sylhet �529 0 0.438 No �364 0.1 No

Khulna �1,806 1,159 0.303 No �13 0.484 No

Rajshahi �1,649 0 0.313 No �372 0.094 No

Table 3.4 Range of rainfall corresponding to different cluster number

Cluster Monthly rainfall (mm) Class

1 0–120 Negligible

2 121–322 Less

3 323–578 Moderate

4 579–966 High

5 967–3,017 Very high
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Cluster distribution from 1970 to 2009 of months
(Jan - Apr) in Cox’s Bazar
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(i) Rajshahi (Sep–Dec), (j) Khulna (Jan–Apr), (k) Khulna (May–Aug), (l) Khulna (Sep–Dec),

(m) Sylhet (Jan–Apr), (n) Sylhet (May–Aug), and (o) Sylhet (Sep–Dec)
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It is also evident from the distributions of clusters that in the eastern regions

(Cox’s Bazar and Sylhet) it rains remarkably more than the western regions

(Rajshahi and Khulna).

3.3.4 Comparison of Different Time Series
Forecasting Models

Different time series forecasting models were used to predict daily temperature.

The models used are the Naive model, RWD model, Theta model, and ARIMA

(1,1,0) model. For a particular month, the forecasting models were fed with the first

20 days’ data (minimum and maximum temperature) and prediction of next 7 days

were obtained. Then the RMS error and SMAPE were computed using the original

values. This process was repeated for all the months from 1953 to 2009 for different

stations.1 Then the mean and standard deviation of the RMS error and SMAPE were

computed to compare the accuracy of different models. In the cases, where the

SMAPE and RMS error provides different ordering of the models, the ordering

obtained from the SMAPE is considered for the discussion.

For ARIMA( p, d, q) model, the data is transformed to stationary time series by

differencing with degree 1 (d ¼ 1). For best fitting, the AR order ( p) and MA order

(q) were set to 1 and 0, respectively. ARIMA(1,1,0) is called autoregressive model

with first difference.

Tables 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, and 3.14 tabulate the mean

and standard deviation of the RMS error and SMAPE of minimum and maximum

temperature for the selected stations. The models are sorted in descending order

according to their mean of the SMAPE.

From the SMAPE and RMS error, it is evident that for all the selected regions,

the RWD model shows the greatest SMAPE and RMS error for both minimum and

maximum temperature. So it is the least applicable one among the selected models.

No simple ordering among the other three models can be found. Firstly, the

scenario for minimum temperature is discussed. The Theta model provides best

prediction for Dhaka, Sylhet, and Cox’s Bazar while ARIMA and Naive model

suits most for Rajshahi and Khulna region, respectively.

On the other hand, for prediction of maximum temperature, ARIMA model is

most accurate for Rajshahi, Khulna, and Cox’s Bazar. But for Dhaka and Sylhet, the

Naive model, beating all the other models gives the best prediction.

The best models for different regions, for both maximum and minimum

temperature, are listed in Table 3.15. In most of the cases the best model has the

least SMAPE and RMS error simultaneously. In some cases where the SMAPE

1 For time series prediction, missing data were replaced by the data of the previous day. Months,

where more than 50 % data were missing, were not included in calculation.
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Table 3.6 Mean RMS error

and SMAPE of different

models for Rajshahi region

(minimum temperature)

Model name

RMS SMAPE

Mean SD Mean SD

ARIMA 2.005 1.204 9.936 8.04

Naive 2.016 1.167 9.946 7.841

Theta model 1.991 1.182 10.017 8.298

Random walk with drift 2.228 1.378 11.357 9.938

Table 3.7 Mean RMS error

and SMAPE of different

models for Sylhet region

(minimum temperature)

Model name

RMS SMAPE

Mean SD Mean SD

Theta model 1.624 0.96 7.533 5.572

Naive 1.675 0.945 7.705 5.411

ARIMA 1.667 0.982 7.718 5.776

Random walk with drift 1.882 1.147 8.806 6.634

Table 3.8 Mean RMS error

and SMAPE of different

models for Khulna region

(minimum temperature)

Model name

RMS SMAPE

Mean SD Mean SD

Naive 2.004 1.199 8.822 6.857

ARIMA 1.993 1.234 8.862 7.283

Theta model 1.982 1.227 8.929 7.357

Random walk with drift 2.226 1.381 9.906 8.071

Table 3.9 Mean RMS error

and SMAPE of different

models for Cox’s Bazar

region (minimum

temperature)

Model name

RMS SMAPE

Mean SD Mean SD

Theta model 1.577 0.974 6.541 4.74

ARIMA 1.595 0.984 6.636 4.863

Naive 1.629 1.032 6.714 4.97

Random walk with drift 1.792 1.21 7.462 5.732

Table 3.10 Mean RMS error

and SMAPE of different

models for Dhaka region

(maximum temperature)

Model name

RMS error SMAPE

Mean SD Mean SD

Theta model 2.163 1.331 6.17 4.114

ARIMA 2.145 1.426 6.144 4.879

Naive 2.126 1.329 6.05 4.18

Random walk with drift 2.391 1.56 6.871 4.949

Table 3.5 Mean RMS error

and SMAPE of different

models for Dhaka region

(minimum temperature)

Model name

RMS error SMAPE

Mean SD Mean SD

Theta model 1.997 1.167 8.929 6.904

ARIMA 2.019 1.25 9.064 7.499

Naive 2.041 1.22 9.134 7.291

Random walk with drift 2.299 1.429 10.429 8.869
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and RMS error disagree about the best model, the SMAPE is given higher priority.

The best model according to the RMS error is also listed in parentheses.

The distributions of prediction obtained from the models are then compared by

means of their RMS error and SMAPE against the Naive model. The Naive model is

an efficient forecasting model and often gives better results than other more

Table 3.11 Mean RMS error

and SMAPE of different

models for Rajshahi region

(maximum temperature)

Model name

RMS SMAPE

Mean SD Mean SD

ARIMA 2.398 1.63 6.656 4.669

Naive 2.406 1.637 6.68 4.743

Theta model 2.41 1.621 6.674 4.542

Random walk with drift 2.713 1.884 7.585 5.49

Table 3.12 Mean RMS error

and SMAPE of different

models for Sylhet region

(maximum temperature)

Model name

RMS SMAPE

Mean SD Mean SD

Theta model 2.655 1.535 7.809 4.924

Naive 2.617 1.542 7.699 5.053

ARIMA 2.618 1.527 7.711 5.114

Random walk with drift 2.934 1.884 8.721 6.32

Table 3.13 Mean RMS error

and SMAPE of different

models for Khulna region

(maximum temperature)

Model name

RMS SMAPE

Mean SD Mean SD

Naive 2.229 1.348 6.162 4.135

ARIMA 2.22 1.378 6.14 4.267

Theta model 2.246 1.353 6.195 4.106

Random walk with drift 2.493 1.592 6.955 4.957

Table 3.14 Mean RMS error

and SMAPE of different

models for Cox’s Bazar

region (maximum

temperature)

Model name

RMS SMAPE

Mean SD Mean SD

Theta model 1.861 1.054 5.387 3.38

ARIMA 1.807 1.052 5.192 3.396

Naive 1.821 1.093 5.222 3.572

Random walk with drift 2.041 1.289 5.946 4.304

Table 3.15 Listing of the

most accurate models of

different regions according

to SMAPE

Region Min temp Max temp

Dhaka Theta model Naive

Rajshahi ARIMA (Theta model) ARIMA

Sylhet ARIMA Naive

Khulna Theta model (Naive) ARIMA

Cox’s Bazar Theta model ARIMA

In cases where orderings obtained from SMAPE and RMS error

differ, the best model according to RMS error is written in

parentheses
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sophisticated models, providing a benchmark to compare. Wilcoxon signed rank test

was used to determine whether a model follows the same distribution as Naive

forecast or not. If the p-value obtained fromWilcoxon test is less than the significance

level (0.05), it indicates that the model is different fromNaive forecast and vice versa.

Wilcoxon tests were run for both minimum and maximum temperature of

the selected stations with the SMAPE vector of different models against the

SMAPE vector of the Naive model. The same tests were also run for the RMS

errors. Tables 3.16 and 3.17 shows the p-values resulted from the tests. Cells,

having p-values greater than 0.05, are colored red, indicating same distribution as

the Naive model.

From the results it can be seen that, for time series prediction of temperature

value in Bangladesh, the RWD model is significantly different from the Naive

model. On the contrary, forecasts given by the Theta model and ARIMA model

follow quite the same distribution as the Naive model as expected.

Table 3.16 Wilcoxon test results ( p-value) on minimum temperature of different models against

Naive model

Region Arima Theta Random Walk
RMS Error 0.002 0.512 2.22E-23

SMAPE 0.016 0.364 2.56E-22
RMS Error 0.188 0.986 2.22E-23

SMAPE 0.394 0.627 2.56E-22
RMS Error 0.037 0.578 4.66E-16

SMAPE 0.051 0.771 4.69E-15
RMS Error 0.177 0.858 4.07E-09

SMAPE 0.22 0.539 6.02E-09
RMS Error 0.677 0.624 2.79E-16

SMAPE 0.613 0.804 6.24E-14

Dhaka

Cox's Bazar

Sylhet

Rajshahi

Khulna

Table 3.17 Wilcoxon test results ( p-value) on maximum temperature of different models against

Naive model

Region Arima Theta Random Walk
RMS Error 0.186 0.232 9.07E-17

SMAPE 0.423 0.232 1.17E-17
RMS Error 0.154 0.003 7.09E-19

SMAPE 0.6 0 1.58E-19
RMS Error 0.555 0.01 2.13E-16

SMAPE 0.215 0.005 2.61E-15
RMS Error 0.4 0.429 4.05E-13

SMAPE 0.726 0.325 7.80E-13
RMS Error 0.021 0.519 1.03E-14

SMAPE 0.083 0.611 6.21E-15

Dhaka

Cox's Bazar

Sylhet

Rajshahi

Khulna
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Fig. 3.3 Comparison between original value of temperature and forecast given by different

models. (a) Dhaka, (b) Rajshahi, (c) Sylhet, (d) Khulna, and (e) Cox’s Bazar
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The original values and forecast corresponding to different models can be

plotted to compare them visually. Figure 3.3 shows the comparison for June 2009

(arbitrarily chosen) for different regions.

3.4 Concluding Remarks

In this study the Mann–Kendall trend test and Sen’s slope estimator were used

to find the trends in temperature in Bangladesh. The study found that maximum

temperature has shown remarkable positive trend during June to November in

Bangladesh. On the other hand minimum temperature has increased during

Fig. 3.3 (continued)
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December to January. The results also indicated that the eastern side has faced

more change in temperature than the western side. Cox’s Bazar and Sylhet exhibit

an increasing trend almost throughout the year.

For analyzing the behavior of rainfall, the Mann–Kendall trend test, Sen’s slope

estimator, and seasonal Mann–Kendall trend test were used. K-means clustering

algorithm was also employed to identify the rainfall distribution patterns over

the years and their changes with time. The peak rainfall throughout the country is

experienced during June to August and there has been no significant change in

rainfall over the years. The study also reflects that over the years the western side of

the country has experienced significantly less rainfall than the eastern side.

Performance of four time series prediction models (ARIMA(1,1,0), Theta,

RWD, and Naive) were analyzed with respect to the climate condition of

Bangladesh for forecasting daily minimum and maximum temperature. No obvious

ordering could be found among ARIMA, Naive, and Theta models for prediction

of daily minimum and maximum temperature, each one providing best prediction

for different conditions. On the contrary, the RWD model is the least applicable

one among the employed models.

References

Ahasan MN, Chowdhary Md AM, Quadir DA (2010) Variability and trends of summer monsoon

rainfall over Bangladesh. J Hydrol Meteorol 7(1):1–17

Assimakopoulos V, Nikolopoulos K (2000) The theta model: a decomposition approach to

forecasting. Int J Forecast 16:521–530

Bangladesh Meteorological Department (2012) http://www.bmd.gov.bd/

Basak JK, Titumir RAM, Dey NC (2013) Climate change in Bangladesh: a historical analysis of

temperature and rainfall data. J Environ 2(2):41–46

Box G, Jenkins G (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

Chowdhury MHK, Debsarma SK (1992) Climate change in Bangladesh—a statistical review.

In: Report of IOC-UNEP workshop on impacts of sea level rise due to global warming,

NOAMI, Intergovernmental Oceanographic Commission, Dhaka, 16–19 Nov 1992

Corte-Real J, Qian B, Xu H (1998) Regional climate change in Portugal: precipitation variability

associated with large-scale atmospheric circulation. Int J Climatol 18:619–635

Debsarma SK (2003) Intra-annual and inter-annual variation of rainfall over different regions of

Bangladesh. In: Proceedings of SAARC seminar on climate variability in the south Asian

region and its impacts, SAARC Meteorological Research Centre, Dhaka, 20–24 Dec 2002

Gaoliao J, Zhiwei Z, Hailin Z (2012) Trend analysis of air temperature between 1979–2000 in

Hubei Province. Paper presented at the World Automation Congress (WAC), Puerto Vallarta,

24–28 June 2012

Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand

Reinhold, New York

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data

mining software: an update. SIGKDD Explor 11(1):10–18

Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, New York

Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality

data. Water Resour Res 18(1):107–121

3 Exploring the Behavior and Changing Trends of Rainfall and Temperature. . . 77

http://www.bmd.gov.bd/


Huang F, Wang X (2011) Spatial and temporal variation of monthly rainfall nonuniformity of the

upper Yangtze basin. Paper presented at international symposium on water resource and

environmental protection, Xi’an, Shaanxi Province, 20–22 May 2011

Islam AS (2009) Analyzing changes of temperature over Bangladesh due to global warming using

historic data. In: Proceedings of the young scientists of Asia conclave: pressing problems of

humankind: energy & climate, Bangalore, 15–17 Jan 2009

Jain SK, Kumar V, Saharia M (2013) Analysis of rainfall and temperature trends in North East

India. Int J Climatol 33(4):968–978

Karmakar S, Shrestha ML (2000) Recent climate changes in Bangladesh. In: SAARC Meteoro-

logical Research Centre (SMRC), SMRC-No. 4, SMRC Publication, Dhaka

Kendall M (1975) Rank correlation methods. Charles Griffin & Company, London, England

Kumar V, Jain SK (2010) Trends in seasonal and annual rainfall and rainy days in Kashmir valley

in the last century. Quatern Int 212:64–69

MacQueen JB (1967) Some methods for classification and analysis of multivariate observations.

In: Proceedings of fifth Berkeley symposium on mathematical statistics and probability,

University of California Press, Berkeley, pp 81–297

Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

Mia NM (2003) Variations of temperature in Bangladesh. In: Proceedings of SAARC seminar on

climate variability in the south Asian region and its impacts, SAARCMeteorological Research

Centre, Dhaka, 20–24 Dec 2002

Nahrin Z, Munim AA, Begum QN, Quadir DA (1997) Studies of periodicities of rainfall over

Bangladesh. J Remote Sens Environ 1:43–54

Pelczer IJ, Cisneros-Iturbe HL (2008) Identification of rainfall patterns over the Valley of Mexico.

Paper presented at the 11th international conference on urban drainage, Edinburgh, 31 Aug–5

Sept 2008

Pesaran MH, Pick A (2009) Forecasting random walks under drift instability. Cambridge working

papers in economics, Faculty of Economics, University of Cambridge, Cambridge

R Core Team (2013) R: a language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.R-project.org/

Ramos MC (2001) Divisive and hierarchical clustering techniques to analyse variability of rainfall

distribution patterns in a Mediterranean region. Atmos Res 57(2):123–138

Rana M, Shafee S, Karmakar S (2007) Estimation of rainfall in Bangladesh by using southern

oscillation index. Pak J Meteorol 4(7):7–23

Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc

63:1379–1389

Singh P, Kumar V, Thomas T, Arora M (2008a) Basinwise assessment of temperature variability

and trends in the northwest and central India. Hydrol Sci J 53:421–433

Singh P, Kumar V, Thomas T, Arora M (2008b) Changes in rainfall and relative humidity in

different river basins in the northwest and central India. Hydrol Process 22:2982–2992

Tripathi S, Govindaraju RS (2009) Change detection in rainfall and temperature patterns over

India. In: Proceedings of the third international workshop on knowledge discovery from sensor

data, ACM, New York, pp 133–141

Warrick RA, Bhuiya AH, Mirza MQ (1994) The greenhouse effect and climate change: briefing

document no. 1. Dhaka, Bangladesh Unnayan Parishad, pp 17–20

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1(6):80–83

Xi-ting L, Chun-qing G, Xiao Y (2011) Evolvement analysis about rainfall-runoff in the upper

stream of Li River under the changeable environment. Paper presented at the international

conference on remote sensing, environment and transportation engineering, Nanjing, 24–26

June 2011

Yue S, Hashino M (2003) Temperature trends in Japan: 1900–1990. Theor Appl Climatol 75:

15–27

78 A.S. Azad et al.

http://www.r-project.org/


Chapter 4

Time Series Model Building and Forecasting

on Maximum Temperature Data

Amrina Ferdous, Md. Abu Shahin, and Md. Ayub Ali

Abstract Temperature is one of the factors of climate variables and understanding

its nature is very important because the effect of temperature on climate change is

higher than that of other variables. The purpose of the present study was to build an

appropriatemodel to forecast themonthlymaximum temperature of Rajshahi district

in Bangladesh. The Box–Jenkins modeling strategy was performed using EViews

software. This strategywas performed using the Augmented Dickey–Fuller, Phillip–

Perron, Kwiatkowski–Phillips–Schmidt–Shin, autocorrelation function, partial

autocorrelation function, ordinary least square method, normal P–P plot, Chow’s

breakdown test, Chow’s forecast test, and standardized residuals plot. Seasonal

variation, cyclical variation, and a slightly upward trend over time were found in

the temperature. The temperature was found to be stationary at level after removing

the cyclical variation using the resistant smoothing method, 4253H-twice. The

SARMA(2, 1)(1, 2)12 model was found to be the most appropriate model for

forecasting. The fitted model is also stable with no structural change and thus

applicable for forecasting and policy purposes. Finally, this model was used for

forecasting maximum temperature from January 2010 to December 2015. The

forecasted value divulged that the maximum temperature will be increased by 3 �C
during 2010–2015. This is an alarming situation for the environment and should take

initiative to control and save our environment of Rajshahi district in Bangladesh.

Keywords Box–Jenkins modeling strategy • Correlogram • Normal P–P plot •

Stability test • Unit root test
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4.1 Introduction

Bangladesh is the most vulnerable nation due to global climate change in the world

according to German Watch’s Global Climate Risk Index (CRI) of 2011

(Harmeling 2011). This is based on the analysis of impacts of major climate events

that occurred around the world in the 20-year period since 1990. The temperature of

Rajshahi is very high in summer season and very low in winter season among the

districts of Bangladesh. Rajshahi weather station is 1 of the 32 weather stations in

Bangladesh. Understanding the variability and trend of temperature may help for

the proper planning and management of agricultural crop sectors. Investigations on

climate change have been documented by many researchers. Eischeid et al. (1995)

examined the surface temperature for the validation of climate models as well as for

a variety of other climatology uses. Kunkel et al. (1999) studied recent work on

trends during this century in societal impacts (direct economic losses and fatalities)

in the United States from extreme weather conditions and compared those with

trends of associated atmospheric phenomena. Stein and Lloret (2001) worked for

forecasting of air and water temperatures for fishery purposes to show that ARIMA

models yield better forecasts for highly variable time series than simple models

based on the maximum water and air temperatures of 1984–1996. Hughes

et al. (2006) showed that the increment is not the same for all the stations in the

Antarctic region, and the increment is very significant at the Faraday/Vernadsky

station. Only at this station the minimum/maximum monthly temperatures, for the

period 1951–2004, are separately available, and they believed that the increment in

mean surface temperature at this station is mainly due to the increment in minimum

temperatures. They studied the variations in the minimum/maximum temperatures

using a multiple regression model with non-Gaussian correlated errors. Mitra and

Nath (2007) introduced nearest neighbor-based fuzzy model (NNFM) based on

membership values for forecasting the daily maximum temperature at Delhi. Fuzzy

membership values had been used to make single point forecasts into the future on

the basis of past nearest neighbors. Kaushik and Singh (2008) analyzed monthly

temperature and rainfall data and showed that the seasonal autoregressive inte-

grated moving average (SARIMA) model were adequate based on correlation

coefficient and root mean square error (RMSE). Tularam and Ilahee (2010) used

50 years data of rainfall and temperature for investigating climatic trends and

interactions using the spectral analysis and ARIMA methodology, and successfully

concluded that there exists inverse relationship in trend between rainfall and

temperature using linear regression, and the ARIMA model for rainfall and tem-

perature data were adequate but residuals of the ARIMA didn’t appear to be white

noise. Kumar et al. (2011) used to study mathematical properties of singular value

decomposition (SVD) and its data exploring capacity and to apply them to make

exploratory type clustering for ten climatic variables and 30 weather stations in

Bangladesh using a newly developed graphical technique. Shamsnia et al. (2011)

analyzed monthly relative humidity, average temperature, and precipitation of

Abadeh Station and found that the SARIMA(2, 1, 1)(1, 1, 0)12, SARIMA(2, 1, 0)
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(2, 1, 0)12, and SARIMA(0, 0, 1)(1, 1, 1)12 models for respective weather

parameters were adequate. Awal and Siddique (2011) showed that the ARIMA

(4, 1, 4), ARIMA(2, 1, 1), and ARIMA(2, 2, 3) for Aus, Aman, and Boro rice

production, respectively, in Bangladesh are more adequate models. Mahsin

et al. (2012) analyzed monthly rainfall in Dhaka Division of Bangladesh and

showed that it is followed by the SARIMA(0, 0, 1)(0, 1, 1)12 model. Modeling on

temperature, especially on the data of Rajshahi district, in Bangladesh for forecast-

ing purpose is not well documented. Rajshahi district is known as Barind area

where draught is a serious problem because of increasing maximum temperature

(Alam et al. 2012). Sometimes draught is more defenseless than flood and cyclone

(Brammer 1987, Shahid and Behrawan 2008, Shahid 2008). A long-term trend of

maximum temperature will give us the awareness of appearing and intensity of this

draught. For this trend, proper time series modeling on maximum temperature of

this Barind area is necessary. Thus, the purpose of the present study is to establish

an appropriate time series model for forecasting maximum temperature of Rajshahi

district in Bangladesh.

4.2 Materials and Methods

4.2.1 Time Series Data on Temperature

The temperature data of Rajshahi district was collected from Bangladesh Agricul-

tural Research Council. The temperature data was monthly speed over the range

from January 1970 to December 2010 (41 years) with 492 realizations. The

measurement unit and instrument of maximum temperature are Celsius (�C) and
thermometer respectively. The mean is 31.05 and standard deviation is 3.51; these

imply high fluctuation of maximum temperature, and positively skewed (skewness

¼ �0.56) with platykurtic (kurtosis ¼ 2.58) curve. For analyzing purpose, we

denote monthly maximum temperature as a temperature.

The temperature data over the range from January 1970 to December 2010

divides the whole sample into two parts for training and test data set. The sample

range from January 1970 to December 2009 is considered as training data set for

modeling and that from January 2010 to December 2010 is considered as test data

set for understanding the performance of model.

The popular software MS Excel, MS Word, EViews, and Minitab were used.

4.2.2 Testing Stationarity of the Time Series

A time series is called stationary if the mean, variance, and autocovariance cannot

change over time, i.e., time invariant. Although there are several tests for
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stationarity, we consider only three tests: (1) graphical analysis (line graph),

(2) correlogram test, and (3) unit root (Augmented Dickey–Fuller [ADF], Phillip–

Perron [PP], and Kwiatkowski–Phillips–Schmidt–Shin tests) test. The time series

plot (line graph) gives an initial clue about the nature of the data. If the line graph

shows any trend (upward or downward), indicator of non-stationary of the time

series but sometimes the time series is non-stationary without showing any trend.

The correlogram, plot of autocorrelation function (ACF), or partial autocorrelation

function (PACF) against lags is also useful for testing time series stationarity as well

as choosing order of general ARIMA models. If the mean of a series is stationary,

then the spikes of correlogram will tend to decay quickly toward 0. The ADF

(Dickey and Fuller 1979) and Phillip–Perron (Phillips and Perron 1988) tests are

used for testing unit root. In econometrics, a time series that has unit root, called

random walk model that are non-stationary. The null hypothesis of the ADF and

Phillip–Perron (PP) both tests are same as the given time series is stationary but the

first one is parametric and last one is nonparametric tests. The Kwiatkowski–

Phillips–Schmidt–Shin (Kwiatkowski et al. 1992) test is also used for testing

stationarity but the null hypothesis is different from the ADF and PP tests. The

null hypothesis of Kwiatkowski–Phillips–Schmidt–Shin test is the stationary time

series. Practically there are some opposite results obtained from these (described

above) tests but the comment always done on the basis of majority tests.

4.2.3 Box–Jenkins Modeling Strategy

The Box–Jenkins (BJ) approach for modeling the SARIMA processes was

described in a highly influential book by statisticians George Box and Gwilym

Jenkins in 1970. The original Box–Jenkins modeling procedure involved an iterative

three-stage process of model selection, parameter estimation, and model checking.

Recent explanations of the process (Makridakis et al. 1998) often add a preliminary

stage of data preparation and a final stage of model application (or forecasting).

The complete modeling procedure involved four stages described below:

4.2.3.1 Identification of Order for the SARIMA Structure

Identification means to find out the appropriate values of p, d, q, P, D, and Q of the

order of general SARIMA model, i.e., the SARIMA( p, d, q)(P, D, Q)s model,

where p, d, and q are integers greater than or equal to 0 and refer to the order of the
autoregressive, integrated, and moving average parts for the nonseasonal model,

and P,D, andQ refer to the order of that for seasonal case. We will use the ACF and

PACF to find out the value of p, d, q, P, D, and Q. The behavior of the ACF and

PACF for the identification tools of the SARIMA( p, d, q)(P, D, Q)s models are

presented in Table 4.1.
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The general ARIMA model is called the SARIMA model when the time series

shows any seasonal effect. The general multiplicative SARIMA model is denoted

by the SARIMA(p, d, q)(P, D, Q)s and can be written as Eq. (4.1) as follows:

Φ BS
� �

ϕ Bð Þ∇D
S ∇

dyt ¼ cþ Θ BS
� �

θ Bð Þεt ð4:1Þ

where,

ϕ(B) ¼ 1 � ϕ1B � ϕ2B
2 � � � � � ϕPB

p (The p order of AR operator)

θ(B) ¼ 1 + θ1B + θ2B
2 + � � � + θqB

q (The q order of MA operator)

Φ(BS) ¼ 1 � Φ1B
S � Φ2B

2S � � � � � ΦPB
PS (TheP order of seasonal AR operator)

Θ(BS) ¼ 1 + Θ1B
S + Θ2B

2S + � � � + ΘQB
QS (The Q order of seasonal MA operator)

∇d ¼ (1 � B)d and ∇D
S ¼ (1 � B)D refers nonseasonal and seasonal difference

operator, c is constant, yt is any time series, s is the number of season, and εt is
the usual Gaussian white noise process

4.2.3.2 Parameter Estimation of the SARIMA Model

After getting the appropriate values of p, d, q, P, D, and Q, the next stage is

to estimate the parameters c, Φ, ϕ, Θ, and θ of Eq. (4.1) of the SARIMA(p, d, q)
(P,D,Q)smodel. The ordinary least squares (OLS) method is used to estimate these

parameters.

4.2.3.3 Diagnostic Checking of the Fitted Model

Diagnostic test is applied to understand whether the estimated parameters and

residuals of the fitted SARIMA model are significant or not. The t statistic is used
to test the significance of the individual coefficient. The normal probability plot and

standardized residuals plot are used for checking normality and outliers of the

residuals. The in-sample and out-sample of mean squared forecast error, Chow’s

breakdown test, (Chow 1960) and Chow’s forecast test (Chow 1960) are used for

checking the stability of the model.

4.2.3.4 Forecasting of the Study Variable

One of the reasons for the popularity of the Box–Jenkins modeling strategy is its

success in forecasting (Gujarati 1993, p. 841). In many cases, the forecasts obtained

Table 4.1 Behavior of the ACF and PACF for seasonal AR, MA, and ARMA models

AR(P)s MA(Q)s ARMA(P, Q)s

ACF Tails off at lag k’s, k ¼ 1, 2, . . . Cuts off after lag Q’s Tails off at lag k’s

PACF Cuts off after lag P’s Tails off at lag k’s, k ¼ 1, 2, . . . Tails off at lag k’s
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by this method are more reliable than those obtained from the traditional econo-

metric modeling, particularly for short-term forecasts (Gujarati 1993, p. 841) that’s

why it has been used in this study.

4.3 Results and Discussion

4.3.1 Testing Stationarity Status of Temperature

To observe the stationarity status of temperature data, three methods such as line

graph, correlogram, and formal test are considered. The time series plot (line graph)

of temperature is presented in Fig. 4.1. This figure shows a slightly upward trend,

seasonal variation, cyclical variation, and random variation over time. The resistant

smoothing, namely 4253H-twice, is used to remove the cyclical variation and the

resulted time series is plotted in Fig. 4.2. Figure 4.2 supports the pattern of

stationarity. The data, presented in Fig. 4.2, is used for the next analysis of

modeling and forecasting.
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Fig. 4.1 Time series plot for temperature data
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Fig. 4.2 Time series plot for smoothing temperature data
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The spikes of correlogram against the ACF or PACF converge to 0 very quickly,

implying the time series data is stationary. The stationarity test based on

correlogram is presented in Figs. 4.3 and 4.4. Here, the spikes of the ACF

(Fig. 4.3) converge to 0 very quickly with seasonal effect. Similarly, the spikes of

the PACF (Fig. 4.4) converge to 0 very quickly. Therefore, the temperature can be

considered as stationary and modeled considering with seasonal effect.

The ADF test, Phillip–Perron test, and Kwiatkowski–Phillips–Schmidt–Shin test

for temperature data are presented in Table 4.2. The calculated values of the test

statistics for the ADF test and Phillip–Perron test are �6.4186 and �4.3538

associated with the probabilities 0.0000 and 0.0004, respectively. This implies

that the null hypothesis of non-stationary may not be accepted, that is, the temper-

ature may be considered as stationary at level. Similarly, the Kwiatkowski–

Phillips–Schmidt–Shin test divulged that the temperature series is stationary at

1 and 5 % at level. All the above tests indicate that the temperature series is

stationary at level.
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Fig. 4.3 Autocorrelation function of the temperature
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Fig. 4.4 Partial autocorrelation function of the temperature

Table 4.2 The ADF, PP, and KPSS tests for temperature

Test Test statistics Probability (pr-value)

Asymptotic critical

value at 1 %

Asymptotic critical

value at 5 %

ADF �6.4186 0.0000 �3.4443 �2.8676

PP �4.3538 0.0004 �3.4438 �2.8674

KPSS 0.4182 0.7390 0.4630
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4.3.2 Model Building and Forecasting

4.3.2.1 Identification of Parameters Value of the SARIMA Structure

The motto of this section is to identify the appropriate values of p, d, q, P, D,
and Q for the general SARIMA model, SARIMA(p, d, q)(P, D, Q)s. As the

temperature is found to be stationary at level, the value of d and D are equal to 0,

while the data is monthly implying the value of s is 12. Therefore, the general

SARIMA(p, d, q)(P, D, Q)s model is equivalent to the SARMA(p, q)(P, Q)12
model. Now, the value of p, q, P, and Q can be estimated from the ACF and

PACF. It is found that the series contains seasonal effect with significant ACF

(Fig. 4.3) at many lags but significant PACF (Fig. 4.4) at lags 1, 2, 4, 5, 6, 7, 9, 10,

11, and 13. Thus, the appropriate model should be found from the tentative models

SARMA(1, 0)(0, 0)12, SARMA(2, 0)(0, 0)12, SARMA(3, 0)(0, 0)12, SARMA(0, 1)

(0, 0)12, SARMA(0, 2)(0, 0)12, SARMA(0, 3)(0, 0)12, SARMA(1, 1)(0, 0)12,

SARMA(2, 1)(0, 1)12, SARMA(1, 1)(0, 1)12, SARMA(1, 1)(1, 1)12, SARMA(2, 1)

(1, 1)12, SARMA(2, 1)(1, 2)12, and SARMA(2, 2)(2, 2)12.

4.3.2.2 Estimation of Parameters for Selected SARMA Models

The OLS method is used to estimate the parameters of the tentative models. The

models SARMA(2, 0)(0, 0)12, SARMA(3, 0)(0, 0)12, SARMA(0, 2)(0, 0)12,

SARMA(0, 3)(0, 0)12, and SARMA(2, 2)(2, 2)12 are omitted from the further

analysis because of the insignificance of their parameters. The other models are

significant and their results are presented in Tables 4.3 and 4.4. The model with

highest R2, lowest AIC, lowest BIC, and DW � 2.0 is considered as the best model.

From Table 4.4, the SARMA(2, 1)(1, 2)12 model is found to be the best. The DW

value is 1.51 for the model SARMA(2, 1)(1, 2)12 that implies more autoregressive

terms are needed but if we increase the lag of autoregressive terms in this model

then it is appeared with insignificant parameters. Hence, finally selected model is

SARMA(2, 1)(1, 2)12.

4.3.2.3 Diagnostic Checking for Estimated SARMA Models

The diagnostic checking of the model SARMA(2, 1)(1, 2)12 has been completed by

actual-fitted-residual plot, normal P–P plot, Chow’s breakdown test, Chow’s fore-

cast test, standardized residuals plot, and actual-forecast plot. The actual, fitted, and

residual plot (Fig. 4.5) shows that the fitted values are very close to actual value and

the residuals are very small implying the model is well fitted. The standardized

residuals (Fig. 4.6) lie within the range [�3, +3] indicating that the model is not

affected with the problem of outlier or intervention. The normal probability plot

(Fig. 4.7) shows that the residuals are approximately normal. To investigate the
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structural change (test for stability) of the selected model, the Chow’s breakdown

test, Chow’s forecast test, root mean squared forecast error (RMSFE) of in-sample

and out-sample are considered. The calculated values of F-statistic and likelihood

ratio statistic are 0.652161 and 4.681666 associated with probabilities are 0.712603

and 0.698745, respectively, indicating that the null hypothesis of no structural

change can be accepted. Similar result is obtain from Chow’s forecast test

(F-statistic ¼ 0.8175079 with probability ¼ 0.910119 and likelihood ratio statistic ¼
132.5569 with probability ¼ 0.470004). Finally, the RMSFE of in-sample and

out-sample are 0.459251 and 0.457730, respectively, implying that the selected

Table 4.3 Estimated parameters with probability (in parenthesis) for selected models

Model ĉ ϕ̂ 1 ϕ̂ 2 Φ̂ 1 θ̂ 1 Θ̂ 1 Θ̂ 2

SARMA

(1, 0)

(0, 0)12

31.23

(0.00)

0.83

(0.00)

SARMA

(0, 1)

(0, 0)12

31.19

(0.00)

0.99

(0.00)

SARMA

(1, 1)

(0, 0)12

31.20

(0.00)

0.82

(0.00)

0.99

(0.00)

SARMA

(2, 1)

(0, 1)12

31.17

(0.00)

0.84

(0.00)

�0.41

(0.00)

0.93

(0.00)

�0.39

(0.00)

SARMA

(1, 1)

(0, 1)12

31.18

(0.00)

0.73

(0.00)

0.99

(0.00)

0.65 (0.00)

SARMA

(1, 1)

(1, 1)12

31.29

(0.00)

0.96

(0.00)

�0.40

(0.00)

0.98

(0.00)

�0.97

(0.00)

SARMA

(2, 1)

(1, 1)12

31.20

(0.00)

0.84

(0.00)

�0.46

(0.00)

0.30 (0.00) 0.99

(0.00)

�0.33

(0.00)

SARMA

(2, 1)

(1, 2)12

31.20

(0.00)

0.84

(0.00)

�0.47

(0.00)

0.31 (0.00) 0.99

(0.00)

�0.26

(0.00)

0.19

(0.00)

Table 4.4 Summary of the

various tentative models
Model R2 AIC BIC DW

SARMA(1, 0)(0, 0)12 0.69 3.51 3.53 0.49

SARMA(0, 1)(0, 0)12 0.72 3.40 3.42 0.37

SARMA(1, 1)(0, 0)12 0.91 2.31 2.34 0.64

SARMA(2, 1)(0, 1)12 0.96 1.52 1.56 1.12

SARMA(1, 1)(0, 1)12 0.92 2.12 2.16 0.97

SARMA(1, 1)(1, 1)12 0.94 1.80 1.84 0.65

SARMA(2, 1)(1, 1)12 0.97 1.33 1.39 1.47

SARMA(2, 1)(1, 2)12 0.97 1.29 1.35 1.51
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model is adequate because the RMSFE for in-sample is greater than that for

out-sample. The test sample and forecast value (Fig. 4.8) imply that the actual

value is very close to its forecasted value. Thus, the selected SARMA(2, 1)(1, 2)12
model is found to be an approximately normal, stable, and hence adequate model

that can be used for forecasting purpose.

4.3.2.4 Forecasting of Temperature Using Selected SARMA Models

The selected SARMA(2, 1)(1, 2)12 model has been successfully passed the three

stages: identification, parameter estimation, and diagnostic checking. Thus, the

model should be used for forecasting purpose. Overall forecasting performance of

selected model is shown in Table 4.5 and the forecasted values are shown in

Fig. 4.9. The RMSE, mean absolute error, and mean absolute percentage error for

the training data set range from January 1970 to December 2009 are 2.389621,

2.042642, and 6.713163, respectively, which are always greater than that for the

forecasted data range from January 2010 to December 2015 which are equal to

1.321173, 1.068788, and 3.247742, respectively. This implies that the forecasted

values are reliable.
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Fig. 4.8 Graph for forecast and actual values of SARMA(2, 1)(1, 2)12 model

Table 4.5 Summary of overall forecasting performance of SARMA(2, 1)(1, 2)12 model

Criteria

Forecast sample from

January 1970 to December 2009

Forecast sample from

January 2009 to December 2015

Root mean squared error 2.389621 1.321173

Mean absolute error 2.042642 1.068788

Mean absolute percent error 6.713163 3.247742

Theil inequality coefficient 0.038247 0.020872

Bias proportion 0.000019 0.354952

Variance proportion 0.752367 0.360041

Covariance proportion 0.247614 0.285007
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4.4 Conclusion

Time series analysis and forecasting on maximum temperature are very important

in recent time. The common practice of time series analysis has the underlying

assumption that the series must be stationary. The temperature series is found to

stationary at level. The model SARMA(2, 1)(1, 2)12 is found to be as the best model

comparing with other possible models. Also, the model is found to be free from the

problem of outliers and intervention and the estimated residuals follow the usual

assumptions of principle of least square. The fitted model is also stable with no

structural change and thus applicable for forecasting and policy purposes. The

forecasted value divulged that the maximum temperature will be increased by

3 �C during 2010–2015. This is an alarming situation for the environment and

should take initiative to control and save our environment of Rajshahi district in

Bangladesh.
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Chapter 5

GIS Visualization of Climate Change

and Prediction of Human Responses

P.K. Nag, Priya Dutta, Varsha Chorsiya, and Anjali Nag

Abstract Estimation of heat stress based on WBGT (wet bulb globe temperature)

index is widely accepted as international standard. The purpose of the present study

was to provide tolerance limit for people and interventions required to protect

individuals from the dangerous consequences of heat. The meteorological data

collected from Indian Meteorological Department of Ahmedabad (2001–2011)

was used for estimating the WBGT. Multiple regression analysis was used to

explore relationship between variables dry bulb temperature (Ta), wet bulb temper-

ature (Twb), and globe temperature (Tg) across the districts varied widely in two

different seasons, i.e., summer and winter months. The linear regression analysis

was applied for the purpose of future prediction, with respect to the WBGT index,

and heat tolerance limit and visualized using GIS tool. The average tolerance time

for 2001–2011 arrived at 82 � 16 and 159 � 36 min for the months of summer and

winter, respectively. Thus, the WBGT and tolerance limit maps might prevail

working population from heat stress fury.

Keywords WBGT • Tolerance time • Heat stress • GIS • Prediction

5.1 Introduction

Human being has a unique thermoregulatory mechanism to cope up against extreme

climatic exposures and variations. But, frequent heat events indicate a risk to health

in human. The strategies that minimize the physiological stress and strain depend
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on suitable adjustment to thermal, cardiovascular, and respiratory response

characteristics that govern ones susceptibility limit to work in extreme hot climate.

However, when the heat stress exceeds beyond the upper limit of acceptable strain,

often called the limit of tolerance, heat strain may lead to heat casualty (Davies

1993). A state of dehydration may occur with the loss of body water as sweat,

including loss of fluid through respiration, gastrointestinal tract as well as kidney

(Gisolfi et al. 1995). This in turn disturbs the homeostasis of the body (Maughan

et al. 1996), leading to decreased skin blood flow, elevated body core temperature

(Tcr), decreased sweating rate, tolerance to work, and increased risks of heat injuries
(Nag et al. 2013).

To understand past and future climate by using observations and theoretical

models, GIS technology has been used in obtaining, storing, managing, analyzing

and visualizing geographical, enviro-climatic, socioeconomic, and health data for

effective decision making (Brooker and Utzinger 2007; Simoonga et al. 2008).

Once the data are brought into the GIS database, the user can display large database

by mapping with different tools and techniques. Researchers have also used GIS

and remote sensing techniques in monitoring the groundwater quality relation to the

land use/land cover (Srivastava et al. 2012). Research on satellite pictures has

revealed that the glacier Siachen Glacier reduced to 5.9 km in its longitudinal

extent from the time period of 1989–2009 (Searle 2013).

To develop a simple and authentic method to calculate increasing heat stress

among population and working groups as a result of global warming. WBGT (wet

bulb globe temperature) index is universally accepted and the method can be used

to estimate daily weather station data. These estimates from weather station data

can further be used to analyze past events and visualize the present scenario of

climate change. But, when it comes to predicting change in the future, becomes a

real challenge. Though the projections are exhaustive, extensive endeavor is

needed to describe the impact of such dynamics on human health, in order to

devise preventive and mitigating measures including warning alert for early

preparedness. Therefore, to compute weather station data for future estimation

is useful to prevent heat exposure at any places of the world with nearby authentic

weather station data.

The Indian Meteorological Department (IMD) provides useful meteorological

data from well-distributed weather stations across the country. These data include

high resolution gridded daily rainfall data, temperature, and cloud. These data can

be used for research work and projection. This chapter made a modest attempt to

depict the climate change in the past 10 years (2001–2011) in 25 districts of Gujarat

using the Indian meteorological data collected from 14 weather stations and to

predict the probable future scenario of 2021 in light of biophysical variables of

human. This study was also attempted to determine the tolerance limit of people

and interventions required to protect individuals from the dangerous consequences

of heat.
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5.2 Method and Materials

The secondary data from the IMD from 2001 to 2011 were compiled and compared

to the past and present environmental variables and further treated for regression

analysis for expected future prediction. The data included minimum and maximum

temperature (�C), dry bulb temperature (�C), dew point temperature (�C), relative
humidity (%), bright hours of sunshine (hour and min), and wind direction (36 point

of compass) of 14 weather stations across 25 districts of Gujarat. A single weather

station could be shared by more than one district and vice versa. For calculation and

predictions of heat stress and strain, these data were compiled, expressing into the

WBGT index. The calculation was based on the average 10 days/season maximum

temperature for each weather stations of Gujarat from 2001 to 2011 for summer

(May and June) and winter (December and January). An entire day data was

omitted if any hourly observations within that day were missing. The linear

regression analysis was applied for the purpose of future prediction, with respect

to the WBGT index, and heat tolerance limit and visualized using GIS tool.

The WBGT index is compared with the experiments of climatic chamber that

includes three environmental conditions based on the average of seasonal parame-

ters. These three conditions form the climatic load in which the subject had to work

for three 3 days, i.e., ambient temperature 39 �C, 42 �C, and 45 �C with relative

humidity 65–70 %, 50–55 %, and 40–45 %, respectively. However, the total period

of the study program for each subject lasted about 1 week because consecutive days

of exposure to heat may influence the individual state of acclimatization. The

ergometric workload and air velocity kept constant irrespective of the heat exposure

andmaintained at 75W and 0.4 m/s, respectively. The subjects selected for the study

were usually habituated to moderate physical work in the occupational field. Prior to

starting the experiment, each subject was familiarized with the standard test proce-

dure and consent was taken according to the Indian Council Medical Research

(ICMR) ethical guidelines (2000) was taken. The safe exposure period achieved

by predetermined end point criteria for Tcr (40
�C) or heart rate (95 %maximal heart

rate), or physiological symptoms forced the subject to discontinue was taken as

tolerance time in the present study (Nag et al. 2007; Montain et al. 1994).

5.3 Wet Bulb (Twb) and Globe (Tg) Temperature

as Physical Model to Predict WBGT

Estimation of the heat stress on human, based on the “WBGT (wet bulb globe

temperature) index,” is the accepted international standard that provides a simple

method for the assessment and control of hot environments (ISO 7423 2003; ISO

7933 1989). The WBGT is calculated from dry bulb temperature (Ta), wet bulb
temperature (Twb), and globe temperature (Tg) using the following equation:

WBGT outdoor ¼ 0:7Twb þ 0:2Tg þ 0:1Ta ð5:1Þ
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WBGT indoor ¼ 0:7Twb þ 0:3Tg ð5:2Þ

The Ta, Twb, relative humidity, and wind velocity were direct observation from

meteorological data. Whereas the globe temperature (Tg) was determined from the

experimental data of OHM thermal monitor (32.1, Italy), ambient temperature (Ta),
and globe temperature (Tg) measurements, the following linear regression equation

was derived:

Tg
�Cð Þ ¼ 1:27Ta � 5:25 r ¼ 0:912, p < 0:001, df : 2, 993ð Þ ð5:3Þ

The prediction equation was obtained from Ta and Tg observations in the range

from 27–40 �C to 28–45 �C, respectively.
The upper limit of acceptable strain, referred as tolerance time depends on the

environment, work performed, and personal characteristics. Tolerance time can

become a good biophysical indicator to predict heat load on a particular occupa-

tional group. It depends upon anthropometric dimensions of individuals, magni-

tude, and rate of climate variation to which a person is exposed to and their adaptive

capacity. There is an obvious need to determine heat tolerance of an individual to

avoid heat illness and disorders. Based on the relationships between the WBGT and

tolerance time through simulated experimentation were utilized for calculation of

tolerance time of people in different districts. Tolerance time shows moderate

strong relation with the WBGT index.

TT ¼ 235:13� 4:9WBGT r ¼ 0:596, p < 0:05, df ¼ 30ð Þ ð5:4Þ

Table 5.1 illustrates the secondary data collected from 14 weather stations,

covering 25 districts of Gujarat and the spread of Ta, Twb, Tg, WBGT, and tolerance

time across the districts varied widely in two different seasons. The mean and SD

values presented in these tables were based on the compiled secondary data from

the IMD sources (2001–2011). The direct observed values obtained from the IMD

source were Ta, Twb which is utilized for generating their respective predicted

value of Tg, WBGT, and TT with the use of abovementioned equations. The

obtained data were further treated for prediction as presented in Table 5.2. Since,

the data required to make projection for the future prediction equations are derived,

taking “year” as an independent variable for the WBGT and TT is finally used to

predict the values for the year 2016 and 2021.

The regression coefficients as well as intercepts of the equations for the WBGT

and heat tolerance time varied across the weather stations, due to variability in the

meteorological data and also possible influence of the number of data points used in

each equation. However, taking into account the degrees of freedom, all the

regression equations and coefficient of determination (R2) were found to be statis-

tically highly significant.

In view of the fact that population characteristics such as age group, gender,

bodily status, ethnic diversity, as well as pre-diagnosed health ailment have
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influence on environmental warmth perception and one’s tolerance time to work in

hot environment, the present prediction is a general direction of environmental

warmth and tolerance in the respective districts. These predictions can be further

refined by longitudinal responses of people from different regions. As the number

of data points across the districts and seasons were unequal, there was variation in

the coefficients of determinations.

Table 5.2 Weather station-wise estimation WBGT and tolerance time future projection of

Gujarat

Weather station

Linear regression analysis

WBGT (�C) R2 Tolerance time (min) R2

Summer month

Ahmedabad 0.69 (year)–1,351.2 0.78 8,797.5–4.35 (year) 0.76

Mahesana 0.78 (year)–1,525.7 0.77 9,352.8–4.62 (year) 0.7

Bhavnagar 0.24 (year)–438.3 0.51 3,601.8–1.75 (year) 0.5

Kheda 0.08 (year)–133.3 0.12 1,443.9–0.67 (year) 0.11

Veraval 0.18 (year)–321.5 0.41 3,021.8–1.46 (year) 0.41

Kutch 0.37 (year)–701.9 0.48 5,176.7–2.54 (year) 0.43

Porbandar 0.49 (year)–941.3 0.73 7,433.6–3.67 (year) 0.72

Rajkot 0.68 (year)–1,330.0 0.72 8,577.8–4.23 (year) 0.54

Surat 0.4 (year)–765.4 0.51 6,059.2–2.98 (year) 0.52

Vadodara 0.56 (year)–1,086.4 0.58 6,966.1–3.44 (year) 0.53

Banaskantha 0.19 (year)–355.8 0.62 6,966.1–3.44 (year) 0.53

Sabarkantha 0.64 (year)–1,243.2 0.4 12,005–5.94 (year) 0.44

Anand 0.07 (year)–110.2 0.45 13,590–6.72 (year) 0.72

Rann of Kutch 0.03 (year)–19.5 0.16 879.7–0.42 (year) 0.27

Winter month

Ahmedabad 0.45 (year)–868.6 0.37 12,259–6.03 (year) 0.32

Mahesana 0.3 (year)–583.9 0.35 9,598.4–4.70 (year) 0.31

Bhavnagar 0.37 (year)–707.7 0.21 8,957.1–4.39 (year) 0.15

Kheda 0.278 (year)–531.1 0.2 7,628–3.72 (year) 0.17

Veraval 0.479 (year)–932.5 0.61 11,345–5.59 (year) 0.57

Kutch 2.22 (year)–4,443.4 0.47 52,487–25.98 (year) 0.48

Porbandar 0.55 (year)–1,082.6 0.49 15,380–7.59 (year) 0.51

Rajkot 0.22 (year)–409.5 0.11 6,260.3–3.04 (year) 0.1

Surat 0.25 (year)–481.3 0.19 6,056.2–2.95 (year) 0.17

Vadodara 0.29 (year)–559.97 0.15 6,600.2–3.22 (year) 0.11

Banaskantha 0.22 (year)–417.2 0.16 6,734.2–3.28 (year) 0.15

Sabarkantha 0.87 (year)–1,718.9 0.35 2,884.6–14.24 (year) 0.33

Anand 0.22 (year)–417.2 0.16 6,734.2–3.28 (year) 0.15

Rann of Kutch 0.75 (year)–1,480.2 0.52 14,989–7.38 (year) 0.42

All R2 values were statistically significant
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5.4 WBGT and Tolerance Time a Tool for Climate

Change Assessment

Climate modeling with respect to human health as well as biophysiological indi-

cators is important to determine the vulnerability limit of population. The IMD

possesses a vast weather observational network and is involved in regular data

collection, data bank management, research, and weather forecasting for national

policy needs. With the trend of climatic change recorded for the decade 2001–2011,

it was evident that the state like Gujarat faced increased length and intensity of heat

exposure, with consequent effects on human physiological and pathological pro-

cesses. For example, the meteorological data presented in Table 5.1 were further

treated for GIS visualization. Further extrapolation and application may be very

much possible to the block or ward level, depending on the input data.

Figure 5.1 shows the spatial pattern of warming of the districts of Gujarat.

During the summer of 2001, the districts like Dahod, Panchmahal, Kheda,

Fig. 5.1 Environmental warmth in terms of WBGT index in different districts of Gujarat
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Vadodara, Narmada, and Rajkot showed a higher range of the WBGT temperature

(33.1–36 �C), as compared to other districts of the state (30–33 �C). But in 2011, all
districts showed the WBGT in the range of 36.1–42 �C, only with the exception

of Jamnagar and Mahesana where the WBGT values were 31.2 �C and 33.7 �C,
respectively. The overall environmental warmth (WBGT) elevated in the range of

2–3 �C from 2001 to 2011.

In the winter months of 2001, the WBGT levels in southern districts varied from

21 to 24 �C and in northern part 24.1–27 �C. The situation was very clear in 2011

showing that around 15 districts such as Banaskantha, Kutch, Sabarkantha,

Gandhinagar, Jamnagar, Porbandar, Rajkot, Ahmedabad, Kheda, Panchmahal,

Anand, Bharuch, Narmada, Valsad, and The Dang recorded the WBGT in between

27.1 and 30 �C and the remaining 10 districts such as Patan, Mahesana,

Surendranagar, Junagadh, Amreli, Bhavnagar, Dahod, Vadodara, Surat, and

Navsari ranged between 30.1 and 33 �C.
Apart from the variables included in the WBGT assessment (i.e., humidity and

mean radiant field), other environmental factors, such as rainfall, cloud, and wind

velocity, may also influence the environmental condition and, consequently, envi-

ronmental warmth, as perceived by humans. The exposure pattern of the decade

may repeat itself with the changing climate. In the present analysis, the interna-

tionally recognized the WBGT index was applied to indicate that the environmental

warmth had distinctive changing pattern 2001–2011, during summer, as well as in

winter months. In the year 2001, theWBGT ranged between 21 and 24 �C in winter,

and 30 and 33 �C in summer. But, in 2011, the WBGT ranged from 31.2 to 42.5 �C.
From 2001 to 2011, the WBGT increased in summer months by 2.08 �C and about

1.5 �C in winter, respectively. It was evident that the working population in

different districts of Gujarat are at high level of exposure of environmental warmth

as per standardize recommended the WBGT temperature in all different seasons.

The linear regression analysis yielded for the year 2021 shows that the temper-

atures build-up might be at a rate of 2 �C, since the environmental warmth

assessment of the WBGT is based on humidity and mean radiant temperature.

5.4.1 Tolerance Time

The calculated WBGT can be compared with critical WBGT for calculating

tolerance time. Human tolerance time for exposure to high heat was calculated

based on experimental observations, the meteorological data recorded, and

presented in GIS map (Fig. 5.2). The tolerance time is arrived at based on the rate

of body core temperature (Tcr) build up from the basal level to the critical level of

~39 �C. Beyond this level of Tcr, a person may be at risk of hyperthermia and at

critical state of thermoregulatory adjustment.

The average tolerance time for 2001–2011 arrived at 82 � 16 and 159 � 36 min

for the months of summer and winter, respectively. During the summer of 2001, the

tolerance time predicted for the district like Rajkot, Bhavnagar, Kheda,
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Panchmahals, Dahod, Vadodara, Bharuch, Narmada, Surat, Navsari, The Dangs,

and Valsad as 70–90 min. In 2011, the estimated tolerance time decreased to a great

extent in these districts. Surendranagar, Patan, Sabarkantha, and Panchmahal were

recorded estimated lowest tolerance time in 2011 as 30–50 min.

Regions or places encounter extreme heat wave situation in the summer months

further a little deviation in climatic condition from winter to summer, the humans

pushed over threshold that manifest at places with higher morbidity and mortality

among people in certain geographical regions.

Fig. 5.2 Predicted heat tolerance time for human exposure in different districts of Gujarat
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Due to a variety of modifying factors, the estimated increase of ambient

temperature may not be linear for a whole century. Despite uncertainty to degree

of climate change and temperature build up, any increase in environmental warmth

will cause significant impacts on physiological parameters for adjustment and

tolerability. When the human ability to tolerate heat is hampered, the work dimen-

sions like productivity, quality of work, and performance are also hampered.

Fatigue increases with potential risk to workplace accidents and injuries (Parsons

2009). The prediction suggests that 1 �C increase in environmental warmth as the

WBGT might cause 8 min loss in tolerance time.

5.5 Discussion

The WBGT map depicts that the climate change is taking place and if these

scenarios prevailed then the working population may be more affected due to

interruption of heat dissipating mechanism. The changing climate and warming

may become worse in coming decades. There is a perceived realization that the

climatic variability with respect to extreme heat potentially causes direct and

indirect health effects and loss of productivity of people in different occupational

settings (WMO 2011; Ladochy et al. 2007).

Davis and Kalkstein (1990) established threshold temperatures, which represent

the temperature beyond which human mortality significantly increases, for cities

throughout the United States. He further explains that the significant excess in

mortality rate at New York occurs when the apparent temperatures exceed 32 �C
during the summer. Nakai et al. (1996) revealed that the death from heat stroke in

the occupational field occurred at 27 �C or more WBGT. Kalkstein (1991) reported

heat-related disorder mainly in summer at 41 �C.
As the Western India being a rapidly industrializing region, the local climate

change in the districts of Gujarat though depend on geographic and meteorological

conditions are influenced by urbanization, industrialization, power plants, and

burning of fossil fuels, and also on concerted actions to limit green gas emissions.

And the inevitable health problem ranges from mild to even serious life-threatening

scenarios. Early action by municipalities, health officials, and governmental

institute are imperative to help face heat health vulnerability of people in the region

and to build resilience in protecting human health. Heat acclimatization is specific

to environmental conditions and depends on the body composition profile of

population involved. The likely heat-intolerant population living in an area of low

environmental heat load may be less at risk than a group living in an area of high

heat load.

Therefore, information of the WBGT and the type of work being performed are

required in determining how long a person can safely work or remain in a particular

hot environment. The ambient temperature is a dominant factor shaping the distri-

bution of the human habitat with overarching effect that result from the influence of

temperature on physiological and thermal responses. At high temperatures, there is
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an increased secretion of sweat, with simultaneous loss of water and salts from the

body, which lead to exhaustion and impairment of body functions (Bates and Miller

2008). In the process of thermoregulation, the physiological changes take place to

prevent muscles from producing heat. These changes are associated with tiredness,

tendency to sleep and fatigue, leading to performance decrement, errors, and

accidents. It is suggested that the population in the susceptible regions to be fully

aware of the necessity to avoid dehydration through systematic fluid supplement.

The biophysical derivations to arrive at the limit of tolerance time of human

exposure to heat might be taken to ascertain vulnerability of a population group.

During the months of summer, people in most districts were limited by the

prevailing climatic conditions and the tolerance time might be in the range of

40–100 min, or less for habitual exposures. Researchers have found that human

physical comfort not only depends on temperature but also is related to the

interaction of physical characteristics and thermoregulatory adjustment (Kenney

and Havenith 1993).

Vast populations in indoor and outdoor environment are engaged in manual

labor. These workers are face-to-face with the fury of extreme heat in summer and

post-monsoon months. Calosi et al. (2008) have shown the physical strain of

humans in the tropics and its direct effect on the limits of tolerance. Better

understanding of physiological mechanism and the limits of exposure of different

population groups, including young workers, pregnant mothers, and elderly, would

be useful to predict the direct impact of climatic warming on the vulnerable

population. Environmental warmth depends on the characteristics of environment

and anthropogenic activities, which reflect on the physiological and biophysical

criteria of heat stress and strain.

The marked extra circulatory and thermal strain observed in the present study

of heat stress indicates that continuous work at the WBGT value of about 40.8 �C
(beyond tolerance limit) should be avoided and rest pauses in shade shelters should

be incorporated into the work-shift. This may help to improve preparedness from

heat extremities for detrimental health effects and give some idea for preparedness

for future.

5.6 Conclusion

To summarize, the study proves that Gujarat exhibits extreme heat-related physi-

ological stress in summer months. Given the scenarios of regional warming during

the next decades, the expected change in tolerance time due to direct climate effects

in Gujarat districts is alarming. Gujarat may be less prone to heat-related stress in

winter. Projections of future climate change can be used as inputs into models that

assess the physiological impact of climate change on public health. With the known

ambient temperature, establishing relationships between spatial, demographic,

biophysical, and environmental factors may yield a robust approach to provide

working personnel a practical tool to better prepare for heat-related eventuality and
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tailor intervention measures for spatial examination of vulnerability. Preparing for

the health consequences of climate change requires skill professionals, public

health, and other physiological and biophysical surveillance data to provide effec-

tive health communication to vulnerable population.
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Chapter 6

Markov Chain Analysis of Weekly Rainfall

Data for Predicting Agricultural Drought

A.T.M. Jahangir Alam, M. Sayedur Rahman, and A.H.M. Sadaat

Abstract In the semiarid Barind region, episodes of agricultural droughts of

varying severity have occurred. The occurrence of these agricultural droughts is

associated with rainfall variability and can be reflected by soil moisture deficit that

significantly affects crop performance and yield. In the present study, an analysis of

long-term (1971–2010) rainfall data of 12 rain monitoring stations in the Barind

region was carried out using a Markov chain model which provides a drought index

for predicting the spatial and temporal extent of agricultural droughts. Inverse

distance weighted interpolation was used to map the spatial extent of drought in a

GIS environment. The results indicated that in the Pre-Kharif season drought occurs

almost every year in different parts of the study area. Though occurrence of drought

is less frequent in the Kharif season the minimum probability of wet weeks leads to

reduction in crop yields. Meanwhile, the calculation of 12 months drought suggests

that severe to moderate drought is a common phenomenon in this area. Drought

index is also found to vary depending on the length of period. The return period

analysis suggests that chronic drought is more frequent in the Pre-Kharif season and

the frequency of moderate droughts is higher in the Kharif season. On the contrary

severe drought is more frequent for a 12-month period.
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6.1 Introduction

Drought is a complex natural phenomenon that has affected civilization throughout

history. It occurs with varying frequency in all types of economic systems and in

both developed and less developed countries. Almost all year around, drought

occurs in one part of the globe. The wide variety of sectors affected by drought,

its diverse geographical and temporal distribution, and the human demand placed

on water supply make it difficult to develop a single definition of drought (Richard

and Heim 2002). According to Al-Salihi (2003), Ben-Zvi (1987), and Darcup

et al. (1980), drought is mainly caused by deficiency of rainfall which leads to

severe agricultural and hydrological hazard. They described drought as a lack of

rainfall, which cannot be prevented by social forces. In the context of Bangladesh,

Brammer (1987) defined drought as a condition when soil moisture is less than the

requirement of satisfactory crop growth during the seasons when crops are normally

grown. Similarly, Heathcote (1974) defined drought as a situation when the short-

fall of water is harmful for man’s agricultural activities.

Drought is a recurring phenomenon in the northwestern part of Bangladesh.

Though the drought has attracted less attention from the science community than

flood or cyclone, several authors found that the impact of drought can be more

defenseless than flood and cyclone (Brammer 1987; Shahid and Behrawan 2008;

Shahid 2008; Alam et al. 2012a, b). This is also evident by statistics. For example,

the loss of 1978/1979 drought was greater than the loss of flood in 1974 (Paul 1998).

Rice production losses in the drought of 1982 were 50 % more than the losses

caused by the flood in the same year (Ramsey et al. 2007). Furthermore, in the 1997

drought the national production of food grains reduced by one million tons, of

which 0.6 million tons were T. aman (Ramsey et al. 2007).

On the global level, impacts of natural hazards and disasters are staggering.

In Bangladesh, the major natural hazards are also in line with global patterns. In

the context of global warming, most of the climate models project a decrease in

precipitation in the dry season and an increase during the monsoon season in South

Asia (Christensen et al. 2007; Shahid and Behrawan 2008). This will cause a cruel

combination of more extreme floods and droughts in the region. Due to the land use

changes within the country and its neighboring countries, Bangladesh has already

showed an increased frequency of droughts in recent years (Shahid and Behrawan

2008). Concern among scientists has grown on changes of precipitation and

frequent occurrence of droughts in Bangladesh. Moreover, agriculture is the largest

sector of Bangladesh’s economy and has an overwhelming impact on major mac-

roeconomic activities like employment generation, poverty alleviation, human

resource development, and food security (Shahid, 2010). Consequently, the impact

of agricultural drought ultimately affects the overall social status of the people of

Bangladesh. Therefore, it is important to analyze the agricultural drought severity

and predict the time, area, and probability of its occurrence.

Markov chain models have been successfully used to derive agricultural

drought indices in the Indian subcontinent (Alam 2010; Alam et al. 2011,
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Alam et al. 2013; Banik et al. 2002; Barkotulla 2007). They have been used for

determining drought proneness (Banik et al. 2002; Barkotulla 2007), analyzing

rainfall drought correlation (Alam et al. 2011), analyzing agricultural droughts

(Biamah et al. 2005), and predicting critical wet and dry spells (Ochola and

Kerkidis 2003). Several studies also suggested that the reliability of meteorological

persistence can be best described through Markov chain models of proper order

(Rahman 1999a, b). However, the first-order Markov processes are adequate in

representing the occurrence of rainfall events (Jimoh and Webster 1999). In addi-

tion, Markov chain models are found to be promising in simulating the length of the

longest dry and wet spells and largest rainfall during monsoons (Sharma 1996;

Biamah et al. 2005). In the present study, the first-order Markov chain model was

chosen because of its flexibility to give a variety of useful statistical results. The

spatial and temporal patterns of agricultural droughts were analyzed and the

probability of wet weeks also estimated because it determines the soil moisture

holding capacity, thus influences crop yields.

6.2 Study Area and Method

6.2.1 Climatic Condition of the Barind Region

Barind Tract is the largest Pleistocene physiographic unit of the Bengal Basin

which covers an area of about 7,770 km2. Three distinct seasons can be recognized

in this region: (1) the dry winter season from December to February, (2) the

pre-monsoon hot summer season from March to May, and (3) the rainy monsoon

season which lasts from June to October (Shahid 2011). Climatically, the region is

characterized by high fluctuating rainfall and the ratio of dry to rainy months is

found to be highest in Bangladesh. It is observed that the annual average rainfall

vary between 1,300 and 1,600 mm and the seasonal distribution of rainfall shows

that more than 90 % rainfall occurs during May to October (Shahid 2011). Although

the whole region has long cool winter, the maximum number of days with temper-

ature above 40 �C is observed in summer (Rahman 1999a). The location of the

rainfall stations used in this study is given in Fig. 6.1.

Geologically Barind Tract belongs to an old alluvial formation which is usually

composed of massive argillaceous beds of pale reddish brown color that often turns

yellowish on weathering. Lime nodules and pisolitic ferruginous concretions occur

throughout the soil. Locally the soils are rich in lime. Soils are deficient in nitrogen

and phosphorus (Moslehuddin et al. 2008). The top soil of Barind Tract is reddish in

color which is mainly in origin of Madhupur clay. Most of the soil is clay though a

small amount of silt and fine sands are also encountered (Yasmin 2008). In the dry

season the soil becomes very hard and in the wet season it becomes slippery rather

than soft. The mean elevation of the area is 25 m above the mean sea level and is

quite flat. The digital elevation model of the study area is given in Fig. 6.2.
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6.2.2 Markov Chain Agricultural Drought Index

Several authors have found that the sequences in daily rainfall occurrences can be

described by a simple Markov chain model (Kazt 1974; Anderson and Goodman

1957; Rahman 1999a, b; Banik et al. 2002; Barkotulla 2007; Alam et al. 2011). The

theory of Markov chain is described below by following Banik et al. (2002):

Fig. 6.1 Location of the rainfall stations
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Let X0, X1, X2, . . ., Xn, be random variables distributed identically and taking

only two values, namely 0 and 1, with probability one, i.e.,

Xn ¼ 0 if the nth week is dry

1 if the nth week is wet

�

Fig. 6.2 Digital elevation model of the study area
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Firstly, it is assumed that,

P Xnþ1 ¼ xnþ1

��Xn ¼ xn,Xn�1 ¼ xn�1� � �X0 ¼ x0
� �

¼ P Xnþ1 ¼ xnþ1

��Xn ¼ xn
� � ð6:1Þ

where x0, x1, . . ., xn + 1 ∈ {0,1}.

In other words, the probability of wetness of any week depends on whether the

previous week was wet or dry. Given the event on the previous week, the proba-

bility of wetness is assumed independent of further preceding weeks. So, the

stochastic process {Xn, n ¼ 0, 1, 2, . . .} is a Markov chain.

Considering the following transition matrix

P00 P01

P10 P11

� �

where Pij ¼ P(X1 ¼ jjX0 ¼ i), i, j ¼ 0, 1, P00 + P01 ¼ 1 and P10 + P11 ¼ 1.

Let p ¼ P(X0 ¼ 1). Here p is the absolute probability of a week being wet

during the monsoon period. Clearly, P(X0 ¼ 0) ¼ 1 � p.
For a stationary distribution,

1� p p½ � P00 P01

P10 P11

� �
1� p p½ � ð6:2Þ

which gives

p ¼ P01

1� P11 � P01ð Þ ð6:3Þ

It is further assumed that Pij remains constant over the years. The maximum

likelihood estimates of P01 and P11 are appropriate relative functions.

A wet spell of length k is defined as a sequence of k wet weeks preceded and

followed by dry weeks. Dry spells are defined correspondingly. The probability of a

wet spell of length k, given that this week is wet, is calculated as

P W ¼ kð Þ ¼ 1� P11ð ÞP11
k�1

The probability of wet sequences with length greater than k is

P W > Kð Þ ¼
X1

t¼kþ1

P W ¼ tð Þ ¼ P11
k ð6:4Þ

Similarly, the probability of a dry spell of length m is

P D ¼ mð Þ ¼ 1� P01ð ÞP01
m�1
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And the probability of dry sequences with length greater than m is

P D > mð Þ ¼ 1� P01ð Þm ð6:5Þ

Let Y be a random variable such that Y ¼ the number of wet weeks among an

n weeks period, i.e.,

Y ¼ X0 þ X1 þ � � � þ Xn�1

For a large n, Y follows a normal distribution with

Mean ¼ n� p ð6:6Þ

P11 gives the probability of a week to be wet given that the previous week was wet

too. When P11 is large, the chance of wet weeks is also large. But a small P11 may

not indicate high drought proneness. In this case, a large P01 implies a large number

of short wet spells which can prevent the occurrence of drought.

Hence, an index of drought proneness may be defined as

DI ¼ P11 � P01 ð6:7Þ

This index of drought proneness is bounded by 0 and 1. The higher the value of

DI, the lower the degree of drought proneness. The extent of drought proneness is

given in Table 6.1 (Banik et al. 2002).

6.2.3 Test of Null Hypothesis

Hypothesis testing arises for Markov chains just as it does for independent pro-

cesses. The theory of hypothesis testing described below follows Medhi (1994):

Consider a time homogeneous Markov chain with a finite number, m, of states
(1, 2, . . ., m) and having a transitional probability matrix P ¼ (Pjk), j, k ¼ 1, 2, . . .,
m. Suppose that the number of observed direct transitions from the state j to the state
k is njk, and that the total number of observations is (N + 1), then we can put

Xm

k¼1

njk ¼ nj and
Xm

j¼1

njk ¼ nk, j, k ¼ 1, 2, . . . ,m

Table 6.1 Index of drought

proneness
Criteria Degree of drought proneness

0.000 � DI � 0.125 Chronic

0.125 < DI � 0.180 Severe

0.180 < DI � 0.235 Moderate

0.235 < DI � 0.310 Mild

0.310 < DI � 1.000 Occasional
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Suppose the observation comes from aMarkov chain with a given transition, i.e.,

matrix P0 ¼ (P0
jk) then t the null hypothesis is

H0 : P ¼ P0

For a large N, the test statistic is given as

Xm

k¼1

nj Pjk � P0
jk

� 	2

P0
jk

, j ¼ 1, 2, . . . ,m ð6:8Þ

which is distributed as χ² with df (degrees of freedom) of m � 1. Here, P0
jk is

excluded when it equals to 0. Alternatively, a test for all Pjk can be obtained by

calculating,

Xm

j¼1

Xm

k¼1

nj Pjk � P0
jk

� 	2

P0
jk

ð6:9Þ

which has an asymptotic χ2 distribution with m(m � 1) df ( the number of df being

reduced by the number of P0
jk which equals to 0, if any for j, k ¼ 1, 2, 3, . . ., m).

The likelihood ratio criterion for H0 is given by

λ ¼
Y

j

Y

k

Pjk

P0
jk

 !njk

ð6:10Þ

Under the null hypothesis, the test statistic

�2logλ ¼ 2
X

j

X

k

njklog
njk

nj
� �

P0
jk

ð6:11Þ

has an asymptotic χ2 distribution with m(m � 1) df

Here njk is the number of observed direct transition from state j to state k and P0
jk

is the probability of transition from state j to k under null hypothesis.

6.2.4 Mapping the Spatial Extent of Agricultural Drought

Inverse distance weighted (IDW) interpolation was used for mapping the spatial

extent of agricultural droughts, which is expressed as

Ẑ s0ð Þ ¼
XN

i¼1

λiZ sið Þ ð6:12Þ
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where

Ẑ s0ð Þ ¼ The drought index value to be predicted for location s0

N ¼ the number of the measured sample points (rainfall stations in this case)

surrounding the prediction location

λi ¼ the weight assigned to the measured point i which decreases with distance

from the prediction location

Z(si) ¼ the measured drought index value at location si

As the IDW is chosen to predict spatial variations of agricultural drought, cross

validation is essential to validate critical parameters that could affect the interpo-

lation accuracy of drought index. In this case, a value was evaluated for optimal

parameters. This ensures the overall utility of the IDW models and enables optimal

data prediction that is comparable to the observed data.

The IDW surface calculation depends on the selection of a power parameter ( p)
and neighborhood search strategy. In this study, the root mean squared prediction

error (RMSPE) was adopted to assess the IDW models performances. The best

IDW model has the lowest RMSPE with mean error (ME) nearest 0 (Johnston

et al. 2001). In the present study Geostatistical Analyst tool of Arc Map 9.3 was

used to find the optimal powers of the IDW which produce minimum RMSPE and

mean prediction error.

6.3 Results and Discussion

The daily rainfall data from1971 to 2010 of the 12 rainfall stationswere obtained from

BangladeshWater Development Board. The daily data were converted to weekly data

because week is close to the optimum period for agriculture (Banik et al. 2002). As a

Markov chain model is a threshold-based model, 20mmweekly rainfall is considered

as the threshold value on the basis of the findings of Alam et al. (2012a). Moreover,

13 and 21 standard weeks were considered for the Pre-Kharif and Kharif seasons,

respectively. In order to find out the yearly drought scenario of Barind Tract,

12 months drought has also been calculated using 52 standard weeks.

6.3.1 Temporal and Spatial Characteristics of Agricultural
Drought

The time series of agricultural drought occurrence is given in Fig. 6.3. Figure 6.3a

indicated that during the Pre-Kharif growing season almost all years were affected

by chronic to moderate agricultural drought. Although the severity of drought

varies from year to year, the occurrence of chronic drought was more frequent
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during the period of 1991–1999. On contrast, the occurrence of the Kharif agricul-

tural drought was less frequent.

During 1971–2010 around 5–6 Kharif agricultural droughts occurred in the area

(Fig. 6.3b). As these drought indexes were calculated on the basis of the average data

of the rainfall stations, they are not representative to some areas where chronic

droughts occurred almost every year. Indeed the Kharif droughts also occur every

year in some places in the Barind region. In addition, the Kharif agricultural droughts
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Fig. 6.3 Time series of average agricultural drought index (a) Pre-Kharif season (b) Kharif

season (c) over a 12-month period
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were more frequent during the late 1990s, and after 2006 there were four consecutive

drought events observed during this season. The 12 months drought indexes are given

in Fig. 6.3c. It depicts that severe to moderate droughts occurred every year in the

Barind region. Similar to the Kharif season, there were four consecutive chronic

drought events observed during 2006–2010. This is because most of the rainfall in

the Barind region occurs during the Kharif season. The Kharif season drought index

primarily determines the occurrence of drought in a 12-month period.

The study also tried to understand the spatial distribution of the major drought

events in the Pre-Kharif and Kharif seasons as well as over 12 months periods. The

spatial distributions of the most important Pre-Kharif drought events every year is

shown in Fig. 6.4. During this growing season, chronic droughts occur almost every

year in some parts of the study area. From Fig. 6.4 it is evident that during 1971–2010

there were at least 5 years (1972, 1979, 1995, 2005, and 2008) when the entire study

area was affected by chronic droughts, resulted from very low rainfall (almost 0) and

high temperature which influenced the moisture holding capacity of soil (Alam 2010).

The chronic agricultural droughts during the Pre-Kharif growing season increased

the groundwater irrigation demand inBoro rice fields which share almost 70% of the

total rice production of Bangladesh. But in the Barind region, the lack of rain or

chronic droughts compelled farmers not to seed their Boro rice. Moreover, around

85 % of the land remained fallow during this season in the Barind region

(Alam et al. 2011; Saadat et al. 2009).

During the Kharif growing season, nine major drought years were identified

during the period of 1971–2010. Among these, four drought years were identified

during the last decade of the twentieth century (Fig. 6.5). A large variation is also

observed in the spatial extent of these drought events. In 1982, around 32 % of the

area was affected by moderate droughts and the drought severity was higher in the

central part compared to other parts of the study area (Fig. 6.5). However, in 1994

the percentage of the moderately affected area is reduced to around 4 % and most

severe drought events shifted from the central part to the central eastern part

(Fig. 6.5). Among the Kharif drought events, in 2010 around 6 and 30 % of the

area was affected by chronic and severe droughts, respectively (Fig. 6.5), and the

northern part of the area was hardest hit. Along with these, in 1997, 1999, and 2009

the drought severity was higher in the western corner. These imply that the Kharif

agricultural droughts may affect any place in the area in any year. The results of

these drought events are also in line with the global patterns (Shahid and Behrawan

2008). It is well known that the last decade of the twentieth century was the driest in

the last 100 years. The agricultural droughts of 1994 led to a decrease in rice and

wheat production by 3.59 � 106 tons (Shahid 2008 and Shahid and Behrawan

2008). Moreover, Dey et al. (2011) marked 1994 as the driest year in the contem-

porary period which had devastating impacts on the northwestern part of Bangla-

desh. The drought events of 1997 produced a shortfall of one million tons of food

grains, of which 0.6 million tons were T. aman (Ramsey et al. 2007). Ramsey

et al. (2007) also confirmed that around 2.32 million hectares of T. aman rice crops

were damaged due to agricultural droughts every year in Bangladesh. On the other

hand, Alam et al. (2011) and Rahman (2000) indicate this amount is 0.574–1.748
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Fig. 6.4 Major agricultural drought events in the Pre-Kharif season
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millions of hectares. Therefore it can be concluded that the results of these drought

indexes are in line with historical drought events of the country.

The 12 months period drought index is calculated for the period from January to

December. The major 12 months drought events are given in Fig. 6.6, which shows

that drought may occur in any place of the Barind region. During the 12 months

period, the agricultural drought does not follow any regular pattern. In 1972 the

whole study area was affected by chronic droughts except the north eastern and

north western corners. In 1974 the chronic droughts affected only the southern part.

Fig. 6.5 Major agricultural drought events in the Kharif season
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Fig. 6.6 Major agricultural drought events in 12 months period
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On the contrary in 1996 the drought severity was higher in the northern Barind

region (Fig. 6.6). The most severe consecutive drought years were observed during

2009 and 2010. The spatial distribution of drought in 2009 indicates that almost the

whole study area except a small northern portion was affected by chronic droughts

and in 2010 the whole study area experienced chronic droughts.

6.3.2 Probability of Wet Spell

As the soil moisture storage of the area depends on rainfall, an analysis of the

probability of wet spell is carried out to predict the water holding capacity of the

soil (Rahman et al. 2012). According to Banik et al. (2002) and Alam (2010), it is

necessary to have 10–12 wet weeks for better crop production. Equation (6.4) was

used to calculate the probability of wet spell. It is evident from Fig. 6.7a that the

average probability of a wet spell of 5 or more weeks during the Pre-Kharif season

approaches 0 at all rainfall stations. In Godagari station the probability of consec-

utive 4 or more wet weeks tends to 0 (Fig. 6.7a). Therefore, cropping is quite

impossible without artificial irrigation during this season. In the Kharif season, the

probability of a wet spell of longer than 5 weeks is close to 0. This result validates

the statement of Saadat et al. (2009) that the most devastating drought occurred

during this season because farmers totally depend on rain to sow their seeds.

A small amount of rainfall (more than the threshold value) may be hindering to

identify severe droughts in the Kharif season, but the very low probability of wet

spell indicates that the area may be affected by future chronic to severe droughts.

To find out a suitable time for crop growing, the probability of annual wet spells

was calculated. This probability suggests low chances of more than 5 consecutive

wet weeks (Fig. 6.7c) and recommends the necessity of irrigation for better

cropping in this region.

6.3.3 Relative Frequency of Occurrence of Agricultural
Drought

The frequency analysis is commonly used in meteorology and hydrology to assess

the return period of a particular event. The percentage of drought occurrence is

computed by taking the ratio of agricultural drought occurrence in each season to the

total agricultural drought occurrence in the same season for different drought

categories. From Table 6.2 it can be noticed that in Chapai Nawabganj station the

frequencies of chronic drought in the Pre-Kharif and Kharif seasons and over

12 months are 67.5 %, 0 %, and 52.5 %, respectively. This suggests that in the

Pre-Kharif season the chronic drought may occur around three times in the 4 years

duration, while as a 12-month event, the return period of chronic drought is 2 years.
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The frequency analysis of different categories of drought suggests that the occur-

rence of chronic drought is higher in the Pre-Kharif season, but during the Kharif

season, the return period of moderate drought is shorter.Meanwhile, severe droughts

more frequently affected the study area when considered as 12 months events.

6.3.4 Result of Hypothesis Testing

Hypothesis testing is an important requirement for running any statistical model. In

the present study, a null hypothesis was tested against seasonal and annual wet and

dry spells in every year using χ2 test. The test of null hypothesis that the chain is of
order 0 against the alternative hypothesis that is of order 1 is given in the Table 6.3.

Table 6.2 Relative frequency of occurrences (%) of agricultural drought at different rainfall

stations of Barind in different seasons

Name of the station

Pre-Kharif Kharif 12 months period

C S M C S M C S M

Chapai Nawabganj 67.5 17.5 10 0 2.5 17.5 52.5 32.5 10

Godagari 75 10 7.5 0 10 10 35 40 20

Nachole 77.5 5 10 2.5 7.5 12.5 42.5 45 7.5

Nithpur 65 25 2.5 2.5 5 7.5 35 45 12.5

Badalgachi 47.5 27.5 15 0 2.5 12.5 22.5 52.5 17.5

Manda 75 12.5 5 0 5 2.5 35 52.5 5

Mohadevpur 57.5 20 12.5 0 5 5 30 47.5 12.5

Bholahat 80 7.5 5 2.5 5 7.5 42.5 40 10

Nazirpur 72.5 12.5 7.5 2.5 2.5 5 32.5 55 2.5

Rohanpur 82.5 10 2.5 5 0 2.5 25 65 5

Shibganj 82.5 10 5 7.5 2.5 7.5 47.5 42.5 5

Tanore 57.5 22.5 5 0 2.5 7.5 57.5 32.5 2.5

C chronic drought, S severe drought, M moderate drought

Table 6.3 χ2 test for
reliability of the occurrence

and nonoccurrence rainfall

recorded at different weather

stations of BWDB at Barind

region during 1971–2010

Stations

Value of �2log λ

Pre-Kharif Kharif 12 months period

Chapai Nawabganj 13.21 7.00 17.77

Godagari 5.51 8.18 5.5

Nachole 24.57 6.7 24.57

Nithpur 19.45 6.19 19.45

Badalgachi 16.23 7.84 16.23

Manda 16.95 6.62 9.45

Mohadevpur 27.96 8.79 27.96

Bholahat 17.18 19.27 17.18

Nazirpur 16.94 23.28 16.94

Shibganj 3.98 13.22 3.98

Tanore 14.85 13.41 14.85

Rohanpur 10.45 9.26 10.46
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The χ value of the transition matrix in all the rainfall stations being very small

(χ2 ¼ 0.00393 at 1 df at 5 % level) indicating the null hypothesis that chain of order

0 is rejected. Therefore, it can be said that the performance of the model is

statistically satisfactory.

6.4 Conclusions

In the present study, seasonal and annual drought indexes of the Barind region

of Bangladesh were calculated. Chronic droughts were found to occur in the

Pre-Kharif season and farmers abstain from seeding. In the Kharif season good

crops may grow depending on the blessing of adequate rain in time. Also moderate

droughts were found to be more frequent during the Kharif growing season. A long-

term probability calculation suggests that the area is potentially prone to future

chronic and severe droughts. The modeling method can be replicated by consider-

ing crop diversity and various crop growing periods in different seasons under

prevailing agroclimatic conditions. The outcome of this study might be helpful

for the agricultural planners and irrigation engineers in operational responses to

agricultural drought risk reduction in Bangladesh.
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Chapter 7

Forecasting Tropical Cyclones

in Bangladesh: AMarkov Renewal Approach

Md. Asaduzzaman and A.H.M. Mahbub Latif

Abstract Bangladesh frequently suffers from tropical cyclones possibly due to

its unique location. The funnel-shaped northern part of the Bay of Bengal causes

tidal bores when cyclones make landfall. These tropical cyclones can be very

devastating and can severely affect the coastline of Bangladesh. In this study

we analyzed 135 tropical cyclones occurred in Bangladesh during 1877–2009

considering the physical characteristics of the storm surge process. For analyz-

ing the storm surge process, a Markov renewal model that takes into account

both the sojourn times and the transitions between different types of cyclones

simultaneously was considered. Exponential distribution for the sojourn times

was assumed to derive the probabilities of occurrence of different types of

cyclones for various lengths of time intervals. Given the type of the last cyclone

occurred probabilities of occurrence of the next cyclone are reported using

the fitted Markov renewal model. The mean recurrence times of different

type of cyclones were also calculated assuming ergodicity of the Markov

renewal process.

Keywords Cyclone prediction • Semi-Markov process • Non-Poisson process

• Stationary process

7.1 Introduction

Bangladesh is a low-lying, riverine country located between 20.30� and 26.38�

north latitude and 88.04� and 92.44� east longitude. The country is formed by a

delta plain at the confluence of the Ganges (Padma), Brahmaputra (Jamuna), and
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Meghna rivers and their tributaries. Bangladesh has a tropical monsoon climate

characterized by heavy seasonal rainfall, high temperatures, and high humidity.

Natural disasters such as tropical cyclones affect the country very frequently,

and the country is highly vulnerable to tropical cyclones and associated storm

surges because of its 440-mile long coastline.

Over the years Bangladesh experienced a number of tropical cyclones and the

one that struck on November 11, 1970 is considered as the world’s deadliest

tropical cyclone ever recorded (equivalent to a strong category 3 hurricane),

where more than half a million people lost their lives as a result of the storm

surge that flooded much of the low-lying islands of the Ganges Delta. The 1991

cyclone, struck the southeastern part of Bangladesh, is considered as the second

deadliest that forced a 6 m storm surge inland over a wide area, killing about

140 thousand people and leaving as many as 10 million people homeless. Recently

two devastating tropical cyclones Sidr in 2007 and Aila in 2009 struck the southern
part of Bangladesh that took 4,234 and 190 human lives, and caused about USD

2.3 and 0.27 million property damage, respectively (Centre for Research on the

Epidemiology of Disasters).

Although a good number of studies have been carried out on the Bay of Bengal

cyclones, a few of them have focused on the Bangladesh coast. Among these studies

both the climatological (Rai Sircar 1956; Mooley 1980) and statistical

(Raghavendra 1973) analyses of the cyclones have been performed. Emphasizing

on the tropical cyclones in Bangladesh, some mitigative measures of storm surges

were studied by Khalil (1992), vulnerability by Haque and Blair (1992) and Ali

(1996), and warning process by Haque (1995). However, these studies mainly

concentrated on frequency, vulnerability, and climatological analyses of the

cyclones. Using numerical simulation models of tropical cyclones, Dube

et al. (1985, 1986) and Sinha et al. (1986) studied storm surges in Bangladesh

coastline while Murty et al. (1986) in the Bay of Bengal. As-Salek and Yasuda

(1995) proposed a numerical simulation model for the prediction of the storm

surges incorporating the effects of islands and the bathymetrical details, and the

effects of island, the sea level rises and the bottom level changes on storm surges

were also investigated. Considering the stochastic occurrence pattern, Mooley

(1981) proposed a Poisson model for severe cyclones that struck around the Bay

of Bengal during 1877–1977. Among recent works, studies by Alam et al. (2003)

and Islam and Peterson (2009) are notable, where Alam et al. (2003) analyzed on

the frequency of landfalling Bay of Bengal cyclones over a period of data from

1974 to 1999. Islam and Peterson (2009) performed a comprehensive climatolog-

ical analysis on the landfalling Bay of Bengal cyclones, where the coastal region of

Bangladesh is divided into five segments, and landfalling cyclones and vulnerabil-

ity were compared among the coastal segments. Variations on year-to-year and pre-

and post-monsoon occurrence of landfalling tropical cyclones in Bangladesh have

also been reported. Although several studies on cyclones of Bangladesh have been

carried out but main concentration has been given on the frequency analysis
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describing the occurrence, types, nature, and damages of the cyclones occurred in

Bangladesh.

Stochastic counting process models are common in forecasting natural disas-

ters and have recently been proved as an important tool to analyze occurrence of

such events, for instance, earthquake (Ogata 1988, 1998; Alvarez 2005;

Garavaglia and Pavani 2011), drought (Gupta and Duckstein 1975), flood

(Fiorentino et al. 1984; Lardet and Obled 1994), and storm (Jagger et al. 2002;

Lu and Garrido 2005; Rumpf et al. 2007). In this study, a Markov renewal model

is developed to forecast tropical landfalling cyclones in Bangladesh considering

the inter-occurrence times and types of cyclones. In more details, this chapter is

organized as follows: the data sources and description are given in Sect. 7.2, and

the mathematical models are described in Sect. 7.3. Section “Results and Discus-

sion” contains results on the fit of the proposed model, and some final remarks are

given in section “Conclusion.”

7.2 Data Sources and Description

The data for this study have been collected from two separate sources. Data

on 115 cyclones that struck the coastal areas of Bangladesh during the period

1877–2003 have been taken from Islam and Peterson (2009), where the data were

obtained from (1) the Global Tropical Cyclone Climatic Atlas (GTCCA), validated

by the hurricane database of the Unisys Corporation, and (2) Center for Research

on the Epidemiology of Disasters (CRED). The data contain information mainly

on occurrence date, place, and historical tracks of tropical cyclones that hit Ban-

gladesh during 1877–2003. Data on 10 cyclones of the recent years 2003–2009 are

obtained from the CRED, where the date, place, causalities of the cyclones

are available. Therefore, date of cyclone occurrence and the place of the landfall

are available for a total of 125 cyclones that struck Bangladesh coast during

1877–2009. The cyclones are classified into three categories depending on the

wind speed, which are tropical depression (TD), tropical storm (TS), and hurricane

(HU). Table 7.1 shows the classification of the 125 cyclones, of which 40 were

tropical depressions (TDs), 52 were tropical storms (TSs), and the remaining

33 were hurricanes (HUs).

Table 7.1 Classification

and number of land-falling

cyclones occurred

in Bangladesh during

1877–2009

Type

Wind speed

(in knot)

Number

of storms

Tropical depression (TD) 0–34 40

Tropical storm (TS) 34–63 52

Hurricane (HU) 64þ 33

Total 125
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7.3 Methods

Stochastic counting models are popular to describe processes with the random

occurrences. To model tropical cyclones in Bangladesh, we consider a Markov

renewal process (MRP) which takes into account the inter-occurrence times of

cyclones as sojourn times of the process and the types of cyclones as states of the

process. In this section, we describe an MRP with its properties, likelihood con-

struction, parameter estimation, and stationary behavior.

7.3.1 Markov Renewal Process and Its Properties

Let us consider a process called S(t) with m possible states, where m is a finite

natural number. Let J0 be the initial state at time 0, i.e., the state from the process

S(t) starts, and let X1 be the length of time the process stays at J0 before moving to

state J1 and the process stays at state J1 for a length of time X2 before moving

into state J2, and so on. The two-dimensional stochastic process in continuous

time {(Jn, Xn), n � 0} is called a positive (J-X) process. Suppose X0 ¼ 0 a.s.,

where the sequence (Jn, n � 0) gives the successive states of S in time, and the

sequence (Xn; n � 0) gives the successive sojourn times, i.e., Xn is the time spent by

S in state Jn � 1 (n > 0). The {(Jn, Xn), n � 0} is then called an MRP (Janssen and

Manca, 2007).

Let F ¼ {Fij(·), i, j ∈ E}, where E ¼ {1, . . ., m} with m ∈ N, denote a matrix

of distribution functions onℜ+ and P ¼ {Pij(·), i, j ∈ E} denote a transition matrix

on E, and a ¼ ai, i∈ E, ai > 0,
Xm

i¼1

ai ¼ 1

( )

be a probability distribution on E.

Then the two-dimensional stochastic process {(Jn, Xn), n � 0} defined on a com-

plete probability space (Ω, ℑ, P) satisfies

(i) X0 ¼ 0 a.s.

(ii) P(J0 ¼ k) ¼ ak for every k ∈ E

(iii) P Jn ¼ k,Xn � x
��J0, J1,X1, . . . , Jn�1,Xn�1

� � ¼ pJn�1,k FJn�1,k xð Þ a.s. for every
x ∈ (0, + 1) and k ∈ E

Then, clearly the process {(Jn, Xn), n � 0} is an MRP. Some of its important

properties of the process are

(a) (Jn � 1, n > 0) is an E-valued Markov chain with transition matrix P and initial

distribution a.

(b) For every n > 1, X1, X2, . . ., Xn are conditionally independent, given Jn (n > 0)

and X1 � x1,X2 � x2, . . . ,Xn � xn
��Jn, n � 0

� � ¼
Yn

i¼1

FJi�1,Ji xið Þ.
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7.3.2 Likelihood Construction and Parameter Estimation

The Markov chain (Jn, n � 0) represents the states that are successively visited

by the process and the process (Xn, n � 0) represents the successive waiting times.

In our application the states are the types of cyclone classified with respect to

their severity E, and may take three values which are tropical depression (TD),

tropical storm (TS), and hurricane (HU). The Xns are the times between successive

cyclones of the type TD, TS, or HU. If a cyclone can be classified of severity i ∈ E
and the next cyclone is of severity j ∈ E, the time between the two cyclones is a

positive random variable with distribution function Fij with the corresponding

density fij, for every i, j ¼ 1, . . ., m.
Let ( j0, j1, x1, . . ., jτ � 1, xτ � 1, xτ) be a realization of an MRP on the time

window [0, T], where τ represents the number of times the states of E are visited in

[0, T] and for the last event Jτ the sojourn time between the last event and

T is xτ considered as censored, i.e., xτ > [T � (x1 + x2 + � � � + xτ � 1)]. Then the

conditional likelihood function given J0 ¼ j0 can be expressed as

L j0ð Þ ¼
Yτ�1

i¼1

pji�1ji
f ji�1ji

xið Þ
" #

�
Xm

k¼1

pjτ�1k
1� Fjτ�1k xτð Þ� �

" #

:

Then the corresponding log-likelihood function is

l j0ð Þ ¼
Xτ�1

i¼1

ln pji�1ji
þ
Xτ�1

i¼1

ln f ji�1ji
xið Þ þ ln

Xm

k¼1

pjτ�1k
1� Fjτ�1k xτð Þ� �

" #

:

The log-likelihood function l( j0) contains two types of parameters involving the

transition probability matrix P and the distribution of sojourn times corresponding

to different transitions Fij.

A number of distributions can be assumed for sojourn time between the

cyclones and in this study exponential distribution is considered. So the probability

that sojourn time between cyclones i and j is less than or equal to x is

Fij xð Þ ¼ e�x=μij , x > 0,

where μij is the transition rate for the transition from state i to state j. Then the

likelihood equation becomes

l j0ð Þ ¼
Xτ�1

i¼0

lnpjijiþ1
�
Xτ�1

i¼1

lnμjijiþ1
�
Xτ�1

i¼0

xi=μij
� �þ ln

Xm

k¼1

pjτkexp �xτ=μjτ ,k

� �
" #

:

ð7:1Þ

The maximum likelihood estimate (MLE) of pij and μij are obtained in two

stages; in the first stage, the elements of the transition probability matrix are

estimated using the following expression
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p̂ ij ¼
# of transition from state i to state j

# of transition from state i
, ð7:2Þ

which can bederived by considering the data ondifferent transitions over the period [0,

T] as a sample from a multinomial distribution. In the second stage, the estimates p̂ ij

are plugged into the conditional log-likelihood functions, which becomes only

a function of μij and thenmaximizing the likelihood functionMLEof μijs are obtained.

7.3.3 Cross-State Prediction

One of the objectives of this work is to predict of the state of the next event

being known the state of the last event and the time passed by the last occurred

event. The probability that the cyclone k will occur after t* time of the last

event i occurred at t0 can be calculated as

P t�, k
�� t0, i

� � ¼ Fik t0 þ t�ð Þ � Fik t0ð Þ½ 	pikX

i, j∈E

1� Fij t0ð Þ� �
pij

: ð7:3Þ

7.3.4 Asymptotic Behavior: Mean Recurrence Time

If we assume that the Markov chain is ergodic, i.e., the states are non-null

recurrent and aperiodic, then it will have a unique stationary distribution. For

stationary Markov chains, the mean recurrence time exists and it can be defined

as the expected number of steps to return to the same state where it started from.

For an MRP, the mean recurrence time of a state can be given as

αi ¼ 1

πi

X

k

πkηk, ð7:4Þ

where ηi ¼
Xm

j¼1

pijμij and πi ¼ π1; . . . ; πmð Þ is the unique stationary distribution

of the Markov chain (Jn, n � 0).

7.4 Results and Discussion

The main objective of this study is to predict the next cyclone based on the historic

data as described in Sect. 7.2. We have information on 125 cyclones occurred in

Bangladesh coast during 1877–2009, which were categorized as tropical depression

(TD), tropical storm (TS), and hurricane (HU). The sojourn times between two

successive cyclones are calculated from the data. Based on the types of cyclones
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and their sojourn times, we develop a Markov renewal model for predicting the

probability of future cyclones in Bangladesh. Three conjectures are assumed for

fitting the MRP, which are

1. Cyclones occur according to a renewal process.

2. Severity of cyclone is a discrete random variable, and constitutes a homo-

geneous Markov chain.

3. The longer is the waiting time for transition from a state to another state the

higher is the probability that the transition happens.

To construct the Markov chain of the MRP, the three different states tropical

depression (TD), tropical storm (TS), and hurricane (HU) are considered and the

parameters involving the transition probability matrix are estimated using Eq. (7.2).

Estimated transition probabilities corresponding to the number of transitions are

given in Table 7.2, which show that the tropical storms are more likely to hit

Bangladesh coast irrespective of the immediate last event.

A Markov renewal model also requires specifying the distributions of sojourn

times for different transitions and it is extremely important to choose an appropriate

distribution of sojourn time because it corresponds to the physical properties of the

data taken under consideration. In this study, exponential distribution, the most

commonly used distribution for sojourn time, has been chosen for the distribution of

sojourn times. Figure 7.1 shows the histogram of the sojourn times of 125 cyclones,

which indicates that an exponential distribution of sojourn times is reasonable.

Table 7.2 Estimate of

different transition

probabilities (the number

of transitions is given

in parenthesis)

TD TS HU

TD 0.375 (15) 0.450 (18) 0.175 (7)

TS 0.308 (16) 0.404 (21) 0.288 (15)

HU 0.250 (8) 0.406 (13) 0.344 (11)

Fig. 7.1 Histogram

of inter-event times
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Now assuming that sojourn times for different transition follow exponential

distribution the sojourn time parameters are estimated by the maximum

likelihood method. Table 7.3 shows the estimated mean sojourn times for differ-

ent transitions which are obtained by maximizing the conditional log-likelihood

function in Eq. (7.1) given the estimates of the transition probability matrix

in Table 7.2.

Figure 7.2 compares the empirical distribution function (step-function) with the

fit (dotted line) under exponential distributions for the sojourn time for different

types of transitions. As the fitted line is very close to the empirical line, it can be

concluded that the exponential distribution fits the data reasonably well.

Table 7.3 Estimated

mean sojourn times for

different transitions

TD TS HU

TD 14.43 18.81 12.16

TS 13.12 8.40 11.66

HU 17.68 11.26 10.61

Fig. 7.2 Comparison between empirical (step-function) and estimated (solid line) distributions of
the sojourn time of cyclone data
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Table 7.4 shows the estimated probability that the next cyclone will be the

type i, given the last cyclone was of type j for i, j ¼ {TD, TS, HU}. The predicted

probability of experiencing a transition of the type TD to TS, TS to TS, and HU to

TS within 1 year is 0.2122, 0.3071, and 0.2663, respectively. That is, immediately

after the last event the chance of occurrence of a TS is the highest within the

next 12 month period irrespective of the type of the last event. The pattern of

forecast probabilities remains the same for all t* years. So, if no time is elapsed the

probability of occurrence of a TS is the highest. With t0 ¼ 1 year the likelihood

of occurrence of a TS is 0.2405, 0.3676, 0.4347, 0.4702, 0.4889, respectively, given

that the last state was a TD. When t0 ¼ 2 and t* ¼ 1, the probability of occurrence

of a TD is 0.2706 which is higher than TS and HU if the last state was a TS.

As the chance of occurrence of a hurricane is one of our main interests, we reveal

some important patterns from Table 7.4. Firstly the likelihood of occurring a

hurricane (HU) is higher than a TS and TD immediately after a hurricane level

cyclone, i.e., with t0 ¼ 0. Secondly the chance of an HU is higher if the last

cyclone is a tropical storm for t0 ¼ 1 and 2.

In Bangladesh the last cyclone occurred in the year 2009, which was a

hurricane level cyclone (HU), it may be interesting to see the prediction probability

for the next event. Table 7.5 gives the predicted probability that the next cyclone

will be a TD, TS, or HU after t* years given that about a period of 3 years and a

quarter has elapsed (t0 ¼ 3.25). Within next 1 year period, the probability of

occurrence of a TD is the highest 0.2771 given that the last event occurred was

a hurricane (HU). The corresponding probabilities of occurring a TS or an HU are

0.1703 and 0.1204. The chances of occurrences of TD, TS, and HU increased

consistently as t* increases. Hence, based on the evidence we have the chance of

the next cyclone will be a TD is the highest (Fig. 7.3).

Table 7.4 Probability of occurrence of next event of given a state, conditioned to a given state of

last event occurred, evaluated for different t* and different t0

TD-TD TD-TS TD-HU TS-TD TS-TS TS-HU HU-TD HU-TS HU-HU

0 year 1 year 0.2117 0.2122 0.1098 0.1844 0.3071 0.1854 0.1232 0.2663 0.2328

2 year 0.3039 0.3244 0.1507 0.2583 0.3807 0.2516 0.1857 0.3580 0.3080

3 year 0.3441 0.3836 0.1659 0.2879 0.3983 0.2753 0.2174 0.3896 0.3322

4 year 0.3615 0.4149 0.1716 0.2998 0.4025 0.2838 0.2334 0.4005 0.3400

5 year 0.3691 0.4315 0.1737 0.3045 0.4035 0.2868 0.2416 0.4043 0.3425

1 year 1 year 0.1977 0.2405 0.0878 0.2287 0.2277 0.2050 0.1654 0.2429 0.1989

2 year 0.2838 0.3676 0.1205 0.3203 0.2823 0.2782 0.2494 0.3266 0.2631

3 year 0.3213 0.4347 0.1327 0.3570 0.2954 0.3044 0.2919 0.3554 0.2838

4 year 0.3376 0.4702 0.1372 0.3717 0.2985 0.3138 0.3135 0.3653 0.2905

5 year 0.3447 0.4889 0.1389 0.3776 0.2993 0.3171 0.3245 0.3687 0.2927

2 year 1 year 0.1816 0.2681 0.0690 0.2706 0.1612 0.2163 0.2137 0.2130 0.1635

2 year 0.2606 0.4097 0.0947 0.3790 0.1998 0.2936 0.3221 0.2864 0.2162

3 year 0.2950 0.4846 0.1043 0.4224 0.2091 0.3212 0.3771 0.3117 0.2332

4 year 0.3100 0.5241 0.1079 0.4398 0.2113 0.3311 0.4050 0.3204 0.2387

5 year 0.3165 0.5450 0.1092 0.4468 0.2118 0.3346 0.4191 0.3234 0.2405
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In storm risk analysis, the mean recurrence time plays an important role in

terms of the probabilistic hazard assessment. If we assume that the MRP is

ergodic, then it is possible to calculate the mean recurrence times of each state.

We calculate the mean recurrence times for each type of cyclones (TD/TS/HU)

using the fitted Markov renewal model, and the results are presented in Table 7.6.

The calculated the mean recurrence times are 3.44, 2.57, and 4.02 years for a

tropical depression, a tropical storm, and a hurricane, respectively. These results

imply that in the long run tropical storms occur more frequently than tropical

depressions and hurricanes with an average period of 2.57 years.

Fig. 7.3 Probability of

occurring a TD, TS, and HU

given that last event is HU

against time in months

Table 7.5 Probability of

occurrence of next event

of given a state, conditioned

to a given state of last event

occurred (HU), evaluated

for different t* with

t ¼ 3.25 years

Predicted probability

t* HU-TD HU-TS HU-HU

1 year 0.2771 0.1703 0.1204

2 year 0.4177 0.2290 0.1593

3 year 0.4890 0.2492 0.1718

4 year 0.5251 0.2562 0.1759

5 year 0.5435 0.2586 0.1772

Table 7.6 Recurrence

periods for each type

of cyclone

Types of cyclone Average recurrence period (in years)

TD 3.44

TS 2.57

HU 4.02
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7.5 Conclusion

In this study a Markov renewal model is considered for predicting tropical

cyclone occurrence for Bangladesh. A Markov chain for state transition of cyclones

and exponential inter-event times are assumed, and parameters of the model

are estimated using maximum likelihood method of estimation. A detailed inves-

tigation of the occurrence of the three types of cyclones has been performed, and

the predicted probabilities based on the model have been presented for varying

lengths of time. The model shows that the next event will be a tropical depression

with a higher probability than a tropical storm or a hurricane. We also calculated

the mean recurrence times for each type of cyclone, and the result showed that

in the long run tropical storms will occur more frequently. These conclusions of

the study could be helpful in increasing awareness about the tropical cyclones in

Bangladesh.

References

Alam M, Hossain MA, Shafee S (2003) Frequency of Bay of Bengal cyclonic storms and

depressions crossing different coastal zones. Int J Climatol 23:1119–1125

Ali A (1996) Vulnerability of Bangladesh to climate change and sea level rise through tropical

cyclones and storm surges. Water Air Soil Pollut 92(1):171–179

Alvarez E (2005) Estimation in stationary Markov renewal processes, with application to earth-

quake forecasting in Turkey. Methodol Comput Appl Probab 7(1):119–130

As-Salek JA, Yasuda T (1995) Comparative study of the storm surge models proposed for

Bangladesh: last developments and research needs. J Wind Eng Ind Aerodyn 54–55:595–610

Dube S, Sinha P, Roy G (1985) The numerical simulation of storm surges along the Bangladesh

coast. Dyn Atmos Oceans 9(2):121–133

Dube S, Sinha P, Roy G (1986) Numerical simulation of storm surges in Bangladesh using a

bay-river coupled model. Coast Eng 10(1):85–101

Fiorentino M, Versace P, Rossi F (1984) Two component extreme value distribution for flood

frequency analysis. Water Resour Res 20(7):847–856

Garavaglia E, Pavani R (2011) About earthquake forecasting by Markov renewal processes.

Methodol Comput Appl Probab 13(1):155–169

Gupta V, Duckstein L (1975) A stochastic analysis of extreme droughts. Water Resour Res 11(2):

221–228

Haque C (1995) Climatic hazards warning process in Bangladesh: experience of, and lessons from,

the 1991 April cyclone. Environ Manag 19(5):719–734

Haque C, Blair D (1992) Vulnerability to tropical cyclones: evidence from the April 1991 cyclone

in coastal Bangladesh. Disasters 16(3):217–229

Islam T, Peterson R (2009) Climatology of landfalling tropical cyclones in Bangladesh 1877–2003.

Nat Hazards 48(1):115–135

Jagger T, Niu X, Elsner J (2002) A space-time model for seasonal hurricane prediction. Int J

Climatol 22(4):451–465

Janssen J, Manca R (2007) Semi-Markov risk models for finance, insurance and reliability.

Springer, New York

Khalil G (1992) Cyclones and storm surges in Bangladesh: some mitigative measures. Nat Hazards

6(1):11–24

7 Forecasting Tropical Cyclones in Bangladesh: A Markov Renewal Approach 139



Lardet P, Obled C (1994) Real-time flood forecasting using a stochastic rainfall generator.

J Hydrol 162(3–4):391–408

Lu Y, Garrido J (2005) Doubly periodic non-homogeneous Poisson models for hurricane data.

Stat Methodol 2(1):17–35

Mooley DA (1980) Severe cyclonic storms in the Bay of Bengal, 1877–1977. Mon Weather Rev

108:1647–1655

Mooley D (1981) Applicability of the Poisson probability model to the severe cyclonic storms

striking the coast around the Bay of Bengal. Sankhya Indian J Stat Ser B 43(2):187–197

Murty TS, Flather RA, Henry RF (1986) The storm surge problem in the Bay of Bengal. Prog

Oceanogr 16(4):195–233

Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point

processes. J Am Stat Assoc 83(401):9–27

Ogata Y (1998) Space-time point-process models for earthquake occurrences. Ann Inst Stat Math

50(2):379–402

Raghavendra VK (1973) A statistical analysis of the number of tropical storms and depressions in

the Bay of Bengal during 1890–1969. Indian J Meteorol Geophys 24:125–130

Rai Sircar NC (1956) A climatological study of storms and depressions in the Bay of Bengal.

Indian J Meteorol Geophys 7:157–160

Rumpf J, Weindl H, Hoppe P, Rauch E, Schmidt V (2007) Stochastic modelling of tropical

cyclone tracks. Math Method Oper Res 66(3):475–490

Sinha P, Dube S, Roy G, Jaggi S (1986) Numerical simulation of storm surges in Bangladesh using

a multi-level model. Int J Numer Methods Fluids 6(5):305–311

140 M. Asaduzzaman and A.H.M.M. Latif



Chapter 8

Performance of Wavelet Transform

on Models in Forecasting Climatic Variables

Md. Jahanur Rahman and Md. Al Mehedi Hasan

Abstract An attempt has been made to show whether the recently developed

wavelet transformation in forecasting the climatic time series in Bangladesh

improves the performance of existing forecasting models, such as ARIMA. These

models are applied to forecast the humidity of Rajshahi, Bangladesh. Then the

wavelet transformation has been used to decompose the humidity series into a set of

better-behaved constitutive series. These decomposed series and inverse wavelet

transformation are used as a pre-processing procedure of forecasting humidity

series using the same models in two approaches. Finally, the forecasting ability of

these two models with and without wavelet transformation is compared using the

statistical forecasting accuracy criteria. The results show that the use of wavelet

transformation as a pre-processing procedure of forecasting climatic time series

improves the performance of forecasting models. The reason is the better behavior

of the constitutive series for the filtering effect of the wavelet transform.

Keywords Wavelet transformation • ARIMA models • Forecasting

8.1 Introduction

Time series forecasting is very popular and plays an important role in various fields

such as economics, engineering, environment, and bioinformatics. The basic idea

behind time series forecasting involves the development of models that estimate the

future values of a series based on its past values. There are many forecasting models
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that have been used in the forecasting literature. The models mainly follow two

approaches: nonlinear and linear models. Nonlinear models like artificial

intelligence (AI)-based methods employing neural networks (NNs) have been

proposed by different researchers. Second type of models are linear models like

univariate autoregressive (AR), autoregressive moving average (ARMA),

autoregressive integrated moving average (ARIMA), multivariate time series

models like transfer function and dynamic regression, and generalized

autoregressive conditional heteroskedastic (GARCH) model. In order to provide

estimates for the future, these models analyze the historical data. Usually time

series are not deterministic series. In fact, in many cases the researchers considered

the series to be stationary time series. One way to model any time series is to

consider it as a deterministic function plus white noise. The white noise in any time

series process can be minimized by some procedures which are called the

de-noising. Then a better model can be obtained. Consequently, to obtain a good

de-noising, there are some mathematical models that can be applied such as Fourier

transformation (FT) and wavelet transformation (WT) (Yao et al. 2000; Strang

1993). WT seems to be ideal for time series forecasting since time information is

preserved in the transformed variables. Moreover, WT is a very effective technique

for local representation of the time series in both time and frequency domains

(Yevgeniy et al. 2005). WT is used to split up the time series into one

low-frequency subseries (approximation part) and some high-frequency subseries

(detailed part) in the wavelet domain. In models mentioned above, after appropriate

decomposition, the prediction was made in wavelet domain and then inverse WT

was applied to obtain the actual value of the predicted variable.

Wavelet transform has been used in many fields in forecasting models. Among

them Wadi et al. (2011) and Arino and Vidakovic (1995) perform wavelet trans-

form in forecasting financial time series based on ARIMA model and neural

network-based model, respectively. Rocha et al. (2010) and Henriques and Rocha

(2009) have used wavelet transform in NN model to predict acute hypotensive

episodes. Gang et al. (2008), Aggarwal et al. (2008), and Antonio et al. (2005) have

decomposed electricity price series using wavelet transformation for more efficient

forecasting based on ARIMA, artificial neural network, and regression-based tech-

niques. In most cases they decomposed the historical time series data into wavelet

domain constitutive subseries using wavelet transform, and then combined with the

other time domain variables to perform the set of input variables for the proposed

forecasting model (Conejo et al. 2005). Based on statistical analysis the behavior of

the wavelet domain constitutive series has been studied. It has been observed that

forecasting accuracy can be improved by the use of wavelet transforms in forecast-

ing models. Alrumaih and Al-Fawzan (2002) used Saudi stock index to illustrate

that wavelet transformation is better than the other forecasting technique in

predicting the de-noising of the financial time series.

Thus, the recently developed wavelet theory has proven to be a useful tool in the

time series forecasting methods in different fields. However, the potential of this

theory for analyzing and forecasting climatic time series has not been fully

exploited yet. The accurate forecasting of climatic variables in Bangladesh is an
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important issue in disaster management policy-making due to the effects of recently

happened climate change. Our objective in this chapter is to check whether the use

of the wavelet transformation as a preprocessor in forecasting climatic data

improves the predicting behavior of any forecasting model. As forecasting models,

we have used the widely used and more popular ARIMA models. Humidity of

Rajshahi, Bangladesh, is used as a climatic time series in this chapter. This is the

way the comparison is performed with and without the wavelet transform, not

across techniques. The fundamental and novel contribution of this chapter is to

use the wavelet transformation to decompose the humidity series into a set of

better-behaved constitutive series. These decomposed series and inverse wavelet

transformation are used as a pre-processing procedure of forecasting humidity

series using the same models in two approaches. Finally, the forecasting results

based on wavelet transform and ARIMA model (hereafter called Wavelet-ARIMA

model) will be compared with the forecasting values based on ARIMAmodel using

some statistical criteria.

This chapter is organized as follows. Section 8.2 gives the brief description of

the wavelet transformation. Section 8.3 provides the details of data processing and

forecasting framework using wavelet transformation. Forecasting accuracy criteria,

which are used to compare the performances of forecasting ability of the models,

are defined in Sect. 8.4. Empirical results of a case study based on performance of

wavelet transformation in forecasting humidity of Rajshahi are shown in Sect. 8.5.

Finally, Sect. 8.6 provides some relevant conclusions.

8.2 Wavelet Transformation

In this section we briefly review the discrete wavelet transform (DWT), which is the

wavelet counterpart to the discrete Fourier transform. Then we show the splitting of

a time series into cyclical components by using wavelet analysis. As in Fourier

analysis, there are continuous and discrete versions of wavelet analysis (Nason and

Silverman 1994). Since we will be dealing with discrete data sets, our focus will be

on the DWT. Good references on wavelet transformation are in Mallat (1989) and

Percival and Walden (2000).

The time series under study is independently decomposed by DWT, which is

defined as

Ψ j,k ¼ 1
ffiffiffiffi
s j0

q ψ
t� kτ0s

j
0

s j0

 !

ð8:1Þ

where the parameters j and k are integers that control, respectively, the wavelet

dilatation (scale) and translation (time). The value s0 > 1 is a fixed dilation step and

the translation factor τ0 depends on the dilation step. The most common and

simplest choice for the parameters s0 and τ0 is 2 and 1 (time steps), respectively,
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known as dyadic grid arrangement. In this case, the coefficients of DWT

decomposition are given by

Wj,k ¼ 1

2j=2

XN�1

t¼0

ytψ
t� k

2j

� �
ð8:2Þ

where theWj,k are the wavelet coefficients corresponding to the scale S ¼ 2j and the

location τ ¼ 2jk. This dyadic arrangement can be implemented by using a filter

bank scheme developed by Mallat (1989), as depicted in Fig. 8.1.

In Fig. 8.1, H[�], L[�] and H0 [�], L0 [�] are the high-pass and low-pass filters for

wavelet decomposition and reconstruction, respectively. In the decomposition

phase, the low-pass filter removes the higher frequency components of the series

and high-pass filter picks up the remaining parts. Then, the filtered series are down-

sampled by two and the results are called approximation and detail coefficients.

The major advantage of decimation is that just enough information is kept to allow

exact reconstruction of the input data. The reconstruction is just the inverse process

of the decomposition and, for perfect reconstruction by filter bank, we should have

yt ¼ y0t. Using this approach, signal can be decomposed by cascade algorithm as

shown in the following:

yt ¼ a1t þ d1t
¼ a2t þ d2t þ d1t
¼ a3t þ d3t þ d2t þ d1t

⋮
¼ ant þ dnt þ d n� 1ð Þt þ � � � þ d1t

ð8:3Þ

where dnt and ant are the detail and approximation coefficients at level n, respec-
tively. These coefficients allow for the identification of changes in the trends at

different scales.

A wavelet function of type Daubechies of order 5 and decomposition level 3 is

used in this case study (Daubechies 1992). This wavelet offers an appropriate

tradeoff between wavelength and smoothness. This results in an appropriate behav-

ior for climate series prediction. In the next section we show how to use the

decomposed series in forecasting model.

2 2

2 2

Fig. 8.1 Filter bank for discrete wavelet transformation

144 M.J. Rahman and M.A.M. Hasan



8.3 Data Processing and Forecasting Framework

In order to illustrate the effectiveness of wavelet transform in forecasting models,

the climatic data on humidity of Rajshahi, Bangladesh, is selected. The data is

collected from the website of Bangladesh Agricultural Research Council (BARC),

Ministry of Agriculture. We consider the monthly humidity series for the time

period from January 1964 to December 2008 (1964:1 to 2008:12). The data set is

divided into two sub-data sets: (1) a training set to estimate the model parameters

and (2) a test set to evaluate these models by calculating error functions. There are

540 observations in the humidity series. The first 528 observations from 1964:1 to

2007:12 are used to build the model, and the last 12 observations from 2008:1 to

2008:12 to check the forecast ability of the models.

We first need to decompose the series under study using wavelet transformation.

For this purpose, we have applied the DWT to the humidity series. Many wavelet

families exist, where Daubechies family of wavelets, which are compactly

supported orthonormal wavelets, is the most popular one and has been used in

this work. Thus, a wavelet function of type Daubechies of order 5 and decompo-

sition level 3 is used in this case study. The wavelet transform applied to climatic

series yt, t ¼ 1, 2, . . ., T results in four series denoted by d1t, d2t, d3t, and a3t and
can be defined by

yt ¼ a3t þ d3t þ d2t þ d1t ð8:4Þ

Series d1t, d2t, and d3t are denominated detail series, while a3t is denominated

approximation series. This approximation series constitutes the main component

of the transformation, while the three detail series provide “small” adjustments. A

graph of the original series and its decomposed series is shown in Fig. 8.2a, b. These

series present a better behavior (more stable variance and no outliers) than

the original humidity series and, therefore, they can be predicted more accurately.

The reason for the better behavior of the constitutive series is the filtering effect of

the wavelet transform.

We have used this decomposed series in the forecasting models in two

approaches; (1) first approach includes d2t, d3t, and a3t series in the analysis,

whereas, (2) in the second approach, all decomposed series are used in forecasting

models. Two approaches are outlined as follows.

8.3.1 Approach-1

The steps of modeling the decomposed series by Wavelet-ARIMA and Wavelet-

NN techniques are given below.

Step-11: The wavelet transformation of type Daubechies-5 and decomposition level

3 is applied to the humidity series Yt (t ¼ 1, 2, . . ., T ) for the training period 1964:1
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to 2007:12 which results in four series denoted by a3t, d3t, d2t, and d1t; t ¼ 1, 2,

. . ., T. That is,

WT yt; t ¼ 1, 2, . . . ,Tð Þ ¼ a3t, d3t, d2t, d1t; t ¼ 1, 2, . . . ,Tf g ð8:5Þ

Step-12: The decomposed series d1t contains the highest frequency components

among the others and hence is outlier prone. Therefore, series corresponding to d1t
has been discarded and only series a3t, d3t, and d2t have been used to reconstruct

the original series using inverse wavelet transformation as follows:

WT�1 a3t, d3t, d2t; t ¼ 1, 2, . . . ,Tf g ¼ y�t ; t ¼ 1, 2, . . . ,T ð8:6Þ
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Fig. 8.2 (a) Original series and approximation series over 1964:1 to 2008:12. (b) Detail series

over 1964:1 to 2008:12
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Step-13: Use the appropriate ARIMA and NN model to the reconstructed series to

forecast the future values in the test period 2008:1 to 2008:12;

y�t ; t ¼ 1, 2, . . . ,T
� ��!

ARIMA=NN
forecast

y ft ; t ¼ T þ 1, . . . ,T þ n
n o

ð8:7Þ

We call these forecasting values obtained from Wavelet-ARIMA/Wavelet-NN

model using approach-1.

8.3.2 Approach-2

The steps of modeling the decomposed series by Wavelet-ARIMA and Wavelet-

NN techniques are given below:

Step-21: The wavelet transformation of type Daubechies-5 and decomposition

level 3 is applied to the humidity series Yt (t ¼ 1, 2, . . ., T) for the full period

1964:1 to 2008:12 which results in four series denoted by a3t, d3t, d2t, and

d1t; t ¼ 1, 2, . . ., T.

WT yt; t ¼ 1, 2, . . . ,Tð Þ ¼ a3t, d3t, d2t, d1t; t ¼ 1, 2, . . . ,Tf g ð8:8Þ

Step-22: Then, specific ARIMA and NN methods are used to each one of the

constitutive series for the training period 1964:1 to 2007:12. The best fitted

model is then used to forecast its n future values in the test period which are

denoted bycd1t,cd2t,cd3t, andca3t; t ¼ T + 1, T + 2, . . ., T + n, respectively. That is,

a3t, d3t, d2t, d1t; t ¼ 1, 2, . . . ,Tf g�!
ARIMA=NN

forecast

a3 f
t , d3

f
t , d2

f
t , d1

f
t ; t ¼ T þ 1, . . . , T þ n

n o
ð8:9Þ

Step-23: Finally, we use the inverse wavelet transform to estimate the forecasting

values of the original series using the forecasting values of the constitutive series.

The inverse wavelet transform is used in turn to reconstruct the forecasting series

for original series, i.e.,

cd1t,cd2t,cd3t and ca3t
n oTþn

t¼Tþ1
�!
Inverse Wavelet

Transformation

ŷ tf gTþn
t¼Tþ1 ð8:10Þ

We call these forecasting values obtained from Wavelet-ARIMA/Wavelet-NN

model using approach-2. The forecasting performance of Wavelet-ARIMA model

is compared with the ARIMA model to forecast the original climatic series using

the forecasting accuracy criteria discussed in the next section.
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8.4 Comparison of Forecasting Performance

To assess and compare the forecasting performance of the models, three types of

forecasting accuracy criteria of the test sets data have been adopted. They are the

mean absolute error (MAE), root mean square error (RMSE), and mean absolute

percentage error (MAPE), which are defined by

MAE ¼ 1

n

XTþn

t¼Tþ1

yreal, t � yforecast, t
�� �� ð8:11Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXTþn

t¼Tþ1
yreal, t � yforecast, t
� 	2

XTþn

t¼Tþ1
yreal, t � y
� 	2

vuuut ð8:12Þ

MAPE ¼ 1

n

XTþn

t¼Tþ1

yreal, t � yforecast, t
yreal, t

����

����� 100 ð8:13Þ

where yreal,t and yforecast,t are the real and forecast data point at time t, respectively,
y is the mean of yreal,t, T is the number of observation in the trail series, and n is the
number of data points forecasted in the test series. Lower values of the criteria

imply the better forecast of the model.

8.5 Empirical Results

The main objective of this chapter is to show the forecasting performance of the time

series models using the original data and the decomposed data. The original series is

decomposed using wavelet transformation. Time series ARIMA models are used as

forecasting models. First, we use these models to the original series over the training

period to select an appropriate model. Then the selectedmodels is used to forecast the

data points of the test period. Secondly, we use thesemodels to the decomposed series

by wavelet transformation and forecast the test data as mentioned in the previous two

approaches. Finally, we compare the performance of these forecasting series using the

forecasting accuracy criteria discussed in Sect. 8.4.

8.5.1 Forecasting Based on Original Series

Here the original series over the training period is used to select the appropriate

ARIMA model. Then, the model is used to forecast the series over the test period.

Good references on ARIMA models and standard forecasting techniques are in Box

and Jenkins (1976), Pankratz (1991), and Granger and Newbold (1986).
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We have used the famous Box and Jenkins (1976) modeling philosophy for

choosing an appropriate ARIMA model for the monthly humidity series over the

period 1964:1 to 2007:12. The ARIMA(0,1,1)(0,1,1) model shows the more robust

coefficients, white-noise error, and the smallest forecasting errors among the

competitive models. The out of sample forecasting errors are calculated using the

series over the period 2008:1 to 2008:12. The model is

∇12∇1yt ¼ 1� 0:283Lð Þ
�6:73ð Þ

1� 0:953L12
� 	

εt
�80:35ð Þ

ð8:14Þ

where the operators Lk and ∇k are defined by Lkyt ¼ yt � k and ∇k ¼ 1 � Lk. The
parentheses under the model contain the value of t-statistic of each coefficient.

Monthly forecasts according to model (8.14) together with their actual values are

presented in Table 8.1. The values of out of the sample or test period forecasting

accuracy criteria MAE, RMSE, and MAPE are 0.1633, 0.2187, and 18.566, respec-

tively. Figure 8.3 shows a graph of the humidity for the period 2006:1 to 2008:12

and the forecast values of ARIMA model from 2008:1 to 2008:12 along with the

forecasting values using wavelet transformation.

We compare these forecasts with the forecasts made after decomposing the data

set with the wavelet methodology.

8.5.2 Forecasting Based on Decomposed Series Using
Wavelet Transformation

For using the Wavelet-ARIMA model to forecast, we first need to decompose the

series under study using wavelet transformation. For that purpose, we have applied

the DWT to the humidity series. A wavelet function of type Daubechies of order

Table 8.1 Original and forecasting values for the test period 2008:1 to 2008:12

Original series ARIMA

W-ARIMA

(approach-1)

W-ARIMA

(approach-2)

Jan-08 0.6 0.5362 0.5679 0.5341

Feb-08 0.6 0.5817 0.6165 0.7561

Mar-08 0.9 0.8037 0.7620 0.8652

Apr-08 0.9 1.3359 1.0557 1.0272

May-08 1.0 1.4512 1.2395 1.1695

Jun-08 1.2 1.4006 1.1891 1.1528

Jul-08 1.0 1.2856 1.1158 1.0662

Aug-08 1.0 1.0912 1.0668 0.8480

Sep-08 0.8 0.9218 0.9019 0.5884

Oct-08 0.6 0.4575 0.6098 0.4135

Nov-08 0.4 0.4183 0.4373 0.2792

Dec-08 0.5 0.5346 0.5341 0.2336
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5 and decomposition level 3 is used in this case study. The wavelet transform

applied to climatic series yt, t ¼ 1, 2, . . ., T results in four series denoted by d1t,
d2t, d3t, and a3t. Series d1t, d2t, and d3t are denominated detail series, while a3t is
denominated approximation series.

8.5.2.1 Approach-1

In approach-1, as described in Sect. 8.3.1, we have used DWT to decompose the

original series into four constitutive series as mentioned above. The decomposed

detail series d1t contains the highest frequency components among the others and

hence is outlier prone. Therefore, series corresponding to d1t has been discarded

and only series a3t, d3t, and d2t have been used to reconstruct the original series

using inverse wavelet transformation as follows:

y�t ¼ WT�1 a3t, d3t, d2t; t ¼ 1, 2, . . . ,Tf g; t ¼ 1, 2, . . . ,T

Then, we have chosen an appropriate ARIMA model for the series y�t following
the Box–Jenkins modeling philosophy which has the lowest forecasting error

according to the three forecasting accuracy criteria mentioned in Sect. 8.4. The

selected model is ARIMA(2,1,1)(0,1,1) which is defined as

1� 0:4256Lþ 0:5520L2
� 	

11:27ð Þ �14:64ð Þ
∇12∇1y

�
t ¼ 1þ 0:9457Lð Þ

50:85ð Þ
1� 0:6929L12
� 	

�19:18ð Þ
εt ð8:15Þ

The parentheses under the model contain the value of t-statistic of each

coefficient, which shows the estimates of the parameters are highly significant.

The forecasting values over the test period 2008:1 to 2008:12 are shown in

Table 8.1. The values of test period forecasting accuracy criteria for model (8.15)

MAE, RMSE, and MAPE are 0.0655, 0.0799, and 9.1473, respectively.

8.5.2.2 Approach-2

Here the DWT is performed to the original series over the full period 1964:1 to

2008:12. Then, a specific ARIMA model is fitted for each constitutive series over

the training period 1964:1 to 2007:12. The ARIMA model for each series is chosen

based on the smallest forecasting error over the test period 2008:1 to 2008:12 with

significant coefficients and white-noise error as outlined in Box–Jenkins method. In

fact, the best ARIMA models for the series d1t, d2t, d3t, and a3t are ARIMA(2,0,2)

(0,0,0), ARIMA(0,0,4)(0,1,0), ARIMA(0,1,2)(0,1,1), and ARIMA(8,2,8)(0,0,1),

respectively. The estimates of the ARIMA model for d1t are
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1þ 0:866Lþ 0:566L2
� 	

�12:29ð Þ �14:08ð Þ
d1t ¼ 1� 0:671L� 0:326L2

� 	

�8:56ð Þ �4:12ð Þ
εt ð8:16Þ

The estimates of the ARIMA model for d2t are

∇12d2t ¼ 1þ 1:701L
80:19ð Þ

� 0:130L2
�6:34ð Þ

� 1:736L3
�82:87ð Þ

� 0:885L4
�41:34ð Þ

� �
εt ð8:17Þ

The estimates of the ARIMA model for d3t are

∇12∇1d3t ¼ � 0:004
�1:82ð Þ

þ 1þ 1:918L
134:20ð Þ

þ 0:937L2
66:25ð Þ

� �
1� 0:753L12

�26:89ð Þ

� �
εt ð8:18Þ

The estimates of the ARIMA model for a3t are

1þ 0:634L
23:79ð Þ

� 0:357L8
�13:82ð Þ

� �
∇2

1a3t ¼ 1þ 0:095L
5:98ð Þ

� 0:930L8
�56:48ð Þ

� �
1� 0:566L2

�14:48

� �
εt

ð8:19Þ

Using the above best models, the forecasting values over the test period 2008:01

to 2008:12 for each transformed series are evaluated. The forecasting series are

denoted by cd1t,cd2t,cd3t, and ca3t which are shown in Table 8.2 along with their

respective forecasting errors.

Finally, the inverse DWT is applied to the seriescd1t,cd2t,cd3t, andca3t to get the

forecasting values of the humidity series over the test period. The forecasting values

are denoted by ŷt, t ¼ 2008 : 1, 2008 : 2, . . ., 2008 : 12. The forecasting series ŷt
using Wavelet-ARIMA model is shown in Table 8.1. The values of test period

forecasting accuracy criteria for this Wavelet-ARIMA model MAE, RMSE, and

MAPE are 0.1336, 0.1591, and 15.356, respectively.

8.5.3 Comparison

Now we have got the results to compare the performances of the forecasting models

with and without wavelet transformation. The forecasting values for the test period

of the models with the original series are shown in Table 8.1. For convenience,

these forecasting values are depicted in Fig. 8.3 with the original humidity series.

The forecasting ability of these models is compared by using three forecasting

accuracy criteria—MAE, RMSE, and MAPE. Table 8.3 contains the values of these

criteria for the models.

Table 8.3 shows that all three measurements of forecasting accuracy criteria

are sufficiently smaller when wavelet transformation is used in the models than

that of without wavelet transformation. However, the Wavelet-ARIMA model with
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Table 8.2 Forecasting values

for the test period (2008:1 to

2008:12) of detail and

approximation series

Time d1 d2 d3 a3

Jan-08 �0.0429 �0.0441 �0.2515 0.8726

Feb-08 0.0469 0.0393 �0.2188 0.8886

Mar-08 �0.0163 0.0940 �0.1117 0.8993

Apr-08 �0.0123 0.0279 0.1077 0.9038

May-08 0.0199 �0.0318 0.2825 0.8989

Jun-08 �0.0103 �0.0435 0.3244 0.8822

Jul-08 �0.0023 �0.0390 0.2530 0.8546

Aug-08 0.0078 0.0196 0.0060 0.8144

Sep-08 �0.0054 0.0585 �0.2423 0.7777

Oct-08 0.0002 0.0171 �0.3586 0.7548

Nov-08 0.0028 �0.0222 �0.4438 0.7424

Dec-08 �0.0026 �0.0449 �0.4646 0.7459

MAE 0.0584 0.0319 0.1737 0.1018

RMSE 0.0698 0.0377 0.2505 0.1337

MAPE 116.803 227.753 567.449 17.261

0
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1

1.2

1.4

1.6

Test Series

ARIMA

W-ARIMA (ap-1)
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Fig. 8.3 Original series along with the forecasting series of ARIMA and Wavelet-ARIMA

(approach-1 and approach-2) models (for visual convenience the figure shows data from 2006:1)

Table 8.3 Forecasting

accuracy criteria for the

model without and with

wavelet transformation

Model MAE RMSE MAPE

ARIMA 0.1633 0.2187 18.566

Wavelet-ARIMA (approach-1) 0.0654 0.0799 9.1472

Wavelet-ARIMA (approach-2) 0.1336 0.1591 15.356
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approach-1 shows the smallest forecasting errors than approach-2. From Fig. 8.3, it

obviously reveals that the forecasting values from Wavelet-ARIMA (approach-1)

are very close to the original series followed by the Wavelet-ARIMA (approach-1)

and ARIMAmodel, respectively. Thus, Wavelet-ARIMAmodel forecasts humidity

series of Rajshahi more accurately than the direct ARIMA model.

8.6 Conclusions

The study has been conducted to show whether the recently developed wavelet

transformation in forecasting the climatic time series in Bangladesh improves the

performance of existing forecasting models, such as ARIMA. These models are

applied to forecast the humidity of Rajshahi, Bangladesh. Then the wavelet trans-

formation has been used to decompose the humidity series into a set of better-

behaved constitutive series. These decomposed series and inverse wavelet trans-

formation are used as a pre-processing procedure of forecasting humidity series

using the same models in two approaches. Finally, the forecasting ability of these

two models with and without wavelet transformation is compared using the statis-

tical forecasting accuracy criteria.

The results show that the use of wavelet transformation as a pre-processing

procedure of forecasting climatic time series improves the performance of fore-

casting models. The reason for the better behavior of the constitutive series is the

filtering effect of the wavelet transform. Therefore, the forecasting using the

existing models under wavelet transformed series is better than forecasting directly,

and also it gives more accurate results.

Thus, the hybrid Wavelet-ARIMA model proposed in this chapter is both novel

and effective in forecasting climatic time series, specially using approach-1.
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Chapter 9

Analysis of Inter-Annual Climate Variability

Using Discrete Wavelet Transform

Md. Khademul Islam Molla, A.T.M. Jahangir Alam, Munmun Akter,

A.R. Shoyeb Ahmed Siddique, and M. Sayedur Rahman

Abstract This chapter presents a data adaptive filtering technique to extract annual

cycles and the analysis of inter-annual climate variability based on different climate

signals using discrete wavelet transform (DWT). The annual cycle is considered as

higher energy trend in a climate signal and separated by implementing a threshold-

driven filtering technique. The fractional Gaussian noise (fGn) is used here as a

reference signal to determine adaptive threshold without any prior training con-

straint. The climate signal and fGn are decomposed into a finite number of subband

signals using the DWT. The subband energy of the fGn and its confidence intervals

are computed. The upper bound of the confidence interval is set as the threshold

level. The energy of individual subband of a climate signal is compared with

the threshold. The lowest order subband of which the energy is greater than the

threshold level is selected yielding the upper frequency limit of the trend

representing annual cycle. All the lower frequency subbands starting from the

selected one are used to reconstruct the annual cycle of the corresponding climate

signal. The distance between adjacent peaks in the extracted cycles refers to the

inter-annual variation of the climate condition. The experimental results illustrate
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the efficiency of the proposed data adaptive approach to separate the annual cycle

and the quantitative analysis of climate variability.

Keywords Climate signal • Discrete wavelet transform • Fractional gaussian noise

• Multiband decomposition • Time domain filtering

9.1 Introduction

The term “climate variability” denotes the inherent characteristic of climate which

manifests itself in changes of climate with time. The degree of climate variability

can be described by the differences between long-term statistics of meteorological

elements calculated for different periods (Molla et al. 2006). Climate variability is

often used to denote deviations of climate statistics over a given period of time such

as a specific month, season, or year from the long-term climate statistics relating

to the corresponding calendar period. To mitigate the effects of climate change,

risk assessments are being required more frequently by policy makers (Dairaku

et al. 2004). Climate is currently changing in ways that mirror the effects of global

warming. There is also increasing demand for climate change information, partic-

ularly from policy makers for impact assessment studies (Bates et al. 1998). Several

linear statistical models have been applied to climate analysis, but the answers are

not conclusive due to the high sensitivity of model results to model parameters

(Rajagopalan et al. 1997, 1999; Harrison and Larkin 1997), especially when

stochastic processes are taken into account. Various approaches have been

employed to develop climate change scenarios at different scales (Mpelasoka

et al. 2001). The inter-annual climate variability refers to the variation of climate

between adjacent years.

The annual cycle of any climate signals represents a good measure of climate

variability (Molla et al. 2011). If we consider the seasonal cycle for a year, it can be

termed as annual cycle. The variation of such cycle from the mean stream can be

used to illustrate the inter-annual variation of climate. It is commonly estimated

from observational data or model output by taking the average of all Januaries, all

Februaries, and so forth. If the observational record is long enough and conditions

are stationary (i.e., there is no significant long-term trend), a meaningful annual

cycle will result that can be used to calculate an anomaly time series (Mak 1995). In

the analysis of climate variability, the cycle refers to every 12-month (consecutive)

length of data.

In this chapter, the annual cycle of several climate signals are extracted using

data adaptive time domain filtering approach. The annual cycle is treated as the

trend in the climate signal. It is required to develop a method to extract the trend

representing the cycle using a data adaptive technique without affecting the other

parts of the signal (Mak 1995). It needs a mathematical function used to divide a

given function or time series into different scale components, i.e., subbands

(Oh et al. 2003). The underlying assumption to separate the trend of annual cycle
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using multiband approach is that some lower frequency subbands contain relatively

higher energies. A filtering technique is required to identify and separate those

subband components constructing the annual cycle. The traditional approach—

Fourier transform (FT) can be used to decompose the climate time series into

several subbands to extract the trend of the signal (Broughton and Bryan 2008).

Although the FT has a strong mathematical model, it is not suitable for

decomposing non-stationary signals, e.g., climate signals. The discrete wavelet

transform (DWT) is the representation of a function by wavelet which is very

efficient to decompose the signal in a data adaptive nature (Mallat 2008). Wavelet

transforms have advantages over traditional Fourier transforms for representing

functions that have discontinuities and sharp peaks, and for accurately

deconstructing and reconstructing finite, nonperiodic, and/or non-stationary sig-

nals. In this study we attempt to obtain a better understanding of the climate

variability through the analysis of annual climate cycles of different climate signals

say rainfall, humidity using wavelet transform. A reference signal—fractional

Gaussian noise (fGn) and the climate signal is decomposed into several subbands

using wavelet. The subbands which represent the trend are determined by compar-

ing their energies with that of the reference signal. A data adaptive thresholding

approach is developed to extract the annual climate cycle and its inter-annual

variation matrix is derived.

9.2 Multiband Decomposition of Climate Signals

The climate signal is decomposed into multiple subbands (multiband) signals to

extract the annual cycles. Such multiband decomposition can be achieved the

applying the filter bank technique on the climate signals. In signal processing, a

filter bank is an array of bandpass filters that separates the input signal into multiple

components, each one carrying a frequency subband of the original signal. The

process of decomposition performed by the filter bank is called analysis (the

analysis of signal in terms of each subband); the output of analysis is referred to

as a subband signal with as many subbands as there are filters in the filter bank

(Broughton and Bryan 2008). The reconstruction process is called synthesis, mean-

ing reconstitution of a complete signal resulting from the filtering process. The both

analysis and synthesis of the climate signal are required to separate the annual

cycles.

Consider an input signal x(n) which might have come from a climate sensor. As

discussed briefly, the spectrum of a signal gives the distribution of signal energy as

a function of frequency. In order to separate energy from a frequency region of a

signal’s spectrum, a bandpass filter may be used. An ideal bandpass filter rejects all

input signal energy outside of a desired frequency range, while giving as output of

all input signal energy within that range. The range of accepted frequencies is often

referred to as the band, or passband. The frequency boundaries defining the band, fcl
and fch, are known as the lower and upper cutoff frequencies, respectively. These
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are also referred to as the band edges. The difference between the upper and lower

cutoff frequencies is known as the bandwidth: BW ¼ fch � fcl. The midpoint of the

band edges is known as the center frequency fc of the bandpass filter.
A filter bank is a system that divides the input signal x(n) into a set of analysis

signals x1(n), x2(n), . . . each of which corresponds to a different region in the

spectrum of x(n). Typically, the regions in the spectrum given by the analysis

signals collectively span within the specified regions. Also, the regions usually do

not overlap, but are lined up one after the other, with edges, touching, as shown in

Fig. 9.1. The analysis signals x1(n), x2(n), . . . may be obtained using a collection of

bandpass filters with bandwidths BW1, BW2, . . . and center frequencies fc1, fc2, . . .,
respectively.

9.2.1 Fourier-Based Filter Bank and Its Limitations

The Fourier transform widely used to implement filter bank is a mathematical

operation with many applications in physics and engineering. It expresses a func-

tion of time as a function of frequency, known as its frequency spectrum. The

function of time and frequency is often called time domain and frequency domain

representation, respectively. The inverse Fourier transform expresses a frequency

domain function in the time domain. Each value of the function is usually expressed

as a complex number (called complex amplitude) that can be interpreted as a

magnitude and a phase component. The term “Fourier transform” refers to both

the transform operation and to the complex-valued function it produces.

In the case of a periodic function, such as a continuous, but not necessarily

sinusoidal, the Fourier transform can be simplified to the calculation of a discrete

set of complex amplitudes. Also, when a time-domain function is sampled to

facilitate storage or computer processing, it is still possible to recreate a version

of the original Fourier transform according to the Poisson summation formula, also

known as discrete-time Fourier transform (Broughton and Bryan 2008).

Fig. 9.1 The bands of a three-band filter bank, with adjacent band edges touching but not

overlapping. Together, the three bands span the frequency range from fcl,1 ¼ 0 Hz to fch,3 ¼ fmax

where fmax is the maximum frequency of interest (not shown here)
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The continuous Fourier transform converts a time-domain signal of infinite

duration into a continuous spectrum composed of an infinite number of sinusoids.

In astronomical observations we deal with signals that are discretely sampled,

usually at constant intervals, and of finite duration or periodic. For such data,

only a finite number of sinusoids are needed and the Discrete Fourier Transform
(DFT) is appropriate. For almost every Fourier transform theorem or property, there

is a related theorem or property for the DFT. The DFT of N uniformly sampled data

points xn (where n ¼ 0, . . ., N � 1) and its inverse are defined by:

Xk ¼
XN�1

n¼0

xne
�2πjnk=N and xn ¼ 1

N

XN�1

k¼0

Xke
2πjnk=N ð9:1Þ

Once again, sign and normalization conventions may vary, but the definition is

most common. The result of the DFT of an N-point input time series is an N-point
frequency spectrum, with Fourier frequencies k ranging from �(N/2 � 1), through

the 0-frequency or the so-called DC component, and up to the highest Fourier

frequency N/2. Each bin number represents the integer number of sinusoidal

periods present in the time series. The amplitudes and phases represent the ampli-

tudes Ak and phases ϕk of those sinusoids. In summary, each bin can be described

by Xk ¼ Ake
jφk .

The digital filter bank is set of bandpass filters with either a common input or a

summed output. An M-band analysis filter bank is shown below (Fig. 9.2):

The subfilters Hk(z) in the analysis filter bank are known as analysis filters. The
analysis filter bank is used to decompose the input signal x[n] into a set of subband
signals with each subband signal vk[n] occupying a portion of the original

frequency band. The mentioned M filters can be used as the analysis filters in the

analysis filter bank or as the synthesis filters in the synthesis filter bank. Since

the magnitude responses of all M filters are uniformly shifted version of that of the

prototype filter, the filter bank obtained is called a uniform filter bank. The signal is

synthesized by summing up all the subbands. The use of Fourier transform-based

filter bank introduces a noticeable reconstruction error during synthesis.

Fig. 9.2 M-band analysis

filter bank
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It is well known from Fourier theory that a signal can be expressed as the sum of

a, possibly infinite, series of sines and cosines. This sum is also referred to as a

Fourier expansion. The principal disadvantage of a Fourier transform is that it has

only frequency resolution and no time resolution. This means that although we

might be able to determine all the frequencies present in a signal, we do not know

when they are present. To overcome this problem in the past decades, several

solutions have been developed which are more or less able to represent a signal

in the time and frequency domain at the same time. The Fourier transform-based

filter bank is not suitable for non-stationary climate signals.

The idea behind these time-frequency joint representations is to cut the signal of

interest into several parts and then analyze the parts separately (Mallat 2008). It is

clear that analyzing a signal this way will give more information about the when

and where of different frequency components, but it leads to a fundamental problem

as well: how to cut the signal? Suppose that we want to know exactly all the

frequency components present at a certain moment in time. We cut out only this

very short time window using a Dirac pulse, transform it to the frequency domain

and something is very wrong. The problem here is that cutting the signal corre-

sponds to a convolution between the signal and the cutting window. The convolu-

tion in the time domain is identical to multiplication in the frequency domain. Since

the Fourier transform of a Dirac pulse contains all possible frequencies the

frequency components of the signal will be smeared out all over the frequency

axis. In fact this situation is the opposite of the standard Fourier transform since we

now have time resolution but no frequency resolution whatsoever.

The underlying principle of the phenomena just described is Heisenberg’s

uncertainty principle, which, in signal processing terms, states that it is impossible

to know the exact frequency and the exact time of occurrence of this frequency in a

signal. In other words, a signal can simply not be represented as a point in the time-

frequency space. The uncertainty principle shows that it is very important how one

cuts the signal.

9.2.2 Wavelet-Based Filter Bank

The wavelet transform is the solution to overcome the shortcomings of the Fourier

transform. In wavelet analysis the use of a fully scalable modulated window solves

the signal-cutting problem. The window is shifted along the signal and for every

position the spectrum is calculated (Strang and Nquyen 1996). Then this process is

repeated many times with a slightly shorter (or longer) window for every new cycle.

In the end the result will be a collection of time-frequency representations of the

signal, all with different resolutions. Because of this collection of representations,

we can speak of a multiresolution analysis. In the case of wavelets we normally do

not speak about time-frequency representations but about time-scale representa-

tions, scale being in a way the opposite of frequency, because the term frequency is

reserved for the Fourier transform.
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A time-scale representation of a digital signal is obtained by using digital

filtering techniques. Recall that the continuous wavelet transform (CWT) is a

correlation between a wavelet at different scales and the signal with the scale

(or the frequency) being used as a measure of similarity. The CWT was computed

by changing the scale of the analysis window, shifting the window in time,

multiplying by the signal, and integrating over all times. In the discrete case, filters

of different cutoff frequencies are used to analyze the signal at different scales

(Mallat 2008). The signal is passed through a series of high pass filters to analyze

the high frequencies, and it is passed through a series of low pass filters to analyze

the low frequencies. The resolution of the signal, which is a measure of the amount

of detail information in the signal, is changed by the filtering operations, and the

scale is changed by upsampling and downsampling (subsampling) operations.

Subsampling a signal corresponds to reducing the sampling rate, or removing

some of the samples of the signal. For example, subsampling by two refers to

dropping every other sample of the signal. Subsampling by a factor p reduces the

number of samples in the signal p times. The upsampling of any signal corresponds

to increasing the sampling rate of a signal by adding new samples to the signal. For

example, upsampling by two refers to adding a new sample, usually a zero or an

interpolated value, between every two samples of the signal. Upsampling a signal

by a factor of p increases the number of samples in the signal by a factor of p.
The climate signal is considered as fully nonlinear and non-stationary and hence

wavelet transform is more suitable technique to be analyzed. The DWT is also

computed by changing the scale of the analysis window, shifting the window in

time, multiplying by the signal, and integrating over all times. The filters of

different cutoff frequencies are used to analyze the signal at different scales (Strang

and Nquyen 1996). The coefficients are usually sampled on a dyadic grid, i.e.,

s0 ¼ 2 and t0 ¼ 1, yielding s ¼ 2j and t ¼ k*2j.
The DWT analyzes the signal at different frequency bands with different reso-

lutions by decomposing the signal into a coarse approximation and detail informa-

tion. The DWT employs two sets of functions, called scaling functions and wavelet

functions, which are associated with low pass and high pass filters, respectively.

The decomposition of the signal into different frequency bands is simply obtained

by successive high pass and low pass filtering of the time domain signal. The

original signal x(n) is first passed through a half band high pass filter g(n) and a

low pass filter h(n). After the filtering, half of the samples can be eliminated

according to the Nyquist’s rule, since the signal now has a highest frequency of

π/2 radians instead of π. The signal can therefore be subsampled by 2, simply by

discarding every other sample. This constitutes one level of decomposition and can

mathematically be expressed as follows:

yh kð Þ ¼
X

n

x nð Þ � g 2k � nð Þ

yl kð Þ ¼
X

n

x nð Þ � h 2k � nð Þ ð9:2Þ
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where yh(k) and yl(k) are the outputs of the high pass and low pass filters,

respectively, after subsampling by 2. This decomposition halves the time resolution

since only half the number of samples now characterizes the entire signal. However,

this operation doubles the frequency resolution, since the frequency band of the

signal now spans only half the previous frequency band, effectively reducing

the uncertainty in the frequency by half.

The above procedure, which is also known as the subband decomposition, can be

repeated for further decomposition. At every level, the filtering and subsampling

will result in half the number of samples (and hence half the time resolution) and

half the frequency band spanned (and hence double the frequency resolution)

(Strang and Nquyen 1996). The number of detail subbands is equal to the decom-

position levels and one approximation, hence total of (k + 1) subbands for

k decomposition levels. The frequencies that are most prominent in the original

signal will appear as high amplitudes in that region of the DWT signal that includes

those particular frequencies. The difference of this transform from the Fourier

transform is that the time localization of these frequencies will not be lost. How-

ever, the time localization will have a resolution that depends on which level they

appear. A toy signal and its different subbands obtained by applying the DWT are

shown in Fig. 9.3.

The perfect reconstruction is important issue in the proposed method of climate

variability analysis. The reconstruction in this case Eq. (9.2) is very easy since half

band filters form orthonormal bases. The above procedure is followed in reverse

order for the reconstruction. The signals at every level are upsampled by two,

passed through the synthesis filters g(n), and h(n) (high pass and low pass, respec-

tively), and then added. The interesting point here is that the analysis and synthesis

filters are identical to each other, except for a time reversal. Therefore, the recon-

struction formula becomes (for each layer):

x nð Þ ¼
X

k

yh kð Þ � g �nþ 2kð Þ½ � þ �
yl kð Þ � h �nþ 2kð Þ� ð9:3Þ

However, if the filters are not ideal half band, then perfect reconstruction

becomes difficult to be achieved. Although it is not possible to realize ideal filters,

under certain conditions it is possible to find filters that provide perfect

reconstruction.

The most famous wavelet bases are the ones developed by Ingrid Daubechies,

and they are known as Daubechies’ wavelets. The reconstructed signal by wavelet

synthesis is illustrated in Fig. 9.4. The energy of the error signal (sample-wise

difference) is negligible (in the order of 10�11) and hence it is stated that the perfect

reconstruction is possible from the DWT-based subband decomposition. From the

above mentioned explanation, it is clear that the wavelet-based subband decompo-

sition is to be used as data adaptive filter bank technique with perfect reconstruc-

tion. The climate signal is a nonharmonic time series and hence this type of data

adaptive method is suitable for decomposition and reconstruction.
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9.3 Annual Cycle Extraction

The annual cycle is considered as the low frequency and relatively higher energy

trend appeared in the climate signals. The trends of the recorded climate signals are

detected using the energy distribution of the signal over the individual subbands.

The cycle is retrieved here by partial reconstruction of the subbands in the wavelet

domain. Usually the modes contain a mixture of frequencies and these mixed

modes are much more difficult to interpret. Since we are not interested in intra-

annual variations, a minimal amount of pre-smoothing is performed so that single

or multiple modes collectively contain the annual cycle. The subbands will gener-

ally be ordered from high to low frequency. It is important to determine the

significance of the subbands. We should not expect all bands to be significant to

separate the annual cycle.
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Fig. 9.3 A toy signal and different subbands obtained by the DWT
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The aim of the first step of the analysis is to find low frequency signal from the

original climate signal. The original signal is decomposed into subband signals

using the DWT. The analyzing climate signal x(n) consists a slowly varying trend

y(n) superimposed to a fluctuating process ζ(n), the trend is expected to be captured
by subband signals of large indices. A process of de-trending x(n), which corre-

sponds to estimating ζ(n), may therefore relate to compute the partial, fine-to-

coarse, reconstruction

ζ nð Þ ¼
XK

k¼1

dk nð Þ ð9:4Þ

where K is the largest subband index prior the remaining subbands representing

signal trend contamination. For the subbands dk(n); k ¼ 1, 2, . . .,K, a rule of thumb,

so the choice of K is based on observation of the evolution of the ζ(n) energy as a

function of a test order k. The optimized k ¼ K is chosen when the energy index

departs significantly from the energy of the reference signals (Flandrin et al. 2004).

The starting index of the subband to separate the trend, i.e., the low frequency
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Fig. 9.4 The original toy signal (top), the reconstructed signal using wavelet synthesis (middle),
and the error between those two (bottom)
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components of the climate signal is determined by comparing the subband energy

with that of the reference signal. The fGn is used here as the reference signal. There

is a subband of climate signal exceeding the upper limit of 95 % confidence interval

(CI) of the corresponding subbands’ energies of the fGn. That subband is selected as

the lower bound of the low frequency component of the climate signal. All the higher

order (lower frequency) subbands starting from the selected one are summed to

construct the low frequency trend y(n) ¼ x(n) � ζ(n) representing the annual cycle.
The fGn is a generalization of ordinary white noise. It is a versatile model of

homogeneously spreading broadband noise without any dominant frequency band,

is an intrinsically discrete-time process, and may be described as the increment

process of fractional Brownian motion (fBm) since the fBm is the only self-similar

Gaussian process with stationary increments (Flandrin et al. 2004). Consequently

the statistical properties of the fGn are entirely determined by its second-order

structure, which depends solely upon one single scalar parameter, Hurst exponent.

The energies of the subbands of the fGn are decreased linearly with increasing its

order. Such property of the fGn is very much applicable to determine the trend of

the analyzing signal by comparing the energies of its subbands. The normalized fGn

is decomposed only once using the DWT and then each of the climate signals is

decomposed into multiple subbands (using the DWT). The scaling factor of each

signal is reused to obtain the original scale in the wavelet domain.

The steps of the proposed algorithm to separate annual cycle are as follows:

1. Apply the DWT-based subband decomposition on the fGn. Compute Log energy

of its individual subband and then its upper and lower bound with 95 %

confidence interval (CI).

2. Apply the similar decomposition on the climate signal.

(a) Compute the Log energy of its subbands.

(b) Find the highest frequency subband which has the energy higher than the

upper bound of 95 % confidence interval derived in step 1, say it qth
subband. Thus selected qth subband is the starting index to constructing

trend, i.e., annual cycle.

(c) The annual cycle is separated by summing up all the higher order (lower

frequency) subbands starting from qth one of the climate signals.

Thus obtained low frequency trend with higher energy represents the annual

cycle of the respective climate signal. It illustrates the non-stationary nature of the

climate variable. The inter-annual climate variability is defined by the distance

between two consecutive peaks of the extracted annual cycle.

9.4 Results and Discussion

The performance of the proposed annual cycle extraction method as well as the

analysis of climate variability are evaluated by real climate data collected at

different regions in Bangladesh. Only the data collected in Dhaka region from
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January 1981 to December 2011 are used in this analysis. Two climate variables—

daily average rainfall (in mm) and average humidity (in %) are taken into

consideration. All the weather parameters are measured with sufficiently efficient

instruments. The fGn and both of the climate signals (daily rainfall and humidity)

are decomposed into 11 subband (ten levels decomposition) signals using the DWT

with db4 wavelet as illustrated in Figs. 9.5, 9.6, and 9.7, respectively.

According to the proposed algorithm, the energy of each subband of the fGn is

computed then the 95 % confidence interval (CI) of the energy curve (of fGn)

is determined. The energy of each subband of the climate signal (daily rainfall) is

compared with the upper bound of the CI which is used here as data adaptive

threshold. The subband with energy exceeding the upper limit of the CI is selected;

say it qth band which is considered as the starting index of detecting the trend,

Fig. 9.5 The fGn and its different subbands obtained by the DWT

166 M.K.I. Molla et al.



i.e., the annual cycle. The energy-based thresholding to find the qth subband is

shown in Fig. 9.8 for the daily rainfall. The eighth subband of the daily rainfall

signal is selected as the starting index of trend detection. Similarly, the starting

index determination of daily humidity signal is illustrated in Fig. 9.9 where the

eighth one is selected as the starting subband of seasonal cycle.

The annual cycle is separated by summing up the higher order subband signals

starting from qth one up to the last subband of climate signals. The daily rainfall, the

separated seasonal cycle, and the residue signals (suppressing the annual cycle from

the original signal) are illustrated in Fig. 9.10. The separation of annual cycle of

daily humidity is shown in Fig. 9.11.

The proposed annual cycle extraction method is fully data adaptive. No training

is required to determine the threshold. Thus obtained cycle carries necessary

properties for further processing of the climate variables. The annual cycle is

considered here as the principal parameter to explain the climate variability.

It is considered that when there is a climate change, there is a good chance of

non-stationarity in the annual cycle of the climate signals. The inter-annual dis-

tances (defined as the distances between two adjacent peaks of annual cycle) of the

two climate signals (daily average rainfall and humidity) are shown in Fig. 9.12.

It is expected that the inter-annual distance is close to 360 days whereas such

distances for the mentioned two climate signals are varied up to 2 months

0
50

100
150

Daily rainfall

−50
0

50

Sb
1

−50
0

50

−50
0

50

Sb
3

−50
0

50

−20
0

20

Sb
5

−20
0

20

−10
0

10

Sb
7

−20
0

20

−5
0
5

Sb
9

−2
0
2

1985 1990 1995 2000 2005 2010
2
4
6

Year

Sb
11

Fig. 9.6 The daily average rainfall (mm) data and its different subbands obtained by the DWT

9 Analysis of Inter-Annual Climate Variability Using Discrete Wavelet Transform 167



50
100

Daily humidity

−100
0

100

S
b1

−100
0

100

−100
0

100

S
b3

−50
0

50

−50
0

50

S
b5

−50
0

50

−10
0

10

S
b7

−10
0

10

−10
0

10

S
b9

−5
0
5

1985 1990 1995 2000 2005 2010
−5

0
5

Year

S
b1

1

Fig. 9.7 The daily average humidity (%) data and its different subbands obtained by the DWT

1 2 3 4 5 6 7 8 9 10 11
12

14

16

18

20

22

24

Subband index

Lo
g 2

(e
ne

rg
y)

Energy of fGn
Lower bound of CI
Upper bound of CI
Energy of daily rainfall

Fig. 9.8 Selection of starting subband to extract annual cycle of daily rainfall. The eighth subband

is selected as the starting index

168 M.K.I. Molla et al.



1 2 3 4 5 6 7 8 9 10 11
12

14

16

18

20

22

24

26

Subband index

Lo
g 2

(e
ne

rg
y)

Energy of fGn
Lower bound of CI
Upper bound of CI
Energy of daily humidity

Fig. 9.9 Selection of starting subband to extract annual cycle of daily humidity. The eighth

subband is selected as starting index

1985 1990 1995 2000 2005 2010
0

50

100

150
Daily rainfall

1985 1990 1995 2000 2005 2010

0

5

10

15

D
ai

ly
 r

ai
nf

al
l (

m
m

) Extracted annual cycle

1985 1990 1995 2000 2005 2010

0

50

100

Year

Residue signal

Fig. 9.10 Annual cycle separation results; daily rainfall data (top), extracted annual cycle

(middle), and residue after suppressing the cycle (bottom)

9 Analysis of Inter-Annual Climate Variability Using Discrete Wavelet Transform 169



(as illustrated in Fig. 9.12). Hence there is a noticeable amount of climate change/

variation with those climate signals. Climate signals always represent

non-stationary data. It is not possible to assume such data as the sum of harmonics

and hence Fourier-based transformation is not suitable for the investigation of

climate data. The DWT is highly data adaptive and efficient for analyzing nonlinear

and non-stationary climate signals.

Fig. 9.11 Annual cycle separation results; daily humidity data (top), extracted annual cycle

(middle), and residue after suppressing the cycle (bottom)
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9.5 Conclusions

The wavelet-based data adaptive time domain filtering technique is implemented to

extract the annual cycle of different climate signals. The main superiority of this

method is that the use of the DWT method yields subband signals based on local

properties of the signal. It eliminates the need of harmonic assumption to represent

nonlinear and non-stationary signals. The DWT is a well-known approach to many

researchers in climate research. This study plays a vital role for analyzing the

properties of nonlinear and non-stationary daily rainfall and humidity time series

data. The annual cycle is separated from the climate signals without any prior

information. It adopts a fully data adaptive approach to express the climate

variation.
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Chapter 10

Modeling of Suspended Sediment

Concentration Carried in Natural Streams

Using Fuzzy Genetic Approach

Özgür Kişi and Halil İbrahim Fedakar

Abstract This chapter proposes fuzzy genetic approach so as to predict suspended

sediment concentration (SSC) carried in natural rivers for a given stream cross

section. Fuzzy genetic models are improved by combining two methods, fuzzy

logic and genetic algorithms. The accuracy of fuzzy genetic models was compared

with those of the adaptive network-based fuzzy inference system, multilayer

perceptrons, and sediment rating curve models. The daily streamflow and

suspended sediment data belonging to two stations, Muddy Creek near Vaughn

(Station No: 06088300) and Muddy Creek at Vaughn (Station No: 06088500),

operated by the US Geological Survey were used as case studies. The root mean

square errors and determination coefficient statistics were used for evaluating the

accuracy of the models. The comparison results revealed that the fuzzy genetic

approach performed better than the other models in the estimation of the SSC.

Keywords Suspended sediment concentration • Fuzzy genetic approach • Adaptive

network-based fuzzy inference system • Multilayer perceptrons • Sediment rating

curve

10.1 Introduction

Correct estimation of suspended sediment concentration (SSC) carried in natural

streams is very important with regard to channel navigability, pollution, reservoir

filling, hydroelectric equipment longevity, fish habitat, and science interests.
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All surface water reservoirs are designed to a volume known as “the dead storage”

to accommodate sediment income that will accumulate over a specified period

called the economic life. The underestimation of sediment load gives rise to

insufficient reservoir capacities while the overestimation will bring about over-

capacity reservoirs. For this reason, to determine sediment load accurately is vital

in order to accomplish an appropriate reservoir design and operation. In environ-

mental engineering, the estimation of the SSC has an additional significance,

especially if the particles also transport pollutants (Guldal and Muftuoglu 2001).

Fuzzy logic has been successfully used for the estimation of suspended sediment

during recent years. Tayfur et al. (2003)employed a fuzzy logic algorithm for

runoff-induced sediment transport from bale soil surfaces. Kisi (2004a) developed

fuzzy models in order to anticipate daily suspended sediments. He compared

the fuzzy estimates with those of the sediment rating curves (SRCs) and found

that the fuzzy models performed better than the SRCs. Kisi et al. (2006) showed that

fuzzy rule-based models outdo the SRC models in forecasting of the SSC. Lohani

et al. (2007) used fuzzy logic for deriving stage–discharge–sediment concentration

relationships.

Also, genetic algorithm (GA) has been utilized in the estimation of suspended

sediment. Altunkaynak (2009) anticipated relationship between discharge and

sediment load using the GA. Reza Pour et al. (2011) used the GA to identify the

relation between streamflow discharge and sediment loads.

Adaptive network-based fuzzy inference system (ANFIS) has also been success-

fully applied in prediction of the SSC in recent years. Kisi (2005) used an ANFIS

model for daily suspended sediment estimation. Kisi et al. (2008) investigated

the accuracy of an ANFIS in modeling of daily suspended sediment of rivers

in Turkey. Kisi et al. (2009)anticipated monthly suspended sediments using the

ANFIS models. Rajaee et al. (2009) utilized an ANFIS model for the SSC simula-

tion. Cobaner et al. (2009) used the ANFIS in forecasting of daily SSC. Firat and

Gungor (2010) investigated the accuracy of the ANFIS approach in modeling of

monthly suspended sediment.

In the hydrological predicting context, recent experiments have reported that

multilayer perceptrons (MLP) may present a promising alternative for modeling

suspended sediment. Jain (2001) used a single MLP approach to establish the

sediment–discharge relationship and found that the MLP model could outperform

the SRC. Cigizoglu (2004) investigated the accuracy of a single MLP in the

prediction and anticipation of daily suspended sediment data. Kisi (2004b) used

different artificial neural networks (ANNs) methods for estimating daily SSC,

and he denoted that the MLP models outperformed the generalized regression

neural networks and radial basis function networks. Kisi (2005) developed the

MLP models in order to model suspended sediment and compared the MLP

results with those of the SRC and multi-linear regression models. Kisi (2008)

successfully used a data-driven algorithm for constructing the MLP-based sedi-

ment prediction models. Tayfur and Guldal (2006) anticipated total suspended

sediment from precipitation. Kisi et al. (2008) used different ANN techniques

in suspended sediment estimation and compared their results with the SRCs.
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Cobaner et al. (2009) modeled daily SSC using hydrometeorological data.

To the knowledge of the authors, there isn’t any published work indicating the

input–output mapping capability of fuzzy genetic technique in modeling of

suspended sediments.

This chapter is concerned with the implementation of fuzzy genetic approach

for estimating the SSC using the daily streamflow and suspended sediment

time series data belonging to two stations on Muddy Creek, Montana, USA. The

accuracy of fuzzy genetic is compared with those of the ANFIS, MLP, and SRC.

10.2 Methods

10.2.1 Fuzzy Logic

The concepts of the fuzzy logic were first introduced by Zadeh (1965).These

concepts and operational algorithms are given in many textbooks (Kosko 1993;

Ross 1995). Fuzzy logic allows for something to be partly this and partly that,

rather than having being either all this or all that. A membership number between

0 and 1 can describe the degree of “belongingness” to a set or category numerically.

Fuzzy membership functions (MFs) can take many forms (Kisi 2010).

Fuzzy categories can be used to set up rules of the following form for control

purposes: “If the value of variable x1 is ‘high’ and variable x2 is ‘medium,’ then the

result, y is ‘low.’” It is believed that these rules more closely resemble the way we

think than do more explicit mathematical rules. There are two main ways in which

fuzzy logic programming can be used: (1) to relate a set of outputs to a set of inputs

in a “model-free” way the “fuzzy inference method”, and (2) to try to model the

behaviour of a human expert (Russel and Campbell 1996).

Sets of input data along with the corresponding outputs are provided to the

fuzzy system in the fuzzy inference method. And the fuzzy system “learns” how

to transform a set of inputs to the corresponding set of outputs through a fuzzy

associative map (FAM), sometimes called fuzzy associative memory (Kosko 1993).

While the ANNs can perform the same function such as regression, these tend

to be “black box” approaches. A fuzzy logic system is more flexible and more

transparent. It is possible to open the lid, see how it works, and adjust it if necessary

by using the black box analogy (Russel and Campbell 1996).

In this chapter, fuzzy logic is employed for the prediction of the SSC. Its

name means fuzzy logic does not provide a rigorous approach for developing or

combining fuzzy rules that can be achieved through many ways. The approach

utilized in the present chapter is explained as below.

First the input and output variables are divided into a number of subsets with

Gaussian combination membership functions. Generally, there are cn fuzzy rules

where c and n denote the numbers of subsets and input variables, respectively.

As the number of subsets increase so does the possible accuracy but the rule base
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gets larger, which is more difficult to construct (Sen 1998). In the case of one input,

x, with n subsets, the rule base takes the form of an output yj ( j ¼ 1, 2, . . ., n2).
If there is one input variable as x with “low,” “medium,” and “high” fuzzy subsets,

then consequently there will be three rules as follows:

Rule 1: IF x has low THEN y1
Rule 2: IF x has medium THEN y2
Rule 3: IF x has high THEN y3

Membership degree, wj, for x is computed to be assigned to the corresponding

output yj for each rule triggered. Hence the weighted average of the outputs from

three rules results a single weighted output, y, as follows:

y ¼ w1 � y1 þ w2 � y2 þ w3 � y3
w1 þ w2 þ w3

¼
X3

j¼1
wj � yj

X3

j¼1
wj

ð10:1Þ

Hence, the values of the output y can be computed from Eq. (10.1) for any

combination of input variable fuzzy subsets after setting up the rule base. To use

sample data and derive the necessary rule base by the fuzzy inference procedure

is a very common method in deciding about the fuzzy rule base (Kisi 2010).

A fuzzy rule base can be achieved step-by-step from sets of input and output

data as follows:

1. Divide the range of each input variable into a number of subintervals with a

membership function.

2. Compute the membership value (wj) for x in each of the fuzzy subsets for

each data point n (one value for x and y).
3. Store the output yj beside the complete set of rule weights wj.

4. Repeat for all the other data points.

5. Calculate the weighted average with an expression similar to Eq. (10.1) (Kiszka

et al. 1985a, b).

One of the main problems in designing any fuzzy system is construction of

the fuzzy subsets because all changes in the subsets will affect the performance

of the fuzzy model directly. For this reason, optimum determination of the

membership functions has an important role for the successful optimum modeling.

Here, the genetic algorithm is employed for the adjustment of membership

functions. Next, the GA, fuzzy genetic, ANFIS, MLP, and SRC are briefly

explained (Kisi 2010).

10.2.2 Genetic Algorithm

Based on the mechanics of natural genetic and natural selection, the genetic

algorithms (GAs) are search algorithms. In the genetic search procedure, the
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basic elements of natural genetics such as reproduction, crossover, and mutation

are employed. The GA comprises the following steps (Burn and Yulianti 2001):

1. Choosing an initial population of strings.

2. Evaluating the fitness of each string.

3. Choosing strings from the current population to mate.

4. Performing crossover (mating) for the selected strings.

5. Performing mutation for selected string elements.

6. Repeating steps 2–5 for the required number of generations.

Genetic algorithm is a powerful method in terms of searching the optimum

solution to complex problems such as the selection of the membership functions

where it is hard or almost impossible to test for optimality (Ahmed and Sarma 2005;

Kisi 2010).

The main importance of a GA formulation is to denote design or decision

variable of the problem in a string (or chromosome). Each decision variable of

the string can be coded in real or binary number. The strings comprised binary

bits in early GAs (Wang 1991). Real value coding was proved to be more effective

in many problems than binary coding (Ahmed and Sarma 2005). There is no

discretization of decision variable space in real value coding. To find the fitter

strings, a GA searches from a population of strings not from a single string.

Strings go through genetic operators to produce the fitter chromosomes. Selection,

crossover, and mutation are the genetic employed in the reproductive process.

Various selection schemes have been compared by Goldberg and Deb (1990)

and tournament selection scheme was investigated. A group of the population of

strings is chosen at random and allowed to compete in the tournament where the

fittest string is selected to enter mating pool in the tournament selection scheme.

The process is finished when the size of mating pool is equal to the size of the

population of the strings. Strings in the mating pool are mated at random after

selection and then each pair of strings goes through crossover with some specified

probability usually in the range of 0.5–1.0. Next step is the mutation after crossover.

To foreclose premature convergence to local optima, mutation includes random

alteration of bit value for an allele. Mutation occurs according to the specified

probability. For search of new strings, the crossover operator is mostly responsible

even though a mutation operator is also used for this purpose sparingly. The power

of the GAs results from a simple assumption (Oliveira and Loucks 1997): the best

solutions are more promising to be found in the regions of the solutions space

consisting of high proportions of good solutions.

The fundamental differences between the GAs and traditional optimization

methods are (Goldberg 1989):

1. The parameter sets are coded in the GAs not the parameters.

2. Local optimum is searched from a population of points in the GAs not of a single

point.

3. The objective function information is used in the GAs not derivatives or other

auxiliary knowledge.

4. Probabilistic transition rule is used in the GAs not deterministic rules.
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The algorithm in the GA, searches for the best possible solutions of a problem

from available set of solutions. The problem is changed into binary form along

with the solutions. Then the solutions are allowed to crossover and mate with

a given criterion to generate the best possible solution to the problem. The basic

of GA have already been explained by many authors like Wang (1991) and

Ahmed and Sarma (2005). Thus, the present chapter is not focused on the details

of the basic procedures of the GA.

10.2.3 Fuzzy Genetic Approach

Fuzzy system is composed of fuzzy IF-THEN rules and degree of these rules

obtained from input membership functions (Şen 2004). The rule base of a Sugeno

fuzzy system with n inputs, one output, and m rules is expressed as

Ri ¼ IF x1 is f i, 1 AND xj is f i, j AND . . . xn is f i,n THEN yi is gi

where xj is jth input, fi,j is the membership function of the ith rule, yi is the

output, and gi is the constant or linear output of the ith rule. Each rule can be

considered as a sub-model of the fuzzy system and combination of the fuzzy

rules makes the model nonlinear (Ozger 2009).

In the present study, fuzzy rule base was automatically set alike to the ANFIS

system. The parameters of the input and output membership functions were

optimized using genetic algorithm. The GA mechanism is illustrated in Fig. 10.1.

In the GA, parameters are optimized by minimizing the objective function which

is an error between model results and observed values. In this study, mean square

error (MSE) was used as an objective function. The MSE is shown as

MSE ¼ 1

M

XM

i¼1

yobserved � ymodelð Þ2 ð10:2Þ

where M denotes the number of data set. Detailed information about Sugeno fuzzy

system is given in the following section.

10.2.4 Adaptive Network-Based Fuzzy Inference System

The ANFIS, first introduced by Jang (1993), is a universal approximator and, as

such, is capable of approximating any real continuous function on a compact set to

any degree of accuracy (Unal et al. 2010). Therefore, in parameter prediction,

where the given data are such that the system associates measurable system vari-

ables with an internal system parameter, a functional mapping may be constructed
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by the ANFIS that approximates the process of estimation of the internal system

parameter (Kiszka et al. 1985b).

As a simple example, a fuzzy inference system with two inputs x and y and

one output f is assumed. The first-order Sugeno fuzzy model, a typical rule set

with two fuzzy IF-THEN rules can be expressed as follows:

Rule 1 : IF x is A1 AND y is B1 THEN f 1 ¼ p1xþ q1yþ r1 ð10:3Þ

Rule 2 : IF x is A2 AND y is B2 THEN f 2 ¼ p2xþ q2yþ r2 ð10:4Þ

Randomly generate the
initial population

Find optimal
parameters of the MFs

Estimate sediment
concentration with fuzzy

Select chromosomes to pass
the next generation

Obtain new chromosomes
with crossover and mutation

Is objective function
optimized?

Solution with optimized
parameters

End

Yes

NoIs selected
iteration reached?

Yes No

Calculate the objective
function (RMSE)

Fig. 10.1 The flowchart of the fuzzy genetic model
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Here, the output f is the weighted average of the individual rules outputs and is itself
a crisp value. The resulting Sugeno fuzzy reasoning system for two inputs is shown

in Fig. 10.2.

The ANFIS is composed of five layers. The node functions in each layer are

described next.

Every square node i in layer 1 is an adaptive node with a node function

Ol, i ¼ φAi xð Þ, for i ¼ 1, 2 ð10:5Þ

where x is the input to the ith node and Ai is a linguistic label (such as “low” or

“high”) associated with this node function. Ol,i is the membership function (MF)

of a fuzzy set A and it specifies the degree to which the given input x satisfies

the quantifier Ai. φAi(x) is usually chosen to be Gaussian function with maximum

equal to 1 and minimum equal to 0

φAi xð Þ ¼ exp � x� ai
bi

� �2
 !

ð10:6Þ

where {ai, bi} is the parameter set. As the values of these parameters change,

the Gaussian function varies accordingly, thus exhibiting various forms of the MFs

on linguistic label Ai (Jang 1993). Parameters of this layer are known as premise

parameters.
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Fig. 10.2 Two-input first-order Sugeno fuzzy model with two rules
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Every circle node in layer 2 is labeled Π which multiplies the incoming signals

and sends the product out. For instance,

wi ¼ φAi xð ÞφBi yð ÞφCi zð Þ, i ¼ 1, 2 ð10:7Þ

The output of each node represents the firing strength of a rule.

Every circle node in layer 3 is labeled N. Here the ratio of the ith rule’s firing

strength to the sum of all rules’ firing strengths is calculated by ith node as

w�i ¼
wi

w1 þ w2

, i ¼ 1, 2 ð10:8Þ

Every square node in layer 4 has a node function

O4, i ¼ w�i f i ¼ w�i pixþ qiyþ rið Þ ð10:9Þ

where wi is the output of layer 3, and {pi,qi,ri} is the parameter set. Each parameter

of this layer is referred to as consequent parameter.

The single circle node in layer 5 labeled Σ computes the final output as the

summation of all incoming signals

O5, i ¼
X

i¼1

w�i f i ¼
X

i
wi f iX
i
wi

ð10:10Þ

Thus, an ANFIS network has been constructed which is functionally equivalent

to the first-order Sugeno FIS. The ANFIS method uses linear or constant functions

for the output. More information on the ANFIS can be found in Jang (1993).

10.2.5 Neural Networks

The ANNs are based on the present understanding of biological nervous system,

although much of the biological detail is neglected. The ANNs are massively

parallel systems that comprise many processing elements connected by links of

variable weights. Of the many ANN paradigms, the MLP is by far the most popular

(Lippman 1987). The network comprises layers of parallel processing elements,

called neurons, with each layer being fully connected to the proceeding layer by

interconnection strengths, or weights, W. Figure 10.3 illustrates a three-layer

neural network comprising layers i, j, and k, with the interconnection weights

Wij and Wjk between layers of neurons. Initial assigned weight values are progres-

sively rectified during a training process which compares anticipated outputs

to known outputs, and back propagates any errors (from right to left in Fig. 10.3)

to determine the appropriate weight adjustments necessary to minimize the errors.
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The Levenberg–Marquardt training algorithm was employed here in order to

adjust the weights. The numbers of hidden layer neurons were found by using

simple trial-error method (Altun et al. 2008).

As can be seen from Fig. 10.3, the neurons in the hidden layer receive summed

inputs (SI) from input layer’s neurons as

SI ¼
XL

i¼1

WijOpi þ∅j ð10:11Þ

where L is number of the input set, ∅j is bias, Wij are weights between the

layers i and j, Opi is the output of the layer i for sample p. The SI values are

passed through a nonlinear activation function. Logistic activation function which

is commonly used is given as

f SIð Þ ¼ 1

1þ e�SI
ð10:12Þ

In training stage, total error of the network based on the squared difference

between the predicted and observed outputs for pattern p is computed as

ERp ¼
XN

k¼1

Opk � Ppk

� �2 ð10:13Þ

where Opk and Ppk refer to observed and predicted outputs of the layer k for

pattern p. The goal of the training period is to minimize the global error Eg as

given in Eq. (10.14)

Eg ¼
XP

p¼1

Ep ð10:14Þ

OutputInput

Wij Wjk
i j k

1

2

L

1

2

M

1

2

N

Fig. 10.3 A three-layer

MLP structure
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In the present study, the Levenberg–Marquardt training algorithm was used for

the ANN models. In this algorithm, each weight is updated according to the

following equation:

W yeni
ij ¼ W eski

ij � JTJ þ μI
� �

JTHp ð10:15Þ

where J is Jacobian matrix including the derivatives of the errors with respect

to weights, JT is transpose of the Jacobian matrix, I is unit matrix, and μ is a

constant parameter which affects the convergence speed.

10.2.6 Sediment Rating Curve

A rating curve comprises an equation or graph, relating sediment discharge or

concentration to streamflow discharge, which can be used to forecast daily SSC

from streamflow record. The SRCs generally represent a functional relationship of

the form:

S ¼ aQb ð10:16Þ

where S is suspended sediment concentration and Q is streamflow discharge (Sandy

1990). a and b values for particular stream are determined from data by establishing

a linear regression between (log S) and (log Q).

10.3 Applications and Results

The flow–sediment time series data from Muddy Creek near Vaughn (Station No:

06088300, Latitude 47�3703000, Longitude 111�3800500) and Muddy Creek at Vaughn

(Station No: 06088500, Latitude 47�3304200, Longitude 111�3203300) operated by the

US Geological Survey (USGS) were used in this chapter. The stations (Station No:

06088300 and 06088500) have drainage area 730.38 and 1,012.69 km2 and gauge

data 1,051.56 and 1,015.17 m above sea level, respectively. The daily time series of

river flow and sediment concentration for these stations were downloaded from the

web server of the USGS (http://co.water.usgs.gov/sediment). Data collected from

September 1, 1978 to August 31, 1980 were used for calibration, and the data from

September 1, 1980 to August 31, 1981 and September 1, 1981 to August 31, 1982

were chosen for testing and validation for both stations, respectively.

The statistical parameters of discharge and sediment concentration data

for Muddy Creek stations are given in Table 10.1. In this table, the xmean, Sx,
Cv, Csx, xmax, and xmin demonstrate the mean, standard deviation, variation and

skewness coefficients, maximum and minimum, respectively. It is clear from
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the table that the sediment and flow data show a significantly high skewed

distribution. The ratio between the standard deviation and the mean, Cv, is also

high. The maximum–mean ratios (Xmax/Xmean ¼ 51.6 and 36.3) for sediment series

are also quite high. All these statistics show the complexity of the discharge–

sediment phenomenon as also stated by Kisi (2005). In the calibration sediment

data, Xmin and Xmax values of both stations fall in the ranges 14–9,110 and

16–13,000 mg/L. However, the testing flow data set extremes are Xmin ¼ 19 mg/L,

Xmax ¼ 12,000 mg/L and Xmin ¼ 31 mg/L, Xmax ¼ 21,100 mg/L, respectively.

The value of Xmax for the calibration sediment data is lower than that for the

corresponding testing set. This may cause extrapolation difficulties in prediction

of high sediment values.

In the present chapter, different fuzzy genetic (FG) models were tried in

terms of the number of membership functions, type of input and output membership

functions, population sizes, and generations. The FG models were compared with

the ANFIS, MLP, and SRC models. Different program codes, including fuzzy

logic, genetic algorithm, and neural network toolboxes, were written in MATLAB

language for the simulations of the FG, ANFIS, MLP, and SRC techniques.

The SRC formulas for the Muddy Creek Stations (06088300 and 06088500,

respectively) were obtained as below:

S ¼ 53:61Q0:829 ð10:17Þ

S ¼ 70:65Q1:161 ð10:18Þ

Table 10.1 The statistical parameters of data set for the stations

Station no Data set Data type Xmean Sx Cv Csx Xmax Xmin

Xmax/

Xmean

06088300 Training Discharge (m3/s) 3.143 3.074 0.978 2.738 31.1 0.425 9.90

Sediment (mg/L) 212.8 516.3 2.426 10.36 9,110 14 42.8

06088500 Training Discharge (m3/s) 4.110 4.034 0.981 2.128 34 0.453 8.27

Sediment (mg/L) 527.0 882.6 1.675 5.828 13,000 16 24.7

06088300 Testing Discharge (m3/s) 3.414 3.603 1.055 4.632 43.6 0.311 12.8

Sediment (mg/L) 259.8 781.9 3.010 11.31 12,000 19 46.2

06088500 Testing Discharge (m3/s) 4.418 4.539 1.027 3.501 49.3 0.425 11.2

Sediment (mg/L) 669.1 1,482 2.215 9.206 21,100 31 31.5

06088300 Validation Discharge (m3/s) 3.142 3.086 0.982 1.710 19.2 0.538 6.11

Sediment (mg/L) 245.9 504.4 2.051 6.045 5,540 13 22.5

06088500 Validation Discharge (m3/s) 4.078 4.092 1.003 1.509 23.8 0.566 5.84

Sediment (mg/L) 603.9 984.7 1.631 3.171 6,820 31 11.3

06088300 Whole data Discharge (m3/s) 3.213 3.216 1.001 3.197 43.6 0.311 13.6

Sediment (mg/L) 232.7 590.9 2.539 10.91 12,000 13 51.6

06088500 Whole data Discharge (m3/s) 4.183 4.178 0.999 2.429 49.3 0.425 11.8

Sediment (mg/L) 581.9 1,087 1.868 8.008 21,100 16 36.3
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Root mean square errors (RMSE) and determination coefficient (R2) statistics

were used as the comparing criteria in this study. The RMSE and R2 statistics are

shown as below:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

j¼1

SSCð Þobserved, j � SSCð Þpredicted, j
h i2

vuut ð10:19Þ

R2 ¼
Xn

j¼1
SSCð Þobserved, j � SSCð Þobserved

n o2

�
Xn

j¼1
SSCð Þobserved, j � SSCð Þpredicted, j

n o2

Xn

j¼1
SSCð Þobserved, j � SSCð Þobserved

n o2

ð10:20Þ

in which n is the number of data, the SSC is the suspended sediment concentration,

and SSC is mean of the SSC.

The RMSE and R2 statistics of the FG, ANFIS, MLP, and SRC models for

the Muddy Creek stations are represented in Tables 10.2 and 10.3. In these tables,

Table 10.2 The performances of the ANFIS, FG, MLP, and SRC models in the testing and

validation phases, 06088300

Model inputs Model

Testing Validation

RMSE (mg/L) R2 RMSE (mg/L) R2

Qt ANFIS (3, Gbellmf) 322.9 0.834 315.2 0.616

FG (3, Gaussmf) 367.9 0.815 317.0 0.620

MLP 368.8 0.779 381.0 0.561

SRC 719.8 0.437 462.4 0.365

St�1 ANFIS (3, Pimf) 467.8 0.668 466.9 0.398

FG (2, Pimf) 347.6 0.830 357.3 0.497

MLP 415.3 0.743 362.2 0.499

Qt and St�1 ANFIS (2, Gbellmf) 415.5 0.724 352.0 0.515

FG (3, Gbellmf) 275.1 0.877 301.5 0.647

MLP 279.8 0.874 235.1 0.786

St�1 and St�2 ANFIS (3, Trimf) 377.9 0.773 402.0 0.470

FG (3, Gaussmf) 365.0 0.828 352.3 0.518

MLP 387.6 0.813 399.6 0.458

Qt, St�1, and St�2 ANFIS (2, Trimf) 333.1 0.821 396.9 0.470

FG (3, Pimf) 284.6 0.894 300.0 0.695

MLP 306.9 0.851 352.1 0.526

Qt, Qt�1, Qt�2,

and St�1

ANFIS (2, Gaussmf) 249.9 0.936 230.6 0.819

FG (3, Gauss2mf) 238.9 0.920 205.2 0.840

MLP 242.3 0.926 196.4 0.856

Qt, Qt�1, Qt�2, St�1,

and St�2

ANFIS (2, Gbellmf) 424.8 0.772 561.1 0.524

FG (2, Gbellmf) 242.8 0.919 239.3 0.775

MLP 227.2 0.917 229.7 0.793
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the ANFIS (3, Gbellmf) indicates an ANFIS model having three Gbellmf

membership functions (MFs) for the input Qt and FG (3, Gaussmf) refers an FG

model comprising three Gaussmf MFs for the input Qt. Table 10.2 reveals that

the MLP model having five input parameters performs better than the FG, ANFIS,

and SRCmodels from the RMSE viewpoint. The ANFIS (2, Gaussmf) model has the

highest R2 value for testing phase. Note that the R2 term provides information for

linear dependence between observations and corresponding estimates. Therefore, it

is not always expected that R2 is in agreement with performance criteria such as the

RMSE. For example, in the case of two time series such as (Xi ¼ 1, 2, 3, . . ., 10;
Yi ¼ 20, 40, 60, . . ., 200) the R2 between these two series is equal to 1 whereas the

RMSE value is quite high. An R2 value equal to 1 does not guarantee that a model

captures the behaviour of the investigated time series (Kisi et al. 2008). In the

validation phase, however, the FG (3, Gauss2mf) model having two Gaussian MFs

for the input combination Qt, Qt�1, Qt�2, and St�1 outperforms the optimal ANFIS

(2, Gaussmf), MLP, and SRC models.

For the second station, the FG (2, Gbellmf) model having two gumbell MFs for

the input combination Qt, Qt�1, Qt�2, St�1, and St�2 performs better than the other

models in terms of the RMSE and R2 in the testing and validation phases.

Table 10.3 The performances of the ANFIS, FG, MLP, and SRC models in the testing and

validation phases, 06088500

Model inputs Model

Testing Validation

RMSE (mg/L) R2 RMSE (mg/L) R2

Qt ANFIS (2, Trimf) 531.1 0.637 675.0 0.551

FG (3, Gbellmf) 556.6 0.870 676.9 0.543

MLP 719.0 0.873 691.9 0.516

SRC 1,074.5 0.767 774.4 0.484

St�1 ANFIS (2, Trimf) 946.2 0.599 472.5 0.772

FG (3, Gauss2mf) 970.6 0.586 476.6 0.766

MLP 994.2 0.574 471.4 0.771

Qt and St�1 ANFIS (2, Gbellmf) 716.2 0.840 424.7 0.823

FG (3, Gauss2mf) 367.7 0.941 424.6 0.822

MLP 409.2 0.929 406.0 0.843

St�1 and St�2 ANFIS (3, Pimf) 979.3 0.614 475.0 0.767

FG (2, Gauss2mf) 963.3 0.593 458.3 0.799

MLP 964.7 0.625 435.6 0.806

Qt, St�1, and St�2 ANFIS (2, Trimf) 891.9 0.651 463.0 0.785

FG (3, Gbellmf) 403.6 0.938 430.5 0.817

MLP 462.8 0.903 475.5 0.774

Qt, Qt�1, Qt�2, and St�1 ANFIS (2, Gaussmf) 698.4 0.790 380.3 0.873

FG (2, Gauss2mf) 307.6 0.960 291.3 0.912

MLP 391.6 0.944 310.0 0.901

Qt, Qt�1, Qt�2, St�1, and

St�2

ANFIS (2, Gaussmf) 594.5 0.846 298.4 0.909

FG (2, Gbellmf) 279.3 0.965 284.1 0.917

MLP 404.1 0.935 284.9 0.916
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The comparison of the observed and predicted SSCs in testing phase is shown in

Fig. 10.4 for the first station (Station no: 06088300) in the form of scatterplot. It can

be obviously seen from Fig. 10.4 that the estimates of the ANFIS are closer to the

exact fit line with higher R2 value than the FG, MLP, and SRC in the testing phase.

Figure 10.5 illustrates the suspended sediment estimates of the models in logarithm

scaled. Low- and high sediment estimates can be clearly seen from these double

logarithm graphs. It is clear from Fig. 10.5 that the ANFIS model is not as

successful as the FG model in low sediment estimation for the test phase.

The observed and estimated SSC values of the first station (Station no:

06088300) in the validation phase are illustrated in Fig. 10.6. It can be clearly

seen from Fig. 10.6 that the predictions of the FG model are closer to the exact fit

line than the ANFIS, MLP, and SRC models. These confirm the statistics given in

Table 10.2.

The comparison of the observed and predicted SSCs in testing phase is shown in

Fig. 10.7 for the second station (Station no: 06088500) in the form of scatterplot. It

can be obviously seen from Fig. 10.7 that the estimates of the FG are closer to the

exact fit line with higher R2 value than the ANFIS, MLP, and SRC in the testing

phase. Figures 10.8 and 10.9 illustrate the plotting of prediction performances of the
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Fig. 10.4 Plotting of prediction performances for the testing phase using the FG, ANFIS, MLP,

and SRC-Muddy Creek Station, 06088300
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FG, ANFIS, MLP, and SRC for the second station (Station no: 06088500) in the

testing and validation phases. It can be seen from Fig. 10.8, the FG model estimates

are closer to the exact line than those of the ANFIS and MLP models especially for

the low sediment values in the testing phase. The underestimations of the high

values are obviously seen for the SRC model. Validation estimates of the models

shown in Fig. 10.9 indicate that both the FG and MLP models give estimates closer

to the exact line than those of the ANFIS and SRC models especially for the low

sediment values in testing phase for the second station (Station no: 06088500).

From Table 10.3, however, it can be said that the FG model performs slightly better

than the MLP and both the ANFIS and SRC models.

The peak sediment estimates of the FG, ANFIS, MLP, and SRC models are

given in Tables 10.4 and 10.5 for the validation phase of each station, respectively.

In Table 10.4, in general, the MLP and FG models seem to have almost equal

accuracy in estimating sediment peaks for the first station. The ANFIS shows better

accuracy than the FG and MLP for the first two peaks both in the validation phase,

but, for the other peaks, the FG shows better accuracy than the ANFIS. From

Table 10.5, it is clear that the FG model has closer estimates than the ANFIS and

MLP models. Here, the ANFIS model is ranked as the second best. The ANFIS
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Fig. 10.7 Plotting of prediction performances for the testing phase using the FG, ANFIS, MLP,

and SRC-Muddy Creek Station, 06088500
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model has a better accuracy than the FG and MLP models for the second and third

peaks. However, in general, the FG shows better accuracy than the ANFIS andMLP

in estimating sediment peaks for the second station. It is clear from the tables that

the SRC model significantly underestimates the observed sediment peaks for both

the stations.

The total sediment load estimates of the FG, ANFIS, MLP, and SRC models in

the testing and validation phases are given in Table 10.6. It is clear from this table

that the total sediment estimates of the FG model are closer to the corresponding

observed values than the other models in both the stations.

The performances of the optimal the FG, ANFIS, MLP, and SRC models in the

testing and validation phases for each station are given in Table 10.7. For the first

station, the FG and MLP seem to give better predictions than the ANFIS and SRC in

the test phase. The MLP has a lower RMSE value than the FG in the testing phase

but, in the validation phase, the FG model has lower RMSE and higher R2 values

than the MLP and ANFIS models. Therefore, it seems from this table that, in

general, the FG gives slightly better predictions than the MLP. For the second

station, the FG seems to give better predictions than the ANFIS, MLP, and SRC in

both the testing and validation phases.
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and SRC (logarithm scaled)-Muddy Creek Station, 06088500
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Fig. 10.9 Plotting of prediction performances for the validation phase using the FG, ANFIS,

MLP, and SRC (logarithm scaled)-Muddy Creek Station, 06088500

Table 10.4 The comparison of the FG, ANFIS, MLP, and SRC peak-estimates for the validation

phase, 06088300

Peaks

>2,000 mg/L FG ANFIS MLP SRC FG

Relative error

ANFIS MLP SRC

2,480 1,255 1,360 1,317.5 168.8 �49.3 �45.1 �46.9 �93.1

2,210 1,107 1,252 1,169.5 293.9 �49.8 �43.3 �47.1 �86.6

3,090 2,639 3,740 3,104.3 364.6 �14.5 21.0 0.5 �88.2

3,930 3,571 4,659 4,077.3 429.3 �9.12 18.5 3.7 �89.0

5,540 4,169 3,901 2,187.0 621.0 �24.7 �29.5 �60.5 �88.7

3,280 5,117 6,241 4,544.5 558.6 56.0 90.2 38.6 �82.9

Total (absolute) ¼ 203.42 247.6 197.3 528.5

Table 10.5 The comparison of the FG, ANFIS, MLP, and SRC peak-estimates for the validation

phase, 06088500

Peaks

>2,000 mg/L FG ANFIS MLP SRC FG

Relative Error

ANFIS MLP SRC

2,600 1,707.4 1,658.6 1,572.2 306.6 �34.3 �36.2 �39.5 �88.2

3,130 1,666.4 1,765.6 1,503.1 245.1 �46.8 �43.6 �52.0 �92.2

4,940 3,096.9 3,496.3 2,779.8 382.1 �37.3 �29.2 �43.7 �92.3

5,390 3,936.8 3,757.1 3,552.7 2,235.7 �27.0 �30.3 �34.1 �58.5

2,330 2,262.0 2,208.8 2,412.2 1,400.4 �2.9 �5.2 3.5 �39.9

2,290 2,282.8 1,815.5 2,397.2 1,388.0 �0.3 �20.7 4.7 �39.4

Total (absolute) ¼ 148.6 165.2 177.5 410.5



10.4 Conclusion

The accuracy of the FG approach in prediction of the SSC was investigated in this

chapter. The FG models were tested by applying different input combinations of

the SSC and flow data from Muddy Creek Stations, Montana. The performance

of the FG was compared with those of the ANFIS, MLP, and SRC models. The

results obtained using the FG model to predict sediment concentration were found

to be better than those reached using the ANFIS and SRC models and taking into

consideration both stations, the FGmodel also gave better predictions than the MLP

model. Therefore, they confirmed the ability of this approach to provide a useful

tool in solving a specific problem in hydrology, such as forecasting suspended

sediment. The SRC technique gave significantly poor estimates relative to the FG,

ANFIS, and MLP models. The results suggest that the FG may provide a superior

alternative to the ANFIS, MLP, and SRC approaches for developing input–output

simulations and estimation models in situations that do not require modeling of the

internal structure of the watershed.

Table 10.6 The observed and predicted total SSC values in the testing and validation phases for

both the stations

Methods Station no.

Total SSC (mg/L) Relative error (%)

Testing phase Validation phase Testing phase Validation phase

Observed 06088300 94,816 89,741 – –

FG 06088300 91,334 91,085 �3.7 1.5

ANFIS 06088300 91,581 87,642 �3.4 �2.3

MLP 06088300 89,085 84,685 �6.0 �5.6

SRC 06088300 51,321 47,839 �46 �47

Observed 06088500 244,219 220,415 – –

FG 06088500 241,890 216,634 �1.0 �1.7

ANFIS 06088500 228,598 211,338 �6.4 �4.1

MLP 06088500 238,178 216,172 �2.5 �1.9

SRC 06088500 155,745 142,349 �36 �35

Table 10.7 The performances of the FG, ANFIS, MLP, and SRC models in the testing and

validation phases for each station

Methods Station no.

Testing phase Validation phase

RMSE (mg/L) R2 RMSE (mg/L) R2

FG 06088300 238.9 0.920 205.2 0.840

ANFIS 06088300 249.9 0.936 230.6 0.819

MLP 06088300 227.2 0.917 229.7 0.793

SRC 06088300 719.8 0.437 462.4 0.365

FG 06088500 279.3 0.965 284.1 0.917

ANFIS 06088500 594.5 0.846 298.4 0.909

MLP 06088500 391.6 0.944 310.0 0.901

SRC 06088500 1,074.5 0.767 774.4 0.484
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Chapter 11

Prediction of Local Scour Depth Downstream

of Bed Sills Using Soft Computing Models

A. Zahiri, H. Md. Azamathulla, and Kh. Ghorbani

Abstract Bed sill local scour is an important issue in environmental and water

resources engineering in order to prevent degradation of river bed and save the

stability of grade-control structures. This chapter presents genetic algorithms (GA),

gene expression programming, and M5 decision tree model as an alternative

approaches to predict scour depth downstream of bed sills. Published data were

compiled from the literature for the scour depth downstream of sills. The proposed

GA approach gives satisfactory results (R2 ¼ 0.96 and RMSE ¼ 0.442) compared

to existing predictors.

Keywords Grade-control structures • Local scour • Genetic algorithms • M5 tree

decision model • Gene expression programming

11.1 Introduction

Bed sills are a common solution to stabilize degrading bed rivers and channels.

They are aimed at preventing excessive channel-bed degradation in alluvial chan-

nels. Although their presence limits the general erosion process in the upstream, but

the erosive action of the weir overflow and turbulence generated from plunging jet

may cause significant local scour at downstream. By this local scour, the structure

itself (and many times other structures in vicinity of it, like bridge piers or

abutments, or bank revetments) might be undermined (Bormann and Julien 1991;

Gaudio and Marion 2003).
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For practical purposes, designers and civil engineers are often interested in a

short-term local scouring and its extent. For instance, they are often required to

predict the maximum scour depth at bed sills in the proximity of bridges when a

flood occurs. Therefore, most researchers have focused on local scouring at isolated

or series bed sill structures. Summaries of research for the bed sills can be found

in Lenzi et al. (2002). Bormann and Julien (1991) reviewed experimental studies

of scour downstream of hydraulic structures. They also investigated the scour down-

stream of grade-control structures with large-scale experiments. Gaudio et al. (2000)

presented a theoretical framework for calculation of maximum scour depth down-

stream of bed sills through identification of non-dimensional parameters by

Buckingham’s π-theorem. They proposed an empirical equation for the estimation

of maximum scour depth at bed sills taking into account of morphological effects in

low-gradient rivers through clear water laboratory tests. Later, their result was

generalized by Lenzi et al. (2002) to cover steep channels. Under similar slopes and

hydrological settings, an equation developed through laboratory results to predict the

maximum scour holes at grade-control structures in alluvial mountain rivers. Lenzi

and Comiti (2003) analyzed local scouring downstream of 29 drop structures. Lenzi

et al (2003) investigated themain characteristics of local scouring downstream of bed

sills in the form of a staircase-like system in high-gradient streams with nonuniform

alluvium. They found that the jet regime plays an important role both for the depth

and the length of the scour, and consequently affects the scour shape. They proposed

two equations for the estimation of the maximum scour depth and length in low and

high gradient streams.Marion et al. (2004) conducted a series of tests to determine the

effect of bed sill spacing and sediment grading on the potential erosion by jets flowing

over the sills. Tregnaghi (2008) conducted some experimental runs in the case of clear

water and live bed scouring at bed sills placed in steep gravel bed streams. He

concluded that the percentage reduction in maximum scour depth in the case of

sediment feeding comparedwith the clear water tests is considerable. Chinnarasri and

Kositgittiwong (2008) conducted some experimental tests in steep slopes and bed

sills with different sill spacing. They proposed a simple equation based on nonlinear

regression model for relative maximum scour depth at the equilibrium condition.

Although useful in many circumstances, these empirical formulae have one key

shortcoming. Specifically, due to wide ranges of hydraulic and sediment charac-

teristics of flow and also bed slopes in rivers, application of any empirical equation

doesn’t reflect the complex actual conditions of river and structure itself and also

the boundary conditions at the downstream of structures. Owing to rapid increase in

successful applications of neural computing, machine learning and evolutionary

algorithms in many fields of hydraulic engineering, and also owing to high com-

plexity of scouring phenomena at bed sills, there is a need to explore the applica-

bility of these new methods in prediction of maximum scour depth at bed sills. In

this regard, Guven and Gunal (2008) using genetic programming (GP) provides

alternative formulation for prediction of local scour downstream of grade-control

structures. Azamathulla (2012) presents an equation using gene expression pro-

gramming (GEP) for prediction of scour depth downstream of sills. In this study,

using the 226 experimental data set of maximum scour depth at bed sills from

literatures in different canal bed slopes and at clear water scouring, applicability of
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new methods of the GA, GEP, and M5 tree model have been examined in prediction

of relative maximum scour depth at bed sills. The results have been compared with

the empirical equations obtained by previous researchers.

11.2 Material and Methods

11.2.1 Physical Definition of Scouring

According to Gaudio et al. (2000), the main variable of interest, equilibrium

maximum scour depth (ys), in the case of uniform sediment beds is mainly depen-

dent on flow and sediment characteristics as follows:

ys ¼ f g; υ; ρw; ρs; q; qs; h;D; S0; Seq; L
� � ð11:1Þ

where g ¼ acceleration of gravity, υ ¼ kinematic viscosity of water, ρw, and ρs ¼
density of water and sediment, respectively, q and qs ¼ water and sediment

discharge per unit width supplied by upstream, respectively, h ¼ water depth of

uniform flow condition, D ¼ characteristic grain size, S0 and Seq ¼ initial and

equilibrium bed slopes, respectively, and L ¼ horizontal spacing between sills.

This is a general definition of the maximum scour depth for hydraulic, geometric,

and sediment properties (see Fig. 11.1).

The application of Buckingham’s π-theorem leads to identification of the

following dimensionless group (Chinnarasri and Kositgittiwong 2008):

ys
Hs

¼ f 2
a

Hs
;

a

ΔD50

;
L

Hs
;
D50

Hs
; S0

� �
ð11:2Þ

Fig. 11.1 Schematic of scour depth and length downstream of a bed sill (Tregnaghi 2008)
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whereΔ¼ (ρs� ρw)/ρw is the relative submerged density of sediment,Hs¼ 1.5
ffiffiffiffiffiffiffiffiffiffi
q2=g3

p

is critical-specific energy on the sills and a ¼ morphological jump, which was first

introduced by Gaudio et al. (2000). This important factor defines a geometrical

correspondence between the initial and equilibrium bed slopes and the spacing

between sills:

a ¼ S0 � Seq
� �

L ð11:3Þ

11.2.2 Scouring Prediction at Bed Sills

11.2.2.1 Empirical Equations

According to non-dimensional parameters obtained for maximum scour depth at

bed sills, some empirical equations based on regression analysis of experimental

data have been developed. These equations are presented in Table 11.1.

11.2.2.2 Genetic Algorithm

Genetic algorithm (GA) technique is capable of solving complex problems that the

traditional algorithms have been unable to conquer. This algorithm begins by

creating an initial random set of potential solutions for a particular problem.

Then, the fittest “parents” are selected and “children” are generated by means of

sexual reproduction (crossover) or asexual alteration (mutation). In crossover, two

parents swap random pieces of information with each other while in mutation, a

piece of information is replaced by another randomly generated piece. Finally, the

resulting solutions (children) are evaluated for their fitness (effectiveness) and

selected for reproduction. This process is repeated over-successive generations

until a stopping criterion is met (Sharifi 2009).

Once the initial population is generated, each chromosome is evaluated and its

“goodness” (fitness) is measured using some measure of fitness function. Then, based

on the value of this fitness function, a set of chromosomes is selected for breeding.

Table 11.1 Empirical equations for maximum scour depth prediction

Empirical equation Investigator Eq. Number

ys
Hs

¼ 1:45
a

Hs

� �0:86

þ 0:06
a

Δd50

� �1:49

þ 0:44
Lenzi et al. (2004) (11.4)

ys
Hs

¼ 1:6
a

Hs

� �0:61

þ 1:89
a

Δd50

� �0:21

� 2:03
Chinnarasri and

Kositgittiwong (2008)

(11.5)

ys
Hs

¼ 3
a

Hs

� �0:6

SI�0:19 1� e
�0:25

L

Hs

0

B@

1

CA

Tregnaghi (2008) (11.6)
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In order to simulate a new generation, genetic operators such as crossover and

mutation are applied to the selected parents. The offsprings are evaluated and the

members of the next generation population are selected from the set of parents and

offsprings. This cycle continues until the termination criterion is met (Sharifi 2009).

In this study, the absolute percentage error of output parameter prediction was

selected as the performance measure. The selected objective function is as follows:

f ¼ Min
Xi¼N

i¼1

ys
Hs

� �

exp

� ys
Hs

� �

cal

 !2

ð11:7Þ

where N is the number of sample tests and the subscripts exp and cal refer to

experimental value and the predictions obtained using each model selected in this

study, respectively.

11.2.2.3 Gene Expression Programming

GEP, which is an extension of the GP (Koza 1992), is a search technique that

evolves computer programs of different sizes and shapes encoded in linear chro-

mosomes of fixed lengths. The chromosomes are composed of multiple genes, each

gene encoding a smaller subprogram. Furthermore, the structural and functional

organization of the linear chromosomes allows the unconstrained operation of

important genetic operators such as mutation, transposition, and recombination

(Azamathulla 2012).

11.2.2.4 M5 Tree Model

Dividing a complex modeling problem into a number of subproblems and combin-

ing their solutions is the main idea in building model trees (MT). In this idea, the

parameter space is split into areas (subspaces) and a linear regression model is built

in each of them, which is an “expert” for that subspace. The algorithm makes it

possible to split the multidimensional parameter space into subspaces and to

generate the models automatically for each subspace according to an overall quality

criterion. First, the initial tree is built and then the initial tree is pruned (reduced) to

overcome the over-fitting problem (that is a problem when a model is very accurate

on the training data set and fails on the test set). Finally, the smoothing process is

employed to compensate for the sharp discontinuities between adjacent linear

models at the leaves of the pruned tree (this operation is not needed in building

the decision tree). In smoothing, the adjacent linear equations are updated in such a

way that the predicted outputs for the neighboring input vectors corresponding to

the different equations are becoming close in value (Witten and Frank 2005).
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11.2.2.5 Data Set

Two hundred and twenty six experimental data of maximum scour depth at bed sills

in clear water conditions have been collected and used in this chapter. These data

are from Lenzi et al. (2002), Gaudio and Marion (2003), Marion et al (2004),

Tregnaghi (2008), and Chinnarasri and Kositgittiwong (2008). Range of variations,

as well as the mean values of experimental data, is shown in Table 11.2.

11.2.2.6 Selection of Input and Output Parameters

Based on dimensional analysis, the parameters of a/Hs, a/ΔD50, L/Hs, D50/Hs, and

S0 have been selected as input variables and relative maximum scour depth, ys/Hs,

has been selected as output variable. Table 11.3 reports the ranges of input and

output parameters, which are used in this study.

11.2.3 Experimental Setup

In this study, GA_SOLVER tool in Microsoft Excel was adopted for the GA

modeling. For the GP modeling, the Gene_XPro_Tools software was used. Finally,

for the model tree experiment, a model tree was built using the M5 algorithm

implemented in WEKA software (Witten and Frank 2005).

Table 11.2 Range of geometric and hydraulic parameters for scouring at bed sills

Symbol Variable definition Variable range Mean value

L (m) Sills spacing 0.4–2.5 1.07

S0 Initial bed slope 0.0059–0.268 0.1099

Q (L/s) Flow discharge 0.68–30.6 16.5

D50 (mm) Sediment mean diameter 0.6–9.0 6.17

ys (cm) Maximum scour depth 2.4–29.8 14.45

Table 11.3 Range of input and output parameters used in this study

Dimensionless parameter Maximum value Minimum value Mean value

a/Hs 9.703 0.096 2.12

a/ΔD50 164.62 0.494 23.906

L/Hs 55.74 0.1531 17.736

D50/Hs 0.4615 0.0136 0.106

S0 0.268 0.0059 0.1099

ys/Hs 10.617 0.261 2.12
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11.3 Results

11.3.1 GA Model

Applying GA_Solver for developing a new equation, following relationship has

obtained for training data set:

ys
Hs

¼ 0:00076
a

Hs

� �16:999 a

ΔD50

� ��16:464 L

Hs

� ��0:0613 D50

Hs

� ��16:595

S0:08020 ð11:8Þ

Results of using the above equation for training and testing data have been

presented in Fig. 11.2. As can be seen, in all over the data ranges, this equation

shows good agreement between experimental and predicted values of maximum

scour depth at bed sills. Obtained R2 values of 0.96 and 0.94 for training and testing

data, respectively, indicate this agreement.

11.3.2 GEP Model

In this study, according to training data, another equation has been developed using

GeneXProTools program as following:

ys
Hs

¼ ln
a

ΔD50

þ a

Hs
þ 9:8561

D50

Hs

� �
þ D50

Hs

a

ΔD50

� S0
D50=Hs

� �

þ D50=Hs

log a=Hsð Þ � a= ΔD50ð Þð Þ1=3
ð11:9Þ

This equation with R2 ¼ 0.97 has considerable accuracy. By using this equation

for testing data, R2 is obtained as 0.97. These results have been shown in Fig. 11.3.

The detailed information of the GEP model is indicated in Table 11.4.

11.3.3 M5 Tree Equations

For training data, seven linear models have been derived based on mainly variations

of bed slope. This bed slope dividing is very important from hydraulic and mor-

phologic point of view which defines two different conditions for bed sill scouring.

These linear models, as well as the classification criteria, are as follows:
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Fig. 11.2 Proposed GA model for relative maximum scour depth prediction
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Fig. 11.3 GEP model results of relative maximum scour depth for training and testing data in this

study

Table 11.4 Parameters of the

optimized GEP model
Parameter Description of parameter Parameter amount

P1 Chromosomes 30

P2 Genes 3

P3 Mutation rate 0.044

P4 Inversion rate 0.1

P5 Function set �, power

P6 One-point recombination rate 0.3

P7 Two-point recombination rate 0.3

P8 Gene recombination rate 0.1

P9 Gene transposition rate 0.1

P10 Linking function Subtraction
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S0 <¼ 0:162 :�� a=Hs <¼ 0:579 :�� �� a=Hs <¼ 0:385 : LM1 37=14:364%ð Þ�� �� a=Hs > 0:385 : LM2 28=16:214%ð Þ�� a=Hs > 0:579 :�� �� a= Δd50ð Þ <¼ 4:266 : LM3 17=14:957%ð Þ�� �� a= Δd50ð Þ > 4:266 : LM4 28=8:399%ð Þ
S0 > 0:162 :�� a=Hs <¼ 3:744 : LM5 25=35:412%ð Þ�� a=Hs > 3:744 :�� �� a=Hs <¼ 6:218 : LM6 20=53:031%ð Þ�� �� a=Hs > 6:218 : LM7 20=62:068%ð Þ

LM num 1

ys
Hs

¼ 0:812
a

Hs

� �
þ 0:0285

a

Δd50

� �
þ 0:5264S0 þ 0:8136 ð11:10Þ

LM num 2

ys
Hs

¼ 0:9265
a

Hs

� �
þ 0:0285

a

Δd50

� �
þ 0:5264S0 þ 1:0991 ð11:11Þ

LM num 3

ys
Hs

¼ 0:3236
a

Hs

� �
þ 0:1019

a

Δd50

� �
þ 0:5264S0 þ 1:4 ð11:12Þ

LM num 4

ys
Hs

¼ 0:3263
a

Hs

� �
þ 0:0854

a

Δd50

� �
þ 0:5264S0 þ 1:7508 ð11:13Þ

LM num 5

ys
Hs

¼ 0:351
a

Hs

� �
þ 0:0029

a

Δd50

� �
þ 0:8224S0 þ 3:2061 ð11:14Þ

LM num 6

ys
Hs

¼ 0:4555
a

Hs

� �
þ 0:0029

a

Δd50

� �
þ 0:8224S0 þ 3:7096 ð11:15Þ
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LM num 7

ys
Hs

¼ 0:4544
a

Hs

� �
þ 0:0029

a

Δd50

� �
þ 0:8224S0 þ 4:3617 ð11:16Þ

Calculation results for training and testing data have been presented in Fig. 11.4.

According to R2 values, good accuracy has been obtained in comparison to exper-

imental maximum relative depth scours.

In Fig. 11.5, all results including selected models, as well as empirical equations,

are shown for data set of this study. As can be seen, the overall trend of Eq. 11.4

(Lenzi et al. 2004) is overestimation of maximum scour depth with very large errors

especially at high relative scour depths. Also, it is interesting to note that Eq. 11.5

(Chinnarasri and Kositgittiwong 2008) has good agreement with measured data.

Owing to simplicity of this equation and more importantly, its dependency to only

two dimensionless parameters, it can be proposed as an option for engineers to

predict maximum scour depth at bed sills with sufficient accuracy (R2 ¼ 0.91).

Equation 11.6 (Tregnaghi 2008) underestimates the scour depth with high errors,

especially at low relative scour depths. All selected models in this study (GA, GEP,

and M5) have high accuracy through all ranges of experimental data.

11.4 Performance Analysis of Results

To validate the results for the training and testing sets, several common statistical

measures are used, such as R2 (coefficient of determination), RMSE (root mean

square error), and AE (the average error) (Azamathulla 2012).

The results of statistical analysis are presented in Table 11.5. Based on this table,

it is indicated that among different models considered in this study, Eq. 11.4
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Fig. 11.4 Proposed M5 model relative maximum scour depth obtained for training and

testing data
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(Lenzi et al. 2004) has the worst accuracy and therefore, is not recommended for

application. On the other hand, the GA, GEP,M5, and even simple empirical equation

of Chinnarasri andKositgittiwong (11.5) have the best accuracies. By consideration of

all statistical parameters, it seems that the GAmodel can be proposed as an option for

prediction of maximum scour depth at bed sills. In addition, the Chinnarasri and

Kositgittiwong (2008) equation, with requiring for only two input parameters and also

having good accuracy, may be considered as a suitable approach.

11.5 Conclusions

Soft computing tools such as the GA, GEP, and M5 tree approaches were used to

derive new expressions for the prediction of scour downstream of bed sills. The

proposed GA equation is found to be useful to estimate scour depth for mountain
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Fig. 11.5 Comparison of all empirical equations and selected models results for prediction of

relative maximum scour depth

Table 11.5 Evaluation of empirical equations and selected models for scour depth prediction

Method

Training Testing All data

R2 RMSE %AE R2 RMSE %AE R2 RMSE %AE

Empirical Eqs.

Eq. 11.4 – – – – – – 0.61 26.06 �161

Eq. 11.5 – – – – – – 0.91 0.774 5.41

Eq. 11.6 – – – – – – 0.82 1.291 4.7

GA model 0.96 0.442 �0.93 0.94 0.938 �1.24 0.95 0.805 �0.98

GEP model 0.97 0.451 �8.46 0.95 0.555 �11.3 0.96 0.535 �8.94

M5 model 0.97 0.537 �4.84 0.96 0.652 �6.68 0.96 0.561 �5.17
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rivers for various bed slopes. Performance of the GA expression is carried out by

comparing its predictions with the published data (R2 ¼ 0.96 and RMSE ¼ 0.442).

The comparison shows that the new expression has the least RMSE and the highest

coefficient of determination. The expression is found to be particularly suitable for

bed slopes where predictions are very close to the measured scour depth. These

models can be further extended for the estimation of scour geometry based on

additional prototype data of parameters such as type of rock bed classified as per

rock quality designation (RQD) and rock mass rating (RMR).
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Chapter 12

Evaluation of Wavelet-Based De-noising

Approach in Hydrological Models Linked

to Artificial Neural Networks

Vahid Nourani, Aida Hosseini Baghanam, Aida Yahyavi Rahimi,

and Farzad Hassan Nejad

Abstract The inherent complexities in hydrologic phenomena have been turned

into a barrier to get accurate prediction by conventional linear methods. Therefore,

there is an increasing interest toward data-driven black box models. In recent

decades artificial neural network (ANN) as a branch of artificial intelligence

method has proved its efficiency in providing accurate results to model hydrologic

processes, which subsequently leads to provide important information for the urban

and environmental planning, land use, flood, and water resources management. The

efficiency of any data-driven model (e.g., ANN) largely depends on quantity and

quality of available data; furthermore, the occult noises in data may impact the

performance of the model. Although ANN can capture the underlying complexity

and nonlinear relationship between input and output parameters, there might be a

need to preprocess data. In this way, noise reduction of data using an appropriate

de-noising scheme may lead to a better performance in the application of the data-

driven ANN model. Thereupon, in this chapter, the ANN-based hydrological

models (i.e., stream-flow and sediment) were developed by focusing on wavelet-

based global soft thresholding method to de-noise hydrological time series on the

daily scale. The appropriate selection of decomposition level and mother wavelet

type is effective in thresholding results, so that sensitivity analysis was performed

over levels and several Daubechies group mother wavelets (Haar, db2, db3, db4,
and db5) to choose the proper variables. In this way, de-noised time series were

imposed into an ANN model to forecast flow discharge and sediment values. The

comparison of obtained results for both single ANN-based and de-noised-based

(i.e., preprocessed) approaches revealed that the outcomes have been improved for

the later model. Furthermore, the consequences indicated that the wavelet

de-noising was significantly dependent on the chosen mother wavelet whereas

forecasting results varied obviously with the alteration of mother wavelets.
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Eventually, it was resulted that after a specific threshold, no eminent progress in

results was obtained unlike the reduction occurred. Overall, the wavelet-based

de-noising approach, as a preprocessing method, can be a promising idea to

improve the ANN-based hydrological models.

Keywords Artificial neural network • De-noising • Stream-flow • Sediment

• Wavelet

12.1 Introduction

Accurate models of the stream-flow–sediment process that are embedded with high

complexity, non-stationarity, and nonlinearity in both spatial and temporal scales

can provide important information for watershed and water resources management.

The stream-flow–sediment yield is a complex hydrological phenomenon to com-

prehend due to tremendous spatial variability of watershed characteristics and

initial soil moisture, land use, slope, etc., making the physical modeling quite

complex. The correct assessment of the suspended sediment load (SSL) being

transported by a river is a considerable issue for hydrologists as it affects the

design, management, and operation of water resources projects. Furthermore,

precise estimation of SSL is essential for the study of river improvement and

utilization and pollution because sediment can carry pollutants such as radioactive

materials, pesticides, and nutrients. The increasing number of extreme and unex-

pected flood situations on one hand and low flow importance in the fields of water

supply management, industrial use of freshwater, optimization of reservoir opera-

tions, navigation, and other water-related issues on the other hand make accurate

modeling of runoff–sediment more critical than before. Therefore, numerous

hydrological models have been developed to simulate these complex and essential

processes.

As stated by Jain and Ormsbee (2002), probably the most frequently used

forecasting models for hydrological phenomenon are based on linear regression.

Most of the time series modeling procedures fall within the framework of multi-

variate autoregressive moving average (ARMA) models (Salas et al. 1980). How-

ever, they are basically the statistical method with linear assuming that leads to

consider data as stationary time series, so that they have a limited ability to capture

non-stationarities and nonlinearities involved in the hydrologic data. The conven-

tional time series forecasting techniques are deficient in representing the nonlinear

dynamics, which are inherent in the stream-flow and SSL processes. The physically

based conventional models require extensive series of parameters related to land

uses, soil characteristics, soil horizon, watershed treatment, conservation practices,

soil moisture variation, topographic data, surface roughness, etc. These parameters

fluctuate radically over a space and time, and are very difficult to be monitored.

Encountering the deficiency of statistical- and physical-based models, data-driven

models are becoming as increasingly popular as a complementary technology for
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modeling complex natural phenomena (Dawson et al. 2005; Solomatine and Price

2004). The data-driven models are extremely reliant on the available data, and are

commonly referred to as grey or black box models. Artificial neural network (ANN)

as one of the black box modeling tools has been recently found to show good

performance in modeling hydrological and environmental processes. The power of

ANN arises from its capability for constructing complicated indicators (nonlinear

models) for multivariate time series. Currently, ANN as a self-learning and

self-adaptive function approximator has exposed great ability in modeling and

forecasting nonlinear hydrologic time series. ANN offers an effective approach

for handling large amounts of dynamic, nonlinear, and noisy data, especially when

the underlying physical relationships are not fully understood (Zhang et al. 1998).

Several ANN configurations have been used for hydrological forecasting with good

performance (e.g., Hsu et al. 1995; Tokar and Johnson 1999; Dawson and Wilby

2001; Nourani et al. 2009a, b, 2012b; Maier et al. 2010). In this regard, Abrahart

et al. (2012) investigated studies about ANN applications on rainfall–runoff and

stream-flow modeling and prepared a review paper on the issue.

Considering ANN success in modeling of hydrological processes, several papers

were also presented about SSL modeling. In this light, Jain (2001) used the ANN

approach to develop an integrated stage–discharge–sediment concentration relation

and showed the superiority of ANN over the conventional methods. Tayfur (2002)

applied ANN for sheet sediment transport estimation and tested the performance of

the ANNs against physically based models. The comparison results revealed that

ANNs performed as well as the physically based models for simulating non-steady-

state sediment loads from different slopes. Agarwal et al. (2006) presented an ANN

model for simulation of runoff and sediment yield and showed that daily time-scale

modeling performed well in both calibration and verification steps. Alp and

Cigizoglu (2007) predicted river sediment yield by using generalized regression

neural network (GRNN) and feed forward back-propagation (FFBP) neural net-

works. They stated that both types of neural networks were able to predict daily

sediment load, but they found that GRNN was faster and could produce accurate

results within shorter time than FFBP model. Kisi (2009) designed neural network

model for estimation of suspended sediment concentration of two stations in the

USA. The result of the study indicated that the statistical preprocessing of the data

could significantly reduce the effort and computational time required in developing

the ANN model. Rai and Mathur (2008) proposed an FFBP ANN for computing

event-based temporal variation of sediment yield. Based on root mean-squared

error (RMSE), correlation coefficient, and Nash efficiency criteria, ANN-based

model performed better than the linear transfer function model for the computation

of runoff hydrographs and sedimentographs. Nourani (2009) used water discharge

at current and previous time steps as input neurons for forecasting sediment load at

current time step by ANN. In order to approve the efficiency and ability of the

proposed method, the obtained results were compared with the results of two other

classic methods (i.e., linear regression and rating curve methods). Melesse

et al. (2011) predicted SSL of river systems by using neural network with back-

propagation (BP) training algorithms and compared the model performance with
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multiple linear regressions, multiple nonlinear regression, and autoregressive

integrated moving average. The performance of ANN was evaluated using different

combinations of input data sets and results showed that ANN predictions for most

simulations were superior compared to the aforementioned models. Rajaee

et al. (2010) used conjunction of wavelet and neuro-fuzzy (WNF) for suspended

sediment prediction. The results illustrated that the predicted values by the pro-

posed WNF model were in good agreement with the observed SSL values and gave

better results than other models. Nourani et al. (2012a) developed two ANN models

for semi-distributed modeling of the SSL. The first model investigated an integrated

ANN model trained by the data of multiple stations inside the watershed, and the

second model developed a geomorphology-based ANN model, in which space

depended geomorphologic parameters of the sub-basins, extracted by GIS (Geo-

graphic Information System) tools and accompanied by time depended meteoro-

logical data in order to impose to ANN. The obtained results demonstrated that

although the predicted SSL time series by both models were in satisfactory agree-

ment with the observed data, the geomorphological ANN model produced better

performance because of employing spatially variable factors as the model inputs.

In spite of suitable flexibility of ANN in modeling hydrologic time series such as

stream-flow and sediment, sometimes, there is a shortage in appropriate forecasting

results while data consist of noises. This happens because the efficiency of data-

driven models is highly dependent on the available data in context of quantity and

quality. Recent studies have shown that the noise limits the performance of many

techniques used for identification and prediction of deterministic systems. The

severity of the noise influence on data analysis techniques largely depends on the

level and the nature of noise. In general, there are two types of noises; measurement

noise and dynamical noise. Measurement noise refers to the corruption of observa-

tions by errors, which are independent of the dynamics. Dynamical noise, in

contrast to measurement noise, is a feedback process wherein the system is

perturbed by a small random amount at each time step (Schouten et al. 1994).

Dynamical noise induces much greater problems in data processing than does

measurement noise. Even the approach investigated in this work is to consider

dynamical noise reduction as a fundamentally required process to enhance the

estimation process of the captured time series. Noise reduction is considered as a

continuous mapping process of the noisy input data to a noise-free output data.

Decades ago, a number of noise reduction methods were developed by Wiener

(1964) and Kalman (1960). Wiener filter and Kalman filter were two of de-noising

techniques which were suitable for linear systems. Wiener and Kalman filtering

methods were only capable of dealing with linear natural systems, and the results

depended on the establishment of state space functions to a great extent (Sang,

2013). Focusing on hydrological processes that are nonlinear, the linear de-noising

filters cannot behave effectively. Considering the mentioned shortage, the extended

Kalman filter was improved, which could be used for nonlinear dynamics, but had

limited application in processes with strong systematic nonlinearity (Reichel

et al. 2002). Therefore, the ensemble Kalman filter (EnKF) and a Monte Carlo-

based Kalman filter were introduced later. The EnKF has recently gained popularity
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in hydrology (Martyn et al. 2008) but, in principle, the EnKF is suitable only for

Gaussian error statistics and just propagates the first two moments of error statistics

and has limited effectiveness for highly nonlinear uncertainty evolutions.

Sivakumar et al. (1999) proposed a systematic approach to additive measurement

noise reduction in chaotic hydrological data, by coupling a noise level determina-

tion method and a noise reduction method and addressed some of the potential

problems in applying such methods to chaotic hydrological data, and discussed the

effectiveness of estimating the noise level prior to noise reduction. Elshorbagy

et al. (2002) investigated commonly used algorithms for noise reduction in order to

estimate chaotic hydrologic time series. It was found that the commonly used

algorithm for noise reduction in hydrologic data might also remove a significant

part of the original signal and recommended that noise reduction algorithm should

be applied with caution. Porporato and Ridolfi (1997) investigated the effects of

noise on the identification and prediction of the river flow time series by using a

simple noise reduction method of Schreiber and Grassberger. The efficiency of their

utilized noise reduction method was generally influenced by the precise selection of

optimal values of parameters and the number of iterations involved in the method.

The threshold-based wavelet de-noising method, which illuminates the localized

characteristics of non-stationary time series both in temporal and frequency

domains, is a potential filter (Jansen 2006) in comparison to the so-called methods

at literature. With specific regard to de-noising methods based on wavelets, Cannas

et al. (2006) and Nourani et al. (2009a) explored the multi-scaling property of

wavelets for maximization of the ANN forecasting accuracy in the context of flow

forecasting. Guo et al. (2011) used the wavelet de-noising method to reduce or

eliminate the noise in runoff time series and improve the performance of support

vector machine in runoff prediction model. Nejad and Nourani (2012) applied

global soft threshold-based wavelet de-noising method to de-noise daily time series

of river stream discharge and subsequently de-noised time series was imposed into

the ANN model to forecast flow discharge value one day ahead. Results showed

that networks trained with de-noised data, which performed a preprocessing

approach, revealed appropriate results in comparison to networks trained via

noisy raw time series without any preprocessing. More recently, Nourani

et al. (2013) used the wavelet transform to extract dynamic and multi-scale features

of the non-stationary runoff time series and removed the observed data noise. The

application of wavelet-based global soft thresholding method as a de-noising

method for the ANN-based stream-flow and SSL forecasting model is a quite

novel methodology presented in the current chapter. On this point, through the

present research the influence of dynamical noise at stream-flow and SSL time

series on the ANN model performance was investigated; thereupon, global soft

threshold-based wavelet de-noising method was applied to de-noise daily time

series of stream-flow and suspended sediment, observed at outlet of the Potomac

River in the USA. The de-noised time series enhanced in accuracy could then be

imposed to ANN with the aim of forecasting processes. Three basic steps were

followed to achieve the purpose of study; (1) selection of appropriate mother

wavelet, (2) determination of optimum decomposition level, and (3) threshold
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value determination and de-noising via the soft threshold wavelet-based global

de-noising method.

The remaining parts of the chapter were organized as follows. First as the

continuum of introduction section, the study area and utilized data were presented.

Secondly through the materials and methods section a brief description of wavelet

transform and ANN along with evaluation criteria was presented. Then, the

proposed methodology for the introduced watershed was comprehensively

explained, and the obtained results were discussed in detail. Concluding remarks

was the final section of research.

12.2 Study Area and Data

Daily stream-flow and SSL data at outlet of the Potomac River, which is located in

Frederick County of Maryland State, USA (latitude 39�16024.900, longitude

77�32035.200), were used in this study (Fig. 12.1). Approximately 40 % of the

Potomac River basin is forested, 33 % is farmland and pasture, and an estimated

27 % is urban area. The average flow of river observed at the outlet is 306 m3/s. The

upstream drainage area is 25,996 km2. The historical daily stream-flow and SSL

data for 20 years (from 1960 to 1980, 7,333 days) which were used in this research

are available at the United States Geological Survey (USGS) website, http://

waterdata.usgs.gov/usa/nwis/uv?01638500).

Fig. 12.1 The study area map, Potomac River at Point of Rocks at Frederick County
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The time series are presented in Fig. 12.2a, b for stream-flow and SSL,

respectively. The statistical parameters of the stream-flow and sediment data such

as the mean, standard deviation, and maximum and minimum values (i.e., Xmean, Sd,
Xmax, and Xmin, respectively) are given in Table 12.1. Due to the training and

Table 12.1 Statistics of stream-flow and SSL time series for whole data as well as calibration and

verification data

Statistical

parameters

Data Calibration Verification

Stream-flow

(m3/s)

SSL

(ton/day)

Stream-flow

(m3/s)

SSL

(ton/day)

Stream-flow

(m3/s)

SSL

(ton/day)

Xmean 276.42 3,144 266.94 3,182.03 304.84 41,885.46

Xmax 8,288 689,000 8,288 689,000 4,816 400,000

Xmin 15.316 2 15.316 2 30.8 3.7

Sd 2,324.3 19,082.3 2,271 18,541 2,469.8 20,622

Fig. 12.2 (a) Stream-flow time series and (b) SSL time series observed at outlet of the Potomac

River from 1960 to 1980
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verification goals, data sets were divided into two parts. The first division was 75 %

of total data (from 1960 to 1975) which included the training set and the rest 25 %

(from 1975 to 1980) was used for verification purpose.

12.3 Materials and Methods

12.3.1 Wavelet De-noising Procedure

The wavelet transform has increased in usage and popularity in recent years since

its inception in the early 1980s, yet still does not enjoy the widespread usage of the

Fourier transform. Fourier analysis has a serious drawback. In transforming to the

frequency domain, time information is lost. When looking at a Fourier transform of

signal, it is impossible to tell when a particular event took place but wavelet

analysis allows the use of long time intervals where more precise low-frequency

information and shorter regions are necessary where high-frequency information is

wanted. In the field of earth sciences, Grossmann and Morlet (1984), who worked

especially on geophysical seismic signals, introduced the wavelet transform appli-

cation. A comprehensive literature survey of wavelet in geosciences can be found in

Foufoula-Georgiou and Kumar (1995) and the most recent hydrological contribu-

tions have been cited by Labat (2005) and Sang (2013). As there are many good

books and articles introducing the wavelet transform, this chapter will not delve

into the theory behind wavelets and only the main concepts of the transform are

briefly presented; recommended literature for the wavelet novice includes Mallat

(1998) or Labat et al. (2000). The time-scale wavelet transform of a continuous time

signal, x(t), is defined as (Mallat 1998):

T a; bð Þ ¼ 1
ffiffiffi
a

p
ðþ1

�1
g�

t� b

a

� �
x tð Þ � dt ð12:1Þ

where * corresponds to the complex conjugate and g(t) is called wavelet function or
mother wavelet. The parameter a acts as a dilation factor, while b corresponds to a

temporal translation of the function g(t), which allows the study of the signal around
b. The main property of wavelet transform is to provide a time-scale localization of

process, which derives from the compact support of its basic function. This is

opposed to the classical trigonometric function of Fourier analysis. The wavelet

transform searches for correlations between the signal and wavelet function. This

calculation is done at different scales of a and locally around the time of b. The
result is a wavelet coefficient (T(a, b)) contour map known as a scalogram. In order

to be classified as a wavelet, a function must have finite energy, and it must satisfy

the following “admissibility conditions” (Mallat 1998):
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gm,n tð Þ ¼ 1
ffiffiffiffiffiffi
am
0

p g�
t� nb0a

m
0

am
0

� �
ð12:2Þ

where m and n are integers that control the wavelet dilation and translation,

respectively; a0 is a specified fined dilation step greater than 1; and b0 is the location
parameter and must be greater than 0. The most common and simplest choice for

parameters is a0 ¼ 2 and b0 ¼ 1. This power-of-two logarithmic scaling of the

dilation and translation is known as the dyadic grid arrangement. The dyadic

wavelet can be written in more compact notation as (Mallat 1998):

gm,n tð Þ ¼ 2�m=2g 2�mt� nð Þ ð12:3Þ

Discrete dyadic wavelets of this form are commonly chosen to be orthonormal,

i.e. (Mallat 1998):

ðþ1

�1
gm,n tð Þgm0,n0 tð Þdt ¼ δm,m0δn,n0 ð12:4Þ

which δ is Kronecker delta.
This allows for the complete regeneration of the original signal as an expansion

of a linear combination of translates and dilates orthonormal wavelets.

For a discrete time series, xi, the dyadic wavelet transform becomes (Mallat

1998):

Tm,n ¼ 2�m=2
XN�1

i¼0

g 2�mi� nð Þxi ð12:5Þ

where Tm,n is wavelet coefficient for the discrete wavelet of scale a ¼ 2m and

location b ¼ 2mn. Equation (12.5) considers a finite time series, xi, i ¼ 0, 1, 2, . . .,
N � 1; and N is an integer power of 2: N ¼ 2M. This gives the ranges of m and n as,
respectively, 0 < n < 2M � m � 1 and 1 < m < M. At the largest wavelet

scale (i.e., 2mwherem ¼ M ) only one wavelet is required to cover the time interval,

and only one coefficient is produced. At the next scale (2m�1), two wavelets

cover the time interval; hence, two coefficients are produced, and so on down to

m ¼ 1. At m ¼ 1, the a scale is 21; that is, 2M�1 or N/2 coefficients are required

to describe the signal at this scale. The total number of wavelet

coefficients for a discrete time series of length N ¼ 2M is then 1 + 2 + 4 +

8 + � � � + 2M� 1 ¼ N � 1.

In addition to this, a signal-smoothed component, T, is left, which is the signal

mean. Thus, a time series of length N is broken into N components, i.e., with

0 redundancy. The inverse discrete transform is given by (Mallat 1998):
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xi ¼ T þ
XM

m¼1

X2M�m�1

n¼0

Tm,n2
�m=2g 2�mi� nð Þ ð12:6Þ

or in a simple format as (Mallat 1998):

xi ¼ T tð Þ þ
XM

m¼1

Wm tð Þ ð12:7Þ

where T (t) is called approximation sub-signal at level M and Wm(t) are detail

sub-signals at levels m ¼ 1, 2, . . ., M.

The wavelet coefficients, Wm(t) (m ¼ 1, 2, . . ., M ), provide the detail signals,

which can capture small features of interpretational value in the data; the residual

term, T(t), represents the background information of data. Because of simplicity of

W1(t),W2(t), . . .,WM(t),T(t), some interesting characteristics, such as period, hidden

period, dependence, and jump, can be diagnosed easily through wavelet

components.

Wavelet de-noising method based on threshold application was proposed for

acquiring correct de-noised results by Donoho (1995). This method, which is now

the most common method of wavelet de-noising, is performed as follows:

1. An appropriate mother wavelet and number of resolution level are chosen. The

original one-dimensional time series xi is decomposed into an approximation at

resolution levelM and detailed signals at various resolution levels up to levelM.

2. The absolute values of detailed signals that exceed certain threshold are treated

as the difference between the values of detailed sub-signals and threshold by

Eq. (12.8), otherwise, are set to 0, which gives the threshold quantifications used

to obtain the processed detailed signals at each resolution level during wavelet

de-noising. The approximation usually does not perform threshold

quantifications.

d̂ j tð Þ ¼ sgn
�
dj tð Þ

����dj
�
t
���� T0� ��dj tð Þ

�� > T0

0
��dj tð Þ

�� � T0

�
ð12:8Þ

In Eq. (12.8), T0 and dj(t) ( j ¼ 1, 2, . . ., M ) denote certain threshold and the

absolute values of detailed signals for the jth resolution level, respectively.

3. Wavelet reconstruction can derive the de-noised data from the approximation at

resolution level M and processed detailed signals (d̂ j tð Þ) at all resolution levels.

Donoho (1995) derived a general optimal universal threshold for the white

Gaussian noise under a mean square error criterion and its side condition that
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with high probability, the enhanced signal is at least as smooth as the clean signal.

In this method, threshold is selected as (Donoho 1995):

T0 ¼ σ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ln nð Þ

p
ð12:9Þ

where n is number of samples in the noisy signal and σ̂ is the standard deviation of

noise that is estimated by Donoho (1995):

σ̂ ¼ median dj tð Þ
�� ��� �

0:6745

	 

ð12:10Þ

in which jdj(t)j is the first-level detail coefficient of wavelet transform of the signal.

In the current study, the soft threshold wavelet-based de-noising was done by

global method (i.e., all the detailed signals shrunk just with the same threshold

value). In comparison to conventional de-noising methods such as moving average,

wavelet de-noising technique is a robust technique. It means that in wavelet-based

de-noising technique time series is decomposed to several sub-series each in a

specified scale (i.e., multi-resolution property); thereafter, the thresholding is

applied to each detail to remove the involved noises proportional to the scale of

sub-series. The moving average is a smoothing scheme which conducts smoothing

by applying uniform weights to the values of time series without any thresholding,

provided, in the wavelet transform the relevant weights are applied nonuniformly

via mother wavelet. On the other hand well-matching of the de-noising approach

with the nature of the phenomena plays a crucial role in de-noising techniques

employment, particularly in hydrological time series. The involved noises in time

series are necessitated to be eliminated via a method that encompasses the

extremely non-stationary and nonlinear characters; such characters are dominant

in hydrological time series.

12.3.2 Artificial Neural Network and Efficiency Criteria

ANN is widely applied in hydrology and water resource studies as a forecasting

tool. In ANN, FFBP network models are common to engineers. It has been proved

that BP network model with three layers is satisfied for forecasting and simulating

any engineering problem (Hornik 1988; Nourani et al. 2008). Three-layered feed

forward neural networks (FFNNs), which have been usually used for forecasting

hydrologic time series, provide a general framework for representing nonlinear

functional mapping between a set of input and output variables. Three-layered

FFNNs are based on a linear combination of the input variables, which are

transformed by a nonlinear activation function as expressed by Eq. (12.11) where
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i, j, and k denote input layer, hidden layer, and output layer neurons, respectively,

and w is the applied weight by the neuron. The term “feed forward” means that a

neuron connection only exists from a neuron in the input layer to other neurons in

the hidden layer or from a neuron in the hidden layer to neurons in the output layer

and the neurons within a layer are not interconnected to each other. The explicit

expression for an output value of a three-layered FFNN is given by Nourani

et al. (2008):

ŷ k ¼ f 0
XMN

j¼1

wkj � f h
XNN

i¼1

wjixi þ wj0

 !

þ wk0

" #

ð12:11Þ

where wi,j is a weight in the hidden layer connecting the ith neuron in the input layer
and the jth neuron in the hidden layer, wj0 is the bias for the jth hidden neuron, fh is
the activation function of the hidden neuron, wkj is a weight in the output layer

connecting the jth neuron in the hidden layer and the kth neuron in the output layer,
wk0 is the bias for the kth output neuron, f0 is the activation function for the output

neuron, xi is ith input variable for input layer, and ŷk, y are computed and observed

output variables, respectively. NN andMN are the number of the neurons in the input

and hidden layers, respectively. The weights are different in the hidden and output

layers, and their values can be changed during the process of the network training.

Since ANN training sequences involve tuning the values of random-selected

weights and biases of the network to optimize network performance, it is possible

to get different results in each training procedure. However, in order to reduce the

impact of the initial weights randomness in the BP algorithm the training pro-

cedures were repeated several times for each input with the specific network

structure and target data. Since the reinitialized parameters were adopted according

to the same variables of network (i.e., input data, network architecture, target data)

the random allocation of parameters had no significant effect on output results, in as

much as the average result of all runs was approximately equal to each of the trials.

The model that yields the best results in terms of determination coefficient (R2)

as Eq. (12.12) and RMSE as Eq. (12.13) in the training and verifying steps can be

determined through trial and error process (Nourani et al. 2009a).

R2 ¼ 1�

XN

i¼1

Oobsi � Ocomi
ð Þ2

XN

i¼1

Oobsi � Oobs

� �2
ð12:12Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

Oobsi � Ocomi
ð Þ2

N

vuuuut ð12:13Þ
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where R2, RMSE, N, Oobsi , Ocomi
, and Oobs are determination coefficient, RMSE,

number of observations, observed data, computed values, and mean of observed

data, respectively.

The RMSE is used to measure forecast accuracy, which produces a positive

value by squaring the errors. The RMSE increases from 0 for perfect forecasts

through large positive values as the discrepancies between forecasts and observa-

tions become increasingly large. Obviously high value for R2 (up to 1) and small

value for RMSE indicate high efficiency of the model.

The utilized data were normalized due to the fact that the network training

process could be speeded up by normalizing the input and target data before

training (Rogers 1996). In this study, the input and target data were normalized to

scale data between 0 and 1 with Eq. (12.14):

yi ¼
xi � xmin

xmax � xmin

ð12:14Þ

Regarding Eq. (12.14) xi is the desired variable value, and xmin and xmax are the

minimum and maximum values, respectively. yi is the normalized variable.

Utilization of normalizing approach and transferring data between [0,1] cause a

small change in ymax, i.e., the upper bound of the normalized interval, and they

impact on a normalized input in the mentioned range; subsequently the normalized

input has a greater influence on the output; also normalizing makes the training of

the ANN quicker (Nourani and Fard 2012).

12.4 Results and Discussion

The impact of de-noised and noisy data on model forecasting performance was

compared with application of the ad hoc ANN and hybrid ANN-wavelet with

de-noising technique over stream-flow and SSL forecasting models. Firstly, the

single ANN models with raw and noisy data sets were established to forecast

stream-flow and SSL amounts one day ahead. Secondly, the input data were

de-noised by threshold-based global wavelet de-noising method and reimposed

into ANN. The schematic diagram of wavelet de-noising is presented in

Fig. 12.3. The architecture of ANN models was arranged according to the anteced-

ents of stream-flow and sediment processes, whereas, stream-flow and sediment

time series usually behave as strong Markovian processes, so that the values of

parameters in the current time step may be related to the previous time step

condition. Therefore, ten combinations of stream-flow and SSL value antecedents

were used as inputs to forecast the stream-flow and SSL at the input layer of ANN.

Input combinations for stream-flow forecasting were as:

Comb. (1-1): Qt�1

Comb. (1-2): Qt�1, Qt�2

Comb. (1-3): Qt�1, Qt�2, Qt�3

Comb. (1-4): Qt�1, Qt�2, Qt�3, Qt�4
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and input combinations for SSL prediction were as:

Comb. (2-1): SSLt�1

Comb. (2-2): SSLt�1, SSLt�2

Comb. (2-3): Qt�1, Qt�2

Comb. (2-4): SSLt�1,Qt�1

Comb. (2-5): SSLt�1, SSLt�2,Qt�1

Comb. (2-6): SSLt�1, SSLt�2,Qt�1,Qt�2

Comb. (2-7): SSLt�1, SSLt�2, SSLt�3, Qt�1, Qt�2, Qt�3

In all cases, t represented current time step. The output layer comprised only one

neuron, which was stream-flow of current day (Qt) for the stream-flow forecasting

and SSL at current time step (SSLt) for the SSL forecasting.

12.4.1 Ad Hoc ANN

12.4.1.1 Stream-Flow Forecasting

In order to get appropriate one-day-ahead forecast of stream-flow, the input layer

should be arranged in a way that could enjoy all pertinent information on target data.

Based on sensitivity analysis, the input layer was optimized with only the most

important time memories. In this regard, aforementioned combinations including

sliding window on stream-flow time series up to four lag time steps were considered

as model inputs. For each input combination, the ANN architecture was a three-

layered ANN included of input layer, hidden layer, and finally the output layer. In

hidden layer the numbers of neurons were altered up to ten neurons to choose the

appropriate value as the hidden layer neuron number. After determination of proper

ANN architecture due to the adequate performance criteria, training became over

and weights were saved in order to be used in the verification step. Daily stream-flow

forecasting results are presented in Table 12.2 for training and validation data sets.

According to Table 12.2, the combination with three antecedents performed prop-

erly in terms of evaluation criteria; thus, there was no need of more complex ANN

models with further time memories of stream-flow.

Fig. 12.3 The schematic diagram of thewavelet de-noising
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12.4.1.2 SSL Forecasting

For the SSL forecasting the same procedure of ANN modeling was conducted, in

which for each combination of input data, the hidden layer neuron values were

selected through trial–error procedure and finally the output layer neuron

revealed the forecasted SSL value. Based on the R2 results at verification step,

the most appropriate architecture of ANN was selected for SSL prediction. The

input layer neurons comprised stated combinations for SSL forecasting, which

could be considered in two groups; firstly, the inputs that contained only SSL or

stream-flow data (i.e., combinations with one type of variable, stream-flow or

SSL) and secondly, combinations included both SSL and stream-flow data in

order to forecast SSL amount (i.e., combinations with two types of variables,

stream-flow and SSL). Considering the fact that financial and technical problems

in the exact measurement of the SSL turn into a barrier and usually after several

years measuring would be stopped, the employed available stream-flow data in

order to estimate the SSL values could be a reliable choice. According to

Table 12.3, poor results in terms of R2 which were obtained for the Comb. 2-1

and Comb. 2-4 denoted that in order to achieve a good performance of modeling,

input data combination with more than one time step lag was required. On the

other hand, the increase of lag time in combinations with one type of variables

Table 12.2 Ad hoc ANN results for stream-flow forecasting model with various input

combinations

Input

combination Output

Network

structurea
RMSE (normalized)b R2

Calibration Verification Calibration Verification

Comb. 1-1 Qt (1-3-1) 0.021 0.060 0.786 0.762

Comb. 1-2 Qt (2-9-1) 0.015 0.020 0.883 0.822

Comb. 1-3 Qt (3-3-1) 0.017 0.020 0.861 0.838

Comb. 1-4 Qt (4-6-1) 0.013 0.020 0.911 0.835
aThe mentioned values on the network structure stand to the number of input neurons, hidden

neurons, and output neuron, respectively
bThe results have been presented for the best structure and the RMSE values in all tables are

dimensionless

Table 12.3 Ad hoc ANN results for SSL forecasting model with various input combinations

Input

combination Output

Network

structure

RMSE (normalized) R2

Calibration Verification Calibration Verification

Comb. 2-1 SSLt (1-5-1) 0.020 0.022 0.396 0.365

Comb. 2-2 SSLt (2-10-1) 0.014 0.018 0.692 0.601

Comb. 2-3 SSLt (2-10-1) 0.016 0.020 0.635 0.543

Comb. 2-4 SSLt (2-10-1) 0.019 0.022 0.449 0.374

Comb. 2-5 SSLt (3-7-1) 0.015 0.018 0.685 0.630

Comb. 2-6 SSLt (4-4-1) 0.015 0.017 0.674 0.651

Comb. 2-7 SSLt (6-6-1) 0.015 0.018 0.676 0.618
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(i.e., Combs. 2-2 and 2-3) led to more reasonable consequences for SSL

forecasting. Moreover, while both variables (stream-flow and SSL) were located

in the input neurons, the performance of ANN enhanced and Comb. 2-6 revealed

the best performance. This might be relevant to the underlying impacts between

stream-flow and SSL phenomena. The selected sufficient combinations due to the

proper performance were used in choosing parameters for the threshold-based

wavelet de-noising approach.

12.4.2 Hybrid ANN-Wavelet

12.4.2.1 Wavelet-Based De-noising Approach

Beyond a shadow of a doubt, efficiency of ANN modeling as a data-driven method

depends on the quality and quantity of data. Indeed, most of the hydrological time

series like stream-flow and SSL consist of noise. Therefore, the necessity of

removing the noise appears in the modeling of hydrological processes. Noise

reduction methods are ordinarily chosen on the basis of their robustness, the soft

threshold wavelet-based de-noising approach is an applicable and powerful noise

reduction method, which can perform more efficiently if reasonable mother wave-

let, proper time-scale levels, and eventually appropriate threshold value could be

picked out. In order to solve wavelet de-noising concerns of stream-flow and SSL

time series in this study, the assessment on precise selection of three so-called

parameters was conducted. The brief description of each parameter and the effec-

tive factors was presented as well as hybrid models.

The selection of an appropriate mother wavelet is a challenge in wavelet

de-noising issue, since the type of utilized mother wavelet can affect the modeling

results remarkably (Nejad and Nourani 2012). The essence of wavelet transform is

to discover the similarity between the analyzed time series and utilized wavelet

prototype. In this way, Daubechies family of wavelets (Haar, db2, db3, db4, db5)
were examined as the mother wavelets in current research (Fig. 12.4). The

Daubechies wavelets have associated minimum-phase scaling filters, are both

orthogonal and biorthogonal, and do not have an explicit analytic expression except

for the db1 (or Haar) form.

In discrete wavelet analysis, Nourani et al. (2009a) and Sang et al. (2009a)

suggested some methods to choose adequate decomposition level in hydrological

modeling. In this study, the minimum decomposition level for the wavelet-based

preprocessing technique was selected due to the historical data length and the

importance of seasonalities regarding the process entity (i.e., the periods that

stream-flow or SSL happens dominantly). It is obvious that wavelet transform

decomposes a signal into approximation and detailed sub-signals, in which the

approximation signal that states the general aspect of stream-flow or SSL time

series reveals positive integers; otherwise, the negative values in the approximation

signal cannot state any physical interpretation for hydrological processes.
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Decomposition level n for daily data yields n detailed sub-series; as an example if

n is considered 7, decomposition contains details as 21-day mode, 22-day mode, 23-

day mode (i.e., nearly weekly mode), 24-day mode and 25-day mode (i.e., almost

monthly mode), and 26-day mode and 27-day mode (i.e., period of occurrence is

nearly per 4 months). In the application of decomposition levels less than 8 only a

few seasonalities of main time series might be taken into account, but according to

the hydrological base of the processes, there might be other dominant seasonalities

with longer periods. Therefore, decomposition levels 8, 9, and 10 were also

examined to obtain optimum decomposition level. The decomposition level 8 con-

tains one more detail in comparison to decomposition level 7, which is about yearly

Fig. 12.4 (a) Haar, (b) db2, (c) db3, (d) db4, and (e) db5 mother wavelets
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mode and decomposition levels 9 and 10 yield one and two more details, respec-

tively (i.e., 29-day mode and 210-day mode). Figure 12.5a, b shows approximation

and detailed sub-series of SSL and stream-flow time series decomposed by db5 and
db3 mother wavelets at level 8, respectively. Eventually, based on stream-flow and

Fig. 12.5 (a) Decomposed SSL time series at level 8 via db5 and (b) decomposed stream-flow

time series at level 8 via db3 (a8: approximation signal; d1, d2, . . ., d8: detailed signals)
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SSL nature, decomposition levels 8, 9, and 10, which might get to rational

outcomes on de-noising approach, were compared in order to survey the effect of

decomposition level on the model performance. Thresholding is the third and the

most important step in wavelet de-noising procedure, which de-noises detailed

signals by shrinking them as Eq. (12.8). In the current study, the soft threshold

wavelet-based de-noising was performed by global method (i.e., all the detailed

signals shrank just with the same threshold value). The validity of threshold

determination in the hydrological time series was a great challenge and many

conventional methods such as Fixed Threshold, SURE, and MINIMAX for deter-

mining the thresholds of wavelet detailed signals encountered the disadvantages.

The first disadvantage was that the conventional threshold determination methods

in hydrological time series were generally suitable for analysis of normal distribu-

tion of noises; the second problematic condition was that the noises separated from

original hydrologic series were usually auto-correlated well; and finally, for

Fig. 12.5 (continued)
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different methods, the threshold values of wavelet detailed signals were assorted

(Sang et al. 2009b). But the proposed method in current research not only covered

all the noise distributions by threshold variation but also made the detailed signal

thresholds equal with global method. It should be mentioned that Eq. (12.9) has

been developed on the basis of the Gaussian noise involved in the signal. Moreover,

the noise included in a complex hydrological process might not obey Gaussian

noise (Sang et al. 2009b). Consequently, more trial–error procedure was needed to

determine the appropriate threshold value without considering how the noise

distribution was. The threshold value influenced de-noising procedure of hydrolog-

ical time series in two different aspects. First, if threshold value was fine, noise

reduction would be skimpy; inversely if threshold value was great, as a result, noise

would be removed, but main information of the time series would be also removed.

Therefore, the appropriate threshold not only removed the noise but also kept the

main part of the time series. Thus, determination of the appropriate threshold value

led to achieve higher performance in the forecasting phase.

12.4.2.2 Stream-Flow Forecasting

To develop the hybrid ANN-wavelet model, the ANN model was fed by de-noised

sub-series in order to forecast stream-flow values one day ahead for daily data. In

this way, firstly the stream-flow time series decomposed to various levels by

different mother wavelets; subsequently the threshold value was found through

universal threshold method (Eq. 12.9), and time series were de-noised via global

wavelet-based de-noising; eventually the de-noised data were imposed to ANN as

inputs. After determination of proper mother wavelet and decomposition level for

the time series, the appropriate threshold value was determined via trial–error

procedure on threshold values. In order to employ the mentioned methodology,

the Comb. 1-3 of stream-flow data, which was selected in the ad hoc ANNmodeling

section, was utilized as the input time series. Through the universal threshold

method the threshold value was obtained for stream-flow time series; afterwards,

the threshold value was employed in the wavelet-based global de-nosing method

for each detailed sub-signal and various mother wavelets to gain the ultimate clear

and de-noised stream-flow time series. At the last step the de-noised time series

were arranged in the form of Comb. 1-3 to be utilized in training of ANN. Among

the several structures of ANN the proper ones were inserted to Table 12.4.

According to the evaluation criteria the most appropriate mother wavelet and

decomposition level were determined. The consequences revealed that based on

R2 evaluation criterion, mother wavelet db4 with decomposition level of

8 performed more efficiently than other Daubechies at other decomposition levels.

The better performance of the db4wavelet might originate from the form of wavelet

(Fig. 12.4d), which was in coincidence to the stream-flow signal.

The other purpose of the current chapter was to find the appropriate threshold

value to enjoy more de-noised time series. To this end, different threshold values

around the neighborhood of the universal threshold computed by Eq. (12.9) were
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examined for discharge time series in stream-flow modeling to find the appropriate

threshold value (see Table 12.5). As depicted in Table 12.5, the more increased

threshold value of the de-noising, the higher R2 value was obtained, albeit after a

special threshold value, R2 descended. This special threshold value could be

Table 12.5 Appropriate threshold determination of stream-flow time series in stream-flow

forecasting

Threshold

value (m3/s)

Network structure

(inputs: Qt�1, Qt�2, Qt�3)

RMSE (normalized) R2

Calibration Verification Calibration Verification

2.832 (3-4-1) 0.014 0.020 0.900 0.831

19.822 (3-8-1) 0.013 0.019 0.916 0.853

28.316 (3-9-1) 0.014 0.019 0.898 0.854

42.475 (3-4-1) 0.015 0.018 0.879 0.864

56.633 (3-8-1) 0.013 0.018 0.910 0.862

84.950 (3-7-1) 0.013 0.017 0.908 0.875

113.267 (3-9-1) 0.015 0.017 0.891 0.883

169.900 (3-8-1) 0.012 0.016 0.921 0.888

226.534 (3-8-1) 0.013 0.017 0.913 0.882

283.168 (3-6-1) 0.014 0.017 0.894 0.879

339.802 (3-10-1) 0.014 0.018 0.893 0.855

424.752 (3-10-1) 0.016 0.020 0.875 0.825

453.068 (3-8-1) 0.016 0.021 0.865 0.818

458.732 (3-8-1) 0.016 0.021 0.870 0.817

481.385 (3-9-1) 0.017 0.022 0.851 0.800

509.702 (3-9-1) 0.017 0.022 0.855 0.794

566.336 (3-8-1) 0.018 0.023 0.831 0.777

707.92 (3-9-1) 0.020 0.024 0.804 0.762

849.504 (3-9-1) 0.021 0.026 0.775 0.725

Table 12.4 Results of hybrid ANN-wavelet model for stream-flow forecasting using Comb. 3-1

Mother

wavelet

Decomposition

level

Network

structure

RMSE (normalized) R2

Calibration Verification Calibration Verification

Haar 8 (3-9-1) 0.014 0.019 0.897 0.846

9 (3-2-1) 0.017 0.019 0.862 0.841

10 (3-7-1) 0.014 0.019 0.897 0.841

db2 8 (3-8-1) 0.014 0.019 0.900 0.844

9 (3-8-1) 0.013 0.019 0.911 0.849

10 (3-9-1) 0.014 0.019 0.899 0.848

db3 8 (3-6-1) 0.014 0.019 0.900 0.850

9 (3-10-1) 0.013 0.019 0.913 0.849

10 (3-6-1) 0.013 0.018 0.913 0.855

db4 8 (3-10-1) 0.013 0.018 0.913 0.867

9 (3-6-1) 0.014 0.019 0.902 0.848

10 (3-7-1) 0.014 0.019 0.897 0.850

db5 8 (3-8-1) 0.014 0.018 0.906 0.857

9 (3-5-1) 0.013 0.018 0.919 0.860

10 (3-10-1) 0.013 0.019 0.918 0.852
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considered as the “appropriate threshold” which in stream-flow forecasting was

169.9 (m3/s). In Table 12.5, it was seen that R2 was increased from 0.838 for the

noisy time series to 0.888 for the de-noised one, in stream-flow forecasting

modeling.

12.4.2.3 SSL Forecasting

Similar to stream-flow forecasting, effective mother wavelet and decomposition

level were chosen for each suitable predefined combinations of SSL (Combs. 2-2

and 2-3) through sensitivity analysis on ANN model with de-noised data obtained

from global wavelet de-noising procedure using the universal threshold method

(Table 12.6). The consequences of Table 12.6 revealed that mother wavelets db3
and db5 with decomposition levelsM ¼ 10 andM ¼ 8 for the Combs. 2-3 and 2-2,

respectively, showed the efficient performance in terms of R2 values.

The proposed de-noising scheme was also applied for the Comb. 2-6, which

was the effective combination among ad hoc ANN models and comprised both

stream-flow and SSL antecedents. Since the combination 2-6 was the cumulative

form of Combs. 2-3 and 2-2, and on the other hand the effective mother wavelet

and decomposition level values were determined for each of Combs. 2-3 and 2-2,

two different ANN-wavelet models were proposed for Comb. 2-6 as: (1) Both

de-noised stream-flow and SSL time series were considered as inputs. (2) Only

one de-noised time series (stream-flow or SSL) was considered as input. The

outcomes in terms of efficiency criterion R2 proved that the model with de-noised

time series on both variables exhibited high performance in comparison to the

models with just individual de-noised variable (see Table 12.7). With respect to

the obtained results in Table 12.7, it was obvious that de-noised stream-flow

time series had fundamental effect on final results compared with de-noised SSL

time series.

After choosing appropriate mother wavelets and decomposition level for each

combination, appropriate threshold value should be computed. The range of thresh-

old values within local neighborhood of universal threshold value was obtained

from Donoho’s equation (Eq. 12.9) to determine “appropriate threshold value” for

discharge and SSL time series in SSL forecasting. The results revealed that 453.068

(m3/s) and 9,000 (ton/day) threshold values were appropriate values for stream-flow

and SSL time series, respectively, in terms of R2 as an evaluation criterion (see

Tables 12.8 and 12.9).
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Table 12.8 Appropriate threshold determination of stream-flow time series in SSL forecasting

Threshold

value (m3/s)

Network structure

(inputs ¼ Qt�1, Qt�2)

RMSE (normalized) R2

Calibration Verification Calibration Verification

2.832 (2-9-1) 0.016 0.020 0.635 0.529

19.822 (2-10-1) 0.015 0.017 0.685 0.653

28.316 (2-10-1) 0.015 0.019 0.672 0.581

42.475 (2-5-1) 0.016 0.018 0.633 0.628

56.633 (2-7-1) 0.016 0.018 0.628 0.609

84.950 (2-10-1) 0.015 0.08 0.669 0.614

113.267 (2-8-1) 0.016 0.017 0.663 0.662

169.900 (2-4-1) 0.015 0.016 0.691 0.689

226.534 (2-4-1) 0.015 0.016 0.699 0.698

283.168 (2-10-1) 0.014 0.016 0.712 0.698

339.802 (2-7-1) 0.014 0.016 0.713 0.698

424.752 (2-10-1) 0.015 0.016 0.710 0.700

453.068 (2-9-1) 0.014 0.016 0.713 0.708

458.732 (2-7-1) 0.014 0.016 0.710 0.702

481.385 (2-8-1) 0.015 0.016 0.704 0.702

509.702 (2-9-1) 0.015 0.016 0.702 0.700

566.336 (2-4-1) 0.015 0.017 0.688 0.683

707.92 (2-7-1) 0.015 0.017 0.665 0.659

849.504 (2-5-1) 0.016 0.018 0.636 0.631

Table 12.9 Appropriate threshold determination of SSL time series in SSL forecasting

Threshold value

(ton/day)

Network structure

(inputs ¼ St�1, St�2)

RMSE (normalized) R2

Calibration Verification Calibration Verification

50 (2-4-1) 0.015 0.018 0.681 0.632

4,000 (2-6-1) 0.015 0.017 0.695 0.679

5,000 (2-8-1) 0.014 0.017 0.708 0.686

5,500 (2-9-1) 0.015 0.017 0.704 0.687

6,000 (2-7-1) 0.014 0.017 0.706 0.678

6,500 (2-8-1) 0.015 0.017 0.704 0.686

7,500 (2-9-1) 0.015 0.017 0.701 0.685

8,500 (2-7-1) 0.015 0.017 0.702 0.689

9,000 (2-9-1) 0.015 0.017 0.699 0.694

10,500 (2-8-1) 0.015 0.017 0.685 0.671

11,000 (2-6-1) 0.015 0.017 0.697 0.684

12,000 (2-9-1) 0.015 0.017 0.694 0.682

13,000 (2-8-1) 0.015 0.017 0.693 0.693

13,500 (2-6-1) 0.015 0.017 0.699 0.681

14,500 (2-8-1) 0.015 0.018 0.672 0.648

16,000 (2-7-1) 0.014 0.017 0.709 0.679

16,500 (2-7-1) 0.015 0.017 0.696 0.672

17,000 (2-5-1) 0.014 0.017 0.708 0.686

234 V. Nourani et al.



12.4.3 Comparison of Models

In order to obtain an intuitive understanding of ad hoc ANN modeling with hybrid

ANN-wavelet modeling linked to de-noising approach, comprehensive comparison

is presented in Table 12.10. Through single ANN approach noisy time series of

stream-flow and SSL were imposed to ANN intended for predicting both stream-

flow and SSL one day ahead. On the other hand, de-noised data via threshold-based

wavelet de-noising method were employed as inputs again for stream-flow and SSL

forecasting. The comparison results revealed that noise removal using the wavelet

de-noising approach improved the evaluation criteria of stream-flow and SSL

forecasting models. Specifically ascending results of Table 12.10 at each combina-

tion denoted that the efficiency criteria values improved while the modeling method

altered from ad hoc ANN to hybrid ANN-wavelet with universal threshold

approach and appropriate threshold.

Figure 12.6a, b presents scatter plots between observed and computed stream-

flow values using ad hoc ANN for noisy and de-noised data, respectively, at

verification step. Similarly Fig. 12.7a, b presents scatter plots between observed

and computed SSL for single ANN with noisy and de-noised data, respectively, at

verification step. Comparison of scatter plots demonstrates that the improvement by

Table 12.10 Comparative results of ad hoc and hybrid ANN models

Input comb.

Noise

conditiona Output

Network

structure

RMSE (normalized) R2

Calibration Verification Calibration Verification

1-3 Noisy Qt (3-3-1) 0.017 0.020 0.861 0.838

De-noised

1

(3-10-1) 0.013 0.018 0.913 0.867

De-noised

2

(3-8-1) 0.012 0.016 0.921 0.888

2-2 Noisy SSLt (2-10-1) 0.014 0.018 0.692 0.601

De-noised

1

(2-4-1) 0.014 0.018 0.651 0.632

De-noised

2

(2-9-1) 0.014 0.016 0.713 0.708

2-3 Noisy SSLt (2-10-1) 0.016 0.020 0.635 0.543

De-noised

1

(2-8-1) 0.015 0.017 0.676 0.669

De-noised

2

(2-9-1) 0.015 0.017 0.699 0.694

2-6 Noisy SSLt (4-4-1) 0.015 0.017 0.674 0.651

De-noised

1

(4-6-1) 0.013 0.016 0.713 0.706

De-noised

2

(4-4-1) 0.012 0.013 0.802 0.802

aThe terms de-noised 1 and de-noised 2 stand for the de-noising time series via universal threshold

and appropriate threshold, respectively
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using the ANN-wavelet de-noising scheme is not so significant than ad hoc ANN

for low stream cases. It is justified due to the entity of noise; noise usually comes

out quite strong in high vacillations, since low values of stream-flow include trivial

fluctuations in proportion to medium and high stream (Fig. 12.2a, b); therefore,

de-noising exposes less significant effect in improvement of ANN for low stream

cases. In Fig. 12.8a, b observed noisy data of stream-flow and SSL were compared

to de-noised time series, respectively. A visual assessment of the predicted and

Fig. 12.6 Scatter plot for observed and computed stream-flow using ANN for (a) noisy and (b)

de-noised data at verification step

Fig. 12.7 Scatter plot for observed and computed SSL using ANN with (a) noisy and (b)

de-noised data at verification step
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observed stream-flow and SSL showed that ANN modeling via de-noised data had

the best fit to observed time series.

It was seen that varying the output from Qt to SSLt led to change in the chosen

mother wavelet for stream-flow de-noising from db4 to db3. Therefore, it was
derived that in the threshold-based wavelet de-noising, appropriation of the mother

wavelet depended on the type of the information extracted from the time series

based on the target and allowed the de-noising procedure to remove unnecessary

parts as a noise and kept the main part of the time series.

The appropriate threshold value for discharge time series in stream-flow fore-

casting was greater than that in SSL prediction and as well in universal threshold

method based on Eq. (12.9) and also it was obvious that by increasing the threshold,

more information was deleted from the signal as noise. Hence, it was deduced that

in hydrological processes modeling, noise had a relative identification and

depended on the target, some information in time series could be considered as a

noise, and just with target alternation, information value varied from noise to worth

information.

Fig. 12.8 Comparison of observed noisy data of (a) stream-flow and (b) SSL with de-noised time

series of stream-flow and SSL, respectively

12 Evaluation of Wavelet-Based De-noising Approach in Hydrological Models. . . 237



12.5 Concluding Remarks

Understanding the stream-flow and SSL processes in order to propose the effective

forecasting models would greatly improve the discernment ability in water

resources management. Noise is the important factor embedded in hydrological

time series, which influences on modeling results. In this study, the wavelet

transform was utilized for de-noising purpose and the ANN was applied to develop

a hybrid black box model for forecasting and simulating stream-flow and SSL

values in the Potomac River at Maryland, USA. It was proceeded to achieve the

purpose of study through several steps: (1) determination of proper combinations

for both stream-flow and SSL time series as inputs to ANN, (2) selection of

appropriate mother wavelet and optimum decomposition level as well as sufficient

threshold value for de-noising goal, and (3) imposition of de-noised time series into

ANN to fulfill the forecasting purpose. It should be mentioned that second step

included the threshold-based wavelet de-noising method. In addition to hybrid

ANN-wavelet model, the ad hoc ANN was employed in order to compare efficiency

of proposed methodology in prediction of stream-flow and SSL.

The inception of de-noising procedure was the determination of mother wavelet

and decomposition level, which were key factors in effectiveness of the wavelet

transform. The visual similarity between time series and mother wavelets facilitated

to pick proper wavelet prototype function. Then, decomposed time series was

de-noised by the universal thresholding method. The greatest challenge in current

study was that a high threshold value would remove useful information from signals

and a low threshold value could not emit large amount of noise, in order to

determine “appropriate threshold value.” The obtained results revealed that in

context of universal threshold, Donoho’s equation was not acceptable preference

to determine threshold value. The challenge was obviated through utilizing the

universal threshold method in order to estimate the approximate range of threshold

value and subsequently, the appropriate threshold value was achieved through trial–

error procedure on the assigned threshold range, since the noise contaminating

signals were not adhered to Gaussian noise principle. The results of investigation

conducted into threshold-based wavelet de-noising procedure could be presented

as:

• Appropriate mother wavelet and threshold value changed parallel with target

changes.

• Increasing the threshold value did not specifically mean accurate prediction

result.

• Stream-flow time series could be successfully employed as the input in order to

predict SSL with applicable accuracy.

• Threshold-based wavelet de-noising method as a preprocessed method enhanced

the forecasting model performance of stream-flow and SSL time series.

In order to probe the influence of de-noising on hydrological forecasting models,

it is suggested to utilize other noise removal methods such as level-dependent soft
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threshold-based wavelet de-noising method and compare the results with current

values. Furthermore, it is suggested to carry out the forecasts via autoregressive

integrated moving average and support vector machine models for the monthly

scales as well.
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Chapter 13

Evaluation of Mathematical Models

with Utility Index: A Case Study from

Hydrology

Dr. Renji Remesan and Dr. Dawei Han

Abstract Conventional error-based statistical parameters like the Nash–Sutcliffe

efficiency index are popular among hydrologists to check the accuracy of hydro-

logical models and to compare the relative performance of alternative models in

a particular modelling scenario. A major drawback of those traditional indices is

that they are based on only one modelling attribute, i.e. the modelling error.

This study has identified an overall model utility index as an effective error-

sensitivity-uncertainty procedure which could serve as a useful quality indicator

of data-based modelling. This study has also made an attempt to answer the

question—should the increasing complexity of the existing model add any benefit

to the model users? The study evaluates the utility of some popular and widely

used data-based models in hydrological modelling such as local linear regression,

artificial neural networks (ANNs), Adaptive neuro fuzzy inference system (ANFIS)

and support vector machines (SVMs) along with relatively complex wavelet hybrid

forms of ANN, ANFIS and SVM in the context of daily rainfall–runoff modelling.

The study has used traditional error-based statistical indices to confirm capabilities

of model utility index values in identifying better model for rainfall–runoff model-

ling. The implication of this study is that a modeller may use utility values to select

the best model instead of using both calibration and validation processes in the case

of data scarcity. The study comprehensively analysed the modelling capabilities of

SVM and its waveform in the context of rainfall–runoff modelling.

Keywords Support vector machines • Wavelets • Local linear regression •

Artificial neural network • Fuzzy inference system • Hydrology

R. Remesan (*)

Cranfield Water Science Institute, Cranfield University, Vincent Building, College Road,

Cranfield, Bedfordshire MK43 0AL, UK

e-mail: r.remesan@cranfield.ac.uk

D. Han

Department of Civil Engineering, University of Bristol, Bristol, UK

T. Islam et al. (eds.), Computational Intelligence Techniques in Earth
and Environmental Sciences, DOI 10.1007/978-94-017-8642-3_13,
© Springer Science+Business Media Dordrecht 2014

243

mailto:r.remesan@cranfield.ac.uk


13.1 Introduction

Data-based modelling techniques have been popular in the field of hydrology

for several decades. Even in the acclaimed success of different data models in

hydrology, there are still many questions that need to be answered. The relevant

questions in data-based modelling in hydrology are how useful is a model for

predicting a particular component within the hydrological cycle? and does a

complex model work better than simple ones? Visual judgment and statistical

measures are two common approaches employed to establish the integrity of any

data-based mathematical models. The usefulness of any model depends ultimately

on its contribution to the success of decision making, not on its ability to generate

unassailably correct numerical values (Pepelnjak 2009). It is often difficult in

hydrology to decide which model should be used for a particular purpose, and the

decision is often made on the basis of familiarity rather than the appropriateness

and effectiveness of the model. Legates and McCabe (1999) have reviewed many

major statistical measures that are used by the hydrologists to validate models,

which includes the Nash–Sutcliffe (NS) efficiency index, the root mean square

error (RMSE), the coefficient of correlation, the coefficient of determination, the

mean absolute error and many more, out of which the NS-efficiency index is one

of the most commonly used indicators for model comparison and performance

evaluation in hydrology. A study by Jain and Sudheer (2008) has demonstrated

the weakness of the NS-efficiency index in model comparison. Comparing different

models just in terms of their better accuracy in simulating the numerical values is

often misleading as there are many other aspects that need to be accounted for

before declaring that one model with entirely different mathematical concepts

is better than the other. It is a known fact that the best model is not necessarily

the most complex, or the one which overtly reflects the most sophisticated under-

standing of the system (Barnes 1995). There is a hypothesis that more complex

models simulate the processes in a better way but with high variability in sensitivity

and relatively less bias (Snowling and Kramer 2001). On the other hand, a study

by Oreskes et al. (1994) argues that there is no strong evidence that simple models

are more likely to produce more accurate results than complex models. Snowling

and Kramer (2001) have connected the usefulness of the model to model’s uncer-

tainty which was assessed through different modelling attributes like model error,

model sensitivity and model complexity.

In hydrology and water resources research, there are two major bases of uncer-

tainty attitudes; one is based on stochasticity as a necessary factor and the other is

based on deterministic nature of the system. The definition of uncertainty is much

more uncertain about the modelled numerical values; it relates to much deeper

processes and pertains to the governing mechanisms of the model. Distinguishable

uncertainties in hydrology are data uncertainties (mainly associated with measurements),

sample uncertainties (e.g. number of data for calibration) and model uncertainty

(Plate and Duckstein 1987). Klir (1989) made an attempt to consider uncertainty in

terms of the complexity of the model. He found both categories have a conflictive

nature, i.e. if complexity decreases, the uncertainty grows. In the last 20 years,
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the study of complexity in modelling systems has emerged as a recognised field

in statistics. Though, the initial attempts to formalise the concept of complexity go

back even further to Shannon’s inception of information theory (Shannon 1948).

The complexity of a model is closely related with the uncertainty of the system

which can be defined in terms of model properties like model sensitivity and

modelling error. The general hypothesis of model complexity and its influence

during training and testing phases is shown in Fig. 13.1. The general hypothesis

states that more complex models can simulate reality better than simpler models

(i.e. less prediction error), and with a greater variance and low bias during training

phase. Less complex models provide a relatively approximate simulation (i.e. more

prediction error), but with less variance and high bias. But the case is a bit different

in testing phase; highly complex models won’t give best test results as the graph is

parabolic with a minimum somewhere in the middle.

Figure 13.2 displays the hypothesis which shows the variation of different

model parameters particularly with bias–variance interaction during the test phase.

Models of different complexity may show different modelling properties like

sensitivity, flexibility, error and data requirements based upon their structure.

Figure 13.3 illustrates the hypothetical relationship between model sensitivity,

modelling error, model flexibility, training data requirement and model complexity.

The aim of this chapter is to highlight the need to have a statistical comparative

index in data-based modelling which considers modelling attributes like model

error, model complexity and model sensitivity. The study has made use of modified

form of the overall model utility index proposed by Snowling and Kramer (2001)

to identify “the best and right” model in data-based hydrological modelling,

which was accomplished through a major case study, using the daily information

of rainfall and runoff data from the Brue catchment in the United Kingdom. The

utility-based results are compared with that of the traditional statistical indices.

Another objective of this study is to ascertain if the usefulness of a model changes if

one performs the wavelet-based input data splitting.
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13.2 Study Area and Data Used

This study has used daily rainfall and runoff data from the Brue catchment of the

United Kingdom. The River Brue catchment is located in Somerset, South West of

England. It is considered as one of the best representative catchments to express

hydrological responses in England, due to its data quality for a reasonably long

time. This catchment has been extensively used in many good quality studies on

weather radar, quantitative precipitation and flood forecasting and rainfall–runoff

modelling. The location is famous among researchers because of its well-facilitated

dense rain gauge network as well as the coverage by three weather radars. The

River Brue catchment was the site of the Natural Environment Research Council
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(NERC)-funded HYREX project (Hydrological Radar Experiment) from 1993 to

2000. The catchment was chosen for the HYREX project, as its size and relief were

seen as representative of many catchments in the United Kingdom to demonstrate

the hydrological dynamics and flood forecasting procedures. The catchment has a

drainage area of 135 km2 and an elevation range between 35 and 190 m above sea

level. The catchment is located at 51.075�N and 2.58�W (Fig. 13.4). The river

gauging point at the catchment is located at Lovington. An automatic weather

station (AWS) and an automatic soil water station (ASWS) are located in the

catchment which recorded the global solar radiation, net radiation and other

weather parameters such as wind speed, wet and dry bulb temperatures and

atmospheric pressure in hourly interval. Six years of daily rainfall–runoff data

from the Brue catchment, spanning from 1993 to 2000, was used in this study.

For the rainfall–runoff modelling, the study has used effective inputs like three-step

antecedent runoff values (Q(t � 1), Q(t � 2), Q(t � 3)), one-step antecedent rain-

fall (P(t � 1)) and current rainfall information (P(t)) for hybrid modelling as

observed in the previous studies (Remesan et al. 2009). The optimum training

data length for this daily rainfall–runoff data set was identified as 1,056 data points

(Remesan et al. 2009) which was used as training data set throughout the study and

the rest is used for validation.

13.3 Models

The study has used several data-based models such as local linear regression

(LLR) model, artificial neural networks (ANNs), Adaptive neuro fuzzy inference

system (ANFIS), support vector machines (SVMs) and hybrid wavelet forms

of ANN, ANFIS and SVMs in order to cover a wide range of models

used in hydrology.

Fig. 13.4 The location map of the study area, the Brue River catchment

13 Evaluation of Mathematical Models with Utility Index: A Case Study. . . 247



13.3.1 LLR Model

The LLR model is a widely accepted nonparametric regression method due to

its better prediction capabilities in low dimensional forecasting and modelling

problems. The attraction of LLR technique is its consistent performance even

with a small amount of sample data. In the mean time, LLR can produce very

accurate predictions in regions of high data density in the input space. The LLR

procedure requires only three data points to obtain an initial prediction and then

uses all newly updated data as they become available to make further predictions.

The only problem with LLR is to decide the size of pmax, the number of near

neighbours to be included for the local linear modelling.

Given a neighbourhood of pmax points, we must solve a linear matrix equation

Xm ¼ y ð13:1Þ

whereX is a pmax � dmatrix of the pmax input points in d-dimensions, xi(1 � i � pmax)
are the nearest neighbour points, y is a column vector of length pmax of the

corresponding outputs and m is a column vector of parameters that must be

determined to provide the optimal mapping from X to y, such that

x11 x12 x13 . . . x1d
x21 x22 x23 . . . x2d
⋮ ⋮ ⋮ ⋱ ⋮

xxpmax 1
xxpmax 2

xxpmax 3
� � � xxpmaxd

0

BB@

1
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m1

m2

m3

⋮
md

0

BBBB@

1

CCCCA
¼

y1
y1
⋮
ypmax

0

BB@

1

CCA ð13:2Þ

The rank r of the matrix x is the number of linearly independent rows, which

will affect the existence or uniqueness of the solution for m.
If the matrix X is square and non-singular then the unique solution to Eq. 13.1

is m ¼ X� 1y. If X is not square or singular, we modify Eq. 13.1 and attempt to

find a vector m which minimises

��Xm� y
��2 ð13:3Þ

13.3.2 ANN and ANFIS Models

The theory of ANNs started in the early 1940s whenMcCulloch and Pitts developed

the first computational representation of a neuron (McCulloch and Pitts 1943).

The ANNs are nonlinear formations which work based on the function of human

neural system. ANNs have become focus of much attention in last few decades in

hydrology due to their immense capabilities in the implementation of nonlinear

static and dynamic systems. The most commonly used learning algorithm in
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ANNs is the back-propagation algorithm. Algorithms like conjugate gradient,

quasi-Newton and Levenberg–Marquardt (LM) are considered as some of the faster

algorithms, all of which make use of standard numerical optimisation techniques.

The Levenberg–Marquardt (LM) learning algorithm was used in this study. There

are several types of ANNs like multilayer perceptron, radial basis functions

and Kohonen networks. ANN structure defines its structure including number of

hidden layers, number of hidden nodes, number of input and output nodes and

activation function. For hidden layer the sigmoid activation function and for

output layer linear activation function were used in this study. Three-layer feed-

forward neural network (one input layer, one hidden layer and one output layer)

is the most commonly used topology in hydrology. This topology has proved

its ability in modelling many real-world functional problems. The selection of

hidden neurons is the tricky part in ANN modelling as it relates to the complexity

of the system being modelled and there are several ways of doing it, such as

the geometric average between input and output vector dimensions (Maren et al.

1990), the same as the number of inputs used for the modelling (Mechaqrane and

Zouak 2004), twice the input layer dimension plus one (Hecht-Nielsen 1990), etc.

In this study, the Hecht-Nielsen (1990) approach has been adopted according to

our past experimental experience with it.

Adaptive neuro-fuzzy inference system (ANFIS) model is a well-known artifi-

cial intelligence technique that has been used in modelling hydrological processes.

The ability of neural network to learn fuzzy structure from the input–output data

sets in an interactive manner has encouraged many researchers to combine the ANN

and the fuzzy logic effectively to organise network structure itself and to adapt

parameters of a fuzzy system. The ANFIS model used in this study is based on the

Sugeno fuzzy model, which is based on a systematic approach to generate fuzzy

rules and membership function parameters for fuzzy sets from a given hydrological

time series data set (Sugeno and Kang 1988; Jang 1993). The learning algorithm for

ANFIS is a hybrid algorithm, which is a combination between the gradient descent

method and the least squares method for identifying nonlinear input parameters and

the linear output parameters, respectively. The ANFIS modelling was performed

using the “subtractive fuzzy clustering” function due to its good performance with a

small number of rules.

For a first-order Sugeno fuzzy model, a typical rule set with two fuzzy

If/Then rules can be expressed as

Rule 1 : If x is A1 and y is B1 Then f 1 ¼ p1xþ q1yþ r1 ð13:4Þ

Rule 2 : If x is A2 and y is B2 Then f 2 ¼ p2xþ q2yþ r2 ð13:5Þ

where x and y are the crisp inputs to the node i, Ai and Bi are the linguistic labels

(low, medium, high, etc.) characterised by convenient membership functions and

pi, qi and ri are the consequence parameters (i ¼ 1 or 2). In the ANFIS, nodes in

the same layer have similar functions as described below.
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(a) Layer 1 (input nodes): Nodes of this layer generate membership grades

of the crisp inputs which belong to each of the convenient fuzzy sets using

the membership functions. The generated bell-shaped membership function

given below was used:

μAi
xð Þ ¼ 1

1þ x� cið Þ=aið Þ2bi i ð13:6Þ

where μAi
is the appropriate membership function for Ai fuzzy set, and {ai, bi,

ci} is the membership function’s parameter set (premise parameters) that

changes the shape of membership function from 1 to 0.

(b) Layer 2 (rule nodes): In this layer, the rule operator (AND/OR) is applied to get
one output that represents the results of the antecedent for a fuzzy rule.

The outputs of the second layer, called as firing strengths O2
i , are the products

of the incoming signals obtained from the layer 1, named as w below:

(c) Layer 3 (average nodes): In this layer, the nodes calculate the ratio of the ith
rule’s firing strength to the sum of all rules’ firing strengths

O3
i ¼ wi ¼ wiX

i
wi

, i ¼ 1, 2 ð13:8Þ

O2
i ¼ wi ¼ μAi

xð ÞμBi
yð Þ, i ¼ 1, 2 ð13:7Þ

(d) Layer 4 (consequent nodes): In this layer, the contribution of ith rule towards

the total output or the model output and/or the function is calculated as follows:

O4
i ¼ wi f i ¼ wi pixþ qiyþ rið Þ, i ¼ 1, 2 ð13:9Þ

where wi is the output of Layer 3 and {pi, qi, ri} are the coefficients of a linear
combination in Sugeno inference system. These parameters of this layer are

referred to as consequent parameters.

(e) Layer 5 (output nodes): This layer is called the output nodes. This layer’s single
fixed node computes the final output as the summation of all incoming signals.

O5
i ¼ f x; yð Þ ¼

X
i
wi f iX
i
wi

ð13:10Þ

13.3.3 Support Vector Machines

Just like ANNs, SVMs can be represented as two-layer networks (where the

weights are nonlinear in the first layer and linear in the second layer).
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Mathematically, a basic function for the statistical learning process is:

y ¼ f xð Þ ¼
XM

i¼1

αiφi xð Þ ¼ wφ xð Þ ð13:11Þ

where the output is a linearly weighted sum of M. The nonlinear transformation

is carried out by φ(x).
The decision function of SVM is represented as:

y ¼ f xð Þ ¼
XN

i¼1

αiK xi; xð Þ
( )

� b ð13:12Þ

where K is the kernel function, αi and b are parameters, N is the number of training

data, xi are the vectors used in training process and x is the independent vector. The
parameters αi and b are derived by maximising their objective function.

The role of the kernel function simplifies the learning process by changing

the representation of the data in the input space to a linear representation in a

higher dimensional space called a feature space. A suitable choice of kernels allows

the data to become separable in the feature space despite being non-separable in the

original input space. Four standard kernels are usually used in classification prob-

lems and also used in regression cases: linear, polynomial, radial basis and sigmoid:

Linear: u0 � v
Polynomial: (γ � u0v + coef)degree

Radial basis: e�γ
��u�v

��2

Sigmoid: tanh(γ � u0v + coef)

The SVM software used in this study was LIBSVM developed by Chih-Chung

Chang and Chih-Jen, and supported by the National Science Council of Taiwan. The

basic algorithm is a simplification of both SMO by Platt and SVMLight by Joachims.

The source code is written in C++. The choice of this software was made on its ease

of use and dependability. It has been tried and tested in several research institutions

worldwide including the Computer and Information Sciences Department, University

of Florida, USA, and the Institute for Computer Science, University of Freiburg,

Germany. The LIBSVM is capable of C-SVM classification, one-class classification,

ν-SV classification, ν-SV regression and ε-SV regression. The model first trains the

SVM with a list of input vectors describing the training data. It outputs a model file,

which contains a list of support vectors and hence the description of the hypothesis

for the particular regression problem (Bray and Han 2004).

13.3.4 Wavelet Hybrid Models

This study has used three different types of wavelet hybrid models namely neuro-

wavelet (NW) models, wavelet-adaptive-network-based fuzzy inference system
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(W-ANFIS) model and wavelet-support vector machine (W-SVM) model in

conjunction with ANNs, ANFIS and SVMs, respectively. A multilayer feed-

forward network type of ANN and discrete wavelet transfer (DWT) model were

combined together to obtain a neuro-wavelet (NW) model. The DWT model

is functioned through two set of filters, viz. high-pass and low-pass filters,

which decompose the signal into two set of series namely detailed coefficients

(D) and approximation (A) sub-time series, respectively. Please refer to Remesan

et al. (2009) for further details of wavelet model construction. In the proposed NW

model, these decomposed sub-series obtained from DWT on the original data

directly are used as inputs to the ANN model. This study has used another

conjunction model: wavelet-neuro-fuzzy is applied in subsequent sections for

daily rainfall–runoff modelling. The W-ANFIS model utilises the time–frequency

representation ability of DWT to display the data in the time domain in conjunction

with a conventional ANFIS model. The input antecedent information data consid-

ered are decomposed into wavelet sub-series by discrete wavelet transform and

then the neuro-fuzzy model is constructed with appropriate wavelet sub-series as

input, and desired time step of the target time series as output. In the case

of W-SVM, the DWT model is combined with the SVM model with the best kernel

function and best regressor and several trial and error evaluations. The detailed

model structure and proposed specifications are given in Figs. 13.5, 13.6 and 13.7

which correspond to NW, W-ANFIS and W-SVM models.

Low pass Filter

Output

A

D

High pass Filter

Original
Rainfall-runoff

Modelling inputs

Fig. 13.5 The proposed hybrid scheme for NW model

Low pass Filter

High pass Filter
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Rainfall-runoff

modelling inputs
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Layer 1

A1

W1 W1 W1

W2 W2 W2f2
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B1

B2

Layer 2 Layer 3 Layer 4 Layer 5

Σ

Fig. 13.6 The proposed hybrid scheme for W-ANFIS model
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13.3.5 Index of Model Utility (U)

This study has adopted an index of model utility to make a decision about which is

the “best and right” model for a hydrological modelling exercise. The adopted

approach is a modified version of Snowling and Kramer (2001) for the suitability in

data-based modelling. Statistically the proposed “index of model utility” of a model

can be defined as scaled distance from origin on a graph of sensitivity vs. modelling

error of different models to the point corresponding to that model in the graph.

Mathematically it can be written as

Ui ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KsS

2
i þ KeE

2
i

Ks þ Keð Þ

s

ð13:13Þ

where

Ui is the utility index for model i
Si, sensitivity value for model i (relative to the maximum sensitivity). In this study

the value is obtained from the mean value of slope of all sensitivity curves

obtained from all inputs

Ei, error value for model i (relative to the maximum error; this study has adopted

RMSE as the indicator of model error)

Ks and Ke are weighting constants for sensitivity and error, respectively

U value varies between 0 and 1 and if the value of U is larger the model has

higher utility. The values of S and E for each model should be normalised to

satisfy the equation; that’s the reason for dividing all values by the maximum

sensitivity and error value. The values of Ks and Ke depend on how the model

values error and sensitivity. If error and sensitivity are valued equally, then Ks and

Ke should both be set to 1. In this study both values were set to 1, and the model

utility indexes (U ) were calculated for this case study using different models

detailed above.
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Fig. 13.7 The proposed hybrid scheme for W-SVM model
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13.4 Results and Discussions

In this section different popular data-based models in hydrology were established

and compared for the case study: daily rainfall–runoff modelling. The first subsec-

tion evaluates the utility of these models in different case studies, in terms of model

attributes like model error, model sensitivity and model complexity. In the second

subsection the models were compared and contrasted with finding of the overall

model utility index, in terms of traditional statistical parameters like RMSE, Nash–

Sutcliffe efficiency (E), mean bias error (MBE), slope and correlation coefficient

(CORR).

In this case study, several models were constructed and tested for predicting

daily runoff values (using models ranging from relatively simple LLR model to

relatively complex W-SVM). The nonparametric procedure based on LLR models

does not require training in the same way as that of neural network models. The

optimal number of nearest neighbours for LLR (principally dependent on the noise

level) was determined by trial and error method and 16 nearest neighbours were

implemented.

The adaptive Adaptive neuro fuzzy inference system (ANFIS) model was used

for daily rainfall–runoff modelling, in which a set of parameters in ANFIS were

identified through a hybrid learning rule combining the back-propagation gradient

descent and a least squares method. The ANFIS model in this modelling used a set

of fuzzy IF–THEN rules with appropriate membership functions. The subtractive

fuzzy clustering was used to establish the rule-based relationship between input

data series and output data variable. The subtractive clustering was used to auto-

matically identify the natural clusters in the input–output data pool. In this ANFIS

model, there were 32 parameters to determine in the layer 2 because of five input

variables. The three rules generated 36 nodes in the subsequent layer. The study set

the number of membership functions for each input of ANFIS as three with

Gaussian (or bell-shaped) and linear membership functions at the inputs and out-

puts, respectively.

For SVM modelling, C++-based LIBSVM with ν-SV and ε-SV regressions was

used as explained in methodology section. Normalisation of input vectors and

proper identification of different parameters are very important in SVM modelling.

Initial analysis results in rainfall–runoff modelling at the Brue catchment on both

ν-SVM and ε-SVM using different kernel functions are shown in Fig. 13.8. The

SVM analysis on the Brue catchment daily data has used different kernel functions

like linear, polynomial, radial and sigmoid and compared in terms of mean-squared

errors. Out of these eight analysis results, the results from two SVM stood out quite

considerably from the remaining six. These were ε-SVM and ν-SVM with linear

kernel function (Fig. 13.8). The performance of E-SVM with linear kernel was

better than that of ν-SVM with linear kernel. However, it was unclear whether this

performance was due to the regression algorithm implemented or whether

optimising the parameters within each algorithm would enhance the performance

of one SVM over the other.
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This analysis on daily data from the Brue catchment was performed after fixing

the parameters to the default values (degree in kernel function is set as 3, coef0 in

kernel function is set as zero, cache memory size is set as 40 Mb, tolerance of

termination criterion is set as a default value of 0.001). The SVM hypothesis

suggested that the performance of SVM depended on the slack parameter (ε) and
the cost factor (C). The study has performed the modelling analysis varying the

E values between ε ¼ 1 to ε ¼ 0.00001 and the cost parameters C ¼ 0.1–1,000.

The analysis results have shown that the least error increases rapidly for E greater

than 0.1. So the study set the value of E to 0.1 for reliable results and less

computation time.

The cost factor of error (C) assigns a penalty for the number of vectors falling

between the two hyperplanes in the hypothesis. It suggests if the data is of good

quality the distance between the two hyperplanes is narrowed down. If the data is

noisy it is preferable to have a smaller value of Cwhich will not penalise the vectors

(Bray and Han 2004). So it was important to find the optimum cost value for SVM

modelling. The cost value was chosen to be 2 because it produced the least error at

that value, with the minimum running time, which was identified after several trial

and error analyses.

The study has used a neuro-wavelet (NW) model for modelling; for this purpose,

a multilayer feed-forward network type of ANN and DWT model were combined

together to obtain an NW model. The DWT model is functioned through two set of

filters, viz. high-pass and low-pass filters, which decompose the signal into two set

of series namely detailed coefficients (D) and approximation (A) sub-time series,

respectively. The present value of runoff has been estimated using the three

Fig. 13.8 Variation of performance in daily rainfall–runoff modelling at the Brue catchment

when applying different support vector machines on different kernel functions
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resolution levels of antecedent runoff and rainfall information (2-day mode (Dj
q1,

Di
p1), 4-day mode (Dj

q2, D
i
p2), 8-day mode (Dj

q3, D
i
p3) and approximate mode Aj

q3,

Ai
p3 where q denotes runoff, p denotes rainfall and i and j denote number of

antecedent data sets of rainfall and runoff, respectively). The above-mentioned

decomposed sub-series were used as inputs in the case of wavelet hybrid forms of

ANFIS and SVM (viz. W-ANFIS and W-SVM).

13.4.1 Comparison of Data Models Using Utility Index

The study has used the overall model utility index to evaluate and compare different

data-based models from relatively simple LLR model to the hybrid W-SVMmodel.

This index gives a measure of the “utility” of the model in a particular modelling

scenario, with respect to modelling uncertainty (assuming that model uncertainty

connects to its sensitivity, error and complexity). Thus we have assessed model

attributes like model complexity (the study has used the training time as the

indicator of complexity), model sensitivity (output response to changes in training

input) and model error (closeness of simulation to measurement) of all seven data-

based models used for daily rainfall–runoff modelling.

Figure 13.9 shows the variation of error (RMSE) with the model complexity for

this case study i.e. daily rainfall–runoff modelling. The RMSE decreases with

increasing complexity as this study has hypothesised. However, relatively complex

ANN and ANFIS models have shown more erroneous prediction than the relatively

simpler LLR model. The better prediction in terms of error was exhibited by the

NW model, followed by W-SVM, W-ANFIS and SVM models. Even though, the

hypothetical relation is a straight line, we observed a decreasing linear relation with

R2 value of 0.138.
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Fig. 13.9 Complexity vs. training error—case study: rainfall–runoff modelling
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The sensitivity of the model with change in inputs used for training was assessed

varying the inputs in the range of certain percentages. To find the training sensi-

tivity of the model to the inputs, the study has changed all the inputs in the range of

�30 to +30 % and checked the change in outputs produced in each scenario. These

values were averaged to plot sensitivity diagram of each model as shown in

Fig. 13.10. The slopes of these sensitivity diagrams were estimated and these

slope values were considered as the measure of sensitivity.

Figure 13.11 shows the results of the variation of the sensitivity of different

models with the corresponding complexity values. The sensitivity showed an

increasing linear trend with increasing complexity with an R2 value of 0.58. Even

though the SVM model was a bit complex in structure the sensitivity value was

observed close to that of LLR model. The highest value of sensitivity was observed

with NWmodel, followed byW-ANFIS and ANFIS. The complexW-SVM showed

relatively low sensitivity compared to other hybrid wavelet models like NW and

W-ANFIS.

Now a modeller can make a decision in terms of uncertainty (expressed in terms

of error and sensitivity) and complexity (expressed in terms of modelling time). The

overall model utility statistic requires the error and the sensitivity to express in

relative ratio to the maximum value. Table 13.1 shows different data models and the

corresponding overall utility indices.

The value of the overall model utility index (U ) varies between 0 and 1, where

the larger the value of U, the greater the model utility considering aspects like

uncertainty and complexity. The resultant figure shows the utility values

corresponding to different models for the case study: rainfall–runoff modelling is

shown in Fig. 13.12. Due to the relatively high sensitivity of NW/W-ANFIS models

and relatively high error of ANN models, these three models stand out as the three

lowest utility models in the rainfall–runoff modelling study. It means that even
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Fig. 13.10 Sensitivity curves for different data-based models
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though the models are better at predicting numerical values, when considering other

attributes, which decide consistency in modelling, complex models may stand out

of “better and useful” model groups. Among all seven models, the W-SVM model

has the best model utility followed by the models like SVM and LLR. It was

interesting to note that the complex model SVM and relatively simple model

LLR have very close utility values.

13.4.2 Comparison of Data Models Using Statistical Indices

Though the study has presented the utility evaluation as an alternative method for

model comparison, it is essential to have a look into how the traditional statistical
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Fig. 13.11 Sensitivity vs. complexity—case study: rainfall–runoff modelling

Table 13.1 Different models and their attributes which decide overall model utility in rainfall–

runoff modelling

Model

Complexity

(function of

modelling

time)

Sensitivity

(function

of slope of

sensitivity

curves) RMSE (m3/s) RMSE (%) Sensitivity (%) Utility (U )

ANN 43 1.04 0.558 1 0.458 0.222

NW 90 2.27 0.274 0.491 1 0.212

ANFIS 96 1.15 0.47 0.842 0.506 0.304

W-ANFIS 101 2.06 0.39 0.698 0.907 0.190

SVM 40 0.88 0.415 0.743 0.387 0.406

W-SVM 60 0.95 0.37 0.663 0.418 0.445

LLR 35 0.9 0.414 0.741 0.396 0.405
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indices behave in this modelling case study. The performance of the developed

LLR technique was compared with other models using major global statistics as

shown in Table 13.2. The estimated daily runoff values using the LLR model for

1,056 data points resulted in the overall RMSE value of 0.414 m3/s which is 20.7 %;

compared to observed daily runoff values and the MBE observed as �0.028 m3/s.

The Levenberg–Marquardt algorithm-based ANN underperformed to that of LLR

in both the training and validation phases (RMSE value of 0.558 m3/s (27.9 % of

mean observed) and MBE value of �0.085 m3/s during validation phase). It was

seen that the LLR model’s performance had a superior efficiency and performance

compared with Levenberg–Marquardt ANN model with lower RMSE and higher

CORR, for the training period and validation periods.

Table 13.2 implies that the performance of ANFIS model is remarkably better

than that of LM-based ANN model in both validation and training data. The ANFIS

model showed an efficiency of 88.9 % (increase of 5.45 % from ANN model) for

the training data, and a validation efficiency of 77.3 % (an increase of 7.81 %

compared to ANN). The correlation coefficients between the computed and

observed are found to be 0.88 during training and 0.75 during validation. In order

to assess the robustness of the models developed, evaluation criterion like MBE was

used. From the MBE value one can deduce that both ANN and ANFIS showed

underestimation for the training data and validation data. The underestimation is

less for ANFIS during validation phase compared with ANN as a low value of MBE

was observed. However, the performance of LLR was observed better than that of

ANFIS model during training phase while ANFIS model outperformed LLR in the

validation phase.

The analysis results in Table 13.2 have shown that the NW model is superior in

predicting runoff values in comparison to all other models. The performance

efficiency of the NW model is 4.13 % higher than that of the ANFIS model for

validation and the corresponding value for the training data is 8.21 % higher.

Fig. 13.12 Overall model utility—case study: rainfall–runoff modelling

13 Evaluation of Mathematical Models with Utility Index: A Case Study. . . 259



T
a
b
le

1
3
.2

C
o
m
p
ar
is
o
n
o
f
so
m
e
b
as
ic

p
er
fo
rm

an
ce

in
d
ic
es

o
f
d
if
fe
re
n
t
m
o
d
el
s
em

p
lo
y
ed

in
th
e
st
u
d
y
fo
r
d
ai
ly

ra
in
fa
ll
–
ru
n
o
ff

m
o
d
el
li
n
g
at

th
e
B
ru
e

ca
tc
h
m
en
t

M
o
d
el
s
u
se
d

T
ra
in
in
g
d
at
a
(1
,0
5
6
d
at
a
p
o
in
ts
)

V
al
id
at
io
n
d
at
a

R
M
S
E
a
(m

3
/s
an
d
%
)

C
O
R
R

S
lo
p
e

M
B
E
(m

3
/s
)

E
R
M
S
E
a
(m

3
/s
an
d
%
)

C
O
R
R

S
lo
p
e

M
B
E
(m

3
/s
)

E

L
L
R

0
.4
1
4

0
.9
2

0
.9
3

�0
.0
2
8

0
.9
2
3

0
.9
2
2

0
.7
0

0
.8
0

�0
.1
7
1

0
.7
2

(2
0
.7
)

(3
7
.7
)

A
N
N
-L
M

0
.5
5
8

0
.8
3

0
.9
0

�0
.0
0
7

0
.8
4
3

0
.8
7
7

0
.6
8

0
.8
0

�0
.0
8
5

0
.7
1
7

(2
7
.9
)

(3
6
.4
)

A
N
F
IS

0
.4
7
0

0
.8
8

0
.9
3

�0
.0
3
8

0
.8
8
9

0
.7
9
6

0
.7
5

0
.8
5

�0
.0
3
9

0
.7
7
3

(2
3
.4
)

(3
3
.2
)

S
V
M

0
.4
1
5

0
.8
9

0
.9
1

�0
.0
6
2

0
.9
1

0
.6
9
2

0
.7
9

0
.8
2

�0
.0
1
2

0
.8
3
1

(2
0
.7
5
)

(2
8
.3
)

W
-S
V
M

0
.3
7
0

0
.9
0

0
.9
0

�0
.0
5
1

0
.9
0

0
.6
7
0

0
.7
5

0
.8
3

�0
.1
1
2

0
.7
7
0

(1
8
.8
)

(2
7
.2
)

W
-A

N
F
IS

0
.3
9

0
.9
0

0
.8
9

�0
.0
5
9

0
.9
0
5

0
.7
0
2

0
.8
0

0
.8
9

�0
.1
0
3

0
.8
0
2

(1
9
.5
)

(2
8
.6
)

N
W

0
.2
7
4

0
.9
6

0
.9
7

�0
.0
0
0
2

0
.9
6
2

0
.6
9
9

0
.8
1

0
.9
2

�0
.0
0
6
8

0
.8
0
5

(1
3
.6
)

5
(2
8
.6
)

a
R
o
o
t
m
ea
n
sq
u
ar
e
er
ro
r
is
al
so

sh
o
w
n
in

p
er
ce
n
ta
g
e
o
f
th
e
m
ea
n
v
al
u
e
o
f
o
b
se
rv
ed

ru
n
o
ff

260 R. Remesan and D. Han



Compared with the ANN model, the efficiency values of the NW model are 14.1 %

and 12.27 % higher for the training and validation data, respectively. In terms of

MBE, the performance of the NW model outperformed all other tested models in

both the training and validation phases.

As shown in the above section, the study chose the ε-SVM with linear kernel for

modelling applying the value of ε to 0.1 and values of C to 2; the modelling results

are shown in Table 13.2. The SVM model made a better modelling with RMSE

value of 0.415 m3/s (20.75 %) and CORR of 0.89 during the training phase. The

corresponding values during the validation phase were 0.692 m3/s (28.3 %) and

0.79, respectively. The SVM model has shown better statistical performance

compared to ANN, and ANFIS with an efficiency of 0.91 during training. The

ε-SVM is applied with DWT to form aW-SVMmodel. Likewise, the ANFIS model

was combined with DWT to form a hybrid W-ANFIS model. In the case of

W-ANFIS, the DWT decomposed the input data sets into three wavelet decompo-

sition levels (2–4–8) as mentioned in the previous sections and are used for rainfall–

runoff modelling. The performance analysis of wavelet-based ε-SVM (W-SVM) is

shown in Table 13.2 along with its comparison with the W-ANFIS model. The table

implies that the performance analysis of both the W-ANFIS model and the W-SVM

models was remarkably well in both validation and training data. The W-SVM

model showed an efficiency of 90.0 % (increase of 6.76 % from ANN model) for

the training data, and a validation efficiency of 77.0 % (an increase of 7.39 %

compared to ANN). The correlation coefficient between the computed and observed

are found to be 0.90 during training and 0.75 during validation. The RMSE for the

LM-based ANN model is lower (0.558 m3/s (27.9 %)) compared with the W-SVM

model (0.37 m3/s (18.8 %)) during training. From MBE value one can see the

significant improvements while using hybrid wavelet forms of SVM models. The

performance of W-ANFIS model in predicting runoff values is observed superior to

the conventional LM-based ANN model and inferior to hybrid wavelet-based SVM

model. The runoff prediction was underestimated by all models including

W-ANFIS model for both the training and validation phases as indicated by the

MBE values in Table 13.2. The RMSE value in the validation phase obtained by

W-ANFIS model was 0.702 m3/s (28.6 %), which was higher than that of the NW

model and W-SVM model. The performance efficiency of W-ANFIS model in the

rainfall–runoff modelling was 3.75 % lower than that of W-SVM model for

validation and corresponding value for training data was 1.12 % lower. Compared

with the ANN model, the efficiency values of the W-ANFIS model are 5.57 % and

11.85 % higher for training and validation data, respectively. However, in terms of

MBE values, the performance of NW model outperformed all other tested models

including W-ANFIS and W-SVM in both training and validation phases. Though

many statistical parameters are used for evaluation of robustness of the model, the

major index used for comparison of model performance is the Nash–Sutcliffe

efficiency. Figure 13.13 shows comparison of overall model utility index and

the Nash–Sutcliffe efficiency (average of training and validation) so in general

the comparison using general error-based statistical indices and the N-S efficiency

has shown that the rainfall–runoff modelling capabilities of data-based models

13 Evaluation of Mathematical Models with Utility Index: A Case Study. . . 261



are in the form of NW > SVM > W-ANFIS > W-SVM > ANFIS > LLR >
ANN. However, the results are different when we consider other modelling attri-

butes like model sensitivity and model complexity along with modelling errors. The

utility index identified that the usefulness of models in this case study are in

the form of W-SVM > SVM > LLR > ANFIS > ANN > NW > W-ANFIS.

Both the approaches have acknowledged the better performance of SVM, giving

second position in terms of efficiency and utility values. The N-S approach gave

high ranking for both W-ANFIS and NW model as the approach couldn’t account

for the influence of higher sensitivity. The higher utility value of the wavelet-based

SVM has shown the capabilities of SVM framework to handle large input space

without any difficulty of sensitivity.

13.5 Conclusions

The study adopted a utility index to critically evaluate the acceptance of a model

in terms of different modelling properties and contrasted the results with that

of traditional statistical indices (particularly the N-S efficiency). This study has

demonstrated that such an error-sensitivity-uncertainty procedure could help

modellers make effective comparison of different data-based models and it can

give an answer on how much the model benefits by increased complexity on

Fig. 13.13 Comparison of S–E efficiency and overall model utility index
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data-based models. The study extensively analysed the capabilities of SVM in the

context of rainfall–runoff modelling and demonstrated its ability to perform better

even in larger wavelet-decomposed input space. The study has demonstrated the

weakness of NW and W-ANFIS models. Even though these models had better

numerical prediction results, the utility evaluation has shown their limitation in

making a useful model for rainfall–runoff modelling due to their inclination

towards sensitivity. The overall utility analysis based on the utility index has

identified W-SVM as the best model, followed by SVM and LLR models.

The approach would be very useful in the data scarce situation where there is

insufficient data for validation. The modeller could use this method for selection of

the best possible model for the available data without diverting valuable data away

from calibration of model. Though the study presented with useful information,

there is room for improvement regarding the sensitivity assessment. The study has

assessed local sensitivity of the model with respect to the variation of inputs. The

term sensitivity is rather complicated; the local sensitivity slopes of these nonlinear

models vary depending on the range of inputs. However the choice of the sensitivity

and complexity values of these nonlinear models requires further research to

develop the presented utility assessment to a robust method in data-based model

comparisons.
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